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Abstract

By the holographic principle, theories of (quantum) gravity have a dual description by
a field theory without gravity in one dimension lower. That is, quantities in gravity with
a geometric interpretation are dual to objects in quantum information theory. The most
prominent realisation of this principle is known as the AdS/CFT correspondence. In partic-
ular, this gave rise to the ER=EPR proposal, stating that the gravitational geometry arises
from the entanglement structure of the field theory. However, AdS/CFT also gives rise to
the factorisation puzzle, which describes the conflicting statements about the Hilbert space
structures expected from the bulk and boundary perspectives on the eternal black hole.
Resolving this puzzle is one of the main ingredients to obtaining a deeper understanding
of the mechanism behind the holographic principle. In light of this puzzle, in this thesis,
I investigate relations between entanglement measures and geometry. In particular, I con-
sider geometric phases and their use in light of the factorisation properties of the Hilbert
space.

To start, I study geometric phases in a simple quantum system consisting of two inter-
acting qubits. I show that the geometric phase of this system determines the entanglement
entropy uniquely. I discuss this result in terms of submanifolds of the projective Hilbert
space of this system. This enables me to associate a particular value of the geometric
phase to a factorised projective Hilbert space. Building on that construction, I introduce a
fine structure of entanglement entropy where the geometric phase is considered a measure
distinguishing states with the same entanglement entropy. This enables me to associate
wormhole-like physics with simple quantum systems. To connect to theories of gravity and
the AdS/CFT correspondence, I examine the geometric phase for the thermofield double
state (TFD state). In that, I first derive the thermofield double state for the interacting
two-qubit system and, in particular, the entanglement temperature in terms of the geomet-
ric phase. This manifests that the (entanglement) temperature can be understood using
a notion of geometry in quantum theory, similar to gravity, where temperature naturally
arises when restricting the observer to a subregion in spacetime. For the TFD state, the
fine structure of entanglement provides a probe for the topology of the parameter space.
After discussing this on the quantum mechanical side, I then proceed to work out the
topological phase for the thermofield double state by a gravity calculation, in particular
within JT gravity. I comment on the possibilities of measuring this fine structure both for
the qubit system as well as for the TFD state in actual laboratories.

In the next step, I generalise the previous results by considering geometric phases in the
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setting of AdS3/CFT2. In particular, I discuss Virasoro Berry phases and modular Berry
phases. Considering the eternal black hole in the bulk, computing Virasoro and modular
Berry phases shows that they both depend on the properties of the wormhole. Therefore,
both Virasoro and modular Berry phases, but also the topological phase of the TFD state,
probe features of the bulk wormhole and can be used to diagnose non-factorisation. In
particular, these phases are computed in the boundary theory, i.e. they probe the non-
factorisation for the boundary Hilbert space. This result highlights how geometric phases
are imperative to diagnose non-factorisation in the AdS/CFT correspondence.

Thirdly, I establish a direct bridge between geometric phases as discussed above and the
classification of operator algebras. Such algebras belong to the realm of an axiomatic/al-
gebraic approach to quantum field theory. Using state vectors that can be understood as
describing a spin chain, I show that the value of the geometric phase of a given state vector
determines whether this state vector defines a trace functional on the algebra. In particular,
this provides a geometric explanation for the fundamentally different properties of algebras
of type II and type III. In an application to the eternal black hole in AdS/CFT, I discuss
how the topological phase of the thermofield double state is connected to a non-trivial
centre of the corresponding operator algebras. In that, the topological phase is understood
as an indicator for the non-factorisation of the operator algebras, or in other words, for a
non-trivial centre. Building on that, I establish geometric and topological phases as a more
general indicator of information inaccessible to a local observer. I discuss this for various
examples, ranging from a single qubit in a magnetic field to Virasoro and modular Berry
phases in AdS/CFT.

Last but not least, I propose geometric quantum discord as a second geometric measure
for non-factorisation. Geometric quantum discord provides a qualitative measure for the
generically hard-to-compute measure of quantum discord. I study this in particular for
pure states, where quantum discord reduces to the entanglement entropy. I derive a
general formula for geometric quantum discord for pure states. This formula shows non-
factorisation in terms of a ratio of modular partition functions. I discuss how this notion
of non-factorisation is consistent with the geometric phase criterion discussed earlier. In
particular, I analyse the implications of this result for the eternal black hole in AdS/CFT.
Finally, I discuss how a straightforward generalisation of geometric quantum discord enables
the study of black hole microstates.

The results discussed in this thesis are published in the original works listed in app. A.



Zusammenfassung

Nach dem holographischen Prinzip haben Theorien der (Quanten-)Gravitation eine duale
Beschreibung durch eine Feldtheorie ohne Gravitation in einer Dimension darunter. Das
heißt, Größen in der Gravitation mit einer geometrischen Interpretation sind dual zu Objek-
ten in der Quanteninformationstheorie. Die prominenteste Realisierung dieses Prinzips ist
als AdS/CFT-Korrespondenz bekannt. Dies führte insbesondere zum ER=EPR-Vorschlag,
der besagt, dass sich die Raumzeitgeometrie aus der Verschränkungsstruktur der Feldtheo-
rie ergibt. Die AdS/CFT-Korrespondenz führt jedoch auch zu dem Faktorisierungsproblem,
das die widersprüchlichen Aussagen über die Hilbertraum Strukturen beschreibt, die aus der
Gravitations- und der Feldtheorieperspektive des ewigen Schwarzen Lochs erwartet werden.
Die Lösung dieses Problems ist einer der Hauptbestandteile, um ein tieferes Verständnis des
Mechanismus hinter dem holographischen Prinzip zu erlangen. Vor dem Hintergrund dieses
Problems untersuche ich in dieser Arbeit die Beziehungen zwischen Verschränkungsmaßen
und Geometrie. Insbesondere betrachte ich geometrische Phasen und ihre Verwendung im
Lichte der Faktorisierungseigenschaften des Hilbertraums.

Zu Beginn untersuche ich geometrische Phasen in einem einfachen Quantensystem, das
aus zwei wechselwirkenden Qubits besteht. Ich zeige, dass die geometrische Phase dieses
Systems die Verschränkungsentropie eindeutig bestimmt. Dieses Ergebnis diskutiere ich
im Rahmen von Untermannigfaltigkeiten des projektiven Hilbertraums dieses Systems.
Dadurch zeige ich, dass ein bestimmter Wert der geometrischen Phase mit einem fak-
torisierten projektiven Hilbertraum assoziiert ist. Aufbauend auf dieser Konstruktion führe
ich eine Feinstruktur der Verschränkungsentropie ein, bei der die geometrische Phase als
ein Maß betrachtet wird, das Zustände mit gleicher Verschränkungsentropie unterscheidet.
Dies ermöglicht es mir, Wurmloch-ähnliche Physik mit einfachen Quantensystemen zu as-
soziieren. Um eine Verbindung zu Gravitationstheorien und der AdS/CFT-Korrespondenz
herzustellen, untersuche ich die geometrische Phase des Thermofeld-Doppelzustands (TFD-
Zustand). Zu diesem Zweck leite ich zunächst den TFD-Zustand für das wechselwirkende
Zwei-Qubit-System und insbesondere die Verschränkungstemperatur in Abhängigkeit der
geometrischen Phase her. Damit wird deutlich, dass die (Verschränkungs-)Temperatur mit
Hilfe eines geometrischen Konzepts in der Quantentheorie verstanden werden kann, ähn-
lich wie in Gravitationstheorien, wo Temperatur dadurch entsteht, dass der Beobachter auf
einen Teilbereich der Raumzeit beschränkt ist. Für den TFD-Zustand liefert die Feinstruk-
tur der Verschränkung einen Hinweis auf die Topologie des Parameterraums. Nachdem
ich dies auf der quantenmechanischen Seite erörtert habe, fahre ich damit fort, die topol-
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ogische Phase für den TFD-Zustand durch eine Gravitationsberechnung, insbesondere im
Rahmen der JT-Gravitation, zu ermitteln. Ich kommentiere die Möglichkeiten, diese Fe-
instruktur sowohl für das Qubit-System als auch für den TFD-Zustand experimentell zu
messen.

Im nächsten Schritt verallgemeinere ich die bisherigen Ergebnisse, indem ich geometrische
Phasen in AdS3/CFT2 betrachte. Insbesondere diskutiere ich Virasoro-Berry-Phasen und
modulare Berry-Phasen. Betrachtet man das ewige Schwarze Loch in der Gravitations-
theorie, so zeigt die Berechnung der Virasoro- und der modularen Berry-Phasen, dass sie
beide von den Eigenschaften des Wurmlochs abhängen. Daher sind sowohl die Virasoro-
als auch die modulare Berry-Phase, aber auch die topologische Phase des TFD-Zustands,
Indikatoren für die Eigenschaften des Wurmlochs und können zur Diagnose der Nicht-
Faktorisierung verwendet werden. Insbesondere werden diese Phasen in der Feldtheo-
rie berechnet, d.h. sie untersuchen die Nicht-Faktorisierung für den Hilbertraum der
Feldtheorie. Dieses Ergebnis zeigt, wie geometrische Phasen für die Diagnose der Nicht-
Faktorisierung in der AdS/CFT-Korrespondenz unerlässlich sind.

Als dritten Punkt schlage ich eine direkte Brücke zwischen den oben beschriebenen
geometrischen Phasen und der Klassifizierung von Operator-Algebren. Solche Algebren
gehören in den Bereich eines axiomatischen/algebraischen Ansatzes für die Quantenfeldthe-
orie. Anhand von Zustandsvektoren, die als Beschreibung einer Spin-Kette verstanden
werden können, zeige ich, dass der Wert der geometrischen Phase eines bestimmten Zu-
standsvektors bestimmt, ob dieser Zustandsvektor ein Spurenfunktional auf der Algebra
definiert. Dies liefert insbesondere eine geometrische Erklärung für die grundlegend un-
terschiedlichen Eigenschaften von Algebren vom Typ II und Typ III. In einer Anwendung
auf das ewige Schwarze Loch in AdS/CFT diskutiere ich, wie die topologische Phase
des Thermofeld-Doppelzustands mit einem nicht-trivialen Zentrum der entsprechenden
Operator-Algebren verbunden ist. Dabei wird die topologische Phase als Indikator für die
Nicht-Faktorisierung der Operator-Algebren verstanden, oder anders gesagt, für ein nicht-
triviales Zentrum. Darauf aufbauend führe ich geometrische und topologische Phasen
als allgemeineren Indikator für Informationen ein, die für einen lokalen Beobachter un-
zugänglich sind. Ich diskutiere dies an verschiedenen Beispielen, die von einem einzelnen
Qubit in einem Magnetfeld bis zu Virasoro- und modularen Berry-Phasen in AdS/CFT
reichen.

Zu guter Letzt schlage ich geometrische Quantendiskordanz als ein zweites geometrisches
Maß für Nicht-Faktorisierung vor. Geometrische Quantendiskordanz bietet ein qualitatives
Maß für das allgemein schwer zu berechnende Maß der Quantendiskordanz. Ich unter-
suche dies insbesondere für reine Zustände, bei denen sich die Quantendiskordanz auf
die Verschränkungsentropie reduziert. Ich leite eine allgemeine Formel für geometrische
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Quantendiskordanz für reine Zustände ab. Diese Formel zeigt die Nicht-Faktorisierung in
Form eines Verhältnisses von modularen Zustandssummen. Ich erörtere, wie dieser Be-
griff der Nicht-Faktorisierung mit dem zuvor diskutierten Kriterium mittels geometrischer
Phasen vereinbar ist. Insbesondere analysiere ich die Implikationen dieses Ergebnisses für
das ewige schwarze Loch in AdS/CFT. Schließlich erörtere ich, wie eine einfache Verallge-
meinerung der geometrischen Quantendiskordanz die Untersuchung von Mikrozuständen
des schwarzen Lochs ermöglicht.

Die in dieser Arbeit diskutierten Ergebnisse sind in den in App. A gelisteten Originalveröf-
fentlichungen publiziert worden.
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Introduction 1
The beginning of the 20th century saw a surge in studies of physical phenomena at the

microscopic level. The theoretical analysis of atoms, combined with complementary exper-
imental results, led to the establishment of the Rutherford–Bohr model, where electrons
orbit the nucleus, much like planets orbit a star [1, 2]. Stable orbits about the nucleus
were postulated to be quantised, with electrons jumping between the orbits by the emis-
sion or absorption of a (correspondingly quantised) amount of energy. While this model
was largely consistent with the experimental results of the time, it also had its drawbacks
and puzzles. To name one of each, this model assumes that the electrons do not radiate,
although they are accelerated to stay in the orbit. Moreover, this model does not account
for the quantised orbits. In particular, this quantisation of energy involves the (reduced)
Planck constant ℏ, which was found by Planck when studying the spectrum of a radi-
ating black body [3]. Resolving these shortcomings was eventually possible by using the
back then freshly developed theory of quantum mechanics [4, 5], resulting in the current
understanding of atoms in terms of orbitals.

The advent of quantum mechanics at the beginning of the last century turned our
perception of reality upside down. The Copenhagen interpretation of quantum mechanics,
which ascribes an inherently probabilistic character to quantum mechanics, is the most
popular interpretation. Still, this interpretation was widely debated in the early days of
quantum mechanics, reflected in (seemingly absurd) statements about felines being deadalive .
The objections to an intrinsically probabilistic nature were shared even by Albert Einstein,
summarised in his famous remark that “[...] god does not throw dice” [6]. Even harder
to justify is the fact that quantum mechanics has many other interpretations, a popular
one being the many worlds interpretation [7], which provides a deterministic description
of quantum mechanics. Interestingly, as all of these interpretations are consistent with
experimental results and in particular do not predict different measurement outcomes for
the same process, all interpretations have to be considered equally valid. These difficulties
in interpreting quantum mechanics are probably best summarised by Niels Bohr, himself one
of the founding fathers of quantum mechanics, stating that “Those who are not shocked
when they first come across quantum theory cannot possibly have understood it” [8].

Despite these, also philosophical, issues of quantum mechanics, it proved to be indis-
pensable in describing microscopic physics to astounding precision. Moreover, well-known
classical relations such as 𝑝 = 𝑚𝑣 = 𝑚𝑥̇ can be derived from the Schrödinger equation



2 1. Introduction

when replacing the classical quantities 𝑝 and 𝑥 by the expectation values of the corre-
sponding operators 𝑝̂ and 𝑥̂. This is formalised in the Ehrenfest theorem [9]. In the limit
ℏ → 0, where the uncertainty in measuring 𝑥̂ and 𝑝̂ goes to zero, Newton’s second law
follows from the Schrödinger equation by the Ehrenfest theorem. Therefore, the laws of
classical physics are contained within quantum mechanics and are valid when ℏ→ 0, which
correspondingly has the interpretation of the classical limit. Since classical mechanics is a
limit of quantum theory, the latter is more fundamental and provides a description closer to
nature. More precisely, given a property of a classical particle, this property is also present
quantum mechanically. However, the converse is generally not true as there exist properties
characteristic to quantum mechanics that are absent in the classical limit. Examples are
given by spin [10] and the uncertainty principle [11]. An extensive discussion on this point
is provided in the classic work on quantum mechanics by Paul Dirac [12]. However, the
most striking distinction between classical and quantum physics is given by entanglement
[13, 14]. This is based on a thought experiment conducted by Einstein, Podolski and Rosen
[15] who famously coined entanglement as a “spooky action at a distance”. Given two en-
tangled particles, measuring one of the particles leads to a collapse of the wave function.
In turn, this determines the measurement outcome of the second particle, although this
has not yet been measured. The peculiarity of this property lies in the fact that, for this
effect, the particles do not have to be ‘close’ to each other. Rather, once the particles are
entangled by a local interaction, suppose that one of them is transported to the summit
of Kilimanjaro, while the other is sent to the Röntgen lecture hall at Würzburg University.
Irrespective of the large spatial separation, the statement about the measurement results
remains valid.

Shortly before the time that quantum mechanics blossomed, a further field of physics
experienced substantial progress. In contrast to quantum mechanics, this field is mainly
concerned with large-scale structures such as planets, galaxies and the universe as a whole,
i.e. classical physics. The first important development due to Albert Einstein is special
relativity [16, 17]. This theory states that the speed of light 𝑐 is a constant and nothing
can move faster than light. Special relativity is particularly important at velocities 𝑣 close
to the speed of light. In the limit 𝑣

𝑐
→ 0, i.e. slow velocities compared to the speed

of light, the laws of special relativity reduce to Newton’s laws. To formulate gravity in a
relativistic way, Albert Einstein extended his theory to general relativity [18–20]. The power
of this theory was first shown by resolving a difference in the perihelion motion of mercury
between the experimental observations and the predictions according to Newton’s law of
gravity [21]. Moreover, general relativity explained the bending of light in the presence of
mass. More generally, the Einstein field equations of general relativity tell how masses and
the corresponding gravitational force determine the paths of any matter, and vice versa,
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how spacetime emerges as a consequence of a matter distribution. The simplest vacuum
solutions to these field equations give rise to black hole spacetimes where the gravitational
attraction in a region of spacetime is so strong that not even light can escape [22, 23]. In
honour of their discoverer, such regions are defined by their Schwarzschild radius. Finally,
cosmological models such as the Big Bang theory and the steady state theory are based
on solving the field equations of general relativity with a simplified matter content [24],
backed up by experimental observations on the expansion rate of the universe [25].

Unifying special relativity and quantum mechanics led to quantum field theory (QFT),
where particles are understood as excitations of the underlying quantum fields [26–28].
This provided a hugely successful framework to study particle physics at high energies,
leading to quantum descriptions of the electric force [26, 29, 30], the weak force [31–34]
and the strong force [35–37]. These theories together make up the standard model of
particle physics. In particular, the quantum theory of electrodynamics (QED) has under-
gone many measurements confirming the theoretical description. An outstanding example
is the theoretical explanation using QED for the deviation of the electron 𝑔-factor from 2
[38, 39], which is experimentally known with a relative standard uncertainty of the order of
10−13, see e.g. [40]. In a sense, the standard model is even a little ‘too successful’. There
is unpleasantly little room for extensions within this model to explain the open questions,
such as gravitational effects on the quantum level and the matter/antimatter asymmetry,
while keeping consistency with the experimental observations.

Attempting a unification of the principles of quantum mechanics with general relativity,
the standard techniques of QFT fail. To be more precise, a QFT-like description of the
exchange particle of gravity, dubbed the graviton, is not straightforwardly attainable at high
energies. Indeed, at low energies, scattering of so-called ‘soft gravitons’ can be studied
by the established methods of QFT [41] (for detailed explanations, see e.g. [42, 43]).
However at high energies, the renormalisation of scattering amplitudes requires infinitely
many renormalisation constants. Since such constants have to be fixed by experiment,
infinitely many constants can never be fixed (in finite time). This follows from the fact
that the coupling constant of gravity, i.e. the Newton constant 𝐺N, has a negative mass
dimension. Therefore, gravity described by general relativity is a non-renormalisable theory
and can only be valid as an effective field theory up to some high energy scale. Typically,
this scale can be understood as the Planck scale, in particular the Planck mass 𝑚P, which
can be understood as follows. Collecting an amount of mass of the order of 𝑚P in a region
small enough, gravity becomes strong at the quantum level, as this can be interpreted as
a tiny black hole with Schwarzschild radius proportional to the Planck length 𝑙P [44, 45].

Due to these problems, new approaches to a unification, i.e. a theory of quantum gravity
valid at any energy, have to be studied. Among other ideas, this sparked a geometric ap-
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proach to quantum mechanics. The development of classical mechanics, and in particular
general relativity, was a powerful demonstration of how the use of geometric notions such
as curvature enables to understand physics and the corresponding theoretical description.
Motivated by this idea, physicists started to reformulate quantum mechanics in geometric
terms, associating a geometric equivalent to every property of quantum systems [46, 47].
An early result showed that the Schrödinger equation can be reformulated in terms of the
Hamilton equations of motion [48]. Further examples include reformulating the notion
of the Heisenberg uncertainty principle [49] and the collapse of the wave function [50] in
terms of a Riemannian metric. Moreover, quantum states were associated with points on
a Kähler manifold [49]. This also dispelled the remaining doubts about how fundamental
quantum mechanics is, as discussed e.g. in [49]. As mentioned before, classical mechanics
follows from quantum mechanics in the limit ℏ → 0, so quantum theory is considered to
be more fundamental. Moreover, there exist phenomena in quantum mechanics without
classical limits. However, in its usual formulation in terms of linear operators and Hilbert
spaces, quantum mechanics is an inherently linear theory without any non-trivial notion
of geometry. On the other hand, classical mechanics has a rich geometric description by
symplectic geometry, resulting in a non-linear theory. In physics, linear treatments usually
arise as approximations to the non-linear theory. Expanding the non-linear equations in
small perturbations, the resulting linear equations can typically be solved. This seemed
to suggest that classical mechanics is more fundamental, or at the very least, the usual
occurrence of linear theories as approximations is different in quantum mechanics. The ge-
ometric formulation of quantum mechanics provided a non-linear (and obviously geometric)
theory, clearing out these concerns.

In a complementary development, the currently most successful theory of quantum grav-
ity was established by reinterpreting an early approach to a quantum theory of the strong
force, where colour flux tubes were described by strings [51–54]. While this approach was
discarded as a description of the strong force, the string excitations were shown to include
a massless degree of freedom with spin 2, matching the properties of the graviton [55, 56].
This observation led to the development of string theory, replacing point particles as the
fundamental objects with strings, objects with spatial extension. What we conceive as
different particles are different excitations of a string. Every known version of string theory
contains the graviton and is therefore a theory of quantum gravity. While quantum gravity
is notoriously impossible to be described by QFT, it appears automatically in the formula-
tion of string theory. In particular, the entropy of specific black holes has been computed
in string theory [57]. Moreover, all particles of the standard model and their various inter-
actions are expected to be described by string theory. The five versions of string theory
obtained in these studies [58–60] were later argued to follow from a single theory, called
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M-theory [61]. While the five versions of string theory require ten spacetime dimensions
[62], M-theory requires eleven spacetime dimensions where strings are generalised to mem-
branes [63]. Since this theory is expected to include every particle and interaction known
to physicists, it provides a candidate for a ‘theory of everything’. However, the precise
understanding of this theory is not yet complete and is the subject of ongoing research.
Nevertheless, the study of string theory has allowed for many insights into the nature of
quantum gravity as well as QFT. Moreover, it led to new results in pure mathematics,
manifesting the long and fruitful interplay between physics and mathematics. Examples
include the Verlinde formula for the volume of state space of Chern—Simons theory [64]
as well as the Witten conjecture on intersections in the moduli space of curves [65]. Both
were inspired by string theory considerations and rigorously proven later on in [66–68] and
[69–71] respectively. With general relativity being heavily based on differential (in particular
Riemannian) geometry, string theory as its (potential) generalisation to include quantum
mechanics involves many geometric notions as well. In particular, scattering amplitudes
in string theory are characterised by the genera of Riemann surfaces. Correspondingly,
operator insertions are understood as punctures of the string theory worldsheet. In other
words, as summarised by Edward Witten, “String theory at its finest is, or should be, a
new branch of geometry” [72].

In a specific setting, M-theory has been given a precise non-perturbative treatment as
a matrix theory [73]. However as mentioned before, M-theory and also string theory are
not yet fully understood. The most significant development in this area in recent years,
leading to a plethora of new insights, was the proposal of the AdS/CFT correspondence
by Juan Maldacena [74]. Here, AdS is short for Anti-de Sitter, with CFT the acronym
for conformal field theory, i.e. a QFT with conformal symmetry. This correspondence
states a duality between a string theory on a 𝐷-dimensional Anti-de Sitter spacetime
background, referred to as the bulk, and a CFT in 𝐷 − 1 dimensions, defined on the
conformal boundary of the Anti-de Sitter spacetime [75]. In particular, the boundary
values of the fields propagating on Anti-de Sitter spacetime are identified with the sources
for the operators in the CFT [76]. It is worth highlighting that this duality relates two
theories that are well-defined on their own. In seemingly similar dualities such as the bulk-
boundary correspondence in solid-state physics (see e.g. [77] for a review) or algebraic
holography [78, 79] the boundary description exists only as a limit of the bulk description.
While such dualities of course have their use, they do not come as surprising as a duality
between a priori completely independent theories. The AdS/CFT correspondence relates
fundamentally different theories, while the theories in the bulk-boundary correspondence
or algebraic holography are intrinsically linked by definition. In light of the search for a
theory of quantum gravity, the correspondence provides a powerful tool. The string theory,
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which includes quantum gravity degrees of freedom, is dual to a CFT defined on a fixed
(usually flat) background, i.e. a theory without gravity. Therefore, the CFT must include
knowledge about quantum gravity without itself having an (obvious) notion of gravity built
in. A precise understanding of how the quantum gravity degrees of freedom are encoded
within the CFT is paramount to developing a theory of quantum gravity describing our world
and an evergreen question in pinpointing why AdS/CFT works. It should be noted that an
Anti-de Sitter spacetime has constant negative curvature, while experiments show that we
live in a universe with either vanishing or positive curvature [80, 81]. However, while some
observed features of quantum gravity are specific to the Anti-de Sitter spacetime, AdS/CFT
nevertheless provides a platform for developing an expectation on the general behaviour of
theories of quantum gravity. Moreover, there exist generalisations of AdS/CFT to dS/CFT
[82–86] and flat space holography [87–92] with a particularly well understood version known
as celestial holography [93–95], providing analogous dualities for spacetimes observed in
our universe. Last but not least, it is interesting to note that AdS/CFT has been useful
as a computational tool to analyse strongly coupled quantum systems in terms of the dual
theory of gravity. This led to the fields of AdS/CMT, with CMT short for condensed
matter theory, and AdS/QCD, with QCD short for quantum chromodynamics. One of the
most famous results of these areas is the holographic computation of the shear viscosity in
strongly coupled supersymmetric gauge theory using the AdS/CFT correspondence [96].
In an application to the quark-gluon plasma in QCD, using holography it has been argued
that the ratio of the shear viscosity to the entropy density has a universal lower bound
[97, 98]. This result has indeed been confirmed by experiment [99]. For more details
on AdS/CMT and AdS/QCD, we refer the interested reader to [100–103] and [104–107],
respectively, and references therein.

One of the properties expected to be present in any theory of quantum gravity is the
holographic principle. This principle is based on the Bekenstein bound, which states that
the entropy of a region in spacetime must not exceed the boundary area of the region divided
by 4𝐺N, with 𝐺N the Newton constant [108]. Before the entropy can exceed this ratio,
a black hole forms and the Bekenstein bound is saturated, matching Stephen Hawking’s
calculation of the black hole entropy [109, 110]. Proposed by Gerard ’t Hooft shortly
before AdS/CFT arrived, the holographic principle states that the degrees of freedom in
any theory of quantum gravity do not scale with the volume but with the boundary area
of the volume that the theory is defined in [111]. The AdS/CFT correspondence provides
an explicit (and the first) realisation of the holographic principle, which is why a better
understanding of AdS/CFT is expected to also shed more light on the nature of quantum
gravity in general. In particular, the AdS/CFT correspondence allows to study black holes
by the dual field theory. A remarkable example of this duality was proposed in [112], which
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relates the thermofield double state (TFD state) to the eternal black hole. The latter can
be interpreted as a non-traversable wormhole. More precisely, the eternal black hole as the
maximal extension of the Schwarzschild black hole geometry in Anti-de Sitter spacetime
has two asymptotic boundaries, on each of which a copy of the same CFT is defined. The
dual to this bulk geometry is given by the two CFTs entangled in the TFD state,

|TFD⟩ = 1
√

𝑍(𝛽)

∑

𝑛
𝑒−𝛽

𝐸𝑛
2
|𝑛𝐿, 𝑛

∗
𝑅⟩ , (1.1)

where |𝑛𝐿∕𝑅⟩ are the energy eigenstates and 𝛽 = 1
𝑇

is the inverse temperature of the black
hole. This duality is a first indication that entanglement in the CFT, which is a purely
quantum feature, is important when it comes to describing classical spacetime geometry.
In fact, by the Ryu–Takayanagi formula (RT formula), the entanglement between two
subregions of the CFT is holographically dual to the area of a minimal surface in the bulk.
This minimal surface connects the endpoints of the CFT subregions through the bulk
[113, 114]. Similar to the Bekenstein bound and the black hole entropy, the RT formula
provides a characterisation of entanglement in terms of a geometric object, in particular an
area. Combining these two insights on the interplay between entanglement and spacetime
geometry, it has been suggested that this is a general principle and ‘entanglement creates
spacetime’ [115–117]. In particular, by the RT formula it is clear that the area interfacing
two regions of spacetime vanishes if and only if these regions are not entangled. As the
surface in this case vanishes, this implies that the spacetime describing two unentangled
regions is not connected. These considerations entered the ER=EPR proposal [118], which
states the equivalence between entanglement as first discussed by Einstein, Podolski and
Rosen [15] (the EPR part) and spacetime wormhole solutions as first introduced by Einstein
and Rosen [119] (the ER part).

The duality between the eternal black hole and the TFD state however also leads to
a puzzle within the AdS/CFT correspondence. From the field theory perspective, the
two CFTs do not share any classical interaction and therefore the Hilbert space of the
CFT is expected to factorise as H = H (𝐿) ⊗ H (𝑅), with H (𝐿∕𝑅) the Hilbert spaces
of the CFTs defined on the left and right boundaries. On the contrary, as discussed in
the previous paragraph, the bulk spacetime is given by a smooth geometry. In particular,
there exist geodesics connecting the left and right boundary, so the bulk Hilbert space is
manifestly non-factorised. This difference in the Hilbert space structure has been coined
the factorisation puzzle [120]. An important part of better understanding the mechanism
behind the AdS/CFT correspondence, as an eventual non-perturbative theory of quantum
gravity, lies in resolving this puzzle, as we explain in more detail shortly. Significant
progress in this direction has been achieved using methods of axiomatic quantum field
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theory (AQFT), which reformulates QFT using sets of axioms [121–123]. Of central
importance to this field is the characterisation of the algebra of observables, usually a von
Neumann algebra. Such algebras were developed in the early days of quantum mechanics by
John von Neumann and also Francis Murray in a series of papers [124–131]. Applying these
methods to the eternal black hole and the dual CFTs, it has been discussed how the black
hole interior can be studied [132, 133]. Moreover using von Neumann algebras, the black
hole entropy has been computed [134–138] and the quantisation of two-dimensional gravity
with matter was analysed [139, 140]. In general, the study of such algebras for specific
systems provides a rigorous way to discuss entanglement for quantum systems. Both the
ER=EPR proposal as well as the factorisation puzzle are deeply tied to the existence of
entanglement between subregions of the CFT on the boundary. Correspondingly, operator
algebraic methods are well suited to refine the statements about the ER=EPR proposal
but also to pinpoint the origin of the factorisation puzzle.

Resolving the factorisation puzzle is very likely to provide a much more precise under-
standing of the mechanism behind the holographic principle, and thereby of the mechanism
behind the AdS/CFT correspondence. As the holographic duality states the dynamical
equivalence between a theory of quantum gravity and a QFT, such a resolution is expected
to answer or at the very least address the question of how different quantum mechanics and
general relativity actually are. Taking the ER=EPR proposal seriously, these two theories
should be fully equivalent, as has also been argued by Leonard Susskind [141]. In fact, the
Einstein equations have been derived from entanglement properties in various instances
[142–144]. With gravitational effects mapped to entanglement dynamics, this should in
principle enable to understand gravitational dynamics through the experimental study of
entangled quantum systems. This has led to developing analogue gravity, where systems,
usually from condensed matter physics, are prepared such that measurements of the sys-
tems provide insights about the gravitational theory modelled by the system, as reviewed
e.g. in [145]. In particular, significant progress has been made in establishing protocols that
realise teleportation of information through analogues of traversable wormholes [146, 147]
(see also [148]). More generally speaking, in the 21st century experiments probing the
regime of quantum gravity are advancing [149]. Examples include measuring gravitational
waves [150], the Unruh effect [151], taking pictures and detailed data collections of the
astrophysical black holes Messier 87 [152] and Sagittarius A∗ [153] 1 and mapping the grav-
itational wave background [154]. With such measurement results becoming more frequent
and gaining in precision, predictions of theories of (quantum) gravity can be tested for

1It should be noted that, while these measurements provide immensely strong evidence that these objects
are indeed black holes, strictly speaking the measurements do not prove it, as these objects could be
other unknown formations of enormous mass. However, there are no candidates for such alternative
massive objects, so current wisdom considers these objects to actually be black holes.
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their validity in our universe. Especially for analogue systems modelling gravity, in order
for such tests to be reliable, it is important to establish criteria discerning to which degree
the analogue system captures the properties expected from gravity.

In light of these developments, let us now discuss in more detail the goals pursued
in this thesis, and by which methods we approach these goals. In view of the above
described exciting advancements, in this thesis we study entanglement properties and non-
factorisation both from a quantum mechanical as well as a gravitational point of view.
Apart from contributing to an eventual resolution of the factorisation puzzle, this also
is an important step towards studying ER=EPR and the factorisation puzzle in the lab.
As alluded to in the previous paragraphs, notions of geometry have often been useful in
gaining a deeper understanding of physics [155]. In this spirit, we probe non-factorisation
by calculating geometric phases both in quantum mechanics and gravity. Geometric phases
have many applications in physics. Important examples include the topological invariants
explaining the quantisation of the Hall conductance in the quantum Hall effect [156–159],
the topological invariants classifying topological insulators [160] and the instanton number
in the quantum theory of the strong force classifying the observed vacuum structure of this
theory [161, 162]. As discussed by Sir Michael Berry in the seminal paper [163], geometric
phases, which are also known as Berry phases, arise when the parameters of a system vary
adiabatically to form a closed path in parameter space. Mathematically, geometric phases
can be understood as the holonomy of a fibre bundle [164]. More precisely, geometric
phases are related to the properties of the symplectic form defined for the bundle. If this
symplectic form is non-exact, the geometric phase defined as the integral of the symplectic
form is non-trivial. This has an interesting connection to wormhole physics. Given any
quantum system with a non-exact symplectic form, it was shown that the corresponding
path integral includes contributions from replica wormholes [165].2 This provides a strong
hint that geometric phases become important when discussing wormhole physics and non-
factorisation. By the ER=EPR proposal, this non-factorisation and the corresponding
wormhole physics should have a counterpart in terms of properties of the entanglement.
In this context, an important tool is what we will refer to as the SZK construction [166].
This establishes a geometric interpretation of entanglement for bipartite quantum systems
in terms of submanifolds of the projective Hilbert space of the system. Analysing the
symmetries of a pure state for a fixed value of the entanglement entropy allows for a
straightforward derivation of the corresponding submanifold.

One of the main results of this thesis concerning non-factorisation is the calculation
2A physical wormhole, such as the eternal black hole in Anti-de Sitter spacetime, is a solution to the

Einstein equations and hence has a precise spacetime interpretation, connecting two space-like sepa-
rated regions. Contrary, replica wormholes represent correlations between several copies of the same
theory and do not necessarily have a similar spacetime interpretation.
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of geometric phases within the SZK construction. We show explicitly for a model of
two interacting qubits how the geometric phase arises and how the submanifolds of the
projective Hilbert space are associated to different values of the geometric phase. This
in particular allows us to establish the geometric phase as a measure for non-factorisation
of the projective Hilbert space. Due to the relation between non-exact symplectic forms
and wormhole physics, we interpret our result as a manifestation of entanglement creating
space(time). In a setting more akin to AdS/CFT, we apply the same techniques to the
TFD state dual to the eternal black hole. Making use of an independent choice of time
in the left and right exterior region of the black hole, we define a geometric phase for
the TFD state that is sensitive to the non-factorised bulk geometry. We show how the
same phase can be obtained from a bulk computation in two-dimensional AdS gravity. We
further propose experimental platforms to measure these geometric phases, both for the
interacting two-qubit system as well as for the TFD state. We show that analogous results
on geometric phases and non-factorisation hold in AdS3/CFT2 for Virasoro Berry phases
[167] and modular Berry phases [168–170], which arise from conformal transformations
and deformations of the subregion in the CFT, respectively. While the geometric phase of
the TFD state, the Virasoro Berry phase and the modular Berry phase all probe different
aspects of the bulk spacetime, we show that they are all useful in detecting the wormhole,
and thereby non-factorisation.

We furthermore use geometric phases to characterise von Neumann algebras. These
algebras are one of the fundamental objects in the framework of AQFT. The methods of
AQFT allow for rigorous statements about the system under consideration. In particular,
the type classification of von Neumann algebras establishes Hilbert space factorisation and
entanglement as properties of the algebra. The most familiar algebras, which describe the
notions of quantum mechanics we are used to, are type I algebras. For this type, irreducible
representations can be defined, and correspondingly a bipartition of the Hilbert space can
be defined without technical subtleties. Type I algebras describe finite-dimensional systems
or special cases of infinite-dimensional systems. For arbitrary infinite-dimensional systems
there exist the types II and III. Both these types lack an irreducible representation and
correspondingly, the Hilbert space cannot be factorised rigorously. Closely related is the fact
that both these types have a universal divergence of entanglement entropy, which associates
the notion of entanglement to the operator algebra rather than to a specific quantum state
of the system. When discussing entanglement, a particularly curious property of type III
algebras is the absence of a well-defined trace on the algebra. Correspondingly, reduced
density operators and the entanglement entropy are not defined. For type II and type I, this
issue does not arise. For type I, all the familiar notions of textbook quantum mechanics
work out. For type II, entanglement entropy can be understood as a rescaled version of the
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type I entanglement entropy. Finally, von Neumann algebras A can have commutants A ′,
consisting of all operators that commute with operators of A . The operators common to
both A and A ′ form the centre of the algebra. If the centre consists only of operators
proportional to the identity, the centre is said to be trivial and the corresponding algebra is
referred to as a factor. Non-trivial centres arise e.g. in the presence of global symmetries.
In the context of operator algebras, apart from Hilbert space factorisation also exists the
notion of algebraic factorisation. That is, two algebras are deemed factorised if their centre
is trivial, i.e. if they do not share any non-trivial operators. As quantum mechanics can be
entirely phrased using geometry, it is an interesting question how properties of operator
algebras are encoded geometrically. Furthermore in a series of recent papers, operator
algebraic methods have been applied to the eternal black hole in Anti-de Sitter spacetime.
The operator algebras describing QFT on a classical black hole spacetime are of type III
[132, 133] and have a non-trivial centre related to the Hamiltonian of the system. Including
gravitational corrections, it has been shown that the algebra can be deformed to type II with
a trivial centre [134]. Remarkably, this is not entirely specific to Anti-de Sitter spacetime
but also holds for black holes in asymptotically flat and asymptotically de Sitter spacetimes
[171, 172]. It is worth clarifying that while a Hilbert space factorisation is only achievable
for type I algebras, this transition between type III and II addresses the factorisation of the
operator algebras. In the type III description, there exists a central element common to
both algebras, while the centre is trivial in the type II case.

In this thesis, we show that the classification of von Neumann algebras, in particular
between type II and type III, can be understood geometrically using the geometric phase.
The trace can be defined using a state vector with a vanishing geometric phase. Using
the insights gained on the geometric phases determining the entanglement by the SZK
construction, we show that any state vector of a type III algebra has a non-vanishing
geometric phase. This provides a geometric explanation for the absence of the trace
on type III algebras, related to the geometric properties of the projective Hilbert space.
However, for type II we show that there exists a state with a vanishing geometric phase.
Correspondingly, the trace is defined, as it should be for type II algebras. We relate this
to the aforementioned results on von Neumann algebras for the eternal black hole in Anti-
de Sitter spacetime. In particular, we show that the geometric phase for the TFD state
defined earlier can be understood as resulting from the non-trivial centre of the type III
algebra found in [132, 133]. Correspondingly, this geometric phase is non-trivial for the
type III description but vanishes when transitioning to the type II description of [134].
This provides an explicit realisation of our general result on von Neumann algebras for the
eternal black hole within AdS/CFT. Moreover, this shows that the geometric phase of the
TFD state is a probe for the factorisation of the operator algebras.
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Apart from the entanglement entropy, there also exist other measures of entanglement,
which in particular are better suited to quantify entanglement in mixed states. As the
ER=EPR proposal does not restrict to the entanglement entropy, it is an interesting ques-
tion how geometry and in particular non-factorisation is detected by other measures of
entanglement. One of these measures is given by quantum discord proposed independently
in [173, 174] and [175]. This measure captures quantum correlations contained in sep-
arable states, as quantum discord can be non-zero when other measures of mixed state
entanglement such as the entanglement of formation vanish [174]. Apart from quantum
information science, quantum discord has also been studied in cosmological settings, such
as de Sitter spacetime [176]. A particularly interesting approach is taken in [177–179],
where quantum discord is analysed in relation to fluctuations in the cosmic microwave
background. Non-vanishing quantum discord indicates quantum correlations between spa-
tially separated regions. This enables to gain insights into the (entanglement) dynamics of
the big bang [176–179]. Unfortunately, computing quantum discord for an arbitrary state
is demanding, and it was shown that this is an NP-complete problem [180]. A measure
that is easier to compute is given by geometric quantum discord (GQD), proposed by the
authors of [181] based on their discussion of a sufficient and necessary condition for non-
vanishing quantum discord. GQD is significantly easier to calculate as this measure requires
a minimisation only over states, as opposed to the minimisation over measurements nec-
essary for quantum discord. Furthermore, GQD is defined in terms of the Hilbert–Schmidt
norm and therefore provides a notion of distance between different states in terms of the
correlations within the states.

In this thesis, we propose GQD as an alternative measure of non-factorisation. We
show this explicitly for arbitrary pure states. For the interacting two-qubit system analysed
previously, we show that the non-factorisation indicated by GQD is consistent with the
non-factorisation indicated by the geometric phase and the corresponding submanifold
of the projective Hilbert space. We apply these results to the TFD state to show non-
factorisation purely from the boundary perspective. This also amounts to deriving the
thermomixed double state (TMD state), defined in [182] based on bulk considerations as a
decohered mixed state describing the black hole with only classical correlations, in a purely
quantum information theoretic way. Based on these considerations, we propose that a
non-vanishing quantum discord always leads to non-factorisation.

To properly explain our results, we first review some details on entanglement entropy
in sec. 2.1, followed by introducing the AdS/CFT correspondence and the factorisation
puzzle for the eternal black hole in sec. 3. The remaining secs. 4, 5, 6 and 7 contain
the derivation and discussion of our results. In more detail, the outline of this thesis is as
follows:
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• In section 2 we review properties and measures of entanglement. We do so in great
detail to provide a comprehensive picture and to introduce the notation used in later
sections of this thesis. We start in sec. 2.1 by discussing entanglement and its most
famous measure, the von Neumann entropy, in quantum mechanics and QFT. We
also discuss two alternative measures of entanglement, namely the Rényi entropy
and quantum discord. The notion of entanglement as correlations manifestly of a
quantum nature will be of central importance in this thesis. In sec. 2.2 we start by
briefly reviewing a geometric reformulation of quantum mechanics, in particular the
projective Hilbert space and geometric phases defined as holonomies of principal fibre
bundles. Subsequently, we review two ways to analyse entanglement using geometry,
namely the SZK construction defining submanifolds of the projective Hilbert space
for given values of the entanglement entropy as well as geometric quantum discord,
each of which are core elements to later sections of this thesis. Finally in sec. 2.3, we
review aspects of AQFT relevant to this thesis. In particular, we introduce operator
algebras and the type classification of von Neumann algebras. We then discuss
entanglement in this setting, which for two of the three types can be understood as
a property of the algebra rather than a property of the quantum state.

• In section 3 we review the second pillar of this thesis, namely the AdS/CFT corre-
spondence. We start in sec. 3.1 by revisiting the holographic principle, based on the
black hole entropy and the Bekenstein bound. We then introduce the AdS/CFT cor-
respondence as an explicit realisation of the holographic principle. We briefly explain
the idea behind the holographic dictionary and focus on a particular entry, namely
the relation between entanglement entropy in the CFT and the dual geometric de-
scription. Next in sec. 3.2, we discuss the factorisation puzzle arising for black holes
in the context of the AdS/CFT correspondence. We start by explaining the duality
between the eternal black hole in Anti-de Sitter spacetime and the TFD state using
the Hartle–Hawking wave functional. We briefly touch on time-shifted TFD states
as a bigger class of states dual to the eternal black hole. We then explain one of the
main topics of this thesis, namely the factorisation puzzle, in detail. We also discuss
the ER=EPR proposal relating quantum entanglement to classical geometry, which
is realised by the eternal black hole and the TFD state.

• In section 4 we discuss the new results obtained in [183] and parts of [184]. First off in
sec. 4.1, we discuss a system of two interacting qubits, in particular the entanglement
properties of the ground state of this system in using the SZK construction introduced
earlier. We derive a way to calculate the geometric phase for this ground state within
the SZK construction and show how this geometric phase, capturing the geometry
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of the projective Hilbert space, determines the entanglement entropy. Moreover, in
light of the SZK construction, we establish how the factorisation of the projective
Hilbert space is captured by the value of this geometric phase. We finally discuss
a second type of geometric phase that distinguishes between states with the same
entanglement entropy, which we dub as a fine structure of the entanglement. Next in
sec. 4.2, we turn towards studying geometric phases for the TFD state. As a partially
preparatory task, we derive the TFD state and the entanglement temperature for
the two-qubit system previously discussed. Our brief analysis of the TFD state
within the SZK construction is followed by defining a topological phase for the TFD
state, sensitive to the topology of parameter space rather than the geometry of the
projective Hilbert space. For the two-qubit system, we show that this topological
phase is related to the geometric phase defined earlier. Also for the topological
phase of the TFD state, we define the fine structure of entanglement. We conclude
this section by discussing how this topological phase can be computed in the dual
gravitational picture by an explicit example in two-dimensional AdS gravity, namely
Jackiw–Teitelboim (JT) gravity.

• In section 5 we discuss the new results published in [185]. In this work, we generalise
the insights before to the higher-dimensional case of AdS3/CFT2. In this setting, we
discuss two kinds of geometric phases. We start in sec. 5.1 by briefly introducing the
Virasoro Berry phase. Next, we discuss the toy model of U(1) Chern–Simons theory
on an annulus geometry to illustrate how the holonomy and its canonical conjugate
signal non-factorisation between the two boundaries of the annulus geometry. We
generalise this to SL(2,R) Chern–Simons theory, which describes gravity on a three-
dimensional asymptotic Anti-de Sitter spacetime, and show that again, the holonomy
signals non-factorisation. Next in sec. 5.2, we discuss modular Berry phases. We
first briefly describe how these are defined. In this setting, we study the modular
Berry curvature for various thermal two-dimensional CFTs. For the eternal black hole
setting, this again allows us to diagnose non-factorisation using the modular Berry
curvature. We finally discuss which bulk features are probed by Virasoro and modular
Berry phases, as well as the topological phase of the TFD state, by specifying and
comparing the type of bulk diffeomorphisms corresponding to each of these phases.

• In section 6 we discuss the remaining new results derived in of [184]. The first
part of this section concerns properties of operator algebras and their explanation
using geometric phases. We start in sec. 6.1 by deriving a relation between a tracial
state on the operator algebra and the geometric phase of the ground state for the
interacting two-qubit system discussed in the earlier sec. 4. While this calculation
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is mostly for illustrative purposes, we generalise this to infinite-dimensional settings
subsequently. With this generalisation, we derive a relation explaining the absence
of a tracial state on von Neumann algebras of type III in terms of the geometry of
the projective Hilbert space. Finally, we apply these insights to the von Neumann
algebras found in the context of the eternal black hole, which we also briefly review.
This in particular relates the topological phase of the TFD state to the existence of
a non-trivial centre for the von Neumann algebra, probing whether the algebras are
factorised. Next in sec. 6.2, we discuss how geometric phases can be understood
as signalling missing information for a local observer. We illustrate this in several
examples, each for vanishing and non-vanishing entanglement. In the former case,
we consider a single qubit in a magnetic field and Virasoro Berry phases for a single
CFT. In the latter case, we consider Virasoro Berry phases for two entangled CFTs,
the topological phase of the TFD state and the modular Berry phase with a wormhole
geometry in the bulk.

• In section 7 we discuss the new results published in [186]. We first derive an expres-
sion for GQD for general pure states in sec. 7.1. We show that the result can be
expressed using the second Rényi entropy as well as the modular Hamiltonian. The
latter reformulation enables us to propose a non-vanishing GQD as an indicator for
non-factorisation. We utilise again the interacting two-qubit system, for which we
have already established non-factorisation in terms of the geometric phase, to demon-
strate GQD indicating non-factorisation in an explicit example, consistent with the
results on non-factorisation obtained using the geometric phase. In sec. 7.2 we first
briefly provide details on the TMD state. We then apply our result for GQD to the
thermofield double state to show non-factorisation from the boundary perspective.
This analysis enables us to associate a new interpretation to the TMD state as the
closest classical state to the TFD state. Finally in sec. 7.3 we show how GQD and a
straightforward generalisation thereof can be used to analyse the time-shifted TFD
states as microstates of the eternal black hole. We finish the section by discussing
non-factorisation from the perspective of the path integral using the time-shifted
TFD states.

• In section 8 we conclude this thesis by summarising and pointing out possible future
directions.

Based on these calculations and considerations, there are four main results obtained in this
thesis, which we summarise in the following.

• We establish an explicit relation between entanglement and the geometric phase in
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an interacting two-qubit system. The geometric phase determines the factorisation
properties of the projective Hilbert space. This can be viewed as a manifestation of
entanglement creating space(time) and we interpret this result in terms of wormhole
physics. We show that there exists a second type of geometric phase that distin-
guishes between states with the same entanglement entropy, which we interpret as
a fine structure of entanglement. We propose experimental setups to measure this
fine structure. Applying the analogous methods to the TFD state, we first show
that temperature can be understood as arising from entanglement for the two-qubit
system. In particular, we derive the entanglement temperature in terms of the geo-
metric phase for the two-qubit system. We define a phase of topological nature for
the TFD state, which has the interpretation of a winding number. This definition is
possible since the time coordinates in the left and right exterior of the black hole can
be chosen independently. This winding number arises due to the non-trivial topology
of the corresponding parameter space. Also for this topological phase, we define
a fine structure of entanglement analogously to the two-qubit system. Moreover,
we propose an experimental setup to measure this fine structure. Finally, we show
how this topological phase arises in the dual gravitational picture using an explicit
example in JT gravity. These results are published in [183] and [184].

• We generalise the quantum mechanical results in the previous point to the higher-
dimensional setting of AdS3/CFT2. By calculating Virasoro Berry phases and mod-
ular Berry phases, we show that these types of geometric phases also indicate the
presence of a wormhole in the bulk. In particular, we show that the corresponding
symplectic forms interpreted as the Berry curvatures are non-exact in the presence
of the wormhole. For the Virasoro Berry phase, this is made manifest by a cou-
pling term between the left and right asymptotic boundaries. The coupling is related
to the mass of the black hole, which has to be equal when measured from both
boundaries. This is the intuitive explanation for the non-factorisation. Moreover,
the dual variable to the coupling is interpreted as an open Wilson line connecting
both boundaries. For the modular Berry phase, calculating the symplectic form we
find contributions from both the left and the right boundary in a non-factorised way.
These terms appear whenever the time coordinates are not perfectly aligned, similar
to the topological phase defined for the TFD state. Although these three kinds of
phases probe slightly different aspects of the bulk spacetime, this shows the impor-
tance of geometric phases for diagnosing non-factorisation and wormholes in the dual
bulk description. These results are published in [185].

• We characterise von Neumann algebras using the geometric phase in the spirit of
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the SZK construction. In particular, we show that a trace on the algebra is defined
using a state vector with a vanishing geometric phase. This provides an explanation
for the absence of the trace on algebras of type III in terms of the geometry of
the projective Hilbert space, as all state vectors appearing for such algebras have
non-vanishing geometric phases. On the contrary, among the state vectors of type
II algebras there is one state with vanishing geometric phase, which in particular
is maximally entangled. This state therefore defines a trace on the von Neumann
algebra. In light of recent results on von Neumann algebras in AdS/CFT and the
eternal black hole, we apply our result to this setting. We discuss how the topological
phase of the TFD state indicates the non-trivial centre of the type III description of
the eternal black hole. The topological phase is therefore regarded as a diagnostic
tool for the (non)-factorisation of the algebras. This also allows us to explain the
transition between type III and type II algebras using this topological phase, as this
phase vanishes precisely for one state of the type II description. We also discuss this
result in the light of geometric quantisation of the classical phase space in gravity.
We finally introduce a new interpretation of geometric phases in general as indicators
of missing information for a local observer. We discuss this interpretation both for
systems with and without entanglement, in particular a single qubit in a magnetic
field, Virasoro Berry phases in a single CFT, Virasoro Berry phases in two entangled
CFTs and modular Berry phases. These results are published in [184].

• We establish GQD as a second geometric measure of entanglement signalling non-
factorisation from the boundary point of view. We first provide an explicit expression
for GQD evaluated for pure states. Relating this result to the (modular) partition
function, we find that GQD vanishes if and only if the modular partition function
factorises. Using the interacting two-qubit system as an example, we show that
this way of diagnosing non-factorisation is consistent with the earlier method using
geometric phases. We then apply this result to the TFD state to diagnose non-
factorisation from the boundary perspective dual to the eternal black hole. The
computation of GQD provides a quantum information theoretic derivation of the
TMD state. Moreover, the definition of GQD allows us to interpret the TMD state
as the closest classical state to the TFD state. Based on these results, we conjecture
that in general, non-vanishing quantum discord is responsible for non-factorisation.
We comment on a possible dual bulk computation of GQD. Finally, we discuss GQD
and a straightforward generalisation thereof as a probe for black hole microstates,
given by the time-shifted TFD states. We discuss how these microstates can be
understood as a source for non-factorisation in the path integral. These results are
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published in [186].

Conventions and Notation
Unless stated otherwise, throughout this thesis we will use natural units, 𝑐 = ℏ = 𝑘B =
1. Metrics in Lorentzian signature are considered in the mostly plus convention, 𝜂 =
diag(−1, 1, ..., 1). When counting dimensions, the time direction is always included. A
theory in 𝐷 dimensions therefore has 𝐷 − 1 spatial dimensions and one time dimension.



19



Entanglement in Quantum Mechanics
and Quantum Field Theory 2

The discovery of quantum mechanics at the beginning of the previous century has un-
doubtedly revolutionised the field of physics. One of the key features distinguishing quan-
tum and classical mechanics is entanglement [13–15]. This phenomenon does not have a
classical analogue, yet generic quantum states do have non-vanishing entanglement. To be
more precise, entanglement describes quantum correlations between (at least) two subsys-
tems of the full quantum system. Without an explicit choice of such subsystems, discussing
entanglement is not possible. In the cases usually discussed in physics, this however is often
naturally given. As an example, given a system of two particles, it is natural to consider
each single particle as one subsystem, such that entanglement between the two particles
can be discussed. More generally in QFT, usually one fixes a spatial region 𝐴 and considers
the complement of this region 𝐴̄. This enables to discuss the entanglement in QFT as the
quantum correlations between spatial regions. While entanglement in finite-dimensional
quantum systems may be zero or non-zero depending on the particular setting, in QFT
entanglement has a universal divergence. To quantify entanglement, the standard object to
consider is the entanglement entropy or, named after its inventor, von Neumann entropy.
For quantum systems described by a state vector, this measure is sufficient to capture all
possible quantum correlations. For quantum systems without such a description, i.e. quan-
tum systems in a mixed state, the entanglement entropy does not capture all quantum
correlations. There exist many generalisations, although at the time of writing this thesis,
it is not yet clear which measure (if it exists) captures best the entanglement within a
mixed state.

We will mostly focus on studying entanglement for systems described by a state vector
in this thesis. Moreover, we will derive methods to discuss entanglement by geometric
means. For this reason, it suggests itself to make use of the geometric formulation of
quantum mechanics [46, 47]. Within this description, one object of particular focus is
the projective Hilbert space P(H ). The Hilbert space H contains state vectors that
differ by a global phase, and in particular treats such vectors as two different elements.
However, no measurement is able to distinguish between two such state vectors and they
should be considered as physically equivalent. This leads to defining the projective Hilbert
space, where states are understood as equivalence classes of state vectors differing only
by a phase. The geometric properties of projective Hilbert space allow for a geometric
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interpretation of entanglement in terms of particular submanifolds of the projective Hilbert
space [166]. This method is of central importance in this thesis as it will allow us to
diagnose non-factorisation in quantum mechanics by the properties of the submanifolds
of the projective Hilbert space. Finally, in the algebraic formulation of quantum theory
involving the algebra of observables and quantum states defined as states on this algebra,
entanglement can be understood as a property of the algebra in certain cases and more
generally by the Reeh–Schlieder theorem [187]. One major goal of this thesis is to find a
bridge between the geometric notion characterising entanglement and the algebraic notion
of entanglement.

In the following, in sec. 2.1 we review in detail how the entanglement entropy is under-
stood in quantum mechanics as well as in QFT, ending with a nod to other measures of
entanglement. Subsequently, we introduce a geometric formulation of quantum mechanics
and entanglement in particular in sec. 2.2. Finally, we explore formulating quantum me-
chanics and QFT in terms of algebras of observables in sec. 2.3, again with a particular
focus on analysing entanglement in this language.

2.1. Spooky Action at a Distance

We start our review of entanglement by discussing properties of the von Neumann entropy
in quantum mechanics in sec. 2.1.1. In this section, presenting basics on the mathematical
formulation of quantum mechanics allows us to be complete in our presentation as well
as to establish much of the notation used in later sections. We then move on to discuss
entanglement entropy in QFT in sec. 2.1.2, in particular the presence of entanglement in
the vacuum. Finally, we elaborate on other measures of entanglement of importance in
this thesis, different to the entanglement entropy, in sec. 2.1.3, namely the Rényi entropies
and quantum discord.

2.1.1. Von Neumann Entropy in Quantum Mechanics

Especially in the early days of quantum mechanics, many of the developments of quantum
theory originated from thought experiments and (philosophical) discussions. In order to
treat these developments more rigorously than just formulating them in words, the field of
linear algebra proved immensely useful. Everything that constitutes quantum mechanics
can be formulated in terms of states and operations on the space of all states. The
relations between these operations, states and concepts of linear algebra are summarised
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in four postulates of quantum mechanics.1 The postulates are based on the Dirac–von
Neumann axioms [12, 189]. In our discussion of these postulates, we restrict ourselves to
closed quantum systems. While extensions to open quantum systems can be defined, this
would lead too far from the main aspects of this thesis. Comprehensive reviews of the
topics of the following discussion can be found in [188, 190–192].

Preliminaries on Hilbert Spaces and States

The first postulate concerns the notions of state space and states:

Postulate 1:
The state space of an isolated quantum system is given by a Hilbert space H . The
state of the system is determined by the density operator 𝜌, which is a positive
semi-definite operator with trace 1 that acts on the Hilbert space.

Let us give a few more details on the terms appearing in this postulate. First, a Hilbert
space is understood as a complex vector space with a few conditions on top. Its precise
definition is as follows:

Definition 1: A Hilbert space H is a complex vector space V that is

i) equipped with an inner product ⟨⋅, ⋅⟩ ∶ (𝑣1, 𝑣2) ∈ V × V ↦ ⟨𝑣1, 𝑣2⟩ ∈ C

ii) a complete metric space under the distance function induced by the inner product.

A common example of a Hilbert space is C𝑛. The inner product for any two elements 𝑣1,
𝑣2 of C𝑛 is denoted by ⟨𝑣1, 𝑣2⟩ = ⟨𝑣1|𝑣2⟩ =

∑

𝑖 𝑣
∗
1,𝑖𝑣2,𝑖, using the common bra-ket notation

introduced by Dirac in the intermediate step. This Hilbert space occurs naturally when
discussing finite-dimensional quantum systems, e.g. quantum systems with a finite number
(e.g. 𝑛) of energy levels. In the following discussion, we always assume to be in such a
scenario with a Hilbert space H = C𝑛.

As a Hilbert space is a refined vector space, we can associate a basis B̃ ⊂ H to the
Hilbert space. The elements |𝑖⟩ ∈ B̃ span the full Hilbert space. By the Gram–Schmidt
process, any basis B̃ can be converted into an orthonormal basis B which also spans the
full Hilbert space. Any vector |𝜓⟩ of the Hilbert space can correspondingly be written as

1The number of postulates depends on the particular exposition of quantum mechanics at hand. In
other sources, there also appear three or five postulates. What is considered a ‘subpostulate’ in the
former case is promoted to a postulate in its own right in the latter case. In this thesis, we follow the
presentation of [188].
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a linear combination of the basis elements |𝑖⟩ ∈ B as

|𝜓⟩ =
𝑛
∑

𝑖=1
𝑎𝑖|𝑖⟩ , (2.1)

where 𝑎𝑖 ∈ C. Due to the probability interpretation of quantum mechanics, every vector
|𝜓⟩ has to be normalised to one, ⟨𝜓|𝜓⟩ = 1. This will become more clear shortly when
discussing the third postulate. For now, we just note that by evaluating ⟨𝜓|𝜓⟩ explicitly
for (2.1), we find that the coefficients 𝑎𝑖 are constrained as ∑𝑛

𝑖=1 𝑎
∗
𝑖 𝑎𝑖 = 1.

Vectors as in (2.1), in the language of quantum mechanics, are more commonly referred
to as pure states. For any such vector we can also construct the density operator 𝜌 as 𝜌 =
|𝜓⟩⟨𝜓|. On the level of this operator, the constraint on the coefficients 𝑎𝑖 is implemented
as tr 𝜌 = 1. More generally, we can think of a situation where the density operator is given
by a linear superposition of different 𝜌𝑖 = |𝜓𝑖⟩⟨𝜓𝑖| weighted with coefficients 𝑝𝑖,

𝜌 =
∑

𝑖
𝑝𝑖𝜌𝑖 . (2.2)

Since 𝜌 is a positive semi-definite operator, 𝑝𝑖 ≥ 0. Since tr 𝜌 = 1, we have 0 ≤ 𝑝𝑖 ≤ 1,
consistent with the interpretation of 𝑝𝑖 as probabilities. The density operator can therefore
be interpreted as a mixture of pure states.

As long as at least two of the 𝑝𝑖’s are non-zero, a density operator as given in (2.2) is
commonly referred to as a mixed state. Given any density operator 𝜌 without knowledge
about the particular values of 𝑝𝑖, there is a simple criterion to determine whether 𝜌 is pure
or mixed known as purity 𝛾(𝜌), defined as

𝛾(𝜌) = tr
(

𝜌2
)

. (2.3)

If 𝜌 is a pure state, then 𝜌2 = 𝜌 since |𝜓⟩ is normalised. Correspondingly, for a pure
state, 𝛾(𝜌) = 1, providing an upper bound for 𝛾(𝜌).2 For a mixed state however, evaluating
the square leads to interference terms between different 𝜌𝑖. Therefore, for a mixed state
𝛾(𝜌) < 1. The lower bound for 𝛾 is provided by the maximally mixed state 𝜌 = 1

𝑛
1𝑛, for

which 𝛾(𝜌) = 1
𝑛
.

We have now understood how to define the state space of a quantum system as well as
which types of states are contained in the state space. However, we have not yet defined
how the dynamics of this system are described. This is the purpose of the second postulate:

2Note that in general the trace of any power of 𝜌 cannot exceed 1, i.e. tr(𝜌𝑛) ≤ 1, since 0 ≤ 𝑝𝑖 ≤ 1.
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Postulate 2:
The time evolution of a closed quantum system is governed by a unitary transfor-
mation 𝑈 . The unitary transformation relating the states 𝜌(𝑡2) and 𝜌(𝑡1) depends
only on the times 𝑡1 and 𝑡2.

In terms of formulas, the states are related as 𝜌(𝑡2) = 𝑈𝜌(𝑡1)𝑈 †. This postulate is
equivalent to demanding that the time evolution of pure states is subject to the Schrödinger
equation.

At first, this postulate might seem to give rise to a technical problem. Will acting with
a unitary transformation on H1 project us out of the initial Hilbert space? Luckily, this is
not the case. It can be shown that the following holds:

Definition 2: Two Hilbert spaces H1 and H2 are isomorphic if they are related by a map
𝑈 ∶ H1 → H2 that is

i) linear

ii) a bijection

iii) preserving the inner product ⟨⋅, ⋅⟩.

In particular, analysing the third condition for an arbitrary linear bijection 𝐵 acting as
𝐵 ∶ |𝜓⟩ ↦ 𝐵|𝜓⟩ shows that 𝐵†𝐵 = 1 has to be satisfied, constraining 𝐵 to be a unitary
transformation. Therefore, time evolution (or any other unitary transformation) of H1

results in a Hilbert space that is isomorphic to H1.
The final ingredient required to make linear algebra a useful toolset for studying quantum

systems is the notion of a measurement, which is addressed by the third postulate:

Postulate 3:
Any physically measurable quantity, i.e. any observable 𝑂 is described by a Hermitian
operator 𝔒 that acts on the Hilbert space. The eigenvectors of 𝔒 form a basis for
H . The measurement of any 𝑂 must result in one of the eigenvalues 𝑜𝑖 of 𝔒.

As a formula, the expectation value of 𝔒 in a mixed state 𝜌 is given by ⟨𝔒⟩ = tr(𝔒𝜌).
For simplicity, in the following we assume that the spectrum of 𝔒 is discrete and non-
degenerate. Then, the probability of obtaining the eigenvalue 𝑜𝑖 is given by 𝑝(𝑜𝑖) =
tr
(

|𝑜𝑖⟩⟨𝑜𝑖|𝜌
)

, where |𝑜𝑖⟩ is the eigenvector corresponding to 𝑜𝑖.3

3Note that, for the product |𝑜𝑖⟩⟨𝑜𝑖|𝜌 to make sense, both objects have to be formulated in the same basis.
However, since |𝑜𝑖⟩ does provide a basis for H , there always exists a transformation to reformulate
|𝑜𝑖⟩ in terms of the basis that 𝜌 was originally formulated in, and vice versa.
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The measurement of an observable is understood as a collapse of the wave function onto
one of the eigenstates of the observable. Therefore, immediately after the measurement
is performed, the state 𝜌′ is no longer given by the original 𝜌, but by projecting 𝜌 into the
sector of the measurement outcome and rescaling by the probability to ensure tr 𝜌′ = 1,

𝜌′ =
|𝑜𝑖⟩⟨𝑜𝑖|𝜌|𝑜𝑖⟩⟨𝑜𝑖|

𝑝(𝑜𝑖)
. (2.4)

Given these notions defining measurements, our comments below (2.1) and (2.2) regard-
ing the probability interpretation become much clearer. Given a pure state |𝜓⟩, suppose it
is written in a basis which is also the eigenbasis to an operator 𝔒. Measuring this operator
with outcome 𝑜𝑖 results in collapsing |𝜓⟩ onto |𝑜𝑖⟩. The probability 𝑝(𝑜𝑖) is then given by

tr
(

|𝑜𝑖⟩⟨𝑜𝑖|𝜓⟩⟨𝜓|
)

= |⟨𝑜𝑖|𝜓⟩|
2 = 𝑎∗𝑖 𝑎𝑖. (2.5)

Therefore, the absolute squares of the coefficients 𝑎𝑖 in (2.1) correspond to probabilities.
Since it is not possible that the measurement has no outcome but something has to be
the result, the probabilities of all different outcomes have to sum up to one, providing the
physical interpretation of the constraint ∑𝑛

𝑖=1 𝑎
∗
𝑖 𝑎𝑖 = 1.

This concludes the discussion of the necessary ingredients to analyse closed quantum
systems. We have seen how to define states and state space. Dynamics and measurements
are described by unitary transformations and Hermitian operators, respectively. Note that
the above postulates do not only give rise to a mathematical description of quantum
mechanics but also relativistic formulations of quantum mechanics.

As of yet, we have assumed that we are working with a given closed quantum system.
We have however not specified what kind of system this should be. As far as the discussion
above goes, the system could be as simple as a single qubit, but it could also be a fairly
complicated system of 42 interacting spins. For practical purposes, it would be highly
beneficial if we were able to, at least partially, formulate the building blocks of a system
with 𝑁 spins utilising the insights we gain by analysing the much simpler system of 𝑁

2
spins, or even simpler by analysing a single qubit. This leads us to discuss composite
quantum systems and in particular bipartite quantum systems. The case of a bipartite
quantum system is one of the main objects considered throughout the rest of this thesis.
In this analysis we will also naturally encounter a notion of quantum entanglement.

Bipartite Quantum Systems

We start by stating the fourth and final of the postulates of quantum mechanics which
concerns composite quantum systems:
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Postulate 4:
The Hilbert space H of a system of 𝑁 components is given by the tensor product
of all of the Hilbert spaces H (𝑖) of the individual components. If the individual
states are prepared as 𝜌(𝑖), the state in the composite quantum 𝜌 is given by the
tensor product of all of the 𝜌(𝑖).

In formulas, this says that H =
⨂𝑁

𝑖=1 H (𝑖). As a simple example, considering two
quantum systems with Hilbert spaces H (1) = C2 = H (2), the composite Hilbert space is
given by C4. The state in H , as stated above, is given by

𝜌 =
𝑁
⨂

𝑖=1
𝜌(𝑖). (2.6)

This tensor product structure also allows for independent measurements between the com-
posite systems. Given observables 𝔒(𝑖) acting only on the 𝑖-th Hilbert space, the measure-
ment of all of these operators factorises,

tr

(

𝑁
⨂

𝑖=1
𝔒(𝑖)𝜌

)

=
𝑁
∏

𝑖=1
tr
(

𝔒(𝑖)𝜌(𝑖)
)

. (2.7)

Related to this result, measurements in one component do not influence the other systems,

tr
(

𝔒(𝑖)𝜌
)

= tr𝑖
(

𝔒(𝑖)𝜌(𝑖)
)

, (2.8)

where tr𝑖 is the partial trace, acting only on operators of the 𝑖-th component.
However, it is clear that not every state of the composite Hilbert space can be of the

simple structure as in (2.6). In particular, we saw earlier that a linear combination of
density operators with appropriate coefficients is also a valid density operator. Since the
sum of tensor products is generally not equal to the tensor product of sums, i.e.

∑

𝑙
𝑝𝑙𝜌𝑙 =

∑

𝑙
𝑝𝑙

(

𝑁
⨂

𝑖=1
𝜌(𝑖)

)

≠
𝑁
⨂

𝑖=1

(

∑

𝑙
𝑝̃𝑙𝜌

(𝑖)
𝑙

)

, (2.9)

these states are not of the same form as (2.6), but are more general states. However,
these states are still not the most general state that can be written down for a composite
quantum system. States that can be written as in (2.9) are known as separable quantum
states. Every state of a composite quantum system that cannot be brought to the above
form is called entangled.

As a side remark, it is generally considered a hard problem to test whether an arbitrary
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mixed state is entangled. In fact, it was shown that for an arbitrary bipartite system,
this task is NP-hard [193]. For the special cases of bipartite systems with dim(H (1)) =
dim(H (2)) = 2 and dim(H (1)) = 2, dim(H (2)) = 3 it was shown that a necessary and
sufficient criterion for separability of the full state is given by the positive partial transpose
condition [194, 195]. As we are mostly concerned with pure states throughout this thesis,
we will not go into detail about this.

The prototypical measure to quantify the entanglement within a given state is the en-
tanglement entropy or von Neumann entropy 𝑆(𝜌).4 For pure states, this measure is
sufficient to detect any amount of entanglement. For mixed states unfortunately, this is
not completely true. Therefore, there exists a zoo of other measures quantifying entan-
glement for mixed states. At the time of writing this thesis however, to the best of our
knowledge, it has not yet been shown which of these measures is the ‘best’. We will explain
in more detail why entanglement entropy is not a good measure for mixed states later on
in sec. 2.1.3 when we discuss a few of the more general measures. Despite the deficiencies
of entanglement entropy, we will use it here as it is sufficient for the following discussion.

The von Neumann entropy of any mixed state 𝜌 is defined as

𝑆(𝜌) = − tr(𝜌 ln 𝜌) . (2.10)

In terms of the eigenvalues 𝜆𝑖 of 𝜌, this can also be expressed as

𝑆(𝜌) = −
𝑛
∑

𝑖=1
𝜆𝑖 ln 𝜆𝑖 . (2.11)

Since the eigenvalues of 𝜌 are real numbers between 0 and 1, it follows that the entan-
glement entropy is positive semi-definite. There also exists an upper bound for the entan-
glement entropy, provided by the maximally entangled state 𝜌 = 1

𝑛
1𝑛 in an 𝑛-dimensional

Hilbert space. This state has entanglement entropy 𝑆(𝜌) = ln 𝑛.
Given a product mixed state of a bipartite quantum system 𝜌 = 𝜌(1) ⊗ 𝜌(2), the entropy

of 𝜌 is given by

𝑆(𝜌) = 𝑆(𝜌(1)) + 𝑆(𝜌(2)) . (2.12)

For a general separable mixed state 𝜌, this turns into an inequality

𝑆(𝜌) ≤ 𝑆(𝜌(1)) + 𝑆(𝜌(2)) . (2.13)

4Throughout this thesis, we will use both names interchangeably.
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This relation is known as the subadditivity of entanglement. It is one of the main properties
distinguishing quantum mechanics from classical probability theory. The Shannon entropy
of a classical composite system can never be lower than the Shannon entropy of any of
its components. However, due to (2.13), in quantum mechanics, it can happen that even
𝑆(𝜌) = 0 while the individual entropies do not vanish. Furthermore, (2.13) is one half of
the so-called Araki–Lieb inequalities [196],

|𝑆(𝜌(1)) − 𝑆(𝜌(2))| ≤ 𝑆(𝜌) ≤ 𝑆(𝜌(1)) + 𝑆(𝜌(2)) . (2.14)

By the left inequality we see that 𝑆(𝜌) = 0 happens exactly when 𝑆(𝜌(1)) = 𝑆(𝜌(2)).
In terms of the state 𝜌, the entanglement entropy 𝑆(𝜌) vanishes if and only if 𝜌 is a pure

state, i.e. 𝜌 = |𝜓⟩⟨𝜓|. Since this state is a projector 𝜌2 = 𝜌, its eigenvalues can only take
the values 0 and 1. Therefore by (2.11), the entanglement entropy vanishes. However, by
(2.14) the entanglement between the subsystems does not necessarily vanish, even when
the full system is in a pure state. Given the pure state 𝜌, the reduced density operators of
the subsystems are obtained by calculating the partial trace [197],

𝜌(1∕2) = tr2∕1𝜌 . (2.15)

This can be understood as measuring all of one of the subsystems while leaving the other
subsystem untouched. The existence of entanglement between the subsystems therefore
depends on whether the reduced density operators are pure or not. Only if the reduced
density operators themselves are pure states, there is no entanglement at all.5 A useful
criterion to distinguish between these cases is provided by the purity 𝛾 introduced earlier in
(2.3), summarised in table 2.1. In short, a pure state of a bipartite system is not entangled
if and only if the reduced density operators are also pure states.

From now on we restrict the discussion to pure states. For a bipartite system, to each
subsystem a basis B1∕2 is associated. As the Hilbert space of the full bipartite system is
given by the tensor product of the individual Hilbert spaces, the basis for the full bipartite
system is given by all tensor products of elements of B1 and B2. Therefore, any pure
state can be written as

|𝜓⟩ =
𝑛
∑

𝑖,𝑗=1
𝑎𝑖𝑗|𝑖1, 𝑗2⟩ , (2.16)

where |𝑖1, 𝑗2⟩ is short hand for |𝑖1⟩⊗ |𝑗2⟩ and 𝑎𝑖𝑗 ∈ C with ∑𝑛
𝑖=1 |𝑎𝑖𝑖|

2 = 1. Note that for
5Note that the existence of entanglement depends on the chosen bipartition. A given state may be

entangled for one bipartition, but separable for a different bipartition. So discussing entanglement
properties makes sense once a bipartition H = H (1) ⊗H (2) of the system is fixed.



2.1. Spooky Action at a Distance 29

separable pure state 𝜌: 𝛾(𝜌) = 1 ∧ 𝛾(𝜌(𝑖)) = 1 ⇔ 𝑆(𝜌) = 𝑆(𝜌(𝑖)) = 0

entangled pure state 𝜌: 𝛾(𝜌) = 1 ∧ 𝛾(𝜌(𝑖)) < 1 ⇔ 𝑆(𝜌) = 0, 𝑆(𝜌(𝑖)) ≠ 0

Table 2.1: A separable pure state, sometimes also called a pure product state, is charac-
terised by vanishing entanglement entropy both for the full state as well as for the reduced
density operators. An entangled pure state also has vanishing entanglement for the full
state, but the reduced density operators are mixed states with non-vanishing entanglement.

arbitrary 𝑎𝑖𝑗 , this state is entangled since generically it cannot be written as |𝜓1⟩⊗ |𝜓2⟩.
This is only possible if the coefficients 𝑎𝑖𝑗 are products of the coefficients 𝑎(1∕2)𝑖 of |𝜓1∕2⟩,
i.e. if 𝑎𝑖𝑗 = 𝑎(1)𝑖 𝑎

(2)
𝑗 for all 𝑖, 𝑗 = 1, ..., 𝑛. In order to quantify the entanglement in the state

(2.16), a particularly useful way to denote it is given by the Schmidt decomposition. This
can be considered an application of the singular value decomposition to the coefficient
matrix 𝑎 with entries 𝑎𝑖𝑗 . Essentially it amounts to diagonalisation of 𝑎 by redefining
the basis of (at least) one of the subsystems. Since the Schmidt decomposition will be
elementary throughout parts of this thesis, we provide some more details on it in the
following.

The Schmidt decomposition is given by the following statement:

Theorem 1: Any vector |𝜓⟩ of a bipartite Hilbert space H = H (1) ⊗ H (2) can be
expressed as

|𝜓⟩ =
𝑛
∑

𝑖=1
𝜅𝑖|𝑖1, 𝑖2⟩ , (2.17)

where 0 ≤ 𝜅𝑖 ≤ 1 are the Schmidt coefficients and |𝑖1⟩ and |𝑖2⟩ are orthonormal bases of
the respective subsystems.

To show this, consider the state (2.16) with coefficient matrix 𝑎. By the singular value
decomposition, we can write 𝑎 = 𝑈Ξ𝑉 , where 𝑈 and 𝑉 are unitary matrices and Ξ is a
positive semi-definite diagonal matrix with entries 𝜅𝑖. These 𝜅𝑖 are the eigenvalues of 𝑎.
Defining |𝑖1⟩ = 𝑈 |𝑖1⟩, |𝑖2⟩ = 𝑉 |𝑖2⟩ yields

|𝜓⟩ =
𝑛
∑

𝑖,𝑗=1
(𝑈Ξ𝑉 )𝑖𝑗|𝑖1, 𝑗2⟩ =

𝑛
∑

𝑖,𝑗=1
𝜅𝑖𝛿𝑖𝑗|𝑖1, 𝑗2⟩ =

𝑛
∑

𝑖=1
𝜅𝑖|𝑖1, 𝑖2⟩ . (2.18)

Since 𝑈 and 𝑉 are unitary, |𝑖1∕2⟩ are orthonormal.
To see that the representation (2.17) is particularly convenient when computing the

entanglement, we point out that the reduced density operators of either subsystem are
diagonal when computed starting from the state in Schmidt decomposed form. The di-
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agonal entries 𝜆𝑖 of the reduced density operators are simply the squares of the Schmidt
coefficients, 𝜆𝑖 = 𝜅2

𝑖 . Correspondingly, the spectrum of both 𝜌(1) and 𝜌(2) has to be the
same. Using (2.11), we see that the entanglement entropy of a pure state |𝜓⟩ is uniquely
specified by the values of all Schmidt coefficients,

𝑆(𝜌(1)∕(2)) = −
𝑛
∑

𝑖=1
𝜅2
𝑖 ln 𝜅

2
𝑖 . (2.19)

This is another way to see that 𝑆(𝜌(1)) = 𝑆(𝜌(2)) for a pure state 𝜌.
Below (2.11) we stated that a maximally entangled state is described by a density

operator that is proportional to the identity. This statement can be reformulated in terms
of the Schmidt coefficients. A state is maximally entangled if and only if all of its Schmidt
coefficients are equal.

An important property of the entanglement entropy is that it is invariant under local
unitary transformations 𝑈 = 𝑈1 ⊗ 𝑈2 [188]. Transforming a pure state 𝜌 by a local
unitary transformation to 𝜌′ = 𝑈𝜌𝑈 †, when computing the reduced density operator of
the first (the second) subsystem all influence of 𝑈2 (𝑈1) drops out due to the cyclicity of
the trace.6 The transformed reduced density operator is then related to the old reduced
density operator as 𝜌′ (1)∕(2) = 𝑈1∕2𝜌(1)∕(2)𝑈

†
1∕2. Since unitary transformations do not change

the eigenvalues of a given operator, the spectrum of 𝜌′ (1)∕(2) is the same as the spectrum
of 𝜌(1)∕(2). Accordingly, also the entanglement entropy does not change.

We have now understood how to quantify the entanglement within a generic state 𝜌 and
in particular for pure states. An important object in this analysis is the reduced density
operator defined in (2.15), describing only one of the subsystems. Remarkably, the relation
between the full and the reduced density operator can also be understood in the opposite
direction. Given a mixed state 𝜌 acting on H (1), there exists a pure state |𝜓⟩ in an
extended Hilbert space H (1)⊗H (2) such that upon partial tracing over H (2), the mixed
state 𝜌 is recovered as the reduced density operator. This is known as purification and is
formalised in the purification theorem [14, 198–202]. It states that, given a mixed state
𝜌 =

∑𝑛
𝑖=1 𝑝𝑖|𝜙𝑖⟩⟨𝜙𝑖| acting on H (1), it is always possible to obtain this state as the reduced

density operator of a pure state |𝜓⟩ ∈ H (1) ⊗H (2), where

|𝜓⟩ =
𝑛
∑

𝑖=1

√

𝑝𝑖|𝜙𝑖, 𝜙
′
𝑖⟩ (2.20)

and dimH (1) ≤ dimH (2). Here |𝜙′
𝑖⟩ is a basis for the auxiliary Hilbert space H (2). As

6The partial trace tr𝑖 is not cyclic w.r.t. the full unitary transformation 𝑈 = 𝑈1⊗𝑈2, but only w.r.t. the
part of 𝑈 that is traced out. That means, tr1(𝑈1𝔒𝑈

†
1 ) = tr1𝔒, but tr1(𝑈𝔒𝑈†) = tr1(𝑈2𝔒𝑈

†
2 ) ≠ tr1𝔒.
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this Hilbert space is auxiliary, the basis |𝜙′
𝑖⟩ is not unique. In fact, it has been shown that

for a mixed state 𝜌 there exist infinitely many possible purifications [203]. However, given
two purifications |𝜓⟩ and |𝜓 ′

⟩ of the same state 𝜌, it was also shown that these two pure
states are related by a unitary transformation of the basis of the auxiliary Hilbert space
[204]. As discussed in the previous paragraph, the entanglement contained in |𝜓⟩ and |𝜓 ′

⟩

therefore is the same.

Area vs. Volume

The entanglement entropy is named such as it is defined in an analogous way to the ther-
modynamic entropy introduced by Clausius [205] and given an interpretation in terms of
microstates by Gibbs and Boltzmann [206, 207]. As a formula, the thermal entropy is
defined as the logarithm of the number of possible configurations of the system. In terms
of microstates, this is expressed as 𝑆therm = −

∑

𝑖 𝑝𝑖 ln 𝑝𝑖, where 𝑝𝑖 is the probability that
the system is described by a particular microstate.7 This probability is of course a purely
classical quantity and arises from employing a statistical description of large macroscopic
systems, scenarios in which it is hard to determine the precise state that the system is in
exactly. However, as quantum mechanics can be interpreted as a theory of probabilities as
well, it is natural to generalise the notion of thermodynamic entropy to quantum mechan-
ics. In particular, the expression for 𝑆therm has a striking similarity to the entanglement
entropy as given in (2.11). This line of thought motivated von Neumann to define the
density operator in the first place in order to develop a statistical interpretation of quantum
mechanics [208].8

Although entanglement and thermodynamic entropy are defined in an analogous way,
the two quantities can behave quite differently. One of the main differences is that the
thermal entropy usually scales with the volume while the entanglement entropy scales with
an area, at least for the ground state in gapped systems. To give a few more details,
the thermodynamic entropy can equivalently be expressed as the logarithm of the phase
space volume Ω. As an example, considering a gas of 𝑁 particles, the phase space is
6𝑁-dimensional and has elements corresponding to the positions and momenta of all 𝑁
particles. A particular microstate of the system is given by specifying the position and the
momentum of every particle. The volume of the phase space is given by all elements that
can be reached from a given starting point defined by the boundary conditions. Therefore,
the thermodynamic entropy usually satisfies a volume law since it can be written as 𝑆therm =
lnΩ. On the contrary, this is not generally true for the entanglement entropy. Rather,

7Note that we use natural units where 𝑘B = 1.
8In a complementary development, Landau independently introduced the density operator as a tool to

study quantum systems that do not admit a description by a state vector [209].



32 2. Entanglement in Quantum Mechanics and Quantum Field Theory

H (1) H (2)

H

Figure 2.1: Bipartition of a Hilbert space H . The bipartition surface is represented by
the dashed blue line. The amount of quantum correlations, i.e. the number of wavy lines,
shared between particles on both sides of the bipartition surface quantifies the entanglement
between H (1) and H (2). Quantum correlations between particles which are not separated
by the bipartition surface do not contribute to the entanglement entropy.

for the ground state in gapped systems this quantity scales with the area between the
subsystems and therefore satisfies an area law. An intuitive reason for this behaviour is that,
as discussed previously, entanglement is measured between subsystems which are defined
by introducing a bipartition. Associated to the bipartition is the bipartition surface which
separates the two subsystems, visualised in fig. 2.1. Entanglement between the subsystems
is therefore sensitive only to quantum correlations across the bipartition surface. Quantum
correlations purely within one of the subsystems do not lead to any entanglement. The gap
𝜉 is important as spatial correlations between points at a relative distance 𝑥 are damped
by a factor of 𝑒−𝑥𝜉, so only correlations close to the bipartition surface are sufficiently large
to contribute to the entanglement and 𝑆 ∝ 𝐴, where 𝐴 is the area. If the gap tends
to zero and the correlations satisfy a power law, correlations between points farther apart
have to be taken into account. This typically leads to a breaking of the area law as then,
𝑆 ∝ 𝐴 ln𝐴.

This distinction between thermodynamic and entanglement entropy becomes particularly
important (as well as interesting) in gravitational settings, especially for black holes. We
will discuss this further in sec. 3.1 and in sec. 3.2.1.

Intuitively, the entanglement entropy quantifies how many of the wavy lines in fig. 2.1
representing quantum correlations are cut by the bipartition surface. Wavy lines that are not
cut open do not contribute to the entanglement. Mathematically this can be understood as
follows. The quantum correlations between two particles within H (1) can be represented as
an entangled state 𝜌′. Any other two particles sharing quantum correlations are described
by 𝜌̃. According to the fourth postulate discussed above, the full state is then given by
𝜌 = 𝜌′ ⊗ 𝜌̃. Suppose now that the bipartition surface is placed such that it separates the
second pair of particles. Since tr 𝜌′ = 1 by definition of the density operator, calculating
the reduced density operator of the second subsystem receives contributions only from 𝜌̃
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as the partial trace over the first system measures both particles within 𝜌′. Accordingly,
the entanglement entropy is not sensitive to the quantum correlations described by 𝜌′.

As we have seen previously, thermodynamic and entanglement entropy can be different
in their scaling behaviour. However, they also share similarities, which in particular can be
seen in terms of entanglement thermodynamics. Here, in analogy to the thermal density
operator 𝜌therm = 𝑒−𝛽𝐻 of a system at (inverse) temperature 𝛽 and with Hamiltonian 𝐻 ,
the so-called modular Hamiltonian 𝐾 is defined as

𝜌 =∶ 𝑒−𝐾 ⇔ 𝐾 = − ln 𝜌 , (2.21)

where 𝜌 is an arbitrary entangled quantum system. In particular, 𝜌 might be the reduced
density operator associated with a subsystem of a larger Hilbert space H . With the above
definition, the thermal density operator can be viewed as the special case 𝐾 = 𝛽𝐻 . The
modular Hamiltonian defined in this way is one of the main objects in Tomita–Takesaki
theory, which is an algebraic approach to quantum mechanics. We will discuss this in more
detail in sec. 2.3.2.

The modular Hamiltonian is sometimes also referred to as the entanglement Hamiltonian,
as it contains information about the entanglement spectrum of 𝜌. Moreover, with 𝐾 as
defined on the right-hand side of (2.21), the entanglement entropy (2.10) is written as the
expectation value of the modular Hamiltonian,

𝑆(𝜌) = tr(𝜌𝐾) . (2.22)

The definition in (2.21) can be used to show that the entanglement entropy satisfies what
is called the first law of entanglement entropy, again in analogy to the thermodynamic
entropy. In the simplest case, the first law of thermodynamics states that the derivative of
the energy 𝐸 with respect to the thermodynamic entropy 𝑆therm equals the temperature 𝑇 ,
i.e. 𝜕𝐸

𝜕𝑆therm
= 𝑇 . For the entanglement entropy, an analogous relation can be established.

Upon a small variation of the reduced density operator 𝜌(1) → 𝜌(1)+ 𝛿𝜌(1), to first order the
entanglement entropy (2.10) changes as [142, 210]

𝛿𝑆(𝜌(1)) = − tr
(

𝛿𝜌(1) ln 𝜌(1)
)

− tr
(

𝜌(1)𝛿 ln 𝜌(1)
)

. (2.23)

By the chain rule, the variation of the logarithm is given by the inverse density operator
multiplying the variation 𝛿𝜌(1). The second term therefore is simply the trace of 𝛿𝜌(1). As
the density operator satisfies the normalisation tr 𝜌(1) = 1, by consistency tr

(

𝛿𝜌(1)
)

= 0.
Furthermore, invoking (2.21) for 𝜌(1) the logarithm in the first term reduces to −𝐾 (1). As
⟨𝐴⟩ = tr

(

𝜌(1)𝐴
)

, the right-hand side of the above equation equals the variation of the
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expectation value of the modular Hamiltonian,

𝛿𝑆(𝜌(1)) = 𝛿⟨𝐾 (1)
⟩ , (2.24)

resembling 𝜕𝐸
𝜕𝑆therm

= 𝑇 for 𝑇 = 1. This is consistent with the above definition (2.21) when
comparing to the thermal density operator 𝜌therm = 𝑒−𝛽𝐻 . Alternatively, to have an even
closer analogy to thermodynamics, we might also redefine the modular Hamiltonian by
rescaling 𝐾 → 𝛽ent𝐾, where 𝛽ent is the entanglement temperature. In this case, the first
law of entanglement entropy reads

𝛿𝑆(𝜌(1)) = 𝛽ent𝛿⟨𝐾
(1)
⟩ . (2.25)

With this formulation, the entanglement entropy can be formally interpreted as a thermal
entropy. Remarkably, applied to holographic CFTs the first law of entanglement entropy
was shown to put constraints on the dual spacetime in that it has to satisfy the linearised
Einstein equations [142].

As an aside, the analogy between entanglement and thermodynamic entropy also has
certain limitations, in particular regarding the second law of thermodynamics. The second
law concerns the reversibility of processes, characterised by an increase in the thermo-
dynamic entropy for irreversible processes and no change in the entropy for a reversible
process. In this classification, the thermodynamic entropy must provide a unique measure.
To establish an analogous statement for entanglement, a unique measure of entangle-
ment is required [211–214]. While for pure states the entanglement entropy is sufficient
[211, 215], as we commented earlier, generally such a measure is not yet known. Neverthe-
less, there exist proposals for reversibility of entanglement transformations under certain
conditions [213, 216–219]. However, it has been shown that reversibility of such manip-
ulations in general requires generating macroscopic amounts of entanglement, ruling out
the existence of a second law of entanglement [220].

This concludes our discussion of the entanglement entropy in quantum mechanics.

2.1.2. Von Neumann Entropy in Quantum Field Theory

In the previous section we have analysed in quite some detail how entanglement entropy is
understood and computed in quantum mechanics. In particular, we have focused on finite-
dimensional Hilbert spaces. However, in the context of QFTs, usually the Hilbert space is
infinite-dimensional as there are infinitely many degrees of freedom.9 In generalising the

9The field operators, whose values fluctuate, are defined at every point in the allowed spacetime, typically
R1,𝑑−1 for a QFT in 𝑑 dimensions. Correspondingly, there are infinitely many degrees of freedom.
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statements of sec. 2.1.1 to infinite-dimensional quantum systems, some subtleties arise.
We will discuss these subtleties together with the corresponding necessary adjustments
in more detail in sec. 2.3. In the following, we discuss general features of entanglement
entropy in QFTs, in particular pointing out which characteristics discussed in sec. 2.1.1 are
still present and where entanglement entropy in QFT behaves differently than in quantum
mechanics.

Entanglement in the Vacuum

First of all, as we have seen before, in quantum mechanics there exist states with non-trivial
entanglement, but there also exist separable states without entanglement. This is different
in QFT, as here every state contains entanglement. This holds in particular also for the
vacuum state |0⟩. The vacuum state in a QFT is understood as a superposition of states
corresponding to different field configurations, constrained only by the fact that the full
state is the state of the lowest energy. This can also be formulated as having no physical
particle excitations in the state.10 However, the different field configurations corresponding
to fluctuations of the quantum fields lead to entanglement between such fluctuations. A
simple way to see this is to consider the vacuum expectation value of two operators at
different points in spacetime,

⟨0|𝜙(𝑥)𝜙(𝑦)|0⟩ . (2.26)

Suppose that we introduce a bipartition surface such that 𝑥 is contained in a spatial region
𝐴 while 𝑦 is contained in the complement of 𝐴, denoted as 𝐴̄.11 This is visualised in
fig. 2.2. Note that compared to the previous section we have switched from labelling
subregions by numbers as (𝑖) to directly using the region (and its complement) as a label,
as this is more common in the field theory literature.

Without entanglement between 𝐴 and 𝐴̄, the vacuum state can be written as the product
of the vacuum states in 𝐴 and 𝐴̄. If this was the case, the above expectation value (2.26)
factorises into the individual expectation values,

⟨0|𝜙(𝑥)𝜙(𝑦)|0⟩
|0⟩=|0𝐴0𝐴̄⟩= ⟨0𝐴|𝜙(𝑥)|0𝐴⟩⟨0𝐴̄|𝜙(𝑦)|0𝐴̄⟩ . (2.27)

However, this is not generally true in QFT. Therefore, the assumption that the vacuum
10A physical particle excitation would e.g. be the state of one electron. In the vacuum, no such states

are contained. However, states with particle-antiparticle pairs due to quantum fluctuations are allowed
since these pairs do not yield physical particles.

11In QFT, strictly speaking such a bipartition is not well-defined since it is not clear what happens to the
degrees of freedom on the bipartition surface. This is one of the subtleties mentioned earlier. We will
address this point in more detail in sec. 2.3.1.
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𝜙(𝑥)
𝐴𝐴̄

𝜙(𝑦)

Figure 2.2: Two operators 𝜙(𝑥) and 𝜙(𝑦) are placed in regions 𝐴 and its complement 𝐴̄
respectively, separated by a bipartition surface represented by the dashed blue line.

|0⟩ is a product state must not be true. In other words, the reduced density operator of
regions 𝐴 and 𝐴̄ following from |0⟩ is a mixed state.

Explicit computations of entanglement entropy in QFT are sparse as they are technically
very involved, both numerically and analytically. However, there do exist special cases
where these computations can be performed. This is usually related to the presence of a
large amount of symmetry as for two-dimensional CFTs [221] or to the simplicity of the
considered system. For the latter case, a setup explaining the entanglement in the vacuum
state is the entanglement entropy for Rindler space [222, 223]. Here, empty Minkowski
space, denoted as Min in the following, is split into two half spaces 𝑥 > 0 and 𝑥 < 0,
denoted Min> and Min< respectively. Fixing a slice of constant time then defines two
initial value surfaces Min>,𝑡 and Min<,𝑡. This is visualised on the left of fig. 2.3. These
initial value surfaces are the domains of dependence for the two Rindler wedges Rin> and
Rin< [224]. While this argument can be made for Minkowski space in arbitrary dimensions
(for reviews, see e.g. [192, 225]), in the following, we restrict to two dimensions since this
already exhibits all of the interesting properties relevant to our discussion. Accordingly,
Min = R1,1, Min> = R ×R+ and Min< = R ×R− with metric

d𝑠2 = −d𝑡2 + d𝑥2 . (2.28)

This metric trivially splits into the metrics on Min< and Min> when restricting 𝑥. As we are
in two dimensions, the initial value surfaces Min>,𝑡 and Min<,𝑡 are lines and the bipartition
surface is simply the point 𝑡 = 0 = 𝑥. In the following we compute the reduced density
operator for the vacuum state when treating the initial value surfaces as regions 𝐴 = Min>,𝑡
and 𝐴̄ = Min<,𝑡. For simplicity, in this computation we choose the initial value surfaces at
𝑡 = 0, as depicted on the left of fig. 2.3.

To compute the reduced density operator for one of the initial value surfaces, we need
an expression for the vacuum state |0⟩ on this surface in terms of degrees of freedom of
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𝑡

𝑥 < 0
𝐴̄ = Min<,0

𝑥 > 0
𝐴 = Min>,0

Rin< Rin>

Min< Min>

𝑥

|𝜙(𝑥)⟩ = |𝜙(𝑡E = 0, 𝑥)⟩

|0⟩

𝑡E = 0

𝑡E → −∞

|𝜙<(𝑥)⟩ |𝜙>(𝑥)⟩

𝐻

Figure 2.3: On the left, the bipartition of empty Minkowski space into the half spaces Min<
and Min> is depicted. The initial value surfaces Min<,𝑡 and Min>,𝑡 at 𝑡 = 0 are separated by
the bipartition surface at 𝑡 = 0 = 𝑥, represented by the blue dot. The surfaces coloured in
light green and light blue are the domains of dependence for Rin< and Rin>, respectively.
On the right, a state |𝜙(𝑥)⟩ is prepared from the vacuum |0⟩. The state is obtained by
performing the Euclidean path integral over the shaded area with an appropriate boundary
condition, which can be understood as an Euclidean time evolution by the Hamiltonian 𝐻 .
Taking into account the bipartition, the field 𝜙(𝑥) splits into 𝜙<(𝑥) and 𝜙>(𝑥) for 𝑥 < 0
and 𝑥 > 0, respectively. These fields describe degrees of freedom on the respective initial
value surfaces, represented by the green and blue lines at 𝑡E = 0.

the half spaces. To obtain this, we utilise the Euclidean path integral to first express the
vacuum by a generic field configuration 𝜙(𝑥) inserted at Euclidean time 𝑡E = 0, related to
the Minkowskian time by a Wick rotation 𝑡 = −i𝑡E. By the completeness relation of the
basis |𝜙(𝑥)⟩, we write

|0⟩ = ∫ D𝜙(𝑥) ⟨𝜙(𝑥)|0⟩|𝜙(𝑥)⟩ , (2.29)

where

⟨𝜙(𝑥)|0⟩ = ∫

𝜙(𝑡E=0,𝑥)=𝜙(𝑥)

𝜙(𝑡E=−∞,𝑥)=0
D𝜙′(𝑡E, 𝑥) exp

(

−𝑆E[𝜙′]
)

. (2.30)

Here 𝑆E is the Euclidean action. The exponential factor can be interpreted as evolving
the vacuum state with the Hamiltonian for an amount of Euclidean time. In this way, a
generic state |𝜙(𝑥)⟩ at time slice 𝑡E = 0 can be prepared from the vacuum by performing
the path integral with the boundary condition 𝜙(𝑡E = 0, 𝑥) = 𝜙(𝑥), visualised on the right
of fig. 2.3. This right part of the figure representing half of the Euclidean plane should
be thought of as being glued along the initial value surfaces to the left part of the figure,
such that the Euclidean plane the 𝑡 = 0 surface. An analogous expression to (2.29) can be
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found for ⟨0|. Here, the overlap ⟨0|𝜙(𝑥)⟩ is required. This overlap is defined analogously
to (2.30) by exchanging the upper and lower borders of the integral as well as replacing
the infinite past 𝑡E = −∞ by the infinite future 𝑡E = ∞.

We now have obtained an expression for the density operator of the vacuum as a double
integral over the intermediate fields 𝜙(𝑥) and 𝜙′(𝑥). To account for the bipartition, we split
both these fields into their components in Min<,0 and Min>,0, i.e. 𝜙(′) = 𝜙(′)

< 𝜙
(′)
> as shown

on the right of fig. 2.3. As pointed out before in the footnote below (2.26), we note that
this factorisation of the Hilbert space H = H<⊗H> is strictly speaking not correct, for
reasons that we will elaborate on in sec. 2.3.1. The original approach of [222] however did
not rely on this path integral approach but made use of analyticity properties of correlation
functions. Fortunately, the path integral approach first utilised in [226] yields the same
result for the reduced density operator as derived in [222]. Moreover, this approach is
important in the context of the discussion in [223], which will also be important for our
discussion in sec. 3.2.1.

To compute the reduced density operator we need to trace over one of the half spaces.
For concreteness, we choose to trace out Min<,0. For the path integral, that means that
we trivially identify 𝜙< and 𝜙′

< by inserting a Dirac–Delta 𝛿(𝜙<−𝜙′
<). Pictorially speaking,

this takes the right side of fig. 2.3 together with its reversed version, i.e. where |0⟩ is placed
at 𝑡E = ∞, and glues these two surfaces along the edges of 𝑥 < 0, as visualised on the left
of fig. 2.4. Performing the integral over 𝜙′

<, the reduced density operator is given by

𝜌> = tr<
(

|0⟩⟨0|
)

= ∫ D𝜙<D𝜙>D𝜙
′
> ⟨𝜙<, 𝜙>|0⟩⟨0|𝜙<, 𝜙

′
>⟩|𝜙>⟩⟨𝜙

′
>| . (2.31)

This result can be given a form that invites a simple physical interpretation. To obtain this
form, it is helpful to observe that the open surfaces of 𝜙> and 𝜙′

> on the right of fig. 2.4
are related by a rotation in the 𝑡E − 𝑥-plane, in particular by a rotation about an angle of
2𝜋. Therefore, we may rewrite the Hamiltonian evolution within the overlaps (2.30) as an
angular evolution by a different operator that we denote by 𝐾̃>. As this operator generates
rotations, we can write it as 𝐾̃> = −𝜕𝜃, where 𝜃 is the polar angle and the minus sign tells
that the integration path is clockwise. From the point of view of the path integral, this is
only a change of coordinates since it simply reparametrises the way that the integral over
the same domain is performed. This is visualised on the right of fig. 2.4. However, this
allows to obtain a surprisingly simple expression for the reduced density operator,

𝜌> = ∫ D𝜙>D𝜙
′
> ⟨𝜙>|𝑒

−2𝜋𝐾̃>
|𝜙′

>⟩|𝜙>⟩⟨𝜙
′
>| = 𝑒−2𝜋𝐾̃> . (2.32)

By analogous arguments, the reduced density operator 𝜌< is obtained in the same way with
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𝜙< = 𝜙′
<

𝜙′
>

𝜙>

𝑡E → −∞

𝑡E = 0

𝑡E → ∞

𝐻

𝐻

𝜙′
>

𝜙>

𝐾̃>

Figure 2.4: On the left, the reduced density operator 𝜌> is obtained by gluing two vacuum
states obtained on the right of fig. 2.3. The partial trace is performed by setting 𝜙< = 𝜙′

<
and integrating over all 𝜙<. The indices of the reduced density operator correspond to the
open surfaces of the states 𝜙> and 𝜙′

>, marked in light blue. On the right, the integral of
the left part using Hamiltonian evolution is replaced by the evolution using 𝐾̃>.

𝐾̃< = −𝜕𝜃.
The above result (2.32) offers for a few interesting interpretations. First of all, we can

give 𝐾̃> a Lorentzian interpretation by reversing the Wick rotation. We find that 𝐾̃> is
simply the generator of Lorentz boosts [222],

𝐾̃> = −𝜕𝜃 = 𝑥𝜕𝑡E − 𝑡E𝜕𝑥
𝑡E=i𝑡
→ i𝑥𝜕𝑡 − i𝑡𝜕𝑥 . (2.33)

Note that in this formula we no longer restrict to the initial value surface at 𝑡 = 0, but
reinstated the dependence for general 𝑡.

The physical interpretation of this result is the following. The time evolution of the
Rindler wedge of the half space 𝑥 > 0 is described by 𝐾̃>.12 The Rindler wedge Rin> is
understood as the domain of dependence of 𝐴 = Min>,0. The operator 𝐾̃> generates orbits
of constant acceleration 𝑎 in Minkowski space, in our particular example for 𝑎 = 1. For
𝑎 ≠ 1, the accelerated Rindler observer discerns their world at finite temperature 𝑇 = 𝑎

2𝜋
.

Different values of 𝑎 can be interpreted as moving on trajectories of different constant radii
[227]. This temperature arises due to their ignorance about the other pieces of Minkowski
space which have been traced out in order to derive 𝜌>. This is visualised in fig. 2.5, where
the two arrows represent two different trajectories. Equivalently, this can be interpreted as
resulting from the non-trivial entanglement within the vacuum state to which the Rindler
observer does not have access. The Rindler observer of the half space 𝑥 > 0 can never

12The coordinate transformation between polar coordinates 𝑟 and 𝜃 of Minkowski space and the natural
coordinates 𝑅 and 𝑇 of the Rindler wedge d𝑠2Rindler = −𝑅2d𝑇 2 + d𝑅2 relates 𝜃 = i𝑇 .



40 2. Entanglement in Quantum Mechanics and Quantum Field Theory

𝑡

𝑥

Rin>

Figure 2.5: The arrows represent orbits of 𝐾̃> in the Rindler wedge (orange) and cor-
respond to lines of constant Rindler radial coordinate. The dotted lines correspond to
constant Rindler time 𝑇 . The precise orbit for an observer is determined by the value
of their acceleration 𝑎. notion of temperature from entanglement with the inaccessible
regions (grey)

cross the lines 𝑥 = |𝑡| but only has access to the region 𝑥 > |𝑡|. These lines act as a
horizon for this observer. As realised for the first time in [223], this result is akin to the
Hawking temperature of a black hole. This close relation was first pointed out in [228]
where the analysis of [222] was generalised to black hole spacetimes.

In a Lorentz invariant theory, a Lorentz boost 𝐾̃> is a symmetry. Accordingly, by Noethers
theorem it is accompanied by a conserved charge 𝐾>. This conserved charge turns out to
be the modular Hamiltonian that we already encountered in a simpler setting in (2.21). It
is given by the spatial integral over the Lorentz boost 𝐾̃>,

𝐾> = ∫𝑥>0
d𝑥 𝐾̃> . (2.34)

In this sense, 𝐾̃> can be interpreted as the modular Hamiltonian density. This expression
can be cast into a covariant form utilising the energy-momentum tensor 𝑇̂𝜇𝜈,

𝐾> = ∫𝑥>0
d𝑥 𝑛𝜇𝑇̂𝜇𝜈𝑘𝜈 , (2.35)

where 𝑛𝜇 is a normal vector on the initial value surface and 𝑘𝜈 is the direction of the Lorentz
boost. The normal vector can always be given the simple form 𝑛𝜇 = (1, 0),13 such that only
𝑇̂0𝜈 contributes. The direction of the boost is specified by the two entries of 𝑘𝜈 = (𝑥, 𝑡),14

13In higher dimensions, 𝑛𝜇 = (1, 0, ..., 0).
14In higher dimensions a boost in the spatial direction 𝑥𝑖 has 𝑘𝜈 = (𝑥𝑖, 0, ..., 0, 𝑡, 0, ..., 0), such that 𝑘𝑖 = 𝑡.
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reproducing (2.34) by noting that 𝑇̂00 = 𝐻 = i𝜕𝑡 and 𝑇̂01 = 𝑝 = −i𝜕𝑥. However, since
Lorentz boosts are a symmetry, without loss of generality we can always choose to work
at 𝑡 = 0, resulting in

𝐾> = ∫𝑥>0
d𝑥 𝑥𝑇̂00 . (2.36)

The factor of 𝑥 in front of 𝑇̂00 can be understood as a weight function. The formula (2.36)
generalises to settings different than a half line in empty Minkowski space by adjusting
this weight function to some 𝑓 (𝑥). As an example, for the modular Hamiltonian of a
ball-shaped region of radius 𝑅 in a 𝑑-dimensional CFT this function is given by [229]

𝑓 (𝑥𝑖) =
𝑅2 − 𝑥𝑖𝑥𝑖

2𝑅
. (2.37)

For an arbitrary setting with general function 𝑓 (𝑥), it is not known how to compute the
integral. In two-dimensional CFTs, due to the large amount of symmetry, some of these
computations can be performed [230]. Generally however, the modular Hamiltonian is
expected to be a highly non-local operator. However, in a holographic context, to leading
order the modular Hamiltonian has to account for the gravitational entropy, which is a local
term. In sec. 5.2.2 we will make use of this property to compute modular Hamiltonians for
various holographic settings in a three-dimensional gravitational theory.

The Area Law in QFT

As in quantum mechanics, the entanglement entropy in QFT satisfies an area law, at least
for the ground state. However, obtaining this result is not as straightforward as in quantum
mechanics. This is because in QFT we have to deal with infinitely many degrees of freedom,
all of which might share some entanglement with other constituents. Indeed, generically
the entanglement in any QFT state diverges. Therefore, in order to calculate entanglement
entropy, the theory has to be regularised. The most common approaches to do so are either
putting a UV cutoff Λ on the momentum |𝑘| or putting the theory on a lattice, where
the lattice spacing acts as the UV cutoff 𝜖. In the limits Λ → ∞, 𝜖 → 0, results from
both regularisation schemes have to agree. In either approach, by introducing the cutoff we
essentially disregard all degrees of freedom above the cutoff which renders the entanglement
entropy finite. This is visualised in fig. 2.6 for the case of the lattice regularisation. By
analogy to quantum mechanics, intuitively speaking such a regularisation enables counting
the quantum correlations across the bipartition surface. This makes clear why in QFT, the
entanglement entropy satisfies an area law. This behaviour led to considering this quantity
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⇒
Lattice

Regularisation

𝐴

𝐴̄

𝜖

𝐴

𝐴̄

Figure 2.6: On the left, a bipartition surface (dashed blue) between regions 𝐴 and 𝐴̄
in a QFT is depicted. The infinite amount of correlations across the surface exemplarily
shown, leads to a divergent amount of entanglement. Introducing a lattice regularisation
depicted on the right, correlations above the cutoff are discarded. This enables computing
the entanglement entropy analogously to quantum mechanics by counting the correlations
across the bipartition surface.

in the context of black holes [231]. As we will discuss later on in sec. 3.1, an area law for
the entropy arises naturally for theories with gravity.

In QFT we are usually interested in states with finite energy, corresponding to a finite
amount of physical particle excitations. By arguments that will be discussed in detail
in sec. 2.3.1, any such state looks like the vacuum state at sufficiently high energies.
Therefore, the entanglement entropy of any (usually considered) state is expected to satisfy
an area law, at least in a perturbative sense. Indeed, to leading order in the cutoff 𝜖 the
entanglement entropy can be written as [231, 232]

𝑆(𝜌(𝐴)) = 𝑐𝑑−2
Area(𝜕𝐴)
𝜖𝑑−2

+ 𝒪(𝜖𝑑−1) , (2.38)

where 𝑐𝑑−2 is a numerical constant that depends on the theory, 𝜕𝐴 is the bipartition surface,
𝜌(𝐴) is the reduced density operator of region 𝐴 and 𝑑 is the dimension of the QFT.
Terms of higher order also depend on geometric quantities associated to the bipartition
surface, such as the curvature of 𝜕𝐴. If we assume that the QFT also has conformal
symmetry, by dimensional analysis the expression for the entanglement entropy can be
further constrained. Since the only two scales of the theory are the cutoff 𝜖 and the length
𝐿 of ‘one side’ of the region 𝐴,15 In a scale invariant theory only the ratios 𝐿

𝜖
can appear.

15The 𝑛th power of the cutoff 𝜖 defines small hypercubes as the smallest cells of the theory. By analogy,
the region 𝐴 can be approximated as a hypercube with edge length 𝐿.
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Accordingly, the entanglement entropy has the general form

𝑆(𝜌(𝐴)) = 𝑐𝑑−2
[𝐿
𝜖

]𝑑−2
+ 𝑐𝑑−4

[𝐿
𝜖

]𝑑−4
+ ... +

⎧

⎪

⎨

⎪

⎩

(−1)
𝑑−1
2 𝑐finite + 𝒪(𝜖) for 𝑑 odd

(−1)
𝑑−2
2 𝑐 𝑑

2
ln 𝐿

𝜖
+ 𝒪(𝜖0) for 𝑑 even.

(2.39)

The constants 𝑐finite and 𝑐 𝑑
2

are referred to as the central charges of the theory. While
generically the other coefficients 𝑐𝑑−𝑛 depend on the specific scheme used to calculate the
entanglement entropy, these two are independent of the choice of scheme and therefore
carry information about the theory only, in particular about the conformal anomaly that
can arise during quantisation of such theories [233].

In the above form of the entanglement entropy, the case 𝑑 = 2 is special since in this
case, the area law fails as only the logarithmic term is present. However, in this instance the
bipartition surface consists of disconnected points. The logarithm can then be understood
as a limit of a power law divergence [221, 226, 234]. The logarithmic scaling of the
entanglement entropy is universal for all two-dimensional CFTs [221].

This concludes our discussion of von Neumann entropy in quantum field theory.

2.1.3. Other Measures of Entanglement

As we have seen above, there exist certain settings where the modular Hamiltonian can be
computed explicitly. In general, this is however an extremely difficult task. This in particular
is related to the problem of calculating the logarithm of the reduced density operator.16

For the same reason, having in mind the expression (2.22) for the entanglement entropy, it
is generally complicated to compute the entanglement entropy directly in QFT, or even in
large systems such as 666 spins, with subsystems of equal size containing 333 spins. The
logarithm of an operator is computed by first calculating the eigenvalues of this operator.
Computing the logarithm of the reduced density operator therefore requires diagonalising
an operator represented by a matrix of dimension 2333 × 2333, which is challenging at best,
even numerically.17

16As found above, the modular Hamiltonian may also be calculated as an integral of the energy-momentum
tensor with an appropriate weight function. However, as we commented below (2.36), in general it is
extremely difficult to solve the integral.

17The number 2333 ∼ 10100 is of the order of seconds it takes for realistic black holes to evaporate in a
universe that realises the big freeze scenario.
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Rényi Entropy

However, there exists an alternative way to determine the entanglement entropy that does
not require computing the logarithm of the reduced density operator, but only powers of this
operator. Based on the mathematical identity 𝜕𝜂𝑥𝜂 = 𝑥𝜂 ln 𝑥 and the rule of Bernoulli–de
L’Hospital, the entanglement entropy can be written as

𝑆(𝜌(𝐴)) = lim
𝜂→1

[ 1
1 − 𝜂

ln tr
(

𝜌𝜂(𝐴)
)

]

. (2.40)

This was first discovered in [235] in an attempt to generalise the von Neumann entropy
to a general measure of information while preserving the additivity of the information for
independent systems. Named after its discoverer, for every 𝜂 the term in brackets in (2.40)
is known as the 𝜂-th Rényi entropy,

𝑆 (𝜂)(𝜌(𝐴)) =
1

1 − 𝜂
ln tr

(

𝜌𝜂(𝐴)
)

, (2.41)

where 𝜂 ∈ R+.
The Rényi entropies contain the information about the entire entanglement spectrum,

i.e. all eigenvalues of 𝜌(𝐴). In more detail, for a reduced density operator 𝜌 represented
by an 𝑁 × 𝑁 matrix, knowledge of the first 𝑁 Rényi entropies is sufficient to deduce
all eigenvalues of 𝜌(𝐴) [236]. In QFT, where intuitively 𝑁 → ∞, in particular the integer
powers of 𝜌 are much simpler to compute than the entanglement entropy itself. Having
an expression for 𝑆 (𝑛)(𝜌(𝐴)) depending on the integer 𝑛, the usual strategy amounts to
analytically continuing this expression to a continuous variable 𝜂 such that the limit 𝜂 → 1
can be taken. Following (2.40), this computes the entanglement entropy. As an aside, we
point out that if the reduced density operator corresponds to a pure state, we have seen
before that the entanglement entropy vanishes. As in this case, the purity 𝛾 equals one,
the trace of every integer power of 𝜌(𝐴) equals one as well. Accordingly, the Rényi entropies
evaluated for 𝜌(𝐴) corresponding to a pure state vanish for every 𝑛.

Computing the integer powers of the reduced density operators is performed by using the
replica trick. This was first introduced in the context of disorder averaging the partition
function of a spin glass [237]. For entanglement entropy, this trick was used for specific
systems in [234]. Since then, it has become an immensely useful tool also in general QFT
(for a review see e.g. [238]). The 𝑛th integer power of 𝜌(𝐴) is interpreted as considering 𝑛
different copies of the same system. Given a reduced density operator calculated by the
Euclidean path integral approach as discussed in sec. 2.1.2, pictorially the reduced density
operator can be understood as a sheet B with an entanglement cut, corresponding to the
field configurations 𝜙 and 𝜙′. The 𝑛th power is then understood as identifying one of



2.1. Spooky Action at a Distance 45

𝜌(𝑛)(𝐴)

...

...𝜌(3)(𝐴)𝜌(2)(𝐴)𝜌(1)(𝐴)

𝜙′
(1)

𝜙(1)

𝜙′
(2)

𝜙(2)

𝜙′
(3)

𝜙(3)

𝜙′
(𝑛)

𝜙(𝑛)

Figure 2.7: This visualises the replica trick. The upper field of the 𝑖-th copy 𝜙′
(𝑖) is

identified with the lower field of the 𝑖 + 1-th copy 𝜙(𝑖+1), thereby gluing the manifolds to
each other. The trace of the power of the density operators identifies the last upper field
with the lower field of the first copy.

the field configurations of the 𝑖-th reduced density operator, say the primed one, with the
unprimed field of the 𝑖 + 1th reduced density operator,

𝜙′
(𝑖) = 𝜙(𝑖+1) . (2.42)

To account for the trace, the primed field of the 𝑛th reduced density operator, 𝜙′
(𝑛), is

identified with the unprimed field of the first reduced density operator, 𝜙(1). This gluing
procedure is visualised in fig. 2.7.

The gluing procedure involved in the computation of tr
(

𝜌𝑛(𝐴)
)

defines a single manifold
known as the replica manifold B𝑛. An example for 𝑛 = 3 is shown in fig. 2.8. The trace of
𝜌𝑛(𝐴) can be expressed as a ratio of partition functions 𝑍 evaluated on B𝑛 and the original
manifold B as

tr
(

𝜌𝑛(𝐴)
)

=
𝑍[B𝑛]
𝑍[B]𝑛

. (2.43)

Although B𝑛 looks complicated in general, topologically it is equivalent to a manifold with
conical defects but flat otherwise. As an example, the manifold depicted in fig. 2.8 can
be given the metric d𝑠2 = d𝑟2 + 𝑟2d𝜑2 where 𝜑 ∼ 𝜑 + 6𝜋. For general 𝑛, the angular
coordinate has periodicity 2𝜋𝑛. However, in a general QFT it is still complicated to find
this metric explicitly and therefore to compute the Rényi entropies. As in previous cases,
again the presence of conformal symmetry significantly simplifies the situation, especially
for two-dimensional CFTs. Here, it is known how to give the replica manifold B𝑛 a flat
metric using a conformal transformation. The trace of 𝜌𝑛(𝐴) is known analytically and leads
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𝜙(3)𝜙(2)

𝜙(1)

B3

Figure 2.8: The figure shows a replica manifold for the case 𝑛 = 3. The three manifolds
are glued along the coloured dashed lines following the prescription of fig. 2.7. The blue
dots are the bipartition surfaces.

to the Rényi entropies [221]

𝑆 (𝑛)(𝜌(𝐴)) =
𝑐1
2

(

1 + 1
𝑛

)

ln 𝐿
𝜖
, (2.44)

where 𝑐1 is the constant that also appeared in (2.39), 𝐿 is the size of the considered region
𝐴 and 𝜖 is the UV cutoff. Analytically continuing this expression 𝑛 → 𝜂 and taking the
limit 𝜂 → 1, the well known result [221]

𝑆(𝜌(𝐴)) = 𝑐1 ln
𝐿
𝜖

(2.45)

is obtained.

Quantum Discord

As we pointed out in the previous section above (2.10), the entanglement entropy has
certain limitations in capturing quantum correlations when it comes to mixed states. That is
based on the fact that the entanglement entropy is not sensitive to whether the correlations
within a given state are of a classical or quantum nature. As an example, calculating the
entanglement entropy between two spins prepared in a Bell state results in 𝑆(𝜌) = ln 2,
as the Bell states are defined as the maximally entangled states. This result is purely
due to the quantum entanglement between the two spins. However, suppose that in a
different situation, we only have one spin and purely due to classical uncertainty cannot
decide whether the spin is up or down. The ‘entanglement entropy’ of the corresponding
classically mixed state takes the same value, 𝑆(𝜌) = ln 2. Given access only to one
spin, using the entanglement entropy we are unable to decide whether this really is a
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classical mixture or the mixed state resulted as a reduced density operator. Therefore, the
entanglement entropy fails to be a measure of purely quantum correlations when it comes
to mixed states, in that it does not distinguish between classical and quantum correlations
within the state.

Since this was observed, there have been a lot of proposals for measures quantifying
entanglement within mixed states. Overviews are provided in [239–241] as well as in
references within this overview. Examples include quantities such as the entanglement
of formation [242, 243], distillable entanglement [244], the relative entanglement entropy
[245, 246], the entanglement negativity [247, 248] and its logarithmic cousin [247, 249].
Between these measures there exist relations, such as the logarithmic negativity being
an upper bound for the distillable entanglement. Moreover, some measures such as the
entanglement of formation reduce to the entanglement entropy for pure states, while other
measures such as the (logarithmic) negativity do not. Rather, this particular measure
reduces to the 1

2
th Rényi entropy [247, 248]. This is qualitatively visualised on the left

of fig. 2.9. While all of these measures are well-suited for certain types of mixed states,
they still have shortcomings. As an example, the logarithmic negativity may vanish if the
state is entangled but satisfies the positive partial transpose condition [194, 195]. As a
second example, relative entropy has the downside that a reference state is required while
usually, we are interested in the properties of the state itself, independent of any choice of
reference.

None of the measures described above capture all of the quantum correlations within a
given mixed state. A more general measure defined for this purpose is known as quantum
discord, developed independently in [173, 174] and [175]. This measure quantifies quantum
correlations even beyond entanglement, as visualised on the left of fig. 2.9. In particular, it
can be non-zero for separable mixed states [250]. Moreover, quantum discord is non-zero
for states of vanishing entanglement of formation [174, 251] and entanglement negativity
[252]. For the former case, this is demonstrated explicitly using Werner states [253]. As
we will study a measure very closely related to quantum discord in sec. 7, we give a few
more details on quantum discord itself in the following.

The definition of quantum discord is inspired by generalising two classically equivalent
ways of writing the mutual information [254] to the quantum setting. Given two random
variables 𝐴 and 𝐵, the mutual information 𝐼(𝐴 ∶ 𝐵) between these variables is usually
denoted as

𝐼(𝐴∶𝐵) = 𝐻(𝐴) +𝐻(𝐵) −𝐻(𝐴,𝐵) , (2.46)
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𝑄(𝜌)
𝑆f(𝜌)

N (𝜌)

𝑆(𝜌)

comparison of quantum correlations

S (𝑞−𝑞)

S (𝑞−𝑐)∕(𝑐−𝑞)

S (𝑐−𝑐)

S (𝑞−𝑞) ⊃ S (𝑞−𝑐)∕(𝑐−𝑞) ⊃ S (𝑐−𝑐)

Figure 2.9: On the left, different measures of entanglement are set in (qualitative) com-
parison, where 𝜌 is an arbitrary bipartite mixed state. Quantum discord 𝑄(𝜌) is the most
general measure. It is more general than entanglement of formation 𝑆f(𝜌) and entangle-
ment negativity N (𝜌). Entanglement entropy 𝑆(𝜌) is not a good measure for mixed states.
For pure states, N (𝜌) does not reduce to 𝑆(𝜌), while 𝑆f(𝜌) and 𝑄(𝜌) do. On the right,
sets of states are set in comparison w.r.t. the entanglement of the states. An arbitrary
state is a q-q state. Bipartite states with one of the subsystems in a classical state are q-c
or c-q states. If both subsystems are classical, the state is c-c.

where 𝐻 is the Shannon entropy.18 Equivalently, the mutual information can also be
written as

𝐼(𝐴∶𝐵) = 𝐻(𝐴) −𝐻(𝐴|𝐵) , (2.47)

where 𝐻(𝐴|𝐵) = 𝐻(𝐵) − 𝐻(𝐴,𝐵) is the conditional entropy. Adapting to quantum
systems, the Shannon entropies are replaced by von Neumann entropies. This goes well
except for the conditional entropy 𝐻(𝐴|𝐵). In this case, straightforwardly replacing 𝐻 →

𝑆 yields an expression for 𝐼(𝐴 ∶ 𝐵) that is no longer positive definite [255–258]. The
classical quantity 𝐻(𝐴|𝐵) quantifies the entropy of 𝐴, provided that the value of 𝐵 is
known. Generalising to quantum systems, this means that a measurement in subsystem 𝐵
has been performed. Accordingly, the generalisation of the conditional entropy for quantum
systems proposed in [174, 175] involves measurements in one of the subsystems,

𝑆(𝐴|𝐵) = min
{Π(𝐵)

𝑘 }∈M (𝐵)

∑

𝑘
𝑞𝑘𝑆(𝜌

(𝑘)
(𝐴)) . (2.48)

Here, {Π(𝐵)
𝑘 } are projective measurements performed on subsystem 𝐵. The outcome of

18The Shannon entropy is defined analogously to the von Neumann entropy (2.10) with the density
operator replaced by the classical probability distribution 𝑝(𝑋) of the variable 𝑋.
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the measurement is labelled by the index 𝑘. The minimisation is performed over all such
measurements contained in the set M (𝐵). The conditioned reduced density operators 𝜌(𝑘)(𝐴)

and the probabilities 𝑞𝑘 for an outcome are defined as

𝑞𝑘 = tr
[

(

1⊗ Π(𝐵)
𝑘

)

𝜌
(

1⊗ Π(𝐵) †
𝑘

)

]

, (2.49)

𝜌(𝑘)(𝐴) =
1
𝑞𝑘

tr𝐵
[

(

1⊗ Π(𝐵)
𝑘

)

𝜌
(

1⊗ Π(𝐵) †
𝑘

)

]

, (2.50)

where 𝜌 is the full density operator. The quantum version of (2.47), given by

𝐽 (𝐴∶𝐵) = 𝑆(𝜌(𝐴)) − 𝑆(𝐴|𝐵) , (2.51)

is known as asymmetric mutual information. The asymmetry results from the second term,
which due to the measurements {Π(𝐵)

𝑘 } is not symmetric under 𝐴 ↔ 𝐵. An analogue
definition can however be established with the roles of 𝐴 and 𝐵 exchanged.

It was argued in [175] that the asymmetric mutual information captures only classical
correlation. Correspondingly, as the quantum version of (2.46) captures all types of corre-
lations, their difference captures quantum correlations exclusively. This is consistent with
the fact that the classical counterparts are equivalent such that their difference vanishes.
This observation motivates the definition of quantum discord 𝑄(𝐴∶𝐵) as this difference,

𝑄(𝐴∶𝐵) = 𝐼(𝐴∶𝐵) − 𝐽 (𝐴∶𝐵) . (2.52)

For pure states, quantum discord reduces back to the entanglement entropy since in this
case 𝑆(𝜌) = 0 = 𝑆(𝐴|𝐵). Moreover, quantum discord is always bigger than or equal to
zero. If a state has only classical correlations, quantum discord vanishes. Such classical-
classical (c-c) states form the set S (𝑐−𝑐). More generally, quantum discord vanishes if and
only if there exists a measurement on 𝐵 that does not influence the system [174, 181]. This
determines a class of states S (𝑞−𝑐) known as quantum-classical (q-c) states, all of which
have vanishing quantum discord.19 The possible sets of states with distinct properties
are shown in fig. 2.9. Unfortunately, evaluating quantum discord for an arbitrary state is
demanding, in particular due to the minimisation over projective measurements. In fact, it
was shown that this is an NP-complete problem [180].

As (2.52) contains 𝑆(𝐴|𝐵), it is also asymmetric in general, i.e. 𝑄(𝐴∶𝐵) ≠ 𝑄(𝐵 ∶𝐴).
However, evaluated on states that are symmetric under the exchange of the two parties,
also the two versions of quantum discord coincide [259]. By generalising the measurements
19This is true for quantum discord as defined in (2.52). If 𝐽 is defined with 𝐴 and 𝐵 exchanged,

i.e. measurements are performed in 𝐴 instead of 𝐵, the zero discord states are called classical-quantum
(c-q).
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{Π(𝐵)
𝑘 } to also measuring subsystem 𝐴, a symmetric version of quantum discord can be

defined [260]. An extensive review of quantum discord and closely related quantities can
be found in [261]. One of those quantities known as geometric quantum discord (GQD)
we will discuss in more detail in sec. 2.2.2. This quantity will also be the object of primary
focus in sec. 7.

This concludes our discussion of other entanglement measures but also of entanglement
in general. Next, we discuss how geometry can be used to study quantum systems and the
entanglement within.

2.2. Geometric Interpretation of Entanglement

We have discussed above in detail how entanglement is understood within quantum theory,
starting from the very basics of the latter. In this discussion, the use of linear algebra was
paramount. Linear algebra arises due to canonical quantisation, where the usual Poisson
brackets of classical mechanics are promoted to graded commutators. Simultaneously, the
variables of classical mechanics are replaced by corresponding operators. However, while
this approach is very successful, it also seems to lead to a fundamental difference between
these two frameworks. While classical mechanics is treated as a geometric and non-linear
theory (see e.g. [262] for an exposition), quantum theory is algebraic and linear. This
seeming difference motivated studies discussing geometric methods also in the context of
quantum mechanics. This in particular led to defining the projective Hilbert space and
geometric quantisation as an alternative to canonical quantisation which made explicit use
of the geometry of classical phase space [263–265]. In the following sec. 2.2.1, we first
provide more details on geometric quantum mechanics. Elements of this discussion, such
as the projective Hilbert space, will be of central importance in the upcoming secs. 4, 5
and 6. Second, we focus on discussing entanglement entropy within the geometric setting
in sec. 2.2.2.

2.2.1. Geometrising Quantum Mechanics

As previously described, classical mechanics have a geometric and non-linear description.
In more detail, the classical phase space Γ allows for the definition of a symplectic form
Ω, i.e. the classical phase space is a symplectic manifold, Γ = (M ,Ω). By the symplectic
form, also a Poisson bracket is defined. Observables are described by real-valued functions
𝑓 . These functions act on elements 𝑥 ∈ M as 𝑓 ∶ M → R, 𝑥 ↦ 𝑓 (𝑥), where 𝑥 is
interpreted as the classical state. In this process, 𝑥 itself is unaffected by applying 𝑓 . This
is imprinted on the algebra described by the observables as this algebra is abelian and
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associative. This means that the outcome of a classical measurement is not influenced by
other measurements. Moreover, to every observable a vector field 𝑋𝑓 is associated. These
vector fields describe a flow on the phase space. In particular, time evolution is described
by the vector field 𝑋𝐻 , where 𝐻 is the Hamiltonian. The Hamilton equations of motion
can then be written as

d𝐻 = 𝜄𝑋𝐻
Ω , (2.53)

where d is the exterior derivative and 𝜄𝑋𝐻
denotes contracting the first index of Ω with the

vector field𝑋𝐻 . The flow generated by𝑋𝐻 preserves the symplectic form. Correspondingly,
𝑋𝐻 generates symplectomorphisms,20 which is the mathematical expression for canonical
transformations.

Quantum mechanics, as we have seen in the sec. 2.1.1, considers states represented by
vectors living in a Hilbert space H . Observables are described by Hermitian operators
𝔒 acting linearly on the Hilbert space. Of course, measuring an observable changes the
state in that it collapses to an eigenstate of the observable. Correspondingly, the algebra of
observables in quantum mechanics generically is non-abelian. Rather, it has the structure of
a Lie algebra, defined by the commutator bracket between observables. Moreover, there is
a Jordan product (in other words, the anti-commutator). Due to the presence of the latter,
the algebra is not associative. Again, each observable can be used to define a flow on the
state space, i.e. the Hilbert space. For an observable 𝔒, the flow is generated by exp(i𝔒𝑠),
where 𝑠 is a real parameter. Time evolution again is generated by the Hamiltonian, with
𝑠 = 𝑡 being the physical time. The equation of motion for the quantum states is known as
the Schrödinger equation [5],

i d
d𝑡 |𝜓⟩ = 𝐻|𝜓⟩ . (2.54)

The linearity of the standard treatment of quantum mechanics is reflected by this equation
in that the superposition of any two solutions |𝜓1,2⟩ is again a solution.

An intermediate result addressing the relation between classical and quantum mechanics
is given by the method of geometric quantisation [263–265]. As opposed to the priorly
known methods of canonical quantisation or Weyl quantisation, geometric quantisation
makes explicit use of the geometric features present in classical mechanics. In particular,
the symplectic form Ω of the classical phase space Γ = (M ,Ω) is regarded as the curvature
of a principal fibre bundle over M . The quantised Hilbert space is then understood as the
space of all sections of the fibre bundle. We will provide more details on principal fibre

20A symplectomorphism is a diffeomorphism that preserves the symplectic form.
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bundles shortly within the present section, albeit in a slightly different context. Employing
geometric quantisation also leads to quantum features such as the quantisation of spin.
Mathematically, this comes about by the requirement that the symplectic form, in order
to provide a curvature for the fibre bundle, has to satisfy the Weyl integrality condition,
i.e. the integral of the symplectic form over any closed two-dimensional surface Σ ⊂ M

has to be proportional to an integer,

∫Σ
Ω ∈ 2𝜋Z . (2.55)

For more technical details on geometric quantisation we refer the interested reader to [266]
and references therein.

The Projective Hilbert Space

In the following, we restrict the discussion to state vectors, i.e. pure states. To obtain a
geometric formulation of quantum mechanics, it is useful to note that from the perspective
of physics, the set of all state vectors within the Hilbert space is too large. This can be
understood by the following. Two state vectors |𝜓⟩ and |𝜓 ′

⟩ = 𝑒i𝛼
|𝜓⟩, which are different

vectors from the perspective of the Hilbert space, lead to the same result when measuring
any observable. Therefore, physically these two state vectors are equivalent since no (local)
measurement can distinguish between them. This led to defining equivalence classes of
state vectors

[|𝜓⟩] ∶= {𝜆|𝜓⟩ ∶ 𝜆 ∈ C ∧ |𝜆| = 1} . (2.56)

In other words, two states |𝜓⟩ and 𝜆|𝜓⟩ satisfy an equivalence relation ∼𝜆. State vectors
of different equivalence classes generically lead to different measurement results of the
same observable. The notion of a (physically distinguishable) state is then interpreted as
the equivalence class [|𝜓⟩]. These classes are also referred to as rays [267].

Given this identification of certain state vectors, also the structure of the Hilbert changes
when imposing the equivalence relation ∼𝜆. Implementing the equivalence relation on H

defines the projective Hilbert space P(H ) as the space of rays [46, 47],

P(H ) ∶=
H − {0}

∼𝜆
. (2.57)

Here, zero vectors have to be excluded. As discussed in sec. 2.1.1, the natural Hilbert
space for an 𝑛 level quantum system is H = C𝑛. The corresponding projective Hilbert
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𝑎2

𝑎1

C2

S3

⇒
U(1)

quotient

R3

S2 ≃ CP1

Figure 2.10: On the left, the components 𝑎1, 𝑎2 of a state vector in H = C2 are inter-
preted as coordinates for C 2. The normalisation of quantum states fixes S3 as submanifold
in H . Implementing the equivalence relation, i.e. the quotient by U(1), yields the projec-
tive Hilbert space S2, depicted on the right as a submanifold of R3.

space is given by

P(C𝑛) = CP𝑛−1 = S2𝑛−1

U(1) . (2.58)

This comes about as follows. Due to the normalisation condition ⟨𝜓|𝜓⟩ = 1, the state
vectors of the Hilbert space H = C𝑛 form the unit sphere S2𝑛−1 as a submanifold of
C𝑛 = R2𝑛. The equivalence relation ∼𝜆 corresponds to quotienting this space by the U(1)
action |𝜓⟩ → 𝜆|𝜓⟩. This is visualised for the first non-trivial example 𝑛 = 2 in fig. 2.10. In
this description, since 𝜆 is independent of any real world coordinates, U(1) is a gauge group
of the first kind. The components of state vectors |𝜓⟩ can be used to define coordinates
for the projective Hilbert space, see e.g. [190] for a detailed discussion. We will shortly
encounter this in a more explicit form when discussing the Riemannian metric in more
detail.

With this formulation, also quantum mechanics is given a geometric and non-linear inter-
pretation. To make this manifest, we note that the projective Hilbert space in particular is a
Kähler manifold. Such manifolds allow for compatible definitions of a complex structure, a
symplectic form and a Riemannian metric. In other words, Kähler manifolds are manifolds
that are complex manifolds, symplectic manifolds and Riemannian manifolds simultane-
ously. The interested reader may find a more elaborate discussion of such manifolds in
e.g. [268, 269]. In the following we are mostly interested in the notions of the Riemannian
metric as well as the symplectic form. Consistent with the presence of a symplectic form,
it was found that the Schrödinger equation (2.54) can be rephrased as Hamilton equations
of motion (2.53), where the generalised coordinates of the symplectic manifold are given
by the real and the imaginary parts of the state vector components [48]. The Riemannian
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metric on the other hand was found to enter the computation of quantum uncertainty
relations [49]. In a broader sense, the Riemannian metric is important whenever quantum
features without classical analogue are discussed [49], including also the collapse of the
state under a measurement [50].

We have now discussed a few general properties of this Riemannian metric, however
without giving it an explicit form. This is our goal in the following. As we have seen above,
the projective Hilbert space for an 𝑛 level quantum system is given by the complex projective
space CP𝑛−1 which is a Kähler manifold and therefore admits a Riemannian metric. The
metric on CP𝑛−1 can be defined using the real part of the Hermitian inner product defined
for the original Hilbert space H [270]. This was made explicit in [271], generalising earlier
results of [272]. As we discussed in def. 1, a Hilbert space H is equipped with an inner
product ⟨⋅|⋅⟩ that maps two state vectors |𝜓1⟩ and |𝜓2⟩ to a complex number. As this
inner product is anti-linear in the first slot, i.e. ⟨𝛼𝜓1|𝜓2⟩ = 𝛼∗⟨𝜓1|𝜓2⟩ for any 𝛼 ∈ C, it is
in particular a Hermitian inner product.21 The scalar product induces a norm || ⋅ || by

||𝜓||2 = ⟨𝜓|𝜓⟩ . (2.59)

This norm is also known as the Hilbert–Schmidt norm. The norm of the difference of two
vectors ||𝜓1 − 𝜓2|| defines the distance between the two vectors. This distance can be
written in terms of a metric induced by the norm in the following way. First, assume that
the state vectors |𝜓𝑖(𝑠)⟩ are parametrised by sets of parameters 𝑠 = (𝑠1, ..., 𝑠𝑘) ∈ R𝑘. Then
computing the (square of the) distance between infinitesimally separated state vectors
|𝜓(𝑠)⟩ and |𝜓(𝑠 + d𝑠)⟩ to second order in d𝑠 yields

||𝜓(𝑠 + d𝑠) − 𝜓(𝑠)||2 = ⟨𝜕𝑖𝜓|𝜕𝑗𝜓⟩d𝑠𝑖d𝑠𝑗 , (2.60)

where 𝜕𝑖 is short for 𝜕
𝜕𝑠𝑖

. The inner product between derivatives of the state vector can be
split into its real and its imaginary part,

⟨𝜕𝑖𝜓|𝜕𝑗𝜓⟩ = 𝛾𝑖𝑗 + iΩ𝑖𝑗 . (2.61)

Since the inner product is Hermitian, the components of the imaginary part Ω𝑖𝑗 have to be
anti-symmetric. Therefore, as the product of differentials d𝑠𝑖d𝑠𝑗 is symmetric, the distance
between two state vectors can be expressed using only the components 𝛾𝑖𝑗 . This quantity
may therefore be interpreted as a metric. In particular, under a change of coordinates

21In mathematical literature, a Hermitian inner product is defined to be anti-linear in the second slot, as
opposed to the usual convention in physics. Regarding the Hermitian property, this difference is not
important. The defining feature is that one and only one of the slots is anti-linear.
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𝑠↦ 𝑠′(𝑠), 𝛾𝑖𝑗 obey the transformation law of the components of a 2-tensor,

𝛾𝑖𝑗(𝑠) ↦ 𝛾 ′𝑖𝑗(𝑠
′) = 𝜕𝑠𝑘

𝜕𝑠′ 𝑖
𝜕𝑠𝑙

𝜕𝑠′ 𝑗
𝛾𝑘𝑙(𝑠) . (2.62)

However, as we have discussed above in quite some detail, different state vectors do not
necessarily lead to different measurement results, which was the reason to introduce the
notion of rays in (2.56). Given two state vectors within one ray, they are related by a
U(1) transformation, which in particular might depend on the parameters 𝑠.22 Under such
a transformation which we may write as 𝑒i𝛼(𝑠), the components 𝛾𝑖𝑗 are not invariant but
receive additional contributions from the derivatives of 𝛼. Therefore, the components 𝛾𝑖𝑗
do not provide us with a useful notion of a metric tensor on state space as they attribute
a non-vanishing distance between physically equivalent state vectors.

Fortunately, there is a somewhat simple cure to this issue by subtracting the unwanted
terms. To do so, observe that the quantities

𝐴𝑖 = i⟨𝜓|𝜕𝑖𝜓⟩ (2.63)

transform as the components of a local gauge field under the action of U(1),

𝐴𝑖 → 𝐴′
𝑖 = 𝐴𝑖 − 𝜕𝑖𝛼 . (2.64)

Note that due to the normalisation ⟨𝜓|𝜓⟩ = 1, this local gauge field introduced in (2.63)
is real. It can therefore be consistently added to 𝛾𝑖𝑗 to define [271]

𝑔𝑖𝑗 = 𝛾𝑖𝑗 − 𝐴𝑖𝐴𝑗 . (2.65)

This quantity still transforms as the components of a 2-tensor under coordinate transfor-
mations 𝑠 ↦ 𝑠′(𝑠) but is also invariant under the action of U(1). Moreover, using the
Cauchy–Schwarz inequality

|⟨𝜓1|𝜓2⟩|
2 ≤ ⟨𝜓1|𝜓1⟩⟨𝜓2|𝜓2⟩ (2.66)

for |𝜓1⟩ = |𝜓⟩ and |𝜓2⟩ = |𝜕𝑖𝜓⟩ shows that 𝑔𝑖𝑗 is positive definite.
The components of the imaginary part Ω𝑖𝑗 do not enter the definition of the metric on

state space, but rather define the symplectic form on this space. We already observed

22Above we stated that the U(1) transformation is a gauge group of the first kind, i.e. independent of
the coordinates. This statement however refers to the physical coordinates of our world, while 𝑠 are
coordinates in an abstract parameter space. The two statements are therefore not in conflict with
each other.



56 2. Entanglement in Quantum Mechanics and Quantum Field Theory

above that Ω𝑖𝑗 are anti-symmetric, so they can be used to define a 2-form

Ω = Ω𝑖𝑗d𝑠𝑖 ∧ d𝑠𝑗 . (2.67)

Moreover, by direct computation it can be shown that the exterior derivative of Ω vanishes,
dΩ = 0, i.e. Ω is a closed 2-form and can be interpreted as a symplectic form [270]. Using
d2 = 0, this property is also obtained trivially by observing that Ω can be written as the
exterior derivative of the local gauge field (2.63) introduced earlier,

Ω = d𝐴 , (2.68)

where we write the local gauge field as a 1-form 𝐴 = 𝐴𝑖d𝑠𝑖. Last but not least, while we
had to work a bit to obtain a metric tensor invariant under the U(1) action, due to the
anti-symmetry the symplectic form is invariant by definition.

In order to relate these expressions for the metric (2.65) and the symplectic form (2.67)
to the previous discussion about the geometry of the projective Hilbert space, it is useful
to consider the case where 𝑠𝑖 are related to the coefficients of the state vector 𝑎𝑖. To
be precise, we consider 𝑠 ∈ R2𝑛 and define 𝑎𝑖 = 𝑠𝑖 + i𝑠𝑖+𝑛 where now 𝑖 = 1, ..., 𝑛. As a
consistency check, directly evaluating (2.65) and (2.67) results in the natural metric and
symplectic form on C𝑛,

𝑔 ∝ d𝑎∗,𝑖d𝑎𝑖, Ω ∝ d𝑎∗,𝑖 ∧ d𝑎𝑖 . (2.69)

To connect to the above results on projective Hilbert space, as previously mentioned the
components 𝑎𝑖 can be used to define coordinates on P(H ). First, we note that by
implementing the normalisation of |𝜓⟩ explicitly, the above metric can be rewritten as the
metric on S2𝑛−1. Next, we have to implement the quotient by ∼𝜆. To do so, starting with
𝑛 coefficients 𝑎𝑖, we may rescale all 𝑎𝑖 by any choice of particular 𝑎𝑖∗ ≠ 0,

𝑎1, ..., 𝑎𝑖∗ , ..., 𝑎𝑛 →
𝑎1
𝑎𝑖∗
, ..., 1, ...,

𝑎𝑛
𝑎𝑖∗
. (2.70)

The rescaled components 𝑏𝑗 = 𝑎𝑗≠𝑖∗
𝑎𝑖∗

define affine coordinates on CP𝑛−1. As indicated,
this is possible for every 𝑖∗ = 1, ..., 𝑛. For fixed 𝑖∗, the affine coordinates are defined in
the coordinate chart 𝑈𝑖∗ . The collection of all charts covers all of CP𝑛−1. For a thorough
review of this topic, both abstract mathematical aspects as well as the relation to quantum
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mechanics, we refer to [190]. Using the coordinates 𝑏𝑖 the metric for CP𝑛−1 is written as

𝑔 =

(

1 + 𝑏∗,𝑘𝑏𝑘
)2𝛿𝑖𝑗 − 𝑏𝑖𝑏∗𝑗

(

1 + 𝑏∗,𝑘𝑏𝑘
)2

d𝑏∗,𝑖d𝑏𝑗 . (2.71)

This is the Fubini–Study metric, which is the natural Kähler metric on the projective Hilbert
space [273, 274]. This manifests that a state vector is geometrically understood as a point
in CP𝑛−1.

To round off the discussion, with the geometric notions discussed above we are now in a
position to reformulate the postulates of quantum mechanics in terms of geometric objects
[49]. Regarding states and state space, we have

Postulate 1:
The state space of physically distinct quantum states of an isolated quantum sys-
tem is given by the projective Hilbert space P(H ), which is a Kähler manifold.
Physically distinct quantum states correspond to different points on the manifold.

Note that in this formulation of the postulate, reference is still made to the original
Hilbert space, since in our discussion above the projective Hilbert space was introduced as
a quotient of the Hilbert space. However, as shown in [49], the projective Hilbert spaces
can also be defined in a purely geometric way as Kähler manifolds that possess a maximal
amount of symmetry.

As mentioned above and shown in [48], the Schrödinger equation can be written as the
set of the Hamilton equations of motion. Accordingly, time evolution can be formulated
in terms of a Hamiltonian vector field, resulting in

Postulate 2:
Time evolution of a closed quantum system is governed by a Hamiltonian vector
field 𝑋𝐻 (densely) defined on P(H ). The vector field generates a flow on P(H )
where the flow preserves the Kähler structure.

The statement that the flow preserves the Kähler structure on P(H ) is the geometric
version of the fact that unitary transformations of Hilbert spaces H result in Hilbert spaces
isomorphic to H .

Apart from the Hamiltonian, all other observables can be described in a geometric fashion
as well. In particular, we find
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Postulate 3:
Any physically measurable quantity, i.e. any observable 𝑂 is described by a real valued
smooth function 𝑓𝑂 defined on P(H ). The smooth functions are associated to
vector fields 𝑋𝑓𝑂 which generate a flow preserving the Kähler structure.

Furthermore, the collapse of the state vector upon measurement as well as the prob-
abilistic interpretation in terms of geometry are analysed in [49]. In this work, a more
thorough discussion of these geometric postulates can be found, as well as in [275]. In the
former work a lot of these results were derived for the case of infinite-dimensional quan-
tum systems, complementing other works [48, 50, 276–280]. These works also include
generalisations to mixed states.

The fourth postulate addressing composite quantum systems can also be given a geo-
metric version. In postulate four as written originally, we stated that the composite Hilbert
space is given by the tensor product over the individual Hilbert spaces. Naively, we might
therefore expect that the same is true for the projective Hilbert spaces, i.e. an equation
like

P(H )
?
=

𝑁
⨂

𝑖=1
P(H (𝑖)) (2.72)

should hold. However, we can easily convince ourselves that this simple expectation cannot
be true. Suppose that H consists of 𝑁 Hilbert spaces H (𝑖) of dimension 𝑛. Then, the
complex dimension of the left-hand side P(H ) = CP𝑛𝑁−1 is 𝑛𝑁−1, whereas the dimension
of the right-hand side ⨂𝑁

𝑖=1CP𝑛−1 is 𝑁(𝑛−1). Except for 𝑁 = 1, which is not a composite
quantum system, the dimensions cannot match. This is due to the non-linearity of the
projective Hilbert space. In other words, implementing the equivalence relation ∼𝜆 does
not commute with the tensor product. We summarise this via

Postulate 4:
The projective Hilbert space of a composite quantum system is obtained by imple-
menting the equivalence relation ∼𝜆 on the full tensor product H =

⨂𝑁
𝑖=1 H (𝑖).

Generic state vectors in the composite projective Hilbert space are given by super-
positions of tensor products of the individual state vectors.

This in particular leads to defining a geometric notion of the entanglement entropy. This
will be paramount for the discussion in secs. 4 and 6. We will explain this notion in detail
shortly in sec. 2.2.2.
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A Probe for the Geometry (and Topology) of State Space

We have found that the complex projective space CP𝑛−1 is of central importance when
discussing quantum mechanics. Remembering (2.58), this space can be understood sim-
ilarly to a sphere. As a special instance, in the simplest non-trivial case 𝑛 = 2 we have
CP1 ≃ S2. Moreover, the components of the Riemann tensor are algebraically determined
by the metric components. Also, the metric (2.71) is a solution to the vacuum Einstein
equations with positive ‘cosmological’ constant [190]

𝑅𝑖𝑗 = Λ𝑔𝑖𝑗 with Λ = 2𝑛 , (2.73)

attributing CP𝑛−1 an interesting interpretation both in the realms of quantum mechanics
as well as general relativity. Quantities such as the Riemann curvature as well as the Ricci
tensor and scalar measure the curvature of the underlying manifold in a local way. However,
there are also global aspects to CP𝑛−1. To analyse those, the notion of fibre bundles is
elementary, which in particular makes use of the symplectic form defined on the projective
Hilbert space. Throughout this thesis, we will heavily rely on the concept of fibre bundles.
We therefore discuss the definition and basic properties of fibre bundles in the following.
This will in particular enable us not only to determine the geometry but also the topology
of the projective Hilbert space. It will also provide a different and perhaps more intuitive
picture of the relation between the Hilbert space and the projective Hilbert space. Among
other sources, details on fibre bundles can be found in [269, 281].

Apart from projective Hilbert spaces, fibre bundles are used in physics mostly to analyse
global properties, i.e. non-perturbative effects of the underlying physical system. Fibre
bundles are useful whenever there is a redundancy in our description of physics. Gauge
theories such as Yang–Mills field theories can be formulated using fibre bundles. This
construction is therefore particularly useful for analysing non-perturbative aspects of our
description of reality as the standard model is based on gauge theories. In general, a
fibre bundle consists of five components, namely the entire space or entire manifold E , a
projection 𝜋, the base space or base manifold B, the fibre F and a gauge group 𝐺. The
projection 𝜋 defines a map from the entire manifold to the base manifold, 𝜋 ∶ E → B.
Globally, the entire space is different than the Cartesian product of the base space and
the fibre, E

glob
≠ B × F . For that reason, the fibre bundle can also be interpreted as

a twisted product between B and F . However locally, the entire space can always be
approximated as a product, E

loc
= B × F . Regarding local properties, understanding

fibre bundles enables to rigorously define local coordinates for an open region U ⊂ B

as well as coordinate transformations 𝑈𝑖𝑗 between different regions U𝑖,U𝑗 ⊂ B, which
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| | | |

𝑥(𝑖𝑗)∈
U𝑖 ∩ U𝑗

𝜋−1(U𝑖) 𝜋−1(U𝑗)

B 𝑥(𝑖)∈

U𝑖

F𝑥(𝑖)

𝑝(𝑖)1
T𝑖
↦ (𝑥(𝑖), 𝑔𝑖)

𝜋 S𝑖

𝑝(𝑖)2 = 𝑝(𝑖)1 ⋅ 𝑔

𝑥(𝑗)∈

U𝑗

F𝑥(𝑗)

(𝑥(𝑗), 𝑔𝑗)
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↤ 𝑝(𝑗)

S𝑗𝜋

𝑈𝑖𝑗(𝑥(𝑖𝑗))

𝑈𝑗𝑖(𝑥(𝑖𝑗))

Figure 2.11: The various concepts for fibre bundles introduced in the main text are
depicted above. The two regions U1 and U2 as well as the part of the fibre bundle defined
on top of these regions, marked in blue and green, have a non-trivial overlap. The projection
𝜋 maps from the fibre to the base manifold and the sections S𝑖,S𝑗 do the opposite. Two
points 𝑝(𝑖)1 , 𝑝

(𝑖)
2 are related by the right action of 𝐺. A trivialisation T𝑖 locally expresses

an arbitrary point 𝑝(𝑖) in terms of base manifold points 𝑥(𝑖) and group elements 𝑔𝑖. In the
overlap region, gauge transformations 𝑈𝑖𝑗(𝑥(𝑖𝑗)) between the regions are defined.

are also called gauge transformations. A necessary condition for being able to define such
coordinate transformations is that the local regions overlap, i.e. U𝑖 ∩ U𝑗 ≠ {0}. This is
visualised in fig. 2.11.

Due to the local product structure, a fibre bundle may locally be visualised as attaching
to each point of the base manifold 𝑥 ∈ B a fibre F𝑥. The projection 𝜋 then has to
satisfy 𝜋(𝑝) = 𝑥 for any point in the fibre 𝑝 ∈ F𝑥. For a visualisation see fig. 2.11. In the
following, we focus on a subclass of fibre bundles called principal fibre bundles. For this
subclass, the fibre is isomorphic to the group, i.e. F ≃ 𝐺, such that it is not necessary to
distinguish between fibre and gauge group. Principal fibre bundles are often denoted as

𝐺 ⟶ E
𝜋

⟶ B . (2.74)

For principal fibre bundles the relation between two different points in a single fibre 𝑝1, 𝑝2 ∈
F𝑥 is particularly simple in that they are related by the right group action, 𝑝1 = 𝑝2 ⋅ 𝑔
for 𝑔 ∈ 𝐺 ≃ F𝑥. As mentioned above, fibre bundles provide a recipe to define local
coordinates. This works as follows. Fixing coordinates or in other words choosing a gauge,
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is performed by defining a local trivialisation T of the bundle. To each local region U𝑖, a
local trivialisation T𝑖 is associated,

T𝑖 ∶ 𝜋−1(U𝑖) → U𝑖 × 𝐺, 𝑝↦
(

𝜋(𝑝) = 𝑥, 𝑔𝑖 ∈ 𝐺
)

. (2.75)

Here 𝜋−1(U𝑖) is understood as the part of the entire fibre bundle that is defined ‘on top’ of
the region U𝑖 of the base manifold, see again fig. 2.11. The trivialisation essentially disre-
gards the potential twist between the fibre and the base manifold. Different trivialisations
T𝑖,T𝑗 correspond to different gauge choices, in that they map 𝑝 to different elements 𝑔𝑖, 𝑔𝑗
of the group. Therefore, for 𝑥(𝑖𝑗) ∈ U𝑖 ∩ U𝑗 it is possible to switch gauge by

𝑈𝑖𝑗(𝑥(𝑖𝑗)) = T𝑖,𝑥(𝑖𝑗)◦T
−1
𝑗,𝑥(𝑖𝑗) . (2.76)

This in particular maps 𝑔𝑖 = 𝑈𝑖𝑗 ⋅ 𝑔𝑗 , i.e. the left action of the group describes gauge
transformations.

A physical process describes how different points are related to each other, subject to
the dynamics of the underlying theory. Therefore, we may think of curves 𝑐 on the base
manifold. As we also have the fibre above B, the curve can be uplifted into the fibre.
This uplift requires the definition of parallel transport and therefore the definition of a
connection. To do so, the main idea is to consider the decomposition of the tangent space
at an arbitrary point 𝑝 of the total space 𝑇𝑝E into its vertical and horizontal components,
𝑉𝑝 and 𝐻𝑝 respectively. The vertical component is canonically fixed to contain all tangent
vectors 𝑣 = d𝑠

(

𝑝 ⋅ 𝑔(𝑠)
)

|𝑠=0 pointing along the fibre. Here 𝑠 parametrises the curve 𝑐
defined by 𝑔(𝑠) a path in 𝐺 with 𝑔(0) = 1. The horizontal component 𝐻𝑝 is given by a
completion of 𝑉𝑝 to 𝑇𝑝E . This completion is not unique and the connection distinguishes
between different choices for𝐻𝑝. Any connection that we aim to define has to be consistent
with two requirements on curves. First, the connection has to be such that given a curve
𝑐(𝑠) ∈ B its relative in the fibre 𝑐(𝑠) satisfies 𝜋(𝑐(𝑠)) = 𝑐(𝑠) ∀𝑠. Second, if two curves 𝑐
and 𝑐 in the fibre are related by 𝑔 at 𝑠 = 0, 𝑐(0) = 𝑐(0) ⋅ 𝑔, the parallel transport defined
by the connection has to be such that this relation holds for all values of 𝑠, 𝑐(𝑠) = 𝑐(𝑠) ⋅ 𝑔.
A visualisation is provided on the left of fig. 2.12. This can be formalised by the following
definition of the connection,

Definition 3: The connection 𝜔𝑝 is a Lie algebra valued linear map 𝜔𝑝 ∶ 𝑇𝑝E → 𝑇1𝐺,
i.e. a one form satisfying

i) 𝜔𝑝(𝑣) = 𝑣̂ = 𝑔̇(0) for 𝑣 ∈ 𝑉𝑝 and 𝑔 ∈ 𝐺

ii) ker 𝜔𝑝 ≃ 𝑇𝑥B, ensuring 𝜋(𝑐) = 𝑐



62 2. Entanglement in Quantum Mechanics and Quantum Field Theory

𝑐(𝑠) ∈ BB

F𝑐(0) F𝑐(𝑠1) F𝑐(𝑠2)

𝜋

𝑐(𝑠)

𝑐(𝑠)

⋅𝑔
⋅𝑔

F𝑐(𝑠∗)

𝑐(𝑠)𝑐(𝑠∗)

𝑉𝑝

𝐻𝑝

S (𝑐(𝑠))

𝑆𝑝

S (𝑐(𝑠∗))

Figure 2.12: On the left, the two conditions on the connection are visualised. Under the
projection 𝜋, any curve 𝑐 or 𝑐 has to reduce to 𝑐. Moreover, since points within a fibre are
related by the right action of 𝐺, the same has to be true for every point of curves, i.e. the
two curves are also related by the right action of 𝐺. On the right, the distinction between
𝐻𝑝, 𝑆𝑝 and 𝑉𝑝 is depicted. 𝑉𝑝 is simply the space of vectors tangential to the fibre. 𝐻𝑝 is
the horizontal space such that 𝑇𝑝E = 𝑉𝑝 ⊕𝐻𝑝. 𝑆𝑝 are vectors tangential to a section of
a curve such that 𝑇𝑝E . If 𝐻𝑝 = 𝑆𝑝, the bundle is trivial and the connection vanishes.

iii) 𝜔𝑝⋅𝑔(𝑣 ⋅ 𝑔) = 𝑔−1 ⋅ 𝜔𝑝(𝑣) ⋅ 𝑔, ensuring 𝑐(𝑠) = 𝑐(𝑠) ⋅ 𝑔.

Note that the tangent space of 𝐺 at the identity is the Lie algebra of the Lie group 𝐺,
𝑇1𝐺 = 𝓰. This definition is closely akin to familiar notions of gauge theory used in physics.
Throughout the literature, there exist other definitions which are however equivalent to
the definition above [269, 281].

Given the connection 𝜔𝑝 we can also define local gauge fields 𝐴𝑖. The subtle distinction
is that the connection is defined as a map from 𝑇𝑝E while the local gauge fields will be
defined as maps from 𝑇𝑥U𝑖, i.e. from the tangent space of a point 𝑥 in the base manifold.
In order to define this map, we first need to introduce sections. A section of a fibre bundle
can be visualised as the uplift of a curve 𝑐 into the fibre direction. To every point 𝑥 of the
base manifold, the section S associates a point in the fibre. Expressed in formulas, this
means

S ∶ U → 𝜋−1(U ), 𝑥↦ S (𝑥) = 𝑝 . (2.77)

The image of S as the inverse of 𝜋 is interpreted as above. In particular, this formula
makes clear that a section is the inverse of the projection in that it satisfies

𝜋
(

S (𝑥)
)

= 𝑥, 𝜋◦S = 1U . (2.78)
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A section is closely related to the inverse of a local trivialisation. In fact, a section can be
understood as the inverse of a local trivialisation where T −1 is applied to a point on the base
manifold paired with the identity element of the group, S (𝑥) = T −1(𝑥,1𝐺). Nevertheless,
the purpose of trivialisations and sections is different. A section provides a map from an
arbitrary point 𝑥 in the base manifold to a point 𝑝 in the fibre. A trivialisation specifies
how the point 𝑝 can be locally expressed as the corresponding 𝑥 and a group element 𝑔,
as shown in (2.75).

Using sections, a local gauge field 𝐴𝑖 is defined as a map from the tangent space at a
point 𝑥 ∈ U𝑖 of a region in the base manifold to the Lie algebra 𝓰,

𝐴𝑖 ∶ 𝑇𝑥U𝑖 → 𝑇1𝐺, 𝑐̇(𝑠) ↦ 𝐴𝑖 = 𝜔S𝑖(𝑥)
(

d𝑠S𝑖(𝑐(𝑠))
)

. (2.79)

Here, d𝑠S𝑖(𝑐(𝑠)) defines a vector pointing along the uplift of the curve 𝑐 into the fibre.
The set of all vectors can be defined as a space 𝑆𝑝 = d𝑠S𝑖(𝑐(𝑠)) which, together with
𝑉𝑝, spans the full tangent space 𝑇𝑝E . This is visualised on the right of fig. 2.12. Since
ker 𝜔𝑝 ≃ 𝑇𝑥B = 𝐻𝑝, the gauge field vanishes exactly when 𝐻𝑝 = 𝑆𝑝. Therefore, as
mentioned above, a non-trivial connection and the corresponding non-trivial gauge field
measure the mismatch between 𝐻𝑝 and 𝑆𝑝. Moreover, given local gauge fields 𝐴𝑖, 𝐴𝑗 for
two sections S𝑖,S𝑗 corresponding to trivialisations T𝑖,T𝑗 , a change of gauge described
by 𝑈𝑖𝑗 relates the two gauge fields as

𝐴𝑖 = 𝑈−1
𝑖𝑗 𝐴𝑗𝑈𝑖𝑗 + 𝑈−1

𝑖𝑗 d𝑈𝑖𝑗 . (2.80)

This is the familiar transformation law of gauge fields within gauge theory, generalising
(2.64). In fact, U(1) gauge theory and its generalisation to SU(𝑁) known as Yang–Mills
theory can be understood as principal fibre bundles with fibres given by U(1) and SU(𝑁),
respectively. For U(1), the gauge field on the fibre bundle is simply the photon field. In
Yang–Mills theory, for 𝑁 = 2, 3 the gauge fields are interpreted as the 𝑊 ± and 𝑍 bosons
as well as the gluons, transferring the weak and strong force respectively.

So far we have discussed the connection in a local definition. However, as promised
above, the fibre bundle also allows to study non-local, i.e. non-perturbative effects which
are sensitive to the twist between the base manifold and the fibre. To see this, we again
point out that the connection can be defined once a section is defined. In the simplest case
this section is defined everywhere. This is referred to as a global section. The existence of
such a global section renders the fibre bundle trivial in that there actually is no twist and
E = B × F is true globally. For principal fibre bundles, this is a one-to-one statement:
a principal fibre bundle is trivial if and only if there exists a global section. This can
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also be phrased as the statement that the connection is nowhere vanishing or that the
coordinates introduced by the trivialisation are globally defined. The existence of a global
section is however not guaranteed. What can always be defined is a local section, relying
on a local trivialisation. For each local section, a connection can be established, with the
relation between connections of different local sections given in (2.80). The necessity for
local sections is indicated by a connection that vanishes at some points when expressed
in coordinates, or alternatively by the failure of a coordinate system at a particular point.
We will give a simple example of such an instance shortly.

A non-trivial bundle is described by the presence of holonomies. These quantify whether
the endpoints of a path 𝑐 that is closed in the base manifold differ once the path is uplifted
into the fibre by applying a local section to the path 𝑐. Of course, applying the projection
𝜋 on this path reproduces the closed path on the base manifold. If such paths exist, the
difference between the two endpoints measures the holonomy. This is visualised on the left
of fig. 2.13. The reason for the endpoints not coinciding is the parallel transport along the
path defined by the connection. A prominent instance of this can be found when parallel
transporting a vector on a curved manifold. Performing a closed loop, the vector returns
to its starting position pointing in a different direction. The change of angle shows by how
much the sum of the interior angles of a triangle differs from 𝜋. This can be interpreted
as a holonomy and is a direct measure for the curvature, and therefore also the geometry,
of the underlying manifold. In particular, if the change of angle is positive (negative), the
manifold has positive (negative) Ricci curvature. Mathematically, the holonomy can also
be understood in terms of the field strength of the connection 𝐴. This field strength,
obtained as an exterior derivative of 𝐴, can also be interpreted as the symplectic form,
Ω = d𝐴. Given that there exists a global section, 𝐴 is unique and the symplectic form is
uniquely computed by this relation. This manifests that Ω in this case is an exact two-form
such that dΩ = 0 is trivially satisfied by d2 = 0. In general, exact 𝑛-forms are forms that
can be expressed uniquely as the exterior derivative of an 𝑛 − 1-form. In close analogy to
the above discussion, by the Poincaré lemma such an 𝑛 − 1-form can always be defined
locally,23 but not necessarily globally. If there is no global section, we have to use local
sections S𝑖 for each of which a local gauge field 𝐴𝑖 is defined. While Ω = d𝐴𝑖 holds
independently of the index 𝑖, the symplectic form is not uniquely determined by a single
𝐴𝑖 and is therefore not exact. To test whether a form is exact or not, the integral

∫Σ
Ω , (2.81)

23A necessary condition is that the underlying point is contractible, i.e. it can be smoothly deformed to
a point.
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𝑐 B

S𝑖

S1 ≃ U(1)

S2 ≃ CP1

Figure 2.13: On the left, the same path is shown twice, once in the base manifold and
once uplifted to the fibre. In the base manifold, the path is closed. When uplifted to the
fibre, the same path is no longer necessarily closed due to the non-trivial fibre bundle. The
separation marked in orange between the path endpoints, coinciding when projected to the
base manifold, is referred to as holonomy. On the right, a visualisation of the local product
structure S2 ×S1 is shown. At every point of the sphere, a circle is attached. Globally, this
yields a different manifold than S3.

has to be calculated. This is, up to a proportionality factor, essentially the integral of the
first Chern class. Here Σ is any closed two-dimensional surface within the base manifold.
By Stokes’ theorem, an exact form has to integrate to zero. Therefore, if the integral
above is non-vanishing, Ω is not exact and the corresponding fibre bundle has no global
section. Moreover, Ω can also be used to determine the topology of the base manifold. By
the Chern theorem [282], the symplectic form allows to compute the Euler characteristic
𝜒 of B,

𝜒(B) = 1
(2𝜋)𝑛 ∫B

√

det(Ω) = 2 − 2𝑔 , (2.82)

where dim(B) = 2𝑛 and 𝑔 is the number of holes of B.

Within physics, holonomies are more commonly referred to as geometric phase or Berry
phase. Originally found by Sir Michael Berry for a system of a single qubit in a magnetic
field in the seminal paper [163], it was shortly after pointed out by Barry Simon that
the phase factor discussed by Berry is simply the holonomy of a principal fibre bundle with
group 𝐺 = U(1) [164]. Using the insights gained by the discussion of (2.81), the geometric
phase is calculated as

ΦG = ∫Σ
Ω . (2.83)
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In fact, this particular geometric phase realises the Hopf fibration in its lowest-dimensional
example [283],

S1 ⟶ S3
𝜋

⟶ S2 . (2.84)

Comparing with (2.74), the Hopf fibration describes the total space E = S3 as a fibre bundle
with base space B = S2 and fibre F = S1. The physical interpretation is as follows. The
system of a single qubit in a magnetic field is a two-dimensional quantum system, i.e. the
natural Hilbert space is given by C2. State vectors single out S3 by the normalisation
condition, providing the total space. The base space is the projective Hilbert space given
by P(H ) = CP1 ≃ S2, while the fibre accounts for phase factors 𝑒i𝛼 ∈ U(1) ≃ S1. The
geometric phase described in [163] shows that S3 ≠ S2 × S1 in a global sense. The locally
valid product structure is visualised on the right of fig. 2.13. Mathematically, this is realised
in the non-existence of global coordinates on S2. Coordinates can only be defined excluding
either the north or the south pole of S2. In each coordinate patch a connection can be
defined, which in particular vanishes when naively evaluated on the excluded point. The
corresponding symplectic form therefore is not exact and results in the non-trivial phase
factor of [163].24 This is consistent with the hairy ball or hedgehog theorem, stating that
any vector field, of which the connection is a special case, defined on S2𝑛 vanishes at some
point [284, 285].

In the above example, we saw that the projective Hilbert space appeared as the base
manifold of the principal fibre bundle. This is not specific to this simple example but
generalises to P(H ) = CP𝑛−1 for arbitrary 𝑛. As already indicated in (2.58), the projective
Hilbert space is obtained as a quotient space of S2𝑛−1 by U(1) ≃ S1. Therefore, for any 𝑛,
the projective Hilbert space may always be understood as the base manifold B = CP𝑛−1 =
P(H ) of a principal fibre bundle with fibre or gauge group F ≃ 𝐺 = U(1) and the
total space given by the Hilbert space E = C𝑛 = H . The projection corresponds to
implementing the equivalence relation ∼𝜆,

S1 ⟶ C𝑛
𝜋

⟶ CP𝑛−1 ↔ U(1) ⟶ H
∼𝜆
⟶ P(H ) . (2.85)

The geometric phases or holonomies of such fibre bundles probe the geometry of the
projective Hilbert space. Within physics, as we will discuss in broad detail in secs. 4, 5 and
6, geometric phases are vital to understand factorisation properties of the Hilbert space.

24In the case S2, the symplectic form is a top form. It therefore must be proportional to the volume
form of S2. Since the volume of S2 does not vanish, the volume form must not be exact. The latter
statement generalises: the volume form of any compact manifold is non-exact. The symplectic form
being proportional to the volume form however is specific to this example.



2.2. Geometric Interpretation of Entanglement 67

In particular, they can be used to analyse the entanglement within a quantum system.
However, the importance of geometric phases is not specific to high energy physics. Also
in condensed matter theory geometric phases appear, the most famous example being the
quantum Hall effect. Here, the Hall conductance is quantised in terms of Chern numbers.
This was first discussed in [156] and given more theoretical foundation in [157]. The
first measurement, awarded with a Nobel prize, was conducted in [158]. A mathematical
rigorous treatment of this effect was given in [159]. Therefore, geometric phases also do
play an important role in physics. Moreover, it is worth pointing out that the topic of
geometric phases and projective Hilbert space sparked interesting discussions about the
nature of reality in the area of philosophy of physics [286, 287]. However, we will not go
into detail about this.

Finally we point out that geometric phases fall into two classes based on the origin.
Holonomies arise whenever the bundle is non-trivial, i.e. whenever coordinates are not
defined globally and E = B × F holds only locally. Above we have discussed in quite
some detail phase factors that arise due to the non-trivial curvature of the base manifold,
in the above case given by S2 which has positive curvature. This is accompanied by a
non-vanishing field strength given by the symplectic form, which in particular is not exact.
However, there is also a different origin for holonomies related directly to the topology of
the base manifold. In particular, if the base manifold is not simply connected, coordinates
may not be defined globally and the holonomy is non-trivial. In this case, the field strength
of the connection vanishes and the connection itself is non-exact. An instance of this is
the Möbius strip, which can be regarded as a fibre bundle with base manifold B = S1

and fibre given by an interval F = [𝑎, 𝑏]. Locally, this is indistinguishable from the
cylinder, but globally, these spaces are of course different. This shows via computing the
holonomies. Parallel transport of a vector along a closed path on the cylinder does not
yield any changes, but returning to the same point on the Möbius strip leads to a sign
difference, i.e. a holonomy of 𝜋 appearing as prefactor 𝑒i𝜋 of the vector. Another example
for topological phases is given by closed paths on the punctured plane R2∖{0}, where
winding numbers can be defined, counting how often the path winds around the puncture.
In fact, such topological phases only take discrete values independent of the path, while
geometric phases vary smoothly and depend on the path.

This concludes our discussion on aspects of geometry within quantum mechanics im-
portant for this thesis. In the next section we discuss two ways in which entanglement can
be understood in a geometric fashion.
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2.2.2. State Space Geometry and Entanglement

In the last section, we have discussed in detail how quantum mechanics can be phrased
in terms of geometry. We in particular focused on elementary objects such as states and
state space. Moreover, we explained how these geometric notions are grouped into a fibre
bundle. However, we have not yet understood how entanglement, which we reviewed in
detail in sec. 2.1, is phrased in terms of geometry. Intuitively, in the spirit of [15], we
might ask which geometries are ‘spooky’, i.e. which geometries represent entanglement.
In the following, we discuss two geometric notions of entanglement. We start with the
construction of [166] which, based on a detailed analysis of the symmetries of the state
vector, gave a prescription to determine such ‘spooky’ geometries as submanifolds of the
projective Hilbert space. We will refer to this method as the SZK construction. This
method will be indispensable for the discussions in secs. 4, 6 and to a lesser extend also
in sec. 5. Next, we will review a quantity known as geometric quantum discord [181],
abbreviated as GQD in the following. This provides an alternative to the generically hard-
to-compute quantum discord. In sec. 7 we will study GQD in the context of factorisation
properties of quantum systems.

Manifolds of Equal Entanglement

In standard quantum mechanics, as reviewed extensively in sec. 2.1.1, the entanglement is
quantified using the von Neumann entropy (2.10). In particular, given that the full system
is described by a pure state, the entanglement entropy provides a unique measure of any
quantum correlations between the subsystems separated by a bipartition surface. More-
over, the entanglement entropy is the same when computed for either of the subsystems,
𝑆(𝜌(1)) = 𝑆(𝜌(2)), where 𝜌(𝑖) are the reduced density operators defined in (2.15). Moreover,
the entanglement entropy is invariant under local unitary transformations 𝑈 = 𝑈1 ⊗ 𝑈2

[188], as in particular the Schmidt coefficients of the state vector |𝜓⟩ are invariant under
such transformations. Within local unitary transformations, there exists a smaller class of
transformations which relate state vectors in a reversible way. In particular, such trans-
formations do not mix between sectors of base vectors associated to different Schmidt
coefficients. Two state vectors are called interconvertible if they are related by such a
transformation [288]. For two such state vectors, the invariance of the entanglement en-
tropy is trivial since they are already equal at the level of the state vector. The set of all
interconvertible state vectors therefore forms an orbit of the local unitary transformations.
Aspects of this were analysed in [289–292] and a complete treatment was given in [166].
Although we focus on pure states based on state vectors in the following, we point out
that a similar analysis for mixed states was conducted in [293].
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The SZK construction is based on carefully analysing the Schmidt coefficients of the
state vector |𝜓⟩. The Schmidt decomposition (2.17) exists for any state vector of a
bipartite Hilbert space H = C𝑛2 = C𝑛 ⊗ C𝑛 = H (1) ⊗H (2) and allows to express |𝜓⟩ as

|𝜓⟩ =
𝑛
∑

𝑖=1
𝜅𝑖|𝑖1, 𝑖2⟩ , (2.86)

where 𝜅𝑖 are the Schmidt coefficients.25 As we have seen in sec. 2.2.1, the space of
physically distinguishable states is formed by rays [|𝜓⟩] defined in (2.56) and is referred
to as the projective Hilbert space P(H ) = CP𝑛2−1. The local unitary transformations are
given by 𝑈 = 𝑈1 ⊗ 𝑈2 where 𝑈1∕2 ∈ U(𝑛). To obtain the orbits, we have to determine
which states are interconvertible, in particular by what kind of unitary transformations. To
do so, it is convenient to choose a basis such that the reduced density operator of (2.86)
is expressed as26

𝜌(1) = diag
(

0, ..., 0
⎵⏞⏞⏞⎵

𝑚0

, 𝜅2
1 , ..., 𝜅

2
1⎵⏞⏞⏞⏞⏞⏞⏞⎵

𝑚1

, ..., 𝜅2
𝑛 , ..., 𝜅

2
𝑛⎵⏞⏞⏞⏞⏞⏞⏞⎵

𝑚𝑛

)

=
(

0 ⋅ 1𝑚0

)

⊕
[

𝑛
⨁

𝑖=1

(

𝜅2
𝑖 1𝑚𝑖

)

]

, (2.87)

i.e. 𝜌(1) is block diagonal with each block corresponding to all Schmidt coefficients of value
𝜅2
𝑖 . Moreover, the basis is chosen such that the blocks are written in ascending order,

0 < 𝜅2
1 < ... < 𝜅2

𝑛 . The values 𝑚𝑖 denote the algebraic multiplicities of 𝜅2
𝑖 and therefore

satisfy ∑𝑛
𝑖=0𝑚𝑖 = 𝑛.

This diagonal form of the reduced density operator is particularly convenient since the
square root of 𝜌(1) can be used to write |𝜓⟩ in Schmidt decomposed form as 27

|𝜓⟩ =
𝑛
∑

𝑖,𝑗=1

√

𝜌(1)𝑖𝑗|𝑖1, 𝑗2⟩ . (2.88)

To determine which transformations define interconvertible states, have to find unitary
transformations 𝑈int, 𝑉int ∈ U(𝑛), acting on the first and second subsystem respectively,

25Note that it is a matter of a taste whether one calls the coefficients of the state or the eigenvalues of
the reduced density operator Schmidt coefficients. The authors of [166] chose the latter option, while
we work with the former. While this is of course only a matter of convention, we point it out to deflect
potential confusion.

26For concreteness, we choose to trace over H (2). The analogous arguments presented in the following
however also apply when tracing over H (1).

27The square root of a diagonal matrix 𝐴 with entries 𝑎𝑖 is again diagonal with entries
√

𝑎𝑖.
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such that the above state changes only up to an overall phase,

𝑈int ⊗ 𝑉 𝑇
int =

𝑛
∑

𝑖,𝑗=1

(

𝑈int

√

𝜌(1)𝑉int
)

𝑖𝑗|𝑖1, 𝑗2⟩
!
= 𝑒i𝛼

|𝜓⟩ , (2.89)

i.e. the unitary transformations do not mix between blocks of different 𝜅𝑖. Due to the block
diagonal form of 𝜌(1), it is straightforward to see that such transformations take the form
[166]

𝑈int = 𝑈0 ⊕𝑈1 ⊕ ... ⊕ 𝑈𝑛 and 𝑉int = 𝑒i𝛼𝑉0 ⊕𝑈 †
1 ⊕ ... ⊕ 𝑈 †

𝑛 . (2.90)

Both 𝑈int and 𝑉int take the same block diagonal structure as 𝜌(1). The unitary transfor-
mations 𝑈𝑖 within 𝑈int act on the corresponding blocks in 𝜌(𝑖) and therefore are part of
U(𝑚𝑖) with dim(𝑈𝑖) = 𝑚𝑖. In order to guarantee invariance of the state vector, the entries
𝑉𝑖 within 𝑉int are constrained by 𝑈𝑖 to satisfy 𝑉𝑖 = 𝑈 †

𝑖 in order to cancel each other.
Accordingly, also 𝑉𝑖 ∈ U(𝑚𝑖) with dim(𝑉𝑖) = 𝑚𝑖. The case for 𝑚0 is however special. Since
both 𝑈0 and 𝑉0 are multiplied by zero, 𝑉0 is not constrained by 𝑈0 but can be an arbitrary
unitary transformation.

Given this subclass described by 𝑈int and 𝑉int of arbitrary local unitary transformations,
manifolds of equal entanglement or entanglement orbits O

|𝜓⟩ are defined as a quotient
space [166],

O
|𝜓⟩ =

U(𝑛) × U(𝑛)
G (𝑚𝑖)

. (2.91)

Here G (𝑚𝑖) is a subgroup of the local unitary transformations U(𝑛) × U(𝑛) formed by 𝑈int

and 𝑉int for a specific configuration of 𝑚𝑖. The real dimension of this orbit follows as [166]

dimR
(

O
|𝜓⟩

)

= 2𝑛2 − 2𝑚2
0 −

𝑛
∑

𝑖=1
𝑚2
𝑖 − 1 . (2.92)

Since this dimension is always smaller than the real dimension of CP𝑛2−1, dimR
(

CP𝑛2−1) =
2𝑛2 − 2, the entanglement orbits can be understood as submanifolds of the projective
Hilbert space. It was also shown that this quotient can be given a simple form in terms of
the individual factors of U(𝑚𝑖) [293, 294],

O
|𝜓⟩ =

U(𝑛)
U(𝑚0) × U(𝑚1) × ... × U(𝑚𝑛)

×
U(𝑛)

U(1) × U(𝑚0)
. (2.93)

This structure can be understood in the following way. The first factor in (2.93) arises
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by quotienting the local unitary transformations U(𝑛) acting on the subsystems by the
transformations 𝑈int. The local unitary transformations U(𝑛) acting on the other subsystem
are quotiented by the remaining groups, which are the second factor of U(𝑚0) resulting
from the freedom in 𝑉0 as well as a factor of U(1) due to the freedom of the global phase.
This orbit structure can be given an interpretation in terms of fibre bundles. The first
factor in (2.93), describing all reduced density operators with the same spectrum, provides
the base manifold. For a given class of reduced density operators with the same spectrum,
the fibre consists of all state vectors leading to a reduced density operator of that class
upon partial tracing. We will make use of this fact later on in sec. 4 to define geometric
phases as a probe of the entanglement structure.

With the above expression (2.93), given a particular state vector, it is straightforward
to obtain the manifold of equal entanglement by calculating the Schmidt coefficients and
determining the multiplicities. As an example consider a state vector with every Schmidt
coefficient non-vanishing but with different values of all other Schmidt coefficients. In this
case, 𝑚0 = 0 and, since all Schmidt coefficients take different values, 𝑚𝑖≠0 = 1. This is
a fairly generic state vector with some intermediate value for the entanglement entropy,
0 < 𝑆(𝜌(1)) < ln 𝑛. The structure of the entanglement orbit follows as

O
|𝜓⟩intermediate

=
U(𝑛)
U(1)𝑛 ×

U(𝑛)
U(1) =

U(𝑛)
U(1)𝑛 ×

SU(𝑛)
Z𝑛

, (2.94)

The orbit structure for generic states, also including cases where 𝑚0 ≠ 0, is complicated
and, with a growing value of 𝑛, the number of different orbits grows drastically, although
the structure is straightforward to obtain in principle. A detailed list up to 𝑛 = 4 can be
found in [166].

The two special cases of vanishing and maximal entanglement however allow for some-
what simpler geometric interpretations. First, we consider the case of maximal entangle-
ment. In terms of the Schmidt coefficients, that means that 𝑚0 = 0 and 𝑚1 = 𝑛, since for
maximal entanglement all Schmidt coefficients are equal. In this case, the orbit structure
is given by

O
|𝜓⟩maximal

=
U(𝑛)
U(𝑛) ×

U(𝑛)
U(1) = 1 ×

SU(𝑛)
Z𝑛

. (2.95)

This orbit has an interesting geometric interpretation in that it is a Lagrangian submanifold
of the projective Hilbert space as pointed out in [295]. A Lagrangian submanifold is defined
as follows [296],

Definition 4: A Lagrangian submanifold 𝐿 of a symplectic manifold 𝑀 with symplectic
form Ω is defined such that
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i) 𝐿 is an isotropic submanifold, i.e. Ω|𝐿 = 0

ii) 𝐿 is maximal, i.e. dim(𝐿) = 1
2
dim(𝑀).

A simple example for a Lagrangian submanifold is given by R within R2. As required,
dim(R) = 1

2
dim(R2) and Ω = d𝑥 ∧ d𝑦 vanishes when 𝑥 or 𝑦 are held fixed. As a more

physical example, the symplectic manifold of classical mechanics spanned by 𝑝𝑖 and 𝑞𝑖 both
position and momentum space are Lagrangian submanifolds by fixing either all 𝑝𝑖 or all 𝑞𝑖,
respectively. For the orbit (2.95), the condition on the dimension can be easily seen to be
satisfied since dimR

(

CP𝑛2−1) = 2𝑛2 − 2 and dimR
(

O
|𝜓⟩maximal

)

= 𝑛2 − 1. The vanishing
of the symplectic form can be understood as follows. By the Poincaré lemma and the
Darboux theorem [297], the symplectic form of any symplectic manifold can locally be
written in the canonical form Ω = d𝑝𝑖∧d𝑞𝑖, i.e. locally every symplectic manifold looks like
R2𝑛. As 𝐿 has half the dimension of 𝑀 , we have to fix 𝑛 of the coordinates of 𝑀 . For all
𝑖 = 1, ..., 𝑛, fixing either 𝑝𝑖 or 𝑞𝑖 shows that the symplectic form vanishes. This is explained
in more detail in [295], where the Darboux coordinates for CP𝑛2−1 are discussed as well.
Note that in this analysis, 𝑛 is not restricted, i.e. the entanglement orbit of maximally
entangled states is a Lagrangian submanifold of CP𝑛2−1 for any 𝑛.

Finally, we discuss the case of vanishing entanglement. In this case, the state vector is
a product state such that the reduced density operator is a projector. Accordingly, only
one of the Schmidt coefficients is non-zero and in particular equal to one, while all others
vanish. The multiplicities therefore are 𝑚0 = 𝑛 − 1 and 𝑚1 = 1. The corresponding orbit
structure is given by

O
|𝜓⟩vanishing

=
U(𝑛)

U(𝑛 − 1) × U(1) ×
U(𝑛)

U(𝑛 − 1) × U(1) = CP𝑛−1 × CP𝑛−1 . (2.96)

This orbit also has a known geometric interpretation in that it is the Segre variety of
the projective Hilbert space CP𝑛2−1. This can be interpreted as the Cartesian product of
the projective Hilbert spaces CP𝑛−1 of the subsystems. In fact, this result is reminiscent
of (2.72) where we discussed the projective Hilbert space for composite systems. The
above orbit structure shows that the product of the subsystem projective Hilbert spaces
describes precisely the separable state vectors of the composite system. This analogy
between state vectors and geometries is quite intuitive. In standard quantum mechanics,
separable states are formed as products of base vectors of the subsystems. Entangled
states are then obtained by taking linear combinations of separable states. In the geometric
version (2.96), separable states are described by a geometry which is simply the product
of the individual pure state geometries, i.e. the individual projective Hilbert spaces. In this
product, no further structure between the subsystem geometries is included. Entangled
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(1, 0, 0, 0) ↔ CP3 × CP3 (

1
2
, 1
2
, 0, 0

)

↔ U(4)
U(2)2

× U(4)
U(2)×U(1)

(

1
4
, 1
4
, 1
4
, 1
4

)

↔ 1 × SU(4)
Z4

(

1
3
, 1
3
, 1
3
, 0
)

↔ U(4)
U(3)×U(1)

× U(4)
U(1)×U(1)

Figure 2.14: Depiction of the Weyl chamber for a bipartite system consisting of two four-
level systems. Every point of the Weyl chamber corresponds to a unique configuration of
the Schmidt coefficients. The interior corresponds to all Schmidt coefficients differing. On
each of the edges, at least two coefficients are equal. The vertex points correspond to
particularly symmetric configurations of the Schmidt coefficients, which are given explicitly
with the corresponding geometry. Note that the lengths of the edges have no quantitative
meaning. The figure is freely adapted from [166].

states, as described by (2.94) or (2.95), are obtained by providing more structure, i.e. by
deviating from the simple Cartesian product. For a detailed discussion of the Segre variety
and the Segre embedding we refer the interested reader to [190]. See also [298] for a
discussion in the context of multipartite entanglement.

The characterisation of entanglement in terms of the Schmidt coefficients can be nicely
visualised in the following way. Grouping all Schmidt coefficients into a vector 𝜆, the
set of all such vectors spans the 𝑛 − 1-dimensional Schmidt simplex. The 𝑛 corners of
this simplex represent all of the separable states, while the maximally entangled states
sit at the centre of the simplex. Since the simplex contains duplicates in terms of the
entanglement, i.e. both cases 𝜅1 = 1

3
, 𝜅2 =

2
3

and 𝜅1 = 2
3
, 𝜅2 =

1
3

are shown but have the
same entanglement, it suffices to restrict to the so-called Weyl chamber, where every point
corresponds to a different value of the entanglement. This Weyl chamber, also known as
the asymmetric part of the Schmidt simplex, is visualised in fig. 2.14 for the case 𝑛 = 4.
As indicated in the figure, each of the corners, edges, faces and the interior volume of the
Weyl chamber is associated to a particular entanglement orbit. As pointed out before,
a complete list of entanglement orbits up to 𝑛 = 4 can be found in [166], where the
placement of each geometry within the Weyl chamber is also discussed.

Geometric Quantum Discord

The entanglement orbits defined above provide a geometric interpretation for the von Neu-
mann entropy as a measure of entanglement, in particular for pure states with a state vector
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description. As we discussed in sec. 2.1.3, there also exist other measures of entanglement.
In particular, we discussed quantum discord as the most general measure of quantum cor-
relations, which however has some drawbacks in terms of computability. As mentioned
above, computing quantum discord is an NP-complete problem [180]. Fortunately, there
exists a way of at least partially circumventing this problem. In [181] a necessary and
sufficient condition for non-vanishing quantum discord was defined. Given any state 𝜌,
evaluating this condition allows to claim whether the quantum discord between the subsys-
tems of 𝜌 is trivial or not. Based on this condition, [181] also proposed the measure known
as geometric quantum discord (GQD). This quantity also provides a qualitative measure
for quantum discord [181]. Analogous to quantum discord providing upper bounds to other
measures of entanglement, it was shown that GQD is an upper bound for the entangle-
ment negativity for bipartite systems of two 𝑛-level subsystems [299]. As we study GQD
in sec. 7 concerning its implications on the factorisation properties of the Hilbert space, in
the following we provide details on its definition and computation.

GQD is defined in terms of the Hilbert–Schmidt norm defined in (2.59) for state vectors.
The Hilbert–Schmidt norm for arbitrary operators is defined as

||𝑋|| =
√

tr
(

𝑋†𝑋
)

, (2.97)

which for the case of Hermitian operators 𝑋 = 𝑋† relevant to our discussion slightly
simplifies as then 𝑋†𝑋 = 𝑋2. In terms of this norm, GQD denoted by 𝑄(2) is defined as
[181]

𝑄(2)(𝐴∶ 𝐴̄) = min
𝜒∈S (𝑞−𝑐)

||𝜌 − 𝜒||2 . (2.98)

Here, 𝜌 is an arbitrary density operator describing the full system, with subsystems labelled
as 𝐴 and 𝐴̄. Compared to quantum discord, the minimisation over projective measurements
is replaced by a more feasible minimisation over states 𝜒 . These states are elements of
S (𝑞−𝑐) which is the set of all states of vanishing quantum discord. As we discussed in
sec. 2.1.3, such states are given by quantum-classical (q-c) states which can be denoted
as

𝜒 =
∑

𝑘
𝑞𝑘𝜌

(𝐴)
𝑘 ⊗ |𝜙(𝐴̄)

𝑘 ⟩⟨𝜙(𝐴̄)
𝑘 | , (2.99)

where 𝑞𝑘 ≥ 0, ∑𝑘 𝑞𝑘 = 1 and ⟨𝜙(𝐴̄)
𝑘 |𝜙(𝐴̄)

𝑙 ⟩ = 𝛿𝑘𝑙. The reduced density operators 𝜌(𝐴)𝑘 describe
the quantum state in subsystem 𝐴 while subsystem 𝐴̄ is in a classical state specified by
the probabilities 𝑞𝑘.
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Due to the definition of GQD in terms of a norm, the GQD can be interpreted as the
distance between the two states 𝜌 and 𝜒 . Moreover, once the minimisation is performed,
the state 𝜒min singled out by the minimisation is the q-c state closest to 𝜌. In other words,
it is the q-c state that best approximates the quantum state 𝜌. Explicit computation of
GQD has been performed in [181] for an arbitrary mixed state of a system consisting of two
qubits. This has been generalised in [300] to arbitrary mixed states of H = H (𝐴)⊗H (𝐴̄)

with dim(H (𝐴)) = 𝑚 and dim(H (𝐴̄)) = 𝑛. As pointed out before, we will study GQD in
sec. 7 and its use in the light of Hilbert space factorisation. In this analysis, we will focus
on GQD for pure states.

This concludes our review of the relationship between geometry and quantum mechanics
in general and geometric notions of entanglement in particular. Next, we consider a more
rigorous approach to studying quantum systems based on types of operator algebras and
Tomita–Takesaki modular theory.

2.3. The Axiomatic Approach: Entangling Operator
Algebras

We have discussed in secs. 2.1 and 2.2 how quantum mechanics and in particular en-
tanglement can be phrased in terms of linear algebra and geometry, respectively. Both
approaches, while fully equivalent in principle, have advantages in certain areas. The ap-
proach using linear algebra provides a fairly simple toolbox to analyse quantum systems
with respect to dynamics as well as computing observables, i.e. measurement results. For
this reason, this approach is also most useful in relating abstract concepts to actual mea-
surements in experimental physics. The geometric approach on the other hand, due to its
access to geometrical and topological properties, is useful when aiming at general state-
ments, in particular for systems where the local dynamics are either highly complicated or
even (partially) unknown. However, even the combination of these two approaches is not
satisfactory in general. We will mention three reasons in the following.

The first, which admittedly is motivated more by mathematical idealism than physical
necessity, is the wish for generalisation and mathematical rigour. Given that we can access
nature only by measurements, the fundamental objects of a theoretical treatment should
be observables. To a certain extent, this is already implemented in the Heisenberg picture,
where state vectors are only used to compute expectation values, but not to describe
the dynamics of the system. In general however, it would be advantageous to be able
to define quantum mechanics purely in terms of observables and the relations between
them, i.e. their algebra. As an aside, we point out that there also exists an approach of
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axiomatising the Schrödinger picture [301, 302]. The two axiomatic versions of the two
pictures should be dual to each other, the precise relation is however not yet understood
in general and is a field of ongoing research [303–305].

Second, the presence of global symmetries puts a challenge on the definition of an
observable. As discussed above, observables are represented by Hermitian operators. On
the other hand, a Hermitian operator that is not invariant under the global symmetry must
not correspond to an observable. This leads to defining so-called superselection sectors
which effectively splits the Hilbert space into a direct sum over Hilbert spaces of fixed
charge [306]. Understanding how superselection sectors arise in QFT was one of the main
motivations for developing a formulation of quantum theory, and in particular QFT, based
on observables (see also [307]).

The third and probably most compelling reason we point out is the failure of the
previously discussed formalisms for infinite-dimensional quantum systems. In both de-
scriptions given previously, the Hilbert space was finite-dimensional, i.e. H = C𝑛 and
P(H ) = CP𝑛−1 with 𝑛 ∈ N. In fact, by the Stone–von Neumann theorem [308–311] it is
guaranteed that the quantisation of any finite-dimensional system with canonical variables
(𝑥𝑖, 𝑝𝑖), 𝑖, 𝑗 = 1, ..., 𝑛, satisfying [𝑥𝑖, 𝑝𝑗] = i𝛿𝑖𝑗 provides a Hilbert space that is unique up
to isomorphisms. An analogous argument can be made for fermionic variables. The exis-
tence of such isomorphisms is related to the dimension of the (projective) Hilbert space
being countable or, in other words, that it is spanned by finitely many base vectors. In
the limit of infinite-dimensional systems, the Stone–von Neumann theorem does not apply
[312]. Still, there do exist cases where the dimension of the Hilbert space is infinite yet
countable. Such Hilbert spaces are also called separable. While this yields some technical
difficulties, much of our previous discussion still applies or at least appropriate analogues
can be defined. However, generically the Hilbert space of an infinite-dimensional system
has an uncountable dimension. Such Hilbert spaces, also referred as inseparable, require
uncountably many base vectors. In other words, it is not possible to assign a reasonable
basis. Unfortunately, inseparable Hilbert spaces occur within theoretical physics quite nat-
urally, ranging from generic QFTs to systems of infinitely many (even non-interacting)
spins.

In order to provide a rigorous treatment of such theories describing our reality, the
notions of Hilbert space and states have to be refined. This development led to the field
of axiomatic quantum field theory (AQFT). Every QFT, be it of direct relevance to our
nature such as the standard model of particle physics or more abstract versions, fits into
sets of axioms known as the Gårding–Wightman axioms [121], the Osterwalder–Schrader
axioms [122] and the Haag–Kastler axioms [123]. The first two sets of axioms focus on
properties of correlation functions and how the Hilbert space is recovered from correlation
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functions, in Lorentzian and Euclidean QFTs respectively. The third set formulates QFT
in terms of the algebra of observables. We will study properties of such algebras, also
in relation to AdS/CFT, in secs. 5 and 6. Therefore in sec. 2.3.1, we describe certain
elements of this vast field, focussing in particular on the different types of algebras that
observables can satisfy and some of the physical consequences thereof. Next in sec. 2.3.2
we turn to discussing entanglement from the perspective of the algebras of observables.
For more details, standard references include [313–317]. Moreover, the review articles
[192, 318–321] provide useful discussions and examples and we will follow parts of their
explanations. In particular, the immediately following discussion is based on [319], while
the later part of sec. 2.3.1 and sec. 2.3.2 also follow the expositions of [192, 320].

2.3.1. Essentials on von Neumann Algebras

As mentioned above, the framework of AQFT is based on studying properties of the
observables 𝑂 and the algebra A formed by these observables. Measuring an observable
represents using a measurement device. The result of the measurement, indicated by a
number on the scale of the device, is therefore obtained as a map from the algebra to
the real numbers. Given two observables, their linear combination gives rise to a third
observable. In terms of the measurement device, this can be interpreted as using two
different devices and combining their output into a single scale. Moreover, we might apply
functions to observables. This is understood as changing the numerical steps on the scale,
e.g. from linear to quadratic steps. Mathematically, the algebra of such observables is
given by a so-called unital ∗-algebra, defined as follows:

Definition 5: A ∗-algebra A is an algebra over C that is equipped with an involutive map
∗∶ A → A , 𝔞 ↦ ∗(𝔞) satisfying

i) ∗(𝔞 + 𝔟) = ∗(𝔞) + ∗(𝔟) and ∗(𝔞𝔟) = ∗(𝔟) ∗(𝔞) for all 𝔞, 𝔟 ∈ A

ii) ∗(𝛼𝔞) = 𝛼∗ ∗(𝔞) for all 𝛼 ∈ C, 𝔞 ∈ A

iii) ∗(∗(𝔞)) = 𝔞 for all 𝔞 ∈ A .

Note that the ∗-operation is different from complex conjugation in general. This is
particularly important for property ii) in this definition (the ∗ in superscript on 𝛼∗ is the
familiar complex conjugation). Of course, when A is the algebra of complex numbers, the
star operation can be identified with complex conjugation. A ∗-algebra is called unital if
it contains an element 1 that acts as the identity for multiplications, 1𝔞 = 𝔞, for every
𝔞 ∈ A . As an example, the collection of all bounded operators B(H ) acting on a



78 2. Entanglement in Quantum Mechanics and Quantum Field Theory

Hilbert space H is a unital ∗-algebra with the ∗-operation provided by the adjoint †. We
will keep using this particular ∗-operation in the following. Each self-adjoint 28 operator
𝔒 =∗(𝔒) = 𝔒† represents an observable 𝑂.

We can also define a norm || ⋅ || for algebra elements. Algebras with a norm are called
normed algebras and satisfy ||𝔞𝔟|| ≤ ||𝔞|| ⋅ ||𝔟|| for all 𝔞, 𝔟 ∈ A . A few properties of
such algebras are stated in the following. Connecting to the above, normed unital algebras
satisfy ||1|| = 1. The norm defined for algebra elements also induces a topology. A normed
algebra is said to be a Banach algebra if the algebra is complete in the induced topology.
If a given ∗-algebra satisfies these properties, it is denoted as a 𝐵∗-algebra, where 𝐵 is
short for Banach. By specifying the properties of the norm, this motivates the definition
of a 𝐶∗-algebra,

Definition 6: A 𝐶∗-algebra is a 𝐵∗-algebra whose norm satisfies

||𝔞†𝔞|| = ||𝔞†|| ⋅ ||𝔞|| = ||𝔞||2 for all 𝔞 ∈ A . (2.100)

This definition was first used in [322]. The term 𝐶∗-algebra was introduced in [323],
with 𝐶 short for closed. An example for such an algebra is again given by all bounded
operators B(H ) acting on a Hilbert space and the norm given by the operator norm.
In the following, unless specified otherwise, operators are always assumed to be bounded
operators.

The properties of the algebras of observables allow for very abstract and universal char-
acterisations of quantum systems and the corresponding states of the system. Before
discussing that however, we first have to specify what we mean by a state. States are
defined as linear functionals on the algebra, in particular as positive and normalised linear
functionals 𝜔 ∶ A → R. These properties ensure that 𝜔(𝔞†𝔞) ≥ 0 (positive), 𝜔(1) = 1
(normalised) and 𝜔(𝔞 + 𝔟) = 𝜔(𝔞) + 𝜔(𝔟) (linear) for any 𝔞, 𝔟 ∈ A . The state is pure if
there is no 𝜆 ∈ ]0, 1[ such that 𝜔 = 𝜆𝜔′ + (1 − 𝜆)𝜔′′ for 𝜔′ ≠ 𝜔′′ and mixed otherwise.
For any operator 𝔒 = 𝔒†, the state 𝜔(𝔒) is interpreted as the expectation value of the
observable 𝑂 represented by 𝔒. This interpretation comes about since the states 𝜔 can
be expressed using normalised state vectors |𝜓⟩ of the corresponding Hilbert space. In
particular,

𝜔
|𝜓⟩(⋅) = ⟨𝜓| ⋅ |𝜓⟩ . (2.101)

28In physicists’ language, the term ‘Hermitian’ is more common. This is however meaningful only for
matrices representing operators in finite dimensions. The discussion in sec. 2.1 referred to this instance
which is why we used Hermitian operators. In the present section, where we generalise to infinite
dimensions, we will be more careful and use the phrase ‘self-adjoint’.



2.3. The Axiomatic Approach: Entangling Operator Algebras 79

This definition clearly satisfies the aforementioned properties and explains why 𝜔(𝔒) has
the interpretation of an expectation value. Moreover, by (2.101) we can naturally associate
a reduced density operator 𝜌 to the state vector |𝜓⟩. For any operator 𝔞 we rewrite (2.101)
using the trace as

𝜔
|𝜓⟩(𝔞) = tr

(

|𝜓⟩⟨𝜓|𝔞
)

= tr 𝜌𝔞 , (2.102)

so the reduced density operator 𝜌 corresponds to the state vector |𝜓⟩.

Constructing the Hilbert Space by Observables

The link between the above algebraic notion of states and the more familiar Hilbert space
version in usual quantum mechanics is provided by the GNS construction due to Gelfand
and Naimark [322] and Segal [323]. Here, roughly speaking one associates the identity
element of the algebra to a particular state vector |𝜓⟩ with certain properties to be specified
shortly. Then, any other operator 𝔞 is associated to the state vector 𝔞|𝜓⟩. In this way, a
Hilbert space containing state vectors is constructed from the algebra. The more precise
version of the GNS construction requires the notion of a representation of the algebra on
a Hilbert space, defined as follows:

Definition 7: A representation of a 𝐶∗-algebra R(A ) requires a Hilbert space H , a
dense subspace D of the former and a map R from the algebra to operators acting on H

such that

i) for each element of R(A ) the domain 𝐷(R(A )) is equal to D and the range is
contained in D

ii) it preserves the identity, i.e. R(1) = 1D

iii) it preserves linearity and products, i.e. R(𝔞+ 𝛼𝔟+ 𝔠𝔡) = R(𝔞) + 𝛼R(𝔟) +R(𝔠)R(𝔡)
for all 𝛼 ∈ C and 𝔞, 𝔟, 𝔠, 𝔡 ∈ A

iv) the adjoint of the representation has D ⊂ 𝐷(R(A )†) and its restriction to D satisfies
R(A )†|D = R(A †).

If the kernel of the map R is trivial, this representation is called faithful. For such
representations, R(𝔞) = 0 implies that 𝔞 = 0. Moreover, a representation is said to be
irreducible if the Hilbert space does not contain invariant subspaces under the action of
R(A ) except for trivial (e.g. empty) or dense subspaces. Much like we stated in def. 2
that Hilbert spaces related by a unitary map 𝑈 are isomorphic, representations are unitarily
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equivalent if 𝑈R1(A )𝑈 † = R2(A ). With these notions at hand, the GNS construction is
formalised in the GNS representation theorem [322, 323]:

Theorem 2: Given a state 𝜔 on a unital ∗-algebra, there exists a representation R𝜔 and
a state vector |Ω𝜔⟩ ∈ D𝜔 ⊂ H𝜔 such that D𝜔 = R𝜔(A )|Ω𝜔⟩ and 𝜔(𝔞) = ⟨Ω𝜔|R𝜔(𝔞)|Ω𝜔⟩

for all 𝔞 ∈ A . This representation is unique up to unitary equivalent representations. If
A is a 𝐶∗-algebra,

i) R𝜔(𝔞) is a bounded operator on H𝜔 for all 𝔞 ∈ A

ii) 𝜔 is a pure state if and only if R𝜔 is irreducible

iii) the norms on the Hilbert space and the algebra coincide, i.e. ||R𝜔(𝔞)|| = ||𝔞|| for
R𝜔 faithful.

For a discussion on how to prove this see e.g. [319]. We will only make two comments
on this theorem.

First, since R𝜔(A )|Ω𝜔⟩ is dense in H𝜔, the state vector |Ω𝜔⟩ is referred to as a cyclic
vector.29 This is precisely the state vector associated to the identity element of the algebra.
In most cases, the cyclic vector is also separating which means that 𝔞|Ω𝜔⟩ = 0 implies
𝔞 = 0. Since ||𝔞|Ω𝜔⟩|| = 𝜔(𝔞†𝔞) ≥ 0, this is the case when 𝜔 is a faithful state,
i.e. 𝜔(𝔞†𝔞) = 0 implies 𝔞. Relating to usual quantum mechanics, a state vector is cyclic if
all of its Schmidt coefficients are non-zero. Therefore, given a quantum system, there are
many possible choices for cyclic vectors. Moreover, since R𝜔(A )|Ω𝜔⟩ is dense in H𝜔 we
do not need knowledge of any state vector of the Hilbert state, but the set of state vectors
generated from |Ω𝜔⟩ by the action of R𝜔(A ) is sufficient to study the corresponding
system. This explains how the algebraic approach to study quantum systems allows to
analyse infinite-dimensional systems. Given a Hilbert space that is not separable, i.e. with
uncountable dimension, we are free to restrict to a countably infinite-dimensional, yet
dense, subspace by choosing a set of operators that we are interested in. These operators
correspond to the observables of the system that we aim to measure. Moreover, we may
specify the cyclic state vector as a state vector with particular physical properties that we
want to have in our system. The countably infinite-dimensional Hilbert space then consists
of all state vectors obtained by the action of the (representation of the) chosen operators
on the cyclic state vector. We note that the state vectors obtained in this way are still
elements of the uncountable Hilbert space as well. Intuitively, this reduction of dimension
might be understood such that we only care about the parts of the state vectors which are
affected by our chosen operators and fix all other parts to something convenient.
29Note that the cyclic property of a vector is specific to a representation. Two different representations may

give rise to the same state vector, but this state vector is not necessarily cyclic for both representations.
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Second, the relation between purity of 𝜔 and irreducibility of R𝜔 deserves some expla-
nation, which we provide following [192]. Given two linearly independent state vectors
|𝜓⟩, |𝜙⟩ ∈ H , we define a state

𝜔
|𝜒⟩ = 𝜆𝜔

|𝜓⟩ + (1 − 𝜆)𝜔
|𝜙⟩ (2.103)

for any 𝜆 ∈ ]0, 1[. The corresponding reduced density operator follows from a state vector
|𝜒⟩ that is contained in a Hilbert space with a direct sum structure H ⊕H ,

|𝜒⟩ =
√

𝜆 |𝜓⟩⊕
√

1 − 𝜆 |𝜙⟩ . (2.104)

Given that the algebra acting on H is given by A , the algebra acting on H ⊕ H is
given by A ⊕ A . The action of this direct sum algebra is reducible by definition, so
although we obtain 𝜔

|𝜒⟩ from a state vector, it cannot be a pure state. In relation to our
earlier statement on mixed and pure states above (2.101), we note that (2.103) leads to
a reducible representation as both 𝜔

|𝜓⟩ and 𝜔
|𝜙⟩ are states themselves such that 𝜔

|𝜒⟩ is a
mixed state.

In order to describe QFT using the above language of 𝐶∗-algebras, the Haag–Kastler
axioms [123] come into play. These axioms, which we will not discuss in detail, encapsulate
how, among others, dynamics and causality are formulated in algebraic terms. Moreover
they state how local algebras are assigned in a consistent way to local regions of the full
spacetime. In particular, to each causally complete subregion U of Minkowski spacetime,
an algebra AU ⊂ B(H ) is associated. These relations provide what is also called a net of
local algebras. The full 𝐶∗-algebra is recovered in terms of the union ⋃

U AU and causality
is encoded by the fact that the algebras of two spatially separated regions U and V

commute, [AU ,AV ] = 0. For a detailed discussion of these axioms see e.g. [314, 319, 324]
and references therein.

Von Neumann Algebras

So far we have discussed everything in terms of 𝐶∗-algebras. In many physical applications
however, a slightly refined version of such algebras appears. These refined versions are
known as von Neumann algebras, named after the person who introduced these algebras
in [124]. The underlying theory was developed shortly afterwards in a series of papers by
von Neumann and also Murray [125–131]. Von Neumann algebras are defined as follows:

Definition 8: A von Neumann algebra A is

i) a unital 𝐶∗-algebra that is closed under the weak operator topology
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or equivalently

ii) a unital ∗-algebra that is equal to its own double commutant.

The equivalence between the two conditions is shown and formalised by the double
commutant theorem [124] (see e.g. [318] for explanations). The commutant of an algebra
A , usually denoted by A ′, is defined to consist of all operators that commute with all
operators in A ,

A ′ = {𝔞′ ∶ [𝔞, 𝔞′] = 0 ∀𝔞 ∈ A } . (2.105)

An example for a von Neumann algebra is again given by the algebra of all bounded
operators B(H ). Here in particular, the commutant of this algebra only contains the
identity operator and multiples of this operator by any complex number. The set of all
bounded operators that commute with (scalar multiples of) the identity is simply B(H )
itself, so B(H )′′ = B(H ) is a von Neumann algebra. We will encounter less trivial
examples shortly.

Given a von Neumann algebra A , its commutant A ′ is also a von Neumann algebra.
Moreover, also the intersection of these two algebras is a von Neumann algebra. The
intersection A ∩ A ′ is called the centre of A , denoted by Z (A ). By analysing Z (A ),
the notion of a von Neumann algebra factor arises. A von Neumann algebra is a factor
if Z (A ) consists only of scalar multiples of the identity.30 Otherwise, it is not a factor.
This case arises in the discussion of superselection sectors mentioned briefly before. Given
a global symmetry, the corresponding charge operator commutes with every observable, so
the charge operator is an element of the centre. It was shown in [125] that factors can
be classified into three different types. Moreover, in [131] is was proven that every von
Neumann algebra can be written as a direct integral of factors. This shows the importance
of factors as by this result, studying properties of arbitrary von Neumann algebras boils
down to studying properties of factors. In the mathematical literature, different types of von
Neumann algebras A are distinguished by analysing the existence of projection operators
within A , see e.g. [314, 318, 321]. The different types of factors have particular properties
distinguishing them. These are vital when discussing the significance of a particular factor
for physics, as we explain in the following.

Type I: von Neumann algebras of type I are the simplest versions. Such algebras are
those typically encountered in quantum mechanics. Correspondingly, algebras of type I
30An equivalent condition for A to be a factor is that A ∨ A ′ = B(H ), i.e. that there are no bounded

operators which are not contained in either A or A ′.
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always have an irreducible representation on the separable Hilbert space. Equivalently,
pure states can be defined on the algebra. Moreover, there always exists a trace on the
algebra. Algebras of type I fall into two subclasses. If the underlying system is finite-
dimensional with Hilbert space H = C𝑛, the algebra is of type I𝑛. Examples include
𝑛-level systems such as qunits31 or composite systems of 𝑁 < ∞ qubits with dimension
𝑛 = 2𝑁 . Such algebras can be represented as matrix algebra and the trace is given by the
familiar trace of matrices, e.g. for a qunit the algebra is simply 𝓼𝓾(𝑛) with the familiar
notion of the trace for 𝑛× 𝑛 matrices. In the limit of 𝑛 → ∞, the algebra is of type I∞. An
example is given by a collection of infinitely many spins, which naively has an uncountable
dimension. As discussed above, restricting to the states and observables one is interested
in, the dimension reduces to countably infinite and the algebra can be defined. For type
I∞, the trace is not defined for every element of the algebra. Operators which have a finite
trace are referred to as trace-class, but e.g. the trace of the identity in infinite dimensions
is infinite, so the identity operator is not trace-class.

Type I algebras are the only algebras that appear for finite-dimensional systems. They
may also appear for particular infinite-dimensional systems. The other types, to be dis-
cussed in the following, can only appear for infinite dimensions. As in infinite dimensions
we are no longer dealing with matrix algebras, we require a different notion of a trace. In
this case, a trace is defined by a tracial state 𝜔tr on the algebra, defined as follows:

Definition 9: A tracial state 𝜔tr on an algebra A is a positive linear functional, i.e. a
state 𝜔, that is cyclic in its argument,

𝜔tr(𝔞𝔟) = 𝜔tr(𝔟𝔞) ∀𝔞, 𝔟 ∈ A . (2.106)

If such a state exists, it satisfies all properties of a trace and so the underlying algebra
possesses a trace. In finite dimensions, the tracial state is a rescaled version of the familiar
trace as 𝜔tr(1) = 1 while tr 1 = 𝑛. In the following discussion, when stating the existence
of a trace, we mean the existence of a tracial state as defined here.

In the above, we found that a system of infinitely many spins is an example of an algebra
of type I∞. This works since the spin system can be tuned such that the partition function of
the system is finite, 𝑍 <∞. However, this is not necessarily true as e.g. infinite-dimensional
systems such as continuum field theories at finite temperature may have 𝑍 → ∞. This
is indicated by the observation that both the expectation value and the variance of the
Hamiltonian in such systems diverge. The underlying Hilbert space is not well-defined in
31In the literature, these are more commonly referred to as qudits. For consistency, as in this thesis we

use 𝑛 instead of 𝑑 for the dimension of quantum systems, we refer to the same object as qunits.
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the sense that an approximate description using a finite-dimensional system of size 𝑛 does
not have a well-defined limit 𝑛 → ∞. In this case, to obtain a trustworthy description of
the physics of this system, the thermofield double state (TFD state) has to be used [324].
For finite systems, the TFD state is given by

|TFD⟩ =

√

1
𝑍𝑛

𝑛
∑

𝑙=1
𝑒−𝛽

𝐸𝑙
2
|𝑙1, 𝑙2⟩ , (2.107)

where 𝐸𝑙 is the energy, 𝑍𝑛 the partition function, 𝛽 the inverse temperature and |𝑙1, 𝑙2⟩ =
|𝑙1⟩ ⊗ |𝑙2⟩ the combined energy eigenbasis of the two copies of the system. Essentially,
a second copy32 of the original system is introduced such that before the limit of infinite
dimension is taken, the Hilbert space is a tensor product H = H (1) ⊗H (2). The TFD
state is then interpreted as a state vector within the tensor product Hilbert space and in
particular as the cyclic and separating vector. In the limit of infinite dimension, by the GNS
construction the separable Hilbert space HTFD is obtained. This Hilbert space however is
no longer given by a tensor product of the individual Hilbert spaces. If this was the case,
it would not have been necessary to introduce a second copy and the TFD state in the
first place, as the individual Hilbert spaces would have been defined in the limit of infinite
dimensions. Since we have two copies of the system, we also have two algebras A (1) and
A (2) both acting on HTFD in the limit of infinite dimension. In fact, these two algebras
are each others’ commutants, commonly denoted as [A (1),A (2)] = 0. Notably, the action
of either of the two algebras is sufficient to generate HTFD. This scenario naturally leads
to defining algebras of type II and type III.

The classification of von Neumann algebras of type II and III in general is quite compli-
cated. However, in applications to physics we usually think of infinite systems as limits of
finite systems [320]. In the same spirit, so-called hyperfinite von Neumann algebra factors
of type II and III can be defined [127, 325, 326]. The classification of these factors is
significantly simpler and well understood, yielding an order 1 number of subclasses.

Type II: von Neumann algebras of type II are less familiar. In particular, they never
have an irreducible representation. However, algebras of type II allow the definition of a
trace. Moreover, as indicated above, an algebra A (1) of type II always has a commutant
A (2) which is of the same type. This explains the absence of an irreducible representation
as either of the algebras A (1),A (2) can be used to generate all states, so both algebras
contain the same information. The cyclic vector |𝜓⟩ of A (1) is the separating vector for
32Technically it is more convenient to define the second system as the complex conjugate of the original

system. The two systems are then related by time reversal. However, since in many discussions (as in
this thesis) the systems are time-reversal symmetric, this technical aspect is often dropped.
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A (2) and vice versa. This is often abbreviated by saying that |𝜓⟩ is the cyclic separating
vector. Again, there are two subclasses with properties similar to the two subclasses of
type I algebras. For an algebra of type II1, the trace is defined for every operator of the
algebra, in particular also for the identity operator. This comes about as the tracial state
is a rescaled version of the usual trace, for which the rescaling factor is essentially the
inverse of the dimension. For the other subclass, called type II∞, the trace is defined only
for trace-class operators. This can be understood by the fact that a type II∞ algebra can
be thought of as a tensor product of II1 and I∞.

Algebras of type II, in particular type II1, can be constructed as limits of two collections of
qubits [125] (for reviews see e.g. [192, 320]). In particular, the qubits have to be maximally
entangled. To see this, suppose that two qubits are in a maximally entangled state, i.e. a
Bell state33

|Bell⟩ =
√

1
2
(

|00⟩ + |11⟩
)

. (2.108)

Combining infinitely many of such states in a tensor product |𝜓⟩ = lim
𝑁→∞

⨂𝑁
𝑙=1 |Bell𝑙⟩

provides a cyclic separating vector necessary to construct the separable Hilbert space.
Alluding to the earlier comments on states at finite temperature, the state vector |𝜓⟩ can
be understood as the TFD state (2.107) of the two copies of infinitely many spins with a
Hamiltonian 𝐻 = 0, i.e. the energy of every qubit pair vanishes,34

|TFD⟩ = lim
𝑁→∞

√

1
2𝑁

𝑁
⨂

𝑙=1

(

|00⟩𝑙 + |11⟩𝑙
)

. (2.109)

Defining 𝜔
|TFD⟩

using (2.109), this state satisfies 𝜔
|TFD⟩

(𝔞𝔟) = 𝜔
|TFD⟩

(𝔟𝔞), so it is a
tracial state and the algebra acting on this system has a trace. Moreover, this trace is
defined for every element, in particular also the identity operator. However, we are in
infinite dimensions and in particular the partition function 𝑍𝑁 = 2𝑁 in (2.109) diverges
for 𝑁 → ∞. Therefore, the algebra A (1) acting on the spins of the first copy has to be
type II1. Its commutant A (2) acting on the spins of the second copy is also of type II1.
Moreover, A (1) ∩ A (2) = {𝛼1 ∶ 𝛼 ∈ C}, so both A (1) and A (2) are factors.

The operators of A (1) (or of A (2)) acting on (2.109) change only finitely many entries
of the vector. Therefore asymptotically, i.e. when ‘zooming out’ and looking at the system
from far away, every state of the separable Hilbert space looks like |𝜓⟩. In this sense, the

33The analogous arguments can be made using any of the other Bell states as well.
34To be precise, this state is the infinite tensor product of the TFD states of each individual qubit pair

for 𝐻 = 0. The TFD state of the full system is given by the tensor product of all of the individual
TFD states.
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small deviations within a state different from |𝜓⟩ are washed out. By the Reeh–Schlieder
theorem, which we will discuss in more detail in sec. 2.3.2, in QFT cyclic separating states
appear as vacuum states of local regions [187]. This explains our earlier statement in
sec. 2.1.2 that in QFT, every state looks like the vacuum state. However, in QFT algebras
are usually of type III rather than type II, although they share some similarities. Algebras
of type III are characterised as follows.

Type III: von Neumann algebras of type III behave in the least familiar way. As for
type II, they never allow for an irreducible representation and always have a commutant
of the same type. Also, the properties of the cyclic separating vector are analogous to
type II. However, algebras of type III do not allow for defining a trace. This in particular
also implies that the notion of a reduced density operator does not exist. Moreover, also
quantities defined using either the trace or the reduced density operator (or both) cannot
be defined for an algebra of type III. This in particular includes the entanglement entropy
(2.10). For type III there exist three subclasses [128, 325, 326]. These are characterised
by the spectrum of the modular operator Δ. We will first give explicit examples for these
classes and explain the relation to Δ afterwards.

As for algebras of type II, algebras of type III can be constructed as limits of two
collections of qubits [128, 325, 326] (again, for reviews see e.g. [192, 320]). This time
however, the qubit pairs are supposed to not be maximally entangled. On the other hand,
all of them, or at least infinitely many, have to have non-vanishing entanglement. To be
specific, each qubit pair is assumed to be in a state

|𝜆𝑙⟩ =

√

1
1 + 𝜆𝑙

(

|00⟩ +
√

𝜆𝑙 |11⟩
)

, (2.110)

where 0 < 𝜆𝑙 < 1, quantifying the entanglement of each qubit pair. Again, infinitely many
of such states are combined in a tensor product |𝜓⟩ = lim

𝑁→∞

⨂𝑁
𝑙=1 |𝜆𝑙⟩. This will be the

cyclic separating vector which may also be interpreted as the TFD state of the system by
writing 𝜆𝑙 = 𝑒−𝛽𝐸𝑙 ,

|TFD⟩ = lim
𝑁→∞

√

1
∏𝑁

𝑙=1(1 + 𝑒−𝛽𝐸𝑙)

𝑁
⨂

𝑙=1

(

|00⟩𝑙 + 𝑒
−𝛽 𝐸𝑙2

|11⟩𝑙
)

, (2.111)

i.e. every qubit pair has a different energy 𝐸𝑙. Defining a state 𝜔
|TFD⟩

using (2.111), this
state is not cyclic in its argument. In particular, 𝜔

|TFD⟩

(𝔞𝔟) = 𝜔
|TFD⟩

(𝔟𝔞)+
∑

𝑙 #𝑙(1−𝑒−𝛽𝐸𝑙),
where #𝑙 depend on the operators 𝔞, 𝔟. Since the action of the algebra may change only
finitely many of the 𝜆𝑙, there does not exist a tracial state for this algebra. Moreover,
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the partition function 𝑍𝑁 =
∏𝑁

𝑙=1(1 + 𝑒−𝛽𝐸𝑙) diverges in the limit 𝑁 → ∞ for generic
𝐸𝑙. Therefore, this algebra is of type III. Interpreting 𝐸𝑙 as a sequence, it depends on
the convergence properties of this sequence which subclass of type III is constructed. If
the sequence converges to some value 0 < 𝜆∗ < 0, the algebra is said to have type III𝜆∗ ,
first constructed in [325]. If the sequence converges to zero, there are two options. If the
convergence is ‘fast’, the algebra is actually of type I∞. Intuitively, a convergence is fast if
𝜆𝑙 = 0 for infinitely many 𝜆𝑙 such that infinitely many of the qubits are not entangled. If
the convergence is slow, i.e. such that still infinitely many qubits are entangled, the algebra
has type III0. If the sequence does not converge but there are at least two accumulation
points 0 < 𝜆∗1 ≠ 𝜆∗2 < 1,35 the algebra has type III1 [326].

This concludes our discussion on the essentials of von Neumann algebras. In the next
section, we illuminate how such algebras are useful for analysing entanglement.

2.3.2. Entanglement and the Reeh–Schlieder Theorem

In the above, we have discussed a rigorous version of analysing quantum systems which
in particular is also valid for infinite-dimensional systems such as QFT. As before, for
the purpose of this thesis, we are particularly interested in understanding entanglement
in this language. We start with the simplest version of type I algebras which should
mostly reproduce what we already know from standard quantum mechanics discussed in
sec. 2.1.1. Indeed, for algebras of type I𝑛, all of our earlier discussion applies. The von
Neumann entropy is defined as in (2.10) by the reduced density operator. It is always
positive or vanishes in the case of a product state, i.e. when the reduced density operator
corresponds to a pure state. It also admits an upper bound provided by the maximally
entangled state. If a bipartite quantum system has two copies of type I𝑛 acting on the
subsystems, the upper bound is given by ln 𝑛. In the limit 𝑛 → ∞, i.e. for type I∞, the
entanglement entropy therefore may diverge. To summarise, the entanglement entropy
for type I takes positive values only and states may contain finite or infinite amounts of
entanglement.

The situation is somewhat different for type II. In the construction of type II algebras,
infinite collections of qubits are used to define a state where qubits are pairwise maximally
entangled [125]. As we take infinitely many of such qubit pairs, the entanglement naively
diverges as 𝑁 ln 2 for 𝑁 → ∞. This is an important distinction to type I. For states of
type II algebras, the (naive) entanglement always diverges, as opposed to type I where
entanglement can be finite. Therefore, entanglement for type II is not a property of the
state but of the algebra itself. However, as type II admits a tracial state, the formula
35If the two values satisfy 𝜆∗1 = 𝜆̃𝑛, 𝜆∗2 = 𝜆̃𝑚 for 𝑛, 𝑚 ∈ Z, the algebra is of type III𝜆̃.
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for von Neumann entropy (2.10) can still be used. This allows for a refined version of
entanglement entropy which in particular is not just infinity [327, 328]. To see this, recall
that in the GNS construction, each state vector is formally associated to an operator of the
algebra. In particular, the cyclic separating vector is associated to the identity operator,
which in turn can be understood as the reduced density operator of the cyclic separating
vector. This can also be seen using the tracial state, as

tr 𝔞 = 𝜔tr(𝔞) = ⟨𝜓|𝔞|𝜓⟩ = tr 𝜌𝔞 (2.112)

implies that 𝜌 = 1, where we used (2.102) in the third equality. This result might seem
unusual from the perspective of standard quantum mechanics. However, as we pointed
out below def. 9, the trace defined by tracial states is a rescaled version of the familiar
trace. To ensure tr 𝜌 = 1, the density operators are rescaled with the inverse factor.
Since ln1 = 0, the von entanglement entropy of this reduced density operator vanishes,
so the entanglement entropy of the cyclic separating vector of a type II1 algebra vanishes.
Matching the two observations of vanishing and maximal entanglement is possible by
interpreting entanglement for type II1 as the naive entropy, which generically diverges,
with the entanglement of the cyclic separating vector 𝑁 ln 2 subtracted. This explains
why the cyclic separating vector itself has vanishing entanglement entropy in the refined
definition. Moreover, any other state vector obtained by applying some operator 𝔞 on |𝜓⟩
has less (naive) entanglement than |𝜓⟩ itself as will alter the entries in |𝜓⟩ such that
some qubit pairs are no longer maximally entangled. Consequently, the refined definition of
entanglement entropy yields a negative value for the entanglement of any other state. See
also [320] for an analogous discussion. So for algebras of type II1, the naive entanglement
entropy has a universal divergence. The refined entanglement entropy is always negative
or vanishes, the latter providing an upper bound.

The situation is different for algebras of type II∞. This is tied to the fact that II∞ =
II1 ⊗ I∞ as stated earlier. Both components admit a trace, so entanglement entropy is
defined. However, since the tensor product can be formed in many equivalent ways, the
trace for type II∞ has no canonical normalisation. To see this, consider writing an algebra
of type II∞ as a tensor product of type II1, type I∞ and type I𝑛. The trace on this tensor
product algebra is given by the product of the individual traces. A particular operator
in this tensor product is given by 𝔞 = 1 ⊗ Π ⊗ 1𝑛, consisting of the unity operators of
II1 and I𝑛 and a projector Π of I∞ that (for simplicity) projects into a one-dimensional
subspace of the Hilbert space of I∞. Suppose that we group II1 and I𝑛 into a new II′1 to
have II′1 ⊗ I∞ = II∞. Correspondingly, the trace of 1 ⊗ 1𝑛 is canonically normalised to
1, following our discussion of the tracial state for type II above. Moreover, Π projects
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into a one-dimensional subspace, so the trace of Π is also canonically normalised to 1.
So we find 𝔞 = 1. Equivalently, we could also decide to group I𝑛 and I∞ into I′∞ to write
II1 ⊗ I′∞ = II∞. The trace of 1 on II1 is normalised to 1 as before. However, the trace on
I′∞ is canonically equal to 𝑛 due to the type I𝑛 part. Therefore with this choice, tr 𝔞 = 𝑛.
The trace of II∞ therefore has no canonical normalisation. This can also be understood
by the presence of an outer automorphism group for II∞ that rescales the trace. For more
details see e.g. [134]. Changing the normalisation of the trace by rescaling with a constant
Ξ changes the entanglement entropy by ln Ξ. This constant is in particular independent
of the state. Due to this arbitrariness, entanglement entropy for II∞ may take values from
−∞ to +∞. While entanglement entropy is defined with an arbitrary yet state-independent
constant, entropy differences are defined without this ambiguity since the constant cancels
out.

For algebras of type III, the von Neumann entropy is not defined since there is no
trace and hence also no reduced density operator. However, a few more statements can
still be made. As for type II, algebras of type III can be constructed by considering
infinitely many pairwise entangled qubit pairs. Since there are infinitely many qubit pairs
with non-vanishing entanglement, a naive counting of the entanglement leads again to a
universal divergence. As for type II, this is a property of type III algebras rather than the
corresponding states. As a side remark, type III algebras still have well-defined measures of
entanglement, just the von Neumann entropy loses its meaning. In particular, the relative
entropy can be defined for type III using the relative modular operator [329, 330]. We will
however not go into detail about this.

Relation to Quantum Field Theory

How does this analysis help us in analysing entanglement in QFT? To address this question
we first have to clarify which algebra type is relevant for QFT. Generically, a local region
of a QFT is associated to an algebra of type III, in particular type III1 [331, 332]. An
intuitive argument can be given as follows [192]. Above we used the convergence prop-
erties of the sequence of 𝜆𝑙 to determine the subclass of type III. This is in one-to-one
correspondence with discussing the spectrum of the modular operator Δ. The modular
operator is one of the central elements of Tomita–Takesaki theory [333, 334] which studies
modular automorphisms of von Neumann algebras. In particular, the main statement of
Tomita–Takesaki theory is that Δ generates a modular automorphism of an algebra A and
its commutant A ′,

Δi𝑠A Δ−i𝑠 = A and Δi𝑠A ′Δ−i𝑠 = A ′ , (2.113)
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for every choice of the parameter 𝑠 ∈ R. Modular automorphisms are therefore under-
stood as unitary transformations using the modular operator. Correspondingly, it has been
suggested that 𝑠 is an ‘emergent’ time such that Δi𝑠 can be interpreted as a generalised
time evolution operator [335]. In fact, Δ is expressed by differences of the modular Hamil-
tonians 𝐾̂ as Δ = 𝑒−𝐾̂ , so 𝑠 might also be called ‘modular’ time. This relation can be
motivated using a type I description. For type I, the modular operator is given by a tensor
product of the reduced density operators as Δ = 𝜌(𝐴) ⊗ 𝜌−1

(𝐴̄)
, where both reduced density

operators can be written in terms of the modular Hamiltonians 𝐾(𝐴∕𝐴̄) following (2.21).
Therefore, Δ = 𝑒−𝐾(𝐴)+𝐾(𝐴̄) = 𝑒−𝐾̂ . While the intermediate step of the calculation using
density operators is questionable for type III, both the left and right hand of this equation
are well-defined for type III. In fact, the modular operator is interpreted as the well-defined
analogue of the reduced density operator for type III algebras.

For the type III algebras constructed above using qubit collections, the spectrum of
the modular operator consists of all integer powers of the accumulation points of the
sequence 𝜆𝑙. As an example, for an algebra of type III𝜆 where 𝜆𝑙 converges to 𝜆∗, the
spectrum of Δ consists of all integer powers of 𝜆∗. For type III1, as there are at least two
accumulation points of the sequence, the spectrum consists of all products of arbitrary
integer powers of 𝜆∗1 and 𝜆∗2. By properly adjusting the integer powers, such products can
approximate any positive real number for arbitrary values of 𝜆∗1 and 𝜆∗2.36 Therefore the
spectrum of Δ consists of all positive real numbers. For QFT, as we have discussed in
sec. 2.1.2 analysing the Minkowski vacuum, we found that the modular Hamiltonian is
expressed using the Lorentz boost operator. As discussed in the previous paragraph, the
modular operator is related to the modular Hamiltonian by the exponential map. Since
the spectrum of the Lorentz boost operator consists of all real numbers, the spectrum of
the corresponding modular operator is given by all positive real numbers. This provides an
intuitive explanation for the type III1 nature of algebras in QFT. More rigorous versions
however also do exist. In particular, it was shown that QFTs satisfying the axioms of AQFT,
any representation of an operator algebra is a type III1 factor [336]. In a complementary
development it was shown that, up to isomorphism, there is a unique hyperfinite type III1
factor [337]. These two results were unified by showing that any local algebra in QFT has
to be hyperfinite [338]. This means that all operator algebras associated to local regions
in any QFT satisfying the axioms of AQFT are related by isomorphisms.

The type III nature of algebras in QFT also nicely explains the usually divergent en-
tanglement entropy in QFT as we encountered e.g. in (2.38). The particular quantitative
behaviour of the divergence depends on the QFT considered in the sense that it depends on

36There is again the exception for the case 𝜆∗1 = 𝜆̃𝑛, 𝜆∗2 = 𝜆̃𝑚 for 𝑛, 𝑚 ∈ Z where the algebra is of type
III𝜆̃.
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a theory-dependent constant and the area of the chosen region. Moreover, the possibility
to compute entanglement entropies in QFT comes at the price of introducing a UV cutoff
𝜖, which also shows up in the final result (2.38). This cutoff effectively reduces the number
of degrees of freedom to a finite number such that techniques of type I algebras can be
used. Without the cutoff, the computation is not possible. Consistent with this, sending
this cutoff to zero leads to a diverging result as expected for a type III algebra.

An Elephant on the Moon

The divergent amount of entanglement present in any typical state in QFT has far-reaching
consequences as we describe in the following. Within the GNS construction, we already
encountered the statement that by the action of all operators of an algebra A on a cyclic
separating vector |𝜔𝜔⟩, a dense subspace of the Hilbert space H is generated. However,
in this theorem, it is not specified to which region the algebra A is associated. In classical
physics, solutions to the differential equations representing the dynamics of the theory are
specified uniquely by the initial values. The quantum analogue of this statement is given by
the so-called time slice axiom of AQFT [314] (see also [339]). Given a complete spacelike
hypersurface Σ, this surface can be used to impose initial conditions. Knowledge of the
field configurations in an arbitrarily small open neighbourhood U of Σ then suffices to
calculate fields in arbitrary regions. The typical example is to fix the field configurations
on the hypersurface 𝑡 = 0 and consider an open neighbourhood U such that |𝑡| > 𝜖 > 0.
This initial data can then be used to generate every other state, i.e. the Hilbert space. The
Reeh–Schlieder theorem however provides a much stronger version of this assertion [187].
This theorem makes use of the fact that in QFT we usually refer to nets of local algebras,
where the local algebras AU are associated to causally complete subregions U of the full
spacetime:

Theorem 3: For any causally complete subregion U with local algebra AU and vacuum
state vector |Ω𝜔⟩,

i) the vectors 𝔞|Ω𝜔⟩ for 𝔞 ∈ AU are dense in H

ii) 𝔞|Ω𝜔⟩ = 0 for 𝔞 ∈ AU implies 𝔞 = 0.

For discussions on proofing this theorem see e.g. [192, 318, 319]. The theorem states
that the vacuum state vector is a cyclic separating vector for any local algebra. Conversely,
acting with AU of arbitrary U allows to generate a dense subspace of H . This means
that any state of H can be approximated with arbitrary precision by acting with the local
algebra AU on the vacuum state vector. Figuratively speaking, the operators associated
to the region that the readers laptop is placed on can be combined into an operator 𝔞†Eleph
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(a fairly complicated one) that ‘creates’ an elephant on the moon, or more precisely, acting
with 𝔞†Eleph provides a state that approximates the state including an elephant on the moon
to arbitrary precision. We could even come up with an even more complicated operator
that ‘creates’ the moon itself. This statement shows how powerful the infinite amount of
entanglement included in the vacuum state (or in fact, any other typical state) of QFT is.

Although these examples are true in principle, there do exist some limitations. First of
all, the underlying theory has to allow for the state we aim to approximate. That is, if our
theory were only to describe our laboratory on the earth, we could never hope to create
something on the moon as this is not part of our theory. In other words, this will never
work if the vacuum state is not (infinitely) entangled with the moon. If we however allow
for a QFT defined throughout the whole universe, the above examples are possible in prin-
ciple. As already mentioned, the necessary operators such as 𝔞†Eleph are highly complicated.
Therefore, while they can be written down on paper, an experimental realisation of such
operators is out of the question since this would require immense amounts of energy. More-
over, these ‘creation’ operators must not be unitary. To see this, consider the spacelike
separated regions U and V with algebras AU and AV . Then, AV contains an operator 𝔞V

which we aim to approximate. The vacuum state vector, cyclic separating for U , does not
contain this object and hence ⟨Ω|𝔞V |Ω⟩ = 0. Now suppose that 𝔞U ∈ AU approximates
the state containing 𝔞V to arbitrary precision. We then know that ⟨𝔞U Ω|𝔞V |𝔞U Ω⟩ = 1.
Since U and V are spacelike separated regions, the operators of these regions commute
and ⟨Ω|𝔞V 𝔞

†
U
𝔞U |Ω⟩ = 1. In order to avoid a contradiction with ⟨Ω|𝔞V |Ω⟩ = 0, the op-

erator 𝔞U must not be unitary. So while the Reeh–Schlieder theorem guarantees that the
operator 𝔞U can be constructed, it does not state that this operator is unitary. Therefore,
the Reeh–Schlieder theorem cannot be understood as a dynamical statement of creating
an elephant on the moon by switching on some complicated interaction Hamiltonian and
evolving the state. For all of these reasons, pachyderm phobics do not have to worry about
the implications of this theorem and may even successfully work in experimental quantum
physics without their phobia affecting their performance.

So far our discussion of AQFT was based on QFT in Minkowski spacetime. This can
however be generalised to curved backgrounds as well. We will not discuss this here but
point the interested reader to [340–347] and references therein. Also, the Reeh–Schlieder
theorem was shown to hold under appropriate circumstances for curved spacetimes [340,
348, 349] (see also [350, 351]). In the context of gravity, the Reeh–Schlieder theorem in
particular, but also the use of operator algebras and AQFT methods in general enabled for
fairly rigorous analyses of black holes. A special aspect where this is useful is the study of
the black hole interior and the question about Hilbert space factorisation in the presence
of gravity. The most common arena for these investigations is provided by the AdS/CFT
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correspondence [74–76]. As this background is elementary to the discussions in the later
sections in secs. 4, 5, 6 and 7, in the next section we review the setting of AdS/CFT and
black holes within AdS/CFT.



The AdS/CFT Correspondence 3
Dualities between physical theories show that the same underlying physics can have dif-

ferent descriptions. In particular, the dynamics of a system can be described by (in most
cases two) sets of different degrees of freedom. An accurate understanding of the nature
behind a duality amounts to grasping a fundamental piece of physics. Early examples
include the electric-magnetic or Montonen–Olive duality [352] and its supersymmetric ex-
tension known as Seiberg duality [353], which are dualities between theories at strong and
weak coupling, and the duality between the sine-Gordon model and the massive Thirring
model [354], where the fermions of the latter are mapped to the bosons of the former by
bosonisation [355]. Moreover, the five different types of string theories in ten dimensions
are related by S-dualities [356–360] and T-dualities [361, 362]. While the aforementioned
dualities all relate different theories of the same kind and dimension to each other, the
AdS/CFT correspondence or holographic duality stands out as this duality states the
dynamical equivalence between a theory of gravity in 𝐷 dimensions to a CFT in 𝐷 − 1 di-
mensions [74–76]. This duality therefore provides an explicit realisation of the holographic
principle [111, 363, 364]. This principle is considered to be a fundamental property of
any theory of quantum gravity. It states that the number of degrees of freedom in any
theory of quantum gravity scales with the area rather than the volume of the spacetime
region where the theory is defined, contrary to what happens in ordinary QFT. Therefore,
and since the originally proposed version of AdS/CFT made use of string theory, which
at the time of writing is the most promising candidate for a theory of quantum gravity,
the AdS/CFT correspondence has received much of its attention because it can be used
to study aspects of quantum gravity. In this thesis, we are particularly interested in black
holes within the AdS/CFT correspondence. The eternal black hole is conjectured to be
dual to two copies of the same CFT entangled in the TFD state [112]. This relation led to
considering spacetime as an emergent phenomenon due to the presence of entanglement
[115–117] which shortly after entered the ER=EPR proposal [118]. However, the duality
between the eternal black hole and the TFD state also led to a contradicting statement.
On the one hand, the CFT Hilbert space is expected to factorise due to the lack of classical
interactions between the two copies of the CFT, while on the other hand, the Hilbert space
of gravity is manifestly non-factorised due to the presence of the smooth and connected
black hole geometry [120]. The explanation and eventual resolution of this factorisation
puzzle is one of the main checkpoints on the road to a theory of quantum gravity. The
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factorisation puzzle in the AdS/CFT correspondence is one of the central aspects studied
in this thesis.

To provide sufficient context, we briefly review the holographic principle as well as the
original proposal for AdS/CFT in sec. 3.1. With this background, we are then in a position
to discuss the factorisation puzzle in more detail in sec. 3.2. We start this by explaining
the duality between the eternal black hole and the TFD state, followed by an account of
the ER=EPR proposal and its consequences in light of the factorisation puzzle.

3.1. A Duality Between Quantum Field Theory and
Gravity

Even before the seminal paper proposing AdS/CFT [74], hints that such a duality exists had
been found. One of the earliest and most noteworthy hints concerns the particular case of
AdS3/CFT2. It was shown that the asymptotic symmetries of AdS3 give rise to two copies
of the Virasoro group, which is precisely the symmetry of a CFT2 [365]. Moreover, the
central charge counting the degrees of freedom of this CFT was shown to be determined
by the curvature radius 𝐿AdS of AdS3 and the Newton constant as [365]

𝑐
3
=
𝐿AdS

2𝐺(3)
N

. (3.1)

Although the case of AdS3/CFT2 was also considered in [74], the original proposal was
phrased for AdS5/CFT4. In the following, we first provide details on the holographic
principle in sec. 3.1.1. Subsequently we discuss the original argument for AdS5/CFT4 in
sec. 3.1.2 by considering the physics of D3-branes from two perspectives. Much of this
discussion will follow parts of the excellent reviews [366–368], and in particular [369]. Last
but not least, we briefly sketch how the holographic dictionary is established by an equality
of partition functions in sec. 3.1.3. To conclude this section we explain how entanglement
between subregions of the CFT can be calculated using AdS/CFT.

3.1.1. Black Holes and Holography

Deducing a quantum theory from the corresponding classical description is a hard task
for several reasons. First of all, there is no unique recipe to do so. Each approach to
quantisation has advantages and disadvantages in certain situations. This relates to the
second point, i.e. the fact that since quantum theory is (believed to be) more fundamental
than classical mechanics, not every principle underlying the quantum theory has an analogue
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in the classical description. In the special case of gravity, another reason is that the usual
renormalisation techniques of QFT are not applicable. Within our current description of
gravity, black holes provide the most interesting objects. In particular, the singularity of the
black hole, where our current mathematical description of gravity breaks down, is generally
expected to be smoothed out in a theory of quantum gravity. This promotes black holes
to an ideal object of study when aiming to learn about quantum aspects of gravity. Such
studies led to uncovering what is known as the holographic principle, which we explain in
the following paragraphs. For a review of this topic, which we partly follow, see [370].

The Generalised Second Law

The holographic principle is based on an observation of Bekenstein in combining black
holes with the laws of thermodynamics. In particular, considering the second law con-
cerning the growth of thermodynamical entropy, the following thought experiment was
conducted. Given any object in our universe, it can be associated to a certain amount of
thermodynamical entropy 𝑆obj. If the object is thrown into a black hole, it is lost to the
observable universe (i.e. the black hole exterior) as nothing is able to leave a black hole.
However, this would imply that the entropy of the observable universe diminishes since
𝛿𝑆obs = −𝑆obj < 0. In order for black holes to be consistent with the laws of thermody-
namics, Bekenstein proposed that black holes themselves have to have an entropy 𝑆BH.
With this assumption, the second law is not violated as long as the change of entropy of
the black hole balances the loss of entropy for the observable universe, i.e. 𝛿𝑆BH ≥ 𝛿𝑆obj.
In other words, for any process only the change of the sum of 𝑆BH and 𝑆obj has to be
positive, but not the individual changes on their own. This is known as the generalised
second law [371–373]. For any process not involving black holes, this reduces back to
the usual second law. Bekenstein further conjectured that the entropy of a black hole is
proportional to the area of its event horizon, with the proportionality factor given by an
order 1 number. This was based on an earlier result by Stephen Hawking called the area
theorem, stating that the horizon area of a black hole always grows with time [374]. In
that regard, the area of a black hole behaves analogous to thermodynamic entropy. If the
black hole entropy really is to be interpreted in a thermodynamic sense, there should also
be a temperature associated to this entropy. A first indication that this exists was derived
in [375] by showing that the Einstein equations for a black hole imply a differential relation

d𝑀 = 𝜅
8𝜋𝐺N

d𝐴S , (3.2)

where 𝐺N is Newtons constant, 𝜅 is the surface gravity, d𝑀 is an infinitesimal change in
the black hole mass, i.e. the energy, and d𝐴 an infinitesimal change in the surface area
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of the horizon, i.e. the entropy.1 Interpreting this as the first law of thermodynamics, the
prefactor in this relation has to be related to the temperature. A famous semiclassical
computation showed that black holes do emit particles, dubbed Hawking radiation, when
taking into account quantum field theory effects on the classical black hole spacetime
[109, 110]. This radiation is emitted as a thermal spectrum at temperature 𝑇BH = 𝜅

2𝜋
.

Therefore, taking into account (3.2), the entropy is given by

𝑆BH =
𝐴S

4𝐺N
, (3.3)

fixing the proportionality factor introduced by Bekenstein.2 This formula also provides an
interesting interpretation of the quantisation of information for black holes. In 𝐷 spacetime
dimensions, the area 𝐴 has dimension length𝐷−2. Therefore, also 𝐺N has to have this
dimension as the entropy is dimensionless. By dimensional analysis, the Newton constant
can be related to the Planck length 𝑙P as 𝐺N = 𝑙𝐷−2

P and may therefore be interpreted
as a Planck area 𝐴P = 𝑙𝐷−2

P . The black hole entropy (3.3) therefore is interpreted as the
information on the horizon being quantised in terms of Planck areas.

The black hole entropy does not only have a valid thermodynamical interpretation but
also provides an upper bound on the entropy of any given object [108]. The bound is
obtained by demanding that for any process the generalised second law holds, i.e. the
change of the black hole entropy is sufficiently large to compensate for the loss of entropy
in the observable universe. This is elucidated by the following thought experiment where
for simplicity we assume that 𝐷 = 4. Suppose that there exists an object of mass 𝑚
and entropy 𝑆. This object is to be thrown into a black hole of mass 𝑀 ≫ 𝑚 and
entropy 𝑆BH = 4𝜋𝐺N𝑀2.3 The mass of the black hole increases as 𝑀 → 𝑀 + 𝑚. In
this process, 𝛿𝑆obs = −𝑆 and 𝛿𝑆BH = 8𝜋𝐺N𝑀𝑚, neglecting a term ∝ 𝑚2 in the latter
equality. Demanding that the generalised second law holds, i.e. 𝛿𝑆obs+𝛿𝑆BH ≥ 0, provides
the upper bound 𝑆 ≤ 8𝜋𝐺N𝑀𝑚 for the entropy of the object. Expressed in terms of the
area,4 this bound can be reformulated as [363]

𝑆 ≤
𝐴S

4𝐺N
. (3.4)

If the object itself is a black hole, the bound is saturated.

1Note that 𝐴S is the surface area and not a subregion of a QFT, which we also denoted by 𝐴 in earlier
sections. The index S is meant to avoid confusion in this unfortunate, but widely adopted abuse of
notation.

2Note that we work in natural units.
3In 𝐷 = 4, the horizon area is given by 𝐴 = 𝜋𝑟2S, with the Schwarzschild radius given by 𝑟S = 2𝐺N𝑀 .
4This reformulation relates the Bekenstein bound to the spherical entropy bound of [363].
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The above discussion is, in spirit on the original work of Bekenstein [108], based on this
thought experiment. However, more rigorous treatments of the Bekenstein bound have
appeared later on. In [376] the Bousso bound was established as a covariant formulation
of (3.4). Within QFT, the Bekenstein bound was proven using the relative entropy in
[377]. Moreover, the quantum focussing conjecture [378] implies the Bousso bound and
can therefore be viewed as a more general statement.

The Holographic Principle

As already pointed out below (3.3), this formula suggests that information for black holes
is a) stored on the horizon area and b) is quantised in terms of Planck areas. These
observations led Gerard ’t Hooft to propose the holographic principle as a fundamental law
of any theory of gravity [111]. The bound (3.4) on the entropy by the area of the considered
region is present due to the effects of gravity. The holographic principle then states that,
for any volume containing a theory of quantum gravity, the information about the theory
is stored on the boundary of the region, i.e. the area. Put differently, this means that any
theory of quantum gravity in 𝐷 dimensions can equivalently be described by an ordinary
QFT without gravity in𝐷−1 dimensions, i.e. with one less spatial dimension. The boundary
of the volume can therefore be interpreted as a holographic screen on which the physics of
the interior of the volume is projected without loss of information. This is also the reason
why the principle is dubbed ‘holographic’. The information about the volume is stored on
a surface, much like in optical experiments when generating holograms. This remarkable
property was given a precise formulation in string theory by Leonard Susskind [363], who
unified the discussion of [111] with earlier ideas on lower dimensional descriptions of string
theory [379]. Moreover, the principle was analysed in the context of gravity in an Anti-de
Sitter spacetime [364].

As a side remark, the holographic principle, which is conjectured to hold for any theory
of quantum gravity, was also analysed in loop quantum gravity (LQG). Although the black
hole entropy was also found in LQG [380], whether LQG realises the principle seems to be
an open question at the time of writing this thesis. For studies supporting or refusing this
claim see e.g. [381, 382] or [383], respectively.

The theory of quantum gravity within the volume and the QFT in one less dimension
defined on the boundary of the volume are equivalent descriptions of the same underlying
physics. This rather general statement can also be formulated in terms of the actual field
content of the two theories, which makes the power of the holographic principle more
precise. In particular, it implies that each process or measurement must have a description
in both formulations, and every operator in one of the theories must have a dual formulation
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in the other theory. The same is true for parameters such as coupling constants and length
scales in both theories. Finally, since the thermodynamic entropies in both descriptions
have to match, also the number of degrees of freedom has to be the same.

We can use the constraint on the number of degrees of both descriptions to obtain
some insights on which kinds of theories are likely to be involved in an explicit realisation
of the holographic principle. By the Bekenstein bound (3.4) we know that the entropy,
which counts the degrees of freedom, is expressed as a ratio of the area 𝐴 and the Newton
constant 𝐺(𝐷)

N in 𝐷 dimensions. Up to a prefactor, we can express the area in terms of
a length scale 𝐿 as 𝐴 ∼ 𝐿𝐷−2. So the general expectation on the number of degrees of
freedom is that

# degrees of freedom ∼ 𝐿𝐷−2

𝐺(𝐷)
N

. (3.5)

A 𝐷-dimensional theory of gravity and a 𝐷 − 1-dimensional QFT satisfying the above
relation have a chance of providing a realisation of the holographic principle. The typical
QFTs considered in physics are gauge theories, i.e. field theories with an (S)U(𝑁) gauge
symmetry. Such theories contain 𝑁2(−1) degrees of freedom at every point in spacetime,5

where the −1 can be neglected for sufficiently large 𝑁 as we are only interested in the
scaling behaviour. Therefore, for such gauge theories, the general expectation is that

𝑁2 ∼ 𝐿𝐷−2

𝐺(𝐷)
N

. (3.6)

To provide an example of two such theories, consider a gauge theory with U(𝑁) gauge
symmetry in 𝐷−1 = 4 dimensions. Apart from the factor 𝑁2, the thermodynamic entropy
in QFT scales as usual with the volume of a spatial slice Σ. Introducing a discretisation of
space into small boxes with edge length 𝜖, the entropy is then expressed in a regularised
form as

𝑁2Vol(Σ) ∼ 𝑁2Vol(R3)
𝜖3

. (3.7)

A gravitational counterpart to the gauge theory is provided by considering gravity on a
𝐷 = 5-dimensional Anti-de Sitter spacetime. We will provide more details on this spacetime
shortly in sec. 3.1.2. For now, we just note that this spacetime has a boundary. This
boundary can be reached by light rays in finite time, see e.g. [385]. These two properties

5Note that there are also instances where scalings such as 𝑁
3
2 appear [384], the reason being that not

all degrees of freedom are dynamical in these cases. The gravitational duals in such scenarios are more
complicated than what we discuss in the following.
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make Anti-de Sitter spacetime particularly interesting in the context of the holographic
principle. By calculating the area 𝐴S of a time slice of Anti-de Sitter spacetime as an
integral over the volume element of the induced metric 𝛾, the scaling

𝐴S ∼ ∫ d3𝑥
√

−𝛾 =
Vol(R3)
𝜖3

𝐿3
AdS (3.8)

is obtained, where 𝜖 is a cutoff as before and 𝐿AdS is the curvature radius of Anti-de Sitter
spacetime. Combining the results (3.7) and (3.8) using that 𝑆 ∼ 𝐴S

𝐺(𝐷)
N

, the volume of R3

as well as the cutoff 𝜖 cancel and we obtain

𝑁2 ∼
𝐿3

AdS

𝐺(5)
N

, (3.9)

precisely realising the expected relation (3.6) for 𝐷 = 5 with the length scale 𝐿 given by the
curvature radius 𝐿AdS. This provides a hint that (S)U(𝑁) gauge theories in four dimensions
may be holographically dual to gravitational theories on Anti-de Sitter spacetime in five
dimensions.

Of course, the fact that two theories lead to the relation (3.6) is not a sufficient but
only a necessary condition that these two theories are genuinely holographically dual to
each other. Moreover, matching the number of degrees of freedoms does not explain
how correlation functions and processes are realised in the two theories. Establishing such
relations explicitly is a difficult task and not generally clear. That is to say, it is not (yet)
known how the relations between observables in arbitrary (S)U(𝑁) gauge theories and
gravitational theories on Anti-de Sitter spacetime look like, if they can be established in
such generality at all. However, there are specific examples where the relations can be
derived explicitly. We will discuss one such instance in the next section.

3.1.2. A Realisation of the Holographic Principle

The first explicit realisation of the holographic principle was found by Juan Maldacena [74].
Essential aspects of this realisation were clarified and derived shortly after by Steven Gubser,
Igor Klebanov and Alexander Polyakov [76] as well as Edward Witten [75]. In this approach,
the theory of gravity is a special version of string theory while the QFT is a supersymmetric
U(𝑁) gauge theory. This realisation is named the AdS/CFT correspondence and is one of
the main settings to be studied within this thesis.6 This duality enabled for a plethora of
developments in different areas of physics, ranging from new insights into string theory to

6Throughout the literature, the terms ‘AdS/CFT correspondence’, ‘holography’ and ‘(gauge/gravity)
duality’ are often used interchangeably. We will do so as well in this thesis.
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using the duality as a computational tool in solid state physics. In the following discussion
we briefly introduce this realisation of the holographic principle. We start by motivating
this realisation through a property of string theory known as the open-closed string duality.
We then review how Maldacena established the AdS/CFT correspondence by considering
the physics of D-branes in two particular limits. We finish the section by comparing the
symmetries on both sides of the duality.

Why String Theory?

Studying string theory enables to obtain explicit realisations of the holographic principle.
This is due to the open-closed string duality which implies a relation between gravity and
gauge theory. We discuss this property in the following paragaphs. The central idea of
string theory is to describe all particles, such as contained in the standard model but also
beyond, by excitations of an extended object. The notion of a particle, an object without
spatial extension, is replaced by a string as the fundamental degree of freedom, an object
with a length 𝑙S and therefore on spatial dimension. Each string excitation is associated to
a particular type of particle, much like different notes are obtained by varying the length of
the same guitar string. String theory therefore also provides a way of unifying the different
forces of nature, as all known particles are described by the same fundamental object.
Excellent and extensive reviews are provided in [386–394].

As strings are extended one-dimensional objects, the propagation of strings in spacetime
defines a two-dimensional area called the worldsheet. The worldsheet is described by two
coordinates 𝜏 and 𝜎. In spacetime, this surface is described by functions 𝑋𝜇(𝜏, 𝜎) which
may be regarded as maps from the worldsheet to spacetime. The area can be expressed
as an integral of 𝑋𝜇. As this integral depends on derivatives of 𝑋𝜇, it may be regarded as
an action, also known as the Nambu–Goto action. In calculating the equations of motion
for this action, which determine the mode expansion for 𝑋𝜇, boundary conditions have to
be put on 𝑋𝜇 in order for the variational principle to be well-defined. A possible choice
are periodic boundary conditions, leading to the mode expansion for closed strings. Closed
strings therefore do not end anywhere and are topologically a circle. Notably, within the
spectrum of closed strings, at the massless level there is an excitation of spin 2 that is
described by a symmetric and traceless polarisation tensor. This excitation is identified with
fluctuations of the spacetime metric, i.e. the graviton. String theory therefore is a theory
of quantum gravity. If the boundary conditions are not chosen periodic, the endpoints of
the string have to satisfy either Dirichlet or von Neumann boundary conditions, leading to
open strings. For each spacetime direction 𝜇 and each of the two endpoints, either of these
choices can be made. Dirichlet boundary conditions imply that the string is fixed in this
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Figure 3.1: Visualisation of the open-closed string duality using the interaction of a closed
string with a brane. On the left, the interaction is described by a closed string emitted
by the brane. On the right, the incoming closed string converts into an open string upon
touching the brane, with the intermediate open string eventually converting back into
a closed string. As this represents the same process, the two descriptions have to be
equivalent. The figure is inspired by fig. 2 in [396].

direction, while von Neumann boundary conditions allow the endpoint to move. Imposing
Dirichlet boundary conditions in 𝑝 directions singles out a 𝑝-dimensional hypersurface in
spacetime. Such hypersurfaces are referred to as D𝑝-branes. All open strings have to end
on these branes [395]. A rigid hypersurface in spacetime would not be consistent with
the principles of general relativity. Therefore, branes are promoted to dynamical objects
as well. In the spectrum of open strings, at the massless level there exist gauge fields
with spin 1 as well as scalar fields. The gauge fields correspond to degrees of freedom
longitudinal to the brane, while the scalar fields represent the transverse ones.

At first glance, this seems to imply that there exist two kinds of strings, open and closed
ones. However, the same physical process can be described using both open and closed
strings. A first indication that this is the case can be seen by the fact that via the interaction
of two open strings, closed strings can be formed. To understand this better, we note that
since branes are dynamical objects, they also may have a mass and interact with closed
strings. Then, the open-closed string duality may be understood as follows. Consider a
process with an incoming closed string that interacts with a brane. The outgoing string is
also closed. We may describe this process in two ways. On one hand, the interaction may
be understood by closed strings only in the sense that the brane emits a closed string that
interacts with the incoming closed string. By the interaction, a different closed string is
produced. This process is visualised on the left of fig. 3.1. On the other hand, we may say
that the incoming closed string, upon touching the brane, is converted into an open string.
The endpoints of the open string move on the brane and eventually meet again such that
the outgoing state is again a closed string. This is visualised on the right of fig. 3.1. As
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Figure 3.2: Another visualisation of the open-closed string duality. The process can be
interpreted either as the exchange of a closed string between the two branes (gravitational
attraction) or as an open-string one-loop diagram in a U(1) × U(1) gauge theory. The
figure is inspired by fig. 4 in [396].

the physical process, i.e. the interaction of a closed string with a brane, is the same, the
closed string and open string way of describing this process have to be equivalent.

As we mentioned above, at the massless level, closed strings contain graviton excitations,
while open strings include gauge field degrees of freedom. The open-closed string duality
therefore provides a strong hint that the holographic principle, as a duality between a theory
of gravity and an ordinary QFT without gravity, may have a realisation in string theory. This
can be given even more strength by noting that the action describing a D-brane, known as
the Dirac–Born–Infeld (DBI) action, assembles the gauge field degrees of freedom of the
open string sector into the familiar action of a U(1) gauge theory in a certain limit. We
will discuss this in more detail shortly when reviewing Maldacenas original proposal for the
AdS/CFT correspondence. To show the relation between the open-closed string duality
and the holographic principle, we again describe a particular scattering process both using
open and closed strings. The process is to describe the interaction between two branes.
First we describe this using closed strings. That means, one brane emits a closed string
which is then absorbed by the other brane. Second using open strings, the interaction is
described by an open string stretching between the two branes. The endpoints form closed
paths on each of the two branes such that the open string forms a closed loop. These two
descriptions are visualised on the left and right of fig. 3.2. Since closed strings include the
graviton mode, the first description may be understood as gravitational attraction between
the two branes. On the other hand, open strings describe (in this case, U(1)) gauge fields,
so the second description may be interpreted as a one-loop exchange diagram in gauge
theory. However, while the open-closed string duality provides strong hints for realising
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the holographic principle within string theory, a precise version also has to account for the
different dimensions of the two theories appearing in the holographic principle.

Maldacenas Argument for AdS𝟓∕CFT𝟒

The proposal of [74] realises the holographic principle within a specific setting in string
theory. We already discussed above that U(𝑁) gauge theories on the one hand and gravity
on Anti-de Sitter spacetime on the other hand satisfy the relation between the number of
degrees of freedom, cf. (3.6). Indeed, the AdS/CFT correspondence in its strongest form
as conjectured in [74] states a holographic duality between

type IIB superstring theory on AdS5 × S5 with arbitrary string coupling 𝑔S, 𝑁 units
of five form flux through S5 and arbitrary ratio of Anti-de Sitter radius to string
length

(

𝐿AdS
𝑙S

)2
=
√

4𝜋𝑁𝑔S

on the gravity side and

four-dimensional N = 4 supersymmetric Yang–Mills theory with gauge group
SU(𝑁) and coupling constant 𝑔YM

on the field theory side. The duality is supplemented by two relations between the
parameters of these theories,

2𝜋𝑔S = 𝑔2YM and 2𝑁𝑔2YM =
(

𝐿AdS

𝑙S

)4

. (3.10)

On the gravity side, superstring theory accounts for the string theory being supersymmetric
as a natural way of introducing fermionic degrees of freedom to the theory. Anti-de Sitter
is a maximally symmetric spacetime and has constant negative Ricci scalar 𝑅 = −𝐷(𝐷−1)

𝐿2
AdS

.
The sphere S𝐷 has constant positive Ricci scalar, determined by its curvature radius 𝐿S𝐷
analogous to the previous formula as 𝑅 = 𝐷(𝐷−1)

𝐿2
S𝐷

. Type IIB refers to a particular type
of string theory in which D𝑝-brane solutions with 𝑝 odd are stabilised by the existence of
Ramond–Ramond fields 𝐶(𝑝+1) with field strengths 𝐹(𝑝+2) = d𝐶(𝑝+1) [397]. The 𝑁 units of
five form flux refer to fluxes of the field strength 𝐹(5) through the sphere S5. On the field
theory side, N = 4 refers to the highest amount of supersymmetry there can be in four
spacetime dimensions without including gravitational degrees of freedom. We will discuss
these properties as well as the relations (3.10) in more detail shortly.

The above version of AdS/CFT is the strongest form of the duality. However, at the
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time of writing this thesis it remains a conjecture since it is not known how string theory
on AdS5 × S5 is quantised consistently.7 Correspondingly, it is not very useful for explicit
computations to apply or even test the duality. To make the theory on the gravity side
more tractable, the limit of small string coupling 𝑔S ≪ 1 is taken which renders the theory
classical. The perturbative expansion in 𝑔S is easier to handle as only tree-level scattering
processes contribute. As the string coupling is small, to keep the ratio between the Anti-de
Sitter radius and string length arbitrary, the number of five form fluxes 𝑁 has to become
large. On the gravity side, the theory is then given by

classical type IIB superstring theory on AdS5 × S5 with 𝑔S < 1, 𝑁 > 1 units of
five form flux through S5 and arbitrary ratio of Anti-de Sitter radius to string length
(

𝐿AdS
𝑙S

)2
=
√

4𝜋𝑁𝑔S.

Using the relations (3.10) between the parameters of the two theories, we can ascertain
how the limits affect the field theory. First, since the string coupling is small, also the
coupling constant of the Yang–Mills theory has to be small. However, since the ratio of
the Anti-de Sitter radius to the string length is kept arbitrary, the degree of the gauge
group 𝑁 has to be large. The dual field theory is then given by

four-dimensional N = 4 supersymmetric Yang–Mills theory with gauge group
SU(𝑁) with 𝑁 > 1 and small coupling constant 𝑔YM < 1.

This version is also known as the strong8 or intermediate form of AdS/CFT. On the
field theory side, the limit of large 𝑁 is also referred to as the planar limit of Yang–Mills
theory. For large 𝑁 , interference terms of different Feynman diagrams describing the same
incoming and outcoming particles are suppressed by 1

𝑁
. This is best understood using the

’t Hooft double line notation [398, 399]. As interference terms are suppressed, the theory
becomes more classical with larger 𝑁 .

This version of AdS/CFT is still quite involved. Moreover, at the time of writing this
thesis strings have not been observed experimentally. Therefore, both for simplifying the
computations as well as to use AdS/CFT to predict currently observable physics, it is
reasonable to take another limit which allows to treat strings effectively as point particles.
Naively, this implies 𝑙S → 0. More precisely, it is sufficient to demand that 𝐿AdS

𝑙S
≫ 1. The

strings are very small compared to the radius of curvature such that they can be treated
7Nevertheless, this background is an exact perturbative background for type IIB superstring theory.

Moreover, this background is invariant under the maximal amount of supercharges. For details see
e.g. [394].

8Note that the earlier version was titled the ‘strongest’ while this is now only called the ‘strong’ form.
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as point particles on a weakly curved background. Since the ratio specifies is proportional
to 𝑁 and 𝑔S, where 𝑔S has to be small, the large ratio also implies that 𝑁 has to be even
larger, i.e. 𝑁 ≫ 1. On the gravity side, the theory reduces to

type IIB supergravity on weakly curved AdS5 × S5 with 𝑔S < 1, 𝑁 ≫ 1 units of
five form flux through S5 and large ratio of Anti-de Sitter radius to string length
1 <

(

𝐿AdS
𝑙S

)2
=
√

4𝜋𝑁𝑔S.

Again, using the relations (3.10), the limits performed on the gravity side also affect
the field theory. The limit of 𝑁 ≫ 1 implies that the planar limit becomes more precise.
Moreover, since 𝑔S ∼ 𝑔YM < 1, the large ratio 𝐿AdS

𝑙S
implies that the product 𝑁𝑔2YM becomes

large as well. In the discussion of the planar limit of Yang–Mills theory, it was shown that
it is this product that determines the actual coupling strength of the theory [398]. This
is known as the ’t Hooft coupling 𝜆 = 𝑁𝑔2YM. Therefore, since 𝑁 ≫ 1 also 𝜆 > 1. The
corresponding field theory is given as

four-dimensional N = 4 supersymmetric Yang–Mills theory with gauge group
SU(𝑁) with 𝑁 ≫ 1 and large ’t Hooft coupling 𝜆 = 𝑁𝑔2YM > 1.

This is known as the weak form of the AdS/CFT correspondence. It is fairly obvious how
the AdS part of the name appears, as the gravity side is defined on a background involving
five-dimensional Anti-de Sitter spacetime. The CFT part comes about since the 𝛽 function
of the coupling of N = 4 supersymmetric Yang–Mills theory vanishes [400, 401]. This
property indicates that this particular theory is a field theory with conformal symmetry,
i.e. a CFT. For particular operators called 1

2
BPS operators, it was shown that the three

point function is independent of the coupling strength [402]. This makes AdS5∕CFT4

highly valuable to perform tests of the duality. Specific calculations can be performed on
both sides independently to check whether the result is the same. In [403] it was shown
that the three point function of such operators computed on both sides match. More
details on tests of the AdS/CFT correspondence, including also a computation of the Weyl
anomaly using both sides of the duality [404, 405], can be found in [366, 369].

The weak form of AdS/CFT has the particularly nice feature that a weakly coupled
theory of gravity is dual to a strongly coupled gauge theory. While the latter ones are
notoriously hard to analyse, as perturbative methods cannot be applied successfully, the
weak form of the AdS/CFT correspondence allows to obtain results in strongly coupled
gauge theory by calculations in weakly curved classical gravity. These calculations can
be performed using familiar perturbative methods. Notably, also the other direction is
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interesting. The AdS/CFT correspondence implies that calculations in weakly coupled
gauge theory describe a strongly coupled string theory, i.e. a theory of quantum gravity
deep in the quantum regime. This however involves the strongest form of AdS/CFT which
is, as mentioned above, a conjecture.

The AdS5∕CFT4 correspondence in its weak form can be motivated by analysing the
physics of a stack of 𝑁 D3-branes in type IIB superstring theory on Minkowski spacetime.
The duality arises by the equivalence of the open and closed string perspectives on this
setup, as we briefly discuss in the following paragraphs (see e.g. [369] for a detailed review).

Open String Perspective In the open string picture, D3-branes are objects on which
open strings can end. This description is valid when 𝑔S𝑁 < 1. Open strings are understood
as excitations of the stack of D3-branes, while closed strings describe excitations of the flat
background spacetime. The effective action for the massless fields in type IIB superstring
theory splits into three parts,

𝑆IIB = 𝑆closed + 𝑆open + 𝑆int . (3.11)

In the following, we restrict the discussion to the bosonic parts of these actions as they are
sufficient for the argument. The part of the closed string action involving the spacetime
metric 𝑔 as well as the dilaton field Φ is then given by9

𝑆closed = 1
(2𝜋)7𝑙8S𝑔

2
S
∫ d10𝑋

√

−𝑔 𝑒−Φ
[

𝑅[𝑔] + 4(𝜕Φ)2
]

, (3.12)

where (2𝜋)7𝑙8S𝑔
2
S = 16𝜋𝐺(10)

N is related to the Newton constant in 10 dimensions. The
asymptotic value of the dilaton field Φ0 is related to the string coupling constant, 𝑔S = 𝑒Φ0 .
In the above action, this has been extracted and Φ denotes only the fluctuations of the
dilaton. For details see e.g. [391]. Expanding this action in small fluctuations of the
metric about a flat background 𝑔 = 𝜂 + 𝜅ℎ, where 𝜅2 = 8𝜋𝐺(10)

N , results in the canonically
normalised action

𝑆closed = 1
2 ∫ d10𝑋 (𝜕ℎ)2 + 𝒪(𝑙4S) . (3.13)

This action describes the dynamics of the graviton on a flat background, i.e. on R1,9. As
mentioned before, the presence of D𝑝-branes in type IIB superstring theory is due to the
existence of corresponding Ramond–Ramond fields 𝐶(𝑝+1) with 𝑝 odd. The field content

9Apart from the metric and the dilaton, the massless sector of closed strings also includes the Kalb–
Ramond field 𝐵. For simplicity, we set it to zero in this discussion.
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of type IIB superstring theory includes three Ramond–Ramond fields 𝐶(0), 𝐶(2) and 𝐶(4),
which introduce charges stabilising D(-1)-branes, D1-branes and D3-branes. Due to the
Poincaré duality

d𝐶(𝑝+1) = 𝐹(𝑝+2) = ⋆𝐹(8−𝑝) = ⋆d𝐶(7−𝑝) , (3.14)

where ⋆ denotes the Hodge dual, 𝐶(0) and 𝐶(2) have dual forms 𝐶(8) and 𝐶(6) associated to
D7-branes and D5-branes. For 𝐶(4), this enforces that the corresponding field strength 𝐹(5)

is self dual. Moreover, by T-duality there also exists a D9-brane which fills all of spacetime,
although there is no 𝐶(10. For more details on this see e.g. [390]. The field strengths 𝐹(1),
𝐹(3) and the self dual 𝐹(5) are also part of the bosonic closed string action. Expanding the
corresponding terms and taking the limit 𝑙S → 0, combining with (3.13) yields the bosonic
part of the supergravity action on Minkowski spacetime.

The other two parts 𝑆open and 𝑆int are obtained from the DBI action. For a single
D𝑝-branes, this action is given by

𝑆DBI = − 1
(2𝜋)𝑝𝑙𝑝+1S 𝑔S

∫ d𝑝+1𝑥 𝑒−Φ
√

−det
(

P[𝑔] + 2𝜋𝑙S𝐹
)

, (3.15)

where we have again set the Kalb–Ramond field to zero and Φ are the fluctuations of the
dilaton field. Furthermore, given that 𝑥𝑎 are coordinates on the brane, P[𝑔]𝑎𝑏 =

𝜕𝑋𝜇

𝜕𝑥𝑎
𝜕𝑋𝜈

𝜕𝑥𝑏
𝑔𝜇𝜈

denotes the pullback of the spacetime metric 𝑔 onto the brane and 𝐹 is the field strength
corresponding to the U(1) gauge field defined on the brane. To obtain the low-energy limit
𝑙S → 0, we consider the fields 𝑋𝜇 in the configuration

𝑋𝜇 =

⎧

⎪

⎨

⎪

⎩

𝑥𝑎 for 𝑎 = 0, ..., 𝑝

2𝜋𝑙2S𝜙
𝑖(𝛼) for 𝛼 = 𝑝 + 1, ..., 9

(3.16)

together with the approximately flat background 𝑔 = 𝜂+𝜅ℎ as for the closed string action.
The fields 𝜙𝛼 are scalar fields describing fluctuations in the transversal directions of the
brane. Expanding the square root to lowest non-trivial order in 𝑙S using

√

det(1 + 𝜖𝑀) = 1 − 𝜖2

4
tr
(

𝑀2) + 𝒪(𝜖3) (3.17)

for 𝑀 anti-symmetric, neglecting a constant term corresponding to the volume the DBI
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action simplifies to

𝑆DBI = − 1
(2𝜋)𝑝−2𝑙𝑝−3S 𝑔S

∫ d𝑝+1𝑥
[

1
4
𝐹 2 + 1

2
(𝜕𝜙𝛼)2 + 𝒪(𝑙4S)

]

. (3.18)

The two terms correspond to 𝑆open. All possible interaction terms are of higher order
in 𝑙S and do not contribute in the limit 𝑙S → 0. Therefore, open and closed strings
decouple. The above action describes six free scalar fields as well as a U(1) Yang–Mills
theory, provided that the Yang–Mills coupling is identified as

𝑔2YM = (2𝜋)𝑝−2𝑙𝑝−3S 𝑔S . (3.19)

Note that for 𝑝 = 3, the case of interest for AdS5∕CFT4, the above equation for the
Yang–Mills coupling reduces to the first relation in (3.10), 𝑔2YM = 2𝜋𝑔S. The above action
(3.18) describes a single D𝑝-brane. However, to explain the weak form of the AdS/CFT
correspondence we consider a stack of 𝑁 such branes. If these branes were placed at
different locations in spacetime, each brane would correspond to a U(1) Yang–Mills action
as above. However, if the branes coincide, the situation changes. Open strings may end on
a different brane than they started on. Associating labels 𝑡𝑖𝑗 to strings starting on brane 𝑖
and ending on brane 𝑗 for 𝑁 coincident D-branes, the gauge theory becomes non-abelian
with gauge group U(𝑁). The generators 𝑡𝑘 of U(𝑁) contain the labels 𝑡𝑘𝑖𝑗 as entries when
representing 𝑡𝑘 by Hermitian matrices. The labels 𝑡𝑖𝑗 are also called Chan–Paton factors
due to their discoverers [406]. As a side remark, extracting one of the 𝑁 coincident branes
from the stack breaks the symmetry as U(𝑁) → U(1)×U(𝑁 −1). The symmetry breaking
induces a mass for the scalar fields 𝜙𝛼 depending on the separation of the branes. This can
be understood as a stringy Higgs mechanism. The generalisation of (3.18) to the case of
𝑁 coincident D𝑝-branes works as follows. Due to the non-abelian gauge symmetry, partial
derivatives have to be replaced by the gauge-covariant derivatives 𝐷𝑎 = 𝜕𝑎 + i[𝐴𝑎, ⋅]. The
scalar fields as well as the gauge fields are valued under the gauge group as 𝐴𝑎 = 𝐴𝑎,𝑘𝑡𝑘,
implying also 𝐹 𝑎𝑏 = 𝐹 𝑎𝑏,𝑘𝑡𝑘, and 𝜙𝛼 = 𝜙𝛼,𝑘𝑡𝑘. The non-abelian gauge symmetry induces
self-interaction terms both for the gauge field and for the scalar fields. For the gauge fields,
this is automatically included in 𝐹 2. For the scalar fields, the non-abelian symmetry gives
rise to an additional potential term ∝ [𝜙𝑎, 𝜙𝑏]2. The action (3.18) is then given by

𝑆open = − 1
𝑔2YM

∫ d𝑝+1𝑥
[

1
4
𝐹 2 + 1

2
(𝐷𝜙𝛼)2 −

∑

𝛼𝛽
tr
(

[𝜙𝛼, 𝜙𝛽]2
)

+ 𝒪(𝑙4S)
]

. (3.20)

This is the bosonic part of the action for N = 4 supersymmetric Yang–Mills theory
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with gauge group SU(𝑁).10 The fermionic part of this action follows from analysing the
fermionic part of the DBI action (3.15). To summarise, the low-energy limit 𝑙S → 0 of
a stack of 𝑁 D3-branes in the open string perspective yields supergravity on R1,9 and
N = 4 supersymmetric Yang–Mills theory with gauge group SU(𝑁) in four dimensions.

Closed String Perspective In the closed string perspective, D3-branes are solitonic so-
lutions to the supergravity equations of motion that curve the surrounding spacetime. This
description is valid for 𝑔S𝑁 > 1.11 The low-energy effective action containing everything
necessary for this discussion is

𝑆 = 1
(2𝜋)7𝑙8S𝑔

2
S
∫ d10𝑋

√

−𝑔
[

𝑒−Φ
[

𝑅[𝑔] + 4(𝜕Φ)2
]

− 2
(8 − 𝑝)!

𝐹 2
(𝑝+2)

]

. (3.21)

Note that we set the Kalb–Ramond field to zero again. To obtain a solution to the
equations of motion of this action, we consider the symmetries to write down a convenient
ansatz. Empty Minkowski space R1,9 has Lorentz symmetry SO(1, 9). Inserting a D𝑝-brane
breaks this symmetry to SO(1, 𝑝) × SO(9 − 𝑝). This motivates the ansatz

d𝑠2 = 1
√

𝐻𝑝(𝑟)
𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 +

√

𝐻𝑝(𝑟)𝛿𝑖𝑗d𝑦𝑖d𝑦𝑗 , (3.22)

𝑒Φ = 𝑔S𝐻𝑝(𝑟)
3−𝑝
4 , (3.23)

𝐶(𝑝+1) =
(

𝐻𝑝(𝑟)−1 − 1
)

d𝑥0 ∧ ... ∧ d𝑥𝑝 . (3.24)

Here 𝑟 is a radial coordinate defined using the transverse directions of the D𝑝-brane,
𝑟2 = 𝑦𝑖𝑦𝑖. Here indices 𝑖, 𝑗 refer to the transverse directions, while Greek indices refer to
the coordinates on the brane. The open function 𝐻𝑝(𝑟) is determined by the equations of
motion as

𝐻𝑝(𝑟) = 1 +
(𝐿𝑝
𝑟

)7−𝑝

, (3.25)

where 𝐿𝑝 is a constant. This constant is determined by the units 𝑁 of flux of 𝐹(𝑝+2)

through an 8 − 𝑝-dimensional sphere,

𝑁 = 1
(2𝜋𝑙S)7−𝑝 ∫S8−𝑝

⋆𝐹(𝑝+2) . (3.26)

10The 𝑁 coincident branes constitute a symmetry U(𝑁). However, the U(1) part of U(𝑁) ≃ U(1)×SU(𝑁)
decouples from all other degrees of freedom and corresponds to a field confined to the boundary, i.e. the
U(1) degree of freedom does not propagate.

11Note that the string coupling is still small. Therefore, 𝑁 has to be sufficiently large such that the
surrounding spacetime is significantly curved.
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Evaluating this integral using the ansatz (3.24) in 𝐹(𝑝+2) = d𝐶(𝑝+1) yields the relation

𝐿7−𝑝
𝑝 = 𝑁(4𝜋)

5−𝑝
2 Γ

(7 − 𝑝
2

)

𝑙7−𝑝S 𝑔S . (3.27)

For 𝑝 = 3, this reduces to the second equation in (3.10) with the curvature radius of
Anti-de Sitter space given by 𝐿3. The mass 𝑀 of the stack of branes is given by

𝑀 =
𝑁 ⋅ Vol(R1,𝑝)
(2𝜋)𝑝𝑙𝑝+1S 𝑔S

. (3.28)

With this, the ansatz for the metric (3.22) is fully determined. As the horizon is not
compact this metric describes a black brane solution [407, 408]. Setting 𝑝 = 3 from now
on, this metric has two interesting limits. First, in the limit of large 𝑟 the function (3.25)
goes to 1. The metric then reduces to the Minkowski metric on R1,9. This means that in
the region 𝑟 → ∞ the physics are described by supergravity on R1,9. In the other extreme
of 𝑟 → 0, the additive 1 in (3.25) is negligible and the metric becomes

d𝑠2 = 𝑟2

𝐿2
3

𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 +
𝐿2

3

𝑟2
(

d𝑟2 + dΩ2
S5

)

, (3.29)

where compared to (3.22) we rewrote the coordinates 𝑦𝑖 in terms of the radial coordinate 𝑟
and angular coordinates forming the volume element of S5. The radial coordinate together
with the coordinates 𝑥𝜇 form the metric on five-dimensional Anti-de Sitter spacetime. So
in the near horizon region 𝑟 → 0, the metric is that of AdS5 × S5 where both spaces have
curvature radius 𝐿3.

The two kinds of closed string excitations, propagating in the asymptotic region and the
near horizon region, decouple from each other such that they can be treated independently.
Even if closed string excitations in the near horizon region may have high energies 𝐸𝑟 with
𝑙S𝐸𝑟 > 1, due to the non-trivial factor 𝐻3(𝑟) in the metric there is a redshift factor √−𝑔00
that renders this energy small for an observe in the asymptotic region,

𝑙S𝐸𝑟→∞ = 4
√

𝐻3(𝑟)
−1
𝑙S𝐸𝑟 . (3.30)

Since in the near horizon region 𝐻3(𝑟) ≈
𝐿4
3

𝑟4
, this simplifies to

𝑙S𝐸𝑟→∞ ≈ 𝑟
𝐿3
𝑙S𝐸𝑟 . (3.31)

For 𝑙S𝐸𝑟 large but fixed, since 𝐿3 ≫ 𝑟 in the near horizon region the energy 𝑙S𝐸𝑟→∞

measured in the asymptotic region is small. That is, an observer in the asymptotic region
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observes the full spectrum of type IIB superstring theory on AdS5 × S5 in the near horizon
region. These modes are separated by a potential barrier from the modes in the asymptotic
region. Since both types of modes are considered as low-energy modes, they cannot pass
the escape the potential well and therefore decouple. To summarise, the low-energy limit
𝑙S → 0 of a stack of 𝑁 D3-branes in the closed string perspective yields supergravity on
R1,9 and supergravity on AdS5 × S5.

We have discussed the physics of a stack of 𝑁 D3-branes in Minkowski spacetime in
the open and closed string picture. Since these are equivalent descriptions, the physics
we have found on both sides also have to be equivalent. In both cases, there is super-
gravity on R1,9. However, in the open string picture, we found four-dimensional N = 4
supersymmetric Yang–Mills theory with gauge group SU(𝑁), while the open string picture
led to (in particular, type IIB) supergravity on AdS5 × S5. Therefore, these two theories
have to be dynamically equivalent, which is precisely the statement of the weak form of
the AdS/CFT correspondence. Another motivation for the duality is given by the large
amount of matching symmetries on both sides of the duality. On the gravity side, these
symmetries are the isometries of the spacetime. These are found by defining both AdS5

as well as S5 as hypersurfaces in flat six-dimensional spacetimes with coordinates X 𝜇 and
appropriate signature,

AdS5 ∶ −𝐿2
3 = −(X 0)2 +

4
∑

𝑖=1
(X 𝑖)2 − (X 5)2 , (3.32)

S5 ∶ 𝐿2
3 =

6
∑

𝑖=1
(X 𝑖)2 . (3.33)

The isometries are given by SO(2, 4) and SO(6) respectively. On the field theory side, there
is conformal symmetry and supersymmetry. The conformal symmetry in four dimensions
is described by SO(2, 4), matching the isometry of AdS5. The supersymmetry N = 4
gives to the the R-symmetry SU(4)R. Since locally SU(4) ≃ SO(6), the supersymmetry
matches the isometry of S5. Analogous statements can be made for the fermionic pieces
on both sides. This results in the statement that both theories are invariant under the
superconformal group PSU(2, 2|4) [409, 410]. Further developments and details on this
topic can be found in [369, 411–414] and references therein.

Finally, we point out that AdS5∕CFT4 is not the only version of the AdS/CFT cor-
respondence obtained from string theory. Already in [74] it was pointed out that other
brane configurations in superstring theory allow for different background spacetimes in-
volving Anti-de Sitter spacetime. Within type IIB superstring theory a setup of D1 and
D5-branes leads to the AdS3∕CFT2 correspondence. This particular version of the du-
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ality will become important in sec. 5. In this case, both sides of the theory are quite
well understood. This is because, on the one hand, gravity in three dimensions has no
propagating degrees of freedom and is exactly solvable [415]. On the other hand, CFT
in two dimensions has infinitely many conserved charges, i.e. it is integrable, since the
conformal Killing equations in two dimensions reduce to the Cauchy–Riemann differential
equations and every (anti)-holomorphic function is a valid conformal transformation. This
led to remarkable developments and tests of the duality, see e.g. [416–420]. A review of
AdS3∕CFT2 can be found e.g. in [421]. A more general platform towards proofing Ad-
S/CFT known as Gopakumar–Vafa duality has been discussed in [422, 423]. Furthermore,
in eleven-dimensional M-theory similar configurations to the brane constructions above
can be made using either M2 or M5-branes. These led to realisations of AdS4∕CFT3

[74, 424] and AdS7∕CFT6 [74, 75, 425], respectively. For details on these constructions
see [366]. Last but not least, there is also AdS2∕CFT1. On the gravity side, the theory is
Jackiw–Teitelboim (JT) gravity [426, 427] which is a theory of gravity in two dimensions
supplemented by a dilaton field. The dual theory is related to the Sachdev–Ye–Kitaev
(SYK) model [428, 429]. For a review of this model itself see e.g. [430]. It has also been
proposed that the dual theory is given by a version of conformal quantum mechanics [431].

This concludes our review of the AdS/CFT correspondence. In the next section, we
discuss how the correspondence can be used to calculate correlation functions and how
entanglement is geometrically realised in AdS/CFT.

3.1.3. An Entry in the Dictionary: Entanglement in AdS/CFT

As mentioned before, the AdS/CFT correspondence allows to compute expectation values
of observables in one theory and map the result to the other theory. This is particularly
useful if one of the theories is hard to analyse, such as the strongly coupled field theories
appearing in the weak form of the duality. To translate the results to the other theory, the
so-called holographic dictionary for the duality has to be established. This corresponds to
a one-to-one map between fields of the gravity theory and operators of the gauge theory.
In particular, scalar operators O of the gauge theory are mapped to scalar fields 𝜙0 of type
IIB supergravity. Moreover, currents 𝐽 of the field theory correspond to gauge field fluc-
tuations 𝐴 in gravity and the energy-momentum tensor 𝑇̂ of the field theory is connected
to the fluctuations ℎ of the bulk metric. As examples for the weak form of AdS5∕CFT4

as discussed above, the dilaton of type IIB supergravity is related to the Lagrangian of
N = 4 supersymmetric Yang–Mills theory. These mappings are supplemented by relations
between the conformal dimension Δ of the operators of the field theory and the mass 𝑚
of the corresponding supergravity field. E.g., for a scalar operator OΔ, the mass of the
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corresponding scalar field in gravity is determined by 𝑚2𝐿2
AdS = Δ(Δ − 𝑑), where 𝑑 is the

dimension of the field theory. A detailed discussion of these relations can be found in [369].

Brushing through the Dictionary

In practice, these mappings mean that terms as 𝑆source = ∫ d𝑑𝑥O(𝑥)𝜙0(𝑥) and the ap-
propriate generalisations for fields with higher spin can be added to the action to act as
source terms. The usual perturbative approach of QFT then allows to compute correlation
functions of O by taking functional derivatives of the generating functional 𝑊 = −i ln𝑍
defined by the partition function 𝑍,12

⟨O1(𝑥1)...O𝑛(𝑥𝑛)⟩ = (−i)𝑛−1 𝛿𝑛𝑊
𝛿𝜙(1)

0 (𝑥1)...𝛿𝜙
(𝑛)
0 (𝑥𝑛)

|

|

|

|𝜙𝑖=0
. (3.34)

As pointed out before, this is a perturbative approach, i.e. it fails if the theory is strongly
coupled. At this point, the AdS/CFT correspondence shows its power. Since the strongly
coupled field theory is dynamically equivalent to a weakly coupled theory of gravity, we may
equivalently use the generating functional 𝑊 of the gravity theory in the computation. In
its strongest form, the AdS/CFT correspondence states that the partition function of the
conformal field theory is equal to the partition function of the dual string theory [75],

𝑍CFT = 𝑍String . (3.35)

To make this equality precise boundary conditions on the fields are required, which we will
discuss shortly. In principle, when calculating correlation functions either of these partition
functions may be used. However, since the partition function 𝑍String is not known explicitly,
in practice this relation does not directly help in computations. In the weak form however,
when the field theory becomes strongly coupled, the partition function of string theory
can be approximated by its saddle point, given by the on-shell action of supergravity. In
equations [75, 76],

𝑊CFT[𝜙0(𝑥)] = 𝑆Sugra[𝜙̄(𝑟, 𝑥)]
|

|

| lim
𝑟→∞

𝜙̄(𝑟,𝑥)=𝜙0(𝑥)
, (3.36)

where 𝜙̄(𝑟, 𝑥) is a solution to the equations of motion of supergravity and 𝑥 is shorthand for
the time coordinate as well as all spatial coordinates other than 𝑟, i.e. the coordinates of the
boundary. As indicated, the boundary condition on this field is that the asymptotic value
of the bulk field lim

𝑟→∞
𝜙̄(𝑟, 𝑥) is identified with the source 𝜙0(𝑥) for the operator O(𝑥). Using

12Using𝑊 only yields correlation functions associated to connected Feynman diagrams. If one is interested
in the disconnected diagrams, one has to compute functional derivatives of 𝑍.
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Figure 3.3: tree-level diagrams known as Witten diagrams used to represent the calcula-
tion of correlation functions of boundary operators O𝑖 using the AdS/CFT correspondence.
The circle represents the boundary where field theory is defined. The interior of the circle
corresponds to the bulk where the gravity theory is defined. Each dot is an interaction
vertex with associated vertex factor 𝜆. The wavy lines represent bulk-to-boundary propa-
gators and, in the fourth diagram, bulk-to-bulk propagators. In these simple examples, all
vertices have the same factor, but these can be different in general.

(3.36) and this identification, the generating functional of the strongly coupled field theory
in (3.34) may be replaced by the on-shell action of weakly coupled supergravity. Since the
gravity theory is classical, the boundary correlation functions are computed by tree-level
diagrams in the bulk. Remarkably, these so-called Witten diagrams can be treated in close
analogy to Feynman diagrams in that there exists a simple set of rules to obtain expressions
for computing the diagrams. The field theory lives on the boundary of the spacetime that
the gravity theory is defined on. The gravity theory is therefore commonly referred to
as the theory in the bulk. Correspondingly, there is a bulk-to-boundary propagator which
relates operator insertions in the field theory to interaction vertices in the bulk. Moreover,
there is a bulk-to-bulk propagator that connects different interaction vertices in the bulk.
To each bulk interaction vertex, a vertex factor 𝜆 determined by the interaction terms in
the supergravity action is associated. This is visualised in fig. 3.3 in a few examples. A
detailed discussion of this technique as well as explicit examples can be found in [369].

Making use of (3.36) allows to compute observables in strongly coupled field theory.
However, in field theory the naive computation usually leads to divergent quantities and
the present case is no exception [402]. In AdS/CFT, many of the divergences can be traced
back to the infinite spacetime volume. To remedy these issues, the procedure dubbed
holographic renormalisation was developed [404, 432–435]. Schematically, this procedure
works as follows. First, a cutoff 𝜖 on the radial coordinate is introduced. The cutoff
may be understood as a small but finite distance between the asymptotic boundary and a
shell at a large but finite radial coordinate. With this regulator present, the computations
yield finite results as the spacetime volume is now finite. By expanding the result as a
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power series in the cutoff, the divergent pieces are extracted. For each of the divergent
terms, a counterterm 𝑆ct is added to the action removing the corresponding divergence.
The full action 𝑆sugra + 𝑆ct then yields finite results for correlation functions of boundary
operators. For a detailed discussion of this procedure for scalar operators O(𝑥) and the
boundary energy-momentum tensor 𝑇̂ see [369]. General reviews on this topic are provided
in [436, 437].

Entanglement in AdS/CFT

In sec. 2.1.2, we have discussed a few important properties of entanglement entropy in QFT.
In particular, it satisfies an area law and has a precise structure if conformal symmetry is
assumed as well, cf. (2.38) and (2.39). The AdS/CFT correspondence states that every
quantity of the field theory has a dual description in the gravity theory. Therefore there
must exist a way to derive the field theory entanglement entropy by a calculation on the
gravity side. To motivate the dual description, suppose that the goal is to calculate the
entanglement entropy between a subregion 𝐴 of a CFT𝐷−1 and its complement 𝐴̄. These
two regions are then separated by the bipartition surface 𝜕𝐴. As the CFT𝐷−1 is defined on
the boundary of the AdS𝐷 spacetime, it is natural to extend the bipartition surface into the
bulk spacetime such that it encloses a region 𝐴̂ in the bulk. This extension should happen
in a smooth way, i.e. the bulk bipartition surface 𝜕𝐴̂ should not have any holes if the
subregion has none. To make the extension of the bipartition surface into the bulk unique,
we might demand that this surface be extremal. A visualisation is provided in fig. 3.4 for
𝐷 = 3. Indeed, it was found that the entanglement entropy in CFT can be calculated using
the above prescription, resulting in the Ryu–Takayanagi formula (RT formula) [113, 114],

𝑆(𝜌(𝐴)) =
Area(𝜕𝐴̂)
4𝐺(𝐷)

N

. (3.37)

This formula manifests that entanglement entropy has a geometric explanation within
the AdS/CFT correspondence. The above requirements on the surface in the bulk are
formalised as 𝐴 and 𝐴̂ sharing the same boundary and being homologous to each other.
Moreover, 𝐴̂ has to be an extremum of the area functional and, if there is more than
one extremal surface, the proper choice is the 𝐴̂ with the smallest area, see e.g. [236] for
further discussion. Evaluating (3.37) e.g. for an empty three-dimensional Anti-de Sitter
spacetime in Poincaré patch coordinates yields [113]

𝑆(𝜌(𝐴)) =
𝑐
3
ln 𝐿
𝜖
, (3.38)
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𝝏𝑨̂
𝑨̂

𝝏𝑨
𝑨

𝑨̄

Figure 3.4: Visualisation of the RT construction for 𝐷 = 3. Three-dimensional Anti-
de Sitter is represented by the cylinder segment. Eschers Circle Limit IV, adapted from
[438], represents a constant time slice of AdS3. The CFT defined on the boundary circle
is separated by the bipartition surface 𝜕𝐴 into two subregions 𝐴 and 𝐴̄. On the gravity
side, the bulk bipartition surface is obtained by extending the boundary bipartition surface
into the bulk. The subregion 𝐴̂ attached to 𝐴 is defined by the area bounded by the bulk
bipartition surface 𝜕𝐴̂. The minimal area of 𝜕𝐴̂, in this case simply the length of the
corresponding geodesic, determines the entanglement entropy 𝑆(𝜌(𝐴)).

which agrees with the well known result given in (2.39) with 𝑐1 = 𝑐
3

obtained in standard
CFT2 [221]. Here, 𝐿 is the length of the subregion in the CFT and 𝜖 is the UV cutoff. In
this calculation, the relation (3.1) between the central charge 𝑐 and the Newton constant
𝐺(3)

N as well as the Anti-de Sitter radius 𝐿AdS was used. For details on calculating the
RT formula in more complicated settings, i.e. black holes in Anti-de Sitter spacetime or
generalisations to higher dimensions, see e.g. the reviews [114, 191, 236, 238, 439].

In the original papers [113, 114], the RT formula (3.37) was tested mostly for 𝐷 =
3, where the minimal surface is simply a geodesic between two points in the boundary.
Moreover, only static geometries were considered. A covariant version of (3.37) applicable
for arbitrary geometries was derived in [440]. Moreover, the RT formula was shown to be
true in arbitrary dimension 𝐷 for static geometries in [441] (see also [229]). The extension
of this to include time dependence was discussed in [442]. A semiclassical version of
(3.37) including 1

𝑁
corrections, i.e. quantum corrections, was derived in [443]. Due to the

similarity of the Bekenstein bound (3.4) and the RT formula (3.37), it became an interesting
question whether the thermal entropy of black holes might actually be interpreted as an
entanglement entropy. For discussions in this direction see e.g. [444–446]. Finally, the RT
formula can be regarded as an explicit realisation of ‘entanglement creating spacetime’ as
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envisioned in [115–117]. We will provide more details on the last point in sec. 3.2.2.

This concludes our discussion of the general properties of the AdS/CFT correspondence
as well as holographic entanglement entropy. In the next section, we will focus on the
properties of black holes in AdS/CFT.

3.2. The Factorisation Puzzle

As discussed in the previous sections, the AdS/CFT correspondence establishes a duality
between a theory of (quantum) gravity and a QFT without gravity in one spatial dimension
less. The holographic dictionary associates objects in the theory of gravity with objects in
the field theory. A particular interesting instance, which will be the core theme for most
of the remaining sections, is the duality between the eternal black hole in Anti-de Sitter
spacetime and the thermofield double (TFD) state [112]. More precisely, the eternal black
hole has two asymptotic regions, i.e. two asymptotic boundaries with CFTs defined on each
of them. Each of the CFTs is thermal at a temperature equal to the Hawking temperature
of the black hole, i.e. each of the CFTs are dual to a one-sided black hole. The TFD state
is an entangled state comprised of energy eigenstates of both these CFTs and is dual to
the two-sided black hole. This associates a wormhole interpretation to the eternal black
hole, where the two CFTs are connected by a wormhole across the black hole interior. This
idea was first put forward in [115, 116] and provided the basis for the ER=EPR proposal
[118]. However, this duality also gives rise to a puzzle, which can be understood as follows.
On the one hand, the two CFTs are spacelike separated and in particular do not share any
classical interaction. Therefore, from the boundary perspective, the full Hilbert space is
expected to factorise, H = H (𝐿)⊗H (𝑅). On the other hand, however, the dual picture is
a smooth classical geometry. From the dual bulk perspective, there is no reason to expect
a factorised Hilbert space. This difference in the Hilbert space structure is an apparent
conflict within the AdS/CFT correspondence that has been coined the factorisation puzzle
[120]. Assuming that the AdS/CFT correspondence is true, either in the gravity or the
field theory description (or maybe even in both) something has been overseen, which by
incorporating resolves these seemingly conflicting statements. In the following sections,
we elaborate on this, starting with a discussion in sec. 3.2.1 how the TFD state arises as
the state dual to the eternal black hole using the Hartle–Hawking wave functional [447].
Subsequently, we give an account of the ER=EPR proposal and the factorisation puzzle in
sec. 3.2.2.
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3.2.1. The Eternal Black Hole and the Thermofield Double State

The TFD state has been used to describe quantum systems at finite temperature using
state vectors instead of density operators. Correspondingly, the TFD state is understood
as a purification of the thermal density operator. As alluded to in sec. 2.3.1, this state
provides a cyclic and separating vector when discussing operator algebras of type II and
type III [324]. Moreover, it is an essential part of developing thermofield dynamics, which
is a field theory version of quantum statistics [448]. Based on this latter role of the TFD
state, it was discussed in [449] how the TFD state arises for generic static spacetimes with a
Killing horizon, including in particular black hole spacetimes. This shows the close relation
between the temperature experienced by the Rindler observer discussed in sec. 2.1.2 and
the temperature of black holes [110, 223]. Due to this close similarity, it should not come as
a surprise that the TFD state dual to the eternal black hole can be derived using analogous
methods as in sec. 2.1.2 upon replacing the empty Minkowski spacetime with the black
hole spacetime. In fact, the thermal density operator associated to the Rindler observer
(2.32) can be purified into a state vector schematically given by

|TFD⟩Rin ∝
∑

𝑛
𝑒−𝜋𝐸𝑛|𝑛<, 𝑛

∗
>⟩ , (3.39)

where 𝐸𝑛 and |𝑛<∕>⟩ are the eigenvalues and eigenstates of 𝐾̃<∕>. The meaning of the
asterisk will be explained shortly. The expression in (3.39) resembles the TFD state (2.107)
for 𝛽 = 2𝜋. This can be understood as follows. In sec. 2.1.2 we have discussed how the
reduced density operator can be computed using the path integral. By the analogous
methods, we may also obtain the above state by changing the integration discussed in
and before (2.32). In particular, while for the reduced density operator 𝜌> all degrees of
freedom 𝜙< have to be integrated over, to obtain a state vector we have to keep those.
Pictorially speaking, the evolution by 𝐾̃> depicted in fig. 2.4 has to be halved, i.e. the
range of integration corresponds to a rotation by 𝜋 instead of 2𝜋, which is the factor in
the exponential in (3.39). Moreover, this integration requires more care about the relation
between the eigenstates in Rin> and Rin<, explaining the asterisk in |𝑛∗>⟩. This comes
about as follows. In the original preparation of the state on the time slice 𝑡E = 0 discussed
in sec. 2.1.2, both 𝜙> and 𝜙< are interpreted as final states, i.e. boundary conditions on
the path integral at the end of any path. This makes intuitive sense in the Hamiltonian
time evolution depicted in fig. 2.3. However, using the angular evolution defined by 𝐾̃>

this interpretation changes. For a clockwise integration path starting at the time slice
𝑡E = 0 in Rin>, while 𝜙< is still a final state, 𝜙> is the boundary condition at the beginning
of any path, so it is an initial state. To properly incorporate this, we use an anti-unitary
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operator Θ and define the time-reversed state |𝜙∗
>⟩ = Θ|𝜙>⟩.13 As we briefly review in the

following, an analogous computation yields the TFD state as the state vector dual to the
eternal black hole in Anti-de Sitter spacetime. For details, see e.g. [450] and the excellent
review [225]. Our treatment will follow the latter reference.

The above discussion shows how to obtain the TFD state for the flat Rindler spacetime,
while we are actually interested in obtaining this state for the eternal black hole in Anti-de
Sitter spacetime. The method to obtain this state relied on the Rindler decomposition
of Minkowski spacetime, where in particular the (inverse) temperature 𝛽 = 2𝜋 can be
understood as the periodicity of the ‘time’ coordinate 𝜃 in

d𝑠2Rindler = 𝑅2d𝜃2 + d𝑅2 . (3.40)

The temperature therefore arises by demanding that there is no conical singularity and
that 𝑅 and 𝜃 are simply polar coordinates. For a Rindler observer with acceleration 𝑎 ≠ 1,
the prefactor of d𝜃2 in the metric changes to (𝑎𝑅)2, such that the periodicity has to be
adjusted to 2𝜋

𝑎
in order to avoid a conical singularity. Accordingly, the inverse temperature

is given by 𝑇 = 𝑎
2𝜋

, as stated in sec. 2.1.2. Fortunately, we may obtain the TFD state
for the eternal black hole in an analogous way by noting that also this spacetime admits
a Rindler decomposition close to the horizon. As an explicit example, for a black hole in
four-dimensional Minkowski spacetime, the Euclidean metric is given by

d𝑠2 = 𝑓 (𝑟)d𝑡2E + d𝑟2
𝑓 (𝑟)

+ 𝑟2dΩ2
2 with 𝑓 (𝑟) = 1 −

𝑟S

𝑟
, (3.41)

where 𝑟S = 2𝐺N𝑀 is the Schwarzschild radius. This metric has the well-known coordinate
and physical singularities at 𝑟 = 𝑟S and 𝑟 = 0, respectively. To obtain the Rindler version
of this metric, we introduce a new coordinate 𝑅 that absorbs the non-trivial prefactor of
d𝑟2,

d𝑅 =
√

𝑟
𝑟 − 𝑟S

d𝑟 . (3.42)

This new coordinate starts at the horizon and points outward. Close to the horizon, to
lowest order in 𝑟 − 𝑟S we may approximate

√

𝑟
𝑟 − 𝑟S

=
√

𝑟S

𝑟 − 𝑟S
+ 𝒪

(√

𝑟 − 𝑟S
)

, (3.43)

13Any anti-unitary operator can be written as a unitary operator 𝑉 times complex conjugation K . The
complex conjugation operator in turn is related to the time-reversal operator T . Therefore, Θ always
includes time reversal, converting initial and final states into each other.
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such that integrating both sides of (3.42) results in

𝑅 ≈ 2
√

𝑟S(𝑟 − 𝑟S) ⇔ 𝑟 ≈ 𝑟S +
𝑅2

4𝑟S
. (3.44)

Inserting this into the metric (3.41), close to the horizon we obtain the Rindler metric

d𝑠2 = 𝑅2

4𝑟2S
d𝑡2E + d𝑅2 + 𝑟2SdΩ2

2 , (3.45)

where we approximated 𝑟 ≈ 𝑟S in the angular part in the near horizon limit 𝑅 → 0. This
metric is regular everywhere except at 𝑅 = 0. To avoid the conical singularity at this point
we have to demand that 𝑡E has periodicity 4𝜋𝑟S. Therefore, the corresponding TFD state
has the temperature 𝛽 = 4𝜋𝑟S = 8𝜋𝐺N𝑀 , which is the familiar Hawking temperature
of a black hole of mass 𝑀 in four spacetime dimensions [109, 110]. For spacetimes in
different dimensions or with different curvature properties, the same calculations can be
performed, starting with a metric different from (3.41). For example, the eternal black
hole in 𝐷-dimensional Anti-de Sitter spacetime is described by replacing 𝑓 (𝑟) in (3.41)
with

𝑓 (𝑟) = 1 −
16𝜋𝐺N𝑀

(𝐷 − 2)Vol(S𝐷−2)𝑟𝐷−3
+ 𝑟2

𝐿2
AdS

, (3.46)

resulting in the temperature

𝛽 =
4𝜋𝐿2

AdS𝑟h

(𝐷 − 1)𝑟2h + (𝐷 − 3)𝐿2
AdS

, (3.47)

where 𝑟h is the event horizon defined as the larger solution to 𝑓 (𝑟h) = 0. For details on
deriving these quantities see e.g. [369, 451].

Deriving the TFD state as the dual description of the eternal black hole is then straight-
forward. We start analogously as in sec. 2.1.2 by defining the Hartle–Hawking wave func-
tional ΨHH[𝜙] as [447]

ΨHH[𝜙] = ⟨𝜙(𝑥)|0⟩ = ∫

𝜙(𝑡E=0,𝑥)=𝜙(𝑥)

𝜙(𝑡E=−∞)=0
D𝜙′(𝑡E, 𝑥) exp

(

−𝑆E,𝑔[𝜙′]
)

, (3.48)

where 𝑆E,𝑔 is the Euclidean action of a real scalar field propagating on the Euclidean
eternal black hole spacetime 𝑔 given by (3.41) with 𝑓 (𝑟) given by (3.46). In the near
horizon region, we approximate this metric by the corresponding Rindler metric as in
(3.45). To evaluate the path integral, we switch to evolution by an operator analogous to
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𝐾̃< performing a rotation. The duration of this evolution covers, as discussed before for
Minkowski spacetime, a half circle. This half circle has length 𝛽

2
with 𝛽 given by (3.47), so

between |𝜙>⟩ and |𝜙<⟩ we evolve by 𝑒−
𝛽
2 𝐾̃< . To account for the aforementioned subtlety

of initial and final states, we define the time-reversed state ⟨𝜙>| = Θ†
|𝜙>⟩ and write

ΨHH[𝜙] = ⟨𝜙<, 𝜙>|0⟩ = ⟨𝜙<|𝑒
− 𝛽

2 𝐾̃<Θ†
|𝜙>⟩ . (3.49)

Note that compared to sec. 2.1.2 we have suppressed the explicit path integral to reduce
clutter in the expression. Next, we insert the identity operator in terms of a complete set
of eigenstates |𝑛<⟩ to 𝐾̃<,

ΨHH[𝜙] =
∑

𝑛
⟨𝜙<|𝑛<⟩⟨𝑛<|𝑒

− 𝛽
2 𝐾̃>Θ†

|𝜙>⟩ =
∑

𝑛
𝑒−𝛽

𝐸𝑛
2
⟨𝜙<|𝑛<⟩⟨𝑛<|Θ†

|𝜙>⟩

=
∑

𝑛
𝑒−𝛽

𝐸𝑛
2
⟨𝜙<|𝑛<⟩⟨𝜙>|𝑛

∗
>⟩ , (3.50)

where in going to the second line we used the anti-linearity of Θ and defined |𝑛∗>⟩ = Θ|𝑛<⟩.14

Comparing this expression with (3.49) allows to identify the (unnormalised) TFD state as
the vacuum state |0⟩,

|TFD⟩ ∝ |0⟩ =
∑

𝑛
𝑒−𝛽

𝐸𝑛
2
|𝑛<, 𝑛

∗
>⟩ . (3.51)

Including the normalisation ⟨0|0⟩ = 𝑍(𝛽) and switching to a notation more common in
holography, we arrive at the TFD state dual to the eternal black hole [112],

|TFD⟩ = 1
√

𝑍(𝛽)

∑

𝑛
𝑒−𝛽

𝐸𝑛
2
|𝑛𝐿, 𝑛

∗
𝑅⟩ . (3.52)

This duality is visualised in fig. 3.5. As pointed out earlier, the TFD state (3.52) is an
entangled state. The reduced density operators describing the CFTs on the left and right
boundaries, 𝜌(𝐿) and 𝜌(𝑅), are mixed states with a thermal spectrum. Therefore, to describe
thermal physics in the CFT, by the AdS/CFT correspondence this amounts to considering
a black hole in the bulk spacetime, with the mass of the black hole determining the
temperature. To conclude this section, we point out that the eternal black hole in Anti-
de Sitter spacetime has the interpretation of a wormhole in spacetime. However, this
wormhole is not traversable as there is no time- or light-like geodesic that connects the
left and right asymptotic boundaries. Traversable wormholes, which can be constructed at
least theoretically, require shocks of negative energy that push back the horizon. This can

14For an anti-linear operator Υ, ⟨𝜓1|Υ†
|𝜓2⟩ = ⟨𝜓2|Υ|𝜓1⟩.
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⇔

CFT𝐿

𝑡𝐿

CFT𝑅

𝑡𝑅
|TFD⟩CFT𝐿 CFT𝑅

Figure 3.5: Visualisation of the duality between the eternal black hole in Anti-de Sitter
spacetime and the two boundary CFTs entangled in the TFD state [112]. On the left-hand
side, the eternal black hole in an Anti-de Sitter spacetime is shown in global coordinates.
The dashed lines represent the black hole horizon. At the left and right boundaries of the
AdS spacetime, marked in blue and green respectively, the left and right boundary CFTs
are defined, with time running in opposite directions. The dual description of the eternal
black hole is depicted on the right-hand side. The two CFTs, defined on the blue and green
planes that represent the left and right asymptotic boundaries, are entangled in the TFD
state.

be achieved by including a non-trivial interaction between the fields of left and right CFTs
[452, 453]. In the remaining thesis, we will however not go into detail about this and focus
on non-traversable wormholes.

The TFD state (3.52) is a single state vector providing a dual description of the eternal
black hole. However, the black hole entropy (3.3) counts the number of microstates of
the black hole. Therefore, the TFD state must not be the unique state dual to the black
hole. Rather, since the black hole entropy is a large number determined by the mass of the
black hole, there should be a correspondingly large number of microstates. An approach
towards addressing this problem was discussed in [454, 455]. These works utilised the
absence of a natural origin of time in gravity to argue for a larger class of states analogous
to (3.52) as holographic dual to the eternal black hole. The states constructed in this way
are understood as time-shifted TFD states, where the time-shift variable specifies how the
boundary is glued to the bulk geometry. This variable arises as follows. Due to the horizon,
the time-like Killing vector defined for the static black hole metric is not defined globally
(see e.g. [182] for a detailed discussion). In particular, this vector switches sign at the
horizon. Therefore, when identifying the Schwarzschild time 𝑡 with the time on the right
boundary, i.e. 𝑡𝑅 = 𝑡, the time on the left boundary 𝑡𝐿 has to have a relative sign compared
to the Schwarzschild time, i.e. 𝑡𝐿 = −𝑡. The opposite directions of time on each boundary
are visualised in fig. 3.5. Since there is no preferred origin of time, we are free to include a
shift in the identifications, say 𝑡𝑅 → 𝑡𝑅 + 𝛿 and 𝑡𝐿 → 𝑡𝐿 − 𝛿. This corresponds to shifting
the Schwarzschild time as 𝑡 → 𝑡 + 𝛿, which is an isometry of the black hole spacetime. In
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the boundary, this isometry is represented by the fact that the difference of the boundary
Hamiltonians 𝐻− = 𝐻𝐿 −𝐻𝑅 annihilates the TFD state (3.52), or equivalently [454]

𝑒i𝐻−𝛿
|TFD⟩ = |TFD⟩ . (3.53)

Following [182], this shift variable 𝛿 also appears when relating the left and right boundary
times. We can naturally identify them at the boundary as 𝑡𝐿 = 𝑡𝑅, however at the black
hole horizon, we may allow again for a shift, 𝑡𝐿 = 2𝛿−𝑡𝑅. Inserting these relations into each
other implies that 𝑡𝐿 = 𝛿 = 𝑡𝑅, so 𝛿 can be used as a time variable on both boundaries.
This shift however is locally invisible, as we also have identified 𝑡𝐿 = 2𝛿−𝑡𝑅 at the boundary
and 𝑡𝐿 = 𝑡𝑅 at the horizon, utilising the isometry to redefine 𝑡𝐿 → 2𝛿 − 𝑡𝐿 in the previous
identifications. The new relations as well imply that 𝑡𝐿 = 𝛿 = 𝑡𝑅. To a local low-energy
observer, this shift variable 𝛿 is invisible, as no correlation function is sensitive to it [455].
A non-local observer however would be able to measure 𝛿, e.g. by considering two local
observers that, after synchronising their clocks in the boundary, jump into the wormhole
from different sides and compare the clocks again [182].

As stated in (3.53), evolution with 𝐻− is a symmetry of the TFD state, describing
the isometry of the bulk spacetime. However, evolution by the sum of the Hamiltonians
𝐻+ = 𝐻𝐿 +𝐻𝑅 acts non-trivially on |TFD⟩. As discussed above, we may parametrise this
evolution by 𝛿. The class of states dual to the eternal black hole is defined by such an
evolution, resulting in the time-shifted TFD states [454, 455]

|TFD⟩𝛼 = 𝑒i𝐻+𝛿
|TFD⟩ = 1

√

𝑍(𝛽)

∑

𝑛
𝑒i𝛼𝑛𝑒−𝛽

𝐸𝑛
2
|𝑛𝐿, 𝑛

∗
𝑅⟩ , (3.54)

where 𝛼𝑛 = 2𝐸𝑛𝛿. Clearly, the special choice 𝛿 = 0 reduces the time-shifted TFD state
(3.54) back to the TFD state (3.52) originally considered in [112]. As pointed out in
[182, 454, 455], note that since the spectrum 𝐸𝑛 for CFTs is chaotic [456], by adjusting
𝛿 any value for 𝛼𝑛 can be approximated. These arbitrary phase factors however do not
influence the entanglement entropy, since the reduced density operators both of (3.52)
and (3.54) are simply the thermal density operators. Moreover, above we stated that
correlation functions are not sensitive to the particular gluing of the bulk to the boundary
specified by 𝛿. The more precise version of this statement is that correlation functions of
operators O𝑖(𝑡 = 0) in the time-shifted TFD state (3.54) are equal to correlation functions
of operators O𝑖(𝑡 = 𝛿) in the original TFD state (3.52). A local low-energy observer
cannot distinguish whether the 𝛿-dependence of a correlation function stems from the
time evolution of the inserted operators or a non-trivial gluing between the bulk and the
boundary.
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3.2.2. Einstein–Rosen vs. Einstein–Podolski–Rosen

As discussed in the previous section, the eternal black hole in Anti-de Sitter spacetime has
a wormhole interpretation. Wormholes, as solutions to the Einstein equations, have been
discussed for the first time in [119]. Due to the authors of this paper, wormholes are also
referred to as Einstein–Rosen bridges (ER bridges). The same authors in collaboration with
Podolski developed the notion of entanglement in [15]. Bipartite entangled states in general
settings contain what has been dubbed Einstein–Podolski–Rosen pairs (EPR pairs) as a
source of the entanglement, inspired by the original discussion of two-particle entanglement
in [15]. The TFD state (3.52) and its generalisation (3.54) can be interpreted as containing
EPR pairs between the left and right CFTs. As pointed out in [115, 116], the holographic
duality between the eternal black hole and the TFD state can be regarded as a hint that in
fact, gravitational wormholes arise due to entanglement, which is a quantum mechanical
feature. In the opposite direction, one can also say that entanglement is responsible
for ‘creating’ a wormhole. To develop an intuition behind this proposal it is worthwhile
to consider the entanglement properties of the TFD state in more detail. Since (3.52)
is a state vector, its density operator 𝜌TFD = |TFD⟩⟨TFD| has vanishing entanglement
entropy 𝑆(𝜌TFD) = 0. The reduced density operators for the left and right CFTs, 𝜌(𝐿) and
𝜌(𝑅), are given by thermal and thereby mixed states. Correspondingly, the entanglement
entropy (2.10) for both systems is non-vanishing, 𝑆(𝜌(𝐿∕𝑅)) ≠ 0. In particular, the mutual
information (2.46) is given by 𝐼(𝐿∶𝑅) = 2𝑆(𝜌(𝐿∕𝑅)). Let us compare this with the setting
of thermal Anti-de Sitter spacetime. Here as well, each CFT is described by a thermal
density operator, however the state describing the two thermal CFTs is given simply by
𝜌th = 𝜌(𝐿) ⊗ 𝜌(𝑅). Clearly, the reduced density operators are the same as for the TFD
state, and correspondingly we again have 𝑆(𝜌(𝐿∕𝑅)) ≠ 0. However, 𝜌th is a mixed state,
so we also have 𝑆(𝜌th) ≠ 0. In particular, since 𝜌th is a tensor product, according to
(2.12) we have 𝑆(𝜌th) = 2𝑆(𝜌(𝐿∕𝑅)), so the mutual information between the left and right
CFT in the thermal state vanishes. This shows that in the thermal state 𝜌th, there are no
quantum correlations. To understand how this observation alludes to creating a wormhole,
it is useful to consider the dual spacetime descriptions of both the TFD state and the
thermal state. We have already established the Penrose diagram of the eternal black hole
in fig. 3.5 as a dual description of the TFD state. The thermal state 𝜌(𝐿) on the other hand
can be understood as a single Rindler wedge of the spacetime, i.e. the left exterior region.
Likewise, 𝜌(𝑅) corresponds to the right exterior region. However, since the overall state 𝜌th

is simply a tensor product, these two wedges do not share any connection. In other words,
observers of the left and right CFTs in the state 𝜌th have no way of meeting since there are
no geodesics connecting the left and right CFTs. This is contrary to the spacetime dual
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𝜌TFD = |TFD⟩⟨TFD| 𝜌th = 𝜌(𝐿) ⊗ 𝜌(𝑅)

Figure 3.6: On the left, it is visualised how observers, represented by the red arrows, in the
eternal black hole geometry can meet behind the horizon. Moreover, spacelike geodesics
such as the orange line between the left and right boundaries can be defined. On the right,
the geometry corresponding to the thermal state 𝜌th is shown. Observers cannot meet as
there is no region behind the horizon, and correspondingly geodesics between the left and
right boundaries cannot be defined.

of the TFD state, where observers can meet behind the horizon, i.e. in the interior region
of the black hole. Correspondingly, there exist spacelike geodesics connecting the left and
right boundaries. A visualisation of this is provided in fig. 3.6.

This example shows how the entanglement contained in the TFD state is responsible for
creating the interior region of the eternal black hole. In terms of the geodesics stretching
between the left and right boundaries, we can also phrase this as entanglement being
responsible for the connectedness of spacetime. Moreover, the eternal black hole is not the
only instance where entanglement creates spacetime. As pointed out in [115, 116] based
on the black hole example, an analogous statement is true for more general spacetimes.
This comes about by involving the RT formula (3.37), which states that the entanglement
between subregions of the CFT is computed holographically by calculating the area of a
minimal surface in the bulk spacetime. Given a subregion 𝐴 of a CFT and its complement
𝐴̄, the bulk subregion 𝐴̂ attached to 𝐴 and its complement ̄̂𝐴 are separated by the RT
surface 𝜕𝐴̂. Reducing the area of this surface reduces the entanglement between the two
subregions. In the limit where the entanglement vanishes, the two subregions become
disconnected, as the area of the surface separating the subregions vanishes. So also for
more general bulk geometries, a non-vanishing entanglement entropy can be interpreted as
a geometric connectedness of spacetime between the subregions, as visualised in fig. 3.7.
The idea of entanglement creating spacetime was given a solid mathematical analysis in
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𝐴
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̄̂𝐴 →
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Figure 3.7: Visualisation of the relation between entanglement and the connectedness of
spacetime. From left to right, the area of the bipartition surface 𝜕𝐴̂ decreases. On the
left and in the middle, two instances of non-vanishing entanglement between 𝐴 and 𝐴̄
are shown. In this case, the corresponding bulk subregions 𝐴̂ and ̄̂𝐴 are connected. On
the right, where the area of 𝜕𝐴̂ and correspondingly the entanglement between 𝐴 and 𝐴̄
vanishes, the spacetime is no longer connected.

[118], where it was shown that the creation of a pair of (one-sided15) black holes in a
constant magnetic field background results in an entangled state describing the two black
holes. With this explicit version of the relation between entanglement and spacetime
geometry at hand, the same authors proposed that in general, any entanglement leads to
some kind of connected geometry and coined this relation ER=EPR, stating the equivalence
between entanglement described by EPR pairs [15] and wormholes in the sense of ER
bridges [119]. This relation has developed into one of the main ingredients of studying
aspects of quantum gravity [457], with recent developments on ER=EPR in string theory
and dS/CFT in [458] and [86], respectively.

As discussed in the previous paragraphs, ER=EPR provides a relation between entan-
glement, which is a quantum phenomenon, and spacetime geometry which, as a solution
to the Einstein equations, is classical. This is in perfect accordance with the weak form of
AdS/CFT, where a classical theory of gravity is dual to a strongly coupled quantum theory.
However, the ER=EPR relation was proposed to be more fundamental, in that even the
small amount of entanglement between quantum systems as small as two spins amounts to
opening a wormhole, i.e. an ER bridge, between the spins [118]. In spirit, this is closer to
the strongest form of AdS/CFT and the holographic principle, relating quantum systems
with arbitrary coupling to theories of quantum gravity. Correspondingly, the hypothetical
ER bridge between two spins is a highly quantum geometry. At the time of writing, such
geometries are not generally well understood, yet are considered to be elementary for the
ultimate goal of a theory of quantum gravity [459]. A partial aim of this thesis is to provide
further insights into this area, as we will discuss in secs. 4 and 6. The ER=EPR proposal
also led to the idea that spacetime is an emergent phenomenon. That means, spacetime
is not fundamental, but arises only in certain situations as an ‘effective’ description, e.g. in

15Two one-sided black holes can be understood as a single two-sided black hole.
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the classical limit where we expect Einstein’s theory of general relativity to take over.
According to this idea of an emergent spacetime, gravity should be understood as being
governed by dynamics of entanglement. In fact, it has been shown in a few ways that the
Einstein equations can be derived from properties of entanglement [142–144]. As a final
remark, it has been discussed recently that not ‘every’ entanglement creates the ‘same
kind’ of spacetime. This direction makes use of operator algebraic methods as reviewed in
sec. 2.3 to ascertain the properties of wormholes created by entanglement as contained in
von Neumann algebras of type I, II and III [460, 461].

Having explained the ER=EPR proposal, we are now in a position to discuss the fac-
torisation puzzle. As alluded to in the introductory paragraph to sec. 3.2, the factorisation
puzzle arises due to the absence of classical interactions between the left and right CFTs.
This absence suggests that the CFT Hilbert space factorises as H = H (𝐿) ⊗ H (𝑅).
However, by the ER=EPR proposal [118] and the corresponding theme of entanglement
creating spacetime [115–117], the quantum correlations in the form of entanglement be-
tween the CFTs on the boundaries lead to the existence of a wormhole connecting the
two spacelike separated boundary theories. The wormhole is a solution to the Einstein
equations and therefore a classical geometry. Due to the connected smooth bulk geome-
try, the Hilbert space of the bulk theory does not appear to be factorised. A particularly
illuminating example of this apparent contradiction was discussed in [462] by considering
a U(1) gauge theory defined on the two-sided black hole background spacetime. To give
more details on the factorisation puzzle, we present this example in the following. The
U(1)-gauge-invariant operators in the bulk are either local uncharged operators or closed
Wilson lines as well as Wilson lines ending on charged operators or the boundary. The
reconstruction of such bulk operators in the boundary is, in particular for an empty Anti-de
Sitter spacetime, well understood [463–465]. They correspond to gauge-invariant opera-
tors in the boundary. Since any boundary operator is invariant under bulk transformations,
the gauge-invariant operators are simply all operators of a single CFT. For a black hole
background, essentially the same logic applies to bulk operators contained entirely in either
the left or the right exterior region of the black hole. However, there also can be Wilson
lines that extend all the way from the left to the right boundary, and in that pierce the
two-sided black hole. Such Wilson lines are well-defined gauge-invariant operators of the
bulk theory. Reconstructing these operators in the boundary however is difficult, since
cutting open the Wilson line produces two bulk operators that are not gauge-invariant on
their own. On the contrary, due to the factorisation of the boundary Hilbert space, it is
expected that every operator acting on both CFTs can be written as a sum over tensor
products of operators acting on states of a single CFT. Since such single CFT operators are
manifestly gauge-invariant, also the operator acting on both CFTs is gauge-invariant. This
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is in conflict with the existence of the non-gauge-invariant operators obtained by cutting
open the Wilson line connecting both sides of the wormhole. The existence of such Wilson
lines can therefore be understood as an indicator of a connected geometry in the bulk.
This poses the factorisation puzzle in a concrete example by making the puzzle manifest
in terms of the operator content of both sides of the duality [462]. We will encounter
such Wilson lines again in sec. 5 for the specific case of AdS3/CFT2, where we discuss
non-factorisation in terms of geometric phases related to such Wilson lines.



Geometric Phases and Entanglement
in Quantum Mechanics 4

The AdS/CFT correspondence states that every object of the bulk description has a
holographically dual description by an object defined in the boundary theory. A particularly
interesting example is given by the eternal black hole and its dual description in terms of the
TFD state [112]. This is a powerful demonstration of the relation between entanglement
and a connected classical spacetime, i.e. the ER=EPR proposal [118] and ‘entanglement
creating spacetime’ [115–117]. However, as we have reviewed in sec. 3.2, this duality also
poses a puzzle, as the Hilbert space structure of the boundary appears factorised between
the boundaries, while the bulk Hilbert space is manifestly non-factorised [120]. Resolving
this puzzle is one of the main research directions to improve our comprehension of the holo-
graphic duality, to which also this thesis aims to contribute. By ER=EPR, non-factorisation
as a consequence of gravitational wormholes should have an explanation in terms of the
properties of the entanglement. It is therefore pertinent to first understand in detail the
properties of entanglement in generic quantum systems and by which notions these prop-
erties are indicated and/or quantified. The approach we take is to use geometric phases as
introduced in sec. 2.2.1 to characterise entanglement as well as the factorisation properties
of the projective Hilbert space. Such phases have the advantage of being independent of
potentially complicated local dynamics since they are sensitive to the global properties of
the system. In more detail, we first investigate factorisation in bipartite quantum systems
making use of the SZK construction [166] reviewed in sec. 2.2.2. This provides a precise
method to associate states to particular submanifolds of the projective Hilbert space based
on the entanglement contained in the state. Analysing this construction for a model of
two interacting qubits, we show how the factorisation properties of the projective Hilbert
space are captured by the value of the geometric phase. In particular, for a specific value
of the geometric phase, the submanifold singled out by the SZK construction is given by
the product of the projective Hilbert spaces of the individual qubits, with all other values
of the geometric phase corresponding to a non-factorised submanifold. Using the same line
of thought, we discuss the TFD state in light of the SZK construction. We also define a
phase of topological nature for the TFD state that reflects the non-trivial topology of the
gravitational phase space of wormhole geometries. We show this in detail for the worm-
hole solution in JT gravity analysed in [466]. Here, the path of integration computing this
topological phase can be understood as a Wilson line piercing the wormhole.
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We start our discussion by analysing factorisation properties of the projective Hilbert
space in a bipartite quantum system in sec. 4.1. In particular, we use the SZK con-
struction [166] and calculate geometric phases to characterise the factorisation properties.
Further, we define a fine structure of entanglement, where a second type of geometric
phase distinguishes states with the same entanglement properties. In all of these discus-
sions, we use a system of two coupled qubits as an explicit example. In sec. 4.2 we apply
the techniques developed in the previous section to the TFD state as the holographic dual
to the eternal black hole. We define a topological phase for the TFD state that probes
non-factorisation. Using the TFD state of the two-qubit system we compute this phase
explicitly as an illustrative example. We finish the section by showing how the same topo-
logical phase arises from the gravity perspective in an explicit example using JT gravity.
The new results discussed in this section appeared in [183] and parts of [184] and we mainly
follow the presentation therein.

4.1. Entanglement and Factorisation of the Projective
Hilbert Space

As discussed in sec. 2.3, the operator algebras of finite-dimensional systems are always of
type I. Correspondingly, there exists an irreducible representation of the algebra and the
Hilbert space H containing the state vectors admits a factorisation into Hilbert spaces
corresponding to a subsystem 𝐴 and its complement 𝐴̄, H = H (𝐴) ⊗ H (𝐴̄). However,
the physically distinguishable states are contained in the projective Hilbert space P(H ).
Even in finite dimensions, this space does not necessarily factorise into the projective Hilbert
spaces of the subregions, cf. the discussion following (2.72). As we discussed in sec. 2.2.1,
the projective Hilbert space may be understood as the base space of a fibre bundle with
fibre U(1). The geometric phases indicating the non-trivial nature of this bundle can be
used to characterise whether the projective Hilbert space factorises. This link is provided
by invoking the SZK construction [166] reviewed in sec. 2.2.2. In the following sec. 4.1.1,
we discuss the entanglement properties for the ground state of a simple two-qubit model in
light of the SZK construction. We then show how geometric phases are used to characterise
the entanglement and factorisation properties for the two qubits in sec. 4.1.2. This analysis
is followed by introducing the notion of a fine structure of entanglement in sec. 4.1.3, which
goes beyond the entanglement orbits defined by the SZK construction.
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4.1.1. Entanglement for Two Interacting Qubits

We start our analysis by discussing the entanglement properties of two interacting qubits.
Each of the qubits is represented using the Pauli matrices as 𝑆𝑖 = 1

2
𝜎⃗𝑖, where 𝑖 = 1, 2

labels the qubits and 𝜎⃗ is interpreted as a vector in R3 containing the Pauli matrices as
its entries.1 The prefactor 1

2
indicates the the qubits have spin 𝑗 = 1

2
. The dynamics of

the two-qubit system are described by the Hamiltonian [183]

𝐻 = 𝐽𝑆1 ⋅ 𝑆2 − 2𝜇𝐵𝐵𝑆1,𝑧 , (4.1)

where 𝐽 is the coupling strength between the qubits and 𝜇𝐵𝐵 is the interaction strength
of a magnetic field of absolute value 𝐵 and Bohr magneton 𝜇𝐵 with the first qubit.
This Hamiltonian can be understood as describing a hydrogen atom under the influence
of a magnetic field. The two qubits 𝑆1 and 𝑆2 describe the electron and proton spins,
respectively, with hyperfine coupling 𝐽 . The interaction between the proton spin and
the magnetic field can be neglected to first approximation, with only the Zeeman term
∝ 𝜇𝐵𝐵𝑆1,𝑧 of the electron spin and the magnetic field remaining.

We are interested in studying the entanglement properties of this system primarily for
the ground state of the Hamiltonian (4.1). Assuming that 𝐽 > 0, the ground state is given
by

|𝜓⟩ =
cos 𝛼

2
− sin 𝛼

2
√

2
|↑1↓2⟩ +

cos 𝛼
2
+ sin 𝛼

2
√

2
|↓1↑2⟩ , (4.2)

where we defined tan 𝛼 = 2𝜇𝐵
𝐵
𝐽

and the entries in |𝑖1𝑗2⟩ with 𝑖, 𝑗 = ↑, ↓ refer to the
first and second qubit. In light of (2.11), the entanglement entropy of (4.2) is uniquely
determined by the Schmidt coefficients of this state. In this simple example, the Schmidt
decomposition is particularly easy to obtain. We are looking for a transformation that
expresses (4.2) in the form |𝜓⟩ =

∑

𝑖 𝜅𝑖|𝑖1𝑖2⟩, so the transformation of the second spin
|↑2⟩ → |↓2⟩ and |↓2⟩ → |↑2⟩ suggests itself. The Schmidt coefficients are then simply the
prefactors of the base vectors in (4.2). Indeed, this result is obtained also by straightforward
calculation, with Schmidt coefficients

𝜅↑ =
cos 𝛼

2
− sin 𝛼

2
√

2
=
√

1 − sin 𝛼
2

and 𝜅↓ =
cos 𝛼

2
+ sin 𝛼

2
√

2
=
√

1 + sin 𝛼
2

. (4.3)

1This is a formal definition. More precisely, 𝜎⃗ should be regarded as a ‘vector operator’ in that it provides
a map between R3 and the space of traceless 2×2 matrices. In one direction, contracting vector indices
𝑥⃗ ⋅ 𝜎⃗ provides a 2 × 2 matrix with matrix entries related to the vector components 𝑥𝑖. In the other
direction, contracting matrix indices ⟨𝜓|𝜎⃗|𝜓⟩ results in a three-dimensional vector with entries related
to the components of |𝜓⟩.
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Correspondingly, tracing the pure state 𝜌 = |𝜓⟩⟨𝜓| with |𝜓⟩ in Schmidt decomposition
over the second qubit the reduced density operator for the first qubit is given by

𝜌(1) = 𝜅2
↑|↑1⟩⟨↑1 | + 𝜅

2
↓|↓1⟩⟨↓1 | . (4.4)

The entanglement entropy then follows using either (2.10) or equivalently (2.11) as

𝑆(𝜌(1)) = sin 𝛼 ln 1 − sin 𝛼
cos 𝛼

− ln cos 𝛼
2

. (4.5)

The angle 𝛼 measuring the ratio of 𝐵 and 𝐽 determines the entanglement entropy. De-
pending on which term dominates in (4.1), the entanglement differs. In particular, the
limit 𝐵 ≫ 𝐽 implies that the influence of the coupling between the qubits is minimal. Cor-
respondingly, 𝛼 = arctan

(

2𝜇𝐵
𝐵
𝐽

)

→ 𝜋
2

and the entanglement between the qubits vanishes,

lim
𝛼→ 𝜋

2

𝑆(𝜌(1)) = 0 . (4.6)

On the other hand, the first term dominates for 𝐵 ≪ 𝐽 , so the interaction with the
magnetic field can be neglected. In this case, 𝛼 = arctan

(

2𝜇𝐵
𝐵
𝐽

)

→ 0 and (4.5) reduces
to the maximal value for two qubits,

lim
𝛼→0

𝑆(𝜌(1)) = ln 2 . (4.7)

In the light of the SZK construction [166] reviewed in sec. 2.2.2, this two-qubit system,
i.e. 𝑛 = 2 in the section just mentioned, provides the smallest non-trivial example. We
discuss this in detail in the following. The Hilbert space of this system is given by H = C4,
with projective Hilbert space P(H ) = CP3. To obtain the entanglement orbits, we have
to evaluate (2.93). The Schmidt coefficients given in (4.3) are parametrised by a single
variable 𝛼 which determines their value. For generic values 0 < 𝛼 < 𝜋

2
, the Schmidt

coefficients have different but non-vanishing values, so the multiplicities 𝑚𝑖 of the Schmidt
coefficients are given by 𝑚0 = 0 and 𝑚1 = 𝑚2 = 1. The entanglement entropy (4.5) takes a
generic non-vanishing and non-maximal value, so the state belongs to the intermediate orbit
(2.94). For this particularly simple system, this is the only intermediate orbit. Explicitly,
the orbit is given by

O
|𝜓⟩𝛼 =

U(2)
U(1)2 ×

SU(2)
Z2

= CP1
𝛼 ×RP3 , (4.8)

noting that CP1 = SU(2)
U(1)

. All state vectors related to |𝜓⟩𝛼 at fixed 𝛼 by local unitary
transformations are contained in this orbit. Two comments on this result are in order. First,
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the index 𝛼 on CP1 indicates that for every 𝛼 this part of the submanifold is topologically
equivalent to CP1, however the volume is different from the standard result for CP1 but
depends on 𝛼. We will provide further explanation of this point when calculating the
geometric phases for this system in sec. 4.1.2. Second, the factor RP3 appearing in the
orbit is a special case for the current two-qubit system that does not generalise to arbitrary
𝑛. It makes use of the fact that SU(2) ≃ SO(3) and SO(3)

Z2
= RP3. For general 𝑛, relations

between SU(𝑛) and some SO(𝑛′) with 𝑛 < 𝑛′ cannot always be established, but only exist
for special values of 𝑛. Moreover, the real projective space RP𝑛 always requires a quotient
by Z2, while for arbitrary 𝑛 the quotient is given by Z𝑛.

As discussed above, the entanglement between the qubits is maximal for 𝛼 = 0. In
particular, in this case the Schmidt coefficients (4.3) coincide and the multiplicities are
given by 𝑚0 = 0 and 𝑚1 = 2. The orbit for maximal entanglement (2.95) in this particular
example then evaluates to

O
|𝜓⟩𝛼=0 = 1 ×

SU(2)
Z2

= 1 ×RP3 . (4.9)

The states in this orbit are given by the familiar Bell states. In particular, in the limit
𝛼 → 0 the ground state (4.2) reduces to

lim
𝛼→0

|𝜓⟩ =
√

1
2
(

|↑1↓2⟩ + |↓1↑2⟩
)

= |Bell⟩ . (4.10)

Finally for 𝛼 = 𝜋
2

the entanglement vanishes. In this case, the Schmidt coefficients evaluate
to 𝜅↑ = 0 and 𝜅↓ = 1, so the multiplicities are found as 𝑚0 = 1 and 𝑚1 = 1. The orbit of
vanishing entanglement (2.96) then follows as

O
|𝜓⟩𝛼= 𝜋2

=
U(2)
U(1)2 ×

U(2)
U(1)2 = CP1 × CP1 . (4.11)

The states in this orbit are simple product states. To be specific, in the limit 𝛼 → 𝜋
2

the
ground state (4.2) is given by

lim
𝛼→ 𝜋

2

|𝜓⟩ = |↓1↑2⟩ . (4.12)

The orbit (4.11) is composed of the projective Hilbert spaces CP1 of the individual spins.
Therefore, states with vanishing entanglement are part of a factorised projective Hilbert
space, while for all other states contained in either (4.8) or (4.9), the submanifold of the
projective Hilbert space assumes a more complicated form.

In this discussion we considered 𝛼 only in the interval between 0 and 𝜋
2
. However, with
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𝛼 = −𝜋
2

|↑1↓2⟩

𝛼 = 0
|Bell⟩

𝛼 = 𝜋
2

|↓1↑2⟩

𝛼 = 0
1 ×RP3

0 < 𝛼 < 𝜋
2

CP1
𝛼 ×RP3

𝛼 = 𝜋
2

CP1 × CP1

Figure 4.1: On the left, the Schmidt simplex for the coupled two-qubit system is repre-
sented by the line. The two endpoints of the line correspond to vanishing entanglement
with the corresponding product states, while the centre of the line corresponds to the max-
imally entangled state. On the right, the Weyl chamber of the Schmidt simplex is shown.
All possible values of the entanglement entropy are contained in the Weyl chamber and
correspondingly the entanglement orbits (4.8), (4.9) and (4.11) are associated to parts of
the Weyl chamber as indicated by the colour coding.

the Schmidt coefficients (4.3) depending on sin 𝛼, under the transformation 𝛼 → −𝛼 the
Schmidt coefficients are transformed into each other. Therefore, the region −𝜋

2
≤ 𝛼 ≤ 0 has

to have an analogous interpretation in terms of the previous analysis of the entanglement
orbits. In fact, this region can be interpreted as the case 𝐽 < 0.2 In particular, 𝐵 ≫ |𝐽 |
yields 𝛼 = arctan

(

2𝜇𝐵
𝐵
𝐽

)

→ −𝜋
2
, for which the entanglement entropy (4.5) again vanishes.

Moreover, in this limit the ground state reduces to the other base vector compared to
(4.12),

lim
𝛼→− 𝜋

2

|𝜓⟩ = |↑1↓2⟩ . (4.13)

In terms of the SZK construction, while 0 ≤ 𝛼 ≤ 𝜋
2

corresponds to one Weyl chamber,
the region −𝜋

2
≤ 𝛼 ≤ 0 corresponds to the other Weyl chamber. Together, these two

regions form the full Schmidt simplex. In the current example, this is simply a line, with
particular points on the line specified by fixing 𝛼 to particular values. A visualisation for
this is provided in fig. 4.1.

Let us now discuss the above results on the entanglement as well as the submanifolds
of the projective Hilbert space in light of the ER=EPR proposal as reviewed in sec. 3.2.2.
Taking ER=EPR in its most general form, the entanglement as given in (4.5) is responsible
for creating a wormhole between the two qubits. In our discussion on the entanglement
orbits, vanishing entanglement corresponds to the factorised structure CP1 × CP1. We
may therefore intuitively visualise the wormhole as stretching between the two qubits, in
particular between the two individual projective Hilbert spaces, as in fig. 4.2. Of course,
this wormhole connecting the two qubits is far from a classical geometry as the quantum
system is far from being strongly coupled in the usual sense of AdS/CFT. However, taking

2Note that in this case, (4.2) is no longer necessarily the ground state. This does however not affect the
discussion of the SZK construction.
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CP1 CP1

Figure 4.2: Visual representation of the ER=EPR proposal for the interacting two-qubit
system. The individual projective Hilbert spaces CP1 of each qubit are connected by a tiny
wormhole.

ER=EPR seriously, geometric connections between entangled particles have to exist, and
in particular contribute to the path integral. Indeed, this was investigated in [165]. It was
shown that the partition function of an arbitrary quantum system shows wormhole(-like)
behaviour if the symplectic form of the system in question is non-exact. Such non-exact
symplectic forms lead to the presence of holonomies, as discussed in sec. 2.2.1. In the
following section, we analyse this in more detail. In particular, we show how the entan-
glement, as well as factorisation properties, can be understood in terms of the geometric
phase of the state (4.2).

4.1.2. Geometric Phase in the SZK Construction

We have now set the stage to calculate geometric phases as measures of the entanglement
and thereby also of the factorisation properties of the projective Hilbert space. As we
pointed out in secs. 2.2.1 and 2.2.2, the projective Hilbert space can be regarded as a
principle fibre bundle, cf. (2.85). Also in the SZK construction fibre bundles arise naturally
due to the structure of the entanglement orbits, as discussed below (2.93). In particular,
the base space is given by the first factor in the entanglement orbits (2.93). In the following,
we show how the geometric phases measuring the entanglement are calculated for the two-
qubit example. This will also enable us to characterise the factorisation properties of the
projective Hilbert space by the geometric phase.

To calculate the geometric phase, we need to define a local gauge field 𝐴 and a cor-
responding field strength which provides the symplectic form Ω = d𝐴 for the orbit. The
geometric phase is then given by the integral of the symplectic form as discussed around
(2.83). To define the local gauge field, we follow the method developed in [292]. The
general idea of this method is to choose an arbitrary point 𝑝 of the orbit and then use
unitary transformations to transport 𝑝 to an arbitrary point 𝑞 of the orbit. This transport
can be used to define the local gauge field independent of the initial choice for 𝑝.
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A point in the orbit, and in particular on CP1
𝛼, is represented by the coefficient matrix

of the state vector |𝜓⟩ for a fixed value of the entanglement entropy. As the orbits are
derived by studying the Schmidt coefficients, this suggests that a natural choice for 𝑝,
and indeed a particularly convenient one, is the diagonal coefficient matrix with Schmidt
coefficients as diagonal entries. For the two-qubit system, that is

𝑝 =
⎡

⎢

⎢

⎣

√

1−sin 𝛼
2

0

0
√

1+sin 𝛼
2

⎤

⎥

⎥

⎦

. (4.14)

As discussed in sec. 2.1.1, the Schmidt coefficients are invariant under unitary transforma-
tions. Therefore, by applying an arbitrary SU(2) local transformation 𝑈 to 𝑝 an arbitrary
point 𝑞 in the same orbit is obtained. If 𝑝 corresponds to the state vector |𝜓⟩ written in
Schmidt decomposition, the point 𝑞 corresponds to the state vector 𝑈⊗12|𝜓⟩ not written
in Schmidt decomposition,3 but with the same entanglement properties as |𝜓⟩. Note that
𝑈 is a local unitary transformation that acts only on the first spin, as indicated by the
identity acting on the second spin. Since the Pauli matrices provide a basis for the Lie
algebra 𝓼𝓾(2) of the group SU(2), an arbitrary transformation 𝑈 ∈ SU(2) can be written
using exponentials of Pauli matrices. We choose to work with the Euler parametrisation

𝑈 = 𝑒−i 𝜙2 𝜎𝑧𝑒−i 𝜃2𝜎𝑦𝑒−i 𝜙2 𝜎𝑧 , (4.15)

where 𝜙 and 𝜃 parametrise S2 ≃ CP1. The point 𝑞 is then defined as

𝑞 = 𝑈𝑝 . (4.16)

Since 𝑝†𝑝 = 𝑝2 = 𝜌(1) given in (4.4), the trace of 𝑝2 equals one. The same is true for 𝑞†𝑞
since 𝑞†𝑞 = 𝑝2. Since 𝑝 does not depend on 𝜙 or 𝜃, it follows that differentiating tr

(

𝑞†𝑞
)

w.r.t. the parameters 𝜙 and 𝜃 vanishes due to d(𝑞†𝑞) = d𝑝2 = 0. In particular, by pulling
the derivative inside the trace we find that

ℜ𝔢
[

tr
(

𝑞†d𝑞
)]

∝ tr
(

𝑞†d𝑞
)

+ tr
(

d𝑞†𝑞
)

= tr
(

d(𝑞†𝑞)
)

= 0 . (4.17)

So d tr
(

𝜌(1)
)

= 0 is realised by the vanishing of the real part of tr
(

𝑞†d𝑞
)

. The imaginary

3Note that as discussed around (2.17), obtaining the Schmidt decomposition for an arbitrary |𝜓⟩ can be
understood as a unitary transformation of the basis that |𝜓⟩ is written in. Applying a unitary transfor-
mation 𝑈 on a vector in Schmidt decomposition therefore changes the basis away from the Schmidt
decomposed form of |𝜓⟩. Essentially, 𝑈 may be understood as the inverse of the transformation that
achieves the Schmidt decomposition.
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part of this however does not vanish,

ℑ𝔪
[

tr
(

𝑞†d𝑞
)]

∝ tr
(

𝑞†d𝑞
)

− tr
(

d𝑞†𝑞
)

= 2 tr
(

𝑞†d𝑞
)

, (4.18)

where we used d𝑞†𝑞 = −𝑞†d𝑞. This allows for defining the local gauge field 𝐴 as

𝐴 = i tr
(

𝑞†d𝑞
)

. (4.19)

We point out that this definition is nothing but the more familiar definition explicitly using
the state vectors as in (2.63) in disguise. Since 𝑝 is independent of 𝜙 or 𝜃, we may write
(4.19) as

𝐴 = i tr
(

𝑝2𝑈 †d𝑈
)

= i tr
(

𝜌(1)𝐴MC
)

= i⟨𝜓|𝐴MC|𝜓⟩ = i⟨𝜓 ′
|d𝜓 ′

⟩ , (4.20)

where |𝜓⟩ is the state vector in Schmidt decomposition, |𝜓 ′
⟩ is the transformed vector

𝑈 ⊗12|𝜓⟩ and 𝐴MC = 𝑈 †d𝑈 is the (left-invariant) Maurer–Cartan form. This form is the
natural connection on a group manifold defined for any group element 𝑈 , which in the
present case is an element of SU(2) (for details on this form see e.g. [269]).

With the definition of the local gauge field established, evaluating (4.19) explicitly for
our choice of 𝑝 we obtain

𝐴N = −sin 𝛼
2

(1 + cos 𝜃)d𝜙 . (4.21)

We find that this expression vanishes nowhere except at 𝜃 = 𝜋. This gauge field is therefore
well-defined on the coordinate patch of S2 including the north pole. To obtain a gauge
field for the other coordinate patch including the south pole, we have to change the group
element 𝑈 given in (4.15) to

𝑈 = 𝑒−i 𝜙2 𝜎𝑧𝑒−i 𝜃2𝜎𝑦𝑒i 𝜙2 𝜎𝑧 . (4.22)

Evaluating (4.19) using this group element, we find

𝐴S = sin 𝛼
2

(1 − cos 𝜃)d𝜙 , (4.23)

which is nowhere vanishing except at the north pole 𝜃 = 0. Since the coordinate patches
have a non-trivial overlap, the two gauge fields (4.21) and (4.23) can be transformed
into each other as in (2.64) or (2.80) by a U(1) transformation, 𝐴S = 𝐴N − i𝑈 †d𝑈 with
𝑈 = 𝑒i sin(𝛼)𝜙.

As there is no nowhere vanishing gauge field, by the discussion of sec. 2.2.1 on principal
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fibre bundles we already know that the fibre bundle must be non-trivial. To make this
manifest in terms of the geometric phase we first compute the field strength of the local
gauge fields 𝐴N and 𝐴S,

Ω = d𝐴N = d𝐴S = sin 𝛼
2

sin 𝜃 d𝜃 ∧ d𝜙 . (4.24)

The prefactor sin 𝛼
2

indicates that the symplectic form (4.24) is defined for the orbit with
entanglement entropy given by (4.5) at a fixed value for 𝛼. The coordinate dependent
term sin 𝜃 d𝜃 ∧ d𝜙 results from the geometry of the base space S2 ≃ CP1 in that this term
is simply the volume form of S2. By (2.83), the geometric phase ΦG follows by integrating
the symplectic form. The closed two-dimensional surface Σ within the base manifold left
arbitrary in (2.83) in the present case has to be equal to the base manifold itself, resulting
in

ΦG = ∫
S2
Ω = 2𝜋 sin 𝛼 . (4.25)

The geometric phase is uniquely determined by the value of 𝛼, as is the entanglement
entropy (4.5). Therefore, the entanglement entropy can be expressed as a function of ΦG.
In other words, the geometric properties of the fibre bundle determine the entanglement
between the two qubits. In particular, the factorisation properties of the projective Hilbert
space are determined by the geometric phase. If ΦG = 2𝜋, the projective Hilbert space
factorises into the projective Hilbert spaces of the individual qubits, CP3 → CP1 × CP1.
This associates a precise value for the geometric value to a factorised submanifold of the
full projective Hilbert space. Indeed if 0 < ΦG < 2𝜋, the entanglement orbit determines a
more complicated, i.e. non-factorised, submanifold of the projective Hilbert space, CP3 →

CP1
𝛼 ×RP3. Finally if ΦG = 0, the entanglement orbit is the Lagrangian submanifold RP3

of the projective Hilbert space CP3. As discussed in sec. 2.2.2, Lagrangian submanifolds are
isotropic submanifolds, i.e. the symplectic form Ω of the full symplectic manifold vanishes
when restricted to the Lagrangian submanifold. Indeed, the symplectic form (4.24) vanishes
on the orbit of maximal entanglement as sin 𝛼|𝛼=0 = 0. Consistent with this, the geometric
phase (4.25) of the maximally entangled orbit vanishes.

The vanishing of the geometric phase for maximally entangled states can also be given an
alternative interpretation in terms of the volume of the base space. As the symplectic form
(4.24) is proportional to the volume form of S2 ≃ CP1, the geometric phase (4.25) can also
be interpreted as the volume of the corresponding entanglement orbit. The elements of the
orbits are states with the same entanglement properties, so the volume of the orbit can be
understood as a characterisation of the number of states within the orbit. Therefore, given
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the result (4.25), the orbits with less entanglement contain ‘more’ states.4 This can be
understood as follows. Our method above to define the local gauge field used a point 𝑝 as a
starting point which is then transported to an arbitrary point 𝑞 in the same orbit. In terms
of state vectors, these points correspond to |𝜓⟩ written in Schmidt decomposition and
|𝜓 ′

⟩ = 𝑈 ⊗ 12|𝜓⟩, with 𝑈 given by (4.15). The entanglement properties of these states
are the same. However, they lead to different measurement results for certain observables.
Consider e.g. the operator 𝔰𝑧 = 𝜎𝑧 ⊗ 12 measuring the magnetisation of the first spin.
Then, evaluating in |𝜓⟩ and |𝜓 ′

⟩ yields

⟨𝜓|𝔰𝑧|𝜓⟩ = − sin 𝛼 and ⟨𝜓 ′
|𝔰𝑧|𝜓 ′

⟩ = −cos 𝜃 sin 𝛼 . (4.26)

For fixed 𝜃, these measurement results become parametrically more distinct for 𝛼 → 𝜋
2
,

i.e. when |𝜓⟩ and |𝜓 ′
⟩ become product states. In this sense, orbits with less entanglement

have larger volume (4.25) as they contain more states leading to different measurement
results. In the other limit of maximal entanglement 𝛼 → 0, the two measurement results
coincide. Correspondingly, the orbit of maximal entanglement contains the least ‘number’
of states. In terms of reduced density operators, the same considerations can be made. In
fact, the reduced density operators associated to a particular orbit are elements of SU(2)
consistent with the structure of CP1

𝛼. In the limit of maximal entanglement, CP1
𝛼 reduces

to a point. Correspondingly, this orbit contains only one state, i.e. the reduced density
operator given by 𝜌(1) ∝ 1 as the first factor in (4.9). This observation also provides
a simple and intuitive explanation for the vanishing of the geometric phase for maximal
entanglement. If the base space is a single point, there is no room for defining several
coordinate patches covering the base space with non-trivial overlaps. Correspondingly,
there cannot be any non-trivial holonomy or geometric phase.

The relation between a larger volume, i.e. more states, and less entanglement might
seem counter-intuitive at first. Usually, more available states lead to more entanglement
between those states. However, this is precisely where the subtlety lies, as this interpreta-
tion of entanglement is not the same as the one we discussed above. The volume of an
entanglement orbit characterises the number of states with the same entanglement prop-
erties, i.e. with the same amount of entanglement contained in the state. In particular, the
volume does not measure any potential entanglement between states in the same orbit.

4Note that ΦG for 𝛼 = 𝜋
2 equals 2𝜋, which is half of the volume of S2, Vol(S2) = 4𝜋. This is since we

consider qubits with spin 1
2 . Had we considered an arbitrary spin 𝑗, the geometric phase would read

ΦG = 4𝜋𝑗 sin 𝛼.
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4.1.3. Fine Structure of Entanglement

In the previous section we have shown how geometric phases associated to the first factor
in the entanglement orbits (4.8), (4.9) and (4.11) can be used to characterise the entangle-
ment properties as well as the factorisation of the projective Hilbert space. In the following,
we will study how a different notion of geometric phase can be used to distinguish between
states with the same entanglement.

For this analysis, we reconsider the two-qubit system described by the Hamiltonian (4.1).
In terms of this Hamiltonian, the transformation 𝑈 ⊗ 1 discussed in the previous section,
with 𝑈 given by either (4.15) or (4.22), can be understood as a rotation to adjust the axis
of the first qubit 𝑆1 and the, for now arbitrary, axis of the magnetic field 𝐵⃗. In particular,
writing 𝐵⃗ as an arbitrary vector 𝐵⃗ = 𝐵 (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃)𝑇 with 𝐵 = |𝐵⃗|, the
rotations are such that they align the magnetic field with the 𝑧-direction of 𝑆1,

𝑈 †𝐵⃗ ⋅ 𝑆1𝑈 = 𝐵𝑆1,𝑧 , (4.27)

provided that the angles 𝜙 and 𝜃 of 𝑈 given by (4.15) or (4.22) are the same angles as
those of 𝐵⃗. Of course, a converse relation also holds, 𝑈𝐵𝑆1,𝑧𝑈 † = 𝐵⃗ ⋅ 𝑆1. Therefore,
while the Hamiltonian 𝐻 given in (4.1) describes the interaction between the first qubit
and the magnetic field for a specific alignment between 𝐵⃗ and 𝑆1, the Hamiltonian 𝑈𝐻𝑈 †

amounts to the same type of interaction but with an arbitrary alignment. The ground state
|𝜓⟩ given in (4.2) is an eigenstate to 𝐻 . Therefore, the transformed ground state 𝑈 |𝜓⟩
is an eigenstate to the transformed Hamiltonian 𝑈𝐻𝑈 †. We may therefore interpret the
geometric phase (4.25) derived in the previous section as follows. Suppose that the system
is prepared such that the first qubit and the magnetic field are aligned as 𝐵𝑆1,𝑧 with ground
state |𝜓⟩. Letting the system evolve in time, this fine-tuned alignment will eventually be
lost and turn into the more generic alignment described by 𝑈𝐻𝑈 † with ground state
𝑈 |𝜓⟩. The geometric phase (4.25) is the phase picked up by the state |𝜓⟩ when the qubit
𝑆1 and the magnetic field 𝐵⃗ become unaligned.

In this analysis, the transformation 𝑈 (denoted as 𝑈1 in the following) acting on the
first qubit 𝑆1 is fixed by the requirement that it transforms between 𝐵𝑆1,𝑧 and 𝐵⃗ ⋅ 𝑆1.
However, there is no constraint on a potential transformation 𝑈2 acting on the second
spin. In sec. 4.1.2, we used a trivial transformation 𝑈2 = 1. In the context of the above
considerations with 𝑈1 a rotation between 𝐵⃗ and 𝑆1, it is intuitive to make this choice
since the second spin does not interact with the magnetic field and correspondingly does
not require a realignment. However, the first term of the Hamiltonian (4.1) describing
the interaction between the two qubits ∝ 𝑆1 ⋅𝑆2 is not invariant under the transformation
𝑈1⊗ 1, which amounts to a highly complicated form for the Hamiltonian 𝑈1𝐻𝑈

†
1 . There
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is however a simple fix to this by considering a non-trivial transformation 𝑈2. In particular,
setting 𝑈2 = 𝑈1, the interaction term 𝑆1⋅𝑆2 is invariant. Moreover, the interaction between
the first qubit and the magnetic field is not affected by this. Since 𝐵𝑆1,𝑧 is to be read
as 𝐵

2
𝜎𝑧 ⊗ 1, any non-trivial unitary 𝑈2 cancels out. So the transformation 𝑈 = 𝑈1 ⊗ 𝑈2

with 𝑈1 and 𝑈2 given by (4.15) or (4.22) is equally reasonable to consider in relation to
physical properties. Moreover, this choice is convenient in the sense that the Hamiltonian
𝑈𝐻𝑈 † does not become as complicated as when using 𝑈2 = 1.

To summarise, as far as the alignment between 𝑆1 and 𝐵⃗ is concerned, both 𝑈2 = 𝑈1

and 𝑈2 = 1 are reasonable choices. Moreover, both choices do not affect the entanglement
properties of the ground state (4.2). Since in both cases, 𝑈 = 𝑈1 ⊗𝑈2 is a local unitary
transformation, the Schmidt coefficients of |𝜓⟩ are unaltered, i.e. they are still given by
(4.3). However, as we show in the following, the two choices for 𝑈2 amount to different
geometric phases picked up by |𝜓⟩ in the course of the evolution by 𝑈 . Within the
computations, we denote 𝑈 (𝜆) = 𝑈1 ⊗ 𝑈2 where 𝑈1 is given as before by either (4.15) or
(4.22) and 𝑈2 is given by the same expression as 𝑈1, however with the angles 𝜙 and 𝜃
replaced by 𝜆𝜙 and 𝜆𝜃, respectively. The parameter 𝜆 ∈ [0, 1] is introduced to present
the computations in a unified form, where 𝜆 = 0 corresponds to 𝑈2 = 1 and 𝜆 = 1 to
𝑈2 = 𝑈1. With this parametrisation of the full transformation 𝑈 (𝜆) we calculate the local
gauge fields using (4.20). Using either (4.15) or (4.22) for the transformation 𝑈1 and (the
form of) 𝑈2, we find

𝐴N = −sin 𝛼
2

[

(1 + cos 𝜃) − 𝜆(1 + cos 𝜆𝜃)
]

d𝜙 (4.28)

for (4.15) and

𝐴S = sin 𝛼
2

[

(1 − cos 𝜃) − 𝜆(1 − cos 𝜆𝜃)
]

d𝜙 , (4.29)

for (4.22). As before, the gauge field 𝐴N vanishes at the south pole 𝜃 = 𝜋, while the
gauge field 𝐴S vanishes at the north pole 𝜃 = 0. Correspondingly, the bundle must be
non-trivial since there is no nowhere vanishing gauge field. On the non-trivial overlap of the
coordinate patches, a U(1) transformation between the gauge fields can be established as
𝑈 = 𝑒i sin(𝛼)𝜙(1−𝜆) in 𝐴S = 𝐴N−i𝑈 †d𝑈 . Note in particular that for 𝜆 = 1, this transformation
𝑈 reduces to one, providing an early hint that in this case, the bundle is trivial as the
coordinates in each patch are equal, i.e. related by a transformation equal to unity. We
will shortly see this made manifest by calculating the geometric phase. Both the gauge
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fields (4.28) and (4.29) lead to the same field strength, i.e. symplectic form

Ω = d𝐴N = d𝐴S = sin 𝛼
2

(

sin 𝜃 − 𝜆2 sin 𝜆𝜃
)

d𝜃 ∧ d𝜙 . (4.30)

As a consistency check, note that the gauge fields as well as the field strength for 𝜆 = 0
reduce to the results (4.21), (4.23) and (4.24) obtained earlier. Also, the U(1) transfor-
mation between the gauge fields for 𝜆 = 0 reduces to the one discussed below (4.23). The
same is true for the geometric phase obtained by integrating (4.30) over S2,

ΦG = ∫
S2
Ω = 𝜋 sin 𝛼

[

2 − 𝜆(1 − cos 𝜆𝜋)
]

, (4.31)

matching (4.25) for 𝜆 = 0. In fact, as mentioned earlier, for 𝜆 = 1 the geometric phase
vanishes. For any other value 0 ≤ 𝜆 < 1 however, the geometric phase (4.31) is non-trivial.

We point out again that all states 𝑈 (𝜆)
|𝜓⟩ obtained from the ground state |𝜓⟩ have the

same entanglement properties, i.e. the entanglement entropy of any of these states is given
by (4.5). However, the geometric phase (4.31) for any of these states is different. We have
therefore found a one-parameter family of states 𝑈 (𝜆)

|𝜓⟩ with parameter 𝜆 that all have the
same entanglement properties but are nevertheless distinguished by their geometric phases.
The geometric phases for different 𝜆 therefore provide a fine structure of entanglement. In
the light of the results of [165] on wormholes in quantum mechanics indicated by a non-
exact symplectic form in the path integral, for 𝜆 ≠ 1 we interpret this one-parameter family
of states carrying a fine structure of entanglement as wormhole microstates in the path
integral. The presence of these microstates amounts to a non-factorisation of the partition
function of the system. We view this as a microscopic manifestation of entanglement
creating spacetime as reviewed in sec. 3.2.2. While in the current setting, we discuss a
simple quantum system of two interacting qubits, where the wormholes are actually replica
wormholes, in sec. 4.2.3 we will show that the fine structure of entanglement is also present
for actual gravitational wormholes.

Finally, we point out that the fine structure of entanglement can in principle be ob-
served in actual experiments. Geometric phases are observable by performing interference
experiments. In our case, the interference between any two states of the one-parameter
family of states 𝑈 (𝜆)

|𝜓⟩ with different 𝜆1 and 𝜆2 enables to quantify the relative geometric
phase, i.e. the difference between (4.31) evaluated for 𝜆1 and 𝜆2. Moreover, entangle-
ment can be measured using interference experiments, see e.g. [467]. To obtain sound
results in such measurements, it is important that the necessary states can be prepared
with high precision. In particular, the states to be measured have to be prepared in large
numbers to generate an adequate number of different measurements forming the basis for
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a solid statistical analysis. One platform for such measurements is provided by liquid-state
nuclear magnetic resonance, which provides experimental access to multiple qubits [468].
Moreover, superconducting quantum circuits as well as quantum dots coupled to an opti-
cal cavity [469] can be used to analyse controlled qubit pairs using quantum tomography
[470–472]. Using e.g. quantum tomography, all coefficients of the state can be measured.
From these measurement results, the geometric phase (4.31) can be recovered.

4.2. An Application with a Holographic Dual: the
Thermofield Double State

We have discussed in detail in the previous sec. 4.1 how entanglement and in particular
non-factorisation are understood and characterised by the geometric phase. In this section,
we aim to apply the same reasoning to a setup with a known gravitational dual, namely
the TFD state (3.52). This state is holographically dual to the eternal black hole [112], as
reviewed in sec. 3.2.1. We start this analysis by first drawing analogies to the two-qubit
system of the previous section in deriving the TFD state for this system in sec. 4.2.1. Next,
we briefly analyse the general TFD state in light of the SZK construction in sec. 4.2.2.
In the same section, we define a topological phase for the TFD state that probes the
topology of the parameter space, as opposed to the geometry of state space measured by
the geometric phase defined within the SZK construction. For this topological phase, we
discuss an analogous fine structure as discussed for the two-qubit system. To conclude, we
show how the topological phase defined for the TFD state can be obtained by a calculation
in gravity for a specific setting in JT gravity in sec. 4.2.3.

4.2.1. Thermalising Entanglement

In sec. 2.1.2 we have discussed how the entanglement structure of the vacuum state in
QFT provides a notion of temperature for a local observer associated to a subregion. In
particular, the Rindler observer with constant acceleration 𝑎 associated to either of the
Rindler wedges Rin>∕< experiences thermal physics at temperature 𝑇 = 𝑎

2𝜋
. While this

temperature arises by calculating the reduced density operator and is therefore due to
the entanglement structure, it should be stressed that as far as the Rindler observer is
concerned, this is an actual physical temperature. This is closely akin to the Hawking
temperature [223, 228]. In the following, we show that entanglement induces a temper-
ature not only in QFT, where vast amounts of entanglement are available, but even the
entanglement between two qubits as in (4.5) is sufficient. We also discuss the geometric
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origin of this temperature in terms of the geometric phase.

The entanglement temperature is derived by using (2.21) written slightly differently to
resemble the thermal density operator. Namely, while in (2.21) the reduced density operator
is implicitly normalised, in the following it is more convenient to make the normalisation
explicit and write

𝜌(1) = 𝑒−𝐾 (1)

tr 𝑒−𝐾 (1) , (4.32)

where 𝜌(1) is given by (4.4) and 𝐾 (1) is the modular Hamiltonian. Note that making
the normalisation tr 𝑒−𝐾 (1) explicit is useful since it is closer to the usual way of denoting
the thermal density operator, with the (modular) partition function given as 𝑍mod(𝐾 (1)) =
tr 𝑒−𝐾 (1) . Moreover, we point out that the analogous computational steps can be performed
using 𝜌(2), i.e. the reduced density operator of the second spin. Up to different signs
in intermediate steps of the following calculation, all results are the same, including in
particular the resulting entanglement temperature.

To derive the entanglement temperature we make an ansatz for the modular Hamiltonian
𝐾 (1). Since the reduced density operator 𝜌(1) is diagonal, the ansatz for the modular
Hamiltonian should be diagonal as well. Therefore, it has to be a linear combination of the
identity 1 and the third Pauli matrix 𝜎𝑧. However, including a term ∝ 1 into the ansatz
for 𝐾 (1) and inserting into (4.32), this term will always drop out since [1, 𝜎𝑧] = 0. We may
therefore use the ansatz

𝐾 (1) = ℎ
2
𝜎𝑧 , (4.33)

where ℎ is an open coefficient. We point out that since the diagonal form for (4.4) can
always be established since the Schmidt decomposition always exists, we did not restrict
generality with this ansatz. Inserting this ansatz into (4.32) and equating with the reduced
density operator (4.4) results in two equations,

𝜅2
↑ = 𝑒−ℎ

1 + 𝑒−ℎ
and 𝜅2

↓ = 1
1 + 𝑒−ℎ

, (4.34)

where 𝜅↑, 𝜅↓ are the Schmidt coefficients (4.3). Due to the normalisation of 𝜌(1), both
equations (4.34) yield the same solution for ℎ. Due to exponential functions in (4.32),
the straightforward solution to (4.34) includes a term ∝ i𝜋𝑘 where 𝑘 ∈ Z. Demanding
that the temperature is real imposes 𝑘 = 0, which chooses the principal branch of the
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straightforward solution. We then find that the coefficient ℎ is given by

ℎ = ln
𝜅2
↓

𝜅2
↑

= ln 1 + sin 𝛼
1 − sin 𝛼

. (4.35)

To obtain the entanglement temperature, we note that the modular Hamiltonian (4.33)
can be interpreted as describing the (𝑧-component of the) single qubit 𝑆1,𝑧 interacting with
the environment. The interaction strength is given by ℎ, which has the interpretation as
the interaction energy expressed in units of the temperature. To be precise, ℎ is given by
the energy 𝐸 measured in terms of the ‘thermal’ energy 𝑇ent,5

ℎ = 𝐸
𝑇ent

(4.36)

Note that this ratio of energies is consistent with the requirement that ℎ is dimensionless.
The temperature arises due to the necessity of introducing a scale in which the magnetic
energy is measured. Equating the ratio (4.36) with the expression for ℎ given in (4.35) we
obtain the entanglement temperature,

𝛽ent =
1
𝑇ent

= 1
𝐸

ln 1 + sin 𝛼
1 − sin 𝛼

. (4.37)

Using the result for the geometric phase of the two-qubit system (4.25), the entanglement
temperature can be expressed only by ΦG as

𝛽ent =
1
𝑇ent

= 1
𝐸

ln
2𝜋 + ΦG

2𝜋 − ΦG
. (4.38)

This manifests that the entanglement temperature in quantum theory has a geometric
origin. By tuning the geometric phase to appropriate values, the full temperature range is
covered. For vanishing entanglement, ΦG = 2𝜋 and the denominator inside the logarithm in
(4.38) goes to zero. Since in this case the logarithm diverges, the temperature goes to zero,
𝑇ent → 0. Note that since 0 ≤ ΦG ≤ 2𝜋, the denominator approaches zero from above and
the argument of the logarithm is always positive, ensuring that the temperature is always
real. Vanishing entanglement is therefore interpreted as the single qubit experiencing no
temperature. On the other hand, maximal entanglement corresponds to ΦG = 0. In this
case, the argument of the logarithm is equal to one and the logarithm vanishes. Therefore,
the temperature diverges, 𝑇ent → ∞. In this case, the single qubit experiences thermal
physics at infinite temperature. Note that in these considerations, the value for 𝐸 is
arbitrary but fixed.

5Note that we work in natural units 𝑘B = 1.
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We point out that in deriving the entanglement temperature (4.38) we also have derived
the TFD state (3.52) for the two-qubit system. In particular, using the above result (4.37)
the Schmidt decomposed version of the ground state (4.2) is rewritten as

|𝜓⟩ = 1
√

𝑍(𝛽ent)

(

|↓1↓2⟩ + 𝑒
−𝛽ent

𝐸
2
|↑1↑2⟩

)

, (4.39)

where 𝑍(𝛽ent) = 1 + 𝑒−𝛽ent𝐸 . This is the TFD state (3.52) with two energies 𝐸1 = 0
and 𝐸2 = 𝐸. In the previous paragraph, we discussed how the entanglement properties
are encoded in the entanglement temperature. The analogous behaviour is found for the
general TFD state (3.52). The limits 𝑇 → 0 and 𝑇 → ∞ reduce the TFD state to
a product state and a maximally entangled state, respectively. We discuss this in more
detail shortly in sec. 4.2.2. We emphasise that the above form (4.39) of the state (4.2)
can be obtained for any arbitrary state |𝜓 ′

⟩ of a two-qubit system, which can be seen as
follows. The derivation of the entanglement temperature expresses 𝛽ent using the Schmidt
coefficients, cf. (4.35). The Schmidt coefficients are defined for any arbitrary state and
therefore also for any arbitrary state |𝜓 ′

⟩ of a two-qubit system. Moreover, also the
relation between the geometric phase and the entanglement temperature (4.38) holds for
any arbitrary two-qubit system. This is since, as we showed in sec. 4.1.2, the Schmidt
coefficients of a two-qubit system depend on one parameter only. This parameter is always
related to the geometric phase ΦG defined using the SZK construction. In particular, any
two-qubit state |𝜓 ′

⟩ can be written as

|𝜓 ′
⟩ =

√

2𝜋 − Φ′
G

4𝜋
|↑1↑2⟩ +

√

2𝜋 + Φ′
G

4𝜋
|↓1↓2⟩ , (4.40)

where Φ′
G is the geometric phase of |𝜓 ′

⟩ as defined in sec. 4.1.2. Of course, the explicit
expression for Φ′

G is specific to the system under consideration, i.e. the interactions con-
tained in the corresponding Hamiltonian. Inserting the relation between the geometric
phase and the entanglement temperature (4.38) into (4.40), the TFD state (4.39) for this
system follows directly.

Using the result for the TFD state of the two-qubit system, the reduced density op-
erator 𝜌(1) assumes the form of the thermal density operator 𝜌(1)th at temperature 𝛽ent.
Correspondingly, the entanglement entropy (4.5) is rewritten as the thermal entropy 𝑆 =
𝛽ent⟨𝐸⟩ + ln𝑍(𝛽ent), where ⟨𝐸⟩ = 1

𝑍(𝛽ent)

∑2
𝑛=1𝐸𝑛𝑒

−𝛽ent𝐸𝑛 = 1
𝑍(𝛽ent)

𝐸𝑒−𝛽ent𝐸 . Therefore, we
arrive at the conclusion that the entanglement structure between two qubits gives rise to a
thermodynamic description of the physics experienced by the single qubit. This is closely
analogous to the temperature experienced by the Rindler observer. In the simple two-qubit
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system, the Rindler observer associated to either of the subregions Rin>∕< is replaced by
either of the single qubits. In particular, expectation values of observables 𝔒(1) associated
to the single qubit are written as thermal expectation values,

⟨𝔒(1)
⟩ = tr

(

𝜌(1)𝔒(1)) = 1
𝑍(𝛽ent)

tr
(

𝑒−𝛽ent𝐾̃ (1)𝔒(1)) , (4.41)

where we defined 𝐾̃ (1) = 𝑇ent𝐾 (1) which is interpreted as the physical Hamiltonian of the
thermal system at temperature 𝛽ent. The above result (4.41) implies that using only local
observables, the single qubit is not able to distinguish whether the measurement results
are due to the entanglement between the single qubit and its environment or due to a
non-trivial physical temperature equal to 𝛽ent. By our above analysis, this emergence of
temperature is directly related to the non-trivial geometry of the projective Hilbert space
indicated by the geometric phase ΦG.

4.2.2. Geometric Phase(s) of the Thermofield Double State

We have established in the previous section that even in quantum systems as simple as
two interacting qubits, a non-vanishing entanglement entropy allows for defining a notion
of temperature by interpreting the entanglement entropy as a thermal entropy. Using the
geometric phases defined by the SZK construction, it is manifest that both entanglement as
well as temperature have a geometric explanation. Moreover, this allowed for determining
the factorisation properties of the projective Hilbert space. In the following, we apply
the above results to the TFD state. This is particularly interesting as the TFD state is
considered the dual description of the eternal black hole in Anti-de Sitter spacetime, as
reviewed in sec. 3.2.1.

To start, we repeat the general form of the TFD state (3.52) in a system with 𝑁 energy
levels,

|TFD⟩ = 1
√

𝑍(𝛽)

𝑁
∑

𝑛=1
𝑒−𝛽

𝐸𝑛
2
|𝑛𝐿, 𝑛

∗
𝑅⟩ . (4.42)

This state provides a pure state description of thermal physics at temperature 𝛽. The
reduced density operator is simply the thermal density operator, and vice versa, the TFD
state is the purification of the thermal density operator with dimH 𝐿 = dimH 𝑅 = 𝑁 .
The state (4.42) has the advantage that the measurement result of an observable in either
of the subsystems 𝔒𝐿∕𝑅 can be written as an expectation value in the TFD state without
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explicitly using the reduced density operator,

⟨𝔒𝐿∕𝑅
⟩ = ⟨TFD|𝔒𝐿∕𝑅

|TFD⟩ (4.43)

where 𝔒𝐿∕𝑅 are operators that act non-trivially only on |𝑛𝐿∕𝑅⟩ but trivially on |𝑛𝑅∕𝐿⟩,
respectively. This is the generalisation of our result in (4.41). To discuss the TFD state
in light of the SZK construction [166], we note that the TFD state as given in (4.42) is
already written in Schmidt decomposed form. The Schmidt coefficients 𝜅𝑛 are given by
the square roots of the Boltzmann weights,

𝜅𝑛 =
𝑒−𝛽

𝐸𝑛
2

√

𝑍(𝛽)
. (4.44)

Clearly, all of the Schmidt coefficients are non-vanishing for generic values of 𝐸𝑛 and 𝛽.
Therefore, the multiplicity of vanishing Schmidt coefficients appearing in the generic orbit
(2.93) is zero, 𝑚0 = 0. Moreover, assuming that the energy levels are non-degenerate,
i.e. 𝐸𝑛 ≠ 𝐸𝑚 for all 𝑛 ≠ 𝑚, all of the Schmidt coefficients are different as well. Therefore,
all other multiplicities appearing in (2.93) are equal to one, 𝑚𝑛≠0 = 1. This determines the
entanglement orbit of the TFD state to be given by (2.94),

O
|TFD⟩

=
U(𝑁)
U(1)𝑁 ×

SU(𝑁)
Z𝑁

. (4.45)

Dropping the assumption of non-degeneracy, the first factor in this orbit changes accord-
ingly. As an example, suppose that one of the energies 𝐸𝑛∗ appears twice, so 𝑚𝑛∗ = 2. This
yields U(𝑁)

U(2)×U(1)𝑁−2 for the first factor. Since the Schmidt coefficients (4.44) are generically
non-zero, the second factor does not change when energy levels are degenerate.

The entanglement orbit (4.45) and its variations in the presence of degeneracy make
explicit that the projective Hilbert space is not factorised, P(H ) = CP𝑁2−1 ≠ CP𝑁−1 ×
CP𝑁−1. The factorised case P(H ) = CP𝑁−1 × CP𝑁−1 only appears in a special limit.
As mentioned in the previous section, the entanglement temperature (4.38) vanishes in
the limit of vanishing entanglement. For the TFD state (4.42), in the limit 𝑇 → 0,
i.e. 𝛽 → ∞, all Schmidt coefficients (4.44) but one go to zero. This is seen as follows.
Assuming 𝐸𝑛 > 0, all exponentials in (4.44) tend to zero in the limit 𝛽 → ∞. However,
the exponentials are divided by the square root of the partition function, which is given by
the sum of all of these exponentials. In the limit 𝛽 → ∞, this sum is dominated by the
exponential with the lowest energy as this tends to zero most slowly. In principle, we are
free to choose which 𝐸𝑛 has the smallest value, but an intuitive and canonical choice is
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𝐸1. Therefore, in the limit 𝛽 → ∞ we can approximate the denominator in (4.44) as

lim
𝛽→∞

𝑍(𝛽) = lim
𝛽→∞

𝑁
∑

𝑛=1
𝑒−𝛽𝐸𝑛 ≈ 𝑒−𝛽𝐸1 . (4.46)

Therefore the Schmidt coefficients (4.44) are approximated as 𝑒−𝛽
𝐸𝑛−𝐸1

2 with 𝐸𝑛 − 𝐸1 > 0
for 𝑛 ≠ 1. In the limit 𝛽 → ∞, we therefore have that

lim
𝛽→∞

𝜅𝑛 = lim
𝛽→∞

𝑒−𝛽
𝐸𝑛−𝐸1

2 =

⎧

⎪

⎨

⎪

⎩

lim
𝛽→∞

1 = 1 for 𝑛 = 1

0 for 𝑛 ≠ 1 .
(4.47)

With these limiting values for the Schmidt coefficients, the TFD state (4.42) reduces to a
product state,

lim
𝛽→∞

|TFD⟩ → |1𝐿1𝑅⟩ . (4.48)

The multiplicities important in the SZK construction are 𝑚0 = 𝑁 − 1 and 𝑚1 = 1,
determining the orbit (2.96) for vanishing entanglement,

O lim
𝛽→∞

|TFD⟩

= CP𝑁−1 × CP𝑁−1 , (4.49)

which is precisely the factorised submanifold of the projective Hilbert space.

In principle, the above analysis can also be stated in terms of the geometric phase for
the TFD state (4.42). While an explicit calculation for arbitrary 𝑁 is quite involved, the
simple instance of 𝑁 = 2 is sufficient to illuminate this. In this case, there are only two
Schmidt coefficients 𝜅1 and 𝜅2, given as in (4.44) with energies 𝐸1 and 𝐸2. Following the
calculations described in sec. 4.1.2, the geometric phase for the TFD state with 𝑁 = 2 is
found as

ΦG = 2𝜋𝑒
−𝛽𝐸1 − 𝑒−𝛽𝐸2

𝑒−𝛽𝐸1 + 𝑒−𝛽𝐸2
. (4.50)

Redefining the energies 𝐸𝑛 conveniently, we set 𝐸1 = 0 and 𝐸2 = 𝐸. Note that this is
always possible, already on the level of the TFD state (4.42). The necessary shift of all
energies 𝐸𝑛 → 𝐸𝑛 − 𝐸1 simply cancels due to the normalisation by the partition function
𝑍(𝛽). Inverting (4.50) for the temperature, we find exactly the relation (4.38) for 𝛽 = 𝛽ent.
As a side remark, this is consistent with our earlier statement below (4.39) that the TFD
state version for a generic two-qubit state can always be obtained. Coming back to the



4.2. An Application with a Holographic Dual: the Thermofield Double State 151

discussion of (4.50), the geometric phase determines the entanglement orbit structure
discussed previously. As before in sec. 4.1.2, the geometric phase is equal to 2𝜋 if and only
if the projective Hilbert space is factorised.

The geometric phase for the TFD state given in (4.50) characterises the entanglement
properties of the state. Moreover, it can be used to determine whether the projective Hilbert
space is factorised, cf. (4.49). There exists however another notion of geometric phase for
the TFD state which, following our discussion in sec. 2.2.1, should rather be regarded as
a topological phase [183]. This phase is sensitive to the topology of the parameter space
of the theory, rather than the curvature (i.e. the geometry) of the projective Hilbert space
induced by the entanglement. Defining this phase is motivated by observations on black
hole physics in AdS/CFT. As we have reviewed in sec. 3.2.1, time is not defined globally
in the spacetime of an eternal black hole. Rather, time is defined in the left and right
exterior wedges of the black hole, i.e. 𝑡𝐿 and 𝑡𝑅. We briefly summarise the consequences
of this observation, discussed in detail in sec. 3.2.1, in the following for the convenience
of the reader. Since the time-like Killing vector switches sign at the black hole horizon
when the time 𝑡𝑅 in the right exterior is chosen to flow in one direction, the time 𝑡𝐿 in
the left exterior has to flow in the opposite direction, cf. fig. 3.5. As time is not defined
globally, the relation between the two time coordinates is not fixed uniquely. Rather, there
can be an offset 𝛿 between the two times, defined as 𝑡𝐿 = 2𝛿 − 𝑡𝑅. The offset is usually
introduced deep in the bulk at the horizon, while times are naturally identified, i.e. 𝑡𝐿 = 𝑡𝑅,
at the boundary [182]. This offset specifies how the boundary CFTs are glued to the
black hole bulk geometry. For each value of 𝛿, the dual state to this geometry can be
computed using the Hartle–Hawking wave functional [447]. As we discussed in sec. 3.2.1,
the resulting states |TFD⟩𝛼 can be understood as time-shifted TFD states, obtained by
time evolution with the sum of the boundary Hamiltonians 𝐻+ = 𝐻𝐿 +𝐻𝑅 [182]. While
evolving with 𝐻+ leads to the phase factors 𝑒i𝛼𝑛 within |TFD⟩𝛼 denoted in (3.54), the
evolution of the TFD state by the difference of the Hamiltonians 𝐻− = 𝐻𝐿 −𝐻𝑅 is trivial
since the individual contributions cancel out, cf. (3.53). In other words, the difference of
the Hamiltonians annihilates the TFD state. On the bulk side, this represents an isometry
of the spacetime.

The time-shifted TFD states |TFD⟩𝛼 define a class of states dual to the eternal black
hole for each set of phases {𝛼}. Each set of phases corresponds to a different choice for 𝛿.
Therefore, 𝛿 is part of the parameter space of the theory. As 𝛿 has the interpretation of
time, the naturally dual variable is expected to have an interpretation of energy. Indeed,
while 𝐻− generates a symmetry of the TFD state, evolution by 𝐻+ can be used to alter
the set of phases. Therefore, 𝐻+ generates motion in the parameter space and can be
considered the second variable of the parameter space. Motivated by this observation, we



152 4. Geometric Phases and Entanglement in Quantum Mechanics

define a connection on parameter space by evolving the TFD state with 𝐻+ and taking an
exterior derivative w.r.t. the parameter 𝛿, analogous to the usual definition of a connection
as in (4.20),

𝐴 = i⟨TFD|𝑈 †d𝑈 |TFD⟩ , (4.51)

where 𝑈 = 𝑒i𝐻+𝛿. We point out that this definition does not depend on choosing |TFD⟩,
but equivalently any of the other states |TFD⟩𝛼 could have been used. To obtain the
topological phase, the connection defined in (4.51) has to be integrated along a closed
path,

Φ(TFD) = ∮ 𝐴 . (4.52)

Given the form of the time-shifted TFD states (3.54), we find that 𝛿 has the periodicity
𝛿 ∼ 𝛿 + 𝜋

𝐸𝑛
for each individual energy eigenvalue 𝐸𝑛. Integrating the connection 𝐴 along

this path yields the topological phase. While 𝛿 is a periodic variable, 𝐸𝑛 is not compact.
Therefore, also the parameter space is not a compact manifold. In particular, it is a two-
dimensional manifold, where 𝛿 and 𝐸𝑛 can be understood as angular and radial coordinates,
respectively. However, at the origin the angular coordinate loses its meaning. In particular,
the periodicity of 𝛿 is not defined at 𝐸𝑛 = 0. This is analogous to our discussion in
sec. 4.1.2, where at the north and south pole one of the angular coordinates were not
defined. In the present case, that means that the parameter space has the topology of
the punctured plane R2∖{0}. Paths around the puncture cannot be contracted to a single
point, resulting in non-trivial topological phase factors. To be more precise, at every energy
𝐸𝑛 (i.e. every radius), the corresponding angular path with periodicity 𝛿 ∼ 𝛿 + 𝜋

𝐸𝑛
leads

to a non-trivial phase factor, i.e. a winding number. Combining all these angular paths at
different radii, the punctured plane is formed. In sec. 4.2.3, we will find the same result
on the topology of parameter space from the bulk perspective.

Before calculating this topological phase for the explicit example of the two-qubit system,
we comment on the fine structure of entanglement for the topological phase of the TFD
state, as well as the analogy of this phase with the geometric phase discussed in secs. 4.1.2
and 4.1.3. In the previous section, we have found that the geometric phase (4.31) following
from the transformation 𝑈 (𝜆) vanishes when the transformations on both qubits are equal,
i.e. when 𝜆 = 1, and does not vanish otherwise. How is this realised in the present case for
the TFD state? The transformations we consider are time translations. In particular, since
time runs in opposite directions on each boundary (cf. fig. 3.5), the transformation 𝑈 =
𝑒i𝐻−𝛿 is interpreted as performing the same transformation on each boundary. Indeed, since
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this transformation is a symmetry of the TFD state, the connection defined analogously to
(4.51) for this transformation and the resulting topological phase vanishes. So also in the
holographic context, we find that performing the same transformation on both subsystems
does not amount to picking up a phase factor, corresponding to 𝜆 = 1 in sec. 4.1.3. On
the other hand, the transformation using 𝐻+ does generate a phase. In particular, using
the symmetry of the TFD state, every transformation parametrised by 𝛿 acting on both
subsystems can be brought to a transformation acting on only one of the subsystems,

𝑒i(#1𝐻𝐿+#2𝐻𝑅)𝛿
|TFD⟩ = 𝑒i(#1𝐻𝐿+#2𝐻𝑅)𝛿𝑒i#2(𝐻𝐿−𝐻𝑅)𝛿

|TFD⟩ = 𝑒i(#1+#2)𝐻𝐿𝛿
|TFD⟩ , (4.53)

where #1, #2 can be any numbers. While in this equation the resulting transformation
acts only on the left boundary, the same can be reasoned for a transformation effectively
acting only on the right boundary. Analogously to the two-qubit system, we find that
for a transformation acting only on one of the subsystems, the state picks up a phase,
corresponding to 𝜆 = 0 in sec. 4.1.3. In particular, as we noted in sec. 3.2.1, the additional
phases do not affect the entanglement entropy contained in the TFD state. Correspond-
ingly, the topological phase of the TFD state (4.52) can be regarded as a fine structure of
entanglement.

To elucidate the previous general discussion, in the following we compute the topological
phase of the TFD state in an explicit example, namely the TFD state of the two-qubit
system derived in sec. 4.2.1. The TFD state is given in (4.39). The Hamiltonian necessary
to define the evolution as in (4.51), as well as the periodicity of 𝛿, is given by the modular
Hamiltonian 𝐾 (1) in (4.33) with ℎ given (e.g.) by (4.36). To be precise, the evolution
in (4.51) is defined using the physical instead of the modular Hamiltonian. However, the
physical Hamiltonian 𝐻 (1) in the present case can be obtained by simply rescaling the
modular Hamiltonian with the temperature, 𝐻 (1) = 𝑇ent𝐾 (1). While this rescaling alters
the explicit expressions for the connection as well as the periodicity of 𝛿, the result for
the topological phase is invariant under this rescaling. As a first step in the computation,
we note that indeed evolving (4.39) by the difference of 𝐻 (1) and its analogue 𝐻 (2) is a
symmetry of the state. On the other hand, evolution with the sum of these operators for
a duration 𝛿 allows for defining the periodicity of this parameter,

𝑒i(𝐻 (1)+𝐻 (2))𝛿
|𝜓⟩ = 1

√

𝑍(𝛽ent)

(

𝑒−2i𝐸𝛿
|↓1↓2⟩ + 𝑒2i𝐸𝛿𝑒−𝛽ent

𝐸
2
|↑1↑2⟩

)

. (4.54)

The periodicity 𝛿P for 𝛿 is defined such that the time-evolved state is precisely equal to
the original state, i.e. evolution for 𝛿 results in the same state as evolution for 𝛿 + 𝛿P. In
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the above case, this determines the periodicity as

𝛿P = 𝜋𝑟
𝐸
, (4.55)

where 𝑟 ∈ Z is an integer. Evaluating the connection (4.51) for the present case is
straightforward and results in

𝐴 = 2𝐸 1 − 𝑒−𝛽ent𝐸

1 + 𝑒−𝛽ent𝐸
. (4.56)

Integrating this connection over the periodicity (4.55), the topological phase follows as

Φ(TFD) = ∫

𝛿P

0
𝐴 = 2𝜋𝑟1 − 𝑒

−𝛽ent𝐸

1 + 𝑒−𝛽ent𝐸
= ΦG𝑟 , (4.57)

where in the last equality we inserted the geometric phase (4.25) calculated as a measure
of entanglement and factorisation in sec. 4.1.2.

We pointed out before that the phase Φ(TFD) defined for the TFD state is of a topological
nature and in particular has an interpretation as a winding number. These statements can
be justified considering the result in (4.52). On the right-hand side appears the integer,
which counts how often the evolution returns to the original state. Put more abstractly,
it counts how often the path in the parameter space with topology R2∖{0} wraps around
the puncture at the origin. The other factor ΦG can be understood as follows. Usually,
when defining a winding number, the integral involved in the computation is normalised
by 2𝜋, which cancels the volume of the circle S1 along which the integral is performed.
However in the present case, the angular coordinate is not periodic by 2𝜋, but by (4.55).
Correspondingly, the volume differs from 2𝜋. Rather, the geometric phase ΦG appears,
which as discussed in sec. 4.1.2 is equal to the volume of the corresponding entanglement
orbit, cf. the second paragraph below (4.25). This change in volume is induced by the
non-vanishing entanglement between the two qubits. Moreover, we note that for maximal
entanglement the topological phase (4.57) vanishes. This happens since for maximal
entanglement, time evolution as in (4.54) leaves the state completely invariant, as occurs
for evolution using the difference of the Hamiltonians already for arbitrary entanglement.

Finally, let us point out that this topological phase is also accessible to measurements
in principle. Using quantum approximate optimisation algorithms for transverse field Ising
models [473], TFD states can be prepared experimentally with high accuracy. Adjusting this
algorithm in a proper way to prepare the time-shifted TFD state (3.54) instead of the usual
TFD state (3.52) enables to experimentally probe the entanglement structure provided by
the TFD state and also the topological phase defined above. Such experiments are an
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important step towards probing wormhole(-like) features such as the topological phase in
the lab. In the following section, we discuss how this topological phase arises from bulk
considerations. In particular, we discuss in more detail how this topological phase is related
to the wormhole interpretation as the dual bulk geometry to the TFD state.

4.2.3. Topological Phase in JT Gravity

We have now understood how a topological phase for the TFD state can be defined. This
phase probes the topology of the parameter space of the theory and in principle even is
accessible in actual experiments. In the following, we show how the same phase arises in
the gravitational picture by analysing the phase space of the theory. This will in particular
enable us to make precise which bulk features are probed by this topological phase by
specifying a particular class of bulk diffeomorphisms responsible for generating this phase.
We discuss this in detail for the case of JT gravity using insights gained in [466] (see also
[139]).

Of particular importance to this analysis are the time-shifted TFD states |TFD⟩𝛼. We
have briefly reviewed already in sec. 3.2.1 that these define a class of states dual to the
eternal black hole that arise by time evolution for an amount 𝛿 of the TFD state |TFD⟩

using 𝐻+. To obtain the phase space of the gravitational theory, it is important to note
that |TFD⟩𝛼 may also be defined directly in the path integral formalism using the Hartle–
Hawking wave functional. Given the black hole geometry with Lorentzian signature, the
TFD state is obtained by Wick rotating to Euclidean signature, fixing a time slice and
performing the path integral on that slice as described in sec. 3.2.1. In particular, for the
state |TFD⟩, the slice 𝛿 = 0 is chosen. Correspondingly, to obtain the states |TFD⟩𝛼, we
simply choose to perform the path integral at the different slice 𝛿 ≠ 0. This is visualised
on the left of fig. 4.3. The necessary steps of the calculation are mostly unchanged, except
when introducing the anti-unitary operator Θ. Before, we used this operator to define
|𝑛∗>⟩ = Θ†

|𝑛<⟩. This definition is however equally valid when including an overall phase
factor. As pointed out before, an anti-unitary operator is essentially always written as a
product of the time-reversal operator T and any unitary operator 𝑉 . Therefore, we are free
to change 𝑉 → 𝑉 ′ = 𝑒i𝛼𝑛𝑉 . Clearly, 𝑉 ′ is still unitary. This can equivalently be phrased
as defining a new time-reversal operator T that reflects about 𝛿 ≠ 0 instead of 𝛿 = 0,
without changing 𝑉 [455]. However, including the additional phases for 𝛿 ≠ 0 allows for
properly incorporating the choice of time slice 𝛿 ≠ 0. Indeed, completing the calculational
steps of sec. 3.2.1 with this choice of including the phase factors 𝑒i𝛼𝑛 in the definition of
Θ naturally leads to the time-shifted TFD states defined using the Hartle–Hawking wave
functional.
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To explain how the topological phase of the previous section arises in the gravitational
picture, the concept of asymptotic symmetries is important. These symmetries are under-
stood by analysing the fall-off behaviour of bulk diffeomorphisms close to the boundary.
While in the bulk, diffeomorphisms are a symmetry, not all diffeomorphisms are well-defined
symmetries of the boundary theory. In the context of AdS/CFT, the study [365] provides an
early example, with two copies of the Virasoro group as the asymptotic symmetry of three-
dimensional Anti-de Sitter spacetime. Moreover, the asymptotic symmetries for rotating
black holes in four bulk dimensions are analysed in [474], which also provides an intuitive
introduction to asymptotic symmetries. In general, the asymptotic symmetries arise from
putting boundary conditions such that the variational principle is well-defined. Considering
a 𝐷-dimensional manifold M with boundary, the variation of the Einstein–Hilbert action
includes the term

𝛿𝑆 ⊂ ∫𝜕M
d𝐷−1𝑥

√

𝛾 𝑇𝑖𝑗𝛿𝛾
𝑖𝑗 , (4.58)

where 𝛾 is the induced metric on the boundary, with 𝛿𝛾 𝑖𝑗 its variation. The components 𝑇𝑖𝑗
arise by the variation and form the energy-momentum tensor on the boundary [433]. To
set this boundary term to zero, usually one imposes Dirichlet boundary conditions on the
induced metric, i.e. 𝛿𝛾 𝑖𝑗 = C 𝑖𝑗 , where C 𝑖𝑗 is a tensor with constant entries. Asymptotic
symmetries then correspond to bulk diffeomorphisms that do not break these boundary
conditions. In other words, these bulk diffeomorphisms have to approach constants close
to the boundary. Among these diffeomorphisms, there exist two subclasses distinguished
by whether the corresponding constant vanishes or not. If this constant vanishes, the
corresponding diffeomorphism is referred to as trivial, and non-trivial for non-vanishing
constant. The non-trivial diffeomorphisms are also referred to as large gauge transforma-
tions and change the dual state that the boundary theory is in. Trivial diffeomorphisms
do not change this state. Using these transformations, the asymptotic symmetry group
Gasy is defined as a quotient of all allowed diffeomorphisms by the trivial diffeomorphisms.
Accordingly, an element of Gasy should be considered as a representative of an equivalence
class of diffeomorphisms. This equivalence class contains all non-trivial diffeomorphisms
related to each other by a trivial diffeomorphism. This is visualised for time translations,
which are always part of Gasy, in fig. 4.3.

Time translations are also the important transformations when applying these techniques
to the time-shifted TFD states. We pointed out before that the time-shifted states |TFD⟩𝛼

arise by time evolution using the sum of the boundary Hamiltonians 𝐻+. On the other
hand, evolution by 𝐻− is a symmetry of the TFD state and an isometry of the bulk
spacetime. Therefore, evolution by 𝐻+ corresponds to a non-trivial bulk diffeomorphism
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|TFD⟩

|TFD⟩𝛼

Figure 4.3: On the left, two time slices (red and magenta) of the eternal black hole
geometry are shown. Performing the Euclidean path integral at the respective slices leads
to the states |TFD⟩ and |TFD⟩𝛼. On the right, the types of bulk diffeomorphisms are
shown. The violet and light violet lines represent the bulk diffeomorphisms related by a
trivial diffeomorphism, while the orange line is a bulk diffeomorphism related to the other
two lines by a non-trivial diffeomorphism.

and evolution by 𝐻− corresponds to a trivial diffeomorphism. An explicit form for the
bulk diffeomorphism corresponding to evolution by 𝐻+ was discussed in [454, 455]. All
other bulk diffeomorphisms related to this particular one by the evolution of 𝐻− form an
equivalence class. Considering evolution by 𝐻+, we might for example combine this with
another evolution using 𝐻− such that the combined transformation acts only on degrees
of freedom of one boundary, which however results in the same boundary state. This
associates a bulk interpretation to the discussion of the previous section around (4.53). As
visualised in fig. 4.4, evolutions by 𝐻+ and 𝐻− correspond to fixing different time slices
than the canonical one on which the Euclidean path integral is computed. While 𝐻+ simply
amounts to fixing a different time slice with 𝛿 ≠ 0, evolution by 𝐻− corresponds to a time
slice which looks quite complicated, yet still has 𝛿 = 0 and indeed is completely equivalent
to the canonical horizontal slice at 𝛿 = 0.

Given this observation, it is clear also from the bulk perspective that evolution by 𝐻+

changes the state, and thereby defines a non-trivial path in the phase space of the theory.
The corresponding coordinates of the phase space are given by 𝛿 and 𝐻+, but not 𝐻−,
since for the asymptotic symmetry group, we quotiented the allowed transformations by the
trivial diffeomorphisms. The coordinates 𝛿 and𝐻+, carrying the notions of time and energy,
respectively, are dual to each other. As expected, the phase space is even dimensional and
can be given a symplectic structure. We will shortly discuss this in an explicit example for
JT gravity. Before that however, we point out that apart from time translations, also other
symmetries can be considered. Much like the Hamiltonians 𝐻𝐿 and 𝐻𝑅 in the present
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|TFD⟩

⇐
evolution

by 𝐻+

|TFD⟩𝛼 ⇒
evolution

by 𝐻−

|TFD⟩

Figure 4.4: Visualisation of the effect of trivial and non-trivial diffeomorphisms on the
TFD state. In the middle, the canonical time slice at 𝛿 = 0 leading to the usual TFD
state is visualised. On the left, the non-trivial diffeomorphism corresponding to 𝐻+ leads
to a different slice with 𝛿 ≠ 0 and the time-shifted TFD state. On the right, the trivial
diffeomorphism corresponding to 𝐻− changes the form of the time slice at 𝛿 = 0, but does
not change the physical properties, and in particular not the dual TFD state.

discussion, other symmetries will have generators 𝑄𝐿 and 𝑄𝑅. Evolving the appropriately
adjusted TFD state by the difference of these generators results in a symmetry of the
adjusted TFD state, while evolution by the sum leads to additional phase factors which
depend on a parameter corresponding to the considered symmetry. As an example, this
could be a rotational symmetry, with the corresponding parameter analogous to 𝛿 specifying
how the angles in the left and right boundary are oriented w.r.t. each other. For each of
these parameters, a phase factor and corresponding connection can be defined as in (4.51).
The parameter space formed by these parameters includes every classical solution, i.e. every
bulk geometry satisfying the corresponding Einstein equations. In the current two-sided
setup, this parameter space follows from the asymptotic symmetry group by taking an
appropriate quotient. Each boundary has the asymptotic symmetry group G (𝐿∕𝑅)

asy , so the
full symmetry is given by G (𝐿)

asy ⊗G (𝑅)
asy . To account for the isometries of the spacetime, this

has to be quotiented by the diagonal subgroup GD of this product. This quotient provides
the parameter space or moduli space GM of the theory,

GM =
G (𝐿)

asy ⊗ G (𝑅)
asy

GD
. (4.59)

Quantisation of this parameter space provides the projective Hilbert space. For more
details on this general construction see e.g. the first appendix of [135] (see also [475]).
The topological phase factors introduced above probe the topology of this parameter space.
For the scope of discussing non-factorisation, time translations are sufficient, which is why
we focus on this case in the following discussion. In particular, time translations are present
for any dimension of bulk and boundary, while e.g. the possible rotations depend on the
specific setting.

Let us give an explicit example for the above in JT gravity based on the results of [466],
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which we first briefly state in the following. On a manifold M that is asymptotically an
Anti-de Sitter spacetime with metric 𝑔, JT gravity is a version of two-dimensional gravity
coupled to the Dilaton field 𝜙 [426, 427]. The action of this theory is given by

𝑆JT = 2𝜋𝜙0𝜒(M ) + ∫M

d2𝑥
√

−𝑔 𝜙(𝑅[𝑔] + 2) + 2∫𝜕M
d𝑡
√

𝛾 𝜙(𝐾 − 1) , (4.60)

where 𝜙0 is the constant part of the dilaton field, 𝜒(M ) is the Euler character of the
manifold and 𝐾 is the extrinsic curvature of the boundary of M . Note that the boundary
is one-dimensional and only consists of time. Varying this action w.r.t. the metric and the
dilaton, the equations of motion are found as [466]

𝑅[𝑔] + 2 = 0 and (∇𝜇∇𝜈 − 𝑔𝜇𝜈)𝜙 = 0 , (4.61)

where ∇𝜇 is the covariant derivative for the metric with components 𝑔𝜇𝜈. A solution
to these equations describing a black hole can be found and, expressed in Schwarzschild
coordinates, is given by [466]

d𝑠2 = −(𝑟2 − 𝑟2S)d𝑡
2 + d𝑟2

𝑟2 − 𝑟2S
and 𝜙 = 𝜙b𝑟 , (4.62)

where 𝑟S = 𝜙h
𝜙b

. Here 𝜙h and 𝜙b are the values of the dilaton at the horizon and the
asymptotic boundary, respectively. In particular, a horizon is present as long as 𝜙h >
0. Correspondingly, fixing 𝜙h specifies the precise solution to the equations of motion
and therefore, 𝜙h is part of the phase space of the theory. The other variable of the
parameter space is given by 𝛿, as discussed previously. To obtain the symplectic form on
parameter space, the Hamilton equations of motion in the form (2.53) become useful. The
symplectic form is determined by calculating derivatives of the Hamiltonian w.r.t. each of
the parameters. The left and right Hamiltonians in the present setting are identified as the
component 𝑇𝑡𝑡 of the boundary energy-momentum tensor, resulting in [466]

𝐻𝐿 =
𝜙2

h

𝜙b
= 𝐻𝑅 . (4.63)

As expected, the difference 𝐻− of these Hamiltonians is a trivial operator and does not
appear as a variable in parameter space, as opposed to their sum 𝐻+. The two equations
defining this system are simple, as the time 𝛿 obviously changes with time while 𝜙h is
constant, so [466]

𝜕𝛿𝛿 = 1 and 𝜕𝛿𝜙h = 0 . (4.64)
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Using (2.53) allows to derive the symplectic form. In parameter space coordinates 𝑥 =
(𝛿, 𝜙h), this equation is written as

𝜕𝛿𝑥
𝑎 =

(

Ω−1)𝑎𝑏𝜕𝑏𝐻 , (4.65)

where in our current setting 𝐻 = 𝐻+. Using the equations of motion (4.64) and the
derivatives of the Hamiltonian 𝜕𝛿𝐻+ = 0 and 𝜕𝜙h

𝐻+ = 4𝜙h
𝜙b

results in the symplectic form
[466]

Ω =
4𝜙h

𝜙b
d𝛿 ∧ d𝜙h = d𝛿 ∧ d𝐻+ . (4.66)

The second equality makes manifest that 𝛿 is the canonically dual variable to 𝐻+.

In the following, we use the above results to obtain the topological phase of the TFD
state defined in sec. 4.2.2 by analysing the topology of the parameter space of JT gravity.
The left and right Hamiltonians generate the time translations as part of the asymptotic
symmetry groups. In particular, since the boundary for JT gravity only has the time dimen-
sion, time translations are the only transformations contained in G (𝐿∕𝑅)

asy . Therefore, the
asymptotic symmetry groups are simply U(1) transformations generated by the respective
Hamiltonians. The symmetry of the TFD state generated by 𝐻− as the isometry of the
bulk solution provides another factor of U(1), which is precisely the diagonal subgroup of
U(1)⊗ U(1). Correspondingly, at fixed energy, the parameter space has the topology

GM =
U(1)⊗ U(1)

U(1) = U(1) ≃ S1 . (4.67)

The energy is specified by the value of 𝜙h. At each value for 𝜙h, the parameter space has
the topology of a circle, which is not a simply connected manifold. In particular, to have a
geometry with a horizon as in (4.62), 𝜙h has to be non-vanishing. Therefore, the symplectic
form (4.66) on the parameter space is only defined for 𝜙h > 0. In other words, it does
not cover all of R2 in polar coordinates, but the origin is removed, i.e. the symplectic form
is defined on the punctured plane R2∖{0}, as obtained also on the quantum mechanical
side below (4.52). Therefore, the same winding numbers as in sec. 4.2.2 can be defined as
counting how often the path generated by 𝐻+ winds around the puncture, analogously to
what we obtained in the aforementioned section e.g. for the two-qubit example in (4.57).

The winding number arises due to the non-trivial topology of the parameter space, which
in turn results from non-factorisation in the bulk. In particular, the path of integration to
calculate the winding number is understood as entering the wormhole from one side, exiting
on the other side and then closing in the exterior region. In particular, we can imagine



4.2. An Application with a Holographic Dual: the Thermofield Double State 161

this path as stretching between the boundaries in the spirit of a Wilson line indicating the
non-factorisation as discussed in sec. 3.2.2. In the upcoming sec. 5.1, we will make this
more precise in the higher-dimensional setting of AdS3/CFT2.



Geometric Phases and Entanglement
in AdS/CFT 5

The notion of geometric phases is not confined to quantum systems with finite dimen-
sional Hilbert spaces, but can be straightforwardly generalised to the setting of QFT. This
generalisation requires identifying the symmetry group of the system as well as a subgroup
of said symmetry group that leaves state vectors invariant up to a phase. Quotienting
out this subgroup provides the base space of a principal fibre bundle, where the fibre itself
is given by the subgroup. This quotient space is also known as a coadjoint orbit. The
holonomy of this fibre bundle is again a geometric phase. Two examples for this procedure
important in holography, in particular AdS3/CFT2, are the Virasoro Berry phase [167] and
the modular Berry phase [168–170]. For the former, the symmetry group in question is
taken as the Virasoro group. The Virasoro Berry phase is understood as a probe of the
geometry of the coadjoint orbit. As upon quantisation the coadjoint orbit provides the pro-
jective Hilbert space, this naturally generalises the analysis of the previous section, where
we considered transformations of U(𝑛) acting on finite dimensional Hilbert spaces. Modu-
lar Berry phases on the other hand are holonomies picked up by parallel transport in the
space of modular Hamiltonians of the CFT. Physically, this parallel transport is understood
as a deformation of the CFT subregion measuring the entanglement. The modular Berry
phase is therefore understood as a probe of the entanglement structure. In this section,
we extend upon the results of sec. 4 to promote both the Virasoro and the modular Berry
phase as diagnostic tools for non-factorisation in AdS3/CFT2. In particular, these phases
are defined purely within the boundary theory such that non-factorisation of the boundary
Hilbert space becomes manifest. These two phases are particularly good candidates in this
task for the following reasons. First, the Virasoro Berry phase is defined in the same spirit
as the geometric phase within the SZK construction of sec. 4.1.2. By our detailed analysis
of this phase for two interacting qubits, we know that such phases can be used to diagnose
non-factorisation. Moreover, the modular Berry phase probes the entanglement structure
of the CFT. By the ER=EPR proposal the entanglement structure of the CFT encodes the
connected bulk geometry. The non-factorisation induced by the connected bulk geometry
therefore must also be encoded in the modular Berry phase.

A relation between wormhole physics and geometric phases has also been proposed in
[165], based on a careful analysis of the partition function in generic quantum systems.
We have already pointed to this work at the end of sec. 4.1.1. As this relation will be more
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Figure 5.1: The two-point function of the thermal partition function is shown in two cases.
On the left, the symplectic form of the thermal system is exact. In the partition function,
the integral over 𝐷(𝑖) reduces to a boundary integral and correspondingly, the full partition
function factorises, 𝑍
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. On the right, the symplectic form
is non-exact. The partition function is evaluated on the connected geometry Σ2 and the
integral over Σ2 does not reduce to a boundary integral. Accordingly, the partition function
does not factorise, 𝑍
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important to the analysis in this section, let us briefly state the main idea. For a thermal
system at inverse temperature 𝛽, the partition function is given by [476]

𝑍(𝛽) = ∫
[

D𝑋
]

exp
(

∫𝐷
Ω − ∮𝜕𝐷

d𝑡𝐻
)

= 𝑍(𝐷) , (5.1)

where 𝐷 is a disk with the thermal circle 𝜕𝐷 as a boundary, Ω = Ω𝑎𝑏d𝑋𝑎 ∧ d𝑋𝑏 is the
symplectic form and 𝑋 are the degrees of freedom of the system that the Hamiltonian 𝐻
depends on. The second equality states that the thermal partition function is identified
with the functional integral over the disk 𝐷 bounded by the thermal circle [165]. If the
symplectic form is exact the integral over 𝐷 in the partition function reduces to an integral
over 𝜕𝐷. This happens e.g. for the canonical symplectic form Ωcan = d𝑝 ∧ d𝑞, where
∫𝐷Ωcan = ∮𝜕𝐷 d𝑡 𝑝𝜕𝑡𝑞 reduces to the familiar kinetic piece of the action. In this case, the
disk 𝐷 has no influence on the physics. This changes if Ω is non-exact since ∫𝐷Ω does
not reduce to an integral over 𝜕𝐷. Since Ω is closed, dΩ = 0, the integral over 𝐷 depends
only on the boundary values of 𝑋 and the geometrical features of 𝐷 are not important.
The topology of 𝐷 however does matter for non-exact Ω. Wormholes can be introduced
to the system by replacing the disk 𝐷 with an arbitrary two-dimensional manifold Σ𝑛 that
has 𝑛 thermal circles as boundaries. This allows to define the partition function for the
wormhole with 𝑛 mouths as 𝑍(Σ𝑛) interpreted as the 𝑛-point function of the single thermal
partition function ⟨𝑍(𝛽)𝑛⟩, as visualised in fig. 5.1 for 𝑛 = 2. This partition function in
particular does not factorise [165],

⟨𝑍(𝛽)𝑛⟩ = 𝑍(Σ𝑛) ≠ 𝑍(𝐷)𝑛 = ⟨𝑍(𝛽)⟩𝑛 . (5.2)

The non-factorisation is a direct consequence of the non-exactness of Ω as in this case,
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the boundary values of 𝑋 on different boundaries are intrinsically linked by the non-trivial
topology. From the perspective of the path integral, such links are understood as non-local
terms in the symplectic form connecting different thermal circles.

By (2.83) geometric phases are defined as the integral of non-exact symplectic forms.
Therefore, the above result of [165] provides a useful tool in studying non-factorisation
due to wormhole physics using geometric phases. In this section we apply this method
to analyse non-factorisation by computing Virasoro Berry phases in the CFT2 dual to the
black hole solution in AdS3 known as the BTZ black hole [477, 478], and modular Berry
phases in the CFT2 dual to the BTZ black string. The black string is understood as a black
hole solution with a non-compact horizon. In both cases, we identify non-local terms in
the symplectic form which leads to the corresponding geometric phases. These non-local
terms render the symplectic form non-exact and therefore signal non-factorisation by the
arguments of [165]. This shows that both the Virasoro and modular Berry phases provide
measures that signal the non-factorisation of the CFT Hilbert space.

We start our analysis in sec. 5.1 by briefly reviewing how Virasoro Berry phases are
defined. We then show that Virasoro Berry phases for two entangled CFTs are coupled to
each other, indicating non-factorisation. This manifests as an additional non-local term
in the symplectic form spoiling the exactness. We demonstrate this for a toy model of
U(1) Chern–Simons theory as well as SL(2,R) Chern–Simons theory, both considered on a
spacetime with an annulus geometry. Next in sec. 5.2, we discuss modular Berry phases as
another probe of spacetime wormholes, and in that non-factorisation. We start by briefly
explaining the definition of modular Berry phases, followed by the explicit computation of
the modular Berry curvature for the two-sided BTZ black string. We interpret the non-
trivial modular Berry curvature as a probe for the spacetime wormhole. We finally discuss
which aspects of the bulk spacetime are probed by the Virasoro and modular Berry phases
as well as the topological phase defined for the TFD state in sec. 4.2.2 by specifying the
kinds of bulk diffeomorphisms associated to these phase factors. The new results discussed
in this section appeared in [185] and we mainly follow the presentation therein.

5.1. Virasoro Berry Phase

In the earlier sec. 4.1 we have discussed geometric phases in simple bipartite quantum
systems, in particular for an interacting two-qubit system. The geometric phases defined
in this context made use of the natural symmetry of bipartite 𝑛 × 𝑛-dimensional quantum
systems, namely local unitary transformations of U(𝑛)⊗ U(𝑛). This enabled us to explain
the factorisation properties of the projective Hilbert space using the geometric phase.
In this section, we generalise this approach to the setting of AdS3/CFT2. For CFT2,
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a straightforward generalisation of the geometric phase in quantum mechanical systems
leads to defining the Virasoro Berry phase [167]. In the following sec. 5.1.1, we first briefly
review how Virasoro Berry phases are defined as the holonomy of coadjoint orbits. For
details on this derivation, we refer to [167]. This essentially reformulates the techniques
used in the previous section in a way such that it is straightforwardly applicable to any
symmetry group, in particular the Virasoro group relevant for CFT2. With this machinery
at hand, we show that the presence of an eternal black hole in the AdS3 bulk spacetime
is signalled from the boundary perspective by the Virasoro Berry phase. In particular, we
derive the symplectic form and show that it is non-exact in the presence of the eternal
black hole. To illustrate the essential features in this argument, we first discuss this for
a U(1) Chern–Simons theory on an annulus topology as a toy model of the black hole in
sec. 5.1.2. Generalising these insights to an SL(2,R) Chern–Simons theory on the annulus,
which describes the actual spacetime black hole in AdS3, we show again that the resulting
symplectic form is non-exact in sec. 5.1.3. In both cases, we discuss the non-factorisation
of the corresponding Hilbert spaces in terms of open Wilson lines, related to the respective
geometric phases, stretching between the boundaries of the annuli.

5.1.1. Holonomy of Virasoro Coadjoint Orbits

The geometric phases computed in sec. 4.1 were sensitive to the geometric properties of
the projective Hilbert space. This space was understood as the base space of a principal
fibre bundle with fibre U(1). The fibre accounts for global phases of state vectors |𝜓⟩ that
cannot be accessed by any local measurement. This construction naturally generalises
as follows. Consider an arbitrary group 𝐺, with unitary representations 𝔲(𝑔) of group
elements 𝑔 ∈ 𝐺 acting on state vectors |𝜓⟩. Assuming that the group element may be
parametrised by a parameter 𝑠 ∈ [0, 1] such that 𝑔0 = 1 and 𝑔1 = 𝑔, the transformation
𝑔𝑠 describes a path on the group manifold. To this path, the sequence of states 𝔲(𝑔𝑠)|𝜓⟩
is associated. Assume further that there is a subgroup 𝐾 of 𝐺 such that transformations
𝑘 ∈ 𝐾 ⊂ 𝐺 leave the highest weight state vector |𝜙⟩ invariant up to an overall phase,
𝔲(𝑘)|𝜙⟩ = 𝑒i𝛾

|𝜙⟩. The subgroup 𝐾 is called the stabiliser group. These transformations
do not change between the rays (2.56). Therefore, the subgroup 𝐾 naturally takes the
place of U(1) used in our earlier discussions. In analogy to our discussion of the projective
Hilbert space in sec. 2.2.1, transformations 𝑘 ∈ 𝐾 only resulting in overall phases motivates
defining the homogeneous space G = 𝐺

𝐾
. This provides the base space B of a principal

fibre bundle with fibre F = 𝐾. The homogeneous space G is also known as a coadjoint
orbit. Following the method of geometric quantisation, the coadjoint orbit provides the
projective Hilbert space of the system under consideration in the presence of the symmetry
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transformations described by 𝐾 [263–265].

With the fibre bundle defined, the next step is to establish the notion of geometric
phases testing whether the bundle is trivial. As reviewed in sec. 2.2.1, non-trivial geometric
phases arise for non-trivial fibre bundles when state vectors acquire an overall phase when
being transported along a closed path. In the present context, as pointed out above,
transformations 𝑔𝑠 are understood as implementing paths. Consider now a group element
𝑔𝑠 that implements a closed path in the base space G . Due to the stabiliser group𝐾, i.e. the
fibre, the sequence of states 𝔲(𝑔𝑠)|𝜙⟩ does generally not return to exactly the initial highest
weight state |𝜙⟩. Rather 𝑔𝑠 may implement a path that is closed in the base manifold G ,
but the endpoints of the path are at different positions in the fibre, cf. the left of fig. 2.13.
In this case, the final state differs by an overall geometric phase, i.e. 𝔲(𝑔1)|𝜙⟩ = 𝑒iΦG

|𝜙⟩.
To quantify this phase factor, local gauge fields 𝐴 on the fibre bundle are required. These
are defined using the (left invariant) Maurer–Cartan form 𝐴MC = 𝔲†(𝑔𝑠)d𝔲(𝑔𝑠) which is
used to define parallel transport on the group manifold (for details see e.g. [269]). In this
formulation, the derivative is w.r.t. 𝑠. Equivalently, one may also perform the derivative
w.r.t. the parameters of the transformation 𝔲(𝑔𝑠), such as the Euler angles for compact
groups 𝐺. These parameters are understood as local coordinates of the base space. In
applications to physics, 𝑠 is often understood as the physical time such that the path
described by 𝑔𝑠 is understood as an adiabatic variation of the parameters (i.e. the Euler
angles). We will shortly provide a simple example to illustrate this in more detail. First
however, the local gauge fields are defined by the Maurer–Cartan form as

𝐴 = i⟨𝜙|𝐴MC|𝜙⟩ . (5.3)

The geometric phase is then defined as integrating 𝐴 along the closed path implemented
by 𝑔𝑠. Equivalently, more akin to what we have been discussing in previous sections,
taking another derivative of the local gauge fields results in the symplectic form Ω = d𝐴.
Integrating the symplectic form over the two-dimensional surface bounded by the closed
path defined by 𝑔𝑠 yields the geometric phase, cf. (2.83).

Before applying the above mechanism to CFT2, let us illustrate it for the simple example
of 𝐺 = SU(2). The highest weight state vector |𝜙⟩ is given by |𝑗⟩, where 𝑗 denotes the
total spin. This state vector is invariant, up to an overall phase, under transformations
generated by 𝜎𝑧, so the subgroup relevant for defining a coadjoint orbit is 𝐾 = U(1). This
is the stabiliser group for orbits of fixed 𝑗. The quotient of 𝐺 by 𝐾 results in the coadjoint
orbit G = SU(2)

U(1)
= CP1. This is the setup of a single qubit coupled to a magnetic field

considered in the original paper introducing geometric phases in physics [163]. Unitary
representations of 𝑔 ∈ 𝐺 are unitary 2 × 2 matrices. In local coordinates, in this case the
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Euler parametrisation, these are given by (4.15) and (4.22).1 For these two unitaries, the
local gauge fields follow using (5.3) for |𝜙⟩ = |𝑗⟩. The corresponding symplectic form is
proportional to the volume form of CP1 ≃ S2,

Ω = 𝑗 sin 𝜃d𝜃 ∧ d𝜙 . (5.4)

Upon integrating this symplectic form over S2, the geometric phase follows as ΦG =
4𝜋𝑗. This reproduces the well-known result that the Hopf fibration (2.84) is non-trivial
[283]. Moreover, geometric quantisation of the coadjoint orbit enforces the half-integer
quantisation of the spin, 2𝑗 ∈ Z, by the Weyl integrality condition (2.55).

Let us now discuss how this method is used to define the Virasoro Berry phase of
[167]. As suggested by the name, these geometric phases start with the Virasoro group,
i.e. 𝐺 = Vir. This is the group of conformal transformations in two spacetime dimensions
at the quantum level, i.e. for a CFT2.2 The Virasoro group can be understood as centrally
extending the group of diffeomorphisms Diff(S1) of the unit circle. Group elements of Vir
are given by pairs (𝑓, 𝛼), where 𝑓 ∈ Diff(S1). The second entry 𝛼 ∈ R accounts for the
non-trivial central charge 𝑐 of the CFT2. The highest weight state vectors are denoted
as |ℎ⟩, with ℎ the conformal weight. Here, two different stabiliser groups are possible,
one of which is of particular importance for our purpose. If ℎ > 0, the familiar case of
𝐾 = U(1) arises, generated by the Virasoro algebra element 𝑙0. However for ℎ = 0, i.e. for
the vacuum, the stabiliser group is bigger, 𝐾 = SL(2,R). This is generated by the Virasoro
algebra elements 𝑙−1, 𝑙0, 𝑙1 which satisfy the algebra 𝓼𝓵(2,R), i.e. [𝑙𝑛, 𝑙𝑚] = (𝑛 − 𝑚)𝑙𝑛+𝑚.
Accordingly, there are the coadjoint orbits G0 = Vir

SL(2,R)
and Gℎ = Vir

U(1)
. By AdS3/CFT2,

these orbits correspond to empty AdS3 and, for certain values of ℎ, to the case of our
interest, namely the black hole in AdS3. For details on these and other coadjoint orbits
of the Virasoro group, we refer the interested reader to [481–484]. Quantisation of these
coadjoint orbits produces the projective Hilbert spaces, which in this setting are more
commonly referred to as the Verma modules.

The Virasoro coadjoint orbits provide the base space of principal fibre bundles, with fibres
given by U(1) and SL(2,R) for ℎ > 0 and ℎ = 0. As for the simple case of SU(2) briefly
discussed previously, local gauge fields can be defined for these fibre bundles. Following
(5.3), this requires the Maurer–Cartan form (Θ, 𝛼Θ) for the Virasoro group. As this form

1The path in the base space CP1 ≃ S2 is parametrised by varying the two angular coordinates 𝜙 and
𝜃. Equivalently, we may assume that these two coordinates are functions of a single parameter 𝑠 that
parametrises the path. For defining the symplectic form on parameter space, the first version has to
be used, while the local gauge fields can be formulated in both versions.

2To be precise, the conformal group for CFT2 is given by two copies of the Virasoro group, corresponding
to left and right movers, see e.g. [479, 480]. Since these decouple and behave analogous to each other,
we focus our discussion on only one of the copies in the following.
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defines parallel transport on the group manifold, it must itself be an element of the group,
i.e. it has a non-trivial central term 𝛼Θ. An explicit expression has been computed in [482],
which reads

(Θ, 𝛼Θ) =
( ̇𝑓
𝑓 ′ ,

1
48𝜋 ∫ d𝜑

̇𝑓
𝑓 ′

(

𝑓 ′′

𝑓 ′

)′)

. (5.5)

Here, 𝑓 implements the path on the group manifold and is written as a function of the
spacetime coordinates 𝑡 and 𝜑 of the CFT2. Correspondingly, ̇𝑓 = 𝜕𝑡𝑓 and 𝑓 ′ = 𝜕𝜑𝑓 . A
unitary representation of (5.5) results in the Maurer–Cartan form 𝐴MC used in (5.3)

𝐴MC = 𝔲(Θ) + 𝑐𝔲(𝛼Θ) , (5.6)

where 𝑐 is the central charge of the CFT2. Here 𝔲(Θ) and 𝔲(𝛼Θ) are understood as
unitary representations of the group elements (Θ, 0) and (0, 𝛼Θ), respectively. Evaluating
the expression (5.3) for the local gauge field 𝐴 results in [482] 3

𝐴 = − 1
2𝜋 ∫ d𝜑

[

(

ℎ − 𝑐
24

)

̇𝑓𝑓 ′ − 𝑐
24

̇𝑓
𝑓 ′

(

𝑓 ′′′

𝑓 ′ − 2
(

𝑓 ′′

𝑓 ′

)2
)]

. (5.7)

The Virasoro Berry phase is then obtained by integration [167],

ΦVir = ∫ d𝑡 𝐴 . (5.8)

Associated to the path 𝑓 are state vectors 𝔲(𝑓 )|ℎ⟩ that are contained within the same
Verma module. Therefore, the phase factor (5.8) is interpreted as a probe for the geometry
of the Verma module of the highest weight state vector |ℎ⟩.

We conclude this section with three remarks. First, let us point out that, while usually
the circle and the corresponding transformations are parametrised by 𝜑 as in the above,
an equivalent way is to use the light cone coordinate 𝑥+ to parametrise the Virasoro
group describing one half of CFT2, and 𝑥− for the other copy of the Virasoro group.
This manifestly separates the left- and right-moving degrees of freedom of the CFT2,
each of which leads to a Virasoro Berry phase (5.8). Since these degrees of freedom are
decoupled, the full Virasoro Berry phase of the CFT2 is given by the sum of the individual
ones, i.e. Φ(CFT2)

Vir = Φ(+)
Vir + Φ(−)

Vir. Second, we note that the Virasoro Berry phase can
also be termed the geometric action 𝑆geo of the Virasoro group. Considering that ΦVir

in (5.8) is written as an integral over the spacetime coordinates, the integrand can be

3Note that, compared to the referenced work, we use the inverse transformation. What we call 𝑓 is their
𝑓−1.
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interpreted as encoding the dynamics of an action [482, 483]. In this interpretation, the
dynamical field is the transformation 𝑓 moving on a hollow cylinder [167].4 This has a
nice interpretation in the context of AdS3/CFT2 since three-dimensional Anti-de Sitter
spacetime is topologically a cylinder, parametrised by the bulk coordinates 𝑡, 𝑟 and 𝜑, see
e.g. [385]. Correspondingly the boundary, where the CFT2 is defined, is the hollow cylinder
parametrised by 𝑡 and 𝜑. The Virasoro Berry phase, i.e. the geometric action, therefore
naturally attains the interpretation as describing the asymptotic dynamics of AdS3. We
shall see this explicitly in sec. 5.1.3. Third, we point out that the factor ℎ− 𝑐

24
in parentheses

in the first term in (5.7) can be expressed using the energy-momentum tensor 𝑇 of the
CFT2. In particular, the expectation value of 𝑇 in the highest weight state vector |ℎ⟩
results in ⟨ℎ|𝑇 |ℎ⟩ = ℎ− 𝑐

24
. In the literature on coadjoint orbits of the Virasoro group, this

expectation value is often used to specify the particular orbit considered. One defines an
orbit label 𝑏0 = 1

2𝜋
⟨ℎ|𝑇 |ℎ⟩ that designates the orbit. From this perspective, the stabiliser

group 𝐾 arises as all transformations that leave 𝑏0 invariant.

5.1.2. An Illustrative Example: U(𝟏) Chern–Simons Theory on the
Annulus

As discussed in the introduction of sec. 5, non-factorisation can be understood by the
non-exactness of the symplectic form of the considered system. Upon integration, non-
exact symplectic forms yield geometric phases, cf. (2.83). Studying the Virasoro Berry
phase therefore enables us to gain insights into the factorisation puzzle in the setting
of AdS3/CFT2. In particular, ΦVir provides a quantity defined on the field theory side
that signals non-factorisation. Making this precise for the eternal black hole in AdS3 is
the purpose of the upcoming sec. 5.1.3. To illustrate the necessary computational steps
for the eternal black hole, in this section, we use the toy model of U(1) Chern–Simons
theory. In particular, we show that a non-exact symplectic form arises in this setting when
the theory is put on an annulus geometry. While the annulus resembles the topology
of a wormhole, we point out that this toy model is not holographic by itself and only
serves as an analogy.5 U(1) Chern–Simons theory on an annulus was analysed in detail
in [485]. In particular, the actions encapsulating the asymptotic dynamics were discussed.
Deriving these actions enables us to compute the symplectic form Ω on phase space by
first identifying the Hamiltonian of the theory and subsequently using (2.53) to calculate
Ω, analogous to our calculation of the symplectic form in JT gravity (4.66) in sec. 4.2.3.

4To clarify, we use ‘cylinder’ for the three-dimensional filled object and ‘hollow cylinder’ for the surface
of the cylinder.

5In particular, the equations of motion of the ‘bulk’ theory do not give rise to the Einstein equations,
but rather to those of electrodynamics. Correspondingly, the ‘bulk’ is not a theory of gravity.
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Chern–Simons theories are a special type of topological QFTs with gauge symmetry and
can be defined on any three-dimensional manifold M . As we pointed out in sec. 2.2.1
below (2.80), gauge theories can be understood as principal fibre bundles with fibre given by
the gauge group 𝐺. The connection one-form for such a bundle induces local gauge fields
𝐴 related by gauge transformations as in (2.80) and valued in the Lie algebra 𝓰 of 𝐺. The
symplectic form follows as the curvature two-form of these gauge fields, ΩCS = d𝐴.6 By
this symplectic form, the Chern–Simons three-form C3 is defined by dC3 = tr

(

ΩCS ∧ΩCS),
where the trace is over the indices of the gauge group 𝐺 [486]. The action of Chern–Simons
theory is then obtained as the integral of C3 over M [487]

𝑆CS[𝐴] =
𝑘
2𝜋 ∫M

C3 =
𝑘
4𝜋 ∫M

tr
(

𝐴 ∧ d𝐴 + 2
3
𝐴 ∧ 𝐴 ∧ 𝐴

)

, (5.9)

where 𝑘 is referred to as the Chern–Simons level. For details on constructing this action,
we refer the interested reader to [488].

In the following we are interested in analysing Chern–Simons theory for the case 𝐺 = U(1)
when considered on a manifold M , representing the spacetime, with the topology of an
annulus. Since U(1) is an abelian group, the Chern–Simons action (5.9) simplifies in that
the second term ∝ 𝐴∧𝐴∧𝐴 vanishes identically. Moreover, the manifold M is considered
as R×Σ, where R represents the time direction. Correspondingly, Σ is the spatial manifold
at any constant time slice, parametrised by a radial coordinate 𝑟 and an angular coordinate
𝜑. The annulus is specified by considering upper and lower bounds for the range of 𝑟,
i.e. 𝑟 ∈ [𝑟i, 𝑟o], corresponding to the inner (𝑟i) and outer (𝑟o) radii of the annulus. The
annulus is topologically equivalent to a fixed time slice of a wormhole, as visualised in
fig. 5.2. The inner and outer circles of the annulus are interpreted as the left and right
asymptotic boundaries of the eternal black hole spacetime in AdS3 at fixed time. Note
however that at this stage, as pointed out before this is only an analogy as U(1) Chern–
Simons theory is not a holographic theory. For this reason, we will refer to the wormhole in
this section as ‘topological’, following the results of [165] on non-exact symplectic forms.
The actual spacetime wormhole will be analysed in the following sec. 5.1.3.

We now compute the symplectic form for U(1) Chern–Simons theory on the annulus.
The corresponding action was discussed in [485] and reads

𝑆CS[𝐴] =
𝑘
2𝜋 ∫M

d𝑡d𝑟d𝜑
(

𝐴𝜑𝜕𝑡𝐴𝑟 + 𝐴𝑡ΩCS
𝑟𝜑

)

, (5.10)

where ΩCS
𝑟𝜑 = 𝜕𝑟𝐴𝜑−𝜕𝜑𝐴𝑟. The equation of motion obtained by varying this action w.r.t. 𝐴𝑡,

6Note that this is different from the symplectic form Ω on the phase space that we compute in this
section, as indicated by the superscript.
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𝑟o 𝑟i

𝑟

𝜑

ΣΣo = Σ|𝑟=𝑟o Σi = Σ|𝑟=𝑟i

⇔ Σo Σi𝑟

𝜑

Figure 5.2: On the left, a constant time slice of the three-dimensional eternal black hole
in an AdS spacetime is shown. Topologically, this is equivalent to an annulus as shown
on the right. The inner and outer radii 𝑟i and 𝑟o of the annulus represent the asymptotic
boundaries Σi and Σo, respectively.

i.e. ΩCS
𝑟𝜑 = 0, determines

𝐴𝑟 = 𝜕𝑟𝜇(𝑡, 𝑟, 𝜑) and 𝐴𝜑 = 𝜕𝜑𝜇(𝑡, 𝑟, 𝜑) + 𝑘0(𝑡) . (5.11)

Due to the annulus topology, circles in the 𝜑-direction are not contractible and therefore
∮ d𝜑𝐴𝜑 is non-trivial, leading to a non-trivial holonomy. This is accounted for by 𝑘0(𝑡) in
the above solution (5.11), as

∮ d𝜑𝐴𝜑 = 2𝜋𝑘0(𝑡) (5.12)

by using that 𝜇 is periodic 𝜇(𝑡, 𝑟, 𝜑) = 𝜇(𝑡, 𝑟, 𝜑 + 2𝜋). Next, boundary conditions have to
be put on 𝐴𝑡 and 𝐴𝜑 both on the inner and the outer boundary. For the later analysis
of the eternal black hole, the required conditions are 𝐴𝑡 = 𝐴𝜑 at 𝑟o and 𝐴𝑡 = −𝐴𝜑 at 𝑟i

[489]. In the gravitational context, this implies that time evolution on the two boundaries
runs in the same direction. While U(1) Chern–Simons theory is only a toy model, the same
boundary conditions are chosen. With these boundary conditions, a well-defined variational
principle requires adding the term [485]

− 𝑘
4𝜋 ∫ d𝑡

[

∮𝑟=𝑟o
d𝜑𝐴2

𝜑 + ∮𝑟=𝑟i
d𝜑𝐴2

𝜑

]

(5.13)

to the action. It is convenient to denote the values of 𝜇 at the inner and outer radii of the
annulus as

𝜇(𝑡, 𝑟 = 𝑟i, 𝜑) = Ψ(𝑡, 𝜑) and 𝜇(𝑡, 𝑟 = 𝑟o, 𝜑) = Φ(𝑡, 𝜑) . (5.14)
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With this notation, adding (5.13) to the original action (5.10) and inserting (5.11) reduces
the action to two boundary terms by performing the integral over 𝑟, resulting in [485]

𝑆[Φ,Ψ, 𝑘0] =
𝑘
4𝜋 ∫ d𝑡

[(

∮ d𝜑𝜕𝑡Φ𝜕𝜑Φ
)

−𝐻Φ −
(

∮ d𝜑𝜕𝑡Ψ𝜕𝜑Ψ
)

−𝐻Ψ

+ 2
(

∮ d𝜑𝑘0𝜕𝑡(Φ − Ψ)
)

− 2𝐻0

]

, (5.15)

where the explicit dependence of the variables on 𝑡 and 𝜑 is dropped to reduce clutter.
Moreover, the three quantities 𝐻Φ, 𝐻Ψ and 𝐻0 introduced in (5.15) constitute the Hamil-
tonian of the system [485],

𝐻 = 𝑘
4𝜋

(

𝐻Φ +𝐻Ψ + 2𝐻0
)

= 𝑘
4𝜋 ∮ d𝜑

[

(𝜕𝜑Φ)2 + (𝜕𝜑Ψ)2 + 2𝑘20
]

. (5.16)

The action (5.15) describes a theory of two chiral bosons. More precisely, at the inner
boundary Σi = Σ|𝑟=𝑟i the field Ψ is defined, while on the other boundary Σo = Σ|𝑟=𝑟o the
field is Φ. The individual dynamics are described by the two terms in the first line in (5.10).
The second line describes the dynamics of the holonomy 𝑘0. The holonomy serves as a
coupling between the chiral bosons on the two boundaries. Moreover, the corresponding
canonically conjugate momentum Π0 is given in terms of the chiral bosons Φ and Ψ [485]

Π0 =
𝜕𝐿

𝜕(𝜕𝑡𝑘0)
= − 𝑘

2𝜋 ∮ d𝜑 (Φ − Ψ) , (5.17)

where 𝐿 is the Lagrangian of the action (5.15) defined as 𝑆 = ∫ d𝑡 𝐿. Using the form of
𝐴𝑟 given in (5.11) together with the definition of Φ an Ψ in (5.14), the difference between
Φ and Ψ can be expressed as a radial integration,

Φ − Ψ = 𝜇(𝑡, 𝑟 = 𝑟o, 𝜑) − 𝜇(𝑡, 𝑟 = 𝑟i, 𝜑) = ∫

𝑟o

𝑟i

d𝑟𝐴𝑟 . (5.18)

Therefore, the momentum Π0 conjugate to the holonomy 𝑘0 is understood as a Wilson line
stretching between the two boundaries Σi and Σo. This Wilson line threads the topological
wormhole of U(1) Chern–Simons theory on an annulus. Correspondingly, Π0 indicates the
non-factorisation from the boundary perspective. This is in line with the arguments of
[462] on the importance of open Wilson lines when discussing Hilbert space factorisation,
reviewed towards the end of sec. 3.2.2. In particular, the action (5.15) is invariant under
Φ → Φ + 𝜖(𝑡), Ψ → Ψ + 𝜖(𝑡), posing a gauge symmetry. While the radial Wilson line
corresponding to Π0 itself is clearly invariant under this symmetry, cutting the Wilson line
open into two pieces produces two operators that are no longer gauge-invariant. We stress
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that this open Wilson line exists only for the non-trivial holonomy 𝑘0, i.e. for the annulus
representing the topological wormhole. If 𝑘0 were trivial, the corresponding requirement
∮ d𝜑𝐴𝜑 = 0 (cf. (5.12)) implements that Σ must have the disk topology since all circles
in 𝜑-direction are contractible.

Let us now derive the symplectic form for the above action (5.15). The variables spanning
the phase space are the two chiral bosons Φ, Ψ, the holonomy 𝑘0 and the conjugate
momenta ΠΦ, ΠΨ and Π0. To derive the symplectic form we proceed as in sec. 4.2.3,
making use of (2.53) or expressed in coordinates (4.65). To use this formula we first
calculate ΠΦ and ΠΨ,

ΠΦ = 𝜕𝐿
𝜕(𝜕𝑡Φ)

= 𝑘
4𝜋 ∮ d𝜑𝜕𝜑Φ and ΠΨ = − 𝜕𝐿

𝜕(𝜕𝑡Ψ)
= 𝑘

4𝜋 ∮ d𝜑𝜕𝜑Ψ . (5.19)

Note that for the derivatives we replaced the difference Φ−Π in the second line of (5.15)
by Π0 using (5.17). With the above results for ΠΦ and ΠΨ, we employ (4.65) to calculate

𝜕𝑡Φ =
(

Ω−1)Φ𝑏𝜕𝑏𝐻 =
(

Ω−1)ΦΠΦ𝜕ΠΦ
𝐻 +

(

Ω−1)ΦΠΨ𝜕ΠΨ
𝐻 +

(

Ω−1)Φ𝑘0𝜕𝑘0𝐻
!
= 𝜕ΠΦ

𝐻 , (5.20)

𝜕𝑡Ψ =
(

Ω−1)Ψ𝑏𝜕𝑏𝐻 =
(

Ω−1)ΨΠΦ𝜕ΠΦ
𝐻 +

(

Ω−1)ΨΠΨ𝜕ΠΨ
𝐻 +

(

Ω−1)Ψ𝑘0𝜕𝑘0𝐻
!
= 𝜕ΠΨ

𝐻 . (5.21)

In evaluating the sum over 𝑏, we use that the Hamiltonian (5.16) depends only on ΠΦ,
ΠΨ and 𝑘0. In going to the next lines, we demand that the sum equals the term expected
by the Hamilton equations of motion. This fixes (Ω−1)ΦΠΦ = 1 = (Ω−1)ΨΠΨ and all other
components of Ω displayed above vanishing. To do the same calculation for the holonomy,
we first need an expression for the time derivative of Π0. Using (5.17) in combination with
(5.18) this is obtained as

𝜕𝑡Π0 = − 𝑘
2𝜋 ∮ d𝜑∫

𝑟o

𝑟i

d𝑟 𝜕𝑡𝐴𝑟 = − 𝑘
2𝜋 ∮ d𝜑

(

𝐴𝑡|𝑟=𝑟o − 𝐴𝑡|𝑟=𝑟i

)

, (5.22)

employing ΩCS
𝑟𝑡 = 0 in the second equality to rewrite 𝜕𝑡𝐴𝑟 = 𝜕𝑟𝐴𝑡. With the boundary

conditions posed above 𝐴𝑡|𝑟=𝑟o = 𝐴𝜑|𝑟=𝑟o and 𝐴𝑡|𝑟=𝑟i = −𝐴𝜑|𝑟=𝑟i , the 𝜑-integral in (5.22)
can be evaluated using (5.12). The result is given by

𝜕𝑡Π0 = −2𝑘0 . (5.23)
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This enables us to compute the remaining entries of the symplectic form,

𝜕𝑡Π0 =
(

Ω−1)Π0ΠΦ𝜕ΠΦ
𝐻 +

(

Ω−1)Π0ΠΨ𝜕ΠΨ
𝐻 +

(

Ω−1)Π0𝑘0𝜕𝑘0𝐻
!
= 𝜕𝑘0𝐻 . (5.24)

Noting that 𝜕𝑘0𝐻 = −2𝑘0 using the explicit form of𝐻 given in (5.16), this fixes
(

Ω−1
)Π0𝑘0 =

1 and the other two components vanishing. With all components of the symplectic form
determined, we obtain our result

Ω = dΠΦ ∧ dΦ + dΠΨ ∧ dΨ + d𝑘0 ∧ dΠ0 . (5.25)

The first two terms resemble the canonical symplectic form Ωcan = d𝑝 ∧ d𝑞. As there is
no explicit coupling between the two bosons of the form ∝ ΦΨ contained in the action
(5.15), also in the symplectic form no such term appears. The particularly simple form of
the first two terms results from using chiral bosons, which are a convenient parametrisation
in that they provide Darboux coordinates on the phase space. The third term including
𝑘0 and Π0 shows the non-trivial coupling between the two boundaries by the holonomy
𝑘0. In particular, the conjugate momentum Π0 is expressed as an integral of both Φ and
Ψ (cf. (5.17)) and therefore is a non-local variable. This non-locality is the hallmark of
the annulus, i.e. the topological wormhole, and makes manifest the non-factorisation. In
particular, this term does not appear if 𝑘0 = 0 from the start. In this case, as we discussed
above, circles are contractible and the annulus is reshaped to a disk. Considering two such
discs, the asymptotic dynamics at the boundaries of the disks are again captured by chiral
bosons Φ and Ψ, but there is no 𝑘0. In this case, the symplectic form follows as

Ω = dΠΦ ∧ dΦ + dΠΨ ∧ dΨ , (5.26)

where no coupling between the discs is present and the phase space is factorised into
the individual contributions of the two disks. Therefore, the non-locality induced by the
presence of the holonomy 𝑘0 shows the presence of the topological wormhole in the sense
of [165], and in the sense of [462] by the open Wilson line threading the wormhole.

To conclude the analysis, we phrase the above results in terms of the coadjoint orbits
introduced in sec. 5.1.1. This puts an important perspective on non-factorisation, closely
analogous to what we have encountered in sec. 4.1.2 for the two-qubit model. The coad-
joint orbit G for a symmetry group 𝐺 was established by identifying the stabiliser group
𝐾 and defining the coadjoint orbit as the quotient G = 𝐺

𝐾
. In the present case of U(1)

Chern–Simons theory, a single chiral boson theory with only one boundary present is de-
scribed by a U(1) Kac–Moody algebra, generated by 𝑘

2𝜋
𝐴𝜑 [485]. These algebras are central

extensions of loop algebras [490] and appear in conformal field theories with an additional
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U(1) symmetry, see e.g. [480]. The corresponding Kac–Moody group is denoted by L̂G.
The stabiliser group arises by noting that the single chiral boson theory on the boundary
possesses a U(1) gauge symmetry, realised as shifts Φ → Φ + 𝜖(𝑡). Correspondingly, for a
theory of only one chiral boson on a disk topology, the coadjoint orbit is given by

G = L̂G
U(1) . (5.27)

On this orbit, the symplectic form Ω = dΠΦ ∧ dΦ is defined and upon quantisation, the
projective Hilbert space P(H ) is obtained. In the case of two discs with boundaries Σ1

and Σ2, we simply obtain this coadjoint orbit twice, i.e.

G =
L̂G1

U(1)1
×

L̂G2

U(1)2
, (5.28)

with the symplectic form on this coadjoint orbit given by (5.26). Quantisation then pro-
duces the full projective Hilbert space as the product of the individual projective Hilbert
spaces, i.e. a factorised projective Hilbert space P(H ) = P(H )1⊗P(H )2. Here, it is
important that each chiral boson theory has an individual U(1) gauge symmetry, indicated
by the subscripts on U(1) in defining the coadjoint orbit. This in particular changes when
putting the theory on an annulus. While each boundary still has a chiral boson described
by the Kac–Moody algebra, the coupling of the chiral bosons by the holonomy 𝑘0 reduces
the stabiliser group to a single U(1). As we have pointed out before, the boundary action
for U(1) Chern–Simons theory on the annulus is invariant only under the combined shift
Φ → Φ + 𝜖(𝑡), Ψ → Ψ + 𝜖(𝑡) using the same 𝜖(𝑡). Correspondingly, the stabiliser group is
given by a single U(1) which in particular is not confined to either boundary. The coadjoint
orbit then follows as

G =
L̂Go ⊗ L̂Gi

U(1) . (5.29)

The symplectic form on this orbit is given by (5.25). Due to the common quotient by
U(1) resulting from the holonomy 𝑘0, the projective Hilbert space obtained by quantising
this coadjoint orbit does not factorise. As a final remark, note that these results on non-
factorisation are similar to our discussion of the two-qubit system. There, the factorised
case CP1 × CP1 corresponded to vanishing interaction between the qubits (𝐵 ≫ 𝐽 in
(4.1)), and correspondingly vanishing entanglement. For non-vanishing interaction, the
submanifold of the projective Hilbert space was more complicated, CP1

𝛼 × CP1, and does
not factorise symmetrically between the two qubits.
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This finishes our discussion of the topological wormhole modelled by U(1) Chern–Simons
theory on an annulus geometry. We have shown that the presence of the holonomy
𝑘0 and the corresponding non-local conjugate momentum Π0 allow us to diagnose non-
factorisation of the projective Hilbert space from the boundary perspective, made manifest
by additional terms in the symplectic form (5.25). As we show in the next section, applying
the same reasoning to the eternal black hole will allow us to diagnose the non-factorisation
of the boundary projective Hilbert space using the Virasoro Berry phases.

5.1.3. Generalising to SL(2,R)

In this section, we generalise the analysis of the previous section from U(1) to SL(2,R).
The isometry group 𝐺 of AdS3 is given by SO(2, 2) (cf. (3.32)), which splits into two copies
of SL(2,R). As shown in [415, 491, 492], using the isometry group SL(2,R) × SL(2,R)
as gauge group for Chern–Simons theory is an equivalent way of formulating gravity on
three-dimensional Anti-de Sitter spacetime, at least at the classical level. In particular,
the Einstein–Hilbert action using the metric 𝑔 as a dynamical field can be written as the
difference of two SL(2,R) Chern–Simons actions,

𝑆EH[𝑔] = 𝑆CS[𝐴] − 𝑆CS[𝐴̄] , (5.30)

where 𝐴 and 𝐴̄ are the gauge fields charged under 𝓼𝓵(2,R) and the Chern–Simons level is
identified as 𝑘 = 𝐿AdS

4𝐺N
. The gauge fields 𝐴 and 𝐴̄ correspond to left and right movers, just

as the dual CFT2 has two copies of the Virasoro group describing left and right movers. As
these two sectors decouple and behave analogously, we will only discuss the gauge field 𝐴
explicitly. To examine the eternal black hole, this action is again considered on a manifold
including an annulus, M = R × Σ, as visualised in fig. 5.2.

As for the above case of U(1), the action of SL(2,R) reduces to a boundary term by
putting certain boundary conditions at the inner and outer radii 𝑟i and 𝑟o of the annulus.
Due to the non-abelian nature of SL(2,R) however, the derivation comes with more sub-
tleties. In particular, the gauge field 𝐴 is valued in 𝓼𝓵(2,R) and therefore represented as
a 2 × 2 matrix. Beneficial to us, this reduction to boundary terms has been performed in
[485]. In the following, we briefly point out important steps of this derivation and refer
the interested reader to the aforementioned paper for details. The Chern–Simons action
(5.9) for 𝐺 = SL(2,R) reads

𝑆CS[𝐴] =
𝑘
4𝜋 ∫M

d𝑡d𝑟d𝜑 tr
(

𝐴𝜑𝜕𝑡𝐴𝑟 − 𝐴𝑟𝜕𝑡𝐴𝜑 + 2𝐴𝑡Ω(CS)
𝑟𝜑

)

, (5.31)

where Ω(CS)
𝑟𝜑 = 𝜕𝑟𝐴𝜑 − 𝜕𝜑𝐴𝑟 + [𝐴𝑟, 𝐴𝜑]. The 𝐴𝑡 equation of motion enforces Ω(CS)

𝑟𝜑 = 0,
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which is solved by

𝐴𝑟 = 𝐺−1𝜕𝑟𝐺 and 𝐴𝜑 = 𝐺−1(𝜕𝜑 +𝐾0)𝐺 . (5.32)

This is the non-abelian generalisation of (5.11), where 𝐺(𝑡, 𝑟, 𝜑) ∈ SL(2,R) is periodic in
𝜑 and 𝐾0(𝑡) accounts for the non-trivial holonomy due to the annulus topology.7 To imple-
ment time evolution to run in the same direction on both boundaries the same boundary
conditions as before are chosen, namely 𝐴𝑡 = 𝐴𝜑 at the outer radius 𝑟o and 𝐴𝑡 = −𝐴𝜑 at
the inner radius 𝑟i. Note that in this truly holographic setting, the inner and outer radii
defining the annulus have the interpretation as the left and right asymptotic boundaries
of the Anti-de Sitter bulk spacetime, as visualised in fig. 5.2. These boundary conditions
require adding two boundary terms, one at each boundary, to make the variational principle
well-defined. These terms are given by [485]

− 𝑘
4𝜋 ∫ d𝑡

[

∮𝑟=𝑟o
d𝜑 tr

(

𝐴2
𝜑

)

+ ∮𝑟=𝑟i
d𝜑 tr

(

𝐴2
𝜑

)

]

, (5.33)

analogous to the U(1) case, cf. (5.13), except that the trace is included. Adding these
terms to the action (5.31) and inserting (5.32), the action reduces to a total 𝑟-derivative.
The integral over 𝑟 can then be trivially performed to yield an action defined only on the
two boundaries of the annulus [485]. In the same spirit as in (5.14), the boundary values
of 𝐺 at 𝑟i and 𝑟o are identified as dynamical fields on the boundary, 𝐺(𝑡, 𝑟 = 𝑟i, 𝜑) = 𝑙(𝑡, 𝜑)
and 𝐺(𝑡, 𝑟 = 𝑟o, 𝜑) = ℎ(𝑡, 𝜑). These fields 𝑙 and ℎ appear in the boundary action. However,
since 𝐺 ∈ SL(2,R), the same is true for 𝑙 and ℎ, i.e. these fields are not the same as the
chiral bosons defined in (5.14) in the U(1) case. To obtain a chiral boson formulation also
in the present case, the fields 𝑙 and ℎ are written in Gauss decomposition. This associates
three dynamical scalar fields to each of ℎ and 𝑙 [485],

𝑙 = 𝑒𝑉 𝑙1𝑒Ψ𝑙0𝑒𝑈𝑙−1 and ℎ = 𝑒𝑌 𝑙−1𝑒Φ𝑙0𝑒𝑋𝑙1 , (5.34)

where 𝑙−1, 𝑙0 and 𝑙1 are the generators of 𝓼𝓵(2,R) and the six new fields all depend on both
𝑡 and 𝜑. This parametrisation is convenient for the following analysis since it is useful in
the study of hyperbolic holonomies. Such holonomies are parametrised as 𝐾0(𝑡) = 𝑘0(𝑡)𝑙0
with 𝑘0(𝑡) ∈ R∖{0} and the eternal black hole in AdS3 falls into that class [485]. Finally,
to ensure an asymptotic Anti-de Sitter spacetime, boundary conditions have to be put on

7Note that for 𝐺 = 𝑒𝜇 ∈ U(1) and 𝐾0 → 𝑘0, (5.32) reduces to (5.11). Note further that compared to
[485], we have put a subscript on the holonomy 𝐾0 to distinguish it from the stabiliser group 𝐾.
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the components of 𝐴, namely

𝐴𝑟|𝑟=𝑟o = 0 , 𝐴𝜑|𝑟=𝑟o = 𝑙−1 +ℒ (𝑡, 𝜑)𝑙1 , (5.35)

where ℒ (𝑡, 𝜑) is a dynamical field that specifies the bulk solution. For the fields that
appeared in the definition of ℎ in (5.34), these boundary conditions imply

𝑒Φ
(

𝜕𝜑𝑌 − 𝑘0𝑌
)

= 1, 𝜕𝜑Φ + 𝑘0 = 2𝑋 and 𝜕𝜑𝑋 +𝑋2 = ℒ . (5.36)

The inner boundary 𝑟 = 𝑟i works analogously upon replacing (Φ, 𝑘0) → −(Ψ, 𝑘0) and
(𝑌 ,𝑋,ℒ ) → (𝑉 ,𝑈,ℳ). These conditions enable to express 𝑌 , 𝑋 and ℒ in terms of Φ
and 𝑘0, and analogously for the fields on the other boundary. Inserting these expressions
into the action, the boundary action for SL(2,R) Chern–Simons theory on the annulus is
found [485],

𝑆[Φ,Ψ, 𝑘0] =
𝑘
4𝜋 ∫ d𝑡∮ d𝜑

[1
2
𝜕−Φ𝜕𝜑Φ − 1

2
𝜕+Ψ𝜕𝜑Ψ + 𝑘0

(

𝜕−Φ − 𝜕+Ψ
)

− 𝑘20
]

, (5.37)

where 𝜕± = 𝜕𝑡 ± 𝜕𝜑. As in the above case for U(1) this action describes two chiral bosons,
defined on the two boundaries of the annulus. While Φ and Ψ do not share any explicit
interaction, they are coupled by the holonomy 𝑘0. The particular case of the eternal black
hole in AdS3 is obtained by setting ℒ = 𝑀

4
= ℳ, where 𝑀 is the mass of the black hole

[485]. By the boundary conditions (5.36), this yields 𝑘0 =
√

𝑀 . Returning to the general
case, the holonomy 𝑘0 has a conjugate momentum given by

Π0 = − 𝑘
4𝜋 ∮ d𝜑 (Φ − Ψ) . (5.38)

Due to the non-abelian nature of SL(2,R) this is not directly related to the radial Wilson
line, as it was in the U(1) case (see [485] for details). It should however be noted that radial
Wilson lines stretching between the boundaries do exist for SL(2,R) Chern–Simons theory,
except that these are not given by Π0. Moreover, Π0 is again a non-local variable, as it
depends on the variables Φ and Ψ defined on different boundaries. While Π0 is invariant
under the gauge symmetry Φ → Φ+ 𝜖(𝑡), Ψ → Ψ+ 𝜖(𝑡), the individual terms of (5.38) on
each boundary ∝∮ d𝜑Φ and ∝∮ d𝜑Ψ are not invariant on their own. This again realises
the arguments of [462].

We are now in a position to compute the symplectic form on the phase space spanned by
the chiral bosons Φ, Ψ, the holonomy 𝑘0 and their corresponding conjugate momenta ΠΦ,
ΠΨ and Π0. Following the steps performed in sec. 5.1.2 for the U(1) case, the Hamiltonian
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in the present setting is given by

𝐻 = 𝑘
8𝜋 ∮ d𝜑

[

(𝜕𝜑Φ)2 + (𝜕𝜑Ψ)2 + 2𝑘20
]

. (5.39)

Computing the symplectic form using (4.65) as in the previous section, we find

Ω = dΠΦ ∧ dΦ + dΠΨ ∧ dΨ + d𝑘0 ∧ dΠ0 , (5.40)

analogous to the U(1) case. Again we find the first two terms resembling the canonical
symplectic form Ωcan = d𝑝 ∧ d𝑞 on each boundary. The third term manifests the non-
trivial coupling between the two boundaries in terms of the holonomy 𝑘0 and its non-local
conjugate momentum Π0. In particular, as pointed out before, the non-local variable Π0

connects to the arguments of [462] on gauge-invariant two-sided operators that are no
longer gauge-invariant when cut open. Note however that, while Π0 is non-local, it is
manifestly an operator of the boundary theory, as it is expressed using the boundary fields
Φ and Ψ, analogous to the U(1) case. Demanding that only gauge-invariant operators
can be present in the boundary theory consisting of the two chiral boson actions, this
shows that the projective Hilbert space of the boundary theory must not be factorised in
an inner-outer (i.e. left-right) fashion in order to properly include Π0. It is worth stressing
that all of this discussion is true as long as 𝑘0 ≠ 0. If this was the case, the geometry is no
longer that of an annulus but that of a disk. Correspondingly, there are no non-contractible
circles in 𝜑-direction and the non-local operator Π0 does not appear.

Let us finally discuss the above results in terms of coadjoint orbits. For SL(2,R) Chern–
Simons theory as (one half of) a theory of gravity on three-dimensional Anti-de Sitter
spacetime, it is known that the boundary CFT2 is described by the Virasoro group [365].
Indeed, in the current setting of two boundaries, the Fourier modes of ℒ and ℳ fixing
the gauge field component 𝐴𝜑 at the boundaries each form a set of the Virasoro algebra
[485]. In our analysis, these two sets describe the right movers of the CFT2 on the outer
radius 𝑟o and the left movers on the inner radius 𝑟i.8 Therefore, the group 𝐺 is given by
Viro × Viri defining Virasoro coadjoint orbits upon quotienting by the stabiliser group 𝐾.
To obtain 𝐾, it is useful to first note that the boundary action in (5.37) can be rewritten
into the difference of two geometric actions 𝑆geo of the Virasoro group. This is obtained
by parametrising the chiral bosons Φ and Ψ in terms of group elements 𝑓 and 𝑔 of the
Virasoro groups Viro and Viri, respectively [485],

Φ = 𝑘0(𝑓 − 𝜑) − ln
(

−𝑘0𝜕𝜑𝑓
)

and Ψ = 𝑘0(𝜑 − 𝑔) − ln
(

𝑘0𝜕𝜑𝑔
)

. (5.41)
8The other Chern–Simons action 𝑆CS[𝐴̄] in (5.30) gives rise to the left movers on the outer radius 𝑟o

and the right movers on the inner radius 𝑟i.
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Inserting this into (5.37) the action is given by the difference of two geometric actions, or
equivalently, by the difference of two Virasoro Berry phases,

𝑆[Φ,Ψ, 𝑘0] = 𝑆geo[𝑓, 𝑏0] − 𝑆geo[𝑔, 𝑏0] = ΦViro
− ΦViri

. (5.42)

By this rewriting, the coadjoint orbit label 𝑏0 is related to the holonomy 𝑘0 as [485]

𝑏0 =
𝑘
8𝜋
𝑘20 . (5.43)

It is important to note that the geometric actions in (5.42) depend on different group
elements 𝑓 and 𝑔, but on the same orbit label 𝑏0. For the example of the black hole, where
𝑏0 ∝ 𝑘20 = 𝑀 , this represents the physical requirement that the mass of the black hole
has to be the same when measured from either boundary. The stabiliser group 𝐾 is then
obtained by identifying all transformations that leave 𝑏0 invariant. By the above relation,
this translates to finding transformations that leave the holonomy 𝐾0 invariant. Noting
that 𝐾0 = 𝑘0𝑙0, the only transformations 𝑈 that satisfy 𝑈𝐾0𝑈−1 = 𝐾0 are generated
by 𝑙0. Therefore, the stabiliser group consists of a single generator and correspondingly,
𝐾 = U(1). Note that this is a single factor of U(1), not one for each copy of the Virasoro
group. This can also be understood by the fact that Π0 is invariant only under the
simultaneous transformation Φ → Φ + 𝜖(𝑡), Ψ → Ψ + 𝜖(𝑡), but not under the individual
ones. Correspondingly, we obtain the coadjoint orbit for the boundary description of the
eternal black hole in AdS3 as

G =
Viro ⊗ Viri

U(1) . (5.44)

The symplectic form on this orbit is given by (5.40). Quantising this coadjoint orbit, we
obtain a projective Hilbert space P(H ) which is not factorised since the coadjoint orbit
itself is also not factorised. This non-factorisation arises due to the holonomy 𝑘0. We point
out that this diagnosis of non-factorisation uses the Virasoro Berry phase defined as the
holonomy of the coadjoint orbit. Therefore, Virasoro Berry phases provide a useful tool in
observing non-factorisation from the boundary, i.e. the CFT point of view.

5.2. Modular Berry Phase

Both the phase factors defined for the TFD state in sec. 4.2 and the Virasoro Berry phase
of the previous sec. 5.1 are defined by analysing the allowed transformations on the system,
forming the group 𝐺, and quotienting by transformations that pose a symmetry of the state
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vector forming the group 𝐾. The phase factors are understood as probing the geometry
of the coadjoint orbit G = 𝐺

𝐾
as the base space of a principal fibre bundle with fibre 𝐾. In

this section, we analyse a third type of geometric phase factor known as the modular Berry
phase [168–170]. This phase is defined as the holonomy obtained by parallel transport in
the space of modular Hamiltonians. Physically, this is interpreted as transformations that
deform the subregion 𝐴 in the CFT.9 Since the size of the subregion is important when it
comes to the entanglement between the subregion and its complement, the modular Berry
phase is considered a probe of the entanglement structure. In this section, we show that
modular Berry phases provide a further probe of the bulk wormhole in AdS3. To do so,
in sec. 5.2.1 we first briefly review how modular Berry phases are defined, following the
original works [168–170]. Subsequently in sec. 5.2.2 we turn to the setting of the black
string in AdS3. This object is understood as a black hole where the horizon is not compact
[493]. For illustrative purposes, we first discuss how the modular Berry curvature arises
for a single-sided black string. With this result at hand, we compute the modular Berry
curvature for a two-sided black string. We discuss how our result signals the wormhole
from a boundary perspective by properly incorporating the time-shift mode 𝛿.

5.2.1. Modular Parallel Transport

Defining parallel transport in the space of modular Hamiltonians first requires a few details
on modular Hamiltonians themselves. As we have reviewed in sec. 2.1.2 for the case of
empty Minkowski spacetime, the modular Hamiltonian of a subregion arises when comput-
ing the reduced density operator for subregions in QFT. Moreover, in the context of AQFT
and von Neumann algebras, the modular Hamiltonian 𝐾(𝐴) of the subregion 𝐴 in combi-
nation with the modular Hamiltonian of the complement 𝐾(𝐴̄) generates an automorphism
of the algebra A localised in the subregion 𝐴 (cf. (2.113)),

𝑒i𝑠𝐾̂A 𝑒−i𝑠𝐾̂ = A , where 𝐾̂ = 𝐾(𝐴) −𝐾(𝐴̄) . (5.45)

In general, the modular Hamiltonian of an arbitrary subregion is a highly complicated and
non-local operator. However, in certain cases explicit expressions can be obtained. This
includes the modular Hamiltonian for the half spaces 𝐾> discussed in sec. 2.1.2, given by
[222, 223]

𝐾> = ∫𝑥>0
d𝑥 𝑥𝑇̂00 . (5.46)

9For clarity, note that 𝐴 refers again to subregions, as opposed to the previous sec. 5.1 where the
Chern–Simons gauge field was denoted by 𝐴.
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The integrand is given by the generator of Lorentz boosts 𝐾̃>, as reviewed around (2.34)
and (2.36). In the context of an interval 𝐴 = [−𝑅,𝑅] in a two-dimensional CFT a similar
result has been found by mapping this case to the above one of half spaces, i.e. Rindler
wedges. Essentially, the weight factor 𝑥 in the above integral is replaced by a more
complicated function accounting for the restriction to the finite interval, resulting in [229]

𝐾(𝐴) = ∫𝑥∈𝐴
d𝑥 𝑅

2 − 𝑥2

𝑅2
𝑇̂00 . (5.47)

More generally, any subregion of a CFT for which a map to the half space appearing in the
Rindler case can be constructed can be expressed in the above way. The weighting factor
in front of 𝑇̂00 is replaced by a specific function 𝑓 (𝑥) accounting for the specific shape of
the considered subregion [230]. Such functions are known for CFTs on a cylinder, which
includes the case where the CFT is dual to the black string in AdS3. For the Euclidean black
hole in AdS3, the dual CFT is defined on a torus. In this case, the modular Hamiltonian
is not known, which is why we focus our discussion of modular Berry phases on the black
string. While the modular Hamiltonian generally is non-local,10 in holographic CFTs the
situation is better. As the expectation value of the modular Hamiltonian computes the
entanglement entropy, cf. (2.22), by the RT formula (3.37) to leading order in 𝐺N the
modular Hamiltonian must have a local piece [497, 498],

𝐾(𝐴) =
Ârea(𝜕𝐴̂)

4𝐺N
+ 𝒪

[(

𝐺N
)0] . (5.48)

Here, Ârea is the area operator whose expectation value results in the area of the RT
surface. By definition, this operator is localised in the subregion.

Modular Berry phases arise whenever the modular Hamiltonian has modular zero modes.
These are given by self-adjoint operators 𝑄(𝑖) that commute with the modular Hamiltonian
[168],

[𝑄(𝑖), 𝐾(𝐴)] = 0 . (5.49)

An obvious example of a zero mode is the modular Hamiltonian itself, but there can be more
general operators. Just as the modular Hamiltonian, the modular zero modes generate an
automorphism of the algebra A upon replacing 𝑒i𝑠𝐾̂ by 𝑈𝑄 = 𝑒i𝑠(𝑖)𝑄(𝑖) in (5.45). Since all
correlation functions of operators are invariant under this automorphism, the zero modes
give rise to a gauge ambiguity in defining the operators of the algebra A in subregion

10See e.g. [494, 495] and [496] for modular Hamiltonians with non-local features for fermions on a torus
and non-critical quantum chains, respectively.
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𝐴. The analogous arguments apply for operators of the commuting algebra A ′ of the
complementary subregion 𝐴̄. In particular, observers in 𝐴 and 𝐴̄ may choose their zero
mode frames independently. This gauge ambiguity defines a fibre bundle, where the base
space consists of all physically different modular Hamiltonians, i.e. modular Hamiltonians
corresponding to different subregions 𝐴. The fibre includes all transformations by modular
zero modes since those transformations are understood as a change of basis for the modular
Hamiltonian. This can be seen by diagonalising 𝐾̂ in a unitary basis 𝑈 as 𝐾̂ = 𝑈 †Δ𝑈 ,
where Δ is the spectrum of 𝐾̂. The spectrum includes information on the entanglement
structure defined by the modular Hamiltonian. Since 𝑈𝑄 is a unitary transformation, the
basis 𝑈 ′ = 𝑈𝑈𝑄 is an equally valid choice. The spectrum Δ is not affected by this
transformation, so the transformed modular Hamiltonian 𝐾̂ ′ = 𝑈 †

𝑄𝐾̂𝑈𝑄 = 𝑈 ′ †Δ𝑈 ′ is
physically equivalent to 𝐾̂.

Writing 𝐾̂ in a unitary basis is also convenient for defining a local gauge field on the
fibre bundle. The gauge fields define parallel transport between physically different modular
Hamiltonians, i.e. with different spectra. Denoting the eigenvalues of Δ as 𝜆, consider
small deformations 𝜆 → 𝜆 + 𝛿𝜆. Physically, this means considering an interval of the
CFT 𝜆 = [𝑢, 𝑣] on a fixed time slice and infinitesimally deforming this interval as [𝑢, 𝑣] →
[𝑢 + d𝑢, 𝑣 + d𝑣].11 Under such deformations, the basis and the spectrum change as [170]

𝜕𝜆𝐾̂𝛿𝜆 =
[

𝐾̂, 𝑈 †𝜕𝜆𝑈
]

𝛿𝜆 + 𝑈 †(𝜕𝜆Δ𝛿𝜆
)

𝑈 . (5.50)

As
[

𝑈 †
(

𝜕𝜆Δ𝛿𝜆
)

𝑈, 𝐾̂
]

= 0, the second term encoding the change in the spectrum is itself
a zero mode. Since the interest lies not in the change of the spectrum but in the change of
the basis, it is convenient to define a projector P0 onto the zero mode sector. For a zero
mode 𝑄(𝑖), P0

(

𝑄(𝑖)
)

= 𝑄(𝑖), while for an operator 𝔞 that is not a zero mode, P0(𝔞) = 0.
Using this projector, the change of the basis 𝑈 under the deformation of 𝜆 is written as
[170]

[

𝐾̂, 𝑈 †𝜕𝜆𝑈
]

𝛿𝜆 = 𝜕𝜆𝐾̂𝛿𝜆 − P0
(

𝜕𝜆𝐾̂𝛿𝜆
)

. (5.51)

Noting that this fixes 𝑈 †𝜕𝜆𝑈 only up to additional zero modes motivates defining the local
gauge field [170]

𝐴 = P0
(

𝑈 †𝜕𝜆𝑈
)

. (5.52)

11In the literature on modular Berry phases, it is common to denote the interval by 𝜆, while in this thesis,
subregions are usually denoted by 𝐴. In this section, we will use this interchangeably and specify
whenever necessary.
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It is straightforward to check that under a transformation by a modular zero mode 𝑈𝑄,
(5.52) indeed transforms as a gauge field (cf. (2.80))

𝐴′ = 𝑈 †
𝑄𝐴𝑈𝑄 − 𝑈 †

𝑄𝛿𝑈𝑄 , (5.53)

where we denote by 𝛿(⋅) = 𝜕𝜆(⋅)𝛿𝜆 the exterior derivative on the space spanned by 𝜆,
analogous to d in (2.80). Parallel transport is then defined by the covariant derivative
∇𝜆 = 𝜕𝜆 + 𝐴. As an operator, this can be formulated as [170]

𝑉𝛿𝜆 = 𝑈 ′ †𝜕𝜆𝑈
′ = 𝑈 †𝜕𝜆𝑈 + 𝐴 , (5.54)

where as before 𝑈 ′ = 𝑈𝑈𝑄. Therefore, 𝑉𝛿𝜆 correctly implements parallel transport under
a change in the zero mode frame. This operator can be used to abstractly define modular
parallel transport by [168]

𝜕𝜆𝐾̂ − P0
(

𝜕𝜆𝐾̂
)

=
[

𝑉𝛿𝜆, 𝐾̂
]

and P0
(

𝑉𝛿𝜆
)

= 0 . (5.55)

The second equation implements that the parallel transport operator itself does not have
any zero modes. The corresponding modular Berry curvature Ω̂ is computed most conve-
niently as the commutator of two different 𝑉𝛿𝜆,

Ω̂𝑖𝑗 =
[

𝑉𝛿𝜆𝑖 , 𝑉𝛿𝜆𝑗
]

. (5.56)

As an aside, the same is obtained by the formula Ω̂ = 𝛿𝐴 more familiar to us, but the
above version will be more convenient in the explicit computation. Note also that in this
formalism the modular Berry curvature Ω̂ is an operator, as we will see explicitly shortly.

An explicit computation of (5.56) starts with finding an appropriate expression for 𝑉𝛿𝜆.
A convenient way to do so is given by finding the eigenoperators 𝐸𝜅 of 𝐾̂ satisfying [170]

[

𝐸𝜅 , 𝐾̂
]

= 𝜅𝐸𝜅 . (5.57)

Apart from the trivial solution 𝜅 = 0 with 𝐸0 a zero mode,12 this determines

𝐸𝜅 = 𝜕𝜆𝐾̂ . (5.58)

With 𝜅 ≠ 0, the parallel transport operator 𝑉𝛿𝜆 satisfying (5.55) is given by [170]

𝑉𝛿𝜆 =
1
𝜅
𝜕𝜆𝐾̂ . (5.59)

12Note that zero modes are not allowed for 𝑉𝛿𝜆 by (5.55).
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To see this, note that with 𝑉𝛿𝜆 ∝ 𝜕𝜆𝐾̂ the second condition in (5.55) implies that
P0

(

𝜕𝜆𝐾̂
)

= 0, which simplifies the first condition to 𝜕𝜆 =
[

𝑉𝛿𝜆, 𝐾̂
]

. Noting (5.57) with
solution (5.58), this is clearly satisfied for (5.59). Inserting this operator into (5.56) yields
the convenient result [499]

Ω̂𝑖𝑗 = −2
𝜅
𝜕𝜆𝑖𝜕𝜆𝑗𝐾̂ 𝛿𝜆𝑖 ∧ 𝛿𝜆𝑗 , (5.60)

so computing the modular Berry curvature reduces to computing derivatives of the modular
Hamiltonian. As 𝐾̂ is an operator, Ω̂ is as well. The modular Berry phase is then given by
integrating (5.60) over a two-dimensional surface that has a closed path as its boundary.

5.2.2. Modular Berry Curvature for the Two-Sided Black String

Let us now evaluate the modular Berry curvature in a few settings for the Euclidean black
string in AdS3, with the ultimate goal to compute it for the two-sided black string.13 In all
cases, the modular Hamiltonian 𝐾̂ can be written as a linear combination of left-moving
and right-moving parts,

𝐾̂ = 𝐾̂+ + 𝐾̂− . (5.61)

As usual, the discussion of these two parts is completely analogous, which is why we restrict
ourselves to analysing only 𝐾̂+. Moreover, 𝐾̂+ is an element of the global conformal algebra
𝓼𝓵(2,R) and can therefore be expressed as a linear combination of the corresponding
generators 𝑙𝑛,

𝐾̂+ = 𝑠1𝑙1 + 𝑠0𝑙0 + 𝑠−1𝑙−1 . (5.62)

The coefficients 𝑠𝑛 are such that transformations by 𝐾̂+ do not change the interval end-
points in left-moving coordinates 𝜆+ = [𝑢+, 𝑣+].14 Moreover, the transformation 𝑒2𝜋𝑠𝐾̂+ of
the points 𝑤 within the interval has to respect the periodicity of the Euclidean time, which
imposes 𝑤(𝑠) = 𝑤(𝑠 + i), with 𝑤(𝑠) the solution to 𝜕𝑠𝑤 = 2𝜋𝐾̂+𝑤 [500].

To start our discussion, let us consider the scenario where the subregion 𝐴 is the full
constant time slice of the CFT. Since we have access to the full system, we expect that
the modular Berry curvature vanishes. In this case, the modular Hamiltonian is given by
the physical Hamiltonian rescaled by the temperature. For the general expression (5.62),

13As pointed out before, we perform these calculations for the black string since in this case, the modular
Hamiltonian is known.

14Analogously, 𝐾̂− preserves the interval endpoints in right-moving coordinates 𝜆− = [𝑢−, 𝑣−].
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this implies [501]

𝐾̂+ = 𝛽𝑙0 . (5.63)

Constructing the eigenoperators 𝐸𝜅 by solving (5.57), the only possible solution is 𝐸𝜅 ∝ 𝑙0.
This however is a zero mode since 𝐸𝜅 ∝ 𝑙0 solves (5.57) with 𝜅 = 0. Correspondingly,
there is no parallel transport operator 𝑉𝛿𝜆 and the modular Berry curvature Ω̂ vanishes as
expected. This is reasonable since we have access to the full system and the zero mode
frame can be fixed globally.

In the next step, we consider an actual subregion 𝐴 of the CFT, in particular a finite
interval 𝜆 = [𝑢, 𝑣]. This is one of the cases where the modular Hamiltonian can be obtained
by a map from the Rindler half space. This map was established in [501] and results in

𝐾̂ =
𝛽
𝜋 ∫

𝑣

𝑢
d𝑥

sinh 𝜋𝑥
𝛽
sinh 𝜋(𝑣−𝑢−𝑥)

𝛽

sinh 𝜋(𝑣−𝑢)
𝛽

𝑇00 . (5.64)

To obtain the expansion of 𝐾̂+ in terms of the generators of 𝓼𝓵(2,R), we first express the
generators 𝑙𝑛 for the thermal CFT on the cylinder in differential form as

𝑙1 = −
𝛽
2𝜋
𝑒

2𝜋
𝛽 𝑤𝜕𝑤 , 𝑙0 = −

𝛽
2𝜋
𝜕𝑤 and 𝑙−1 = −

𝛽
2𝜋
𝑒−

2𝜋
𝛽 𝑤𝜕𝑤 , (5.65)

where 𝑤 is the coordinate in the interval 𝜆. Invariance of the endpoints 𝑢 and 𝑣 then
provides constraints 𝐾̂+𝑤|𝑤=𝑢,𝑣 = 0 that can be solved for 𝑠1 and 𝑠−1,

𝑠1 = −
𝑠0

𝑒
2𝜋
𝛽 𝑢 + 𝑒

2𝜋
𝛽 𝑣

and 𝑠−1 = −
𝑠0𝑒

2𝜋
𝛽 (𝑢+𝑣)

𝑒
2𝜋
𝛽 𝑢 + 𝑒

2𝜋
𝛽 𝑣
. (5.66)

Inserting these coefficients into 𝐾̂+, the differential equation 𝜕𝑠𝑤 = 2𝜋𝐾̂+𝑤 can be solved
for 𝑤(𝑠). Enforcing the periodicity condition 𝑤(𝑠) = 𝑤(𝑠 + i) enables to fix the remaining
open coefficient 𝑠0. Specifically, this leads to the condition

𝑒
2𝜋
𝛽 𝑣 − 𝑒

2𝜋
𝛽 𝑢

𝑒
2𝜋
𝛽 𝑣 + 𝑒

2𝜋
𝛽 𝑢
𝑠0 = 1 which solves to 𝑠0 = coth

𝜋(𝑣 − 𝑢)
𝛽

. (5.67)

With the modular Hamiltonian 𝐾̂+ determined, we now compute the (left-moving part of
the) parallel transport operator 𝑉𝛿𝜆. To do so, we employ the result (5.59) to find

𝑉𝛿𝑢 = 𝜕𝑢𝐾̂+ and 𝑉𝛿𝑣 = −𝜕𝑣𝐾̂+ , (5.68)
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with 𝜅 determined as 𝜅 = ±1. Using these results to evaluate (5.56), or equivalently
directly computing the derivatives of 𝐾̂+ w.r.t. 𝑢 and 𝑣 as in (5.60), the modular Berry
curvature is found as

Ω̂ = 4𝜋2

𝛽2
csch

𝜋(𝑣 − 𝑢)
𝛽

𝐾̂+ d𝑣 ∧ d𝑢 . (5.69)

As we are now considering a subregion of the CFT, the zero mode frame can be chosen
independently within the subregion and its complement. Therefore, we find a non-vanishing
modular Berry curvature and upon integrating, a non-trivial modular Berry phase. The
entanglement between the subregions is non-trivial and governed by the RT-formula (3.37).
The modular Berry phase probes this entanglement structure. Indeed, in the limit |𝑣−𝑢|≫
𝛽 the modular Berry curvature (5.69) vanishes. Physically, this is understood as enlarging
the interval 𝜆 = [𝑢, 𝑣] such that in the limit, the interval covers the full CFT. This is
consistent with our earlier discussion around (5.63).

We are now ready to compute the modular Berry curvature for the two-sided black
string, i.e. we consider two disjoint intervals in the CFT. To account for the two-sided
nature of this setting, we denote the intervals as 𝜆𝐿 = [𝑢𝐿, 𝑣𝐿] and 𝜆𝑅 = [𝑢𝑅, 𝑣𝑅]. The
entanglement properties of this setting were analysed in [502], showing that there is a
transition in the entanglement entropy. This transition corresponds to the two possible
choices of connecting the endpoints of these two intervals. On the one hand, we may
connect points located on the same boundary. On the other hand, we may connect points
on opposite boundaries, where the corresponding RT surfaces stretch through the entire
bulk and thereby pierce the two-sided black string. These two configurations are visualised
in fig. 5.3. The transition between these two configurations can be phrased in terms of a
single parameter 𝜁 [503],

𝜁 =
sinh 𝜋(𝑢𝐿−𝑣𝑅)

𝛽
sinh 𝜋(𝑢𝑅−𝑣𝐿)

𝛽

csch 𝜋(𝑢𝐿−𝑢𝑅)
𝛽

csch 𝜋(𝑣𝐿−𝑣𝑅)
𝛽

. (5.70)

For 𝜁 < 1, the RT surfaces connect points on the same boundary, while for 𝜁 > 1,
the surfaces stretch through the wormhole. The corresponding modular Hamiltonians were
derived in [503]. For 𝜁 < 1, the modular Hamiltonian 𝐾̂+ is simply twice the result obtained
in the case of a single interval,

𝐾̂+ = 𝐾̂+,𝐿 + 𝐾̂+,𝑅 , (5.71)

where 𝐾̂+,𝐿 and 𝐾̂+,𝑅 are given by (5.69) for 𝑢 = 𝑢𝐿, 𝑣 = 𝑣𝐿 and 𝑢 = 𝑢𝑅, 𝑣 = 𝑣𝑅, respec-
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𝑝1

𝑝2

𝑝3

𝑝4

𝑡𝐿

𝑥
𝑡𝑅

𝑥

Figure 5.3: Visualisation of the two possible configurations of RT geodesics connecting
the endpoints of two intervals in the CFT. The endpoints are indicated by 𝑝𝑖. Between the
coloured rectangles representing the boundaries, the dashed lines indicate the horizons of
the two-sided black string geometry. For 𝜁 < 1, 𝜁 given in (5.70), the shortest geodesics
connect points located in the same boundary, visualised by the magenta lines. For 𝜁 > 1,
the shortest geodesics connect points on different boundaries, thereby stretching through
the wormhole as represented by the orange lines.

tively. Accordingly, the same is true for the modular Berry curvature in this configuration,

Ω̂+ = 4𝜋2

𝛽2
csch2

𝜋(𝑣𝐿 − 𝑢𝐿)
𝛽

𝐾̂+,𝐿 d𝑣𝐿 ∧ d𝑢𝐿

+ 4𝜋2

𝛽2
csch2

𝜋(𝑣𝑅 − 𝑢𝑅)
𝛽

𝐾̂+,𝑅 d𝑣𝑅 ∧ d𝑢𝑅 . (5.72)

This result is as expected for this configuration. As the RT surfaces do not stretch through
the bulk but stay close to their corresponding boundaries, the wormhole is not probed.
Correspondingly, the modular Berry phase is given by twice the result expected of a single-
sided geometry. In the other case of 𝜁 > 1, the modular Hamiltonian for the interval
𝜆𝑢 = [𝑢𝑅, 𝑢𝐿] is given by [503]

𝐾̂+,𝜆𝑢 =
coth 𝜋(𝑢𝐿−𝑢𝑅)

𝛽

𝑒
2𝜋
𝛽 𝑢𝐿 + 𝑒

2𝜋
𝛽 𝑢𝑅

𝑙1 − coth
𝜋(𝑢𝐿 − 𝑢𝑅)

𝛽
𝑙0 +

coth 𝜋(𝑢𝐿−𝑢𝑅)
𝛽

𝑒−
2𝜋
𝛽 𝑢𝐿 + 𝑒−

2𝜋
𝛽 𝑢𝑅

. (5.73)

An analogous expression holds for the other interval 𝜆𝑣 = [𝑣𝐿, 𝑣𝑅]. Calculating the deriva-
tives w.r.t. the four endpoints to make use of (5.56) results in

Ω̂+ = 4𝜋2

𝛽2
csch2

𝜋(𝑢𝑅 − 𝑢𝐿)
𝛽

𝐾̂+,𝜆𝑢 d𝑢𝑅 ∧ d𝑢𝐿

+ 4𝜋2

𝛽2
csch2

𝜋(𝑣𝑅 − 𝑣𝐿)
𝛽

𝐾̂+,𝜆𝑣 d𝑣𝑅 ∧ d𝑣𝐿 . (5.74)
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Since the RT surfaces stretch through the bulk the modular Berry curvature consists of
pieces that connect both boundaries. The corresponding modular Berry phase obtained by
integrating (5.74) therefore is sensitive to the wormhole in the bulk and therefore can be
considered as a probe of non-factorisation.

To make this more precise, we choose specific endpoints for the intervals. Following
[502], we choose 𝑝1 =

(

− 𝑥
2
, 𝑡𝐿 = −𝑡

)

, 𝑝2 =
(𝑥
2
, 𝑡𝐿 = −𝑡

)

on the left boundary and
𝑝3 =

(

− 𝑥
2
, 𝑡𝑅 = 𝑡

)

, 𝑝4 =
(𝑥
2
, 𝑡𝑅 = 𝑡

)

on the right boundary. Here, we have identified the
left and right boundary times. For this choice, in the phase 𝜁 > 1 the intervals 𝜆𝑢 and 𝜆𝑣
are given by the same range 𝜆 =

[

− 𝑡 + i 𝛽
2
, 𝑡
]

at fixed 𝑥
2

[502]. Evaluating the modular
Berry curvature (5.74) for these endpoints of the interval results in

Ω̂+ ∝ d𝑡 ∧ d𝑡 = 0 . (5.75)

This is consistent with the interpretation of the modular Berry phase as a probe of the
choices of zero mode frames of each observer. When identifying the times in both bound-
aries, the zero mode frames in both boundaries are chosen exactly equal, so there is no
modular Berry phase. However as we have reviewed in sec. 3.2.1, the presence of the horizon
renders the time-like Killing vector to not be defined globally. This leads to the possibility
of introducing the time-shift variable 𝛿 [182]. Including this time-shift as 𝑡𝐿 − 𝛿 = 𝑡𝑅 to
the interval 𝜆 =

[

− 𝑡 − 𝛿 + i 𝛽
2
, 𝑡
]

the modular Berry curvature is non-trivial,

Ω̂+ = 4𝜋2

𝛽2
sech2

𝜋(2𝑡 + 𝛿)
𝛽

𝐾̂+,𝜆 d𝑡 ∧ d𝛿 . (5.76)

Similarly to the topological phase of the TFD state defined in (4.52), the time-shift variable
𝛿 has to be considered to diagnose non-factorisation. The non-trivial Berry curvature (5.76)
arises only due to the presence of this time-shift variable. Since this variable is tied to the
existence of the wormhole in the bulk, the modular Berry phase that follows from (5.76) by
integration provides a tool to diagnose non-factorisation from the boundary perspective.

To conclude this section, let us compare the three phase factors detecting non-factorisation
discussed in this thesis. First, the topological phase of the TFD state defined in (4.52)
arises from transformations that are part of the asymptotic symmetry group, specifically
time translations. In the bulk, asymptotic symmetries correspond to proper bulk diffeomor-
phisms. In the asymptotic region, such diffeomorphisms leave the bulk metric invariant,
i.e. for a proper diffeomorphism 𝜉prop, we have 𝛿𝜉prop

𝑔𝜇𝜈 = 0 close to the boundary.15 The

15Proper diffeomorphisms correspond both to asymptotic symmetries, where 𝛿𝜉prop
𝑔𝜇𝜈 = 0 close to the

boundary, and Killing symmetries, where 𝛿𝜉prop
𝑔𝜇𝜈 = 0 everywhere. Due to the absence of the global

time-like Killing vector, time translations cannot be Killing symmetries.
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Virasoro Berry phase discussed in the first half of this section arises from improper dif-
feomorphisms 𝜉improp, for which 𝛿𝜉improp

𝑔𝜇𝜈 ≠ 0. For details on both proper and improper
diffeomorphisms in AdS/CFT, we refer the reader to [504]. For Virasoro Berry phases, while
the stabiliser group corresponds to proper diffeomorphisms, the elements 𝑓 generating the
paths in the coadjoint orbit are elements of the Virasoro group. These transformations cor-
respond to improper diffeomorphisms and induce so-called ‘Virasoro hair’ (see e.g. [505]).
Since these diffeomorphisms lead to transformations of the boundary energy-momentum
tensor, these diffeomorphisms are also referred to as state-changing [506]. Finally, modular
Berry phases discussed in the second half of this section are referred to as shape-changing
[506], as they arise from deforming the size of subregions within the CFT. Therefore,
all three of these phase factors have slightly different origins and thereby probe slightly
different features of the bulk spacetime. Nevertheless, as we have shown, all of them
have in common that they can be used to diagnose non-factorisation from the boundary
perspective.
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Geometric Phases and Operator
Algebras 6

The use of von Neumann algebras allows for rigorously discussing properties of physical
systems. In particular, the type classification of von Neumann algebras enables statements
about Hilbert space factorisation and entanglement in the given system. Therefore, using
the language of operator algebras is well-suited to approach the factorisation puzzle of
the eternal black hole in the context of the AdS/CFT correspondence. Given that the
operator algebras on both the bulk and the boundary side can be identified correctly, a
clear statement on Hilbert space factorisation can be made. Important progress has been
made recently in [132, 133] and [134]. In the former two studies, it has been found
that in the large 𝑁 limit, the algebras describing the exterior of the eternal black hole
as well as the dual boundary algebras are of type III1. Moreover, these algebras share a
non-trivial common centre, related to the mass of the black hole. In the latter paper,
1
𝑁

-corrections to the type III1 description were considered. These corrections enabled to
refine the algebraic description by properly including the central element to the algebra.
The resulting algebras are of type II∞ and have a trivial centre. The Hilbert space of
both type III and type II algebras never factorises, as we have reviewed in sec. 2.3.1. In
the language of von Neumann algebras, the factorisation puzzle arises from using type
I reasoning in the boundary. Therefore, this algebraic description shows that also the
boundary Hilbert space is non-factorised.

We have shown in the previous sections in several instances that geometric phases are
useful tools in diagnosing non-factorisation as well, especially from the boundary perspec-
tive. Therefore, the question naturally arises whether geometric phases can be used directly
to characterise properties of von Neumann algebras. In this section, we show that the geo-
metric phases calculated in sec. 4.1.2 can be used to distinguish between operator algebras
of type II and type III. To this extent, we make use of the construction of hyperfinite
type II and type III factors as limits of collections of entangled qubits [127, 325, 326]. In
particular, we show that a tracial state on the algebra can be defined using a state vector
with vanishing geometric phases. Such state vectors do not exist in the Hilbert space of
type III algebras. The geometric phase defined in sec. 4.1.2 probes the geometry of the
projective Hilbert space. Therefore, our result on the tracial state provides an explanation
for the absence of the trace on type III algebras in terms of the geometry of the projective
Hilbert space. Furthermore, we discuss how this result is realised in holography for the
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eternal black hole. We furthermore discuss the factorisation of the operator algebras using
the topological phase of the TFD state defined in sec. 4.2.2. We identify this topological
phase as a probe for this algebraic factorisation in that this phase is non-trivial for the type
III1 case, where a non-trivial centre is present and vanishes for the type II∞ case, where
the centre is trivial. Generalising these insights, we discuss geometric phases in general as
an indicator for missing information to a low-energy observer in a local description.

In sec. 6.1 we show that geometric phases allow us to distinguish between von Neumann
algebras of type II and type III. In particular, state vectors with vanishing geometric phases
define a tracial state and do not exist within the Hilbert space that a type III algebra acts
on. We discuss how this is realised in holography for the eternal black hole and address
how the topological phase of the TFD state (4.52) probes the factorisation properties of
the operator algebras. Next in sec. 6.2, we propose geometric phases as an indicator for
missing information to a local observer. We show that this is related to the presence
of global symmetries and occurs for entangled as well as unentangled systems in several
examples each. For entangled systems, we elaborate on how the geometric phase encodes
information about the full Hilbert space of the theory, missing to the local low-energy
observer. We comment on how this relates to the expected absence of global symmetries
in a theory of quantum gravity. The new results discussed in this section appeared in [184]
and we mainly follow the presentation therein.

6.1. Characterising Operator Algebras with Geometric
Phases

In this section, we show that state vectors with vanishing geometric phases define traces
and thereby distinguish algebras of type II and III. We elaborate on how this is realised
in holography for the eternal black hole. We start our discussion of tracial states on von
Neumann algebras with an illustrative example for two qubits in sec. 6.1.1. This simple
instance, where the algebras are of type I and the existence of the trace is guaranteed,
allows for a safe and rigorous analysis of the tracial state on these algebras. We show that
only state vectors with vanishing geometric phases can be used to define tracial states as
expectation values in said state vectors. We briefly discuss how this generalises for bipartite
qunit systems, which are still described by operator algebras of type I, invoking insights
on the SZK construction [166]. We then move on to generalise these results to algebras
of type II and III in sec. 6.1.2. In particular, we show that the cyclic separating vector
of a hyperfinite type III algebra is never a tracial state due to the presence of geometric
phases. We further single out the cyclic separating vector of a hyperfinite type II algebra as
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a state with vanishing geometric phases, thereby defining the trace on the algebra. Finally
in sec. 6.1.3, we apply these results to the holographic scenario of the eternal black hole.
We discuss the transition between type III and type II von Neumann algebras observed
for the black hole in [134] in terms of the topological phase of the TFD state defined in
sec. 4.2.2. Concluding the section, we elaborate on the relation between this topological
phase and the non-trivial common centre of the type III1 algebras found in [132, 133]. This
allows us to interpret the topological phase as an indicator for the non-factorisation of the
operator algebras.

6.1.1. A Trace for Two Qubits

To illustrate how the geometric phase, and thereby the geometry of state space, influence
the possibility of defining a trace on the algebra of observables of the given system, we
utilise again the system of two interacting qubits discussed in sec. 4.1. This sets the basis
and the intuition behind our analysis to be discussed in sec. 6.1.2. For the two-qubit
system, the individual single qubit Hilbert spaces H (𝑖) with 𝑖 = 1, 2 are spanned by state
vectors with 2 complex components. Correspondingly, the algebras of operators acting on
these Hilbert spaces are of type I(𝑖)2 . These consist of self-adjoint operators 𝔞(𝑖) which, since
the algebras act on Hilbert spaces of finite dimension, can be represented by Hermitian
2 × 2 matrices. The algebra acting on the full Hilbert space H = H (1) ⊗H (2) is given
by the algebra formed by the tensor product of the individual algebras and is of type I4.1

Elements of I4 = I(1)2 ⊗ I(2)2 are given by tensor products of operators 𝔞(1) ⊗ 𝔞(2) and linear
combinations thereof. In this tensor product sense, an operator acting only on one qubit is
therefore understood as the tensor product with unity acting on the other qubit. The two
algebras I(1)2 and I(2)2 commute with each other. Since everything in this setting is manifestly
in a type I language, by definition the trace on both algebras I(𝑖)2 must exist. However, it
will be illuminating to discuss how exactly the trace is defined in the algebraic language in
this setting.

As discussed in the review on von Neumann algebras in sec. 2.3.1, a trace on the algebra
follows from the existence of a tracial state 𝜔tr . As stated in def. 9, such a state is
a positive linear functional that is cyclic in the argument. A generic state 𝜔

|𝜓⟩ on the
algebra, not necessarily cyclic, can be defined as the expectation value in the state vector
|𝜓⟩, cf. (2.101). To study the trace for the two-qubit system, we define a state on the
algebra using the ground state (4.2). Expectation values of operators 𝔞(𝑖) ∈ I(𝑖)2 are then

1In general, I𝑛𝑚 = I𝑛⊗I𝑚. Moreover, the tensor product of operator algebras is understood to only include
products of operators that are well-defined as an element of the product algebra, i.e. that respect the
weak operator topology. This will however not influence the following discussion.
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given by evaluating the state for these operators,

⟨𝔞(𝑖)⟩ = 𝜔
|𝜓⟩(𝔞(𝑖)) = ⟨𝜓|𝔞(𝑖)|𝜓⟩ . (6.1)

To test whether this state is cyclic in the argument, we need to find a parametrisation for
𝔞(𝑖) such that its action on the state vector |𝜓⟩ can be evaluated explicitly. As mentioned
earlier, since the algebras are of type I2, all operators can be represented by Hermitian 2×2
matrices. A convenient basis for such matrices is given by the Pauli matrices 𝜎𝑖, spanning
the Lie algebra 𝓼𝓾(2), together with the 2×2 unity matrix 12. In the following, we always
denote 𝜎0 = 12 for ease of notation. An arbitrary operator 𝔞(𝑖) can then be written as

𝔞(𝑖) = a(𝑖)
𝑛 𝜎𝑛, 𝑛 ∈ {0, 𝑥, 𝑦, 𝑧}, a(𝑖)

𝑛 ∈ R . (6.2)

Note in particular that a(𝑖)
𝑛 ∈ R is necessary for 𝔞(𝑖) to be Hermitian. Considering two

operators 𝔞(𝑖) and 𝔟(𝑖) parametrised in the above way, we test the cyclicity of the linear
functional (6.1) by evaluating it on the commutator of the two operators. If the linear
functional is cyclic, this has to vanish by definition. For the linear functional defined by
the ground state (4.2), we however find

𝜔
|𝜓⟩

(

[𝔞(𝑖), 𝔟(𝑖)]
)

= 2i sin 𝛼
(

a(𝑖)
𝑦 b(𝑖)

𝑥 − a(𝑖)
𝑥 b(𝑖)

𝑦

)

. (6.3)

Since a state is only deemed tracial if it is cyclic in the argument for any operator, tuning
the coefficients a(𝑖)

𝑛 and b(𝑖)
𝑛 is not sufficient. The only other option to make the r.h.s. of

(6.3) vanishing is to set 𝛼 = 0. Harking back to the discussion in sec. 4.1.1, this means
that the entanglement entropy is maximal, cf. (4.7). In particular, the ground state |𝜓⟩
given in (4.2) used to define the linear functional (6.1) reduces to one of the Bell states,
as shown in (4.10).

We find that a maximally entangled state vector defines a tracial state on the algebras
I(𝑖)2 , i.e. 𝜔

|Bell⟩ = 𝜔tr . This straightforwardly generalises to bipartite systems of two qunits.2

The setting is the same as above, except that the algebras associated with the individual
qunits are of type I(𝑖)𝑛 . An arbitrary state vector |𝜓⟩ of this system, written in Schmidt
decomposition, is given by

|𝜓⟩ =
𝑛
∑

𝑙=1
𝜅𝑙|𝑙1, 𝑙2⟩ . (6.4)

An arbitrary Hermitian operator 𝔞(𝑖) of the algebras I(𝑖)𝑛 acting on the state vector (6.4) can
2Remember that these are more commonly referred to as qudits, however in this thesis we always use 𝑛

instead of 𝑑 for the dimension of quantum systems.
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be parametrised analogously to (6.2), except that the 2 × 2 identity matrix and the Pauli
matrices are replaced by the 𝑛×𝑛 identity matrix 1𝑛 and 𝛾𝑙 spanning the Lie algebra 𝓼𝓾(𝑛),
respectively. This defines Hermitian 𝑛 × 𝑛 matrices as representations for the operators
𝔞(𝑖) ∈ I(𝑖)𝑛 as

𝔞(𝑖) =
𝑛2−1
∑

𝑙=0
a(𝑖)
𝑙 𝛾𝑙 , (6.5)

where 𝛾0 = 1𝑛. However, explicit matrix representations for 𝛾𝑙 are hard to obtain, especially
for large 𝑛. Moreover, applying a particular 𝛾𝑙 on (6.4), the result is tedious to obtain.
Luckily, an equivalent way of denoting 𝔞(𝑖) utilises the basis introduced in (6.4) in writing
general operators as

𝔞(𝑖) =
𝑛
∑

𝑙,𝑚,𝑘=1
a(𝑖)
𝑘𝑚|𝑙1, 𝑘2⟩⟨𝑚1, 𝑘2| , (6.6)

where a(𝑖)
𝑘𝑚 =

(

a(𝑖)
𝑚𝑘

)∗ such that 𝔞(𝑖) is Hermitian. The basis |𝑚1𝑘2⟩ is of course the same as
in the state vector (6.4). The coefficients a(𝑖)

𝑘𝑚 are linear combinations of the coefficients
a(𝑖)
𝑙 in (6.5). The relation between these two ways of denoting 𝔞(𝑖) can be understood as

a basis transformation in the space of Hermitian 𝑛 × 𝑛 matrices from 𝛾𝑙 to |𝑙1, 𝑘2⟩⟨𝑚1, 𝑘2|.
The latter way of denoting the operators given in (6.6) is however much more convenient
when evaluating the action on state vectors (6.4) explicitly, repeatedly using ⟨𝑙𝑖|𝑘𝑖⟩ = 𝛿𝑙𝑘,
as we do in the following.

Using the state vector (6.4), we may again define a linear functional, i.e. a state 𝜔
|𝜓⟩.

Parametrising two operators 𝔞(𝑖) and 𝔟(𝑖) as in (6.6), evaluating the state on the commutator
of these operators enables to determine whether the state is tracial. Explicitly, we find

𝜔
|𝜓⟩

(

[𝔞(𝑖), 𝔟(𝑖)]
)

=
𝑛
∑

𝑙,𝑘,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓=1
𝜅𝑙𝜅𝑘a

(𝑖)
𝑎𝑏b

(𝑖)
𝑑𝑒

(

𝛿𝑙𝑎𝛿𝑙𝑐𝛿𝑏𝑑𝛿𝑐𝑓𝛿𝑒𝑘𝛿𝑓𝑘 − 𝛿𝑙𝑑𝛿𝑙𝑓𝛿𝑒𝑎𝛿𝑓𝑐𝛿𝑏𝑘𝛿𝑐𝑘
)

=
𝑛
∑

𝑙,𝑘=1
𝜅2
𝑙

(

a(𝑖)
𝑙𝑘b(𝑖)

𝑘𝑙 − a(𝑖)
𝑘𝑙b

(𝑖)
𝑙𝑘

)

=
𝑛
∑

𝑙,𝑘=1
a(𝑖)
𝑙𝑘b(𝑖)

𝑘𝑙

(

𝜅2
𝑙 − 𝜅

2
𝑘

)

. (6.7)

As before for two qubits, we find that the state defined by the state vector (6.4) is not
generally cyclic in its argument. Moreover, a non-trivial cancellation between the individual
summands in (6.7) depends on the specific operators in question and must therefore not be
the solution for 𝜔

|𝜓⟩ to be a tracial state. However, each individual term vanishes precisely
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when all Schmidt coefficients are equal, 𝜅𝑙 = 𝜅𝑘 for all 𝑙, 𝑘 = 1, ..., 𝑛. This generalises the
above result for two qubits, as the general two qunit state vector in (6.4) with all Schmidt
coefficients equal is maximally entangled. Conclusively, the tracial state 𝜔tr is defined by
the maximally entangled state vector also for two qunits.

Before explaining the relation of this analysis to geometric phases, let us first briefly
discuss how the tracial states are related to the usual notion of trace for matrix algebras.
Evaluating the tracial state for a system of two qunits, defined by (6.4) with all Schmidt
coefficients equal, on an arbitrary operator 𝔞(𝑖), the result is given by

𝜔tr(𝔞(𝑖)) =
𝑛
∑

𝑙=1
𝜅2
𝑙 a

(𝑖)
𝑙𝑙 . (6.8)

This is different from the familiar notion of the matrix trace, which equals the sum of the
diagonal entries of the matrix,

tr 𝔞(𝑖) =
𝑛
∑

𝑙=1
a(𝑖)
𝑙𝑙 . (6.9)

In particular, the tracial state evaluated on the identity matrix 1𝑛 equals one, while usually,
the trace of the identity is equal to the dimension, in this case, 𝑛. There is however a
simple solution to this mismatch. If all Schmidt coefficients are equal, the normalisation of
the state vector (6.7) dictates that 𝜅𝑙 =

√

1
𝑛

for all 𝑙 = 1, ..., 𝑛. Therefore, the coefficients
do not depend on the index 𝑙 and can be pulled in front of the sum in (6.8), resulting in

𝜔tr(𝔞(𝑖)) =
1
𝑛

𝑛
∑

𝑙=1
a(𝑖)
𝑙𝑙 . (6.10)

Comparing with (6.9), we see that the tracial state is related to the usual matrix trace by
a simple rescaling. As long as 𝑛 is finite, we may write

tr 𝔞(𝑖) = 𝑛𝜔tr(𝔞(𝑖)) . (6.11)

This is precisely the rescaling mentioned below def. 9. For infinite-dimensional systems,
which we will encounter in sec. 6.1.2, the notion of the matrix trace is ill-defined, as the
r.h.s of (6.11) diverges for 𝑛 → ∞. As we reviewed in sec. 2.3.1 and will see explicitly
shortly, the tracial state itself however is still meaningful.

We are now ready to relate the existence of the trace on the algebra to the value of the
geometric phases of the state vectors. Tracial states are defined by maximally entangled
state vectors. By the SZK construction reviewed in sec. 2.2.2, maximally entangled state
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vectors form a Lagrangian submanifold of the projective Hilbert space. Therefore, such
state vectors have a vanishing geometric phase, since the symplectic form on the entan-
glement orbit vanishes. Combining these observations, the tracial state for a two-qunit
system is defined by a state vector with a vanishing geometric phase. Using the results for
the two-qubit system (i.e. 𝑛 = 2) discussed in sec. 4.1.2, we can put this statement into an
equation. The linear functional defined by the ground state (4.2) of the two-qubit system
when evaluated on the commutator of two arbitrary operators 𝔞(𝑖) and 𝔟(𝑖) is proportional
to sin 𝛼, cf. (6.3). The same proportionality is found for the geometric phase ΦG given
in (4.25), which determines the entanglement properties of the state. Therefore, we may
express (6.3) as

𝜔
|𝜓⟩

(

[𝔞(𝑖), 𝔟(𝑖)]
)

∝ ΦG . (6.12)

As discussed in sec. 4.1.2, the geometric phase is a probe for the geometry (i.e. the non-
trivial curvature) of the projective Hilbert space. Moreover, the geometric phase can be
interpreted as the volume of the projective Hilbert space. The result (6.12) therefore
associates a precise notion of geometry to the existence of a trace on the algebra of
observables.

We point out that the above cyclicity test of the state 𝜔
|𝜓⟩ to discuss the notion of a

tracial state can also be understood in terms of the modular operator Δ briefly introduced
in sec. 2.3.2. For any state vector |𝜓⟩ a modular operator Δ𝜓 is defined, satisfying
Δ𝜓 |𝜓⟩ = |𝜓⟩. By an anti-linear operator 𝑆𝜓 which, for any 𝔞(𝑖) ∈ A (𝑖), is defined by
𝑆𝜓𝔞(𝑖)|𝜓⟩ =

(

𝔞(𝑖)
)†
|𝜓⟩, the modular operator in turn is defined as Δ𝜓 = 𝑆†

𝜓𝑆𝜓 . For
more details on this see e.g. [192]. We might consider evaluating the state 𝜔

|𝜓⟩ for the
combination of operators 𝔞(𝑖)Δ𝜓𝔟(𝑖). Then, using the definition of Δ𝜓 , we find

𝜔
|𝜓⟩(𝔞(𝑖)Δ𝜓𝔟(𝑖)) = ⟨𝜓|𝔞(𝑖)Δ𝜓𝔟(𝑖)|𝜓⟩ = ⟨𝜓|𝔞(𝑖)𝑆†

𝜓𝑆𝜓𝔟
(𝑖)
|𝜓 = ⟨

(

𝔞(𝑖)
)†𝜓|𝑆†

𝜓 |𝑆𝜓𝔟
(𝑖)𝜓⟩

= ⟨𝑆𝜓𝔟(𝑖)𝜓|𝑆𝜓 |
(

𝔞(𝑖)
)†𝜓⟩ = ⟨

(

𝔟(𝑖)
)†𝜓|𝔞(𝑖)𝜓⟩ = ⟨𝜓|𝔟(𝑖)𝔞(𝑖)|𝜓⟩

= 𝜔
|𝜓⟩(𝔟(𝑖)𝔞(𝑖)) , (6.13)

where we used the property ⟨𝜓1|Υ†
|𝜓2⟩ = ⟨𝜓2|Υ|𝜓1⟩, valid for arbitrary anti-linear oper-

ators Υ, in going to the second line. With this property of the modular operator Δ𝜓 , we
find that the state 𝜔

|𝜓⟩ is tracial when the corresponding modular operator is given by the
identity, Δ𝜓 = 1, since then (6.13) determines 𝜔

|𝜓⟩ to be cyclic in its argument. This
precisely corresponds to the state vector |𝜓⟩ being maximally entangled, consistent with
our result (6.8). For the two-qubit case, this can be seen by noting that Δ𝜓 is related to
the exponential of the modular Hamiltonian 𝐾 (1) given in (4.33) and its counterpart 𝐾 (2)
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defined analogously. For maximal entanglement, both modular Hamiltonians vanish since
the coefficient ℎ vanishes, cf. (4.35). Equivalently, also including the case of two qunits,
the modular operator can be calculated using the reduced density operators of the state
vector |𝜓⟩ as Δ𝜓 = 𝜌(1) ⊗

(

𝜌(2)
)−1. For maximal entanglement, 𝜌(1) = 1

𝑛
1𝑛 = 𝜌(2) and

correspondingly we find Δ𝜓 = 1𝑛2 .
Furthermore, the relation between state vectors defining a tracial state on the algebra and

such state vectors having vanishing geometric phase is consistent with the results of [507].
In this work, the notions of the Fubini–Study metric and the symplectic form for quantum
systems established in [271] and reviewed in sec. 2.2.1 were generalised to a QFT setting
by a path integral derivation. The action in the path integral is assumed to depend on a
set of parameters 𝑠𝑘, such as the couplings in the action. Assuming small perturbations
𝑠𝑘 → 𝑠𝑘 + 𝛿𝑠𝑘 and expanding the Lagrangian to first order the authors of [507] define
deformation operators O𝑘. Using these deformation operators, the Fubini–Study metric
and the symplectic form are computed by expectation values of the anti-commutator and
the commutator of O𝑘, respectively, generalising the expressions (2.65) and (2.67) obtained
in [271] for quantum mechanical systems. In particular, the components of the symplectic
form are (schematically) calculated as [507]

Ω𝑙𝑘 ∼ ⟨0|[O𝑙,O𝑘]|0⟩ , (6.14)

where |0⟩ is the ground state of the system. In [507], the ground state appears since
the path integral was prepared such that at the infinite past, the system is in the ground
state. However, this formalism can be generalised to arbitrarily excited state vectors |𝜓⟩,
with the symplectic form given as in (6.14) by replacing |0⟩ → |𝜓⟩ [508, 509]. Since the
symplectic form is given by an expectation value of a commutator of operators, it looks
similar in spirit to the expressions we used above to test whether a particular state vector
defines a tracial state on the algebra, cf. (6.3) and (6.7). In particular, if the vacuum |0⟩ or
the excited state vector |𝜓⟩ are such that they define a tracial state, the symplectic form
vanishes and the geometric phase vanishes since the tracial state is cyclic in the argument.

6.1.2. A Trace for Infinitely Many Qubits

Of course, the analysis of [507–509] is in a QFT setting and therefore, as discussed in
sec. 2.3.2, generically refers to an algebra if type III (to be precise, type III1) rather than
type I as in the above cases of qubits and qunits. Rather, this comparison should be
understood as an indicator that an analogous statement about the existence of the trace
and the value of the geometric phase is also achievable in a QFT setting, i.e. for algebras
of type III. This first indication is supplemented by another observation, which gives this
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expectation a much stronger basis. In the previous section, we have shown that a linear
functional 𝜔

|𝜓⟩ is cyclic in the argument if the geometric phase of the corresponding
state vector |𝜓⟩ vanishes. For the two-qubit system, this is made mathematically precise
in (6.12). Another useful form of this equation is found when expressing it using the
entanglement temperature derived in sec. 4.2.1. Inverting (4.38) for the geometric phase
ΦG and inserting this into (6.12), we find that

𝜔
|𝜓⟩

(

[𝔞(𝑖), 𝔟(𝑖)]
)

∝
(

1 − 𝑒−𝛽ent𝐸
)

. (6.15)

First of all, we note that this is consistent with the earlier result. The state 𝜔
|𝜓⟩ is cyclic in

the argument in the limit 𝛽ent → 0, i.e. when |𝜓⟩ is maximally entangled. More important
for the generalisation to algebras of type II and type III however is the observation that
the r.h.s. of (6.15) scales with 1 − 𝑒−𝛽ent𝐸 . This is highly reminiscent of the behaviour
of the linear functional 𝜔

|TFD⟩

discussed below (2.111). The only difference is that for
the two-qubit system, only one term ∝

(

1 − 𝑒−𝛽ent𝐸
)

appears, while below (2.111) the
number of such terms depends on the specific operators inserted into the linear functional.
However, as reviewed in sec. 2.3.1, algebras of type II and type III can be constructed
starting with finite collections of qubits and sending the number of qubits to infinity at
the end [128, 325, 326]. The additional qubits then explain the presence of the additional
terms. In the following, we make this precise by analysing the construction of algebras of
type II and type III w.r.t. geometric phases in the spirit of the SZK construction. This will
also allow us to explain the absence of a trace for algebras of type III by the non-trivial
geometry of state space.

For the convenience of the reader, we start the analysis by restating a few ingredients
reviewed in sec. 2.3.1. To construct an algebra of type III, a possible approach is to consider
two collections of qubits which are pairwise entangled. Intuitively, the type III algebra is
realised as an infinite tensor product of type I2 algebras [192]. Each qubit pair, with one
qubit from each collection, is therefore described by a state vector as in (2.110), which we
denote in the following as

|𝜆𝑙⟩ =

√

1
1 + 𝜆𝑙

(

|↓1↓2⟩𝑙 +
√

𝜆𝑙 |↑1↑2⟩𝑙
)

with 0 < 𝜆𝑙 ≤ 1 . (6.16)

The value of 𝜆𝑙 determines the entanglement between the two qubits, with 𝜆𝑙 = 0 and
𝜆𝑙 = 1 corresponding to vanishing and maximal entanglement, respectively. Note however
that the case 𝜆𝑙 = 0 is excluded: every qubit pair has to have some non-vanishing amount
of entanglement. As a physical example, we may consider the states (6.16) to represent
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the ground state (4.2) of the two-qubit system discussed in sec. 4.1.1.3 More specifically,
every |𝜆𝑙⟩ is represented by a ground state with in general different ratios of 𝐵 and 𝐽 . As
an example, we might imagine that all of the qubits of the first collection, corresponding
to 𝑆1 in (4.1), feel the same magnetic field 𝐵, but have different coupling strengths 𝐽𝑙
to the qubits of the second collection, corresponding to 𝑆2. Then, the ‘angle’ 𝛼 defined
below (4.2) is different for every qubit pair, resembling the different 𝜆𝑙. In particular, these
parameters are related as

𝜆𝑙 =
1 − sin 𝛼𝑙
1 + sin 𝛼𝑙

with tan 𝛼𝑙 = 2𝜇𝐵
𝐵
𝐽𝑙
. (6.17)

Combining 𝑁 such two-qubit state vectors (6.16) in a tensor product and sending 𝑁 to
infinity, the resulting state vector |Ψ⟩ provides a cyclic and separating vector, with |Ψ⟩
given by

|Ψ⟩ = lim
𝑁→∞

√

1
∏𝑁

𝑙=1(1 + 𝜆𝑙)

𝑁
⨂

𝑙=1

(

|↓1↓2⟩𝑙 +
√

𝜆𝑙 |↑1↑2⟩𝑙
)

. (6.18)

As stated below (2.111), the convergence properties of the sequence of 𝜆𝑙 determined
which subclass of type III algebras is constructed starting with this state vector [326]. By
the GNS construction [322, 323], a separable Hilbert space on which the type III algebras
act reducibly is defined. In particular, there are two algebras of type III A (1) and A (2)

which are each others commutant, [A (1),A (2)] = 0.

As we have shown in sec. 4.2.1, any two-qubit state vector can be written in terms of
its geometric phase characterising the entanglement as in (4.40). Therefore, also (6.16)
can be put in this form. To obtain this explicitly, we note that (6.16) is already written in
Schmidt decomposed form, with Schmidt coefficients given by

𝜅↑ =

√

𝜆𝑙
1 + 𝜆𝑙

and 𝜅↓ =

√

1
1 + 𝜆𝑙

. (6.19)

As shown in sec. 4.2.1, the Schmidt coefficients determine the entanglement temperature
by (4.45). In the present case, we find

𝛽ent =
1
𝑇ent

= 1
𝐸𝑙

ln 1
𝜆𝑙
. (6.20)

3The state vector (6.16) has qubits pointing in the same direction, while they point in the opposite
direction in (4.2). This difference is fixed by rewriting (4.2) in Schmidt decomposition, as discussed
above (4.3).
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Note that here we choose 𝐸𝑙 such that the entanglement temperature itself does not depend
on 𝑙, i.e. it is the same for every qubit pair. While this is not strictly necessary from the
point of view of the resulting algebra, it does provide a more intuitive physical picture. As
far as the type of algebra is concerned, it only matters whether the product of 𝐸𝑙 with
𝛽ent varies with 𝑙, as is it this product which determines the convergence properties of the
sequence of 𝜆𝑙. However, physically speaking, it is more intuitive to have all qubit pairs
experiencing the same temperature 𝛽ent but different energy fluctuations 𝐸𝑙. In particular,
with this choice the cyclic separating vector (6.18) expressed by 𝛽ent and 𝐸𝑙 is precisely
the TFD state (2.111) discussed during the review of von Neumann algebras in sec. 2.3.1,
with 𝛽 = 𝛽ent.

We now turn to discussing geometric phases in the above setting. Performing the steps
of the calculation discussed in sec. 4.1.2 for the two-qubit state (6.16), i.e. changing the
entries of the point in the entanglement orbit 𝑝 given in (4.14) from (4.3) to (6.19), the
geometric phase for each |𝜆𝑙⟩ is found as

Φ(𝑙)
G = 2𝜋

1 − 𝜆𝑙
1 + 𝜆𝑙

= 2𝜋1 − 𝑒
−𝛽ent𝐸𝑙

1 + 𝑒−𝛽ent𝐸𝑙
. (6.21)

Consistent with the earlier results in sec. 4.1.2, this phase vanishes for maximal entangle-
ment, where 𝜆𝑙 = 1 or equivalently 𝛽ent = 0. Inverting (6.21) to express 𝜆𝑙 by Φ(𝑙)

G , the
state vectors (6.16) are written analogous to (4.40),

|𝜆𝑙⟩ =

√

2𝜋 − Φ(𝑙)
G

4𝜋
|↑1↑2⟩ +

√

2𝜋 + Φ(𝑙)
G

4𝜋
|↓1↓2⟩ . (6.22)

In terms of the entanglement orbits of the SZK construction [166], each state vector |𝜆𝑙⟩
is associated to a corresponding orbit CP1

𝜆𝑙
× RP3. With this way of denoting the state

vector, the cyclic and separating vector (6.18) is written in a purely geometric fashion.
This form will be more convenient when discussing the relation between the geometric
phase and the existence of a trace on the algebra. As in sec. 6.1.1 for two qubits, we test
this by studying the cyclicity properties of linear functionals, i.e. states on the algebra. In
particular, we study the state 𝜔

|Ψ⟩ defined by the cyclic and separating vector (6.18). To
probe the cyclicity properties of this state, we again require a parametrisation of operators
acting on the Hilbert space. Since each state vector |𝜆𝑙⟩ contains two qubits, operators
𝔞(𝑖) acting on it are again parametrised by the identity matrix and the Pauli matrices as in
(6.2). Arbitrary operators 𝔞(𝑖)𝑁 acting on the 𝑁-fold tensor product of such state vectors
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are then given by tensor products of operators acting on a single qubit pair,

𝔞(𝑖)𝑁 =
𝑁
⨂

𝑙=1
𝔞(𝑖)𝑙 , (6.23)

and arbitrary linear combinations of such tensor products. In the limit 𝑁 → ∞, arbitrary
operators are again given by such tensor products. However, as discussed in sec. 2.3.1,
to obtain a separable Hilbert space we do not consider all operators, but restrict to those
we are interested in. The action of these operators on the cyclic and separating vector
then generates the separable Hilbert space, i.e. a Hilbert space with countable dimension.
In the current setting, that is we only consider operators that act on finitely many of the
qubit pairs. So the relevant operators are given by the tensor product operators 𝔞(𝑖)𝐾 (and
linear combinations thereof), with 𝐾 finite. In a language more akin to QFT, this can be
phrased as considering all finite polynomials in the Pauli matrices 𝜎𝑛 acting on 𝐾 qubit
pairs. For convenience, we can take these operators to act on the first 𝐾 qubit pairs, with
all other qubit pairs unaffected, i.e. those are acted on by the identity,

𝔞(𝑖)𝐾 =
[

𝐾
⨂

𝑙=1
𝔞(𝑖)𝑙

]

⊗
[

∞
⨂

𝑙=𝐾+1
12

]

. (6.24)

On the level of state vectors, that means that by acting with such operators on |Ψ⟩, only
the coefficients of the first 𝐾 qubit pairs can be changed, with all other entries unaffected.
In particular, the first 𝐾 qubit pairs in state vectors 𝔞(𝑖)𝐾 |Ψ⟩ can have different entanglement
properties than those in |Ψ⟩. In terms of the entanglement orbits, that means that such
operators may change the orbit of finitely many |𝜆𝑙⟩ from CP1

𝜆𝑙
× RP3 to some other

CP1
𝜆′𝑙
× RP3 with 𝜆𝑙 ≠ 𝜆′𝑙, and even to the limiting cases CP1 × CP1 and 1 × RP3. All

entanglement orbits corresponding to state vectors |𝜆𝑙⟩ with 𝑙 > 𝐾 are unaltered.
As a short technical intermezzo following [192], operators of the form (6.24) only approx-

imate the operators that are actually contained in the algebra. That is, the above operators
should be considered as elements of a ‘pre-algebra’ A (𝑖)

0 that satisfies every requirement of
a von Neumann algebra except that A (𝑖)

0 is not closed under the weak operator topology,
cf. def. 8.4 The von Neumann algebra A (𝑖) is then obtained by adding certain limits to
A (𝑖)

0 . To be more specific, interpreting 𝔞(𝑖)𝐾 as a sequence, an operator 𝔞(𝑖) ∈ A (𝑖) is defined
in the limit 𝐾 → ∞ by 𝔞(𝑖)|Ψ′

⟩ = lim
𝐾→∞

𝔞(𝑖)𝐾 |Ψ
′
⟩ if this limit exists for any state vector

|Ψ′
⟩ ∈ H . We will make brief reverence to this subtlety after discussing the relation

4To be precise, in a similar fashion defining state vectors (6.18) gives rise to a countably infinite-
dimensional vector space, also known as ‘pre-Hilbert space’ H0. Upon defining an inner product,
e.g. by the natural pairing ⟨⋅|⋅⟩, on H0 with certain properties, cf. def. 1, H0 is completed to a
separable Hilbert space H . For more details see [192].
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between the tracial state and the geometric phase in more detail, but it will not affect the
overall discussion very much.

We are now in a position to analyse whether the cyclic ad separating vector (6.18)
defines a state 𝜔

|Ψ⟩ that is cyclic in the argument, i.e. a tracial state. We consider two
operators 𝔞(𝑖)𝐾 and 𝔟(𝑖)𝐾 defined as in (6.24). To test the cyclicity, we have to evaluate
𝜔

|Ψ⟩
(

[𝔞(𝑖)𝐾 , 𝔟
(𝑖)
𝐾 ]

)

. This can be done by making use of the tensor product structure of the
operators. In particular, the commutator of two tensor products can be rewritten as the
sum of tensor products of commutators. More precisely, for arbitrary operators we have

[𝔞⊗ 𝔟, 𝔠⊗ 𝔡] = 𝔞𝔠⊗ 𝔟𝔡 − 𝔠𝔞⊗ 𝔡𝔟

= 𝔞𝔠⊗ 𝔟𝔡 − 𝔠𝔞⊗
(

𝔟𝔡 − [𝔟, 𝔡]
)

= [𝔞, 𝔠]⊗ 𝔟𝔡 + 𝔠𝔞⊗ [𝔟, 𝔡] . (6.25)

Used repeatedly, the commutator of operators composed as 𝐾-fold tensor products can be
rewritten as a sum of 𝐾 terms containing a single commutator of operators in one ‘sector’
of the tensor product, and simple products of operators in the other slots. As an example,
writing 𝔟 = 𝔢 ⊗ 𝔣 and 𝔡 = 𝔤 ⊗ 𝔥 in (6.25), we find for the commutator of 3-fold tensor
product operators

[𝔞⊗ 𝔢⊗ 𝔣, 𝔠⊗ 𝔤⊗ 𝔥] = [𝔞, 𝔠]⊗ 𝔢𝔤⊗ 𝔣𝔥 + 𝔠𝔞⊗ [𝔢⊗ 𝔣, 𝔤⊗ 𝔥]

= [𝔞, 𝔠]⊗ 𝔢𝔤⊗ 𝔣𝔥 + 𝔠𝔞⊗ [𝔢, 𝔤]⊗ 𝔣𝔥 + 𝔠𝔞⊗ 𝔤𝔢⊗ [𝔣, 𝔥] , (6.26)

where we used (6.25) to evaluate the commutator in the second term of the first line.
Applying this method to the operators 𝔞(𝑖)𝐾 and 𝔟(𝑏)𝐾 , it becomes manifest that only the first
𝐾 qubit pairs play a role in evaluating 𝜔

|Ψ⟩
(

[𝔞(𝑖)𝐾 , 𝔟
(𝑖)
𝐾 ]

)

, as hinted at below (6.24). Since
all qubit pairs |𝜆𝑙⟩ with 𝑙 > 𝐾 are acted on by the identity, due to the normalisation of
|𝜆𝑙⟩ these terms simplify to 1, multiplying the remaining 𝐾 non-trivial terms, so

𝜔
|Ψ⟩

(

[𝔞(𝑖)𝐾 , 𝔟
(𝑖)
𝐾 ]

)

= ⟨Ψ|[𝔞(𝑖)𝐾 , 𝔟
(𝑖)
𝐾 ]|Ψ⟩

=
[

𝐾
⨂

𝑙=1
⟨𝜆𝑙|

][

𝐾
⨂

𝑛=1
𝔞(𝑖)𝑛 ,

𝐾
⨂

𝑚=1
𝔟(𝑖)𝑚

][

𝐾
⨂

𝑝=1
|𝜆𝑝⟩

]

. (6.27)

This shows that the commutator of two operators 𝔞(𝑖)𝐾 and 𝔟(𝑖)𝐾 acting (non-trivially) on 𝐾
qubit pairs is again an operator acting (non-trivially) on 𝐾 qubit pairs, or in other words,
the algebra generated by the operators 𝔞(𝑖)𝐾 is closed under forming commutators.

Evaluating (6.27), the second advantage in rewriting the commutator using (6.25) and
(6.26) shows. Namely, due to the tensor product structure, the expectation value (6.27)
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in the state vector of 𝐾 qubit pairs boils down to a sum of products of single qubit pair
expectation values. These single qubit expectation values only take one of the following
forms,

⟨𝜆𝑙|[𝔞
(𝑖)
𝑙 , 𝔟

(𝑖)
𝑙 ]|𝜆𝑙⟩ or ⟨𝜆𝑙|𝔞

(𝑖)
𝑙 𝔟

(𝑖)
𝑙 |𝜆𝑙⟩ . (6.28)

The first term involving the commutator is precisely what we computed in sec. 6.1.1
when we studied the trace for a two-qubit system. The result, given in (6.3), relates the
expectation value of the commutator of two single-qubit pair operators directly to the
geometric phase of the single qubit pair, cf. (6.12), multiplied by a function depending on
the operators. In particular, this function is purely imaginary. For the second term in (6.28)
we therefore expect that apart from an imaginary piece analogous to the result for the first
term, there can only appear an additional real piece that cancels in the commutator,

⟨𝜆𝑙|[𝔞
(𝑖)
𝑙 , 𝔟

(𝑖)
𝑙 ]|𝜆𝑙⟩ = ⟨𝜆𝑙|𝔞

(𝑖)
𝑙 𝔟

(𝑖)
𝑙 |𝜆𝑙⟩ − ⟨𝜆𝑙|𝔟

(𝑖)
𝑙 𝔞

(𝑖)
𝑙 |𝜆𝑙⟩

= ⟨𝜆𝑙|𝔞
(𝑖)
𝑙 𝔟

(𝑖)
𝑙 |𝜆𝑙⟩ − ⟨𝜆𝑙|𝔞

(𝑖)
𝑙 𝔟

(𝑖)
𝑙 |𝜆𝑙⟩

∗ . (6.29)

Indeed, using the parametrisation of single qubit pair operators (6.2) and the representation
(6.22) for |𝜆𝑙⟩ by straightforward calculation we find

⟨𝜆𝑙|𝔞
(𝑖)
𝑙 𝔟

(𝑖)
𝑙 |𝜆𝑙⟩ =

∑

𝑛=0,𝑥,𝑦,𝑧
a(𝑖)
𝑙,𝑛b

(𝑖)
𝑙,𝑛 −

Φ(𝑙)
G

2𝜋
(

a(𝑖)
𝑙,𝑧b

(𝑖)
𝑙,0 + a(𝑖)

𝑙,0b
(𝑖)
𝑙,𝑧

)

+
iΦ(𝑙)

G

2𝜋
(

a(𝑖)
𝑙,𝑦b

(𝑖)
𝑙,𝑥 − a(𝑖)

𝑙,𝑥b
(𝑖)
𝑙,𝑦

)

. (6.30)

Combining these results, we can find an expression for 𝜔
|Ψ⟩

(

[𝔞(𝑖)𝐾 , 𝔟
(𝑖)
𝐾 ]

)

. The structure
of this expression is intuitively clear. Using (6.25) to expand the commutator, (6.27) is
rewritten as a sum over products of terms of the form in (6.28). In particular, each of
these summands contains one expectation value of a commutator, with the remaining terms
expectation values of a product of two operators. The former one is always proportional
to the corresponding geometric phase Φ(𝑙)

G , while the latter ones have terms proportional
to Φ(𝑙)

G but also terms independent of the geometric phase. Therefore, starting with 𝔞(𝑖)𝐾 ,
each summand contains polynomials in the geometric phases up to order 𝐾. In particular,
no term is independent of any Φ(𝑙)

G , but due to the commutator scales at least linearly with
a geometric phase. As an equation, this is summarised as

𝜔
|Ψ⟩

(

[𝔞(𝑖)𝐾 , 𝔟
(𝑖)
𝐾 ]

)

=
𝐾
∑

𝑙=1
Φ(𝑙)

G 𝑔
(𝑙)
1 (𝔞(𝑖)𝐾 , 𝔟

(𝑖)
𝐾 )

+
𝐾
∑

𝑙1,𝑙2=1
Φ(𝑙1)

G Φ(𝑙2)
G 𝑔(𝑙1,𝑙2)2 (𝔞(𝑖)𝐾 , 𝔟

(𝑖)
𝐾 ) + 𝒪

[

(

Φ(𝑙𝑛)
G

)3
]

, (6.31)
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where 𝑔𝑖 are functions capturing the dependence on the operators. The omitted terms are
higher polynomials in the geometric phases and go up to a term ∝

∏𝐾
𝑛=1Φ

(𝑙𝑛)
G . As every

term on the r.h.s. of (6.31) is proportional to at least one of the geometric phases, the
state 𝜔

|Ψ⟩ is a tracial state if and only if all geometric phases vanish. We point out that in
the above calculation, we used operators acting on 𝐾 qubit pairs, so it might seem as if it
is sufficient for the trace to exist that the geometric phases of the first 𝐾 qubit pair state
vectors vanish, while the other can be non-vanishing. However, as we pointed out below
(6.24), the operators of the actual von Neumann algebra A (𝑖) are obtained by adding the
limits lim

𝐾→∞
𝔞(𝑖)𝐾 |Ψ

′
⟩ to the pre-algebra A (𝑖)

0 consisting of 𝔞(𝑖)𝐾 . Therefore, for a state to be
cyclic in its argument for arbitrary operators of A (𝑖), the result in (6.31) shows that every
geometric phase has to vanish.

Let us discuss the above result (6.31) in light of the different algebra subclasses of type
III. By (6.21), the geometric phase Φ(𝑙)

G of each qubit pair is determined by the value of 𝜆𝑙.
On the other hand, the values 𝜆𝑙 determine the type of the algebra. In the most generic
case for type III1, the 𝜆𝑙 are such that the sequence of 𝜆𝑙 does not converge, but there are
at least two accumulation points 0 < 𝜆∗1 ≠ 𝜆∗2 < 1. Therefore, infinitely many of the 𝜆𝑙 take
values different from 1, and correspondingly infinitely many geometric phases are different
from zero. Correspondingly, the r.h.s. of (6.31) does not vanish for arbitrary operators,
consistent with the fact that the algebra is of type III and does not allow for defining a
trace. In a more fine-tuned case where the sequence converges to a single 0 < 𝜆∗ < 1, the
algebra is of type III𝜆∗ . Again infinitely many of the geometric phases do not vanish, so the
trace is not defined. Finally, for type III0, the sequence converges slowly to zero. Also in
this case, infinitely many of the geometric phases (6.21) are non-vanishing and the trace is
not defined. Note that we emphasised the fact that infinitely many of the 𝜆𝑙 are different
from 1. This is important since by the action of the algebra, only finitely many of the qubit
pair state vectors can be altered. Therefore, if the state defined by the state vector |Ψ⟩
fails to be a tracial state, also every other state defined by a state vector |Ψ′

⟩ = 𝔞(𝑖)|Ψ⟩
cannot be tracial, since still infinitely many 𝜆𝑙 are different from 1 and the corresponding
geometric phases do not vanish.

This changes significantly if we allow for infinitely many 𝜆𝑙 to be equal to 1. In particular,
this implies that in the state vector |Ψ⟩ given in (6.18), only finitely many qubit pairs have
𝜆𝑙 ≠ 1. Still, this state vector does not define a trace since the r.h.s. of (6.31) does not
vanish in general. However, by the action of the algebra, we are allowed to change finitely
many of the qubit pair state vectors |𝜆𝑙⟩. Therefore, there exists an operator 𝔞̃(𝑖) such that
the state vector 𝔞̃(𝑖)|Ψ⟩ corresponds to (6.18) with 𝜆𝑙 = 1 for every 𝑙. Correspondingly by
(6.21), every geometric phase of the qubit pairs within 𝔞̃(𝑖)|Ψ⟩ vanishes and, invoking the
result in (6.31), the state defined using this state vector is cyclic in its argument, i.e. is a
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tracial state. With 𝜆𝑙 = 1 for all 𝑙, (6.18) contains only maximally entangled qubit pairs.
Indeed, this is precisely the cyclic and separating vector discussed in sec. 2.3.1 used to
define an algebra of type II1, which has a trace. The trace on the other subclass of type
II algebras is understood analogously. In particular, as discussed in sec. 2.3.1, algebras of
type II∞ are constructed by tensor products of type II1 with type I∞. Both these individual
algebras have a trace, as we have just discussed for II1 noting the vanishing of the geometric
phases for the cyclic and separating vector of type II1. Due to the tensor product structure,
the trace on II∞ is simply given by the product of the traces on the constituents,

tr II∞(𝔞) = tr II∞(𝔞1) ⋅ tr I∞(𝔞2) , (6.32)

where 𝔞 ∈ AII∞ , 𝔞1 ∈ AII1 and 𝔞2 ∈ AI∞ . As discussed in sec. 2.3.2, the trace on II∞ is not
canonically normalised, which however does not directly affect the above decomposition
of the trace. Therefore, the vanishing of the geometric phases for the state vector leading
to the existence of the trace on II1 implies that also the trace for II∞ is defined. It follows
that we find the analogous relation between the geometric phases and the trace for type
II and type III algebras as in the simple two-qubit example. The trace is defined by a
state where the corresponding state vector has vanishing geometric phases, which by the
SZK construction is equivalent to the state being maximally entangled. This provides
a geometric explanation for the non-existence of the trace on type III algebras, and the
existence of the trace for type II algebras. In other words, calculating geometric phases for
state vectors |Ψ⟩ allows for a characterisation of the type of algebra at hand.

6.1.3. Realisation in Holography: the Eternal Black Hole

The discussion in the previous section made no reference to particular dynamics for the
system under consideration. This allowed us to make statements about the general nature
of von Neumann algebras using geometric phases. To illustrate the power of this approach,
in the following let us discuss a particular realisation of our discussion in the holographic
setting of the eternal black hole. This enables us to explain the transition between two
types of operator algebras for the eternal black hole observed in [134] using the topological
phase defined for the TFD state in sec. 4.2.2.

To provide sufficient context, let us first briefly summarise the results of [132, 133] and
[134] on von Neumann algebras for the eternal black hole in Anti-de Sitter spacetime. The
setting where the holographic duality is best under control is the weak form of the AdS/CFT
correspondence. As reviewed in sec. 3.1.2, this in particular involves the limit of large 𝑁 ,
with 𝑁 the degree of the gauge group SU(𝑁). While the field theory side in this limit
becomes strongly coupled, the dual theory of gravity becomes classical, i.e. 𝐺N ∝ 1

𝑁2 → 0,
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cf. (3.9). The bulk degrees of freedom therefore correspond to quantum fields propagating
on a fixed classical background spacetime. Fixing this background to the eternal black
hole, the bulk and boundary operator algebras were analysed in [132, 133]. The boundary
operators considered are single-trace operators 𝔒. These gauge-invariant operators consist
of polynomials of fields and derivatives of these fields. In particular, the operators 𝔒 have
no explicit 𝑁 dependence and are normalised such that 𝑘-fold correlation functions of
these operators scale as 𝑁2−𝑘. To have a well-defined large 𝑁 limit for such operators,
the expectation values (i.e. 𝑘 = 1) have to be subtracted, 𝔒′ = 𝔒 − ⟨𝔒⟩, to cancel
the linear divergence of the expectation value of 𝔒. This of course does not change the
commutation relations between two such single-trace operators. In the large 𝑁 limit, all
correlation functions for 𝑘 > 2 vanish, while the two-point functions scale as 𝑁0. In the
first step consider only the operators with non-trivial commutators with each other. Due
to the large 𝑁 behaviour of correlation functions, in the large 𝑁 limit these non-trivial
commutators result in c-numbers rather than other operators. Therefore, the operators
𝔒′ describe a generalised free field theory. The algebra formed by these subtracted single-
trace operators 𝔒′ is a von Neumann algebra of type III1. This can be argued using
the duality between this boundary algebra and the bulk algebra defined on the classical
background spacetime of the eternal black hole, which is of type III1 like any algebra of
a local region in a QFT (cf. the review in sec. 2.3.2). However, the classification as type
III1 can also be established without using holography by noting that the boundary algebra
allows for half-sided modular inclusions (see also [510]), which only exist for algebras of
type III1 [511, 512]. The TFD state dual to the eternal black hole arises as the cyclic and
separating vector of the boundary algebras.

With the two-sided setting of the eternal black hole, on both boundaries, the subtracted
single-trace operators form algebras of type III1, denoted as A𝐿∕𝑅,0. These algebras are each
other’s commutants as they are spatially separated. Moreover, they are factors since they
only contain operators with non-trivial commutation relations, so the centre must be trivial.
The dual algebras A𝑙∕𝑟,0 defined on the left and right exterior region of the eternal black
hole describe the low-energy effective field theory on the classical background spacetime of
the eternal black hole with fixed mass. To allow for varying mass, one has to consider an
operator with the notion of energy, i.e. the Hamiltonians 𝐻𝐿∕𝑅. However, as opposed to
the single-trace operators 𝔒, the Hamiltonians do not have a well-defined large 𝑁 limit.
In particular, in the presence of the eternal black hole, both the expectation value and
two-point function of the Hamiltonian scale as 𝑁2 [451, 513]. While the divergence of
the expectation value can be removed as before by subtraction, 𝐻 ′

𝐿∕𝑅 = 𝐻𝐿∕𝑅 − ⟨𝐻𝐿∕𝑅⟩,
the two-point functions of 𝐻 ′

𝐿∕𝑅 still diverge as 𝑁2. Therefore, the subtracted boundary
Hamiltonians generating time translations are not part of the algebras A𝐿∕𝑅,0. Defining
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new operators 𝑈𝐿∕𝑅 = 1
𝑁
𝐻 ′
𝐿∕𝑅, these do not have divergent two-point functions and

therefore may be included to the algebras, A𝐿∕𝑅 = A𝐿∕𝑅,0 ⊗ A𝑈𝐿∕𝑅 . The algebras A𝑈𝐿∕𝑅

are commutative and are formed by bounded functions of 𝑈𝐿∕𝑅. However in the large 𝑁
limit, these operators are central elements since for any 𝔒𝐿∕𝑅 ∈ A𝐿∕𝑅,0 [132–134],

[

𝑈𝐿∕𝑅,𝔒𝐿,𝑅
]

= 1
𝑁

[

𝐻 ′
𝐿∕𝑅,𝔒𝐿∕𝑅

]

= − i
𝑁
𝜕𝑡𝔒𝐿∕𝑅 → 0 . (6.33)

The algebras A𝐿∕𝑅 are therefore not factors as they contain elements that commute with all
other elements of the algebras. Moreover, introducing two operators 𝑈𝐿∕𝑅 is not necessary,
but one new operator 𝑈 is sufficient. This is because the difference of the Hamiltonians
𝐻− = 𝐻𝐿 −𝐻𝑅 = 𝐻 ′

𝐿 −𝐻
′
𝑅 is well-defined in the large 𝑁 limit as the divergences cancel.

Correspondingly in the language of von Neumann algebras, the symmetry of the TFD state
by evolution using 𝐻− is realised as the modular operator Δ−𝛽𝐻− acting on the TFD state
as the identity [134],

Δ−𝛽𝐻−
|TFD⟩ = |TFD⟩ . (6.34)

Since 𝐻− is well-defined in the large 𝑁 limit, the difference 𝑈𝐿 − 𝑈𝑅 = 1
𝑁
𝐻 ′

− vanishes
in the large 𝑁 limit, thereby identifying 𝑈𝐿 and 𝑈𝑅 as operators. Correspondingly, there
is only one operator 𝑈 that is included as a central element in both the left and right
algebra, so the centre is shared between both algebras. This is the algebraic version of the
statement already encountered in sec. 5.1.3 that the mass of the black hole, corresponding
to 𝑘0 in (5.37), is a shared mode that is not confined to only one boundary.

Including 1
𝑁

-corrections, the resulting algebras are quite different, as first shown in [134].
In particular, 𝑈 is no longer a central operator, since allowing for 1

𝑁
-corrections, the r.h.s. of

(6.33) does not vanish. In this case, to properly include 𝑈 to the algebras A𝐿∕𝑅,0, it was
observed that the previous definition of 𝑈 receives corrections. This modifies the previously
used algebra A𝑈 to A𝐻̂−+𝑋 , where 𝐻̂− is the bulk dual to 𝐻− and 𝑋 = 𝛽𝑁𝑈 . Moreover,
to account for the non-trivial commutator between 𝑈 and other operators 𝔒𝐿∕𝑅, instead
of a tensor product one defines the full algebra as the crossed product between the single-
trace algebras A𝐿∕𝑅,0 and A𝐻̂−+𝑋 , e.g. A𝐿 = A𝐿,0 ⋊ A𝐻̂−+𝑋 .5 As discussed in [134], the
algebra A𝐻̂−+𝑋 is the modular automorphism group of the single-trace operator algebras,
corresponding to the non-compact group of time translations. Moreover, this modular
automorphism is outer since it is defined using 𝐻𝐿∕𝑅 which is not part of the single-trace
operator algebras. It has been shown on general grounds that the crossed product of a

5Given this form of the left algebra, there are technical subtleties in defining the crossed product for the
right algebra, discussed in detail in [134]. For our discussion, these subtleties are not important and
we refer the interested reader to the aforementioned paper.
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type III1 von Neumann algebra by its modular automorphism group yields a type II∞ factor
when this automorphism group is non-compact [514, 515]. Since the algebra is now of
type II, the entanglement entropy can be defined as traces and density operators now exist.
As reviewed in sec. 2.3.2, this entropy is defined up to an arbitrary additive constant that
stems from the presence of the outer automorphism group. As 1

𝑁
-corrections correspond

to finite 𝐺N-corrections on the bulk side, the type II∞ algebra provides a semiclassical
description of gravity in the bulk.

Let us now discuss this transition in von Neumann algebras in light of our results derived
in sec. 6.1.2 on geometric phases and the trace on the algebra. Combining this insight with
our results of sec. 4.2.2 on geometric phases for the TFD state, the transition between type
III and type II von Neumann algebras in the holographic setting of the eternal black hole can
be understood. As we reviewed above, in the large 𝑁 limit the eternal black hole admits
a description in terms of two algebras A𝐿∕𝑅 = A𝐿∕𝑅,0 ⊗A𝑈 , both of type III1 [132, 133].
Such algebras do not allow for defining a trace. As we have discussed in sec. 6.1.2, this
can be understood as a consequence of the presence of geometric phases Φ(𝑙)

G (cf. (6.31)),
or equivalently by the absence of a maximally entangled state vector. Indeed, the TFD
state (3.52) is not maximally entangled, as we have discussed in sec. 4.2.2. In particular,
the Schmidt coefficients (4.44) are all different and correspondingly, geometric phases as
in (4.50) are defined. These phases probe the geometry of the entanglement orbits as
defined by the SZK construction [166], as shown in sec. 4.1.2. Due to the presence of the
geometric phases (4.50), the TFD state or any other state vector obtained by acting with
an operator on the TFD state does not define a tracial state, made manifest by our result
(6.31).

To explain the transition to the type II∞ algebra of [134], the topological phase (4.52)
has to be considered. Using the TFD state for the two-qubit system (4.39), we have
demonstrated that the topological phase factor Φ(TFD) is non-trivial only if the geometric
phase ΦG of the same state is non-trivial as well. Since the TFD state is understood as
the dual description of an eternal black hole, our discussion of the qubit system naturally
generalises to the algebraic description of black holes. As every state of a type III1 algebra
has geometric phases Φ(𝑙)

G , the corresponding topological phases are non-vanishing. In
the case where all of these geometric phases vanish, the corresponding state vector is
maximally entangled. This provides a cyclic and separating vector of a type II algebra. As
we show in (6.31), this particular vector defines a tracial state on the algebra. Although
this construction uses qubit microstates, it is generally applicable to any set of microstates
giving rise to the TFD state. The construction of sec. 6.1.2 therefore naturally encompasses
the algebra of operators dual to a black hole spacetime. We have therefore found an
explicit realisation of the relation between geometric phases and the trace on the algebra
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for the eternal black hole in Anti-de Sitter spacetime. The phase factors Φ(TFD) defined
in sec. 4.2.2 associated with time translations are defined for every state vector of a type
III algebra, corresponding to the strict large 𝑁 limit. However, there exists one particular
state vector of a type II algebra where these phase factors vanish. This state vector defines
the trace on the type II algebra, cf. (6.31), describing the eternal black hole when including
1
𝑁

-corrections.
In this discussion, it is important to note that the phase factor (4.52) probes the topology

of the parameter space as defined by the time translations, which are part of the asymptotic
symmetry group. In the large 𝑁 limit, where this phase factor is defined, the TFD state
(3.52) and the time-shifted TFD states (3.54) are indistinguishable from any local low-
energy observer [182, 454, 455], i.e. there are no observables that may probe differences
between these states. As discussed in sec. 4.2.3, this gives rise to the non-trivial topology
of the parameter space as G𝑀 ≃ S1, cf. (4.67). This treats left and right time translations
by the compact group U(1). To connect to the crossed product of [134], it is however
important to consider time translations as the non-compact group R instead of U(1). As
mentioned before, the type II∞ algebra arising by taking the crossed product requires that
the modular automorphism group is non-compact. In light of the topological phase factor
(4.52), the 1

𝑁
-corrections considered in [134] allow for distinguishing between |TFD⟩ and

|TFD⟩𝛼. In particular, the periodicity of 𝛿 discussed below (4.52) is no longer defined,
which essentially decompactifies U(1) into R. With non-compact time translations, the
topological phases vanish as now the parameter space G𝑀 ≃ R is topologically trivial.
With the phase factors vanishing, the corresponding state vector defines the trace on the
algebra.

To conclude this section, let us discuss the factorisation puzzle from the algebraic per-
spective. This puzzle arises due to type I reasoning. However, as we have explained above
following [132, 133], the von Neumann algebras describing the eternal black hole in the
large 𝑁 limit are of type III1. Such algebras act on a Hilbert space that does not admit a
factorisation since these algebras do not have an irreducible representation, as we have re-
viewed in sec. 2.3.1. To be precise, the algebras A𝐿∕𝑅, which are each other’s commutants,
act on a combined Hilbert space H that cannot be written as a factorised Hilbert space
H𝐿⊗H𝑅, at least not without introducing a cutoff. This makes the non-factorisation of
the Hilbert space dual to the eternal black hole manifest. Apart from the Hilbert space
non-factorisation, in the large 𝑁 description even the algebras A𝐿∕𝑅 are not factorised as
they share the central operator 𝑈 . This shared mode corresponds to the mass of the black
hole, analogous to the holonomy 𝑘0 of sec. 5.1.3. As we have shown in the aforementioned
section, this shared mode appears as a coupling term in the chiral boson action (5.37)
defined on an annulus geometry. Moreover, the topological phase Φ(TFD) defined for the
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TFD state in (4.52) indicates the non-factorisation of the operator algebras. In particular,
in the absence of the shared mode, the left and right time translations generated by 𝐻𝐿

and 𝐻𝑅, respectively, correspond to different bulk isometries, each represented by U(1).
The resulting parameter space G𝑀 is then topologically trivial and there is no ambiguity in
relating the left and right boundary times. With 1

𝑁
-corrections, the algebras are deformed

to type II factors [134]. For such algebras, irreducible representations do not exist either,
and therefore they do not act on a factorised boundary Hilbert space as well. Truly fac-
torised Hilbert spaces only arise for algebras of type I, which is the expected algebra type
for a complete theory of quantum gravity (see e.g. [172] for a discussion in this direction).
However, the algebras defined by the crossed product are factors, i.e. the centre is trivial.
As we discussed above, in this case, the topological phase factor Φ(TFD) vanishes, consis-
tent with our interpretation of a non-trivial Φ(TFD) indicating the non-factorisation of the
operator algebras.

6.2. Geometric Phase and Missing Information

In the previous sec. 6.1 we have discussed in detail how geometric phases can be utilised
to distinguish between types of von Neumann algebras, in particular between type II and
III. In this section, we discuss the implications of non-vanishing geometric phases for the
description of physical systems in a broader sense. We propose geometric phases as an
indicator for missing information about the microscopic structure of the phase space. More
precisely, whenever geometric phases are present, a local observer does not have access
to the full Hilbert space. For systems without entanglement, this missing information is
related to the presence of a global symmetry. This global symmetry enters in the quotient
when defining the projective Hilbert space, cf. (2.57). The geometric phases resulting
from this non-trivial fibre bundle allow us to distinguish between the projective Hilbert
space and the full Hilbert space, where local observers only have access to local regions
of the former, as we will make precise shortly. For systems with entanglement between
two subregions, global symmetries generate phases in the overall state which cannot be
measured by an observer restricted to one subregion. In particular, the phases do not
influence any local measurement. As we elaborate on towards the end of this section, the
theme of geometric phases indicating missing information also has an interesting relation to
the expected absence of global symmetries in theories of quantum gravity. In the following
sec. 6.2.1 we illustrate the relation between geometric phases and missing information
for systems without entanglement in two examples, each time specifying which physics is
behind the missing information. Next in sec. 6.2.2, we generalise this idea to systems with
entanglement in three examples. Here we also relate our interpretation of the geometric
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phase to the eternal black hole, in particular in light of the results on von Neumann algebras
for the eternal black hole reviewed and discussed before.

6.2.1. Examples without Entanglement

We start the discussion with geometric phases in unentangled systems. In particular, we
discuss a single qubit interacting with a magnetic field, which is the prototypical example
of a system with geometric phases [163]. We show how the geometric phase enables us to
determine the geometry and topology of the projective Hilbert space. We then continue
to generalise this idea to the more advanced case of a single CFT,6 where Virasoro Berry
phases can be defined [167]. As we shall discuss, here the missing information is related
to time translations and the origin of time in the CFT.

A Single Qubit

As a first demonstration of the relation between geometric phases and missing information,
we consider the well-known setting of a single qubit interacting with a magnetic field, de-
scribing the Zeeman effect. The corresponding Hamiltonian was considered in the context
of geometric phases by Berry in the seminal paper [163],

𝐻 = 𝜇𝐵𝐵⃗ ⋅ 𝑆 , (6.35)

where as in (4.1), 𝜇𝐵 is the Bohr magneton, 𝐵⃗ is the magnetic field and 𝑆 = 1
2
𝜎⃗ represents

the qubit. The magnetic field is parametrised by the absolute value 𝐵 = |𝐵⃗| and two angles
𝜙 and 𝜃 as 𝐵⃗ = 𝐵(sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃)𝑇 , with the two angles specifying points on
the Bloch sphere. As discussed in sec. 2.2.1, this system can be considered as a physical
realisation of the Hopf fibration [283] with the Hilbert space H = S3, the projective
Hilbert space P(H ) = CP1 ≃ S2 and the gauge group 𝐺 = U(1) ≃ S1 providing the
entire manifold E , the base manifold B and the fibre F respectively. This is a non-trivial
fibre bundle since S3 ≠ S2 × S1. Correspondingly, global coordinates cannot be defined
but local coordinate patches have to be used. The gauge group U(1) describes coordinate
transformations between these patches and leads to global phases of state vectors of the
system described by (6.35). Such phases cannot be determined by working in only one
coordinate patch. In other words, a local observer defined as an observer who has access
only to one coordinate patch is missing the information about the geometric phase. In
particular, from their local perspective, they cannot distinguish between the Hilbert space

6Of course, generically states in a CFT contain entanglement when imposing bipartition surfaces. In
the sense discussed here, the absence of entanglement refers to the fact that the CFT itself is not
entangled to any other system, as will be the case in later examples.
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H and the projective Hilbert space P(H ). The local observer has no way of determining
the geometry and/or topology of the manifold they are defined on, as this requires access
to both coordinate patches. We demonstrate this in the following explicitly.

The eigenstates of the Hamiltonian given in (6.35) are given by

|𝜉1⟩ = −𝑒−𝑖𝜙 sin 𝜃
2
|↑⟩ + cos 𝜃

2
|↓⟩ , (6.36)

|𝜉2⟩ = − sin 𝜃
2
|↑⟩ + 𝑒i𝜙 cos 𝜃

2
|↓⟩ . (6.37)

These two eigenstates are singular at the north pole 𝜃 = 0 and the south pole 𝜃 = 𝜋
respectively, since at these points the other angle 𝜙 is not defined. The two coordinate
patches in combination of course cover all of the projective Hilbert space. The local gauge
fields for the south and north pole coordinate patches are defined as in (2.63) using the
state vectors (6.36) and (6.37) respectively,

𝐴𝑆 = i⟨𝜉1|d|𝜉1⟩ =
1
2
(1 − cos 𝜃)d𝜙 , (6.38)

𝐴𝑁 = i⟨𝜉2|d|𝜉2⟩ = −1
2
(1 + cos 𝜃)d𝜙 , (6.39)

which are related by the U(1) transformation 𝑈 = 𝑒i𝜙 following (2.80),

𝐴𝑆 = 𝐴𝑁 − i𝑈 †d𝑈 . (6.40)

Equivalently, also the state vectors (6.36) and (6.37) are related by this transformation,
|𝜉2⟩ = 𝑈 |𝜉1⟩. Note that all of this is highly reminiscent of the discussion in sec. 4.1.2
regarding the geometric phase for the two-qubit system. However, compared to that
system, in the present discussion, we do not have any entanglement. Comparing the
local gauge fields (4.23) and (4.21) to (6.38) and (6.39), respectively, this manifests in
the absence of the prefactor sin 𝛼. In particular, in sec. 4.1.1 it was shown that vanishing
entanglement implies 𝛼 = 𝜋

2
, where sin 𝛼 = 1, consistent with the above results for the local

gauge fields. Moreover, in the 𝛼 = 𝜋
2

implies that the ratio 𝐵
𝐽

between the two parameters
𝐵 and 𝐽 in the two-qubit Hamiltonian diverges, so 𝐵 ≫ 𝐽 and the Hamiltonian in (4.1)
reduces to the single-qubit Hamiltonian (6.35).

Calculating the field strength, i.e. the symplectic form Ω, associated to the local gauge
fields,

Ω = d𝐴𝑁 = d𝐴𝑆 = 1
2
sin 𝜃d𝜃 ∧ d𝜙 , (6.41)
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the geometric phase of [163] follows by integration as in (2.83),

ΦG = ∫
S2
Ω = 2𝜋 . (6.42)

Moreover by the Chern theorem [282] stated in (2.82), the Euler characteristic of the
projective Hilbert space 𝜒(CP1) can be calculated. Using (6.41), the Euler characteristic
follows as

𝜒(CP1) = 1
2𝜋 ∫

CP1

√

det Ω = 2 . (6.43)

Since 𝜒 = 2 − 2𝑔 where 𝑔 is the number of holes of the manifold in question, this result
shows that CP1 does not have any holes. Since CP1 is a real two-dimensional manifold, this
makes manifest that CP1 is homeomorphic to the sphere in two dimensions, CP1 ≃ S2,
as already stated earlier.7 This simple example shows how the non-trivial fibre bundle
defined above the projective Hilbert space and the corresponding geometric phase include
information about the geometry and topology of this space inaccessible to a local observer.
As alluded to earlier in sec. 2.2.1, such phases arise in condensed matter physics, most
famously in the quantum Hall effect. The quantum Hall conductance is quantised in terms
of Chern numbers [156, 157, 159], which has also been confirmed experimentally [158].
Such phases are therefore not only important in abstract mathematical discussions but
define physically measurable quantities.

Virasoro Berry Phase in a Single CFT

We now turn to discussing missing information in the more complicated scenario of a single
CFT. As discussed in sec. 5.1.1, here the Virasoro Berry phase ΦVir can be defined [167].
This phase is computed by integrating the local gauge field, cf. (5.8), for a given element
of the Virasoro group, (𝑓, 𝛼) ∈ Vir. Such group elements correspond to conformal trans-
formations 𝑓 that may act on highest weight states |ℎ⟩ in a suitable unitary representation
𝔲(𝑓 ). However, all states |ℎ⟩ with ℎ > 0 have a global U(1) symmetry, representing the
time translation invariance of the CFT generated by the Hamiltonian. For these particular
transformations, the states |ℎ⟩ only pick up an overall phase, |ℎ⟩ → 𝑒iΦVir

|ℎ⟩. All such
states lie in the same ray and are therefore indistinguishable by any local measurement,
i.e. to any local observer. This enables to define the coadjoint orbit for states |ℎ⟩ as the

7In fact, any real two-dimensional compact manifold without holes is homeomorphic to S2, even seemingly
more complicated ones such as the surface of a coffee mug without a handle.
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quotient space

G = Vir
U(1) . (6.44)

Upon quantisation, this provides the projective Hilbert space for the CFT. As reviewed in
sec. 2.2.1, this provides the base space of a fibre bundle, with fibre U(1). The holonomy
of this fibre bundle is known as the Virasoro Berry phase [167].

To discuss missing information for the Virasoro Berry phase, we consider any highest
weight state |ℎ⟩ with ℎ > 0. Under an arbitrary conformal transformation 𝑓 , this state
transforms into 𝔲(𝑓 )|ℎ⟩. At each point along this path, there is a phase ambiguity of the
state due to the U(1) symmetry. In other words, there is no local measurement distin-
guishing 𝔲(𝑓 )|ℎ⟩ and 𝑒iΦVir𝔲(𝑓 )|ℎ⟩. This phase ambiguity is interpreted as the freedom
of the local observer to choose their origin of the time coordinate. Since no expectation
value is sensitive to this choice for the origin, the phase factor 𝑒iΦVir represents missing
information. In particular, much like the geometric phase within the SZK construction
discussed in sec. 4.1.2 probes the geometry of the entanglement orbit, the Virasoro Berry
phase is sensitive to the geometry of the Verma module defined for the highest weight
state |ℎ⟩.

6.2.2. Examples with Entanglement

In the previous discussion, we have related non-trivial geometric phases to missing infor-
mation in physical systems. In particular, we have discussed this for unentangled systems
with global symmetries. In the following, we generalise this to systems with entanglement,
which in particular enables us to discuss the setting of the eternal black hole in AdS/CFT
in the context of missing information. We do so taking three different perspectives, fol-
lowing our earlier analyses of secs. 4.2 and 5. That is, we first discuss Virasoro Berry
phases in entangled CFTs, building up on the results of sec. 5.1.3. We then move on to
the topological phase of the TFD state defined in sec. 4.2.2 and finally turn to the modular
Berry phases discussed in sec. 5.2.2.

Virasoro Berry Phase for Two Entangled CFTs

We have discussed the Virasoro Berry phase for two entangled CFTs dual to the eternal
black hole in sec. 5.1.3. It arises due to independent choices of the time coordinate in
each CFT, thereby indicating the missing information about the relation between the time
coordinates. As we have reviewed in sec. 3.2.1, the eternal black hole is dual to two CFTs
entangled in the TFD state. The black hole horizon causally separates these two CFTs.
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Therefore, on each boundary, conformal transformations can be applied independently. For
the current setting of two copies of a CFT2, the asymptotic symmetry groups G (𝐿∕𝑅)

asy are
both given by the Virasoro group [365]. These of course also include time translations
generated by the boundary Hamiltonians 𝐻𝐿∕𝑅. Local observers in each boundary may
choose their origins of time independently. The misalignment between these choices for
the origin of time results in the time-shift variable 𝛿 that appears in the time-shifted TFD
states (3.54). The value of this time-shift is inaccessible to a local low-energy observer and
therefore is interpreted as a piece of missing information, indicated by the corresponding
phase factor acquired by the TFD state as shown in sec. 4.2.2. We discussed this in
detail for the example of JT gravity in sec. 4.2.3. In the higher-dimensional setting of
AdS3/CFT2 that we currently discuss, the same arguments apply. That is, while the
asymptotic symmetry groups are now given by the Virasoro group instead of only U(1),
the isometry of the spacetime is still described by a single U(1) generating the time-shift.
This reflects that the mass of the black hole must be the same when measured from both
boundaries. With these asymptotic symmetry groups, the parameter space of the theory
follows using (4.59) or as

GM = Vir⊗ Vir
U(1) , (6.45)

coinciding with the coadjoint orbit obtained in (5.44). This provides the base space of
a fibre bundle with fibre U(1) and, upon quantisation, the projective Hilbert space. We
have pointed out in the previous sec. 6.2.1 that the Virasoro Berry phase for a single
CFT probes the geometry of the Verma module of the highest weight state |ℎ⟩, much like
the geometric phase (4.25) discussed for the two-qubit system of sec. 4.1.2 probes the
geometry of the entanglement orbit. For the present case of entangled CFTs, a further
analogy can be made. The phase factor indicating missing information about the time-shift
variable probes the topology of the parameter space (6.45) and is therefore understood as
a generalisation of the topological phase factor of the TFD state (4.52) to the setting of
AdS3/CFT2. In the context of the von Neumann algebras describing the eternal black hole
in the large 𝑁 limit [132, 133], this phase factor indicates the non-trivial common centre
between the left and right algebras. This common centre corresponds to the constraint
that the black hole mass must be the same when measured from both boundaries. In the
parameter space (6.45), this is implemented by taking the common quotient of Vir⊗ Vir
by a single U(1). With the black hole mass being the conserved charge associated with the
time shift mode, the Virasoro Berry phase in entangled CFTs results from the non-trivial
centre.
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The TFD Topological Phase

For the TFD state, the topological phase as defined in (4.52) arises precisely due to the
time-shift 𝛿 between the left and right times. For the explicit example of JT gravity, we
have shown in sec. 4.2.3 that this topological phase is in particular a winding number. This
topological phase again describes missing information, which can be understood from the
perspective of the algebra by invoking geometric quantisation. Within geometric quanti-
sation, winding numbers appear in the spectrum of the ‘prequantum’ operator describing
the canonically conjugate momentum (see e.g. [266]). In our example of JT gravity, this
operator corresponds to the Hamiltonian. In a general setting, given that the topology of
the parameter space is non-trivial as for the punctured plane R2∖{0}, the winding numbers
appear in the spectrum of the prequantum momentum operator. This spectrum generally
takes the form {𝑟+ 𝜆}, where 𝑟 ∈ Z is the winding number and 𝜆 ∈ [0, 1) is an ambiguity
parameter that can be used to shift the local gauge field 𝐴→ 𝐴+ 𝜆 without changing the
symplectic form Ω = d𝐴, as d𝜆 = 0. Since 𝜆 appears in the spectrum, the prequantum
operators defined for different choices for the value of 𝜆 are inequivalent. The operator
algebra is therefore sensitive to the value of 𝜆. On the contrary, for every fixed 𝜆, the
prequantum operators for different values of 𝑟 define an equivalence class (for details see
e.g. [266]). Therefore, the algebra of operators is not sensitive to the value of 𝑟, as these
operators correspond to the same symplectic form and have an equivalent spectrum. In
other words, a local observer has no way of measuring the value of 𝑟. We therefore term
the information about 𝑟 a missing information. In our particular example of the topologi-
cal phase factor for the TFD state (4.52), this information about the winding number of
the time-shift mode specifies the precise gluing of the bulk and boundary spacetimes and
corresponds to the non-trivial centre of the von Neumann algebras, as discussed at the end
of sec. 6.1.3.

Modular Berry Phase for a Bulk Wormhole

Finally, we turn to modular Berry phases as discussed in the context of the black hole in
sec. 5.2.2. These are different to the previous two examples in that they are generated by
the modular Hamiltonian rather than the physical Hamiltonian. Analogously however to
the previous two examples, this phase arises due to a misalignment of the time coordinates
of spatially separated local observers of the left and right boundary. In this case, time
refers to the modular rather than the physical time. As a result of this misalignment of the
modular time coordinates, the global state of the system contains additional phase factors.
These are however inaccessible to the local low-energy observers. In particular, the reduced
density operators of each observer are independent of these phases. Therefore, the modular
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Berry phase as well indicates information missing to a local low-energy observer in terms
of misaligned modular time frames.

To conclude this section, let us discuss the relation between geometric phases and
missing information in the light of von Neumann algebras and quantum gravity. As alluded
to in [516], any QFT that emerges as a low-energy limit of a full theory of quantum
gravity is complete, in the sense that the operator algebra is a maximal set of all operators
consistent with low-energy physics, as pointed out in earlier works based on insights of
string theory [517, 518] and the AdS/CFT correspondence [519, 520]. This can be given
another interpretation in terms of global symmetries. An incomplete theory, i.e. with
missing operators, has a global symmetry. Therefore, a theory of quantum gravity is
expected to not have global symmetries [519, 520]. In our above examples of geometric
phases indicating missing information, we found that these geometric phases were defined
using the global symmetries of the theory, in particular time translations. Therefore, in a
full theory of quantum gravity, we expect that there are no geometric phases, as there are
no global symmetries. Accordingly, studying geometric phases, in particular in holographic
settings, is an important part of developing a complete theory of quantum gravity. As an
example, we have shown in the sec. 6.1.3 that the absence of the geometric phase explains
the transition from a type III1 to a type II∞ algebra for the eternal black hole. This absence
is understood by including 1

𝑁
-corrections, which makes the theory more complete, i.e. closer

to the underlying theory of quantum gravity.
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For pure states, the entanglement entropy is a sufficient measure of all possible quantum

correlations. This however is no longer true when considering mixed states. There exist
various generalisations for an entanglement measure for mixed states such as the entan-
glement of formation [242, 243], yet none of these generalisations are sensitive to all kinds
of quantum correlations. For this purpose, as reviewed in sec. 2.1.3 quantum discord was
defined [173–175], which captures quantum correlations beyond e.g. the entanglement of
formation [174, 251] or entanglement negativity [252]. Unfortunately, considering generic
states there is no efficient way to calculate quantum discord, as this calculation is an NP-
complete problem [180]. Based on a necessary and sufficient condition for non-vanishing
quantum discord, the authors of [181] proposed a measure known as geometric quantum
discord (GQD) whose computation is less involved, as reviewed in sec. 2.2.2.

In the previous sections, in particular sec. 4, we have discussed entanglement properties
and in particular non-factorisation using geometric phases and the SZK construction [166].
In this section, we show that computing GQD provides an alternative measure of non-
factorisation. Since we are interested in applying this measure of non-factorisation to a
holographic setting, in particular the TFD state as the dual description to the eternal
black hole, we perform the analysis and computation of GQD for pure states only. Our
result shows that GQD can be viewed as a quantity in quantum theory that diagnoses
non-factorisation without necessarily referring to a bulk description. The GQD is defined
in terms of the Hilbert–Schmidt norm, which induces a metric and therefore a notion
of distance on state space [271], as we reviewed in sec. 2.2.1. W.r.t. this distance, the
state 𝜒 minimising this norm is interpreted as the ‘closest’ state to the quantum state
𝜌 under consideration. We also show that non-factorisation via GQD is consistent with
the earlier discussion on geometric phases and entanglement orbits for the system of two
interacting qubits discussed in secs. 4.1.1 and 4.1.2. When applied to the TFD state,
we make explicit that GQD signals non-factorisation between the left and right CFTs in
terms of the thermal partition function. In particular, the state minimising GQD for the
TFD state is given by the so-called thermomixed double state, which provides a mixed
state description of the eternal black hole with classical correlations across the ER bridge
[182]. While this state was motivated in [182] by bulk considerations, our calculation
shows that the TMD state can also be derived purely in the boundary. Noting that GQD
is related to the second Rényi entropy, we propose how GQD can be calculated in the
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dual gravitational description. We moreover show that GQD can be used to probe the
microstates of the black hole. We discuss this by generalising the Hilbert–Schmidt norm
of GQD to the Schatten norm. Calculating the Schatten norm of the difference between
any of the time-shifted TFD states and the thermomixed double state results in overlaps
probing 1

𝑁
-corrections.

We start our analysis by computing GQD for arbitrary pure states in sec. 7.1 and discuss
the properties of the resulting expression, in particular in light of non-factorisation. We
then move on to utilise our result for the time-shifted TFD states in sec. 7.2 and show
non-factorisation from the boundary perspective in terms of a non-vanishing GQD. We also
discuss the state singled out in the minimisation process when computing GQD for the TFD
state as this state has an interesting interpretation in the dual gravitational picture as well
[182]. Finally in sec. 7.3, we study GQD, and a straightforward generalisation thereof, for
the time-shifted TFD states (3.54) w.r.t. their interpretation as microstates of the eternal
black hole. The new results discussed in this section appeared in [186] and we mainly
follow the presentation therein.

7.1. For Arbitrary Pure States

We start our analysis of GQD by discussing in detail the result for GQD of arbitrary pure
states 𝜌 = |𝜓⟩⟨𝜓| in sec. 7.1.1. We briefly discuss the properties of the state minimising
the Hilbert–Schmidt norm when computing GQD, which is always a c-c state in the sense of
the classification discussed in sec. 2.1.3. Subsequently we show that this does not generalise
to mixed states in an explicit example for the isotropic state, where the state minimising
the norm is a q-c state. Finally, we discuss how GQD can be expressed by the second
Rényi entropy, and moreover by the modular partition function, i.e. the partition function
defined by the modular Hamiltonian. In sec. 7.1.2 we then show that non-factorisation as
indicated by GQD is consistent with the notion of non-factorisation using geometric phases
for the interacting two-qubit system discussed in secs. 4.1.1 and 4.1.2.

7.1.1. A Classical Approximation to Quantum Entanglement

The measure of quantum correlations GQD given in (2.98) can be evaluated exactly for
arbitrary pure states 𝜌 = |𝜓⟩⟨𝜓| of a bipartite Hilbert space H = H (𝐴)⊗H (𝐴̄) = C𝑛⊗C𝑛.
The GQD is determined by tuning the coefficients within a q-c state 𝜒 as given in (2.99)
such that the Hilbert–Schmidt norm of 𝜌 − 𝜒 is minimal. The (square of the) Hilbert–
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Schmidt norm is given by

||𝜌 − 𝜒||2 = tr
(

𝜌2
)

− 2 tr(𝜌𝜒) + tr
(

𝜒2) . (7.1)

Since 𝜌 is a pure state, the first term is equal to 1. To evaluate the other two terms it
is convenient to assume that the state vector |𝜓⟩ is written in Schmidt decomposition,
which can be established for any pure state. The pure state 𝜌 is then given by

𝜌 =
𝑛
∑

𝑘,𝑙=1
𝜅𝑘𝜅𝑙|𝑘

(𝐴), 𝑘(𝐴̄)⟩⟨𝑙(𝐴), 𝑙(𝐴̄)| . (7.2)

Using 𝜒 as given in (2.99) upon renaming |𝜙(𝐴̄)
𝑘 ⟩ → |𝑘(𝐴̄)⟩, the latter two terms in (7.1)

evaluate to

tr(𝜌𝜒) =
𝑛
∑

𝑘=1
𝜅2
𝑘𝑞𝑘⟨𝑘

(𝐴)
|𝜌(𝐴)𝑘 |𝑘(𝐴)⟩ , (7.3)

tr
(

𝜒2) =
𝑛
∑

𝑘=1
𝑞2𝑘 tr(𝐴)(𝜌

(𝐴)
𝑘 𝜌(𝐴)𝑘 ) , (7.4)

where we made use of ⟨𝑘(𝐴)∕(𝐴̄)|𝑙(𝐴)∕(𝐴̄)⟩ = 𝛿𝑙𝑘. Inserting (7.3) and (7.4) into (7.1) we find
the Hilbert–Schmidt norm to be

||𝜌 − 𝜒||2 = 1 − 2
𝑛
∑

𝑘=1
𝜅2
𝑘𝑞𝑘⟨𝑘

(𝐴)
|𝜌(𝐴)𝑘 |𝑘(𝐴)⟩ +

𝑛
∑

𝑘=1
𝑞2𝑘 tr(𝐴)(𝜌

(𝐴)
𝑘 𝜌(𝐴)𝑘 ) . (7.5)

In order to minimise (7.5) we have to find appropriate 𝑞𝑘 as well as 𝜌(𝐴)𝑘 . This is achieved
by calculating derivatives w.r.t. 𝑞𝑘 as well as the entries of 𝜌(𝐴)𝑘 . Setting these derivatives
to zero, we obtain conditions to determine all open parameters. As we have exactly as
many equations as there are parameters, this provides a unique solution given by

𝑞𝑘 = 𝜅2
𝑘, ⟨𝑘(𝐴)|𝜌(𝐴)𝑙 |𝑘(𝐴)⟩ = 𝛿𝑘𝑙, tr(𝐴)

(

𝜌(𝐴)𝑘 𝜌(𝐴)𝑘

)

= 1 . (7.6)

The third equation states that each 𝜌(𝐴)𝑘 is a pure state. Even more specifically, the second
equation determines 𝜌(𝐴)𝑘 to

𝜌(𝐴)𝑘 = |𝑘(𝐴)⟩⟨𝑘(𝐴)| . (7.7)

These results are also obtained by computing 𝑞𝑘 and 𝜌(𝐴)𝑘 from 𝜌 using (2.49) and (2.50)
with projectors Π(𝐵)

𝑘 = Π(𝐴̄)
𝑘 = |𝑘(𝐴̄)⟩⟨𝑘(𝐴̄)|. This is necessary to be consistent with the fact

that for pure states, 𝑄(𝐴∶ 𝐴̄) = 𝑆(𝜌(𝐴)). The quantum conditional entropy (2.48) has to
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vanish in this case, which is precisely the case when every 𝜌(𝐴)𝑘 is a pure state.

Inserting (7.6) into (7.5) we obtain an expression for GQD valid for any pure state purely
in terms of the Schmidt coefficients,

𝑄(2) = (𝐴∶ 𝐴̄) = 1 −
𝑛
∑

𝑘=1
𝜅4
𝑘 . (7.8)

We have stated in sec. 2.2.2 that GQD provides a qualitative measure for quantum discord.
For pure states, quantum discord reduces to the entanglement entropy. Therefore, (7.8)
may vanish if and only if 𝑆(𝜌(𝐴)) = 0. This is in fact realised by our result for GQD given
in (7.8). The entanglement entropy vanishes if all Schmidt coefficients but one vanish,
i.e. for 𝜅𝑘∗ = 1 and 𝜅𝑘≠𝑘∗ = 0 cf. (2.11). Since the Schmidt coefficients 𝜅𝑘 are real numbers
constrained as 0 ≤ 𝜅2

𝑘 ≤ 1 and ∑𝑛
𝑘=1 𝜅

2
𝑘 = 1, if any of the Schmidt coefficients is equal

to one, all others have to vanish. In this case, (7.8) vanishes as well. The entanglement
entropy is bigger than zero if at least two Schmidt coefficients are non-zero. If two Schmidt
coefficients are non-zero, they have to be smaller than one, and correspondingly every
positive power of these coefficients is smaller than one as well. For any 𝜆𝑘 < 1, a higher
power yields a smaller value, in particular 𝜆2𝑘 < 𝜆4𝑘. Using again the normalisation we
have

(

∑𝑛
𝑘=1 𝜅

2
𝑘

)2
=

∑𝑛
𝑘=1 𝜅

4
𝑘 + Ξ = 1. Here Ξ represents all mixed products of Schmidt

coefficients. In particular, due to the properties of the Schmidt coefficients 0 < Ξ < 1 and
correspondingly we find ∑𝑛

𝑘=1 𝜅
4
𝑘 < 1. This also shows that GQD is positive semi-definite,

consistent with its definition in terms of the Hilbert–Schmidt norm. So we find that (7.8)
vanishes if and only if the pure state 𝜌 does not contain entanglement.

We have determined the constituents of the q-c state minimising the Hilbert–Schmidt
norm (7.5) as (7.6) and (7.7). This has an interesting consequence for the state 𝜒 as well.
Inserting the results of the minimisation, 𝜒 is given by

𝜒min =
𝑛
∑

𝑘=1
𝜅2
𝑘|𝑘

(𝐴), 𝑘(𝐴̄)⟩⟨𝑘(𝐴), 𝑘(𝐴̄)| . (7.9)

According to our discussion in sec. 2.1.3, this is not a q-c but a c-c state. The minimisation
involved in computing GQD singles out a state with only classical correlations of the set of
all states with vanishing discord, i.e. all q-c states. This observation has a nice connection
to the ‘geometric measure of quantum correlations’ proposed in [521]. This alternative
measure is defined analogously to GQD except that the minimisation is performed over
states within S (𝑐−𝑐). Our result for the state (7.9) minimising the Hilbert–Schmidt norm
shows that, although S (𝑐−𝑐) ⊂ S (𝑞−𝑐), for pure states 𝜌 the measure of [521] and GQD
are equivalent. For mixed states however, the measures are different as we demonstrate in
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the following in an explicit example. This example will also be useful to illuminate how to
calculate GQD explicitly.

To demonstrate computing GQD, a useful example is provided by the isotropic state
[522] for two qubits,

𝜌iso =
1 − 𝑝
4
14 +

𝑝
2
(

|↑(𝐴)↑(𝐴̄)⟩ + |↓(𝐴)↓(𝐴̄)⟩
)(

⟨↑(𝐴)↑(𝐴̄) | + ⟨↓(𝐴)↓(𝐴̄) |
)

, (7.10)

where 0 ≤ 𝑝 ≤ 1. This state is a superposition of the classical mixture described by the
first term ∝ 14 and the density operator of a maximally entangled pair of qubits in the
second term. As pointed out before in sec. 2.1.3, quantum discord for the state (7.10)
does not vanish except for 𝑝 = 0, where 𝜌iso is a purely classical state, while the state
is separable below 𝑝 = 1

3
as indicated by the vanishing of the entanglement of formation

below 𝑝 = 1
3

[174]. To compute GQD explicitly, we make an ansatz for 𝜒 , which in this
case only consists of two terms,

𝜒 = 𝑞↑𝜌
(𝐴)
↑ ⊗ |↑(𝐴̄)⟩⟨↑(𝐴̄) | + (1 − 𝑞↑)𝜌

(𝐴)
↓ ⊗ |↓(𝐴̄)⟩⟨↓(𝐴̄) |. (7.11)

Note that we made use of ∑𝑘=↑,↓ 𝑞𝑘 = 1 to express 𝑞↓ in terms of 𝑞↑. Furthermore, we
parametrise the reduced density operators 𝜌(𝐴)↑,↓ in terms of three real parameters 𝛼𝑖, 𝛽𝑖, 𝛾𝑖
with 𝑖 = ↑, ↓ as

𝜌(𝐴)𝑖 =

[

𝛼𝑖 𝛽𝑖 + i𝛾𝑖
𝛽𝑖 − i𝛾𝑖 1 − 𝛼𝑖

]

, (7.12)

which ensures that 𝜒 as well as 𝜌(𝐴)𝑖 are properly normalised. With this ansatz, calculating
the Hilbert–Schmidt norm (7.1) results in

||𝜌iso − 𝜒||2 =
3
4
(

1 + 𝑝2
)

−
𝑝
2
+
(

𝑝 − 2
)

𝛼↓ + 2
(

𝛼2↓ + 𝛽
2
↓ + 𝛾

2
↓

)

+ 2𝑞2↑
[

1 + 𝛼↑
(

𝛼↑ − 1
)

+ 𝛼↓
(

𝛼↓ − 1
)

+ 𝛽2↑ + 𝛽
2
↓ + 𝛾

2
↑ + 𝛾

2
↓

]

+ 𝑞↑
[

𝑝
(

1 − 𝛼↑ − 𝛼↓
)

− 2
(

1 − 2𝛼↓ + 2𝛼2↓ + 2𝛽2↓ + 2𝛾2↓
)]

. (7.13)

Computing GQD amounts to minimising this expression, which in turn requires tuning
the open coefficients 𝑞↑ as well as 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 such that the above expression is minimal.
This is achieved by calculating the derivatives of the above expression w.r.t. each of these
parameters and equating the results to zero and reinserting the result obtained for one
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parameter into (7.13)before computing the next derivative, at the end we find

𝑞↑ =
1
2
, 𝛼↑ =

1 + 𝑝
2

, 𝛽↑ = 0 = 𝛾↑

𝛼↓ =
1 − 𝑝
2

, 𝛽↓ = 0 = 𝛾↓ . (7.14)

Inserting these values into (7.13) we find the GQD for the isotropic state,

𝑄(2)(𝐴∶ 𝐴̄) =
𝑝2

2
. (7.15)

As expected, the GQD does not vanish except for 𝑝 = 0 where also quantum discord
vanishes [174]. In particular, it does not vanish for 𝑝 ≤ 1

3
, where the entanglement of

formation is zero [253]. Using (7.14) the corresponding reduced density operators 𝜌(𝐴)𝑖 in
the ansatz for 𝜒 are given by

𝜌(𝐴)↑ = 1
2

[

1 + 𝑝 0
0 1 − 𝑝

]

, 𝜌(𝐴)↓ = 1
2

[

1 − 𝑝 0
0 1 + 𝑝

]

. (7.16)

Clearly, these reduced density operators are mixed states, as can be checked by calculating
the purity (2.3) and noting that 𝛾(𝜌(𝐴)↑,↓ ) < 1 for 𝑝 < 1. Therefore, the state minimising the
Hilbert–Schmidt norm is a q-c state, cf. (7.16), as opposed to the c-c state obtained in
(7.9).

Since (7.9) is a purely classical state, by noting that GQD is defined in terms of a norm we
arrive at an interesting result regarding the relation between 𝜌 and 𝜒min. A norm induces a
notion of distance between, in this case, states. Therefore, we find that 𝜒min is the closest
classical state to the quantum state 𝜌. In other words, 𝜒min is the state with classical
correlations that best approximates the quantum entangled state 𝜌. In particular, there is
no q-c state that is able to approximate 𝜌 better than the classical state 𝜒min. This is useful
also in experimental physics. In a bipartite system, as far as local observables associated to
only 𝐴 or 𝐴̄ are concerned, the expectation value of any observable is insensitive to whether
it is calculated in the state 𝜌 or 𝜒min. This is since the reduced density operators following
from 𝜌 and 𝜒min are equal. Therefore, an experimenter interested in observables of only
the subsystem 𝐴 or 𝐴̄ does not need to prepare the full quantum state 𝜌, but the classical
state 𝜒min is sufficient. See e.g. [523] for a discussion of the difficulty of preparing quantum
states. While this is already an interesting observation for generic quantum systems, it
will be a major point of our discussion in sec. 7.2.2 where we apply the current setting to
states dual to black holes in light of the AdS/CFT correspondence.

The result for GQD in (7.8) has a close relation to the Rényi entropy discussed in
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sec. 2.1.3. This measure of entanglement defined in (2.41) is determined by computing
powers of the reduced density operator. To relate this to our current discussion, we first
point out that (7.8) can be effectively written as

𝑄(2)(𝐴∶ 𝐴̄) = 1 − tr
(

𝜒2
min

)

. (7.17)

Due to the simple structure of c-c states, the reduced density operator of 𝜒min for the
subsystem 𝐴 is obtained as1

𝜌(𝐴) =
𝑛
∑

𝑘=1
𝜅2
𝑘|𝑘

(𝐴)
⟩⟨𝑘(𝐴)| . (7.18)

Notably, the entries are the same as in 𝜒min. Since calculating the reduced density operator
simply removes vanishing entries in 𝜒min, we have

tr
(

𝜒2
min

)

= tr
(

𝜌2(𝐴)
)

. (7.19)

Combining this with (7.17) and the definition (2.41), we find that GQD can be expressed
by the second Rényi entropy of either 𝜒min or 𝜌(𝐴),

𝑄(2)(𝐴∶ 𝐴̄) = 1 − 𝑒−𝑆(2)(𝜒min) = 1 − 𝑒−𝑆(2)(𝜌(𝐴)) . (7.20)

As we discussed in sec. 2.1.3, the calculation of the Rényi entropy is a well-known tool
within QFT using the replica trick. Therefore, our result (7.20) shows that the quantity
GQD is not restricted to quantum mechanics but is also accessible in QFT.

A non-trivial result for GQD, i.e. 𝑄(2) > 0, is understood as a statement of non-
factorisation. In the following, we discuss that in terms of the partition function. In
the upcoming sec. 7.1.2, we will demonstrate the non-factorisation also in terms of the
projective Hilbert space in an explicit example. To reformulate (7.8) in terms of a partition
function we introduce the modular Hamiltonian 𝐾 (𝐴) = − ln 𝜌(𝐴) as defined in (2.21). Since
the reduced density operator (7.18) is diagonal, so is 𝐾 (𝐴), with diagonal entries given by
the negative logarithms of the entries of 𝜌(𝐴). We may then define the modular partition
function 𝑍mod in terms of the eigenvalues of the modular Hamiltonian as

𝑍mod(𝐾 (𝐴)) =
𝑛
∑

𝑘=1
𝑒−𝐾

(𝐴)
𝑘 . (7.21)

As mentioned below (2.24), this can formally be interpreted as the thermal partition func-

1The reduced density operator of 𝐴̄ looks exactly the same with 𝐴→ 𝐴̄.
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tion with physical Hamiltonian 𝐾 (𝐴) at temperature 𝑇 = 1. Using the modular partition
function, the GQD for pure states can be expressed as

𝑄(2)(𝐴∶ 𝐴̄) = 1 −
𝑍mod(2𝐾 (𝐴))
𝑍mod(𝐾 (𝐴))2

. (7.22)

Therefore, the GQD vanishes if 𝑍mod(2𝐾 (𝐴)) = 𝑍mod(𝐾 (𝐴))2, that is if the (modular)
partition function factorises.2

7.1.2. Factorisation of the Projective Hilbert Space 2.0

We will now discuss an explicit example of the above result for GQD using the two-qubit
system whose entanglement properties we already analysed in sec. 4.1.1. This will enable us
to show non-factorisation of the projective Hilbert space using GQD, providing a consistency
and compatibility check with the earlier results on non-factorisation in sec. 4.1.2 involving
the SZK construction [166]. We point out that the following discussion is not part of our
original work [186], but has been performed for the purpose of writing this thesis as a cross
check.

The two ‘subregions’ 𝐴 and 𝐴̄ used in the previous sec. 7.1.1 are each given by one of
the two qubits, 𝐴 = ↑ and 𝐴̄ = ↓. As discussed in the previously mentioned section, the
Schmidt coefficients for the ground state of the two-qubit system are given by (4.3). We
repeat them here for the convenience of the reader,

𝜅↑ =
√

1 − sin 𝛼
2

, 𝜅↓ =
√

1 + sin 𝛼
2

. (7.23)

Accordingly, using our result (7.8), the GQD for the two-qubit system is given by

𝑄(2)(↑∶↓) = 1
2
− sin2 𝛼

2
= cos2 𝛼

2
. (7.24)

Therefore, GQD vanishes for 𝛼 = 𝜋
2
, which is the case of vanishing entanglement between

the two spins as discussed in sec. 4.1.1. This provides an explicit realisation of the dis-
cussion in the previous sec. 7.1.1. To gain insights about the factorisation properties of
the projective Hilbert space using the GQD, we use the geometric phase (4.25) derived
for this system in sec. 4.1.2. Inverting this result, we express the parameter 𝛼 in terms of
the geometric phase ΦG and insert it into the result for the GQD for the two-qubit system

2Note that by definition𝑍mod(𝐾 (𝐴)) = 1 due to the normalisation of the state vector |𝜓⟩. We nevertheless
include it to make the analogy with the upcoming formula (7.26) and the discussion in sec. 7.2.2 clearer.
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(7.24), resulting in

𝑄(2)(↑∶↓) = 1
2

(

1 −
Φ2

G

4𝜋2

)

. (7.25)

This vanishes for ΦG = 2𝜋. According to the SZK construction [166] reviewed in sec. 2.2.2
and discussed for this particular two-qubit system in secs. 4.1.1 and 4.1.2, the case ΦG = 2𝜋
corresponds to the factorised submanifold CP1 × CP1 of the full projective Hilbert space
CP3. To be specific, this particular submanifold is the product of the individual projective
Hilbert spaces of each of the qubits. Therefore, while a vanishing GQD corresponds to the
factorised submanifold, a non-zero GQD with ΦG ≠ 2𝜋 is associated to a non-factorised
projective Hilbert space. This makes manifest how the non-factorisation of the projective
Hilbert space is indicated by a non-vanishing GQD.

In sec. 4.2.1 we have derived the entanglement temperature 𝛽ent for the two-qubit system,
given in (4.38) in terms of the geometric phase. This temperature is defined such that the
entanglement entropy assumes the form of the thermal entropy at temperature 𝛽ent. Using
this result, we may express the GQD for the two-qubit system (7.25) using the modular
partition function as in (7.22). However, using the entanglement temperature, the modular
partition function takes the form of the thermal partition function,

𝑄(2)(↑∶↓) = 1 −
𝑍(2𝛽ent)
𝑍(𝛽ent)2

, (7.26)

showing again non-factorisation in terms of the partition function.
The result (7.26) motivates that GQD is interesting for generic thermal systems and

therefore in particular black holes with the TFD state as its holographic dual description.
This is the topic of the next section.

7.2. For the Thermofield Double State

In the above, we have considered arbitrary pure states. In light of the AdS/CFT correspon-
dence, these results are particularly interesting when applied to the TFD state. This state
is the holographically dual description of the eternal black hole in Anti-de Sitter spacetime.
As reviewed in sec. 3.2, this setting gives rise to the factorisation puzzle, as the two CFTs
defined on the boundary do not share any interaction, however are connected by a semi-
classical geometry in the bulk. Given the above results on non-factorisation indicated by
the GQD of a generic pure state, when applied to the TFD state the GQD should be able
to shed light on the factorisation puzzle, in particular on the factorisation properties of the
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field theory. We study this in the following. We start in sec. 7.2.1 with a brief review of
the decohered state 𝜌TMD introduced in [182] providing a mixed state description of the
eternal black hole. This state will be elementary to our discussion in sec. 7.2.2 where we
discuss GQD for the TFD state. In particular, the TMD state will arise as the closest clas-
sical approximation 𝜒min in computing the GQD. Concluding this section, we discuss the
implications of this result. To circumvent potential confusion, we point out that here we
adopt a notation more common to holography in that we replace the arbitrary subregions
𝐴 and 𝐴̄ used before by the left and right CFTs, indicated by labels 𝐿 and 𝑅, respectively.

7.2.1. Some Details on the TMD State

As reviewed in sec. 3.2.1, the eternal black hole in Anti-de Sitter spacetime is holographi-
cally dual to two CFTs entangled in the TFD state (3.52)

|TFD⟩ = 1
√

𝑍(𝛽)

∑

𝑛
𝑒−𝛽

𝐸𝑛
2
|𝑛𝐿, 𝑛

∗
𝑅⟩ , (7.27)

which provides a state vector description of the black hole [112]. However, as argued in
[182], in a more realistic scenario it is expected that due to interaction with the ambient
spacetime of the black hole, the dual state decoheres and evolves into a mixed state,
which does not have a state vector description. By decoherence, the quantum information
contained in the TFD state is converted into classical correlation. The mixed state in
question is constrained by the fact that for a local low-energy observer, the state looks
thermal at the same temperature both before and after decoherence. To provide the
necessary context for our analysis of GQD for the TFD state in sec. 7.2.2 we will briefly
explain the consequences of these considerations along the lines of [182].

As we discussed earlier in sec. 3.2.2, the TFD state is not the unique pure state dual to
the eternal black hole [454, 455]. Rather it is the dual state for a particular choice 𝛿 = 0,
where 𝛿 determines the relation between the left and right boundary times. For arbitrary
𝛿, the dual state is given by the time-shifted TFD state (3.54),

|TFD⟩𝛼 =
1

√

𝑍(𝛽)

∑

𝑛
𝑒i𝛼𝑛𝑒−𝛽

𝐸𝑛
2
|𝑛𝐿, 𝑛

∗
𝑅⟩ . (7.28)

These phases can be understood as quantum information as they are not observable by a
local low-energy observer [182]. An intuitive argument for that is that the local low-energy
observer measures observables in the reduced density operator, which does not depend
on 𝛿. More intricate arguments involving correlation functions, both in the gravity and
the field theory side, can be found in [455]. From the perspective of the local low-energy
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observer, all of the time-shifted TFD states (7.28) therefore describe the same classical
geometry for any set of phases {𝛼}, with elements 𝛼𝑛 ∈ {𝛼} that are related to 𝛿 as well
as the energies 𝐸𝑛 as 𝛼𝑛 = 2𝐸𝑛𝛿. It is then natural from the perspective of the low-energy
observer to describe the black hole by a superposition of all time-shifted TFD states instead
of one particular instance. In particular, as the phases 𝛼𝑛 are not measurable by a local
low-energy observer, a natural description from their perspective is given by an incoherent
sum of all states (7.28). This leads to defining the thermomixed double state (TMD state)
as [182]

𝜌TMD = 1
𝑁

∑

{𝛼}
|TFD⟩𝛼 𝛼⟨TFD| . (7.29)

The sum includes all sets of phases {𝛼}. The normalisation 1
𝑁

implies that there are 𝑁
different of such sets. Noting that the spectrum of CFTs is highly random, the sum can
be performed using 1

𝑁

∑

{𝛼} 𝑒i(𝛼𝑛−𝛼𝑚) [182],

𝜌TMD = 1
𝑍(𝛽)

∑

𝑛
𝑒−𝛽𝐸𝑛|𝑛𝐿, 𝑛

∗
𝑅⟩⟨𝑛𝐿, 𝑛

∗
𝑅| . (7.30)

As previously mentioned, this state contains only classical correlations. In fact, 𝜌TMD ∈
S (𝑐−𝑐) according to the classification discussed in sec. 2.1.3. A more precise understanding
of the correlations within the TMD state can be obtained by considering the mutual
information. As discussed in sec. 3.2.2, the mutual information for the TFD state (7.27), or
its time-shifted generalisation (7.28), is equal to twice the entanglement entropy 𝑆(𝜌(𝐿∕𝑅)),
indicating the presence of quantum correlations. On the other hand, the factorised thermal
state 𝜌th = 𝜌(𝐿) ⊗ 𝜌(𝑅) has vanishing mutual information, i.e. there is no correlation at all.
For the TMD state, we find that 𝑆(𝜌TMD) = 𝑆(𝜌(𝐿∕𝑅)), and correspondingly also the mutual
information is equal to 𝑆(𝜌(𝐿∕𝑅)). In this sense, the TMD state can be understood as an
intermediate state between the TFD state and the manifestly factorised state 𝜌th without
any kind of correlation, where 𝜌(𝐿∕𝑅) are the reduced density operators of both the TFD
and the TMD state [182]. With this background, we now calculate GQD for the TFD
state and discuss the implications of the result in light of the factorisation puzzle.

7.2.2. A Classical Approximation to the TFD State

Given any pure state vector, upon calculating the Schmidt coefficients of this state vector
the GQD is determined using (7.8). The time-shifted TFD state (7.28) is already written
in Schmidt decomposition. The complex phases 𝑒i𝛼𝑛 drop out when calculating the Schmidt
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coefficients explicitly,3 resulting in

𝜅𝑛 =
𝑒−𝛽

𝐸𝑛
2

√

𝑍(𝛽)
. (7.31)

Accordingly, using our result (7.8), the GQD is given by

𝑄(2)(𝐿∶𝑅) = 1 −
∑

𝑛 𝑒−2𝛽𝐸𝑛

𝑍(𝛽)2
= 1 −

𝑍(2𝛽)
𝑍(𝛽)2

, (7.32)

realising (7.22) for the thermal modular Hamiltonian 𝐾 (𝐿) = 𝛽𝐻𝐿. Moreover, the state
(7.9) minimising the Hilbert–Schmidt norm is given by

𝜒 (TFD)
min = 1

𝑍(𝛽)
∑

𝑛
𝑒−𝛽𝐸𝑛|𝑛𝐿, 𝑛

∗
𝑅⟩⟨𝑛𝐿, 𝑛

∗
𝑅| . (7.33)

Remarkably, this is precisely the TMD state (7.30). Therefore, the calculation allows for a
novel interpretation of this state as the state that best approximates the (time-shifted) TFD
state without including quantum correlations between the two CFTs. We emphasise that
this above derivation does not require any considerations or assumptions about the dual
gravitational theory such as the interactions between the black hole and its surrounding
spacetime discussed in [182]. Rather, it is entirely quantum information theoretic with the
TMD state arising by minimising a distance in state space.

First, we note that the GQD for the TFD state does not vanish. This is consistent with
the fact that the entanglement 𝑆(𝜌(𝐿∕𝑅)) contained within the TFD state is non-trivial
since 𝜌(𝐿∕𝑅) are thermal mixed states. Note also that the second Rényi entropy 𝑆 (2)(𝜌(𝐿∕𝑅))
is proportional to the purity of 𝜌(𝐿∕𝑅), so by (7.20), GQD vanishes if the reduced density
operators describe pure states. Second, (7.32) again signals non-factorisation as it vanishes
if and only if the partition function factorises, 𝑍(2𝛽) = 𝑍(𝛽)2. Considering the form of
the Schmidt coefficients (7.31) we expect that factorisation happens in the limit 𝛽 → ∞,
as in this case the Schmidt coefficient with the lowest energy 𝐸0 does not vanish but
approaches one. All other Schmidt coefficients with 𝐸𝑛 > 𝐸0 are exponentially suppressed
and vanish in the limit.4 Accordingly, in this limit the TFD state reduces to a product
state lim

𝛽→∞
|TFD⟩𝛼 → |0𝐿0𝑅⟩ and there is no entanglement between the two CFTs. In the

dual gravitational picture, this limit is understood as removing the black hole’s interior.
This is the region responsible for the wormhole interpretation of the two-sided black hole,
cf. fig. 3.6. In this limit also the bulk yields a factorising picture since there are no

3Calculating GQD directly using the Hilbert–Schmidt norm and minimising the result, the phases will
drop out due to the definition of the norm.

4We assume that the energies 𝐸𝑛 are bounded from below.
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quantum correlations supporting the ER bridge. Finally, we point out that the result
(7.32) is reminiscent of a property of the TMD state discussed in [165, 182, 524]. In there
it was shown that the 𝑘th power of 𝜌TMD can be used to define the partition function of
the 𝑘-fold wormhole,

tr
(

𝜌𝑘TMD
)

=
𝑍(𝑘𝛽)
𝑍(𝛽)𝑘

. (7.34)

For 𝑘 = 2, this reproduces the second term in (7.32). We will discuss in sec. 7.3 how
this relation motivates us to consider a generalisation of GQD in the context of black hole
microstates.

We therefore find that the GQD is a useful quantity in diagnosing non-factorisation
due to quantum correlations, both in generic quantum systems as well as in states with a
holographic dual such as the time-shifted TFD states. In particular, in light of the results
of [165, 182, 524], this gives GQD an interpretation in terms of wormhole physics. As
discussed in sec. 2.2.2, GQD is a qualitative measure for quantum discord. Therefore,
also a non-vanishing quantum discord implies non-factorisation due to quantum corre-
lations. In the above discussion, we have shown this explicitly for pure states, where
𝑄(𝐿 ∶ 𝑅) = 𝑆(𝜌(𝐿∕𝑅)). However, since quantum discord in general captures quantum
correlations even beyond entanglement, we propose that non-vanishing quantum discord
implies non-factorisation in the above sense for arbitrary states 𝜌. Whenever there are
quantum correlations resulting in a non-factorisation of the (modular) partition function,
the GQD and equivalently the quantum discord for that state will be non-zero. The GQD
therefore provides an important probe of non-factorisation especially in the holographic
context. Purely from the field theory perspective, typically there are no a priori arguments
for non-factorisation since the two CFTs are spatially separated. The computation of GQD
however is able to address this question in field theory language. In particular, at least
for pure states, accessing GQD reduces to the computation of the second Rényi entropy,
which is well-known in field theory.

In general, non-factorisation may also appear due to classical correlations. In particular,
since the reduced density operators of the pure state 𝜌 and the closest classical state 𝜒min

are the same, the Rényi entropy appearing in GQD can be associated to the classical state
𝜒min as well. This suggests a close similarity with the description of the TMD state as
a classical state describing the black hole after decoherence has set in [165, 182, 524].
However, the minimisation involved in computing GQD emulates quantum correlations as
a classical state. Therefore, GQD highlights the role of quantum correlations for non-
factorisation. While quantum correlations within a given state 𝜌 are emulated as classical
correlations within 𝜒min, any classical correlations within 𝜌 do not influence GQD since
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these can be cancelled by classical correlations within 𝜒min.
It is interesting also from the gravity perspective that GQD is determined by the second

Rényi entropy. As for the entanglement entropy, described in sec. 3.1.3, also the Rényi
entropies have a known gravitational dual, given by the areas of cosmic branes [525]. To
compute the 𝑛th Rényi entropy 𝑆 (𝑛), a cosmic brane with non-trivial tension 𝑇𝑛 = 𝑛−1

4𝑛𝐺N
is inserted into the bulk spacetime. These branes react back on the geometry and create
conical defects with deficit angle Δ𝜙𝑛 = 2𝜋 𝑛−1

𝑛
[525]. While the entanglement entropy is

obtained from 𝑆 (𝑛) in the limit 𝑛 → 1, cf. (2.40), in the dual bulk picture the cosmic brane
becomes tensionless and the conical defect vanishes in this limit, reducing the cosmic
brane to the usual RT surface [525]. Given the result for GQD in terms of the second
Rényi entropy (7.20), this means that for pure states with a dual theory of gravity, the
holographic dual to GQD is related to inserting a cosmic brane with tension 𝑇2 = 1

8𝐺N
,

creating a conical defect Δ𝜙2 = 𝜋.

7.3. A Probe for Black Hole Microstates

As we pointed out before in sec. 7.2.1, the time-shifted TFD states (7.28) cannot be distin-
guished from the usual TFD state (7.27) by a local low-energy observer [455]. Moreover,
since the TMD state has the same reduced density operator as the time-shifted TFD states,
correlation functions within a time-shifted TFD state or the TMD state are the same for
simple operators as considered in [351]. A high-energy observer however, who has access
to measuring operators scaling as 𝑁 or higher, is sensitive to the differences within these
states.5 Therefore, the quantum correlations within the time-shifted TFD states (7.28),
as a distinguishing property to the TMD state containing only classical correlations, are
understood as 1

𝑁
-corrections. In the following sec. 7.3.1 we discuss these corrections and

a generalisation of GQD in the light of black hole microstates. We conclude this sec-
tion by discussing the relation between the microstates and non-factorisation in view of
non-factorisation from the perspective of the path integral in sec. 7.3.2.

7.3.1. Microstate Overlaps and Geometric Quantum Discord

As discussed in sec. 3.2.1, the time-shifted TFD states are interpreted as microstates of
the black hole [455]. Given a particular microstate, corresponding to a set of phases {𝛼},
the dual bulk description is completely fixed, in particular how the left and right time coor-
dinates are related by 𝛿 and therefore how the bulk spacetime is glued to the boundaries.

5In principle, also a non-local observer is sensitive to these differences. However, non-local observers are
not very physical, which is why we do not further study this direction.
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To elucidate how these microstates relate to the GQD, we revisit the computation of the
latter, focussing on different aspects than above.

Given the results of the previous sec. 7.2.2, we already know that the TMD state (7.30)
minimises the Hilbert–Schmidt norm (7.1). In the following, when denoting GQD we
therefore drop the minimisation and only denote the Hilbert–Schmidt norm with 𝜒 =
𝜒 (TMD)

min . As pointed out before in (7.17), effectively 𝑄(2)(𝐿∶𝑅) = 1− tr
(

𝜌2TMD

)

. However,
this relative sign appears only because of the overlap term,

𝑄(2)(𝐿∶𝑅) = 1 − 2 tr
(

𝜌TFD𝛼
𝜌TMD

)

+ tr
(

𝜌2TMD
)

, (7.35)

where 𝜌TFD𝛼
= |TFD⟩𝛼 𝛼⟨TFD|. Therefore, the GQD can be interpreted as comparing

the microstate |TFD⟩𝛼 to the average over the full ensemble of microstates 𝜌TMD. The
cancellation of the phases 𝑒i𝛼𝑛 in the overlap is understood as an implicit averaging, i.e. a
self-averaging property of GQD. On the technical level, this property is due to the trace
in (7.35). The importance of 1

𝑁
-corrections in this calculation is seen as follows. We

rewrite the overlap term in the above equation by expressing the TMD state in terms of
microstates |TFD⟩𝛽 as in (7.29),

tr
(

𝜌TFD𝛼
𝜌TMD

)

= 𝛼⟨TFD|𝜌TMD|TFD⟩𝛼

= 1
𝑁

∑

{𝛽}
𝛼⟨TFD|TFD⟩𝛽 𝛽⟨TFD|TFD⟩𝛼 . (7.36)

To obtain the result for (7.35) we therefore need to know what the overlap of two mi-
crostates evaluates to. Up to 1

𝑁
-corrections, all microstates |TFD⟩𝛼 are orthogonal to each

other [182],

𝛼⟨TFD|TFD⟩𝛽 = 𝛿𝛼𝛽 + 𝒪
( 1
𝑁

)

. (7.37)

However, using this result directly in (7.36) does not lead to the result for GQD obtained
above in (7.32) since

tr
(

𝜌TFD𝛼
𝜌TMD

)

= 1
𝑁

∑

{𝛽}
𝛿𝛼𝛽𝛿𝛽𝛼 =

1
𝑁
𝛿𝛼𝛼 = 1 , (7.38)

leading to 𝑄(2)(𝐿 ∶𝑅) = 2 + tr
(

𝜌2TMD

)

. This tells us that the 1
𝑁

-corrections must not be
neglected in this computation. In other words, evaluating the ensemble average, i.e. the
sum ∑

{𝛽}, of the square of the overlap 𝛼⟨TFD|TFD⟩𝛽 does not commute with using the
approximation (7.37), but we have to be more careful in this calculation. Without approx-
imating as in (7.37), i.e. without neglecting 1

𝑁
-corrections, the overlap of two microstates
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is given by

𝛼⟨TFD|TFD⟩𝛽 =
∑

𝑛,𝑚
𝑒−i𝛼𝑛𝜅𝑛𝑒

i𝛽𝑚𝜅𝑚⟨𝑛𝐿, 𝑛
∗
𝑅|𝑚𝐿, 𝑚

∗
𝑅⟩ =

∑

𝑛
𝜅2
𝑛𝑒

i(𝛼𝑛−𝛽𝑛) . (7.39)

Using (7.39) in (7.36) we find

tr
(

𝜌TFD𝛼
𝜌TMD

)

= 1
𝑁

∑

{𝛽}

∑

𝑛,𝑚
𝜅2
𝑛𝑒

i(𝛼𝑛−𝛽𝑛)𝜅2
𝑚𝑒

i(𝛽𝑚−𝛼𝑚)

=
∑

𝑛,𝑚
𝜅2
𝑛𝜅

2
𝑚𝑒

i(𝛼𝑛−𝛼𝑚)𝛿𝑛𝑚 =
∑

𝑛
𝜅4
𝑛 =

𝑍(2𝛽)
𝑍(𝛽)2

, (7.40)

where in the second equality we used again that 1
𝑁

∑

{𝛽} 𝑒i(𝛽𝑚−𝛽𝑛) = 𝛿𝑛𝑚. This computation
also shows explicitly the self-averaging property, i.e. the cancellation of the phases 𝑒i𝛼𝑛 .
Although tr

(

𝜌TFD𝛼
𝜌TMD

)

includes one sum ∑

{𝛼} less than tr
(

𝜌2TMD

)

, the results are of the
same order. Using (7.40) in (7.36) leads to the result for GQD of the TFD state obtained
earlier in (7.32).

We may also derive a result generalising (7.40) for the overlap (7.36) with 𝜌TMD replaced
by an arbitrary (integer) power of 𝜌TMD. In this case,

tr
(

𝜌TFD𝛼
𝜌𝑘−1TMD

)

= 1
𝑁𝑘−1

∑

{𝛽}1,...,{𝛽}𝑘−1
𝛼⟨TFD|TFD⟩𝛽1 ... 𝛽𝑘−1⟨TFD|TFD⟩𝛼

=
∑

𝑛
𝜅2𝑘
𝑛 =

𝑍(𝑘𝛽)
𝑍(𝛽)𝑘

, (7.41)

where 𝑘 ∈ N. In this computation, we used (7.39) and 1
𝑁

∑

{𝛽}𝑖
𝑒i(𝛽(𝑖)𝑚 −𝛽(𝑖)𝑛 ) = 𝛿𝑛𝑚 repeatedly.

In light of (7.34), this overlap (7.41) is interpreted to include 𝑘-fold replica wormhole
contributions. However, these replica wormholes arise due to an averaging over states
[526–528] and not by the more familiar ensemble averaging. The ratio of partition functions
(7.41) obtained as an overlap of TMD states and a microstate is closely analogous to the
discussion of [529, 530]. In these works, an explanation for the black hole entropy in
terms of counting microstates was studied. The microstates |𝜓𝑚𝑛⟩ were constructed as
corresponding to collapsing shells of dust of mass 𝑚𝑛. Crucially, these shells are considered
to be within the black hole. Moreover, the masses 𝑚𝑛 are inertial masses, i.e. the limit
𝑚𝑛 ≫𝑀 considered in [529, 530], where𝑀 is the mass of the black hole, is not problematic
since 𝑚𝑛 do not contribute to the mass measured at infinity. The states associated to these
dust shells have overlaps of the same form as in (7.41). In computing these overlaps beyond
the lowest power ⟨𝜓𝑚𝑛|𝜓𝑚𝑙⟩, as in our analysis above resulting in (7.41) it is pivotal that
higher power overlaps are not simply given by products of lower power overlaps.
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The authors [529, 530] are interested mostly in astrophysical black holes formed by
collapse. However, since the collapse of a gathering of mass to a black hole is a unitary
process, also such black holes have a pure state description, at least immediately after the
collapse before interaction with the ambient spacetime leads to decoherence. Since our
result on GQD is valid for any pure state, and in particular a result such as (7.41) can be
derived for arbitrary pure states with the TMD state replaced by the appropriate 𝜒min,6

our above analysis of GQD also holds for pure states as considered in [529, 530]. Vice
versa, in sec. 7.2.2 we considered an eternal black hole as opposed to astrophysical black
holes formed by collapse. Note also that in [529, 530] to construct the Hilbert space using
the dust shell states time-reversal symmetry was assumed. For the eternal black hole, the
notion of time-reversal symmetry is ambiguous [455] and the time-shifted TFD states can
be interpreted as microstates of the black hole. Nevertheless, as time-reversal symmetry
is important in [529, 530] only for constructing the states and not for the analysis of the
states thereafter, the line of thought developed in [529, 530] applies to the time-shifted
TFD states as well by replacing the dust shell masses 𝑚𝑛 with sets of phases {𝛼}𝑛. Each
set of phases corresponds to a particular microstate |TFD⟩𝛼. As pointed out below (7.29),
the prefactor 1

𝑁
in the definition of the TMD state indicates that there are 𝑁 different sets

of phases {𝛼}𝑛. Therefore, counting microstates to obtain the thermodynamic entropy, it
is sufficient to consider 𝑁 = 𝑒𝑆BH sets of phases to account for the black hole entropy. The
time-shifted TFD states corresponding to these phases are sufficient to span the Hilbert
space.

Finally, we relate this discussion on black hole microstates to a generalised version of
GQD. We have seen above in (7.40) that correctly including microstate contributions is
essential to obtain the correct expression for GQD. The higher overlaps (7.41) will never
show up in GQD as defined in (2.98). However, the Hilbert–Schmidt norm used to define
GQD is a special case of the class of norms referred to as Schatten norm, defined as

||𝑋||(𝑛) =
𝑛

√

tr
(
√

𝑋†𝑋
𝑛)

, (7.42)

where 𝑋 is an arbitrary operator. We are interested in Hermitian operators 𝑋†𝑋 = 𝑋2

which slightly simplifies the above expression for the Schatten norm. Note that the GQD
is defined using the second power of the Schatten norm for 𝑛 = 2. We therefore consider a
quantity defined by the 𝑛th power of the 𝑛th Schatten norm for the black hole microstates

6For generic pure states, the thermal partition functions 𝑍(𝑘𝛽) have to be replaced by the modular
partition functions 𝑍mod(𝑘𝐾 (𝐴)).
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|TFD⟩𝛼 and the closest classical state 𝜌TMD, which by analogy with GQD we denote 𝑄(𝑛),

𝑄(𝑛)(𝐿∶𝑅) = ||𝜌TFD𝛼
− 𝜌TMD||

𝑛
(𝑛) . (7.43)

Evaluating the right-hand side of this equation naturally gives rise to overlaps of the form
tr
(

𝜌𝑛TFD𝛼
𝜌𝑚TMD

)

which, since 𝜌𝑛TFD𝛼
= 𝜌TFD𝛼

, give rise to the overlaps computed in (7.41).
Schematically, evaluating (7.43) therefore results in

𝑄(𝑛)(𝐿∶𝑅) = 1 + #2
𝑍(2𝛽)
𝑍(𝛽)2

+ ... + #𝑛
𝑍(𝑛𝛽)
𝑍(𝛽)𝑛

, (7.44)

where #𝑘 are numbers ensuring that 𝑄(𝑛)(𝐿 ∶ 𝑅) = 0 if all partition factorise and all of
the ratios of partition functions in this expression are equal to 1. For 𝑄(𝑛), the ratio 𝑍(𝑛𝛽)

𝑍(𝛽)𝑛

is always the highest appearing contribution. However, we point out that in general, not
every term is of precisely this form. Rather, e.g. for 𝑛 = 4, also a term 𝑍(2𝛽)2

𝑍(𝛽)4
appears.

Alluding to the replica wormhole interpretation, these terms are interpreted as follows.
While 𝑍(𝑛𝛽) corresponds to the wormhole with the highest number of mouths possible for
𝑄(𝑛), assuming 𝑛 is even a contribution of the form 𝑍

( 𝑛
2
𝛽
)2 corresponds to two wormholes

with 𝑛
2

mouths, each of which stretches between half of the available replicas of the theory.
Moreover, using (7.34) each of the terms in (7.44) can be expressed by Rényi entropies up
to 𝑆 (𝑛). As pointed out in sec. 7.2.2, all of these Rényi entropies can be calculated in the
dual gravitational theory by inserting cosmic branes with the appropriate tension 𝑇𝑛 [525].

7.3.2. Microstate Wormholes in the Path Integral

In the present sec. 7 we discuss non-factorisation as signalled by the GQD, while in previous
secs. 4 and 5 we discussed non-factorisation in terms of geometric phases. We have already
explained in sec. 7.1.2 how these two notions are related for the particular example of two
entangled qubits. In the following, we extend this by discussing how non-factorisation
can be found for any of the black hole microstates |TFD⟩𝛼 due to the non-exactness of
the symplectic form of the system. We discuss this by combining the insights of [165]
on non-exactness with the construction of [531]. The latter work provides a recipe to
construct Hamiltonians with the TFD state as its ground state for arbitrary systems. We
will first briefly review this construction, followed by our analysis of the symplectic form
of the Hamiltonian with the TFD state as the ground state. Since the GQD is equal for
all microstates, we will focus on the TFD state with 𝛿 = 0. We finally compare GQD as
an indicator for non-factorisation to the non-exactness of the symplectic form in terms of
practicality.
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The mechanism of [531] is based on the observation that operators of the form

𝑑𝑘 = 𝑒−
𝛽
4 (𝐻𝐿+𝐻𝑅)

(

𝔒𝐿,𝑘 − Θ𝔒†
𝑅,𝑘Θ

−1)𝑒
𝛽
4 (𝐻𝐿+𝐻𝑅) (7.45)

annihilate the TFD state [531]. Here, 𝐻𝐿∕𝑅 and 𝔒𝐿∕𝑅,𝑘 are the Hamiltonians and any
operators of the left and right theories, respectively. The anti-unitary operator Θ is the
same as appearing in (3.49). Note in particular that for 𝔒𝐿∕𝑅 = 𝐻𝐿∕𝑅, the exponentials
and Θ cancel. As we have discussed in detail in sec. 3.2.1, the operator 𝐻𝐿−𝐻𝑅 annihilates
the TFD state. The operator (7.45) can therefore be understood as a generalisation of
𝐻𝐿 −𝐻𝑅 to arbitrary operators 𝔒𝐿∕𝑅,𝑘. As 𝑑𝑘 annihilates the TFD state a Hamiltonian
with the TFD state as ground state can be constructed as 𝐻 = 𝑐𝑘𝑑

†
𝑘𝑑𝑘 with positive

constants 𝑐𝑘. While this in principle always works, the exponential of the Hamiltonian is
complicated to calculate explicitly, especially when the systems in question are strongly
coupled. A version more applicable to these cases is provided by considering

𝑑𝑘 = 𝔒𝐿,𝑘 − Θ𝔒†
𝑅,𝑘Θ

−1 , (7.46)

used to define the Hamiltonian

𝐻 (TFD) = 𝐻𝐿 +𝐻𝑅 + 𝑐′𝑘𝑑
†
𝑘𝑑𝑘 , (7.47)

where 𝑐′𝑘 are again positive constants. However, in this version they cannot be arbitrary
but have to be chosen appropriately in order for the TFD state to be the ground state of
(7.47). As shown in [531], this boils down to demanding that the eigenvalue thermalisation
hypothesis (ETH) is valid for the system in question. However, the validity of ETH is a
sufficient but not necessary condition. In particular, in the following we will make use of
(7.47) for two harmonic oscillators. In this case, the two Hamiltonians resulting from (7.45)
and (7.46) coincide for a particular choice of 𝑐′𝑘 and ETH does not need to be studied.

For two harmonic oscillators, the only available operators are the position and momen-
tum operators 𝑥𝐿∕𝑅 and 𝑝𝐿∕𝑅 satisfying the usual commutation relations. Of course, left
operators commute with right operators. Invoking (7.46) of these two operators, the
Hamiltonian (7.47) is given by [531]

𝐻 (TFD) = 1 + 𝑐
2

(

𝑝2𝐿 + 𝑝2𝑅
)

+
(1 + 𝑐)𝜔2

2
(

𝑥2𝐿 + 𝑥2𝑅
)

+ 𝑐 𝑝𝐿𝑝𝑅 − 𝑐𝜔2 𝑥𝐿𝑥𝑅 , (7.48)

where the constants 𝑐′𝑘 introduced in (7.47) are 𝑐′𝑝 = 𝑐, 𝑐′𝑥 = 𝑐𝜔2 with 𝑐 = 1
2
csch2 𝛽𝜔

4
. By

the reasoning of [165] explained in the introduction sec. 5, detecting non-factorisation for
this system amounts to showing that the Hamiltonian𝐻 (TFD) is of the class of Hamiltonians
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discussed in [165]. To do so, we diagonalise the Hamiltonian (7.48) in new position and
momentum operators 𝑥± and 𝑝±. Since the resulting diagonal Hamiltonian is the sum of two
uncoupled harmonic oscillators in the new variables, we may introduce the corresponding
creation and annihilation operators 𝑎± and 𝑎†± as

𝑎± =
√

𝜔
2(1 + 𝑐)

(

𝑥± + i1 + 𝑐
𝜔

𝑝±
)

, 𝑎†± =
√

𝜔
2(1 + 𝑐)

(

𝑥± − i1 + 𝑐
𝜔

𝑝±
)

, (7.49)

resulting in the Hamiltonian

𝐻 (TFD) = 𝜖+𝑎
†
+𝑎+ + 𝜖−𝑎†−𝑎− , (7.50)

where 𝜖+ = 1
𝜔
coth 𝛽𝜔

4
and 𝜖− = 1

𝜔
tanh 𝛽𝜔

4
. Inspired by the coupled harmonic oscillators

discussed in the appendix of [165], as a final step we combine the creation and annihilation
operators into variables of SU(2) by writing 𝑋𝐼 = 1

2
𝑎†𝑘𝜎

𝑘𝑙
𝐼 𝑎𝑙, with 𝜎𝐼 the Pauli matrices.

These variables are chosen such that the quadratic Casimir operator of SU(2) is given by
𝐽 2 = 𝑋𝐼𝑋𝐼 . In particular, 𝐽 = 𝑎†+𝑎+ + 𝑎†−𝑎− and 𝑋3 = 1

2
(𝑎†+𝑎+ − 𝑎†−𝑎−) can be used to

write

𝐻 (TFD) = 𝛾𝐽 + 𝜖𝑋3 , (7.51)

where 𝛾 = 1
𝜔
coth 𝛽𝜔

2
and 𝜖 = 1

𝜔
csch 𝛽𝜔

2
. This is precisely a Hamiltonian of the class

discussed in [165], so the symplectic form of this system is non-exact when restricted
to a quantisable orbit 𝐽 = 𝑗, 2𝑗 ∈ N in the sense of geometric quantisation [263–
265]. Therefore, following [165], the partition function of this system does not factorise,
consistent with our result for the GQD of the TFD state (7.32) as the microstates of the
black hole.

Finally, to diagnose factorisation, we compare the non-exactness argument of [165] with
the argument about GQD discussed in the previous sections. First of all, both sides diagnose
non-factorisation in a consistent way, i.e. both sides predict the same behaviour. In terms
of ease of computation, the measures are somewhat different. As mentioned earlier in
(2.81), proving that a two-form Ω is non-exact, the integral ∫ΣΩ has to be calculated,
where Σ is a closed two-dimensional surface. In specific examples this computation can be
hard, especially if the dimension of the system and correspondingly of the phase space is
large. In particular, as this integral has to vanish for any Σ, it is not sufficient to compute
this only for one example. In such cases, evaluating GQD might be easier. To diagnose
non-factorisation using GQD, it is sufficient to show that at least two Schmidt coefficients
𝜅𝑘 are non-zero since already then ∑𝑛

𝑘=1 𝜅
4
𝑘 < 1 and the GQD is non-zero.



Conclusion and Outlook 8
The overarching question studied in this thesis concerns the factorisation of the projective

Hilbert space. This was analysed both in quantum mechanical systems and also in light of
the factorisation puzzle in more sophisticated holographic models. Let me now conclude
by summarising the results obtained in this thesis and pointing out interesting directions
of future research motivated by these results.

The dual description of the eternal black hole in Anti-de Sitter spacetime is given by
the two CFTs entangled in the TFD state defined on the asymptotic boundaries [112].
In AdS/CFT, entanglement between subregions in the CFTs is computed holographically
by the area of the RT surface [113, 114]. Combining these insights led to interpreting
spacetime not as fundamental but rather as emerging from the underlying entanglement
structure [115–117]. This set the stage for the ER=EPR proposal, stating that entan-
glement between quantum systems is equivalent to a wormhole geometrically connecting
the quantum systems [118]. These considerations however also led to a puzzle within the
AdS/CFT correspondence. In the bulk, the eternal black hole is a smooth and connected
classical geometry, connecting the left and right asymptotic boundary. Therefore, the bulk
Hilbert space is manifestly non-factorised. However from the boundary perspective, since
the boundaries are spatially separated there is no classical interaction between the two
CFTs. Accordingly, the boundary Hilbert space appears to be factorised. This mismatch in
the Hilbert space structure has been coined the factorisation puzzle [120]. In light of this
puzzle, in this thesis I studied factorisation in general quantum systems but particularly
also in the holographic setting of the eternal black hole dual to the TFD state. The main
result of my considerations is to identify geometric phases as a novel means to diagnose
non-factorisation, in particular from a boundary perspective.

I started my analysis in sec. 4 by showing that entanglement in a model of two inter-
acting qubits can be understood entirely using the geometric phase. Invoking the SZK
construction [166], the value of the geometric phase served as a label for the entangle-
ment orbits. These orbits arise in the SZK construction as submanifolds of the projective
Hilbert space. The orbits have the structure of a principal fibre bundle, for which I devel-
oped a technique to calculate the symplectic form, resulting in the geometric phase upon
integration. With this technique at hand, I established the geometric phase as a probe
for the factorisation properties of the projective Hilbert space. Specifically, a factorised
submanifold CP1 × CP1 ⊂ CP3 arises only for the particular value ΦG = 2𝜋 of the geo-
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metric phase, corresponding to unentangled states. For entangled states, where ΦG < 2𝜋,
the submanifold does not factorise. In the next step, I defined a fine structure of the
entanglement entropy. This manifests as a class of states with the same entanglement
entropy but different geometric phases. Note that these geometric phases were defined
slightly differently than those distinguishing the entanglement orbits. While those were
defined using group elements acting only on a single qubit, the geometric phases obtained
for states with the same entanglement use group elements that act on both qubits. This
fine structure is accessible to experiments. Invoking the argument of [165] on non-exact
symplectic forms, I briefly discussed how the presence of geometric phases enables to as-
sociate a wormhole-like interpretation to this simple two-qubit system. In the next step to
make contact with AdS/CFT, I then applied the same techniques to the TFD state. This
started by showing that the entanglement temperature follows from the geometry encod-
ing the entanglement. In particular, I derived the TFD state for the two-qubit system and
thereby showed that the entanglement temperature is given only in terms of the geometric
phase. Considering the TFD state of a general system, I briefly discussed this state in light
of the SZK construction, manifesting the non-factorisation of the projective Hilbert space
that includes the TFD state. The factorised projective Hilbert space only appeared in the
limit of vanishing temperature. Moreover, I defined a phase of topological nature for the
TFD state, which is interpreted as a winding number. This was possible since in the dual
description, the black hole metric does not allow for a globally defined time-like Killing
vector. Therefore, relating the times in the left and right boundary of the black hole allows
for introducing a relative shift variable 𝛿. This shift variable appeared in the corresponding
parameter space and is a physical bulk degree of freedom. The winding number arose
due to the non-trivial topology of the parameter space, which was given by the punctured
plane. Also this topological phase is accessible in experiments. Finally, I showed how the
same winding number can be obtained on the gravity side in an explicit example in JT
gravity. Analysing the asymptotic symmetries of the black hole metric for two-dimensional
AdS spacetime, I found the same parameter space as before in the quantum mechanical
analysis. The non-trivial topology and the corresponding winding number are a direct probe
for the non-factorisation of the bulk spacetime. To sum up, in this section I established
that geometric phases are an important tool in diagnosing the non-factorisation of the
projective Hilbert space. This is present both in simple quantum mechanical models as
well as in systems with a holographic dual. In particular, the topological phase of the TFD
state was analysed both in gravity and on the quantum mechanical side, with matching
results. This provides a direct probe of the non-trivial topology of the parameter space of
the theory, resulting from the presence of a wormhole in the gravitational picture.

Sec. 5 concerned generalising the results of the previous section to the setting of
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AdS3/CFT2. Specifically, I discussed the role of the Virasoro Berry phase as well as the
modular Berry phase in detecting non-factorisation. Virasoro Berry phases arise by confor-
mal transformations, while modular Berry phases result from deformations of subregions
of the CFT. For the Virasoro Berry phase, I extended the results of [485]. Employing
Chern–Simons theory on a spacetime with an annulus topology, I calculated the symplectic
form for the theories on the boundaries of the annulus. This made use of the results of
[485], where the actions of the theories on the boundaries were derived for Chern–Simons
theory with gauge group SL(2,R). This can be considered as the BTZ black hole, with the
boundaries of the annulus corresponding to the left and right boundaries of the black hole.
In particular, the non-trivial holonomy induced by the annulus topology corresponds to the
mass of the black hole. In the symplectic form, the holonomy appeared with a non-local
conjugate momentum. This non-locality provides a coupling between the actions on the
boundaries of the annulus. These actions reduce to one copy of the geometric action of
the Virasoro group each but coupled by the holonomy. Due to the coupling, I reasoned
that the resulting projective Hilbert space understood as a coadjoint orbit of the Virasoro
group is not factorised. For the modular Berry phase, I explicitly computed the modular
Berry curvature in the setting of the two-sided BTZ black string. The modular Berry cur-
vature received non-local contributions stretching between the left and right asymptotic
boundaries, thereby piercing the wormhole. Therefore, the modular Berry phase is sensitive
to the wormhole and is a probe of non-factorisation. In particular, these non-local contri-
butions appeared when introducing the time-shift variable 𝛿, as before for the topological
phase of the TFD state. To sum up, I have shown that in the context of the wormhole
in AdS/CFT, Virasoro Berry phases, modular Berry phases as well as the geometric and
topological phases of the TFD state allow for diagnosing non-factorisation purely from a
boundary point of view. This insight is an important step in resolving the factorisation
puzzle.

In sec. 6 I used geometric phases to characterise types of von Neumann algebras. As a
first step, I analysed the tracial state on the operator algebras associated to the two-qubit
system of sec. 4. The outcome showed that the trace is defined by a state vector with
a vanishing geometric phase, which by the SZK construction corresponds to maximally
entangled state vectors. I then generalised this result to operator algebras of type II and
type III, using the Araki–Woods construction of hyperfinite von Neumann algebra factors
of said types. I showed that on an algebra of type III, there does not exist a tracial state
due to the presence of geometric phases. This was found by an explicit calculation of a
generic linear functional evaluated on the commutator of two arbitrary operators. For a
tracial state, this has to vanish. For a generic state vector associated to an algebra of type
III, this never vanishes but is proportional to the geometric phases contained in the chosen
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state vector. This provides a geometric explanation for the absence of the trace on type
III algebras. For type II algebras, there exists a state vector with maximal entanglement.
By the SZK construction, this corresponds to vanishing geometric phases. By my earlier
general result for the linear functional of the commutator, this shows that the trace on
algebras of type II is defined by the state vector with vanishing geometric phases. Based
on the recent studies on operator algebras for the eternal black hole in AdS/CFT [132–
134], I have argued that the transition between the type III1 algebra of [132, 133] and
the type II∞ algebra of [134] can be understood using the topological phase of the TFD
state. In particular, as I explained in sec. 4, the topological phase probes the topology
of the parameter space that arises by considering the asymptotic symmetries and the
isometries of the bulk spacetime. In operator algebraic language, the non-trivial topology
arises from the shared centre of the type III1 algebras. This shared centre corresponds
to the Hamiltonian, i.e. the mass of the black hole. The type II∞ algebra arises when
including 1

𝑁
-corrections, which renders the centre trivial. This enabled me to explain the

transition between the type III1 and type II∞ algebras using the topological phase of the
TFD state. Notably, this phase vanishes exactly for the maximally entangled state vector
defining the trace on the type II∞ algebra. Operator algebras that share only a trivial
centre are deemed factorised. I therefore interpret the topological phase of the TFD state
as a diagnostic tool for the factorisation properties of the operator algebras. Generalising
this insight, I proposed a new interpretation of geometric and topological phases in general
as indicating missing information to a local observer. Such a local observer is not able to
measure the global phases of state vectors. I elucidated on this novel interpretation with
examples of varying complexity, ranging from a single qubit in a magnetic field to coupled
Virasoro Berry phases and modular Berry phases as discussed in sec. 5. To sum up, in this
section I have shown that geometric phases can be used to provide a geometric explanation
for the absence of a tracial state for algebras of type III, and at the same time explain
the existence of a tracial state for algebras of type II. Moreover, in an application to the
eternal black hole in AdS/CFT, I discussed how the topological phase of the TFD state
characterises factorisation on the level of operator algebras. This motivates to interpret
geometric and topological phases more generally as an indicator for missing information to
a local observer.

Finally, sec. 7 studies a measure of entanglement different from the entanglement en-
tropy, namely geometric quantum discord (GQD). This measure is defined in terms of the
Hilbert–Schmidt norm of the difference between the state of interest 𝜌 and a state 𝜒 that
is fixed by requiring the norm to be minimal. I show that this measure as well serves as
a probe for non-factorisation. More specifically, I derive an explicit expression for GQD
in terms of the Schmidt coefficients of any state vector |𝜓⟩. While |𝜓⟩ generically is
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an entangled state, the state 𝜒min minimising the norm is found to only include classical
correlations. Due to the definition of GQD in terms of a norm, this associates to 𝜒min the
interpretation as the closest classical state to the entangled quantum state 𝜌 = |𝜓⟩⟨𝜓|.
The result for GQD can be expressed both using the second Rényi entropy and the modular
partition function. The latter is defined analogously to the thermal partition function upon
replacing 𝛽𝐻 with the modular Hamiltonian 𝐾 (𝐴). I then show that GQD vanishes if and
only if the modular partition function factorises. I check this explicitly for the interacting
two-qubit system discussed in sec. 4. In particular, this calculation shows that the notion
of non-factorisation of the projective Hilbert space using the geometric phase is consistent
with the current notion using GQD. Applying these results to the TFD state allows me
to interpret GQD as a diagnostic tool of non-factorisation from the boundary perspective.
The state minimising GQD for the TFD state is given by the TMD state, proposed in [182]
as the mixed state describing the black hole after interacting with its ambient spacetime.
While this state was obtained in [182] by considerations of the bulk physics, using GQD
I present an entirely quantum information theoretic derivation of the TMD state. This
allows for the novel interpretation of the TMD state as the closest classical approximation
to the TFD state. Based on the relation between GQD and the second Rényi entropy, I
briefly discuss a possible bulk calculation of GQD. Finally, I generalise the Hilbert–Schmidt
norm used to define GQD to the Schatten norm. This allows to use the generalised GQD
as a probe of black hole microstates, which are given by the time-shifted TFD states.
In particular, this shows that the generalised GQD as a measure of quantum correlations
provides a tool to distinguish between the TFD state, the TMD state and the factorised
thermal state, all of which are indistinguishable in local measurements. I finally relate the
existence of these microstates to the argument on non-factorisation in terms of a non-
exact symplectic form put forward in [165]. To sum up, in this section I have shown that
non-factorisation can be diagnosed not only using geometric phases but also using GQD.
In the holographic setting, GQD diagnoses non-factorisation from the boundary perspec-
tive. Moreover, the results on the TMD state and the black hole microstates suggest that
in AdS/CFT, different information theoretic quantifiers of entanglement encode different
aspects of the dual bulk picture. The combination of these quantifiers eventually allows to
obtain a complete picture of the bulk in terms of entanglement properties, supporting the
idea of ‘entanglement creating spacetime’.

The above results further clarify the relationship between quantum information theory
and theories of gravity, as suggested by the holographic principle and its most prominent
realisation, the AdS/CFT correspondence. As I have shown in four distinct examples,
quantities of quantum information theory, such as geometric phases as well as geometric
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quantum discord, are well-suited to explain facets of gravitational theories. In particular,
this includes the non-factorisation properties of the Hilbert space on the field theory side
of the AdS/CFT correspondence in the presence of a black hole in the bulk. Moreover, I
have discussed how geometric phases allow for characterising von Neumann algebras and
indicate information missing to a local observer.

Outlook

Building on the results of this thesis, there are several interesting questions that can now
be addressed. Let me elaborate on these possible future directions in the following.

A Flow of Entanglement In constructing the entanglement orbits by the SZK con-
struction [166], local unitary transformations of the form 𝑈 = 𝑈1 ⊗ 𝑈2 ∈ U(𝑛) ⊗ U(𝑛)
have been considered. Such transformations never alter the entanglement between H (1)

and H (2) constituting the bipartite Hilbert space H = H (1) ⊗H (2) [188]. Linear com-
binations of such local unitary transformations 𝑈 =

∑

𝑙 𝑐𝑙𝑈
(𝑙)
1 ⊗ 𝑈 (𝑙)

2 generally alter the
entanglement. Such transformations may be understood as evolving the state vector |𝜓⟩
by an interaction Hamiltonian 𝐻int. For simple two-qubit systems, an example is given by
𝐻int = 𝛾

(

𝔞†1 ⊗ 𝔞†2 + 𝔞1 ⊗ 𝔞2
)

, where 𝔞(†)1∕2 =
1
2

(

𝜎𝑥,1∕2 ± i𝜎𝑦,1∕2
)

act as raising and lowering
operators, 𝔞†1∕2|↓1∕2⟩ = |↑1∕2⟩ and 𝔞1∕2|↑1∕2⟩ = |↓1∕2⟩. Starting at 𝑡 = 0 with an unentan-
gled state |↓1, ↓2⟩, evolution by 𝑈 (𝑡) = 𝑒i𝐻int𝑡 results in an entangled state, with maximal
entanglement achieved for 𝑡 = 𝑡max = 𝜋

4𝛾
. This establishes a flow between entanglement

orbits,

CP1 × CP1 𝑈 (𝑡)
⟶ CP1 ×RP3 𝑈 (𝑡max)

⟶ 1 ×RP3 . (8.1)

Accordingly, the geometric phase computed for these orbits in sec. 4.1.2 changes under
such transformations.

It will be interesting to generalise this to infinite-dimensional systems. For this purpose,
a particularly promising setting is that of AdS3/CFT2, where 𝑈̂ can be expressed using
conformal transformations using the power of two-dimensional CFT. This unitary changes
between coadjoint orbits of the Virasoro group. A CFT-transformation between the vac-
uum and a collapsing shell of matter, eventually resulting in the AdS3-Vaidya geometry
representing a black hole formed by collapse, has been considered in [532], based on ear-
lier considerations in the bulk dual [533]. These transformations have recently gathered
attention in the study of holographic complexity, where the entanglement orbits will be
able to provide a complementary view of the same underlying physics [534]. The unitary
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transformation considered in [532] implements an evolution by an interaction Hamiltonian,
cf. eq. (A.3) in that paper, as we considered above for the qubit case. To establish the
flow of entanglement for the eternal black hole in AdS3/CFT2, it will be important to
find the unitary transformation that changes from two decoupled vacuum coadjoint orbits
G0 =

Vir
SL(2,R)

to the coadjoint orbit of the two-sided eternal black hole (5.44),

G0 × G0
𝑈=?
⟶

Vir × Vir
U(1) . (8.2)

Hawking–Page, Hagedorn and Geometric Phases The aforementioned flow between
entanglement orbits is particularly interesting in light of the Hawking–Page phase transition
between the eternal black hole and empty AdS [535]. Starting from the two-sided CFT
vacuum |vac⟩ = |0𝐿, 0𝑅⟩, acting with an operator 𝑈 ∼ exp

(

𝑒−𝛽
𝐸
2 𝔞†𝐿𝔞

†
𝑅

)

generates the TFD
state dual to the eternal black hole [449]. Since this operator changes the entanglement
properties of the state, it also changes the geometric phase in light of the SZK construction.
Analysing this geometric phase and its alteration will be useful for providing an explanation
of the Hawking–Page phase transition in terms of the geometry of the projective Hilbert
space. In particular, this analysis provides a new perspective on the emergence of spacetime,
specifically on the black hole interior region, by increasing the entanglement.

From the perspective of von Neumann algebras, the Hawking–Page transition is under-
stood as the so-called Hagedorn transition. This latter transition arose in particle physics
by studying the confined and deconfined phases of quark matter [536]. At a temperature
referred to as the Hagedorn temperature 𝑇H, the phase transition between confinement
and deconfinement is understood as a transition between type I and type III algebras, re-
spectively. More akin to holography, the Hagedorn transition has been observed in string
theory [537] and N = 4 supersymmetric Yang–Mills theory [451, 538]. This led to inter-
preting the Hawking–Page phase transition as a version of the Hagedorn phase transition
with 𝑇H = 𝑇HP, where 𝑇HP is the temperature where the Hawking–Page phase transition
occurs. Indeed the transition between two type I∞ algebras and two III1 algebras has been
found [132, 133]. It is also worth pointing out that a recent study of interacting Majorana
fermions found a similar change between operator algebras [539]. Therefore, understanding
the Hawking–Page phase transition in terms of entanglement orbits will also be useful for a
geometric explanation of confinement/deconfinement described by the Hagedorn transition
in terms of the geometry of the projective Hilbert space.

The Geometry of Parameter Space for N = 𝟒 SU(𝑵) Yang–Mills Theory In
a complementary approach to the above, it would be interesting to use the Lagrangian
approach put forward in [507–509] to compute both the Fubini–Study metric and the sym-



247

plectic form in the setting of AdS/CFT. In this method, which we briefly mentioned at
the end of sec. 6.1.1, parameters such as the couplings in the action are used to define
deformation operators by assuming small variations in the parameters. Specifically the case
of AdS5/CFT4 reviewed in sec. 3.1.2 might be interesting as the action of N = 4 SU(𝑁)
Yang–Mills theory is known explicitly, cf. (3.20). Assuming small deformations in these
parameters, the Fubini–Study metric as well as the symplectic form on the parameter space
can be calculated as expectation values of the anti-commutator and commutator of the
deformation operators. On the one hand, the symplectic form is interesting to compute
geometric phases, i.e. to study whether it is non-exact. This would provide a further in-
stance of probing non-factorisation from a boundary perspective in the archetypical setting
of AdS5/CFT4, extending the results of this thesis. An interesting task in this context
is to find out whether the ‘black hole Berry phase’ of [540], proposed as a probe of the
number of black hole microstates, can be computed in this approach. On the other hand,
it was observed in several examples that the geometry induced by the Fubini–Study met-
ric is sensitive to phase transitions. In particular, its Ricci scalar shows a divergence at
the transition, see e.g. [541–543] (see also [544] for a recent review). Therefore, it is a
worthwhile purpose to examine the Fubini–Study metric on the parameter space of N = 4
SU(𝑁) Yang–Mills theory for signs of a phase transition, in particular the Hawking–Page
phase transition.

Einstein Equations for Entanglement Orbits In our studies of entanglement orbits,
complex projective spaces CP𝑛 naturally arose when quotienting the local unitary trans-
formations U(𝑛) ⊗ U(𝑛) by the subgroup leaving a given state vector invariant up to an
overall phase, cf. 2.93. On the other hand, complex projective space is a solution to the
vacuum Einstein equations with positive ‘cosmological’ constant, cf. (2.73) [190]. It is an
interesting question if also other solutions to the vacuum Einstein equations can be given
an interpretation in terms of entanglement orbits, in particular Anti-de Sitter spacetime.
It is worth noting that the metric of AdS2 has been derived as the Fubini–Study metric on
the parameter space of a class of Gaussian probability distributions [543, 545]. There is
a grain of salt in that an infinite class of different distributions lead to the same metric.
In the context of the emergence of spacetime from entanglement and quantum informa-
tion, it remains to be determined whether this is a bug or a feature. It would moreover
be interesting to find out whether the metric of the black hole in AdS2 follows from less
symmetric distributions. Moreover, assuming that Anti-de Sitter spacetime can indeed
be given an interpretation as an entanglement orbit, a natural follow-up task is to study
which entanglement orbits are associated to metrics with a horizon. Apart from black hole
metrics, this also concerns metrics with a cosmological horizon, e.g. de Sitter spacetimes.
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Geometric Phases in Quantum Gravity The geometric phases discussed in this thesis
arose from the presence of global symmetries. This global symmetry manifested as leaving
invariant state vectors up to a global phase. The fact that these global phase factors are
inaccessible to a local observer although they do carry information about the physics of the
system motivated our interpretation of geometric phases as indicating missing information
in sec. 6.2. While global symmetries are present in most systems studied in physics, to
the best of current knowledge a UV-complete theory of quantum gravity is believed to
not have any global symmetry [516, 519, 520]. Correspondingly, there should not be any
geometric phases in quantum gravity, which may be viewed as a guiding principle. Studying
the geometric phases obtained in quantising the parameter space of gravitational theories
following geometric quantisation will shed light on the possible Hilbert space structures of
quantum gravity. To appreciate this statement, note that e.g. the Hilbert space structure
of a single qubit obtained by geometric quantisation follows from the non-trivial geometric
phase enforcing the half-integer quantisation of spin by the Weyl integrality condition.
Moreover, while [132, 133] and [134] provide type III and type II von Neumann algebras
describing gravity, respectively, quantum gravity is believed to allow for a type I operator
algebra [172] (see also [546] for an approximate type I treatment of the type II algebra
obtained in [134]). In this sense, analysing geometric phases might help in finding ways to
eventually obtain a type I description of gravity.

Symmetry Resolved Tomita–Takesaki Theory From an operator algebraic point of
view, global symmetries arise whenever there are non-trivial central operators. In this case,
the Hilbert space can be written as a direct sum over Hilbert spaces associated to sectors
with fixed charge 𝑞, i.e. H =

⨁

𝑞 H𝑞. Correspondingly, the operator algebra splits into a
direct sum, A =

⨁

𝑞 A𝑞. The resulting block-diagonal structure motivates the concept of
symmetry resolution [547, 548]. While originally studied in spin chains, this concept has
been generalised to settings of AdS/CFT [549] and has also been analysed for particular
elements of Tomita–Takesaki theory [550]. A complete symmetry resolution of Tomita–
Takesaki theory and modular flow however has not yet been established. A particularly
interesting question in this context is, given that the algebra A has a certain type, which
type are the algebras A𝑞 of each charge sector? An ideal starting point for this analysis is
given by the construction of algebras of hyperfinite type II and type III algebras as limits
of spin collections. Here, the magnetisation naturally arises as a global charge w.r.t. a
symmetry resolution can be defined. As we have alluded to in our review of von Neumann
algebras in sec. 2.3.1, these constructions have the advantages of being conceptually simple
and explicit at the same time. In a project that I am part of, the first results suggest that
in certain cases, the type of operator algebra may differ between A and A𝑞 as type III
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and type II, respectively [551]. This result would be significant since A does not allow for
a trace, while the algebras A𝑞 of each charge sector do. However, at the time of writing
this thesis, more checks have to be run to prove this result.

A Holographic Dual for Quantum Discord Finally, computing quantum discord in
holography would enable for a far more fine-grained probe of the entanglement structure
than using the entanglement entropy. In particular, quantum discord captures quantum
correlations that measures of entanglement cannot detect, i.e. quantum correlations be-
yond entanglement [174, 250–252]. A calculation of quantum discord on the gravity side
of holography might therefore help greatly in developing a deeper understanding of how en-
tanglement, or perhaps also other quantum correlations, are responsible for the emergence
of spacetime. Unfortunately, generalising the definition of quantum discord from quantum
mechanics to QFT is already a difficult task, let alone gravity. Note that strictly speaking,
none of the terms in computing quantum discord is defined in QFT. All of the constituents
require computing a trace, whereas QFT generically has a type III algebra which in turn
does not have a trace. Therefore, the following should be understood in the presence of
a cut-off, as the entanglement entropy in QFT. Whit this in mind, the main obstacle lies
in the fact that quantum discord requires a minimisation over projective measurements.
Progress on projective measurements in QFT has been made in [552, 553]. In the language
of AQFT, projective measurements in QFTs with arbitrarily curved background spacetime
have been formulated in [554, 555]. Also in the context of AdS/CFT, progress on projective
measurements has been made [556, 557]. Combining these insights should enable to gen-
eralise quantum discord to QFT, although the explicit evaluation might still be complicated
due to the minimisation over the projective measurements. As is often the case, probably
the most promising starting point for these investigations is two-dimensional CFT. Here,
the generators of the Virasoro group might serve as a canonical basis to express general
measurement operators such that the minimisation can be performed.

Final Remarks

Notably, the concept of spacetime emerging from quantum entanglement, as elegantly
encapsulated in the ER=EPR proposal, stands as a cornerstone in our quest to refine our
comprehension of the AdS/CFT correspondence. Our analysis of geometric phases provides
a novel quantum information-theoretic means of diagnosing non-factorisation induced by
the wormhole in light of ER=EPR. This, in turn, paves the way for a more holistic and
comprehensive understanding of quantum gravity, a pursuit that has long captured the
imagination of physicists. Moreover, research in this domain has recently taken up the
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application of operator algebraic methods. These methods not only provide a fresh per-
spective on the subject but also bring a newfound level of mathematical rigour to the field,
ensuring that the explorations are firmly anchored in the realm of exact science. We have
shown that geometric phases enable a classification of the type of operator algebra and
account for a factorisation on the level of operator algebras. This represents a significant
stride forward to analyse semiclassical aspects of gravity and the factorisation puzzle using
quantities of quantum information theory.

As we look to the years ahead, the horizon of possibilities appears ever more enticing and
promising. Indeed, the realm of quantum gravity and quantum information theory seems
poised for further exciting breakthroughs. Yet, amidst the promise of future discoveries, it
is essential to remain mindful of the vast expanse of unanswered questions that lie before
us. These questions, some of which may yet elude our present understanding, serve as
enigmatic challenges that demand our rigorous pursuit. The task of formulating the most
pertinent and profound questions may well prove to be as arduous and momentous as
the ultimate quest for definitive answers. In essence, the journey of exploration in this
enigmatic realm continues to be an intellectual adventure of the highest order.

We are just an advanced breed of monkeys
on a minor planet of a very average star.

But we can understand the Universe.
That makes us something very special.

Stephen Hawking, in an interview with ‘Der Spiegel’, 1988
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