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Chapter 1

Introduction

The Nash equilibrium, and game theory in general, is nowagagsent in var-
ious fields of science, most prominently in economics andasscience. More

recently, also engineering sciences have discovered thle &uilibrium concept
as a means to design technical systems, for instance tefegnitation networks.
Often not only the formulation of a model is desired but alse &ctual com-

putation of a Nash equilibrium. This thesis is about the ntiraécomputation

of Nash equilibria, more precisely, generalized Nash duyial. For very simple

games, such as two-player games with two strategies a phapér, it is possible
to calculate a Nash equilibrium analytically, that is, wikie help of pencil and
paper. Here we aim at the development of numerical methad$héocomputa-

tion of Nash equilibria in a general setting. More preciselg consider games
with finitely many players with continuous cost functionsldmite-dimensional

strategy sets.

Four diferent numerical methods are being presented, which arasgicon
either an optimization reformulation or a fixed point refaation of the general-
ized Nash equilibrium problem. These reformulations ateduced in the next
chapter. Chapters 3-5 deal with the numerical methods. &pteln 3, descent
methods for the solution of constrained and unconstraipéidha@zation reformu-
lations are considered. These methods are designed to ballglconvergent,
however, local convergence is rarely faster than lineaerdlore, in chapter 4 a
Newton-type method is derived through an unconstrainenmigation reformu-
lation of the generalized Nash equilibrium problem. Anotbeally superlinearly
convergent method is presented in chapter 5, where a Neypamethod based
on a fixed point formulation of the generalized Nash equilifor problem is con-
sidered. Finally some examples of generalized Nash equitibproblems are de-
scribed in chapter 6, and numerical results of four numenmihods presented.

In the remainder of this introduction we give a formal defamntof the gener-
alized Nash equilibrium problem, and of a particular subelaf these generalized
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4 CHAPTER 1. INTRODUCTION

Nash equilibria called normalized Nash equilibria, on whige focus in this the-
sis. A popular area where generalized Nash equilibria goéeapis in the mod-
elling of the liberalized electricity markets, which is wiwe present an electricity
market model next. The introduction closes with an ovenoevexisting work on
the numerical computation of generalized Nash equilibria.

We begin with some terms and results from optimization theloat will be
used in this introduction and later on.

1.1 Preliminaries

Here we state some basic facts from optimization theory &rdycour notation.
A nonempty seX C R" is said to beconvexif for all x,y € X andt € [0, 1] we
havetx + (1 — t)y € X. A function f : X — R is convex if for all x,y € X and
t € [0, 1] the inequalityf (tx + (1 — t)y) < tf(x) + (1 - t) f(y) holds.

Given a convex, continuouslyftierentiable functiorf : R" — R and convex,
continuously diferentiable functiong; : R" — R, i = 1,...,m, we consider the
constrained optimization problem

min f(x)

subjectto gi(x) <0 foralli=1,...,m (1.1)

Due to the convexity of the functiof, every local minimum of (1.1) is already
a global minimum. We say th&later’s constraint qualificatiomnolds for the
convex optimization problem (1.1), if there is a veckosuch thatg;(X) < O for
alli =1,...,m. Slater’s constraint qualification implies that for any sao x* of
problem (1.1) there exists a vector of Lagrange multipliegs(A4, ..., Am)" such
that the Karush Kuhn Tucker conditions

V(X)) + X0, A4Vai(x) =0
0>g(x)Lax=0.

hold, whereg(x*) L 2 means that the vectggx*) is perpendicular to the vectar
that is,A"g(x*) = 0.

Notation: Given a diferentiable functiorg : R" — R™, g'(X) € R™" or
Dg(x) denotes the Jacobian gfat x, whereasvg(x) € R™™M is the transposed
Jacobian. In particular, fom = 1, the gradienvg(x) is viewed as a column
vector. Several times, we also consider partial derivatbfe real-valued function
f : R" - R with respect to certain block componentsxdnly, and this will be
denoted by using suitable subscripts, e\, f(X) denotes the partial gradient
of f at x, where the derivatives are taken with respect to the comyere the
block vectorx” only. Second-order partial derivatives with respect toaieblock
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components are written in a similar way @$,, f (x), for example, meaning that
we first diferentiate with respect t&’ and then with respect te'.

For a matrixA € R™" and a subsdtcC {1,..., n} we denote byA, the subma-
trix of A consisting of the columns;, i € I. For a vectod € R" we writed > O if
d>O0foralli=1,...,m

1.2 The Generalized Nash Equilibrium Problem

The generalized Nash equilibrium is a solution concept fpadicular class of
games. Basically a game is described through a numhaagérs their strategy
setsand theircost functionsLet the number of players d. To refer to a par-
ticular player, we use the indexe {1,...,N}. Each player controls decision
vector X, wherex’ has to be chosen from a 96t C R™. The setX, is usually
called thestrategy sebf playerv, or thefeasible sebf playery. Letn:= 3, n,,
andx := (x4, %%,...,%,...,xV) € R" denote the vector that comprises the deci-
sion vectors of all players. We write’(, x™”) := x if we want to emphasize theh
player’s decision vector withir. Here the vectox™ = (X}, ..., x 1, x*1, ..., xN)

is short notation for the vector that consists of all the sieci vectors except player
vth decision variables.

Each playew has acost functiord, : R" — R. Given a decision vectox =
(xt, x2,...,xN), playerv incurs costs, (X!, ..., xV). Thus, the cost function of
playerv does not only depend on playeth decision vectox’, but also on all
other players decision vectoxs’. Altogether, a game is fully described by.=
{Xv’ ev}v:l,...,N'

We assume that a player acts rational in that, given the ideciectorx™ of
the rival players, he chooses a decision vegtdhat minimizes his cost function.
In other words, given a vector”, playery solves the optimization problem

miné, (X", X™") subject tox” € X,.
XV

A Nash equilibrium(or solution to the Nash equilibrium problgns a vector
x* with X = (x°1, x*2,...,x"N) € X; x X, x --- X Xy, such that for eachr €
{1,..., N} the vectorx*” solves the optimization problem

min@, (X", X*™) subject tox” € X,. (1.2)
XV

Literally speaking, at a Nash equilibrium poirt, no player has an intend to
change his own decision vector as long as the other player®tochange their
decision vector. In the sequel we will use the testandard Nash equilibrium
problem Nash equilibrium probleror standard Nash gamen short NEP, to refer
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to the above problem, in contrast to tgeneralized Nash equilibrium problem
GNEP, which we describe next.

In the generalized Nash game not only the cost functionsrdepe the rival
players’ decision variables, but also the strategy Xgts = 1,...,N. Let X C R"
be a nonempty, closed and convex set. TheXsdbesn't necessarily feature a
cartesian product structure.

For eachv € {1, ..., N} we define the strategy set of player

X,(X") ={x e R" | (X,x”) € X}, (1.3)

which means that the strategy set of playas given by a set-valued may, :
R™ — R™. In analogy to the definition of the standard Nash equilibriuve
arrive at the following definition of a generalized Nash diquium.

Definition 1.2.1 A vector x = (x*1, x*2, ..., x*N) is ageneralized Nash equilib-
rium (GNE) or a solution to thegeneralized Nash equilibrium problem (GNEP)
if forall v = 1,2,...,N, the block component“k of x* solves the optimization
problem

min@, (X", X*™) subject to X e X,(x"™). (1.4)
XV

Other terms thageneralized Nash equilibriuarecoupled constraint Nash equi-
librium [59], [60] Nash equilibrium problem with shared constraiffd],[32]
and social equilibrium problem Some of these terms refer to the fact that the
individual strategy sets of the players are defined througimgle convex sexX
by equation (1.3). In a wider sense, the term 'generalizezshMguilibrium prob-
lem’ refers to Nash equilibrium problems where the feasgadtsX,(x™) of the
players can not be expressed through a singl&Xss¢e [25] for a more detailed
description.

From now on, unless otherwise mentioned, we will alwaysmsstinat the follow-
ing assumptions concerning the cost functiépsy = 1,..., N, and the strategy
setX hold.

Assumption 1.2.2

(A.1) Forallv € {1,...,N} the cost functio®, is continuous as a function of x
Furthermoreg, is convex as a function of the variablg ke., the function
0,(-, x) is convex for all x.

(A.2) The strategy set X is nonempty, convex and closed.
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1.3 Normalized Nash Equilibria

An important subclass of the set of generalized Nash egqiailis the class of
normalized Nash equilibrialt was introduced by J.B. Rosen [92] in a slightly
different fashion than described below.

Throughout this section, we assume that in addition to Agdiom 1.2.2 the
cost functions,, v = 1,..., N, are continuously dierentiable. We consider the
function
VX191(X1, X_l)
VX292(X2, X_z)

b

FOxE e, .., xN) =
VXNQN(XN, X_N)

whereV,.0,(x’, x”) denotes the partial gradient 8f with respect to the block
componenk’. Thenx* is a called anormalized Nash equilibriurfor variational
equilibriumin [25]), if and only if x* € X satisfies

F(X)'(y-x)>0 forallyeX, (1.5)

in other words,x* is the solution of a variational inequality. In order to dhar
the meaning of normalized Nash equilibria, let us considgragon (1.5) with
y = (2,x°7). Sincex* € X there isz’ such thaty € X, implying thatz’ e
X,(x*™). Thus (1.5) reduces to the first order necessary condif@mmsayerv’s
optimization problem (1.4), that is,

Vb (X)) (2 = x") >0  VZ e X(x).

Sinced, (-, x) is convex by Assumption 1.2.2, the first order conditioreatty

implies thatx* solves optimization problem (1.4) of player Therefore, any
normalized Nash equilibrium is a generalized Nash equuiior The converse
is not true in general. This follows from the above consitlers, in particular,

from the fact that the first order necessary conditionsfdo be a solution of the
GNEP, which are

F(X)T(y—x)>0 forallye Xy (x*™1) x - x Xn(x*™), (1.6)

may admit more solutions than the variational inequalit$)1The above formu-
lation (1.6) of the GNEP is guasi-variational inequalitfQVI) [43],[78]. How-
ever, in the standard Nash game, the set of Nash equilibtieeisame as the set
of normalized Nash equilibria, whereas the role of vari@ionequality prob-
lems within generalized Nash games is precisely identiheaugh the notion of
normalized Nash equilibria ([6], [43] and [31]).
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Since a normalized Nash equilibrium is the solution of theipalar varia-
tional inequality problem (1.5), one can apply the extem#ineory on variational
inequalities ([27],[28]) to deduce existence and uniqgsmesults for normalized
Nash equilibria. For instance, it follows that a game syitigf Assumptions 1.2.2
with continuously diferentiable cost functions, having the additional proptray
the strategy seX is compact, has at least one normalized Nash equilibriufardf
thermore, the functiolr is strictly monotone, that is, for al,y € X with x # y
the inequality

(F() - F(y)' (x-y) >0
holds, then the normalized Nash equilibrium is unique. rf,addition, F is
strongly monotone, that is, there exists a parametelO such that the inequality

(FO) = FOYN (x—y) = plix - yil?

holds for allx, y € X, then there is a unique normalized Nash equilibrium regard-
less of whetheK is compact or not.

The normalized Nash equilibrium has an interesting apfinan that it pro-
vides a solution concept for a particular class of leadbovicer games. This
connection has been noted by Harker in a remark at the verpef8], and a
somewhat related idea is explored by Krawczyk [60, Secti@hid the context
of an environmental pollution model.

We consideN players, where each playechooses a strategy € R™ subject
to an individual constraing,(x") < 0, g, : R™ — R™. Playingx” results in costs
0,(x’, x) for agenty, while it requires the use dfdiffernet scarce resources at
leveld,(x") € R', whered, is a convex function. We assume that the price for these
resources is fixed and that it is equal for all players, thapiices for resources
are given by a single vectgre R'. Thus, given the decision vectgr” of the rival
players, player solves the optimization problem

min, 0,(x", x) + p'd,(x)

subjectto g,(x") <O. (1.7)

For x™” fixed let X" be a solution of this optimization problem and suppose
that Slater’s constraint qualification holds. Moreover,agsume that all functions
involved are continuously fferentiable. Then the Karush-Kuhn-Tucker condi-
tions are both necessary andistient for x*” to be a solution of (1.7), implying
that there exists a vector of multipliers” € R™ such that X", 1*") solves the
equations

V8, (X, X)) + Vd,(X*) - p+ Vg, (X*) - A =0
0=>g,(x?) LA >0.

Solving optimization problem (1.7) for all players= 1,...,N simultane-
ously is a standard Nash equilibrium problem. Each playeas a separate strat-
egy set defined through the functign Suppose now that there is an additional

(1.8)
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player who has the power to set prices for the resources. ‘Waasthat this

player, the leader, is non-discriminating in that he dersahé same price from
all players, his only intend being that the total resouraesconption of all play-

ers does not exceed certain upper bounds. This leader meghtgovernmental
authority caring for natural resources like water, mingrpbllutant emissions or
land usage.

In order to find a price vector such that aggregated resounesurnption of
players does not surmount prescribed limits, we formulateeralized Nash
equilibrium problem. In this game, the functiofisare still the cost functions of
the players, whose individual strategy set is giveiXby {xX" € R™ | g,(x") < 0}.
Different to the standard Nash game above, joint constrainisng@sed on the
players of the form

N
X:={xeR" | Z d,(X’) < c},
y=1

with d, : R™ — R! and a given constamte R'.
Consider the optimization problem

min, 0,(X, x7)

subjectto  g,(x) < 0, dy(X') + S de(€) < C (1.9)

for playerv and letx*” be a solution for giverx™”. Assuming that Slater’'s con-
straint qualification holds for (1.9), it follows that theaee vectorst*” € R™
andu™ € R such that the triplext”, 2*¥, u*”) solves the Karush-Kuhn-Tucker
equations

Vo0, (X, X7) + Vg, (X) - 1 + Vyod,(X) - ™ = 0
0>g,(x) LA >0
0> 33, de(X¥) —c L u* > 0.

A comparision with the KKT-condition of optimization prabh (1.7) shows
that (x*”, 1) solves (1.8) withp := u™".

Concatenating these KKT-conditions for all players 1,..., N, we see that
every solution X, 2%, u*) of the generalized Nash equilibrium problem with the
property thatu*! = u*? = --- = u*N solves the KKT-conditions of problems
(1.7) for all players’ with the Lagrange multipliep := u*'. Sincey*! = y*? =
.. = N we have a normalized Nash equilibrium. This particulaugoh of
the optimization problems (1.7) has the additional prqpti’ratzg'\'=1 d:(x) < c,
where equality holds whenever the corresponding comparigris nonzero. The
latter fact allows two economic interpretations, which wié @utline in brief. In
the scenario of a government facing the decision of whethé@mpose taxes or
not, taxes are not installed whenever the aggregated cquisamof the resource
(natural resources) does not exceed the targeted amount.
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On the other hand, the model allows a quitfeatient interpretation. Suppose
that resources, like oil or minerals, are being auctioned orarket with infinitely
many sellers. As long as the total demand for a resource esviile available
amount, prices for this resource will be equal to the codtskies to obtain them,
for instance costs for oil extraction. (This case is not aered in the model, but
the extension is straightforward). Whenever there is atiibrprices will rise
due to scarcity, which corresponds to a non-zero price imbéel above.

1.4 Electricity Market Model

Here we consider an electricity market model with two contpes sharing a
power line network that is owned by a third party. The netwooksists of four
nodes with diferent consumers at each node, see figure 1.1.

Consumer 3

Consumer 1 Consume

Consumer 4

Figure 1.1: Electricity Market Example

Consumer 1 for instance can be interpreted as a remote ma@livath low
electricity demand, consumers 2 and 4 as big industriascaind consumer 3 as
a smaller city with medium-level electricity demand. Eacdmpany owns one
power plant, that of company A being at node 2 and that of com@aat node
4. Nodes are linked by four power transmission lines witfedént capacity and
different costs (due to fierent voltage and length). Routing electricity through a
power line incurs costs on a company proportional to theeeuiiin that particular
line. Each company decides about the amount of electricgiglis at each node.
Since costs for shipping electricity depend on the paths&ha the network, the
company also has to decide how to route the electricity. Ehially described
by one additional decision variable, since the network &oist only one loop.
In general, power lines can be used in both directions. s rtinodel, however,
the direction of flow is prescribed in order to avoid nonsrhoess in the cost
functions of the companies.
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The model contains the following variables and parameters:

XA, x? : electricity company A (B) sells to consumer i

yA . current on edge 4 from company A

yB . current on edge 4 from company B

cA, cB : costs for producing one MWh with power plant A (B)
ki : capacity limit of link i

€ : costson link i

G : specific constant of consumer i

Yy . parameter of inverse demand function

We suppose that the price for electricity is given by an isgedtemand func-
tion, that difers in each node due to number and preferences of consuimars, t
is, electricity price at nodeis

1

(vA VBY — 7.
pI(X » X ) - Ci (XIA+ XiB)y,

i=12234

The cost function of company A is

4
FAOA YY) = A D7 X + enxd + &0 + YY) + €304 — YY) + ey
i=1

while company B’s costs are

4
fB(xB,y®) = c® Z X2+ e X+ e(x8 + x5 + x5 — VB) + &3(8 — ¥B) + exyP.
i1

The profit functions are
7O YA %) = pct, xE) T XA = FAGA, YY)

and
JTB(XA, XB,yB) — p(XA, XB)T . XB _ fB(XB, yB),

respectively. The joint constraints imposed through theacay limits of the
power line are

X +xF < ke,

A A B B B B
Xi+yA_X15_X%_X3é+yB < ke,
—-X, =Y +x%+x28+x%—y8 < ke,
X+ X3 =Y =y < K,
VA+yB < k.
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Further, for technical reasons we assume that electrialgssare strictly positive
at all markets
XA
XB

0.1,
0.1,

and two additional constraints that prevent negative flowdge 3,

v v

Numerical results for this model are presented in chapter 6.

1.5 Previous Work

The first appearance of generalized Nash games, thoughrnegdehis way, is
probably in the seminal work of Arrow and Debreu [5] on theseamce of an
equilibrium in abstract economies in 1954. In 1965, Rosem#édly introduced
the definition of a normalized Nash equilibrium and consdeguestions of ex-
istence and unigueness. Rosen also proposed a gradierddhiettcomputing a
normalized Nash equilibrium. However, the generalizedhNaguilibrium prob-
lem did not attract particular attention for a long time aftee work of Rosen.
Bensoussan [11] formulated the GNEP as a quasi-variatinaglality in 1974,
though with infinite-dimensional strategy sets, which Hafd 3] further explored
for the finite-dimensional case 15 years later. Harker jgoimiut that the general-
ized Nash equilibrium problem encompasses a class of Skerkedike (Leader-
follower) problems.

In the late nineties, generalized Nash games became pdpularodelling
environmental and energy economic issues, as well as fatabign and analysis
of telecommunication networks [15], [45], [59] and [61]. rBe of the models
presented in these papers are described in chapter 6.

Still the numerical solution of the generalized Nash equlim problem re-
mained a dficult task. While the standard Nash equilibrium problem NER)
is equivalent to the variational inequality problem 1.5¢ spl4], as mentioned
earlier, the generalized Nash equilibrium problem is nobonétheless, numeri-
cal methods designed for the solution of the variationadjiradity problems have
constantly inspired approaches towards the solution oGIREP.

In the eighties, when numerical methods for solving veoradi inequality
problems were yet widely unknown, Dafermos [17] proposeideaative method
for the solution of variational inequalties, which is baseda fixed point formu-
lation. This method resembles somewhat the Jacobi iter&iothe solution of
a linear system, and is therefore also called Jacobi or Gaeistel method [25].
Basar and Li [64],[9], applied this method in the particudantext of NEPs.
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Some years later, in 1994, Uryasev and Rubinstein [98] tiyated a fixed
point iteration for the computation of normalized Nash &Qtia, called relax-
ation method. They improved on existing convergence thiomelaxation meth-
ods, in that they did not requirefterentiability of the cost functions. This relax-
ation method has been applied by severiedent authors since then.

Other approaches towards the numerical solution of the GN&lede Penalty
methods [78], [39],[29], [26], and solution methods for gueariational inequal-
ities [77]. Also the gradient method introduced by Rosereirgsd some further
attention. Primal-dual gradient methods are investigbyelam [36] and for the
NEP by Antipin in [3]. Further relaxation-type methods waalysed in [37]
for a very restricted class of generalized Nash equilibnuoblems calledonvex
games Quite diferent from all prior approaches, Nabetani, Fukushima aedd's
[71] compute generalized Nash equilibria through repestdation of parameter-
ized variational inequalities.

An overview on numerical methods for some Nash games otharttte GNEP
provides the monograph [70]. These are in particular ganeéisetl on graphs
and bimatrix games. The book contains one article (chaptabéut computing
an equilibrium in the pure exchange economy, which can beasss GNEP.



Chapter 2

Optimization Reformulations

In this chapter we derive constrained and unconstrainech@attion reformula-
tions of the generalized Nash equilibrium problem. The &esition starts with a
constrained optimization reformulation that yields a @liaracterization of the set
of generalized Nash equilibria. The drawback of this opation reformulation
is, however, that the objective function of the optimizatgroblem is in general
not differentiable, and therefore the problem itself not easy teeswith existing
optimization routines. Thus, in the next section, we preaaronstrained smooth
optimization reformulation. This reformulation charates a subset of the set of
generalized Nash equilibrium, precisely, it gives the $etoomalized Nash equi-
libria. Alongside with the two constrained optimizatioricenulations we derive
fixed point formulations of the solutions of the the geneedi Nash equilibrium
problem. The last section deals with an unconstrained dmaitmization refor-
mulation, which again characterizes the set of normalizadhiNequilibria. The
approach is somewhat related to the work on equilibriumlerob in [13] and the
recent paper [66].

2.1 A Constrained Optimization Reformulation

An important tool in the theoretical analysis of the geneesl Nash equilibrium
problem is the so-calleikaido-Isoda function This function, sometimes also
called Ky-Fan function, was introduced originally in ordermprove the existence
of a Nash equilbrium by means of a fixed point theorem [73].hia following,
however, the Nikaido-lIsoda function will be the main toal foe development of
numerical methods for the solution of the generalized Nagilierium problem.

Letd,, v = 1,...,N be the cost functions as described in the introduction. The

14
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Nikaido-Isoda function is defined through

N

P(xy) = ) [0,0¢,X7) = 6,0, )] (2.1)

y=1

Let X,(x™) be playen’s strategy set as defined in (1.3). For givea R" we write
Q(X) 1= X (X1 x Xo(x72) x - - x Xn(xN). (2.2)
The following Lemma connects the sewith the set-valued maf(x).

Lemma 2.1.1 We have x Q(x) if and only if xe X. In particular,Q(x) # 0 for
all x e X.

Proof. Using the definitions of the se€¥(x) andX,(x™), we immediately obtain

XeEQ(X) < X eX(Xx") V¥v=1...,N
— (X, x")eX V¥Yv=1...,N
— x=(X,X")eX

The second part is now obvious. O

Note that, forx ¢ X, we have eithef2(x) = 0 or Q(x) # 0, but then necessarily
x ¢ Q(x). Furthermore, given any € X, simple examples show that, in general,
neitherQ(x) is a subset oK nor X is included inQ(x).

Using the Nikaido-lsoda-function, we define

V(X) := sup¥(xy), XeX (2.3)
yeQ(x)

where, for the moment, we assume implicitly that the supransialways attained
for somey € Q(x). Later, this assumption will not be needed, so we do noé stat
it here explicitly. Then it is not diicult to see tha¥/(x) is nonnegative for alk €
Q(x), and thatx* is a solution of the GNEP if and only ¥ € Q(x*) andV(x*) = 0,
see also the proof of Theorem 2.1.2 below. Therefore, findisglution of the
GNEP is equivalent to computing a global minimum of the ojtation problem

min V(x) s.t. xeQ(X). (2.4)

Note that this optimization problem has a complicated fdasset since2(x)
explicitly depends orx. However, in view of Lemma 2.1.1, the program (2.4) is
equivalent to the optimization problem

min V(x) st xeX
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Although the Nikaido-lsoda-function is quite popular (esally for standard
Nash games) in the economic and engineering literature fegeexample, [15,
59, 61], it has some disadvantages from a mathematical aaddigal point of
view (also for the standard Nash game): On the one hand, giwesttorx, the

supremum in (2.3) may not exist unless additional assumg{idke the compact-
ness ofX) hold, and on the other hand, this supremum, if it existssigaily not

attained at a single point which, in turn, implies that theppiag V and, there-
fore, also the corresponding optimization reformulatidm] is nondiferentiable
in general.

In order to overcome these deficiencies, we use a simpleaggation of the
Nikaido-Isoda-function. This idea was used earlier in s@veontexts, see, for
example, Fukushima [38] (for variational inequalitiesiiréan and Pang [42] (for
standard Nash games), and Mastroeni [66] (for equilibriwog@mming prob-
lems). Here we apply the regularization idea to GNEPs. T®dhd, letx > 0 be
a fixed parameter and define tiegularized Nikaido-Isoda-functidoy

N

\Pa(x’ y) = Z [ev(xv’ X_V) - gv(yv’ X_V) - %HXV - yv”2] . (25)

v=1

Furthermore, fox € X, let

Vo(X) = yrpg%‘l’a(x,y)
N a
= max » |6,X,x")=6,(y,x") ==X =V 2] 2.6
max 1[ (X, X) = 6,07, X7) = SIX = V'l (2.6)

N

= Z {ev(x”, X") - min [Hv(yv, X7") + %IIXV - y”llz]}.

4 Xv pad
- yeX(x)

be the corresponding value function. A
A number of elementary properties of the mappifgare summarized in the
following result.

Theorem 2.1.2 The regularized functiol, has the following properties:
(@) V,(xX) > 0for all x € Q(X).

(b) x is a generalized Nash equilibrium if and only if  Q(x*) andV,(x*) =
0.

(c) Forevery xe X, there exists a unique vectr(x) = (VX(x),..., ¥N(x)) such
that foreveryy = 1,...,N,

. —y a, v oV
argmlrllvexy()fv)[ev(yv’ X ) + E”X - y ||2] = ya(x)'
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Proof. (a) For allx € Q(X), we haveV,(x) = MaXeax Po(X Y) = Po(X, X) = 0.

(b) Suppose that* is a solution of the GNEP. Thexi € Q(x*) and
6,(X7", X"7) < 6,(X, X77) VX € X(X7T)

forallv=1,...,N. Hence

N

o (KY) = ) (607X = 0y X ) =SIX = Y1) < 0

y=1

<0 Vy'eX,(x~™)

for ally € Q(x*). This implies
V,(X) = max ¥,(x',y) < 0.
yeQ(x*)

Together with part (a), we therefore havg(x*) = 0.

Conversely, assume that € Q(x*) andV,(x*) = 0. Then¥,(x*,y) < 0 holds
for ally € Q(x*). Let us fix a particular player € {1,..., N}, and letx’ € X,(x*")
anda € (0,1) be arbitrary. Then define a vectpe (y%,...,yN) € R" blockwise
as follows:

Vi om XH, if u+#v,
Tl A+ @A -A)X, ifu=v.

The convexity of the set¥,(x>™) imply thaty* € X,(x**) forallu = 1,...,N,
i.e.,y € Q(x*). For this particulay, we therefore obtain

0 > Y.,(X,y)
= .07 X7 = 0,007 + (1= X, X) = S(L= X = XP

\%

(1= DB, XY = (L= )6,(X, X"™) = %(1 — DX — X

from the convexity of), with respect toc’. Dividing both sides by + 1 and then
letting 2 — 1~ shows tha®,(x*", x"™) < 6,(x’,x>). Since this holds for all
X e X,(x*) andallv =1,...,N, it follows thatx* is a solution of the GNEP.

(c) This statement follows immediately from the fact that¢ tmappingy” +—
6,(y", X)) + 5|IX" — y’||? is strongly convex (for any giver), also taking into
account thak,(x™) is a nonempty, closed and convex set. O

Note that the previous result reduces to Proposition 3 ipfgfzhe standard Nash
equilibrium problem. Using the first two statements of TleawnR2.1.2, we see that
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finding a solution of the GNEP is equivalent to computing ebglaninimum of
the constrained optimization problem

min V,(X) s.t. Xxe Q(X), (2.7)
which, in turn, can be reformulated as

min V,(x) st xeX

in view of Lemma 2.1.1. The last statement of Theorem 2.1a#%slhthat the new
objective function overcomes one of the deficiencies of tappmgV (x).

The following result shows that the definition of the mappifigcan also be
used in order to get a fixed point characterization of the GNEP

Proposition 2.1.3 Let y,(X) be the vector defined in Theorem 2.1.2 (c) as the
unique maximizer in the definition of the regularized fumetV/,(x), cf. (2.6).
Then X is a solution of GNEP if and only if*xis a fixed point of the mapping

X = Y,(X), i.e., if and only if X = §,(x").

Proof. Firstassume that' is a solution of the GNEP. Then we obtaihe Q(x")
(and, thereforex* € X in view of Lemma 2.1.1) an¥,(x*) = 0 from Theorem
2.1.2. In view of the definition of,(x"), this implies
0= V,(X) = max ¥, (xX,Yy) = Tu(X, 9u(X)).
yeQ(x*)

On the other hand, we also ha¥g(x*, X*) = 0. Sincex* € Q(x*) and the maxi-
mumy, (x*) is uniquely defined by Theorem 2.1.2, it follows thét= ¥, (x").

Conversely, lek* be a fixed point of the mapping.” Thenx' = §,(x*) € Q(x")
and

0 = Wa(X', X') = PalX, §a(X)) = Vo(X).

Consequently, the statement follows from Theorem 2.1.2. |

We next consider a simple example which shows that, in génée objective
function from (2.7) is nondierentiable.

Example 2.1.4 Consider the GNEP witiN = 2 players and the following opti-
mization problems:

min,, 61(X1, X2) = —X1 min,, 62(X1, %) :=0
s.t. X1+ X <1, s.t. X1+ X <1,
2% + 4X < 3, 2% + 4% < 3,

X1, Xo > 0, X1, Xo > 0.
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Hence we haveX = {(X1, X2)T | X1 + Xo < 1,2X; + 4%, < 3, %1 > 0,% > 0}. An
elementary calculation shows that the solution set is goyen

e 3, . [1-x, ifxel0,1],
S—{X—(Xl,XE)’XEE[O,Z],X{—{%_ZX;’ ifX;E[%,% .
We want to comput¥,(X). To this end, we first note that the regularized Nikaido-
Isoda-function for this game is

o o
Yo(Xy) = =X1 + Y1 — E(Xl —yi)? - E(Xz —Yo).

Moreover, for this example, we have

Xl(X_l) = {Xl | X1 <1—X%,X% < g — 2%, X1 > O} = [O, min{l— X2, g - 2X2}] and
3 1 . 3 1
Xo(x?) = {% | Xo <1 =X, % < vin §X1’ X > 0} = [0, min{1 — xq, yia Exl}]

and, therefore

~ 04 a
Va, [ _ H _ _ _ 2 _ 1 _ _ 2 .
) X ylergl(g-l) =+ 2 O =ya)'] Y2€r>T(12I(I;<]'2) [2 (% = 2]

Givenx = (Xg, %) € R?, the solution of the first minimization problem is given by

0, if &4 X1 <0,
o) =19 2 +x, if 445 e [0, min{1 — xo, 2 — 2%,}],
mMin{l - X, 3 — 2%}, if = + X > Min{l - X, 3 - 2%},

and the solution of the second problem is

0, if X, <0,
P(X) = Xz, if X, € [0, min{1 - x,, 3 - Ixl,
min{l - X3, 3 - 2xq}, if X > min{l - xg, 2 - $x.}.

However, since we are only interestedkie X, the above formula simplify to

N 1ix, if 2+ x; € [0, min{1 - X, 3 — 2%}],
Yo(¥) = i1 v 3 1 i1 —x, 3_
Min{l — X, 5 — 2%z}, if =+ x¢ > Minf{1 - Xz, 5 — 2%y},

.1 3
min{— + X, 1 — Xo, = — 2%}
a 2

and

g’czy(x) = X,
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respectively. Now it is easy to see that the correspondingping
A~ ~ a ~
Vo) = =xa = [ =929 + 5%~ ¥2(x)?]

is not everywhere dlierentiable on the feasible s¢t

The nondifferentiability of the mapping, is a major disadvantage if one wants
to apply suitable optimization methods to the correspapdéaiormulation (2.7).
The very recent paper [23] considers some further propedi¢he functionV,
and a related reformulation approach. In the following isecthowever, we de-
scribe a modification of the current approach which resulits & smooth opti-
mization reformulation of the GNEP.

The situation is much more favourable if we specialize oaults to the stan-
dard NEP. Then it can be shown that the mappinés continuously dierentiable
provided all cost functiong, are smooth. This follows from the observation given
in Remark 2.2.7 below.

2.2 A Smooth Constrained Optimization Reformu-
lation

In this section, we modify the idea of the previous one an@iokénother con-
strained optimization reformulation of the GNEP which higga#icantly different

properties than the reformulation discussed in Section B Jarticular, the re-
formulation to be given here is smooth. However, it does et @ complete
reformulation of all solutions of the GNEP, but it provideslaaracterization of
the normalized Nash equilibria, which were defined in theohtiction. The nor-
malized Nash equilibrium can also be defined through theibld¢tésoda function
instead of the variational inequality (1.5), thereby aungthe assumption of dif-
ferentiability of the cost functions.

Definition 2.2.1 A vector X € X is a callednormalized Nash equilibriurfNoE)
of the GNEP, ifsug.y ¥(x",y) = 0 holds, where¥ denotes the Nikaido-Isoda-
function from(2.1).

The above definition of a normalized Nash equilibrium cqroesls to one given
in, e.g., [37, 98]. It is slightly dferent from the original definition of a normal-
ized equilibrium given in [92]. This and other features o thormalized Nash
equilibrium were discussed in the introduction in Sectiah 1

We next state a simple property of the Nikaido-Isoda-fuorctivhich follows
immediately from the fact that the cost functioh$x) = 6,(X’, x’) are convex
with respect tox’.
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Lemma 2.2.2 For any given x X, the Nikaido-lsoda-functioff((x, y) is concave
inye X.

In order to derive a smooth reformulation of the GNEP, ourd&sol is, once
again, the regularized Nikaido-Isoda-functi#g(x, y) from (2.5). Based on this
mapping, we define

Vo(X) = max¥,(xy)
yeX
N a
— Vo VY Yo Y Y — Y12
- rygx;[ev(x,x) 0y x-S -YIE|  (28)
= max|¥(xy) - Slx- P
= na LY, > Y .

Note that, due to Lemma 2.2.2, given an arbitrary X, we take the maximum
of a uniformly concave function iy, henceV,(x) is well-defined. Comparing the
definition ofV, with the one ofV, in (2.6), we see that the onlyfiérence is that
the maximum is taken over alle X instead of ally € Q(X).

This minor change has a number of important consequenceBrsiigate the
counterpart of Theorem 2.1.2 for the mappwg

Theorem 2.2.3 The regularized function yhas the following properties:
(@) V,(X) > 0forall x € X.
(b) x*is a normalized Nash equilibrium if and only if & X and \,(x") = 0.

(c) Forevery xe X, there exists a uniqgue maximizexKy) such that
a
argma ¥(x y) - 511X~ YIF| = Ya(¥). 2.9)
and y,(X) is continuous in X.

Proof. (a) For anyx € X, we haveV,(X) = maxex Yo (X, y) > Y. (X X) = 0.

(b) First letx” be a normalized Nash equilibrium. Thene X and sup., ¥(x",y) <
0. Hence¥(x*,y) < 0 for ally € X. Since

W, (¢,y) = (X, Y) - %nx* —YIP <W(X,y) <0 VyeX

it follows thatV,(X") = maxex ¥o(X",y) < 0. Together with statement (a), this
impliesV,(x*) = 0.
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Conversely, lek* € X be such tha¥/,(x*) = 0. Then
Y, (xX,y) <0 VyeX (2.10)

Assume there is a vectgre X such that?(x*, §) > 0. Thenax* + (1- 1)y € X for
all 1 € (0,1), and Lemma 2.2.2 implies

Y(X, AX +(1-2)Y) > AP(X, X)+(1-D)P (X, Y) = (1-)¥(X,9) >0 Vae (0,1)

Therefore, we obtain

o0 AX + (L= D) = B¢ AX + (1= ) - Sl - X~ (L= )P

(K, AX + (1= ) = 5 (L= 27X = 51

\%

A a " A
(1-D¥(x.9) - 5(1- ?Ix =912
> 0

forall 2 € (0, 1) suficiently close to 1. This, however, is a contradiction to (2.1

(c) In view of Lemma 2.2.2, the mapping~ (X, y) — 5lIX - yl|? is strongly
concave (uniformly irx). Hence statement (c) is a consequence of standard sen-
sitivity results, see, for example, [53, Corollaries 8.1 &nl]. O

Theorem 2.2.3 shows that we can characterize the normaliastl equilibria of
a GNEP as the global minima of the constrained optimizatioblem

min V,(X) s.t. xe X (2.11)

In contrast to the corresponding reformulation in (2.7),deenot get a reformu-
lation of all generalized Nash equilibria.

We next state the counterpart of Proposition 2.1.3. Its foiomitted here
since it is essentially the same as the one for Propositib:3 Zusing Theorem
2.2.3 instead of Theorem 2.1.2).

Proposition 2.2.4 Let y,(X) be the vector defined in Theorem 2.2.3 (c) as the
unique maximizer in the definition of the regularized fumectV,(x), cf. (2.6).
Then X is a normalized Nash equilibrium of GNEP if and only ifig a fixed
point of the mapping % y,(X).

Now we come back to the functiowi, and the optimization problem 2.11. Our
aim is to show that the regularized functigpis continuously dierentiable, pro-
vided that the cost functiong, are continuously dierentiable for each player
v =1,...,N. Based on this result, further properties of the optima@aproblem
2.11, such as a stationary point result, will be derived ertbxt chapter.



2.2. ASMOOTH CONSTRAINED OPTIMIZATION REFORMULATION 23

Theorem 2.2.5 Suppose that the cost functiofysare continuously dferentiable
for each player = 1,...,N. Then the regularized function,\ts continuously
differentiable for every x X, and its gradient is given by

VV&(X) = VX\IJ (X y)|y Yo (X)

Z [VO,(X', X)) = VO,(Y.(x), X )]

%

-1
x191(ya(><) x1)
[ — (X = Ya(X)),

Vnon (ya (X) X N)

where y;(X) denotes the unique maximizer from Theorem 2.2.3 (c) adsdcia
the given vector x.

Proof. We first recall that the regularized functi®d) can be represented as in
the last line of (2.6), and that the mapping

a
y = Yalxy) = ¥(xy) - 5lIx- ylI?

is strongly concave for any fixed in view of Lemma 2.2.2. Hence it follows
from Danskin’s Theorem (see, for example, [28]) tNatis differentiable with
gradientVV,(x) = V,¥,(X, y)| e . Using the definition of the mappingy,,, an
elementary calculation shows that

N
VL)) = D [V6(X, X7) = Vo, x )]
y=1
Vxlel(yl, X_l)
+ - CY(X - y)’
VO (N, xN)

Insertingy = v,(X) then gives the desired formula for the gradienMpf Since

all cost functiong), are continuously dierentiable, and sincg,(x) is also a con-
tinuous mapping ok in view of Theorem 2.2.3, we finally get that the gradient
VV,(X) = V¥, (X, y)|y=ya(x) is continuous, i.e., the regularized functigpis con-
tinuously diferentiable. |

The following note shows that no regularization of the Na@isoda-function is
necessary if the cost functiods have some stronger properties than those men-
tioned so far.
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Remark 2.2.6 Suppose that the functiols(x) = 6,(X’, x™*) are strongly convex
in X’ (for any givenx™). Then the mapping

V(X) := max¥(x,y)
yeX

is well-defined and gives a reformulation of the GNEP as a $imoptimization
problem
min V(x) s.t. xe X

This means that there is no need to regularize the funétiéor strongly convex
cost functions. The proof of the above statement followsibhpke inspection of
the proofs given in this section. Note, however, that theonstrained optimiza-
tion reformulation to be presented in Section 2.3 needs alagged Nikaido-
Isoda-function even in the case of strongly convex funain

We close this section with a simple note on the applicationwfresults to the
standard Nash equilibrium problem.

Remark 2.2.7 Suppose that the nonempty, closed, and conveXsetfR" has a
Cartesian product structure, that is,

X=Xy XXy XX Xy

with X, ¢ R™ fixed. ThenQ(x) = X for all x, and the GNEP reduces to the
standard NEP. Moreover, it follows that

Vo (X) = maxWa(x,y) = max¥,(x y) = V,(X)
yeQ(X) yeX

for all x € X, i.e., the two function¥, from the previous section and, from the
current section coincide. In particular, the mappihgis therefore also continu-
ously diferentiable when applied to a standard NEP.

2.3 An Unconstrained Smooth Optimization Refor-
mulation

Here we use the regularized Nikaido-lsoda-function in ptdeobtain an uncon-
strained optimization reformulation of the GNEP. To thislelet 0 < a < 8 be
two given parameters, let

N

—V vV —V a vV vV
Wo(xy) = ) 10X =6,/ x7) = 51X - yIP]
v=1
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N
Paxy) = ) 1000, X7) - 0,0y x-V)—gnxV—yvnz]
y=1

be the associated regularized Nikaido-Isoda functions )etn
V(X)) = m(';l(x‘Pa(x, y) = Yo (X, Yo (X)),
ye
Vo) = max¥s(x.y) = ¥y(x Y5()

be the corresponding regularized value functions. Fogmtilese functions are
defined only forx € X in the previous section. However, it is easy to see that they
can be defined for any e R".

Similar to the way the D-gap function was derived from theutagzed gap
function in the context of variational inequalities, se2,[89], we then define

Vop(X) := Vo (X) — V5(X), xeR" (2.12)

In order to show that this ffierence of two regularized Nikaido-lsoda-functions
gives an unconstrained optimization reformulation of ti¢EP, we first state the
following result.

Lemma 2.3.1 The inequality

B%“ux— VoI < Vo) <2

holds for all xe R".

5 X = Yo (XII? (2.13)

Proof. By definition, we have for any € R"
Vs(¥) = ¥s(x. yp(x) = max¥s(x.y)

and, therefore
Vi(X) > Ws(X, Yo (X)).

This implies

Vos(X) Ve (X) = Va(X)

Wo (X Yo (X)) = Pp(X Yal(X))
N
£e Zl X — YOI

_ B-«a _ 2
= 5 IX=Ya(X)l

IA
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for all x e R". This proves the right-hand inequality in (2.13). The otinequal-
ity can be verified in a similar way. |

Note that, similar to an observation in [55], Lemma 2.3.1 ieaimately implies that
the level sets of the functiow,; are compact for compact se{s This observation
guarantees that any sequerig& generated by a descent method Yop will
remain bounded and, therefore, has at least one accunmutdiot.

As another consequence of Lemma 2.3.1, we obtain the follpvasult.

Theorem 2.3.2 The following statements about the functiop Wold:
(@) Vap(X) > Oforall x € R".

(b) x*is anormalized Nash equilibrium of the GNEP if and only‘ifsa global
minimum of VY with V,4(x*) = 0.

Proof. (a) Using Proposition 2.2.4, we have

B—«a

2

Vis(X¥) = =[x - ys(3)|2 > 0

for all x e R".

(b) First assume that' is a normalized Nash equilibrium. Then Proposition 2.2.4

impliesx* = y,(x*) andx® = yz(x*). Hence (2.13) immediately givés,(x*) = 0.
Conversely, lek" be such thaV,s(x) = 0. Then (2.13) impliex* = ys(X").

Hencex" solves the GNEP in view of Proposition 2.2.4. O

Theorem 2.3.2 shows that the normalized Nash equilibriaMER are precisely
the global minima of th&nconstrainedptimization problem

min Vyg(x), xeR" (2.14)

We next note that this is a smooth problem. To this end, howexeneed to as-
sume, for the remainder of this section, that all cost fums®, are continuously
differentiable. Then we have the following result.

Theorem 2.3.3 The function V; is continuously gferentiable for every x R",
and its gradient is given by

N

Was(®) = D (V0509 X7) = VO,(,(0, X)]

v=1



2.3. ANUNCONSTRAINED SMOOTH OPTIMIZATION REFORMULATIOR7

V6520, X1 — Vabr (Y4(x), x2)
+ :
V0N, X) = Vel (Y09, x™)
—a(X~ Yo(X)) + BX ~ Yp(¥)).

Proof. First recall that,(x) andV;(x) are defined for alk € R". Then observe
that the formula for the gradients of these two functiongjiasn in Theorem 2.2.5
for x € X, remain true for alk € R". Since we hav&V,z(X) = VV,(X) — VV;4(X),
the statement follows from Theorem 2.2.5. ]



Chapter 3

Descent Methods

In this chapter we consider the smooth constrained optiioizeeformulation and
the smooth unconstrained optimization reformulation fittva preceding chapter
again. The focus is on properties of the functidsandV,;, respectively. In the
first section we derive conditions that imply convexity o thunctionV,, as well
as stationary point results for both the constrained andnstcained optimization
problems (2.11) and (2.14).

The next section deals with the relaxation method propas¢@id], which is
one of the most popular methods for computing normalizechéaglilibria. We
show that it is possible to interprete the relaxation methddch is essentially a
fixed point iteration, as a feasible descent method for tinstctained optimization
problem (2.11). This viewpoint, in particular the applicatof a line search, leads
to improved theoretical and numerical results.

Finally we extend the relaxation method to the nofiedentiable case, that
is, we do not require the assumption that the cost functiomsooth. Proving
convergence for this nonsmooth method however requiresgdr assumptions
regarding convexity than for theférentiable case. Throughout this chapter, we
assume that Assumption 1.2.2 holds.

3.1 Properties of the Optimization Reformulation

Let¥,,V,, andy, be defined by (2.5), (2.8), and (2.9), respectively. Theorem
2.2.3 shows thax* is a normalized Nash equilibrium if and only if it is a global
minimum of the constrained minimization problem

min V,(X) s.t. xeX (3.1)

with optimal function value/,(x*) = 0. Moreover, from Theorem 2.2.5 it follows
thatV, is differentiable, if the cost functiorts are all diferentiable.

28
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Under certain assumptions, it can be shown that the obgetunctionV, is
(strongly) convex. In view of the definition &f,, this (strong) convexity depends
on similar properties of the regularized mappig(x, y). In order to state a cor-
responding result, we recall that the functdp(-, y) (as a function ok alone) is
convex on a se&b C R" for any giveny if the inequality

Yo(dx+ (1= )z y) < AV (X Y) + (1 - )Vo(zY)

holds for allx,z€ S and all1 € (0, 1). Moreover,¥,(-,y) (again as a function of
x alone) is strongly convex on a setc R" for any giveny if there is a modulus
u > 0 (possibly depending on the particular veotpsuch that the inequality

Yo(AX+ (1= )z Y) < A¥e (X Y) + (L - )Po(z ) — pA(L = DX - 27

holds for allx,z € S and all2 € (0,1). If the constani: > 0 can be chosen
independently ofy € S, then we call¥,(-,y) uniformly strongly convewn S.
Using this terminology, we have the following result.

Proposition 3.1.1 The following statements hold:
(@) If ¥,(-,y) is convex for every g X, then V, is also convex on X.

(b) If ¥,(-,y) is uniformly strongly convex on X, then 6 strongly convex on
X.

Proof. (a) Exploiting the convexity oft',(-,y) for any giveny, we obtain for
everyx,ze Xand alld € (0, 1)

V,(Ax+ (1 -2)2)

Yo(AX+ (1= D2 Yo(ax + (1 - 1)2))

A¥o(X Yo(AX + (1 = 1)2)) + (1 = YWo(Z Yo(AX + (1 - 2)2))
A¥o(X Yo (X)) + (1 - YVWo(Z Ya(D)

AVo(X) + (1 - )Va(2),

IN A

where the first inequality takes into account that the vegtorx+(1-1)z) belongs
to X, whereas the second inequality exploits the definitiong, ©f) andy,(2).

(b) Letu > O be the uniform modulus of strong convexity of the mapping:, y)
on the seX. Then, similar to the proof of part (a), we obtain for &lz € X and
all 1 € (0,1) that

V,(Ax+ (1-2)2) Y (AX+ (L = Dz Y, (X + (1 - 12)2)

A¥o (X Yo(AX + (1 - 2)2))

IA
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+H1 = Y¥o(2 Yo (X + (1 = 2)2))) — pA(1 = DlIx - 2

< A\I’a(x’ ya(x)) + (1 - /l)\Pa(Ze ya(z)) - ,Lt/l(l - /1)”)( - Z||2
= AVa(X) + (1= YVa(2) — pA(L - DlIx - 27
HenceV, is strongly convex oiX with modulusu > O. |

In order to guarantee the (strong) convexitygf we have to verify the assump-
tions from Proposition 3.1.1, namely the (uniform strongieexity of the map-
ping ¥,(-,y) for all y € X. In general, this requirement is not satisfied under
standard convexity assumptions for our cost functi@nsHowever, for the case
of quadratic cost functions, we have the followingdisuent condition.

Proposition 3.1.2 Consider the case where the cost functions are quadratyc, sa

1 N
6,(X) := E(XV)TAWXV + Z(XV)TAVNX“ Vv=1,...,N

pu=1
HFEY

for certain matrices 4, € R™" such that the diagonal blocks,Aare (without
loss of generality) symmetric. Assume that

:‘ZLAll A - A
g A.21 %A.\zz A.zN ’ (3.2)
Ani Az %ANN

is positive definite and let,, > 0 be the smallest eigenvalue of the symmetric
matrix B+ BT. Then the following statements hold:

(@) The function Yis convex oR" for all a € (0, Amin] .

(b) The function VY is strongly convex oRR" for all & € (0, Amin).

Proof. We show that?,(.,y) is (uniformly strongly) convex and then apply
Proposition 3.1.1. To this end, first note that the secontgbaerivatives of¥,,
with respect tox are given by

A, +ATf
w P HEY Yv,u=1,...,N.

V2, . W, = .
o YalxY) {Avy—alny, if u=w

Hence we hav&2,¥,(x,y) = B+ BT — al. Consequently, assumption (a) (or (b))
implies that the Hessia%2, %, (X, y) is positive semidefinite (or positive definite).
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This, in turn, implies that the quadratic functidiy (-, y) itself is convex (or uni-
formly strongly convex). The statement therefore followsi Proposition 3.1.1.
i

Note that the previous result also holds if the cost funarcontain additional
linear andgor constant terms since they do not change the second-cedeative
of ¥, used in the proof of that result.

The following example shows that the bounds given in PramrsB.1.2 are
tight.

Example 3.1.3 We consider the following Nash equilibrium problem, whelagyp
er 1 controls the single variablg, player 2 controls the single variabkg, and
the corresponding optimization problems are given by

min,, $X2 min,, $X3
s.t. X1 >1 s.t. X > 1.

Actually, this is a special case with two separable optitivzaproblems. The
unique solution is< = (1, 1)", and the matrix8 + B" from Proposition 3.1.2 has
the two eigenvalueg, = 1, = 1, hence we havey,, = 1.

Given an arbitraryr > 0, an elementary calculation shows that the component
functions ofy, are given by

o) = | X
¢ 1, else

a !

Therefore, for alk satisfyingx, < X2, we locally havey,(X) = (1) Consequently,
the Hessian oY, is this area is given by

VAVa(x) = ((1 0 K @ ° a)) ’

which implies thatV, is convex in the respective area for all©d @ < 1 and
nonconvex for alky > 1. O

The previous results guarantee that (3.1) is a convex opdiion problem, in par-
ticular, every stationary point is therefore a global minimand hence a normal-
ized Nash equilibrium of the GNEP (provided there is at leastsuch solution of
the GNEP). Next we introduce an assumption which does n&ssecily guaran-
tee convexity of the value functiow,, but still implies (among other things) that
a stationary point is a global minimum of (3.1).
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Assumption 3.1.4
(a) The cost functiong, are continuously gferentiable.

(b) For given xe X with x# y,(X), the inequality

N
DUIVOK, ) = V6,070, X )] (X = Ya(X)) > O
y=1

holds.

Note that the smoothness assumption from Assumption 3a).4s (necessary,
in particular, to formulate part (b). This Assumption 3.1 is crucial for the
development and analysis of the following descent method.th@ one hand,
it can be shown that any stationary point of the optimizapooblem (3.1) is a
solution of the GNEP provided that Assumption 3.1.4 holég kelow. On the
other hand, it implies that the search direction used in¢leexation method from
the next section is a (feasible) descent direction for tHeevéunctionV,, see
Lemma 3.2.2 below.

We postpone a discussion of Assumption 3.1.4 to the end @&#ttion. The
following result first shows that Assumption 3.1.4 providesificient condition
for a stationary point to be a global minimum and, thereftoehe a normalized
Nash equilibrium.

Theorem 3.1.5Let X € X be a stationary point 02.11)in the sense that
VWL (x)'(x-=x)>0 VxeX (3.3)

If Assumption 3.1.4 holds atx x*, then X is a normalized Nash equilibrium of
the GNEP.

Proof. Using (3.3) and the representation of the gradWvi(x*) from Theorem
2.2.5, we obtain

0 < VV,(x)"(x-x)
N
= ) [VO(X, X"7) = VO(yL(x), Xx* )] (x = X
y=1

N
£ Vb (5 (), X)X = X) = (X = o)) (X = X)
=1

N

= D IV0.6¢7 X 7) = VO, (), x )] (x = X)

v=1
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N

# 2 [Vl (), X7) = a(x =y ()] (X = X)

v=1

for all x e X. Choosingx = y,(x"), we therefore get

0 < I [VO,0¢,X7) = VO, (x), X )] (Ya(X') = X)
+ 2k [V by (), X7) = a(x =y )] ((x7) = X).

Now recall thaty,(x") is the unique solution of the optimization problem

(3.4)

N
4 v -V a v V
max Z[ey(x*”,x*’ ) —6,(y, X* )—Ellx*’ —VI%] st yeX

y=1
Consequentlyy, (x*) satisfies the corresponding optimality conditions

Vabi(ys (<), X1 = a(xt = y2(x)) '
: (Z-VYo(X) =0 VzeX
VN (x), X 7N) = a(x*N =y (X))
Usingz = x*, we therefore obtain

N
DT b 0 00), X7 = (X = Ya (X N]T (X = y5(x)) = 0,
y=1
Taking this into account, we get

N
0< > [VO", X") = V8,(y,(X), X )] (Ya(X) = X) (3.5)
=1

%

from (3.4). Now assume that # y,(x*). Then (3.5) and Assumption 3.1.4 to-
gether imply O< 0. This contradiction shows that = y,(x*). Hencex' is a
normalized Nash equilibrium of the GNEP because of Theor&132). |

The rest of this section is devoted to a discussion of Assiam#.1.4 (b).
While it looks somewhat strange in the beginning, we willwhbat it is satisfied
under some conditions which are much easier to verify. euntote that these
conditions guarantee that Assumption 3.1.4 holds for artrarp « > 0. The
main criterion is given in the following result.

Theorem 3.1.6 Let X be a normalized Nash equilibrium and assume that the cost
functionsd, are twice continuously gerentiable. Suppose that the matrix=A
(Aw,)VN#=1 with A, = V2,_.6,(x") is positive definite. Then there is a neighbourhood
N(x*) such that Assumption 3.1.4 holds for alexN(x*).
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Proof. Given anyx, we simplify the notation and writg andy” instead ofy, (X)
andy’ (x), respectively. From the intregral mean value theoremllibfs that

1
Vo, (y', x) = V6,(x', x) = fo Ve O(X + T(y" = X), x") dr)(y’ = X).

Hence we get

N
Z [VO,(X, x™) = Va,(y", x™)]
1

y=

N

1
= 2 fo V2.0,(X + T(y" = X), X") dr)(x’ - )| (3.6)

v=1
1

1
( f V2 ,00(x* + 7yt - xb), x Y dr, .., f V200NN + (YN = xN), xN) dr)(x - y)
0 0

( f 1 | V20000 + 7(y" = X, XD, VAN + 7N = XY), x M) |de) (x - y)
0

1
fo [Vixlel(xl +7lyt = x5, X7, V2O + Ty = XY, x"\')](x —y)dr.

Since the functions, are twice continuously dierentiable, and since is a fix
point ofy,(-) in view of Theorem 2.2.3 ¢), the assumption tAas positive definite
implies that there exists a neighbourhdd(k*) such that the slightly perturbed
matrix

(Vixlel(xl + 720 — XD, X7, V2 (XN + TV () - XY), x‘N))

is positive definite for alk € N(x*) andr € [0, 1]. Together with (3.6) this implies
that Assumption 3.1.4 holds for atle N(x*) with X # y,(X). |

The following two corollaries are consequences of Theoreti63and provide
some simplified sfiicient conditions for Assumption 3.1.4 to be satisfied.

Corollary 3.1.7 Consider the case where the cost functi@nare quadratic, say

1 N
6,09 = ()T AX + ) (X)TA,X
pu=1

forv =1,...,N. Suppose that the matrix A (Avu)!}j#:l is positive definite. Then
Assumption 3.1.4 is satisfied at an arbitrary poirg X with x # y,(X).



3.1. PROPERTIES OF THE OPTIMIZATION REFORMULATION 35

Proof. The statement follows immediately from Theorem 3.1.6 byingpthat
the second-order partial derivatives of our quadratic fions 6, are given by
V2 .60,(X) = A, forall xe R". O

Note that the assumption of the matAx= (A,,) being positive definite is weaker
than the corresponding condition on the maBidefined in (3.2). In factB being
positive definite implies that the diagonal block mafdx= %diag{All, .o ANN)

is also positive definite, which, in turn, gives the positilafiniteness oA since
this matrix is simply the sum d8 andD.

Corollary 3.1.8 Suppose that the cost functiofjsare twice continuously gier-
entiable and that the matrix@®, y) = (B, (X, y))l'j',v=1 with

B (X y) = ViﬂxveV(yV’ X™) (3.7)
is positive definite for all Xy € X or equivalently, that the matrices
B(X.Y) = —VA¥.(X.Y) - V3 Wa(X ) (3.8)

are positive definite for all )y € X. Then Assumption 3.1.4 holds for allkexX
with X # Y, (X).

Proof. By taking a look at the proof of Theorem 3.1.6, we immediatslg that
the assumed positive definiteness of the matr®esy) with the block compo-
nents given by (3.7) implies that Assumption 3.1.4 holds.

Hence we only have to show that the mappiBgas the alternative represen-
tation given in (3.8). This, however, follows directly frotine expression of the
second-order derivativég ¥,(x, y) andVZ ¥.(x.y), see, e.g., [47]. O

The following example shows that the condition given in J3sthot suficient for
the convexity of the functioV,. In particular, it follows that Assumption 3.1.4
guarantees that stationary points are global minima foagsabf nonconvex prob-
lems.

Example 3.1.9 Consider a two-person game where each player controls ksing
variable, and where the corresponding optimization proklare given by

ming 333 + 3x1% min, 233 + 2x1%
s.t. X >1 s.t. X > 1.
The unique Nash equilibrium is = (1, 1)". Elementary calculations show that,

1) and,

for all x e X :=[1, 00) X [1, 00) suficiently close tox*, we havey,(X) = (1
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therefore,

Obviously, there is n@ > 0 such that this matrix is positive semidefinite. In
particular, the functiorV/, is not convex onX. Nevertheless, the matrig(x, y)
from (3.7) is equal to

_(t 3

Bx) = 5 4]
and therefore positive definite for all € (0, o) and allx,y € X, which implies
that Assumption 3.1.4 holds for atle X. O

In the remainder of this section we consider the uncongtaaptimization refor-
mulation from chapter 2.3 again. We know that (2.14) is a dlmaaconstrained
optimization reformulation of the GNEP. Thus, if we want &vdlop a numerical
method based on this reformulation, we need to compute tiEgminimum of
V,s. However, standard optimization software is usually oriljedo find a sta-
tionary point, therefore we next want to give a result sayirad such a stationary
point is already a normalized Nash equilibrium under certainditions. To this
end, we first state the following preliminary result.

Lemma 3.1.10 The inequality

N

Z [V 0,32 (X, X)= Ve 0(¥5(0), X)=a(X' =y ()+B(X =5 0] (V5()-Yi(x)) = 0

v=1
holds for any x R".

Proof. As noted in the proof of Theorem 3.1.%,(X) satisfies the optimality
condition

N
D Vb0, x) — a(® ~ Y00 (@ - (9) 20 Vze X

v=1
In a similar way, it follows thay/(X) satisfies

N
D Vb5, X7) = B = Y5]' (2 - y3(9) = 0 ¥ze X
y=1
Usingz = ys(X) in the first inequality ana = y,(X) in the second inequality, we

get
N

D[Vt 09, X7) = (X = Vo] (Y09 — V2 (%)) = 0

y=1
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and '
DT 0 59, X7) = B¢ = Y50 (00 - y3(9) = 0,
y=1
respectively. Adding these two inequalities gives thergelsiesult. O

In order to state a result that a stationary point is, autcraidy, a global minimum
of V,5, we need a certain condition which is quite similar to the etaed in
Assumption 3.1.4.

Assumption 3.1.11For given xe R" with y,(X) # ys(X), the inequality

N

D IVOH09, X7) = YO0, X )] (Y5 = V(X)) > O

y=1

holds.

Using Assumption 3.1.11, we are now able to state the foligwesult.

Theorem 3.1.12Let X be a stationary point of M. If Assumption 3.1.11 holds
at x = x*, then X is a normalized Nash equilibrium of the GNEP.

Proof. Sincex® is a stationary point 0¥,5, we obtain from Theorem 2.3.3

0 = VV(X)
N
= DUIVOX), X7) = VO,(,(xX), X))
y=1
Vyaba(y (<), X7) = Vyafy(y3(x), X7
+ : (3.9)

VbR (0), XN) = T GAOC), X~
—a(X = Yul(X) + B(X = Yp(<)).

Multiplication with (ys(x") — ya(x*))T and using Lemma 3.1.10, we therefore get

N
0 = ) [VO,5506). X = V6,050). X ) WX - YaX)

y=1

N
+ ) [V by (Yo (X), X°7) = Vi 8,(Y(X), X°7)
=1

)%

—a (X = Yo(X)) + B = Y5 OEN]T (Y5(X) = VLX)
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N
> 3 [V, X7) = V(X)X ) 06(0¢) = Ya(X)).

y=1

Assume thay(x*) — Y. (X*) # 0. Then the previous chain of inequalities together
with Assumption 3.1.11 gives the contradiction>00. Hencey, (X") = yz(X").

But then (3.9) simplifies tod — a)(X* — Y,(x*)) = 0. Sincea < g, this implies

X =Y,(x). Consequently* is a normalized Nash equilibrium in view of Propo-
sition 2.2.4. ]

3.2 A Relaxation Method with Inexact Line Search

The so-called relaxation method is a fixed point iteratioselobon the result 2.2.4
and computes normalized Nash equilibria. While basicatigenof the existing
solvers for GNEPs has been tested extensively on a largetyaffiproblems, the
relaxation method seems to be the only one that has beeedjpleast by a small
group of diferent people to a few problems coming fronftelient applications,
see [12, 15, 46, 59, 61]. However, the conditions that guaeaconvergence of
the relaxation method in [98, 61] are very restrictive. Muwer, the rather general
inexact stepsize rule given in [98] leads to more or lessisgtirmplementations
of the relaxation method, whereas the exact stepsize roie [61] is not really
implementable, see the comments below for more details.

Here we present a new convergence theory for the relaxatethad that al-
lows weaker assumptions and that uses a clear, Armijo-tylpdar the choice of
an inexact stepsize that turns out to provide rather goocenigal results.

The relaxation methods presented in [98, 61] as well as teembe discussed
in the following find a normalized Nash equilibrium and, #fere, a particular
solution of a given GNEP. The relaxation method itself ubesteration

X=X ptd, di=y,(X) - X, k=0,12,... (3.10)

for the particular valuer = 0 of the parametet. Since this does not guarantee
existence and uniqueness of the maximizg€k) in (2.9), the authors of [98] have
to add some assumptions which are not necessary in our casepavergence of
the method is guaranteed, if the stepsize (0, 1] satisfies the conditions

t«l 0 and Ztk:oo.
k=0

These conditions suggest a choice of the fagm y/k for some constany >
0, however, in practice this choice leads to very slow caypece, so dierent
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heuristics are typically implemented in order to improve ttumerical behaviour
of the relaxation method, see, e.g., [61, 46]. The versidh®felaxation method
presented in [61] chooses the stepdizby an exact minimization of the one-
dimensional mapping

i(t) 1= Vo(X + td)

over the interval [01]. This method was shown to have the same global conver-
gence property as the original relaxation method under @dhgesset of assump-
tions as in [98], however, sincé, is typically a highly nonlinear function, the
computation ot, by minimizing ¢y is usually not possible. Moreover, its com-
putation is very expensive since each function evaluatiasn corresponds to the
solution of a constrained optimization problem in orderaleate the mapping
V, at the intermediate poind + tdX.

Note that the iteration (3.10) of the standard relaxatiorthoe (with @ =
0) can also be applied to the case> 0 considered in this paper, and that the
convergence results presented in [98, 61] for each of theeatveo stepsize rules
also hold in this situation under the assumptions statee thdere, however, we
present a completelyfilerent convergence analysis motivated by standard descent
methods from optimization that uses an inexact Armijo-tirpe search in order
to calculate a suitable stepsitzeat each iteratiol.

Throughout this section we suppose that Assumption 3.1dslad every point
x € X or at least at every iterat& € X that is generated by the following algo-
rithm.

Algorithm 3.2.1 (Relaxation method with inexact line search)
(S.0) Choose%e X,8,0 € (0,1), and set k= 0.

(S.1) Check a suitable termination criterion (for instang€x¥) <  for somes >
0, or [lya(X) - X| < &).

(S.2) Computeyx¥) and set 8 :=y, (X) — x¥.
(S.3) Computet= max{s' |1 =0,1,2,...} such that

V, (X< + 1d¥) <V, (X) — otZ1d¥l. (3.11)

(S.4) Setk! = x* + t,d*,k «<— k + 1, and go to (S.1).

Recall that we assume continuouffelientiability of all cost functions,, cf. As-

sumption 3.1.4. This assumption is crucial for the subsettenvergence analy-
sis presented in this section. Nevertheless, we woulddik®int out that, at least
in principle, Algorithm 3.2.1 is a derivative-free methdd practice, the situation
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is somewhat dferent since we have to be able to compute the function values o
V,, which corresponds to the solution of a constrained optitiingoroblem, and
this is typically done by suitable methods that exploit thedentiability of the
cost function®,. While this section is therefore devoted to a convergenay/ais
using derivatives, we present a completely derivative-fnealysis in the next sec-
tion which, however, is based on a convexity-type assumptibich is stronger
than the central Assumption 3.1.4 used within this section.

Our first aim is to show that Algorithm 3.2.1 is well-defined this end, we
note thatdX is always a direction of descent for the merit functign

Lemma 3.2.2 Let ¥ € X be the current iterate and“cbe the vector computed
in Step (S.2) of Algorithm 3.2.1. Th&V,(x)"d“ < 0, i.e. & is a direction of
descent at(as long as %is not a normalized Nash equilibrium of the GNEP).

Proof.  For simplicity of notation, we writgy, instead ofy,(x) and omit the
iteration indexk. Recall from Theorem 2.2.5 thatV,(X) = V¥, (X, y)|y=y 0"
Calculating the partial derivative &f, with respect tox (cf. [46]), we then obtain

N

(Z [VO,(X', X)) = VO,(Y, X )] + ...

v=1
Vxlel(y[]b X_l)

YV,()Td

; — a(x=Y2)) (e =)
VXNHN(y(’:l’ X_N)
N

(D 196,x, x) = 6,07 X)) (v - %

y=1

Viab1(Yy, X°7) :
: —a(X=Ya)) (Yo = ¥).

+

The first term of this equality is negative by Assumption 8,while the sec-
ond term is nonpositive due to the first order optimality atod for y,(X) :=
arg maxex W.(X,y). Altogether, we conclude th&tV,(x)"d < 0, henced is a de-
scent direction. O

VxN GN(YE, X_N)

Note that Assumption 3.1.4 was crucial in proving the despeoperty. Based
on the previous result, we are now in the position to showAlgorithm 3.2.1 is
well-defined.

Lemma 3.2.3 Algorithm 3.2.1 is well-defined and generates a sequéxi¢ée-
longing to the feasible set X.
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Proof. The fact thafx¥} belongs toX follows by induction: We have® € X by
our choice of the starting point. Moreoverxf € X, we also have

Xl = ¥k 4 tkdk = (1 - tk)Xk + tkya(Xk) e X

sincexX, y,(x¢) € X, t € (0,1] andX is convex by assumption. In order to show
that Algorithm 3.2.1 is well-defined, we only need to verifiat the inner loop in
(S.3) is finite at each iteratiok To this end, let the iteration numblibe fixed,
and assume that the calculationtpis an infinite loop. Then we have

V(K + Bd4) > V,(X) —op?|1d| VIeN

or, equivalently,
Vo (X +B'd) = Vi (X9)
,8'
Taking the limitl — +co and using the fact tha¥, is continuously dieren-
tiable, we obtainvV,(x)"d“ > 0. On the other hand, we know from Lemma

3.2.2 thatVV,(x)"d* < 0 sincex* is not a solution of our GNERotherwise the
algorithm would have stopped in (S)1Yhis contradiction completes the prodaf.

> —op||d¥| VIeN.

We next give a global convergence result for Algorithm 3.2.1

Theorem 3.2.4 Every accumulation point of a sequence generated by Algarit
3.2.1is anormalized Nash equilibrium of our GNEP.

Proof. Let x* be such an accumulation point, and {&t}x be a corresponding
subsequence convergingyta The continuity of the solution operatgr— v, (X)
then implies(y, (X)}x — Y.(x*). Hence we havéd“}x — y,(x*) — x* =: d*. In
view of Proposition 2.2.4, we only need to show tHat 0.

Assume we havd* # 0. Since the entire sequené,(x¥)} is monotonically
decreasing (by construction) and bounded from belew., byV,(x"), it fol-
lows that the entire sequeng¥,(x¥)} converges. From our line search rule, we
therefore get

0 — V(X1 = V,(X) < —otdld| <0 VkeN.
This implies
Jim t2)|d¥| = 0.
Sinced* # 0 by assumption, we therefore have

lim t = 0. (3.12)
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Let I, € N be the unique exponent such that= 8 in (S.3) of Algorithm 3.2.1.
In view of (3.12), we can assume without loss of generalipt th < 1 for all

k € K, hence the stepsiz‘f = B« does not satisfy the inequality from (S.3) of
Algorithm 3.2.1. Hence we have

V(X + B« 1d) > V(X — (B H1dY| Yk e K.

This can be written as
Vo (X + B4 1d) = Vo (XY)
ﬁh(—l > =
Taking the limitk — o on K, using the fact thag'! — 0 and exploiting

the continuous dierentiability ofV,, we therefore obtain from the mean value
theorem that

o dY| VYkeK.

VV,(x)"d* > 0.

On the other hand, sin@ = y,(x*) — x* # 0, it follows from Lemma 3.2.2 that
VV,(x)Td* < 0. This contradiction shows thet = 0 and, thereforex" is indeed
a normalized Nash equilibrium of our GNEP. O

The previous convergence result also holds for a minor neadiin of Algo-
rithm 3.2.1. This observation is formally stated in thedaling remark.

Remark 3.2.5 It is not difficult to see that all our previous results remain true if
we replace the line search rule (3.11) in Algorithm 3.2.1Hy $lightly modified
condition

V, (X + td) < V,(X) — ot2||d¥|?

where the only dference to the original condition (3.11) is that we now tale th
square of|d¥|| rather thar|d¥|| itself.

We close this section with a simple example discussing tteeabconvergence
of Algorithm 3.2.1. It turns out that one should not expeaalloquadratic con-
vergence of the iteratiok*! = y,(x¥), even under very favourable assumptions.
This is illustrated by the following simple example.

Example 3.2.6 Consider the GNEP (which is actually an unconstrained NEP)
with two players, where each player controls only a singléeatde and where the
corresponding optimization problems are given by

: 1 H 1
min,, 3X4 miny, 3X5
st (X, %) € R? st (X, %) € RZ,



3.3. ANONSMOOTH DESCENT METHOD 43

The solution of this GNEP is obviously the origih = (0,0)". Given anyx € R?,
an easy calculation shows that the maximiz€k) of the corresponding optimiza-
tion problem (2.8) is given by

a
l+a

Yo(X) = X.

Consequently, for the stepsize= 1 in our relaxation method, we obtain

@k

+1 _ K k _ —
X = XK+t d _y[,(xk)_l+ax.

Clearly, this shows that the rate of convergence is neitlngedinear nor quadratic
although the example is very simple and has very nice prigigerOn the other
hand, it shows that we have a fast linear rate of convergemaaralla > 0. ¢

3.3 A Nonsmooth Descent Method

In this section, we consider Algorithm 3.2.1 once again. Hie &nd, recall that
the method does not use any derivative information. Theipuevanalysis, how-
ever, assumes flierentiability of all functions),. Here we present a completely
derivative-free analysis using the following slightly@tger assumption that we
assume to hold throughout this section.

Assumption 3.3.1 The function¥, (-, y) is convex for every y taken from an open
convex neighbourhood of the set X.

In view of Proposition 3.1.1 and its proof, a direct consegpeeof Assumption
3.3.1 is the convexity of the mapping, on the open convex neighbourhood of
X. In patrticular, the functiow, is therefore both directionally fierentiable and
locally Lipschitzian on this set. These observations walldxploited in our sub-
sequent analysis.

We begin our analysis with the following counterpart of Leeng2.2.

Lemma 3.3.2 Let xe X be any given point, and lete y,(X) — x. Then there is
a constant > 0 (depending on x) such that,{ + td) < V,(x) for all t € (O,t]
(provided that x is not a normalized Nash equilibrium of theER).

Proof. For arbitraryt € (0, 1), the convexity off',, (-, y) implies

V, (X + td) V(X + td, y, (X + td))
\Pa(x + t(ya(x) - X)’ ya(x + td))

o (tYa(X) + (1 - )X Yo(X + td))
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o (Yo(X), Yo(X + 1d)) + (1 - )Fo(X Yo (X + td))  (3.13)
o (Yo(X), Yo (X + td)) + (1 = )¥o (X, Yo(X))

o (Ya(X), Yo(X + td)) + (1 - )Vu(X)

t[lPa(ya(X)’ ya(x + td)) - Va(x)] + Va(X)

IN A

or, equivalently,

V(X + td) — V,(X)
t

< Yo (Yo(X), Yo (X + td)) — Vi (X). (3.14)

Since the functioty, is continuous by Theorem 2.2.3 c), we hayéx + td) —
Yo(X) for t — 0 and, thereforeW, (Yo (), Yo(X + td)) = ¥o(Ye(X),Ya(X) = O.
Hence it follows from (3.14) that there is an= ¢(x) > 0 (e.9.,¢ := %Va(x)) and
at = t(x) > 0 such that

V(X +td) — V,(X) -

t vt € (0, . (3.15)

This completes the proof. O

We next show that Algorithm 3.3.1 is well-defined under Asption 3.3.1.

Lemma 3.3.3 Algorithm 3.2.1 is well-defined and generates a sequéxi¢ée-
longing to the feasible set X.

Proof.  Similar to the proof of Lemma 3.2.3, we only have to show tlnet t
stepsize selection in (S.3) is a finite procedure at eachtiterk. To this end, we
fix the iteration countek and assume that the calculationtpfs an infinite loop.
Then

Vo(X +8'd4) = V(X9

IBI

Taking the limitl — +oc0 and using the fact tha¥, is convex and, therefore,
directionally diferentiable at the current iteraté e X, we get

> —oB||d VleN.

V(X d“) > 0. (3.16)

On the other hand, we immediately obtain from (3.15) MHiX*; d¥) < —& for
some sficiently smalle = (x¥) > 0, a contradiction to (3.16). |

We now come to the main global convergence result of Algorith2.1 under
Assumption 3.3.1.
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Theorem 3.3.4 Every accumulation point of a sequence generated by Algarit
3.2.1is anormalized Nash equilibrium of our GNEP.

Proof. We try to copy the proof of Theorem 3.2.4. Basically, this asgible
sinceV, is a convex function, hence we can exploit suitable progertf the
convex subdterential, see, e.g., [50, 90] for more detalils.

Let x* be an accumulation point, and let}x be a corresponding subsequence
converging tax". The continuity of the solution operatar— Y, (X) (cf. Theorem
2.2.3¢)) thenimpliesy,(X)lk — Y.(x"). Hence we hav@d}x — y,(X)-x* =:

d*. In view of Theorem 2.2.4, we only need to show ttfat 0.

Assume that* # 0. Similar to the proof of Theorem 3.2.4, we know that the
entire sequencgV,(x¥)} converges and, sina¥ # 0, that limek t, = 0. Let us
write t, = ' for some exponerif, € N. Then the line search rule is not satisfied
for g« for all k € K (sufficiently large), giving

Vo (X + B 1dY) = Vo (X)
ﬁh(—l

Taking the limitk — oo on K, the right-hand side converges to zero. In order
to get the limit of the left-hand side, we first note that theamealue theorem
for convex functions shows that, for eakhe K, there is a vectog® on the line
segment betweext andx¢ + g'-*d* and an elemerg* € 9V, (£) such that

> —oBYdY VkeK. (3.17)

Vo (X + p11d) = Vo (X) = g H(g9Td
Hence the left-hand side of (3.17) simply becomes

Vo (X + B Hd) = Vi (X)
ﬁh(—l

Now, on the subsé€ C N, we havex — x*, 8%t — 0, andd® — d* =y, (x*)-X".
This impliesx< + g1d — x* and, therefore, als¢ — x*. Since the mapping
X = dV,(X) is locally bounded, the sequen{@¥}x is bounded. Without loss of
generality, we can therefore assume that the entire subsegg*}x converges to
some vectog*. Taking into account that the mapping— dV,(X) is also closed,
it follows thatg* € dV,(x"). Exploiting the fact that the directional derivative is
the support function of the convex subidrential, we obtain from (3.17) that

— (gk)T dk

Va(Xk +/5lk_1dk) - Va(Xk) KT 4k T T
= d“—= (g) d" < max d =V f;d* .

Bl gedVy (x*

In view of (3.17), we haved)"d* > 0, in particular, it therefore follows that
V/(x;d*) > 0. On the other hand, sina¥ # O, it follows from (3.15) that
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V'’ (x*; d*) < 0. This contradiction shows thdt = 0 and therefore completes the
proof. |



Chapter 4

Newton’s Method based on an
Optimization Reformulation

In chapter 2 we introduced optimization reformulationsted generalized Nash
equilibrium problem. Two of these reformulations have féedentiable objective
function, namely the constrained optimization reformiolat(2.11) and the un-
constrained optimization reformulation (2.14). Howetbe objective functions
of the latter optimization reformulations are, in genenralt twice diferentiable.
Here we investigate some further properties of these reftatons and, in partic-
ular, show that they are fficiently smooth so that locally superlinearly convergent
Newton-type methods can be applied in order to solve thenyidg GNEP.

As in the preceding chapters, Bt v = 1,..., N be the cost function ani
the joint strategy set. In particular, throughout this degpve assume that the set
X is represented by inequalities, that is,

X ={xeR"|g(x) <0} (4.1)

with some functiorg : R" — R™. Additional equality constraints are also allowed,
but for notational simplicity, we prefer not to include themplicitly. In many
cases, a player might have some additional constraints of the fdrf{x’) < 0
depending on his decision variables only. However, thesitiadal constraints
may simply be viewed as part of the joint constraigs) < 0, with some of the
component functiong; of g depending on the block componetitof x only.

Stronger than Assumptions 1.2.2, we impose the followimgldmns through-
out this chapter.

Assumption 4.0.5

(&) The cost functiong,, v = 1,...,N are twice continuously fferentiable,
and convex with respect to the variablg xe., the functiorg, (-, x™) is
convex, uniformly for all X;

47
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(b) The function g is twice continuouslyff@rentiable, its components gre
convex (in x), and the corresponding strategy space X debydd.1) is
nonempty.

The smoothness assumptions are natural since our aim ivétogdocally fast
convergent methods for the solution of GNEPs. Note that égdion 4.0.5 (b)
implies that the strategy spa¥es nonempty, closed, and convex.

In the first section, we recall some basic facts and recenttseBom nons-
mooth analysis. Then, in the next section, we show that thienggation refor-
mulations from chapter 2 a®C' reformulations of the GNEP, i.e., the objective
function is continuously dierentiable with semismooth gradient. In the last sec-
tion we consider a Newton-type method based on the uncamestraptimization
reformulation of the GNEP.

4.1 Semismooth Functions

In this section, we first recall some basic definitions andltegrom nonsmooth
analysis in this section, and then state some preliminayltethat will be used
in our subsequent analysis. To this endHetR" — R™ be a locally Lipschitzian
mapping. According to Rademacher’s theorem (see [86]plibwWs thatF is
almost everywhere ffierentiable. LeDg denote the set of all fierentiable points
of F. Then we call

dsF () := {H e R™"|3{x} C Dg : ¥ - x, F/(x) - H}

theB-subdjferentialof F at x. Its convex hull

0F(X) := conwwgF(X)

is Clarke’sgeneralized Jacobiaof F at x, see [14]. In case ah = 1, we call this
set also thgeneralized gradiendf F at x which, therefore, is a set of row vectors.
Furthermore, we call the set

IcF(X) 1= (OF1(X)T X ... X Fm(¥)T)"

the C-subdjferential of F at x, i.e., the C-subdierential is the set of matrices
whoseith rows consist of the elements of the generalized gradighiedath com-
ponent functiong=;. According to [14, Proposition 2.6.2], the following in€elu
sions hold:

0gF(X) C F(X) C dcF(X). (4.2)

Based on the generalized Jacobian, we next recall the defint a semismooth
function.
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Definition 4.1.1 Let F : R" — R™ be locally Lipschitz continuous. Then F is
calledsemismoottlat x if F is directionally diferentiable at x and

IHd — F"(x d)Il = o(l|dIl)
holds for all d— O and all H € 9F (x + d).

In the following, we often call a mapping : R" — R™ semismooth if it is
semismooth at every point € R". The notion of a semismooth function was
originally introduced by Mifin [68] for functionals, and later extended by Qi and
Sun [85] to vector-valued mappings.

Note that there are manyftirent notions of semismooth functions available
in the literature, and we would like to give some commentg hEirst of all, our
definition of a semismooth function is not the original onenfr[85], however,
it follows from [85, Theorem 2.3] that it is equivalent to tbeginal definition
(note that the assumption of directionaffdrentiability is missing in that result).
Another very popular reformulation of the semismoothndsslocally Lipschitz
and directionally dierentiable function is that it satisfies

IF(x+d) - F(x) — Hd|| = o(lidIl) (4.3)

foralld — 0 and allH € dF(x + d). Sun [95] calls this thesuperlinear ap-
proximation propertyof F at x since it is central in order to prove local super-
linear convergence of certain Newton-type methods, seetlésgeneral scheme
in Kummer [62, 63]. The equivalence of this superlinear agpnation property
to our definition of semismoothness can be found, e.g., in T2&orem 7.4.3]
and is based on the fact that a locally Lipschitz and direetiy differentiable
function is automatically B-dierentiable, see [94] for details. On the other hand,
property (4.3) can be defined also for mappings that are roassarily direction-
ally differentiable. In fact, Gowda [40] takes this property of a liycaipschitz
function as the definition of semismoothness. In order tadagonfusion with
the existing definition of semismoothness, Pang et al. [88pssted the name
G-semismoothnegwith the 'G’ referring to Gowda).

We stress that the previous discussion on semismoothnassimvhat crucial
for our later analysis since we want to apply a suitable iaiplunction theorem
for semismooth functions. However, there agadent implicit function theorems
available in the literature, and they are based difed#nt notions of a semismooth
(or related) function, see, [95, 40] and, in particular,¢beresponding discussion
in [83].

We next state a simple result that will play an important iol&ater sections,
in particular, the equivalence between statements (a)dnd (
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Lemma4.1.2 Let F: R" — R™ be locally Lipschitz continuous and directionally
differentiable, and let x R" be an arbitrary point. Then the following statements
are equivalent:

(@) F is semismooth at X, i.glHd — F’(x; d)|| = o(||d||) for alld — 0 and all
H € oF (x + d).

(b) [|Hd = F’(x; d)|| = o(||d||) for alld — 0 and all H € dgF(x + d).
(c) IIHd = F’(x;d)|| = o(||d|]) for alld — Oand all H € dcF(x + d).

(d) Fi is semismooth for all components-i1,...,m, i.e.,|[hd - F/(x;d)|| =
o(/ld|) foralld — O, all hj € dFi(x+ d),and alli=1,..., m.

Proof. The implications ¢) = (a) = (b) follow directly from the fact that
0gF(x+ d) € 0F(x+ d) C dcF(x+ d), cf. (4.2).

The implication b) = (@) is a consequence of Carathéodory’s theorem. To
see this, letk — 0 andH¥ € oF (x + d¥) be given arbitrarily. Then, for ak € N,
we can find at most := nm+ 1 matricesH! € dgF(x + d) and numbers > 0

satisfying
r r
k _ k _ kpgk
> A=1 and H*= ) akHK
=1 j=1
Using (b), we therefore obtain

IH*d* — F’(x; ||

r
I Z AHE — F(x dY)|
=1

r
D AIHE = F/(x 9l = oldk)

j=1

IA

in view of the boundedness ﬂf.

The implication &) = (d) can be verified in the following way: Using the
chain rule from [14, Theorem 2.6.6], the composite mapging g o F with the
continuously diferentiable functiomy(2) := z has the generalized gradient

IFi(x) af(¥) = 0g(F(x)IF(X) = & oF(x)
{hi | h; is theith row of someH € dF(X)}.

Therefore, if we assume that (a) holds, and if we take anrargitl € R" as well
as any componente {1,...,m}, it follows that for anyh; € dF;(x + d), we can
choose an elemeit € 9F(x + d) such that itsth row is equal tdy. Then we get

F/(x d) — hd| = |6 (F'(x;d) - Hd)| < [IF’(x;d) - Hd|| = o(dl),
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henceF; is semismooth at.

Finally, (d)= (c) is an immediate consequence of the definition of the C-
subditerential.

Altogether, we have shown that)(= (a) = (d) = (c) and @) < (b),
implying that all four statements are indeed equivalent. |

Some parts of the previous result are known, for example, (8%ollay 2.4]
shows that the semismoothness of all component functiopiemthe semis-
moothness ofF itself. The fact that the converse also holds seems to bendrou
in the community, but we were not able to find an explicit refexe. Further-
more, [40, page 447] already observed the equivalence @nséats (a) and (b)
in Lemma 4.1.2, albeit in the slightly fierent context of G-semismoothness.

We next want to state an implicit function theorem for senasth mappings
that will be used in order to show local fast convergence af ldewton-type
method for generalized Nash equilibrium problems. To thid, €onsider a map-
pingH : R™"xR" = R", (X,y) = H(X,y). ThentydH(X,y) denotes the set of all
nx n matricesM such that, for somex mmatrix N, thenx (m-+n) matrix [N, M]
belongs tadH(x, y). The setr,dH(X,y) is defined in a similar way.

Theorem 4.1.3 Suppose that H R™ x R" — R" is locally Lipschitz and semis-
mooth in a neighbourhood of a poifxX, y) satisfying Hx,y) = 0, and assume that
all matrices inmydH(X, y) are nonsingular. Then there exists an open neighbor-
hood X ofx and a function g X — R" which is Lipschitz and semismooth on X
such that ¢x) = y and Hx, g(x)) = Ofor all x € X.

Proof. Since this particular implicit function theorem does nagregto be avail-
able in the literature, we derive it from a suitable inversaction theorem. To this
end, consider the mappig: R™ x R" — R™ x R" defined by

F(xy) = ( I—)|((;§) )
Then

_ Im 0
IF(ey) g( rIH(KY) moH(KY) )

and our assumptions imply that all elements from the geizedlacobiadF (X, y)

are nonsingular. Noting that a continuouslffeiientiable function is always semis-
mooth and recalling that the mappikbis semismooth by assumption, it follows
from Lemma 4.1.2 thaF is also semismooth. Hence we can apply the inverse
function theorem from [83, Theorem 6] and obtain open neiginbboodsU of
(x,y) andW of (0,0) = F(x,y) such that- : U —» W is a homeomorphism and
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has a locally Lipschitz and semismooth inve&eW — U. SinceW is open, the
set

X:={xeR"|(x-x0)e W}

is also open as a subset®f. We now show that there is a locally Lipschitz and
semismooth functiog : X — R" such thatg(x) = y andH(x, g(x)) = 0 for all
xXe X

To this end, le € X be arbitrarily given. Thenx- X, 0) € W, and becausE :
U — W is a homeomorphism, the definition of the mappignplies that there
is a unique vectoy such that X, y) € U andF(x,y) = (x— X, 0). Consequently, we
haveH(x,y) = 0. Note that this unique vectgrdepends omx. Settingg(x) :=y
then gives us a mappirg: X — R" such thaH(x, g(x)) = 0 for eachx € X. This
implies

F(x, 9(x)) =( H():(’_gz(;» ):( XB)?) VX e X.

Applying the inverse mappin@ on both sides gives

X —
( a(¥) ):G(x—x,O) Yx e X

This shows thag coincides with certain component functions®f Since the
inverse functiorG is semismooth, it therefore follows from Lemma 4.1.2 tihat
also semismooth. This completes the proof of our impliaiichion theorem. O

A related implicit function theorem was stated in Sun [95]owéver, he only
assumes thatl has the local superlinear approximation property, ancstttat
the implicit function has the superlinear approximatioopgarty, too. A similar
result was also stated by Gowda [40] in the framework of Hedentiable func-
tions. Note also that the assumption on the nonsingulafiglielements from
ny,0H(X,y) (corresponding to the strongest possible condition irirtaerse func-
tion theorem from [83]) can be weakened, but that this (retht strong) condi-
tion will be satisfied in our context.

We close this section with the definition of &C'-function that will become
important in the next section.

Definition 4.1.4 A mapping f: R" — R is called an S &functionif it is contin-
uously diferentiable and its gradier f is semismooth.
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4.2 S C-Optimization Reformulations

Consider the GNEP with cost functioasv = 1,..., N, and a joint strategy set
satisfying the requirements from Assumptions 4.0.5. Onrigito show that the
GNEP can then be reformulated as both constrained and unaimeslS C' op-
timization problems. Thi§ C-reformulation is based on the smooth constrained
and unconstrained optimization reformulations of chapter

We briefly restate the essential statements from chapten 2qguiation 2.8, for

v > 0 (y instead ofr) we defined the function

Vi (%) = ¥, (% ¥, (X)), (4.4)
with
Yy(x) = arg max¥,(x.y). (4.5)

whereY, is the regularized Nikaido-Isoda function,

N

B00y) = D [0.06.X7) = 0,67 x7) = 51 -y (4.6)

Theorem 2.2.3 shows that is a normalized Nash equilibrium if and only xf
solves the optimization problem

minV,(x) subjecttoxe X
X

Furthermore, Theorem 2.2.5 implies that the funcW¥ns continuously dferen-
tiable with gradient

VV)/(X) = VX\P)/(X’ Y)|y:yy(x)-

Unfortunately,V, is, in general, not twice continuouslyftérentiable. However,
in view of Assumption 4.0.5, we see that the regularized Mikdsoda-function
P, (x,y) is twice continuously dierentiable. Using the fact that the composition
of semismooth functions is again semismooth, see [33]eretiore follows imme-
diately from the representation (4.7) of the gradiéxt thatV, is anS C'-function
if the mappingx — Yy, (X) is semismooth. Our aim in this section is therefore to
prove the semismoothness of this mapping.

To this end, we first consider a more general parameterizehization prob-
lem of the form

4.7)

min f(x,y) s.t. yeX (4.8)
y

wheref : R"xR" — R is twice continuously dferentiable and uniformly convex
with respect to the variablg(for every fixedx). The feasible seX is given by a
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number of inequalities as in (4.1) such that Assumptiorb4(6) holds. Then the
Lagrangian of the optimization problem (4.8) is given by

LOGY, A) = (6 ¥) + D 4Gy,
i=1

where, againx € R" is supposed to be fixed. Lgt= y(X) be the unique solution
of the optimization problem (4.8). Then, under a suitablestint qualification,
like the Slater condition, it follows that there exists a tagge multiplierd =
A(X) € R™such thaty, 1) together with the fixed solves the KKT system

VyL(Xy,2) = Vyf(Xy) +Vg(y)1 =0, 0<aL-g(y)=0. (4.9

Using the minimum functiop : R X R — R, ¢(a, b) := min{a, b}, we can refor-
mulate the KKT system (4.9) as a system of nonlinear equadig¢r y, 1) = 0 via
the function

B(x,y. 1) = ((ny(gxgy’g’j))) (4.10)

with
¢(—gy), ) := (@(=Ga(Y), A1), - - -, 9(=GrnlY)s Am))" € R™

Ouir first result gives a representation of the B-stiedential and the generalized
Jacobian of the mapping.

Lemma 4.2.1 Suppose that f and g are?@unctions. Let w= (X, Y, 1) € R™™M,
Then, each element Hod(w)" can be represented as follows:

VoLOG Y, Q)T 0
H=| VoL(Xy,2) —Vg(y)Da(y, 1)
va(y)T D(Y, 4)

where Qy(Y, 4) := diag@u(y, 1), . . ., am(y, 1)), Do(y, ) = diag@a(y, ), - - ., bm(Y, 1)) €
R™M are diagonal matrices whose ith diagonal elements are gbyen

1, if —g(y) <4, 0, if —gi(y) <4,
a(y,41) =10, if —gy)>4, and h(y.4) =11, if —ai(y) > 4,
wis if —gily) = 4, -, if —g(y) =4,

for anyy; € [0,1]. The elements H dg®(w)' are obtained by choosing €
{0, 1}.

Proof. The firstn components of the vector functiam are continuously dier-
entiable andD is continuously dierentiable with respect te, so the expression
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for the firstn rows and columns dfl readily follows. To compute the remaining
entries ofH, we use the fact that each element of the generalized Jacobia
can be represented by an element of the C-dtdreéntial ofg, that is

A(—9(y), )T € (=01 (y), A1)" X - - X Op(~Gm(Y)s Am) " -

If i is such that-gi(y) # 4, theng is continuously dierentiable at{g;i(y), 4;) and
the expression for then(+ i)th column ofH follows. If instead-g;(y) = A;, then,
using the definition of the B-sub@lerential, it follows that

Ise(=Gi(y), )" = {(-Vai(y)", 0). (0. €")}.
Taking the convex hull, we therefore get
Op(—gi(¥), )" = {(~iVgi(Y)", (1 — )&’ | i € [0, 1]}

(Note that this representation cannot be obtained by dyrapplying [14, Theo-
rem 2.3.9 (iii)] since the min-function is not regular in thense of [14, Definition
2.3.4].) This gives the representationtbfc dD(W). |

Our next aim is to establish conditions for the nonsingtyaof all elements in
my.n0@(W)" at a pointw = (x, Y, 4) satisfying®(w) = 0. By definition, taking
the continuous dierentiability of® with respect tax into account, the elements
V € my00®(W)" can be obtained by deleting the firstows of the matrices
from Lemma 4.2.1. In order to get a more detailed descriptibthe matrices
V € my.n00(W)T, let us partition the index sét, ..., m} into

lo:={ilgi(y)=0} and I.:={i|g(y) <0},

where both the set of active constraimgsand the set of inactive constrairits
depend on the current vectarThe set of active constraints can be further divided
into

|00::{i €lgl A4 =0} and I, ::{i elg| A >0},

with both sets depending grandA. The setl oo will further be partitioned into
lox:={i €loo lpi =1}, loz:={i €loo|pi € (0,1)}, loz:={i €loo|ui =0}

Note that these index sets also depend fy)aon the particular element taken
from the generalized Jacobian®{w).

With these index sets, and using a suitable reordering afdhstraints, every
elementV € 00 (x, Y, 4)" has the following structure (the dependencenon
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(%Y, A) is suppressed for simplicity):

VL -Vg, -Vgor -Vgox(Da)oz 0 O
v 0 0 0 00
vg!, 0 0 0 00

V= | G : 4.11
Vg, 0 0 @ 00 #11)
Vg, 0 0 0 | 0
V). 0 0 0 0 |

where D,)o2 and Dyp)o, are positive definite diagonal matrices, and where we
used the abbreviationay,, Vg, etc. for the matrice¥g,,, Vg, etc.
In order to obtain a suitable nonsingularity result, letntsdduce the matrices

V)Z/yl— _Vg+ —ng
M(J) :=| Vgl 0 0 [,
Vg O 0

whereJ is any subset ofyo. Using these matrices, we next define the concept
of strong regularity for the parameterized optimizatioalpem (4.8). This name
comes from the fact that our condition corresponds to Ralviisstrong regularity
assumption (see [89]) in the context of ordinary nonlingagpams, cf. [65, 30].

Definition 4.2.2 A triple w* = (X", y*, 1*) satisfying®d(w*) = 0 is calledstrongly
regularfor the optimization problen4.8) if the matrices MJ) have the same
nonzero orientation for all I 1q.

According to Robinson [89], strong regularity holds if theosg second order
suficiency condition and the linear independence constraialifeqgation (LICQ
for short) hold, where LICQ means that the gradienggx*) (i : gi(x*) = 0) of
the active inequality constraints are linearly independeate that LICQ is also
a necessary condition for strong regularity). In partigutaherefore follows that
all matricesM(J) have the same nonzero orientatioﬁ@L is positive definite and
LICQ holds. This is the situation we are particularly intsegl in. In fact, in this
case, there is an easy way to see that strong regularity holds= (x*, y*, 1*).
To this end, write

M(J):(Al:l} _OAJ) with H:=VZL and A;:=(Vg.,Vg,).

Using block Gaussian elimination, it follows that

([ 1 0\[H -A
M(‘])‘(A}H-l | )( 0 ATHA, )
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Consequently, we get

H -A;

det(M(J)):det( 0 ATH-A,

) = detH) det(AJH™A;)) >0 VI C g
sinceH is positive definite and\; has full column rank for all C Iqo.

We next state our main result on the nonsingularity of thenelgts of the
projected generalized Jacobigf, 0D (X", y*, 1*). Its proof is similar to one given
in [30] which, however, uses aftierent reformulation of the KKT system arising
from variational inequalities.

Theorem 4.2.3 Consider the optimization proble(d.8) with f : R" xR" —» R
and g: R" — R™ being twice continuously glerentiable. Let w= (X*,y*,1*) €
R™™Mpe a solution of the systed(w) = 0, and suppose that the strong regularity
condition holds at W Then all elements ¥ r, ;) 0®(w*) are nonsingular.

Proof. Consider an arbitrary but fixed elementsig »,0®(w*)". This element
has the structure indicated in (4.11) and is obviously mandar if and only if the
following matrix is nonsingular:

Vil Vg, -Von —V0o2
|vgm o0 o 0
Valvg, o o0 0 (4.12)

Vg, O 0 (Db)o2(Da)gz

The matrix (4.12) can be written as the sum of the ma#{(}), with J = 191 U I,
and the diagonal matrix

00O 0
00O 0
00O 0
0 0 0 (Ob)oxADa)y;

Given a square matri® of dimensionr and a diagonal matriP of the same
dimension, it follows from [16, p. 60] that

D :=

detD + A) = Z deD,,detA.-, (4.13)

where the summation ranges over all subsets {1,...,r} (with complements
a = {1,...,r}\a), and where it is assumed that the determinant of an “empty”
matrix is equal to 1. Exploiting this formula, the deterrmhaf (4.12) can be
written as

deM())+ >’ deD,,deM(J)a, (4.14)

0+aCloz
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where the first term correspondsdo= 0. Moreover, we have taken into account
that if @ contains an element which does not belongptpthen the determinant of
D.. is 0. Since the nonzero diagonal elements of the m&trace all positive, it
follows that the determinants &, in (4.14) are all positive. Then to show that
the determinant of (4.12) is nonzero and hence to concluspribof, it will now
be suficient to show that the determinants Mif(J) and of allM(J)z5 in (4.14)
never have opposite signs, and that at least one of them mermnBut this is a
direct consequence of Definition 4.2.2. O

Now we are able to apply Theorem 4.1.3 to the optimizatioblem (4.8).

Corollary 4.2.4 Let the assumptions of Theorem 4.2.3 be satisfied. Then there
exists a neighbourhood U of and a semismooth function QU — R™™ X

(Y(X), (X)) such thatd(x, G(x)) = 0 holds for all xe U. In particular, the map-

ping X+ Yy(X) is semismooth.

Proof. The existence and semismoothness of the implicit functien G(x) =
(Y(X), (X)) is an immediate consequence of Theorems 4.1.3 and 4.2.hg Usi
Lemma 4.1.2, this, in particular, implies the local semisthaess of the mapping
X - Y(X). O

We now get back to our GNEP and the mappifjglefined in (4.4). The following
is the main result of this section.

Theorem 4.2.5Let X € X and assume that LICQ holds at(x*). Then V is an
S C'-function in a neighbourhood of §x*).

Proof. In view of the introductory remarks of this section, we havshow that
the mappingx — vy, (X) is semismooth in a neighbourhoodxit By definition,
Y,(X) is the solution of the optimization problem

max ¥,(x,y) s.t. yeX:={yeR"|g(y) <0}, (4.15)
y

cf. (4.5). This is an optimization problem of the form (4.8)ttwf(x,y) :=
-¥,(x y). Here, the mappind is uniformly convex with respect tp due to the
regularization term in the definition of the regularized &ldo-Isoda-function and
the assumed convexity of the mappirgsvith respect to the variableg. Corol-
lary 4.2.4 therefore gives the semismoothness of the mgpp# v, (X) provided
that the strong regularity assumption holdéxty, (x*), 1,(x)), wherey, (x*) de-
notes the solution of problem (4.15) with= x* and,(x") is the corresponding
unique (due to LICQ) multiplier.
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Since LICQ holds ay,(x), it suffices to show that the Hessian (with respect
toy) of the corresponding Lagrangian

L0y, D) = =, (% Y) + > 4iGi(Y)
i=1

is positive definite atx,y, 1) = (X', y,(X"), 4,(X")), see the comments after Def-
inition 4.2.2. However, we already observed th&t, (X, y) is uniformly convex
with respect toy, hence its Hessian is (uniformly) positive definite. Furthere,
V2gi(y,(x)) is positive semidefinite due to the assumed convexityeftinctions
0. Hence the assertion follows from the fact that 1,(x*) is nonnegative (as a
multiplier corresponding to an inequality constraint). |

Note that, if, in addition to the assumptions of Theorem%}.&trict complemen-

tarity holds aty,(x"), theny, is continuously dierentiable an¥, is aC?-function

in a neighbourhood o%*. This follows directly from the previous derivation by

using the standard implicit function theorem in place of iteen 4.1.3.
Furthermore, we would like to point out that the assertioloéorem 4.2.5

holds at allx € R" such that LICQ is satisfied §(X).

4.3 Newton’s method

In view of Theorem 4.2.5, both the constrained optimizat&formulation (2.11)
and the unconstrained reformulation (2.14) of the GNEPSA& optimization
problems. Hence it is reasonable to believe that locallyedupearly convergent
Newton-type methods can be derived for the solution of GNE#&®#e solution of
these optimization problems. Here we focus on the uncansttaeformulation
(2.14) and show that one can indeed expect local fast coemeegof a nonsmooth
Newton-type method under suitable assumptions.

The nonsmooth Newton-type method from [85, 84] for the mination of
the unconstrained functiow,; from (2.12) is an iterative procedure of the form

X:=x+d k=01,2,..., (4.16)
wherex? € R" is a starting point and® is a solution of the linear system
Hid = —VV,5(X) for some Hy € 62V 4(X9), (4.17)

whered?V,z(X<) denotes thgeneralized Hessiaof V,,; at X¢ in the sense of [51],
i.e.,02V,5(X¥) is the generalized Jacobian in the sense of Clarke [14]eofttbally
Lipschitz mapping= := VV,;.
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In order to compute the gradient and (generalized) Hessarxof the map-
ping V,z, we need several (partial) derivatives of the mappifngfrom (4.6).
These derivatives are summarized in the following resulbsehproof is omitted
since it follows from standard calculus rules.

Lemma 4.3.1 The mapping?¥, from (4.6) is twice continuously gierentiable
with (partial) derivatives

VX\P)/(X’ y) = [VHV(XV’ X_V) - V0\/(yv’ X_V)] + . - ’)/(X - y)’
v=1 VoYY, x7N)
Vabi(yh, x°h)
VY\PY(X’ Y) = - + 7(X - Y),
VXNQN(yN, X_N)
N
VEE,00) = [V, X7) = V2,7, X))
v=1
Xlxlel(y X_l) XlxN GN(y X_N)
+
Xleel(y x1) Vi 9N(yN, xN)
Vxlxlel(y » X 1) V)2<1XN el(yl’ X_l)
+
XleeN(y X N) XNXNeN(y X N)
xlxlel(y X_l)
—diag -yl
XNXNHN(y X N)
xlxlel(y X ) x1)(1\19N(y X_N)
sz\PY(X? y) = -
Xleel(y X_l) XNXNHN(y X N)
Xlxlel(y X_l)
+diag + I,
XNXNHN(y X N)
VlePy(X’ y) = y(X y)T

Mz

Xlxlel(y X 1)

XN XleN (y X_N)

Va6 (yt, x1)

XlxN Ql(y X 1)

XNXN On (y X_N)
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Vilxlgl(yl’ X_l)
+diag +71,

ViNXN HN(yN’ X_N)
Vilxlgl(yl’ X_l)
VoY, (xy) = -—diag . —vl.
ViNXN HN(yN’ X_N)

We next consider the problem of how to implement the nonsmd&wton-
type method. To this end, we have to compute, at each itefatan element
Hk € 8°Vp(xX¥). Since this is not an easy task, we first assume thaand V;

are both twice continuously fierentiable ak*, henceV,; is twice continuously
differentiable ak := x* with Hessian

VAV,5(X) = VAV, (X) — VAV4(X). (4.18)

Hence we need to calculate the Hessi&AY,(X) for y € {a,B}. Therefore, let
y € {a,B} be fixed and recall tha¥, is given by (4.4) with gradien?V,(x) =
Vi, (X Y, (X)), cf. (4.7), wherey,(x) denotes the solution of the optimization
problem (4.5). Using the chain rule, we therefore get

VAV, (X) = V2P, (X, Y,(X) + V2P, (X ¥, (X) Dy, (X), (4.19)

whereDy, (x) € R™" denotes the usual Jacobian (with respea) tf the mapping
y,. Expressions for the matric& ¥, (X, Y, (X)) andViy‘Py(x, y,(X)) are given in
Lemma 4.3.1. At a nonffierentiable point, we have the following result.

Lemma 4.3.2 The following inclusion holds at an arbitrary pointexR":
Vi (% Yy (%)) + Vi, ¥ (%, ¥, (X)) 3sY, (X) € 93V, (X),
whered3V, denotes the Bouligand sulgiirential of the functiotVV,.

Proof. Let x € R" be arbitrarily given, and le¥ € dgy,(X). Then there is a
sequencésd} — x such thaty, is differentiable at eackf and Dy, (&%) — Y for
k — co. Then the representation (4.7) %Y, shows thaV, is twice diferentiable
at eachg, and we therefore obtain, taking the continuityyofand the twice
continuous dierentiability of'¥, into account:

VAVL(E) = Vel (E v (£9) + Vi Py (65 v, (£9) Dy, (£9)
- ViX‘Py(x, Yy (X)) + Viy‘Py(x, y(X)Y.

This shows that the right-hand side belong83V,(x). O
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Hence we need to consider the computatiofigyf,(xX). By definition,y, (x) is the
unique solution of the optimization problem

myin—‘I’y(x, y) st yeX:={yeR"|g(y) <0}

Assume that LICQ holds at,(x), and let

L, 06y, ) = =Fy (6 Y) + D AiGi(Y)
i=1

be the Lagrangian of this optimization problem. Since LICGdB aty,(X), it
follows that there exist unique multipliens(x) such that the following KKT con-
ditions hold at k. y, 1) = (X, Y,(X), 1,(X)):

VyL,(%y,4) =0, 1>0, gy) <0, 1'g(y)=0.
Here we have

m
VL (%Y, A) = =V Py (x ) + > AVGi(Y).
i=1

Therefore, assuming, for the moment, that strict complearép holds, we then
obtain from the standard implicit function theorem thatithplicit functionG(x) :=
(¥, (%), 1,(x)) satisfies (locally) the system of equations

®,(x,G(X) =0, where @, (xy,A) ::( r:iynL{V_(S’(%’ﬂﬂ)} ) (4.20)

Differentiating this system therefore gives
0 = Dy®,(X, G(X)) = Dx®,(X, G(X)) + Dy @y (X, G(X))DxG(X),
from which we obtairD,G(x) = (Dyy,(X), Dx4,(X)) by solving the linear system
Dy @, (X G(X))DyG(X) = ~Dy®, (X, G(X)). (4.22)

Some computationalffort leads to the following formula for the Jacobian of the
functiony, atx :

Vy, ()" =C'A-C'D(D'C'D)'D'C A, (4.22)
with

A = AKX = VL, (XY,(X),
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C

C() = =Va¥,06 %) + > AV?G(¥,(¥),
i=1

D(X) = Vgi,(yy (X)),

wherel, denotes the index set of active constraintg, &t). Still this formula does
not provide an element of the Bouligand subetiential dgy,(X). Yet it can be

shown, that under the linear independence constraintfoaaion, all elements of
deY,(X) can be expressed by a formula of the type of (4.23), see Bitogo5.1.6

in the next chapter.

Even if we had an element @ky,(x), it would not be easy to calculate an
element 0fd3V,5(X). Knowledge ofdgy,(X) allows us to compute elements from
A2V, (X) andazVs(x), respectively, as Lemma 4.3.2 shows, however, this does no
sufice, since it is very unlikely that theftierence of any two elements V()
andazV,(x) is an element 063V,s(X).

On the other hand, all examples from the literature preseimechapter 6
except Rosen’s example satisfy strict complementaritii@sblution. Therefore,
applying Newton’s method to the unconstrained optimizateformulation is not
difficult to implement in these cases.

The following is the central local convergence result farmensmooth Newton-
type method for the solution of the GNEP.

D

Theorem 4.3.3 Let X be a normalized Nash equilibrium of the GNEP such that
all elements Ve 9%V,4(x") are nonsingular. Then the nonsmooth Newton-type
method fron(4.16) (4.17)is locally superlinearly convergent td.x

Proof. SinceV,; is anS C'-function in view of Theorem 4.2.5, the result follows
immediately from [85]. O

There are a number of comments that we would like to add indheviing re-
mark.

Remark 4.3.4 (a) Theorem 4.3.3 remains true if we replace the assumption
that all elements 0#?V,4(x*) are nonsingular by the weaker condition that
all elements from the smaller s@}V,4(x") are nonsingular. This follows
immediately from a result in [84].

(b) Theorem 4.3.3 is a local convergence result only. HowesiaceV,; is
continuously diferentiable, it is easy to globalize this method by either a
line search or a trust-region strategy. These globalizethoaks typically
find a stationary point o¥,; only, and a sfiicient condition for such a
stationary point to be a normalized Nash equilibrium of tieEP is given
in Assumption 3.1.11.
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(c) Theorem 4.3.3 gives a local superlinear rate of convergelt is also pos-
sible to get a locally quadratically convergent method byapproach. To
this end, we have to strengthen Assumption 1.2.2 to som@&@éed as-
sume that, in addition, the Hessian matri&&g, andV?g; are locally Lip-
schitz around a solutiox® of the GNEP. Moreover, one has to use another
implicit function theorem like the one from Sun [95] in orderguarantee
a local quadratic approximation property (as defined in)[@5]jto modify
Theorem 4.1.3 in a suitable way.

(d) A simple stficient condition for the nonsingularity of all elements from
0?V,5(X") (Or 3V,a5(X")) exists for linear-quadratic games as defined in Pro-
position 3.1.2. Suppose that the solutignfrom Theorem 4.3.3 is lo-
cally unique (for which there exist simple conditions in ttese of linear-
guadratic games) and satisfies strict complementarity,the correspond-
ing vectorsy, (x") and 4,(x") satisfy the strict complementarity condition.
Then the standard implicit function theorem guarantees\thais twice
continuously diferentiable around®. Therefore, the local uniqueness of
the normalized solution*, together with the quadratic nature of the costs
functions, implies that the Hessi&3V,;(x*) is positive definite.

(e) The Newton method presented in this chapter is, undewufable condi-
tions, locally superlinearly or even quadratically comeat. Yet, there are
two major drawbacks of this method: First, there are sorfiedities in the
calculation of elements of the generalized Jacobia@\f;, and second, we
have to assume that the linear independence constrainficatadn holds
at the solutionx. In the next chapter we therefore present an approach that
disposes with both problems: It allows for a simple formulathe elements
of the generalized Jacobian, and it does not require LICQinstead the
slightly weaker constant rank constraint qualification.



Chapter 5

Newton’s Method through Fixed
Point Formulation

In the preceding chapter we presented a Newton method i twdsolve the
unconstrained optimization problem

minV,s(x) xeR",

where the functiolV,; (defined in (2.12)) has the property that every global min-
imum of V,z is a normalized Nash equilibrium. In this chapter, we alscett®p a
Newton method for the computation of a normalized Nash dayiuim, however,
the approach is completelyftkrent. Basically, the Newton method presented in
this chapter solves a fixed point equation, opposed to thetddemethod in the
preceding chapter which solves the necessary first-ordsditton for an uncon-
strained optimization problem.

Throughout this chapter, we assume that the feasiblé segiven by inequal-
ities,

X:={xeR" | g(x) <0}, (5.1)

with a functiong : R" — R™. Bothg and the cost function, v = 1,..., N, shall
satisfy the following assumptions.

Assumption 5.0.5

(a) The cost functiong,, v = 1,...,N are twice continuously fferentiable,
and convex with respect to the variablg xe., the functiorg, (-, x) is
convex, uniformly for all X;

(b) The function g is twice continuouslyf@rentiable, its components gre
convex functions (in x), and the corresponding strategyspédefined by
(5.1)is nonempty.

65
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This is exactly the same assumption as Assumption (4.0tBgipreceding chap-
ter.
For a fixed parameter > 0 we define the function

N

VoY) = 3 (0.7, X7) + Sy = XIP] (5.2)

y=1

and consider the optimization problem

myin Yo(Xy) styeX (5.3)

Due to the convexity assumptions &handd, (-, X™), this minimization problem
has a unique solution for everwhich we denote by

Yo(X) = arg ming, (X, y).
yeX

It is not difficult to see that the functiowp, is essentially the same function as
the one defined in equation (2.9). Therefore, Theorem 2)2i8alies thaty, is
continuous. Moreover, from Proposition 2.2.4 we have ttias a normalized
Nash equilibrium if and only ifx* is a fixed point of the mapping,, i.e., X* =
Yo(X*). This puts into consideration Newton methods applied to theson

Yo(X) =x=0 (5.4)

in order to develop an algorithm for the computation of ndireal Nash equilib-
ria.

In general, the functiow, is not diferentiable which causesfiiculties. In the
preceding chapter it was shown tlyatis semismooth, if, in addition to the above
assumptions, the linear independence constraint quélificholds, see the proof
of Theorem 4.2.5. Using this result, one can define a nongméeivton method
for the solution of the nonlinear equation (5.4) replacing tirst derivative of,,
by generalized Jacobians. Yet, using the approach in theegiey chapter, it
is difficult to calculate an element of the generalized Jacobian anad conse-
guence, to show convergence of the Newton method. Therefereoncern here
an alternative approach which yields explicit formulasdauitable substitute of
the derivative of the functios,. Additionally, we dispose with the linear inde-
pendence constraint qualification and replace it by the sdraeweaker constant
rank constraint qualification.

5.1 The Computable Generalized Jacobian

In this section we define a kind of replacement for the Jacobfahe function
Yo(+), which is related to the B-suldtierential, but easier to compute in practice.
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The concept is similar to the computable generalized Jaodhiroduced in [96]
for the projection operator onto a closed convex set. Thensibn here for the
functiony,(-) is actually motivated to a large extent by the ideas fron}.[96
By definition, y,(X) is the unique solution of the parameterized optimization
problem
minimize, ¥,(X, ) (5.5)
subjectto gi(y)<0, i=1,....,m '
wherey, : R" x R" — R is defined by

N

ZCVEDY [ev(y”, X7) + %Ilyv - X7

y=1

Then the KKT conditions for problem (5.5) can be written as

m
Vya(XY) + ) 4VGE) = 0, (5.6)
i=1 )
A4>0, gy)<0, A-g(yy=0 i=1...,m
Note thatVyy, (X, ) is given by

V,abi(y', x1) + a(y - x1)
Vysa(XY) = : eR". (5.7)

VO, x7N) + a(YN = xN)

Let
lo(X) :={i | Gi(Ya(X)) = O} (5.8)

be the index set of active constraintyat y,(X).
We adopt one of the main assumptions used in [96] which alpeapn the
context of piecewise tlierentiable functions.

Assumption 5.1.1 The constant rank constraint qualification (CRCQ) holds at
Y.(X), i.e., there exists a neighbourhoodyh(x)) of y,(X) such that for every set
J C lg(X), the set of gradient vectors

{Vaily) i € 3}
has the same rank (which depends on J) for alM(y,(X)).

The CRCQ is weaker than the linear independence constnaatifigation. More-
over, it is always fulfilled in the case of linear constrairfsirthermore, due to a
result by Janin [54], itis known that the CRCQ is a suitablestraint qualification
in the sense that the satisfaction of CRCQ at the mininyized) of problem (5.5)
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guarantees the existence (not necessarily uniquenessjresponding Lagrange
multipliers A such that the KKT conditions (5.6) hold. Hence the set

M(X) := {2 €R™ | (y,(X), 2) satisfies (5.6) (5.9)

is always nonempty under Assumption 5.1.1.
There is a family of index sets that will play a crucial roleoar analysis. For
eachx € R", define

B(X) = {I <X | Vai(y.(X) (i € J) are linearly independent and
supp@) € J for somed € M(x)}, (5.10)

where suppl) denotes the support of the nonnegative vegtarR™, i.e.,
supp@) :={ie{l,...,m}| 4 > O}.
We first claim that the familyB(x) is always nonempty.

Lemma 5.1.2 SupposeM(x) # 0. ThenB(x) + 0.

Proof. Letuschoose a multiplier e M(X) with minimal support. If supp() = 0,
we takelJ := 0 and immediately see thdte B(x). Now suppose suppj # 0. We
claim thatJ := supp@) belongs taB(x). Obviously, we have supp) € J C lo(X).
Hence it remains to show thg;(y,(X)) (i € J) are linearly independent. Suppose
this is not true. Then there is a nonzero ve@peE (B;)ic; such that

2, AVa(a(x) = 0.

ied
Replacings; by —B; if necessary, we may assume without loss of generality that
at least one componegi (i € J) is positive. Letf := min{4;/B; | 8 > 0}. Then we
havet; — 8, > O for alli € Janda;, — {8, = O for at least one inde € J. Now
define

;’l_ . /li _fBi’ S ‘J’
Tl AL i¢J

Then it follows immediately that the vectdr= (4. ..., y)" belongs toM(x).
However, by construction, the support.bfs strictly contained in the support of
A, a contradiction to our choice af ]

Recall thatM(x) # 0 under Assumption 5.1.1, and hence the statement of Lemma
5.1.2 holds, in particular, in this situation.
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For an index sef C {1,..., m} with complemenﬂ =1{1,...,m}\J, we now
consider the functiog,(, -, - ; J) : R™*™™ — R™™ defined by

Vylﬁa(x’ y) + ZieJ ﬂngi (y)
Pa(X, Y, 4;J) = ga(y) , (5.11)
A3

where the partitionJ J) of {1, ..., m} is used to split the vectorsandg(y) into
A= (A3, 25) andg(y) = (91(Y), 9;(y)), respectively.

Lemma 5.1.3 Let xe X and suppose that Assumption 5.1.1 holds. Furthermore,
let M(X) be defined by5.9). Then, for any JE B(x), there exists a unique vector
A € M(X) such thatp, (X, Y.(X), 1; J) = 0.

Proof. LetJ € B(x) and letd € M(x) be such that supp] € J. Then we
haved = (4, 43) with 1; > 0 and; = 0. Since & Y,(X), 1) satisfies the KKT
conditions (5.6), we havéyy,(X, Yo(X) + Xies 4i Vai (Yo (X)) = 0 andg;(y.(x)) = 0
(sinced C 1y(X)). Henceg, (X, y.(X), A; J) = 0 holds. Furthermore, the gradients
Vai(y.(X) (i € J) are linearly independent, which implies thiaits uniquely de-
termined. ]

We next show that, under certain assumptions, for any fixadd J € B(x), the
system of equationg, (X, y, 4; J) = 0 has a locally unique solutiog(; J), A(x; J)).

Lemma5.1.4 Let X € X be given, and suppose that Assumption 5.1.1 holds at
Y = Y.(X). Let Je B(X) be a fixed index set antl e M(X) be the correspond-
ing unigue multiplier from Lemma 5.1.3 such thaix,y, 2;J) = 0. Then the
following statements hold:

(a) There exist open neighbourhood§X) of x and N'(y, 1) of (y, 1), and a C-
diffeomorphism(y(-; J), A(-; J)) : NY(X) — N(y, 1) such that yx; J) =V,
A(X;J) = A and

$o (X, Y(X J), A(x; J); J) = 0 (5.12)

holds for all xe N7(X).
(b) The transposed Jacobian of the functidn y) is given by the formula

Vy(x;J) = ATCt - ATC!D(D'C'D)!D'C, (5.13)
where
A=A = =Voda(xy(xJ),
C=C(J) = Vi (Y06 d)+ > Ai(x )V2G((x; J)),

ied

D = D(xJ) Vai(y(x J)).
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Proof. (a) First note that, by Lemma 5.1.3, the pairA) is determined uniquely
for any givenxandJ € B8(X). The Jacobian af, (- ; J) with respect to the variables
(y, ) is given by (after some reordering)

V2pa(%Y) + Zics AV2Gi(Y) Vas(y) O
Vi @a(X Y, 4;J) = vas(y)' 0 0| (514
0 0 ||j|

We claim that this matrix is nonsingular at ¢, 1) = (X, y, 4). Statement (a) is then
an immediate consequence of the standard implicit fung¢tienrem. In fact, the
nonsingularity follows from the observation that the Jaanl¥g;(y) has full rank

by the choice ofl € 8(X) together with the observation that Assumption 5.0.5 (a)
implies the positive definiteness of the matﬂw (X,¥), whereas Assumption
5.0.5 (b) guarantees that the term¥2g;(y) are at least positive semidefinite for
alli e J.

(b) Differentiating equation (5.12) with respectdand using some algebraic ma-
nipulations, it is not diicult to obtain the desired formula for the derivatives of
the functiony(- ; J). The details are left to the reader. |

Our aim is to give a relation between the functigiis J) as defined in Lemma
5.1.4 and the functiow,(-) that is the solution map of the parameterized optimiza-
tion problem (5.5). More precisely, we will show that, unttex same assumptions
as in Lemma 5.1.4, there is a neighbourhood of the pomich that, for everx

in this neighbourhood, there is an index §€tlepending on the poind such that
Yo(X) = y(x; J) holds. This is made precise in the next lemma.

Lemmab5.1.5Let x € X be given, and suppose that Assumption 5.1.1 holds at
Y ;= Y.(X). Then there exists a neighbourhoo(Nof X such that for all X N(X),
the following statements hold:

(a) The CRCQ holds at,yx);
(b) B(x) € B(X);

(c) atany given point x N(X), the equality ¥(x) = y(x; J) holds for any index
set Je B(X), where ¥-; J) is the function defined in Lemma 5.1.4.

Proof. (a) This follows from the definition of the CRCQ and the contip of
the functiony, (), cf. Proposition 2.2.3 (c).

(b) The proof is essentially the same as the one in [79] foptbgection operator.
Assume there exists no neighbourhdek) of x such thatB(x) < B(x) for all
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x € N(X). Then there is a sequenpé} converging tax such that for eack, there
is an index setl, € B(X) \ B(X). Since there are only finitely many such index
sets, by working with a subsequence if necessary, we maynesthiat these index
setsJy are the same for aK. Let this common index set hke

According to the definition oB(x¥), the vectors/g;(y, (X)) (i € J) are linearly
independent and there exisfse M(x¥) such that suppf) € J C Io(X¥), butJ ¢
B(X). Due to the continuity of the functiorgs andy,, it holds thatl o(x<) < 1o(X),
hence we havd C 1y(X) for all k suficiently large. Furthermore, the assumed
CRCQ condition guarantees that the vectégy(y, (X)) (i € J) are also linearly
independent. Hence we hade¢ B(X) only if there is noi € M(X) such that
supp@) € J. However, the KKT conditions imply that

Va0, Ya(X)) + Y AVG(Ya(¢)) = 0 forallk (5.15)
ied

Since the functiong, andVg; are continuous, we haveg; (Y, (X)) — Vgi(y.(X)).
Taking into account the linear independenceg¥ad; (Y. ( (X))}ics, We see that the se-
quence{/l"} is convergent, say — A for all i € J. Taking the limitin (5.15) and
settingd; = O fori € J, we can easily verify that the vectar:= (13, 1;) belongs
to M(X). Moreover, the definition oft guarantees that supp(c J, and hence
J € B(X). This contradicts our assumption.

(c) From (a) and (b) it follows that there is a neighbourhdt{d) such that for
any x € N(x), the CRCQ holds &,(x) andB(x) € B(x). Furthermore, for each

J € B(X), let N’(x) andN’(y, 1) be the neighbourhoods defined in Lemma 5.1.4,
whereA is the vector also defined there. We then define the neighbodrh

V) = (] N0 NE).
JeB(X)
which is open since there are only finitely maiiy.

For any given vectok € V(X), the optimization problem (5.5) has a unique
solutiony,(x). Moreover, Lemma 5.1.3 implies that for every fixeéd 8(x), there
exists a unique Lagrange multipligr= 27(x) € M(X) such that X, y,(X), 7(X))
satisfies

$a(X.Ya(X). 2'(¥); 3) = 0
In particular, for the Lagrange multiplier associated withy), we write 47(X) as
A7,

On the other hand, Lemma 5.1.4 implies that there is a contisly diteren-
tiable function(y(- ; J), A(-; J)) : NY(X) — N’(y, 7) such that, for every € N’(X),
the pair(y(x; J), A(x; J)) is the unique solution of

Pa(X Y, 4;3) =0 (5.16)
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in the setN’(y, 2%). Hence, if we can show that there exists an open neighbour-
hoodU (X) € V(X) such that for everx € U(X) and everyd € B(x) we have

(Vo) 17(X) € N’(; 27),

then the uniqueness implies that

Va(¥), 27(X)) = (Y(x; J), A(x; J))

for all x € U(X) andJ € B(x), and this would conclude the proof.
Suppose there exists no such open neighbourlted c V(x). Then there
exists a sequende} with X< — xandJ, € B(x¥) such that

(V (X), 2%(X)) ¢ N* (¥, %) for all k. (5.17)

By working with a subsequence, we may assume Jhé&t the same index set for
all k. Denote this index set by. Furthermore, choose open neighbourhdgd(s)
of yandN?’(27) of A7 such thalN’(y) x N?(17) € N(y, 1%).

Since the functiory, is continuous, we havg,(X) — y,(X) = y. Hence
v.(X) € N(y) for all k sufficiently large. On the other hand, for evexywith
associated, (x<) andA’(x¥), we have from (5.11)

Vya (X YalX9) + D V(X)) = O, (5.18)
ied

PR =0 ied

for all k. The continuity of the function¥y,, y, and Vg;, together with the
linear independence of the vectdrgi(y) (i € J), which is again a consequence
of the CRCQ, implies that the sequenice(x)} is convergent. Lefl’ be the
corresponding limit point. Taking the limitin (5.18) théwee gives

V(X3 + Y AVG(E) =0
ied
as well ast’ = 0 for alli € J. Then the CRCQ implies that’ is the only
vector satisfying these equations. However, by definitidnalso satisfies these
equations, so it follows that’ = 1°. _
HenceA’(x) converges tol’, meaning thatt’(x<) € N(2%) for all k suffi-
ciently large. Therefore we have

(v (), (%) € N (y) x N’ (2°) € N (y, 20)

for all k suficiently large, a contradiction to (5.17). |
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Since there are only finitely many possible index skt {1,...,m}, it follows
from Lemma 5.1.5 that, given any poirtin a suficiently small neighbourhood
of x, the functiony, () is equal to one of the finitely many functiogé ; J) and,
therefore, piecewise smooth. However it is nhot necessasby to compute an
element of the B-subfferential ofy, at x, which is defined by

FeYo(¥) := (G €R™ | G = lim Vy,(x)', (X} c O},

whereQ := {x € R" | y, () is differentiable ak}. Lemma 5.1.5 then suggests to
use, in place of the B-sulf@iérential, the following modification of a generalized
Jacobian, which we call theomputable generalized Jacobiahy,(-) at x:

acYa(x) = {VY(x )T | I € B}, (5.19)

where B(x) is defined by (5.10). Note that computing an elemend®f,(X)
amounts to finding an index séte B(x), which is implementable in practice.
While the inclusiomgy,(X) € dcY.(X) holds at anyx, the converse is not true in
general, see [22, Example 11]. Under additional assumptioowever, it can be
shown that these two sets coincide; see, in particufaCprollary 3.2.2] or [21,
Theorem 3.3].

Nevertheless, we have the following result, which indisakat there is a good
chance that the two sets actually coincide.

Proposition 5.1.6 Let X € R" be fixed and let the linear independence constraint
qualification (LICQ) hold aty = y,(X), that is, the vectors/gi(y) (i € lo(X))

are linearly independent. Then for all but at most n valuesrothe equality
aBya()_() = aCya()_() holds.

Proof. The inclusiordcy,(X) C dsY.(X) holds provided that the matri%, i, (X, y)
is nonsingular, see [76, Corollary 3.2.2] or [21, TheoreBi.3.

Now, an elementary calculation shows tRafy, (X, y) is written asv; . (X, y) =
W — al, where the matrix ¢ R™" is given by

) 0 5 o V§1x291(y1’ X_l) T VglxN el(y;’ X:;)
VX2X102(y » X° ) 0 T VXZXN 92(y , X )
V)Z(leeN(yN’ X_N) V)Z(NxzeN(yN’ X_N) T 0

Since the matrixV has at mosh different eigenvalues, the equality

det(v2,,(%.9)) = det@ - al) = 0

holds for at mosh different values o&. This implies thatvi ., (X, y) is nonsin-
gular for all but at mosh values ofa. ]



74 CHAPTER 5. NEWTON’S METHOD TYPE Il

Note that the previous result is the only one where we needItb® condition.
Neither LICQ nor this result will be used in our subsequeralysis. It is stated
here to give partial evidence that the gap between the cablgugeneralized
Jacobian and the B{ilerential is not so significant.

To conclude this section, we consider the special case oflaBR3Mth quadratic
cost functions and linear constraints. Here the funcigr) turns out to be piece-
wise linear (or piecewisefiine, to be more precise).

Proposition 5.1.7 Consider the case where the cost functiénsre quadratic,
ie.,

1 N
0,(X) = E(XV)TAWXV + Z(XV)TAWX"
p=1

forv = 1,...,N. Suppose that the feasible set X is given by linear ineties|i
i.e., X:= {x € R" | Bx < b} for some matrix Be R™" and vector be R™. Let
x € X be arbitrarily given. Then there exists a neighbourhoda)bf x such that
for every xe U(X) and every Jk B(X), there exist a matrix Ve R™" and a vector
w’ € R" such that y(X) = y(x; J) = VIx + w’.

Proof. SinceX is polyhedral, the CRCQ holds at every pox¢ X. By Lemma
5.1.5, there exists a neighbourhad(kx) of x such that for alx € N(x), we have
B(X) € B(X) andy,(X) = y(x; J) for all J € B(x), wherey(-; J) is the function
defined in Lemma 5.1.4.

Now consider an arbitrary index sdte B(x), and lety( ; J) be the corre-
sponding function. Furthermore, I&tdenote thenr x n matrix A = (AV#)D"IFl and
diag(A,,) denote the block-diagonal matrix with block componentnnasA,,,
v=1,...,N. From Lemma 5.1.4y(-; J) is a continuously dferentiable function
on N(x) with Jacobian

V2= vy(x; J)T = C*A-C'D(D"C'D)'D'CA,

whereA := —A + diag@A,) + al, C := diagA,,) + al andD := B]. The as-
sumptions on the cost functiodsand the seX imply that the matrixv” is con-
stant. Consequently(- ; J) is an dfine function, i.e., there is a vectar such that
y(x; J) = VIx+w. o

Note that it follows from the above proof that we have
Vo(X) € (VIX+W | J € B(X)}

for all x in a suficiently small neighbourhood of i.e.,y,(-) is a piecewisefiine
function.
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5.2 Newton’s Method

For the computation of a normalized Nash equilibrium, we ti@nonsmooth
Newton method from [57] and apply it to the system of equation

F(X) :=Y.(X) = x=0.
From the current iterate®, the next iterated** is computed by
XL = XK — H TR (X9), (5.20)
whereHy is an element of the nonempty computable generalized Jatobi
IcF(X) = dcya(X) =1 = (WYX T =1 | I € B(X)). (5.21)

In this section, we give ghicient conditions for the matricdsy to be nonsingu-
lar and show local superlingguadratic convergence of this nonsmooth Newton
method.
For convenience, we write
VZ

xxl

Gl(yl’ X_l)

xLxN

or(yt, x ) - VR
M(x,y) = : :

V)Z(legN(yN’ X_N) e ViNXNHN(yN7 X_N)

This notation also facilitates the comparison with Newtoetmoeds from [32]
which are based on a variational inequality formulationhaf GNEP.

The following assumption will be needed to establish fasal@onvergence
of the nonsmooth Newton method (5.20).

Assumption 5.2.1 For each Je B(x) andA € M(X), we have

dT(M(X, Yo (X)) + Z AV2G(Ye(¥))d >0 vdeT(x), d 0, (5.22)

ied
where77(x) is defined by
TX) :={d e R" | Vgi(y.(X))"d = 0 Vi € J}. (5.23)

The condition (5.22) is a kind of second ordeffsuency condition. We will
revisit this condition after showing the following nonsirgrity result.

Lemma5.2.2Let x € X andy := y,(X). Suppose that Assumptions 5.1.1 and
5.2.1 hold atx. Then the matri¥y(x; J)T — | is nonsingular for any index set
J € B(X).
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Proof.  Assume that there exists an index Sete 8B(x) such that the ma-
trix Vy(x; J)T — | is singular. Leti € M(X) be the corresponding Lagrange
multiplier, which is unique by Lemma 5.1.3 under Assumptioh.1, such that
$a(X Y, 4;J) = 0 holds. Furthermore, lgf(-; J) anda(-; J) be the functions de-
fined in Lemma 5.1.4; in particular, recall that we hgise J) = yanda(x; J) = A.

Since Vy(x; J)T — | is singular, there exists a nonzero vectoe R" such
that (Vy(x; J)T — I)v = 0, which is equivalent to saying thaty(x; J)" has an
eigenvalue equal to one with eigenvectorFrom Lemma 5.1.4, along with the
fact thaty(x; J) = y andA(X; J) = A, we have the formula

Vy(x;J)' =C*A-C'D(D'C'D)'D'CA, (5.24)
with

A = AXJ) = —Viua(XY),

C = C(XJ) = V2uu(Xy) + > AV%G(Y).

D = D(xJ) := Vgy(y). -

This expression oVy(x; J)T reveals immediately th&" Vy(X; J)" = O, Which
implies that
0=D'Vy(x;J)'v=D"v=Vg(y)'v
holds, and thus,
veT(X), (5.25)

where77(X) is given by (5.23) withx = x. Therefore, multiplication of equation
(5.24) from the left side witv' C and from the right side withr gives, using the
fact thatv is an eigenvector of the matriky(x; J)" with eigenvalue 1 once again,

VICv=V'Av, (5.26)
Note that the matrice€ andA are expressed as
C = VEpu(Xy)+ Y AV%4()
ieJ
V)z(lxlel(yl’ )?_l)
V)2<NXN On ()_/N’ )?_N)

+al + Z PR

ied
and

A = _Vixwa(zy)
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Vilxlel(yl’ )?_1) T VilxN 91()_/1’ )?_1)
VileeN(yN’ )?_N) T V)Z(NXN 9N(YN, )?_N)
V)z(lxlel(yl’ )?_1)
+ + al.
ViNXNeN()_/N’ )?_N)
Hence we have _
C-A=M(XY) + Y Av%(). (5.27)

ied
On the other hand, by (5.22) in Assumption 5.2.1 and (5.26)have
VM) + ) AViGE) v > .
ied

This together with (5.27) contradicts (5.26). |

The following example shows that Assumption 5.2.1 may hekhaf the matrix
M(X, Y. (X)) is not positive semidefinite. Furthermore, it shows thasémption
5.2.1 does not imply uniqueness of the normalized Nashiequin.

Example 5.2.3 We consider the following Nash equilibrium problem, whelaypr 1
controls the single variabbe, player 2 controls the single variabtg and the cor-
responding optimization problems are given by

min,  $X¢ — 2X1% + Xy Min,  $X3 — 2X1 X + Xo
S.t. X1+ X% >0 S.t. X1+ X > 0.

The cost functions are convex with respeckte@ach, and the game satisfies As-
sumptions 5.0.5. The normalized Nash equilibriaére- (x], X5) = (1, 1) with
Lagrange multiplier* = 0, andx* = (0, 0) with 2* = 1. We have

M0 = (5 7).

and, forx* = (0, 0),

T(x)={deR?|d= t(_ll),t eR}.
This yields
d"Md = 6t> > 0
forall d e T(x*).
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In the case of quadratic cost functions, there is a simpfiecgant condition for
Assumption 5.2.1 to hold.

Corollary 5.2.4 Suppose that the cost functiofysare given by

_ l W\ T v § W\ T
QV(X) - E(X ) AVVX + ;(X ) Av,uxﬂ
forv = 1,...,N. Then Assumption 5.2.1 holds provided that the matrixxA

(A}~ is positive definite.

Next we prove that the matrice$, provide a superlinear approximation for the
functionF.

Lemmab5.2.5 Let X be a NoE. Suppose that Assumption 5.1.1 hold$.atkxen
we have for any H dcF(X)

F(X) — F(X') = H(x = X") = o(||x = X*]|). (5.28)

Furthermore if the second derivatives of élland all g are Lipschitz continuous
around X, then

F(X) — F(x*) = H(x = x*) = O(||x = X*[|?). (5.29)

Proof. By Lemma 5.1.4, for eacl € B(x*), there is a neighbourhodd’(x*)
of x* and a continuously dlierentiable functiory(-; J) defined onN’(x*) such
thaty(x*; J) = y,(x*) = x*. Lete > 0 be arbitrarily given. Then the continuous
differentiability ofy(-; J) on NY(x*) ensures the existence ofsée, J) > 0 such

that
Ily(x; 9) = y(x3 9) = VY6 )T (x = x| _
X = x|
holds whenevelx — X*|| < (g, J). Letd(e) := mingegx) d(e, J) > 0. Then (5.30)
holds for anyx such that|x — x*|| < 6(¢) and anyJ € 8(x*).
Now consider an arbitrary sequenjo&} converging tox* and pick anyH, ¢

dcF (X). By the definition (5.21) ofcF (X), Hx can be written abl, = Vy(x¥, J)"—
| for someJ, € B(X¥) C B(x*). Hence, from the preceding argument, we have

IF(X) = F(x") = Hil(X* = x|
[Ixk — x|
e (%) = Ya(X7) = Ty(; I)T (X = )|
[IXk — x|
(X5 3 = Y05 ) = VYOG 3T (¢ = X B
I3k — x|

(5.30)
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for all k such that|x‘— x| < d(g). Since{x¥} ande are arbitrary, we may conclude
that (5.28) holds.

If all functionséd, andg; have Lipschitz continuous second derivatives, then for
all J € B(x*) the functionVy(: ; J) is locally Lipschitz continuous. This follows
from formula (5.13) and the fact that the sum and the prodiicioally Lipschitz
continuous functions again lead to a locally Lipschitz amnbus function. Then
it is not difficult to derive (5.29) in a similar manner to the above. |

Summarizing the above arguments, we are now in a positidat®e the main local
convergence result which shows that our method is locafpedinearlyquadrati-
cally convergent. Note that this result holds under the CRGAition which is
weaker than the linear independence constraint qualiicati

Theorem 5.2.6 Let X be a NoE and suppose that Assumptions 5.1.1 and 5.2.1
hold at X. Then there is a neighbourhood(X) of x* such that for an arbi-
trary initial point X° € N(x*), the sequence generated by the nonsmooth Newton
method(5.20) converges to *xsuperlinearly. Furthermore, if all the functiors

and g have Lipschitz continuous second derivatives, then theergance rate is
guadratic.

Proof. By Lemma 5.2.2, eachl € dcF(x*) = {Vy(x*; )T -1 | J € B(x)} is
nonsingular. Since the functiongy(-; J) (J € B(x*)) are continuous, there ex-
ists a neighbourhoob(x*) of x* such thatB(x<) ¢ B8(x*) and hence the matrices
He € OcF(X) = {Vy(X; )T — | | J € B(XX)} are nonsingular for akk € N(x*).
The rest of the proof consists of standard arguments baséérmma 5.2.5 and
the definition of the nonsmooth Newton method (5.20). |

Our final result shows that the nonsmooth Newton method srgdgcal one-step
convergence property if the GNEP is described by quadratt ftnctions and
linear constraints.

Proposition 5.2.7 Suppose that the cost functions and the constraints arexgive
as in Proposition 5.1.7 and that the matrix:A (AW)D"V:1 is positive definite. Let

x* be a NoE. Then there is a neighbourhookN of x* such that, once*enters
N(x"), the next iterate % coincides with X

Proof. By Lemma 5.1.5, there exists a neighbourhdid*) of x* such that for
everyx € N(x*) and everyd € B(x), we havey,(X) = y(x; J) andB(x) C B(X").
Moreover, from Proposition 5.1.7, we hayg; J) = VIx +w? for all x € N(x*)
with V7 andw’ being some constant matrix and vector, respectively. Déefiae
functionF(-; J) on N(x*) by F(x; J) := y(x; J) — X.



80 CHAPTER 5. NEWTON’S METHOD TYPE Il

Let X< € N(x*) and J, € B(xX). Sincey(-; J,) is an dfine function onN(x*),
Taylor’s formula yields

F(X'5 ) = F(X 30 + F/ (X5 J)(x = X9, (5.31)

whereF’(-; J) = V¥ — | is the Jacobian of(-; J,), which is nonsingular from
Lemma 5.2.2 and Corollary 5.2.4. Sin@$x<) c 8(x*), we haveF(x*; J,) =
V(X5 J) — X = Y, (X) =X = F(x) = 0 by Lemma5.1.5 (c) and Proposition 2.2.4.
Exploiting the nonsingularity of’(x¢; J), we then obtain from (5.31) that

X = X = B/ (X J) TR (K 3.

The right-hand side is precisely the Newton iteratioxatand hence** coin-
cides with the NoEx*. |



Chapter 6

Applications and Numerical Results

This chapter is concerned with four implementations of theerical methods
developed in the preceding chapters and their applicabosotme generalized
Nash games. In particular, we consider a Barzilai-Borwegathod for the solu-

tion of the unconstrained optimization reformulation @,the relaxation method
defined in Algorithm 3.2.1, a Newton method for solving theamstrained op-

timization problem (2.14), and a Newton method (5.20) tlohtes a fixed point

formulation of the GNEP. We illustrate the numerical periance of these meth-
ods with five examples of generalized Nash games taken frenitédrature and

the electricity market example from the introduction.

6.1 Implementations

Allimplementations are done in MATLAB using the soh&NOPT from the TOM-
LAB package in order to calculate the valuesypfx) andys(X), respectively. In
order to compare the performance of thatient methods, we use a similar stop-
ping criterion for all algorithms. Namely, we require thigt (X) — X|| < & with

g := 1078 for the first order methods, that is, the Barzilai-Borweintioel and
the relaxation method, and:= 107! for the Newton-type methods, where the
parameter is set to 10 for all methods except the Newton method solving the
unconstrained optimization reformulation, where it isteef0?2. Since the ex-
amples have a rather simple structure, all algorithms areit@ted by force if a
maximum of 15 iterations is reached.

81
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6.1.1 Barzilai Borwein Method

Here we illustrate the performance of a first-order numénethod for the solu-
tion of the unconstrained optimization problem

minVys(X) s.t.xeR",

in order to compute a normalized Nash equilibrium, see tlimitlen of V.4 in
(2.12) and some further theoretical propertie¥gf at the end of chapter 3.1.

We choose the Barzilai-Borwein (BB) gradient method [8E aéso [87, 88,
35, 18, 41] for some subsequent modifications and investigabf this method,
for the unconstrained minimization of the objective fuontV,z. This method
uses the iterative procedure

X = XK~ VV,p(X), k=0,12,...

with the stepsize

where
Si= X = XLy i= VVe(XE) — VVe(X D).

Hence the BB method has the advantage of using an expliaiifiar for the step-
size. So no extra line search is required which would be vwgpgesive in our case
since this would require further evaluations of the mappiyg Each function
evaluation ofV,.;, however, needs the solution of two constrained optinorati
problems in order to compuig(x) andys(X).

We use the parametars= 10* andg = 5- 1074 for all test examples, and ter-
minate the iteration if eithdfy,(x¥) — X|| < 1078 or the iteration number exceeds
15. We state the value 0f,5(X), which shows that the objective function value
decreases in nearly every iteration despite the lack ofead@arch. At first view,
it seems odd not to use the value\gf; for termination criterion. However, the
value ofV,; depends strongly on the choicemfind, so choosingr andg close
to equality might cause the algorithm to stop earlier tharotber values o and
B, even if the distance to solution is greater. In any case, éasier to compare
the Barzilai-Borwein method with the other methods usirgygtopping criterion
based only, (X<) — XX

6.1.2 Relaxation Method

Here we implemented Algorithm 3.2.1 with the modified stepsule from Re-
mark 3.2.5. The method is terminated whenelye(x*) — x| < & with & := 1078
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and uses the parameters= 104 8 = 0.5 ando = 10 For the electricity
market example we also tested the method settirgl.

6.1.3 Newton’s Method based on Optimization Reformulation

This is the Newton-type method described through equati$) and (4.17) for
the solution of the unconstrained optimization reformolabf the GNEP (2.14).

To this end, we need to calculate elements fd§¥,z(X<). This is not an easy
task, however, all examples except Rosen’s example satisdgdition to the lin-
ear independence constraint qualification, strict complaarity at the solution,
which results in dferentiability of the functiorvV,z, so we simply compute the
Hessian ofV,4(x¥) in each iteration. We use an Armijo-type line search in orde
to globalize this method. Moreover, we switch to the steegescent direction
whenever the generalized Newton direction is not compatabtioes not satisfy
a suficient decrease condition. In our experiments, however, are @lways able
to take the generalized Newton direction. The method isiteatad whenever
V. (X) = X|| < & with & := 107'? and uses the two parameters= 0.01 and
B = 0.05 for the definition olV,.

6.1.4 Newton’s Method through Fixed Point Formulation

Here we implemented the Newton method according to thetikerscheme (5.20).
The parametew is set to 10 for all test runs and the iteration is stopped when-
ever|ly,(x) — x| < 10712,

To calculate an element of the computable generalized talby, at XX,
we need to find an index séte B(x¥) together with a corresponding multiplier
AX. This is an easy task if the linear independence constraaitfaggation (LICQ)
holds at the minimuny,(x4). In this case, we can take, for example= 1o(xX),
wherely(X) is defined by (5.8). However, since LICQ is not needed in thever-
gence theory of this method, we have to find a way to compuated ¥ under the
weaker CRCQ assumption. To this end, consider the linegrano

S G, (¢)) A =~y (X, Y (X9), (6.1)
A4>0 Vielg,
=0 Vie{l,....,m\ I,

wherelg = 1o(x¥). Since CRCQ holds at,(x), it follows that M(x*) is nonempty,
and hence (6.1) has at least one feasible point. Moreoweoldjective function is
obviously bounded from below on the feasible set. Standaet programming
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theory then shows that (6.1) is solvable; moreover, at leastof the vertices of
the polyhedron defined by the feasible set of (6.1) is alsolatisn. Now, let
A¥ be such a vertex solution of (6.1). Then, again by standawdltsefor linear
programs, it follows that the gradien®;(y, (X)) corresponding to the positive
components® > 0 are linearly independent. This proves the following resul

Lemma 6.1.1 Suppose that the CRCQ (or any other constraint qualificgtion
holds at y(X¢). Let A* be a vertex solution of the linear prograf@.1) and de-
fine J:={i € Iy | AX> 0}. Then J belongs tB(x").

Note that, in principle, a vertex solution of the linear prag (6.1) can be calcu-
lated by the simplex method. It should be noted, howevet thigalinear program
(6.1) is not given in standard form since the rows of the qanst matrix may be
linearly dependent. Typically, implementations of the gliex method deal with
this problem automatically. Alternatively, one could migdi6.1) like in the Big-
M method to get an equivalent linear program which satisfiesfall row rank
condition.

6.2 Examples of Generalized Nash Equilibrium Prob-
lems

In order to highlight some distinguishing properties of tluenerical methods de-
scribed before, we selected five Nash games from the literaisi test examples
in addition to the electricity market model from the intr@tion. These examples
can be classified according to the structure of cost funstéomd constraints. Ex-
amples 6.2.2, 6.2.4 and 6.2.6 are linear-quadratic gahmetsst the cost functions
are quadratic with linear terms. Such games have been dittuis Proposition
3.1.2, Corollary 3.1.7 and Proposition 5.1.7, though witHmear terms. It is not
difficult to see that the conclusions of these propositiongitl with additional
linear terms in the cost function. Examples 6.2.3 and 6&&5vell as the electric-
ity market example from the introduction, have in commort tha cost functions
include a particular function that is subject of the follogiLemma.

Lemma6.2.1Let ¥ € R for u € {1,..., N} and consider for fixeat € {1,..., N}

the function
XV

(Z,Dlzl Xy
where s, andy are some real parameters. Assume théatx O for all u €

{1,...,N} andz;'j'=1 ¥ > 0. Then f is well-defined and fod < y < 1, the function
f, is strictly convex with respect to the variableand convex ify = 1.

f, (X', X7") :=6,X —
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Proof. We calculate the partial derivatives §f This yields

N N
Veh(®) = 6= )7 +yxX(D %),
Vie B0 = 270 )7 =P+ X (D X7,
pu=1 u=1
N N
VZ A = yO X)) T (PR ()XY forg# v,
p=1 p=1

In order to prove strict convexity of the functidnwith respect toc” it is suficient
to show thatv2, , f,(x) > 0. We arrive at

XX

O<y<1
= 2y >v*+y
= /(T XN )™ > (P + )X (B X)
= vavf x >0

where we usec,‘{]/’f=1 X' >0andx >0Vu=1,...,N, inthe last but one inequal-
ity. The casey = 1 follows analogue with3’ instead of >'.
|

The numerical results indicate that the local convergeecm®pnance of all meth-
ods is connected to the properties of the matrix

X1X191(X ) s X1XN91(X )
M(X*) - X2X192(X ) . X2XN92(X ) (62)
XleeN(X ) cee XNXNGN(X )

From a theoretical point of view, iM(x*) is positive definite, then Assumption
3.1.4 holds in a neighbourhood of a normalized Nash equilibroy Theorem
3.1.6, which is essential for the relaxation method. Furttuge, this assumption
implies that the Newton method based on the fixed point foatar has local
superlinear convergence, see Lemma 5.2.2. In practiceogition number of
the matrixM(x*) seems to influence thdfeiency of the first-order methods in a
similar way the Hessian of the objective function does inroation problems.
The details are discussed with in the description of theaetspe examples.
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Example 6.2.2 This test problem is the river basin pollution game takemf[45]
and [61]. The game consists of three players with cost fansti

3
6,(X) = (d; Z X+ €1, + Cp, X — dy)X,

u=1

wherex” € R, for v = 1, 2, 3. Furthermore, the players face two joint constraints,
| = 1,2, of the form

3
a0 = > ugX < K.

p=1
All constants are given in Table 6.1.

Pl ayery Cyy Coy € U1 U2 dl d2 Kl K2
1 0.10 0.01 050 6.5 4.5833.0 0.01] 100 100
2 0.12 0.05 0.25 5.0 6.250D
3 0.15 0.01 0.75 5.5 3.750D

Table 6.1: Constants for the river basin pollution game

This game is a Cournot-type model. In [61], the authors dlesthe following
economic interpretation: Each playerepresents a company engaged in some
economic activity, for instance paper pulp production,latal x’. The companies
sell their product on the same market and the price on thatehedepends on the
total output on the market. Thus, the revenue function, &edefore the profit
function of each agent, which equates to the negative caostifin defined above,
depends on the production level of the rival companies.

The joint constraintg) arise from a limitation on environmental damage in-
duced by the players’ activities. In this particular exaeyghe companies are
located along a river and expel pollutions from productiuto ithe river. The pol-
lution level of the river is monitored by two measurementistes along the river.
At each station, the local authority sets a limit on pollateoncentration, which
results in the joint constraintg, | = 1, 2.

Since this game has quadratic cost functions with lineangerthe matrix
M(x*) defined in equation (6.2) is

0.04 001 001
M(x) =|001 012 001|,
001 001 004

which is positive definite with condition number coil( = 4.1. Thus, in view of
Corollary 3.1.7 the dfticient conditions for convergence of the relaxation method
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hold. Moreover, the matriB defined in Proposition 3.1.2 is positive definite,
implying that for smalle the functionV, is convex. Thus, we may assume that
the relaxation method works quite well.

The local convergence of the Newton method based on the figed for-
mulation is ensured by Lemma 5.2.2. Moreover, Propositi@7smplies that
the Newton method based on the fixed point formulation teaeis after a finite
number of iterations for suitable starting points. We aéyuzbserve convergence
in just one step for both Newton methods. The numerical tesaln be found in
Table 6.5.

Example 6.2.3 This test problem is the internet switching model introdubg
Kesselman et al. [56] and further analyzed by Facchinei.ef32]. The cost
function of each user is given by
X X
0,(x) = = - ———,

with constraints<” > 0.01, v = 1,..., N, and a joint constraint of the form

N
Zx“sB.

u=1

The constraints have been slightly modified from those if} {d@&nsure that the
cost functiong), are defined on the whole feasible set. The exact solutioni®f th
problemisx* = (0.9, ...,0.9)".

This is the only example where the full step sige- 1 was never accepted in
the relaxation method. Using our line search globalizatimwever, we observe
very fast linear convergence (see Table 6.6). The situatiamges if the starting
point for the players is chosen unequally. Takidg= (0.1,0.11,0.12,0.13...)" €
R0 for example, we obtain the results from Tables 6.7 and 6dh Belaxation
method and Barzilai-Borwein method havéhidulties here, opposed to the New-
ton methods.

<

Example 6.2.4 Here we consider a simple two-player game originally sutggkes
by Rosen [92]. The example has the two cost functions

1
O1(X1, X2) = EXi XX and 6x(Xy, %) = X5 + X1 X

and the joint constraints given by

X:={XeR?| X >0,% >0,x + X > 1}.
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The unique normalized Nash equilibrium of this GNERis= (1,0)" and does
not satisfy strict complementarity since an easy calaoashows thay, (x*) =
(1,0)" andA,(x*) = (0,0,1)" for arbitrary parametet > 0, hence strict com-
plementarity does not hold in the second component. TaBlst&ws our corre-
sponding numerical results. O

Example 6.2.5 This test problem is a Cournot oligopoly problem with shared
constraints and nonlinear cost functions, which was firscdkeed in [69] as a
standard Nash game and later in [75, p. 233] with additiarat constraints.

The model considers a number Nffirms competing on the same market.
Each company chooses a production output R, so as to maximize her profit
function

0,(X", x7") = p(x’, x) - X = ,(X),

where the market pricp is given by the inverse demand function

N
p(¢', ) = 5000 - () *)7

pu=1

and the cost function of firm is

Bv -5 By+l
£(0) = ¢ - X+ =2 KP L ()5
)= 0%+ LCE o)

The shared constraint imposed on joint production is

N
Zx"sP.

pu=1

In fact, in order to guarantee that all functions are wefirta, one should add an
additional constrainEl'j'=1 X > ¢ with some small constast However, since this
does not change the solution and nfiidulties arise in the numerical solution of
the problem, we omit this.

In accordance with [69] and [75] we consider five players dmbsey = 1—11
The remaining constants are given in Table 6.2, except top#irameteP, which
we vary.

It is not difficult to see that the negative of the profit functircan be written
as the sum of a strictly convex function and a function of Wygetdefined in
Lemma 6.2.1. Lemma 6.2.1 i) then implies that the negatetfit fumction 6, is
strictly convex with respect to playefs variable. The numerical results can be
found in Tables 6.10, 6.11, 6.12 and Table 6.13.

%
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Firm|c, K, B,
1 |10 5 1.2
2 8 5 1.1
3 6 5 1.0
4 4 5 09
5 2 5 0.8

Table 6.2: Parameter specifications for the Cournot Oliggopo

Example 6.2.6 We solve the electricity market problem suggested by Coedre
et al. [15], case study 1. This model involves three poweegsing companies
owning one, two, and three power plants, respectively. difierent to the elec-
tricity market model from the introduction in that it does movolve a power line
network, in particular, there is only one type of consumeith \Wnear demand
function. To avoid confusion, we refer to the present exanagl electricity mar-
ket example I’, while ’electricity market example II' refeto the next example.
The decision variablel of companyy determines the electricity generated

with power plant. Let n, be the number of power plants owned by company
Each power plant has a capacity lirfif® incurring a production limit < X <

PI’T_\aX

i The profit function of company is given by
n, n,
0,(¢,X7") = p(x,x7) - D% = D (X)),
i=1 i=1

where the inverse demand functipns given by

3 n

p(x’, x") = 3784 — ZZ X s

=1 i=1

<

and the cost functiofi,; of power plani owned by playey is

1
(X', ") = 56 - (X)? + d, X +&,.

The constants are specified in Table 6.3.

In this game the restriction is only imposed on electricéngration of a par-
ticular company, thus, this is a standard Nash equilibrimablem. For the nu-
merical solution of the problem we take once again the nelgaafit function of
a player as cost function. While the mathk(x*) is positive definite, its condition
number is quite bad (around 610), which results in slow cayesece of the first
order methods. In fact, the relaxation method was extretoly with the choice
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companyv | generator Ci d; e, |PI"m P&
1 1 0.04 2 0| O 80
2 1 0.035 175 0| O 80
2 0.125 1 0| O 50
1 0.0166 3.25 0| O 55
3 2 0.05 3 0| O 30
3 0.05 3 0| O 40

Table 6.3: Parameter specifications for the electricitykeigoroblem

of o = 10%, see Table 6.14. Choosing = 1 gives better results, cf. Table
6.15. The numerical results also show that the Barzilamiom method works
suprisingly well. The Newton methods have no problem with &€xample, as the
results in Table 6.15 show.

Example 6.2.7 Here we solve the electricity market example from the intied

tion, which we call electricity market example II' in the merical results section.
The game has two players, A and B, each controlling 5 varsalidayer A con-

trols x* € R* andy” € R, while player B controlx® andy®. In order to implement
the method we change the names of the variables, in that weedefi

x = (XA A, xB,yP),

in particular,xs = y* andx,o = y&. Parameters are chosen as follows:

Cc
300 30000 26 28 <3

k G |t ¢ vy
1

w N =
=

300 40000

€
5
2 300 50000
2
2 300 30000

4

Table 6.4: Parameter specification for the electricity raarkodel 11

Since the profit functions and constraints have been defimiiintroduction
already, we do not state them here. Instead of the profit inmete consider of
course the negative of the profit function so as to have miation problems. We
proceed with some considerations about convergence camsifor this particular
example.
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For this example, the matrid from equation (6.2) has the structure

0 0
A(X) : B(X)
Mx)=(0 ... 0 ... 0],
C(x) : DX
o ... o ... 0

whereA(X), B(x), C(x) andD(x) € R** are diagonal matrices with entries

Ai(X)  =2ypi()(X + Xies) ™ = (2 + V)R (% + Xius) 72X,
Bi(¥)  =yp(X)(X + Xu5)"t = (2 + ¥)Pi () (X + Xiy5) 72X,

Ci(¥ =y + Xies) ™t — (% + V)P((X + Xiv5) X5,
Di(¥) = 2ypi(X)(% + Xix5) " — (% + V)P (X + Xir5) *Xiss.

This immediately shows that the matii&(x) is not positive definite for any, not
even nonsingular. However, there is a possibility to deaiv®ndition which im-
plies that Assumption 5.22 holds, the latter being impdrtaishow convergence
of the Newton method based on the fixed point reformulation.this end, we
formulate the following Lemma.

Lemma 6.2.8 Suppose thad < y < 1, x € R'%, and x> 0 such that x< 3Xi,s
and x5 < 3x foralli = 1,2, 3, 4. Then the matrix

A(X) B(x)
(C(X) D(X))

is positive definite.

Proof. With the Theorem of Gerschgorin, it follows easily that agjlenvalues of
the matrix in question are positive. However, this does ngtly that the matrix
itself is positive definite, since the matrix is not symmetri

We write g = Ai(X), b = B;i(X),¢ = Ci(x) andd, = D;i(X). With this
notation we have, foz # 0 arbitrary,

AX) BO)
Z (C(x) D(x))Z -

Mb

[z(aiz + D1Z14) + 214(CZ + 0iZ14)]

i=1

- Z a.z|2+(b +CI)Z|Z|+4+dZ|2+4

i=1

S

v

M»EM»

I
=

min{ay, di}(Z + Z,,) — |bi + Gl|ZZ.4l

(min{a;, d;} — max(|bil, IGI)(Z + Z..).
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In the remainder we show that nfay d;} — max|b;|,|c|} > O for all y and x
satisfying the assumptions. For simplicity, we write

8 1= Pi(¥)(X + Xius)
Note thats > O for all x > 0. It follows that
q — bi = ’y6 >0

and

a+b =3y - (P +y)6-2- P
>3y - (Y2 +y)5-2-3
> 0,
where we used the assumption thkat< 3x.5 andy < 1. Thus it follows that

a — |bj| > 0 holds for alli = 1, 2, 3, 4. Further we get
& -C= y5- (Y +y)d 5

> 5= (Y +7)6 5 i
> y6- (Y’ +7)5-5-%
> 0,
and o
& +C =3y0— (P +y)0- 2
> 0,
from which we conclude that; — || > O for all i = 1,2, 3,4. The inequalities
d - |b] > 0 andd, — || > O follow analogously. All in all, this proves the
assertion. O

To show that Assumption (5.22) holds at the solutibnwe have to analyse the
strongly active constraints a€. In particular, it is not diicult to verify that
whenever the constraint® < x3 andx® + x1° < ks are strongly active for all
A € M(x"), which is the case at the numerical solution presented enngxt
section, then any vectat € 7 (x*, 1) has at least one componang 5,1 # 10
with di # 0. According to the previous Lemma this implies immediatislgt
d"M(x*)d > 0, meaning that Assumption (5.22) holds.

We solved this example with starting point (1Q00,. .., 100) however, both
the Barzilai-Borwein method as well as the Newton method ihhased on the
unconstrained optimization reformulation failed for thtarting point. So for the
latter two methods a starting point very close to a soluti@s whosen. More-
over, for the Newton method we changed the parametensdg, since it failed
otherwise. Interestingly, the relaxation method was abfend the solution even
from remote starting points such as (10000Q 100Q 100Q 10,10, 10, 10,10, 10)
and (1010,...,10) in only few iterations, while the Newton method basedren t
fixed point formulation failed for these starting points.
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6.3 Numerical Results

93

We present the numerical results arranged according tocHma@es. The column
Innerlt refers to the number of iterations necessary for the contipataf y,(x¥),
or y,(X¥) andy,(x), with the solvelSNOPT in each iteration.

Barzilai-Borwein method

k X K X Vs (X Innerlt

0 0.000000 0.000000  0.00000pD 0.136151808297924% 0O

1 0.007261 0.006910  0.00294(L 0.1360427094475938 14

2 | 17.628067 16.776627  7.1384400.0036885797244235 14

3 | 19.273268 16.174578 4.4927790.0007416785230008 14

4 | 21.026541 16.074125 2.8369860.0000032596075654 12

5 | 21.138745 16.004907 2.7224350.0000001156482999 8

6 | 21.151220 16.042181 2.7311680.0000000570958838 8

7 | 21.144064 16.028078 2.7251610.0000000002262616 8

8 | 21.144692 16.027979  2.7259050.0000000000047775% 4

9 | 21.144762 16.027865 2.7259760.0000000000000127 4

10 | 21.144768 16.027865 2.7259820.0000000000383554 2

11 | 21.144767 16.027865 2.7259820.0000000000000000 2
Relaxation method

k X K X Vo (X) stepsize| Innerlt
0 | 0.000000 0.000000  0.00000p0 90.8783016935181820 0.0000 0
1| 19.325861 17.174694 3.811536 0.1184021869776447| 1.0000 7
2 | 20.704322 16.105367 3.049513 0.0036631052660658 1.0000 6
3 | 21.036702 16.036753 2.808431 0.0002134195425450 1.0000 4
4 | 21.118192 16.029539  2.746413 0.0000129244012658| 1.0000 3
5| 21.138243 16.028243 2.731008 0.0000007843314006 1.0000 3
6 | 21.143180 16.027947 2.7272(7 0.0000000476926749| 1.0000 3
7 | 21.144396 16.027876 2.726271 0.0000000029210997| 1.0000 3
8 | 21.144696 16.027859  2.726040 0.0000000000000000 1.0000 3
Newton’s method based on optimization reformulation

k X K X Vo (X Innerlt

0 | 0.000000 0.000000  0.00000p 10.2971171700988862 O

1| 21.144786 16.027881 2.725962 0.0000000000000000, 14

Newton’s method based on fixed point formulation

k X x5 [lye ) = XK|| Innerlt

0 | 0.000000 0.000000  0.000000 26.1340202062020914 O

1 | 21.144800 16.027868 2.725956 0.0000000000000000) 7

Table 6.5: Numerical results for the river basin polluti@nge
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Barzilai-Borwein method

X X Vop(XX) Innerlt
0.100000 0.10000q 0.0000052653091851
0.099892  0.099892 0.0000051496217887
0.090643 0.090643 0.0000000207265598
0.090046  0.090044 0.0000000001068226
0.090000 0.09000Qq 0.000000000000000¢

A WNPEFOX
[ e Mec oo Ne]

Relaxation method

k X X V, (XK) stepsize| Innerlt
0 | 0.100000 0.100009 0.0263327223481960 0.0000 0
1| 0.087171 0.087171 0.002241833512414% 0.2500 4
2 | 0.090378 0.090378 0.0000397082293171 0.2500 1
3| 0.089905 0.089905 0.0000025173339792 0.2500 3
4 | 0.090024 0.090024 0.0000001572108120 0.2500 2
5 | 0.089994 0.089994 0.000000009304880% 0.2500 2
6 | 0.090001 0.090001 0.0000000005214422 0.2500 3
7 | 0.090000 0.09000Q 0.0000000000000000 0.2500 1
Newton's method based on unconstrained optimization maféation

k X X Vop(XX) Innerlt

0 | 0.100000 0.100009 0.0005120314348014 0

1| 0.090631 0.090631 0.0000019453839386 8

2 | 0.090003 0.090003 0.000000000047454%2 6

3 | 0.090000 0.090009 0.000000000000000( 2

Newton’s method based on fixed point formulation

k X x5 X e () = XK|| Innerlt
0 | 0.100000 0.100000 0.100000 0.162270443067772 O
1| 0.090238 0.090238 0.090238 0.0037588135778690 4
2 | 0.090000 0.090000 0.090000 0.0000000000000000 3

Table 6.6: Numerical results for the Internet switchingrapée using starting
pointx’ = (0.1,...,0.1)

Barzilai-Borwein method, terminated by force

X x5 X Vop(XX) Innerlt
0.100000 0.110000 0.120000 0.0000381000000002
0.099964 0.109960 0.119956 0.0000380695260959
0.010000 0.010000 0.01000pD 0.0000161999993167
0.064943  0.064943  0.064943 0.0000024579357576
0.100000 0.100000  0.100000D 0.0000052653091811
0.068976 0.068976  0.068976 0.000001924939141(
0.072177 0.072177 0.07217)7 0.0000015482299654
0.100000 0.100000  0.10000pD 0.0000052653091654
0.074779  0.074779  0.074779 0.0000012721816533
0.076936 0.076936  0.076936 0.0000010638817308
10 | 0.100000 0.100000  0.100000 0.0000052653091788
11 | 0.078753 0.078753  0.0787583 0.000000902846989(
12 | 0.080305 0.080305 0.080305 0.000000775788489(
13 | 0.100000 0.100000 0.100000 0.0000052653090356
14 | 0.081646 0.081646 0.081646 0.0000006737793841
15 | 0.082815 0.082815 0.08281p5 0.0000005906430434
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Table 6.7: Numerical results for the Internet switchingrapée using starting
pointx° = (0.1,0.12,...,0.19)
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Relaxation method, terminated by force

X X X Vo (X9 stepsize| Innerlt
0.100000 0.110000 0.120000 0.4260724139309636 0.0000
0.055000 0.060000 0.065000 0.0298453579367650 0.5000
0.090304 0.092485  0.09465[7 0.0264434723093843 1.0000
0.078749  0.080644  0.08253[1 0.0023467024352681 0.2500
0.083142 0.084771 0.08639 0.0001111978318160 0.2500
0.083670 0.085074  0.08647P 0.0000561849531093 0.2500
0.087607 0.088233  0.088856 0.0000505374595352 1.0000
0.087515 0.088055  0.08859P 0.0000103974935023 0.2500
0.088418 0.088807  0.089196 0.0000097726000341 0.5000
0.088479  0.088813  0.089148 0.0000033929490075 0.2500
10 | 0.088981 0.089223  0.089465 0.0000023853246782 0.5000
11 | 0.089063 0.089271  0.089480 0.0000012232352152 0.2500
12 | 0.089644 0.089736  0.089829 0.0000010429882894 1.0000
13 | 0.089633 0.089712  0.089793 0.0000002229457964 0.2500
14 | 0.089765 0.089822  0.089880 0.0000002032869300 0.5000
15 | 0.089775 0.089824  0.089874 0.0000000736802234 0.2500
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Newton’s method based on unconstrained optimization mefitation

X x5 X Vop(XX) Innerlt
0.100000 0.110000 0.12000p 0.003810000000022(
0.010000 0.010000 0.01000D 0.0016200000002407
0.100000 0.100000  0.10000pD 0.0005120314355159
0.090631 0.090631  0.09063 0.000001945383721¢
0.090003 0.090003  0.090008 0.0000000000474544
0.090000 0.090000  0.09000p 0.000000000000000(
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Newton’s method based on fixed point formulation

X x5 X e XY = K| Innerlt
0.100000 0.110000 0.12000p 0.436463056857163(
0.010000 0.010000 0.01000D 0.284604989436413(
0.100000 0.100000  0.10000p 0.1622713515888371
0.090238 0.090238 0.090238 0.0037589338084981
0.090000 0.090000 0.09000D 0.000000000000000(

A WNEOX
WhHhPFRPPFLO

Table 6.8: Numerical results for the Internet switchingrapée using starting
pointx° = (0.1,0.12,...,0.19)
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Barzilai-Borwein method

k X x5 Vo5 (X Innerlt

0 | 1.000000 1.000000f 0.0001999999999742 O
1 | 1.000000 0.999600| 0.0001998400319844 2
2 | 1.000000 -0.000009 0.000000000000000( 2

Relaxation method

k X X Vo (X9 stepsize| Innerlt

0 | 1.000000 1.000000 1.9999499999354007 0.0000 0
1| 1.000000 0.00000q 0.0000000000000000Q 1.0000 1

Newton's method based on optimization reformulation

k XK x5 Vop(XX) Innerlt

1
0 | 0.000000 0.000000{ 0.0110681478315567 0
1| 1.000000 -0.000000 0.0000000000000000 10

Newton’s method based on fixed point formulation

K X Xg ||Yty(xk) - Xk” Innerlt

1
0 | 1.000000 1.000000 0.9999999999353941 0
1 | 1.000000 0.000000 0.000000000000000( 1

Table 6.9: Numerical results for Rosen’s example
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Barzilai-Borwein method

k | X X5 X X X | Vo (X) | Innerlt

P=75

10.000000 10.000000 10.000000 10.000000 10.000P@N0268480539534721 0
10.001070 10.001579 10.002074 10.002531 10.0020@10268272037401402 14
12.817462 14.156111 15.461249 16.663323  17.64577B0009845862149476¢ 14
10.689551 13.066910 15.324900 17.297873  18.74532D0000092732708712 10
10.430158 13.023471 15.393945 17.378413  18.7720D@&B000000086452591( 8
10.406391 13.035304 15.407584 17.381497  18.770[7¥R0000000007169719 6
10.403678 13.035667 15.407236 17.381502 18.77153B0000000000200473 4
10.403886  13.035907 15.407414 17.381566  18.771R9R0000000000001722 4
10.403870 13.035891 15.407399 17.381551  18.77127B0000000000000139 2
10.403874 13.035891 15.407399 17.381551 18.771&5000000000000000d 2

100

10.000000 10.000000 10.000000 10.000000 10.0000P@N1020219378488034 0
10.002988 10.003580 10.004129 10.004584 10.00487121019411654908708 14
17.637915 19.151786  20.554940 21.720377 22.45502B002147474628376 14
14.600540 17.886589 20.784894 22.959137 24.0329%20000382036002087 12
14.075578 17.773689  20.889808 23.111326 24.137870000000151434759¢ 10
14.053873 17.798219 20.907911 23.111158 24.1318%B0000000019138247% 8
14.049869 17.798091 20.906969 23.111440 24.1330@&7000000000032446( 6
14.050123 17.798397 20.907212 23.111459  24.1328770000000000001882 4
14.050107 17.798382 20.907196  23.111444  24.1328@&B0000000000000107% 2
14.050115 17.798382 20.907196 23.111444  24.1328@B000000000000000d 2
14.050115 17.798382 20.907196 23.111444  24.1328@&B000000000000000( 2

150

10.000000 10.000000 10.000000 10.000000  10.0000@D4015502352185649 0
10.007001 10.007725 10.008291 10.008588  10.0084%D401229653787595 18
27.581167 29.400812 30.821726  31.568544  31.32164500262459982833271 18
24.142654  28.700749 31.861325 33.139026  32.342[11B0000426540202867 12
23.600032 28.667245 32.016883 33.289873  32.4180460000000516033283 12
23.589835 28.684688 32.021791 33.286980  32.418230D000000000242757% 10
23.588618 28.684232 32.021454  33.287291  32.418{18D0000000000031846 6
23.588697 28.684322 32.021511 33.287265 32.41821B0000000000000178§ 4
23.588690 28.684322 32.021504  33.287265 32.41821B000000000000000( 2

200

10.000000 10.000000 10.000000 10.000000  10.0000@D9008965096018073 0
10.011344 10.012106 10.012512 10.012407 10.0116769001761099880241 20
38.371089 40.278778 41.294023 41.030151 39.1988770013693429954593 20
36.065684  40.686198 42.687317 41.907698  38.7138@10000130260916454 16
35.788937 40.745185 42.803534 41.966728  38.693647000000005330622(
35.785448  40.749010 42.802408 41.966346  38.69705%#0000000000110361
35.785340 40.748952 42.802469 41.966375  38.696840D000000000000071§
35.785347  40.748952 42.802488 41.966375  38.69684D0000000000000013
35.785344  40.748952 42.802488 41.966375  38.696840000000000000000(
35.785345 40.748952 42.802488 41.966375  38.696840000000000000000(
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Table 6.10: Barzilai-Borwein method, Cournot oligopoly
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Relaxation method

k ] XK X X Xk X | Vo (X) | stepsize]| Innerlt |
P=75

0 | 10.000000 10.000000 10.000000 10.000000 10.000P(®28.8786429070255508 O 0
1 13.012779 14.054536 15.077163 16.029954 16.825p5683.5863763599505036 1 7
2 | 11.285846 13.311206 15.235897 16.937369  18.2296820.3540710625785035 1 5
3 10.704955 13.106954 15.332147 17.236881 18.6190620.0366161338762231 1 4
4 | 10.507367 13.052936 15.377109 17.334696 18.7278930.0039489433586007 1 4
5 | 10.439626 13.039433 15.395804 17.366456  18.7586810.0004407116225397 1 3
6 10.416270 13.036369 15.403095 17.376688 18.7675790.0000505346883797 1 3
7 | 10.408178 13.035815 15.405831 17.379981  18.770[L960.0000059183085803 1 3
8 10.405378 13.035815 15.406784 17.381016 18.771p070.0000007309734651 1 2
9 | 10.404398 13.035815 15.407169 17.381377 18.771p410.0000000918735889 1 2
10 | 10.404046 13.035851 15.407310 17.381493 18.7713010.0000000000000000 1 2
P =100

0 10.000000 10.000000 10.000000 10.000000 10.000PB36.0501506003590748 0 0
1 | 17.833057 19.050570 20.189450 21.150398 21.776p244.8985691329028089 1 7
2 15.207009 18.069357 20.605740 22.548004 23.5698890.3897086827633425 1 6
3 | 14.408248 17.849890 20.795596 22.950904  23.995B3630.0331524073207579 1 5
4 14.161944  17.805297 20.868563 23.065798 24.098(3980.0029760163785664 1 4
5 | 14.085258 17.797975 20.894328 23.098440 24.123P980.0002781506763527 1 4
6 | 14.061206 17.797529 20.903009 23.107717 24.130p390.0000267855976024 1 4
7 14.053618 17.797915 20.905866 23.110376 24.132P250.0000026365305624 1 3
8 | 14.051213 17.798180 20.906774 23.111128 24.132[7050.0000002639463250 1 3
9 14.050453 17.798289 20.907047 23.111345 24.1328660.0000000281294894 1 2
10 | 14.050207 17.798347 20.907143 23.111409 24.1328940.0000000000000000 1 2
P =150

0 | 10.000000 10.000000 10.000000 10.000000 10.000P(®®60.3391382693284868 O 0
1 27.861564 29.366477 30.558893 31.203707 31.009B593.3981613265572332 1 9
2 | 24.632641 28.734751 31.626029 32.850552  32.156[0260.1804220099046543 1 6
3 23.846734 28.671683 31.919700 33.194867 32.3670160.0102235564269385 1 6
4 | 23.653031 28.675783 31.996005 33.267441  32.407[7400.0006072128116255 1 6
5 23.604847 28.681014 32.015203 33.282960 32.415P760.0000373064440210 1 5
6 | 23.592767 28.683251 32.019964 33.286283 32.417|7350.0000023469891688 1 4
7 | 23.589726 28.684002 32.021128 33.287038 32.418[1060.0000001503470039 1 4
8 23.588960 28.684201 32.021408 33.287226  32.418P050.0000000105297725 1 2
9 | 23.588765 28.684288 32.021485 33.287257 32.418p050.0000000000000000 1 2
P =200

0 10.000000 10.000000 10.000000 10.000000 10.000P(@H92.9209675026095283 0 0
1 38.595613 40.204251 41.080180 40.865307 39.2546481.2868808680857118 1 10
2 | 36.344525 40.610616 42.510038 41.804641  38.730[L800.0417678220639321 1 8
3 35.896154 40.715637 42.751504 41.940932  38.695[/720.0015123953742686 1 7
4 | 35.807288 40.741280 42.793422 41.962130 38.6958800.0000574531909636 1 6
5 35.789690 40.747242 42.800846 41.965643 38.6965790.0000022363864192 1 5
6 | 35.786204 40.748594 42.802181 41.966242  38.696|7790.0000000888394029 1 3
7 35.785510 40.748872 42.802431 41.966359  38.6968290.0000000036951777 1 2
8 35.785374  40.748937 42.802468 41.966379  38.6968420.0000000001307215 1 2
9 | 35.785360 40.748951 42.802468 41.966379  38.696B420.0000000000000000 1 1

Table 6.11: Relaxation method, Cournot oligopoly
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Newton’s method based on optimization reformulation

k| XK X X Xk X | [1ye (XY = XK|| [ Innerlt ]

P=75

10.000000 10.000000 10.000000 10.000000 10.000P0R.6786204605270996 0

11.014554 13.105738 15.130358 16.959172  18.384P208.0064462863037402 14

10.405898 13.034733 15.406324 17.381103  18.770B856.0000000558757351 8
4
2
2

10.403849  13.035879 15.407384 17.381549  18.77133B3.0000000000004384
10.403859 13.035877 15.407382 17.381548  18.77133@.0000000000000535
10.403863 13.035877 15.407382 17.381547  18.77133@.0000000000000000
=100
10.000000  10.000000 10.000000 10.000000  10.0000P0®.1939346917138204 0
15.431454 17.979156 20.324112 22.223645  23.33486.0330866131224870| 14
14.055011 17.795377 20.905247 23.111411 24.132[776.0000003126881686| 10
14.050101 17.798372  20.907203 23.111424  24.132P0G8.0000000000000851 4
14.050097 17.798373  20.907204 23.111424  24.132903.0000000000000000 2
=150
10.000000  10.000000 10.000000 10.000000  10.0000CW.1459577329819694 0
26.213388 28.810884 30.821384 31.844606  31.465[176.1144536600658421 18
23.594821 28.681442 32.022050 33.289099  32.41908@.0000005886128564| 12
23.588697 28.684325 32.021503 33.287262  32.41810.0000000000000000 8
=200
10.000000 10.000000  10.000000 10.000000  10.0000@®.082659211275768( 0
38.411841 40.116481 41.037314 40.813982  39.08146@.1305591329655253] 20
35.788495 40.748594  42.804137 41.967241  38.697[10@.0000002088390430| 15
35.785339  40.748957 42.802481 41.966382  38.696B40.0000000000000000 8
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Table 6.12: Newton’s method based on optimization refoatioh, Cournot
oligopoly

Newton’s method based on fixed point formulation

[ kK] X x5 X X X | e (XY = K| [ Innerlt |

P=75

0 | 10.000000 10.000000 10.000000 10.000000 10.000P0(.5863027186178531 0
1 | 10.727996 13.099087 15.304209 17.218265  18.650448.2667545777621945 7
2 | 10.403967 13.035818 15.407354 17.381555 18.771306.0000000000000000 4
P =100

0 | 10.000000 10.000000 10.000000 10.000000 10.000p@2.5856681233344716 0
1 | 14.742243 17.889842 20.649363 22.776440 23.942{112.5830566903965523 7
2 | 14.050339 17.798223 20.907147 23.111451 24.132B40.0002091129151843 5
3 | 14.050091 17.798381 20.907187 23.111428 24.132P1@.0000000000000000 2
P =150

0 | 10.000000 10.000000 10.000000 10.000000 10.000PERN.8079718213763484 0
1 | 24.666020 28.638950 31.530397 32.884666 32.279P960.9504256360932131 9
2 | 23.588783 28.684250 32.021532 33.287256  32.418]178.0000000000000000 7
P =200

0 | 10.000000 10.000000 10.000000 10.000000 10.000P@Y.1154610852267837 0
1 | 36.770882 40.503658 42.325655 41.769703 38.630{100.9181893886394852 10
2 | 35.785304 40.748979 42.802485 41.966390 38.696B4Q.0000305348293455 7
3 | 35.785335 40.748961 42.802484 41.966378 38.696B402.0000000000000000 2

Table 6.13: Newton’s method based on fixed point formulat@wurnot oligopoly
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Barzilai-Borwein method, termination forced

k X X K Vo (XX) Innerlt

0 0.000000 0.000000 0.000000 3.0311662234453252 0

1 0.051406 0.035012 0.01784]1 3.0251475139957620 64

2 | 47.368574 32.250330 16.4330100.0715357894412136 64

3 | 41.663602 26.906336 12.4473890.0157110871790564 62

4 | 43.637895 28.816875 13.7868740.0022529927912274 48

5 | 43.777938 28.987535 13.8508590.0019860267947251 50

6 | 45.134373 30.619596 14.4519770.0006981427206973 52

7 | 45.828495 31.384372 14.5090430.0004955949266563 48

8 | 46.246198 31.699690 15.0887370.0001743351052406 62

9 | 45.975878 31.537081 14.6329480.0003304410778542 42

10 | 46.470766 31.998881 14.9807230.0001725436483664 46

11 | 46.296809 31.831463 14.8597630.0000254077725542 46

12 | 46.314363 31.846087 14.8706730.0000230479308367 34

13 | 46.616490 32.102620 15.0423680.0000009312260811 34

14 | 46.661529 32.243389 14.8298380.0000090882841041 38

15 | 46.652374 32.142600 15.0063360.0000003026499943 42

Relaxation method, termination forced

k X x5 K x5 Vo (X9 Innerlt | Stepsize
0 0.000000 0.000000 0.000000 0.000000 0.00000®2371.609423432535550L 0O 0.000
1 | 80.000000 68.380846 25.181592 50.158649 21.70852R2744.2808159713604255 32 1.000
2 0.526463 1.097102 6.268441 0.000000 3.51260312072.07944692712044304 27 1.000
3 | 80.000000 65.449158 24.363140 47.788213 20.926/B¥689.0644626562789199 33 1.000
4 4.331442 2.622106 6.698038 0.000000 4.4443587147.0035835723028868 27 1.000
5 | 80.000000 63.251739 23.745700 46.062377 20.353448U157.4454841218612273 32 1.000
6 7.146937 3.735045 7.011569 0.246908 5.0209983693.758845112795825L 25 1.000
7 | 80.000000 61.617456 23.286507 44.792163  19.930[748.658.2507151712889026 32 1.000
8 9.230623 4554719 7.242499 0.871427 5.23078B1241.6921930087737564 25 1.000
9 | 80.000000 60.404915 22.945817 43.855209 19.617p329870.5953501933618099 31 1.000
10 | 10.773381  5.160365 7.413115 1.334715 5.3864629483.8909876110883488 26 1.000
11 | 80.000000 59.506641 22.693269 43.162108 19.38582B581.4010472223126271L 23 1.000
12 | 11.915649  5.608469 7.539364 1.677942 5.5018328214.036633865944168L 26 1.000
13 | 80.000000 58.841307 22.506357 42.648948 19.2143%F645.763287423422298P2 25 1.000
14 | 12.761360 5.940151 7.632825 1.932217 5.58722@7291.2047398758331838 25 1.000
15 | 79.958887 58.348674 22.367940 42.269055 19.087¥2b6941.2895882350239845 25 1.000

Table 6.14: Numerical results for the electricity markedmple |
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Relaxation methody = 1, termination forced

101

k X X Vo (X Innerlt | Stepsize
0 0.000000 0.000000 0.000000 0.000000 0.00000®2371.609423432535550L O 0.000
1 | 80.000000 68.380846 25.181592 50.158649 21.708528744.2808159713604255 32 1.000
2 | 40.263232 34.738974 15.725016 25.079324 12.610p8433.3390410686054182 27 0.500
3 43.284224  33.273137 15.315784  23.038547 12.6448888.5324916592153031 26 1.000
4 | 45.189424 32.866192 15.202456 22.690663 12.5330502.4301259557224184 21 1.000
5 45.729968 32.348829  15.057528 22.275656  12.395[1860.9249245813960247 24 1.000
6 | 46.399782 32.406838 15.074095 22.311452 12.4076400.5504151289254504 24 1.000
7 46.332824  32.123566  14.994591 22.088695 12.333[3890.4542232682575659 22 1.000
8 | 46.696199 32.293364 15.042407 22.217135 12.3763260.4263998492369000 18 1.000
9 46.589291  32.181398 15.010933 22.130224 12.3473420.0040787136268533 18 0.500
10 | 46.625111 32.167024 15.006902 22.118069 12.3434180.0010068732068689 15 1.000
11 | 46.644134 32.160958 15.005130 22.112926 12.3416370.0002509667549085 21 1.000
12 | 46.652319 32.156890 15.004052 22.109556 12.3406360.0000650451317720 20 1.000
13 | 46.657626 32.155917 15.003742 22.108712 12.340R030.0000190872658195 18 1.000
14 | 46.659011 32.154411 15.003360 22.107535 12.339[7850.0000079338418535 18 1.000
15 | 46.660938 32.154646  15.003435 22.107580 12.3398860.0000049292382130 12 1.000
Newton’s method based on optimization reformulation

k X x5 K X Vo (XX) Innerlt

0 | 0.000000 0.000000 0.000000 0.000000 0.00000285.800637954074773 0

1 | 80.000067 23.536227 12.590189 15.420989 10.120063.8613630619447576 61

2 | 46.661637 32.153992 15.003106 22.107226 12.33959®.0000000000159522 24

3 | 46.661622 32.154032 15.003126 22.107200 12.339H83€.0000000000000000 8

Newton’s method based on fixed point formulation

k XK K K Xk K Iy () = XK]| Innerlt

0 0.000000 0.000000 0.000000 0.000000 0.000000.23.161018206341239% O

1 | 80.000000 23.536242 12.590164 15.421419 10.118p482.3691037849047198 32

2 | 46.661622 32.154050 15.003109 22.107198 12.339H84.0000000000000000 14

Table 6.15: Numerical results for the electricity markesmeple |




Barzilai-Borwein method

k X1 X2 X3 X4 X5 X6 X7 Xg Xg X10 Vaﬁ(xk) Innerlt

0 | 117.00 356.00 176.00 328.00 123.00101.00 300.00 176.00 328.00 176.000.000544174981334( 0

1| 117.00 356.00 176.00 328.00 123.00101.00 300.00 176.00 328.00 176.000.0005437172349780 28

2 | 117.66 356.62 176.19 328.49 123.74101.70 300.35 176.22 328.49 176.210.0000008561955186 28

3| 117.64 356.63 176.21 328.47 123.Y9101.69 300.32 176.21 328.47 176.210.0000000069543561 18

4 | 117.64 356.63 176.21 328.47 123.79101.69 300.32 176.21 328.47 176.210.0000000000565859 10

5| 117.64 356.63 176.21 328.47 123.Y9101.69 300.32 176.21 328.47 176.210.000000000000002( 8

6 | 117.64 356.63 176.21 328.47 123.79101.69 300.32 176.21 328.47 176.210.000000000000000(¢ 2

Newton’s method based on unconstrained optimization mafitation,a = 104,38 =5-10"*

k X1 X2 X3 X4 X5 X6 X7 Xg Xg X10 Vaﬁ(xk) Innerlt

0 | 117.00 356.00 176.00 328.00 123.00101.00 300.00 176.00 328.00 176.000.0005441749923731 0

1| 117.70 356.66 176.18 328,52 123.77101.74 300.36 176.23 328,51 176.230.0000030893444696 31

2 | 117.64 356.62 176.20 328.47 123.79101.68 300.32 176.21 328.47 176.210.0000000293252044 18

3| 117.64 356.63 176.21 328.47 123.Y9101.69 300.32 176.21 328.47 176.210.0000000004279991 14

4 | 117.64 356.63 176.21 328.47 123.7Y9101.69 300.32 176.21 328.47 176.210.0000000000662262 12

5| 117.64 356.63 176.21 328.47 123.7Y9101.69 300.32 176.21 328.47 176.21-0.0000000000053261 6

6 | 117.64 356.63 176.21 328.47 123.Y9101.69 300.32 176.21 328.47 176.210.0000000000000000 4

Relaxation method

k X1 X2 X3 X4 X5 X6 X7 Xg Xo X10 Vo (X9 stepsize| Innerlt
0 | 100.00 100.00 100.00 100.00 100.00100.00 100.00 100.00 100.00 100.0015298.0520053010204720 0 0
1| 11759 296.42 169.77 278.82 130.25102.89 263.22 169.75 278.82 169.75 434.2703592396658792 1 29
2 | 117.67 353.94 176.43 328.72 123.%8101.70 304.72 176.42 328.72 176.42 0.9584084392662747 1 12
3 | 117.64 356.77 176.20 328.46 123.80101.69 300.62 176.20 328.46 176.20 0.0047460645900628 1 10
4 | 117.64 356.64 176.21 328.47 123.19101.69 300.30 176.21 328.47 176.21 0.0000138890875876 1 9
5| 117.64 356.63 176.21 328.47 123.79101.69 300.32 176.21 328.47 176.21 0.0000000912400164 1 6
6 | 117.64 356.63 176.21 328.47 123.79101.69 300.32 176.21 328.47 176.21 0.0000000000000000 1 3
Newton’s method based on fixed point formulation

k X1 X2 X3 X4 %s X6 X7 X8 X9 X10 llya () = X¥I Innerlt

0 | 100.00 100.00 100.00 100.00 100.00100.00 100.00 100.00 100.00 100.00380.8002984381889744 0

1| 117.72 1076.69 197.54 1012.10 90.04104.01 1144.65 209.96 1176.45 209.962031.1264201718749978 29

2 | 117.65 486.47 177.58 438.35 124.87101.68 323.17 175.13 366.18 175.13184.0779777475790979 19

3 | 117.64 357.02 176.22 329.46 123.92101.69 300.27 176.08 327.29 176.08 1.5412694384380414 14

4 | 117.64 356.63 176.21 328.48 123.Y9101.69 300.29 176.21 328.38 176.21 0.0966162993432361 8

5| 117.64 356.63 176.21  328.47 123.Y9101.69 300.32 176.21  328.47 176.21 0.0006802778139822 3

6 | 117.64 356.63 176.21 328.47 123.79101.69 300.32 176.21 328.47 176.21 0.0000000000000000 2

Table 6.16: Numerical results for the electricity markedmeple 1
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