EXACT EXPRESSION FOR THE FOCK OPERATOR IN THE UNIFIED
COUPLING QPERATOR METHOD
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In the unified coupling operator method [1-5], which is the most general formulation of
the restricted Hartree—Fock method for open-shell systems, the following expression is used
for the energy functional [4, Eq. (20-1II)7:

: ' 1
fmn=2zm%+§§ﬁﬂ0%%—hﬂﬁ, (1)

where a;: and bj+ are invariant coefficients characterizing the state (term) under considera-
tion and the con%iguration, the so-called "vector coupling coefficients" [5]; the f; are the
fractional occupation numbers of the one-electron orbitals g ; Hiy, Jij, and Ki; are the
core, Coulomb, and exchange integrals respectively.

Application of the variational principle to expression (1) with the additional orthonor-
mality conditions (p11¢;) =5, leads to the Euler equations [3, 4]

Frg = ;1-7<P19ﬁ. (2a)

071= 0} (2b)

where the eji are undetermined Lagrange multipliers and ﬁi is the Fock operator, for which
the following expression is obtained in the literature:
A A A A
Fi=fille+ 2 fiQayd; - bk} (3)
7

(see, for example, Eqs. (22-11) in [4] and (2.1) in [3]). The coefficients ajj and ?ij
entering into expressions (1) and (3) form (as was suggested in [4-6]) symmetric matricés:

eyl =Na, ™ ang foyll =Uiby#t". (The superscript T indicates transposition.)

The hypothesis that the vector coupling coefficient matrix is symmetric is based.[41
on formal Symmetry considerations stemming from the form of the energy functional (%?" Due
to the Symmetry of the Coulomb Ji3 = Ji4i and exchange Kj3 = Kji integrals, the coefflglents
3ij and by under the double Swmidtioy sign in (1) can dlways be chosen to be symmetric.

. On the other hand, in [7, 8] it is shown that in atoms and ions of transition metals -
with electronic configurations dN and pMaN (1 <¥<9; 1<M<5), in certain (non-Roothaan) spec
troscopic states the indicated matrices should be asymmetric: lla;ll # e i™ and/or |4y #
™S 'This result follows from analysis of the set of conditions which the energy func-
tional (1) ang the Fock operators in form (3) should satisfy in the atomic problem under con-
Sideration [7, 8].

As will be shown below, the resulting discrepancy with resPeCt Fo thg (a)symmetri of
the coefficients asj and bj; is fundamental. Bearing this in mind, in this paper we have
feconsidered the variationa procedure (1)-(3). As the major result, we have obtained a new,

more exact expression for the Fock operator, derived from the energy'functional (1). Ve .
briefly discuss the major consequences of the result obtained, touching on the symmetry o

the vector coupling coefficients. :
In order to simplify subsequent formulas, let us use the following symbols [4]:
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wi=2fyy p=2fifiay By =1fifiby , (4)
Using these symbols, the energy functional (1) has the form

E= ? Wil + ? 'jz (oo~ By Ky (5)
where the integrals J;j and Kij can be expressed in terms of the corresponding Coulomb Jy
and exchange Kj operators [9]:

A
Jy=Ca L= 1= 1715

(6)

Ky =4 1= R 1D =4 1 K17y, (7)
JD ()= [ £ ot () @i 2) (Uri2)dV, ] (1); (8)
Ri(1) o) = [ 072 ¢(2) (1r12) AV, ) (1), (9)

In calculating the variation $E, we need expressions for the variations of the integrals,
ﬁJij and 5Kij:

Uiy = Bt |j )+ Ci8T |+ i 18)+(i|] 8] )= (10)
=By 1)+ 180+ (87 1T 170+ <7 1T, 187

SXHNIY=CBI Y+ i8] |JE) + 4 |8 1)+ | 8i )= (11)
=B\ K; 1)+ (1K1 87)+487 1 R 1)+ 1K, 1800,

where the symbol <ij|k2> for the four-index integrals corresponds to the definition

1R =L g1 (1D 62 (D) (Urya) oy (D gy (¥, (12)

The expression for the first variation of the energy functional (3)
6E=?w,5(i(2 1z)+§'iz[a,,-5<ii|ji>—5;i5<17|;i>] (13)
taking into account the formulas in (10) and (11) has the form

5E=§wz[<6i|2li>+<z’|i‘z|5i>1+§3:[a,,{<ai|f,|i>+<i|f,|ai>},

(14)
=S TG LR 1801) + 2 B oy (61103112 44715, 16133 -y 1687 1Ra 1347121601
In the last sum, let us interchange the indices i and j;
6E= A . , A . . A \ . A R
.?w,[(&ilhlz)ﬂzlhl&z)]+‘12;2[a1,-{(61lJ,Iz)+(1|J/I81)}— (15)
LA oA . : n 4 4 |
—61;¥(51|K,|1)+(1lK;lél)Z]+?‘j£[aﬁl(6iIf/liH(i]J,léi)}-ﬁul(&'lK/If)“"lKilai)”'
Rea i i . i i
enei;;niiﬁitggiagfrms in (15), we obtain the following expression for the variation of the
= - A A A
SE ,?[(6iIw,h+iEi(a,,+aﬂ)J/-(B,,+ﬁ,,)K,}Ii)] ¥ (16)
" A . fa)
+?[(i‘lwih"'/E{(Oti;'*'Clﬂ)Ji—(Bif*'ﬁﬁ)ﬁl}|M)]=22‘[(5i|FA,',i)+<ilFi|6i>]'
A i
where F; is the Fock operator
Fi=(wil2)h + 3-7,[(0111‘r o)y~ By +BK)) /2, a7)
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which is Hermitian (since the operators ﬁ, j, and ﬁj are Hermitian).

In the variational problem, let us consider additional orthonormality conditions on the
one-electron orbitals

I=E'-—E;‘3‘29/l((iii)—61/)y (18)
1
where the 8;i;j are Lagrange multipliers. The variation ¢I is equal to

61 =8E - 12;220,,((81‘I}')+(1‘I5}'))=8E.—:2?29,;(6:’!1')—2;);226,,(;‘]51’)=0. (19)

Substituting the expression for 6E from (16) into (19) and taking into account the Hermitian
property of the Fock operators, we obtain

2[{<auﬁ,|n —-fiﬁfg(éili)}+.((61‘!13'\1117)—;29?,'(51'I1"/}'] =0, (20)
{
As a result, we arrive at the Euler Egs. (2) with the Fock operators defined in Eq. (17).
Going back to the original symbols in (1) and (3), Eq. (17) can be rewritten in the
form
A [l [ o (21)
F =f;-[h + ]Ef}(?. Aydy~ Bin]')]l
where the coefficients are ‘ ‘
Ay =yt 43 By= @yt b, (22)

Thus the expression obtained for the Fock operator (21) differs from the previously
broposed one in (3) in the coefficients for the Coulomb and exchange operators. This élf'
ference is important for discussion of the problem of the symmetry of the vector coupl}ng
coefficients [4, 7] mentioned in the introduction. 'From the definition of the coeffiglents
Aij and Bij in (22) it follows that they are symmetric €Aj§ = Ajj, Bjy = By;), and this
result follows directly from the variational principle.

Comparing the systems of Eqs. (1)-(3) and (1), (2), (21), (22) describing the var%ajf
tional Procedure, it is not difficult to convince ourselves that they become equivalent i

the first one ig supplemented by the equation

ay=ap; b= by (23)
In other words, the variational procedure (1)-(3) is rigorous only when we have the additional
conditions (23).

On the other hand in {7] when calculating the vector coupling cogfficients ajj and bjj
for atoms using the va;iazigngl procedure (1)-%3), the additional conditions (23) were con-
Sidered as Dossible but not necessary. The corresponding system of gquat10n§ obta}ned gﬁ
[7]) for determination of the vector coupling coefficients in atoms with c9nf1gura§1on§ o

See Egs. (9) and (16) in [7]1) uses only expressions for the energy functional (é i; n~e
Fock operator in form (3), From the system of equations in [7] it follows thar 00 aactor
type terms in the gN configuration can be described both by symmetric and asy?@eg?l?tveof
Coupling coefficient matrices (the system of equations in [7] allows for a @ulLlp.lgl y o
solutions). At the same time, the non-Roothaan terms in the d conflggratlon ar%#,esif
(aCCording to [7]) only by asymmetric vector coupling coefficient matrices: llayll #lley
and/ox | by f1 £, .

Includin SEi ditions (23) in the system of Egs. in [7] retains only )
the symmetricgszgitigg;t;g:aihzogoothaan éerms, while for the non-Roothaa? terms thi sup
Plemented system of equations is inconsistent [7]. In other words, no set of Szmgic:icres-
vector coupling coefficients aij and bjs exists which satisfies the necessary p ysar i
trictions [7], Considering that the additional conditions (23) are in fact neces y;re
;lons, we might conclude that within the rigorous approach (1)-(3), (23), such terms are

impossi , ith the previous hypothesis in [6].
8sible to calculate in principle, in accordance wi .
Nevertheless, as shown by tﬁe analysis in [10], the results obtained in [7] are correct for

€ non-Roothaan terms. Here let us note the following two points.-
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1. Using the key property of the non-Roothaan terms (the dependence of the vector
coupling coefficients aj; and bijj on the choice of basis for the degenerate orbitals [11]),
we can rigorously show [10] that in a basis of complex d-orbitals (in contrast to the real
d orbitals used in [7]) the corresponding system of Egs. in [7] allows for a symmetric solu-
tion (23). Thus we have proven the possibility in principle of calculating the non-Roothaan
terms within the Hartree—Fock approach (1)-(3), (23). Further considering that all the basis
sets of degenerate orbitals connected by a unitary transformation and the corresponding sets
of vector coupling coefficients are physically equivalent [11] (i.e., lead to the same SCF
solution), the latter result essentially removes the major theoretical argument against asym-
metric vector coupling coefficient matrices as (formally) not satisfying the variational prin-
ciple.*

2. The asymmetric vector coupling coefficient matrices appear only in systems with
degenerate open shells [7]. Therefore, for a more detailed analysis of the resulting con-
tradiction we need to also consider the variational procedure with the energy functional (1)
with additional conditions involving the degeneracy of the one-electron orbitals. We plan
to publish the results of the corresponding analysis.

We would like to acknowledge I. V. Abarenkov for valuable discussion of this work.
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"The results of the Hartree—Fock calculations (by the unified coupling operator method [1-3]

for Roothaan-type terms are identical {71 wh i i 1Sym
3 ide en using different sets of symmetric and asym-
3?2;;2 ;ectgr coupling coefficients and agree with the results of calculzz?ons [8, 127 done
with tgég aan—Ha?t?ee~Focg atomic theory [13]. The results of calculation by two Hartree—
methods are similarly identical for the non-Roothaan terms [7, 8].
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