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A B S T R AC T

This thesis investigates the charged moments and the symmetry-resolved
entanglement entropy in the context of the AdS3/CFT2 duality. In the
first part, I focus on the holographic U(1) Chern-Simons-Einstein grav-
ity, a toy model of AdS3/CFT2 with U(1) Kac-Moody symmetry. I
start with the vacuum background with a single entangling interval. I
show that, apart from a partition function in the grand canonical en-
semble, the charged moments can also be interpreted as the two-point
function of vertex operators on the replica surface. For the holographic
description, I propose a duality between the bulk U(1) Wilson line and
the boundary vertex operators. I verify this duality by deriving the
effective action for the Chern-Simons fields and comparing the result
with the vertex correlator. In the twist field approach, I show that the
charged moments are given by the correlation function of the charged
twist operators and the additional background operators. To solve the
correlation functions involved, I prove the factorization of the U(1) ex-
tended conformal block into a U (1) block and a Virasoro block. The
general expression for the U(1) block is derived by directly summing
over the current descendant states, and the result shows that it takes
an identical form as the vertex correlators. This leads to the conclusion
that the disjoint Wilson lines compute the neutral U(1) block. The fi-
nal result for the symmetry-resolved entanglement entropy shows that
it is always charge-independent in this model. In the second part, I
study charged moments in higher spin holography, where the bound-
ary theory is a CFT with W3 symmetry. I define the notion of the
higher spin charged moments by introducing a spin-3 modular charge
operator. Restricting to the vacuum background with a single entan-
gling interval, I employ the grand canonical ensemble interpretation
and calculate the charged moments via the known higher spin black
hole solution. On the CFT side, I perform a perturbative expansion for
the higher spin charged moments in terms of the connected correlation
functions of the spin-3 modular charge operators. Using the recursion
relation for the correlation functions of the W3 currents, I evaluate the
charged moments up to the quartic order of the chemical potential. The
final expression matches with the holographic result. My results both
for U(1) Chern-Simons Einstein gravity and W3 higher spin gravity
constitute novel checks of the AdS3/CFT2 correspondence.
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Z U S A M M E N FA S S U N G

Diese Arbeit untersucht die Symmetrie-aufgelöste Verschränkungsen-
tropie im Kontext der AdS3/CFT2-Dualität. Im ersten Teil konzen-
triere ich mich auf die holographische U(1) Chern-Simons-Einstein-
Gravitations-Theorie, welches ein Spielzeugmodell für AdS3/CFT2 mit
U (1) Kac-Moody-Symmetrie ist. Ich beginne mit dem Vakuumhinter-
grund mit einem einzigen Verschränkungsintervall. Ich zeige, dass neben
einer Partitionsfunktion im großen kanonischen Ensemble die gelade-
nen Momente auch als Zweipunktfunktion von Vertex-Operatoren auf
der Replikationsoberfläche interpretiert werden können. Für deren holo-
graphische Beschreibung wähle ich eine Dualität zwischen der Bulk
U (1) Wilson-Linie und den Randvertexoperatoren. Diese Dualität veri-
fiziere ich, indem ich die effektive Wirkung für die Chern-Simons-Felder
herleite und das Ergebnis mit dem Vertex-Korrelator vergleiche. Im
Twist-Field-Ansatz zeige ich, dass die geladenen Momente durch die
Korrelationsfunktion der geladenen Twist-Operatoren und der zusät-
zlichen Hintergrundoperatoren gegeben sind. Um die beteiligten Kor-
relationsfunktionen zu lösen, beweise ich die Faktorisierung des U(1)
erweiterten konformen Blocks in einen U(1)-Block und einen Virasoro-
Block. Der allgemeine Ausdruck für den U(1) Block wird direkt durch
die Summierung über alle Absteigerzustände hergeleitet. Das erzielte
Ergebnis hat tatsächlich die gleiche Form wie die Vertex-Korrelatoren
hat. Dies führt zur Schlussfolgerung, dass die getrennten Wilson-Linien
den neutralen U(1) Block berechnen. Das Endergebnis für die Symmetrie-
aufgelöste Verschränkungsentropie zeigt, dass sie in diesem Modell im-
mer ladungsunabhängig ist. Im zweiten Teil untersuche ich geladene
Momente in der Holographie höherer Spins, wobei die Randtheorie eine
CFT mit W3 Symmetrie ist. Ich definiere das Konzept der geladenen
Momente höheren Spins, indem ich einen Spin-3-modularen Ladungsop-
erator einführe. Wenn ich mich auf den Vakuum-Hintergrund mit einem
einzelnen Verschränkungsintervall beschränke, nutze ich die Interpreta-
tion des großkanonischen Ensembles und berechne die geladenen Mo-
mente mithilfe der bekannten Lösung für das schwarze Loch höheren
Spins. Auf der CFT-Seite führe ich eine perturbative Expansion für
die höheren spingeladenen Momente in Bezug auf die verbundenen Ko-
rrelationsfunktionen der modularen Spin-3-Ladungsoperatoren durch.
Unter Verwendung der Rekursionsrelationen für die Korrelationsfunk-
tionen der W3-Ströme werte ich die geladenen Momente bis zur quartis-
chen Ordnung des chemischen Potenzials aus. Das endgültige Ergebnis
stimmt mit dem holographischen Ergebnis überein. Meine Ergebnisse
für U(1) Chern-Simons-Einstein-Gravitation und W3 höhere Spingravi-
tation stellen neuartige Überprüfungen des AdS3/CFT2 dar Korrespon-
denz.
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1
I N T RO D U C T I O N

The discovery of quantum mechanics and general relativity in the early
twentieth century greatly advanced our understanding of the laws of na-
ture. While quantum mechanics reveals the probabilistic law of particles
at the microscopic scale, general relativity shows that, at the macro-
scopic scale, matter curves the spacetime, and spacetime tells matters
how to move. The field theory extension of the quantum mechanics,
known as quantum field theory (QFT), assumes negligible quantum
gravitational effects which are too small to be observable even at present
day colliders. The currently accepted quantum field theory describing
all known elementary particles and interactions except of gravity is the
Standard Model [1], which has passed numerous experimental tests. For
instance, the Higgs boson predicted by the Standard model has been
successfully detected at Large Hadron Collider (LHC) [2, 3]. Despite all
the successes, the exclusion of gravity in the Standard Model indicates
that it is only an effective theory of nature, and must be incorporated
into a larger theoretical framework incorporating both principles of gen-
eral relativity and quantum mechanics.

What is quantum gravity?
Finding such a framework, i.e. the theory of quantum gravity, is one of
the most outstanding problems in modern physics. At a first glance, it
seems that there are following two possible ways to solve this problem.
The first way is to simply couple quantum field theory with general rel-
ativity. While such a consideration do makes sense in the semi-classical
regime, where the back-reaction of quantum fluctuations to the curved
spacetime can be neglected, it can not be the final answer for quantum
gravity. One easy way to see this is to consider a measurement in the
quantum system. The collapse of the wave function will lead to the
instant change of expectation value of energy-momentum tensor in the
quantum system. Consequently, the metric of the spacetime sourced
by the measured system will also change instantly, which violates the
causality of general relativity. The second way is to directly quantize
the general relativity around the flat background in the framework of
quantum field theory. However, due to the negative mass dimension
of the Newton constant in d > 2 dimensions, i.e. [Gd] = 2 − d, the
Einstein-Hilbert action contains irrelevant perturbations to the Gaus-
sian fixed point, indicating the perturbative nonrenormalizability of
this approach.

To avoid the problem of perturbative nonrenormalizability in the
naive quantization of general relativity, various alternative approaches
to quantum gravity were developed in past decades, such as asymptotic
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2 introduction

safety program [4], loop quantum gravity [5], and string theory [6]. The
diversity of these distinct approaches mainly arises from the lack of
experimental data on quantum gravitational effects. Even so, at the
purely theoretical level, these theories do provide us with a broader
perspective on the mysteries of quantum gravity.

Asymptotic safety is a candidate for a quantum theory of the gravi-
tational interactions, which does not require physics beyond the frame-
work of relativistic QFT. The core idea of asymptotic safety was for-
mulated by Weinberg in [4]: one attempts to seek for a non-Gaussian
ultraviolet (UV) fixed point of the renormalization group (RG) equa-
tions, such that the general relativity can be regarded as the relevant
perturbations to the UV theory. See [7] for a recent review on the de-
velopment of asymptotic safety program.

In loop quantum gravity (LQG), the basic idea is to replace the Rie-
mannian geometry of general relativity by the quantum Riemannian
geometry, which by itself satisfies the uncertain principle of quantum
mechanics [8]. Under this setup, the theory of LQG do not refer to any
background fields and is formulated as a pure gauge theory, even for
the gravitational sector. The canonical quantization of the quantum
Riemannian geometry leads to the discreteness of space. Intuitively,
one can think of the space as a fine fabric, made of very tiny loops of
gravitational gauge field that are only visible at the Planck length scale
lp ∼ 10−35m. The network of loops is called the spin network, charac-
terizing the quantum state of the gravitational field. The discreteness
of the space in LQG naturally avoids the UV divergences associated
with nonrenormalizablity of general relativity.

In string theory, the fundamental objects are strings instead of quan-
tum point particles. Elementary particles in nature, including the gravi-
ton, are interpreted as particular oscillating modes of strings [6]. The
consistence of the string theory requires that the background space-
time must consist of ten dimensions rather than four dimensions. The
extra six dimensions are compactified in Planck scale and they are not
visible at low energy. The Feynman diagrams of string theory are the
two-dimensional string worldsheets and string theory as a theory of
quantum gravity is completely free of any divergence.

The holographic principle for quantum gravity
In spite of the various approaches to quantum gravity introduced in
above, there exists a universal principle that all theories of quantum
gravity, which may or may not explain the real world, need to obey.
This principle is known as the holographic principle, which originated
from ideas of Gerard ’t Hooft [9] and was further refined by Leonard
Susskind [10]. The holographic principle states that a quantum gravity
theory in a region of (d+ 1)-dimensional spacetime can be equivalently
described by a quantum theory without gravity living on the boundary
of that spacetime region. This dimensionality relationship between a
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(d+ 1)-dimensional volume and a d-dimensional surface is very similar
to optical holography, which encodes the image of three-dimensional
space on a two-dimensional surface, hence the name “holography”. As
I will explain in below, the reasoning for the holographic principle is
based on the black holes, whose existence in our universe has recently
been confirmed by the Event Horizon Telescope (EHT) [11].

Black holes are classical solutions in the general relativity, but in
fact they also manifest quantum gravitational effects such as Hawking
radiation [12]. The reason such effects manifest themselves in general
relativity is that there exist a semi-classical regime, where the effec-
tive theory of quantum gravity is described by the coupling between
the quantum system and the classical gravity. Applying this regime
to the black hole background requires the Compton wavelength of a
quantum particle to be much smaller than the radius of the black hole
horizon. Historically, it was first observed by Jacob Bekenstein [13] that
the black hole behaves as a thermodynamical system, with its horizon
area proportional to the thermal entropy. Shortly after, Stephen Hawk-
ing [12] gave a semi-classical interpretation on this phenomenon, and
showed that black holes emit thermal radiations. This is similar to the
Unruh effect in the flat spacetime – an accelerating observer feels ther-
mal radiations in the unaccelerated vacuum [14, 15]. This development
finally led to the Bekenstein-Hawking (BH) entropy formula,

SBH =
c3kBAhorizon

4 h̄G , (1.1)

and the temperature of thermal radiation from the black hole,

TH =
h̄c3

8πGMkB
. (1.2)

Here I have employed the speed of light c, the Planck constant h̄, the
Newton constant G, and the Boltzmann constant kB, as well as the
black hole mass M . The Bekenstein-Hawking entropy formula implies
that, in a quantum gravity system, the maximal amount of entropy in-
side a given compact space region is bounded by the area law (1.1), since
adding more matter into the region will increase the radius of the black
hole horizon. This feature not only reveals why gravity is so special
compared to the other three fundamental forces, leading to subexten-
sive entropy growth, but also motivates the holographic principle, be-
cause in any quantum system without gravity, the maximal amount of
entropy is proportional to the volume of the space. The Anti-de sitter/-
conformal field theory (AdS/CFT) correspondence or gauge/gravity
duality, discovered by Juan Maldacena in [16], is a concrete realization
of the holographic principle. Roughly speaking, it conjectures that the
physics of string theory on AdS ×X background can be equivalently
described by certain conformal field theory living on the asymptotic
boundary of the AdS spacetime. Various examples of this duality have
been discussed in [16]. In a particular limit explained in Chapter 2, the
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AdS/CFT duality becomes a strong/weak coupling duality, where on
the boundary side, the conformal field theory is strongly coupled, and
on the bulk side, the string theory is approximated by a weakly-curved
classical gravity theory on the asymptotically AdS space. In this re-
spect, the AdS/CFT duality provides a nonperturbative approach to
study various strongly interacting phenomenons in the real world, such
as the quantum transport in strongly coupled fluids [17, 18] and the
quark-gluon plasma in quantum chromodynamics [19].

Quantum information in holography: What and Why?
The traditional usage of quantum field theory, revolving around calcu-
lating the correlation functions of local operators and scattering ampli-
tudes, does not leverage the full amount of quantum correlations inher-
ent in composite quantum mechanical systems. Quantum information
theory, in a complement approach to traditional QFT, eschews spe-
cific field content and observables, and instead studies the information
content of the QFT wavefunctional. While applications of holography
mostly focus on studying strongly coupled quantum systems via the
dual classical gravity theories, a deeper understanding of the nature of
quantum gravity requires us to reconstruct the bulk observables from
the boundary quantum system. It turns out that in such a bulk re-
construction program, the study on the quantum information aspects
of the boundary quantum system are necessary. The reason for this
can be roughly explained by the optical hologram in the real world —
the image of a local object in the three-dimensional space is encoded
non-locally on the two-dimensional hologram. Thus, it is expected that
any finite set of local operators on the boundary quantum system can
not recover the bulk local observables. Instead, one has to first de-
code the hologram properly as a set of qubits, and then reconstruct
the bulk qubits to obtain the bulk local observables. In the context of
the AdS/CFT duality, the approach for such decoding and reconstruc-
tion processes is known as the quantum error correction code [20], a
concept originating from the quantum information theory [21]. Besides
this, other concepts in the quantum information theory, such as the
entanglement entropy [22], the complexity [23], the quantum circuit
[24] and the quantum teleportation [25], also play very important roles
in the development of the AdS/CFT duality. One important result is
the Ryu-Takayanagi (RT) formula [22], which relates the entanglement
entropy in the boundary quantum system to the length of the minimal
geodesic in the asymptotically AdS spacetime. This indicates that the
spacetime may be understood as the emergent phenomenon of the en-
tanglement among qubits [26].

The goals of the thesis
Recently, a new entanglement measure, the symmetry-resolved entan-
glement entropy (SREE) was proposed in [27]. The authors claimed
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that when an additional internal symmetry is present in a quantum
field theory, the entanglement between two spatially separated subsys-
tems is organized into different charge sectors. The SREE is defined as
a measure for the amount of entanglement inside each charge sector,
and a useful toolkit for calculating the SREE is the so-called charged
moments [27]. Study of SREE not only helps us to understand global
symmetries in QFTs from the quantum information point of views,
but also motivates new ideas on detecting entanglement in the con-
text of experimental physics [28]. This thesis is dedicated to study the
SREE and the charged moments in the context of holography, in par-
ticular to understand their dual description in the bulk AdS spacetime.
To build up the intuition, my discussion will focus on two instances
of the AdS3/CFT2 correspondence, i.e. three-dimensional U(1) Chern-
Simons-Einstein gravity [29, 30], and the three-dimensional holographic
SL(3,R) × SL(3,R) higher spin gravity [31]. These two theories con-
tains non-trivial asymptotic symmetry algebras, which are necessary
for the setup of SREE. Meanwhile, they are relatively simpler than
other holographic models due to their topological property and gauge
invariance.

Structure of the thesis
To keep the presentation self-contained, I will first review some prior
materials in Chapter 2. Section 2.1 is a brief introduction into the Ad-
S/CFT duality, starting from its top-down construction from string
theory, and then passing to more general bottom-up constructions.
Section 2.2 includes the introduction to entanglement entropy and
the symmetry-resolved entanglement entropy in quantum field theo-
ries. The holographic description of the entanglement entropy, i.e. the
RT formula, will also be briefly explained.

Chapter 3 is a detailed review on the holographic AdS3 gravity. Sec-
tion 3.1 reviews various aspects of the AdS3 gravity as well as their
connections to two-dimensional conformal field theory. Section 3.2 dis-
cuss how to derive the entanglement entropy in AdS3/CFT2 from both
of the holographic and CFT point of views.

Chapter 4 studies the symmetry-resolved entanglement entropy and
the charged moments in three-dimensional holographic U(1) Chern-
Simons-Einstein gravity. Section 4.1 introduces various aspects of U(1)
Chern-Simons fields in asymptotically AdS3 space. Section 4.2 studies
the SREE and the charged moments from various different approaches,
i.e., holographic Wilson line approach, the replica approach and the
twist field approach in the dual CFT. A general technique for solv-
ing the most general charged moments is presented at the end of Sec-
tion 4.2.

Chapter 5 studies the higher spin charged moments in the context of
higher spin holography. Section 5.1 is a brief introduction on higher spin
holography. The Section 5.2 introduces the Chern-Simons formulation
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of the higher spin gravity, i.e. the bulk theory of higher spin holography.
The Section 5.3 introduces the notion of higher spin charged moments
and develops a new perturbative method to solve it.

Chapter 6 includes a summary of the thesis, as well as an outlook
for the future research directions.

A short review on the construction of the entanglement W3 algebra
is presented in Appendix A.

Main results
Chapter 4: The first the main results in this chapter is that the SREE
in the dual CFT is always independent of the charge sector. The uni-
versal charge-independent behavior of the SREE is in consistence with
the results of [27]. The second result is that the bulk description of
the charged moments is a set of disjoint U(1) Wilson lines. Each of
them is dual to a pair of vertex operators on the boundary replica
surface. The third result is that any correlation function of current pri-
mary operators in the dual CFT factorizes into the product of a U(1)
part and a Virasoro part. This factorization property coincides with
the decoupling between gravity and Chern-Simons fields in the bulk.
In particular, the U (1) part can be computed by the bulk disjoint Wil-
son lines, which further clarifies the above described Wilson line/vertex
operators duality. Finally, a general framework for solving the charged
moments via the null-state equation is developed. The first two results
in above described have been published [29, 30], in collaboration with
R. Meyer, C. Northe, and K. Weisenberger. The last three results are
so-far unpublished work.

Chapter 5: In order to generalize the notion of charged moments to
the higher spin case, a modular spin-3 charge operator is defined in the
dual W3 CFT. The holographic calculation for the higher spin charged
moments is based on the topological black hole method [32] and the
known higher spin black hole solutions [33]. In addition, a new indepen-
dent calculation is performed in the dual W3 CFT, in which the charged
moments is expressed perturbatively in terms of the connected corre-
lation functions of the spin-3 modular charge operators. The results of
both calculations coincide. In particular, the higher spin charged mo-
ments is no longer a Gaussian function of the chemical potential, which
implies a violation of the charge-independence of the SREE in the dual
W3 CFT. The results of this chapter have been published [31], in col-
laboration with R. Meyer, C. Northe, and K. Weisenberger.

Convention
In the rest part of this thesis, I will use natural units c = h̄ = kB = 1.



2
P R E L I M I N A R I E S

This chapter introduces the basics of gauge/gravity duality as well as
the concept of entanglement entropy in QFT. I will start by explaining
the top-down construction of gauge/gravity duality from string the-
ory, and then pass to more general bottom-up constructions, which are
more relevant to the main discussions in this thesis. Moreover, I will ex-
plain the formal path-integral formulation of entanglement entropy in
a general QFT, as well as the Ryu-Takayanagi formula for holographic
entanglement entropy.

2.1 gauge/gravity duality

Duality appears in various areas of the theoretical physics and mathe-
matics, relating distinct theories and concepts together at either a fun-
damental or effective level. This section is a short introduction on the
Anti-de sitter/Conformal field theory (AdS/CFT) duality, or more pre-
cisely gauge/gravity duality, which describes the dynamical equivalence
between a gravity theory in a (d+ 1)-dimensional Anti-de Sitter (AdS)
space, and a conformal field theory without gravity in d-dimensions.
As this duality is analogous to optical holography in the real world, it
is also referred as holography. In the following, I will first describe the
overall picture of the AdS/CFT duality, and explain more details in
the later parts of this section. The presentation in this section mainly
follows Juan Maldacena’s original paper [16], and the reviews [34, 35].

2.1.1 A brief overview

The conjecture of the AdS/CFT duality originated from ten-dimensional
superstring theory, a prime candidate for the unified theory which
unifies the four fundamental forces in nature. Roughly speaking, the
strongest form of the AdS/CFT duality relates superstring theory on
AdS×X background to certain superconformal field theory defined on
the asymptotic boundary of the AdS spacetime. The manifold X is a
closed manifold. In a particular limit, the AdS/CFT duality becomes an
example of a strong-weak coupling duality, where the superconformal
field theory becomes strongly coupled and the dual superstring theory
is approximated by a weakly coupled classical supergravity (SUGRA)
theory on AdS ×X. By the Kaluza-Klein reduction, the supergravity
theory can be further reduced to a classical gravity coupled to extra
fields on the AdS background. This eventually leads to the general con-
cept of a duality between a weakly coupled classical gravity theory in

7



8 preliminaries

asymptotically AdS spacetime and a strongly coupled conformal field
theory on the boundary of AdS. Since the perturbative approach fails in
the strongly coupled regime, the AdS/CFT duality provides a powerful
way for understanding non-perturbative phenomena in a strongly cou-
pled quantum system via perturbative calculations in the dual gravity
theory.

There are several specific examples of the AdS/CFT duality which
were considered in Juan Maldacena’s original paper [16]. The ideas
involved in those examples are similar. I will restrict to the most well-
known example, the AdS5/CFT4 duality, which relates type IIB su-
perstring theory on AdS5 × S5 and N = 4 Super Yang–Mills (SYM)
theory in 3+1 dimensions. The strongest form of the AdS5/CFT4 du-
ality states that

N = 4 Super Yang-Mills theory
with gauge group SU(N) and Yang-Mills coupling constant gYM

is dynamically equivalent to
type IIB superstring theory

with string length ls =
√
α′ and closed string coupling gs

on AdS5 × S5 with radius of curvature L5

and N units of F(5) flux on S5.
Here, the (3 + 1)-dimensional N = 4 SU(N) SYM theory is confor-
mally invariant even at the quantum level [36], and thus it is regarded
as the “CFT side” of the duality. The parameter α′ in string theory
gives rise to the tension of the fundamental string, i.e. T = 1/2πα′.
Under the duality, the two dimensionless free parameters on the field
theory side, i.e. gYM and N , are mapped to the free parameters gs and
L5/ls on the string theory side via the relations

g2
YM = 2πgs , 2g2

YMN =

(
L5
ls

)4
. (2.1)

The dynamical equivalence in the above statement means that the phys-
ical Hilbert spaces of two theories are isomorphic to each other. Al-
though the strongest form of the AdS5/CFT4 duality described above
is very interesting and generates new ideas, practically it is very diffi-
cult to perform explicit calculations for generic values of the parameters.
Therefore, to gain deeper insights from the proposed AdS/CFT dual-
ity, it is necessary to weaken the statement by taking certain limits on
both sides. A particular useful limit for understanding the SYM gauge
theory is the so-called ’t Hooft limit [37],

N → ∞ , λ = g2
YMN fixed. (2.2)

The partition function of the large N SYM gauge theory admits a
expansion in N ,

Zgauge =
∞∑

g=0
N2−2gfg(λ) , (2.3)
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where g is the genus of the Feynman diagrams in the double-line repre-
sentation [37]. In the ’t Hooft limit (2.2), the dominant contribution to
the partition function scales as N2, coming from all planar diagrams
with g = 0. On the other hand, for constant dilaton field ϕ, the action
of the superstring theory on AdS5 × S5 involves a topological constant
term,

Sstring = S̃string +
1

4πα′

∫
dσ2√

−h α′Rhϕ

= S̃string + (2 − 2g)ϕ , (2.4)

where g is the genus of the two-dimensional worldsheet surface and
Rh is the Ricci curvature of the worldsheet metric hαβ. The partition
function of the string theory requires to sum over all topologies of two-
dimensional surfaces. Thus, in the Euclidean signature, it takes the
form of

Zstring =
∞∑

g=0

( 1
gs

)2−2g

Zg . (2.5)

where the closed string coupling constant gs = eϕ is introduced. By
the relations in (2.1), the ’t Hooft limit (2.2) on the string theory side
corresponds to

gs → 0 , L5
ls

fixed , (2.6)

and as a consequence, the g = 0 contribution to the partition func-
tion dominants. From the perspective of the string perturbation theory,
genus zero two dimensional worldsheet surfaces are understood as the
tree level diagrams of the closed string interactions, hence, in the limit
(2.6), the AdS side is described by the classical type IIB superstring
theory. This gives rise to the strong form of the AdS5/CFT4 duality:

In the ’t Hooft limit:
N = 4 SU(N) SYM ∼= Classical superstring on AdS5 × S5

In this respect, the AdS/CFT duality is a concrete realization of ’t
Hooft’s idea that the planar limit of a gauge theory is a string theory
[37].

In the ’t Hooft limit, the only free parameter in the SYM theory is
the ’t Hooft coupling constant λ, while on the string theory side it is the
ratio L5/ls. We are mostly interested in the strongly coupled regime
of the SYM theory where the usual perturbative approach becomes
unreliable. Taking the limit λ ≫ 1 on the field theory side yields the
limit ls ≪ L5 on the string theory side. Since the length scale of the
string is much smaller than the radius of the curvature under such
a limit, effectively we may treat a string as a point particle. And an
effective theory of the superstring in this limit should be be classical
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gravitational theory, in which each field accounts for the corresponding
string state. The energy scale of all massive string states is of the order
of O(1/ls), which is much larger than the typical energy scale ω ∼
O(1/L5) of a wave propagating on AdS5 ×S5. So we further restrict to
the low energy regime, i.e. E ≪ 1/ls, in which only massless superstring
states survive. The effective theory of the superstring in this low energy
regime is known as the classical type IIB supergravity (SUGRA) theory,
which describes the propagation of those massless superstring modes
in AdS5 × S5. So we arrive at:

For N → ∞ and large λ:
strongly coupled N = 4 SU(N) SYM ∼= SUGRA on AdS5 × S5.

This is referred as the weak form of the AdS5/CFT4 duality.

Matching the symmetries: The four-dimensional N = 4 SU(N)

SYM theory is invariant under PSU(2, 2|4), which in particular in-
cludes the subgroups SU(2, 2) ≃ SO(4, 2) and SU(4) ≃ SO(6). The
SO(4, 2) symmetry accounts for the conformal invariance of the theory
in four dimensions, and the SO(6) symmetry, which is often called the
R-symmetry, arises from the rotation of the six scalar fields ϕI in the
theory. On the other hand, the symmetry of the type IIB superstring
theory on AdS5 × S5 is also PSU(2, 2|4). The bosonic part of the sym-
metry comes from the spacetime isometries of AdS5 and S5, given by
SO(4, 2) and SO(6). Therefore, the symmetries in both theories co-
incide with each other. In particular, the conformal boundary of the
AdS5 spacetime defined at the spatial infinity is a four-dimensional flat
spacetime, and the isometry group SO(4, 2) of AdS5 acts on the con-
formal boundary as the conformal group of the boundary spacetime.
Therefore, it is natural to think that the SYM gauge theory is defined
on the conformal boundary of AdS5. Then, the SO(4, 2) isometry of
AdS5 corresponds to the conformal symmetry of SYM, and the SO(6)
isometry of S5 corresponds to the internal R-symmetry of SYM, which
further lead to the identification of generators of those symmetries in
both theories.

2.1.2 From D-branes to the AdS/CFT

The fundamental string is not the only dynamical object contained
in superstring theory, there also exists Dirichlet-brane or D-brane for
short. A Dp-brane is a (p+ 1)-dimensional surface where open strings
end on. Oscillations of the open strings in the directions transverse to
the brane will lead to fluctuations of the brane, hence the brane is dy-
namical. In type IIB superstring theory, the allowed Dp-branes need
to preserve one half of the supersymmetry, and this can happen only
if the number p is odd [38]. The AdS5/CFT4 duality is motivated by
considering the stack of N coincident D3-branes in the type IIB super-
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string theory. But before explain how this works, let me first give an
intuitive explanations on the physics of a single Dp-brane.

The physics of a D-brane. We start from the open string perspec-
tive of a D-brane, and we demonstrate the main idea by considering
bosonic string theory in (d+ 1)-dimensional flat spacetime for simplic-
ity. Consider a single Dp-brane, which extends in the time and p spatial
directions at constant transverse spacetime coordinates XI = 0, with
I = p+ 1, · · · , d+ 1. We use ξi with i = 0, 1, · · · , p to denote the coordi-
nates on the brane. The presence of the Dp-brane breaks the spacetime
Lorentz symmetry SO(d, 1) to SO(d− p) × SO(p, 1). In the low en-
ergy regime Els ≪ 1, all the massive open string modes are integrated
out, and we are left with only the massless string modes. αI

−1|0, k⟩ and
αi

−1|0, k⟩. Here αI
−1 and αi

−1 are the bosonic creation operators and
|0, k⟩ denotes the string vacuum with the center of mass momentum
ki, which is tangent to the brane and satisfies the mass shell condition
M2 = kiki = 0. We may associate those states with the polarization
and nontrivial momentum profile to define more general states, i.e.

|A⟩ =
∫
dp+1kAi(k)α

i
−1|0, k⟩, |ϕ⟩ =

∫
dp+1kϕI(k)α

I
−1|0, k⟩.

(2.7)

Using the transition element between the momentum space and the
position space of the brane, i.e. ⟨0, ξ|0, k⟩ = eik·ξ, we are able to define
functions associated with the those open string states,

Ai(ξ) = ⟨0, ξ|αi
1|A⟩ , ϕI(ξ) = ⟨0, ξ|αI

1|ϕ⟩ . (2.8)

Note that those functions are valued only in the brane coordinates ξi,
since the conjugate of ξi, the center of mass momentum ki, is tangent
to the brane1. From the spacetime point of view, they characterize the
shape of the Dp-brane under the quantum fluctuations. On the other
hand, from the Dp-brane point of view, we may interpret those functions
as the expectation values of quantum fields living on the brane, where
Ai(ξ) corresponds to a U(1) gauge field and ϕI(ξ) are scalar fields.
When the quantum fluctuations of the brane is small, the physics of
the massless open string ending on the brane can be described by a
quantum field theory of those fields localized on the brane. The action
of this theory is known as the Dirac-Born-Infeld (DBI) action2,

SDBI = −Tp

gs

∫
dp+1ξ

√
−det(gij + 2πl2sFij + O(l3s)) . (2.9)

1 The physical meaning of Ai(ξ) and ϕI (ξ) is that they describe the translations
and the fluctuations of the spacetime coordinates Xµ(ξ) along the longitudinal and
transverse directions of the brane [6].

2 The DBI action here only includes the bosonic part and is valid in the ten-
dimensional flat spacetime background with vanishing Kalb-Ramond B field and
constant dilaton. See [6] for the general form.
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Here Tp = (2π)−pl−p−1
s is the brane tension, gij is the pull-back of the

spacetime metric onto the brane, and F = dA is the flux of the U(1)
gauge field. The 1/gs factor appears in (2.9), because the open string
coupling gopen is related to the closed string coupling3 gs via gs = g2

open,
and the DBI action (2.9) only accounts for the tree-level physics of the
open string, i.e. the self-interactions of open string and their couplings
to the closed string, arise from the disk in the open string worldsheet.
This tells us that the DBI action as an low energy effective theory of
the open string only valid for small string coupling.

Note that, for small string length ls, we are able to perform the
perturbative expansion of the DBI action in the power of l2s . For con-
venience, let us choose the static gauge Xi(ξ) = ξi. The coordinates
XI(ξ) of the brane in the transverse space fluctuate around XI = 0,
and they are described by the scalar fields ϕI ,

XI(ξ) = 2πl2sϕI(ξ) + · · · . (2.10)

The prefactor 2πl2s makes sure ϕI has mass dimension one such that
fluctuation of the brane in higher energy is described by the higher
value of ϕI . The pull-back of the background spacetime metric onto
the brane is expressed as

gij =
∂Xµ

∂ξi

∂Xν

∂ξj
ηµν = ηij + (2πl2s)2∂iϕ

I∂jϕI . (2.11)

Inserting (2.11) into the DBI action (2.9) and expanding the action in
the power of l2s yields

SDBI ≈ −Tp

gs

∫
dp+1ξ

[
1 + (2πl2s)2

(1
4FijF

ij +
1
2∂iϕ

I∂iϕI

)]
.

(2.12)

which is the well-known action for the U(1) gauge field and free massless
scalars. The Yang-Mills coupling for the gauge field can be read out
from the action, given by

g2
YM =

gs

Tp
(2πl2s)−2 = (2π)p−2gsl

p−3
s . (2.13)

In the above, we discussed the physics of the Dp-brane from the
open string point of view. There is also equivalent description of the
D-brane from the closed string point of view. The equivalence between
them is called the worldsheet duality. For instance, let us first Wick
rotate the background spacetime to the Euclidean space and consider
a worldsheet of the disk topology with its boundary anchored to the
Dp-brane. From the open string point of view, the disk can be regarded

3 The one-loop diagram of the open string contains an emission and an absorption of
the open string, which can be equivalently described by an emission of the closed
string. This determines the relation between the couplings of the open and closed
string, i.e. gs = g2

open.
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as the propagation of an open string around the Euclidean time circle.
On the other hand, from the closed string point of view, the disk is
understood as the emission of a closed string from the Dp-brane to
the interior of the spacetime. Due to this equivalence, the low energy
physics of the Dp-brane can also be interpreted by the massless modes
of the closed string close to the Dp brane. It should be noted that those
modes are distinct from the massless modes of the closed string far
away from the brane, since if they are not, we learn nothing about the
Dp-brane. Or in other words, in the closed string perspective, we have
to include the influence of the Dp-brane on the background spacetime.
This is one of main differences with the open string perspective.

To analysis the D-brane from the closed string perspective, one first
solves the closed string spectrum in flat spacetime. Analogous to the
open string case, the massless modes of the closed string help us to
identify the perturbative fields around the spacetime background. How-
ever, at the non-perturbative level, those fields should be backreact to
the background. The low energy effective field theory associated with
those fields may be formulated by some general requirements such as
the general covariance and supersymmetry. After working out the ef-
fective field theory, one can find the non-perturbative solution of the
effective theory, which incorporates with the influence of the D-brane
on the background spacetime. Then, the physics of the D-brane may
be extracted from the behavior of the fields closed to the D-brane.

In bosonic string theory, the massless modes of the closed string take
the form of αµ

−1α̃
ν
−1|0, k⟩ with kµkµ = 0. There are two differences to

the open string modes. Firstly, the closed string contains both of the
left- and right-mover parts, i.e. αµ

−1 and α̃ν
−1. Secondly, the closed string

can propagate in all directions of the spacetime, as we can see from the
spacetime index µ of the center of mass momentum kµ. Due to those
two differences, the field associated the massless closed string modes
is given by two-tensor field ζµν(x) over the whole spacetime, where xµ

is the center of mass position of the closed string in the spacetime, i.e.
xµ = 1

2π

∫
dσXµ(τ = 0,σ). The two-tensor field can be decomposed

into a trace part, a symmetric traceless part and an antisymmetric
part,

ζµν(x) = hµν(x) +Bµν(x) + ϕ(x)ηµν , (2.14)

The symmetric traceless tensor hµν is identified as the graviton, describ-
ing the fluctuation of the metric around the flat spacetime. The anti-
symmetric tensor Bµν is known as the Kalb-Ramond B-field, and the
scalar ϕ is the dilaton field. When we consider the type IIB superstring
theory, the bosonic massless spectrum of the IIB superstring gives rise
to not only the above three fields, but also extra differential form fields,
denoted as F(q) = dC(q−1), with the ranks of the form fields valued as
q = 1, 3, 5. The gauge potentials C(q−1) are called the Ramond-Ramond
(R-R) fields. Those fields together with their fermionic partners give rise
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to the type IIB supergravity as the low energy effective field theory for
the massless closed IIB superstring. The bosonic part of the type IIB
supergravity action reads

SIIB =
1

2κ̃2
10

[ ∫
d10x

√
−G

(
e−2ϕ

(
R+ 4∂µϕ∂

µϕ− 1
2 |H(3)|2

)
− 1

2 |F(1)|2 − 1
2 |F̃(3)|2 − 1

4 |F̃(5)|2
)

− 1
2

∫
C(4) ∧H(3) ∧ F(3)

]
, (2.15)

where we use the notation

|F(q)|2 =
1
q!
Gµ1ν1 · · ·Gµqνq F̄

µ1···µqF ν1···νq , (2.16)

and F̄q denotes the complex conjugate of F(q). The parameter κ̃ is the
ten-dimensional gravitational constant, given via the relation 2κ̃2

10 =

(2π)7l8s . For the constant dilaton field ϕ, the Newton constant G10 in
ten dimensions reads4

16πG10 = 2κ̃2
10g

2
s = (2π)7l8sg

2
s (2.17)

The field strength tensors in the action are defined as

F(q) = dC(q−1) , H(3) = dB , F̃(3) = F(3) −C(0)H(3) ,

F̃(5) = F(5) − 1
2C(2) ∧H(3) +

1
2B ∧ F(3) , (2.18)

where the five-form flux F̃(5) needs to satisfy the self-duality constraint
⋆F̃(5) = F̃(5), with ⋆ the Hodge star in the ten-dimensional (curved)
spacetime.

The supergravity introduced in the above accounts for the tree-level
physics of the massless closed string states, therefore it requires the
string coupling to be small. In addition, the supergravity as a classical
field theory approximation of the superstring also assumes the point
particle limit of the closed string, which requires that the typical length
scale L of a valid supergravity solution must be much larger than the
string length ls. The typical length scale of a supergravity solution
is characterized by the inverse of the Ricci curvature, i.e. L2 ∼ 1/R.
Therefore, we summarize that the supergravity is only valid in the
weakly-curved regime, i.e. Rl2s ≪ 1, and small string coupling gs → 0.

What is the role of the D-brane from the supergravity point of view?
Firstly, the emission of gravitons from the D-brane indicates that the D-
brane is a massive object curving the spacetime. Secondly, a remarkable
feature of the D-brane was found by Polchinski in [39], namely that
a Dp-brane is also an electrically charged object under the (p + 1)-
form R-R field C(p+1). The idea in his calculations roughly goes as

4 This is obtained by computing the tree-level scattering amplitudes of corresponding
closed string states in NS-NS sector.



2.1 gauge/gravity duality 15

followings. He first considered the exchange of closed strings between
two Dp-branes and calculated the contribution to the amplitude from
the Ramond-Ramond sector. Then, he turned to the supergravity and
inserted defects at the locations of two Dp-branes into the supergravity
action. At the perturbative level, the only relevant terms in the whole
action are given by

S = − 1
2κ̃2

10g
2
s

∫
d10x

√
−G1

2 |F(p+2)|2 + µp

∫
branes

C(p+1) (2.19)

The first term in (2.19) comes from the original supergravity action
and the second term in (2.19) denotes the coupling of brane defects to
the R-R field C(p+1). In the next, he computed the amplitude of the
exchange of the (p+ 1)-form between the two branes. The situation
here is very similar to the case of QED, where we can consider two point
particles carrying the same electric charge and discuss the exchange of
photons between the two particles. Remarkably, the result he obtained
can match with the R-R contribution to the exchange of closed strings
between two Dp-branes, providing the free parameter µp identified as

µp = (2π)−pl−(p+1)
s g−1

s =
Tp

gs
. (2.20)

In summary, Polchinski’s calculation in [39] showed that the Dp-branes
can be identified as charged objects from the supergravity point of
view, and the charge µp of a Dp-brane is determined from the R-R
states contribution to the closed string amplitude.

Now we can go back to a single Dp-brane and ask how it backreacts
to the background spacetime. Dp-brane defect in supergravity behaves
as a delta-function source for the C(p+1) field in the transverse space,
which can be seen from the equation of motion for C(p+1) in (2.19),
given by

d ⋆ F(p+2) = 2κ̃2
10g

2
sµpδ

(9−p)(xI) , (2.21)

Therefore, by Gauss’s law, the total ⋆F(p+2) flux across a (8 − p)-sphere
S8−p surrounding the Dp-brane is given by

1
2κ̃2

10g
2
s

∫
S8−p

⋆F(p+2) = µp . (2.22)

On the other hand, the presence of the Dp-brane breaks the Lorentz
symmetry S(9, 1) into SO(p, 1)×SO(9 − p). This symmetry should be
satisfied by the configurations of each fields in the type IIB supergravity.
There is a family of such solutions known as the extremal black p-brane,
given by

ds2 = Hp(r)
−1/2ηijdx

idxj +Hp(r)
1/2δIJdx

IdxJ ,
eϕ = gsHp(r)

(3−p)/4 ,

C(p+1) =
(
Hp(r)

−1 − 1
)
dx0 ∧ dx1 ∧ · · · ∧ dxp ,

Bµν = 0 , (2.23)
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where r is the radial coordinate in the tranverse space of the brane,
defined as r2 =

∑9
I=p+1 x

2
I , and the function Hp(r) reads

Hp = 1 +
(
L

r

)7−p

. (2.24)

The Dp-brane is located at r = 0. Computing the total ⋆Fp+2 flux
across the sphere S8−p for (2.23) and matching the results with (2.22)
yields the value of the characteristic length L, given by

L7−p = (4π)(5−p)/2Γ
(7 − p

2

)
gsl

7−p
s . (2.25)

Note that for a single Dp-brane, the characteristic length L of the re-
sulting geometry is much smaller than the string length ls in the limit
gs → 0. This contradicts with the valid regime for the supergravity.
Intuitively, we can also think of this contradiction in the following way.
For the region with r ≫ L, the metric tends to be flat and the influence
of the Dp-brane to the spacetime can be neglected. In order to “see”
gravitational effect of the Dp-brane, we need to set r ∼ L or r ≪ L.
However, the supergravity is only a low energy effective theory with
the energy scale Els ≪ 1. Thus, in order to detect the r ∼ L region,
the required energy scale Ep ∼ 1/L is much higher than the low en-
ergy scale. In other words, the region r ∼ L is not visible from the
supergravity point of view. A simple resolution for this problem is to
consider N Dp-branes sitting on top of each others, which will yield the
total fluxes

1
2κ̃2

10g
2
s

∫
S8−p

⋆F(p+2) = Nµp , (2.26)

In this case, the relation between L and ls becomes L ∼ (gsN)1/(7−p)ls.
Therefore, in the regime N → ∞, gs → 0, and gsN ≫ 1, the extremal
black p-brane solution becomes a valid supergravity description of the
N Dp-branes.

The AdS5/CFT4 duality from N D3-branes. Now we are ready to
analysis a stack of N D3-branes in the type IIB string theory, which is
relevant to the AdS5/CFT4 duality. From the open string perspective,
when we consider N D3-branes, both endpoints of an open string can
attach on any one of the branes. In particular, when the branes sit on
top of each others, the first excited states of the open string remain
massless. Those two facts lead to the consequence that the gauge field
on the stack of N D3-branes becomes a U (N) gauge field, Ai = Aa

i Ta,
with Ta as the generators of U(N) group. Similarly, ϕI = ϕa

ITa. The
generalization of the DBI action (2.12) for small string length ls is a
four-dimensional U(N) gauge theory,

SDBI ≈ −T3
gs

∫
d4ξ

(
1+(2πl2s)2Tr

[1
4FijF

ij

+
1
2Diϕ

IDiϕI − 1
4
∑
I,J

[ϕI ,ϕJ ]
2
])

, (2.27)
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where the field strength and the covariant derivative are defined as

Fij = ∂iAj − ∂jAi + i[Ai,Aj ] , Diϕ
I = ∂iϕ

I + i[Ai,ϕI ] . (2.28)

The action (2.27) can be identified as the bosonic part of the four-
dimensional N = 4 SU(N) Super Yang-Mills theory, with the dimen-
sionless Yang-Mills coupling

g2
YM = 2πgs . (2.29)

As a remark, we have claimed that the DBI action only accounts for
the tree-level amplitudes of massless open strings. When we consider
the stack of N D3-branes, the perturbation theory of open strings is not
expanded in the power of gs, but in the power of gsN [40]. Therefore,
the N = 4 SU(N) Super Yang-Mills description of the N D3-branes
is valid in the regime gsN ≪ 1 and ls → 0. The physics in the region
away from the branes is described by the type IIB supergravity in the
ten-dimensional flat spacetime for gs → 0 and ls → 0. There are of
course non-trivial interactions between the fields on the branes and
the supergravity fields in the bulk, however, those interactions can be
neglected in the limit ls → 0 [35]. In other words, in this case the whole
system is described by two decoupled theories, i.e. the SYM theory on
branes and SUGRA on R9,1.

Now let us turn to the closed string perspective. As we mentioned
before, the supergravity description of the stack of N Dp-branes is
valid in the regime, N → ∞, gs → 0, and gsN ≫ 1. For p = 3, the
characteristic length L of the extremal black brane solutions (2.23) is
given by

L4 = 4πgsNl
4
s . (2.30)

In the region r ≫ L, the black brane tends to be a flat spacetime. But
in the region r ≪ L, the function H3(r) is approximated as H3(r) ≈
(L/r)4, and the resulting metric is identified as AdS5 × S5, with the
radius of curvature L5 = L,

ds2 =
L2

5
r2 dr

2 +
r2

L2
5
ηijdx

idxj + L2
5dΩ2

5 . (2.31)

Alternatively, we can define a new radial coordinate U = r
l2s

in order to
zoom in the r ≪ L region. The metric in the U coordinate becomes

l−2
s ds2 = l2s

√
4πgsN

(
dU2

U2 +
U2

4πgsN
ηijdx

idxj + dΩ2
5

)
, (2.32)

with U ≪ L/l2s = (4πgsN)1/4

ls
. Thus, in the limit ls → 0, we are still

able to choose any value of U in the range 0 < U < ∞. The conformal
boundary of AdS5 is located at U = ∞. Is there any physical motivation
for defining this new coordinate? The answer is yes. Note that in the
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limit ls → 0, the energy scale 1/ls characterized by the massive string
modes must be measured by some reference energy scale. By definition,
U has mass dimension one, so a fixed value of U = U0 would gives rise to
such a energy scale to the system. To be more concrete, let us consider
an observer sitting at flat region r → ∞. Due to the gravitational effect,
a massive string excitation with the energy E ∼ O(1/ls) at constant
U = U0 position is redshifted at infinity as

E∞ =
√

−G00(U0)E = (4πgsN)−1/4U0Els ∼ O(1) . (2.33)

There are two facts we can learn from this result. First, U0 indeed be-
haves as a running energy scale, going to the IR for small U0 and going
to the UV for large U0. In particular, string modes with the same en-
ergy E but at two different positions U = U0 and U = βU0 are at the
energy scales E∞ and βE∞, respectively. This reflects the conformal
symmetry of the system. Second, for arbitrary massive string excitation
E ∼ O(1/ls) on the AdS5 ×S5 background, we can always observe it at
the finite energy E∞ ∼ O(1). Therefore, from the closed string perspec-
tive, an observer at infinity can detect two different kinds of finite en-
ergy modes, the redshifted modes of the superstring on the AdS5 × S5

background and the supergravity modes in the ten-dimensional flat
spacetime [16].

Now we can combine with the open string and closed string per-
spectives. The similarity between them is that the supergravity in ten-
dimensional flat spacetime appears in both of them. The difference
between them is that from the open string perspective, an observer
at infinity can detect the spectrum of the SYM gauge theory on the
D-branes without any redshift effects, while from the closed string per-
spective, the observer can detect the redshifted spectrum of the type
IIB superstring on the AdS5 × S5 background. Since both perspec-
tives describe the same object, the N D3-branes, it is natural
to conjecture that the type IIB superstring on AdS5 × S5 and
the four-dimensional N = 4 SU(N) Super Yang-Mills theory
describe the same physics.

2.1.3 The AdS/CFT dictionary

So far, we have explained the formal statements of the AdS5/CFT4 du-
ality. The duality provides the identification of the partition functions
of superstring theory on AdS5 × S5 and SYM gauge theory,

Zstring = ZCF T . (2.34)

If we work on the weak form of the duality, then the partition func-
tion of the gauge theory can be obtained by evaluating the classical
supergravity action,

ZCF T ≈ Zsugra = e−Ssugra . (2.35)
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A natural question then is how to compute the correlation functions of
the SYM gauge theory in terms of the superstring or supergravity on
AdS5 ×S5. The answer was provided in [41, 42], shortly after the Juan
Maldacena’s discovery of the AdS/CFT duality [16]. The punchline
is that there exist a precise one-to-one map between operators in the
SYM gauge theory and the the spectrum of type IIB superstring on
AdS5 ×S5. This map is usually referred as the AdS/CFT dictionary or
the holographic dictionary. This dictionary essentially arises from the
fact that the symmetries of the two theories coincide, which allow gauge
theory operators lying in certain representations of PSU(2, 2|4) to be
mapped to superstring states on AdS5 ×S5 in the same representations.
Furthermore, in the weak form of the duality, this dictionary maps
gauge theory operators to certain fields on the AdS5 background [43].
The field content on the AdS side can be obtained from the Kaluza-
Klein reduction of the type IIB supergravity fields.

At the perturbative level, the general rule for applying the dictionary
is that adding a source ϕ0 coupled to an operator O in the gauge theory
corresponds to switching on a dual field ϕ on the AdS5 background, with
ϕ0 encoding the boundary condition of ϕ at the asymptotically AdS
boundary. This rule is known as the Gubser-Klebanov-Polyakov-Witten
(GKPW) relation [41, 42], which identifies the generating functional of
the both theories,

Zsugra[ϕ0] =

〈
exp

(∫
ϕ0O

)〉
CF T

. (2.36)

where Zsugra[ϕ0] is regularized and renormalized. Using the GKPW
relation, we are able to compute the connected correlation functions in
the dual gauge theory via the functional variations of the supergravity
action,

⟨O(x1) · · ·O(xn)⟩c = − δnSsugra[ϕ0]

δϕ0(x1) · · · δϕ0(xn)
, (2.37)

Here the c index denotes the connected part of the correlator. From
the D-brane point of view, the GKPW relation (2.36) can be thought
of as adding perturbative interactions between the supergravity fields
and the gauge fields on the D-branes.

Free scalar field on the AdS background. To explain the field-
operator map as well as the GKPW relation in more detail, here I will
consider the example of the scalar field, following from the discussion
in [35]. Consider a special class of operators in the SYM gauge theory,
which are the so-called 1/2 BPS or chiral primary operators. A scalar
1/2 BPS operator O∆ with conformal dimension ∆ is constructed from
the fundamental scalars ϕI of the SYM gauge theory. It is SU(N) gauge
invariant and transforms in the representation of SO(6) with Dykin la-
bels [∆, 0, 0]. On the other hand, it can be show that the infinite tower
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of Kaluza-Klein scalar modes can be obtained by the reduction of the
supergravity fields on S5,

φ(xµ) =
∑

∆

φ∆(r,xi)Y ∆ , (2.38)

where the scalar φ(xµ) is constructed from the fluctuations of the met-
ric and five-form F(5) on S5. The function Y ∆ is the spherical harmonic
on S5 and lies in the representation of SO(6) with same Dykin labels
[∆, 0, 0]. The equation of motion for φ∆ on the AdS5 background can
be deduced from the supergravity, which to quadratic approximation
shows that the scalar modes φ∆ is a free scalar field on the AdS5 back-
ground with the mass obeying

m2L2
5 = ∆(∆ − 4) . (2.39)

Therefore, by matching the representations, we identify the chiral pri-
mary operators in the gauge theory with the scalar fields on AdS5.
In particular, from the relation (2.39), we see that marginal, relevant,
and irrelevant scalar perturbations to the gauge theory corresponds to
switching on massless, tachyonic, and massive scalar fields on the AdS5
background.

The above discussions on the field-operator map in AdS5/CFT4 focus
on the symmetry argument. But in fact, the duality may be formulated
in general dimensions in terms of the AdSd+1/CFTd duality, and it can
be show that analogous relation of (2.39) naturally arises from the
asymptotic behavior of scalar field on the AdSd+1 background [42]. To
see this, let us consider a free scalar field in the AdSd+1 spacetime, with
the action

S = −C

2

∫
dd+1x

√
−g

(
∂µϕ∂

µϕ+m2ϕ2
)

. (2.40)

The coupling constant C may be derived from the reduction of the
supergravity action, and it is not important here. The metric of AdSd+1
in the Poincaré coordinates is given by

ds2 = gµνdx
µdxµ =

L2

z2

(
dz2 + ηijdx

idxj
)

, (2.41)

with 0 ≤ i, j ≤ (d− 1) and ηij = diag(−,+, · · · ,+). The equation of
motion for the scalar field reads,

∇2ϕ−m2ϕ = 0 , (2.42)

with

∇2 =
1
L2

(
z2∂2

z − (d− 1)z∂z + ηij∂i∂j

)
. (2.43)

To solve the equation of motion, we need to specify the boundary condi-
tion for the scalar field at z = 0. Since there is a second order singularity
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in the Laplacian, we make the ansatz that the scalar field behaves as
ϕ(z,x) ∼ ϕ0(x)zd−∆ as z → 0. Insert this ansatz into the equation of
motion, one find that at the leading order of z, the equation of motion
gives rise to the analogous relation of (2.39),

m2L2 = ∆(∆ − d) . (2.44)

The two roots of (2.44) are given by

∆± =
d

2 ±

√
d2

4 +m2L2 , (2.45)

with m2L2 ≥ −d2

4 known as the Breitenlohner–Freedman (BF) bound
[44]. Tachyonic scalar field with negative mass square above the BF
bound is allowed here due to the curved AdSd+1 spacetime. Since ∆+ ≥
∆− under the BF bound, we set ∆ ≡ ∆+ and the boundary condition
for the scalar field is ϕ(z,x) ∼ ϕ0(x)zd−∆ = ϕ0(x)z∆− as z → 0 with
ϕ0(x) fixed.

In order to understand the GKPW relation (2.36), it is necessary to
evaluate the on-shell action for the scalar field. The standard method
in the context of AdS/CFT is the so-called holographic renormalization
procedure, which I will discuss in Chapter 3. In the holographic renor-
malization approach, one first expresses the field in the power series of
z and solve them order by order. Due to the power series expansion,
the action evaluated from the solution typically diverges as z → 0. To
remove those divergences, the regularization procedure and the addi-
tional counter terms are required. However, for the scalar field case, it
is more straightforward to to obtain the full on-shell solution by using
the integral kernel method in [42]. The idea is to first write the on-shell
solution ϕ(z,x) as the following integral,

ϕ(z,x) =
∫
ddyK∆(z;x, y)ϕ0(y) . (2.46)

The function K∆(z;x, y) is the so-called bulk-to-boundary propagator,
which needs to satisfy the (∇2 −m2)K∆(z;x, y) = 0 and behave as a
delta function closed to the AdS boundary,

lim
z→0

(
z∆−dK∆(z;x, y)

)
= δd(x− y) . (2.47)

Such function is found to be [35]

K∆(z;x, y) = C∆

(
z

z2 + |x− y|2
)∆

, (2.48)

where |x− y|2 is the distance between two points and C∆ is the normal-
ization constant. Since (2.46) is the full solution, integrating by parts
for the action yields the boundary term

S =
C

2 lim
ϵ→0

∫
Σϵ

ddx
√
γϕnµ∂µϕ ,

= −C

2 lim
ϵ→0

∫
ddx

(
L

ϵ

)d−1
ϕ(ϵ,x)∂ϵϕ(ϵ,x) , (2.49)
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Here Σϵ denotes the hypersurface at z = ϵ which will be pushed to the
conformal boundary in the end. The normal vector to the hypersurface
reads nµ = z

L

(
∂
∂z

)µ
, and γij is the induced metric. As z → ∞, ∂ϵϕ(ϵ,x)

behaves as

∂ϵϕ(ϵ,x) = ∆C∆ϵ
∆−1

∫
ddy

ϕ0(y)

|x− y|2∆ + O(ϵ∆). (2.50)

Using the property (2.47) and inserting (2.50) into (2.49) gives rise to
the action

S = −∆C
2 C∆L

d−1
∫
ddx

∫
ddy

ϕ0(x)ϕ0(y)

|x− y|2∆ . (2.51)

To finally make contact with the GKPW relation (2.36), note that
(2.50) is equivalent to

ϕ+(x) := lim
ϵ→0

(
ϵ−∆ϕ(ϵ,x)

)
= C∆

∫
ddy

ϕ0(y)

|x− y|2∆ , (2.52)

where the new field ϕ+(x) can also be extracted from the functional
variation of the action, i.e. ϕ+(x) ∼ − δS

δϕ0
. If we think of ϕ0 as a source

in the dual gauge theory, then ϕ+ should be interpreted as the expecta-
tion value of an operator O coupled with the source. In particular, the
two-point function of the dual operator O behaves as

⟨O(x)O(y)⟩ = − δ2S

δϕ0(x)δϕ0(y)
∼ 1

|x− y|2∆ . (2.53)

This allows us to identify ∆ as the conformal dimension of the dual
operator. Hence, (2.44) is the relation between the mass of the scalar
field in AdSd+1 with the conformal dimension of the dual operator in
CFTd.

Generalities of the AdS/CFT dictionary. In the above discus-
sions on the scalar field, we have shown that the dynamics of a scalar
field in AdS space indeed gives rise to the knowledge about the two-
point function in the dual conformal field theory. In particular, we did
not use any explicit information from the underling string theory or
supergravity theory, except for the assumed coupling constant C. This
gives us a first glance at the generalities of the AdS/CFT dictionary,
which means that the duality may not rely on the string theory set-up.
The procedure of “deriving” the AdS/CFT duality from the superstring
theory by first principle is usually called the top-down approach. In the
top-down approach, in principle we know all information about the two
theories, such as the couplings and the operator/field contents. In con-
trast, there is also a bottom-up approach, in which one relates a gravity
theory in the (asymptotically) AdSd+1 spacetime with a families of con-
formal field theories on the boundary. Such kind of CFTs are usually
referred as the holographic CFTs. The cost for the generalities in the
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bottom-up approach is that we do not know the explicit information
about the dual CFT, such as the Lagrangian and the full spectrum. In
other words, we can say that in the bottom-up approach the AdS/CFT
duality is not exact, and what we can learn about the dual holographic
CFT from the gravity theory should be something universal. The scalar
field we have discussed is just one example of the AdS/CFT dictionary
in the bottom-up approach. There are other two important examples:
the metric and the gauge fields in AdS are related to the stress ten-
sor and conserved currents in the dual CFT. For a gravity theory in
asymptotically AdS spacetime, the notion of isometry can be general-
ized to the asymptotic symmetry, which is defined via the invariance
of asymptotic behavior of fields under certain diffeomorphism or gauge
transformations. The asymptotic symmetry in the gravity theory is
then identified with the global symmetry in the dual CFT, which I will
discuss in detail in Chapter 3 and Chapter 5.

2.2 entanglement entropy and symmetry resolution

In quantum field theory, we are usually mostly interested in calculating
correlation functions of local observables and the associated scattering
amplitudes. However, those quantities do not capture all interesting
physical phenomenon in quantum system, such as entanglement. En-
tanglement is one of the key concepts in quantum information theory.
It arises from the coherence of quantum states, and distinguishes quan-
tum theories from classical ones. In a quantum system, the amount
of the entanglement between two bipartite subsystems is measured by
the entanglement entropy. Roughly speaking, this quantity describes
the amount of the unknown information to the observers that only
measure the domain of dependence of one subsystem. In the context of
the AdS/CFT duality, entanglement plays a very special role. It was
found by Ryu and Takayanagi in [22] that, in the semi-classical limit,
the entanglement entropy in the boundary holographic CFT can be
measured by the area of a particular minimal surface in the bulk AdS.
This remarkable result relates the entanglement on the CFT side to the
geometry of spacetime on AdS side, and motivates physicists to study
the deeper mechanisms of the AdS/CFT duality from the quantum
information perspective. More recently, there is another entanglement
measure proposed in [27], the so-called symmetry-resolved entanglement
entropy (SREE). It aims at characterizing the finer structure of the
entanglement in a quantum field theory when additional internal sym-
metry is present. More precisely, the presence of the internal symmetry
leads to an organization of the entanglement between two subsystems
into different charge sectors. The SREE then quantifies the amount of
entanglement encoded in these sectors. One of the goals of this thesis
is to understand the SREE in the context of the AdS/CFT, and the
purpose of this section is to introduce the above concepts.
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2.2.1 Entanglement entropy in QFTs

Let me start by explaining entanglement entropy in a general quantum
field theory. The Hilbert space of a quantum field theory is defined
on a Cauchy slice Σ. The usual argument is that if we decompose the
Cauchy slice into two disjoint regions, Σ = A∪B, due to the locality of
the quantum field theory, the Hilbert space will factorize into a tensor
product, H = HA ⊗ HB. The physics in the subsystem A is governed by
the reduced density matrix ρA, obtained by taking trace for the density
matrix ρ over the Hilbert space HB,

ρA = TrB(ρ) . (2.54)

Such a reduced density matrix can be mixed even for a pure state
density matrix ρ. This indicates that the two disjoint regions A and B
are entangled. The amount of entanglement between them is quantified
by the von Neumann entropy of ρA, the so-called entanglement entropy,

SEE = −Tr(ρA log ρA) , (2.55)

where the trace here is taken over the Hilbert space HA and the nor-
malization Tr(ρA) = 1 is assumed. In practice, it is hard to perform
a straightforward calculation for the entanglement entropy in a quan-
tum field theory. The difficulty arises from the log ρA term, which is
generically non-local. The traditional way to solve this problem is that
one can first consider the one-parameter family generalization of the
entanglement entropy, the so-called Rényi entropy,

Sn =
1

1 − n
log Tr(ρn

A) , (2.56)

and the entanglement entropy is obtained under the limit n → 1,

SEE = lim
n→1

Sn . (2.57)

The technique for calculating the Rényi entropy in a quantum field
theory is known as the replica trick. To briefly explain this trick, let us
consider a vacuum state density matrix ρ = |0⟩⟨0|. In the configuration
space, the elements of ρ can characterized by the wavefunctional Ψ on
the Cauchy slice Σ,

⟨ϕ1|ρ|ϕ2⟩ = 1
Z1

Ψ(ϕ1)Ψ(ϕ2)
∗ , Ψ(ϕi(x)) = ⟨ϕi(x)|0⟩ , (2.58)

where ϕi(x) denotes the field configuration on Σ and Z1 is a normal-
ization constant such that Tr(ρ) = 1. In the Euclidean path-integral
formalism, if we consider Σ located at the time τ = 0, then the wave-
functional Ψ(ϕ1) is obtained by evaluating the path-intergral over the
region τ < 0 with the boundary condition ϕ(τ = 0,x) = ϕ1(x),

Ψ(ϕ1(x)) =
∫ τ=0, ϕ(τ=0,x)=ϕ1(x)

τ=−∞
Dϕe−S[ϕ] . (2.59)
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Similarly, the complex conjugate Ψ∗(ϕ2) is obtained from the path-
integral over the region τ > 0 with the boundary condition ϕ(τ =

0,x) = ϕ2(x). However, applying the path-integral representation of
the wavefunctional to the density matrix leads to inconsistency since it
is invalid to have two different boundary conditions on the same Cauchy
slice. The solution to this problem is to define the time coordinates of
the two boundaries as τ = 0± with the limit 0± → 0. So in the end, we
can express the elements of the density matrix as

⟨ϕ1|ρ|ϕ2⟩ = 1
Z1

∫
Dϕe−S[ϕ]

∏
x∈Σ

δ(ϕ(τ = 0+,x) − ϕ2(x))

×
∏
x∈Σ

δ(ϕ(τ = 0−,x) − ϕ1(x)) . (2.60)

Taking the trace for ρ over the Hilbert space H means identifying ϕ1(x)

with ϕ2(x) and summing over the configuration space of the field on Σ.
From the normalization condition Tr(ρ) = 1, we hence identify Z1 as
the vacuum partition function, Z1 =

∫
DϕeS[ϕ].

Intuitively, one can think of the trace over the Hilbert space as gluing
the two boundaries at τ = 0± along the corresponding spatial region.
Therefore, to obtain the reduced density matrix ρA, we need to glue
the boundaries along the region B, but leave the region A as a cut in
the whole spacetime. In terms of the path-integral, the elements of the
reduced density matrix are then expressed as

⟨ϕA
1 |ρA|ϕA

2 ⟩ = 1
Z1

∫
Dϕe−S[ϕ]

∏
x∈A

δ(ϕ(τ = 0+,x) − ϕA
2 (x))

×
∏
x∈A

δ(ϕ(τ = 0−,x) − ϕA
1 (x)) . (2.61)

Here ϕA
1 (x) and ϕA

2 (x) are the field configurations only supported on
the region A. To obtain Tr(ρn

A), we take the product of n copies of
(2.61),

⟨ϕA
1 |ρA|ϕA

2 ⟩ · · · ⟨ϕA
2n−1|ρA|ϕA

2n⟩ , (2.62)

and sum over the states under the boundary conditions,

ϕA
2n(x) = ϕA

1 (x) , ϕA
2l(x) = ϕA

2l+1(x) , for x ∈ A . (2.63)

Now the trick is that those boundary conditions in (2.63) can be au-
tomatically implemented in the path integral if we consider that the
quantum field theory is not defined on the original spacetime, but on
a replica manifold Rn. The replica manifold Rn is constructed in the
following way. We first take n copies of the original spacetime, and cut
the region A in each of them. We may represent the cuts as

C(l) = A
(l)
+ ∪A(l)

− , l = 1, · · · ,n , (2.64)
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A
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A
(2)
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Figure 1: A replica surface with n = 3.

where A(l)
+ and A(l)

− are the two boundaries located at τ = 0± and they
obey

A
(l)
+ ∩A(l)

− = ∂A . (2.65)

Then the replica manifold is obtained by cyclically gluing the n cuts
together, as shown in Figure 1,

A
(l)
+ = A

(l+1)
− , A

(n)
+ = A

(1)
− . (2.66)

In this way, a quantum field ϕ defined on Rn naturally fulfills the
conditions in (2.63), and as a consequence, we arrive at

Tr(ρn
A) =

1
Zn

1

∫
Rn

Dϕe−S[ϕ] =
Zn

Zn
1

, (2.67)

where Zn is the partition function of the quantum field theory on the
replica manifold Rn.

It is worth mentioning that although the replica trick provides a use-
ful way for us to calculating the entanglement entropy, in practice, the
application of this method is still very much restricted since calculating
the partition function of a quantum field theory on the replica manifold
is generically a hard problem. However, in the two-dimensional confor-
mal field theories, which are mainly concerned in this thesis, the task is
much simplified due to the power of conformal symmetry as well as our
understanding of the theory of Riemann surfaces. For instance, consider
the entangling region A as a single interval on the Cauchy slice of R2.
In this case, the leading term in the cut-off expansion of entanglement
entropy takes the universal form in any two-dimensional CFTs,

SEE =
c

3 log
(
L

ϵ

)
, (2.68)

where c is the central charge of the CFT and L is the length of A. ϵ
is a short distance UV cut-off. Its appearance reflects the fact that the
entanglement entropy in any quantum field theories diverges due to the
infinite many local degrees of freedom. More details on the entangle-
ment entropy in two-dimensional CFTs will be discussed in Section 3.2.

So far, I focused on the formal path-integral formulation of entan-
glement entropy in QFT. In the next section, I will discuss the gravity
dual of entanglement entropy in holographic CFTs [22], and explain
how to derive it based on the replica trick and the AdS/CFT duality.
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2.2.2 Entanglement entropy in holography

Although the holographic principle was originally motivated from the
quantum information perspective of a gravitational system, in the early
days after the discovery of the AdS/CFT duality, rare attention was
paid to this direction. The discussion of entanglement entropy in the
context of AdS/CFT was first given by Ryu and Takayanagi (RT) in
[22]. They started by an observation that the entanglement entropy
in the boundary CFT2 has a beautiful geometric description in the
bulk AdS3, i.e. the length of the minimal geodesic. This observation
generalizes the relation between the Bekenstein-Hawking (BH) entropy
and the area of the black hole horizon. Since BH entropy formula is
universal in all dimensions, they proposed that an analogous relation
between the entanglement entropy and the geometry holds in general
AdSd+1/CFTd. This proposal, known as the RT proposal, states that,
consider a spatial subregion A on the boundary holographic CFTd, then
the entanglement entropy between A and its complement in CFTd is
given by [22],

SEE(A) =
Area(γA)

4Gd+1
. (2.69)

HereGd+1 denotes the Newton constant in the dual (d+ 1)-dimensional
gravity theory, and γA is the so-called Ryu-Takayanagi (RT) surface, a
minimal codimension-two surface in the dual (asymptotically) AdSd+1
spacetime, with the boundary condition, i.e. ∂γA = ∂A. The equation
(2.69) is known as the Ryu-Takayanagi (RT) formula. In some cases,
the bulk extremal codimension-two surface with the boundary ∂A may
not be unique, and γA corresponds to the one with the smallest area
[45]. Furthermore, if we consider an AdSd+1 black hole, the gravity dual
of a thermal state in CFTd, and choose A as the entire Cauchy slice on
the boundary, then (2.69) recovers the BH entropy (1.1). This result is
what we would expect, since the entanglement entropy in this case is
the thermal entropy of the thermal state in CFTd.

Generalizations. The RT formula (2.69) only applies to static cases,
where the entanglement entropy in CFTd does not evolve along time,
and the bulk asymptotically AdSd+1 spacetime is time-reversal invari-
ant. A dynamical generalization of the RT formula has been proposed
in [46], and is known as the Hubeny-Rangamani-Takayanagi (HRT)
formula. In addition, from the top-down perspective of the AdS/CFT
duality, the RT formula (2.69) only gives the classical answer to the
entanglement entropy. There are two sources of corrections to it, the
stringy corrections of order of 1/λ and the quantum gravitational cor-
rections of order of 1/N . In 1/λ perturbation theory, the classical
stringy corrections to the supergravity need to be included. This can
be done by writing down the higher derivative modifications to the
Einstein-Hilbert action that arise from the worldsheet stringy correc-
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tions [47]. Within the higher derivative gravity theories, modifications
of the RT formula can be analyzed [48–51]. The results can be viewed
as generalizations of the Wald entropy formula for the black hole in
the higher derivative gravity theories [52]. The leading 1/N quantum
gravitational correction to the RT formula was originally considered in
[53], where the authors included the entanglement of bulk degrees of
freedom separated by the RT surface γA. This idea eventually led to the
quantum extremal surface proposal in [54], which played an important
role in solving the black hole information paradox in particular setups
[55–57].

Deriving the RT formula in AdSd+1 gravity. A proof for the RT
formula (2.69) has been given in [58] by using the gravitational replica
technique. The proof is relied on the assumption of the AdSd+1/CFTd

duality. To briefly explain the main idea of the proof, for simplicity,
here I consider a holographic CFTd, of which the dual theory is the
pure AdSd+1 gravity, without other matter fields.

The starting point of the proof is to consider the gravity dual of the
CFT partition function Zn defined on the boundary replica manifold
Rn. By the AdSd+1/CFTd dictionary, the metric of the dual bulk mani-
fold Mn in principle can be obtained by solving the equation of motion
under the boundary condition imposed by its conformal boundary Rn

5.
Finding such a solution is a very hard problem in general (d+ 1) di-
mensions, and currently it is only solvable in the case of d = 2, as I will
discuss in Chapter 3. In order to circumvent this problem, the authors
in [58] turned to consider the quotient of Mn. One notices that there is
a discrete Zn symmetry (isometry) on Rn. It is then natural to assume
that such a symmetry is also preserved by Mn. We denote the quotient
manifold as

M̃n = Mn/Zn . (2.70)

Consequently, the gravity partition functions on Mn and M̃n are re-
lated as

Zn ≡ Z[Mn] =
(
Z[M̃n]

)n , (2.71)

Hence, from the holographic point of view, the Rényi entropy in the
boundary CFTd can be expressed as

Sn =
n

1 − n
log

(
Z[M̃n]

Z[M1]

)
=

n

n− 1 (I [M̃n] − I [M1]) . (2.72)

where I [M̃n] and I [M1] are the Euclidean actions evaluated on those
two manifolds. In n → 1 limit, we express the entanglement entropy as

SEE = ∂nI [M̃n]|n=1 . (2.73)

5 Note that such a bulk manifold may not be unique due to the additional spin struc-
ture of the AdS manifold [42]. In Chapter 3, I will review such issues in the AdS3
gravity.
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If we think of M̃n as the one-parameter family of deformations of
M̃1 ≡ M1, then (2.73) is just the first order variation of the action
around the on-shell background M1.

Before calculating (2.73), we first need to clearly understand the
relations between M̃n and M1. Obviously, both of the two manifolds
satisfy the same boundary condition, since Rn/Zn = R1 by definition.
However, inside the bulk, since Mn is a smooth on-shell solution to the
equation of motion (Einstein’s equation), the Zn fixed points of Mn

form a conical defect surface in the quotient space M̃n. Such a defect
surface do not exist in the smooth manifold M1, and we may think of
M̃n as an one parameter family of deformations of M1, with (n− 1)
as the deformation parameter.

The dimension of the conical defect surface is (d− 2). This can be
understood in the following way. The set of the Zn fixed points on
Rn corresponds to the boundary ∂A of the entangling region. This is
because that all components of the n cuts share the same boundary
∂A, as shown in (2.65). Under the gluing condition (2.66), only the
points on ∂A are invariant under the Zn transformation. Those fixed
points need to extend into the bulk Mn, hence form a codimension-
two surface with the boundary ∂A. Thus, we conclude that the conical
defect in the quotient space M̃n is a codimension-two surface anchored
on ∂A.

Now let us turn to calculate (2.73). When doing such a calculation, we
must be very careful. A crucial statement made in [58] is that we should
not include the contribution from the codimension-two conical defect
into the action I [M̃n]. The reason is that the replica manifold Mn is
entirely smooth and there is no contribution to I [Mn] = nI [M̃n] from
the fixed points. To achieve this purpose, we can choose a codimension-
one tube Bn encircling around the defect, and evaluate the action on
the spacetime region outside Bn. The radius of the tube, denoted as ϵ,
can be sent to zero at the end. With this approach, the result for (2.73)
can be written as [58]

SEE =
1

16πGd+1

∫
Bn

dd−1x
√
γnµ (∇ν∂ngµν − gνρ∇ν∂ngνρ) ,

(2.74)

where nµ is the normal vector on Bn and γab is the induced metric
on it. Note that there is no bulk contribution to the entanglement
entropy, because the first order variation of the action around the on-
shell background M1 vanishes. The contribution from the conformal
boundary was assumed to be vanishing, since far away from the defect,
the deformation of the metric may be neglected.
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To evaluate the boundary term in (2.74), we use Gaussian normal
coordinates. In the region nearby the conical defect, the metric on M̃n

takes the following form in n → 1 limit [58],

ds2 = e2ρ(dr2 + r2dϕ2) + gijdy
idyj + · · · ,

gij = hij +K
(1)
ij r cosϕ+K

(2)
ij r sinϕ+ O(r2) ,

e2ρ =
1
n2 r

2
n

−2 ≈ r2−2n , n → 1 , (2.75)

Here (r,ϕ) are the local polar coordinates transverse to the conical
defect, with the period ϕ ∼ ϕ+ 2π and yi are the coordinates on the
conical defect. The defect is located at r = 0 and hij is the induced
metric on it, independent of r and ϕ.K(1)

ij andK(2)
ij are the two extrinsic

curvatures of the defect associated with the two orthogonal directions
in the transverse space,

K
(l)
ij = Lnl

gij =
∂gij

∂xl
, l = 1, 2 , for r → 0 ,

x1 = r cosϕ , x2 = r sinϕ . (2.76)

The conformal factor e2ρ is induced from the quotient procedure. In
the transverse space of the fixed points in Mn, the metric is flat in the
region nearby the fixed points, i.e. ds̃2 = dzdz̄. The quotient procedure
can be achieved by the conformal coordinate transformation z = w1/n,
with w = reiϕ and ϕ ∼ ϕ+ 2π. Thus, in (r,ϕ)-coordinates, the metric
on the transverse space takes the form of

ds̃2 = dzdz̄ = e2ρ(dr2 + r2dϕ2) . (2.77)

To determine the two extrinsic curvatures, we insert the metric (2.75)
into the Einstein’s equation, which in r → 0 limit gives rise to two
conditions on the extrinsic curvatures6 [58],

K
(l)
ij h

ij = 0 , l = 1, 2 . (2.78)

These indicate that the defect is in fact an extremal surface in M̃n.
Under the conditions (2.78), we can evaluate (2.74) by inserting (2.75)
and taking the limit r = ϵ → 0 for the radius of the tube Bn. The result
gives the RT formula (2.69).

2.2.3 Symmetry resolution of entanglement

Now, let me turn to introduce the symmetry resolution of the entan-
glement entropy. This topic arises from a natural question: what does
internal global symmetry in QFT tell us about the entanglement en-
tropy? Or more generally, what is the role of internal global symmetry

6 Although the quotient spacetime is off-shell at the positions of conic defect. However,
as we are working in the local polar coordinates, the Einstein’s equation is expected
to still hold in r → 0 limit, similar to the case of Coulomb potential.
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in QFT from quantum information perspective? To answer the former
question, I will restrict to the U(1) case in the following discussions.

Consider a d-dimensional quantum field theory with an internal U(1)
symmetry. The U(1) charge operator Q is defined by integrating the
time component of the U(1) current over the Cauchy slice Σ. When
decomposing the Cauchy slice into two joint subregions A and B, in
order to measure the U(1) charges supported on A and B, we can define
the following subregion charge operators QA and QB,

QA =
∫

A
dxd−1J0 , QB =

∫
B
dxd−1J0 . (2.79)

where QA only acts on the Hilbert space HA while QB acts on HB. So,
in the matrix representation, the U (1) charge operator Q is related to
the subregion charge operators as

Q = QA ⊗ 1 + 1 ⊗QB . (2.80)

Now we consider a pure density matrix ρ = |ψ⟩⟨ψ| where |ψ⟩ is an
eigenstate of the charge operator Q. Taking the trace of [ρ,Q] over the
Hilbert space HB yields

TrB [ρ,Q] =
∑

n

(⟨bn|ψ⟩⟨ψ|Q|bn⟩ − ⟨bn|Q|ψ⟩⟨ψ|bn⟩)

=
∑

n

(⟨bn|ψ⟩⟨ψ|bn⟩QA −QA⟨bn|ψ⟩⟨ψ|bn⟩)

= [ρA,QA] (2.81)

where {|bn⟩} is the basis of eigenstates of QB in HB. Since |ψ⟩ is an
eigenstate of Q, we have [ρ,Q] = 0, and as a consequence,

[ρA,QA] = 0 . (2.82)

This indicates that in the basis of eigenstates of QA, the reduced density
matrix ρA is block diagonalized,

ρA =
⊕

q

ρA(q) , (2.83)

and each block ρA(q) corresponds to the charge sector with the eigen-
value q of the subregion charge operator QA. The symmetry-resolved
entanglement entropy (SREE) is defined as the von Neumann entropy
of the q-sector [27],

S(q) = −Tr
[
ρA(q)

P (q)
log

(
ρA(q)

P (q)

)]
. (2.84)

Here P (q) = Tr[ρA(q)] is a normalization constant and it can be in-
terpreted as the probability of detecting q units of U(1) charge under
a measurement operated in the subsystem A. The relation between
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the SREE and the entanglement entropy is described by the following
identity,

SEE =
∑

q

P (q)S(q) −
∑

q

P (q) logP (q) = ⟨S(q)⟩q + SN , (2.85)

which can be straightforwardly derived from the definition (2.84). The
first term ⟨S(q)⟩q averages the SREE over all charge sectors, and it
is known as the configurational entropy, which is closely related to the
operationally accessible entanglement entropy [59–61]. The second term
SN characterizes the Shannon entropy of the charge distribution, and
it is usually called the number entropy or fluctuation entropy [62].

To study the SREE in quantum field theories, it is necessary to also
define the symmetry-resolved Rényi entropy, given by

Sn(q) =
1

1 − n
log Tr

[(
ρA(q)

P (q)

)n
]

. (2.86)

which in n → 1 limit gives rise to the SREE. A useful decomposition
of the symmetry-resolved Rényi entropy was pointed out in [62],

Sn(q) = Sn +
1

1 − n
log Pn(q)

P (q)n
. (2.87)

where Pn(q) is the probability distribution of the q-sector in ρn
A,

Pn(q) = Tr[ρA(q)
n]/Tr(ρn

A) . (2.88)

Hence, taking the limit n → 1, one can also expressed the SREE via
the entanglement entropy and the distribution Pn,

S(q) = SEE + lim
n→1

1
1 − n

log Pn(q)

P (q)n
. (2.89)

Projector and charged moments. In order to incorporate the SREE
in the path-integral formulation, we first define a projector Πq via a
Fourier transformation of the subregion charge operator (2.79)7,

Πq = δ(QA − q) =
∫ ∞

−∞

dµ

2πe
iµ(QA−q) , (2.90)

so that ΠqρA = ρA(q) and Πqρ
n
A = ρA(q)n. We further define the

so-called charged moments Zn[µ] via the path-integral on the replica
manifold Rn,

Zn[µ] =
∫

Rn

Dϕe−S[ϕ]eiµQA , (2.91)

which is related to the reduced density as

Tr[ρn
Ae

iµQA ] = Zn[µ]/Zn
1 . (2.92)

7 Note that here we have assumed that the spectrum of QA is continuous. When the
eigenvalues of QA take integers, one needs to change the range of the integration in
(2.90) to be µ ∈ [−π, π]
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Then, by (2.67) and (2.92), the distribution Pn defined in (2.88) can
be expressed as

Pn(q) =
∫ ∞

−∞

dµ

2πe
−iµqZn[µ]

Zn[0]
. (2.93)

Using an idea presented in [29], one can further simplify the procedure
for calculating the SREE by defining an effective action,

Sn[µ] = − log (Zn[µ]/Zn[0]) , (2.94)

so that

Pn(q) =
∫ ∞

−∞

dµ

2πe
−iµq−Sn[µ] . (2.95)

The effective action captures the µ-dependence of the charged moments
and can be obtained from the expectation value of the subregion charge
operator QA,

∂µSn[µ] = −i⟨QA⟩n,µ , (2.96)

with the boundary condition Sn[0] = 0. Here ⟨· · · ⟩n,µ means the expec-
tation value of operators on the replica manifold Rn, in presence of the
insertion eiµQA . Hence, by (2.89), one can obtain the SREE by calculat-
ing the entanglement entropy SEE and the effective action separately.
This method is called the generating function method in [29], and it is
proved to be quite efficient in the context of holography. This is because,
in general cases, calculating the ⟨QA⟩n,µ is much easier than evaluating
the charged moments Zn[µ] on the replica manifold. Also, entanglement
entropy in holography is directly given by the RT formula.





3
H O L O G R A P H I C A D S 3 G R AV I T Y

AdS3 gravity as a toy holographic bottom-up model plays an impor-
tant role in the context of AdS/CFT duality. While this model is much
simpler than its higher dimensional counterparts due to its topological
nature, it provides a perfect playground for studying the deeper mech-
anisms of the AdS/CFT duality. In this chapter, I will review various
important aspects of AdS3 gravity from the holographic point of view,
as well as their applications to the holographic Rényi and entanglement
entropy.

In Section 3.1, some important aspects of AdS3 gravity will be intro-
duced, aimed at building up its connections with the two-dimensional
conformal field theory. Based on those pre-knowledges, in Section 3.2,
I will review the calculations of the holographic entanglement entropy
from both the holographic and CFT perspectives. As I will show later,
the calculations in those two perspectives share some similar features,
providing us the deeper connections between the AdS3 gravity and the
dual CFT2. For instance, I will show that the projective structure on the
conformal boundary of a AdS3 space determines the dominate channel
of vacuum conformal block that contributes to the partition function
of the dual CFT2. The lessons we learn in this section will be fur-
ther explored in the holographic U(1) Chern-Simons-Einstein gravity
in Chapter 4, for calculating the holographical U(1) symmetry-resolved
entanglement.

3.1 aspects of ads3 gravity

In this section, I will review some useful aspects of AdS3 gravity, includ-
ing the family of exact solutions to Einstein’s equation of AdS3 gravity,
the Schottky uniformization, the effective action of AdS3 gravity, and
the asymptotic symmetry algebra. The discussions in this section are
applicable for general higher genus handlebody AdS3 solutions with a
single conformal boundary.

3.1.1 Generic vacuum solutions

In Euclidean signature, the action for the AdS3 gravity is given by

SG =
1

16πG3

∫
M
d3x

√
G

(
R+

2
l2

)
− 1

8πG3

∫
∂M

d2x
√
hK , (3.1)

where G3 is the Newton constant in three dimensions, and l is the AdS
radius. The boundary term in (3.1) is the standard Gibbons-Hawking

35
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term. As first pointed out in [63], Einstein’s gravity theories in three
dimensions can also be formulated as Chern-Simons theories. This re-
veals that AdS3 gravity in three dimensions is topological, and all the
dynamical degrees of freedom at the theory are encoded in the bound-
ary.

The study of the metric solutions to the Einstein equations is usually
performed in the Fefferman-Graham gauge [64],

ds2 =
l2

4ρ2dρ
2 +

l2

ρ
gij(ρ,x)dxidxj , (3.2)

where ρ is the radial coordinate, with ρ = 0 as the boundary ∂M at the
spatial infinity. Inserting the above metric into the Einstein equation
yields several differential equations for gij(ρ,x), one of those being

∂3
ρgij(ρ,x) = 0 , (3.3)

which implies that the Taylor expansion of the gij in ρ is truncated at
ρ2 order,

ds2 =
l2

4ρ2dρ
2 +

l2

ρ

(
g(0)ij + ρg(2)ij + ρ2g(4)ij

)
dxidxj , (3.4)

The metric on the conformal boundary of AdS3 space is given by dŝ2 =

g(0)ijdx
idxj , which is called the boundary metric. Solving the remaining

Einstein equations order by order in ρ, one can show that g(4) are
determined by the first two terms, i.e. g(0) and g(2),

g(4)ij =
1
4g(2)ikg

kl
(0)g(2)kj , (3.5)

where gij
(0) is the inverse matrix of g(0)ij . The equations of motion for

g(2) are given by [65]

Tr[g(2)g−1
(0)] = −

R[g(0)]

2 , ∇i

(
g(2)ij +

g(0)ijR[g(0)]

2

)
= 0 , (3.6)

where R[g(0)] denotes the Ricci curvature for the boundary metric g(0)
and ∇i is the covariant derivative associated with g(0). To solve these
equations (3.6), we can locally express the boundary metric in the
isothermal coordinates,

dŝ2 = e2ϕ(z,z̄)dzdz̄ , (3.7)

where the Weyl factor ϕ(z, z̄) is a real function on the conformal bound-
ary. Then, the non-vanishing Christoffel symbols are given by

Γz
zz = 2∂zϕ , Γz̄

z̄z̄ = 2∂z̄ϕ . (3.8)

The Ricci scalar of the metric g(0) is given by

R[g(0)] = −2∇i∇iϕ = −8e−2ϕ∂z∂z̄ϕ . (3.9)
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Then, expanding (3.6), one obtains

g(2)zz̄ = g(2)z̄z = ∂z∂z̄ϕ ,
∂z̄g(2)zz = ∂z̄∂

2
zϕ− 2∂zϕ∂z∂z̄ϕ ,

∂zg(2)z̄z̄ = ∂z∂
2
z̄ϕ− 2∂z̄ϕ∂z∂z̄ϕ . (3.10)

Solutions of g(2) to above equations can be written in a covariant form,

g(2)ij = αij + tij (3.11)

where αij is the ϕ-dependent, given by

αij = ∇iϕ∇jϕ+ ∇i∇jϕ− 1
2g(0)ij∇kϕ∇kϕ , (3.12)

and tij is ϕ-independent and satisfies

∂z̄tzz = 0 , ∂ztz̄z̄ = 0 , tzz̄ = tz̄z = 0 . (3.13)

Notice that (3.13) imply that tzzdz
2 and tz̄z̄dz̄

2 are holomorphic (anti-
holomorphic) quadratic differentials on the conformal boundary. As
pointed out in [66, 67], while adding arbitrary quadratic differential to
g(2) preserves the equation of motion locally, the corresponding three-
dimensional geometry typically contains conical defects inside the bulk.
We are only interested in the exact solutions to Einstein’s equation,
hence we simply set tij = 0. Then, g(2) are fixed by ϕ as

g(2)ij = ∇iϕ∇jϕ+ ∇i∇jϕ− 1
2g(0)ij∇kϕ∇kϕ , (3.14)

which in components read

g(2)zz = ∂2
zϕ− (∂zϕ)

2 = −T ϕ ,
g(2)z̄z̄ = ∂2

z̄ϕ− (∂z̄ϕ)
2 = −T̄ ϕ ,

g(2)zz̄ = ∂z∂z̄ϕ = −Rϕ, (3.15)

Combining the above results, one obtains the full solution with given
boundary metric g(0), given by [67]

ds2 =
l2

4ρ2dρ
2 +

l2

ρ
e2ϕ

∣∣∣dz − ρe−2ϕ
(
Rϕdz + T̄ ϕdz̄

)∣∣∣2 . (3.16)

I call such a solution as a vacuum AdS3 solution, where “vacuum” means
that it is completely smooth in the bulk1.

1 In fact, from the dual CFT point of view, tij can be understood as the stress tensor
sourced by insertions of fields. When tij vanishes, the state in the dual CFT is the
vacuum defined on the curved background with metric g(0). Thus, the vacuum AdS3
really means the geometry dual to the vacuum state in the boundary CFT.
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Relation to Bañados metric. The metric (3.16) takes a different
form from the famous Bañados geometry [66], given by

ds2 =
l2

4ρ2dρ
2 +

l2

ρ

∣∣dw− ρL̄dw̄
∣∣2 , (3.17)

However, in the special case where e2ϕ = |dw/dz|2 and w is a holomor-
phic function of z, we have

T ϕ = (∂zϕ)
2 − ∂2

zϕ = −1
2{w; z} . (3.18)

Here { ; } is the Schwarzian derivative defined as

{f ; z} =
∂3

zf

∂zf
− 3

2

(
∂2

zf

∂zf

)
, ∀f = f(z, z̄) . (3.19)

There is a chain rule for the Schwarzian derivative, given by

{f ; z} = {f ;h}
(
∂h

∂z

)2
+ {h; z} , iff ∂f

∂h̄

∂h̄

∂z
= 0 . (3.20)

Then, it is straightforward to show that under a boundary coordinate
transformation z → w, (3.16) is transformed to the Bañados form
(3.17), with

L =

(
dz

dw

)2
T ϕ =

1
2{z;w} , (3.21)

where the chain rule (3.20) is used for f = z and h = w.

Local transformation to Poincaré AdS3. There is also a local co-
ordinates transformation relating the metric (3.16) to the Euclidean
Poincaré AdS3,

ds2 =
l2

ξ2 (dξ
2 + dydȳ) , (3.22)

given by [67],

ξ =

√
ρe−ϕ

1 + ρe−2ϕ|∂zϕ|2
, y = z +

ρe−2ϕ∂z̄ϕ

1 + ρe−2ϕ|∂zϕ|2
. (3.23)

This transformation is regarded as a finite version of the well-known
Penrose-Brown-Henneaux (PBH) diffeomorphism [35]. It acts on the
boundary coordinates of Poincaré AdS3 as an identity map z = y in
the limit ρ → 0, and generates the Weyl factor in the boundary metric
of (3.16) from Poincaré AdS3.

Bulk dual of conformal transformation in CFT. In the special
case e2ϕ = |dw/dz|2, the combination of the finite PBH diffeomorphism
and the boundary coordinate transformation locally maps the Poincaré
AdS3 (3.22) to the Bañados geometry (3.17). This is the bulk transfor-
mation dual to the local conformal transformation in the dual CFT,
which consists of a Weyl transformation and a compensate boundary
coordinates transformation.
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3.1.2 Global aspects from Schottky uniformization

So far, I have discussed the exact solution (3.16) to Einstein’s equa-
tion from the local point of view. In this section, I will discuss the
global issue of the metric (3.16) by explaining its geometric origin. The
fact that any solution to AdS3 gravity is locally AdS3, implies that it
is always locally maximally symmetric, with six local Killing vectors.
This locally indistinguishable feature motivates one to construct AdS3
solutions with non-trivial topology by considering the quotient of the
Euclidean Poincaré AdS3 [68–70], denoted as H3 for shorthand. The
metric of H3 is given in (3.22) and the boundary of H3 located at ξ = 0
is considered as a Riemann sphere CP1 ≃ C ∪ {∞}.

Notion of quotient: The idea of the quotient is as following. One
considers a discrete subgroup of the global isometry group of H3, de-
noted as Γ̂, which acts on the H3 properly. For points in H3, we say
they are Γ̂-equivalent if they are related by actions from elements of Γ̂.
The way how these elements act on H3 will be made clear later. The
quotient of H3 by Γ̂-equivalence provides a new hyperbolic 3-fold,

M = H3/Γ̂ . (3.24)

This quotient can be realized via a locally diffeomorphic projection
map2, P : H3 → M. We call P a covering map of M, and H3 the
corresponding covering space3. By construction (3.24), the covering
map P is required to be Γ̂-invariant, which means

P ◦ x = P ◦ γ ◦ x , ∀γ ∈ Γ̂ , ∀x ∈ H3 . (3.25)

We call γ ∈ Γ̂ a covering transformation and Γ̂ the covering group of P .
The triple (H3, Γ̂,P : H3 → M) defines a uniformization of M.

Smoothness condition: We call a point x as a fixed point if there
exists an element γ of Γ̂ such that x = γ ◦ x. If Γ̂ acts on the region
inside of H3 discontinuously, i.e., no fixed points inside of H3, then M
is a smooth manifold satisfying Einstein’s equation exactly. Otherwise,
fixed points inside of H3 become conical defects in M, which typically
form a line.

Handlebody AdS3: There is a large class of smooth solutions to
Einstein’s equation described by the handlebody AdS3. By meant of
“handlebody”, the manifold contains a single conformal boundary, de-
noted as Sg, which is a compact Riemann surface with genus g. The
Bañados geometry introduced before is a simplest example, in which

2 Although the existence of such a map is obvious, working out its explicit form in
coordinate transformation is in general a very nontrivial problem.

3 In fact, H3 is the universal covering of M. A covering is universal if and only if the
covering space is simply connected.
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the conformal boundary is in fact a torus S1 = T2 when the stress
tensor L in (3.17) is a constant. Higher genus cases have been studied
in [70–73]. A handlebody AdS3 can be obtained from a quotient of H3
with an appropriately chosen discrete subgroup Γ̂. In general, the met-
ric field of a handlebody AdS3 can be put in the form of (3.16), where
the Weyl factor ϕ encodes the geometric data, such as the generators
of Γ̂ and the projective structure on the conformal boundary Sg, which
I will discuss later. For references, see [67, 70, 74].

Isometric action on H3. To understand the isometric action on
H3, it is convenient to consider the embedding of H3 in the (3 + 1)-
dimensional flat space R3,1, defined as

U2 − V 2 +X2 + Y 2 = −1 , (3.26)

for V > 0, with the flat metric

ds2 = l2(dU2 − dV 2 + dX2 + dY 2) , (3.27)

The Poincaré coordinates in (3.22) are related to the coordinates in
R3,1 by

ξ =
1

V −X
, y =

Y + iU

V −X
, ȳ =

Y − iU

V −X
. (3.28)

The space H3 can be mapped to the space of Hermitian matrices with
unit determinate via the following combination,

Λ =

V +X Y + iU

Y − iU V −X

 =

ξ + ξ−1|y|2 ξ−1y

ξ−1ȳ ξ−1

 . (3.29)

Under the above construction, one identifies the orientation-preserving
isometry group of H3, denoted as Isom+(H3), as the the group of
linear fractional transformation PSL(2, C) = SL(2, C)/{±1}, in which
the group element acts on Λ via the conjugation,

Λ → hΛh† =

ξ′ + ξ′−1|y′|2 ξ′−1y′

ξ′−1ȳ′ ξ′−1

 . (3.30)

with

h =

a b

c d

 , a, b, c, d ∈ C , ab− cd = 1 , (3.31)

We refer the isometric action of h on H3 as

h ◦ (ξ, y, ȳ) = (ξ′, y′, ȳ′) , (3.32)

where set of new coordinates (ξ′, y′, ȳ′), by construction, maintains the
form of the Poincaré metric in (3.22), and they are related to the old
coordinates as,

y′ =
(ay+ b)(cy+ d) + ac̄ξ2

|cy+ d|2 + |c|2ξ2 , ξ′ =
ξ

|cy+ d|2 + |c|2ξ2 , (3.33)



3.1 aspects of ads3 gravity 41

In the limit ξ → 0, the transformation for y′ degenerates to be the
PSL(2,C) fractional transformation on the boundary CP1,

y′ =
ay+ b

cy+ d
. (3.34)

A non-identity element h in PSL(2, C) can classified through the norm
of the matrix trace. It falls into one of the three classes, elliptic, parabolic,
or loxodromic, corresponding to |Tr(h)| < 2, |Tr(h)| = 2, or |Tr(h)| > 2,
respectively. The type of fixed points associated to h is determined as,

• Elliptic: have fixed points inside of H3

• Parabolic: one fixed point on ∂H3 = CP1

• Loxodromic: two fixed points on ∂H3 = CP1

As I mentioned before, when fixed points inside of H3 exist under the
actions from Γ̂, they become conical defects in M under the quotient.
Now, we can ready to see this through a simple example. We consider
the discrete subgroup (modulo {±1}) Γ̂ = Zn, generated by a single
elliptic element,

t = h−1ph , (3.35)

with

h =

√ 1
2L −

√
L
2√

1
2L

√
L
2

 , p =

eiπ/n 0
0 e−iπ/n

 , n ∈ Z+ . (3.36)

Inserting components of t into (3.33), one can show that the equations
for fixed points, (ξ′, y′) = (ξ, y), give rise to

ξ2 + Re(y)2 = L2 . (3.37)

This half-circle is recognized as the geodesic path in Poincaré AdS3,
where the geodesic is anchored at the boundary points y = ±L. Under
the quotient H3/Zn, a line defect is generated, which extends along
the geodesic path (3.37). It should be noted that this geodesic path
in H3 is again a geodesic in the quotient space, since the underlying
covering map (although I did not present it explicitly here) is locally
diffeomorphic. This confirms the RT prescription of entanglement en-
tropy discussed in Chapter 2.

Marked Schottky group. We are mostly interested in smooth handle-
body AdS3 solutions to Einstein’s equation. The covering groups of such
manifold lie in a special class of groups, called Schottky groups, which
are defined as freely finitely generated discrete subgroups of PSL(2,C)
such that every non-identity elements are loxodromic [67]. A Schottky
group Γ̂ is called marked if its generators are ordered,

Γ̂ = ⟨t1, t2, · · · , tg⟩ . (3.38)
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where the rank g of Γ̂ is identical to the genus of the boundary Sg of
the corresponding handlebody M = H3/Γ̂. A element of Γ̂ is called
a word, obtained by a combination of generators and their inverses.
To understand the actions from the marked Schottky group on H3 in
more detail, we recall that an isometric action on H3 degenerates to a
PSL(2,C) fractional transformation on the boundary CP1, as shown in
(3.33) and (3.34). Thus, we can first investigate the actions from the
boundary point of view, and then extend them into the bulk.

Schottky uniformization. Let me first give a punchline and then
explain it in detail. From the boundary perspective, the action from
the marked Schottky group on CP1 in fact provides a Schottky uni-
formization of the compact Riemann surface Sg, denoted by the triple

(Ω, Γ, p : Ω → Sg) . (3.39)

Here, p is a covering map of Sg. Γ is the marked Schottky group4, the
covering group of p. Ω is called the domain of discontinuity of Γ, on
which elements of Γ act properly discontinuously. It is a non-simply
connected planar region, and can be written as

Ω = CP1\Λ(Γ) . (3.40)

where Λ(Γ) is called the limit set, i.e. the closure of the set of all fixed
points on CP1 associated with Γ.

To explain these step by step, let me first discuss the loxodromic
fractional transformation on CP1. In general, a loxodromic PSL(2,C)
matrix ti can be written in the following form,

ti = h−1
i pihi , (3.41)

with

hi =
1√

ei − fi

1 −ei

1 −fi

 , pi =

√
ki 0
0 1/

√
ki

 , (3.42)

where |
√
ki + 1/

√
ki| > 2 and |ki| > 1. By (hiti) ◦ y = (pihi) ◦ y, we

obtain the following equation,

ti ◦ y− ei

ti ◦ y− fi
= ki

y− ei

y− fi
. (3.43)

which is called the fixed point equation of ti. The dilation factor ki is
called the characteristic constant, and y = ei and y = fi are called the
repelling and attracting fixed points, respectively. If we choose two non-
intersecting closed curves Ci and C ′

i on CP1, such that Ci is mapped to
C ′

i under the action of ti and they encircle around ei and fi respectively,
then any points outside of Ci is mapped to the region inside of C ′

i. We

4 Here I denote Γ instead of Γ̂, because the representations of them are different.
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Figure 2: Schottky uniformization of Riemann surface with g = 2.

usually call such curves as Jordan curves. See Figure 2 for an example.
The choices of Jordan curves are not unique. In order to explicitly show
the above described features, let me consider the following case, where
Ci and C ′

i are chosen as

Ci :
∣∣∣∣y− ei

y− fi

∣∣∣∣ = r , C ′
i :

∣∣∣∣y− ei

y− fi

∣∣∣∣ = |ki|r > r , (3.44)

with r a positive real constant. The inside regions of Ci and C ′
i are

disconnected to each other, and include ei and fi respectively. Inserting
y = ei and y = fi to the function ρ(y) = |(y − ei)/(y − fi)|, we get
ρ(ei) = 0 < r and ρ(fi) = ∞ > |ki|r. This implies that the inside
regions of Ci and C ′

i are given by

inside of Ci :
∣∣∣∣y− ei

y− fi

∣∣∣∣ < r , inside of C ′
i :
∣∣∣∣y− ei

y− fi

∣∣∣∣ > |ki|r . (3.45)

Then, for a point y0 outside Ci with |(y0 − ei)/(y0 − fi)| = r0 > r, it
gets mapped to a new point ti ◦ y0 inside of C ′

i, since∣∣∣∣ ti ◦ y0 − ei

ti ◦ y0 − fi

∣∣∣∣ = ∣∣∣∣ki
y0 − ei

y0 − fi

∣∣∣∣ = |ki|r0 > |ki|r . (3.46)

Coming back to the marked Schottky group, we can associate each
generator ti with a pair of Jordan curves, such that all curves in the set
{C1, · · ·Cg,C ′

1, · · ·Cg} are non-intersecting. Under an arbitrary action
from Γ, any point outside 2g Jordan curves is mapped to a point inside
one of those closed curves, thus we conclude that the limit set Λ(Γ) is a
subset of the union of regions inside of the Jordan curves. The open set
bounded outside of all Jordan curves, denoted as D, is a fundamental
domain of Ω. This comes from the facts that any two distinct points
inside of D are not Γ-equivalent, and any point outside D but inside
Ω must be Γ-equivalent to a unique point inside of D. The compact
Riemann surface Sg is obtained from the quotient

Sg = Ω/Γ , (3.47)

which is equivalent to pairwise gluing the 2g boundaries (Jordan curves)
of the fundamental domain D. This quotient can be realized via a
covering map p,

p : Ω → Sg = Ω/Γ , (3.48)
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which is locally holomorphic. Since the covering space Ω is not simply
connected, the covering group Γ̂ of p is not isomorphic to the funda-
mental group π1(Sg). To make it clear, we can choose a canonical basis,

π1(Sg) =

〈
[a1], [b1], · · · , [ag], [bg] :

g∏
i=1

[ai, bi] = I

〉
(3.49)

where [ai, bi] = aibia
−1
i b−1

i , such that each loop ai on Sg is homolo-
gous to image p(Ci). See Figure 2. Then, the covering group Γ of p is
isomorphic to the following factor group,

Γ ≃ π1(Sg)/N , (3.50)

where N is the smallest normal subgroup of π1(Sg) containing elements
[a1], · · · , [ag] [75]. This will be used later when I discuss the origin of
distinct gravity saddles.

Poincaré extension. Now we discuss the bulk picture. We use (3.33)
to extend the action (3.34) on CP1 into the bulk. When doing so, one
can find that the action of ti from Ci to C ′

i is extended to a map between
two non-intersecting hemispheres, denoted by Hi and H ′

i, with

∂Hi = Ci , ∂H ′
i = C ′

i , i = 1, · · · g . (3.51)

This implies that the fundamental domain of H3, denoted as D̂, is a
simply connected open set bounded by

∂D̂ = D ∪H1 ∪ · · · ∪Hg . (3.52)

Thus, the quotient space M can be obtained by pairwise gluing these
2g hemispheres. The procedure described in above is known as the
Poincaré extension [75]. One important fact we will use later is that
while the homotopy classes [ai] = [p(Ci)] are nontrivial elements of
π1(Sg), they are trivial in π1(M). This is because Ci is the boundary
of the hemisphere Hi, which is simply connected and inside of M. In
other words, the [ai] loops on Sg are contractible in M.

Normalization of Schottky group. We have known that, for a
marked Schottky group Γ̂ with rank g, one obtains a handlebody M
with genus g by the quotient procedure. However, the space of genus g
handlebodies and the space of Γ̂ are not in one-to-one correspondence.
Two marked Schottky group gives the same handlebody if the genera-
tors of them are related by the conjugation of an arbitrary PSL(2,C)
element. To see this, we consider

Γ̂ = ⟨t1, · · · , tg⟩ , Γ̂′ = ⟨qt1q−1, · · · , qtgq−1⟩ . (3.53)

We denote P and P ′ as the covering map associated with Γ̂ and Γ̂′. By
the required property

P ◦ γ ◦ x = P ◦ x , P ′ ◦ (qγq−1) ◦ x = P ′ ◦ x , ∀γ ∈ Γ̂ (3.54)
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where x ∈ H3, one finds that

P ′ = qPq−1 , (3.55)

Thus, the two resulting handlebodies are globally diffeomorphic,

M′ = P ′(H3) = q(P (H3)) = q(M) . (3.56)

The fixed points of element qtiq−1 are given by q ◦ ei and q ◦ fi, respec-
tively. Therefore, we can normalize the marked Schottky group Γ̂ by
appropriately choosing q such that q ◦ e1 = 0, q ◦ f1 = ∞ and q ◦ e2 = 1.
The normalized marked Schottky group contains (3g − 3) complex pa-
rameters,

e3, · · · eg, f2, · · · fg, k1, · · · kg . (3.57)

The space of normalized marked Schottky groups is called the Schottky
space, denoted as Sg. It has real dimensions (6g− 6) and its universal
covering space is the Teichmüller space Tg of genus g compact Riemann
surfaces. The discussion of the covering map from Tg to Sg can be found
in [74, 75].

Discrete isometry of vacuum solutions. Now we turn to connect
solutions in the form of (3.16) with Schottky uniformization. We con-
sider a handlebody AdS3 constructed via a given normalized marked
Schottky group Γ. The boundary metric on its conformal boundary Sg

can be locally written as

dŝ2 = e2ϕ(z,z̄)dzdz̄ . (3.58)

As Sg is obtained by gluing the fundamental domain D on the bound-
ary CP1 of H3, we can set z = y when we approach to the conformal
boundary Sg. Under such coordinates, z and γ ◦ z for any γ ∈ Γ rep-
resent a same point on Sg. Thus, the boundary metric field at z and
γ ◦ z is identical, i.e., dŝ2|z = dŝ2|γ◦z, which implies the following quasi-
periodic boundary conditions on ϕ,

ϕ(γ ◦ z, γ ◦ z) = ϕ(z, z̄) − 1
2 log

∣∣γ′∣∣2 , ∀γ ∈ Γ , z ∈ Ω , (3.59)

where γ′ = d(γ ◦ z)/dz for shorthand. Notice that ϕ is a single-valued
function of z on Ω. However, it is is multi-valued on Sg. By (3.15), it
is straightforward to use (3.59) to check that T ϕ and Rϕ transforms as
quadratic differentials with respect to Γ, given by

T ϕ(γ ◦ z) =
(
∂ϕ(γ ◦ z)
∂(γ ◦ z)

)2
− ∂2ϕ(γ ◦ z)

∂(γ ◦ z)2

= (γ′)−2
(
T ϕ(z) − 1

2{γ ◦ z; z}
)

= (γ′)−2T ϕ(z) , (3.60)



46 holographic ads3 gravity

and

Rϕ(γ ◦ z) = ∂2ϕ(γ ◦ z)
∂(γ ◦ z)∂(γ ◦ z)

= |γ′|−2Rϕ(z) . (3.61)

Here we used the fact that Schwarizan derivative vanishes for fractional
transformations, i.e., {γ ◦ z; z} = 0. Inserting (3.59), (3.60) and (3.61)
into the metric (3.16), one finds that the whole bulk metric is invariant
under Γ,

ds2|ρ,z = ds2|ρ,γ◦z , ∀γ ∈ Γ . (3.62)

In other words, Γ is the discrete isometry of (3.16) under the boundary
conditions (3.59). Unlike the Γ̂ action on H3 in (3.33), here Γ only acts
on the boundary coordinates (z, z̄). Under quotient, the metric (3.16)
naturally descends to a metric on the manifold M.

It should be noted that solutions to (3.59) are not unique. Given a
solution ϕ, shifting ϕ → ϕ̃ = ϕ− fΓ leads to a new solution if fΓ is an
automorphic function with respect to Γ,

fΓ(γ ◦ z) = fΓ(z) , γ ∈ Γ , z ∈ Ω . (3.63)

Here, fΓ is single-valued both on Ω and Sg. The degree of freedom of
shifting ϕ by an automorphic function reflects the fact that a given nor-
malized marked Schottky group Γ only fix the conformal class of the
metric on Sg. From the bulk perspective, it tells that a metric (3.16)
invariant under Γ is defined up to a finite PBH diffeomorphism with
the relative Weyl factor fΓ being automorphic with respect to Γ. This
diffeomorphism can be deduced from (3.23) and I do not present it here.
Intuitively, two manifolds M and M′ related by such a diffeomorphism
look almost the same from the point of view of the covering space H3,
except that, in the limit ρ → 0, their constant ρ slices approach to
the fundamental domain D in different ways, which leads to different
boundary metrics. In the dual CFT perspective, both manifolds M
and M′ are dual to the same vacuum state of the boundary CFT de-
fined on Sg. The relative Weyl factor fΓ in the boundary metrics is
captured by the conformal anomaly, which leads to a universal shift
in the CFT partition function, governed by the Liouville action of fΓ

[76]. In the next section, we will verify this property by calculating the
semi-classical gravity partition function, and hence confirm the validity
of the AdS3/CFT2 correspondence.

The degree of freedom in ϕ can be fixed if we provide additional data,
such as the curvature R on Sg. By Riemann uniformization theorem5,
we have a canonical choice R = λ, with λ = 0 for genus g = 1 and
λ = −2 for g > 1. By (3.9), this leads to the Liouville equation,

−8∂z∂z̄ϕ = λe2ϕ . (3.64)

5 The Riemann uniformization theorem states that any compact Riemann surface is
conformally equivalent to a compact Riemann surface with a constant curvature and
with the same complex structure. The curvature depends on the genus, i.e., g = 0,
g = 1, and g > 1 correspond to R = 2, R = 0, and R = −2.
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It is known that (3.64) and (3.59) determine a unique solution ϕ. How-
ever, it is hard to solve them in practice, except for the case of g = 1.
We will discuss the g = 1 case as an explicit example later.

Origin of distinct gravity saddles. So far, we have discussed how
to obtain a handlebody AdS3 as well as its metric by a given normal-
ized marked Schottky group. In the context of holography, such as the
holographic Rényi entropy, we often encounter problems of a different
type, that is, for a compact conformal boundary Sg with a given met-
ric expressed in some coordinates, how to work out the whole bulk
solution to Einstein’s equation. This problem is essentially to find the
Schottky uniformization of the conformal boundary, so that the bulk
metric can be directly obtained via (3.16). An important point is that,
for a compact Riemann surface with a nontrivial topology and a given
metric, it admits different Schottky uniformizations. In fact, there are
infinite many of them. This is the essential reason for existence of dis-
tinct gravity solutions with a same boundary metric. In the following,
I will explain how different Schottky uniformizations arise for Sg with
a given boundary metric.

Let me first give the general idea. Consider a Riemann surface Sg

with a given metric in isothermal coordinates, dŝ2 = e2ω(w,w̄)|dw|2. We
can choose a canonical basis of π1(Sg) in the form of (3.49). Such
choices are infinite many. With a fixed canonical basis, we can cut Sg

along the g handle loops ai, which leads to a planar surface with 2g
boundaries. This planar surface, denoted as D, is the desired funda-
mental domain of Schottky uniformation, and boundaries of D are the
desired Jordan curves. As the coordinate w on Sg are given, a base
point w going once around ai or bi can be formally represented via a
coordinate transformation, denoted as6 w → Ai ◦ w or w → Bi ◦ w.
These actions Ai and Bi on w provide a representation of π1(Sg). Now,
the problem of finding Schottky uniformization of Sg is to find a locally
biholomorphic map, the so-called developing map,

J : w 7→ z , (3.65)

such that the following monodromy conditions hold,

J(Ai ◦w) = J(w) , J(Bi ◦w) = ti ◦ J(w) , i = 1, · · · , g . (3.66)

Here ti’s are PSL(2,C) matrices and act on J(w) = z as fractional
transformations. They can be determined after we solve J . The re-
quired properties (3.66) come from the fact that the planar surface D
as the desired fundamental domain of Schottky uniformization must
be embedded in CP1, coordinated by z. When a point on Sg goes once
around the ai loop, its trajectory on CP1 is the corresponding Jordan

6 Note that, although w and Ai ◦ w represent the same point on Sg, the values of
them can be different. This is also the case for Bi. In usual situations, the actions
of Ai and Bi on coordinates are easy to work out.
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curve, and hence the coordinate z of the point must be invariant. Sim-
ilarly, when a point goes once around bi, the coordinate z must be
changed by a fractional transformation.

Mathematically speaking, the developing map J satisfying (3.66) de-
fines a projective structure7 on Sg, denoted as [σ]. As Ai and Bi provide
a representation of π1(Sg), the properties (3.66) further provide a ho-
momorphism,

ρσ : π1(Sg) → PSL(2,C) , ρσ : [ai] 7→ I , ρσ : [bi] 7→ ti . (3.67)

We call ρσ a monodromy representation of the projective structure [77].
Furthermore, the image

ρσ(π1(Sg)) = ⟨t1, · · · , tg⟩ = Γ , (3.68)

is called the monodromy group of [σ], which in present case is identical
to the desired Schottky group.

After solving J , we can rewrite the metric in z-coordinates and us-
ing (3.16) to get the whole bulk solution. An important fact is that
the global property of such a solution is characterized by the projec-
tive structure on Sg arising from the Schottky uniformization. As I
mentioned before, the homotopy class [ai] is trivial in π1(M). This
triviality also shows up in the monodromy representation (3.67).

What about other saddles to Einstein’s equation? Notice that we
fixed the canonical basis of π1(Sg) in previous discussion. A given canon-
ical basis can be changed by acting with Dehn twists, which are the
generators of the Mapping Class Group (MCG), denoted by Mod(Sg)
[6]. In general, we may expect that a change of basis will lead to a differ-
ent Schottky uniformization of Sg, and hence a distinct bulk geometry.
This is almost true, except for some particular elements of Mod(Sg). I
will not discuss the general cases of this issue, but only give the explicit
example for g = 1 later. By the AdS/CFT duality, we conclude that
the dual CFT partition function on a given compact Riemann surface
can be written as a sum of gravity saddle points contributions over all
possible projective structures on Sg arising from Schottky uniformiza-
tions,

ZCF T =
∑

σ

e−Sσ
grav . (3.69)

Example for g = 1. We consider a flat torus with metric ds2 = |dw|2.
The periods of w are given by w ∼ w+w1 and w ∼ w+w2, with w1 =

2π, w2 = 2πτ and Im(τ ) > 0. The fundamental group of torus is abliean
and isomorphic to Z2, and the corresponding MCG is PSL(2, Z). We
denote a “time” loop from w to w+w1 as ω1 and a spatial loop from

7 A projective structure [σ] on a Riemann surface is a maximal analytic atlas, i.e.,
[σ] = {Uα, φα}α∈σ, such that all transition functions between charts are PSL(2,C)
fractional transformations [77].
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w to w+w2 as ω2. Then a general basis of the fundamental group can
be obtained via a PSL(2,Z) action,a1

b1

 =

a b

c d

ω1

ω2

 , ad− bc = 1 , a, b, c, d ∈ Z . (3.70)

The integers a, b, c, d are winding numbers. The condition ad− bc = 1
ensures that the area of the torus is preserved. The two basic generators
of PSL(2, Z) are given by

S =

 0 1
−1 0

 , T =

1 1
0 1

 . (3.71)

The coordinate transformations correspond to a1 and b1 are transitions,
A1 ◦w = w+ aw1 + bw2 , B1 ◦w = w+ cw1 + dw2 . (3.72)

which by the conditions (3.66) give rise to
z(w+ aw1 + bw2) = z , z(w+ cw1 + dw2) = t1 ◦ z . (3.73)

The solution to (3.73) is easy to worked out, given by

z = eiw/(aτ+b) , t1 =

√
k 0

0 1/
√
k

 , k = e2πi cτ+d
aτ+b . (3.74)

Notice that developing map z(w) only depends on a and b. There is
a subgroup Z of PSL(2,Z), generated by the element K = S−1TS,
which leave a1 = aw1 + bw2 invariant,

Kn

a1

b1

 =

 a1

b1 − na1

 , n ∈ Z . (3.75)

The characteristic constant is also invariant under such transforma-
tions,

k → k′ = e2πi
cτ+d−n(aτ+b)

aτ+b = k . (3.76)
Thus, all possible projective structures arising from Schottky uniformiza-
tions are in one-to-one correspondence to elements in the following quo-
tient [78],

{[σ]} ≃ PSL(2, Z)/Z . (3.77)
The bulk metric can be obtained by directly inserting the Weyl factor

ϕ =
1
2 log |dw/dz|2 =

1
2 |(aτ + b)/z|2 , (3.78)

into (3.16). Under a boundary coordinate transformation, z → w, one
can show that the metric is in the Bañados form,

ds2 =
l2

4ρ2dρ
2 +

l2

ρ

∣∣∣∣dw̄− ρ

4(aτ + b)2dw

∣∣∣∣2 . (3.79)

For a = d = 1 and b = c = 0, the metric solution is called the black
hole phase. For a = d = 0 and b = −c = 1, it is called the thermal
AdS3 phase. The bulk contractible loops in two cases are given by the
time loop and the spatial loop respectively.
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3.1.3 Boundary effective action

In this section, I will review the derivation of the boundary effective
action of the AdS3 gravity by integrating out the radial direction of
the on-shell action. The result was originally obtained in [79], where
the authors worked in the Chern-Simons formalism, and by Gauss de-
composition of the SL(2,R) Chern-Simons fields they showed that the
boundary effective action of the AdS3 gravity is of Liouville type. Dif-
ferent ways of the derivation can also be found in [67, 80–83] (see also
a recent review [84]). To incorporate the discussion of the previous sec-
tions, in the following, I will work in the metric formalism and derive
the effective action through the holographic renormalization procedure.
As examples, explicit evaluations of the effective action for genus one
solutions as well as the replica solution will be given. I will also dis-
cuss various forms of the effective action, and clarify its relations with
Zograf-Takhtajan Liouville action [85] as well as the Polyakov func-
tional action in two-dimensional CFTs [76].

Before going into the details of the calculations, let me first clarify
the choice of the cut-off surface here. In the usual holographic renor-
malization procedure, the cut-off surface is placed at a constant radial
slice ρ = ϵ, where the cut-off regulator ϵ is eventually sent to zero. How-
ever, as shown in [83, 84], a complete treatment that eventually yields
the desired Liouville action at the boundary requires an unconventional
cut-off surface, located at

ρ = ρ0 = ϵe2ϕ(z,z̄) . (3.80)

The meaning of (3.80) is clear from the diffeomorphism (3.23), which,
at the leading order of ϵ, represents a constant radial slice ξ =

√
ϵ

in the Poincaré AdS3. Hence, in this way, one fixes the scheme of the
holographic renormalization for on-shell solutions with different Weyl
factors. Although the derivation of the boundary effective action is
based on the on-shell solution given in (3.16), it is more convenient to
express the metric gij(x, ρ) as the following matrix product [65],

g =

(
1 +

ρ

2g(2)g
−1
(0)

)
g(0)

(
1 +

ρ

2g
−1
(0)g(2)

)
, (3.81)

which implies

det[G] = l6

4ρ4 det[g0] det[1 +
ρ

2g(2)g
−1
(0)]

2 . (3.82)

Then the on-shell Einstein-Hilbert action can be integrated as

SEH =
1

16πG3

∫
ρ≥ρ0

d3x
√
G
(
−6l−2 + 2l−2

)
= − l

8πG3

∫
ρ≥ρ0

dρ

∫
d2z

√
g(0)

(
ρ−2 + ρ−1a1 + O(1)

)
= − l

8πG3

∫
d2z

√
g(0)

(
a1 log ρ0 − ρ−1

0 + O(ϵ)
)

, (3.83)
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with

a1 =
1
2Tr[g(2)g−1

(0)] = −1
4R[g(0)] . (3.84)

The out-going normal covector nµ to the cut-off surface is characterized
by

nµ ∝ ∂µ(ρe
−2ϕ) , (3.85)

which yields the components of the out-going normal vector as

nρ = −2ρ(l2 + l2ρgij∂iϕ∂jϕ)
−1/2 ,

ni = ρgij∂jϕ(l
2 + l2ρgmn∂mϕ∂nϕ)

−1/2 . (3.86)

Then the extrinsic curvature K on the cut-off surface can be worked
out as

K = ∇µn
µ|ρ=ρ0 = 2l−1 + O(ϵ2) (3.87)

This is expected since ρ = ρ0 corresponds to the constant radial slice
in the Poincaré AdS3 at the leading order of ϵ, which has constant
extrinsic curvature K = 2l−1. On the other hand, the induced metric
on the cut-off surface is given by

hij = l2
(
ρ−1

0 g(0)ij + g(2)ij + ∂iϕ∂jϕ
)
+ O(ϵ) ,

√
h = l2

√
g(0)

(
ρ−1

0 + a1 +
1
2 (∂ϕ)

2
)
+ O(ϵ) , (3.88)

Therefore, the Gibbons-Hawking term in (3.1) reads

SGH = − l

8πG3

∫
d2z

√
g(0)

(
2ρ−1

0 + 2a1 + (∂ϕ)2
)

. (3.89)

Combining (3.83) and (3.89) yields the regularized on-shell action

Sreg = − l

8πG3

∫
d2z

√
g(0)

(
ρ−1

0 + a1(log ρ0 + 2) + (∂ϕ)2
)

,

(3.90)

The power law divergence associated with the first term in (3.90) can
be eliminated by adding a covariant counter term on the cut-off surface
[86],

Sct =
l

8πG3

∫
d2z

√
h . (3.91)

Expressing ρ0 explicitly and using the relation (3.84), one obtains the
renormalized on-shell action as

Sren = lim
ϵ→0

(Sreg + Sct)

=
l

16πG3

∫
d2z

√
g(0)

(
ϕR− (∂ϕ)2 +

1
2R log ϵ+ 1

2R
)

,

(3.92)
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In two dimensions the integration of √
g(0)R is the Euler characteristic if

the cut-off surface is closed. Thus, the additional logarithmic divergent
term in (3.92) can be removed by adding a second counter term,

S
(2)
ct = − l

8G3
χ log ϵ . (3.93)

Therefore, we arrive at

Sren =
l

16πG3

∫
d2z

√
g(0)

(
ϕR− (∂ϕ)2

)
+

l

8G3
χ , (3.94)

Here, the Euler characteristic term is kept8, and it turns out to be
important for relating the above action to the Zograf-Takhtajan Liou-
ville action [85]. The renormalized action (3.94) is of the Liouville type.
In particular, by (3.9), the Weyl factor ϕ automatically satisfies the
on-shell condition,

−2∇i∇iϕ = R , (3.95)

In the non-compact boundary, the above action (3.94) needs to be
modified by adding the boundary term [87]

Sren =
l

16πG3

∫
d2z

√
g(0)

(
ϕR− (∂ϕ)2

)
+

l

8πG3

∫
du

√
γϕK +

l

8G3
χ , (3.96)

where γ denotes the induced metric on the boundary of the surface,
and K is the associated extrinsic curvature. The derivation of (3.96)
in the AdS3 gravity requires us to include corner terms, such as corner
terms at Jordan curves in the Schottky uniformization. Here I will not
discuss them. To check the effective actions (3.94) and (3.96), in the
following, I will consider two relevant examples.

Example for g = 1. Consider the effective action for genus one so-
lutions (3.79). In this case, the cut-off surface in w-coordinate is a flat
torus with area 4π2Im(τ ). The Liouville field is given by

ϕ =
1
2 log |(aτ + b)/z|2 = −Im

(
iw

aτ + b

)
+ log |aτ + b| . (3.97)

Evaluating the Liouville action (3.94) for ϕ in the w-coordinates yields

Sren = − πl

4G3

Im(τ )

|aτ + b|2
=

πl

4G3
Im
(
cτ + d

aτ + b

)
. (3.98)

For the black hole phase, a = d = 1 and b = c = 0, we get

SBH(τ ) =
πl

4G3
Im(1/τ ) , (3.99)

8 In [84], the Ricci scalar term dropped.
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which coincides with the result in [88]. For the thermal AdS3 phase,
a = d = 0, b = −c = 1, we get

Sthermal(τ ) = − πl

4G3
Im(τ ) . (3.100)

Although both of these two phases contribute to the gravity partition
function (3.69), in the semi-classical limit G3 → 0, only one of them
dominates. The Hawking-page phase transition between them happens
at |τ | = 1 [88], where for |τ | < 1, the black hole phase dominates,
and for |τ | > 1, the thermal AdS3 phase dominates. Another interest-
ing fact is that, from (3.99) and (3.100), the action of the black hole
phase with modular parameter −1/τ is identical to the action of the
thermal AdS3 phase with τ , i.e. SBH(−1/τ ) = Sthermal(τ ). At the
classical level, this is because those two geometries are globally identi-
cal, i.e. both the conformal structure and the projective structure are
the same. The diffeomorphism between those two geometries becomes
wBH = −wthermal/τ on the boundary, which gives rise to a constant
shift for the Liouville field ϕthermal → ϕBH − log |τ |. This constant shift
does not change the action since the torus is flat. At the quantum level,
this feature is manifested by the modular invariance of the torus parti-
tion function, which for the S-transformation τ → −1/τ , is expressed
as Z[τ ] = Z[−1/τ ].

Example for non-compact case. The replica manifold Mn in the
AdS3 gravity is usually discussed in the context of holographic Rényi en-
tropy. Here I consider the simplest case, where the conformal boundary
∂Mn is a n-sheeted branched covering of CP1, with the branched points
located at w = 0 and w = ∞. The boundary metric in w-coordinates
takes the locally flat form,

dŝ2 = dwdw̄ . (3.101)

The universal covering space of ∂Mn is still CP1, which means that the
bulk geometry is H3 but with a deformed boundary. This deformation
is encoded in the coordinate transformation from the replica surface to
its universal covering, given by

z = w
1
n . (3.102)

Expressing the metric in z-coordinates, we get the deformed boundary
metric, dŝ2 = e2ϕ|dz|2, with the Liouville field given by,

ϕ =
n− 1

2 log |z|2 + logn =
1
2 (1 − 1

n
) log |w|2 + logn . (3.103)

The full metric solution can be obtained by inserting the Liouville field
(3.103) into (3.16), but here we do not need it. Using (3.103), the Ricci
curvature in w-coordinates can be worked out as

R = −2∇i∇iϕ = −4π(1 − 1
n
)δ(2)(w) , (3.104)
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which is singular at the branched point w = 0. In fact, by the inver-
sion w → w′ = 1/w, one can show that the curvature is also singular
at w = ∞. Those two singularities need to be removed from the re-
gion of integration, otherwise the renormalized action diverges. To do
so, one introduces two cut-off boundaries circling the branched points,
parametrized as9,

C1 : |w| = ϵ , C2 : |w| = ϵ−1 . (3.105)

The action one needs to evaluate is as follows

Sren = − l

16πG3

∫
ϵ<|w|< 1

ϵ

d2w
√
g(0)(∂ϕ)

2

+
l

8πG3

(∮
C1
rdθϕK(1) +

∮
C2
rdθϕK(2)

)
, (3.106)

where the extrinsic curvature Ka is defined via the out-going normal
vector, i.e. K(a) = ∇in

i
(a), and (r, θ) is the polar coordinates, defined

via w = reiθ, with the angle period θ ∼= θ + 2πn. The Euler charac-
teristic vanishes on this cylinder topology. The extrinsic curvatures are
easily calculated in polar coordinates, given by

K(1) = −ϵ−1 , K(2) = ϵ , (3.107)

Inserting (3.103) and (3.107) into the action (3.106) yields

Sren =
l

4G3

(
n− 1

n

)
log (1/ϵ) , (3.108)

which is indeed the correct result for the action associated with the
Replica manifold. There are other methods to obtain this result, for
instance, in [89], the topological black hole method is introduced and
in [32], a different holographic renormalization procedure is performed,
which also includes the infrared contribution to the renormalized action.

Effective action in different forms. One might notice that the
renormalized actions (3.94) and (3.96) are not in the standard form
of the Liouville action. The standard Liouville action with a reference
metric g̃ takes the form of [87]

SL[ϕ, g̃] = l

16πG3

∫
d2z

√
g̃
(
(∂̃ϕ)2 + ϕR̃+ µe2ϕ

)
+

l

8πG3

∫
du
√
γ̃
(
ϕK̃ + µBe

ϕ
)

, (3.109)

where the Liouville field ϕ is not necessary on-shell. In the following, I
will show that by performing a Weyl transformation on the boundary
metric, one can relate the renormalized action to this standard form.

9 Strictly speaking, those circles are the closed curves winding around the branched
points n times.
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The general idea is as following. We have knonw that a solution in the
form of (3.16) can be obtained via quotient of H3, and defined up to
a finite PHB transformation. Thus, for a given solution in the form of
(3.16), we can choose a reference metric g̃ ∈ [g(0)] such that the curva-
ture of g̃ is a constant. For a non-compact conformal boundary with
genus g = 0, we set R̃ = 0. For a compact surface with g = 1 and
g > 1, we set R̃ = 0 and R̃ = −2, respectively. Moreover, it should be
kept in mind that in z-coordinates, the conformal boundary generically
corresponds to a non-simply connected planar region on CP1. Thus,
boundary terms are always needs to be included.

1. Flat reference metric. We first consider a solution in the form of
(3.16), where the conformal boundary is non-compact with g = 0. We
choose a flat reference metric g̃ as

g(0) = e2ϕg̃ = e2ϕdzdz̄ , (3.110)

which is just the boundary metric of H3. The Ricci curvatures and the
extrinsic curvatures of those two metrics are related as√

g(0)R = −2
√
g̃∇̃2ϕ , √

γK =
√
γ̃K̃ − ñi∂̃iϕ . (3.111)

Inserting (3.111) into (3.96) gives rise to

Sren =
l

16πG3

∫
D
d2z

√
g̃(∂̃ϕ)2 +

l

8πG3

∫
∂D

du
√
γ̃ϕK̃ , (3.112)

which takes the form of (3.109).

2. Reference metric with constant curvature. We consider a solution
in the form of (3.16), where the conformal boundary is compact with
g = 1. We choose the reference metric g̃ via the following ansatz10

g(0) = e2ϕdzdz̄ = e2ϕF g̃ = e2ϕF
dwdw̄

Im(w)2 , (3.113)

so that R̃ = −2. In principle, one can try to solve the Schottky uni-
formization problem to find the developing map, J : w → z. But we do
not need its explicit form here. We denote

ϕ = ϕF + ϕS , ϕS =
1
2 log

∣∣∣∣ w′(z)

Im(w(z))

∣∣∣∣2 (3.114)

In g̃ frame, the Ricci curvature and extrinsic curvature are given by√
g(0)R = −2

√
g̃(1 + ∇̃2ϕF ) , √

γK =
√
γ̃K̃ − ñi∂̃iϕF . (3.115)

Using above relations, one can show the renormalized action decom-
poses into two pieces,

Sren[ϕ] = SL[ϕF , g̃] + Sren[ϕS ] , (3.116)

10 Notice that to compute ϕF for a given metric, one needs to solve the Fuchsian
uniformization problem. But here I will not discuss them.
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with

SL[ϕF , g̃] = l

16πG3

∫
d2w

√
g̃
(
(∂̃ϕF )

2 − 2ϕF

)
,

Sren[ϕS ] =
l

16πG3

∫
d2w

√
g̃
(
R̃ϕS − (∂̃ϕS)

2
)
+

l

8G3
χ . (3.117)

The first action in (3.117) is the standard Liouville action on the com-
pact Riemann surface with constant curvature, and the second one in
(3.117) is again of the form (3.94).

Comments: Recall the well-known fact in two-dimensional CFTs, that
a Weyl transformation on a background metric universally shifts the
CFT partition function as [76]

ZCF T [e
2ϕF g̃] = e−SL[ϕF ,g̃]ZCF T [g̃] . (3.118)

By AdS/CFT duality, we expect that this relation should also hold for
partition functions of gravity solutions which are related via a finite
PBH transformation. Indeed, in the first case, the reference bulk solu-
tion is H3, of which the renormalized action vanishes. This just means
that the partition function of the dual CFT defined on CP1 is normal-
ized. Hence, Sren[ϕ] = SL[ϕ, g̃] is consistent with the relation (3.118).
In the second case, we get the similar result. The action Sren[ϕS ] should
correspond to the semi-classical approximation of the dual CFT parti-
tion function defined on the constant curvature Riemann surface. If we
write Sren[ϕS ] in z-coordinates, and express the Euler characteristic χ
explicitly, then the action becomes

Sren[ϕS ] =
l

16πG3

∫
D
d2z

(
(∂ϕS)

2 + e2ϕS

)
+ Sbdy . (3.119)

where D is the fundamental domain of corresponding Schottky group.
The bulk piece of (3.119) is the same as the Zograf-Takhtajan (ZT)
Liouville action [85], which was conjectured in [74] as the semi-classical
approximation of the partition function of a holographic CFT defined
on a constant curvature Riemann surface.

The renormalized action (3.94) can be viewed as the “localized” ver-
sion of the non-local Polyakov functional action [76],

WP [g] = − c

96π

∫∫
d2zd2y

√
g(0)(z)

√
g(0)(y)R(z)G(z, y)R(y)

= − c

96π

∫
d2z

√
g(0)R

1
∇2R . (3.120)

Here G(z, y) denotes the Green’s function of ∇2, and c is the Brown-
Henneaux central charge, encoded in the asymptotic symmetry of AdS3
gravity [90],

c =
3l

2G3
, (3.121)
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The equivalence between (3.94) and (3.120) may be obtained by con-
sidering ϕ as the functional of the metric via the Liouville equation,
i.e. −2∇2ϕ = R, and then rewriting the renormalized action (3.94).
On the other hand, it is well-known that the Polyakov functional ac-
tion (3.120) is the generating functional for the connected stress tensor
correlation functions, which is universal for any two-dimensional CFTs
since the stress tensor correlators are fixed by the conformal symme-
try and the central charge [76]. From the bottom-up perspective, these
facts suggest a duality between the AdS3 gravity and a CFT defined on
the conformal boundary, with the CFT central charge being identical
to the Brown-Henneaux central charge. As the gravity theory is semi-
classical, G3 → 0, the central charge of the dual CFT must be large,
c → ∞. The top-down construction of the duality was conjectured
in [16], where the type II string theory in an AdS3 × S3 × T 4 back-
ground corresponding to a certain two-dimensional orbifold conformal
field theory on the boundary of AdS3. This conjecture was explicitly
verified by the recent studies of tensionless limit ls = l of the string
theory, where equivalence between the spectrum and correlation func-
tions of the tensionless string and the dual conformal field theory has
been found [91–95]. However, without being embedded in the string
theory, the questions of whether the pure AdS3 gravity by itself is a
consistent quantum gravity and what the holographic dual theory is,
are still elusive. It was recently proposed in [96] that quantization of
the AdS3 gravity might not lead to a single CFT, but an ensemble
of random CFTs. This proposal is the three-dimensional analog of the
duality between the two-dimensional Jackiw-Teitelboim (JT) gravity
and a random matrix model [97]. Although the precise description of
the random CFTs are not given in [96], evidence for the proposal is
provided by the spectral form factor obtained from wormhole partition
functions of the AdS3 gravity, It was found that the spectral form factor
behaves similarly to the one in JT gravity.

3.1.4 Stress tensor and asymptotic symmetry

The stress tensor in AdS3 gravity associated with the vacuum solution
(3.16) is defined via the functional variation of the renormalized action
(3.94) with respect to the boundary metric11,

δSren = −1
2

∫
d2z

√
g(0) Tijδg

ij
(0) . (3.122)

The result is just the Liouville stress tensor [76],

Tij =
c

12π

[
∂iϕ∂jϕ+ ∇i∇jϕ− g(0)ij

(
∇2ϕ+

1
2 (∂ϕ)

2
)]

, (3.123)

11 Although the metric g(0) depends on ϕ explicitly, here one should consider the metric
as an independent variable when evaluating the variation. This procedure can be
understood as fixing the location of the cut-off surface ρ = ϵe2ϕ and allowing the
boundary metric to vary.
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which in terms of components can be expressed as

Tzz = − c

12πT
ϕ, Tz̄z̄ = − c

12π T̄
ϕ , Tzz̄ = − c

12R
ϕ , (3.124)

where (T ϕ, T̄ ϕ,Rϕ) are defined in (3.15). From (3.14), one can rewrite
the stress tensor in a more familiar form [86],

Tij =
c

12π

(
g(2)ij +

1
2g(0)ijR[g(0)]

)
, (3.125)

The equations of motion (3.6) imply the conservation law of the stress
tensor as well as the holographic Weyl anomaly [65],

∇iTij = 0 , T i
i =

c

24πR[g(0)] . (3.126)

which take the same form as the stress tensor conservation and the
trace anomaly in CFTs. This leads to the assumption that a dual CFT
is living on the boundary of AdS3, providing the Gubser-Klebanov-
Polyakov-Witten (GKPW) relations [41, 42],

e−Sren ≈ e−WCFT[g(0)] (3.127)

Strictly speaking, the left-hand side of GKPW relation (3.127) should
include all the saddle point contributions to the gravity partition func-
tion, with distinct projective structures, which I have discussed in
(3.69). However, in the semi-classical limit c → ∞, only one saddle
point dominates since the renormalized action scales as c. This pro-
vides the validity of (3.127). By a functional variation of two side of
(3.127) with respect to the boundary metric, we identify the gravita-
tional stress tensor with the vacuum expectation value of the dual CFT
stress tensor,

Tij = − 2
√
g(0)

δ

δgij
(0)
WCFT[g(0)] = ⟨Tij⟩ . (3.128)

This identification is consistent, since the Liouville stress tensor in
(3.123) is indeed the one-point function of the stress tensor in a CFT
with central charge c and curved metric g(0) [76].

Stress tensor in excited backgrounds. One can also generalize
(3.128) to an excited state background in the dual CFT. For instance,
we consider a set of local primary operators, denoted as X = O1O2 · · · ,
inserted in the path integral of the dual CFT. In such a background,
the expectation value of the CFT stress tensor can be written as

⟨Tij⟩X = TLiouville
ij + tij , (3.129)

where the additional term tij comes from the insertion of X. By confor-
mal Ward identities [98], tij satisfies the following three equations12,

∇atab =
∑

k

∂bδ
(2)(z − zk) , (3.130)

12 The conformal anomaly is encoded in the Liouville part.
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and

ϵabtab = −i
∑

k

skδ
(2)(z − zk), taa = −

∑
k

∆kδ
(2)(z − zk). (3.131)

Here, (∆k, sk) are scaling dimension and spin of Ok, and delta function
is defined as a scalar. Those three equations imply that if we replace
the Liouville stress tensor by ⟨Tij⟩X , then (3.126), which are equivalent
to the vacuum Einstein’s equations (3.6), are violated at the insertions.
Such violation is expected, because usually operators in the dual CFT
are understood as additional matter fields coupled with gravity, which
of course lead to the violation of vacuum Einstein’s equation. However,
within the pure AdS3 gravity, we have another way to interpret such
violations. We can interpret the boundary operators as conical defect
lines in the bulk, which arise from quotient of a smooth AdS3 solution
by certain discrete subgroup of PSL(2,C) containing elliptic elements.
As a simplest example, we consider a H3 background. We insert X =

O(0)O(∞) on CP1, with the conformal dimensions of the primary field
O given by,

h = h̄ =
c

24

(
1 − 1

n2

)
, n ∈ Z+ . (3.132)

Then, the gravitational stress tensor, identical to the CFT stress tensor
by (3.128), is given by13

Tzz = − h

2π
1
z2 , Tz̄z̄ = − h̄

2π
1
z̄2 . (3.133)

Using (3.124) for (3.133) and inserting it into (3.16), one finds that the
bulk metric is deformed from H3 to a Bañados metric

ds2 =
l2

4ρ2dρ
2 +

l2

ρ
|dz̄ − ρLdz|2 , (3.134)

with

L = −12π
c
Tzz =

1
4

(
1 − 1

n2

) 1
z2 =

1
2{z1/n; z} . (3.135)

We can transform this geometry to H3 by a boundary coordinate
transformation and a compensated finite PBH transformation. The
boundary coordinate transformation w = z1/n is read out from the
Schwarzian derivative in (3.135), and it tells us that (3.134) is a Zn

quotient of H3. This confirms the duality between X with a Zn conical
defect line in the bulk. In particular, the conformal weight h is encoded
in the monodromy property of the covering map w = z1/n. For a point
z going once around the origin, z → e2πiz, it is transformed via an
elliptic PSL(2,C) transformation on the covering space,

w = z1/n → w′ = (e2πiz)1/n =

eiπ/n 0
0 e−iπ/n

 ◦w . (3.136)

13 Here I adopt the usual convention in CFT, i.e., T = −2πTzz and T̄ = −2πTz̄z̄ .
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The above simple example reveals the close relation between geome-
tries and operators in the AdS3/CFT2 correspondence, which essen-
tially arise from the topological nature of AdS3 gravity. We will use
this relation frequently when discussing the holographic entanglement
entropy. As an additional remark, for operators with conformal dimen-
sions h ∼ O(c), such as (3.132), we call them heavy operators, since the
insertion of them will lead to a large deformation of the background ge-
ometry in the bulk. On the other hand, for operators with h ∼ O(c0),
we call them light operators. This is because their backreaction to a
background geometry is of order O(1/c), which can be neglect in the
semi-classical limit c → ∞.

Asymptotic symmetry in AdS3 gravity. In the bottom-up ap-
proach to AdS/CFT duality, the gravity counterpart of global sym-
metry in the dual CFT is called the asymptotic symmetry. In general,
asymptotic symmetry is defined as the group of gauge transformations
on bulk gauge fields, which preserve a given set of boundary conditions
and leave the global charges invariant. Infinitesimal asymptotic symme-
try transformations form an algebra, called the asymptotic symmetry
algebra (ASG), via the Possion bracket of the bulk gravity theory, which
is dual to the Dirac bracket of the boundary CFT in the semi-classical
limit. The set of all bulk configurations fulfilling the given boundary
conditions and carrying same global charges defines a reduced phase
space of the gravity theory. Asymptotic symmetry transformations gen-
erate transformations among bulk configurations in a same reduced
phase space, in the same way as how global symmetry transformations
in the dual CFT generate transformations among states in a same rep-
resentation.

In pure AdS3 gravity, the bulk field is just the metric, and bulk
gauge transformations are diffeomorphisms. The global charges (mass
and angular momentum) of a bulk configuration are related to the
conformal family (h, h̄) of the dual CFT state as

M ∼ ∆ =
h+ h̄

2 , J ∼ s =
h− h̄

2 . (3.137)

Those charges are topological information, since they are encoded in the
monodromy property of the underlying covering map, as I showed in
the example (3.136). A boundary condition commonly used in the liter-
ature for deriving ASG of AdS3 gravity is the Brown-Henneaux bound-
ary condition [90]. It requires that infinitesimal asymptotic symmetry
transformations need to keep the following Bañados metric invariant
up to order of 1/ρ,

ds2 =
l2

4ρ2dρ
2 +

l2

ρ
|dz|2 − l2(Ldz2 + L̄dz̄2) + O(ρ) . (3.138)

In other words, the Brown-Henneaux boundary condition requires

δGρρ = δGρi = 0 , δG
(0)
ij = 0 , (3.139)
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but allows the stress tensors L and L̄ (up to a normalization) to vary. It
can be worked out that an infinitesimal diffeomorphism fulfilling such
conditions is a combination of a PBH transformation and a infinitesimal
boundary diffeomorphism,

ρ → ρ(1 + 2σ) , z → z − ρ∂z̄σ+ ϵz , z̄ → z̄ − ρ∂zσ+ ϵz̄. (3.140)

Here σ corresponds to PBH and ϵz corresponds to the boundary diffeo-
morphism. These two infinitesimal parameters need to obey the follow-
ing relations

2σ = ∂zϵ
z + ∂z̄ϵ

z̄ , ϵz = ϵ(z) , ϵz̄ = ϵ̄(z̄) . (3.141)

One can replace the old coordinates in the metric by the new coordi-
nates (3.140), and then expand the metric in the old coordinates again
up to the first order of ϵ. The result reads

ds2 =
l2

4ρ2dρ
2 +

l2

ρ

(
|dz|2 + ∂z̄ϵ

zdz̄2 + ∂zϵ
z̄dz2

)
− l2

(
L′dz2 + L̄′dz̄2

)
+ O(ρ, ϵ2) , (3.142)

where L′ (similar for L̄′) reads

L′ = L − 2L∂zϵ
z − ϵz∂zL − 1

2∂
3
z ϵ

z . (3.143)

Notice that we keep ∂zϵ
z̄ and ∂z̄ϵ

z in (3.142) since they can not vanish
on the whole boundary. We will use this to derive the algebra later.
The normalized stress tensor T is related to L as

T = −2πTzz =
c

6L . (3.144)

Hence we have

δT = −2T∂zϵ
z − ϵz∂zT − c

12∂
3
z ϵ

z , (3.145)

which is identical to the variation law of CFT stress tensor under an
infinitesimal conformal transformation. In the usual approach [90], one
proceeds by performing the canonical analysis of AdS3 gravity and
rewriting δT as a Possion bracket, and the result will give rise to ASG.
Here, I will not present this procedure, but derive ASG from the CFT
perspective by assuming the validity of AdS3/CFT2 duality.

We first notice that (3.140) acts on the boundary metric as a con-
formal transformation. The PBH transformation shifts the boundary
metric by a Weyl factor, which is canceled by a compensated boundary
diffeomorphism. The non-trivial terms in δg−1

(0) read

δgzz
(0) = −4∂z̄ϵ

z , δgz̄z̄
(0) = −4∂zϵ

z̄ , (3.146)
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which vanish except at poles of ϵ. Since two-dimensional CFT defined
on a flat background satisfies the local scaling invariance. This means
that the path integral under conformal transformation is invariant,

0 =
δ
∫

DΦ TXe−S[Φ]

Z0
= ⟨δTX⟩ + ⟨TδX⟩ − ⟨TXδS⟩ , (3.147)

with Z0 denoting the vacuum partition function. Followed from (3.122)
and (3.146), the variation of the CFT action reads

δS =
1
π

∫
d2y

(
∂ȳϵ

yT (y) + ∂yϵ
ȳT̄ (ȳ)

)
. (3.148)

which allows us to identify

⟨δT (z)⟩X =
1
π

∫
d2y ∂ȳϵ

y⟨T (z)T (y)⟩X . (3.149)

A convenient way to proceed is to choose ϵy = 1
y−w . Then, using the

identity ∂y
1

y−w = πδ(2)(y−w), we write the above equation as

⟨δT (z)⟩X = ⟨T (w)T (z)⟩X . (3.150)

By the GKPW relation, we identify T (z) = ⟨T (z)⟩X and δT (z) =

⟨δT (z)⟩X . Then, inserting (3.145) into the above equation and using
ϵz = 1

z−w , we obtain the operator product expansion (OPE) of stress
tensors,

T (w)T (z) ∼ c/2
(w− z)4 +

2T (z)
(w− z)2 +

∂zT (z)

w− z
. (3.151)

Proceeding with the modes expansion

T (z) =
∞∑

n=−∞
Lnz

−n−2 , (3.152)

one arrives at the Virasoro algebra in the dual CFT,

[Ln,Lm] = (n−m)Lm+n +
c

12 (n
3 − n)δn+m,0 . (3.153)

Finally, I would like to mention that the Virasoro symmetry is not
the unique asymptotic symmetry in AdS3 gravity. Modifications of the
Brown-Henneaux boundary condition (3.139), will lead to the change
of the asymptotic symmetry algebra from Virasoro to something else,
such as a warped conformal algebra [99], a centerless warped conformal
algebra [100] or the Heisenberg algebra [101]. There is a comprehensive
discussion for the most general boundary conditions in AdS3 gravity in
[102], where the asymptotic symmetry algebra appears to be the affine
sl(2)k Kac-Moody algebra, and the Virasoro algebra can be realized in
this system by considering the twisted Sugawara construction for the
Kac-Moody currents.
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3.2 rényi and entanglement entropy

In this section, I will review the Rényi and entanglement entropy in
the AdS3/CFT2 context, based on the discussion in Section 3.1. When
discussing the entanglement entropy in a general two-dimensional CFT,
we usually classify the entangling region as a single interval or a set of
disjoint intervals. This is because the shape of a non-selfintersecting
curve is unimportant due to the infinite conformal symmetries in two
dimensions. Apart from the universal behavior mentioned in (2.68), in
generic situations, calculating the Rényi and entanglement entropy in
a two-dimensional CFT requires additional information about the the-
ory, such as the full spectrum and the OPE coefficients. Those kinds
of information are not readily accessible in the bottom-up AdS3/CFT2
models. Fortunately, due to the semi-classical limit c → ∞ of a holo-
graphic CFT2, this required information becomes unnecessary, and as
a consequence, the Rényi and entanglement entropy are still under the
control of the conformal symmetry and other properties such as mon-
odromies and vacuum conformal block dominance. In the following, I
will explain the details of this topic. The explanations will be given
from both the holographic and CFT perspectives, which proceed in
fact parallel to each other to a large extent. The main references of this
review are [103] from the holographical point of view, and [104, 105]
from the CFT point of view.

3.2.1 Holographic perspective

In pure AdS3 gravity, the feature that any AdS3 space can be obtained
from a quotient of the Poincaré AdS3 allows one to solve the holo-
graphic Rényi and entanglement entropy more rigorously, without us-
ing the cosmic string description proposed in [58, 106]. The problem of
solving Rényi entropy on the gravity side is essentially to find the exact
AdS3 solutions with a given replica surface as its conformal boundary,
or in other words, to find the Schottky uniformizations of the replica
surface. From Section 3.1, we learned that Schottky uniformizations
of a given compact Riemann surface with nontrivial topology are not
unique. Each Schottky uniformization defines a projective structure on
the Riemann surface, which is subordinated to the complex structure
and contains the information about the global structure of the corre-
sponding AdS3 phase. As I explained in (3.69), the gravity partition
function includes all saddle contributions with distinct projective struc-
tures, which however is dominated by the contribution from a single
AdS3 phase in the semi-classical limit c → ∞. This statement also holds
for the Rényi entropy,

Sn =
1

1 − n
logZn ≈ 1

n− 1min
{σ}

{Sσ
ren} . (3.154)
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Analogous to the genus one case discussed in Section 3.1.3, the Rényi
and entanglement entropy can also exhibit phase transitions. This is
because the dominant AdS3 phase is determined by the complex struc-
ture of the boundary replica surface, which relies on the positions of
endpoints of entangling intervals. Thus, shifting the positions of those
endpoints may lead to the change of the dominant phase.

In the following, I will introduce the accessory parameter approach to
uniformizations of replica surfaces, which in this thesis are considered as
different branched coverings of CP1. Then, I will explain the topological
structures of such compact surfaces, such as the genus and the funda-
mental group. With a fixed canonical basis of the fundamental group,
the monodromy conditions (3.66) required by Schottky uniformization
will be used to solve the accessory parameters perturbatively, which
implicitly determine the developing map associated with the Schot-
tky uniformization. For branched coverings of a torus, they are related
to the holographic entanglement entropy in a black hole background,
which was discussed in [107].

Setup of problem. Let me first introduce the setup of the problem.
We focus on the Rényi and entanglement entropy in the dual CFT de-
fined on CP1, coordinated by w. In general, we can choose N disjoint
intervals on the real axis of CP1 as the entangling region, denoted as,

A = [w1,w2] ∪ [w3,w4] ∪ · · · ∪ [w2N−1,wzN ] , (3.155)

with w1 < w2 < · · · < w2N . When we use the replica trick for the Rényi
entropy Sn, the corresponding CFT partition function is defined on a
new Riemann surface, called the replica surface. The replica surface,
denoted as Rn,N , is a n-sheeted branched covering of CP1, with 2N
branched points being the endpoints wi’s of the entangling region A.
The relation between Rn,N and CP1 is given via a projection map,

π : Rn,N → CP1 = Rn,N /Zn , (3.156)

where Zn is a group of automorphisms of Rn,N . We denote the gener-
ator of Zn as η̂, which transforms a point w on one sheet of Rn,N to
another point w on the next sheet. Furthermore, since Rn,N is compact
due to the compactness of CP1, it admits Schottky uniformizations,

p : Ω → Rn,N = Ω/Γ , (3.157)

where Ω is an connected open subset of CP1, coordinated by z, and Γ is
a Schottky group, which we do not know at present. The automorphism
η̂ of Rn,N can be lifted to an automorphism η of Ω, denoted as p ◦ η =

η̂ ◦ p, with η acting on Ω as a fractional transformation14. Then, the
composition J−1 = π ◦ p is a surjective map,

J−1 : Ω → CP1 = Ω/⟨Γ, η⟩ , J−1 : z → w , (3.158)

14 In this case, the Schottky uniformization is called an extended Schottky uniformiza-
tion. The group ⟨Γ, η⟩ is called the extended Schottky group, and the Schottky group
Γ is a normal subgroup of it. See [108] for detailed explanations.
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which is locally biholomorphic and needs to satisfy the monodromy
conditions (3.66). In addition, near branched points, z(w) must obey
the following short distance behaviors,

z(w) − z(wi) ∼ (w−wi)
1/n . (3.159)

This is because the n-sheeted branched structure of a neighborhood of
wi is uniformized in z-coordinates. The Riemannian structure on Rn,N
is inherited from the original CP1. This means that in w-coordinates
the metric on Rn,N takes a flat form

dŝ2 = |dw|2 . (3.160)

However, this does not means Rn,N is a flat surface. When we transform
to z-coordinates, the metric becomes

dŝ2 = e2ϕ|dz|2 , ϕ = −1
2 log |dz/dw|2 . (3.161)

Using (3.9) as well as the short distance behavior (3.159), one finds
that the curvature on Rn,N is delta-function-singular at each branched
point,

√
g0R ∼ Rϕ ∼ (1 − n)δ(2)(z − z(wi)) , z → z(wi) . (3.162)

Our main task is to find the map z(w) which obeys (3.66) and (3.159).
The former conditions depend on the choice of the canonical basis of
π1(Rn,N ). Different basis may lead to distinct solutions to the map.
Assuming that z(w) is worked out in a chosen basis, one can obtain
the bulk metric by inserting the Liouville field ϕ(z, z̄) into (3.16). In
fact, since e2ϕ = |dw/dz|2, we can perform a boundary coordinate
transformation z → w to transform the bulk metric into the Bañados
form (3.17), which is uniquely characterized by the stress tensor

T (w) =
c

6L =
c

12{z;w} . (3.163)

In the case of N = 1, since the topology of Rn,1 is still a Riemann
sphere for n ∈ Z+, it is easy to work out the map z(w), given by

z =

(
w−w1
w2 −w

) 1
n

, (3.164)

which is an analog of (3.102). The calculation for the renormalized
action is analogous to the example in (3.108), and the resulting Rényi
entropy reads

Sn =
c

6

(
1 + 1

n

)
log

∣∣∣w1 −w2
ϵ

∣∣∣ . (3.165)

However, for N ≥ 2, there is no obvious way to construct the map z(w).
Therefore, in the following discussion, I will introduce the accessory pa-
rameter approach to the uniformization problem.
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Accessory parameter approach. Accessory parameter approach is
very useful in solving the Schottky uniformizations of branched cover-
ings of CP1. The idea of it goes as follows. We insert the required short
distance behavior (3.159) of z(w) into the stress tensor (3.163). The
result shows that at each branched point wi, the stress tensor has a
second order pole,

T (w) ∼ h

(w−wi)2 + O((w−wi)
−1) , w → wi , (3.166)

with the weight h being determined by the replica index n,

h =
c

24

(
1 − 1

n2

)
. (3.167)

This motivates the following ansatz for T (w), given by

T (w) =
2N∑
i=1

(
h

(w−wi)2 +
pi

w−wi

)
. (3.168)

where pi’s are called the accessory parameters. They are undetermined
at present. To confirm the validity of this ansatz, we need to show the
following two facts. First, T (w) as a function of w is always single-
valued, so that it does not contains any fractional power of (w −wi).
Second, any non-negative power of (w −wi) is absent in T (w). Then,
those two facts will fix the form of T (w) as (3.168).

The first one is true due to the Zn symmetry of Rn,N . If T (w) ∼
{z;w} is single-valued on Rn,N , then we should have

{η ◦ z; η̂ ◦w} !
= {z;w} . (3.169)

By the symmetry η̂ ◦w = w, the above equation becomes

{η ◦ z;w} = {η ◦ z; z}
(
dz

dw

)2
+ {z;w} !

= {z;w} , (3.170)

which is indeed true, since the Schwarzian derivative vanishes for the
fractional transformation, {η ◦ z; z} = 0. For the second one, we as-
sume that there is no branched point located at w = ∞. This im-
plies that under a inversion w → w̃ = 1/w, the stress tensor T (w̃) =
(dw̃/dw)−2T (w) = w4T (w) is finite at w̃ = 0. In other words, when ap-
proaching to infinity, the stress tensor T (w) needs to satisfy the fall-off
condition,

T (w) ∼ 1
w4 + O(w−5) , w → ∞ . (3.171)

Thus, non-negative powers of (w−wi) can not exist in the stress tensor.
In fact, (3.171) not only excludes the non-negative powers, but also
imposes three constraints on the accessory parameters, given by

2N∑
i

pi = 0 ,
2N∑
i

(h+ piwi) = 0 ,
2N∑
i=1

(2hwi + piw
2
i ) = 0 . (3.172)
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These are the three coefficients associated with w−1, w−2 and w−3

respectively in the 1/w expansion of the stress tensor. In the dual
CFT, (3.172) are just the three global conformal Ward identities [98].

Under the ansatz (3.168) for the stress tensor, we can in principle
solve Schottky uniformizations of Rn,N by the following two steps. First,
we solve the differential equation T (w) = c

12{z;w} for the map z(w),
which depends on the accessory parameters pi’s. Second, we choose a
canonical basis of π1(Rn,N ) and impose the corresponding monodromy
conditions (3.66) on z(w), which will fix the values of pi’s. After doing
these, one may try to compute the renormalized action (3.96) associated
with the resulting Bañados geometry. However, there is an alternative
way to get the result. It turns out that the variations of the renormalized
action of a Bañados geometry with respect to the positions of branched
points precisely give rise to the accessory parameters [85, 103, 109, 110],

∂Sσ
ren

∂wi
= −npi . (3.173)

An analogous relation holds for the anti-holomorphic part. While the
above formula is quite nontrivial from gravity perspective, on the CFT
side, it is just the consequence of the conformal Ward identity. There-
fore, the accessory parameter approach provides a very efficient way to
compute the Rényi and entanglement entropy,

Sn = min
{σ}

{Sσ
n} , ∂Sσ

n

∂wi
=

n

1 − n
pi , (3.174)

and

SEE = min
{σ}

{Sσ
EE} , ∂Sσ

EE

∂wi
= −∂npi|n=1 . (3.175)

In fact, since Sσ
n is directly determined by the accessory parameters,

but not by the map z(w), the two steps described in above can be
further simplified by introducing the Wilson loop formalism, which I
will discuss in below. The Wilson loop formalism allows us to express a
monodromy matrix in terms of a path-ordered exponential of a sl(2, C)

matrix, which only depends on T (w). By imposing the monodromy
conditions (3.66) required by Schottky uniformization on monodromy
matrices, we are able to determine the accessory parameters by calcu-
lating the Wilson loops.

Monodromy and Wilson loop. For the differential equation T (w) =
c

12{z;w}, a generic solution z(w) takes the following form,

z(w) =
φ1(w)

φ2(w)
, (3.176)

where φ1 and φ2 are two linearly independent solutions to the Fuchsian
differential equation [111],

φ′′ +
6
c
T (w)φ = 0 . (3.177)
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In practice, solving Fuchsian differential equation is a very hard prob-
lem, except for the cases of N = n = 2 [104]. Essentially, this is because
R2,2 is topologically a torus, and one can use the Schwarz-Christoffel
mapping to construct the solutions. For other cases, the genus of Rn,N
becomes higher than one, and exact solutions to Fuchsian differential
equations are unknown. Nevertheless, I assume that φ1,2 have been
worked out, since the following discussion does not rely on the explicit
forms of them.

In general, the solutions φ1,2(w) are multi-valued functions, which
can be checked by taking the limit w → wi for the Fuchsian differential
equation. This implies the nontrivial monodromy properties of φ1,2.
Going around an arbitrary closed loop γ in w-coordinates, the functions
φ1,2 transform in the linear space spanned by {φ1,φ2}, which leads to
a fractional transformation on z,φ1

φ2

 → Mγ

φ1

φ2

 , z → Mγ ◦ z , Mγ ∈ PSL(2,C) . (3.178)

To incorporate the monodromy properties of φ1,2, we can rewrite the
Fuchsian differential equation as a first-order differential equation,

∂wW +Waw = 0 , (3.179)

by defining the Wronskian matrix W and a connection a = awdw,

W =

φ′
1 φ1

φ′
2 φ2

 , aw =

 0 −1
6
cT (w) 0

 . (3.180)

Notice that the Wronskian det(W ) is a constant, because there is no
first derivative term in the Fuchsian differential equation. We can set
det(W ) = 1 since an overall rescaling of φ1 and φ2 does not change
the map z(w). The solution to W (w) can be formally written as

W (w) = u0Pe−
∫ w

w0
a , (3.181)

where w0 is an arbitrary base point and u0 = W (w0) is a constant
PSL(2, C) matrix. P denotes the path-ordering. Under the transforma-
tion (3.178), the Wronskian matrix transforms as W → MγW . Thus,
using (3.181), we can write the monodromy matrix as a Wilson loop,

Mγ = u0W(γ)u−1
0 , W(γ) = Pe−

∮
γ

a . (3.182)

As I will explain later, elements of π1(Rn,N ) correspond to closed loops
in w-coordinates, which encircle even number of branched points. This
means that for a given basis of π1(Rn,N ) with the base point w0, de-
noted as

π1(Rn,N ) =

〈
[a1], [b1], · · · , [ag], [bg] :

g∏
i=1

[ai, bi] = 1

〉
, (3.183)
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where g = (N − 1)(n− 1) is the genus of Rn,N , the actions Ai and
Bi transform an arbitrary base point w0 back to the its original po-
sition along the loops ai and bi. This allows us to express (3.66) via
monodromy matrices introduced in above. The first ones in (3.66) reads

z(Ai ◦w0) =Mai ◦ z(w0)
!
= z(w0) , i = 1, · · · , g . (3.184)

which by (3.182) impose the triviality conditions on Wilson loops

Mai = W(ai) = 1 , i = 1, · · · , g . (3.185)

These conditions will enable us to solve pi’s. The second ones in (3.66)
read

z(Bi ◦w0) =Mbi
◦ z(w0) , ti =Mbi

, (3.186)

which can be calculated after we solve pi’s. However, as we are only
interested in the Rényi and entanglement entropy, it is not necessary
to calculate them.

Basis of fundamental group. To represent basis of π1(Rn,N ), let
me first define {γM |M = 1, · · · , 2N} as a set of simple closed curves
on CP1 with the same base point w0,

γM : [0, 1] → CP1 , γM (0) = γM (1) = w0 , (3.187)

each of which goes once around the branched point wM in the counter-
clockwise direction. Under the inverse map π−1 : CP1 → Rn,N , those
closed curves are lifted to open curves on Rn,N , and endpoints of each
curves are located at two adjacent sheets. More clearly, suppose the
base point γM (0) is on the k-th sheet of Rn,N . Then, for odd M the
point γM (1) is on the (k+ 1)-th sheet, while for even M it is on (k− 1)-
th sheet15. The endpoints of the product γn

M are identical, hence it is
a loop on Rn,N , which however is a trivial element in the fundamental
group, [γn

M ] = 1 ∈ π1(Rn,N ). A nontrivial element of the fundamen-
tal group is generically constructed by products of distinct γM ’s, such
that endpoints of the curve are identical, for instance, γ2γ1 and γ−1

3 γ1.
A choice of canonical basis of the fundamental group can be given as
following. We denote a subset of a-loops and b-loops as

a(0)m = γ2mγ2m−1 , b(0)m = γ2m+1γ2m , (3.188)

with m = 1, · · · ,N − 1. Each of those loops encircles two adjacent
branched points. Notice that we did not include a(0)N = γ2Nγ2N−1 in
(3.188), because a(0)N · · · a(0)1 is homotopically equivalent to a loop en-
circling all branched points, which hence is trivial in the fundamental
group. Therefore, [a(0)N ] is identical to the inverse of [a(0)N−1 · · · a(0)1 ]. A

15 The (n + 1)-th sheet is identical to the first sheet.
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Similar statement holds for excluding b(0)N = γ2Nγ1 in (3.188). The re-
maining generators can be constructed by using the n-sheeted branched
structure of Rn,N , given by

a(k)m = γ−k
1 amγ

k
1 , b(k)m = γ−k

1 bmγ
k
1 , (3.189)

with k = 1, · · · ,n − 2. (3.188) and (3.189) together include 2(N −
1)(n− 1) generators and provide a basis of π1(Rn,N ). Different choices
of the basis can be obtained by changing (3.188). For instance, given
a partition of 2N branched into N pairs, one can associate each pair
with an a-loop, which encircles the two branched points in the pair.
A b-loop can be obtained by associating two branched points selected
from two distinct pairs. For more detailed discussion, see [103].

Now, let me discuss the monodromies associated with a and b-loops
defined in (3.188) and (3.189). For the a-loops, the triviality conditions
(3.185) read

M (a(k)m ) = u0W(a(k)m )u−1
0 = 1 , (3.190)

which under the decomposition of the Wilson loop, yields

W(γ2m−1)W(γ2m) = 1 . (3.191)

For the b-loops, the monodromy matrices, which are generators of the
Schottky group Γ, are given by

M(b(k)m ) = ηkM(b(0)m )η−k , 0 ≤ k ≤ n− 2, 0 < m < N , (3.192)

where η as the generator of Zn is associated with γ1, defined as

η = u0W(γ1)u
−1
0 , ηn = 1 . (3.193)

Notice that for 0 ≤ k < n− 2, we have ηM(b
(k)
m ) = M(b

(k+1)
m )η. A

special case is that for k = n− 2 we have ηM(b
(n−2)
m ) = M(b

(n−1)
m )η,

where b(n−1)
m is not the generator of the fundamental group. However,

since the homotopy class is trivial16, [b(0)m · · · b(n−1)
m ] = 1, the following

identity holds for the monodromy matrices,

M(b(0)m ) · · ·M(b(n−2)
m ) =M(b(n−1)

m )−1 . (3.194)

Combining the above results, one can conclude that ηΓ = Γη. Hence,
the Schottky group is a normal subgroup of the extended Schottky
group, which fulfills the requirement for an extended Schottky uni-
formization [108],

Γ = ⟨M (b(k)m )|0 ≤ k ≤ n− 2, 0 < m < N⟩ ◁ ⟨Γ, η⟩ . (3.195)

16 A convenient way to see this is to continuously deform b
(k)
m to a new loop which goes

along the branched cut [w2m, w2m+1] on (k + 1)-th sheet, and then turn back on the
(k + 2)-th sheet. Under such a deformation, it is clear that the path b

(0)
m · · · b

(n−1)
m

is equivalent a point.
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Since the Rényi and entanglement entropy are determined by pi’s, I
will only focus on a-loops and solving the triviality conditions for pi’s
in the following discussion.

Perturbative calculation of accessory parameters. In principle,
the Wilson loop can be calculated by expanding the path-ordered ex-
ponential,

W(γ) = 1 +
∞∑

j=1

∮
dx1

∫ x1

w0
dx2 · · ·

∫ xj−1

w0
dxj axj · · · ax1 , (3.196)

where the connection a = axjdxj is defined in (3.180). Components of
W(γ) obtained in this way are polynomials of pi’s of infinite order. In
practice, it is difficult to evaluate the expansions and convert the poly-
nomials of pi’s into compact forms. This difficulty in solving pi’s via
Wilson loop is the same as the one in solving the Fuchsian differential
equation. However, as we are mostly interested in the replica limit17

n → 1, in which the accessory parameters should scale as pi ∼ O(δn),
with δn = (n− 1), we can perturbatively expand the first-order differ-
ential equation (3.179) in δn, and solve them to the first order. More
precisely, we assume

pi =
c

12δnρi + O(δ2
n) , n → 1 , (3.197)

then the stress tensor (3.168) reads

T (w) =
c

12δnt(w) + O(δ2
n) , (3.198)

with

t(w) =
2N∑
i=1

( 1
(w−wi)2 +

ρi

w−wi

)
. (3.199)

We can perform decompositions for W (w) and aw in (3.180) as,

W (w) = W1(w)W0(w) , aw = a0 + δna1 + O(δ2
n) , (3.200)

with

a0 =

0 −1
0 0

 , a1 =

 0 0
t(w)/2 0

 , (3.201)

where W0 ∼ O(1) and W1 = u0 + O(δn). Then, (3.179) up to first
order of δn becomes

∂wW0 + a0W0 = 0 , ∂wW1 + δnW1W0a1W
−1
0 ≈ 0 . (3.202)

17 Seriously speaking, this limit does not make sense from the geometric point of view,
since for non-integer n, the replica surface is ill-defined.
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The solutions to W0 and W1 are given by

W0(w) =

1 w−w0

0 1

 , W1(w) ≈ u0Pe−δn

∫ w

w0
dxã1(x), (3.203)

with ã1 = W0a1W
−1
0 , where W0 serves as a background and has trivial

monodromy for any loops. These allow us to approximate the Wilson
loop W(γ) up to the first order of δn as

W(γ) ≈ Pe−δn

∮
γ

dwã1(w) ≈ 1 − δn

∮
γ
dwã1(w) . (3.204)

Applying the above formula to the conditions (3.191) on a-loops, one
can find that

ρ2m−1 = −ρ2m = − 2
w2m−1 −w2m

, m = 1, · · · ,N − 1 . (3.205)

The remaining two parameters ρ2N−1 and ρ2N can be solved by using
the constraints (global conformal Ward identities) (3.172), which in
fact are equivalent to

W(γ1) · · · W(γ2N ) = 1 =⇒ W(γ2N−1)W(γ2N ) = 1 . (3.206)

Therefore, the results of ρ2N−1 and ρ2N are still in the form of (3.205).

Holographic entanglement entropy. By (3.175), one finds that Sσ
EE

associated with the basis (3.188) and (3.189), labeled by the projective
structure σ, is given by

Sσ
EE =

c

3

N∑
m=1

log
(
w2m −w2m−1

ϵ

)
, (3.207)

where a short distance cutoff ϵ is introduced in order to make the
result dimensionless. For other choices of the basis of π1(Rn,N ), the
results take the similar form as (3.207). The true entanglement entropy

w1 w2 w3 w4w1 w2 w3 w4

ρ

Figure 3: Entanglement phases in N = 2 case.

is given by the minimal value of them. As an example, consider the
case of N = 2. We focus on the following two different partitions of the
branched points, i.e. {(w1,w2), (w3,w4)} and {(w1,w4), (w2,w3)}. The
associated projective structures are labeled by σ1 and σ2, respectively.
Then we have

Sσ1
EE =

c

3 log
(
w12w34
ϵ2

)
, Sσ2

EE =
c

3 log
(
w14w23
ϵ2

)
. (3.208)
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which correspond two different geodesic phases in the AdS3 space, as
shown in Figure 3. The difference between two phase is given by

∆S =
c

3 log
(

x

1 − x

)
, x =

w12w34
w13w24

, (3.209)

where we denote wij = wi −wj . Since the true entanglement entropy
is the minimal value of them, transition between these two phases hap-
pens when ∆S = 0 with the cross ratio x = 1

2 . This entanglement
transition is similar to the Hawking-Page phase transition between the
thermal AdS3 phase and the black hole phase, which has been discussed
in Section 3.1.3.

3.2.2 CFT perspective: replica & twist pictures

There are two different approaches to calculating the Rényi and entan-
glement entropy in the dual CFT. The first approach is to work in the
replica picture and compute the partition function of CFT defined on
the replica surface Rn,N . And the second approach is to work in the
twist picture and compute the correlation function of twist fields in the
orbifold CFT defined on CP1 [112, 113]. In the following, I will review
both approaches.

Replica picture

As we mentioned before, the replica surface Rn,N is a genus g =

(N − 1)(n− 1) compact Riemann surface with delta-function singular
curvature. To compute the CFT partition function on Rn,N , it is con-
venient to uniformize Rn,N on a constant curvature Riemann surface,
which is always possible due to the Riemann uniformization theorem.
This uniformization is distinct with the extended Schottky uniformiza-
tion of Rn,N , and we formally represent it as

(∆, ΓF ,πF : ∆ → Rn,N = ∆/ΓF ) . (3.210)

Here ∆ is the universal covering of Rn,N , and it is simply connected.
ΓF is the covering group, which is isomorphic to π1(Rn,N ). πF is a
surjective and locally holomorphic map,

πF : w̃ → w(w̃) , (3.211)

and automorphic with respect to the covering group ΓF ,

w(γ ◦ w̃) = w(w̃), ∀γ ∈ ΓF . (3.212)

The universal covering space ∆ depends on the genus of Rn,N . For
n = N = 2, we have g = 1 and ∆ is the complex plane C. For other
cases with n ≥ 2, we have g > 1 and ∆ is the hyperbolic half-plane
H2. In practice, finding such uniformizations of replica surfaces, or the
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map w(w̃), is a very hard problem, except for the case of N = n = 2.
Therefore, I will just briefly explain the idea in below, and assume
that w(w̃) has been worked out in the later discussion. Essentially, this
problem is similar to finding the Schottky uniformization. One needs
to consider the Fuchsian differential equation,

φ′′ +
6
c
TFφ = 0 , w̃(w) =

φ1(w)

φ2(w)
, (3.213)

with a new projective connection TF = c
12{w̃;w} on Rn,N , given via

the ansatz

TF =
2N∑
i=1

(
h

(w−wi)2 +
pF

i

w−wi

)
, (3.214)

and find the new accessory parameters pF
i , such that the resulting mon-

odromy group of w̃(w), identified as the covering group ΓF , is isomor-
phic to the fundamental group π1(Rn,N ).

Assuming that the map w̃(w) has been worked out, we can express
the metric g(0) = dŝ2 = |dw|2 on Rn,N in w̃-coordinates as

• g = 1, dŝ2 = e2ϕF ds2 = e2ϕF |dw̃|2 ,

• g ≥ 2, dŝ2 = e2ϕF ds2 = e2ϕF |dw̃|2
Im(w̃)2 ,

where g̃ = ds2 is the metric on the universal covering space ∆. Since
g(0) and gF are related by a Weyl transformation, the CFT partition
functions defined on those two backgrounds are related by a Liouville
action of ϕF on g̃ background,

Zn = Z[g(0)] = e−SL[ϕF ,g̃]Z[g̃] . (3.215)

Moreover, due to the singular behavior of TF at the branched points
wi, the Weyl factor ϕF is also singular, and as a consequence, the
Liouville action SL[ϕF , g̃] needs to be regularized. This can be done
by introducing cutoff circles around the branched points, analogous to
what we did in (3.106). The short distance cutoff term in Rényi and
entanglement entropy essentially comes from the this Liouville action.

While the Liouville action is completely determined by the geometry
of Rn,N , calculating the partition function Z[g̃] requires us to know
more explicit data of the dual CFT. For instance, for g = 1 we need to
know the spectrum, and for g > 1 we need to know both of the spec-
trum and OPE coefficients. Those data are not readily accessible in the
bottom-up AdS3/CFT2. However, being a holographic CFT, the large
c limit as well as the sparseness condition on the density of states are
usually required. These two requirements lead to the consequence that
the CFT partition function is dominated by the contribution from a
particular vacuum channel, or more generally, correlation functions in
a holographic CFT are dominated by certain vacuum conformal blocks
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[105, 114]. This feature allows us to approximately compute the par-
tition function of a holographic CFT by only knowing the geometric
data of the underlying Riemann surface.

Example of N = n = 2. To make the above statements more clear,
here I consider the example of N = n = 2. The replica surface R2,2
is topologically a torus, with its fundamental group isomorphic to the
Abliean group Z2. It can be uniformized on C via the projection map,
i.e. πF : C → R2,2 = C/Z2, where elements of Z2 act on C via trans-
lations. This means

w(w̃+ 2πa+ 2πbτ ) = w(w̃) , ∀a, b ∈ Z . (3.216)

Thus, w(w̃) is a double periodic function on C. To find the inverse map
w̃(w) as well as the modular parameter τ of R2,2, instead of solving
Fuchsian differential equation, it is more convenient to use the auto-
morphic one-form18 on C with respect to Z2, given by

ω = dw̃ . (3.217)

Under the projection πF , this automorphic one-form becomes a holo-
morphic one-form ω = ω(w)dw on R2,2, with ω(w) = dw̃/dw. A holo-
morphic one-form on R2,2 is non-singular except at the at the branched
points. This requires the following asymptotic behavior,

ω ∼ w−2dw+ O(w−3) , w → ∞ , (3.218)

so that under the inversion y = 1/w, ω ∼ dy is non-singular at y = 0.
Furthermore, near each branched point wi, the behavior of ω reads
ω ∼ (w − wi)−kdw, with k ∈ 1

2Z+. This is because when a point
w winds around wi twice, it goes back to the original position, and
ω should be invariant in order to be well-defined on R2,2. Imposing
(3.218), we can fix the holomorphic one-form up to a constant factor as

ω = κω0 =
κdw√

(w−w1)(w−w2)(w−w3)(w−w4)
. (3.219)

To fix the constant factor κ, we denote γ12 and γ23 as the two loops
encircling the intervals [w1,w2] and [w2,w3], respectively. Identifying
them with the lines w̃ → w̃+ 2π and w̃ → w̃+ 2πτ on C yields

κ =
2π
K12

, τ =
K23
K12

, (3.220)

with

K12 =
∮

γ12
ω0 = 2

∫ w2

w1
ω0 , K23 =

∮
γ23

ω0 = 2
∫ w3

w2
ω0 . (3.221)

18 An automorphic one-form f(x)dx on ∆ with respect to a discrete subgroup G of
Aut(∆) is defined by the property, f(γ ◦ x)d(γ ◦ x) = f(x)dx, ∀γ ∈ G. Here Aut(∆)
is the group of automorphisms of ∆, given by PSL(2,R) fractional transformations
for ∆ = H2 and affine transformations for ∆ = C.
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In fact, the modular parameter in (3.220) only depends on the cross ra-
tio x defined in (3.209). To show this, we consider a fractional transfor-
mation z = (w3−w4)(w1−w)

(w1−w2)(w−w4)
, which sends (w1,w2,w3,w4) to (0,x, 1, ∞).

The holomorphic one-form ω0 in z-coordinates reads

ω0 =
i

√
w13w24

dz√
z(z − x)(z − 1)

. (3.222)

Similarly, consider another fractional transformation ξ = (w4−w1)(w2−w)
(w2−w3)(w−w1)

,
which sends (w2,w3,w4,w1) to (0, x̃, 1, ∞), with x̃ = 1 − x. Then, the
holomorphic one-form ω0 reads

ω0 =
i

√
w24w31

dξ√
ξ(ξ − x̃)(ξ − 1)

. (3.223)

Using (3.222) and (3.223) for K12 and K23 respectively, we are able to
express the modular parameter and κ as

τ = i
K(1 − x)

K(x)
, κ = −iπ

√
w13w24
K(x)

, (3.224)

where K(x) is the complete elliptic integral of first kind,

K(x) =
∫ x

0

dz√
z(z − x)(z − 1)

. (3.225)

Therefore, we finally obtain the map w̃(w), given by

w̃(w) =
∫ w

ω = −iπ
√
w13w24
K(x)

∫ w

dw′
4∏

i=1
(w′ −wi)

−1/2 , (3.226)

which is known as the Schwarz-Christoffel mapping19 [111].

We now turn to discuss the CFT partition function on R2,2. Using
(3.217) and (3.219), we obtain the Weyl factor ϕF as

ϕF =
1
2 log

∣∣∣∣dwdw̃
∣∣∣∣2 =

1
4

4∑
i=1

log |w−wi|2 − log |κ| . (3.227)

By inserting cutoff circles with radius ϵ around each branched points,
the Liouville action can be calculated straightforwardly, analogous to
(3.106). Since this contribution is universal, in the sense that it does
not affect the transition of Rényi entropy, I will only focus on Z[g̃] in
the following discussion. The CFT partition function Z[g̃] reads

Z[g̃] = (qq̄)−c/24Tr[qL0 q̄L̄0 ] ≈

|q|−c/12 |τ | > 1 ,

|q̃|−c/12 |τ | < 1 ,
(3.228)

19 The inverse map w(w̃) can be constructed via the Weierstrass p-function ℘(w̃), which
is double-periodic on torus. Hence, the condition (3.216) is fulfilled.
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with q = e2πiτ and q̃ = e−2πi/τ . The two terms on the right hand side
of (3.228) are the dominant contributions from two different vacuum
channels. For |τ | > 1, the vacuum state is defined on the spatial circle
w̃ → w̃ + 2π, and for |τ | < 1 it is defined on the “time” circle w̃ →
w̃+ 2πτ . The transition between those two channels of Z[g̃] is the origin
of the transition of Rényi entropy, which by (3.224) happens at |τ | = 1
with the cross ratio x = 1/2. Moreover, those two channels are dual to
the thermal AdS3 phase and the black hole phase, respectively, which
can be checked by comparing (3.100) and (3.99) with the two terms
on the right hand side of (3.228). In particular, the circle on which
the vacuum state is defined precisely corresponds to the contractible
circle of the dual bulk solution, which is characterized by the associated
projective structure σ. This tells us a hidden mechanism of AdS3/CFT2.

More generally, we can also consider the dual CFT defined on a
compact Riemann surface Sg with genus g > 1 and a constant curva-
ture R = −2. Although the exact CFT partition function should be
Sp(2g, Z) modular invariant and depend on the complex structure on
Sg, in the semi-classical limit, its saddle point approximation breaks
the modular invariance. The dominant vacuum channel specifies the
contractible loops in the dual handbody AdS3, which is related to a
particular choice of Schottky uniformizations of Sg, labeled by the as-
sociated projective structure σ. This provides an additional geomet-
ric data on Sg, since the projective structure is subordinated to the
complex structure. We can summary these by the following one-to-one
correspondence in AdS3/CFT2,

projective structure on Sg ⇐⇒ vacuum channel on Sg . (3.229)

When we consider a correlation function in the dual CFT, the above
correspondence can be generalized to the duality between projective
structures and vacuum conformal blocks, which I will discuss later.

Twist picture

In the replica picture, the calculation of the Rényi entropy is rather
complicated, since it requires us to solve the uniformization of Rn,N .
Furthermore, the replica limit n → 1 is not valid in that approach
because Rn,N is ill-defined for non-integer n. In this section, I will in-
troduce the twist field approach to the Rényi and entanglement entropy
[112, 113].

Basic idea. The twist field approach provides an alternative way to
represent the partition function Zn defined on replica surface. The ba-
sic idea is as follows. Instead of replicating the surface, we take n copies
of the original CFT to get a new theory CFT⊗n. This means that we
formally take n-copies of the fundamental field and the action of the
original theory, and sum over the actions to get a new action. The field
configuration in k-th copy is identified with the field configuration on
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k-th sheet of the replica surface. The branched structure of the replica
surface then requires us to impose boundary conditions on those n

fields, which lead to a restricted path integral of this new theory. For
instance, if we consider the entangling region A = [w1,w2], then the
boundary conditions are given by [113],

ϕk(e
2πi(w−w1) +w1) = ϕk+1(w) ,

ϕk(e
2πi(w−w2) +w2) = ϕk−1(w) , (3.230)

where ϕk with k mod n denotes the k-th copy of the fundamental field.
One of the main ideas in [113] is that one can implement the boundary
conditions (3.230) by inserting local fields σn(w1) and σ̃n(w2) in the
path integral, which act on n copies of the fundamental field as cyclic
exchanges of copies,

σn : ϕk → ϕk+1 , σ̃n : ϕk → ϕk−1 . (3.231)

These two local fields are called twist field and anti-twist field, respec-
tively. In this approach, the partition function Zn is then represented
by a two-point function in the new CFT,

Zn = ⟨σn(w1)σn(w2)⟩ . (3.232)

It was shown in [113] that the twist and anti-twist fields are conformal
primaries, with conformal dimensions universally determined by the
central charge,

hn = h̄n =
nc

24

(
1 − 1

n2

)
= nh . (3.233)

To get this result, we first compute the vacuum expectation value of
the stress tensor on Rn,1, which reads

T (w) =
c

12{z;w} = h

( 1
w−wi

− 1
w−w2

)2
, (3.234)

with z(w) given in (3.164). It takes the same form on different sheets
of Rn,1. The stress tensor on k-th sheet of Rn,N is identified with the
k-th copy of the stress tensor T (k)(w) in the new theory. The total
stress tensor in the new theory is given by the sum over copies, so its
expectation value reads,

T (w) =
n∑

k=1
T (k)(w) = nh

( 1
w−wi

− 1
w−w2

)2
. (3.235)

By comparing (3.235) with the conformal Ward identity for conformal
primary fields, we can identify the twist and the anti-twist fields as con-
formal primaries with the same holomorphic conformal dimension hn.
The anti-holomorphic part can be analyzed analogously. The partition
function Zn is then given by

Zn = ⟨σn(w1)σn(w2)⟩ =
∣∣∣∣w1 −w2

ϵ

∣∣∣∣−2hn−2h̄n

, (3.236)
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which leads to the N = 1 Rényi entropy,

Sn =
1

1 − n
logZn =

c

6

(
1 + 1

n

)
log

∣∣∣∣w1 −w2
ϵ

∣∣∣∣ . (3.237)

Here we have assumed that the vacuum partition function Z1 of the
original CFT is normalized as Z1 = 1. Essentially, twist and anti-twist
fields encode the branched structure of the replica surface. For the case
of N > 1, the partition function Zn defined on Rn,N can be expressed
via the twist fields as

Zn = ⟨σn(w1)σ̃n(w2) · · ·σn(w2N−1)σ̃n(w2N )⟩ . (3.238)

Furthermore, we can also generalize this to excited state backgrounds.
For instance, we consider two conformal primary fields O1(x1) and
O2(x2) inserted on CP1. Those fields lead to an excited state density
matrix, since they appear in the path integral of the original CFT,
Z1 = ⟨O1(x1)O2(x2)⟩. When performing the replica trick, we need to
insert these two fields on each sheet of Rn,N ,

Zn =
∫

Rn,N
Dϕ

n∏
k=1

O1(x1; k)O2(x2; k)e−S[ϕ] , (3.239)

where O1(x1; k) represents O1(x1) on k-th sheet of Rn,N . Transforming
to the twist picture, we take n copies of these two fields, denoted as
O

(k)
1 (x1)O

(k)
2 (x2) with k = 1, · · ·n, and each copy is associated with

the fields on the corresponding sheet. The partition function Zn in the
twist picture is then given by

Zn = ⟨Õ1(x1)Õ2(x2)σn(w1) · · · σ̃n(w2N )⟩ , (3.240)

where Õ1 and Õ2 are the new fields in CFT⊗n, defined by the tensor
products of n copies,

Õ1 =
n∏

k=1
O

(k)
1 , Õ2 =

n∏
k=1

O
(k)
2 . (3.241)

And Tr[ρn
A] reads

Tr[ρn
A] =

Zn

Zn
1
=

⟨Õ1(x1)Õ2(x2)σn(w1) · · · σ̃n(w2N )⟩
⟨O1(x1)O2(x2)⟩n

. (3.242)

To calculate the Rényi and entanglement entropy, our main task is to
evaluate correlation functions (3.238) and (3.240). However, since OPE
coefficients of those fields are not readily accessible, what we can do is
to approximate those correlation functions by their dominant vacuum
conformal blocks [105]. This is a valid approximation in a holographic
CFT due to the semi-classical limit c → ∞ and the sparseness con-
dition on the spectrum [115]. As I will show later, calculation of the
dominant vacuum conformal block essentially proceeds in parallel with
the gravity analysis via the Schottky uniformization.



80 holographic ads3 gravity

Discrete symmetry in CFT⊗n. Before calculating the semi-classical
conformal blocks in CFT⊗n, let me first clarify the issue about the Zn-
symmetric OPEs, which is necessary for the later discussion. As the
new theory is obtained by n copies of the original CFT, the central
charge of CFT⊗ becomes cn = nc. This can be shown by considering
the OPE between the total stress tensor in the theory,

T (w)T (0) ∼
n∑

k=1
T (k)(w)T (k)(0) ∼ cn/2

w4 + · · · , (3.243)

where OPEs between different copies T (k)’s are trivial, due to the de-
coupling of ϕk’s at the Lagrangian level. The total stress tensor T (w)
is the generator of conformal symmetry in CFT⊗n, which by definition
is invariant under the cyclic exchanges of copies. However, since there
is an additional discrete Zn symmetry in CFT⊗n, an irreducible repre-
sentation in the theory is not completely characterized by its conformal
weights, but also by its eigenvalue of the generator of Zn, denoted as
η. The action of η on the Virasoro mode in k-th copy reads

ηL(k)
m η−1 = L(k+1)

m , k mod n , (3.244)

so that it leaves the total Virasoro mode invariant,

ηLmη
−1 = Lm , Lm =

n∑
k=1

L(k)
m . (3.245)

To characterize states in CFT⊗n, let us consider the total Hilbert space
of CFT⊗n,

Htotal = ⊗nH , (3.246)

where H is the Hilbert space of the original theory. We can decompose
the total Hilbert space via the discrete Zn symmetry,

Htotal = H(1) ⊕ · · · ⊕ H(n) , (3.247)

where states in H(n) are eigenstates of the Zn generator η. The eigen-
values of them can be shown as follows. We consider a state |ψ⟩,

|ψ⟩ = ⊗n|ψk⟩ ∈ Htotal, |ψk⟩ ∈ H , k = 1, · · · ,n . (3.248)

It is useful to represent the state |ψ⟩ as a vector, so that the Zn gener-
ator η acts on it as a matrix,

ψ =


ψ1

ψ2
...
ψn

 , η =


0 1

0 1
. . .

1 0

 , η ◦ψ =


ψ2

ψ3
...
ψ1

 . (3.249)
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Then, the state |ψ⟩ can be decomposed as a linear combination of eigen-
states of η, denoted as

ψ =
n∑

k=1
αkψ

(k) , η ◦ψ(k) = λkψ
(k) ∈ H(k) , (3.250)

with eigenvalues λk given by

λk = e2πik/n , k = 1, · · · ,n . (3.251)

We call H(n) with λn = 1 as the Zn-symmetric sector, and the rest
part of Htotal as the twist sector. Suppose |ψ⟩ is a conformal primary
state in H(n), the corresponding descendent states in H(n) are then
constructed by acting the total Virasoro modes L−m’s on it, but not
by acting arbitrary combination of L(k)

−m’s,

|ψ{m}⟩ = L−m1L−m2 · · ·L−mj |ψ⟩ ∈ H(n), mj ≥ 1 . (3.252)

where {m} = {m1,m2, · · ·mj} is a collection of indices, ordered via
mi > mi+1. For the anti-holomorphic part, the definition is analogous.

The reason for claiming the structure of the total Hilbert space as
well as the descendent states in the Zn-symmetric sector is as follows.
In the context of the Rényi and entanglement entropy, we usually en-
counter the product operators defined in (3.241), which clearly lie in
the Zn-symmetric sector H(n). On the other hand, the twist and anti-
twist fields are not lie in the Zn symmetric-sector, but in the twist
sector [112]. However, if we consider the OPE between twist and anti-
twist fields, we could argue that all terms in their OPE should be Zn-
symmetric operators, due to the actions (3.231) of (anti-) twist fields
on the fundamental fields20. In other words, we should have

σn(w1)σ̃n(0)(w2) =
∑

p

∑
{m,m̄}

Cp
σσ̃(w1 −w2)

hp−2hn+|m|

× (w̄1 − w̄2)
h̄p−2hn+|m̄|βp,k

σσ̃ β̄
p,k̄
σσ̃ O

{m,m̄}
p (w1), (3.253)

with O
{m,m̄}
p ∈ H(n), where (hp, h̄p) are the conformal weights of the

conformal primary Op, and |m| =
∑

j mj and |m̄| =
∑

j m̄j are the
levels of the descendent state O{m,m̄}

p . The coefficients βp,k
σσ̃ and β̄p,k̄

σσ̃

are constants, depending on conformal weights as well as the central
charge cn. They are fixed by the conformal symmetry [98]. Cp

σσ̃’s are
OPE coefficients defined by three-point functions,

⟨σn(w1)σ̃n(w2)Op(w3)⟩ =
Cp

σ1σ̃2

w
2hn−hp

12 w
hp

23w
hp

13 × c.c.
(3.254)

which however are unknown in our setup. The consequence of (3.253)
is that, when calculating the Rényi and entanglement entropy, we can

20 Usually, this was implicitly assumed in the twist field approach to Rényi entropy
[105].
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always choose OPE channels with the twist and anti-twist fields being
paired, such that all exchange states are in the form of (3.252). For
convenience, I call such a channel as a Zn-symmetric channel.

Monodromy method for semi-classical conformal blocks. Now I
turn to discuss the calculation of semi-classic conformal blocks by using
the well-known monodromy method [105, 116]. The vacuum conformal
blocks are relevant to the Rényi and entanglement entropy, and I will
come back to these cases later. Eventually, we will see that the analysis
for vacuum conformal blocks is parallel with the gravity analysis on
Schottky uniformizations of replica surfaces. Vacuum conformal blocks
in distinct Zn-symmetric channels are related to Schottky uniformiza-
tions labeled by distinct projective structures.

Let us start by considering a four-point function of primary fields
Oi’s in CFT⊗n, with conformal weights hi ∼ O(c),

Z = ⟨O1(w1)O2(w2)O3(w3)O4(w4)⟩ . (3.255)

We assume that the OPE between O1 and O2 is Zn-symmetric,

O1(w1)O2(w2) =
∑

p

Cp
12g

p
12(w1|w2) , (3.256)

with gp
12(w1|w2) defined as,

gp
12(w1|w2) =

∑
{m,m̄}

(w1 −w2)
hp−h1−h2+|m|

× (w̄1 − w̄2)
h̄p−h̄1−h̄2+|m̄|βp,k

12 β̄
p,k̄
12 O

{m,m̄}
p (w1) , (3.257)

Insert this OPE into the four-point function yields the s-channel ex-
pansion,

Z =
∑

p

Cp
12C

p
34A

43
12(p|wi, w̄i) . (3.258)

Here A43
12(p|wi, w̄i) is called the conformal partial wave [98], defined as

A43
12(p|wi, w̄i) = (Cp

34)
−1 ⟨gp

12(w1|w2)O3(w3)O4(w4)⟩ . (3.259)

and it admits a holomorphic factorization under the decomposition of
the sum over {m, m̄},

A43
12(p|wi, w̄i) = Fp

12,34(wi)F̄p
12,34(w̄i) , (3.260)

where Fp
12,34 and F̄p

12,34 are the s-channel conformal blocks, labeled
by the index p of the exchange conformal family {Op} [98]. The main
task in the next is to compute the semi-classical approximation of the
conformal partial wave A43

12(p|wi, w̄i). Due to the factorization (3.260),
I will focus on the holomorphic part, and the analysis for the anti-
holomorphic part will be similar.
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In the monodromy method for semi-classical conformal blocks, we
start by considering a level-two descendent field χ in the theory, which
generically takes the form of χ(w) = (L−2 + aL2

−1)φ̂(w), with φ̂ a
conformal primary field. In the special cases, where Ln|χ⟩ = 0 for all
n > 0, |χ⟩ by itself is also a primary state. We call such states as null
states, since the norm of χ vanishes, i.e., ⟨χ|χ⟩ = ⟨φ̂|(L2 + aL2

1)|χ⟩ = 0.
Null states need to be excluded from the physical Hilbert space of a
unitary CFT. An analytic way to achieve this is to impose the null
state equation χ(w) = 0 [98], which means that the insertion of a null
state χ into any correlation functions will lead to zero. In other words,
we use the null state equation to constrain the correlation functions in
a consistently defined CFT. In present case, the level-two null state χ
in CFT⊗n is constructed as

χ(w) =

(
L−2 − 3

2(2hφ + 1)L
2
−1

)
φ̂(w) = 0 , (3.261)

with the conformal weight hφ of the primary field φ̂ given by,

hφ =
1
16 [5 − cn ±

√
(cn − 1)(cn − 25)] . (3.262)

To use the monodromy method, we need to choose the + sign for hφ,
which in the semi-classical limit c → ∞ is of order O(c0),

hφ ≈ −1
2 − 9

2cn
∼ O(c0) , c → ∞ . (3.263)

Then, the null state equation (or decoupling equation) becomes(
L−2 +

cn

6 L
2
−1

)
φ̂(w) = 0 . (3.264)

Inserting (3.264) into (3.255) and implementing the standard represen-
tation of Virasoro modes in correlation functions, L(w)

−1 = ∂w and

L
(w)
−n =

4∑
i=1

[
(n− 1)hi

(wi −w)n
− ∂wi

(wi −w)n−1

]
, n ≥ 2 , (3.265)

yields the following differential equation on the five-point function,[
∂2

w +
6
cn

4∑
i=1

(
hi

(w−wi)2 +
∂wi

w−wi

)]
Φ(w,wi) = 0 , (3.266)

with

Φ(w,wi) = ⟨O1(w1)O2(w2)φ̂(w)O3(w3)O4(w4)⟩ . (3.267)

Furthermore, by inserting the OPE (3.256) into this five-point function,
one finds that each term in the sum involves a four-point function
⟨O{m,m̄}

p φ̂O3O4⟩. For convenience, let me define a wave function

φ{m,m̄}
p (w, w̄|wi, w̄i) =

⟨O{m,m̄}
p φ̂O3O4⟩

⟨O{m,m̄}
p O3O4⟩

. (3.268)
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If we assume hp ∼ O(c), then the semi-classical approximation of
φ

{m,m̄}
p is given by [105]

φ{m,m̄}
p ≈ φp(1 + O(1/c)) , φp =

⟨Opφ̂O3O4⟩
⟨OpO3O4⟩

. (3.269)

This can be checked by acting a string of Virasoro modes L(w1)
−m1 · · ·L(w1)

−mj

on the correlation functions. Using the approximation (3.269), we can
rewrite the five-point function Φ as

Φ ≈
∑

p

Cp
12C

p
34A

43
12(p|wi, w̄i)φp(w, w̄|wi, w̄i) =

∑
p

Φp . (3.270)

Now, a crucial argument is that the differential equation (3.266) holds
not only for Φ(w,wi), but also for each contribution Φp in the sum
(3.270) [105]. At this point, it is useful to know that the semi-classical
conformal partial wave can be approximated as A43

12(p) ∼ e−Sp
cl , with

Sp
cl ∼ O(c) [105]. This was recently proven in [114]. Meanwhile, since
hφ ∼ O(c0), φp as well as its derivatives are in order of O(ec0

). These
two facts implies that when applying the differential equation (3.266)
for Φp in (3.270), we can neglect ∂wiφp terms. This leads to a Fuchsian
differential equation for the wave function φp,

∂2
wφp +

6
c
T (w)φp = 0 . (3.271)

where the stress tensor reads

T (w) =
4∑

i=1

(
hi/n

(w−wi)2 +
fp

i

w−wi

)
, (3.272)

with the accessory parameters fp
i ’s encoding the desired conformal par-

tial wave,

nfp
i = ∂wi logA43

12(p|wi, w̄i) = −∂wiS
p
cl . (3.273)

The smoothness condition for T (w) at infinity imposes three constraints
on the accessory parameters, analogous to (3.172). As I have discussed
in Section 3.2.1, the accessory parameters can be determined by provid-
ing the monodromy matrices associated with the solutions to Fuchsian
differential equation. In the present case, the w-dependence of φp de-
fined in (3.269) is contained in the four-point function ⟨Opφ̂(w)O3O4⟩.
The monodromy property of this four-point function can be derived by
imposing the null-state equation on it. To show this, we consider the
OPE between O3 and O4, which can be roughly written as

O3(w3)O4(w4) ∼
∑

r

∑
{m,m̄}

C
r{m,m̄}
34 O{m,m̄}

r (w4) , (3.274)

with C
r{m,m̄}
34 = βr,m

34 β̄r,m̄
34 . Inserting this OPE into ⟨Opφ̂(w)O3O4⟩, it

is clear that w-dependence of this four-point function is controlled by
a collection of three-point functions,

φp(w) ∼
∑

r

∑
{m,m̄}

⟨Opφ̂(w)O
{m,m̄}
r ⟩ . (3.275)
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However, most of these three-point functions vanish, because the null-
state equation impose a strong constraint on the allowed conformal
weights hr in the three-point function Vpφr = ⟨Opφ̂Or⟩. More precisely,
we have∂2

w +
6
cn

∑
i=q,r

(
hi

(w−wi)2 +
∂wi

w−wi

)Vpφr = 0 , (3.276)

with

Vpφr ∼
Cr

pφ

(w−w1)hφ+hp−hr(w−w4)hr+hφ−hpw
hr+hp−hφ

14
, (3.277)

which in semi-classical limit fixes the allowed conformal weights hr as

hr = hφ + hp +
1
2 (1 ± Λp) , Λp =

√
1 − 24

cn
hp . (3.278)

Then, the w-dependence of Vpφr reads

Vpφr ∼ (w−w1)
1
2 (1±Λp)(w−w4)

1
2 (1∓Λp) , (3.279)

where I have used hφ ≈ −1
2 . For other terms ⟨Opφ̂O

{m,m̄}
r ⟩ in (3.275),

their leading behavior in w is the same as Vpφr. This statement is a
similar to (3.269), for instance,

⟨Opφ̂(L−mOr)⟩ ∼ (m− 1)hpw
−m
14 Vpφr(1 + O(hφ/hp)) , (3.280)

with hφ/hp ∼ O(1/c). Therefore, the w-dependence of φp is approxi-
mately captured by Vpφr. This allows us to identified the monodromy
matrices of φp associated with the OPE channels. For instance, if φ̂
once goes around Op, the path should be a loop encircling w1 and w2,
denoted as γ12, because the OPE between O1(w1) and O2(w2) is de-
fined within the radius of convergence. Then, the monodromy matrix
of φp associated with γ12 is given by

M(γ12) =

eiπ(1+Λq) 0
0 eiπ(1−Λq)

 . (3.281)

Similarly, for a loop γ34 encircling w3 and w4, the monodromy ma-
trix reads M(γ34) = M(γ12)−1. This is a consequence of the global
Ward identity, which I have mentioned in the gravity analysis. The
remaining task is to calculate the accessory parameters fp

i with given
monodromy matrices M(γ12) and M(γ34). This has been discussed in
Section 3.2.1, so I will not repeat it here. There is also a t-channel ex-
pansion of the four-point function, in the case of which, one performs
the OPE between O2 and O3, and the resulting monodromy matrices
are associated with loops γ23 and γ14.

The monodromy method can also be generalized to the higher-point
correlation function, but only in particular channels, in which the op-
erators are organized into pairs [104]. As an example, for a six-point
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function, the monodromy method is not applicable for the conformal
blocks in the following channel,

⟨O1(w1) · · ·O6(w6)⟩ =
∑
p,q,r

Cp
12C

q
p3C

r
q4C

r
56F(wi)F̄(w̄i) . (3.282)

Instead, one should organize the OPE between fields in the correlation
function into three pairs, for instance,

⟨O1(w1) · · ·O6(w6)⟩ =
∑
p,q,r

Cp
12C

q
34C

r
56C

r
pqF ′(wi)F̄ ′(w̄i) , (3.283)

then the monodromy matrices are associated with the loops γ12, γ34,
γ56. This structure naturally incorporates the gravity analysis on the
basis of fundamental group of the replica surface.

Entanglement entropy from vacuum conformal block. Now, we
come back to the case of entanglement entropy. We first consider the
case of N = 2 with vacuum background,

Zn = ⟨σn(w1)σ̃n(w2)σn(w3)σ̃n(w4)⟩ , (3.284)

For the s-channel vacuum conformal block of this four-point function,
the monodromy matrix (3.281) becomes the identity matrix, i.e. M12 =

M34 = 1 with hp = 0. This has been encountered in the gravity anal-
ysis on Schottky uniformizations of replica surfaces. In t-channel, it is
similar. The true dominance of the four-point function is given by the
larger one of those two channels,

Zn ≈ max{A43
12(0|wi, w̄i),A14

23(0|wi, w̄i)} , (3.285)

so that the Rényi and entanglement entropy are minimized. The results
of the entanglement entropy in two different phases has been shown in
(3.208) in the gravity analysis.

We can also consider the entanglement entropy in an excited state
background. For simplicity, we insert two scalar fields O at w = w1
and w = w4, with conformal weights,

h1 = h̄1 =
c

24

(
1 − 1

α2

)
, α ∈ Z+ . (3.286)

On gravity side, this state is dual to the conical defect AdS3, with α

being related to the defect angle. The correlation function reads

Z1 = ⟨O(w1)O(w4)⟩ = |w1 −w4|−4h1 = e−S . (3.287)

We consider a single interval entangling region A = [w2,w3] in this
background. Then the partition function Zn reads,

Zn = ⟨Õ(w1)σn(w2)σ̃n(w3)Õ(w4)⟩ ≈ A14
23(0|wi, w̄i) , (3.288)
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where Õ =
∏n

k=1O
(k) is a product operator in CFT⊗n, with confor-

mal weight (nh1,nh1). Notice that only the t-channel of (3.288) is Zn-
symmetric. Thus, there is no entanglement transition happening in this
case. The stress tensor (3.272) associated with the t-channel vacuum
conformal block of (3.288) reads

T =
4∑

i=1

(
hi

(w−wi)2 +
f0

i

w−wi

)
, (3.289)

with

nf0
i = ∂wiA

14
23(0|wi, w̄i) = −∂wiS

0
cl . (3.290)

Analogous to (3.198), in the replica limit δn = n − 1 → 0, we can
decompose the stress tensor into two pieces,

T = T0 + δn
c

12 t1 + O(δ2
n), (3.291)

where T0 is associated with the original background, given by

T0 = h1

( 1
w−w1

− 1
w−w4

)2
, (3.292)

and t1 is the nontrivial part generated by the twist fields,

t1 =
3∑

i=2

1
(w−wi)2 +

4∑
i=1

ρi

w−wi
. (3.293)

Here ρi are related to the accessory parameters as

f0
1 = − 2h1

w1 −w4
+

c

12δnρ1 + O(δ2
n) ,

f0
4 = − 2h1

w4 −w1
+

c

12δnρ4 + O(δ2
n) ,

f0
i =

c

12δnρi + O(δ2
n) , i = 2, 3 . (3.294)

Imposing the smoothness condition for T (w) at infinity, T (w) ∼ w−4,
yields three constraints

4∑
i=1

ρi = 0 , 2 +
4∑

i=1
wiρi = 0 , 2

3∑
i=2

wi +
4∑

i=1
w2

i ρi = 0 . (3.295)

As the background is not the vacuum state, the formula (3.175) for the
entanglement entropy needs to be modified,

∂SEE

∂wi
≈ ∂wi∂n(S

0
cl − nS)|n=1 = − c

12ρi , (3.296)

where S and S0
cl are defined in (3.287) and (3.290). Analogous to the

discussion in Section 3.2.1, we can write the Fuchsian differential equa-
tion (3.271) as a first-order differential equation (3.179). In n → 1 limit,
the matrix W and the connection a are decomposed as

W (w) = W1(w)W0(w) , a = a0 + δna1 + O(δ2
n) , (3.297)
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with W0 ∼ O(1) and W1 = u0 + O(δn), and

a0 =

 0 −1
6T0/c 0

 , a1 =

 0 0
t1/2 0

 , (3.298)

and the differential equations for them are given by

∂wW0 + a0W0 = 0 , ∂wW1 + δnW1W0a1W
−1
0 ≈ 0 . (3.299)

The solutions to W0 and W1 are given by

W0 =

φ(0)′

+ φ
(0)
+

φ
(0)′

− φ
(0)
−

 , W1 = u0Pe−δn

∫ w

w0
ã1(x)dx , (3.300)

with

φ
(0)
± =

√
α

w1 −w4
(w−w1)

1
2 ± 1

2α (w−w4)
1
2 ∓ 1

2α , (3.301)

and ã1 = W0a1W
−1
0 . Notice that W0 has trivial monodromy when w

goes once around (w1,w4) or (w2,w3). Thus, the total monodromy of
W around w2 and w3 is given by

M23 ≈ u0Pe
−δn

∮
w2,3

ã1(w)dw
u−1

0 . (3.302)

By the trivial monodromy condition on the t-channel vacuum conformal
block, M23 = 1, we obtain the following condition,∮

w2,3
W0a1(w)W

−1
0 dw = 0 . (3.303)

Solving (3.303) together with the constraints (3.295) yields

ρ1 =
w23(w34 −w13)

w12w13w14
− w34
w12w14

(
2 + x

α
+

2(1 − x)

α(x
1
α − 1)

)
,

ρ4 =
w23(w13 −w34)

w14w24w34
+

w13
w24w14

(
2 + x

α
+

2(1 − x)

α(x
1
α − 1)

)
,

ρ2 =
w14

αw12w24
+

1
w12

− 1
w24

+
2w14

αw12w24

1
x

1
α − 1

,

ρ3 =
w14

αw13w34
+

1
w13

− 1
w34

+
2w14

αw13w34

1
x− 1

α − 1
, (3.304)

with wij = wi −wj and x = w12w34
w13w24

. Inserting (3.304) into (3.296) and
taking the integration, it can be shown that the entanglement entropy
in such an excited state background is given by

SEE =
c

3

(
log |1 − x

1
α | + α− 1

2α log x+ log
∣∣∣∣w13w24
w14ϵ

∣∣∣∣) , (3.305)

where I have introduced a short distance cutoff ϵ for the last term, in
order to make the result dimensionless. For α = 1, we have h1 = 0,
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and (3.305) recovers the N = 1 entanglement entropy in the vacuum
background, SEE = c

3 log |w23/ϵ|. In the following, I will show the en-
tanglement entropy (3.305) is precisely the RT formula (2.69) in conical
defect AdS3 background. Moreover, since the above calculation is rather
involved, I will also introduce a formula for N = 1 entanglement en-
tropy in a general background, by using the background wave functions
φ
(0)
± associated with a given stress tensor T0.

An alternative form of N = 1 entanglement entropy. Let me
start from the geodesic equation in H3 background, which is dual to
the vacuum state of the boundary CFT. The metric of H3 is given in
(3.22). A geodesic in H3 is a half-circle, which is uniquely determined
by the positions of its endpoints on the conformal boundary. For con-
venience, we set the endpoints as y2 = −y1 = r ∈ R, then the geodesic
equation reads

ξ2 + y2 = r2 , y ∈ R . (3.306)

The length of this half-circle is calculated as

L = 2
∫ r

ϵ
dξ

√
1 + (dy/dξ)2

ξ2 = 2 log(2r/ϵ) . (3.307)

where I have chosen a cutoff ξ = ϵ → 0 in order to regularize the
length. This cutoff can be identified with the radius of the cutoff circles
encircling endpoints of the entangling interval, when we compute the
entanglement entropy from the renormalized action of AdS3 gravity. It
is clear that in this case, the RT formula SEE = c

6L reproduces the
entanglement entropy in the vacuum background.

Now, we turn to calculate the geodesic length in the excited state
background Z1 = ⟨O(w1)O(w4)⟩ discussed in above. The dual bulk
geometry is a conical defect AdS3 in the Bañados form (3.17), with
L = 6

cT0, where the background stress tensor T0 is given in (3.292).
The idea is to transform this Bañados geometry back to H3, so that the
geodesic is mapped to a geodesic in H3. As explained in Section 3.1.2,
such a bulk diffeomorphism is characterized by the boundary map w →
z(w), which satisfies T0 = c

12{z;w}. The solution to z(w) reads

z(w) =
φ
(0)
+ (w)

φ
(0)
− (w)

, (3.308)

where φ(0)
± are the solutions to the Fuchsian differential equation with

stress tensor T0, and they have been worked in (3.301). Under the
mapping (3.308), the endpoints w = w2 and w = w3 of the entangling
region are transformed to z(w2) and z(w3). Thus, the geodesic length
can be written as

L = 2 log
∣∣∣∣z(w2) − z(w3)

δ

∣∣∣∣ . (3.309)
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Here δ is a new cutoff imposed as a lower bound of the radial coor-
dinate of H3, and it should be related to the cutoff ϵ in the original
Bañados geometry by the associated diffeomorphism. Here is a tricky
way to derive their relation. Since the cutoff on the radial coordinate
is identical to the radius of cutoff circles on the boundary, we can use
the map z(w) to identify the cutoff circles inserted on the boundaries
of those two different geometries. More precisely, we have

ϵ = |w−wi| , δi = |z(w) − z(wi)| , i = 2, 3 , (3.310)

and δ is the average of δ2 and δ3, which in the limit ϵ → 0 is given by

δ =
√
δ2δ3 = ϵ

√
|z′(w2)z′(w3)| . (3.311)

Inserting (3.311) into (3.309) yields the entanglement entropy,

SEE =
c

6L =
c

3 log
∣∣∣ z(w2) − z(w3)

ϵ
√
z′(w2)z′(w3)

∣∣∣ . (3.312)

As the Wronskian of the background wave functions (3.301) is normal-
ized, det(W0) = 1, one can rewrite (3.312) in an alternative form,

SEE =
c

3 log | det(U)/ϵ| , U =

φ(0)
+ (w2) φ

(0)
+ (w3)

φ
(0)
− (w2) φ

(0)
− (w3)

 , (3.313)

which shows that the entanglement entropy is a projective invariant, i.e.,
det(U) = det(γ ◦U), for any γ ∈ PSL(2, C). The formula (3.313) is a
general result for the N = 1 entanglement entropy when the topology
of the conformal boundary is trivial. The only required information
is the stress tensor T0 of the background state. One can check this by
inserting (3.301) into (3.313), and the result is the same as (3.305). As a
remark, when the topology of the background is nontrivial, such as the
N = 1 entanglement entropy in a black hole background, the map z(w)
in general are multi-valued on the entangling interval, which does not
happen in the case of (3.301). The consequence is that there are always
different phases for the entanglement entropy. Concrete examples of this
can be found in [45].

I have discussed many close relations between AdS3 gravity and the
dual CFT2 by studying the holographic entanglement entropy. The
generalizations of those relations in the holographic system of U(1)
Chern-Simon-Einstein gravity will be studied in the next chapter. This
model, apart from the Virasoro symmetry, contains an additional U(1)
Kac-Moody symmetry. Hence, it provides a perfect background for in-
vestigating the U(1) symmetry resolution of the holographic entangle-
ment entropy. I will use the generalized relations between the bulk
and the boundary theories to calculate the charged moments and the
symmetry-resolved entanglement entropy.



4
U ( 1 ) C H E R N - S I M O N S - E I N S T E I N G R AV I T Y

This chapter is dedicated to studying the U(1) symmetry-resolved en-
tanglement entropy (SREE) in a particular holographic model, three-
dimensional U(1) Chern-Simons Einstein gravity. The decoupling be-
tween gravity and the U(1) Chern-Simons fields in this theory makes
it a simple playground for studying the holographic SREE. Meanwhile,
some features of the charged moments and the SREE in this toy model
not only provide some hints on how to solve the SREE in more compli-
cated holographic models, but also lead us to a deeper understanding
of the mechanism of the AdS/CFT duality. The outline of this chapter
is as follows.

In Section 4.1, I will review some relevant aspects of U(1) Chern-
Simons-Einstein gravity, including the asymptotic symmetry and the
charged black hole. The partition function of the charged black hole
will be used to solve the N = 1 symmetry-resolved entanglement in
the vacuum background.

In Section 4.2, I will study the symmetry-resolved entanglement en-
tropy and the charged moments in the U(1) Chern-Simons Einstein
gravity, based on my works [29, 30]. I will first review the topological
black hole approach. Then, using the vertex operators description of
the charged moments, I will discuss how to solve them on the replica
surface. The gravity dual of those vertex operators turns out to be
Wilson lines in the bulk. I provide a more general argument that the
disjoint Wilson lines compute the neutral U(1) block in the dual CFT.
I will also perform an analysis in the twist picture. To compute the
general correlation function involving the charged twist fields, I will
first prove the factorization property of the U(1) extended conformal
block, which was originally argued in [117] as well as in our work [30].
Based on the factorization property, I will provide a general method
for calculating the charged moments in the twist picture. The resulting
SREE in all those calculations exhibits the same equipartition behav-
ior, in the sense that it is always independent of the U (1) subregion
charge.

4.1 u(1) chern-simons fields in ads3 space

In this section, I will give an introduction to the classical U(1) Chern-
Simons theory in AdS3 space. I will first review the derivation of the
conserved current and the associated asymptotic symmetry in the the-
ory, following from [29, 118]. The resulting U(1) Kac-Moody symmetry
is promoted as the symmetry of the dual CFT by the AdS/CFT cor-
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respondence. Then, starting from the torus partition of the dual CFT,
I will discuss its saddle point approximation in the high temperature
limit and show that the result can be identified as the partition function
of the U(1) charged black hole from the gravity perspective.

4.1.1 Currents and asymptotic symmetry

The action of the U(1) Chern-Simons fields in AdS3 space is given by
two chiral sectors,

S[A, Ã] = S[A] − S[Ã] , (4.1)

with

S[A] =
ik

8k

∫
M
A∧ dA− k

16π

∫
∂M

d2x
√
hAiAi ,

S[Ã] =
ik

8k

∫
M
Ã∧ dÃ+

k

16π

∫
∂M

d2x
√
hÃiÃi . (4.2)

Here k is the Chern-Simons level, which is not quantized in the U(1)
case. The boundary terms are included in (4.1) for a well-defined vari-
ational principle for the U(1) Chern-Simons fields. This theory is topo-
logical, since the equations of motion dA = dÃ = 0 tell that the gauge
fields are closed one-forms on the background manifold M. Further-
more, since the Chern-Simons fields and the metric decouple in the
bulk, by RT formula, one expects that the entanglement entropy is
still the same as the case in pure AdS3 gravity. I will confirm this in
Section 4.2.2 by calculating the entanglement entropy in the dual CFT.

Analogous to the analysis in the pure gravity sector, the U(1) Chern-
Simons theory in the AdS3 space also permits an asymptotic symmetry
structure. In [29, 88], it was shown that under certain boundary condi-
tions, the conserved currents of the system, together with the stress ten-
sor from the gravity sector, furnish a û(1)k Kac-Moody algebra, which,
from the bottom-up perspective of the AdS/CFT correspondence, is
identified with the symmetry algebra of the dual CFT. In the follow-
ing, I shall briefly review the derivation of the conserved currents of
the Chern-Simons theory, as well as their associated symmetry algebra.
The derivation in principle can be done on the AdS3 space with ar-
bitrary genus. However, since the symmetry algebra only encodes the
universal short distance behavior of the currents correlation function,
I will restrict to the Poincaré AdS3 background with the flat boundary
metric, i.e. g(0) = dzdz̄. For readers who are interested in the Ward
identity of currents on general Riemann surfaces, the reference [119] is
recommended.

To discuss the asymptotic symmetry, let me first impose the following
gauge choice for the Cherns-Simons field [88],

A = A(0) + ρ2A(1) + O(ρ4) , A(0)
ρ = 0 , ρ → 0 , (4.3)
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so that on the conformal boundary ρ = 0, the equation of motion reads

∂zA
(0)
z̄ − ∂z̄A

(0)
z = 0 . (4.4)

For Ã, it is similar. The variation of the Chern-Simons action (4.1)
gives rise to the boundary terms

δS[A, Ã] = − k

2π

∫
d2z

√
g(0)

(
A(0)

z δA
(0)
z̄ + Ã

(0)
z̄ δÃ(0)

z

)
, (4.5)

so the boundary condition is to fix A(0)
z̄ and Ã

(0)
z , but allows A(0)

z and
Ã
(0)
z̄ to vary. Following from [88], one defines the boundary current J i,

which in components reads

J(z) = Jz =
ik

2 A
(0)
z , J̄(z̄) = Jz̄ = − ik

2 Ã
(0)
z̄ . (4.6)

And A
(0)
z̄ and Ã

(0)
z are the conjugate source terms, which can be com-

bined to form a new external gauge field, defined as

A = iÃ(0)
z dz − iA

(0)
z̄ dz̄ . (4.7)

Then the variation of the action can be written in a covariant form,

δS[A, Ã] = − 1
2π

∫
d2z

√
g(0)J

iδAi . (4.8)

By GKPW relation (2.36), one identifies J as the expectation value
of the current in the dual CFT, and A as the background gauge field.
To derive the asymptotic symmetry algebra, we need to impose an ad-
ditional boundary condition, A = 0, which is called the holomorphic
boundary condition. In this case, the equation of motion (4.4) implies
that the current J is conserved, i.e. ∂iJ

i = 0. In addition, a gauge
transformation for the U(1) gauge field A, i.e. A → A+ idλ(z), pre-
serves the boundary condition δA

(0)
z̄ = 0, but it changes the value of

the current Jz → Jz − k
2∂zλ(z). This implies an asymptotic symmetry

structure of the Chern-Simons theory in AdS3 space. To derive the al-
gebra, one can perform the same trick as we did in the gravity case,
namely, considering a singular gauge parameter as λ = 1/(z−w), then
the current and the background gauge field transform as

δJz =
k

2
1

(z −w)2 , δAz̄ → ∂z̄
1

z −w
= πδ(2)(z −w) . (4.9)

Inserting (4.9) into the Ward identity

δ⟨Jz⟩ = 1
2π

∫
d2w

√
g(0)g

ww̄
(0) δAw̄⟨JwJz⟩ , (4.10)

gives rise to the currents OPE

J(w)J(z) ∼ k/2
(z −w)2 . (4.11)



94 u(1) chern-simons-einstein gravity

Then the corresponding algebra can be read out by the modes of ex-
pansion, given by

[Jn, Jm] =
k

2nδm+n,0 , J(z) =
∞∑

n=−∞
Jnz

−1−n . (4.12)

The algebra for the antiholomorphic part is similar. As a check for the
AdS/CFT correspondence, consider a Lagrangian deformation for the
CFT action by introducing a non-vanishing background gauge field,

SCF T → SCF T + ∆S , ∆S = − 1
2π

∫
d2w

√
g(0)g

ww̄
(0) JwAw̄ . (4.13)

Then, using the current OPE (4.11), one can compute the expectation
value of ∂z̄J(z) on this new background, given by

⟨∂z̄J(z)e
−∆S⟩ = −k

2∂zAz̄⟨e−∆S⟩ . (4.14)

This is identified as the chiral anomaly formula in the dual CFT, which
on the Chern-Simons theory side, is nothing but the equation of motion
(4.4). For the anti-holomorphic, the relation is analogous. Another use-
ful example is to consider the insertions of current primary operators
X =

∏
Oj(zj , z̄j) on the boundary CFT, but keep the external gauge

field vanishing A = 0. The current primary fields are defined via

J0Oj(zj , z̄j) = qjOj(zj , z̄j) , JnOj(zj , z̄j) = 0 , ∀n > 0 , (4.15)

where qj is called the U(1) charge of Oj . The OPE between the U(1)
current and Oj reads,

J(z)Oj(zj , z̄j) ∼ qjOj(zj , z̄j)

z − zj
. (4.16)

This leads to the local Ward identity for the U (1) current,

⟨∂z̄J(z)X⟩ = π
∑

j

qjδ
(2)(z − zj)⟨X⟩ . (4.17)

On the bulk side, the insertion of operators leads to the breakdown of
the equation of motion (4.4), given by

∂zA
(0)
z̄ − ∂z̄A

(0)
z =

2πi
k

∑
j

qjδ
(2)(z − zj) . (4.18)

The holonomy of A around each boundary point zi is given by∮
zi

A =
∮

zi

A(0)
z dz =

4πqi

k
, (4.19)

which is proportional to the U(1) charge qi of Oj . Intuitively, it is
natural to suspect that the delta function singularities in (4.18) will
extend from the boundary into the bulk. Indeed, as I will discuss in
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Section 4.2.3, the bulk dual of those primary fields are Wilson line
defects, anchored at the positions of the primary fields on the boundary.
Those Wilson line defects generate the delta-function singularities for
the Chern-Simons fields along their paths.

To complete this section, let me also introduce the stress tensor asso-
ciated with the Chern-Simons fields. The original construction for the
Chern-Simons stress tensor in [88] is given by the standard functional
variation of the action (4.1) with respect to the metric. In absence of the
background gauge field A, it can be written as the standard Sugawara
construction [29],

T gauge(z) =
1
k
(JJ) (z) , T̄ gauge(z̄) =

1
k
(J̄ J̄) (z̄) . (4.20)

where the bracket (JJ) denotes the normal ordering. The normal or-
dering removes the singular terms from the JJ contraction, and as a
result, the expectation value of the stress tensor is equivalent to the
square of the U(1) current when acting on current primary states, i.e.
⟨T gauge(z)⟩ = 1/k⟨J(z)⟩2. Therefore, in terms of the Chern-Simons
fields, the stress tensor can be expressed as

T gauge(z) = −k

4A
(0)
z A(0)

z , T̄ gauge(z̄) = −k

4 Ã
(0)
z̄ Ã

(0)
z̄ . (4.21)

which may be combined with the gravitational stress tensor to give rise
to the full stress tensor of the U (1) Chern-Simons-Einstein gravity,

T = T gravity + T gauge . (4.22)

To derive the full asymptotic algebra, one still needs to verify the trans-
formation law of currents J and full stress tensor T under (3.140). It
is straightforward to check that J transforms as

δJ = −J∂ξ − ξ∂J , (4.23)

and full stress T transforms in the same way as in (3.145). Therefore,
by modes expansion for the full stress tensor, Ln = Lgravity

n + Lgauge
n ,

one arrives at the û(1)k Kac-Moody algebra [29],

[Jn, Jm] =
k

2nδm+n,0 ,

[Ln, Jm] = −mJn+m ,

[Ln,Lm] = (n−m)Ln+m +
c

12 (n
3 − n)δn+m,0 . (4.24)

I would like to give some remarks on this section. Firstly, the above
analysis of the asymptotic algebra is derived in the absence of the back-
ground gauge field A. If A is non-vanishing, then in the Langrangian
deformation formalism (4.13), the algebra will certainly be modified
due to the redefinition of fields. For instance, the stress tensor of the
deformed Lagrangian will be given as

T (z) → T (z) +
k

4A2
z = −k

4
(
(A(0)

z )2 + (Ã(0)
z )2

)
. (4.25)
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which implies a shift in the spectrum of the dual CFT. In contrast,
one can also consider the canonical deformation for the torus partition
function, namely the finite temperature theory of the dual CFT,

ZCF T = (qq̄)−c/24Tr[qL0 q̄L̄0yJ0 ỹJ̄0 ] , (4.26)

with q = e2πiτ and y = e2πiµ. In this case, although there are chemi-
cal potentials (or background gauge fields) µ and µ̃ coupled to the zero
modes J0 and J̄0, the stress tensor and currents are still defined in terms
of the original Lagrangian, or in other words, (4.26) is taken trace over
the original spectrum of the dual CFT. We will encounter these two
types of deformations when calculating the canonical partition func-
tion of a charged black hole in the next section. More discussions can
be found in [120] from the CFT perspective, and in [121] from the holo-
graphic point of view. Secondly, the central charge c in (4.24) is still the
Brown-Henneaux central charge. Apparently, this contradicts the fact
that the U(1) sector should also contribute to the central charge c = 1.
However, since we are considering the semi-classical limit c → ∞, it is
valid to neglect the c = 1 contribution in the gravity theory.

4.1.2 Charged black hole

In this section, I will briefly review the U(1) charged black hole solution
as well as its canonical partition function, following the discussion in
[118]. The result can be applied to solve the N = 1 symmetry-resolved
entanglement in the vacuum background [29, 32].

Let me first consider a pure AdS3 black hole introduced in (3.79),

ds2 =
l2

4ρ2 +
l2

ρ2 |dw̄− ρ

4τ2dw|2 . (4.27)

The period of the boundary torus reads w ∼ w + 2π ∼ w + 2πτ . In
U (1) Chern-Simons Einstein gravity, a charged black hole is obtained
by simply adding constant U(1) gauge fields on the background (4.27),
such that the holonomies of A and Ã around the contractible “time”
loop w → w+ 2πτ vanishes [118]. Thus, we have the conditions,

τAw + τ̄Aw̄ = 0 , τÃw + τ̄ Ãw̄ = 0 . (4.28)

where the components of A and Ã are constants. Since the source terms
Aw̄ and Ãw are non-vanishing, the path integral in the dual CFT is
formally written as

ZP I =
∫

DΦ e−SCF T −∆S . (4.29)

where ∆S is a Lagrangian deformation mentioned in (4.13),

∆S =
i

π

∫
dw2√g(0) (JwAw̄ − Jw̄Ãw

)
(4.30)
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As the source terms are constants, we can further express the deforma-
tion via the modes of the currents, which on torus is defined as

Jn =
∮
dw

2πiJ(w)e
−inw , J̄n = −

∮
dw̄

2πiJ̄(w̄)e
inw̄ , (4.31)

where the integrals are evaluated around the spatial circle. Thus, inte-
grating (4.30) on torus yields

∆S = −4πIm(τ )
(
Aw̄J0 + ÃwJ̄0

)
. (4.32)

Following [118], we introduce two new variables µ and µ̃, defined as

µ = −2iIm(τ )Aw̄ , µ̃ = 2iIm(τ )Ãw , (4.33)

and then the deformation reads

∆S = −2πiµJ0 + 2πiµ̃J̄0 . (4.34)

It was claimed in [118] that the saddle point approximation of ZP I can
be obtained by evaluating the on-shell action of the bulk theory,

ZP I ≈ e−S , S = Sren + S[A, Ã] . (4.35)

The gravity part Sren has been computed in (3.99). The action (4.1) of
the gauge fields only contains the boundary contributions, given by

S[A, Ã] = −kπIm(τ )
(
ÃwÃw̄ +AwAw̄

)
. (4.36)

Using the holonomy conditions (4.28) as well as (4.33), we can express
(4.36) in terms of the new variables. Then, the whole on-shell action is
given by

S =
cπ

6 Im
(1
τ

)
+
kπi

2

(
µ2

τ
− µ̃2

τ̄

)
− kπ

4Im(τ )
(µ2 + µ̃2) . (4.37)

Canonical partition function. It is important to know that the path
integral ZP I we considered before is the partition function of a de-
formed CFT. The spectrum of the Hilbert space in the deformed CFT
is changed due to the redefinition of the stress tensors [118],

T → T ′ = T − k

4 Ã
2
w , T̄ → T̄ ′ = T̄ (w̄) − k

4A
2
w̄ . (4.38)

In contrast, we can also consider the grand canonical partition function
defined in the original CFT, given by

Z = Tr
[
e−2πIm(τ )H+2πiRe(τ )P −∆S

]
. (4.39)

Here, the trace is taken over the original Hilbert space. ∆S is the same
as (4.34). H and P are the Hamiltonian and the momentum, given by

H = L0 + L̄0 − c

12 , P = L0 − L̄0 , (4.40)
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where the Virasoro zero modes on torus are defined as

L0 − c

24 = −
∮
dw

2π T (w) , L̄0 − c

24 = −
∮
dw̄

2π T̄ (w̄) . (4.41)

Due to (4.38), the Hamiltonian H ′ in the deformed theory becomes

H → H ′ = H + ∆H , ∆H = − k

8Im(τ )2 (µ
2 + µ̃2) , (4.42)

where (4.33) has been used. Hence, ZP I and Z are related by an overall
factor as

ZP I = e−2πIm(τ )∆HZ . (4.43)

Notice that the exponent 2πIm(τ )∆H exactly equals to the last term
of the on-shell action (4.37). Thus, the saddle point approximation of
(4.39) is given by [118],

logZ = −cπ

6 Im(1/τ ) − kπi

2

(
µ2

τ
− µ̃2

τ̄

)
, (4.44)

and we identify it as the grand canonical partition function of the
charged black hole. Following the standard formula in thermodynamics,

Z = es−2πIm(τ )⟨H⟩+2πi⟨P ⟩+2πiµ⟨J0⟩−2πiµ̃⟨J̄0⟩ , (4.45)

we can obtain the thermal entropy s by calculating the expectation
values of (H,P , J0, J̄0). The final result of the thermal entropy reads

s = −cπ

3 Im(1/τ ) , (4.46)

which does not depend on the Chern-Simons fields and is identical to
the thermal entropy of the pure AdS3 black hole [118].

4.2 symmetry-resolved entanglement

This section is dedicated to studying the symmetry-resolved entangle-
ment entropy (SREE) in the context of the holographic U(1) Chern-
Simons-Einstein gravity, based on my works [29, 30]. I will mainly focus
on discussing the U(1) charged moments, which by Fourier transforma-
tion gives rise to the SREE. A different approach to SREE without
using the charged moments was formulated in the free boson theory in
the recent work [122].

Starting from the vacuum background with N = 1, one can map the
the replica surface Rn,1 to a cylinder and transform the U(1) charged
moments to a grand canonical partition function defined on the cylinder.
This method was used in [32], where the authors concluded that in a
holographic CFT with an addition U(1) global symmetry, the gravity
dual of the charged moments is a U(1) charged topological black hole1.

1 Here, “topological” just means the topology of the black hole is a solid cylinder,
different from the usual solid torus topology.
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A different CFT approach to this problem was original proposed in
[27], where the authors suggested that one can replace eiµQ term in the
charged moments by two U (1) vertex operators inserted at branched
points of Rn,1. This description of the charged moments allows one
to go beyond the case of the vacuum background with N = 1, and
study more general cases, such as excited state backgrounds with N

entangling intervals. Furthermore, it was shown in [27] that when we
transform from the replica picture to the twist picture, the presence of
vertex operators on Rn,1 will lead to modifications of the original twist
fields defined in CFT⊗n. The modified twist field is called charged twist
field, which was first investigated in [32] but from a different approach.

The motivation for our works in [29, 30] is to understand SREE and
the holographic dual of the charged moments. The reason for choos-
ing the U(1) Chern-Simons-Einstein gravity is that the decoupling be-
tween Chern-Simons fields and gravity simplifies the problems a lot,
but meanwhile, one can get some insights for more general holographic
setups from this simple model. The proposal made in [29] is that the
holographic dual of the charged moments can be realized by inserting
U (1) Wilson line defects along the Zn fixed points of the bulk replica
manifold. This is a generalization of the cosmic string prescription of
holographic Rényi entropy [106]. Essentially, the proposal establishes
a duality between the bulk U(1) Wilson line with the boundary ver-
tex operators. I will give a holographic derivation for this duality by
explicitly evaluating the effective action of Chern-Simons fields. In par-
ticular, at the end of the derivation, I will show that the holographic
computation for the charged moments finally reduces to the generating
function method introduced in [29].

Furthermore, I will carry out independent calculations in the dual
CFT, from both the replica picture and the twist picture. In the replica
picture, I will first show that the vertex operator realization of charged
moments can also be applied to the holographic CFT with U(1) Kac-
Moody symmetry. Several aspects of the vertex operator, such as the
OPE and Knizhnik-Zamolodchikov (KZ) equation, will be discussed.
Using those properties, I will also discuss the charged moments in
charged background and multi-intervals cases, by investigating the cur-
rent Ward identity on replica surface, based on my work [30]. The
results in all those cases show that for the U(1) symmetry resolved en-
tanglement entropy is independent of the charge. This is the so-called
equipartition of entanglement [27], and I will explain the origin of this
equipartition behavior, based on our observation in [31].

A more systematic approach to this problem will be discussed in the
twist picture. I will first introduce the charged twist fields, following
from the same method in [27]. To calculate the charged moments in
more general cases, I will turn to investigate the U(1) extended con-
formal block and prove that it always factorizes into the product of a
U(1) block and a Virasoro block. This factorization property confirms
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the argument in our original work [30]. In particular, it turns out that
the U(1) block computes the effective action of the bulk Wilson line
defects. This generalizes the duality between Wilson line and vertex op-
erators proposed in my work [29]. Inspired by the factorization, I will
also discuss a general approach to the charged moments by studying
the null-state equation in the dual CFT.

At the end of the section, I will give a summary of those various ap-
proaches to charged moments. Analogous to the entanglement entropy
case, the similarities and relations between different approaches to the
charged moments reflect the mechanism of the AdS/CFT duality at
the semi-classical level.

4.2.1 Topological black hole approach

In this section, I will review the charged topological black hole approach
to the charged moments [32], which is restricted to the case of the
vacuum background with N = 1.

Consider the vacuum state of the dual CFT defined on CP1. We
denote a single interval A = [w1,w2] as the entangling region. The
U (1) charged moments is defined as

Zn[µ] = Tr[ρn
Ae

iµQA ] , (4.47)

where the vacuum partition function on CP1 is normalized, Z1 = 1.
The reduced density matrix can be formally expressed as ρA = e−2πHA ,
where HA is called the modular Hamiltonian. It is known that in a
general excited state background, the modular Hamiltonian is non-local,
in the sense that it can not be expressed by local fields [123]. However,
in this vacuum case, it admits a local expression, given by [45, 124],

HA = −
∫

A

dw

2π
T (w)

u′(w)
−
∫

A

dw̄

2π
T̄ (w̄)

ū′(w̄)
+C , (4.48)

where C is a normalization constant such that Tr[ρA] = 1. The function
u(w), defined as

u(w) = log
(
w−w1
w2 −w

)
, (4.49)

is a map from CP1 to a infinite cylinder. Denote u = x+ itE . Then
w = w1 and w = w2 are mapped to x = −∞ and x = ∞. To make
the cylinder finite, we insert two cut-off circles around the two end-
points, with radius ϵ. Under the map u(w), those two circles become
the boundaries of a finite cylinder. The width and the Euclidean time
period of the finite cylinder can be worked out as ∆L = 2 log |w1−w2

ϵ |
and tE ∼ tE + 2π. Similarly, for Rn,1 with the same cutoff circles, u(w)
maps it to a cylinder with width ∆L and tE ∼ tE + 2πn. Since the
spatial direction of the cylinder is truncated, the classical conformal
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group on it is only given by a single SL(2,R). Generators of the clas-
sical conformal group are vectors in the form of (ξm)i = eimtE

(
∂

∂tE

)i
,

and the Virasoro generators Lm are obtained by associating the stress
tensor Tij with the vectors (ξm)i. The details of this are well-known
in the context of boundary conformal field theory (BCFT) [125]. Here,
what we need to know is that transforming T (w) in (4.48) in u coordi-
nates, one can show that HA is linear in L0, hence it generates the time
translation on the cylinder [123]. The explicit relation between HA and
L0 are given by [31, 123]

HA =
π

∆L

(
L0 − c

24

)
+
c∆L
24π , (4.50)

with the normalization constant C = c∆L
12π . The U(1) charge operator

QA is defined on A as

QA = J0 =
∫

A

dw

2πiJ(w) +
∫

A

dw̄

2πiΩ(J̄)(w̄) , (4.51)

Here Ω is the automorphism of the u(1)k Kac-Moody algebra,

Ω(J̄)(w̄) = ±J̄(w̄) , Ω(T̄ )(w̄) = T̄ (w̄) , (4.52)

and the choice for the automorphism Ω is related to the conformal
boundary condition imposed in the BCFT. Without going into details,
I now derive the conformal boundary condition from the [HA,QA] com-
mutator. To make sense QA as a conserved charge operator on A, one
must have [HA,QA] = 0 (or [L0, J0] = 0). This commutator can be
evaluated straightforwardly by using the OPE between the stress ten-
sor and the current,

[HA,QA] =
∫

A+

dw

2π

∫
A

dz

2πi
T (w)J(z)

u′(w)
−
∫

A

dz

2πi

∫
A−

dw

2π
J(z)T (w)

u′(w)
+ c.c.

= −
∫

A

dz

2πi

∮
z

dw

2π
1

u′(w)

[
J(z)

(w− z)2 +
∂J(z)

w− z

]
+ c.c.

= − 1
2π [J(u) − Ω(J̄)(ū)]

∣∣∣u2

u1
. (4.53)

In the first step, A+ and A− are the two curves connecting the two
boundary circles, and they enclose the interval A, representing the fu-
ture and the past “time” slices respectively. In the second step, the
contour integral is in the counter-clockwise direction. In the last step,
J(u) = J(w)/u′(w) is the U(1) current in cylinder coordinates, and u1
and u2 represent the endpoints of A on the two boundaries of the cylin-
der. So the requirement [HA,QA] = 0 gives rise to following condition
on the two boundaries,

J(u) = Ω(J̄)(ū) , (4.54)

This condition implies that for “+” sign choice in (4.52), one has JtE =

0, while for “−” sign choice, Jx = 0.
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With the above constructions, now we can rewrite the charged mo-
ments as

Zn[µ] = e−cn∆L/12q−c/24Tr[qL0yJ0 ] , (4.55)

with q = e2πiτ , y = eiµ and τ = inπ
∆L . The holographic interpretation

for the charged moments is then the grand canonical partition func-
tion of a charged black hole with the cylinder topology. In particular,
since in the long-distance limit ∆L → ∞ as ϵ → 0, the physics on the
cylinder becomes the same as on the torus. Thus, one can directly use
the charged black hole partition function (4.44) to obtain the charged
moments, given by

Zn[µ] =

∣∣∣∣w1 −w2
ϵ

∣∣∣∣− c
6 (n− 1

n )− k
n (

µ
2π )

2

. (4.56)

Assume that the spectrum for the charge operator QA is continuous,
then the probability distribution Pn(q) can be worked out as

Pn(q) =
∫ ∞

−∞

dµ

2πe
−iµqZn[µ]

Zn[0]
=

√
2πn
k∆L

e− 2nπ2q2
k∆L , (4.57)

In n → 1 limit, using (2.89) yields the SREE,

S(q) =
c

6∆L− 1
2 log

(
k∆L
2π

)
+ O(ϵ0) . (4.58)

The above form of SREE in our holographic model matches the re-
sults in the original paper [27]. The q-independent behavior of SREE
is called the equipartition of entanglement, which means the entangle-
ment entropy distributes evenly among different charge sectors of the
subsystem A.

Here are some remarks on the topological black hole approach to the
U(1) charged moments. Note that the automorphism Ω does not affect
these semi-classical results for the charged moments since µ is quadratic
in the exponent of Zn[µ]. However, it affects the O(ϵ0) quantum correc-
tions in the exponent, which are known as the Affleck-Ludwig boundary
entropy in the CFT context [40]. The boundary effects on the SREE
were recently studied in [122, 126] via the BCFT approach. The possi-
ble way to study those boundary effects in the holographic model is to
use the end-of-world brane construction in the AdS3 space [127–129].
On the other hand, Ω does affect the Chern-Simons field configurations
in the bulk. Writing down the variation of the charged moments with
respect to µ in the cylinder coordinates explicitly,

δ logZn(µ) =
∫

A

dx

2π [J(u)δµ+ Ω(J̄)(ū)δµ]

=
1

2π

∫
dtE

∫
dx

δµ

2πn [J(u) ± J̄(ū)] , (4.59)
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and comparing with the variation of the Chern-Simons action in (4.8)
yields

Aū =
µ

2πin , Ãu = ∓ µ

2πin , for Ω = ±1 . (4.60)

The Au and Ãū components are then determined by the trivial holon-
omy conditions around the tE loop, i.e. Au = Aū, and Ãu = Ãµ̄. Trans-
forming them back to the w-coordinates yields

Aw = ±Ãw =
µ

2πin

( 1
w−w2

− 1
w−w1

)
,

Aw̄ = ±Ãw̄ =
µ

2πin

( 1
w̄− w̄2

− 1
w̄− w̄1

)
, (4.61)

with the trivial holonomies around two endpoints,
∮

wi
A =

∮
wi
Ã = 0

for i = 1, 2. I emphasize the various aspects of the field configurations
here because in the Wilson line approach to the charged moments,
as I will introduce later, the bulk Chern-Simons fields A and Ã will
contain non-trivial holonomies. In addition, the fields have vanishing
source terms Aw̄ and Ãw, namely they are in the pure holomorphic
and anti-holomorphic gauges. Those two distinct approaches in the
holographic calculations arise from two different interpretations for the
U (1) charged moments in the dual CFT. While in the above discussions
the eiµQA is understood as introducing addition chemical potential µ
coupled with the chiral currents in the thermal partition function, in
[27], it was shown that one can equivalently treat eiµQA as two vertex
operators inserted at the branched points of the replica surface. As
I will show later, those vertex operators can also be applied in the
holographic CFT with U (1) Kac-Moody symmetry, and they generate
the U (1) Wilson line defect in the bulk [29].

4.2.2 Vertex operators on replica surface

In the following, I would like to introduce the vertex operators’ descrip-
tion of the U(1) charged moments in the dual CFT. By investigating
the OPE structure and correlation functions of vertex operators, I will
then discuss how to compute the U(1) charged moments in the replica
picture, and explain why SREE exhibits equipartition behavior by im-
plementing the perturbative approach in [31]. The discussions include
the cases of vacuum background and charged background as well as the
multi-intervals, mainly based on our works in [29, 30].

Charged moments from local fields. Let me first explain the equiv-
alence between charged moments and vertex operators. Consider Rn,1
with two branched points w1 and w2. We use the conformal transforma-
tion (3.164) map Rn,1 to CP1, coordinated by z. The transformation
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for the metric include a coordinate transformation and a compensated
Weyl transformation,

dŝ2 = |dw|2 → ds̃2 = |dz|2 , dŝ2 = e2ϕds̃2 , e2ϕ =

∣∣∣∣dwdz
∣∣∣∣2 , (4.62)

so the vacuum partition function on those two surfaces are related as

Zn[0] = Z[g(0)] = e−SL[ϕ,g̃]Z[g̃] . (4.63)

Here the vacuuum partition function on CP1 is assumed to be normal-
ized, Z[g̃] = 1.The Liouville action is similar to (3.108), given by

S[ϕ, g̃] = c

6

(
n− 1

n

)
log

∣∣∣∣w1 −w2
ϵ

∣∣∣∣ . (4.64)

The reason for working on CP1 is that the OPEs of the stress tensor and
the U(1) current take the usual form, which lead to two copies of the
u(1)k Kac-Moody-Virasoro algebra (4.24) under the usual mode expan-
sion. However, if we work on Rn,1, the OPEs and mode expansions will
take different forms, due to the branched structure. By implementing
the Sugawara construction

TJ (z) =
1
k
(JJ)(z) , (4.65)

the stress tensor T (z) can be decomposed into a pure Virasoro sector
and a U (1) sector, T (z) = Tvir(z) + TJ (z). This is nothing but T (z) =
T gravity(z) + T gauge(z) on the gravity side. By J(z)J(0) ∼ k/2

z2 , the
OPEs between TJ and J can be checked directly, given by

TJ (z)J(0) ∼ J(0)
z2 +

∂J(0)
z

,

TJ (z)TJ (0) ∼ 1/2
z4 +

2TJ (0)
z2 +

∂TJ (0)
z

. (4.66)

The first one in (4.66) implies that the stress tensor Tvir decouples with
the U (1) sector,

Tvir(z)J(0) ∼ 0 , Tvir(z)TJ (0) ∼ 0 . (4.67)

The second one in (4.66) indicates that the central charge in the U(1)
sector is c = 1. Hence, the pure Virasoro sector has central charge
c′ = c− 1. Now, consider the eiµQA operator in the charged moments
Zn[µ]. The branched points w1,2 are mapped to z = 0 and z = ∞
respectively, so in z-coordinates one has

eiµQA = exp
{
µ

2π

∫ ∞

0
dzJ(z) +

µ

2π

∫ ∞

0
dz̄(ΩJ̄)(z̄)

}
. (4.68)

By Taylor expansion of eiµQA and using the JJ OPE, it is straightfor-
ward to check the following relation,

⟨J(z)eiµQA⟩ = −kµ

4π
1
z

⟨eiµQA⟩ . (4.69)
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Similarly, we can also work out

⟨T (z)eiµQA⟩ = ⟨TJ (z)e
iµQA⟩ = kµ2

16π2
1
z2 ⟨eiµQA⟩ . (4.70)

Comparing (4.69) and (4.70) with the Ward identities for the conformal
and U(1) symmetries, one then identifies eiµQA as two local primary
fields inserted at z = 0 and z = ∞,

eiµQA = V−a(0)Va(∞) , (4.71)

where the conformal weight and U(1) charge of Va are given by

ha =
a2

k
=

kµ2

16π2 , a =
kµ

4π . (4.72)

and its OPEs with stress tensor and U (1) current read

T (z)Va(0) = TJ (z)Va(0) ∼ ha

z2 +
∂Va(0)
z

,

J(z)Va(0) ∼ aVa(0)
z

. (4.73)

The antiholomorphic part is similar. For Ω = ±1 and µ ∈ R, ā = ±a
and h̄ā = ha, and I will choose Ω = 1 in the later discussion, since
the conformal weights are not affected by the sign of Ω. With the
identification (4.71), the charged moments is then expressed via the
two-point function,

Zn[µ] = Zn[0]⟨V−a(0)Va(∞)⟩ = e−SL[ϕ,g̃]⟨V−a(0)Va(∞)⟩ . (4.74)

For convenience, we define an effective action S[µ] to capture the µ-
dependent part of Zn[µ],

Zn[µ] = e−SL[ϕ,g̃]−S[µ] . (4.75)

Similar to the Liouville action, this effective action S[µ] also needs to
be regularized. This can be done by inserting cutoff circles δ = |z| and
δ = |1/z| around the 0 and ∞, so that the two-point function becomes

eS[µ] = ⟨V−a(δ)Va(1/δ)⟩ ≈ e−4hα log(1/δ) , δ → 0 . (4.76)

Under the inverse map of (3.164), those two cutoff circles can be trans-
formed back to the w-coordinates, given by ϵ = |w − w1| and ϵ =

|w − w2| respectively. The relation between δ and ϵ is determined by
the map (3.164), given by

δ =

∣∣∣∣ ϵ

w2 −w1

∣∣∣∣1/n

. (4.77)

Inserting this into (4.76) and combining with (4.64) reproduces the re-
sult (4.56) derived in the black hole approach.



106 u(1) chern-simons-einstein gravity

Universality of vertex operators correlator. The primary field
Va is in fact the standard vertex operator, which obeys the fusion rule
Va × Vb → Va+b [98]. To see this, we first notice that the global U(1)
symmetry requires charge conservation. Thus, in the OPE between Va

and Vb, only the fields with U(1) charge a+ b can appear. A general
descendent field in the theory is generated by acting a series of L−mi

and J−lj on the primary field. Due to the decomposition of the stress
tensor, the descendent field can also be expressed in the decoupled basis
of {Lvir

−mi
, J−lj }. The relation between Lvir

m and Lm reads

Lm = Lvir
m + LJ

m , LJ
m =

1
k

∑
l

: Jm−lJl : , (4.78)

where the normal ordering is defined as : Jm−lJl := Jm−lJl form− l < l,
and : Jm−lJl := JlJm−l for m− l ≥ l. Since [Jm−l, Jl] =

k
2 (m− l)δm,

the normal ordering can be neglected if m ̸= 0. For m = 0, we have

LJ
0 =

1
k
J2

0 +
2
k

∑
m>0

J−mJm . (4.79)

In the decoupled basis, the OPE between Va and Vb can be formally
written as

Va(z, z̄)|Vb⟩ =
∑

p

∑
{m,m̄},{l,l̄}

C
p{m,m̄}{l,l̄}
ab zhp−ha−hb+2ab/k+|m|+|l|

× z̄h̄p−ha−hb+2ab/k+|m̄|+|l̄||O{m,m̄}{l,l̄}
p,a+b ⟩ . (4.80)

Here, we define a primary state Op,a+b as

Lvir
0 |Op,a+b⟩ = hp|Op,a+b⟩ , Lvir

n |Op,a+b⟩ = 0 ,
J0|Op,a+b⟩ = (a+ b)|Op,a+b⟩ , Jn|Op,a+b⟩ = 0 , (4.81)

for all n > 0. The total conformal weight is obtained by acting L0 on
the primary state, given by

htotal = hp +
(a+ b)2

k
. (4.82)

The descendent states are defined as

|O{m,m̄}{l,l̄}
p,a+b ⟩ = Lvir

−m1 · · ·Lvir
−mi

J−l1 · · · J−lj |Op,a+b⟩ . (4.83)

with |m| =
∑

imi and |l| =
∑

j lj denoting the levels. To analyze the
structure of the OPE, we act Lvir

n on the both sides of (4.80). The
non-singular OPE

Tvir(w)Va(z) =
∑

m∈Z

(Lvir
m Va)(z)

(w− z)2+m

!
= regular terms , (4.84)

implies that the left hand side of (4.80) is annihilated by Lvir
n for

n ≥ −1, which then imposes the following condition on the descen-
dent states on the right hand side of (4.80),

Lvir
n |O{m,m̄}{l,l̄}

p,a+b ⟩ = 0 , ∀n ≥ −1 . (4.85)
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This condition (4.85) implies two facts. First, there is no Lvir
−m modes

in all those descendent states. Second, hp = 0 for all those descendent
states. Therefore, the OPE (4.80) is restricted to the following form,

Va(z, z̄)|Vb⟩ =
∑
{l,l̄}

γ
{l}
ab γ̄

{l̄}
ab z

2ab/k+|l|z̄2ab/k+|l̄||V {l,l̄}
a+b ⟩ , (4.86)

where the OPE coefficient is normalized since only a single U(1) family
appears. Similar to the Virasoro case, the coefficients γ{l}

ab and γ̄{l̄}
ab are

completely fixed by the U(1) symmetry, and only depend on (a, b, k).
The detailed calculations on those coefficients will be given later when
I discuss the U (1) extended conformal block.

The simple OPE structure of vertex operators in (4.86) implies that
any higher-point correlation functions of them are fixed by the U(1)
symmetry, hence they are integrable. In fact, there is a simple way
to determine them. Consider X as a product of vertex operators, i.e.
X =

∏m
i=1 Vai(zi, z̄i), with charge conservation ∑m

i=1 ai = 0. Using
Lvir

−1Vai = 0, and LJ
n =

∑
l∈Z : Jn−lJl :, one obtains

Lvir
−1Vai(zi, z̄i) = (∂zi − 2

k
J−1J0)Vai(zi, z̄i) = 0 . (4.87)

On CP1, the action of J−n on Vai(zi, z̄i) in the correlation function ⟨X⟩
is given by

J
(zi)
−n = −

∑
j ̸=i

aj

(zj − zi)n
, J0 = −

∑
j ̸=i

aj = ai . (4.88)

Applying (4.87) and (4.88) on ⟨X⟩ yields the Knizhnik-Zamolodchikov
(KZ) equations [130]∂zi +

2ai

k

∑
j ̸=i

aj

zj − zi

 ⟨X⟩ = 0 , i = 1, · · · ,m . (4.89)

Integrating the above differential equations gives rise to the holomor-
phic part of ⟨X⟩

⟨X⟩ =
∏
i<j

(zi − zj)
2aiaj /k × c.c. , (4.90)

and the anti-holomorphic part is similar.

Application to N = 1 charged backgrounds. The correlation func-
tion (4.90) can be implemented to compute the charged moments in
charged excited state background with N = 1 [30]. As an example, we
consider the insertion of vertex operators Vb(w3) and V−b(w4) on the
original CP1. The background partition function reads,

Z1[0] = ⟨Vb(w3)V−b(w4)⟩ = |w3 −w4|−4b2/k . (4.91)
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where the holomorphic and anti-holomorphic charges of V±b are as-
sumed to be the same. On Rn,1 with branched points w1 and w2, there
are n copies of V±b, and each copy lives on the a single sheet of Rn,1.
Using the map (3.164), one can work out the positions of the n pairs
of local fields {Vb(z2m−1),V−b(z2m)} in z-coordinates,

z2m−1 = e
2πim

n

(
w3 −w1
w2 −w3

) 1
n

, z2m = e
2πim

n

(
w4 −w1
w2 −w4

) 1
n

. (4.92)

with m = 1, · · · ,n. To calculate the charged moments, let us first
analyze Zn[0] and the entanglement entropy, since the situation here is
more complicated than the vacuum case. The partition function Zn[0]
can be expressed in z-coordinates as

Zn[0] = e−SL[ϕ,g̃]
2n∏
i=1

∣∣∣dw
dz

∣∣∣−2hb

zi

⟨Vb(z1) · · ·V−b(z2n)⟩ , (4.93)

where we have used the transformation law of primary fields under the
conformal transformation z → w,

V±b(zi) → V±b(w(zi)) = V±b(zi)

∣∣∣∣dwdz
∣∣∣∣−2hb

zi

. (4.94)

Since the vertex correlation function ⟨Vb(z1) · · ·V−b(z2n)⟩ is defined on
CP1, we can use (4.90) to compute it. After a straightforward calcula-
tion of Zn[0] and rewriting the result in w-coordinates, one finds that

Zn[0] = e−SL[ϕ,g̃]|w3 −w4|−4nb2/k = e−SL[ϕ,g̃]Z1[0]n . (4.95)

Therefore, the N = 1 entanglement entropy in this excited background
is the same as the case of the vacuum background. This result of course
relies on the special structure of the vertex correlation function (4.90),
and it looks a bit surprising from the CFT perspective2. However, from
the bulk perspective, this is exactly what we would expect. The reason
is as follows. Since the vertex operators V±b are annihilated by Lvir

0 ,
but carry U(1) charges, they should lead to excitation of U(1) Chern-
Simons fields, without deforming the AdS3 geometry. By RT formula,
the corresponding entanglement entropy should keep unchanged after
adding such excitation. Therefore, the result (4.95) provides a nontrivial
check for the consistence of this AdS3/CFT2 model.

Now, let me proceed with the charged moments. Similar as (4.75),
we define an effective action S[µ, b] to capture the µ-dependence of the
charged moments,

Zn[µ] = Zn[0]e−S[µ,b] , (4.96)

2 One might be confused about this result, since I have shown in (3.305) that the
entanglement entropy is changed on a excited background. There is no contradiction
here, because the derivation of (3.305) essentially relies on the nul-state equation in
the dual CFT of pure AdS3 gravity. However, the dual CFT here is a different one.
It contains additional U(1) symmetry, which leads to a modification of the null-state
equation in the theory. I will explain this at the end of this chapter.
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with

e−S[µ,b] =
⟨V−a(0)Vb(z1) · · ·V−b(z2n)Va(∞)⟩

⟨Vb(z1) · · ·V−b(z2n)⟩

= e−S[µ] ⟨V−a(0)Vb(z1) · · ·V−b(z2n)Va(∞)⟩
⟨V−a(0)Va(∞)⟩⟨Vb(z1) · · ·V−b(z2n)⟩

, (4.97)

where e−S[µ] = ⟨V−a(0)Va(∞)⟩ is regularized in (4.76). The remaining
part (4.97) can be evaluated by using the general form (4.90). It is not
hard to see that the numerator in (4.97) cancels out the denominator,
leaving the terms which contain ab in exponents,

e−S[µ,b] = e−S[µ]
n∏

m=1

∣∣∣ z2m

z2m−1

∣∣∣4ab/k

= exp
{

− kµ2

4π2n
log |w1 −w2

ϵ
| + bµ

π
log |1 − x|

}
, (4.98)

with the cross ratio x = (w12w34)/(w13w24).

Generating function method. This µ-dependent part (4.98) of Zn[µ]

can be understood more clearly from the generating function method
introduced in [29]. Note that the derivative of S[µ, b] with respect to µ
should gives rise to the expectation value QA of the subregion charge
operator QA,

QA = −i ∂
∂µ

logZn[µ] = i∂µS[µ, b] , (4.99)

On the other hand, one can also compute the expectation value of the
U (1) currents J and J̄ in z-coordinates. We focus on the holomorphic
part. By the OPE (4.16) between J and current primary fields, we have

⟨J(z)⟩ = ⟨J(z)V−a(0)Vb(z1) · · ·V−b(z2n)Va(∞)⟩
⟨V−a(0)Vb(z1) · · ·V−b(z2n)Va(∞)⟩

= −a

z
+

n∑
m=1

(
b

z − z2m−1
− b

z − z2m

)
. (4.100)

with a defined in (4.72). Using (3.164) to transform J(z) back to w-
coordinates, J(w) = J(z)dz/dw, yields a very simple form,

⟨J(w)⟩ = −a/n
w−w1

+
a/n
w−w2

+
b

w−w3
− b

w−w4
. (4.101)

Introducing the cut-off ϵ around w = w1 and w = w2 and evaluating
the expectation value of the charge by the definition (4.51), one finds
the result exactly matches with (4.99),

QA =
ikµ

2π2n
log

∣∣∣w1 −w2
ϵ

∣∣∣− ib

π
log |1 − x| = qa + qb . (4.102)

The first term qa is universal and is related to the insertions of V±a

at the branched points. The second term qb expressed in terms of the
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cross ratio x is simply the U(1) subregion charge contributed from the
background state V±b. Note that both a (or µ) and b are real quantum
numbers, associated with U(1) representations, so one might wonder
why the QA is imaginary. The eigenvalue of the charge operator QA

of course should be real, however, the expectation value of it can be
complex in Euclidean signature. One can think of this from the reality
condition on the action S[µ, b], which enforces QA to be pure imaginary
here. Another example is the rotating AdS3 black hole, where the ex-
pectation value of the angular momentum is complex in the Euclidean
signature, but it becomes real in the Lorentzian case [88].

Origin of equipartition of entanglement. Let me complete dis-
cussion by calculating the SREE associated with the charged moments
(4.96). Using (4.98), it is straightforward to show that the probability
distribution Pn(q), defined in (2.93), is still in type of Gaussian,

Pn(q) =

√
2πn
k∆L

e− 2nπ2(q−qb)
2

k∆L , ∆L = 2 log |w1 −w2
ϵ

| . (4.103)

with qb = − ib
π log |1 −x| defined in (4.102). The only difference between

the (4.103) with the vacuum case (4.57) is the shift of the saddle of q
in the distribution. However, such a shift does not affect SREE, which
in this case is still given by (4.58). Therefore, at the leading order of
the expansion in ϵ, the equipartition of entanglement still holds in the
charged background. But why does SREE behave in this way? Is there
any counterexample? The answer to the first question was partially pro-
vided by the observation in [29]. One notices that the exponent in the
distribution Pn(q) in (4.103) is linear in n. Consequently, Pn(q)/P1(q)n

only contributes a constant factor in n, and the ∆q dependence is re-
moved in SREE. The Gaussian distribution can be traced back to the
charged moments, which is a Gaussian function of µ, and a Fourier
transformation of a Gaussian function is still Gaussian. Therefore, the
key point is the quadratic behavior of µ in the exponent of the U(1)
charged moments. The answer was elaborated further in my work [31],
by showing that the Gaussian type charged moments stem from the
U (1) symmetry. The way to show it is to use the perturbative expan-
sion of logZn[µ] in µ. I shall only focus on the µ dependent part, which
is given by [31],

logZn[µ] = C0 +
∞∑

m=0

1
m!

⟨(iµQA)
m⟩b,c (4.104)

where the “c” index denotes the connected correlation function of (QA)m

in the uniformized z-coordinates,

⟨Qm
A ⟩b,c =

 m∏
j=1

∫
A

dxj

2πi

(⟨J(x1) · · · J(xm)Vb(z1) · · ·V−b(z2n)⟩
⟨Vb(z1) · · ·V−b(z2n)⟩

)
c

+ anti-holomorphic part , (4.105)
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Being connected correlation function of QA means that one only in-
cludes the contributions, in which the contractions among J are all
connected. Therefore, at the first order, the result of ⟨QA⟩b,c is simply
given by the background charge qb in (4.102),

⟨QA⟩b,c ∼
∫

A

dx1
2πi

⟨JV−b · · ·Vb⟩
⟨Vb · · ·V−b⟩

+ c.c. = qb , (4.106)

and the second order only comes from JJ and J̄ J̄ contractions

⟨Q2
A⟩b,c =

∫
A

dx1
2πi

∫
A

dx2
2πi

⟨JJ⟩⟨Vb · · ·V−b⟩
⟨Vb · · ·V−b⟩

+ c.c. . (4.107)

By choosing the cut-off δ in (4.77) around z = 0 and z = ∞, one
can verify that (4.107) gives the correct µ2 contribution in S[µ, b]. It
is because J(z)J(0) ∼ k/2

z , all the higher-point correlation functions
of J decompose into the sum of products of the first and quadratic
order connected correlation functions. Thus, the connected correlation
functions of J terminate at the quadratic order. Therefore, eventually,
we see that it is due to the U(1) symmetry expressed in the struc-
ture of the JJ OPE, that the charged moments is of Gaussian type.
A direct expectation from this conclusion is that the equipartition of
entanglement should also hold in the non-abelian symmetry case, such
as SU(N) Wess-Zumino-Witten (WZW) model [131, 132], as long as
one symmetry-resolves the entanglement with respect to the eigenval-
ues of the Cartan elements (global charges) of the algebra g. This is
because the Cartan elements form the U(1) subalgebras of g. Indeed, in
[133], the authors studied the SREE in the WZW model with general
compact simple Lie group G, and they found that

S(r) = SEE − dim(G)

2 log
(
k∆L
4π3

)
+ 2 log dim(r) + · · · . (4.108)

This result shows that equipartition of entanglement holds at the lead-
ing order O(log ∆L), but breaks down at the sub-leading order O(1)
by 2 log dim(r), where r denotes a specific representation of G. On
the other hand, the above answer to the first question also points out
where to find the counter-example of the equipartition. One can study
the symmetry resolution of entanglement with respect to the higher
spin currents, such as the stress tensor and W3 higher spin current
studied in [31]. Because in those cases, the connected correlation func-
tion between currents will not terminate at the second order, hence the
charged moments will not be the Gaussian type. As a consequence, a
naive Fourier transformation will not yield a Gaussian distribution in
q, so a nontrivial q-dependence of SREE is expected. Recently, in [126],
SREE with respect to the conformal symmetry was studied, where in-
stead of restricting to the charge sector with the same eigenvalue of L0,
the author turned to study the entanglement encoded in each confor-
mal families. The results in [126] showed that in this case, equipartition
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holds for all minimal model CFTs. So, one can see that there are dif-
ferent ways to define the problem of equipartition, depending on the
quantum number with respect to which the entanglement entropy are
symmetry-resolved. Another meaningful question that one should ask
about SREE is how it is related to experiments, and how much insight
it provides in the quantum information theory.

Towards general N cases. The vertex operator prescription of the
charged moments can also be applied to multi-interval cases, N ≥ 2, in
which, one inserts V±a at each pair of branched points on Rn,N . The
N = n = 2 case has been studied in Appendix A of my work [30]. The
SREE as well as the symmetry-resolved mutual information in gen-
eral N intervals case have been extensively discussed in [134] for the
compact free boson and free massless Dirac fermion. The basic idea in
[30] is to first map R2,2 to a flat torus by the Schwarz-Christoffel map
(3.226), and then derive KZ-equations on the torus from the operator
equation (4.87). Then, by solving KZ-equations for the vertex correla-
tion function on torus, one can determine the µ-dependent part of the
N = n = 2 charged moments. Moreover, it was shown in [30] that the
generating function method provides a more convenient way to get the
result, in which, the main task is to compute the expectation value of
the U(1) current on torus. However, both of those two approaches rely
on the uniformization map of the replica surface, which is difficult to
work out in the higher genus cases, as I commented in Section 3.2.2. A
resolution to this problem is to calculate the expectation value of the
U (1) current on the replica surface directly, by using the Ward identity
for U(1) symmetry. A straightforward derivation of KZ-equations on
the replica surface Rn,N is also possible, which however has not been
investigated in the literature. In the following, I will discuss how to
determine the expectation value of J(w) on Rn,N ,

⟨J(w)⟩ =
⟨J(w)V−a(w1)Va(w2) · · ·Va(w2N )⟩Rn,N

⟨V−a(w1)Va(w2) · · ·Va(w2N )⟩Rn,N

, (4.109)

where V±a with a = kµ
4π are vertex operators inserted at the branched

points of Rn,N , and the original background is assumed to be the vac-
uum state.

Let me first explain the general structure of the U (1) Ward identity
on a compact genus g Riemann surface Sg. Consider X as a product of
local current primary fields X = O1(x1) · · ·Om(xm) on the Riemann
surface Sg, with the U(1) charge of Oj denoted as qj . We choose a
symplectic basis {α1, · · · ,αg,β1, · · · ,βg} of the first homology group
H1(Sg, Z). Here αi’s and βi’s are non-contractible loops on Sg, with
their intersection numbers, denoted by an inner product, satisfying

(αi,βj) = −(βj ,αi) = δij , i, j = 1, · · · , g . (4.110)

The space H+(Sg) of linearly independent holomorphic one-forms on
Sg is g-dimensional. For a given symplectic basis, one can associate
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a basis {ω1, · · · ,ωg} of H+(Sg), such that the holomorphic one-forms
ωi = ωi(w)dw are normalized as∮

αj

ωi = δij ,
∮

βj

ωi = Ωij . (4.111)

Here, Ωij is called the periodic matrix of Sg [111]. Then, the Ward
identity for the U(1) Kac-Moody current on Sg reads [119],

⟨J(w)X⟩ = −π
m∑

j=1
qjG̃(xj ,w)⟨X⟩ +

g∑
i=1

ciωi(w)⟨X⟩ . (4.112)

Here ciωi(w) are the zero mode contributions to ⟨J(w)⟩ on Sg,

ci =
⟨J i

0X⟩
⟨X⟩

= ⟨J i
0⟩ , J i

0 =
∮

αi

dxJ(x) . (4.113)

The zero modes contributions are non-vanishing, if there are chemical
potentials θi on Sg, coupled with the zero modes J i

0 of the current, for
instance [119],

Z = Tr
{
qL0eθ1J1

0+···θgJg
0X
}

, ⟨J i
0⟩ = ∂θi

logZ . (4.114)

However, there is not such chemical potential existing in our case, so
we can neglect ciωi terms in (4.112). G̃(x,w) in (4.112) is the modified
Green’s function on Sg, defined as [119],

∂x̄G̃(x,w) = δ(2)(x−w) . (4.115)

With a fixed base point w0, the holomorphic one-forms define the Abel
map from the genus g Riemann surface to Cg [111],

yi(w) =
∫ w

w0
ωi(x)dx , y = {y1, · · · , yg} ∈ Cg . (4.116)

The explicit form of G̃(x,w) is related to the Jacobi-theta function for
g = 1, and the Riemann-Siegel-theta function defined on Cg for g > 1,
with the arguments of the theta function being the g-dimensional vector
y(w). Rather than digging into too many details of those complicated
functions, I would like to give some simple observations, which will
make the result of (4.109) more transparent.

1. Current on replica surface. Now we consider the Riemann surface
Sg as Rn,N , with branched coordinate w. The idea is to use the Zn

symmetry of Rn,N as well as the short distance behavior of the current
to fix ⟨J(w)⟩ defined in (4.109). For a general reference point xj on a
single sheet of Rn,N , the modified Green’s function G̃(xj ,w) should be
a multi-valued function of w, because the delta-function singularity in
(4.115) is localized at w = xj , but not at w = e2πixj on the next sheet.
However, in (4.109), the vertex operators are localized at the branched
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points wi’s, which are invariant under the Zn transformation. Thus, we
expect that (4.109), expressed as

⟨J(w)⟩ = πa
N∑

i=1

(
G̃(w2i−1,w) − G̃(w2i,w)

)
, (4.117)

should be a single-valued function of w. Therefore, the fractional powers
of (w−wi) in J(w) are excluded. Furthermore, in the limit w → wi, the
neighborhood of each branched point wi on Rn,N can be uniformized
by the map z − zi = (w − wi)1/n. In z-coordinates, ⟨J(z)⟩ behaves
as ⟨J(z)⟩ ∼ ±a(z − zi)−1 for z → zi, where ±a is the U(1) charge
the corresponding vertex operator V±a(zi). Performing the conformal
transformation for the current, J(w) = J(z)dz/dw, yields following
short distance behaviors,

⟨J(w)⟩ ∼ −a/n
w−w2i−1

, ⟨J(w)⟩ ∼ a/n
w−w2i

. (4.118)

Since there is no vertex operator inserted at w = ∞, we further require
the smoothness condition for the current, ⟨J(w)⟩ ∼ w−2, for w → ∞.
The above three conditions uniquely fix ⟨J(w)⟩ as,

⟨J(w)⟩ = a

n

N∑
i=1

( 1
w−w2i

− 1
w−w2i−1

)
. (4.119)

The result (4.119) was explicitly verified in [30] for N = n = 2 case
by using certain properties of the Jacobi-theta function as well as the
Schwarz-Christoffel map (3.226). Notice that, this does not means that
G̃(wi,w) in (4.117) is just the simple pole in (4.119), because it also
contains a non-analytic part, which however cancels with each other in
the sum (4.117). See [30, 119] for more detail.

2. Charged moments from generating function method. We may com-
pare (4.119) with the stress tensor (3.168). The latter one contains
additional accessory parameters which are not fixed at the first place.
However, (4.119) is completely fixed by the charges of the insertions.
This implies that the U(1) part of this theory is integrable.

Now, I use the generating function method to calculate the charged
moments. Evaluating the expectation value of the charge operators QA

by (4.119) yields

QA =
N∑

j=1

∫ w2j−ϵ

w2j−1+ϵ

dw

2πiJ(w) + c.c. = ikµ

4π2n
log ∆LN , (4.120)

where the cutoff ϵ was introduced in order to regularize the integration,
and ∆LN is given by

∆LN = −N log |ϵ|2 −
∑

1≤i<j≤2N

(−1)i−j log |wi −wj |2 , (4.121)
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By inserting QA into (4.99) and taking integration, one can show that
the charged moments can be written in the following form,

Zn[µ] = Zn[0]|ϵ|4Na2/(nk)
∏
i<j

|wi −wj |4aiaj /(nk) , (4.122)

with ai = (−1)ia and a = kµ
4π . The ϵ term in (4.122) makes the charged

moments to be dimensionless. Compare (4.122) with the vertex correla-
tion function (4.90) defined on CP1. We see that the difference between
them is just a shift of the Chern-Simons level k → nk. This implies that
the µ-dependent (U(1)) part of (4.122) naturally satisfies the crossing
symmetry. The SREE in this case is given by,

S(q) = SEE − 1
2 log

(
k∆LN

2π

)
+ O(ϵ0) . (4.123)

The entanglement entropy SEE with general N has been discussed in
Section 3.2. It contains different phases, labeled by distinct vacuum
channels or projective structures on Sg. The second term in (4.123) is
an exact result and does not depend on the choice of channels. Hence,
the transition of S(q) is not affected by this term.

Finally, I would like to give some comments. Notice that the µ (or
a) dependent part of (4.122) satisfies the KZ-equation (4.89) on CP1,
with the level k being rescaled as k → nk. Thus, even though I have not
derived the KZ-equation on Rn,N , one can suspect that the answer is
provided by simply rescaling the level k for (4.89). On the other hand,
in the twist picture that I will discuss later, the same KZ-equation
will appear, which constrains the U(1) block part of the correlation
function of charged twist fields. Therefore, a direct connection between
the replica picture and the twist picture shows up here. A similar story
should also happen in the entanglement and Rényi entropy, that is, if
we try to directly express the null-state equation (3.264) in the original
CFT defined on Rn,N , the resulting differential equation should be
identical to the Fuchsian differential equation (3.266) in CFT⊗n. A
detailed study on the Ward identity on general replica surfaces might
be an interesting and useful topic.

4.2.3 Wilson line/vertex operators duality

This section is dedicated to studying the holographic dual of the bound-
ary vertex operators, based on our work in [29]. The discussions are
not restricted to the charged moments but rather aimed at providing
a general duality between operator contents in the U(1) sector of our
holographic model. The final result shows that the disjoint U(1) Wil-
son lines compute the neutral U(1) block in the dual CFT, where each
Wilson line is dual to the pair of vertex operators with opposite charges.
For general U(1) blocks, such as exchanged states with non-zero U(1)
charge, the disjoint U(1) Wilson lines construction fails. But this points
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out that a more general Witten diagram approach [42] is required, in
order to reproduce general correlation functions of vertex operators
from the U(1) Chern-Simons theory. In fact, similar things happen
to the Virasoro vacuum block and the W3 vacuum block since they
can be computed by the geodesics (SL(2,R) Wilson lines) [105] and the
higher spin Wilson lines [121, 135]. The deeper reason for those dualities
should stem from the correspondence between the three-dimensional
Chern-Simons theory and two-dimensional WZW model [43], which is
known even before the discovery of the AdS/CFT correspondence. So
in the following, I will first explain the Wilson line construction in the
bulk and its relation with the boundary vertex operators. To confirm
the duality between them, I will derive the effective action for the U(1)
Chern-Simons fields in the presence of the Wilson line defects and show
that the result matches the two-point function of the dual vertex op-
erators. In particular, applying to the charged moments, I will show
that the effective action Seff [A, Ã] satisfies a holographic version of
the identity (4.99), hence it confirms the generating function methods
introduced in [29]. Finally, I will give a discussion on the case of the
higher-point correlation function and disjoint Wilson lines.

Construction of U(1) Wilson line. We focus on the A sector or
the holomorphic sector in the dual CFT. Consider two vertex operator
insertions V−q(w1) and Vq(w2) on the conformal boundary CP1 of an
asymptotically AdS3 space. By the identification (4.6), one reads out

Aw =
2iq
k

( 1
w−w1

− 1
w−w2

)
, Aw̄ = 0 , ρ → 0 (4.124)

which implies the field strength F = dA is delta-function singular at
the boundary points w1 and w2. Since the delta-function singularity is
different from the case of the Dirac monopole, where B = dA ∼ r/r3,
one expects that the singular behavior of A should not be localized at
the boundary, but needs to extend from the boundary into the bulk. A
natural candidate is a bulk Wilson line defect, anchored at the bound-
ary points w1 and w2 [29]. More precisely, let me consider the following
Wilson line defect action,

Sd = iPq

∫
C
Asds , (4.125)

Here Pq is a constant that needs to be determined later, and C denotes
a curve in the bulk, anchored at the boundary points w1 and w2. To
make the orientation of C clear, I denote ξµ = (∂/∂s)µ as the tangent
normal vector along the curve, and require

ξµ|w2 = −
(
∂

∂ρ

)µ

, ξµ|w1 =

(
∂

∂ρ

)µ

, ρ → 0 . (4.126)

This means that the directions of the Wilson line at two boundary
points are orthogonal to the boundary, and it starts from the boundary
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q

−q

Aθ

Figure 4: The construction of Wilson line in AdS3.

point w2 with positive charge q, and ends at w1 with negative charge
−q, as shown in Figure 4. To derive the equation of motion for the
Chern-Simons field in the presence of the Wilson line defect, I define a
two-form,

J = δ(2)(x− x(s))ξ · ε , (4.127)

Here ε = − i
2dρ∧ dw∧ dw̄ is the “volume” form on the three-space, and

ξ · ε denotes the contraction. We choose Σs as the family of hypersur-
faces, each of which is locally orthogonal to the normal vector ξµ at
x = x(s). The delta function in (4.127) is defined with respect to the
induced measure on Σs,∫

Σs

ξ · εδ(2)(x− x(s)) =
∫

Σs

J = 1 . (4.128)

Under the above construction, one can rewrite the Wilson line action
as coupling between A and the two-form source,

Sd = iP

∫
A∧ J . (4.129)

Combine (4.129) with the bulk Chern-Simons action (4.1), one can
easily derive the equation of motion, given by

F = −4πP
k

J . (4.130)

In other words, the presence of the Wilson line action generates a delta-
function singular field strength F along the curve C. In particular, the
direction of εµνσFνσ is the same as the tangent normal vector ξµ, up to
± sign depending on the sign of P . Now, from (4.124), the holonomies
of A around w2 on the boundary are given by∮

w2
A =

4πq
k

, (4.131)
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Combining (4.128) and (4.130), and using ξµ(w2) =
(

∂
∂ρ

)µ
, we can

evaluate the integral on a neighborhood of w2 on the boundary as3

∫
Σs

F =
4πP
k

∫
Σs

dz ∧ dz̄ i2δ
(2)(w−w2) =

4πP
k

, (4.132)

Matching (4.132) with (4.131) provides the identification P = q. So the
desired Wilson line action associated with the vertex operators is

Sd = iq

∫
C
A . (4.133)

So far, I have not clarified what the precise trajectory C is. Since the
Wilson line action is topological, the curve C can be in arbitrary shape,
as long as it satisfies the requirements mentioned before. Therefore, if
the duality between the Wilson line and vertex operators is true, then
the answer for the effective action should also be topological. Indeed,
as I will show later, the effective action does not depend on the explicit
solution of A in the three-space, but only depends on its boundary
value. Nevertheless, I would like to comment on what a preferred curve
C should be if one wants to solve the equation of motion explicitly. Con-
sider the special cases in which the vertex operators are located at the
branched points of the replica manifold. Since the branched points are
the fixed points on the replica surface, to preserve the bulk Zn symme-
try (generated by an elliptic element of SL(2,C)), one can choose the
curve C going along the trajectory of the fixed points in the bulk. As I
have shown in the example (3.37), the trajectory of the fixed points in
the bulk is typically parametrized by the geodesic equation of the AdS3
space. So a good choice for C when we try to derive the exact solution
to (4.130) should be the geodesic connecting the two boundary points.
In fact, (4.133) is a U (1) analog of the higher spin Wilson line that has
been discussed in [135], in which the authors introduced a gauge invari-
ant SL(3,R) Wilson line action to probe the entanglement entropy in
the holographic higher spin gravity. In particular, the authors showed
that under certain gauge fixing, the Wilson line is localized along the
geodesic [135].

Effective action for Chern-Simons fields To verify the duality be-
tween the bulk Wilson line and the boundary vertex operators, I would
like to compute the effective action for the Chern-Simons field A and
compare it with the two-point function of the vertex operators. Since
I did not work out the explicit solution for A, evaluating S[A] + Sd is
impossible here. Instead, I will introduce a cutoff surface (a thin tube)
B surrounding the Wilson line, and only evaluate the action outside
the region of B. This idea was implemented in the holographic proof of
the RT-formula in [58]. The cost for doing so is that a proper boundary

3 Note that the induced measure ξ · ε has opposite orientations at the boundary points
w1 and w2.
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term on the cut-off surface is required in order to give well-defined dy-
namics in the bulk. For instance, the Wilson line imposes the constraint
for A such that the holonomy of A around it is 4πa/k. So a well-defined
variational principle on B must be consistent with this constraint. The
bulk action in (4.1) vanishes outside the surface B, and the boundary
term defined at ρ = 0 also vanishes due to the boundary condition
A
(0)
w̄ = 0. So the effective action for the Chern-Simons field is just the

boundary action on B.
To work out the proper boundary term on B, let me define the locally

cylindrical coordinates, (s, r, θ), with the Wilson line following along
the center r = 0. The surface B is chosen at a constant radius r = ϵ,
with ϵ → 0. The union B ∩ CP1 gives two circles on the conformal
boundary,

|w−w1| = ϵ , |w−w2| = ϵ , ρ → 0 . (4.134)

Since the holonomy of A is a constant, in the limit ϵ → 0, it is reasonable
to take Aθ as a constant on the cutoff surface B. This can be checked
from the boundary configuration (4.124), where around w = w2, we
have w−w2 = reiθ, therefore,

Aθ|r=ϵ =
2iq
k

( 1
ϵeiθ +w2 −w1

− 1
ϵeiθ

)
(iϵeiθ) ≈ 2q

k
, (4.135)

On the other hand, since the equation of motion F = 0 holds on B, we
have

Fsθ|r=ϵ = ∂sAθ|r=ϵ − ∂θAs|r=ϵ = 0 , (4.136)

Combining (4.135) with (4.136) yields

∂θAs|r=ϵ = 0 , ϵ → 0 . (4.137)

Therefore, we have completely determined the constraints for A on the
cut-off surface imposed by the equation of motion and the holonomy
condition. Since Aθ is fixed on the cut-off surface, the variation of the
Chern-Simons action and the proper boundary term with respect to A
should only contain δAθ. This condition can be satisfied by considering

Sbdy =
ik

8π

∫
B
dsdθAsAθ . (4.138)

Note that boundary term (4.138) does not admit a covariant expression,
but it has been used in [102] to discuss the most general asymptotic
symmetry in SL(2,R) Chern-Simons gravity. Now, using (4.135) and
(4.137), and integrating out Aθ in (4.138) yields at the effective action,
defined on the curve Cϵ on B surface,

Seff [A] = S[A] + Sbdy =
ia

2

∫
Cϵ

dsAs , (4.139)
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namely the holonomy or U(1) charge a is coupled with the Wilson
line along Cϵ. Since the field strength F vanishes in the region outside
the B surface, the above action is topologically invariant. So we can
turn to evaluate the action (4.139) along an interval on the conformal
boundary, which intersects with Cϵ. The intersection points are located
on the cut-off circles |w−w1| = ϵ and |w−w2| = ϵ, so I denote them
as w = w1 + ϵ and w = w2 − ϵ. In this way, one finds that the effective
action is determined by the boundary current,

Seff [A] = − iq

2

∫ w2−ϵ

w1+ϵ
dwA(0)

w = − q

k

∫ w2−ϵ

w1−ϵ
dwJ(w) . (4.140)

It is then easy to show that e−Seff [A] matches with the holomorphic
part of the two-point function of the vertex operators. One can perform
the same analysis for the Ã sector, and the result is similar, given by

Seff [Ã] = − q̄

k

∫ w̄2−ϵ

w̄1+ϵ
dw̄J̄(w̄) . (4.141)

In particular, applying to the n = 1 charged moments Z1[µ] with U(1)
charges a = ā = kµ

4π and using J ∝ µ, one can show the following
identity

i∂µSeff [A, Ã] = QA , (4.142)

where Seff [A, Ã] = Seff [A] + Seff [Ã] and QA is the charge expecta-
tion value on the boundary interval. The identity (4.142) matches with
(4.99) introduced from the generating function method [29].

The above discussion can also be directly applied to Zn[µ] charged
moments, in which case the defect action Sd still takes the same form
as (4.133) since the relation between the holonomy and U(1) charge of
the vertex operator is fixed. The main difference is that in this case, it
is better to consider the Wilson line lying along the trajectory of the
Zn fixed points in the bulk. The advantage of this consideration is that
in the local coordinates (s, r, θ), the period of θ is naturally changed to
be 2πn, meanwhile, Aθ is rescaled by a 1/n factor in order to preserve
the holonomy. Approaching the conformal boundary ρ = 0, one can
reproduce the J(w) ∝ a/n behavior, and the final effective action is in
the same form of (4.140).

Higher-point correlator from disjoint Wilson lines The gener-
alization of (4.140) to higher-point correlation function of vertex oper-
ators is straightforward. However, since each Wilson line is associated
with a unique U(1) charge or holonomy, the above Wilson line construc-
tion can only be generalized to the case where the vertex operators are
in pairs with opposite charges. Let us consider the four-point function,

⟨V−q1(w1)Vq1(w2)V−q2(w3)Vq2(w4)⟩ . (4.143)

In the s-channel, this four-point is just the single vacuum U(1) block
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−a a −a a

ρ

Figure 5: Two phases of Wilson lines dual to N = 2 charged moments.

due to the OPE expansion in (4.86). The exchanged states are the J-
descendent states of the vacuum. Now, in the bulk, analogous to (4.133),
one inserts two disjoint Wilson line defect actions,

Sd = i
2∑

j=1
qj

∫
Cj

A , (4.144)

with Cj going from the position of the positive charge qj to the position
of the negative charge −qj . Assume the two Wilson lines are not braided.
Then the effective action is given by

Seff [A] = −1
k

2∑
j=1

qj

∫ w2j+ϵ

w2j−1+ϵ
dwJ(w) . (4.145)

Evaluating (4.145) explicitly, one finds that the result matches the holo-
morphic part of the four-point function,

e−Seff [A] =

(
w12
ϵ

)−
2q2

1
k
(
w34
ϵ

)−
2q2

2
k

(1 − x)
2q1q2

k , (4.146)

with the cross ratio x = w12w34
w13w24

. Notice that for q1 = ±q2, such as the
N = 2 charged moments, the dual Wilson lines can take two different
configurations in the bulk, as shown in Figure 5. The results of the
effective action S[A] in those two phases are identical, because (4.146)
takes the form of the four-point function of vertex operators, which
is crossing-symmetric. Another way to see this is by noticing that the
curves in Figure 5 forms a closed loop in the bulk. The difference be-
tween the results of the effective action in those two phases is governed
by the holonomy of A around this closed loop, which is clearly zero.
However, if we consider a U(1) charged black hole background, the re-
sult will be different. This is because the closed loop might wind around
the spatial circle of the charged black hole, and leads to a nonvanishing
holonomy of A.

We conclude that the disjoint U(1) Wilson lines compute the correla-
tion function of vertex operators or the vacuum U(1) block in the dual
CFT. This conclusion can be generalized to arbitrary correlation func-
tions with neutral OPE channels. The reason is that for a CFT with
U (1) Kac-Moody symmetry, a general conformal block can be factor-
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ized as a product of a Virasoro block and a U(1) block by considering
the decomposition T = Tvir + TJ [117],

Fp(xi|hi, qi, c, k) = Fp
vir(xi|hi − q2

i

k
, c− 1)VJ (xi|qi, k), (4.147)

which I will prove in the next section. In particular, since the charge of
the exchanged state in a fixed OPE channel is determined by the charge
conservation, the U(1) block becomes universal in the correlation func-
tion. Therefore, a general correlation function is always factorized and
can be written as

⟨O1O2 · · · ·⟩ ∼ VJ V̄J̄

∑
p

cpFp
virF̄p

vir . (4.148)

The VJ part is nothing but the vertex correlation function (4.90), since
if we can set hi = q2

i /k, then∑p cpFp
virF̄p

vir becomes the identity. Those
properties reflect the fact that the U(1) Chern-Simons fields decouple
with gravity. Therefore, as long as the charges of the CFT operators
are in pairs with opposite signs, one can always use the Wilson lines to
compute the VJ .

Finally, to generalize the Wilson lines construction for general corre-
lator with non-neutral OPE channels, a more general Witten diagram
[42] of Wilson lines is required. See [136–139] for applications of the
Witten diagram in AdS/CFT. For instance, for a three-point function
with the charges satisfying the charge conservation q1 + q2 + q3 = 0,
one can insert three Wilson lines that intersect with each other in the
bulk. It will be interesting to understand the field configuration close
to the intersection point, and hopefully to work out the effective action
in that case.

4.2.4 Charged twist field approach

In this section, I will discuss the charged moments in the twist picture.
I will first clarify the symmetry algebra in CFT⊗n, obtained from the
n copies of the original one. Then, I will introduce the charged twist
field prescription of the charged moments, following from [27]. To solve
the charged moments in general cases, I will discuss the U(1) extended
conformal block, and prove its factorization into the U(1) block and the
Virasoro block, which was argued in [117]. The derivation for the four-
point U(1) block in [117] is a bit tricky, following similar ideas as the
generating function method introduced [29]. So to confirm the result, I
will perform a derivation for the U(1) block in the four-point function
by directly summing over all J-descendent states. The conclusion for
the U(1) block is that it universally factorizes in the correlation func-
tion, and in particular, it acquires the form of the vertex correlation
function. This conclusion consequently implies the U(1) sector always
satisfies the KZ-equation (with a rescaling of k in CFT⊗n). Meanwhile,
the Virasoro block satisfies the null state equation with central charge
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nc− 1. Hence, this provides a general way to solve the charged moments
in the twist picture, and at the same time confirms the assumption on
the factorization of Hilbert space used in [30].

Zn-symmetric symmetry algebra in CFT⊗n. In the twist picture,
one still considers the new theory CFT⊗n defined on CP1. The U(1)
Kac-Moody-Virasoro symmetry in the original theory is enlarged to
be n copies in CFT⊗n. However, similar to the pure Virasoro case dis-
cussed in Section 3.2.2, here we only focus on the total stress tensor
and the total current in CFT⊗n, defined as

T (w) =
n∑

i=1
T (i)(w) , J(w) =

n∑
i=1

J (i)(w) , (4.149)

both of which are invariant under Zn. The reason for doing this is that
the OPE channels in the charged moments can be chosen to be Zn

symmetric, similar to the pure Virasoro case discussed in Section 3.2.2.
The modes of the total stress tensor and the total current are given by
the sum over n copies,

Lm =
n∑

i=1
L(i)

m , Jm =
n∑

i=1
J (i)

m , (4.150)

where different copies of the modes commute. It is straightforward to
check that (4.150) still furnishes a U(1) Kac-Moody-Virasoro algebra,

[Lm, Jr] = −rJm+r , [Jm, Jr] =
kn

2 mδm+r,0 ,

[Lm,Lr] = (m− r)Lm+r +
cn

12 (m
3 −m)δm+r,0 , (4.151)

but the level and the central charge of the algebra are rescaled by n,

k → kn = nk , c → cn = nc . (4.152)

Analogous to the case in the original CFT, we can decompose the total
stress tensor by defining a Sugawara stress tensor TJ associated with
the total current,

T (w) = Tvir(w) + TJ (w) , TJ (w) =
1
kn

(JJ)(w) . (4.153)

The modes LJ
m of TJ are expressed via J modes as

Lm =
1
km

∑
r∈Z

: Jm−rJr : , (4.154)

where : Jm−rJr : are normal ordered, defined in the same way as in
(4.78). The 1/kn factor in (4.153) is chosen by requiring the OPEs,

TJ (w)J(0) ∼ J(0)
w2 +

∂J(0)
w

,

TJ (w)TJ (0) ∼ 1/2
w4 +

2TJ (0)
w2 +

∂TJ (0)
w

, (4.155)
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from which, we see that the central charge cJ in the Zn-symmetric
U (1) sector of CFT⊗n is cJ = 1. The first one in (4.155) leads to the
non-singular OPE between Tvir and J ,

Tvir(w)J(0) = 0 + regular terms ∼ 0 , (4.156)

which further implies

Tvir(w)Tvir(0) ∼ (cn − 1)/2
w4 +

2Tvir(0)
w2 +

∂Tvir(0)
w

. (4.157)

So the central charge cvir in the pure Virasoro sector, associated with
Tvir, is cvir = cn − 1. The modes of Tvir are denoted as Lvir

m , which
commute with J modes.

General idea. The reason for clarifying the Zn-symmetric symmetry
algebra is that the descendent states considered in the later discussion
are defined by acting a string of Zn-symmetric generators L−m and
J−l on primary fields, or equivalently by the decoupled basis Lvir

−m and
J−l,

|O{m,m̄},{l,l̄}⟩ = Lvir
−m1 · · ·Lvir

−mi
Jl1 · · · J−lj |O⟩ . (4.158)

This consideration is relevant to the calculation of the charged moments.
As I will explain later, in the twist field approach, the most general form
of the charged moments can be written as

Zn[µ] =

〈
Õ1(x1)Õ2(x2)

N∏
m=1

σn,−a(w2m−1)σ̃n,a(w2m)

〉
, (4.159)

with a = kµ/(4π). This is similar to (3.240). The difference is that twist
and anti-twist fields in (3.240) are replaced by the charged twist field
σn,−a and the anti-charged twist field σ̃n,a in (4.159), which I will ex-
plain in later discussion. The main point is that, similar to the twist and
anti-twist fields, the OPE between charged and anti-charged twist fields
is still Zn-symmetric. Therefore, we can always choose Zn symmetric
channels of the charged moments (4.159) by pairing the changed and
anti-charged twist fields, so that all intermediate states in the conformal
block expansion of (4.159) are in the form of (4.158). In particular, since
the charged and anti-charged twist fields carry opposite U(1) charges,
which I will show later, all intermediate states in a Zn-symmetric chan-
nel are neutral, due to the charge conservation. Therefore, if we assume
the vacuum block dominance for the charged moments (4.159), there
will be no contradiction, since states in the vacuum family have zero
U (1) charge. This motivates the general idea in this section, that is to
study the semi-classical conformal blocks in CFT⊗n, and approximate
the charged moments (4.159) by the vacuum block contribution. The
main difference with the discussion in Section 3.2.2 is that here the
theory contains an additional U(1) symmetry. As a consequence, the
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conformal blocks in the theory are U (1) extended, and the null-state
equation (3.264) in the pure Virasoro case needs to be modified.

Charged and anti-charged twist fields. In the twist picture, the
existence of the vertex operators, located at the branched points of
the replica surface, requires modifications for the boundary condition
(3.230). Such modification can be derived explicitly when we consider
a concrete CFT model [27, 32]. However, just as in the entanglement
case, it turns out that the modified boundary conditions can be imple-
mented implicitly by considering the insertions of primary fields at the
branched points. Those primary fields are the so-called (anti) charged
twist fields. In particular, the conformal weights and U(1) charges of
those operators turn out to be universal, in the sense that they only de-
pend on the central charge, coupling constant, and the replica n index,
but not on other details of the theory. The original derivation for the
conformal weight of the charged twist field was performed in [32] for
the free massless Dirac fermion theory, where the author used the di-
agonalization approach introduced in [113]. A more efficient derivation
was performed in [27, 29], which I will explain in the following.

Consider the N = 1 case, with the entangling region A = [w1,w2].
We use (3.164) to map Rn,N to CP1, coordinated by z. The expectation
values of the stress tensor and the U(1) current in z-coordinates read

⟨T (z)⟩ = ⟨T (z)V−a(0)Va(∞)⟩
⟨V−a(0)Va(∞)⟩

=
a2/k
z2 ,

⟨J(z)⟩ = ⟨J(z)V−a(0)Va(∞)⟩
⟨V−a(0)Va(∞)⟩

= −a

z
, (4.160)

with a = kµ/(4π) given in (4.72). By transforming back to the w-
coordinates, one obtains

⟨T (w)⟩ = h(w1 −w2)2

(w−w1)2(w−w2)2 , h =
c

24 (1 − 1
n2 ) +

a2

kn2 , (4.161)

and

⟨J(w)⟩ = −a/n
w−w1

+
a/n
w−w2

, (4.162)

Since T (w) and J(w) are single-valued in w, they are identical in each
sheet of the replica surface. In the twist picture, the stress tensor and
the current in each sheet should be associated with each copies of the
original CFT. Thus, one concludes that the total stress tensor and the
total current in CFT⊗n should be given by n times of (4.161) and
(4.162). Comparing with the Ward identities for the conformal symme-
try and the U(1) symmetry, one can identify the total stress tensor
and the total current as generated by two primary fields, denoted as
σn,−a(w1) and σ̃n,a(w2), which are the so-called (anti) charged twist
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field. The conformal weights and U(1) charges of the charged twist
field σn,−a are given by4

hn,a = h̄n,a =
cn

24

(
1 − 1

n2

)
+
a2

kn
, an = ān = −a , (4.163)

For the anti-charged twist field, the conformal weights are the same as
(4.163), but the U(1) charges have a positive sign. Here is an intuitive
explanation for the results (4.163). If we think carefully, the notion of
eiµQA is not quite clear when we transform to the twist picture. The
operator QA is defined via J and J̄ in the original theory, however,
there are n copies of currents J (i) in CFT⊗n, and it is unclear which
copy is responsible to QA. A simple way to make the notion clear is to
redefine QA in CFT⊗n as following,

QA =
1
n

∫
A

dw

2πiJ(w) + c.c. , (4.164)

where J is the total current, consisting of the n copies J (i). In this case,
eiµQA can be understood as a pair of vertex operators in CFT⊗n,

eiµQA = Ṽ−a(w1)Ṽa(w2) , (4.165)

and the conformal weight and U(1) charge can be read out from (4.72),
with the rescalings k → kn = nk and µ → µ′ = µ/n,

h̃a =
ã2

kn
=
a2

kn
, ã =

kn

4π

(
µ

n

)
= a , (4.166)

Now, notice that the conformal weight in (4.163) is the sum of h̃a and
the conformal weight of the twist field. This means that we can think
of σn,−a as obtained from the fusion between the twist field and vertex
operator in CFT⊗n,

σn,−a = (σnṼ−a) . (4.167)

Coming back to the charged moments, by (4.163), one finds that the
two-point function of charged and anti-charged twist field indeed re-
produces the N = 1 result in (4.56). Generalizing this to a general
excited state background with N intervals leads to the charged mo-
ments in the form of (4.159), which in semi-classical limit c → ∞ can
be approximated by the vacuum conformal block in a particular Zn-
symmetric channel. To study the conformal blocks in CFT⊗n, which
are U (1) extended, I will first prove a factorization property of them
in the following discussion. This property does not rely on the semi-
classical limit.

Factorization of U(1) extended conformal block. The U(1) ex-
tended conformal block has been partially studied in [117], where the

4 Here I still consider the automorphism Ω = +1 for convenience so that the U(1)
charges (a, ā) for the vertex operator Va are identical.
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author argued that the U (1) extended conformal block is factorized
into a U(1) block and a Virasoro block by analyzing the three-point
function. However, an explicit proof of this argument is absent in [117].
In the following, I will prove the factorization property.

1. Setup and main tasks. Let me first explain the setup of the prob-
lem as well as the main tasks. I will consider current primary fields
in CFT⊗n. The conformal weight of an operator Oi will always be
parametrized as

htotal
i = hi + q2

i /kn , (4.168)

with

Lvir
0 |Oi⟩ = hi|Oi⟩ , J0|Oi⟩ = qi|Oi⟩ . (4.169)

I will assume the OPE considered in the later discussion is Zn-symmetric,
so that descendent states in the OPE take the form of (4.158). To make
the meaning of factorization clear, let me consider the following four-
point function as an example,

Z = ⟨O4|O3(1)O2(x)|O1⟩ ,
4∑

i=1
qi = 0 . (4.170)

Consider the OPE between O1 and O2,

O2(x)|O1⟩ =
∑

p

∑
{m,m̄}

∑
{l,l̄}

Cp
12β

p{m}{l}
12 β̄

p{m̄}{l̄}
12 f(x; |m| + |l|)

× f̄(x̄; |m̄| + |l̄|)|O{m,m̄}{l,l̄}
p,q1+q2 ⟩ , (4.171)

where the primary field Op,q1+q2 is characterized by

Lvir
0 |Op,q1+q2⟩ = hp|Op,q1+q2⟩ , J0|Op,q1+q2⟩ = (q1 + q2)|Op,q1+q2⟩ ,

(4.172)

and for convenience I have defined a function f as

f(x; |m| + |l|) = xhp−h1−h2+
2q1q2

kn
+|m|+|l| , (4.173)

and the antiholomorphic part f̄ is defined analogously. The sets {m}
and {l} label the strings of actions from L−mi and J−lj respectively,
with |m| =

∑
imi and |l| =

∑
j lj . The coefficients βp{m}{l}

12 are fixed
by the U(1) Kac-Moody-Virasoro symmetry and depend on

β
p{m}{l}
12 ∼ (hp,h1,2, q1,2, {m}, {l}, cn, kn) (4.174)

For β̄p{m̄}{l̄}
12 , it is similar. To show the factorization of (holomorphic)

conformal blocks, the main task is to analyze those coefficients. More
precisely, I will show that the following decomposition holds

β
p{m}{l}
12 = β

p{m}
12 γ

{l}
12 , ∀{m} , {l} , (4.175)
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with the dependence of them given by

β
p{m}
12 ∼ (hp,h1,2, {m}, cn − 1) ,

γ
{l}
12 ∼ (q1,2, {l}, kn) . (4.176)

Using the decomposition (4.175) for the OPE (4.171) and inserting it
into the four-point function yields the following factorization structure,

Z = VJ V̄J

∑
p

Cp
12C

p
34Fp

virF̄p
vir , (4.177)

with

VJ =
∑
{l}

(Cp
34)

−1x
2q1q2

kn
+|l|γ

{l}
12 ⟨O4|O3(1)|O{l}

p,q1+q2⟩ , (4.178)

and

Fp
vir =

∑
{m}

(Cp
34)

−1xhp−h1−h2+|m|β
p{m}
12 ⟨O4|O3(1)|O{m}

p,q1+q2⟩

(4.179)

where Cp
34 = ⟨O4|O3(1)|Op⟩. For the anti-holomorphic part, it is similar.

By (4.176), the dependence of VJ and Fp are given by

VJ ∼ VJ (x|qi, kn) , Fp
vir ∼ Fp

vir(x|hp,hi, cn − 1) . (4.180)

The coefficients γ{l}
12 as well as VJ will be derived explicitly, and I call

VJ as the (holomorphic) U(1) block. For βp{m}
12 , I will show that they

obey the usual recursion relation in the pure Virasoro case [98]. This
implies that Fp

vir are Virasoro blocks with central charge cn − 1. Hence,
they can be solved in the semi-classical limit by using the monodromy
method discussed Section 3.2.2.

2. Recursion relation in U (1) sector. Let me first focus on the U(1)
sector. By the standard approach in [98], we act Jr on both sides of
(4.171), with r > 0. On the left hand side, the result reads

JrO2(x)|O1⟩ =
∮

x

dw

2πiw
rJ(w)O2(x)|O1⟩

= q2x
rO2(x)|O1⟩ . (4.181)

where the fact that Jr annihilates |O1⟩ is used in the first step. Applying
(4.181) for the right hand side of (4.171) yields

JrO2(x)|O1⟩ =
∑

p

∑
{m,m̄}

∑
{l,l̄}

Cp
12β

p{m}{l}
12 β̄

p{m̄}{l̄}
12 f̄(x̄; |m̄| + |l̄|)

× q2f(x; |m| + |l| + r)|O{m,m̄}{l,l̄}
p,q1+q2 ⟩ . (4.182)
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To keep track of the relevant terms, I write (4.183) as

JrO2(x)|O1⟩ ∼
∑

· · ·q2β
p{m}{l}
12

× f(x; |m| + |l| + r)|hp; {m}, {l}⟩ , (4.183)

where I denote |Op{m,m̄}{l,l̄}
p,q1+q2 ⟩ = |hp; {m}, {l}⟩, since I am focusing on

the holomorphic part. I will keep using this shorthand writing in the
following discussion. One can also act with Jr directly on the right-hand
side, the non-vanishing contributions only come from the commutator
between Jr and J−r. Denote sr as the number of J−r in the set {l},
then by

[Jr, (J−r)
sl ] =

kn

2 rsr(J−r)
sr−1 , (4.184)

one obtains

JrO2(x)|O1⟩ ∼
∑

· · · kn

2 rsrβ
p{m}{l}
12 f(x; |m| + |l|)

× |hp; {m}, {l} − r⟩, (4.185)

where {l} − r represents removing one J−r from the set. Comparing
(4.183) with (4.185) gives rise to the recursion relation

q2β
p{m}{l}−r
12 =

kn

2 rsrβ
p{m}{l}
12 , (4.186)

Notice that the coefficients in the recursion relation do not depend on
h1,2,p as well as the number slj of other J−lj modes in {l}. The latter
one is because negative modes J−lj commute with each other, so that
the ordering of J−lj the set {l} is not important. We can uniquely
characterize {l} by the set of numbers sr,

{l} = Js1
−1J

s2
−2 · · · ,

∞∑
r=1

rsr = |l| , sr ≥ 0 . (4.187)

Therefore, the coefficient βp{m}{l}
12 can be factorized as a product,

β
p{m}{l}
12 = β

p{m}
12 γ

{l}
12 , (4.188)

with

γ
{l}
12 =

∞∏
r=1

γ
(r,sr)
12 , γ

(r,0)
12 = 1 , (4.189)

where γ(r,sr)
12 is associated with Jsr

−r. The recursion relation for the co-
efficient γ(r,sr)

12 can be deduced from (4.186), and is given by

γ
(r,sr)
12 =

2q2
knrsr

γ
(r,sr−1)
12 . (4.190)
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From this, it is easy to find the expression for γ(r,sr)
12 ,

γ
(r,sr)
12 =

1
sr!

( 2q2
knr

)sr

. (4.191)

This coefficient γ(r,sr)
12 will be used to evaluate the U(1) block in the

later. As I have shown the decomposition of β{m}{l}
12 , the next task in

the following is to analyze the recursion relation for β{m}
12 .

3. Recursion relation in pure Virasoro sector. Analogous to the pre-
vious case, we act Lvir

r on both sides of the OPE (4.171), with

Lvir
r = Lr − 1

kn

∑
t∈Z

Jr−tJt , r > 0 , (4.192)

where the normal ordering is neglected, since [Jr−t, Jt] = 0 for r ̸= 0.
The situation becomes more complicated here because the action of
Lvir

r on the fields is different from the usual differential action of the
Virasoro generator. Let me first consider the action of Lr on the left
hand side of the OPE (4.171), given by [98]

LrO2(x)|O1⟩ =
[
xr+1∂x + (r+ 1)(h2 +

q2
2
kn

)xr

]
O2(x)|O1⟩

∼
∑

· · ·Brβ
p{m}
12 f(x; |m| + |l| + r)|hp; {m}, {l}⟩ , (4.193)

with the coefficient Br defined as

Br = hp − h1 + rh2 +
2q1q2
kn

+
(r+ 1)q2

2
kn

+ |m| + |l| , (4.194)

For the LJ
r piece in (4.192), we need to be more careful because there

are negative J modes, which do not annihilate |O1⟩. We first consider
the case of 0 ≤ t ≤ r, so that both Jr−t and Jt are non-negative modes.
Acting with Jr−tJt on the left hand side of the OPE (4.171) yields

1
kn
Jr−tJtO2(x)|O1⟩ = q2

2
kn
xrO2(x)|O1⟩ , (4.195)

with 0 < t < r. Furthermore, for t = r, 0, one obtains

1
kn
J0JrO2(x)|O1⟩ = q2

kn
xr ([J0,O2(x)] +O2(x)J0) |O1⟩

=
1
kn

(q2
2 + q1q2)x

rO2|O1⟩ . (4.196)

Combining (4.193), (4.195) and (4.196) together gives rise to(
Lr − 1

kn

r∑
t=0

Jr−tJt

)
O2(x)|O1⟩

∼
∑

· · ·Drβ
p{m}
12 f(x; |m| + |l| + r)|hp; {m}, {l}⟩ , (4.197)
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with the coefficient Dr given by

Dr = hp − h1 + rh2 + |m| + |l| . (4.198)

Note that there is no q1,2 dependence in Dr, and we need to verify that
the |l| term in Dr can be canceled out by including the remaining J

modes in Lvir
r . For t < 0, we have

1
kn
JtJr−tO2(x)|O1⟩ = q2

kn
xr−tJtO2(x)|O1⟩

∼
∑

· · · q2
kn
β

p{m}{l}
12 f(x; |m| + |l| + r− t)

× |hp; {m}, {l} + |t|⟩ (4.199)

Here I have written {l} in βp{m}{l}
12 explicitly in the above equation for

later convenience, since the the level of each descendent state is lifted by
|t| = −t. By the redefinition of the set {l} → {l} − |t|, and consequently
|l| → |l| − |t|, then the above equation (4.199) can be rewritten as∑

· · · q2
kn
β

p{m}{l}−|t|
12 f(x; |m| + |l| + r)|hp; {m}, {l}⟩

=
∑

· · · ts−t

2 β
p{m}{l}
12 f(x; |m| + |l| + r)|hp; {m}, {l}⟩, (4.200)

where in the second step, I have used the recursion relation (4.186).
Note that if we include all Jr−tJt action with t < 0 or t > r, then, for
each descendent state, labeled by the set {l}, the coefficient in front of
it should be given by

∑
t<0

ts−t

2 +
∑

r−t<0

(r− t)st−r

2 = −
∞∑

r=1
rsr = −|l| , (4.201)

namely, we have
1
kn

∑
t<0,t>r

Jr−tJtO2(x)|O1⟩ ∼ −
∑

· · ·|l|βp{m}
12 f(x; |m| + |l| + r)

× |hp; {m}, {l}⟩ . (4.202)

Combine (4.197) with (4.202), we finally arrive at the action of Lvir
r on

the left hand side of the OPE (4.171),

Lvir
r O2(x)|O1⟩ ∼

∑
· · · (hp − h1 + rh2 + |m|)βp{m}

12

× f(x; |m| + |l| + r)|hp; {m}, {l}⟩ . (4.203)

Meanwhile, when Lvir
r acts on the right-hand side of (4.171), one has

Lvir
r O2(x)|O1⟩ ∼

∑
· · ·βp{m}

12 f(x; |m| + |l|)

×Lvir
r |hp; {m}, {l}⟩ . (4.204)

We define the following state,

|hp;M , {l}⟩ =
∑

|m|=M

β
p{m}
12 |hp; {m}, {l}⟩ , (4.205)
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which is the linear combination of all descendent states at level |m| =
M , with an arbitrary fixed {l}. Then, the identification between (4.203)
and (4.204) leads to

Lvir
r |hp;M + r, {l}⟩ = (hp − h1 + rh2 + |m|)|hp;M , {l}⟩ , (4.206)

which is identified as the standard recursion relation in the pure Vira-
soro case [98]. This recursion relation relies on the central charge cn − 1,
which is encoded in the Virasoro algebra of Lvir

r . Since the recursion
relation for β and γ are independent of each other, a general conformal
block factorizes into a product of the Virasoro block and a U (1) block,

F(hp,hi, qi, cn, kn) = Fvir(hp,hi, cn − 1)VJ (qi, kn) . (4.207)

Furthermore, since the charge of the exchanged state in any OPE chan-
nel is fixed by charged conservation, VJ (qi, k) is universal in the corre-
lation function. So a general correlation function also factorizes as

⟨O1(w1)O2(wi) · · · ⟩ = VJ V̄J

∑
p

CpFp
virF̄p

vir . (4.208)

This further implies that VJ must be identical the vertex correlation
function (4.90) with k → kn = nk,

VJ (qi, kn) = ⟨
∏

Ṽqi(wi)⟩ =
∏
i<j

(wi −wj)
2qiqj /(nk) , (4.209)

because when we choose hi = 0 for all i, then the Virasoro piece in
the correlation function becomes an identity. This suggests that we can
effectively factorize the Hilbert space as a tensor product of the U(1)
and Virasora sectors, which decouple from each other. This confirms
the validity of the factorization argument in our original work [30].

4. Deriving U(1) block. To confirm the validity of (4.209), here I con-
sider the four-point U(1) block defined in (4.178) as an example. Since
γ

|l|
12 has been worked out explicitly in (4.191), we can directly sum over

all J-descendent states in (4.178) to compute the U(1) block. By using
⟨O4|J−r = 0 and [O3(1), J−r] = −q3 as well as (4.187), we have

⟨O4|O3(1)|O{l}
p,q1+q2⟩ = ⟨O4|[O3,

∞∏
r=1

Jsr
−r]|Op,q1+q2⟩

= Cp
34

∞∏
r=1

(−q3)
sr . (4.210)

Thus, by using (4.191), we can express the four-point U(1) block as

VJ = x2q1q2/kn
∑
{l}

∞∏
r=1

1
sr!
Xsr

r , Xr = −2q2q3x
r

knr
. (4.211)
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Since the set {l} is characterized by the set of numbers sr, each of
which can take any non-negative integer m, we can rewrite the above
expression as

VJ = x2q1q2/kn

∞∏
r=1

∞∑
m=0

1
m!
Xm

r = x2q1q2/kn exp
{ ∞∑

r=1
Xr

}
, (4.212)

By using the following Taylor series for the exponent in (4.212),

log(1 − x) = −
∞∑

r=1
xr/r , (4.213)

we obtain

VJ = x2q1q2/kn(1 − x)2q2q3/kn , (4.214)

which fulfills the vertex correlation function (4.90) under the rescaling
k → kn = nk in CFT⊗n.

Charged moments and null state equation. The factorization of
the correlation function in CFT⊗n provides a general way to solve the
charged moments and SREE in the twist picture. Clearly, in the semi-
classical limit c → ∞, the vacuum Virasoro block with central charge
cn − 1 is responsible to the usual entanglement and Rényi entropy, and
the U (1) block contributes to the charge-dependent part of Zn[µ],

Zn[µ] ≈ VJF0
vir × c.c. . (4.215)

Meanwhile, to make the U(1) block contribution survive in the semi-
classical limit, we need to assume k ∼ O(c), and µ ∼ O(c0), so that
the charge a = kµ

4π and the conformal weight ha = kµ2

16π2 are both in the
order of c. While the U(1) block is universally determined in (4.209),
and in particular obeys the KZ-equation,∂wi − 2ai

kn

∑
j ̸=i

aj

w−wi

VJ (wi) = 0 , (4.216)

we still need to solve the Virasoro sector. The Virasoro sector can be
solved by applying the monodromy method discussed in Section 3.2.2.
However, I would like to provide a bit more details here, because the
theory now is of a different type and has more symmetry.

The null states in CFT⊗n with Kac-Moody symmetry should be
annihilated by any positive modes Ln and Jm. At level two, the null
state can be expressed in terms of Lvir

−1,−2, given by

φ(2)(w) =

(
Lvir

−2 − 3
2(2hφ + 1) (L

vir
−1)

2
)
φ̂(w) = 0 , (4.217)

with the conformal weight and U(1) charge of primary field φ̂(w) as
hφ ∼ −1

2 − 9
2(cn−1) and aφ = 0. Since φ̂ has zero U (1) charge, inserting
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φ̂ into a correlation function has no influence on the U(1) block. This
can be checked from the definition (4.212) by using [φ̂(w), J−l] = 0. So
the only influence from φ̂ is on the Virasoro sector,

⟨φ̂(w)O1(w1)O2(w2) · · · ⟩ = VJ (wi)V̄J (w̄i)Φ(w,wi) , (4.218)

Now the question is what is the differential action of Lvir
−n on φ̂(w) in the

correlation function if we want to apply (4.217) inside the correlation
function (4.218). Let me first consider Lvir

−1 ,

(Lvir
−1φ̂)(w) = (L−1φ̂)(w) − 1

kn

∑
m∈Z

(J−1−mJmφ̂)(w)

= (L−1φ̂)(w) . (4.219)

where in the second step I used the fact that Jn|φ̂⟩ = 0 for n ≥ 0,
since aφ = 0. In this case, the differential action of Lvir

−1 is given by ∂w.
Similarly, for Lvir

−2 , one obtains

(Lvir
−2φ̂)(w) = (L−2φ̂)(w) − 1

kn
(J2

−1φ̂)(w) . (4.220)

On the right-hand side of (4.220), the first term gives rise to

⟨(L−2φ̂)(w)O1(w1) · · · ⟩

=
∑

i

(
hi + a2

i /kn

(w−wi)2 +
∂wi

w−wi

)
VJ (wi)V̄J (w̄i)Φ(w,wi) , (4.221)

and, by (4.88), the second term reads

− 1
kn

⟨(J2
−1φ̂)(w)O1(w1) · · · ⟩

= − 1
kn

(∑
i

ai

w−wi

)2

VJ (wi)V̄J (w̄i)Φ(w,wi) , (4.222)

Using the fact that VJ is in the form of the vertex correlation function
as shown in (4.209), one can derive the following identity,

∑
i

(
a2

i /kn

(w−wi)
+

∂wi

w−wi

)
VJ (wi) =

(∑
i

ai

w−wi

)2 VJ (wi)

kn
.

(4.223)

Then, using the identity (4.223), and combining (4.221) and (4.222)
yields the action of Lvir

−2 , given by

⟨(Lvir
−2φ̂)(w)O1 · · · ⟩

= VJ (wi)V̄J (w̄i)
∑

i

[
hi

(w−wi)2 +
∂wi

w−wi

]
Φ(w,wi) . (4.224)

This implies that Lvir
−2 is just the usual differential operator [98], but

it only acts on the Virasoro sector of the correlation function. This
statement is also true for general Lvir

−n, since all higher modes can be
generated by the commutators of Lvir

−1,−2, and the differential operators
by themselves obey the Virasoro algebra.
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4.2.5 Summary

Let me summarize what I have discussed in this section. I have stud-
ied the SREE and charged moments in the holographic U(1) Chern-
Simons-Einstein gravity from several different approaches. The results
from different approaches are consistent, and I show that, at leading
order of the cut-off expansion, the SREE with respect to the U(1)
Kac-Moody symmetry is always independent of the U (1) charge. This
charge-independent behavior of the SREE is called equipartition of
entanglement, and was originally found in [27]. It means that the en-
tanglement entropies encoded in each charge sectors of the subsystem
are identical. By using the perturbative method introduced in [31], I
have explained that the equipartition of entanglement stems from the
truncation of the connected correlation functions of U(1) currents at
the quadratic order. This observation provides a hint for where to find
the counter-examples for the equipartition behavior, for instance, the
SREE in the CFT with nonlinear W3 algebra, which has been partially
discussed in our work [31].

Apart from the SREE, the charged moments by itself are interesting
topic in the context of the AdS/CFT. It can be viewed as a charged
version of the Rényi entropy. The duality between the CFT charged
moments and the charged topological black hole in holographic models
was originally proposed in [32]. The authors in [32] developed a general
method, the so-called topological black hole method, for solving the
charged moments in any holographic models with an additional U(1)
symmetry. While this approach can be widely applied to many different
holographic theories, such as U (1) Chern-Simons Einstein gravity and
Einstein-Maxwell theory, it is restricted to the case where the whole
system is in the vacuum background, with only a single entangling re-
gion. The direct generalization of this topological black hole approach
to multi-entangling regions requires to properly formulate the modu-
lar Hamiltonian associated with those regions. This is still an open
problem, and it has only been partially investigated in [124]. Another
advantage of the topological black hole approach is that it is related to
the BCFT description of the quantum entanglement [124]. Although
in this thesis I only focused on the leading contribution to the SREE,
the subleading terms can be solved by considering the boundary states
in the BCFT description [98, 126]. From the holographic perspective,
this might require the insertions of cosmic branes on the spatial bound-
aries of the topological black hole, which are the so-called end-of-world
branes of the construction in [127, 140]. It would be interesting to study
whether the subleading corrections to SREE can be obtained by con-
sidering the corrections to the AdS3 effective action from those cosmic
branes.

On the other hand, I have also discussed the Wilson line approaches
to the charged moments, based on our work [29]. The Wilson line ap-



136 u(1) chern-simons-einstein gravity

proach is distinct from the topological black hole approach, in the sense
that the configurations of the Chern-Simons fields in the bulk are differ-
ent in those two cases. The Wilson line interpretations for the charged
moments stem from the fact that the eiµQA in the CFT charged mo-
ments can also be regarded as two local vertex operators [27]. This
vertex operator description happens in the case of U(1) Kac-Moody
symmetry, but for other symmetries, it is not ensured to be true. The
Wilson lines can be viewed as the dual description of the boundary
vertex operators. I have shown that the holonomy of the Wilson line
is identified with the charge of the vertex operator up to a constant
multiplier. In particular, the effective action of the Chern-Simons fields
with the Wilson line defect gives rise to the correct answer for the
charged moments. One interesting fact about the Wilson line approach
is that it is no longer restricted to the vacuum background and the
single interval case. Generalization of the charged moments to charged
background as well as the multi-intervals case is straightforward in the
Wilson approach. I have explained the deeper reason for the success
of the Wilson line approach, that is the disjoint U(1) Wilson lines in
the bulk correspond to the neutral U (1) block of any correlation func-
tion in the dual CFT. The disjoint condition on the Wilson lines is
related to the neutral condition on the OPE channel of the correlation
function. In the case of a non-neutral OPE channel, such as a general
three-point function in the dual CFT, the disjoint Wilson lines inter-
pretation fails, but meanwhile, it motivates one to study more general
Witten-diagram of the Wilson lines in the bulk. This is an interesting
topic for future work. Another interesting topic motivated by the dual-
ity between the U(1) Wilson lines and U (1) block is that, one can also
consider non-abelian Chern-Simons fields in AdS3 space. One example
is the SU(2) Chern-Simons field in AdS3 gravity, which can be realized
in the D1-D5 system in the type-IIB string theory [118, 141]. Rela-
tions between SU(2) Wilson lines and the SU(2) extended conformal
block are expected. The study on the monodromy problem for the non-
abelian KZ-equation might be useful for understanding the non-abelian
structure of the SU(2) Wilson lines in the bulk.

On the CFT side, I have discussed about the charged moments from
both the replica picture and the twist picture. In the replica picture,
I introduced the vertex operator description of the charged moments,
based on the decomposition of the stress tensor into the Virasoro piece
and the Sugawara piece. To solve the charged moments in a charged
background, I first discussed the special OPE structure of the vertex
operators and then showed that the vertex correlation functions on CP1

obey the KZ-equations. For the multi-interval case, I discussed the gen-
eral idea for solving the vertex correlation function on the higher genus
replica surface, by first deriving the KZ-equations on the surface and
then solving them. By performing some analysis on the current Ward
identity on the replica surface, I argued that the KZ-equation on the
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Duality
Vacuum channels on Sg Projective structures on Sg

Factorization of correlators Decoupling of CS and gravity
Vacuum Virasoro block Geodesics in AdS3

neutral U(1) block Disjoint Wilson lines
Null state eqs in CFT⊗n Null state eqs in CFT on Rn,N

Table 1: Duality in holographic U(1) CS-Einstein gravity

replica surface should be in the same form as the one in CP1, with a
rescaling of the level k → nk. This argument was later confirmed from
the calculations in the twist picture, since, whatever the picture we
are working in, the constraints for the correlation functions should be
identical in two cases. This observation provides a general connection
between the twist picture and the replica picture. On the other hand,
in the twist picture, I first clarified the Zn symmetric symmetry alge-
bra in CFT⊗n, and then introduced the charged twist fields description
of the charged moments. To compute the general charged moments, I
turned to study the general structure of the U (1) extended conformal
block in CFT⊗n. I proved that the U(1) extended conformal block in
the theory always factorizes as a product of a Virasoro block with cen-
tral charge nc− 1 and a U(1) block with level nk. In particular, the
neutrality condition enforces that the U(1) block is always universal in
all conformal blocks in the correlation functions. Hence, this implies the
factorization of a general correlation function in the theory. I used the
recursion relation to derive the four-point U(1) block by directly sum-
ming over all J-descendent states and confirmed that the U (1) block is
in the form of the vertex correlation function. Consequently, the U(1)
block always obeys the KZ-equation with level kn = nk. To complete
the general procedure for solving the charged moments in twist picture,
I discussed the (level-two null state) null state equation in CFT⊗n with
U (1) Kac-Moody symmetry. I showed that the null state equation ef-
fectively only acts on the Virasoro sector of the correlation function
and takes an identical form as in the pure Virasoro case. Therefore,
a general procedure for solving the charged moments in twist picture
is to solve the null state equation for the Virasoro sector and the KZ-
equation for the U(1) block. In particular, the vacuum block dominance
imposed on the correlation function is consistent with the neutral con-
dition on the U(1) block, where operators with opposite U (1) charges
are always paired in the OPE channels. This incorporates the disjoint
Wilson lines construction in the bulk.

The most important aspects of AdS3/CFT2 that we learned in Chap-
ter 3 and Chapter 4 are summarized in Table 1, which provide a useful
guideline for investigating the charged moments in more complicated
holographic model.





5
H I G H E R S P I N H O L O G R A P H Y

As an extension of the previous chapter, it is natural to ask how the
charged moments and the SREE behave when more complicated sym-
metries are involved in the holographic system. In this chapter, I will
discuss the application of the charged moments in the bottom-up higher
spin holographic model, based on our work in [31]. This chapter is out-
lined as follows. In Section 5.1, I will first review the top-down descrip-
tion of the higher spin holography. In Section 5.2, I will turn to the
bottom-up perspective, and review some relevant aspects of the three-
dimensional higher spin theory in AdS3, in particular, the asymptotic
symmetry and the higher spin black holes. In Section 5.3, the notion
of higher spin charged moments will be introduced, The independent
holographic and CFT calculations for the higher spin charged moments
will be discussed. The results from the two independent approaches co-
incide, and show that the higher spin charged moments is no longer
Gaussian in the chemical potential. As a consequence, the charge de-
pendence of the higher spin SREE is expected, or in other words, the
equipartition of entanglement breaks down in the higher spin symmetry
case.

5.1 introduction

Symmetry plays a key role on the way of finding the exact realizations
of AdS/CFT duality. Since I will mainly focus on the higher spin holog-
raphy in AdS3/CFT2, I would like to start the story with the higher
spin symmetries in two-dimensional CFTs, which was discovered three
decades ago [142]. In two-dimensional CFTs, the generalizations of the
affine Kac-Moody extension of the Virasoro algebra are known as the
W-algebras. They are associated with a set of spin-s currents W s, with
the OPEs,

T (z)W s(0) ∼ sW (s)(0)
z2 +

∂W (s)(0)
z

, (5.1)

where the stress tensor T (z), regarded as the spin-2 current, always ex-
ists in the algebras. The typical feature of all W-algebras is that they
are in general closed nonlinear associative algebras. The non-linearity
implies that they do not belong to the class of Lie algebra, and the as-
sociativity means that they satisfy the Jacobi identity. Historically, the
construction of the W-algebra was first performed by Zamolodchikov
in [142]. The author worked out the s ≤ 3 case by directly solving the
associativity condition, and the resulting algebra is known as the W3
algebra. The complexity of the analysis of the associativity condition

139
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increases rapidly with the increasing spin s. More systematic methods
are developed later, such as the coset construction [143, 144], and the
quantum Drinfeld-Sokolov (DS) reduction [145–147] based on the early
work in [148]. Many works on W-algebra were done by physicists in
the 1980s and 1990s, and a comprehensive review for various aspects
of the W-algebra can be found in [149]. While the structures of the
W-algebras are rather complicated, those early works showed that the
W-algebra plays a central role in many areas of the two-dimensional
physics, such as the constrained WZW model [150], the Toda field the-
ory [150–152], the Kadomtsev-Petviashvili (KP) hierarchy [153–155],
the two-dimensional W-quantum gravity [156, 157], and the quantum
Hall effect [158].

Higher spin/vector model duality. After the discovery of the dual-
ity between Type IIB string theory on AdS5× S5 and the four-dimensional
N = 4 super Yang-Mills (SYM) theory [16], some new ideas emerged
on the manifestation of the infinite number of conservation laws that
appear in the dual field theory [159–165]. Unlike the original Malda-
cena’s consideration, the limit concerned here is the large N limit with
the ’t Hooft coupling λ = Ng2

Y M ≪ 1, namely, the dual SYM theory
tends to be free. Thus, an infinite number of conserved currents with
the increasing spin-s can be constructed from this free theory, which
schematically can be written as [166]

Jµ1···µs =
6∑

I=1
Tr
(
ϕI∇(µ1 · · · ∇µs)ϕ

I
)
+ · · · . (5.2)

where ϕI are the six scalar fields transforming in the adjoint repre-
sentation of SU(N). From the string perspective, the above situation
corresponds to the tensionless limit of the string,

gs → 0 , ls → ∞ ; N ≫ 1 , L5 fixed . (5.3)

where L5 denotes the radius of AdS5. Since higher spin modes in the
string spectrum become massless in the tensionless limit, it is expected
that at least the current sector of the boundary theory is effectively de-
scribed by massless higher spin gauge theory on the AdS5 background.
One candidate of such a bulk theory is Vasiliev higher spin (HS) theory
[167–169], which however is ruled out in [170]. The first observation
provided in [170] is that: for adjoint fields Φi, there should exist an
exponentially growing number of single-particle states in AdS5 corre-
sponding to the single trace operators in the form of

dI0I1···Ik
Tr
(
ϕI0∇l1ϕI1 · · · ∇lkϕIk

)
, (5.4)

and Vasiliev HS theory does not contain enough fields in AdS to account
for those boundary operators. So, to find out the classical gravity the-
ory dual to the weakly coupled N = 4 SYM theory, the appropriate
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generalization of the Vasiliev HS theory by adding infinite additional
fields with consistent interactions is required. However, the story did
not go in this direction. The second observation in [170] is that: if one
instead considers the boundary theory containing vector-like fields ϕa,
transforming in the fundamental representation of the gauge group,
then the only possible class of the “single trace” operators is ϕa∇lϕa.
In this case, the Vasiliev HS theory does have enough degrees of free-
dom to account for those operators. This observation motivates the
Klebanov-Polyakov conjecture in [170], that the large N critical O(N)
vector-model in three dimensions is dual to the Vasiliev HS theory in
AdS4 (see also the review [171]). More generally, it is suggested that
theories of an infinite number of massless higher spin gauge fields in
AdSd+1 may correspond to the large N conformal field theories in d-
dimensions with N-components vector-like fields.

Large N coset model and Vasiliev theory in AdS3. An ana-
log of the Klebanov-Polyakov conjecture in AdS3/CFT2 was proposed
in [172], in which the authors argued that the Vasiliev HS theory in
AdS3 background with the gauge symmetry hs[λ] is dual to the two-
dimensional large N coset model

SU(N)k ⊗ SU(N)1
SU(N)k+1

, (5.5)

with the finite parameter λ being identified as λ = N
N+k . Unlike the

three-dimensional O(N) vector model, the coset model considered here
is an interacting theory. In the following, I would like to briefly explain
the duality through the symmetry perspective, following from the re-
view [173].

Let me first focus on the boundary theory. The coset model (5.5) is
based on the WZW models with gauge group G = SU(N) ⊗ SU(N),
and the denominator of (5.5) denotes the (diagonal) subgroup H of
G. This quotient G/H means that we are restricting to the SU(N)k+1
invariant subsector of the Hilbert space, or in other words, gauging
the affine SU(N)k+1 symmetry. This requires that fields defined in
the coset model decouple with the affine su(N)k+1 Kac-Moody current
so that they are invariant under the SU(N)k+1 gauge transformation.
Focusing on the vacuum module, the first of such fields is the stress
tensor of the coset model, given by

TG/H = TG − TH , (5.6)

where stress tensors TG and TH are given via the standard Sugawara
construction [172]. If we denote Ja

(1) and Ja
(2) as the Kac-Moody currents

associated with su(N)k and su(N)1, then the diagonal su(N)k+1 Kac-
Moody current is given by Ja

(3) = Ja
(1) + Ja

(2). It is easy to see that the
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OPE between TG/H and Ja
(3) is non-singular, namely, TG/H decouples

with Ja
(3). The central charge associated with TG/H reads [172],

cN ,k = (N − 1)
[
1 − N(N + 1)

(N + k)(N + k+ 1)

]
, (5.7)

which scales as N(1 − λ2) in the large N limit with λ = N
N+k fixed.

The behavior c ∼ O(N) confirms that the coset model is a vector-
like model in the large N limit. Apart from the stress tensor, there also
exist higher spin currents W (s) in the spectrum of the coset model. The
constructions for the higher spin currents are similar to the Sugawara
construction, in which we make use of the Killing form of su(N). Recall
that the rank of su(N) is (N − 1), so there are additional (N − 2)
independent Casimirs Cs in the universal enveloping algebra of su(N).
Those Casimirs are constructed in terms of the invariant symmetric
tensors of su(N), i.e. Cs ∼ da1···asT

a1 · · ·T as , with s ≤ N . For instance,
the cubic invariant symmetric tensor is given by

dabc ∝ Trf [Ta{Tb,Tc}] , dabc = d(abc) , (5.8)

where the trace is taking over the fundamental representation of su(N),
and the indices are raised or lowered by the Killing form and its inverse.
Using the cubic invariant symmetric tensor, we can write down the
general ansatz for the spin-3 current [149]

W (3) = dabc

[
a1(J

a
(1)J

b
(1)J

c
(1)) + a2(J

a
(2)J

b
(1)J

c
(1))

+ a3(J
a
(2)J

b
(2)J

c
(1)) + a4(J

a
(2)J

b
(2)J

c
(2))

]
. (5.9)

Note that there are four independent terms in the bracket of (5.9).
Similarly, combinations of (s + 1) independent terms will appear in
the general form of the spin-s current. Imposing the gauge invariant
condition W (s)Ja

(3) ∼ 0 generically yields s independent constrains on
the coefficients ai. Therefore, at each spin s, one obtains a higher spin
current W (s) from one particular combination of Kac-Moody currents.
The remaining free parameter is just the normalization constant for the
current, which can be fixed by adopting the convention in [174],

W (s)(z)W (s)(0) ∼ cN ,k/s
z2s

+ · · · , 2 ≤ s ≤ N . (5.10)

Those higher spin currents together with the stress tensor furnish a
closed associative WN ,k algebra of the coset model, which belongs to
a special class of the W-algebra. There is a more general class of W-
algebra, called W∞[µ], which is controlled by the central charge c and
the parameter µ. In the large N limit, theWN ,k algebra will be identified
with W∞[N ] with the central charge cN ,k given in (5.7).

Now, on the bulk side, the Vasiliev HS theory in AdS3 can be formu-
lated in terms of the Chern-Simons theory with the gauge algebra hs[λ],
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coupled with one additional massive complex scalar field [168]. The Lie
algebra hs[λ] is in general infinite-dimensional, and it is defined via the
quotient of the universal enveloping algebra of sl(2) by the element
⟨C2(sl2) − 1

4 (λ
2 − 1)1⟩,

B[λ] :=
U(sl(2))

⟨C2(sl2) − 1
4 (λ

2 − 1)1⟩
= C ⊕ hs[λ] , (5.11)

where C2(sl2) is the quadratic Casimir of sl(2). If we use the common
basis {L0,L±1} of sl(2), with the commutation relations,

[L1,L−1] = 2L0 , [L±1,L0] = ±L±1 , (5.12)

then the quadratic Casimir is given by

C2(sl2) = L2
0 − 1

2 (L1L−1 + L−1L1) . (5.13)

General elements in U(sl(2)) are in arbitrary combinations of L0,±1.
Under the identification C2(sl2) ∼= 1

4 (λ
2 − 1)1, the number of inde-

pendent elements are reduced at each order of the combinations. One
convenient choice for the basis of B[λ] reads as following [173],

V s
n = (−1)s−1−n (n+ s− 1)!

(2s+ 2)! (adL−1)
s−1−nLs−1

1 , (5.14)

where adL−1 represents the adjoint action of L−1, and the range of s
and n are given by s ≥ 1 and |n| ≤ s− 1. So at each order s, there are
(2s− 1) independent elements included in B[λ]. Explicit commutation
relations of the algebra in a closed form can be found in [175]. How-
ever, here we do not need them. There is a simple observation on the
structure of the algebra. If one applies the adjoint actions from sl(2) on
the subspace spanned by the set {V s

1−s, · · ·V s
s−1}, then by the Leibniz

rule of the adjoint action, it is not hard to see that states in the sub-
space transform among themselves. More precisely, under the adjoint
action of sl(2), B[λ] decomposes into the infinite sum of spin-(s− 1)
representations of sl(2),

B[λ] = 1 ⊕ 3 ⊕ 5 · · · , (5.15)

where in particular the triplet 3 is just the adjoint representation of
sl(2). This decomposition in terms of the adjoint action defines the
so-called principle embedding of sl(2) in B[λ]. Recall that the SL(2,R)
Chern-Simons theory describes the AdS3 gravity under certain bound-
ary conditions [63], thus in the principle embedding, one interprets the
triplet as the gravity sector of the Vasiliev HS theory. The remaining
multiplets (2s − 1) with s ≥ 3 account for the massless higher spin-s
gauge fields on AdS3 background, and the singlet, corresponding to C

in (5.11), accounts for the additional massive complex scalar field in
the Vasiliev HS theory. Another important phenomenon in the hs[λ]
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algebra is that for integer λ = N ≥ 2, the set of infinite number of
generators V s

n with s > N forms an ideal χN of the algebra [167, 176].
In particular, truncation of the hs[λ=N] algebra via the quotient over
the ideal χN gives rise to the finite-dimensional Lie algebra sl(N),

hs[λ = N ]/χN
∼= sl(N) , N ≥ 2 . (5.16)

thus, the SL(N ,R) Chern-Simons theory can be thought of as a χN

constrained subsector of the full Vasilliev HS theory. Although some ev-
idence has been found that for any finite N > 2 truncation the resulting
SL(N ,R) Chern-Simons theories exhibit acausalities [177], it is never-
theless interesting to study them as a playground for understanding the
full Vasiliev HS theory. Indeed, important progress on analyzing the
asymptotic symmetry of SL(3,R) Chern-Simons theory was made in
[178]. The authors showed that under the Brown-Henneaux-like bound-
ary condition, the asymptotic algebra of the theory is identified as the
classical version of the Zamolodchikov W3 algebra [142], denoted as
W cl

3 . The “classical” means that the associativity of the algebra is ful-
filled only in the semi-classical limit c → ∞. Meanwhile, the analysis
on the asymptotic symmetry of the hs[1,1] Chern-Simons theory was
performed in [179], and the result showed that the algebra is of clas-
sical W∞ type. So it became evident to believe that the hs[λ] Vasiliev
HS theory should lead to the W cl

∞[λ] symmetry, which was originally
obtained in the context of the KP-hierarchy [154, 155],

hs[λ]
asymptotic symmetry−−−−−−−−−−−−−→ W cl

∞[λ] . (5.17)

Indeed, the above relation (5.17) was verified later in [180]. Quantiza-
tion of the classical algebra W cl

∞[λ] requires introducing 1/c corrections
to the structure constants of the algebra, which finally leads to the
W∞[λ].

Matching the symmetries. A remarkable observation on the iso-
morphism between the W∞[N ] symmetry of the large N coset model
(5.5) and the W∞[λ] algebra of the hs[λ] Vasiliev HS theory with central
charge c = cN ,k and λ = N

N+k was made in [181]. The key point is that
what fix the W∞[λ] algebra are the central charge and the OPE coeffi-
cient (structure constant) γ = C4

33 between W (3) and W (4) currents1,
i.e.

W (3) ×W (3) ∼ c

31 + 2T +C4
33W

(4) + · · · . (5.18)

The exact relation between λ and γ has been found out in the early
works [182–184], given by

γ2 =
64(c+ 2)(λ− 3) (c(λ+ 3) + 2(4λ+ 3)(λ− 1))
(5c+ 22)(λ− 2)(c(λ+ 2) + (3λ+ 2)(λ− 1)) . (5.19)

1 It has been checked that a first few structure constants in the algebra depend directly
on the central charge and γ. And in [181] the authors assumed that this is still true
for all other higher order structure constants.
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For fixed γ and central charge c, the above equation (5.19) is a cubic
algebraic equation of λ. Therefore, the three roots of the cubic equation,
denoted as λ1,2,3, give rise to the triality relation on the following W
algebras [181],

W∞[λ1] ∼= W∞[λ2] ∼= W∞[λ3] , (5.20)

For the coset model, insert c = cN ,k in (5.7) and λ1 = N into (5.19),
one can first determine the associated γ(cN ,k,N). Then the remaining
two roots of (5.19) can be worked out as λ2 = N

N+k and λ3 = − N
N+k+1 ,

providing the non-trivial identifications on the symmetries of the large
N coset model and the hs[λ] Vasiliev HS theory,

WN ,k = W∞[N ] ∼= W∞[λ] , N → ∞, λ =
N

N + k
fixed . (5.21)

Apart from matching the symmetries of the two theories, there are
other tests for the duality which are reviewed in [173]. For instance,
the one-loop partition function of the Vasiliev HS theory, accounting for
the one-loop fluctuations of the massless higher spin fields in Poincaré
AdS3, matches with the vacuum character of the coset model. The
partition function of the high temperature charged black hole in HS
theory matches with the charged character of the coset model in the
perturbative expansion of the chemical potential. Those two tests are
universal, in the sense that they hold as long as the symmetries on the
two sides coincide with each other. There are also non-universal tests,
for instance, the matching between the spectrum of the two theories.
Details on those tests can be found in the review [173] and reference
therein. Further discussions on the linking between the Vasiliev HS
theory and the large N coset model via the string theory can be found
in [185–187].

5.2 higher spin theory in three dimensions

In this section, I would like to briefly review the higher spin gravity in
AdS3. I will first explain the SL(2,R) Chern-Simons formulation of the
AdS3 gravity, and the generalization to SL(N ,R) or hs[λ] higher spin
theory is straightforward. The general procedure for finding asymptotic
symmetry algebra will be demonstrated via the example of the higher
spin-3 theory [178]. Moreover, the constructions for the charged black
hole solutions in the higher spin-3 theory will also be discussed.

5.2.1 AdS3 gravity as a Chern-Simons theory

The Chern-Simons formulation of the three-dimensional Einstein grav-
ity with or without the cosmological constant was originally discovered
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in [63]. In the following, I would like to give a brief review of it. Consider
the Einstein-Hilbert action in (2 + 1)-dimensional spacetime

SEH =
1

16πG3

∫
M
d3x

√
−g(R− 2Λ) . (5.22)

with the negative cosmological constant Λ = −1/l2.

First-order formalism. To make contact with the Chern-Simon the-
ory, we need to first introduce the first-order formalism of the gravity
theory, in which, the basic variable is the vielbein field. The vielbein
field is defined as an isomorphism between the tangent bundle T M
and the orthonormal frame bundle (or the principle SO(2, 1)-bundle),

e : T M → V ×p M , ∀p ∈ M . (5.23)

Here the fiber V is a three-dimensional vector space with the structure
group SO(2, 1), providing a natural metric η on it. If we choose an
orthonormal basis Pa on V and define its dual P a via P aPb = δa

b ,
then the natural metric can be written as η = ηabP

a ⊗ P b with ηab =

diag(−1, 1, 1). The vielbein in terms of components reads

e = eaPa = ea
µPadx

µ , a,µ = 1, 2, 3 , (5.24)

which can be thought of as a V -valued one-form, and the isomorphism
(5.23) requires components ea

µ to be invertible. Now, using the natural
metric, we can define a Riemannian metric on M through the vielbein,

gµν = ηabe
a
µe

b
ν . (5.25)

Denoting eµ
a as the inverse matrix of ea

µ, with eµ
ae

a
ν = δµ

ν and eµ
ae

b
µ = δb

a,
then the inverse metric reads gµν = eµ

ae
ν
bη

ab. To describe the gauge
transformation (parallel transport) of a V -valued scalar field ϕa, we
define the covariant derivative as

Dµϕ
a = ∂µϕ

a + ω a
µ bϕ

b , (5.26)

where ω a
µ b is the spin connection. The gauge invariance of the natural

metric requires Dµη
ab = 0, which by (5.26) yields the antisymmetric

property of the spin connection ωµab = −ωµba. Therefore, the spin
connection ωab is a ∧2V -valued one-form. For V -valued tensor fields,
for instance va

ν , we can define the general covariant derivative as

∇µv
a
ν = ∂µv

a
ν + ω a

µ bv
b
ν − Γσ

µνv
a
σ , (5.27)

where Γσ
µν is the affine connection. Imposing the usual compatibility

condition ∇µgνσ = 0, or equivalently ∇µe
a
ν = 0, yields the relation

Γσ
µν = eσ

aDµe
a
ν . (5.28)
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The V -valued torsion one-form T a is defined as

T a = Dea = dea + ωa
b ∧ eb . (5.29)

The Einstein-Hilbert theory requires the vanishing torsion, hence by us-
ing (5.28) one can show the symmetric property of the affine connection,
i.e. Γσ

µν = Γσ
νµ. Therefore, the affine connection in this case recovers the

usual Christoffel symbol. On the other hand, the curvature two-form is
defined as

R a
µν bϕ

b = [∇µ, ∇ν ]ϕ
a , ∀ϕa . (5.30)

Under the torsion-free condition, by (5.27), the ∧2V -valued curvature
two-form reads

Rab = dωab + ωa
c ∧ ωcb , (5.31)

and the Ricci scalar is given by the contraction R = R ab
µν eµ

ae
ν
b . Now, it

is a simple exercise to show that the Einstein-Hilbert action (5.22) can
be rewritten as

SEH =
1

16πG3

∫
M
ϵabc

(
ea ∧Rbc +

1
3l2 e

a ∧ eb ∧ ec
)

(5.32)

where ϵabc is the epsilon tensor with ϵ123 = 1. For instance, the curva-
ture two-form term can be evaluated as

ϵabce
a ∧Rbc =

1
2ϵabce

a
µR

bc
νσ εµνσεµ′ν′σ′dxµ′

dxν′
dxσ′

=
1
2ϵabce

a
µR

bc
νσ eµ

a′e
ν
b′eσ

c′ϵa
′b′c′det(ea

µ)dx
3

=
1
2δ

[a′
a δb′

b δ
c′]
c ea

µR
bc

νσ eµ
a′e

ν
b′eσ

c′det(ea
µ)dx

3

=
√

−gRdx3 (5.33)

where εµνσ is the component of the volume form, related with ϵabc via
the vielbein as

εµνρ = ϵabce
a
µe

b
νe

c
σ , ε123 = det(ea

µ) =
√

−g . (5.34)

The equations of motion of the action (5.32) can be easily worked out,
given by

T a = 0 , Rab +
1
l2
ea ∧ eb = 0 . (5.35)

It is easy to see that the second equation gives rise to constant Ricci
scalar R = −6l−2.

SL(2,R) Chern-Simons theory. The first-order formalism of the
Einstein-Hilbert gravity introduced above can also be applied to other
dimensions. The special thing in three dimensions is that using the ep-
silon tensor, we can define the dual spin-connection as ωa = 1

2ϵ
abcωbc,
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and consequently Ra = 1
2ϵ

abcRbc. Then the action (5.32) can be rewrit-
ten as

SEH =
1

8πG3

∫
M
ea ∧Ra +

1
6l2 ϵabce

a ∧ eb ∧ ec . (5.36)

and the equations of motion reads

T a = 0 , Ra +
1

2l2 ϵ
abceb ∧ ec = 0 , (5.37)

The idea provided in [43] is that the epsilon tensor in the above action
can be treated as the structure constant,

[Pa,Pb] =
1
l2
ϵabcJ

c =⇒ e∧ e = 1
2l2 ϵ

abceb ∧ ecJa , (5.38)

The basis Ja should be associated with the dual spin-connection, i.e.
ω = ωaJa, as required by the equation of motion for ωa. More pre-
cisely, Ja are the generators of the SO(2, 1) structure group, and they
act on the fiber V , or in other words, V forms a three-dimensional
representation of SO(2, 1). Therefore, the full algebra is given by

[Pa,Pb] =
1
l2
ϵabcJ

c , [Ja, Jb] = ϵabcJ
c , [Ja,Pb] = ϵabcP

c , (5.39)

which is isomorphic to the local isometry of AdS3, i.e. so(2, 2). One can
think of Pa as the “translation” generators, and Ja as the local Lorentz
generators of the spacetime. The reason that the “translation” Pa do
not commute with each other is that in the embedding space R2,2 of
AdS3, the “translation” Pa represent the boost generators. If we take
l → ∞ such that the cosmological constant vanishes, then the above
algebra reduces to the Poincaré algebra iso(2, 1), i.e. the isometry of
the (2 + 1)-dimensional flat spacetime.

To finally formulate the Einstein-Hilbert theory as a gauge theory,
we need to define the so(2, 2)-invariant bilinear form. Since so(2, 2) ∼=
sl(2,R) ⊕ sl(2,R) is semisimple, which implies the invariant bilinear
form is not unique. The choice of the invariant bilinear form compatible
with the action (5.32) is given by2 [43]

⟨Ja, Jb⟩ = 0 , ⟨Pa,Pb⟩ = 0, ⟨Ja,Pb⟩ = ηab , (5.40)

The so(2, 2)-invariance of (5.40) can be checked by the definition,

⟨[X,Y ],Z⟩ = ⟨X, [Y ,Z]⟩ , (5.41)

for arbitrary so(2, 2)-valued X, Y and Z. Now we are ready to write
the Einstein-Hilbert action (5.32) as a gauge theory, given by

SEH =
1

8πG3

∫
M

⟨e∧ R +
1
3e∧ e∧ e⟩ . (5.42)

2 Note that the bilinear form (5.40) is not the Killing form of so(2, 2).
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with R = dω+ ω ∧ ω. If we define a Chern-Simons gauge field A as

A = eaPa + ωaJa , (5.43)

using (5.39) and (5.40), it is easy to show the following Chern-Simons
action is equivalent to the (5.42) to a boundary term,

S[A] =
1

16πG3

∫
M

⟨A∧ dA+
2
3A∧A∧A⟩ , (5.44)

Furthermore, if we define J±
a = 1

2 (Ja ± lPa), then the algebra (5.39)
decomposes into two copies of sl(2,R),

[J+
a , J+

b ] = ϵab
cJ+

c , [J−
a , J−

b ] = ϵab
cJ−

c , [J+
a , J−

b ] = 0 . (5.45)

Consequently, the gauge field A can also decompose into two decoupled
pieces,

A = A+ +A− = Aa
+J

+
a +Aa

−J
−
a , (5.46)

with Aa
± = (ωa ± ea/l). The bilinear form (5.40) acts on J±

a as,

⟨J+
a , J+

b ⟩ = l

2ηab , ⟨J−
a , J−

b ⟩ = − l

2ηab , ⟨J+
a , J−

b ⟩ = 0 , (5.47)

which together with the commutation relation (5.45) gives rise to the
decomposition of the action S[A] = S[A+] +S[A−]. In the fundamental
representation of so(2, 2), J±

a take the form of

J+
a =

Ta 0
0 0

 , J−
a =

0 0
0 Ta

 (5.48)

where Ta are the generators in the fundamental representation of sl(2,R),

T1 =

0 −1
2

1
2 0

 , T2 =

1
2 0
0 −1

2

 , T3 =

0 1
2

1
2 0

 . (5.49)

Taking the trace over the fundamental representation,

Trf [J
±
a J

±
b ] = Tr[TaTb] =

1
2ηab , (5.50)

and comparing with the bilinear form (5.47), we can write the action
(5.44) as the difference between two Chern-Simons actions,

S[A] = Scs[A+] − Scs[A−] (5.51)

with

Scs[A±] =
kcs

4π

∫
M

Tr[A± ∧ dA± +
2
3A± ∧A± ∧A±] , (5.52)

Here A± have been redefined as A± = Aa
±Ta, namely they are valued

in the fundamental representation of sl(2,R), but not in so(2, 2) any
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longer. And the Chern-Simons level is given by kcs =
l

4G3
. The Chern-

Simons action (5.52) is invariant under the following gauge transforma-
tion up to a boundary term,

A± → g−1A±g+ g−1dg
g∼1+λ−−−−→ δA± = dλ+ [A±,λ] , (5.53)

The equations of motion for Chern-Simons fields are just the flat con-
nection conditions,

F± = dA± +A± ∧A± = 0 , (5.54)

hence, locally one can express the Chern-Simons field as a gauge trans-
formation from the “empty” solution, i.e. A± = h−1

± dh±. As a remark,
in the literature, the Riemannian metric is usually expressed as

gµν =
1

Tr[L0L0]
Tr[ẽµẽν ] . (5.55)

where L0 is the Cartan element of sl(2), which in the fundamental repre-
sentation is identical to T2 in (5.49). The new vielbein ẽ here is defined
as ẽ = ẽaTa, which is distinct with the original vielbein e = eaPa.
Nevertheless, since Tr[TaTb] = Tr[L0L0]ηab =

1
2ηab, the above formula

(5.55) recovers the original definition of the metric in (5.25).

Remarks on Euclidean signature. The above discussions are in the
Lorentz signature. In the Euclidean case, the isometry group of AdS3 is
SO(3, 1) ∼= SL(2, C), which is the same as the isometry of the (2+1)-
dimensional de Sitter space. So effectively, the cosmological constant
in the algebra changed to be −l−2 → l−2. Therefore, the commutation
relations for Ja and Pa are given by

[Ja, Jb] = ϵabcJ
c, [Ja,Pb] = ϵabcP

c, [Pa,Pb] = − 1
l2
ϵabcJ

c, (5.56)

Here the indices are lowered and raised by Euclidean metric δab and its
inverse, reflecting the fact that the structure group on the fiber V is
SO(3), describing the local rotation symmetry of the Euclidean AdS3.
Unlike the Lorentzian case, the real form of so(3, 1) does not admit a
direct sum decomposition. However, we can consider its complex form
and define

J±
a =

1
2 (Ja ∓ ilPa) , (5.57)

which furnish two copies of complex so(3) ∼= su(2) algebra. In the
fundamental representation of so(3, 1), J±

a are matrices in the form of

J+
a =

T̃a 0
0 0

 , J−
a =

0 0
0 T̃a

 , (5.58)

where T̃a are traceless complex matrices, related to Ta in (5.49) as

T̃1 = T1 , T̃2 = iT2 , T̃3 = iT3 . (5.59)
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Thus, in the fundamental representation, the Chern-Simons connection
A = eaPa + ωaJa can be redefined as

A = A+ ⊕A− = Aa
+T̃a ⊕Aa

−T̃a , (5.60)

with the components

Aa
± = ωa ± iea/l . (5.61)

Notice that both ea and ωa are real, so we have Aa
+ = (Aa

−)
∗. Mean-

while, the matrices T̃a in (5.59) are traceless and anti-hermitian. Thus,
we conclude that in the Euclidean case,

A+ = −(A−)
† , A± ∈ sl(2, C) . (5.62)

Due to the flat connection conditions, i.e. F± = 0, we can locally ex-
press the Chern-Simons fields as

A+ = h−1dh , A− = −dh†(h†)−1 , h ∈ SL(2, C) , (5.63)

and the redefined vielbein reads

ẽ = eaT̃a = − il

2 (A+ −A−) = − il

2 h
†Λ−1dΛ(h†)−1 , (5.64)

with Λ = hh† ∈ SL(2, C). Therefore, by (5.55), we have

gµν ∼ Tr[Λ−1∂µΛΛ−1∂νΛ] . (5.65)

5.2.2 Higher spin gravity

A natural generalization of the SL(2,R) Chern-Simons theory is to
replace the gauge group by SL(N ,R) × SL(N ,R), and the resulting
theory turns out to be a nonlinear interacting theory of massless higher
spin fields. Though this generalization is rather straightforward, for a
better understanding of the higher spin theory, I would like to start
from the vielbein formalism. We consider a generalized vielbein e as a
map from the tangent bundle T M to the principle SL(N ,R)-bundle,

e : T M → FslN (M) = V ×p M , ∀p ∈ M . (5.66)

where V is a (N2 − 1)-dimensional vector space acted by the sl(N ,R)
action. The nature metric κ on V is given by the Killing metric of
sl(N ,R) (up to a constant factor aN ),

κab = aN Tr[adTaadTb
] , (5.67)

where {Ta} denotes a basis of sl(N ,R). To fix the constant aN , we
need to first specify the pure gravity sector, namely the embedding
of sl(2,R) in sl(N ,R). Here we focus on the principle embedding, in
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which, sl(N ,R) decomposes into the following multiplets under the
adjoint action of sl(2,R),

sl(N ,R) = sl(2,R) ⊕ 5 ⊕ · · · ⊕ (2N − 1) , (5.68)

Each (2s− 1) multiplet with 2 ≤ s ≤ N forms a spin-(s− 1) repre-
sentation of sl(2,R). In the Cartan-Weyl basis {V s

n } of sl(N ,R), with
2 ≤ s ≤ N and 1 − s ≤ n ≤ s− 1, the above decomposition (5.68) can
be seen from the following commutation relation

[V 2
n ,V s

m] = ((s− 1)n−m) V s
m+n . (5.69)

Here {V 2
0 ,V 2

±1} is just the usual basis {L0,L±1} of sl(2,R), and each
set {V s

n } with fixed s is associated with the spin-s sector. The constant
aN then can be fixed by requiring the sl(2,R) sector of κ to be identical
to the natural metric η in the pure gravity case. As before, if we denote
Pa as the basis of V , then the vielbein reads

e = eaPa = ea
µPadx

µ , a = 1, · · · ,N2 − 1 , µ = 1, 2, 3 , (5.70)

and the spacetime metric is defined as

gµν = ea
µe

b
νκab . (5.71)

Now, recall that in the pure gravity case, the vielbein ea
µ is a 3 × 3 ma-

trix with nine degrees of freedom (d.o.f). The metric manifests the local
Lorentz invariance, hence vielbeins related by local Lorentz transforma-
tion are equivalent. Therefore, only six independent d.o.f are encoded
in the vielbein, which matches with the d.o.f of the metric. However,
in SL(N ,R) case, the vielbein is a (N2 − 1) × 3 matrix, so the metric
can not account for all d.o.f of the vielbein. This motivates us to define
the additional symmetric higher spin fields in the theory,

ϕµ1···µs ∼ ea1
µ1 · · · eas

µs
da1···as , s ≤ N . (5.72)

Here da1···as is the sl(N ,R)-invariant symmetric tensor which can be
constructed in the fundamental representation of sl(N ,R) as

da1···as ∼ Tr[T(a1 · · ·Tas)] . (5.73)

Of course, the d.o.f of all higher spin fields including the metric are
much larger than the d.o.f of the vielbein, hence different fields are not
independent. This reflects the fact that the theory is an interacting
theory of the higher spin fields. Apart from the vielbein, we should
also introduce the generalized spin-connection associated with the fiber
bundle FslN (M). The SL(N ,R) structure group of the fiber V means
there is a natural sl(N ,R) action on V . So we define the spin-connection
as

ω = ωaJa , (5.74)
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where Ja form a sl(N ,R) subalgebra. Denote fabc as the structure con-
stant of sl(N ,R) in the Ja basis, then the full algebra of {Ja,Pa} is
given by

[Ja, Jb] = fabcJdκ
cd , [Ja,Pb] = fabcPdκ

cd ,

[Pa,Pb] =
1
l2
fabcJdκ

cd , (5.75)

By defining J±
a = 1

2 (Ja ± lPa), the algebra (5.75) factorizes into two
copies of sl(N ,R) algebra. In fact, in the fundamental representation,
Ja and Pa take the form of

Ja =

Ta 0
0 Ta

 , Pa =
1
l

Ta 0
0 −Ta

 , (5.76)

with Ta satisfying [Ta,Tb] = fabcTdκ
ab. So in the fundamental represen-

tation, the Chern-Simons gauge field can be written as

A = eaPa + ωaJa = Aa
+Ta ⊕Aa

−Ta , (5.77)

Now, if we choose the following invariant bilinear over the whole alge-
bra,

⟨Ja, Jb⟩ = ⟨Pa,Pb⟩ = 0 , ⟨Ja,Pb⟩ = κab , (5.78)

then the construction for the Chern-Simons action will be the same as
before. The only differences are that now the trace in Scs[A±] is taking
over the fundamental representation of sl(N ,R), and as a consequence,
the Chern-Simons level needs to be modified as

kcs =
l

8G3Tr[L0L0]
, Tr[L0L0] =

1
12N(N2 − 1) . (5.79)

This arises from the difference between the bilinear form and the trace,

⟨J±
a , J±

b ⟩ = l

2κab , Tr[TaTb] = Tr[L0L0]κab . (5.80)

If we redefine the vielbein as ẽ = eaTa, then using the relation (5.80)
one can express the spacetime metric (5.71) and the higher spin fields
(5.72) as,

gµν =
1

Tr[L0L0]
Tr[ẽµẽν ] , ϕµ1···µs ∼ Tr[ẽ(µ1 · · · ẽµs)] , (5.81)

which are the usual expressions in the literature.

Why higher spin? Finally, we need to answer the question: why does
the SL(N ,R) Chern-Simons theory describe the massless higher spin
fields? The detailed answer can be found in [178], and here I shall just
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briefly explain the reason. The equations of motion of the generalized
vielbein and spin connection are given by,

dea + fabcωb ∧ ec = 0

dωa + fabc
(
ωb ∧ ωc +

1
l2
eb ∧ ec

)
= 0 . (5.82)

where indices are raised and lowered by κab and its inverse. In terms
of the metric (5.71) and the higher spin fields (5.72), these equations
are highly non-linearly coupled through the structure constant. The
situation can be much simplified if we only switch on a single perturba-
tive higher spin-s sector around a fixed AdS3 background. This means
that in the Cartan-Weyl basis, we consider the following form of the
vielbein,

ẽ = eaTa = ẽ(2) + ẽ(s) = en
(2)V

2
n + em

(s)V
s

m , em
(s) ≪ 1 . (5.83)

where ẽ(2) accounts for the AdS3 background. At the linear order of
em
(s), all the higher spin-j fields become,

ϕµ1···µj̃
∼ Tr

[
ẽ
(s)
(µ1
ẽ(2)µ2 · · · ẽ(2)

µj)

]
. (5.84)

However, due to the following property of the trace in the fundamental
representation of sl(N ,R),

Tr[V s
(mV

2
n1 · · ·V 2

nj−1)
] ̸= 0 , iff j = s ,

j−1∑
i=1

ni = −m , (5.85)

only the spin j = s field in (5.84) is non-vanishing. Therefore, we
obtain the one-to-one correspondence between ẽ(s) and the linearized
higher spin-s field. By linearizing the equations of motion (5.82) for
the vielbein and the spin-connection and transforming them to be a
second-order linear differential equation of ϕµ1···µs , one can show that
the resulting differential equation is the Fronsdal’s equation on the fixed
AdS3 background [178]. Fronsdal’s equation is the equation of motion
which describes the free massless higher spin gauge field [188]. There-
fore, at the linear level, the SL(N ,R) Chern-Simons theory describes
the free massless higher spin gauge fields propagating on the AdS3 back-
ground. One can also include the higher order perturbative expansions
of the equation of motion in terms of the linearized higher spin fields,
then the nonlinear higher order couplings such as ϕ(s)ϕ(s′) and ϕ(s)ϕ(s)
will appear. The above two facts together explain why the SL(N ,R)
Chern-Simons theory is an interacting theory of massless higher spin
gauge fields.

5.2.3 Asymptotic symmetry

Now, let me introduce the derivation of the asymptotic symmetry of
the higher spin gravity. For simplicity, I will focus on the SL(3,R) case
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and work in the Euclidean signature. For the general SL(N ,R) as well
as the hs[λ] cases, the procedure will be similar to this simple case. Let
me first fix the convention. The basis of sl(3,R) I will use later reads,

L−1 =


0

√
2 0

0 0
√

2
0 0 0

 , L0 =


1 0 0
0 0 0
0 0 −1

 , L1 =


0 0 0

−
√

2 0 0
0 −

√
2 0

 ,

W−1 =


0 1√

2 0
0 0 − 1√

2

0 0 0

 , W0 =


1
3 0 0
0 −2

3 0
0 0 1

3

 , W1 =


0 0 0

− 1√
2 0 0

0 1√
2 0

 ,

W−2 =


0 0 2
0 0 0
0 0 0

 , W2 =


0 0 0
0 0 0
2 0 0

 , (5.86)

which satisfies L−i = (−1)iL†
i and W−n = (−1)nW †

n with i = 0, ±1
and n = 0, ±1, ±2. The commutation relations read3

[Li,Lj ] = (i− j)Li+j ,
[Li,Wn] = (2i− n)Wi+n ,

[Wn,Wm] = − 1
12 (n−m)(2n2 + 2m2 − nm− 8)Lm+n . (5.87)

The Chern-Simons level in (5.79) is given by

kcs =
l

16G3
. (5.88)

In the later discussions, we will set the AdS3 radius l = 1 for conve-
nience.

Highest weight gauge. Recall that when deriving the asymptotic
symmetry algebra of pure AdS3 gravity, we imposed the Brown-Henneaux
boundary condition by requiring that the infinitesimal bulk diffeomor-
phisms preserve the Fefferman-Graham gauge (3.4) and keep the bound-
ary metric g(0) invariant. In particular, when g(0) is flat, the resulting
asymptotic symmetry algebra turns out to be two copies of the Vi-
rasoro algebra. In the Chern-Simons formalism, there is an analog of
the Feffermann-Graham gauge for the Chern-Simons fields, called the
highest weight gauge. On-shell solutions for Chern-Simons fields can be
parametrized in the following way,

A+ = b−1a+b+ b−1db , A− = ba−b
−1 + bdb−1 , (5.89)

3 The normalization of Wn here corresponds to choose σ = − 1
4 in [178].
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where b = erL0 is a Hermitian matrix, and the connections a± in the
highest weight gauge read [178],

a+ = (L1 +
L

4kcs
L−1 +

W
4kcs

W−2)dw ,

a− = (L−1 +
L̄

4kcs
L1 − W̄

4kcs
W2)dw̄ . (5.90)

Here L and W are holomorphic functions of w, and the bar represents
the complex conjugate, i.e. L̄ = L∗ and W̄ = W∗. It is easy to check
a− = −a†

+, so that A− = −A†
+ is fulfilled in the Euclidean signature.

Now, the metric associated with the Chern-Simons fields above turns
out to be asymptotically AdS3, in particular, with a flat boundary
metric,

ds2 = dr2 + e2r
∣∣∣dw+ e−2r L̄

4kcs
dw̄
∣∣∣2 + e−4r

∣∣∣ W
4kcs

∣∣∣2dwdw̄ . (5.91)

Here the boundary is located at r → ∞. Meanwhile, the spin-3 field
can be worked out as

ϕ(3) ∝ Wdw3 + W̄dw̄3 + O(e−2r) , r → ∞ . (5.92)

For vanishing spin-3 field (or W = 0), the metric (5.91) recovers the
Bañados metric (3.17) under the redefinition ρ = e−2r for the radial
coordinate.

Asymptotic symmetry algebra. Since on-shell Chern-Simons fields
are flat connections, solutions with different values of L and W can al-
ways be related by gauge transformations. Therefore, we can obtain the
asymptotic symmetry by analyzing the transformation laws of L and
W under those infinitesimal gauge transformations. More precisely, for
a gauge parameter Λ, we require the following Brown-Henneaux-like
boundary condition,

δΛAr = δΛAw̄ = 0 ,

δΛAw = b−1
(
δL

4kcsL−1 +
δW
4kcs

W−2

)
b , (5.93)

The first condition in (5.93) requires Λ in the form of Λ = b−1λ(w)b.
And for the second condition in (5.93), we consider the general expan-
sion of λ(w)

λ(w) =
1∑

i=−1
ϵi(w)Li +

2∑
n=−2

ξn(w)Wn . (5.94)

where ϵi and ξn account for SL(2,R) and higher spin transformation
respectively. Inserting (5.94) into the second condition in (5.93) yields
a set of differential equations for ϵi(w) and ξn(w). If we denote ϵ1 = ϵ

and ξ2 = ξ, then the resulting differential equations are given by

ϵ0 = −ϵ′ , ϵ1 =
Lϵ

4kcs
− Wξ

2kcs
+

1
2ϵ

′′ , (5.95)
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and

ξ1 = −ξ′ ,

ξ0 =
Lξ

2kcs
+

1
2ξ

′′ ,

ξ−1 = − L′ξ

6kcs
− 5Lξ′

12kcs
− 1

6ξ
(3) ,

ξ−2 =
Wϵ

4kcs
+

L2ξ

16k2
cs

+
7L′ξ′

48kcs
+

L′′ξ

24kcs
+

Lξ′′

6kcs
+

1
24ξ

(4) . (5.96)

Inserting (5.95) and (5.96) back into the second equation in (5.93) yields
the transformation laws of L and W associated with the parameters ϵ
and ξ, given by

δϵL = L′ϵ+ 2Lϵ′ + 2kcsϵ
(3) ,

δϵW = W ′ϵ+ 3Wϵ′ ,

δξW =
(L2)′ξ

3kcs
+

2L2ξ′

3kcs
+

3L′′ξ′

4

+
5L′ξ′′

4 +
L(3)ξ

6 +
5Lξ(3)

6 +
kcsξ

(5)

6 , (5.97)

The first equation in (5.97) can be identified as the transformation law
of a CFT stress tensor under the conformal transformation, with the
central charge

c = 24kcs =
3l

2G3
. (5.98)

Hence, we can interpret the highest weight gauge (5.90) as the insertions
of fields in the dual CFT, denoted as X = O1(w1)O2(w2) · · · , and
identify L as the expectation value of the stress tensor, i.e. L(w) =

⟨T (w)⟩X = ⟨T (w)X⟩/⟨X⟩. Similarly, the second equation in (5.97) is
the transformation law of a conformal primary field, denoted as W (w),
under the conformal transformation, with conformal weights (3, 0). So
we identify W as the expectation value of W (w) in the dual CFT.
The last equation in (5.97) describes the transformation law of W (w)

under the spin-3 transformation. Since the three variations in (5.97) are
closed, implying that W (w) is a spin-3 conserved current in the dual
CFT. The OPEs between the stress tensor and the spin-3 current can
be extracted from the Ward identities,

δϵL = − 1
2π

∫
dz2 ∂zϵ(z)⟨T (z)T (w)⟩X ,

δϵW = − 1
2π

∫
dz2 ∂zϵ(z)⟨T (z)W (w)⟩X ,

δξW = − 1
2π

∫
dz2 ∂zξ(z)⟨W (z)W (w)⟩X . (5.99)
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By choosing the parameters ϵ(z) = ξ(z) = 1
y−z and inserting them into

(5.97) and (5.99), one can work out the OPEs, given by

T (y)T (w) ∼ c/2
(y−w)4 +

2T (w)
(y−w)2 +

∂T (w)

y−w
,

T (y)W (w) ∼ 3W (w)

(y−w)2 +
∂W (w)

y−w
, (5.100)

and4

W (y)W (w) ∼ 5c
6(y−w)6 +

5T (w)
(y−w)4 +

5∂T (w)
2(y−w)3

+
5βclΛcl(w) +

3
4∂

2T (w)

(y−w)2 +
5
2βcl∂Λcl(w) +

1
6∂

3T (w)

y−w
, (5.101)

where the coefficient βcl and the composite field Λcl(w) are defined as

βcl =
16
5c , Λcl(w) = T (w)2 . (5.102)

The above OPEs are “classical”, in the sense that the associativity
(crossing symmetry of current correlators) is only fulfilled in the semi-
classical limit c → ∞. The modes expansions of the currents furnish the
W cl

3 asymptotic symmetry algebra for the SL(3,R) higher spin gravity
[178]. To quantize them, one needs to introduce the normal ordering
for the composite field and modify the OPEs by 1/c corrections [142,
149],

βcl → β =
16

22 + 5c ,

Λcl(w) → Λ(w) = (T (w)T (w)) − 3
10∂

2T (w) . (5.103)

By the modes expansions,

T (w) =
∑

n

Lnw
−2−n , W (w) =

∑
n

Wnw
−3−n ,

Λ(w) =
∑

n

λnw
−4−n (5.104)

the symmetry algebra can be worked out in the standard way by eval-
uating the residues, given by

[Ln,Lm] = (n−m)Ln+m +
c

12 (n
3 − n)δn+m,0 ,

[Ln,Wm] = (2n−m)Wn+m ,

[Wn,Wm] =
1
12 (n−m)(2n2 + 2m2 −mn− 8)Ln+m

+
5β
2 (n−m)λn+m +

5c
6

1
5!
n(n2 − 1)(n2 − 4)δn+m,0 , (5.105)

4 By the rescaling W →
√

5/2W , the OPE becomes W W ∼ c
3 1 + 2T + · · · , which

matches with (5.18).
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with

λn =
∑
m

: Ln−mLm : − 3
10 (n+ 3)(n+ 2)Ln . (5.106)

This is the quantum W3 algebra, i.e. the symmetry algebra in the dual
CFT of the SL(3,R) higher spin gravity.

Some comments. It is perhaps worth emphasizing that the dual CFT
with W3 symmetry will not be the coset model (5.5) any longer, since
by choosing N = 3, the central charge cN ,k in (5.7) does not match
with the Brown-Henneaux central charge in (5.98). To my knowledge,
it is still unclear what is the precise W3 CFT dual to the SL(3,R)
higher spin gravity. Nevertheless, there is still something universal but
interesting that we can learn from this bottom-up model. For instance,
the higher spin black hole originally discovered in [33], the higher spin
entanglement entropy [135], and the higher spin wormhole from the
modular bootstrap [189]. On the other hand, there are also some un-
solved problems, towards a deeper understanding of the higher spin
gravity. For example, like the pure AdS3 gravity, it is expected that the
effective action of the higher spin gravity might be the Toda action, of
which, the Liouville action as the effective action of the AdS3 gravity is
a special case. This statement has not been proven yet, mainly due to
the issue of the holographic renormalization in the Chern-Simons for-
malism. However, some evidence has been shown in [190], in which, the
authors used the classical Toda theory to reproduce the results for the
holographic Rényi entropy in the higher spin gravity. It will be interest-
ing to work out the effective action of higher spin gravity explicitly in
future work. In addition, the higher spin gravity is topological, thus one
can study the quotient of higher spin solutions in a similar way as in
the pure AdS3 case. Detailed understandings on what are the analogs of
the Schottky uniformization and the projective structure in the higher
spin case, and how the higher spin transformations are related to the
W3 decoupling equation [190] in the dual CFT will also be interesting
topics for the future works.

5.2.4 Higher spin black hole

In this subsection, I plan to introduce the higher spin black hole [33]
and its partition function [191], which are relevant for the holographic
calculation of the higher spin charged moments discussed in our work
[31]. For simplicity, I will still focus on the SL(3,R) case and work in
the Euclidean signature.

What are the higher spin black holes? In a general diffeomor-
phism invariant gravity theory, a black hole is usually defined via the
existence of the event horizon. The near horizon geometry of a black
hole is always the same as a Rindle spacetime. And transforming to the
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Euclidean signature, the near horizon geometry is required to satisfy
the smoothness condition

ds2 ≈ dr̃2 +

(2π
β

)2
r̃2dt2E + · · · =⇒ tE ∈ [0,β) . (5.107)

where r̃ = 0 denotes the location of the horizon and the Euclidean
time period gives rise to the temperature of the black hole T = 1/β.
However, in the higher spin gravity, for instance, the SL(3,R) case,
since the diffeomorphism only accounts for the gauge transformation
in the SL(2,R) subsector, the traditional definition of the black hole
via the horizon will not manifest the full SL(3,R) gauge invariance. In
other words, one can always perform a SL(3,R) gauge transformation
to change the geometry and remove the horizon. Therefore, an alterna-
tive definition of the black hole with the manifestation of the full gauge
invariance is required in the higher spin gravity theory.

Revisit on the SL(2,R) case. To solve this problem, we first go
back to the pure AdS3 gravity or SL(2,R) Chern-Simons theory. The
AdS gravity in three-dimensional is more special than its higher dimen-
sional analogs due to its topological nature, and it allows us to define
a black hole via the quotient of the Poincaré AdS3, as discussed in Sec-
tion 3.1. In particular, from the quotient perspective, we do not pay
attention to the event horizon but rather focus on the contractibility of
the Euclidean time circle in the bulk. This contractibility requirement
is equivalent to the smoothness condition of the near horizon geom-
etry5. Now, how is the projective structure related to the SL(2,R)
Chern-Simons fields? To see the connection between them, we recall
the general black hole solution (3.79) in pure AdS3 gravity with the
boundary period w ∼= w+ 2π ∼= w+ 2πτ . This solution (3.79) can be
realized by the SL(2,R) Chern-Simons fields in the form of (5.89) with

a+ = (L1 +
L
kcs

L−1)dw , a− = −(a+)
† , L =

kcs

4τ2 . (5.108)

Here, the SL(2,R) generators reads

L1 =

0 0
1 0

 , L0 =

1
2 0
0 −1

2

 , L−1 =

0 −1
0 0

 , (5.109)

and kcs =
l

4G3
= c

6 . The constant L is the stress tensor of the black hole.
The mapping from the black hole to the Poincaré AdS3 is character-
ized by the boundary diffeomorphism z(w) = eiw/τ (see Section 3.1.2),
which is the solution to the following differential equation,

L =
c

12{z,w} . (5.110)

5 Each Euclidean time slice of the black hole can be thought of as a hemisphere
anchored at the boundary of the Poincaré AdS3. The center of the hemisphere is
the location of the black hole horizon, which is of course smooth by construction.
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The information about the Chern-Simons connection is hidden in the
above differential equation. To show it explicitly, we rewrite (5.110) as
the Hill’s equation (see (3.177))

φ′′ +
6
c

Lφ = 0 , z(w) =
φ1(w)

φ2(w)
. (5.111)

By defining a vector ψT = (φ′,φ), we can further express Hill’s equa-
tion as a matrix-valued differential equation,

∂

φ′

φ

 =

0 −6
c L

1 0

φ′

φ

 =⇒ ∂ψ = (a+)wψ . (5.112)

where (a+)w is just the w-component of the connection a+. The solu-
tion for the vector ψ can be formally written as

ψ = Pe
∫ w

a+ψ0 . (5.113)

Hence, the black hole is now characterized by the holonomies of the
Chern-Simons connection around the two different loops,

Hol[A+,α] ∼= Pe
∮

α
a+ , Hol[A+,β] ∼= Pe

∮
β

a+ . (5.114)

Here “∼=” denotes the identification up to a SL(2,R) conjugation, and
α and β are the contractible and non-contractible loops, going around
the time and spatial directions on the boundary, respectively. Those
holonomies are the topological invariant quantities for the given Chern-
Simon fields. Since (a+)w is a constant here, the path ordering becomes
unimportant for evaluating the holonomies. By diagonalizing (a+)w,
with the eigenvalues λ = ±i/2τ , we obtain

∮
α
a+ = 2πτ (a+)w

∼=

iπ 0
0 −iπ

 , (5.115)

and similarly

∮
β
a+ = 2π(a+)w

∼=

 iπ
τ 0
0 − iπ

τ

 . (5.116)

Therefore, the holonomies are given by

Hol[A+,α] ∼= e2πiL0 = −1 , Hol[A+,β] ∼= p , (5.117)

where p is a loxodromic PSL(2, C) element. In terms of the SL(2,R)
action on the z coordinates, −1 is regarded as the identity map on z,a b

c d

 ◦ z = az + b

cz + d
=⇒ (−1) ◦ z = z . (5.118)
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Therefore, we conclude that the two holonomies of the Chern-Simons
connection (5.108) are associated with the projective structure of the
black hole. In particular, notice that −1 belongs to the center {±1}
of SL(2,R), so it is invariant under arbitrary SL(2,R) conjugation.
Hence, we identify Hol[A+,α] = −1 in (5.117) as the gauge invariant
notion of the black hole in the SL(2,R) Chern-Simons theory. On the
other hand, the holonomy around the non-contractible loop β specifies
the modular parameter and the stress tensor of the black hole. The
stress tensor can be evaluated from the trace,

L = −kcs

2 Tr[(a+)2
w] , (5.119)

which is also a topological invariant quantity of the connection.

SL(3,R) higher spin black hole. After understanding the gauge
invariant notion of the pure AdS3 black hole, we can straightforwardly
generalize it to the higher spin case. For SL(3,R) higher spin gravity,
we define a black hole by requiring its holonomy around the contractible
loop α to be

Hol[A+,α] ∼= e2πiL0 = 1. (5.120)

where 1 is the unique center element of SL(3,R)6. The explicit construc-
tion of the SL(3,R) higher spin black hole via the condition (5.120) was
first made in [191]. In the following, I would like to adopt its alternative
form discussed in [193]. The idea is that for a general higher spin black
hole, besides the modular parameter coupled to the stress tensor, there
should also be a spin-3 chemical potential coupled to the spin-3 current.
The modular parameter can be shown explicitly in the Chern-Simons
connection by defining a new boundary coordinates system,

w = σ1 + τσ2 , σ1 ∼= σ1 + 2π , σ2 ∼= σ2 + 2π . (5.121)

in terms of which, the connection a+ of a pure AdS3 black hole in the
SL(3,R) gravity reads

(a+)σ1 = L1 +
L

4kcs
L−1 , (a+)σ2 = τ (a+)σ1 . (5.122)

When adding the spin-3 current to the component (a+)σ1 , i.e.

(a+)σ1 → L1 +
L

4kcs
L−1 +

W
4kcs

W−2 , (5.123)

one needs to modify (a+)σ2 by the additional spin-3 chemical potential
term coupled with W. Since both L and W are constant in the black
hole case, the equation of motion for the Chern-Simons field becomes

6 In general SL(N , R) case, the condition reads Hol[A+, α] ∼= e2πiL0 = (−1)N−11

[192].
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[(a+)σ1 , (a+)σ2 ] = 0. Generic solutions for (a+)σ2 can be written in the
following compact form,

(a+)σ2 = τ (a+)σ1 + α

[
(a+)

2
σ1 − 1

3Tr[(a+)2
σ1 ]1

]
, (5.124)

which by construction is a traceless matrix and commute with (a+)σ1 .
The free parameter α can be understood as the spin-3 chemical poten-
tial. The coupling between α and W can be seen from the variation of
the Euclidean Chern-Simons action, which gives rise to the boundary
term,

δIcs[A+] = − ikcs

4π

∫
dσ1dσ2Tr [a1δa2 − a2δa1]

= 2πiLδτ − 3πiWδα− iπαδW , (5.125)

where I denote a1 = (a+)σ1 and a2 = (a+)σ2 for short. How to fix L
and W as functions of τ and α? Recall the holonomy condition (5.120),
which in the new coordinates reads

Hol[A,α] ∼= e2πa2 ∼= e2πiL0 . (5.126)

Therefore, we need to require the eigenvalues of 2πa2 to be the same
as the ones of 2πiL0. Since the eigenvalues of a 3 × 3 traceless matrix
are characterized by its determinant and the square trace, we obtain
two equivalent conditions of (5.126), given by

Det[a2] = Det[iL0] = 0 , Tr[(a2)
2] = Tr[(iL0)

2] = −2 .
(5.127)

Inserting (5.124) into (5.127) yields two algebraic equations,

0 = 2L3α3 − 27kcsLWα2τ + 18kcsL2ατ2 + 27kcsW2α3 + 27k2
csWτ3 ,

0 = L2α2 + 3k2
cs + 9kcsWατ − 3kcsLτ2 . (5.128)

Those two algebraic equations (5.128) can be regarded as the state
equations characterizing this thermodynamical system. To solve them,
let us first make some simplifications. Recall that the length dimen-
sions of (τ , L, W) are given by (1, −2, −3). By the dimensional analysis
on (5.125), we conclude that α has length dimension two. The Chern-
Simons level is dimensionless since it is related to the central charge
by kcs = c/24 in the SL(3,R) case. In addition, both the stress tensor
and spin-3 current of the black hole should scale in c. So now we can
define the following three dimensionless quantities,

L =
Lτ2

kcs
, W =

Wτ3

kcs
, γ =

α

τ2 . (5.129)

In terms of (L,W , γ), the algebraic equations (5.128) are expressed as

0 = W +W 2γ3 +
2
27L

2γ(9 + Lγ2) −LWγ2 ,

0 = 3 + 9Wγ + L2γ2 − 3L . (5.130)
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There are four different branches of solutions to (5.130), which has been
discussed in detail in [194]. Here I focus on the so-called BTZ branch,
in which, the vanishing of γ leads to L = 1 and W = 0. In other words,
we recover the pure AdS3 black hole with stress tensor L = c

24τ2 = kcs
τ2

when the spin-3 chemical potential vanishes, i.e. α = 0. The expressions
of L and W as functions of γ are rather complicated, so here I would
like to provide their perturbative expansions in the region γ ≪ 1. In
the BTZ branch, they are given by

L = 1 − 5
3γ

2 +
10
3 γ

4 − 221
27 γ

6 + O(γ8) ,

W = −2
3γ +

40
27γ

3 − 34
9 γ

5 + O(γ7) . (5.131)

To this end, we have fully determined the Chern-Simons connections
describing the higher spin black hole. And in the following, I would like
to briefly review the entropy formula and the partition function of the
higher spin black hole.

Black hole entropy and partition function. From the dual CFT
perspective, the higher spin black hole should correspond to the grand
canonical ensemble with the partition function,

Z[τ , τ̄ ,α, ᾱ] = (qq̄)−c/24Tr[qL0 q̄L̄0yW0 ȳW̄0 ] (5.132)

Here the parameter q and y are defined as q = e2πiτ and y = e2πiα. The
constant stress tensor L and the higher spin current W are identified
with the expectation values of the zero modes L0 and W0 as7,

L0 − c

24 := −
∮

β

dw

2π T (w) = −L ,

W0 :=
∮

β

dw

2πW (w) = W . (5.133)

Under the saddle point approximation, the partition function reads

logZ[τ , τ̄ ,α, ᾱ] = S − 2πiτL − 2πiτL + 2πiαW + 2πiαW .
(5.134)

Here S is the entropy of the higher spin black hole, which as a function
of (L, L̄, W, W̄) should satisfy the first law,

δS = 2πiτδL + 2πiτδL − 2πiαδW − 2πiαδW . (5.135)

It is perhaps worth emphasizing that there exist different ways to com-
pute the entropy of higher spin black holes, and all of them give the
same result. In the original work [191], the entropy was derived by first
expressing τ and α as functions of the charges L and W and then
integrating the first law (5.135). For a Hamiltonian derivation of the

7 The modes expansions on torus here match with the convention in [178].
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entropy, see, e.g., [193, 195, 196]. The entropy can also be understood
as the on-shell value of the appropriate action functional in a micro-
canonical ensemble, where the charges L and W are held fixed [197].
In [198], the entropy was derived from the symplectic two-form of the
Chern-Simons theory by using the Wald formalism [52]. The punchline
is that the entropy of a higher spin black hole is given by

S = −2πikcsTr[a1a2] + 2πikcsTr[ā1ā2] . (5.136)

where āi = −(ai)† with i = 1, 2. Inserting (5.123) and (5.124) into the
expression (5.136) yields,

S = 4πiτL − 6πiαW + 4πiτL − 6πiαW , (5.137)

which is a real number. The saddle point approximation of the partition
function now reads

logZ[τ , τ̄ ,α, ᾱ] = S − 2πiτL + 2πiαW − 2πiτL + 2πiαW
= 2πiτL − 4πiαW + complex conjugate

=
icπ

12τ

(
1 − 1

3γ
2 +

10
27γ

4 + · · ·
)
+ c.c. . (5.138)

where solutions for L and W in (5.131) have been inserted. Remarkably,
the above perturbative expansion (5.138) of the partition function was
also obtained from the CFT calculation performed in [199], where the
author only used the correlation function of spin-3 currents on the torus.
This implies that the partition function of the higher spin black hole
in (5.138) is universal, or in other words, it is determined by the W3
symmetry. On the other hand, this also implies that the holonomy con-
dition (5.120) on the gravity side is closely related to the W3 symmetry
on the CFT side.

5.3 higher spin charged moments

In this subsection, I will discuss the charged moments in SL(3, R)

higher spin gravity, as well as in the dual CFT with W3 symmetry.
The discussion is based on our work in [31]. Focusing on the simplest
case, i.e., the vacuum background and a single entangling interval A,
I will first show that the W3 algebra of the dual CFT induces an en-
tanglement W3 algebra acting on the quantum state in the entangling
interval. The algebra contains a spin-3 modular charge QA which com-
mutes with the modular Hamiltonian HA, so the quantum numbers of
the states in the subsystem A are characterized by the eigenvalues of
those two modular charges. Hence, this provides us with a reasonable
notion of the higher spin charged moments,

Zn[µ] = Tr[ρn
Ae

2πiµQA ] , µ ∈ R , (5.139)
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which is potentially useful for the study of SREE concerning the W3
symmetry8. The holographic calculation of the charged moments can be
done in a rather straightforward way, by applying the topological black
hole method [32]. On the CFT side, the charged moments is calculated
perturbatively in the spin 3 chemical potential µ. By evaluating the
corresponding connected correlation functions of the spin-3 modular
charge operator up to quartic order in the chemical potential, I will
show that the result exactly matches the holographic result. Since the
higher spin charged moments is not Gaussian in the chemical potential
any longer, as readily seen from (5.138), one expects that the dual W3
CFT must feature the breakdown of equipartition of entanglement to
the leading order in the large c expansion. On the other hand, compared
with the discussion on the U(1) charged moments, we can naturally ask
whether a Wilson line approach and the charged twist fields description
of the higher spin charged moments are also available. This is still an
open question and I will leave it for future work.

5.3.1 Spin-3 modular charge

The subregion charge operator in the study of the SREE and the
charged moments in two-dimensional CFTs is usually defined via the
integration of the current over the subregion [27, 32], i.e. QA ∼

∫
A dxJ

0.
However, this notion of the subregion charge operator only makes sense
for the vector-like current, i.e., the current transforming as a vector
under the conformal transformation. The simplest counter-example of
this notion is the modular Hamiltonian HA (4.48) in the vacuum back-
ground with the single interval A, which can be regarded as the subre-
gion charge operator associated with the stress tensor. As first pointed
out in [200], it is possible to construct a full Virasoro algebra on a single
entangling interval A, called entanglement Virasoro algebra. In partic-
ular, its Virasoro zero mode L0 is proportional to the modular Hamil-
tonian (4.48) up to an additive constant [124] (see equation (4.50)).
The basic idea in [200] is that by choosing cut-off circles around the
endpoints of the entangling interval, the complex plane becomes con-
formally equivalent to a semi-annulus embedded on the up-half plane.
A conformal field theory defined on the up-half plane is known as the
boundary conformal field theory (BCFT), in which only a single copy
of Virasoro algebra can be constructed under appropriate conformal
boundary conditions [125]. Using the Virasoro modes defined in the
BCFT, one can derive their expressions in the original complex plane,
which gives rise to the entanglement Virasoro algebra on the interval
A. To study the higher spin charged moments, in [31], we implemented
the above method in the dual holographic CFT with W3 symmetry. By

8 Unlike the U(1) case, there is no reason to assume the spectrum of the higher spin
charge to be either integer or continuous. Therefore, a naive Fourier transformation
for the charged moments will not give rise to the SREE in the higher spin case.
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modifying the conformal boundary conditions, we constructed a single
copy of W3 algebra on the interval A, called the entanglement W3 alge-
bra. The details are reviewed in Appendix A. The punchline is that we
can define a spin-3 analog of the modular Hamiltonian (4.48), called
the spin-3 modular charge operator [31],

QA =
∫

A

dw

2πi
W (w)

u′(w)2 −
∫

A

dw̄

2πi
(ΩW̄ )(w̄)

ū′(w̄)2 . (5.140)

with

u(w) = log
(
w−w1
w2 −w

)
. (5.141)

Here Ω is the automorphism of the W3 algebra, and two choices for Ω
are given by Ω = ±1 when it acts on the spin-3 current. In particular,
the spin-3 modular charge defined above is related to the zero mode of
the W3 entanglement algebra on A as

QA =

(
π

∆L

)2
W0 , (5.142)

where ∆L = 2 log |w1−w2
ϵ | and ϵ is the radius of the cut-off circles around

the endpoints w1,2 of the single interval A. The commutation relation
[L0,W0] = 0 implies that QA automatically commutes with the modu-
lar Hamiltonian HA. This convinces us that QA is indeed a conserved
charge in the subsystem A. Therefore, the higher spin charged moments
defined in (5.139) is nothing but the grand canonical thermal partition
for the subsystem. Using (4.50) and (5.142), one can rewrite it as9

Zn[µ] = e−cn∆L/12q−c/24Tr[qL0yW0 ] , (5.143)

with

q = e2πiτ , y = e2πiα , τ =
inπ

∆L
, α =

(
π

∆L

)2
µ . (5.144)

Notice that while the temperature T = 1/β = 1/2πIm(τ ) tends to
infinity as the cut-off ϵ → 0, the ratio γ = α/τ2 = −µ/n2 maintains
finite. From the holographic perspective, the dual of the higher spin
charged moments is given by a higher temperature topological higher
spin black hole. Using the holomorphic sector of (5.138), it is then
straightforward to obtain the charged moments as

logZn[µ] = −cn∆L
12 +

icπ

12τ

(
1 − 1

3γ
2 +

10
27γ

4 + · · ·
)

=
c log |w1−w2

ϵ |
6n

(
1 − n2 − 1

3
µ2

n4 +
10
27
µ4

n8 + · · ·
)

.

(5.145)

9 Strictly speaking, the trace here is taken over the states which fulfill the boundary
conditions in the BCFT, so it is distinct with the trace in the torus partition function
(5.132). Nevertheless, in the higher temperature limit τ → 0, their difference becomes
unimportant since the higher temperature physics is not sensible to the topology of
the system.
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To confirm this holographic result, in the following, I would like to
present an independent CFT calculation for the higher spin charged
moments, based on the perturbative method introduced in [31].

5.3.2 CFT calculation

Unlike the U(1) case, it is not obvious whether the higher spin charged
moments allows a charged twist field description. So, for the calculation
of it in the dual CFT, we have to work in the replica picture. In [31], we
computed the higher spin charged moments via a direct perturbative
method, which however only works in the region with small chemical
potential µ. In the following, I would like to introduce this method in
details. Let us first consider the perturbative expansion of logZn[µ] in
the chemical potential µ,

logZn[µ] = logZn[0] +
Z ′

n[0]
Zn[0]

µ+
Zn[0]Z ′′

n[0] −Z ′
n[0]2

2Zn[0]2
µ2

+
Zn[0]2Z(3)

n [0] − 3Zn[0]Z ′
n[0]Z ′′

n[0] + 2Z ′
n[0]3

6Zn[0]3
µ3 + · · · , (5.146)

where the prime represents the derivative with respect to µ. The gen-
eral term Z

(m)
n [0]/Zn[0] involved in (5.146) can be understood as the

expectation value (2πiQA)m on the n-replica surface, i.e.,

⟨(2πiQA)
m⟩n =

Tr[ρn
A (2πiQA)

m]

Tr[ρn
A]

=
Z

(m)
n [0]
Zn[0]

. (5.147)

The OPE structure between W currents, i.e., WW ∼ 5c
6 1 + 5T + · · ·

allow us to construct ⟨Qm
A⟩n from the sum of the products of its con-

nected pieces. In terms of the recursion relation, we can write it as

⟨Qm
A⟩n =

m∑
r=0

Cr
m⟨Qm−r

A ⟩n⟨Qr
A⟩n,c , (5.148)

where the contractions among W and W̄ currents in ⟨Qr
A⟩n,c are all

connected, or more precisely, no identity exchange states exist in its
OPE channel. Now, by inserting (5.147) and (5.148) into (5.146), one
can verify that the charged moments can be expressed via the connected
correlations as

logZn[µ] = logZn[0] +
∞∑

m=1

µm

m!
⟨(2πiQA)

m⟩n,c . (5.149)

Therefore, the higher spin charged moments can be obtained perturba-
tively by evaluating the connected correlation functions of the spin-3
modular charges in the n-replica surface. In actual calculations, it is
convenient to transform the system to the flat complex plane by the
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uniformization map, i.e. z =
(

w−w1
w2−w

)1/n
. Using the tensor transforma-

tion law of the spin-3 current, one find that the spin-3 modular charge
(5.140) in the z-coordinates reads

QA =
1
n2

∫ 1
δ

δ

dz

2πiz
2W (z) − 1

n2

∫ 1
δ̄

δ̄

dz̄

2πi z̄
2(ΩW̄ )(z) , (5.150)

Here the cut-offs δ and 1/δ have been introduced around the endpoints
of A at z = 0 and z = ∞ to regularize the integrals. Those cut-offs
are related to the radius ϵ of the cut-off circles on the original replica
surface through the uniformization map, given by

δ =

(
w1 + ϵ−w1
w2 −w1 − ϵ

) 1
n

≈
(

ϵ

w2 −w1

) 1
n

. (5.151)

Perturbative result. To evaluate the connected correlation functions
of QA in the z coordinates, we first recall that all contractions in
⟨Qm

A⟩n,c are required to be connected. Therefore, the vanishing WW̄

OPE implies that ⟨Qm
A⟩n,c comes from the sum of the two chiral sectors.

The WW OPE in (5.101) allows us to determine the recursion relation
for the connected correlation functions of the spin-3 currents. In the
semi-classical limit c → ∞, we neglect the nonlinear term Λ and its
derivatives in (5.101), since those terms contribute to the 1/c correc-
tions to the recursion relation. It is then straightforward to show that
the connected m-point function of spin-3 currents is determined by the
(m− 2)-point function as

⟨W (z)W (z1) · · ·W (zm−1)⟩c

=
m−1∑
i=1

F (z, zi; ∂zi)⟨W (z1) · · ·T (zi) · · ·W (zm−1)⟩c

=
m−1∑
i=1

∑
j ̸=i

F (z, zi; ∂zi)G(zi, zj ; ∂zj )

× ⟨W (z1) · · ·W (zi−1)W (zi+1) · · ·W (zm−1)⟩c , (5.152)

with

F (z, zi; ∂zi) =
5

(z − zi)4 +
5∂zi

2(z − zi)3 +
3∂2

zi

4(z − zi)2 +
∂3

zi

6(z − zi)
,

G(zi, zj ; ∂zj ) =
3

(zi − zj)2 +
∂zj

zi − zj
. (5.153)

In the first step of (5.152), contractions are taken over the W currents,
and in particular, the most singular term in the WW OPE, correspond-
ing to the identity field, is dropped out in each contraction. In the
second step of (5.152), contractions between the stress tensor and the
remaining spin-3 currents are considered. An important consequence
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of the recursion relation (5.152) is that all the odd-order connected
correlation functions of W currents vanish, due to the vanishing of the
one-point function in the z-complex plane. Therefore, we conclude that
only the even orders of QA contribute to the charged moments,

logZn[µ] = logZn[0] +
∞∑

m=1

µ2m

(2m)!
⟨(2πiQA)

2m⟩n,c . (5.154)

It is ready to see that the expansion in (5.154) has the same structure
with the holographic result (5.145), so the next step is to check them
order by order. The complexity of the correlation function grows rapidly
as the increasing order, so in [31], we only computed the higher spin
charged moments up to the quartic order of the chemical potential µ.
The zeroth order term is the vacuum partition function on the replica
surface, given by the µ-independent part of (5.145). For the quadratic
order, using (5.150), we obtain

⟨(2πiQA)
2⟩n,c =

1
n4

∫ 1
δ

δ
dz1

∫ ∞

0
dz2

5cz2
1z

2
2

6(z1 − z2)2 + c.c.

≈ − c

9n4 log
∣∣∣1
δ

∣∣∣ = − c

9n5 log
∣∣∣w2 −w1

ϵ

∣∣∣ . (5.155)

As a remark, notice that the above integral (5.155) is singular when
the two points collide, i.e. z1 = z2, so in the actual calculation, we need
to choose the two integral paths in (5.155) to be two non-intersecting
curves anchored at z = 0 and z = ∞ in the complex plane. This choice
does not contradict the definition of the spin-3 modular charge, since
(5.140) and (5.150) are path-independent. For the quartic order, we can
first use the recursion relation (5.152) to obtain the four-point function
of the spin-3 currents, and then perform similar integrals. The result
was showed in [31], given by

⟨(2πiQA)
4⟩n,c ≈ 40c

27n9 log
∣∣∣w2 −w1

ϵ

∣∣∣ . (5.156)

By inserting (5.155) and (5.156) into (5.154), we recover the expansion
of the higher spin charged moments in the holographic result (5.145).
It is interesting to compare the above CFT calculations with the holo-
graphic calculations. In the holographic calculations, we implemented
the holonomy condition for the higher spin black hole, while in the CFT
calculations, we only use the W3 symmetry to determine the charged
moments. This indicates that there is a deeper relation between the
holonomy of the bulk SL(3,R) Chern-Simons fields with the W3 sym-
metry in the boundary CFT. Investigating such a relation in future
works may help us to understand the hidden mechanisms of the higher
spin holography, and hopefully to generalize it to the higher dimen-
sional holographic models. Finally, since the charged moments is not of
Gaussian type, we expect a breakdown of equipartition of entanglement
in the W3 CFT.
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C O N C L U S I O N A N D O U T L O O K

In this chapter, I give a summary of the results obtained in this thesis,
as well as an outlook on possible future research directions.

6.1 the u(1) case

The goal of Chapter 4 is to investigate the symmetry-resolved entangle-
ment entropy (SREE) and the charged moments in three-dimensional
holographic U(1) Chern-Simons-Einstein gravity, a bottom-up model of
AdS3/CFT2 with U (1) Kac-Moody symmetry. The final results for the
SREE show that it is always charge-independent, whenever the back-
ground is in the vacuum or in an excited state, as well as the entangling
region being a single interval or N intervals. This universal charge inde-
pendent behavior of the SREE is called equipartition of entanglement
[27], which was also found in various CFT and QFT examples with an
internal U(1) symmetry.

Besides the above conclusion on the SREE, at the technical level,
there are other interesting results obtained in this chapter. In fact, since
the SREE can be easily derived from the charged moments, the main fo-
cus in this chapter was put on solving the charged moments from both
the CFT and holographic perspectives. In my original works [29, 30], we
developed the generating function method, by which the charged mo-
ments can be easily obtained via the expectation value of the subregion
charge operator. Such a method has proven to be quite efficient in vari-
ous cases, rendering the problems of computing SREE and the charged
moments rather straightforward. I also performed the analysis for the
charged moments from first principle, and showed why the generating
function method works. In particular, some hidden mechanisms of this
AdS3/CFT2 model show up in the discussions, which may inspire us
for solving the SREE and the charged moments in more complicated
holographic models. In the following, I would like to summarize those
findings in Chapter 4.

1. Duality between the bulk Wilson line and boundary vertex operators

I started by considering the simplest case, i.e., the charged moments for
a single entangling interval (N = 1) on the vacuum background. In the
CFT calculations, I explained the two different interpretations for the
charged moments. The first one relies on the replica picture, in which
one thinks of the charged moments as the partition function of the
CFT defined on the replica surface, with two vertex operators inserted
at the branched points (or Zn fixed points) of the replica surface. The
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second one relies on the twist picture, in which one takes n copies of the
original CFT and defines a new CFT⊗n on CP1. The charged moments
is then understood as the two-point function of the charged twist oper-
ators in the new CFT⊗n. In the holographic calculations, I introduced
the U(1) Wilson line description of the charged moments, which was
originally proposed in our work [29]. This description is distinct from
the topological charged black hole interpretation for the charged mo-
ments proposed in [32], in the sense that the bulk U (1) Chern-Simons
fields in these two cases take different configurations. The basic picture
is that there is a U(1) Wilson line following the trajectory of the Zn

fixed points of the bulk replica manifold. The endpoints of the Wilson
line are the two fixed points of the boundary replica surface, which are
exactly the locations of the two vertex operators in the dual CFT. The
charge carried by the Wilson line was related to the U(1) charge of
the boundary vertex operators by implementing the AdS/CFT dictio-
nary. To fully confirm the validity of the Wilson line description of the
charged moments, I evaluated the bulk action for the Chern-Simons
fields and showed that the result coincides with the CFT results of
the charged moments. From this simplest example, essentially what we
learned is a new entry to the AdS/CFT dictionary, the duality between
the bulk Wilson line and the boundary vertex operators.

2. Vertex correlators and Knizhnik-Zamolodchikov equation

Next, I turned to the case of N = 1 in certain excited state back-
ground. The excited state was chosen to be generated by inserting
charged heavy vertex operators at the origin and the point at infin-
ity of CP1. Such a choice leads to a simple interpretation for the
charged moments in the replica picture of the boundary CFT: It is
the (2n+ 2)-point function of vertex operators on the replica surface
Rn,1. By analysing the OPE structure between the vertex operators, I
showed that the correlation functions of the vertex operators are com-
pletely constrained by the U(1) Kac-Moody symmetry, and obey the
Knizhnik-Zamolodchikov (KZ) equation. On the other hand, by imple-
menting the Wilson line/vertex operators duality, the AdS dual of the
charged moments is obtained by adding additional n disjoint Wilson
lines. Each Wilson line attaches a pair of vertex operators with oppo-
site charges on the boundary replica surface. It turned out that the re-
sults obtained in those two approaches exactly coincide with each other.
However, the situation becomes a bit subtle if we study the charged mo-
ments in the twist picture of the dual CFT. In the twist picture, one
needs to evaluate the four-point function of two vertex operators and
two charged twist operators. The problem is that the theory considered
here is a bottom-up holographic toy model, so we do not have access
to the OPE between those two kinds of operators. In fact, this problem
also happens if we choose the background to be a general excited state.
Fortunately, in the semi-classical limit c → ∞, with c being the central
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charge, the vacuum block contribution is assumed to be dominant in
any correlation function in a holographic CFT. Hence, the next goal in
this chapter was to find out a method for computing the semi-classical
conformal blocks in the most general cases, i.e., general excited state
and multi-intervals.

3. Factorization, neutral U(1) block and disjoint Wilson lines

In the most general cases, i.e., general excited state background with
multi-interval entangling region, it is inconvenient to work in the replica
picture of the dual CFT any longer, since the corresponding replica sur-
face is of higher genus. Calculating general correlation functions on a
higher genus replica surface is a hard problem, though for the special
cases, such as vertex correlators, it is still solvable and has been dis-
cussed in [30, 134]. Instead, I turned to work in the twist picture, and
the task was to study the conformal blocks in CFT⊗n defined on a
CP1. The symmetry in CFT⊗n get enhanced due to the n-copy repli-
cated construction, for instance, U(1) → U (1)⊗n. However, I claimed
that in the context of entanglement, only the Zn symmetric currents
are relevant for defining descendant states that appear in the OPEs.
Those Zn symmetric currents still furnish a U (1) Kac-Moody algebra,
but with the central charge and the level being rescaled as c → nc

and k → nk. In [117], it was argued that for a CFT with U(1) Kac-
Moody symmetry, the U(1) extended conformal block factorized into
the product of a Virasoro block and a U (1) block. A similar factor-
ization property of the Hilbert space was also assumed in our original
work [30], due to the observation of the decoupling between the bulk
Chern-Simons fields and the metric. In this chapter, I gave a proof for
the factorization of the U(1) extended conformal block and showed
that effectively the Hilbert space indeed factorizes into a U (1) sector
and Virasoro sector. The states in the U (1) sector are dual to the cor-
responding configurations of the Chern-Simons fields, and the states in
the Virasoro sector are responsible for different asymptotically AdS3
geometries in the bulk. The result for the U(1) block was explicitly
derived in (4.209). It obeys the KZ-equations with U(1) level nk, and
hence takes the same form as the vertex correlation function. In par-
ticular, due to the charge conservation, the U(1) block is universally
factorized in any correlation function of current primary fields, i.e.,

⟨O1O2 · · · ⟩ = VJ V̄J̄

∑
p

CpFp
virF̄p

vir .

A more convenient way to see the above factorization is to consider the
level-two null-state equation (4.217) in the theory, which get modified
from the usual case, due to the presence of the Zn symmetric U(1)
current. By factorizing the function VJ V̄J̄ out of the conformal partial
wave function, I showed that the rest part of the conformal partial
wave function obeys the usual null state equation (Fuchsian differential
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equation) for the pure Virasoro correlators. Hence, a general method for
computing the charged moments is to first impose trivial monodromy
conditions on each pairs of operators with opposite U(1) charges. Then,
we solve the KZ-equations to obtain the U (1) part, and solve the Fuch-
sian differential equation under the trivial monodromy conditions to
obtain the vacuum Virasoro block. A trivial monodromy condition im-
posed on a pair of operators projects their OPE onto the U(1) extended
vacuum module. Due to the charge conservation, this condition is valid
only if the pair of operators carry opposite charges. From the AdS point
of view, since the U(1) block contribution is identical to the correla-
tion function of vertex operators, by the Wilson line/vertex operators
duality we interpret the U (1) block as the insertions of disjoint Wilson
lines inside the bulk. The generating function method developed in our
original works [29, 30] computes the U(1) block from the bulk disjoint
Wilson lines.

6.2 the higher spin case

In Chapter 5, I investigated the simplest case of the charged moments
in the SL(3,R) higher spin holography, in which the background state
was assumed to be the vacuum with a single interval entangling region.
To give a valid definition for the subregion charge operator in the higher
spin charged moments, I first claimed that there exists a single copy
of the W3 algebra, the so-called entanglement W3 algebra, acting on
the entangling interval. The construction of this algebra was briefly
reviewed in Appendix A, based on my work [31]. The existence of the
entanglement W3 algebra implies that the states in the Hilbert space
defined on the entangling interval are the representations of the W3
symmetry. Those representations are labeled by the eigenvalues of the
zero modes (L0,W0) of the entanglementW3 algebra. The zero mode L0
is linearly related to the modular Hamiltonian. Analogously, I defined
the subregion charge operator, the so-called spin-3 modular charge, via
the zero mode W0. Under such a definition, the higher spin charged
moments can be understood as a grand canonical partition function
of the dual W3 CFT, with a chemical potential coupled to the spin-3
modular charge. Hence, by the argument in [32], the holographic dual
of the higher spin charged moments is the topological charged higher
spin black hole. Using the known results of the partition functions of
the higher spin black holes [191], the higher spin charged moments was
readily obtained by appropriately identifying certain parameters.

On the other hand, an independent calculation for the higher spin
charged moments was also performed in the dual W3 CFT. Unlike the
U(1) case, so far it is unclear that whether or not the higher spin
charged moments is equivalent to certain vertex operators in the dual
W3 CFT. Hence, the methods used in the U (1) case can not be simply
applied to the higher spin case. To solve the problem, I turned to imple-
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ment the perturbative approach developed in our work [31], and showed
that the perturbative expansions of the higher spin charged moments
in the chemical potential give rise to the series of connected correlation
functions of the spin-3 modular charges. Using the OPE of the higher
spin currents, those connected correlation functions can be calculated
recursively. The result showed a perfect match with the perturbative
expansion of the holographic result.

The perturbative method implemented in this chapter can be used
to explain the origin of the equipartition of entanglement in the U(1)
case. I have discussed this issue in Chapter 4. The point is that to
have the equipartition behavior, the corresponding charged moments
must be a Gaussian function of the chemical potential. This happens
in the U(1) case, because the connected correlation functions of the
U (1) subregion charge operators terminate at quadratic order in the
U (1) chemical potential. In contrast, in the higher spin case, all the
even order connection correlations of the spin-3 modular charges are
nonvanishing. Hence, a breakdown of the equipartition of entanglement
is expected for the dual W3 CFT.

6.3 outlook

There are many interesting questions raised from the discussions in this
thesis. Concerning the results in Chapter 4, the following topics may
be interesting for the future research:

1. The U (1) SREE in other holographic models

Since the U(1) Chern-Simons-Einstein gravity is the simplest holo-
graphic toy model with an internal U (1) symmetry in the boundary
CFT, it will be interesting to study the U (1) SREE in more compli-
cated holographic models, in order to better understand the model
dependence or independence of these results. For instance, at high en-
ergies, we need to include the Maxwell term in the bulk action, which
couples the Chern-Simons gauge field to gravity. Such a theory still ad-
mits a conserved U(1) current on the conformal boundary of AdS3. The
difference is that, due to the coupling between the metric and the Chern-
Simons field, the asymptotic symmetry algebra will no longer be the
Kac-Moody extension of the Virasoro algebra. A full study on the U(1)
SREE in this model of course involves a lot of tasks, such as performing
the holographic renormalization, analyzing the asymptotic symmetry,
as well as investigating the conformal blocks and the constraints for
them. However, even without the detailed study, in general we expect
that the U(1) SREE in this model may not exhibit the equipartition
behavior. The reason is that, from the quantum information point of
views, if the SREE does reflect the influence of the symmetry algebra
on the finer structure of the entanglement entropy, then its behavior
should distinguish the two systems with different symmetry algebras.
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2. Boundary entropy corrections to the SREE in holography

In a general quantum field theory, the tensor factorization of the Hilbert
space under the bipartition of the Cauchy slice is not simply established
[201]. Well-defined quantum fields on the entangling region A require us
to impose appropriate conditions at ∂A. Under the fixed boundary con-
ditions, labeled by α, the Hilbert space on the Cauchy slice can then be
mapped to the tensor product of the Hilbert spaces on the subregions,
i.e. ια : H → HA,α ⊗ HB,α. Due to the boundary conditions, the entan-
glement entropy calculated in this set-up generically contains additional
contributions, which in the context of the two-dimensional conformal
field theories are known as the Affleck-Ludwig boundary entropy [40].
The boundary entropy corrections to the SREE has been discussed in
[122] for the two-dimensional massless free boson theory, in which the
authors implemented the BCFT techniques. In the AdS/CFT context,
the BCFT is closely related to the end-of-world brane construction in
the AdS space [127–129]. Using this construction, we might be able
to find out the dual holographic description of the boundary entropy
corrections to the SREE.

3. Reconstruction of bulk gauge fields from the SREE

An importance of the RT formula (2.69) is that it illuminates the way
towards understanding the bulk gravity theories in terms of the quan-
tum information aspects of the boundary field theories. At the current
stage, physicists tend to think of the bulk spacetime as an emergent
phenomenon of the entanglement in the boundary world [26]. Fruitful
achievements have been made in this research direction. For instance,
it was shown in [202, 203] that by considering the small perturbations
to the vacuum state in a holographic CFT and imposing certain con-
straints for the ball-shaped entangling region, the linearized Einstein’s
equation can be derived from the variation of the entanglement entropy.
Since the SREE characterizes a finer structure than the entanglement
entropy, associated with the internal symmetry, it is natural to ask
whether the behavior of the SREE determines the equation of motions
for the bulk gauge fields. In the following sense, this question might
have a positive answer. Recall that the entanglement entropy in holo-
graphic CFTs takes a universal form as long as the background state is
the vacuum. This universality stemmed from the conformal symmetry
of the CFT and may also be related to the dynamics of the AdS gravity.
This is because the conformal symmetry, as the asymptotic symmetry
of pure AdS gravity, is derived from the on-shell deformation of the
metric. Similarly, one may relate the dynamics of the bulk gauge fields
to the SREE. In particular, if the behavior of SREE can distinguish
two holographic CFTs with distinct symmetry algebras, then the dy-
namics of the gauge fields in the dual gravity theories are expected to
be different.
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4. SREE in higher dimensions, the role of higher form symmetries in
holography

In this thesis, the SREE has only been discussed in the two-dimensional
conformal field theories and the AdS3/CFT2. Hence, studying the gen-
eralizations of the SREE in higher dimensions is a very interesting topic.
In higher dimensional AdS/CFT models, the charged topological black
hole method developed in [32] can still be used to compute the SREE in
the vacuum background with a ball-shaped entangling region. However,
in more general cases, no technique tool is currently available. So here
I would like to make some educated guesses on the higher dimensional
cases.

We first come back to the holographic U(1) Chern-Simons-Einstein
gravity. On the bulk side, a Wilosn line defect in the Chern-Simons
theory can be understood as a one-form charged object, with its charge
detected by a Wilson loop encircling around it. Formally, the charge
of the Wilson line defect is related to the ’t Hooft anomaly of the one-
form symmetry Zk in the U(1)k Chern-Simons theory. On the bound-
ary side, a vertex operator is understood as a zero-form (point-like)
charged object, detected by the codimension-two charge operator

∮
⋆J .

In this respect, we can understand the Wilson line/vertex duality as a
duality between one-form symmetry in the Chern-Simons theory with
the zero-form symmetry in the boundary CFT. The duality between
one-form and zero-form symmetries in AdS3/CFT2 suggests us to solve
the charged moments in higher dimensions by seeking for the duality
between the higher form symmetries on both theories. For instance, in
AdSd+1/CFTd, the charged moments in the dual CFT may be charac-
terized by a (d− 2) dimensional defect operator placed at the boundary
∂A of the entangling region A. The (d− 2)-form charge of the defect
operator may be detected by (d− (d− 2)− 1)-dimensional charged op-
erator, which is a one-dimensional ’t Hooft loop operator. On the AdS
side, we expect that the charged moments would be described by a
(d− 1)-dimensional brane defect, anchored to the boundary defect op-
erator, and carrying (d− 1)-form charge. The (d− 1)-form charge is
still detected by a ’t Hooft loop in AdSd+1. By the AdS/CFT dictio-
nary, we might be able to build up relations between the bulk and the
boundary ’t Hooft loop operators, and hence to establish the duality
between the (d− 1)-form symmetry in AdSd+1 and the (d− 2)-form
symmetry in the CFTd. If the procedure works successfully, we are
able to solve the charged moments by studying the back-reactions of
the brane to the AdSd+1 spacetime.

Concerning the results in Chapter 5, the following topics may be in-
teresting for the future research:

In Chapter 5, I only discussed the simplest case of the higher spin
charged moments, i.e., the vacuum background with a single entan-
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gling interval. A detailed study on the higher spin charged moments
in more general cases is an interesting research direction. However, to
attack this topic, one needs to first figure out some more fundamental
questions about the higher spin holography. Consider the generating
functional of connected correlation functions of spin-3 chiral currents
in the dual CFT,

Zn[µ] =
∫

DΦe−S−
∫

d2zµ(z,z̄)W (z)+µ̄(z,z̄)W̄ (z̄) , (6.1)

where µ(z, z̄) and µ̄(z, z̄) are the local sources coupled to the spin-3
chiral currents. The charged moments discussed in Chapter 5 can be
understood as a special case of this generational functional, with the
local source terms being of specific forms. Although the result of the
general form of (6.1) has not been derived in the literature, it is be-
lieved that the effective action of (6.1) might be of Toda type [190].
Toda theories are generalizations of the Liouville theory, and the ac-
tion of the latter one can be regarded as the generating functional of
connected correlation functions of the stress tensor, as mentioned in
Chapter 3. In particular, the source term coupled to the stress tensor
in the generating functional can be understood as the Beltrami differ-
ential, characterizing the deformation of the complex structure on the
Riemann surface, on which the CFT is defined. Similarly, the source
terms in (6.1) can be understood as the deformation of the generalized
complex structure on the Riemann surface. A detailed study on the
relation between (6.1) and Toda actions may also require us to have
a better understanding on the spin-3 transformation in the dual CFT.
This is analogous to the relation between the conformal transformation
and the Liouville action in two-dimensional CFTs. The conformal trans-
formation of the stress tensor is characterized by the anomalous term,
the Schwarzian derivative. Analogously, the spin-3 transformation of
the spin-3 current is characterized by a generalization of Schwarzian
derivative [204], which was originated from the context of the linear
ordinary differential equation (ODE), and is known as the Halphen
invariant [205]. Mathematically speaking, the Schwarzian derivative,
defined via a map from a given Riemann surface to CP1, characterizes
the deformation of the projective structure on the Riemann surface.
Similarly, the Halphen invariant characterizes the deformation of the
generalized projective structure on a Riemann surface, which is defined
via a map from a given Riemann surface to CP2. This is related to the
fact that the problem of immersions of Riemann surfaces into higher di-
mensional spaces is essential to the classical Toda theory, which should
also be true for the case of higher spin gravity. The study of general-
ized complex structures as well as generalized projective structures in
higher spin gravity might provide us a better understanding for the
global structures of the higher spin solutions, and hence help us for
deriving the effective action of higher spin gravity.
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E N TA N G L E M E N T A L G E B R A

In this appendix, I will review the construction of the single copy W3
algebra on a single entangling interval, following from our work in [31].
The construction of the algebra is based on the BCFT description of
entanglement [124, 200, 201]. The basic idea is as followings. The cut-
off circles inserted around the two endpoints of the entangling interval
are the boundaries of the system, so, for the theory to be well-defined,
appropriate boundary conditions need to be imposed on the cut-off cir-
cles. For a CFT with a concrete Lagrangian, the appropriate boundary
conditions can be derived by requiring a well-defined variation princi-
ple. For instance, in the free boson theory, the boundary conditions are
of the Dirichlet or Neumann types. However, since a CFT is usually
formulated independently of a particular set of fundamental fields and
a Lagrangian, one must be able to impose the boundary conditions in
a more general manner. As pointed out in [125], a natural requirement
is that the off-diagonal component T∥⊥ of the stress tensor parallel/per-
pendicular to each boundary should vanish locally. This is the so-called
conformal boundary condition, which ensures no energy or momentum
flow across the boundaries. Furthermore, for a CFT with a extended
symmetry (Kac-Moody or W symmetry), the boundary conditions can
be generalized in a straightforward manner by imposing additional con-
straints on the extra conserved currents. Those constraints on the con-
served currents eventually reduce the two chiral sectors of the symmetry
algebra into a single sector in the BCFT.

More explicitly, we consider a single interval A on the w-complex
plane and locate its two endpoints at w = w1,2, with |w1| < |w2|. To
regularize the endpoints, we impose cut-off circles around each end-
points so that the domain we considered here satisfies |w − w1| ≥ |ϵ|
and |w−w2| ≥ ϵ. This domain can be mapped to a semi-annulus on a
upper half z-complex plane by the following conformal transformation

z = eiθ(w), (A.1)

with

θ(w) =
π

2 − π

∆L
u(w) , (A.2)

and

u(w) = log
(
w−w1
w2 −w

)
, ∆L = 2 log

∣∣∣w2 −w1
ϵ

∣∣∣ . (A.3)

The inner and outer semi-circles of the semi-annulus locate at the con-
stant radius r = 1 and r = e

2π2
∆L . Both of them correspond to the
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interval A in the original w-complex plane, so they are identified. The
cut-off circles around the endpoints w1,2 are now mapped to the two
boundaries of the semi-annulus located along the real axis of the upper
half plane. Now, in the z-coordinates, the conformal boundary condi-
tion T∥⊥ = 0 becomes

T (z) = T̄ (z̄) , ∀z = z̄ ∈ R . (A.4)

Since T (z) and T̄ (z̄) are holomorphic and anti-holomorphic, the condi-
tion (A.4) leads to the consequence that correlators of T̄ (z̄) are those of
T (z) analytically continued into the lower half plane, i.e. T̄ (z̄) = T (z̄).
Therefore, the Virasoro modes in the BCFT can be written as [125],

Ln =
∮

dz

2πiz
1+nT (z)

=
∫

S

dz

2πiz
1+nT (z) −

∫
S

dz̄

2πi z̄
1+nT̄ (z̄) , (A.5)

where the integral path S is an arbitrary semi-circle centered around
the origin, going along the counterclockwise direction.

In presence of the additional higher spin-3 currents in the theory,
we can further impose the following maximally symmetric boundary
condition on the spin-3 currents such that it is compatible with (A.4),

W (z) = (ΩW̄ )(z̄) , ∀z = z̄ ∈ R . (A.6)

Here the map Ω is the automorphism of the W3 algebra, given by
Ω = ±1. This can be easily seen from the fact that the redefinition
W → ±W does not change the WW and TW OPEs. Similar to the
Virasoro case, the higher spin modes in the BCFT can be written as

Wn =
∫

S

dz

2πiz
2+nW (z) −

∫
S

dz̄

2πi z̄
2+n(ΩW̄ )(z̄) . (A.7)

Using the transformation laws,

T (w) =

(
dz

dw

)2
T (z) +

c

12{z;w} ,W (w) =

(
dz

dw

)3
W (z), (A.8)

we can derive the modes of the currents in terms of the original w-
coordinates, given by

Ln = −
∫

A

dw

2π
einθ(w)

u′(w)
T (w) −

∫
A

dw̄

2π
e−inθ̄(w̄)

ū′(w̄)
T̄ (w̄) +

c

24

(
1 + ∆L2

π2

)
,

Wn =
∫

A

dw

2πi
einθ(w)

(u′(w))2W (w) −
∫

A

dw̄

2πi
e−inθ̄(w̄)

(ū′(w̄))2 (ΩW̄ )(w̄) , (A.9)

where the direction of the integral path A coincides with S, going from
w1 to w2. The modes in (A.9) furnishes the single copy W3 algebra
on the entangling interval A, which in fact can also be checked in the
w-coordinates directly by using the currents OPEs and the boundary
conditions. The detailed calculation on the check can be found in the
appendix B of [31].



B I B L I O G R A P H Y

[1] C. P. Burgess and G. D. Moore. The standard model: A primer.
Cambridge University Press, Dec. 2006. isbn: 978-0-511-25485-7,
978-1-107-40426-7, 978-0-521-86036-9.

[2] Georges Aad et al. “Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector
at the LHC.” In: Phys. Lett. B 716 (2012), pp. 1–29. doi: 10.
1016/j.physletb.2012.08.020. arXiv: 1207.7214 [hep-ex].

[3] Serguei Chatrchyan et al. “Observation of a New Boson at a
Mass of 125 GeV with the CMS Experiment at the LHC.” In:
Phys. Lett. B 716 (2012), pp. 30–61. doi: 10.1016/j.physletb.
2012.08.021. arXiv: 1207.7235 [hep-ex].

[4] Steven Weinberg. “Ultraviolet divergences in quantum theories
of gravitation.” In: General Relativity: An Einstein Centenary
Survey. 1980, pp. 790–831.

[5] Carlo Rovelli. “Loop quantum gravity.” In: Living Rev. Rel. 1
(1998), p. 1. doi: 10 . 12942 / lrr - 1998 - 1. arXiv: gr - qc /
9710008.

[6] J. Polchinski. String theory. Vol. 2: Superstring theory and be-
yond. Cambridge Monographs on Mathematical Physics. Cam-
bridge University Press, Dec. 2007. isbn: 978-0-511-25228-0, 978-
0-521-63304-8, 978-0-521-67228-3. doi: 10.1017/CBO9780511618123.

[7] Alfio Bonanno, Astrid Eichhorn, Holger Gies, Jan M. Pawlowski,
Roberto Percacci, Martin Reuter, Frank Saueressig, and Gian
Paolo Vacca. “Critical reflections on asymptotically safe grav-
ity.” In: Front. in Phys. 8 (2020), p. 269. doi: 10.3389/fphy.
2020.00269. arXiv: 2004.06810 [gr-qc].

[8] Abhay Ashtekar and Eugenio Bianchi. “A short review of loop
quantum gravity.” In: Rept. Prog. Phys. 84.4 (2021), p. 042001.
doi: 10.1088/1361-6633/abed91. arXiv: 2104.04394 [gr-qc].

[9] Gerard ’t Hooft. “Dimensional reduction in quantum gravity.”
In: Conf. Proc. C 930308 (1993), pp. 284–296. arXiv: gr-qc/
9310026.

[10] Leonard Susskind. “The World as a hologram.” In: J. Math.
Phys. 36 (1995), pp. 6377–6396. doi: 10.1063/1.531249. arXiv:
hep-th/9409089.

[11] Kazunori Akiyama et al. “First M87 Event Horizon Telescope
Results. VI. The Shadow and Mass of the Central Black Hole.”
In: Astrophys. J. Lett. 875.1 (2019), p. L6. doi: 10.3847/2041-
8213/ab1141. arXiv: 1906.11243 [astro-ph.GA].

181

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.12942/lrr-1998-1
https://arxiv.org/abs/gr-qc/9710008
https://arxiv.org/abs/gr-qc/9710008
https://doi.org/10.1017/CBO9780511618123
https://doi.org/10.3389/fphy.2020.00269
https://doi.org/10.3389/fphy.2020.00269
https://arxiv.org/abs/2004.06810
https://doi.org/10.1088/1361-6633/abed91
https://arxiv.org/abs/2104.04394
https://arxiv.org/abs/gr-qc/9310026
https://arxiv.org/abs/gr-qc/9310026
https://doi.org/10.1063/1.531249
https://arxiv.org/abs/hep-th/9409089
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://arxiv.org/abs/1906.11243


182 bibliography

[12] S. W. Hawking. “Particle Creation by Black Holes.” In: Commun.
Math. Phys. 43 (1975). Ed. by G. W. Gibbons and S. W. Hawk-
ing. [Erratum: Commun.Math.Phys. 46, 206 (1976)], pp. 199–
220. doi: 10.1007/BF02345020.

[13] Jacob D. Bekenstein. “Black holes and entropy.” In: Phys. Rev.
D 7 (1973), pp. 2333–2346. doi: 10.1103/PhysRevD.7.2333.

[14] Stephen A. Fulling. “Nonuniqueness of canonical field quanti-
zation in Riemannian space-time.” In: Phys. Rev. D 7 (1973),
pp. 2850–2862. doi: 10.1103/PhysRevD.7.2850.

[15] W. G. Unruh. “Notes on black hole evaporation.” In: Phys. Rev.
D 14 (1976), p. 870. doi: 10.1103/PhysRevD.14.870.

[16] Juan Martin Maldacena. “The Large N limit of superconformal
field theories and supergravity.” In: Adv. Theor. Math. Phys. 2
(1998), pp. 231–252. doi: 10.4310/ATMP.1998.v2.n2.a1. arXiv:
hep-th/9711200.

[17] Thomas Schaefer. “Fluid Dynamics and Viscosity in Strongly
Correlated Fluids.” In: Ann. Rev. Nucl. Part. Sci. 64 (2014),
pp. 125–148. doi: 10.1146/annurev- nucl- 102313- 025439.
arXiv: 1403.0653 [hep-ph].

[18] Domenico Di Sante, Johanna Erdmenger, Martin Greiter, Ioan-
nis Matthaiakakis, René Meyer, David Rodríguez Fernández,
Ronny Thomale, Erik van Loon, and Tim Wehling. “Turbulent
hydrodynamics in strongly correlated Kagome metals.” In: Na-
ture Commun. 11.1 (2020), p. 3997. doi: 10.1038/s41467-020-
17663-x. arXiv: 1911.06810 [cond-mat.str-el].

[19] Paul M. Chesler and Laurence G. Yaffe. “Horizon formation and
far-from-equilibrium isotropization in supersymmetric Yang-Mills
plasma.” In: Phys. Rev. Lett. 102 (2009), p. 211601. doi: 10.
1103/PhysRevLett.102.211601. arXiv: 0812.2053 [hep-th].

[20] Ahmed Almheiri, Xi Dong, and Daniel Harlow. “Bulk Local-
ity and Quantum Error Correction in AdS/CFT.” In: JHEP 04
(2015), p. 163. doi: 10.1007/JHEP04(2015)163. arXiv: 1411.
7041 [hep-th].

[21] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation
and Quantum Information. Cambridge University Press, June
2012. doi: 10.1017/cbo9780511976667.

[22] Shinsei Ryu and Tadashi Takayanagi. “Holographic derivation
of entanglement entropy from AdS/CFT.” In: Phys. Rev. Lett.
96 (2006), p. 181602. doi: 10.1103/PhysRevLett.96.181602.
arXiv: hep-th/0603001.

[23] Adam R. Brown, Daniel A. Roberts, Leonard Susskind, Brian
Swingle, and Ying Zhao. “Holographic Complexity Equals Bulk
Action?” In: Phys. Rev. Lett. 116.19 (2016), p. 191301. doi: 10.
1103/PhysRevLett.116.191301. arXiv: 1509.07876 [hep-th].

https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1146/annurev-nucl-102313-025439
https://arxiv.org/abs/1403.0653
https://doi.org/10.1038/s41467-020-17663-x
https://doi.org/10.1038/s41467-020-17663-x
https://arxiv.org/abs/1911.06810
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1103/PhysRevLett.102.211601
https://arxiv.org/abs/0812.2053
https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://arxiv.org/abs/1411.7041
https://doi.org/10.1017/cbo9780511976667
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://doi.org/10.1103/PhysRevLett.116.191301
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876


bibliography 183

[24] Johanna Erdmenger, Mario Flory, Marius Gerbershagen, Michal
P. Heller, and Anna-Lena Weigel. “Exact Gravity Duals for Sim-
ple Quantum Circuits.” In: SciPost Phys. 13.3 (2022), p. 061.
doi: 10.21468/SciPostPhys.13.3.061. arXiv: 2112.12158
[hep-th].

[25] Adam R. Brown, Hrant Gharibyan, Stefan Leichenauer, Henry
W. Lin, Sepehr Nezami, Grant Salton, Leonard Susskind, Brian
Swingle, and Michael Walter. “Quantum Gravity in the Lab.
I. Teleportation by Size and Traversable Wormholes.” In: PRX
Quantum 4.1 (2023), p. 010320. doi: 10.1103/PRXQuantum.4.
010320. arXiv: 1911.06314 [quant-ph].

[26] Mark Van Raamsdonk. “Building up spacetime with quantum
entanglement.” In: Gen. Rel. Grav. 42 (2010), pp. 2323–2329.

[27] Moshe Goldstein and Eran Sela. “Symmetry-resolved entangle-
ment in many-body systems.” In: Phys. Rev. Lett. 120.20 (2018),
p. 200602. doi: 10 . 1103 / PhysRevLett . 120 . 200602. arXiv:
1711.09418 [cond-mat.stat-mech].

[28] Antoine Neven et al. “Symmetry-resolved entanglement detec-
tion using partial transpose moments.” In: npj Quantum Inf. 7
(2021), p. 152. doi: 10.1038/s41534- 021- 00487- y. arXiv:
2103.07443 [quant-ph].

[29] Suting Zhao, Christian Northe, and René Meyer. “Symmetry-
resolved entanglement in AdS3/CFT2 coupled to U(1) Chern-
Simons theory.” In: JHEP 07 (2021), p. 030. doi: 10.1007/
JHEP07(2021)030. arXiv: 2012.11274 [hep-th].

[30] Konstantin Weisenberger, Suting Zhao, Christian Northe, and
René Meyer. “Symmetry-resolved entanglement for excited states
and two entangling intervals in AdS3/CFT2.” In: JHEP 12 (2021),
p. 104. doi: 10.1007/JHEP12(2021)104. arXiv: 2108.09210
[hep-th].

[31] Suting Zhao, Christian Northe, Konstantin Weisenberger, and
René Meyer. “Charged moments in W3 higher spin holography.”
In: JHEP 05 (2022), p. 166. doi: 10.1007/JHEP05(2022)166.
arXiv: 2202.11111 [hep-th].

[32] Alexandre Belin, Ling-Yan Hung, Alexander Maloney, Shunji
Matsuura, Robert C. Myers, and Todd Sierens. “Holographic
Charged Renyi Entropies.” In: JHEP 12 (2013), p. 059. doi:
10.1007/JHEP12(2013)059. arXiv: 1310.4180 [hep-th].

[33] Michael Gutperle and Per Kraus. “Higher Spin Black Holes.”
In: JHEP 05 (2011), p. 022. doi: 10.1007/JHEP05(2011)022.
arXiv: 1103.4304 [hep-th].

[34] Makoto Natsuume. AdS/CFT Duality User Guide. Vol. 903. 2015.
isbn: 978-4-431-55441-7, 978-4-431-55440-0. doi: 10.1007/978-
4-431-55441-7. arXiv: 1409.3575 [hep-th].

https://doi.org/10.21468/SciPostPhys.13.3.061
https://arxiv.org/abs/2112.12158
https://arxiv.org/abs/2112.12158
https://doi.org/10.1103/PRXQuantum.4.010320
https://doi.org/10.1103/PRXQuantum.4.010320
https://arxiv.org/abs/1911.06314
https://doi.org/10.1103/PhysRevLett.120.200602
https://arxiv.org/abs/1711.09418
https://doi.org/10.1038/s41534-021-00487-y
https://arxiv.org/abs/2103.07443
https://doi.org/10.1007/JHEP07(2021)030
https://doi.org/10.1007/JHEP07(2021)030
https://arxiv.org/abs/2012.11274
https://doi.org/10.1007/JHEP12(2021)104
https://arxiv.org/abs/2108.09210
https://arxiv.org/abs/2108.09210
https://doi.org/10.1007/JHEP05(2022)166
https://arxiv.org/abs/2202.11111
https://doi.org/10.1007/JHEP12(2013)059
https://arxiv.org/abs/1310.4180
https://doi.org/10.1007/JHEP05(2011)022
https://arxiv.org/abs/1103.4304
https://doi.org/10.1007/978-4-431-55441-7
https://doi.org/10.1007/978-4-431-55441-7
https://arxiv.org/abs/1409.3575


184 bibliography

[35] Martin Ammon and Johanna Erdmenger. Gauge/gravity duality:
Foundations and applications. Cambridge: Cambridge Univer-
sity Press, Apr. 2015. isbn: 978-1-107-01034-5, 978-1-316-23594-
2.

[36] V. A. Novikov, Mikhail A. Shifman, A. I. Vainshtein, and Valentin
I. Zakharov. “The beta function in supersymmetric gauge theo-
ries. Instantons versus traditional approach.” In: Phys. Lett. B
166 (1986), pp. 329–333. doi: 10.1016/0370-2693(86)90810-
5.

[37] Gerard ’t Hooft. “A Planar Diagram Theory for Strong Interac-
tions.” In: Nucl. Phys. B 72 (1974). Ed. by J. C. Taylor, p. 461.
doi: 10.1016/0550-3213(74)90154-0.

[38] Clifford V. Johnson. D-Branes. Cambridge Monographs on Math-
ematical Physics. 2023. isbn: 978-1-00-940137-1, 978-1-00-940136-
4, 978-1-00-940139-5, 978-0-511-05769-4, 978-0-521-03005-2, 978-
0-521-80912-2, 978-0-511-60654-0. doi: 10.1017/9781009401371.

[39] Joseph Polchinski. “Dirichlet Branes and Ramond-Ramond charges.”
In: Phys. Rev. Lett. 75 (1995), pp. 4724–4727. doi: 10.1103/
PhysRevLett.75.4724. arXiv: hep-th/9510017.

[40] Ian Affleck and Andreas W. W. Ludwig. “Universal noninteger
’ground state degeneracy’ in critical quantum systems.” In: Phys.
Rev. Lett. 67 (1991), pp. 161–164. doi: 10.1103/PhysRevLett.
67.161.

[41] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov.
“Gauge theory correlators from noncritical string theory.” In:
Phys. Lett. B 428 (1998), pp. 105–114. doi: 10.1016/S0370-
2693(98)00377-3. arXiv: hep-th/9802109.

[42] Edward Witten. “Anti-de Sitter space and holography.” In: Adv.
Theor. Math. Phys. 2 (1998), pp. 253–291. doi: 10.4310/ATMP.
1998.v2.n2.a2. arXiv: hep-th/9802150.

[43] Edward Witten. “Quantum Field Theory and the Jones Polyno-
mial.” In: Commun. Math. Phys. 121 (1989). Ed. by Asoke N.
Mitra, pp. 351–399. doi: 10.1007/BF01217730.

[44] Peter Breitenlohner and Daniel Z. Freedman. “Positive Energy
in anti-De Sitter Backgrounds and Gauged Extended Supergrav-
ity.” In: Phys. Lett. B 115 (1982), pp. 197–201. doi: 10.1016/
0370-2693(82)90643-8.

[45] Mukund Rangamani and Tadashi Takayanagi. Holographic En-
tanglement Entropy. Vol. 931. Springer, 2017. doi: 10.1007/
978-3-319-52573-0. arXiv: 1609.01287 [hep-th].

[46] Veronika E. Hubeny, Mukund Rangamani, and Tadashi Takayanagi.
“A Covariant holographic entanglement entropy proposal.” In:
JHEP 07 (2007), p. 062. doi: 10.1088/1126-6708/2007/07/
062. arXiv: 0705.0016 [hep-th].

https://doi.org/10.1016/0370-2693(86)90810-5
https://doi.org/10.1016/0370-2693(86)90810-5
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1017/9781009401371
https://doi.org/10.1103/PhysRevLett.75.4724
https://doi.org/10.1103/PhysRevLett.75.4724
https://arxiv.org/abs/hep-th/9510017
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1103/PhysRevLett.67.161
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://doi.org/10.1007/BF01217730
https://doi.org/10.1016/0370-2693(82)90643-8
https://doi.org/10.1016/0370-2693(82)90643-8
https://doi.org/10.1007/978-3-319-52573-0
https://doi.org/10.1007/978-3-319-52573-0
https://arxiv.org/abs/1609.01287
https://doi.org/10.1088/1126-6708/2007/07/062
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016


bibliography 185

[47] David J. Gross and Edward Witten. “Superstring Modifications
of Einstein’s Equations.” In: Nucl. Phys. B 277 (1986), p. 1. doi:
10.1016/0550-3213(86)90429-3.

[48] Ling-Yan Hung, Robert C. Myers, and Michael Smolkin. “On
Holographic Entanglement Entropy and Higher Curvature Grav-
ity.” In: JHEP 04 (2011), p. 025. doi: 10.1007/JHEP04(2011)
025. arXiv: 1101.5813 [hep-th].

[49] Jan de Boer, Manuela Kulaxizi, and Andrei Parnachev. “Holo-
graphic Entanglement Entropy in Lovelock Gravities.” In: JHEP
07 (2011), p. 109. doi: 10 . 1007 / JHEP07(2011 ) 109. arXiv:
1101.5781 [hep-th].

[50] Xi Dong. “Holographic Entanglement Entropy for General Higher
Derivative Gravity.” In: JHEP 01 (2014), p. 044. doi: 10.1007/
JHEP01(2014)044. arXiv: 1310.5713 [hep-th].

[51] Joan Camps. “Generalized entropy and higher derivative Grav-
ity.” In: JHEP 03 (2014), p. 070. doi: 10.1007/JHEP03(2014)
070. arXiv: 1310.6659 [hep-th].

[52] Robert M. Wald. “Black hole entropy is the Noether charge.”
In: Phys. Rev. D 48.8 (1993), R3427–R3431. doi: 10 . 1103 /
PhysRevD.48.R3427. arXiv: gr-qc/9307038.

[53] Thomas Faulkner, Aitor Lewkowycz, and Juan Maldacena. “Quan-
tum corrections to holographic entanglement entropy.” In: JHEP
11 (2013), p. 074. doi: 10.1007/JHEP11(2013)074. arXiv: 1307.
2892 [hep-th].

[54] Netta Engelhardt and Aron C. Wall. “Quantum Extremal Sur-
faces: Holographic Entanglement Entropy beyond the Classical
Regime.” In: JHEP 01 (2015), p. 073. doi: 10.1007/JHEP01(2015)
073. arXiv: 1408.3203 [hep-th].

[55] Geoffrey Penington. “Entanglement Wedge Reconstruction and
the Information Paradox.” In: JHEP 09 (2020), p. 002. doi: 10.
1007/JHEP09(2020)002. arXiv: 1905.08255 [hep-th].

[56] Ahmed Almheiri, Netta Engelhardt, Donald Marolf, and Henry
Maxfield. “The entropy of bulk quantum fields and the entangle-
ment wedge of an evaporating black hole.” In: JHEP 12 (2019),
p. 063. doi: 10.1007/JHEP12(2019)063. arXiv: 1905.08762
[hep-th].

[57] Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar
Shaghoulian, and Amirhossein Tajdini. “The entropy of Hawk-
ing radiation.” In: Rev. Mod. Phys. 93.3 (2021), p. 035002. doi:
10.1103/RevModPhys.93.035002. arXiv: 2006.06872 [hep-th].

[58] Aitor Lewkowycz and Juan Maldacena. “Generalized gravita-
tional entropy.” In: JHEP 08 (2013), p. 090. doi: 10 . 1007 /
JHEP08(2013)090. arXiv: 1304.4926 [hep-th].

https://doi.org/10.1016/0550-3213(86)90429-3
https://doi.org/10.1007/JHEP04(2011)025
https://doi.org/10.1007/JHEP04(2011)025
https://arxiv.org/abs/1101.5813
https://doi.org/10.1007/JHEP07(2011)109
https://arxiv.org/abs/1101.5781
https://doi.org/10.1007/JHEP01(2014)044
https://doi.org/10.1007/JHEP01(2014)044
https://arxiv.org/abs/1310.5713
https://doi.org/10.1007/JHEP03(2014)070
https://doi.org/10.1007/JHEP03(2014)070
https://arxiv.org/abs/1310.6659
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.48.R3427
https://arxiv.org/abs/gr-qc/9307038
https://doi.org/10.1007/JHEP11(2013)074
https://arxiv.org/abs/1307.2892
https://arxiv.org/abs/1307.2892
https://doi.org/10.1007/JHEP01(2015)073
https://doi.org/10.1007/JHEP01(2015)073
https://arxiv.org/abs/1408.3203
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP09(2020)002
https://arxiv.org/abs/1905.08255
https://doi.org/10.1007/JHEP12(2019)063
https://arxiv.org/abs/1905.08762
https://arxiv.org/abs/1905.08762
https://doi.org/10.1103/RevModPhys.93.035002
https://arxiv.org/abs/2006.06872
https://doi.org/10.1007/JHEP08(2013)090
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926


186 bibliography

[59] H. M. Wiseman and John A. Vaccaro. “Entanglement of Indis-
tinguishable Particles Shared between Two Parties.” In: Physi-
cal Review Letters 91.9 (2003). doi: 10.1103/physrevlett.91.
097902.

[60] Hatem Barghathi, C. M. Herdman, and Adrian Del Maestro.
“Rényi Generalization of the Accessible Entanglement Entropy.”
In: Physical Review Letters 121.15 (2018). doi: 10.1103/physrevlett.
121.150501.

[61] Hatem Barghathi, Emanuel Casiano-Diaz, and Adrian Del Mae-
stro. “Operationally accessible entanglement of one-dimensional
spinless fermions.” In: Physical Review A 100.2 (2019). doi: 10.
1103/physreva.100.022324.

[62] Luca Capizzi, Paola Ruggiero, and Pasquale Calabrese. “Symme-
try resolved entanglement entropy of excited states in a CFT.”
In: J. Stat. Mech. 2007 (2020), p. 073101. doi: 10.1088/1742-
5468/ab96b6. arXiv: 2003.04670 [cond-mat.stat-mech].

[63] Edward Witten. “(2+1)-Dimensional Gravity as an Exactly Sol-
uble System.” In: Nucl. Phys. B 311 (1988), p. 46. doi: 10.1016/
0550-3213(88)90143-5.

[64] C. Fefferman and C. R. Graham. “Conformal invariants.” In: in
Elie Cartan et les Math’ematiques d’aujourd’hui. Ast’erisqué 95
(1985).

[65] M. Henningson and K. Skenderis. “The Holographic Weyl anomaly.”
In: JHEP 07 (1998), p. 023. doi: 10.1088/1126-6708/1998/
07/023. arXiv: hep-th/9806087.

[66] Maximo Banados. “Three-dimensional quantum geometry and
black holes.” In: AIP Conf. Proc. 484.1 (1999). Ed. by H. Falomir,
R. E. Gamboa Saravi, and F. A. Schaposnik, pp. 147–169. doi:
10.1063/1.59661. arXiv: hep-th/9901148.

[67] Kirill Krasnov. “On holomorphic factorization in asymptotically
AdS 3-D gravity.” In: Class. Quant. Grav. 20 (2003), pp. 4015–
4042. doi: 10.1088/0264-9381/20/18/311. arXiv: hep-th/
0109198.

[68] Maximo Banados, Marc Henneaux, Claudio Teitelboim, and Jorge
Zanelli. “Geometry of the (2+1) black hole.” In: Phys. Rev. D 48
(1993). [Erratum: Phys.Rev.D 88, 069902 (2013)], pp. 1506–1525.
doi: 10.1103/PhysRevD.48.1506. arXiv: gr-qc/9302012.

[69] Dieter Brill. “Black holes and wormholes in (2+1)-dimensions.”
In: Lect. Notes Phys. 537 (2000). Ed. by S. Cotsakis and G. W.
Gibbons, p. 143. arXiv: gr-qc/9904083.

[70] Kostas Skenderis and Balt C. van Rees. “Holography and worm-
holes in 2+1 dimensions.” In: Commun. Math. Phys. 301 (2011),
pp. 583–626. doi: 10.1007/s00220-010-1163-z. arXiv: 0912.
2090 [hep-th].

https://doi.org/10.1103/physrevlett.91.097902
https://doi.org/10.1103/physrevlett.91.097902
https://doi.org/10.1103/physrevlett.121.150501
https://doi.org/10.1103/physrevlett.121.150501
https://doi.org/10.1103/physreva.100.022324
https://doi.org/10.1103/physreva.100.022324
https://doi.org/10.1088/1742-5468/ab96b6
https://doi.org/10.1088/1742-5468/ab96b6
https://arxiv.org/abs/2003.04670
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1088/1126-6708/1998/07/023
https://doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
https://doi.org/10.1063/1.59661
https://arxiv.org/abs/hep-th/9901148
https://doi.org/10.1088/0264-9381/20/18/311
https://arxiv.org/abs/hep-th/0109198
https://arxiv.org/abs/hep-th/0109198
https://doi.org/10.1103/PhysRevD.48.1506
https://arxiv.org/abs/gr-qc/9302012
https://arxiv.org/abs/gr-qc/9904083
https://doi.org/10.1007/s00220-010-1163-z
https://arxiv.org/abs/0912.2090
https://arxiv.org/abs/0912.2090


bibliography 187

[71] Juan Martin Maldacena and Liat Maoz. “Wormholes in AdS.”
In: JHEP 02 (2004), p. 053. doi: 10.1088/1126-6708/2004/
02/053. arXiv: hep-th/0401024.

[72] Michael T. Anderson. “Geometric aspects of the AdS / CFT
correspondence.” In: IRMA Lect. Math. Theor. Phys. 8 (2005).
Ed. by O. Biquard, pp. 1–31. arXiv: hep-th/0403087.

[73] Xi Yin. “Partition Functions of Three-Dimensional Pure Grav-
ity.” In: Commun. Num. Theor. Phys. 2 (2008), pp. 285–324. doi:
10.4310/CNTP.2008.v2.n2.a1. arXiv: 0710.2129 [hep-th].

[74] Kirill Krasnov. “Holography and Riemann surfaces.” In: Adv.
Theor. Math. Phys. 4 (2000), pp. 929–979. doi: 10.4310/ATMP.
2000.v4.n4.a5. arXiv: hep-th/0005106.

[75] William P. Thurston. “Three dimensional manifolds, Kleinian
groups and hyperbolic geometry.” In: Bull. Am. Math. Soc. 6
(1982), pp. 357–381. doi: 10.1090/S0273-0979-1982-15003-
0.

[76] Alexander M. Polyakov. “Quantum Geometry of Bosonic Strings.”
In: Phys. Lett. B 103 (1981). Ed. by I. M. Khalatnikov and V. P.
Mineev, pp. 207–210. doi: 10.1016/0370-2693(81)90743-7.

[77] John H. Hubbard. “The Monodromy of Projective Structures.”
In: 1981. url: https://api.semanticscholar.org/CorpusID:
116495064.

[78] Alexander Maloney and Edward Witten. “Quantum Gravity
Partition Functions in Three Dimensions.” In: JHEP 02 (2010),
p. 029. doi: 10.1007/JHEP02(2010)029. arXiv: 0712.0155
[hep-th].

[79] Oliver Coussaert, Marc Henneaux, and Peter van Driel. “The
Asymptotic dynamics of three-dimensional Einstein gravity with
a negative cosmological constant.” In: Class. Quant. Grav. 12
(1995), pp. 2961–2966. doi: 10.1088/0264-9381/12/12/012.
arXiv: gr-qc/9506019.

[80] Kostas Skenderis and Sergey N. Solodukhin. “Quantum effective
action from the AdS / CFT correspondence.” In: Phys. Lett. B
472 (2000), pp. 316–322. doi: 10.1016/S0370-2693(99)01467-
7. arXiv: hep-th/9910023.

[81] M. Banados, O. Chandia, and A. Ritz. “Holography and the
Polyakov action.” In: Phys. Rev. D 65 (2002), p. 126008. doi:
10.1103/PhysRevD.65.126008. arXiv: hep-th/0203021.

[82] Maximo Banados and Rodrigo Caro. “Holographic ward identi-
ties: Examples from 2+1 gravity.” In: JHEP 12 (2004), p. 036.
doi: 10 . 1088 / 1126 - 6708 / 2004 / 12 / 036. arXiv: hep - th /
0411060.

https://doi.org/10.1088/1126-6708/2004/02/053
https://doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
https://arxiv.org/abs/hep-th/0403087
https://doi.org/10.4310/CNTP.2008.v2.n2.a1
https://arxiv.org/abs/0710.2129
https://doi.org/10.4310/ATMP.2000.v4.n4.a5
https://doi.org/10.4310/ATMP.2000.v4.n4.a5
https://arxiv.org/abs/hep-th/0005106
https://doi.org/10.1090/S0273-0979-1982-15003-0
https://doi.org/10.1090/S0273-0979-1982-15003-0
https://doi.org/10.1016/0370-2693(81)90743-7
https://api.semanticscholar.org/CorpusID:116495064
https://api.semanticscholar.org/CorpusID:116495064
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://arxiv.org/abs/0712.0155
https://doi.org/10.1088/0264-9381/12/12/012
https://arxiv.org/abs/gr-qc/9506019
https://doi.org/10.1016/S0370-2693(99)01467-7
https://doi.org/10.1016/S0370-2693(99)01467-7
https://arxiv.org/abs/hep-th/9910023
https://doi.org/10.1103/PhysRevD.65.126008
https://arxiv.org/abs/hep-th/0203021
https://doi.org/10.1088/1126-6708/2004/12/036
https://arxiv.org/abs/hep-th/0411060
https://arxiv.org/abs/hep-th/0411060


188 bibliography

[83] Steven Carlip. “Dynamics of asymptotic diffeomorphisms in (2+1)-
dimensional gravity.” In: Class. Quant. Grav. 22 (2005), pp. 3055–
3060. doi: 10.1088/0264- 9381/22/14/014. arXiv: gr- qc/
0501033.

[84] Kevin Nguyen. “Holographic boundary actions in AdS3/CFT2
revisited.” In: JHEP 10 (2021), p. 218. doi: 10.1007/JHEP10(2021)
218. arXiv: 2108.01095 [hep-th].

[85] Zograf P G and Takhtadzhyan L A. “On uniformization of Rie-
mann surfaces and the Weil-Peterssson metric on Teichmüller
and Schottky spaces.” In: Mathematics of the USSR-Sbornik 60.2
(1988), p. 297.

[86] Vijay Balasubramanian and Per Kraus. “A Stress tensor for
Anti-de Sitter gravity.” In: Commun. Math. Phys. 208 (1999),
pp. 413–428. doi: 10.1007/s002200050764. arXiv: hep- th/
9902121.

[87] Panagiotis Betzios and Olga Papadoulaki. “Liouville theory and
Matrix models: A Wheeler DeWitt perspective.” In: JHEP 09
(2020), p. 125. doi: 10.1007/JHEP09(2020)125. arXiv: 2004.
00002 [hep-th].

[88] Per Kraus. “Lectures on black holes and the AdS(3) / CFT(2)
correspondence.” In: Lect. Notes Phys. 755 (2008), pp. 193–247.
arXiv: hep-th/0609074.

[89] Ling-Yan Hung, Robert C. Myers, Michael Smolkin, and Alexan-
dre Yale. “Holographic Calculations of Renyi Entropy.” In: JHEP
12 (2011), p. 047. doi: 10.1007/JHEP12(2011)047. arXiv: 1110.
1084 [hep-th].

[90] J. David Brown and M. Henneaux. “Central Charges in the
Canonical Realization of Asymptotic Symmetries: An Exam-
ple from Three-Dimensional Gravity.” In: Commun. Math. Phys.
104 (1986), pp. 207–226. doi: 10.1007/BF01211590.

[91] Matthias R. Gaberdiel and Rajesh Gopakumar. “Tensionless
string spectra on AdS3.” In: JHEP 05 (2018), p. 085. doi: 10.
1007/JHEP05(2018)085. arXiv: 1803.04423 [hep-th].

[92] Lorenz Eberhardt, Matthias R. Gaberdiel, and Rajesh Gopaku-
mar. “The Worldsheet Dual of the Symmetric Product CFT.”
In: JHEP 04 (2019), p. 103. doi: 10.1007/JHEP04(2019)103.
arXiv: 1812.01007 [hep-th].

[93] Lorenz Eberhardt, Matthias R. Gaberdiel, and Rajesh Gopaku-
mar. “Deriving the AdS3/CFT2 correspondence.” In: JHEP 02
(2020), p. 136. doi: 10.1007/JHEP02(2020)136. arXiv: 1911.
00378 [hep-th].

[94] Lorenz Eberhardt. “AdS3/CFT2 at higher genus.” In: JHEP 05
(2020), p. 150. doi: 10.1007/JHEP05(2020)150. arXiv: 2002.
11729 [hep-th].

https://doi.org/10.1088/0264-9381/22/14/014
https://arxiv.org/abs/gr-qc/0501033
https://arxiv.org/abs/gr-qc/0501033
https://doi.org/10.1007/JHEP10(2021)218
https://doi.org/10.1007/JHEP10(2021)218
https://arxiv.org/abs/2108.01095
https://doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
https://arxiv.org/abs/hep-th/9902121
https://doi.org/10.1007/JHEP09(2020)125
https://arxiv.org/abs/2004.00002
https://arxiv.org/abs/2004.00002
https://arxiv.org/abs/hep-th/0609074
https://doi.org/10.1007/JHEP12(2011)047
https://arxiv.org/abs/1110.1084
https://arxiv.org/abs/1110.1084
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/JHEP05(2018)085
https://doi.org/10.1007/JHEP05(2018)085
https://arxiv.org/abs/1803.04423
https://doi.org/10.1007/JHEP04(2019)103
https://arxiv.org/abs/1812.01007
https://doi.org/10.1007/JHEP02(2020)136
https://arxiv.org/abs/1911.00378
https://arxiv.org/abs/1911.00378
https://doi.org/10.1007/JHEP05(2020)150
https://arxiv.org/abs/2002.11729
https://arxiv.org/abs/2002.11729


bibliography 189

[95] Hanno Bertle, Andrea Dei, and Matthias R. Gaberdiel. “Stress-
energy tensor correlators from the world-sheet.” In: JHEP 03
(2021), p. 036. doi: 10.1007/JHEP03(2021)036. arXiv: 2012.
08486 [hep-th].

[96] Jordan Cotler and Kristan Jensen. “AdS3 gravity and random
CFT.” In: JHEP 04 (2021), p. 033. doi: 10.1007/JHEP04(2021)
033. arXiv: 2006.08648 [hep-th].

[97] Phil Saad, Stephen H. Shenker, and Douglas Stanford. “JT grav-
ity as a matrix integral.” In: (Mar. 2019). arXiv: 1903.11115
[hep-th].

[98] P. Di Francesco, P. Mathieu, and D. Senechal. Conformal Field
Theory. Graduate Texts in Contemporary Physics. New York:
Springer-Verlag, 1997. isbn: 978-0-387-94785-3, 978-1-4612-7475-
9. doi: 10.1007/978-1-4612-2256-9.

[99] Geoffrey Compère, Wei Song, and Andrew Strominger. “New
Boundary Conditions for AdS3.” In: JHEP 05 (2013), p. 152.
doi: 10.1007/JHEP05(2013)152. arXiv: 1303.2662 [hep-th].

[100] Laura Donnay, Gaston Giribet, Hernan A. Gonzalez, and Miguel
Pino. “Supertranslations and Superrotations at the Black Hole
Horizon.” In: Phys. Rev. Lett. 116.9 (2016), p. 091101. doi: 10.
1103/PhysRevLett.116.091101. arXiv: 1511.08687 [hep-th].

[101] Hamid Afshar, Stephane Detournay, Daniel Grumiller, Wout
Merbis, Alfredo Perez, David Tempo, and Ricardo Troncoso.
“Soft Heisenberg hair on black holes in three dimensions.” In:
Phys. Rev. D 93.10 (2016), p. 101503. doi: 10.1103/PhysRevD.
93.101503. arXiv: 1603.04824 [hep-th].

[102] Daniel Grumiller and Max Riegler. “Most general AdS3 bound-
ary conditions.” In: JHEP 10 (2016), p. 023. doi: 10.1007/
JHEP10(2016)023. arXiv: 1608.01308 [hep-th].

[103] Thomas Faulkner. “The Entanglement Renyi Entropies of Dis-
joint Intervals in AdS/CFT.” In: (Mar. 2013). arXiv: 1303.7221
[hep-th].

[104] Thomas Hartman. “Entanglement Entropy at Large Central
Charge.” In: (Mar. 2013). arXiv: 1303.6955 [hep-th].

[105] A. Liam Fitzpatrick, Jared Kaplan, and Matthew T. Walters.
“Universality of Long-Distance AdS Physics from the CFT Boot-
strap.” In: JHEP 08 (2014), p. 145. doi: 10.1007/JHEP08(2014)
145. arXiv: 1403.6829 [hep-th].

[106] Xi Dong. “The Gravity Dual of Renyi Entropy.” In: Nature Com-
mun. 7 (2016), p. 12472. doi: 10.1038/ncomms12472. arXiv:
1601.06788 [hep-th].

https://doi.org/10.1007/JHEP03(2021)036
https://arxiv.org/abs/2012.08486
https://arxiv.org/abs/2012.08486
https://doi.org/10.1007/JHEP04(2021)033
https://doi.org/10.1007/JHEP04(2021)033
https://arxiv.org/abs/2006.08648
https://arxiv.org/abs/1903.11115
https://arxiv.org/abs/1903.11115
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/JHEP05(2013)152
https://arxiv.org/abs/1303.2662
https://doi.org/10.1103/PhysRevLett.116.091101
https://doi.org/10.1103/PhysRevLett.116.091101
https://arxiv.org/abs/1511.08687
https://doi.org/10.1103/PhysRevD.93.101503
https://doi.org/10.1103/PhysRevD.93.101503
https://arxiv.org/abs/1603.04824
https://doi.org/10.1007/JHEP10(2016)023
https://doi.org/10.1007/JHEP10(2016)023
https://arxiv.org/abs/1608.01308
https://arxiv.org/abs/1303.7221
https://arxiv.org/abs/1303.7221
https://arxiv.org/abs/1303.6955
https://doi.org/10.1007/JHEP08(2014)145
https://doi.org/10.1007/JHEP08(2014)145
https://arxiv.org/abs/1403.6829
https://doi.org/10.1038/ncomms12472
https://arxiv.org/abs/1601.06788


190 bibliography

[107] Marius Gerbershagen. “Monodromy methods for torus confor-
mal blocks and entanglement entropy at large central charge.”
In: JHEP 08 (2021), p. 143. doi: 10.1007/JHEP08(2021)143.
arXiv: 2101.11642 [hep-th].

[108] Grzegorz Gromadzki and Ruben A. Hidalgo. “Schottky uniformiza-
tions of symmetries.” In: Glasgow Mathematical Journal 55 (2013),
pp. 591 –613.

[109] Leon Takhtajan and Peter Zograf. “Hyperbolic 2 spheres with
conical singularities, accessory parameters and Kahler metrics
on M(0,n).” In: (Dec. 2001). arXiv: math/0112170.

[110] Luigi Cantini, Pietro Menotti, and Domenico Seminara. “Proof
of Polyakov conjecture for general elliptic singularities.” In: Phys.
Lett. B 517 (2001), pp. 203–209. doi: 10.1016/S0370-2693(01)
00998-4. arXiv: hep-th/0105081.

[111] Bertrand Eynard. Lectures notes on compact Riemann surfaces.
2018. arXiv: 1805.06405 [math-ph].

[112] Lance J. Dixon, Daniel Friedan, Emil J. Martinec, and Stephen
H. Shenker. “The Conformal Field Theory of Orbifolds.” In:
Nucl. Phys. B 282 (1987), pp. 13–73. doi: 10 . 1016 / 0550 -
3213(87)90676-6.

[113] Pasquale Calabrese and John L. Cardy. “Entanglement entropy
and quantum field theory.” In: J. Stat. Mech. 0406 (2004), P06002.
doi: 10.1088/1742-5468/2004/06/P06002. arXiv: hep-th/
0405152.

[114] Mert Beşken, Shouvik Datta, and Per Kraus. “Semi-classical
Virasoro blocks: proof of exponentiation.” In: JHEP 01 (2020),
p. 109. doi: 10.1007/JHEP01(2020)109. arXiv: 1910.04169
[hep-th].

[115] Thomas Hartman, Christoph A. Keller, and Bogdan Stoica. “Uni-
versal Spectrum of 2d Conformal Field Theory in the Large c
Limit.” In: JHEP 09 (2014), p. 118. doi: 10.1007/JHEP09(2014)
118. arXiv: 1405.5137 [hep-th].

[116] A. A. Belavin, Alexander M. Polyakov, and A. B. Zamolod-
chikov. “Infinite Conformal Symmetry in Two-Dimensional Quan-
tum Field Theory.” In: Nucl. Phys. B 241 (1984). Ed. by I. M.
Khalatnikov and V. P. Mineev, pp. 333–380. doi: 10 . 1016 /
0550-3213(84)90052-X.

[117] A. Liam Fitzpatrick, Jared Kaplan, and Matthew T. Walters.
“Virasoro Conformal Blocks and Thermality from Classical Back-
ground Fields.” In: JHEP 11 (2015), p. 200. doi: 10 . 1007 /
JHEP11(2015)200. arXiv: 1501.05315 [hep-th].

[118] Per Kraus and Finn Larsen. “Partition functions and elliptic
genera from supergravity.” In: JHEP 01 (2007), p. 002. doi:
10.1088/1126-6708/2007/01/002. arXiv: hep-th/0607138.

https://doi.org/10.1007/JHEP08(2021)143
https://arxiv.org/abs/2101.11642
https://arxiv.org/abs/math/0112170
https://doi.org/10.1016/S0370-2693(01)00998-4
https://doi.org/10.1016/S0370-2693(01)00998-4
https://arxiv.org/abs/hep-th/0105081
https://arxiv.org/abs/1805.06405
https://doi.org/10.1016/0550-3213(87)90676-6
https://doi.org/10.1016/0550-3213(87)90676-6
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://arxiv.org/abs/hep-th/0405152
https://doi.org/10.1007/JHEP01(2020)109
https://arxiv.org/abs/1910.04169
https://arxiv.org/abs/1910.04169
https://doi.org/10.1007/JHEP09(2014)118
https://doi.org/10.1007/JHEP09(2014)118
https://arxiv.org/abs/1405.5137
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1007/JHEP11(2015)200
https://doi.org/10.1007/JHEP11(2015)200
https://arxiv.org/abs/1501.05315
https://doi.org/10.1088/1126-6708/2007/01/002
https://arxiv.org/abs/hep-th/0607138


bibliography 191

[119] Tohru Eguchi and Hirosi Ooguri. “Conformal and Current Alge-
bras on General Riemann Surface.” In: Nucl. Phys. B 282 (1987),
pp. 308–328. doi: 10.1016/0550-3213(87)90686-9.

[120] Dijkgraaf Robbert. “Chiral deformations of conformal field the-
ories.” In: Nuclear Physics B 493.3 (1997), pp. 588–612. issn:
0550-3213.

[121] Jan de Boer and Juan I. Jottar. “Boundary conditions and parti-
tion functions in higher spin AdS3/CFT2.” In: JHEP 04 (2016),
p. 107. doi: 10.1007/JHEP04(2016)107. arXiv: 1407.3844
[hep-th].

[122] Giuseppe Di Giulio, René Meyer, Christian Northe, Henri Schep-
pach, and Suting Zhao. “On the boundary conformal field theory
approach to symmetry-resolved entanglement.” In: SciPost Phys.
Core 6 (2023), p. 049. doi: 10.21468/SciPostPhysCore.6.3.
049. arXiv: 2212.09767 [hep-th].

[123] Horacio Casini, Marina Huerta, and Robert C. Myers. “Towards
a derivation of holographic entanglement entropy.” In: JHEP 05
(2011), p. 036. doi: 10.1007/JHEP05(2011)036. arXiv: 1102.
0440 [hep-th].

[124] John Cardy and Erik Tonni. “Entanglement hamiltonians in two-
dimensional conformal field theory.” In: J. Stat. Mech. 1612.12
(2016), p. 123103. doi: 10.1088/1742-5468/2016/12/123103.
arXiv: 1608.01283 [cond-mat.stat-mech].

[125] John L. Cardy. “Boundary conformal field theory.” In: (Nov.
2004). arXiv: hep-th/0411189.

[126] Christian Northe. “Virasoro Entanglement Resolution.” In: (Mar.
2023). arXiv: 2303.07724 [hep-th].

[127] Tadashi Takayanagi. “Holographic Dual of BCFT.” In: Phys.
Rev. Lett. 107 (2011), p. 101602. doi: 10.1103/PhysRevLett.
107.101602. arXiv: 1105.5165 [hep-th].

[128] Mitsutoshi Fujita, Tadashi Takayanagi, and Erik Tonni. “As-
pects of AdS/BCFT.” In: JHEP 11 (2011), p. 043. doi: 10.1007/
JHEP11(2011)043. arXiv: 1108.5152 [hep-th].

[129] Masahiro Nozaki, Tadashi Takayanagi, and Tomonori Ugajin.
“Central Charges for BCFTs and Holography.” In: JHEP 06
(2012), p. 066. doi: 10.1007/JHEP06(2012)066. arXiv: 1205.
1573 [hep-th].

[130] V. G. Knizhnik and A. B. Zamolodchikov. “Current Algebra and
Wess-Zumino Model in Two-Dimensions.” In: Nucl. Phys. B 247
(1984). Ed. by I. M. Khalatnikov and V. P. Mineev, pp. 83–103.
doi: 10.1016/0550-3213(84)90374-2.

https://doi.org/10.1016/0550-3213(87)90686-9
https://doi.org/10.1007/JHEP04(2016)107
https://arxiv.org/abs/1407.3844
https://arxiv.org/abs/1407.3844
https://doi.org/10.21468/SciPostPhysCore.6.3.049
https://doi.org/10.21468/SciPostPhysCore.6.3.049
https://arxiv.org/abs/2212.09767
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://arxiv.org/abs/1102.0440
https://doi.org/10.1088/1742-5468/2016/12/123103
https://arxiv.org/abs/1608.01283
https://arxiv.org/abs/hep-th/0411189
https://arxiv.org/abs/2303.07724
https://doi.org/10.1103/PhysRevLett.107.101602
https://doi.org/10.1103/PhysRevLett.107.101602
https://arxiv.org/abs/1105.5165
https://doi.org/10.1007/JHEP11(2011)043
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://doi.org/10.1007/JHEP06(2012)066
https://arxiv.org/abs/1205.1573
https://arxiv.org/abs/1205.1573
https://doi.org/10.1016/0550-3213(84)90374-2


192 bibliography

[131] Edward Witten. “Nonabelian Bosonization in Two-Dimensions.”
In: Commun. Math. Phys. 92 (1984). Ed. by M. Stone, pp. 455–
472. doi: 10.1007/BF01215276.

[132] J. Wess and B. Zumino. “Consequences of anomalous Ward iden-
tities.” In: Phys. Lett. B 37 (1971), pp. 95–97. doi: 10.1016/
0370-2693(71)90582-X.

[133] Pasquale Calabrese, Jérôme Dubail, and Sara Murciano. “Symmetry-
resolved entanglement entropy in Wess-Zumino-Witten models.”
In: JHEP 10 (2021), p. 067. doi: 10.1007/JHEP10(2021)067.
arXiv: 2106.15946 [hep-th].

[134] Filiberto Ares, Pasquale Calabrese, Giuseppe Di Giulio, and
Sara Murciano. “Multi-charged moments of two intervals in con-
formal field theory.” In: JHEP 09 (2022), p. 051. doi: 10.1007/
JHEP09(2022)051. arXiv: 2206.01534 [hep-th].

[135] Martin Ammon, Alejandra Castro, and Nabil Iqbal. “Wilson
Lines and Entanglement Entropy in Higher Spin Gravity.” In:
JHEP 10 (2013), p. 110. doi: 10 . 1007 / JHEP10(2013 ) 110.
arXiv: 1306.4338 [hep-th].

[136] Hong Liu. “Scattering in anti-de Sitter space and operator prod-
uct expansion.” In: Phys. Rev. D 60 (1999), p. 106005. doi:
10.1103/PhysRevD.60.106005. arXiv: hep-th/9811152.

[137] Hong Liu and Arkady A. Tseytlin. “On four point functions in
the CFT / AdS correspondence.” In: Phys. Rev. D 59 (1999),
p. 086002. doi: 10.1103/PhysRevD.59.086002. arXiv: hep-
th/9807097.

[138] Daniel Z. Freedman, Samir D. Mathur, Alec Matusis, and Leonardo
Rastelli. “Comments on 4 point functions in the CFT / AdS
correspondence.” In: Phys. Lett. B 452 (1999), pp. 61–68. doi:
10.1016/S0370-2693(99)00229-4. arXiv: hep-th/9808006.

[139] Eliot Hijano, Per Kraus, Eric Perlmutter, and River Snively.
“Witten Diagrams Revisited: The AdS Geometry of Conformal
Blocks.” In: JHEP 01 (2016), p. 146. doi: 10.1007/JHEP01(2016)
146. arXiv: 1508.00501 [hep-th].

[140] Masamichi Miyaji, Tadashi Takayanagi, and Tomonori Ugajin.
“Spectrum of End of the World Branes in Holographic BCFTs.”
In: JHEP 06 (2021), p. 023. doi: 10.1007/JHEP06(2021)023.
arXiv: 2103.06893 [hep-th].

[141] Nathan Seiberg and Edward Witten. “The D1 / D5 system and
singular CFT.” In: JHEP 04 (1999), p. 017. doi: 10.1088/1126-
6708/1999/04/017. arXiv: hep-th/9903224.

[142] A. B. Zamolodchikov. “Infinite Additional Symmetries in Two-
Dimensional Conformal Quantum Field Theory.” In: Theor. Math.
Phys. 65 (1985), pp. 1205–1213. doi: 10.1007/BF01036128.

https://doi.org/10.1007/BF01215276
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1007/JHEP10(2021)067
https://arxiv.org/abs/2106.15946
https://doi.org/10.1007/JHEP09(2022)051
https://doi.org/10.1007/JHEP09(2022)051
https://arxiv.org/abs/2206.01534
https://doi.org/10.1007/JHEP10(2013)110
https://arxiv.org/abs/1306.4338
https://doi.org/10.1103/PhysRevD.60.106005
https://arxiv.org/abs/hep-th/9811152
https://doi.org/10.1103/PhysRevD.59.086002
https://arxiv.org/abs/hep-th/9807097
https://arxiv.org/abs/hep-th/9807097
https://doi.org/10.1016/S0370-2693(99)00229-4
https://arxiv.org/abs/hep-th/9808006
https://doi.org/10.1007/JHEP01(2016)146
https://doi.org/10.1007/JHEP01(2016)146
https://arxiv.org/abs/1508.00501
https://doi.org/10.1007/JHEP06(2021)023
https://arxiv.org/abs/2103.06893
https://doi.org/10.1088/1126-6708/1999/04/017
https://doi.org/10.1088/1126-6708/1999/04/017
https://arxiv.org/abs/hep-th/9903224
https://doi.org/10.1007/BF01036128


bibliography 193

[143] F. A. Bais, P. Bouwknegt, M. Surridge, and K. Schoutens. “Ex-
tensions of the Virasoro Algebra Constructed from Kac-Moody
Algebras Using Higher Order Casimir Invariants.” In: Nucl. Phys.
B 304 (1988), pp. 348–370. doi: 10.1016/0550-3213(88)90631-
1.

[144] F. A. Bais, P. Bouwknegt, M. Surridge, and K. Schoutens. “Coset
Construction for Extended Virasoro Algebras.” In: Nucl. Phys.
B 304 (1988), pp. 371–391. doi: 10.1016/0550-3213(88)90632-
3.

[145] V. A. Fateev and Sergei L. Lukyanov. “The Models of Two-
Dimensional Conformal Quantum Field Theory with Z(n) Sym-
metry.” In: Int. J. Mod. Phys. A 3 (1988). Ed. by P. Bouwknegt
and K. Schoutens, p. 507. doi: 10.1142/S0217751X88000205.

[146] Sergei L. Lukyanov and V. A. Fateev. “Conformally Invariant
Models of Two-dimensional QFT With Z(N) Symmetry.” In:
Sov. Phys. JETP 67 (1988), p. 447.

[147] Sergei L. Lukyanov and V. A. Fateev. Physics reviews: Addi-
tional symmetries and exactly soluble models in two-dimensional
conformal field theory. 1990.

[148] V. G. Drinfeld and V. V. Sokolov. “Lie algebras and equations of
Korteweg-de Vries type.” In: J. Sov. Math. 30 (1984), pp. 1975–
2036. doi: 10.1007/BF02105860.

[149] Peter Bouwknegt and Kareljan Schoutens. “W symmetry in con-
formal field theory.” In: Phys. Rept. 223 (1993), pp. 183–276. doi:
10.1016/0370-1573(93)90111-P. arXiv: hep-th/9210010.

[150] P. Forgacs, A. Wipf, J. Balog, L. Feher, and L. O’Raifeartaigh.
“Liouville and Toda Theories as Conformally Reduced WZNW
Theories.” In: Phys. Lett. B 227 (1989), pp. 214–220. doi: 10.
1016/S0370-2693(89)80025-5.

[151] P. Mansfield and Bill J. Spence. “Toda theories, the geometry of
W algebras and minimal models.” In: Nucl. Phys. B 362 (1991),
pp. 294–328. doi: 10.1016/0550-3213(91)90565-F.

[152] A. N. Leznov and M. V. Savelev. “Two-dimensional Nonlinear
String Type Equations and Their Exact Integration.” In: Lett.
Math. Phys. 6 (1982), p. 505. doi: 10.1007/BF00405873.

[153] Kengo Yamagishi. “A Hamiltonian structure of KP hierarchy,
W1+∞ algebra and selfdual gravity.” In: Phys. Lett. B 259 (1991),
pp. 436–441. doi: 10.1016/0370-2693(91)91653-D.

[154] Jose M. Figueroa-O’Farrill, Javier Mas, and Eduardo Ramos.
“A One parameter family of Hamiltonian structures for the KP
hierarchy and a continuous deformation of the nonlinear W(KP)
algebra.” In: Commun. Math. Phys. 158 (1993), pp. 17–44. doi:
10.1007/BF02097230. arXiv: hep-th/9207092.

https://doi.org/10.1016/0550-3213(88)90631-1
https://doi.org/10.1016/0550-3213(88)90631-1
https://doi.org/10.1016/0550-3213(88)90632-3
https://doi.org/10.1016/0550-3213(88)90632-3
https://doi.org/10.1142/S0217751X88000205
https://doi.org/10.1007/BF02105860
https://doi.org/10.1016/0370-1573(93)90111-P
https://arxiv.org/abs/hep-th/9210010
https://doi.org/10.1016/S0370-2693(89)80025-5
https://doi.org/10.1016/S0370-2693(89)80025-5
https://doi.org/10.1016/0550-3213(91)90565-F
https://doi.org/10.1007/BF00405873
https://doi.org/10.1016/0370-2693(91)91653-D
https://doi.org/10.1007/BF02097230
https://arxiv.org/abs/hep-th/9207092


194 bibliography

[155] Boris Khesin and Ilya Zakharevich. “Poisson-Lie group of pseu-
dodifferential symbols and fractional KP-KdV hierarchies.” In:
Compt. Rend. Acad. Sci. Ser. I Math. 316.6 (1993), pp. 621–626.
arXiv: hep-th/9311125.

[156] Jacob Goeree. “W constraints in 2-D quantum gravity.” In: Nucl.
Phys. B 358 (1991), pp. 737–757. doi: 10.1016/0550-3213(91)
90432-W.

[157] C. N. Pope. “Lectures on W algebras and W gravity.” In: Sum-
mer School in High-energy Physics and Cosmology. Dec. 1991,
pp. 827–867. arXiv: hep-th/9112076.

[158] Andrea Cappelli, Carlo A. Trugenberger, and Guillermo R. Zemba.
“Classification of quantum Hall universality classes by W1+∞
symmetry.” In: Phys. Rev. Lett. 72 (1994), pp. 1902–1905. doi:
10.1103/PhysRevLett.72.1902. arXiv: hep-th/9310181.

[159] Parviz Haggi-Mani and Bo Sundborg. “Free large N supersym-
metric Yang-Mills theory as a string theory.” In: JHEP 04 (2000),
p. 031. doi: 10.1088/1126-6708/2000/04/031. arXiv: hep-
th/0002189.

[160] Bo Sundborg. “Stringy gravity, interacting tensionless strings
and massless higher spins.” In: Nucl. Phys. B Proc. Suppl. 102
(2001). Ed. by Dmitri P. Sorokin, pp. 113–119. doi: 10.1016/
S0920-5632(01)01545-6. arXiv: hep-th/0103247.

[161] S. E. Konstein, M. A. Vasiliev, and V. N. Zaikin. “Conformal
higher spin currents in any dimension and AdS / CFT corre-
spondence.” In: JHEP 12 (2000), p. 018. doi: 10.1088/1126-
6708/2000/12/018. arXiv: hep-th/0010239.

[162] O. V. Shaynkman and M. A. Vasiliev. “Higher spin conformal
symmetry for matter fields in (2+1)-dimensions.” In: Theor. Math.
Phys. 128 (2001), pp. 1155–1168. doi: 10.1023/A:1012399417069.
arXiv: hep-th/0103208.

[163] E. Sezgin and P. Sundell. “Doubletons and 5-D higher spin gauge
theory.” In: JHEP 09 (2001), p. 036. doi: 10.1088/1126-6708/
2001/09/036. arXiv: hep-th/0105001.

[164] M. A. Vasiliev. “Conformal higher spin symmetries of 4-d mass-
less supermultiplets and osp(L,2M) invariant equations in gen-
eralized (super)space.” In: Phys. Rev. D 66 (2002), p. 066006.

[165] Alexander M. Polyakov. “Gauge fields and space-time.” In: Int.
J. Mod. Phys. A 17S1 (2002). Ed. by M. J. Duff and J. T. Liu,
pp. 119–136. doi: 10.1142/S0217751X02013071. arXiv: hep-
th/0110196.

[166] Andrei Mikhailov. “Notes on higher spin symmetries.” In: (Jan.
2002). arXiv: hep-th/0201019.

https://arxiv.org/abs/hep-th/9311125
https://doi.org/10.1016/0550-3213(91)90432-W
https://doi.org/10.1016/0550-3213(91)90432-W
https://arxiv.org/abs/hep-th/9112076
https://doi.org/10.1103/PhysRevLett.72.1902
https://arxiv.org/abs/hep-th/9310181
https://doi.org/10.1088/1126-6708/2000/04/031
https://arxiv.org/abs/hep-th/0002189
https://arxiv.org/abs/hep-th/0002189
https://doi.org/10.1016/S0920-5632(01)01545-6
https://doi.org/10.1016/S0920-5632(01)01545-6
https://arxiv.org/abs/hep-th/0103247
https://doi.org/10.1088/1126-6708/2000/12/018
https://doi.org/10.1088/1126-6708/2000/12/018
https://arxiv.org/abs/hep-th/0010239
https://doi.org/10.1023/A:1012399417069
https://arxiv.org/abs/hep-th/0103208
https://doi.org/10.1088/1126-6708/2001/09/036
https://doi.org/10.1088/1126-6708/2001/09/036
https://arxiv.org/abs/hep-th/0105001
https://doi.org/10.1142/S0217751X02013071
https://arxiv.org/abs/hep-th/0110196
https://arxiv.org/abs/hep-th/0110196
https://arxiv.org/abs/hep-th/0201019


bibliography 195

[167] Mikhail A. Vasiliev. “Higher Spin Algebras and Quantization on
the Sphere and Hyperboloid.” In: Int. J. Mod. Phys. A 6 (1991),
pp. 1115–1135. doi: 10.1142/S0217751X91000605.

[168] Mikhail A. Vasiliev. “Higher spin gauge theories in four-dimensions,
three-dimensions, and two-dimensions.” In: Int. J. Mod. Phys.
D 5 (1996). Ed. by V. A. Berezin, V. A. Rubakov, and D. V.
Semikoz, pp. 763–797. doi: 10.1142/S0218271896000473. arXiv:
hep-th/9611024.

[169] Mikhail A. Vasiliev. “Higher spin gauge theories: Star product
and AdS space.” In: (Oct. 1999). Ed. by Mikhail A. Shifman,
pp. 533–610. doi: 10.1142/9789812793850_0030. arXiv: hep-
th/9910096.

[170] I. R. Klebanov and A. M. Polyakov. “AdS dual of the criti-
cal O(N) vector model.” In: Phys. Lett. B 550 (2002), pp. 213–
219. doi: 10 . 1016 / S0370 - 2693(02 ) 02980 - 5. arXiv: hep -
th/0210114.

[171] Simone Giombi and Xi Yin. “The Higher Spin/Vector Model
Duality.” In: J. Phys. A 46 (2013), p. 214003. doi: 10.1088/
1751-8113/46/21/214003. arXiv: 1208.4036 [hep-th].

[172] Matthias R. Gaberdiel and Rajesh Gopakumar. “An AdS3 Dual
for Minimal Model CFTs.” In: Phys. Rev. D 83 (2011), p. 066007.
doi: 10.1103/PhysRevD.83.066007. arXiv: 1011.2986 [hep-th].

[173] Matthias R. Gaberdiel and Rajesh Gopakumar. “Minimal Model
Holography.” In: J. Phys. A 46 (2013), p. 214002. doi: 10.1088/
1751-8113/46/21/214002. arXiv: 1207.6697 [hep-th].

[174] K. Hornfeck. “W algebras with set of primary fields of dimen-
sions (3, 4, 5) and (3, 4, 5, 6).” In: Nucl. Phys. B 407 (1993),
pp. 237–246. doi: 10.1016/0550- 3213(93)90281- S. arXiv:
hep-th/9212104.

[175] C. N. Pope, L. J. Romans, and X. Shen. “W∞ and the Racah-
wigner Algebra.” In: Nucl. Phys. B 339 (1990), pp. 191–221. doi:
10.1016/0550-3213(90)90539-P.

[176] E. S. Fradkin and V. Ya. Linetsky. “Supersymmetric Racah ba-
sis, family of infinite dimensional superalgebras, SU(∞ + 1|∞)
and related 2-D models.” In: Mod. Phys. Lett. A 6 (1991), pp. 617–
633. doi: 10.1142/S0217732391000646.

[177] Eric Perlmutter. “Bounding the Space of Holographic CFTs with
Chaos.” In: JHEP 10 (2016), p. 069. doi: 10.1007/JHEP10(2016)
069. arXiv: 1602.08272 [hep-th].

[178] Andrea Campoleoni, Stefan Fredenhagen, Stefan Pfenninger, and
Stefan Theisen. “Asymptotic symmetries of three-dimensional
gravity coupled to higher-spin fields.” In: JHEP 11 (2010), p. 007.
doi: 10.1007/JHEP11(2010)007. arXiv: 1008.4744 [hep-th].

https://doi.org/10.1142/S0217751X91000605
https://doi.org/10.1142/S0218271896000473
https://arxiv.org/abs/hep-th/9611024
https://doi.org/10.1142/9789812793850_0030
https://arxiv.org/abs/hep-th/9910096
https://arxiv.org/abs/hep-th/9910096
https://doi.org/10.1016/S0370-2693(02)02980-5
https://arxiv.org/abs/hep-th/0210114
https://arxiv.org/abs/hep-th/0210114
https://doi.org/10.1088/1751-8113/46/21/214003
https://doi.org/10.1088/1751-8113/46/21/214003
https://arxiv.org/abs/1208.4036
https://doi.org/10.1103/PhysRevD.83.066007
https://arxiv.org/abs/1011.2986
https://doi.org/10.1088/1751-8113/46/21/214002
https://doi.org/10.1088/1751-8113/46/21/214002
https://arxiv.org/abs/1207.6697
https://doi.org/10.1016/0550-3213(93)90281-S
https://arxiv.org/abs/hep-th/9212104
https://doi.org/10.1016/0550-3213(90)90539-P
https://doi.org/10.1142/S0217732391000646
https://doi.org/10.1007/JHEP10(2016)069
https://doi.org/10.1007/JHEP10(2016)069
https://arxiv.org/abs/1602.08272
https://doi.org/10.1007/JHEP11(2010)007
https://arxiv.org/abs/1008.4744


196 bibliography

[179] Marc Henneaux and Soo-Jong Rey. “Nonlinear W∞ as Asymp-
totic Symmetry of Three-Dimensional Higher Spin Anti-de Sit-
ter Gravity.” In: JHEP 12 (2010), p. 007. doi: 10.1007/JHEP12(2010)
007. arXiv: 1008.4579 [hep-th].

[180] Matthias R. Gaberdiel and Thomas Hartman. “Symmetries of
Holographic Minimal Models.” In: JHEP 05 (2011), p. 031. doi:
10.1007/JHEP05(2011)031. arXiv: 1101.2910 [hep-th].

[181] Matthias R. Gaberdiel and Rajesh Gopakumar. “Triality in Min-
imal Model Holography.” In: JHEP 07 (2012), p. 127. doi: 10.
1007/JHEP07(2012)127. arXiv: 1205.2472 [hep-th].

[182] K. Hornfeck. “The Minimal supersymmetric extension of WA(n-
1).” In: Phys. Lett. B 275 (1992), pp. 355–360. doi: 10.1016/
0370-2693(92)91602-6.

[183] K. Hornfeck. “Classification of structure constants for W al-
gebras from highest weights.” In: Nucl. Phys. B 411 (1994),
pp. 307–320. doi: 10.1016/0550- 3213(94)90061- 2. arXiv:
hep-th/9307170.

[184] R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck, and
R. Hubel. “Coset realization of unifying W algebras.” In: Int.
J. Mod. Phys. A 10 (1995), pp. 2367–2430. doi: 10 . 1142 /
S0217751X95001157. arXiv: hep-th/9406203.

[185] Chi-Ming Chang, Shiraz Minwalla, Tarun Sharma, and Xi Yin.
“ABJ Triality: from Higher Spin Fields to Strings.” In: J. Phys. A
46 (2013), p. 214009. doi: 10.1088/1751-8113/46/21/214009.
arXiv: 1207.4485 [hep-th].

[186] Matthias R Gaberdiel and Rajesh Gopakumar. “Higher Spins &
Strings.” In: JHEP 11 (2014), p. 044. doi: 10.1007/JHEP11(2014)
044. arXiv: 1406.6103 [hep-th].

[187] Matthias R Gaberdiel and Rajesh Gopakumar. “String Theory
as a Higher Spin Theory.” In: JHEP 09 (2016), p. 085. doi:
10.1007/JHEP09(2016)085. arXiv: 1512.07237 [hep-th].

[188] Christian Fronsdal. “Massless Fields with Integer Spin.” In: Phys.
Rev. D 18 (1978), p. 3624. doi: 10.1103/PhysRevD.18.3624.

[189] Diptarka Das and Shouvik Datta. “Higher spin wormholes from
modular bootstrap.” In: JHEP 10 (2021), p. 010. doi: 10.1007/
JHEP10(2021)010. arXiv: 2106.03889 [hep-th].

[190] Jan de Boer, Alejandra Castro, Eliot Hijano, Juan I. Jottar,
and Per Kraus. “Higher spin entanglement and WN conformal
blocks.” In: JHEP 07 (2015), p. 168. doi: 10.1007/JHEP07(2015)
168. arXiv: 1412.7520 [hep-th].

https://doi.org/10.1007/JHEP12(2010)007
https://doi.org/10.1007/JHEP12(2010)007
https://arxiv.org/abs/1008.4579
https://doi.org/10.1007/JHEP05(2011)031
https://arxiv.org/abs/1101.2910
https://doi.org/10.1007/JHEP07(2012)127
https://doi.org/10.1007/JHEP07(2012)127
https://arxiv.org/abs/1205.2472
https://doi.org/10.1016/0370-2693(92)91602-6
https://doi.org/10.1016/0370-2693(92)91602-6
https://doi.org/10.1016/0550-3213(94)90061-2
https://arxiv.org/abs/hep-th/9307170
https://doi.org/10.1142/S0217751X95001157
https://doi.org/10.1142/S0217751X95001157
https://arxiv.org/abs/hep-th/9406203
https://doi.org/10.1088/1751-8113/46/21/214009
https://arxiv.org/abs/1207.4485
https://doi.org/10.1007/JHEP11(2014)044
https://doi.org/10.1007/JHEP11(2014)044
https://arxiv.org/abs/1406.6103
https://doi.org/10.1007/JHEP09(2016)085
https://arxiv.org/abs/1512.07237
https://doi.org/10.1103/PhysRevD.18.3624
https://doi.org/10.1007/JHEP10(2021)010
https://doi.org/10.1007/JHEP10(2021)010
https://arxiv.org/abs/2106.03889
https://doi.org/10.1007/JHEP07(2015)168
https://doi.org/10.1007/JHEP07(2015)168
https://arxiv.org/abs/1412.7520


bibliography 197

[191] Per Kraus and Eric Perlmutter. “Partition functions of higher
spin black holes and their CFT duals.” In: JHEP 11 (2011),
p. 061. doi: 10.1007/JHEP11(2011)061. arXiv: 1108.2567
[hep-th].

[192] Alejandra Castro. “Lectures on Higher Spin Black Holes in AdS3
Gravity.” In: Acta Phys. Polon. B 47 (2016), pp. 2479–2508. doi:
10.5506/APhysPolB.47.2479.

[193] Claudio Bunster, Marc Henneaux, Alfredo Perez, David Tempo,
and Ricardo Troncoso. “Generalized Black Holes in Three-dimensional
Spacetime.” In: JHEP 05 (2014), p. 031. doi: 10.1007/JHEP05(2014)
031. arXiv: 1404.3305 [hep-th].

[194] Justin R. David, Michael Ferlaino, and S. Prem Kumar. “Ther-
modynamics of higher spin black holes in 3D.” In: JHEP 11
(2012), p. 135. doi: 10.1007/JHEP11(2012)135. arXiv: 1210.
0284 [hep-th].

[195] Maximo Banados, Rodrigo Canto, and Stefan Theisen. “The
Action for higher spin black holes in three dimensions.” In: JHEP
07 (2012), p. 147. doi: 10.1007/JHEP07(2012)147. arXiv: 1204.
5105 [hep-th].

[196] Alfredo Perez, David Tempo, and Ricardo Troncoso. “Higher
spin black hole entropy in three dimensions.” In: JHEP 04 (2013),
p. 143. doi: 10.1007/JHEP04(2013)143. arXiv: 1301.0847
[hep-th].

[197] Jan de Boer and Juan I. Jottar. “Thermodynamics of higher
spin black holes in AdS3.” In: JHEP 01 (2014), p. 023. doi:
10.1007/JHEP01(2014)023. arXiv: 1302.0816 [hep-th].

[198] Eliot Hijano and Per Kraus. “A new spin on entanglement en-
tropy.” In: JHEP 12 (2014), p. 041. doi: 10.1007/JHEP12(2014)
041. arXiv: 1406.1804 [hep-th].

[199] Matthias R. Gaberdiel, Thomas Hartman, and Kewang Jin. “Higher
Spin Black Holes from CFT.” In: JHEP 04 (2012), p. 103. doi:
10.1007/JHEP04(2012)103. arXiv: 1203.0015 [hep-th].

[200] Qi Hu, Adrian Franco-Rubio, and Guifre Vidal. “Emergent uni-
versality in critical quantum spin chains: entanglement Virasoro
algebra.” In: (Sept. 2020). arXiv: 2009.11383 [quant-ph].

[201] Kantaro Ohmori and Yuji Tachikawa. “Physics at the entangling
surface.” In: J. Stat. Mech. 1504 (2015), P04010. doi: 10.1088/
1742-5468/2015/04/P04010. arXiv: 1406.4167 [hep-th].

[202] Thomas Faulkner, Monica Guica, Thomas Hartman, Robert C.
Myers, and Mark Van Raamsdonk. “Gravitation from Entangle-
ment in Holographic CFTs.” In: JHEP 03 (2014), p. 051. doi:
10.1007/JHEP03(2014)051. arXiv: 1312.7856 [hep-th].

https://doi.org/10.1007/JHEP11(2011)061
https://arxiv.org/abs/1108.2567
https://arxiv.org/abs/1108.2567
https://doi.org/10.5506/APhysPolB.47.2479
https://doi.org/10.1007/JHEP05(2014)031
https://doi.org/10.1007/JHEP05(2014)031
https://arxiv.org/abs/1404.3305
https://doi.org/10.1007/JHEP11(2012)135
https://arxiv.org/abs/1210.0284
https://arxiv.org/abs/1210.0284
https://doi.org/10.1007/JHEP07(2012)147
https://arxiv.org/abs/1204.5105
https://arxiv.org/abs/1204.5105
https://doi.org/10.1007/JHEP04(2013)143
https://arxiv.org/abs/1301.0847
https://arxiv.org/abs/1301.0847
https://doi.org/10.1007/JHEP01(2014)023
https://arxiv.org/abs/1302.0816
https://doi.org/10.1007/JHEP12(2014)041
https://doi.org/10.1007/JHEP12(2014)041
https://arxiv.org/abs/1406.1804
https://doi.org/10.1007/JHEP04(2012)103
https://arxiv.org/abs/1203.0015
https://arxiv.org/abs/2009.11383
https://doi.org/10.1088/1742-5468/2015/04/P04010
https://doi.org/10.1088/1742-5468/2015/04/P04010
https://arxiv.org/abs/1406.4167
https://doi.org/10.1007/JHEP03(2014)051
https://arxiv.org/abs/1312.7856


198 bibliography

[203] Thomas Faulkner. “Bulk Emergence and the RG Flow of Entan-
glement Entropy.” In: JHEP 05 (2015), p. 033. doi: 10.1007/
JHEP05(2015)033. arXiv: 1412.5648 [hep-th].

[204] Wei Li and Stefan Theisen. “Some aspects of holographic W-
gravity.” In: JHEP 08 (2015), p. 035. doi: 10.1007/JHEP08(2015)
035. arXiv: 1504.07799 [hep-th].

[205] Suresh Govindarajan. “Higher dimensional uniformization and
W geometry.” In: Nucl. Phys. B 457 (1995), pp. 357–374. doi:
10.1016/0550-3213(95)00527-7. arXiv: hep-th/9412078.

[206] Moritz Dorband, Daniel Grumiller, René Meyer, and Suting
Zhao. “Disorder in AdS3/CFT2.” In: SciPost Phys. 16 (2024),
p. 017. doi: 10.21468/SciPostPhys.16.1.017. arXiv: 2204.
00596 [hep-th].

https://doi.org/10.1007/JHEP05(2015)033
https://doi.org/10.1007/JHEP05(2015)033
https://arxiv.org/abs/1412.5648
https://doi.org/10.1007/JHEP08(2015)035
https://doi.org/10.1007/JHEP08(2015)035
https://arxiv.org/abs/1504.07799
https://doi.org/10.1016/0550-3213(95)00527-7
https://arxiv.org/abs/hep-th/9412078
https://doi.org/10.21468/SciPostPhys.16.1.017
https://arxiv.org/abs/2204.00596
https://arxiv.org/abs/2204.00596


AC K N OW L E D G E M E N T S

During my doctoral studies, I have been supported by many people,
for which I am deeply grateful. First of all, I want to thank the China
Scholarship Council (CSC) for funding the first three years of my doc-
toral studies, and thank Prof. Johanna Erdmenger for extending my
scholarship.

I would like to thank my advisor, PD Dr. René Meyer, for guiding
my PhD research projects as well as giving me a lot of advice on sci-
entific writing, talk presentations, and my academic career. I am very
impressed by his extensive experience and knowledge in the field of
high-energy physics, and whenever I have questions or problems about
AdS/CFT and string theory, talking to him has always been very in-
spiring and helpful. In addition, he gave me a lot of support in my
personal life, and I am very grateful to him for inviting me to his place
for Christmas every year during my PhD.

I would also like to thank the many other members of the Theoreti-
cal Physics III (TP3) group. I would like to thank Johanna Erdmenger,
from whom I learned the basics of AdS/CFT duality. I was impressed by
Johanna Erdmenger’s rigorous attitude to theoretical physics through
my participation as a teaching assistant in her Statistical Mechanics
course. I would like to thank Charles Melby-Thompson for getting me
interested in the higher spin holography, Kevin Grosvenor for collab-
orations in the quantum many-body localization project, and Moritz
Dorband for collaborations in the disordered AdS3/CFT2 project [206].
I would like to thank Marius Gerbershagen, who was always open to
discussion. In particular, his talk on monodromy methods in our group
seminar inspired me to study the relation between AdS3 geometries
and the semi-classical conformal blocks. I would like to thank Pascal
Fries, whose group seminar talk on symmetry-resolved relative entropy
inspired me and my collaborators to investigate the SREE in the Ad-
S/CFT context. I would like thank Giuseppe Di Giulio as well as Henri
Scheppach for fruitful discussions on the BCFT. I also want to thank
Yiqiang Du, Zhaohui Chen and Zhuoyu Xian for their encourage and
support during the hard time of my PhD study.

I am indebted to Christian Northe and Konstantin Weisenberger,
not only for our collaborations in the SREE projects, but also for the
pleasant time we had. Christian Northe is a very humble and easy-
going friend. Whenever I had troubles with string theory and conformal
field theories, he always listened patiently to my questions and helped
me to figure them out by simple examples. Discussions with him were
always pleasant and made me forget the passage of time. Konstantin
Weisenberger is an innocent and curious friend. As a master student at
that time, he asked many key questions about the projects that helped

199



200 bibliography

us deepen our understanding of several critical issues. I am grateful to
him for telling me the paper about the U(1) extended conformal blocks,
which motivated me to prove their factorization properties and fill in
gaps in our original works.

I would also like to thank some people outside of the TP3 group. I
thank Daniel Grumiller for collaborations in the disordered AdS3/CFT2
project, as well as for inviting me to Technische Universität Wien and
providing me an opportunity to present my work there. I thank Hong-
bao Zhang and Yu Tian for their support on my academic career. I
thank Kirill Krasnov for providing me references and answering my
questions on the Schottky uniformization. I thank my friends Yan Liu
as well as my flatmates Chenchao Liao and Zhiyi Chen for all the en-
joyable moments we had in the last three years.

Last but not least, I would like to thank my parents for always being
there for me, understanding me, supporting me and giving me uncon-
ditional love. Without them, I would not have be able to finish this
thesis.


	Dedication
	Abstract
	Abstract
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Gauge/gravity duality
	2.1.1 A brief overview
	2.1.2 From D-branes to the AdS/CFT
	2.1.3 The AdS/CFT dictionary

	2.2 Entanglement entropy and symmetry resolution
	2.2.1 Entanglement entropy in QFTs
	2.2.2 Entanglement entropy in holography
	2.2.3 Symmetry resolution of entanglement


	3 Holographic AdS3 gravity
	3.1 Aspects of AdS3 gravity
	3.1.1 Generic vacuum solutions
	3.1.2 Global aspects from Schottky uniformization
	3.1.3 Boundary effective action
	3.1.4 Stress tensor and asymptotic symmetry

	3.2 Rényi and entanglement entropy
	3.2.1 Holographic perspective
	3.2.2 CFT perspective: replica & twist pictures


	4 U(1) Chern-Simons-Einstein gravity
	4.1 U(1) Chern-Simons fields in AdS3 space
	4.1.1 Currents and asymptotic symmetry
	4.1.2 Charged black hole

	4.2 Symmetry-resolved entanglement
	4.2.1 Topological black hole approach
	4.2.2 Vertex operators on replica surface
	4.2.3 Wilson line/vertex operators duality
	4.2.4 Charged twist field approach
	4.2.5 Summary


	5 Higher spin holography
	5.1 Introduction
	5.2 Higher spin theory in three dimensions
	5.2.1 AdS3 gravity as a Chern-Simons theory
	5.2.2 Higher spin gravity
	5.2.3 Asymptotic symmetry
	5.2.4 Higher spin black hole

	5.3 Higher spin charged moments
	5.3.1 Spin-3 modular charge
	5.3.2 CFT calculation


	6 Conclusion and outlook
	6.1 The U(1) case
	6.2 The higher spin case
	6.3 Outlook

	A Entanglement algebra
	Bibliography
	Acknowledgements




