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In the unified coupling operator method [1-5J, which is the most general formulation of 
the restricted Hartree-Fock method for open-shell systems, the following expression is used 
for the energy functional [4, Eq. (20-II)J: 

where aij and bii are invariant coefficients characterizing 
tion and the configuration, the so-called "vector coupling 
fractional occupation numbers of the one-electron orbitals 
core, Coulomb, and exchange integrals respectively. 
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the state (term) under considera­
coefficients" (5]; the ii are the 
'Pt; Hii' Jij' and Kij are the 

Application of the variational principle to expression (1) with the additional orthonor­
mality conditions (:pt I 'PI) = 0/1 leads to the Euler equations (3, 4J 
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where the 8ji are undetermined Lagrange multipliers and Fi is the Fock operator, for which 
the following expression is obtained in the literature: 
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(see, for example, Eqs. (22~11) in [4J and (2.1) in (3J). The coefficients aij 
entering into expressions (l) and (3) form (as was suggested in [4-6]) symmetric 
11

01/ 11 = 11 alj liT and llb/ill =/lbtjU 1
• (The superscript T indicates transposition.) 

(3) 

and bij 
matrices: 

The hypothesis that the vector coupling coefficient matrix is symmetric is based [4J 
on formal symmetry considerations stemming from the form of the energy functional (1): Due 
t~ the symmetry of the Coulomb J ij = J j i and exchange Kij = Kj i integrals, the coeffic.ients 
a1j and bij under the double summation sign in (1) can always be chosen to be symmetrlc. 

. On the other hand, in (7, 8] it is shown that in atoms and ions of transition metals 
wlth electronic configurations dN and pMdN (1 ~N~9; 1 ~.M~5), in certain (non-Roothaan) spec-
trosCopic states the indicated matrices should be asymmetric: /I a/i 11 i: 11 0tj liT and/or /I bllll * 
1/ ~/I liT • This result follows from analysis of the set of conditions which the energy func­
t~onal (1) and the Fock operators in form (3) should satisfy in the atomic problem under con­
Slderation [7, 8J. 

As will be shown below, the resulting discrepancy with respect to the (a)symmetry of 
the coefficients a" and b·· is fundamental. Bearing this in mind, in this paper we have 
reconsidered the v~~iation~i procedure (1)-(3). As the major result, we have obtained a new, 
more exact expression for the Fock operator, derived from the energy functional (1). We 
briefly discuss the major consequences of the result obtained, touching on the symmetry of 
the vector coupling coefficients. . 

In order to simplify subsequent formulas, let us use the follOWing symbols [4J: 
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Wt = 2ft; a'l = 2ft "al/i Pi/ = f t "b ,/. (4 ) 

Using these symbols, the energy functional (1) has the form 

E = I; w,Hi/ + I; I; (ai/'I/- PiiKIj). 
I I / 

(5) 

-where the int~grals Jij and Kij can be expressed in terms of the corresponding Coulomb Ji 
and exchange Ki operators [9]: 
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In calculating the variation oE, we need expressions for the variations of the integrals, 
6Jij and IiKij: 

o (;f I ij ) = < 5i i I jj} + (i ~i I jj) + < if I ~j j ) + ( ii I j 0; ) = 

~ (ij lit) = < of j lIi) + < i of I ii) t (i; I oj i) + < ij 1/0; ) = 
I\. " J\ " 

"'(Ili lKIIl} +(1 lK, I oj)t (~j I Kiln t (i I K; I ~j). 

where the symbol <ijlki> for the four-index integrals corresponds to the definition 

(ii I k£.) = f VJ'(l) VJk (2) (1/'1 2) 'P,(!) 'PI (:1) d VI dl/z . 

The expression for the first variation of the energy functional (5) 

taking 

In the 

. " 
~E = I; w/o (i I h I i) + ~ l; [a/Ill < ii ijj) - ~il 0 (ij I jO] 

/ / / 

into account the formulas in (10) and (11) has the form 
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M = l; wi [< 0; I h I j) + < i I h I Oi} I + ~ l; [ai, {< oi Ilj I i) + ( ; 1/,1 0; > I _ 
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- ~/Il ( Si I K/I i) + <; I K/I oi) II + 1: I: [al/ 1< oj I " I j) + (j I.TI I <'if) } _ ~,' ! ( oj I K, If) t < j I K I I ~j) l]. 
/ / 

last sum, let us interchange the indices i and j; 

oE ~ "" "" = .... W/[< ~i Ih 10+ (i Ih I ~i)] + I; 1: [a,jl< ~; 1/,10+ (; 1',1 ~i)l ~ 
I / , 

- ~ijl(oj I KII i}t (j IKII ~i)n + 7 r[a//Hoi Ilj I 0+ (; 1.01 ~i)}- ~,t1< ~i I KII f) + (j I Kj I ~f)J). 

(10) 

(11) 
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(13) 
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Rearranging the terms in (15), we obtain the following expression for the variation of the energy functional: 

OE= f [(lit Iw,h+ f!(al/+cx,DJ,- «(3// + P/I)K, J I i)] + 

+ ~ [(I I w,h + r {(o:// + aJt)~ - Wij+ (3/I)K,lllii)] = 2 1:. [( ~i I FI I i) + (i I Fi loO), 
I 

where Fi is the Fock operator 
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(16) 

(17) 



~ 

which is Hermitian (since the operators h, j, and Kj are Hermitian). 

In the variational problem, let us consider additional orthonormality conditions on the 
one-electron orbitals 

(18) 

where the 9ij are Lagrange multipliers. The variation oI is equal to 

(19) 

Substituting the expression for 6E from (16) into (19) and taking into account the Hermitian 
property of the Fock operators, we obtain 

f [{ < Oi I F/ In -7 ~iI < Oi I i >} +{ {~i lP/I i} -7 0ii (Oi IJ' > h = O. (20) 

As a result, we arrive at the Euler Eqs. (2) with the Fock operators defined in Eq. (17). 

Going back to the original symbols in (1) and (3), Eq. (17) can be rewritten in the form 

(21) 

where the coefficients are 

(22) 
Thus the expression obtained for the Fock operator (21) differs from the previously 

proposed one in (3) in the coefficients for the Coulomb and exchange operators. This dif­
feren~e.is important for discussion of the problem of the symmetry of the vector coupling 
coeffIcIents [4, 7] mentioned in the introduction. 'From the definition of the coefficients 
Aij and Bij in (22) it follows that they are symmetric (Aij = Aji, Bij = Bji)' and this 
result follows directly from the variational principle. 

, . Comparing the systems of Eqs. (1)-(3) and (1), (2), (21), (22) des~ribing the varia­
nonal procedure, it is not difficult to convince ourselves that they become equivalent if 
the first one is supplemented by the equation 

(23) 

In other words, the variational procedure (1)-(3) is rigorous only when we have the additional 
eondi tions (23). 

On the other hand, in [7J when calculating the vector coupling coefficients aij and bij 
f~r atoms using the variational procedure (1)-(3), the additional conditions (23) were con­
SIdered as Qossible but not necessary. The corresponding system of equations obtained in 
~7] for determination of the vector coupling coefficients in atoms with configurations dN 
see Eqs. (9) and (16) in [7J) uses only expressions for the energy functional (1) and the 

Fock operator in form (3). From the system of equations in (7J it follows thar Roothaan­
type terms in the dN configuration can be described both by symmetric and asymmetric vector 
cOUpl~ng eoeffi,cient matrices (the system of equations in [7] allows for a multiplicity of 
solut~ons). At the same time, the non-Roothaan terms in the dN configuration are described 
(according to [7]) only by asymmetric vector coupling coefficient matrices: 11 all 11 :;= 11 all liT 
and/or IIbijll:;=II~lllIr. 

Including the additional conditions (23) in the system of Eqs. in [7] retains only 
the symmetric solutions for the Roothaan terms while for the non-Roothaan terms the sup­
plemented system of equations is inconsistent [7]. In other words, no set of symmetric 
Vector coupling coefficients a'j and b .. exists which satisfies the necessary physical res­
t1'i t· 1. l.J d' . c IOns [7]. Considering that the additional conditions (23) are in fact necessary con 1,-

t~ons, we might conclude that within the rigorous approach (1)-(3). (23), such terms ~ 
~POSsible to calculate in principle, in accordance with the previous hypothesis in [6]. 

Vertheless, as shown by the analysis in [10J, the results obtained in [7] are correct for 
the non-Roothaan terms. Here let us note the following two points. ' 
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1. Using the key property of the non-Roothaan terms (the dependence of the vector 
coupling coefficients aij and bij on the choice of basis for the degenerate orbitals [11]), 
we can rigorously show [10] that in a basis of complex d-orbitals (in contrast to the real 
d orbitals used in (7]) the corresponding system of Eqs. in [7] allows for a symmetric solu­
tion (23). Thus we have proven the possibility in principle of calculating the non-Roothaan 
terms within the Hartree-Fock approach (1)-(3), (23). Further considering that all the basis 
sets of degenerate orbitals connected by a unitary transformation and the corresponding sets 
of vector coupling coefficients are physically equivalent [11] (i.e., lead to the same SCF 
solution), the latter result essentially removes the major theoretical argument against asym­
metric vector coupling coefficient matrices as (formally) not satisfying the variational prin­
ciple. ,', 

2. The asymmetric vector coupling coefficient matrices appear only in systems with 
degenerate open shells [7]. Therefore, for a more detailed analysis of the resulting con­
tradiction we need to also copsider the variational procedure with the energy functional (1) 
with additional conditions involving the degeneracy of the one-electron orbitals. We plan 
to publish the results of the corresponding analysis. 
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:TheRresults of the Hartree-Fock calculations (by the unified coupling operator method [1-3] 
or .oothaan-type terms are identical [7] when using different sets of symmetric and ~_ 
:~~~7c 'R7ecthor coupling coefficients and agree with the results of calculations [8 lZl done 

~n oot aan-Hartree-Fock atom' th [13] Th ' Fock m th d . . . 1C eory • e results of calculation by two Hartree-
e 0 S are s1m11arly 1dentical for the non-Roothaan terms [7, 8]. 
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