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1 INTRODUCTION

This treatise is concerncd with the statistical information of extreme order statistics in
certain parametric models. Section 1.1 is a chapter-by-chapter overview of the contents
of this paper. Section 1.2 contains some basic definitions concerning statistical experi-
ments. In Scction 1.3, we recall the main ideas concerning the comparison of statistical
experiments.

1.1 Summary

In the asymptotic theory of statistics, local as well as global results were established. Take,
for example, LeCam’s local and global asymptotic bounds for risk functions of estimates or
the local and global asymptotic normality of statistical experiments. In the second chapter
of the present paper, we formulate a global version of the local result of Janssen and Reiss
(1988). We adopt their notation.

Before specifying our model, we give a short motivation. Assume that X, ..., X, are the
(random) lifetimes of n aggregates, and the lifetime distribution is unknown. In practice,
one obscrves the failure times Xj., < X2.o < --+ (so called "Typ II-censored data”). For
obvious reasons, it often makes no sense to wait until the last aggregat has failed. So
one has to come to a statistical decision based on the first k(< n) observations. Since
Xkt1:my---yXn:n are not observed, we suffer a loss of information. For many lifetime mod-
els, the smallest observations turn out to be very informative. Consider the following
particular case: The Weibull distribution with shape parameter a > —1 (for @ = 0 we
get the exponential distribution) is an important hfetlme distribution, and a large body of
literature on statistical models has evolved for it (see, for example, the book by Lawless
(1982). For the exponential distribution with unknown location parameter the minimum
Xi.n contains all the information.

In the following, we study location models of Weibull type distributions "near” the
exponential distribution. It turns out that the k smallest observations are important. In
order to give a guide how to choose k if one accepts a given loss of information, one has
to calculate the loss of information. This mathematical problem is treated within the
deficiency concept of statistical experiments in the sense of LeCam.

The starting point is a location family P, t € R, with Lebesgue density fi(r) = f(z—1),
where f is of Weibull type; that is f has a representation

ar
f(a:):{x (z) forz >0
0 forz <0

where r varies slowly at zero.

It is assumed that the shape parameter a > —1 is known to the statistician. If, for
example, r(z) = (1 + a)exp(—z'*?) we get the Weibull density. We get the generalized
Pareto density of type ILif r{z) = (1 + a)1(0,1)(z).



Now let Xj,...,X, be iid. random variables with common distribution P; and let
X1ny- -y Xnin denote the pertaining order statistics. It is well known that the order
statistic (Xy.n,..., Xn:n) is sufficient, i.e. 1t contains all the information about the un-
known parameter. We reduce the number of order statistics to the k(n) lower extremes
Xiny .-+ Xi(n):n and calculate upper bounds for the loss of information. These calcula-
tions will be carried out within the framework of deficiency of statistical experiments. We
restrict ourselves to the case —1 < a < 1. Notice that for @ > 1 the LAN condition holds.
The latter case is examined in Chapter 4.

We consider the statistical experiments E,, E,, Gx and G which arise out of this
context and which were already introduced by Janssen and Reiss (1988). In Section 2.1,
we collect their definitions. In Section 2.2, we establish an upper bound of the deficiency
between E, and E, ; using the Markov kernel criterion. Section 2.3 is concerned with
the asymptotic information contained in the k smallest order statistics. Theorem 2.3.3
shows the global sufficiency of the k(n) smallest order statistics. The comparison of the
four experiments within the deficiency concept will be carried out in Section 2.4. As
a suprising result, we find that A(E,,G) — 0 and A(E, k(n),G) — 0 as n — oo and
k(n) — oo (Theorem 2.4.1). This strengthens a result of Janssen (1989b).

Chapter 3 is concerned with Weibull type densities having a compact support [0, ] where
0 and b are singularity points. In contrast to the densities considered in the previous
chapter, a second singularity occurs at the right endpoint. Because of this fact, we must
take the upper extremes into consideration. In Section 3.1, we define these densities and
introduce the statistical experiments E,,, En,k‘_k,, G18G,, and Gl,h ®C~;'2,k2‘ Sections 3.2
to 3.4 are organized similar to Sections 2.2 to 2.4. In particular, we show that the k;(n)
lower and ky(n) upper extremes are asymptotically global sufficient (Theorem 3.3.2). This
extends a result of Weiss (1979).

Chapter 4 is concerned with Gaussian sequences of statistical experiments. We examine
the borderline case of Weibull type densities with shape parameter a = 1 in Section 4.1.
Here, we are in the almost regular LAN situation. If k(n) = o(n) tends to infinity at a
sufficiently fast rate, then one may conjecture that the k(n) lower order statistics are suf-
ficient. Theorem 4.1.1 gives the following solution: If lim,_. k(n)/log(n) = 1, then the
k(n) lower order statistics (Xj.p, ..., Xk(n)m) are asymptotically sufficient. Conversely, if
lim, oo k(n)/log(n) = 0, the statistic (Xx(n)41:ns- - - » Xn—k(n):n) turns out to be asymp-
totically sufficient. Section 4.2 provides a proof of the fact that in the regular LAN-case
(L,-differentiability), a fixed number of extremes does not contain any information (Theo-
rem 4.2.1). A characterization theorem is established in Section 4.3. We show that under
monotone likelihood ratios, a sequence of experiments has a non-Gerssien limit if and
only if a fixed number of extreme order statistics, asymptotically, contains information.
This result is suggested by a well-known criterion in the theory of sums of i.i.d. random
variables.

Chapter 5 is devoted to point processes. In Section 5.1, we recall the definition of a point
process and introduce some notations used in later sections. In Section 5.2, we show that
in the i.i.d. case the original experiment and the corresponding point process experiment
are equivalent (Corollary 5.2.2). Corollary 5.2.3 states that the loss of information due to a
reduction of order statistics in the original experiment is the same as in the corresponding
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point process experiment. Empirical point processes of Weibull type samples are concerned

in Section 5.3. It is in this section that we combine the results of Chapter 2 and Section
5.2.

I wish to thank Prof. R.-D. Reiss for drawing my attention to the problem of global

sufficiency. I am also grateful to Prof. A. Janssen for valueable suggestions concerning
Chapter 4.



1.2 Statistical Experiments

Here we list some basic definitions and recall some facts concerning statistical experiments.
For the remainder of Section 1.2, we refer to Milbrodt and Strasser (1985) and Strasser
(1985a).

1.2.1 Definition. Let T # 0 be an arbitrary set. A statistical ezperiment for the param-
eter set T is a triple

(1.2.1) E=(QA4{P:teT})

where (2, A) is a sample space and {P; : t € T} is a family of probability measures. If T
contains exactly two points, i.e. T = {t;,t2}, then E is called a binary ezperiment.

The experiment E is said to be homogeneous, if the measures Py, t € T, are mutually
equivalent, i.e. Py « Py and Py « P, for s,t € T.

The log-likelihood process of E with base s € T is the process

(1.2.2) (lo g(jl;t Nier

defined on (2, A, P,).

1.2.2 Definition. A homogeneous experiment E = (Q, A, {P : t € T'}) is called Gaussian
if at least one log-likelihood process is a Gaussian process.

For example, the statistical experiment
(R,B,{N(t0%,5%) : t € R})

is Gaussian, and is called Geussian shift on R, where N{u,0?) denotes the normal distri-
bution with expectation g and variance o?.

Every log-likelihood process of a Gaussian experiment is a Gaussian process.

1.2.3 Definition. Two statistical experiments £ = (3, 4,,{P, : t € T}) and F =
(R2,A42,{Q: : t € T}) are called equivalent (briefly E ~ F) if

(1.23) £{(log( G eriP.) = c((log(j—& eerl@s)

for every s € T.
Denote by E(T') the collection of all experiments for the parameter space T (£(T') is not
a set!). The elements of the quotient set £(T)/ ~ are called ezperiment types.
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We denote the product ezperiment of E and F by
EQF = xQA4RA{PQQ teT}).
The n-fold product experiment of E = (2,4, {P, : t € T}) is denoted by
m= QAP teTY)
where (£2",.4™) denotes the n-fold product space of (2,.A) and P* denotes the n-fold

product measure of Py.

1.2.4 Definition. A sequence of experiments
E, = (Qn,Any{Pnt (te T})a ne ]Nv

converges weakly to E = (2, A,{P; : t € T}) (briefly E,, — E) if for every finite subset o
of T and for every s € a

(1.2.4) L((lo g(d ))tEalpm) - E((log( ))tealp ) weakly.

The most important class of limit experiments are the Gaussian.

1.2.5 Deflnition. A sequence of statistical experiments E, = (Qp, An,{Pn¢ : t € T})
is called Gaussian sequence if the pertaining sequence of product experiments Ej =
(Qp, A%, {P}, : t € T}) has only Gaussian accumulation points.

A sequence (E,)n,en € E(R) is called asymptotically normal if it converges weakly to a
Gaussian shift (on R).

1.2.6 Definition. Let P, and @, be probability measures on (Q,,.A,), n € N. The
sequence (@, )nen 18 contiguous to the sequence (Pp)nen if

(1.2.5) P,(A,) — 0, A, € A, implies @Qn(An) — 0.

1.2.7 Definition. A sequence of experiments E, = (Qn, An, {Pnt : t € T}) is contiguous
if for every pair (s,t) € T'x T the sequence of probability measures (P,,)nen and (Prn)nen
are mutually contiguous.

The meaning of contiguity is the following: The weak convergence of a contiguous sequence

of experiments is equivalent to the weak convergence of one particular log-likelihood pro-
cess.

If E, — E weakly, then E is homogeneous iff (E,),en is contiguous.
Let us denote by
(1.2.6) P — Q|| == sup |P(4) - Q(A)]
A€A

the variational distance between two probability measures P and @, defined on some
measurable space (12, A).



1.2.8 Definition. A sequence of experiments E, = (Q,, Apn, {Pn¢ : t € T}) is said to be
infinitesimal if for every s, t € T

(127) "ango HPns - nt” =0.

Intuitively speaking, the assumption of infinitesimality guarantees that the influence of a
single measure is asymptotically negligible.



1.3 Comparison of Statistical Experiments

When investigating a complicated statistical experiment, it is sometimes useful to con-
struct another experiment which is close to the original one but is of statistically simple
nature. The usual way to obtain an approximating experiment is to embed the original ex-
periment into a sequence of experiments and to expand the log-likelihood function. As one
is normally more interested in approximations than in limit theorems, one has to estimate
the distance of the two experiments. A natural quantity for comparing two experiments is
the deficiency distance of LeCam. It is based on the comparison of risk functions available
in the two experiments.

The theory of comparison of statistical experiments was initiated by the papers of Black-
well (1951) and LeCam (1964). For an excellent full depth treatment of this topic, the
reader should consult the monograph by Strasser (1985 a).

Let T # @ be an arbitrary set and consider the experiments

E = (Q],A],{Pf te T})

and

F=(Q,A,{Q::t€T}).

Moreover, we consider decision problems (T, D, W) consisting of a topological space D and
a bounded, continuous loss function W : T x D — R. If D contains two elements, one
speaks of a testing problem. Let € > 0. E is called e-deficient w.r.t. F, if for every decision
problem (T, D, W) and for every decision function p; in F there exists a decision function
p1 in E such that for every t € T the following inequality between the risk functions is
valid:

(1.3.1) / / W(t, z)p1(wy, dz) dP(w))
¢ JD
S/ﬂ /L; W(t, z)p2(wz, dz) dQ(w2) + € sup.ep|W(t, z)|.
The deficiency of E w.r.t. F is the number
(1.3.2) S(E,F)=inf{e: E is € — deficient w.r.t. F}.

E is called more informative than F, if §(E,F) = 0. The deficiency between E and F
is the symmetrical quantity

(1.3.3) A(E,F) = maz{§(E, F),5(F,E)}.
E and F are equivalent iff A(E,F) =0.
The deficiency is a pseudodistance on the collection £(T) of all experiments for the

parameter space T. Moreover, (£(T)/~, A) is a complete metric space.
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A sequence of experiments E, € £(T) converges (in the strong sense) to an experiment
E € &T), if A(E,,E) — 0 as n — oo. The sequence (E,), converges weakly to E
iff Ag(En, E) — 0 as n — oo for every finite subset a of T. -With A, we denote the
restriction to the parameter set a.

Now, the famous rendomization criterion due to LeCam (1964) says that

(1.3.4) 8§(E,F) =infsup||Q: — MP|
M qeT

where the infimum is taken over all transitions (stochastic operators) from the L—space
L(E) of the experiment E to the L—space L(F') of the experiment F. In the case of equal
sample spaces we get A(E, F) < sup,ep || Py — Q¢||, since the identity defines a transition.

If, in addition, E is a dominated experiment and F is such that Q; is Polish (i.e.
metrizable as complete, separable metric space) and A; is the Borel o—field, then the

Markov kernel criterion holds, i.e. the infimum in (1.3.4) can be taken over all Markov
kernels I : A, x Q5 — [0,1] from (£, 4,) to (Q2,.4;), where by definition

(1.3.5) quq:/Kwﬂmnw”

If KP, = @ for some kernel K then E is more informative than F. In this case, E is
also called Blackwell sufficient or ezhaustive for F.

In general, it is not possible to calculate the deficiency; some exceptional cases may
be found in the paper of Tergersen (1972). Due to the Markov kernel criterion, an upper
bound of §( E, F) is obtained by sup,¢ ||@¢— K*Py|| where K* is some appropriate Markov
kernel. The choice of the kernel K* is crucial.

The relation between sufficiency and deficiency is the following. Let X : Q; — {3 be
any A, A;-measurable map with £(X|P;) = @,. Clearly, E is more informative than F,
since the transition

I"(AQ |w1) = 142 o X(wl)
satisfies K P, = Q,. If X is a sufficient statistic, then the statistical experiments E and
F are equivalent. If, in addition, 2z is Polish, then F is even Blackwell sufficient for E:

First, choose a conditional distribution P(:|X) € (,cy Pi(-|X) which is independent of

the parameter t. Second, find a version P(-|X) of P(-}X) which is the regular conditional
distribution. The kernel

K(Aylws) = P(A]X = wy)

satisfies ¥ Q; = P,. For more details concerning Blackwell sufficiency sece Heyer (1982).
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An experiment (2, A,{P; : t € T}) is said to be “totally uninformative” or "trivial”
if all measures P, are equal (see Heyer (1982), p. 240, LeCam (1986), p. 19). Such an
experiment is equivalent to Ey = (IR, B, {€¢g}) (Ep considered as an element of £(T')). The
totally uninformative experiment is the weakest element of £(T) in the sense that

§(E,E))=0  VE€E&(T).

The transition I(B|w) = 15(0), B € B, satisfies
eo(B) = /K(B|w)dP¢(w), teT.

Now, we recall the definition of asymptotic sufficiency, see Strasser (1985 a), p. 422,
423. Let E,, = (5, Ay, {Pny : t € T}) be a sequence of statistical experiments, where
T is a Hilbert space with 0 € T. Let X,, be an A,-measurable random variable, and let
F(S2n, A,) denote the set of all critical functions defined on (£2,,, A,,), n € N.

The sequence (X, ), is asymptotically sufficient (for E,) if

(1.3.6) lim |/ <p,,dP,,,—/ Ep,o(¢n]Xn)dPy| =0
Q. Q.

n—oo

for every t € T and for every sequence of critical functions ¢, € F(Q,,, A,), n € IN. .
The sequence (X,,), is asymptotically sufficient uniformly on compact subsets of T if

(1.3.7) lim supl/ @n APy —/ Ep,,(pnlXn) dP,,tl =0
2, Qn

ne0 e K

for every compact set &' C T, and for every sequence of critical functions ¢, € F{ (2., A,),
n€N.

Definition (1.3.7) is LeCam’s definition of asymptotic sufficiency, see the paper of LeCam
(1956) and the book by LeCam (1986), Theorem 1, p. 177.

In the last years, many papers have been concerned with the comparison of statistical
experiments. Besides the previously-mentioned papers and the famous paper of Torgersen
(1970) we quote the following ones:

Helgeland (1982) studied the increase in statistical information by adding independent
observations, where the underlying model is a 1-parametric exponential family.

Mammen (1983, 1986) deduced upper bounds for the gain of information due to addi-
tional independent observations for experiments which fulfill general dimensionality con-
ditions. Exponential families were also studied.

One dependent case can be found in the article of Lindqvist (1984), where homogeneous
Markov chains (X,), are concerned. Here the starting value Xy is concerned to be the
unknown parameter and the loss of information of X, is investigated if n tends to infinity.

The deficiency of one shift experiment relative to another on infinite dimensional Banach
spaces was studied by Luschgy (1987).



Janssen (1989a) was the first to recognize the importance of extreme order statistics
for exponential families. It was shown that the extreme order statistics asymptotically
contain all the information.

Approximate sufficiency of sparse order statistics (also in nonparametric models) was
investigated in the book by Reiss (1989).

The deficiency concept is a mathematically rigorous one. However, Lehmann (1989) in
his article Comparing location models came to the conclusion that the requirements for an
experiment to be more informative than another are "too strong to hold in many situations
in which intuition suggests that one experiment is more informative than another”. One
natural approach to weaken the requirements is to define the deficiency not for all decision
problems but only for some (appropriate) class of decision problems. This approach will
not be discussed is this paper.
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2 LOCATION EXPERIMENTS OF WEIBULL TYPE
The four sections of this chapter concern location families of Weibull type densities.

2.1 Definition and Notations
Let Py, t € IR, be a family of probability measures with Lebesgue density fi(z) = f(z—t),
where f is of Weibull type; that is, f has a representation
ztr(z) forxz >0
2.1.1 T)=
( ) f(@) { 0 forz <0
where a > —1 and r varies slowly at zero. Our starting point is the statistical experiment

(2.1.2) E, = (R",B",{P},:t€ R})

where the normalizing sequence (8, }new Will be explained in Section 2.3. (Throughout of
this paper, the dependence of the shape parameter a is suppressed in the notations since
a is held constant.)

The second experiment is .
(2.1.3) Eny = (RE,B¥ {Vore:t € R))
where
(2.1.4) Voo = L6 (X1imy - -y Xeen)IPE )

Notice that 6(Ep, En k) =0, i.e. E, is more informative than E,, .

Finally, we consider the experiments G' and G} which occur as limit experiments of E,,
and E, i, respectively. Let (Y;)iew be an i.i.d. sequence of standard exponential random
variables and denote

(2.1.5) Sm=)Y
=1
the m-th partial sum.
Define
(2.1.6) Qi = LS 4 8)ck)
and
(2.1.7) Qi = L((SYOF 4 ) nem)-
Then
(2.1.8) Gr = (R B*, {Qx, : t € R})
and
(2.1.9) G = (RN,BN {Q,:t e R}).
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The comparison of these experiments is carried out in Section 2.4, according to the following
diagram:

(2.4.9)
En — n,k
(2aan) | 1 (a20
— Gy
(2.4.16)



2.2 Upper Bound of the Deficiency between E, and E,
Let —1 < a < 1 and let P, be defined as in Section 2.1. Denote with

(22.1) EMP ()

the conditional distribution of (Xi:n,...,Xnw) given (Xiin,.. ., Xin) = (21,...,21)
=: z under the parameter t. It is well-known (see Reiss (1989), Theorem 1.8.1) that

(222) Ii'gn'k)('lﬁ) = €y X - X €g, X ‘C(l/l:n-—ky s 7Yn-k:n——k)

where €, denotes the Dirac measure at y and the Y, : € {1,...,n — k}, are i.i.d. random
variables with commeon distribution P, ., (the truncation of P, on the left at z).

Let F denote the distribution function of Py. If F(zy —t) < 1 then the distribution
P, ;, has the Lebesgue density

-

fi

2.2. e = < lzp,00)-
(22.3) fz, 1= F(zz — 1) Nz 00)

To obtain an upper bound of A(E,,, E, x) we choose a kernel of the following type:

-(n,k)
(224) I‘k’(th,.,...,Xk;n)(.IXl:n’ e vXk:n)

where & is an appropriate estimator of the unknown parameter. Janssen and Reiss (1988)

considered the kernel K((,"’k) for their local treatment of the problem on a right neighbor-
hood of 0. In our situation, a plausible choice of & will be the minimum, i.e.

(2.2.5) R(X1my -y Xkn) = X1in-
Using the kernel
(2.2.6) E{Hm) ()

we will be able to verify the global sufficiency of the k(n) smallest order statistics. The use
of kernels under an estimated parameter has turned out to be very successful in order to
establish bounds of the deficiency, sce e.g. Helgeland (1982), Mammen (1986) and Weiss
(1979). The upper bound of A(E,, E, ;) will depend on three auxiliary functions , g,
and 9, cf. Janssen and Reiss (1988),

hy)=y% ~(y-1)%,y>1,

227  9@)= / ((vir(y) — (v = VErd(a(y = 1))/} () — h(w)” dy,
P(2) = /OQ R (y) dy, z > 1.

We note that h € Ly(A) and % = 0 for a = 0.

13



2.2.1 Theorem. For k € {1,...,n},t € R, and € > 0 such that k/n < F(e) < 1, the
following inequality holds:

(228) “E((‘Yl:nv sty -Yn:n)ipt") - I{i":’k)['((Xl:na ) Xk:n)IPtn) II
S (1 - F(e))—%(n - k)%ll,n(IZn + I3,n,k) + Rn,k

where
Bo= [ renet de(Xialps) @),
(0.¢)
o= [ oo d(Xi,lB) @),
(0,¢)
I.’?,n,k = // T/V(i:i—k)(ZL:((‘Y‘:,”‘YA.:")'P&I) (131,417};),
T
(0,6} x(0,¢)
and

Ry x = cxp(—n(F(e) — %)2/3)

We remark that the right-hand side of (2.2.8) is independent of the parameter t!

PRrOOF OF THEOREM 2.2.1. For the sake of convenience, let us abbreviate the left-hand
side of (2.2.8) by p(n, k,t). Similar to the proof of Theorem (2.8) of Janssen and Reiss
(1988), we obtain

o, k1)
— sup | / (K™Y (Blz) - KOM(Bl2)) dL((Xnm, - . Xien) | PP) ()]

< / sup [K{""(Blz) - K{P(Ble)| dC((Xuiny -, Xeen)|PF) ()
BeB®

= [[prst - PN AL KPP 1,22

e+t e+t

/ ”Pln”k Prnl z‘,, " dl:((“(l:n,‘Yk:n)lptn)(xla-Tk) + Ptn{Xk:n >€+ t}
t t
€+t e+t
< VA= / / H(Prpes Pryooy) AC((X 1o Xeo IPP) (21, 78) + PP {Xpin > € + 1),
t t

The last step follows from the inequality
H(P™,Q™) < V2mH(P,Q)

14



where

1 dP ) dQ 1/2\2 1/2

denotes the Hellinger distance between the probability measures P and Q.
In the following, let (z1,zx) € (f,€ + ) x (t,e +t). Then we find that F(ry — ) <
F(zp —t) € F(e) < 1. Since z + y > 2,/zy for z,y > 0, we obtain

SHY(Pyry Pryoos) = / (F2 () = 312, () dy
=2{1— (1= Flax— )1 = Fla —2)) ™ [ f‘”(y—t)f’”(y-x])dy}
= 2{1 — ((1 — F(zp — 1)) ~ F(xy — :::1)))_1/2

x|a- P41 R -z g (0G0 - P ) o]}

<(1-F(e))™! /(f”z(y —t)~ Yy~ 1))’ dy

=(1-F(e))™ / (F12(y) = £y = (21 = 1)) dy,

where the last step follows by substituting y by y + ¢. Combining these results, we get

€+t ett
p(n,k,t)g(l-F(e))—%(n~k)%//J(ml—t,mk—t)dL((Xm.,Xk:,.)IP,")(zl,wk)

+ L( Xk |P7) (€ + t, 00))
where
d(zy ~t,ex — 1) = / (Frw) = A = (@1~ 1) Las—r00 (v) dy.

Since {P;} is a location family, we obtain

(2.2.9)
p(n, k1) < (1 - F(e))"% (n— k)% // J(.rl,zk)dl:((XI:,,,Xk:,,)|P0")(:c1,zk)

(0,€)%(0,¢)
+ P(;I{Xk:n > 5}~
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Using the exponential bound for order statistics (see Retss (1989), Lemma 3.3.1) and the
quantile transformation we get

(2.2.10) Pi{ Xy > €} < exp(—n(F(e) — %)2/3)

for k/n < F(€) (cf. Lemma 2.8 of Janssen and Reiss (1988)). By substituting y by 1y
and applying the Minkowski inequality, we obtain

(2.2.11)
k9 1 7 1 1 2 12-
d(ll,xk)zxf( / (fi(z1y) — fr(z(y - 1)) dy)
EIVEN
e /T udr(ey) — (v — Dbz (y — H
byt (( [ im0 i)
Ik/I\
Sr%(ml)mfgi( / (ym(“y)_(Tgi,_z(i)f)ﬁ(xl(y_1))—h(y))zdyy
EIVES
prie)n ™ ([ wwa)
ETYEN

Now, using the Cauchy Schwarz inequality, combining (2.2.9) — (2.2.11), and taking into
account the definition of ¢ and 3, the proof is completed. a

It is obvious that using the kernel I\’é"‘k) it is not possible to establish an upper bound
of the deficiency independent of the parameter. Because of this, one has to restrict the
parameter space to compact sets.

Let us denote the right-hand side of (2.2.8) by D(n, k). Notice that D(n, k) is an upper
bound of the deficiency between E, and E, ¢, i.e.

(2.2.12) A(Ew, En i) < D(n, k).
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2.3 The Asymptotic Information Contained in the k Smallest Order Statistics

Once again, let F' denote the distribution function of Py. We recall that for the normalizing
sequence 8, = F~!(1) occuring in E, and E,x, we have (see Bingham et al. (1987),
Theorem 1.5.12)

1
(2.3.1) E I AT
n
for some slowly varying function L.
From the theory of regular variation it is known that densities of type (2.1.1) fulfill the

von Mises condition

(2.3.2) lim

(see Bingham et al. (1987), Proposition 1.5.10). Condition (2.3.2) implies that F' belongs
to the strong domain of attraction (see Falk (1985) or Sweeting (19853)), i.e. convergence
of the extremes holds w.r.t. the variational distance

(233) L0667 (Xriny . os Xien)|PE) — L£(SOF L S+ 0 a5 n — oo,

We will assume that for some ¢ > 0

(2.34) r is bounded on (0, €) and limlionf r(z) >0,
x

or

(2.3.4) r is decreasing on (0, €).

Note that r(z) > 0 for z € (0,z) and for some x.
In addition, we assume that the following condition of Janssen and Mason (1989) is
fulfilled. First, it is assumed that

o

(2.3.5(1)) /(f‘/:’(.r — 1) = fF1%(x))  dz = o(t"*r (1)) (¢ | 0)

€

for each € > 0.

Condition (2.3.5) (i) says that the Hellinger distance is mainly determined by the local
behaviour of the density at the singularity 0. Moreover, no other singularities of higher
order occur.

Now, let

T($) = I(T)Tl('L') - l(ﬂf)ezp(/” @ du)

for some z > 0, l measurable and I(¢) — ¢ € (0,00), b(x) — 0, as z — 0, be the Karamata
representation of the slowly varying function r (see e.g. Bingham et al. (1987), Theorem
1.3.1) It is known that ry is absolutely continuous on (0, z9) with zr{(z)/ri(z) = b(z) a.e.
(see Bingham et al. (1987), p. 15).

17



In addition, [ is assumed to be continuous on [0, zo] with {{0) > 0 and

z0/2
(2.3.5(i1)) / (11/2(3: +1)— 11/2(:::))235"1“1(:0)(11 = o(tH"'r(t))

ast | 0.
Under condition (2.3.5), Janssen and Mason (1989) proved that

(2.3.6) lirx}) g(z) =0,

sce Lemma 10.13.

Moreover, we nced moment convergence of the normalized sequence 6,7 1X1.n. Concern-
ing limit theorems for moments of extremes, we refer to Polfeldt (1970), p. 45, and to the
book by Resnick (1987), Chapter 2.

2.3.1 Lemma. Assume that

(2.3.7) Ep, X1 <oco  ifa€(~1,0]
Ep, X} < o0 ifa€(0,1).
Then
(2.3.8) limsup/ rite d£(6;1X1:n|P(;') (x) < C € (0,00)

for some constant C > 0.
Condition (2.3.7) is always satisfied in standard cases.

ProOOF OF LEMMA 2.3.1. Let a € (—1,0] (the case a € (0,1) may be treated in a similar
way). Since F belongs to the (weak) domain of attraction of a (min-)stable distribution,
condition (2.3.7) implies that the first moment of ;! Xj., converges to the first moment
of the limiting distribution, i.e.

(2.3.9) lim /mz(&;‘xlmm;’) (z) = /xdﬁ(s}/““)) (¢) = Cs < 0

(see Resnick (1987), Proposition 2.1).
Now the proof can be easily completed. »

2.3.2 Theorem. Let f be a density of type (2.1.1), and assume that (2.3.4) ((2.3.4')),
(2.3.5), and (2.3.7) are valid. There exists a constant C > 0 such that

1

2

(2.3.10) lim D(n,k) < C (Ew((%)l/(l-Hﬂ))
n-—o0o 1

18



PROOF. 1) First, let condition (2.3.4) be fulfilled. Substituting é,,z for z, we obtain for
some constant C > 0

(n—k)I}, < C(n—k)érte / 28t AL (6 X1l PY) (1)
(0,65"¢)

Moreover,

(2.3.11) rlli_'n;o(n — k) (6nz1) FC r(bnzy) = (1 + @)t

Taking into account Lemma 2.3.1 and condition (2.3.4), we obtain

lim sup (n — k)!'/? L, < oo.

n—oo

In the case (2.3.4'), we proceed as follows: Let s > 0. Then
(=K B < [0 = ) () ¥ r(B00) AL (85 Xl ) 1)
0

6;16
+(n— k)8t r(6,3) / 3 dL(6, X1l PT) (21)-

Janssen and Reiss (1988) showed that
(2.3.12) lim  sup (n—k) (62 ) r(6,xy) = (1 4+ a)site.

n—00 0<1 <

Now using (2.3.11), (2.3.12), and Lemma 2.3.1, we see that limsup,,_, o.(n — k)21, < oo
also holds under condition (2.3.4').
2} An upper bound of I, , is obtained as follows:

B, = / 9(6a71) AL (67 X 1n| PP (1)

0,67 %)
= / 9(8az1) dL(S}/ 1) (1)
(0,671
+ el £(67" Xyl B) — L(SL/OHY)
=1 A, + B,

where ¢; := supg, .. g¢(z1). Notice that ¢, is finite because of (2.3.6). From (2.3.3),

we know that B! tends to zero as n tends to infinity. An application of the dominated

convergence theorem of Lebesgue shows that A}, also tends to zero as n tends to infinity.
3) Similar to 2), we obtain

S
B.i< Ew((gf)‘/““’)

IR NE(E (K Xian)IPG) = £S5}/, 57040y,
The assertion follows from 1) - 3) and inequality (2.2.8) . w

19



2.3.3 Theorem (Global Sufficiency). Suppose that the conditions of Theorem 2.3.2
are fulfilled.

(i) Let a € (~1,1),a # 0. There exists a constant C > 0 such that
(2.3.13) A(En, By i) < CEEeD/@0+0) 4 o(n0),
(i1) If a =0 then

(2.3.14) A(En, Eyp 1) = o(n®).

Remark. Theorem 2.3.3 states that the k(n) lower extremes (Xi.n,...,Xk(n)n) are
asymptotically global sufficient in the sense that

(2315) lim A(E",En k(n)) =10

n—oo
whenever k(n) with k(n) — oo as n — oco. This has an important consequence in testing

theory. Assume that ¢, (X1,...,X,) is a test for E,. Then

(fan,k(l:_) = EP;'l (3011,(X]:1n e ’Xk:n) == ﬁ) = /Lpn(y)lf;ﬁ?‘k)(dyv Q), T = (Il, sy zlc)»
is a new test—bascd on the k smallest observations. We obtain

lsélglEP,"(Pn - EP," E‘P,"1 (@nl(Xlzny - ach(n):n))t < A(EnaEn,k(n)) — 0

for n — oo and k(n) — oo.
In the paper of Janssen and Reiss (1988), it was shown that

lim A (En,En Ic(n)) - 0

n—oo

where A, indicates the restriction to the compact parameter set [0, s].

Proor or THEOREM 2.3.3. (ii) is immediate from Theorem 2.3.2, since ¢ = 0 for a = 0.
So it remains to consider the case a # 0. First observe that (z > 1)

2

(2.3.16) W(z) =/ W (y) dy < 4(1—

)(Z——l)a 1

To verify (2.3.16) use the mean value theorem. Notice that

(2.3.17) = = ULk-1



where the symbol 2 denotes equality in distribution and Uy.x-1 is the minimum of k& ~ 1
iid. (0,1)-uniform random variables (Uy, := 1). Now let k > 2 and choose 6 € (%,1).
From (2.3.16) and (2.3.17), we deduce:

(2.3.18)

2
E¢(U;;£(ll+a)) < 4(1(1_ a) / (u-—l/(1+a) _ l)a—l dL(U]:k_l )(u)
(0,8)

+ R} P{Urk—1 > 6}

Once more, applying the exponential bound for order statistics (compare with (2.2.10)),
we sce that

(2:3.19) P{Urics > 6} < eap(~(k = 1)(6 — 2= )"/3)

holds. A bound of the other expression on the right-hand side of (2.3.18) is obtained as
follows: Substituting u by u/(k — 1), we get

(2.3.20)
/ (w1048 _ 1y 1d 0 (U sr) (v)
©.,8)
(k—1)5
=(k—1)iF / (uTe — (k- 1)7)°* 7 dL((k — D)U1xy) ()
° (k-1)6
< (k- 1) (1 - 6m47)2! / wt¥e dL((k — D)U1e_r) (v)

where the last inequality follows from the fact that for u € (0, (k — 1)6) we have

u1/Q+a) (k- 1)—1/(1+a) >(1- 51/(l+a))u—1/(l+a).
If

(2.3.21) lim sup / pi—0/0+e) dC((k — 1)Us:p—1) () < o0,

k—

oo
(0,(k—1)é)

then the proof follows from Theorem 2.3.2 and (2.3.18) — (2.3.21). To verify (2.3.21), we
may apply the same arguments used in the proof of Lemma 2.3.1. Notice that in case of
the uniform distribution, moments of arbitrary order do exist. »
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2.4 Comparison of the Statistical Experiments E,, E,, ;,G and G

In Janssen (1989) (sec also Janssen and Reiss (1988)) it was shown that A,(E,,G) —
0 and A (E, x(n),G) — 0 as n — oo and k(n) — oo, where s indicates the restriction
to the compact parameter sct [0, s]. The next theorem states that the same holds on the
whole real line. This is a suprising result. Usually, one has to restrict the parameter set
to compact sets, see LeCam (1986), Theorem 2 (Theorem of Lindae), p. 92, and Remark
2, p. 93.

2.4.1 Theorem (Strong Convergence). Assume that the conditions of Theorem 2.3.2
are valid. Then

(2.4.1) A(E,,G) = 0asn— oo
and
(2.4.2) A(E, k(n),G) = 0 asn — oo

whenever k(n) < n and k(n) — co as n — oo.

PROOF. Theorem 2.3.3 states that A(Eq, B, k(n)) — 0 as n — oo, k(n) — oo. Now, by
omitting the index s, we sce that the proof of (2.4.1) is a repetition of the proof of Lemma
(5.21) in Janssen and Reiss (1988).

(2.4.2) is immediate from A(E;, k(n), G) < A Ep k(n)s En) + A(Ep,G). »

In the following, we cstablish rates of convergence. First, we proof

2.4.2 Lemma. Let f fulfill (2.1.1) and let 0 < X < 1. There exists a constant C > 0 such
that

(1) fora € (—-1,1}),a #0:
(2.4.3) D(n,k)

< c((W-”/“(H“” (T (Ko, X IPF) — £(S)/0F) 51/ ¥ 3

+( / g(6n$1)d£(5;/(l+a))(-’I)]))%>

(0.677¢)

(i1) for a =0:

Wi

(2.4.4) Din,1) < ¢ / g(Enz:)dL(S1) (1))
(0,67 "€)

foralln € IN and k < An.
PRrOOF. For k < An we have
k ,
exp(~n(F(e) — ;)2/3)) < exp( — k(F(e) — M) /(3))).

Now (2.4.3) and (2.4.4) follow from Theorem 2.2.1 and from the arguments of the proofs
of Theorems 2.3.2 and 2.3.3. »



The upper bounds (2.4.3) and (2.4.4) involve the term g{én,z1). To establish rates of
convergence one has to impose further assumptions (cf. Janssen and Reiss (1988)). Let

(2.4.5) r(z) = cexp(h(z)), 0 < < zo
where ¢ > 0 and /i satisfies the condition
(2.4.6) [h(2)| < La”

for some constant L > 0 and vy > 0. Note that lim,_,o r(z) = ¢, and that condition (2.3.4)
is fulfilled.

Under condition (2.4.5), we may choose the normalizing sequence

(2.4.7) bn = ((1 + a)/c)/IFe) 1/ (ta),
Note that &, ~ 8, and that (2.3.3), (2.4.3), and (2.4.4) hold with §, replaced by b
First, we treat the case a # 0.
2.4.3 Theorem. Let a € (—1,1), a # 0. Assume in additon to (2.1.1) and (2.4.5) that f
is absolutely continuous on (0, 00) and that
00 (.} 2

(2.43) (=)

0 r(z)

Then for every A € (0,1) there exists a constant C > 0, such that forn € IN and k < An
the following inequality holds:

(24.9) A(En, Eui)
< C((k(a—n/uma)) +(Eyraoran 4
n

z%dz < 0.

k

n

)1/2 +nma:{a-—l,——2'y)/(2(l+a))>.

PrOOF. Throughout, C denotes a generic constant which does not depend on n and
k < An. Under conditions (2.4.5) and (2.4.8), we have

(2.4.10) g(z) < Cgminti—a27)
with g as in (2.2.7). It was shown by Janssen and Reiss (1988) that
oC
i(=) = / (22 (zy) = (y = )22 (a(y = 1) = < *h(y)" dy
1
— O(zmin(l—aﬂv}).
Now, assertion (2.4.10) is immediate from
) 1
1/2 ~
g'*(x) < mg”z(r) +1r'/2(2) = | [[Al] airy
and

|T1/2($) __cl/2| < Cz".
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Thus we have
/ g(&lxl)dﬁ(sll/(l'!'ﬂ)) (-'171) < ngrin{l—a,'z'y).

(0,65 ¢)

Taking account of (2.4.7), we obtain

(2.4.11) / 9(8uwy)dL(S]70F) (21) < Cnmerta-l=2}/(ta),

040
From the proofs of Theorem 2.3.2 and Theorem 2.3.3, we know that
(24.12) L, <C (( :—1) e £ (8 (X 1oy X )| Py) — C(Sll/(l+a)vsllc/(]+a))”) .

The Corollary 5.5.5 in Reiss (1989) implies
(2.4.13)

”[:( X, . Xk n)'P“) _ (Sl/(1+ﬂ) "WSllc/(l-Hl))” < C(( )'Y/(H‘G)kz + k

n

)-

{Corollary 5.5.5 still holds for ¢ # 1 + a and ¢, = b,. To sce this, examine the proof of
Corollary 5.5.5: choose zg,, = cnazg and fn(z) = Clnf( Z-)). Hence, the asserted inequality
is immediate from Lemma 2.4.2 and (2.4.11) — (2.4 13) .

Now we treat the case a = 0.

2.4.4 Theorem. Let f be a density of type (2.1.1) for a = 0. In addition to (2.4.5), let f
be absolutely continuous on (0, o) and

dr < 0o

A (@)
(2.4.14) e

for some n € (1,2]. Then for k < An, A € (0,1), the following inequality holds:

(2.4.15) A(E,, Epz) < Call—m/2

for some C > 0.

PROOF. As in Janssen and Reiss (1988) one may show g(x) = O(2""!). Now taking
account of Lemma 2.4.2 (ii), we sce that (2.4.15) holds. =
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2.4.5 Theorem.
(i) Let a € (—1,1),a # 0. There exists a constant C > 0 such that

(2.4.16) A(G,Gy) < C(E"/’(Ul:k—l))% — Crla=D/2(t+a)
(ii) Let a =0. Then

(2.4.17) A(G,Gy) = 0.

PRroOOF. From (2.3.3), we know

(2.4.18) A(E, 5,Gi) = 0 as n — oo.

Applying the triangle inequality we obtain

(2.4.19) A(G,G) SA(G,En) + A(En, Enp) + A(En i, Gi).

Taking into account Theorem 2.3.2, 2.3.3, and 2.4.1, the proof is complete. m
From (2.4.13), we deduce

k

k
(2.4.20) A(Gy, Enx) < C((;)“’/(“"’k% + -

Now, we are ready to establish the rate of convergence of A(E,,G).

2.4.6 Theorem. Let f be a density of type (2.1.1) with a € (~1,1) and let (2.3.7), (2.4.5),
(2.4.8), and (2.4.14) be valid. Then

(2.4.21) A(E,, G) = O(nP(1e)y
where
ﬂ%:——laj for v > 2%1:1—"), a#0

= yea-—1)

ﬂ(’)’,(l)—- TEniita) for0<'y<~2%,a7£0
maz{—y,—}} fora=0.
PROOF. The calculations are similar to those of Janssen and Reiss (1988). We start with

the inequality
A(E,, G) £ A(En, Ea k) + A(En i, Gr) + A(Gk, G).

Assume first ¢ # 0. Combining (2.4.9), (2.4.20), and (2.4.16), we obtain

k

n

A(EMG)SC((k(a—l)/(ft(l-Fa))+(E)7/(2(1+a))k§ +( )1/2+nmar(a—ol,~27)/(2(l+a)))
n
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uniformly over all k < Anif 0 < A < 1.
Elementary calculations show that nY/(+7) is the solution of the equation

z(a—l)/(4(l+a)) - (f)v/(2(1+a))11/4'
n

Hence we choose
k(n) = [nv/(1+v)].

(a—1) > 1 2(1+a)
? (1T7)4()1+u) 2(1+~,)
! 1
and (1+.,‘)'4(1+a) > 2(1+ y are trivially valxd

Notice, that for v > v := 2%’%) the assertion (2.4.6) holds for vy instead of y. We

obtain

-1)

Now (|+—,)4(1+a) > 2(1+a$

&7 < . Moreover, the relations

Yo(a—1)

-1
(l+‘m ey — 3055a)" Thus, for a # 0

A(E,,G) < Cnfra),

For @ = 0 and k = 1, we deduce from (2.4.15), (2.4.17), and (2.4.20) the upper bound
A(E,,G) < C(n_" +n71 4 n_l/z).

Thus, (2.4.21) is shown to be valid. u

REMARK. The explicit representation of the limit experiment, namely,
G = (RN, BN, {(S}/O+) 4 t)em : t € R})

was exhibited by Janssen (1989 b). Furthermore, G is a stable Poisson experiment with in-
dex of stability 14+-a. Stable experiments were introduced under the label ”scale invariance”
by Miiller (1973) and were thoroughly investigated by Strasser (1985b).

Since X ! is Fréchet iff X is Weibull, one may conjecture that all results of this chapter

carry over to location models of Fréchet type densities, where Saa+e)

is replaced by
g/a+a),

But this is no longer true, since the transformation X! does not lead to
a location model. The Fréchet distribution has finite Fisher information for all shape
parameters a > —1. Hence, we are in the usual LAN-case, i.e. the product experiment—
rescaled with 6, = n~1/2—converges weakly to a Gaussian shift. In this case, a fixed
number of extremes asymptotically does not contain any information (see Section 4.2).



3 WEIBULL TYPE DENSITIES WITH COMPACT SUPPORT

The next four sections are concerned with Weibull type densities having a compact support.
This chapter is organized similarly to Chapter 2.

3.1 Definition and Notations. Our starting point are Weibull type densities having a
compact support [0, 8], b > 0; that is for some zg

2tri(z), for 0 <z <z
(3.1.1) fl@y={ (b—a)ro(b—z), forb—z, <z <b
0, for z ¢ {0,B]

where @ > —1 and r;, ¢ = 1,2, are slowly varying functions at zero.

Throughout, it is assumed that the shape parameter a is known. Again, we consider the
non-regular case a € (—1,1). For example, we get the density of the uniform distribution
f(:c) = 1(0 p(z)ife=0,b=1, and r; = rp = 1 (see the comment on page 35).

Let P,, t € R, be a location family defined via a density f of type (3.1.1). Moreover,
Xi:ny. ..y Xnn are the order statistics of a sample of size n, where X; are i.i.d. random
va.riables with common distribution P,. In contrast to the densities of type (2.1.1), we have
a further singularity at the right-hand side of the range of the distribution. So we have to
include the upper extremes in our considerations. Inside (z,b — x¢), we claim that the
density f behaves well (see condition (3.3.6)(i)).

For convenience, we introduce the abbreviations

(312) Wn,kl = (X]:na vee 7Xk1:n)1 Zn,kz = (Xn—k2+l:na EEER) Xn:n)~
In Section 3.3, we prove the global sufficiency of the k;(n) lower and k;(n) upper extremes

(W ks (n)) Zn ka(m))-
We introduce the following statistical experiments. Let

(3.1.3) E, = (R",B",{P},:t€ R})

where the sequence (6, ), is explained in Section 3.3.
The second experiment is

(3.1.4) En gy = (RiHRa glitke (y e t€RY})
where

(315) f/n,h,kg,t = c(égl(Wn.h ’ Zn,k;)lpat)-
Obviously

Vn.kn,kz,t = E(égl(Wn,kuZn,kz) + tlf’o")

Finally, we introduce the product experiments Gl,k, ®C~¥2,k2 and G, @ G, which arise out
of approximation to Ey, x, x, and E,. Let (Yi)ien, ¢ = 1,2, be a sequence of independent
random variables, where Y;; and Y;; are standard exponential and negative standard
exponential, respectively. We will denote the m — ¢h partial sum by

(316) xm ZY i



Define (1 = 1,2)

(317 Qiken = LUSYET 4 ey
and

(3.18) Qia = LS + hmen).
Then

(3.1.9) Gig, = (R¥,BY {Qix, i 1t € R})
and

(3.1.10) Gi= (RM,BY,{Q:: t € R}).

The comparison of the four statistical experiments is carried out in Section 3.4, according
to the following diagram:

En (4——*3‘4'6) En,kukz
(34.25) 1 } 5 ) (3.4.17)
G10Gy «— Gii, ®Gap,

(3.4.23)

The decisive link between E,, 1, 1, and Gy x, ® G r, turns out to be the product experiment
(1) ((2) o
E ., ®F where:

n,ky n,ky
(3.1.11) ES = (RM,BY (V) :te R))

with

V) = L(67 Wi, |Ps,0)

n.ky,t

(3.1.12)
‘7(2) = L(é;lzn,kzlﬁﬁnl)'

n,ky,t
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3.2 Upper Bound of the Deficiency between E, and En,kl,k;

To establish an upper bound of A(E,,, En,k.,kz) we choose the kernel
(3.2.1) KRk (o, 2,).

This is the conditional distribution of (Xj.n,..., Xn:s) given Wok, = wp, = (21,...,2x, ),
Zuky = 2y 2= (Tnky—1,...,%y) under the estimation X;., = ;. Again, we know from
Reiss (1989), Theorem 1.8.1, that

(ke k
(3.22) KM (g 2)

=€z X0 X €z, X ‘C(Ylin—kl—k;v-"y Yﬂ—h—kzin“kl—kz) X €z kypr X 0 X €gy
\Xhere )7',4, t=1,...,n — ky — ko, are i.i.d. random variables with common distribution
P, Ehy Enm kg b1 (the truncation of Py on the left at z; and on the right at z,,_4,41).

We denote by F the distribution function of Py and let f,( ) = ( —t). If F(av;cl —t) #
F(a:n ky+1 — t) then the distribution B, BhyEn— kg1 has the Lebesgue density

f

323 = = Thy Tnmkgt1]”
( ) F(a""—kz-*-l _t) - F(Ikl - t) [ h bl

fl.n‘y!n-k,-n =
We remark that
(324) ‘C((anX"—k7+l)Iptn) ({(xkl»l'n—kz{—l) : F(mkl - t) = F(‘T'n—kz+l - t)}) =

and
(3.2.5) Py tnigsr L Pozyy zaoigys fort >b.

The upper bound depends on the following auxiliary functions h, ¥, g1, g2, and gs:

h(y) = y*/*10,00)(¥) = (¥ = 1)*/*1(1,00) (%),

#)= [ w1,

¢/(22)

gi(z) = ((yzrf(z'y) — (yl/';(lx))irf(:c(y— 1)) _ h(y))z(h ’
(3.2.6) 1
1+</(2z)( a 1( )= 13 1( ( 1)
z)= yrry(zy) —(y —1)7ri(a(y ~ — h())?
92(2) / ( i) h(y)) dy,
b—e/f2
w(@) = @) [ (P -Fu-o)
ef2

for some € € (0,2¢/2) and 0 < z < €/2.
Note that 1 € L2()) and ¢ = 0 for a = 0.

29



3.2.1 Theorem. Let 0 < € < z0/2. For ki, k; € {1,...,n}, such that ky + k < n,
1/n < F(ef2), ki /n < F(e) < F(b—€) < (n — ky)/n, the following inequality holds:

(327 NL( X, X)) IPF) = K*0%) L(Woky, Zo i )|PP) |
< (F(b—3e/2) — F(&)) " s {(n— by = k) ? Ty o (Tpm + Ty by + Farn)
+ (n - kl - k2)1/2 iS,n (iG,n + I~7,n,k2)} + Rn,kl,kz

where

€f2

ﬁm:/xﬁwumwaxmmnwm

0
ef2

7, = /m(m)dt(xl;nmo")(z,),
0

e €/2

i’?,n,k, ://w(xkl/zl)dﬁ((}(l:nv‘Yklin)lij()")(‘zl’xkl)!
0 0

ef2
.= /93(-T1)dﬁ(-¥1:nlﬁ61)(11)7

0

/2
Em=/ﬁ“mhmamﬂﬁwmx

0

€f2
B = / gl ) dL(X 1l B2 (21),

1]

e €2

j’?,n,kl = / / 1/’(1 + (b — Tn—ky+1 )/171 )d‘c((Xl:na 1¥n»k1+l:n)|f)0")(l'l7-17n—k2+])
o 0

and

R iy by = exp(—n(F(e/2) — 1/n)?/(3)
+ en:p(—n(ﬁ’(e) — ki /n)?/3)
+ exp(—n(1 - F(b—¢) - k2 /n)%/3).
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PROOF. Denote the left-hand side of (3.2.7) by p(n, k1, k2,t). Then

o1, by, ko, t)

= sup | [ (85 Bl 20)) = KBk, 2,))
AL((Wtys Zn k)| P ) (0, , 21,y

< / sup (K Bl (wny, 20,)) = KEH ) (Blaon,, 21,))|

d‘c((Wﬂ,kx ’ Z"vkz)lﬁtn)(wkl ’ zk2)

< ”Pn ki—k2 _ n—-kl —ky ”
= LIEZ TRC 2R PN ruzkl,rn kg1

dl:((.le, Xh:n,Xn—lc;-{-l:n)lptn)(xla Tkys zﬂ—kz-f-l)

bt et §+¢
” pr—ki—k; Pr—ki—ks “

EThy Tnokgtt Zi,Thy Fnkgt1
b—ett ¢ t

dL((X1ny Xiyoms Xyt 1m) | PP (21, Thyy Tnkpg1)
+Pin{Xl:n > g +t} + Ptn{Xkl;n > €+t} +ﬁ)tn{Xn—k2+1:n < b_ €+ t}

b+t et 5+t

SV2n—k - k) / / / H(ﬁt,u, ,rn—k,-nvi)xl,zkl,t..—k,“)

bett t ¢
dc((XlzmXklzna4Yn—k2+1:n)|jj¢n)(l‘]axk17$n—k7+l)
+ﬁ0n{X1:n > 5/2} + Ison{Xkl:n > 5} + ﬁ(;l{Xﬂ—k2+1:" <b-— 5}-

For z; € (t,5 +1t), 74, € (t,e+1t), and &, g, 41 € (b—€+1¢,b+1), we have

(b—e)— F(e)
(b - 3¢/2) — F(e).

F(tntyt1 —t) = Flag, 1)

> F
F(m"_k,H —xy) — F(zkl —zy) > F
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At this stage, we may apply the same arguments used in the proof of Theorem 2.2.1 which
yield

(3.2.8)
p(n, ky ko, t) < (F(b— 3¢/2) — E(€) ™ *(n — ky — ka)'/2
b e €f2
X ///(i(:l?l,xkz,mn_k2+1)dc((Xl;n,Xkl:an—kz+1:n)'P(;l)(zlvkaxn—krﬂ)
b—¢ 0 O
+ Py Xiin > €/2) + Pi{ Xy > €} + PP {Xnckyt1in < b—€}
where
Tn-ky4t
(21, Tk, Tnekyi1) = / (F172(y) = 'y — 21))" dy.
Tk,

Similar to (2.2.10), we deduce the following exponential bounds:
(3.2.9)
PP {X1n > €/2} < eap(—n(F(e/2) — 1/n)?/3), for 1/n < F(e/2),
P {Xeyin > €} < exp(—n(F(e) — ky/n)?/3), for ki/n < F(e),

Py Xnekyt1in < b~ €} < exp(-n(l — F(b—€) — ko/n)?/3), for ka/n <1— F(b—e).

Moreover, for 0 < e < 2¢/2, 0 < ) <€/2,and b—€/2 < Tp_f,41 < b

(3.2.10)
J2(z1,mk,,m,,ﬁk2+1)
/2
a 1 e 1 2
< [wirw-w-miru-a)a

Tr—kg+1

v [ @-ntde-n- -y a)ido-ysa)d
be/2
b—e/2

* / (F12(y) - F%y — 1)) dy
/2

=: Ay(x1, 2, ) + Ao(x1, Tnoppr1) + B(ay).

Taking into account (3.2.6), we obtain similar results as we did in (2.2.11):

14a 1 1 T
Az, o) S 2y Tf(f'«‘x)(gf(xl)**’/’%(r—:))

(3.2.11) b—z,‘l_kzﬂ)).

1ta 1 1
Ap(@r,Tnoiprn) S 7,7 17 (a0)(g7 (01) + 71+
1
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Applying the Cauchy-Schwarz inequality and combining (3.2.8) - (3.2.11), the proof is
complete. m

Denote the right-hand side of (3.2.7) by D(n, ki, k). Then
(3.2.12) A(En,En gy 1y) € D(n, Ky ky).

Notice that D(n, k1, k2) is independent of ¢.
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3.3 The Asymptotic Information Contained in the k; Lower and k; Upper
Extremes

Denote by F' the distribution function of P;. Since r; is slowly varying, we already know

that 1(1/")X1 »— 81,/(1+a)and --,(11—1/"3(X,l m—b)— Sl/(H'“) weakly (or even in

the strong sense) as n — oo, In general, F -1 / n) is not the right normalizing sequence for
the maximum, since the sequence (F Y1/n)/ - 1-1/ n)) does not necessarily converge
(to some positive finite value). Therefore, we have to impose further assumptions. We
claim that

(3.3.1) ri(z) ~ era(z) (z 1 0)

where ¢ € (0, 00).
Using the theory of regular variation, (3.3.1) implies

(3.3.2) F1/n) ~ eV FH1 = 1/n) (n — oo).
We define
(3.3.3) 6n = FY(1/n).

Now, Slutsky’s Theorem (see e.g. Serfling (1980), p. 19) states that 67 (Xp.n — b) —
cSzl,/l(Ha), n — 00.
Once again, we know from Falk (1985) and Sweeting (1985) that convergence of the

extremes holds w.r.t. the variational distance, i.e.
(334 IEE (X Kienl B7) = (S, S
NC(E7 X nmkgttin = by ey X — BIPR) = L(eSyI0F, .. ,cs;{,‘”“)” 40

as 1 — o0,

In analogy to condition (2.3.4) and (2.3.4'), we assume that for some ¢ > 0

(3.3.5) r; is bounded on (0,¢) and limlionf ri(z) > 0,
z

or

(3.3.5") r; is decreasing on (0, €)

fori=1,2.

In addition, we need conditions (cf. (3.27) in Janssen and Reiss (1988)) which ensure
the convergence of g;(z) to zeroas z | 0,1 = 1,2.
First, we replace condition (2.3.5) (i) by

b—e

(3.3.6(1)) /(fl/z(m —t) = f12(2)) dz = o(t'*or(t)) (t10)

€

for each € > 0, where r € {ry,r;}.
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Under condition (3.3.1), we see that if (3.3.6) (i) holds for ry then it also holds for r, and
vice versa. Condition (3.3.6) (1) says that the Hellinger distance is mainly determined by
the local behaviour of the density f at the singularities 0 and b.

Moreover, we assume that condition (2.3.5) (ii) is valid for ry and r,. To be more precise,
let :

L@)i(e) = li(z)eap( / %u_) du)

be the Karamata representation of r;, i = 1,2. We assume that /; is continuous on [0, zo]

with 1,(0) > 0 and

za/2
(3.3.6(ii)) / (1% (z + t) - 1%(2)) *2%ri(z) dz = ot +or(t))

0

ast | 0.
Once again, Lemma 10.13 of Janssen and Mason (1989) implies that under condition
(3.3.6)

3.3.7) li?()lg"(z) =0

holds for i = 1,2.

Note that if different shape parameters occur in the representation (3.1.1), we are again
in the situation of one singularity. Under the present assumptions, we see that only the
singularity of higher order-——that is the singularity with the smaller shape parameter—has
a dominate influence.

Consider, for example, the generalized Pareto density f(z) = (1 4 a)z®1(g,1)(z). We
derive the representation

z%r(z), O<z <o
f(z)= 0
(1-z)ry(1-2), l—zp<z<1
for some appropriate zy with r1(z) =1+ a and ry(z) = (1 +a)(1 —2z)*. Ifa € (-1,0)
we have a pole at 0 and a jump at 1. In this case, the lower extremes are relevant. The
situation changes completely for a € (0,1). Only one singularity occurs, namely, a jump at
the right endpoint. Hence, the maximum contains asymptotically all information. If a =0

two jumps occur. In this case, it turns out that the statistic (X.n, Xp:n) is asymptotically
sufficient.

Since Py has a compact support the condition

(3.3.8) lim sup/z”“ dL(87 X 1.n BY)(2) < 00

n—oo

trivially holds (cf. Lemma 2.3.1).
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3.3.1 Theorem. Let f be a density of type (3.1.1) and assume that the conditions (3.3.5)
((3.3.5')) and (3.3.6) are fulfilled. There éxists a constant C > 0 such that

(3.3.9)
"lijgoD(n,kl,kz) < C((Elp((%f)l/ma)))l/? + (Bp(1+ o= l2lkz )l/(l+a)))1/2)

1

PROOF. As in the proof of Theorem 2.3.2, it is shown that
limsup (n — ky — ky)V/2[; . < oo for j € {1,5}
n—oo
"nl%ofj,,, =0 for j € {2,6}
Jm B, < BS(R0).
The same arguments used for I, show

'11&1;014,.:0.

It remains to estimate the term I~7,,,,k,. We get

¥ -5, 2 a
o, <Ep(l+ c(ﬁ)l/(l+ )

+ RIZ (65 (Kriny b = Xnckgarm)lBR) = L(STAF) © L(—e5,/0F ).

It is well known that the lower and upper extremes are asymptotically independent (see

e.g. Falk and Reiss (1988)). This implies that
(3320)  [IL(87" (Xim b~ Xntprrn) B3) ~ L(51) @ L(=e5,55*7) | — 0

as n — oo.
Summarizing the results above, the proof is complete. w

Now, we are able to show the global sufficiency of the k;(n) lower and kz(n) uppér extremes.

3.3.2 Theorem (Global Sufficiency). Suppose that the conditions of Theorem 3.3.1
are fullfilled.

(1) Let a € (—1,1), a # 0. There exists a constant C > 0 such that
(3.3.11) A(Br, En gy k) < C(RETD/GUFD) 4 la=)/CO+DY 4 o0,
(i1) Let a = 0. Then

(3.3.12) A(En, Enp1) = o(n®).
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PROOF. From the proof of Theorem 2.3.2, we already know that

S - a
(3.3.13) Eop((2HEy1/0+a)) < Ck{r D0+ )
11
Thus in view of Theorem 3.3.1, it remains to be shown that

(3.3.14) B(1 4 o 32k 1/04a)) < pamD/0+),
1,1

Now an application of the inequality (2.3.16) yields

52 T2,k2\1/(1+a) a’c (1 —a)/(14+a) l/(l+a)
Ew + e ———12.5 E’l/) .
(1 C( Sl 1 ) ) - 4(1 + ) ( )

Since —Sy &, is distributed according to a gamma distribution with parameter k; (thus
having a density z — e~ *z*271/(k, — 1)!, z > 0), it is not hard to verify (see Lemma 5.2
of Janssen and Meason (1989)) that

(3.3.15) kP < B(=5;2 ) <(ka — 1~ ko)™?

for k > p > 0 where kg is defined by

k _{p——l, forpe N
T, forp¢N

and [] indicates the Gauss bracket.
Hence (3.3.14) is shown. s
Remark. From Theorem (3.3.2) we deduce that
(3316) lim A(EnsEn ki(n), kz(")) =0

n—oo

whenever min{ki(n), ky(n)} — oo as n — oo, i.e. the k;(n) smallest and ks(n) largest
order statistics are asymptotically global sufficient. Moreover, in the case of jumps (@ = 0)
the statistic (X1:n, Xn:n) is global sufficient. This generalizes the result of Weiss (1979).
Finally, we remark that Weiss has also used the kernel K g("‘"l"’l), though it is not explicit
stated there.
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3.4 Comparison of the Statistical Experiments E,,, En,kl,k,, G ® éz, and
Gk, ® Gax,

We start with

3.4.1 Lemma. Let f be a density of type (3.1.1) and let 0 < X < 1. There exists a
constant C > 0 such that

(i) fora € (-1,1),a £ 0:
(3.4.1)
D(n, k1,kq)
< C(kga—n/(mm) 1 R/t

L0 (K rims Xk IP) = £(S1F0) 5%y /2

1L (871 (Xrimyb = Xnotorrn) | BF) = £(STHY) © L(=eS )2
67 %€e/2

+( / 91(5n11)dﬁ(si,/l(lﬂ))(l‘l))1/2

0
5-1e/2

n

+( / gz(ml)dc(s:(,“+“))(x1))‘“),

0

(ii) fora=0:

6-'¢/2
(3.4.2) D(n,l,l)SC(( / 91(5n$1)dﬁ(51'1)(z]))1/2

0
s-%e/2

+(f gz(anxl)d_z:(sl.l)(zl))”2),

0

for all n € IN and maz{k, k} < An.

ProoF. For max{ky,k;} < An we have

exp(—n(F(e) — k1/n)?)/3) < ezp(—ki(F(e) — 1)*/(3)))
exp(—n(l — F(b =€) — kz/n)?)/3) < exp(—ka(1 — F(b—€) — N)?/(3))).
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Moreover

/2

/g,-(z,)dt(xmlf’é‘)(wl)
0
s57%e/2

n

< C( / gi(énml)dc(sll,/l(l+a))($l) + ”E(‘s;lxlznlﬁél) - ‘C(SII,/I(I-H))”>

=]

fori=1,2.
From Section 3.3, we already know

)

/ d)(if—l-)dﬂ((Xlankln)'ﬁ(;‘)
0,¢/2)

< c(k(“—‘)/(”“’ (5 (K nems Xy B — £(SIAH, Sl‘_’,f‘”“’)ll),
and

b—Tn_ .
/ 1/)(1 + "—z‘ﬁj—‘l) d‘c(()(l:ann—-kz+1:n)|P0 )
(0,¢/2)

T

< c(k<“-1>/<‘+“’+||£(6;‘(X1m, b Xabrsn)lFE) —L(SH ) BL (=S

where C > 0 is a generic constant.

Recall that ¢ = 0if @ = 0. In view of (3.3.4) and (3.3.10), the assertion follows from
Theorem 3.2.1.m

In order to establish rates of convergence, we have to impoée further assumptions:

(3.4.3) ri(z) = cexp(ki(z)), 0 < z < zp
where
(3.4.4) [hi(z)] < Liz™

for some constant L; > 0 and v; > 0,1 =1,2.

Obviously, condition (3.4.3) implies condition (3.3.5) and ¢ = ¢;/¢;, where ¢ is the
constant of (3.3.1).

Let 6, be defined as in (2.4.7) (witl} ¢ instead of c¢). Note that (3.3.4), (3.3.10), (3.4.1),
and (3.4.2) hold if 6, is replaced by é,. Again, we first treat the case of a # 0.
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3.4.2 Theorem. Assume that f is of type (3.1.1) for a € (—1,1), a # 0. In addition to
(3.4.3) it is assumed that f is absolutely continuous on (0,x¢) and (b — zo,b) with

(3.4.5) /Orﬂ(g%)zxa <o

=12
Then for every A € (0,1) there exists a constant C > 0 such that for all n € N,
ki + k2 < n, and max{k, ky} < An the following inequality holds:

(3.4.6)

. k > o .
BB Brii) < O(rompy) 1 4 3 mmeste b/
i=1

2
- a ki i a
+Z{’"‘5a n/+ ))+(;)7/(2(1+ ))k3/4 (& )1/2})
=1

Before proving Theorem 3.4.2, we recall the following results:
From Reiss (1989), Corollary 5.5.5, we know that under condition (3.4.3)

(3.4.7) ”‘C( ;(1 """v‘(kvn)lfo) ‘C(Sll,/l(l )v 11/k(11 ))”
k ¥ +a k
<('((_l) 1/Q )k:/2+_l>

n

and

(3.4.8) IL(5 (Xumrptron = by oy Xom = DIBR) = LS, eS|

n

.where C > 0 is a universal constant (cf. {2.4.13)).
Obviously, (3.4.7) and (3.4.8) imply

1 a k

(3.4.9) A( nk ,G1 ,“)<C((n)-r /0+ )k1/2+ n>,

o k 2 a p. k.
(3.4.10) AED, Goy) < C((T})7 A 72)
and

2
. ~ ~ ki i a ki

A1) BB, 8B, Gun ©Gu) <O L{(E) R By,

=1
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Falk and Reiss (1988 a) established the rate at which sample extremes become independent
(sce also the paper of Falk and Kokne (1986)). They have shown that for arbitrary random
varinbles £, &y, ...
(3412) ”[’((£I:nv ceey Ekp"v{"*—k,{-l:ny e 7£H:H)IP)

- L:((El:nv “e »£k.:n)'P)®L((En—k:+l:m s afntn)'P)"

Note that (3.4.12) implies

. kyk )
(1) (2) . L 1/2
(3.4.13) A(Enp b ELL ®EL) < C<(n(n. - kz)) )

ProOOF OF THEOREM 3.4.2. Throughout the proof, C denotes a generie constant. Similar
to (2.4.10), one shows
(},’(.‘T-) < Ca’min{l~n,27;).

Hence,
§-¢/2
/ q.((s,;T])llL(S]/(l+u)) < Cn mar{a-1,- 2}
0
fori =1,2.
Since

NGB (Xiimb = X kpprin)IP3) = c(s’/“*“’) @ L(~eSy/u+ )|
- n /(14

< (e x.mupo)—c(s..’k‘, "

FIEE (0= Xookyrren) ) = £(=eS50 )]

F NG Kb = XacrysrallP3) = £ XralB2) @ L3700 = Xty i) IP3)
the proof follows from (3.4.7), (3.4.8), (3.4.12), and Lemama 3.4.1.m
REMARK. To establish the inequality (3.4.6), we have used the asymptotic independence
of extremes. The disadvantage of this is that we are in a trade off situation: The depen-
dence decreases and the information increases as ky(n) and kq(n) tends to infinity. But
it turns out that the bound occuring in (3.4.13) has no dominate influence on the rate of

convergence of A(En, Gy @ Ga), as the proof of Theorem 3.4.7 will show.
Now, we consider the casc @ = 0.

3.4.3 Theorem. Let f be a density of type (3.1.1) with a = 0. In addition to (3.4.3),
assume that f is absolutely continuous on (0, x9) and (b — z0,0) with

(3.4.14) /|f(7)|"‘/f(1)"‘ Ydr + / £/ @)™/ f(x)" " dx < o0

b—1zo
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forn; € (1,2),i = 1,2
Then for every A € (0,1), there exists a constant C > 0 such that for all n € N,
ky + ky < n, and max{ky, ky} < An the following inequality holds:

(3.4.15) A(Ey,Enpy) < C(n“-"')/2 + n“*"””)

Proor. Similar to the proof of Theorem (4.1) in Janssen and Reiss (1988) one shows that
(3.4.16) gi(z) = O(zm-D/2)
for i = 1,2.

Taking into account Lemma 3.4.1 (ii) the proof can be easily completed. =
3.4.4 Theorem. Let f be a density of Type (3.1.1) for a € (~1,1) and let condition
(3.4.3) be valid. There exists a constant C > 0 such that

(34.17) A(En ity ks Grty @ Gay)

<C (————-ﬁﬁ—*—)ln+i:{(-’&)7i/(‘+(')l'1/2+ Lz})
- n(n — ki — k) n ! n ')

PRrooF. Since

A(Eu.kl,kz 7él,k| ® é2,k;)
< A(Enpy 0, B

n.ky

9 = N
) VGrx 0 Gagy,),

n,ka

Q@B Y+ AEY) ®

n,kqy n,k,

the assertion is immediate from (3.4.13) and (3.4.11).m
The corresponding result to Theorem 2.4.1 is the following one:

3.4.5 Theorem (Strong Convergence). Suppose that the conditions of Theorem 3.4.4
are fulfilled. In addition, assume that condition (3.3.6) holds. Then

(3.4.18) AE,, G ®Gy) = 0 asn— oo
and
(3.4.19) A(En'kl(")'k,(n),él ®RG) > 0asn — oo

whenever min{k;(n), k2(n)} — oo as n — oo.

Proor. We use the arguments of Janssen and Reiss (1988). First, we show that (E, ) is
a Cauchy sequence w.r.t. A.
Let € > 0. In view of Theorem 3.3.2, we can choose k;, k3, and n € IN such that

A(Em E",kl'kz) < 6/3
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for all n > ny.
Since
A(E”,kl,kszﬂl,k[,k])
< A(E",L~| ,h’él,kl ® é2,k7) + A(Em,kl,kz? Gl,kx ® G2yk2)

Theorem 3.4.4 implics that we can choose n; > ng such that for all n,m > ny
A(E"vklykzaEm,kl,kz) < 6/3

Hence

A(En, Em) <€

whenever n,m > nj.
In view of the completeness of the distance A, the sequence (E,), converges to some

experiment F. So it remains to show F ~ Gy ® G,.
For this, we choose ky(n), k2(n) with min{ki(n), k2(n)} — oo as n — oo, such that

(3.4.20) A(En ki () k2 Gt () ® G kym)) = 0

as n — oo. This is possible in view of Theorem 3.4.4.
In addition, we know from Theorem 3.3.2 that

(3421) A(En7E1l,k1(n),k2(")) -0

as n — oo,

Moreover, Janssen (1989 b) showed that Gy x, — Gy weakly if k; — 0o, i = 1,2. Hence,
(3.4.22) él,k, ® é2,k; -G o6,

weakly as min{k, k;} — oo. Thus (3.4.20) — (3.4.22) shows A(F, Gy ® G3) = 0 and the
assertion (3.4.18) is proved.
The assertion (3.4.19) is obvious from

A(En‘kl(n),k’)(n)y Gl ® éZ) S A(Eny En,kl(n),kz(n)) + A(Env C”‘:l ® é?)-.

We are now in the proper position to establish

3.4.6 Theorem.
(i) Let a € (~1,1), a # 0. There exists a constant C > 0 such that

(3.4.23) MG © Ga,Grp, ® Ga,) < c(k(,“‘”/“““” + kgﬂ-”/mw»).
(ii) Fora=10
(3.4.24) A(Gy @ G2, G141 ®Gay) = 0.
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Proor. First, observe that

A(él ® éz, él.kl ® é2,k2) < A(é] ® G~2, E~n) + A(E‘Vn, En,kl,kz)
+ AEn by ke Gipy ® Gagy).

Applying Theorems 3.4.5, 3.3.2, and 3.4.4 and letting n tend to infinity, the assertion
follows.w

The last theorem of this section concerns the rate of convergence of the deficiency be-
tween E, and G1 ® (.

3.4.7 Theorem. Let f be a density of type (3.1.1) with a € (~1,1) and let (3.4.3), (3.4.5),
and (3.4.14) be fulfilled. Then

(3.4.25)
A(E,, G ® Gy) = O(nP5e))

where ¥ = min{y1, 72} and

2“311‘1 for ¥ > M ,a#0
B(F,a) = (ﬁ%ﬁ%—)m for0 <7 < 2(1“) ,a#0
max{-%, -3} fora=0.

Proor. Combining (3.4.6), (3.4.17), and (3.4.23), we obtain

A(En, Gy ® G2) < A(En, B gy 1) + AEn gy ky, Gty ® Giy) + A(Gr, ® Gry, Gr ® Ga)

ki k, 1/4 ~1,-23
< 92 maz{a—1,—2%}/(2(1+a))
_C((n(n—kl—kg)) on

2

ae o ki\3/(2014)) kiyiy2

+Z{kf 1)/(2(1+ ))+(;l_)7 k..l/“+(;) ).
=1

First, we examine the case a # 0.
As in the proof of Theorem 2.4.6, we choose

ki(n) = kyo(n) = [nv/(1+7)]
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Elementary calenlations yicld

ky(n)ka(n)
n(n — ky(n) — ky(n))

= Q(n~20+D),

Thus, by repeating the arguments of the proof of Theorem 2.4.6, we obtain the assertion
for a £ 0.

The case a = 0 is immediate from (3.4.15) and (3.4.24). Note that the minimum X,.,,
and the maximum X,,., become independent with rate n=! (see (3.4.12)). =
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4 GAUSSIAN SEQUENCES OF STATISTICAL EXPERIMENTS
In this chapter, we study order statistics in the case of Gaussian sequences.

4.1 The Almost Regular LAN Case of Weibull Type Densities

In this section, we discuss the borderline case a = 1. In the following let X;,..., X, be
1i.d. random variables with common density fi(-) = f(- — ¢), t € R, where
(4.1.1) f(z) = zr(x)1(0,00)(z)-

Thereby, r is a normalized slowly varying function at zero; that is
5o
(4.1.2) r(z) = cexp( | blu)dufu), 0 <z <&,

for some 8, and some constant ¢ > 0. Here, b is a function such that b(u) — 0 asu | 0.
In addition, it is assumed that f is absolutely continuous on (0, c0) such that for all
6§>0

(4.1.3) /6 - (ff’((’;))) dz < co.

Then f has finite Fisher information iff

(4.1.4) /060 @) g < oo.

T

To verify (4.1.4) note that f'(z) = (1 — cb(z))r(z) M-ae.
In the following, we restrict our attention to the case of infinite Fisher information.

Janssen and Mason (1989) have recently shown that under condition (4.1.3), the sequence

(4.1.5) Us,E® = (R",B",{P}, : t € R})

is local asymptotic normal, where §,, satisfies

Hz(Po,Pgnt) 1 S0 7‘(1‘) .
W — 1, h(t) = gl . dx.

If, in addition, r(z) is convergent to some positive constant ¢ > 0 as x | 0, then
(4.1.6) bn ~ (cnlog(n)/2)1/?

(see also Ibragimov and Has minskii (1981), Chapter II, Section 5). The rate §,, lies between
the rate in the non-regular case (n /(1+%} _1 < ¢ < 1) and the rate in the regular case
(n=1/2, finite Fisher information). Densities of type (4.1.1) with lim,jo r(z) = ¢ > 0 are
almost smooth densities in the sense of Ibragimov and Has'minskii (1981).
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Moreover, Janssen and Mason (1989) showed that the sequence
(4.1.7) Zo(X1,- oy Xn) =8, Y —F(Xi)/ F(X5)
=1

is central, i.e. Z,(X1,...,Xn) — N(0,1) weakly under Py*. The proof of this result is
non-trivial, since the underlying statistical experiment is non-differentiable.

With k£ = k(n) tending to infinity sufficiently fast, we shall see that the k(n) smallest
order statistics are asymptotically sufficient. Recall, that in the non-regular case k(n) is
allowed to tend to infinity at any rate.

4.1.1 Theorem. Let f be a density of type (4.1.1). We assume that —f'/f is non-
decreasing in a neighborhood of 0 and im, o r(z) = ¢ € (0,00). Let k(n) be a sequence of
positive integers, such that 1 < k(n) <n+1—k(n) < n and k(n) — oo and k(n)/n — 0
asn — oo.
(1) Iflimp_o log(k{n))/log(n) = 1 then the k(n) lower intermediate and extreme order
statistics
(Xl:ny e v“’k(n):n)
are asymptotically sufficient uniformly on compact sets.
(1) Iflim, o log(k(n))/log(n) = 0 then the intermediate and central order statistics

(Xim)+1:m0 -+ s Xnek(n)in)
are asymptotically sufficient uniformly on compact sets.

Proor. Ad (i): Let F = F, be the distribution function of Py. First, we show

on Z(—fl(Xi)l(o,ﬂ)("(f) —mg) 2, N0, 1)

— (XY
for some 3 > 0, where mg = Epl;\ (—Lfl((—;%ll(o,ﬂ)(Xl)).
Since F(X0)
E Yy=0
v (i) =
we get

(- f((Xl))l(ﬂ,oo)(Xl)) = —myg. .

An application of the Tschebyschev inequality yields

Epy

Py {lon Z( f((;(())l(ﬁ,oo)(X )+ mp)| > €}

6,, Xi)
< T Vmpv-(6 Z)}((X)l(ﬁ,oo)(Xi))

:(?")Qn(/ﬂ %dm—mg) -0

as n — oo. Recall that §,, = o(n_lﬂ).
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Denote by F the distribution function of

o _ (X))
X; = XD

For the remainder of the proof, we choose 8 such that —-f'/f is non-decreasing on (0, §).

Then F(Xon)
Xl':n = f(X'n) 1(0 ﬂ)(X, "), Tn= 1,...,”.
From the above considerations, we know that F is in the domain of attraction of a stable
law of index 2. Applying Theorem 1 of S. Csorgd et al. (1986) we can find scquences

An(k(n)) and Cr(k(n)) such that

Xy -1 )

Lo,py(X1) = 1(0 a(X1).

n—k(n)

i=k(n)+1
Furthermore, o l_k(n)/"ﬁ’_l i
by =n [ E ) d
and !
Ank(n) = s
where

02(3)=/31_8 /,1 s(min(u,v)—uv) dF Y (u)dF~Y(v)

denotes the truncated variance function of F. Now, for some constants d,,, we get

k(n)

6n{z Xi:n - dn}
- n—k(n)

-—6 ZX'"_A (ék( )) ﬂ(’”(n)){ Z X.n-C (k(n))}—6 Z X,':".

t=k(n)+1 i=n—k(n)+1

1t follows from the exponential bound for order statistics (Reiss (1989), Lemma 3.1.1) that

n
Pon{lén Z Xi:n' > 5} < P()"{Xn~k(n)+l:n < ﬂ} n? 0.

(s o)
i=n—k(n)+1

Combining the above results, we conclude that

k(n) .
611{2 ‘Yi:n - dn}
i=1
is central if 6, = o( A,.(k(n)).
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A central sequence is known to be asymptotically sufficient. This holds uniform on compact
sets if, in addition, the sequence Us, E™ is equicontinuous (Strasser (1985a), Corollary
81.5). But the equicontinuity follows from Lemma 2.1 of Janssen (1986), since the sequence
Us, E™ is translation invariant and the limit experiment is continuous.

To prove Theorem 4.1.1 (i), it remains to show that é, = o(An(k(n)) is equivalent to
Hm, .o log(k(n))/log(n) = 1. Since X; is in the domain of attraction of the normal law,
we know from M. Csérgd et al. (1986) that the following two conditions are satisfied:

(4.1.8) o? is slowly varying at zero
and
(4.1.9) liﬂ)lu{(F_](u))z +(F(1 - u)?}/o?(u) = 0.

Morcover, they proved that whenever (4.1.8) and (4.1.9) hold, we have

T2 (s)~0%(s)  (s10)

where
I—s 1-s
(4.1.10) 2(s) :/ (F~Y(w)? du — (/ P (u)du)®.
Since |b(x)] — 0 as z — 0, for every € > 0 we can find § = B(e) such that
1 b(z)— "(x
A DL S P

for z € (0, 3). Denote by F the distribution function of ):(1 = (~1/X1)1(0,5)(X1). Then

1-s 1~s 1-s
(1-¢)? /(ﬁ’“l(u))zdus /(F~“1(u))2tiuﬁ(1+e)2 /(If'"l(u))zdu

(41.11) ‘. ', ‘i
(1-e)¥( / If“"l(u)du)2 < (/ 17’"1(u)du)2 §(1+5)2(/ i_l(u)du)Q.

Elementary calculations yield

N F(-1/z), forz < -1/8
F(z)={ F(8),  forz € (-1/p,0)
1, forz >0

and
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If’"](u) _ { —T«“%’ for u € (0, F(B)]
0, for u € (F(8),1).

Using the quantile transformation, we get

1-s F(8)

/ (F'(u))* du = / (F~1(w))* du
FoY(FB)
= u? rlF'(u,)
F-1(0)
_]/ﬂ
= u? dE(u)
—1/F-(s)
1/F~(s)
1
= u2$r(—)du
1/8
1/F~(s)
= lr(-l—)du
u u
1/8
From
1/F~(s) 1/F~1(s)
1
/ lr(——) du~¢ / 1 du
v U u
1/8 1/8

(apply Lemma 1.2.1(a) of de Haan (1970)) we conclude

1/F-‘(s)1 .
=r() du  o(~log(F™(s)) + log(B).
1/8

From the theory of regular variation it is known that F~1(s) ~ s!/2L(s), s | 0, for some
slowly varying function L (Bingham et al. (1987), Theorem 1.5.12). Hence, we sece that

1—2
(4.1.12) / (F:’_l(u))zdu ~ —%(log(s)

holds.
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Next we show

1—s
(4.1.13) (/ F_](u)du) = o(log(s)) (s|0).
Using the same arguments as above, we obtain
1~s 1/F~Y(s) 11
z_ 2 2
(/ F'u)du)" = ( / ﬁr(a)du)
s 1/8
1/F~(s)
1 2
~ (e / z_ﬁdu)
1/8

= (F7!(s) = B)* = o(log(s))-
Combining (4.1.10) — (4.1.13), we obtain

2 2
— )2 < Liminf T(s) <L , T*(s) <1 2
(1-€?< 111?1:]11 “tlog(s) lln:lsoup ——~§log(s) <(1+4¢€)
From this we conclude that 8,/An(k(n)) — 0 iff
1/21,.1/2(1. 3
nl2log!2(k(n)/n) —(1- log(k(n)))l/z 0.
nl/2log"/2(n) log(n)

Ad (ii): From S. Csérgé and Mason (1986), we know that

k(n)

A0 {3 Ko - kN | — N1,

i=]

where

k(n)/n
Cl(k(n)) = n/o F~(u)du
and k(m)/m .
A k() =75 [ L Era) ™

Note that F is regularly varying (at —oo) with index —2. For some constants d], we get

n—k(n}
6"{ > X d;,}

t=k(n)+1

k(n) n
=&, ZX,,,_A,“ ))A ' (k(n) {Z}i,«m~C;(k(n))}—5" > Xin

i=1 i=n—k(n)+1
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Hence,

n—k(n)
611.{ Z Xi:n - d:‘.}

i=k(n)+1

is central if 6, /A!,(k(n)) — 0.
From the first part of the proof, we already know that

kKn)/n
Ak ) ~ ([ T E ) )
1/n
~ n—l/z(g(_zog(n/k(n)) +log(n)))

= (%nlog(k(n)))_ln.

—-1/2

—1/2

Thus

o logkm) e
A, (k(m) " login)

The proof is complete. n

An example for a sequence k(n) which satisfies the condition of Theorem 4.1.1 (i) is
k(n) = n'=» with a,, — 0 and a,log(n) — oco.

The simple reason that a fixed number of extremes does not contain any information
is that they have the wrong rate of convergence: The rate of the normalizing constants
of extremes (which ensure a non-degenerate limit law) does not coincide with the rate of
local alternatives of the underlying experiment. Recall, that in the non-regular case these
rates are equal. To highlight this point consider the following example:

Let f be the Weibull density; that is r(z) = 2exp(—z?). In this case we have §, =
(nlog(n))‘lﬂ. For notational simplicity let again Wy ¢, = (X1:n,-.., Xp:n) and Z,, 4, =
(Xn—k2+1:n7 e 7Xn:n)- Then

(4.1.14) (RE+2 BRIy ¥Rz L0(Whkyy Zngy)IPR,) 1t € RY) — By

where Ey = (IR, B, {€p}) denotes the totally uninformative experiment,.

To verify (4.1.14), we have to show that the log-likelihood process of the binary ex-
periment (L((Wa k., Znk NPE), L(W ks Zn,k,)|P§:_,)) with base 0 converges weakly (on
[—00,00]) to €y as n — co. In order to show this denote by F' the Weibull distribution
function and let m = n — k; — k,.

52



First, since F~Y(1/n) ~ n~/? we obtain n'/2X,.,, — F}, where F; is the distribution func-
tion Fi(z) = F(x) Z;;:(—log(F(m))'/l!, z > 0. Moreover, note that the upper extremes
belong to the domain of attraction of the Gumbel distribution. We know that we can
choose the nortalizing constants b, = F~'(1 — 1/n) and a, = (nf(b,))"! (sce e.g. David
(1981), p. 262 £.). We obtain b, = log!/?(n) and a,, = (2log'/?(n))™!

At this point, straightforward calculations yield:

dLU(Wa by, Znk,) 15, 0)
dL(Wh k> Zn A:)IP")

_ ﬁ f Yz n 6nf H f n J+lin 6 t) ((F(Xn—k;-l-l:n — 6"t) - F(X’Cliﬂ B 6"t))"l
f(‘\vt n f(An —j+1: n) F(Xn—kz+]:n) - F(Xkl:p)

_ H i = But expl—(Xin — 6a1)%) H Xu—strm = St ezp(~(Xnji1in = 6at)’)
, n (‘.’E]) Y? ) Xn—_1+1:n 6'17])( An —j+1: n)
x (Pmp(_(}‘h m 6nf)2) "' CII’(—(-Xn—kg-{J:n - 6nt)2)>
("I'[)( L n) crp(_szt ko+1: n)

Y

&
= H Lon rrl)(26nf Xin — 65t )H X ;’]H = ezp(26,,tX" —j41n = 67t%)
il 1 n n—j+lin

X (eTp(—(,\k, = Oat)? + XIq n))
y (1~ Lexp(log(n) + (Xiy:n — 6at)? = (Xn—kgt1in — 6ut)?)) ™
(1 - _CTP(IOg(11 + Xh m Xn ka+1: n))m

‘Xt n 1:in —
= mp(‘)(s tXin — 624%) Ko e t eap(26,t X, — 8242
- [ R [ Bzttt - 6)

X exp(2mént X g, — 111,(6,,1‘,) )
% (1 - ,1_,('1‘1’(_(';1(){"—h+1:n bn)an( n—ky+1:n + bn) + OP"(n )))m
(l - %(’mll(_'a;l()(n—k?-l»l:n - bn)an(‘xn—kr%l:n + bn)))

We have
Xx':n - 5nt nl /2611t
=1 — 1,
‘Yi:n 711/2X|':n
Xn—j+l:n - 6nt _ a;lé,,t
Arn—-j+l:n G;I(Xn-j-H:n _bn)’f‘av_nlbn ’
O X —j+bin = (611(111)(1 (‘Xn —j+1n bn) + 6uby — 0
and

(ln(“{"_k2+1 -+ bn) — 1

under PJ' as n — oo.
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Combining these results, we see that

dL(Wa ki Znka )| F0)

-1
dL(Wh kys Znk, )IFG')

holds.

REMARK. For a > 1 the Weibull distribution has finite Fisher information. We treat this
case in a more general context in the next section.
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4.2 The Regular LAN Case

In this section, we show that under the regular LAN condition (L,-differentiability) a fixed
number of extremes does not contain any information. Though this result is intuitively
clear it is not stated in literature. Nevertheless, a mathematically rigorous proof is given.

First, let us recall some facts concerning differentiable curves. Suppose (§2,A,v) is a
o-finite measure space and let P be the set of all probability measures on (2,.4) which
satisfy P « v. The set P is identified with a subset of Ly(Q, A,v) by P — (‘;—5)1/2
Pe?.

Let € > 0. A curve t — P from (~¢,¢€) to P is differentiable at t = 0 (or at Py) if the
map

Ll

dP, 1/2
t il d
- ( dv )
is differentiable at ¢t = 0. If ¢ — P, is differentiable at ¢ = 0 then the derivative is of the
form t — %h, where h € Lo(2, A4, v).
Moreover, h is a derivative if and only if

] te (_6’6)

for some g € Ly(Pp) and

(e.g. Strasser (1985a), Theorem 75.2).
The element g is called a tangent vector at Py. The differentiability of a path implies

(4.2.1) Py(Ny) = oft?)
(Stresser (1985a), Lemma 75.7), where N, denotes the singularity part of the Lebesgue

decomposition of Py w.r.t. Pp.
Morcover, we derive the expansion

dPt /2 t
4.2.2 —_— =14 = t
(4.2.2) ((IPO) +29+ Ty
with
(4.2.3) /r% dPy = o(t°).

A path which admits an expansion (4.2.2) is called Hellinger differentiable. The Hellinger
differentiability is closely related to various other differentiable concepts (DDC-differen-
tiable, weak differentiable, see the book of Pfanzag! and Wefelmeyer (1985)).
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Now suppose that t — P, is differentiable at Py with tangent vector g. Then the log-
likelihood process admits the fundamental expansion (Strasser (1985a), Theorem 75.8)

dpP"_ t < 12
(4.2.4) log—222 (X, X)) = —= Y g(Xi) — = llgllB, + opp(n?),
Vi 2

i.e. the rescaled experiment
E,=(R",B",{P,; :t€R})
converges weakly to the Gaussian shift

(R, B, {N(tllgli3,poys N9l T (pyy) : t € RY).

The following theorem states that the extreme order statistics asymptotically contain no
information. Denote by Eq = (IR, B, {¢o}) the totally uninformative experiment. Let Fy be
the distribution function of Py, Wy k = (X1, .-+, Xkin ), a0d Zr ok = (Xncktiiny - Xnen )

4.2.1 Theorem. Let X;,1<1i < n, be iid. random variables with common distribution
P,, t € R. We assume that P, has a Lebesgue density f, and that t — P, is differentiable
at t = 0 with tanget vector g. Then

Wk En = (R*, B*, {L(Wyx|P - 1/2,) : t € R}) — Eo

4.2.5
(4.23) ZakEn = (R*,B*, {L(Znk|P-112,) 1t € R}) — Eo

for n — oo.

PRrOOF. Since Gaussian shifts are homogeneous, the sequence (R", B™, {P"_,,,, :t € R})
is contiguous. This implies the contiguity of W, y E,, and Z,, x E,,. Hence, (4.2.5) is proved,
if
o dL(Wo elP2_1),) E(Waa|PD)
AL P
dE(Zn,klpr?—x/zt) L(Zn|Pg)
log—Fr——+ 5
AL(Zn k| FS')

0

0

which is equivalent to

k

dP, -1/24 1_F—ll7t(Xk:n) P
I n . — Zn 7TeATORR/CO,
; og dP, (Xl.n) + (n k)log 1— FO(Xk:n) 0
(4.2.6) =
dP, ~t/2y F—1/2¢(Xn—k+1:n) Py
logZinzt 2ty Y ¥ (n — k)logins 2\ Anzkiin) Fo
; °9 dP() ( + ) ( ) 4 FO(Xn—lc+1:n)

First, we know that

- dPn—l 2
Guil X1, . X)) = 2(,/—(%’—1(&) -1)
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is a Lindeberg array in the sense of Strasser (1985a); that is

n—oo

{lgnil>e€}

lim n / g2, dPy = 0.

Hence, as n — oo,

. N 2
Guim = min gui(Xy,..., Xp) —
1<i<n

(4.2.7) o
n,n:n 1= lrg?éxngni(xls eaey Xn) 5 0.
Since P
P, -
log ‘“'(X ) = 2log(% S0ni +1);
we get

1
210.(](5971,]:11 + 1) S lo

%ﬂ(x ) < 210g( 50nmn +1).

Taking account of (4.2.7)

dP, 12,

los—1h,

(Xjin) <50, j=1,..,n

Next, we treat the term (n — k)log(F,-1/20( Xn—tt1:0 }/ Fo( Xn—k+1:n)). The Taylor ex-
pansion of z — log(1 — z), |z| < 1, yields

(n—l)l gEr'/?t(«Xu k+1: n) (n_l)z 1 FO(Xn k+1: n)— -1/7t(Xn k+1: n)) .

Fo(Xn-k41m) 510 Fo(Xn—ki1:n)

Moreover,

n(FO(X n—k+1: n) - n"l/?t()(n k4+1: n))
w(Po)
:"/ fn—l/H_fO)d’\

Xnoktim

w(Po) dP. _
:n/ (=222 _ 1) dPy + nPyo1j2g((Xnekg1my 0(Po)) N Nyporszg)-
X Eim (lPo

From (4.2.1), we already know that

lim 7 P2 ((Xnekg1in, @(Py)) OV N 1p2,) = 0.

n-—00
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Paying attention to (4.2.2), we obtain

w(Po)
n/ ( dP 1/21 1)( dPl 1/2, 1) dPo

Xn_k4iin PO PD

w(Po) o —1/24 n—1/2
= [ O g ) (24 g b ) Py

Xpekglin

w{Py) w(Po)
= n‘/”t/ gdPy + 2n‘/2t/ To-1r20dPy + 0pu(n®)
X

Xyckgiin Xnkttn

An application of the Cauchy-Schwarz inequality yields

w(Py) w(Po) w(Po)
Inx/z/ gdPo| < n1/2(/ dPo)l/z(/ 2dn)"
X Xn_k41n Xo—ktim

nek4lin
w(Po}
= (n(l -— Fg(1¥n—k+l:n)))]/2(/

Xn-kttn

g2dpry)'"*.

We show that

w(Pg) pn
(4.2.8) / g2 dPy =% 0.

Xn—kt1in

Let € > 0. Since g € Ly(Py), we can find a real number a < w(Fy) such that

w(Po)
/ g2 dPy < ¢/2.

Define
An,k,a B {g [ ]Rn : Xn—k+]:n(:’§.) S (L}.
We derive
w(Po)
reene: [ pansa)
Xn-ks1:n(2)
w(Py)
:PJ'({QEIR,"Z/ g*dPy > e} N Ay ka)
Xn-kt+1n(2)
w(Po)
sR((zeme [T an> 0,
Xpn—k41:n(z)

< Pi(Anka) + FR(D)
= Pon({X"—/H-l:n S a}) n—_?.’o 0.

Hence, (4.2.8) is shown.
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Moreover,

k—1 URY ]
P({n(Un—k41:m — 1) < 2}) — exp(z) Z ( ]z') , x <0,
= I

where U;.,, denotes the i-th order statistic of n independent (0, 1)-uniformly distributed

random variables. Thus,
w(Pg) pr
nl/? / gdPy — 0.

Xn-kg1in

The same arguments show that

w(Po) pn
711/2/ 'I‘n-l/z,dpo - 0.

Xn—k41in

Combining the above results, we sec that

Fo-v2(Xn—k41:0) PF
(n—k)log————"""22 5,0
) I FO(-Xn—k-{»l:n)
holds. In a similar way, we deduce
1-F -1/2 (){k:") Py
n —k)log——"L 200 0, () g
( ) 9 I_FO(Xk:n)
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4.3 A Characterization Theorem of Gaussian Sequences via Extremes

In this section, we show that under monotone likelihood ratios and certain regularity
conditions the following holds: A limit experiment is non- Geussian if and only if a fixed
number of extreme order statistics asymptotically contains information.
Consider a homogeneous experiment E = (R, B, {P; : t € R}) with monotone likelihood
ratios; that is
dPy,
dPy,

=hy 4,08

where hy, ¢, : R — [0, 00] is an increasing function for t; < t; and § is any statistic.
W.lg. we assume that S = identity. Otherwise, consider the experiment S,E =
(R, B, {L(S|P;) : t € R}) which is equivalent to E since § is sufficient. Note that L(S|F%)
has monotone likelihood ratios in the identity.
In addition, we assume that the family {P, : t € R} is Ly-differentiable at Py with
derivative g € Ly(P,); that is, the likelihood ratio admits an expansion

dP,

431 e
(43.1) P

=1 +tg+t7‘h

where ry € Ly(Po) with ||re||L,(p,) — 0 ast — 0. The concept of Li-differentiability is
important in connection with local tests, see the book by Witting (1985).

4.3.1 Theorem. Suppose that E = (R,B,{P, : t € R}) is a homogeneous experiment
with monotone likelihood ratios (in the identity), Py is continuous, and that t — P, is
Ly-differentiable at Py. Assume that

UﬁnEn:E":(IRH’an{Pg‘t:tER})—vF

where Us, E! is infinitesimal and F is homogeneous and not totally uninformative. In
addition it is assumed that for some p > 1 the normalizing sequence (6, ),en satisfies
6, = O(n~1P), g is p-integrable in a neighborhood of a(Py) and w(Py), and that the
remainder term satisfies |||z, (p,) — 0 ast — 0.

Then the following assertions are equivalent:

(i) F is non-Gaussian.
(ii) A fixed number of extreme order statistics asymptotically contains information; that
is, the sequences of statistical experiments

WakEn = (R*, B {L(Wak|Pf,) : t € R})

ZuxEy = (R, B* {L(Zax|P,) : t € RY)

n

have accumulation points, which are unequal the totally uninformative experiment.

In testing theory, Theorem 4.3.1 has the following meaning: If (P!, , P, ) — F and F'
is non-Gaussian, then we can find a test sequence based on a fixed number of extremes
which separates {to} and {#;}.
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REMARK. The assumptions of this theorem necessarily imply that liminf,, .o, né, > K
for some positive constant . Otherwise, if né, — 0, the L;-differentiability implies

125" ~ Pt o\l < nllPo — Ps,ol| = néutllg + rsnellL,pyy) — 0

which contradicts our assumption that F is not totally uninformative.

Before giving the proof, we remark that this result is motivated by a well-known result
in the theory of sums of independent random variables. Let (éx)1<k<k, be a triangular
array of rowwise independent real valued random variables (over some probability space
(R, A, P)). The variables £,,; arc said to be infinitesimal if

(4.3.2) \Jax P{|fnk] > €} — 0

as n — oo.
Suppose that

kn
Z fnk
k=1
converges to some (non-degenerate) limit law @. Then @ is Gaussian iff
(4.3.3) P{ sup |bak| =€} — 0,
1<k<k,
see Gnedenko and Kolmogorov (1968), p. 126, 127. Condition (4.3.3) is, in turn, equivalent

to

|, ok — 0
(43.4) max Enx — 0.
1<k<kn F

In this statistical context, we consider the array

P6t

(Eidi<icn = (log (X ))15.'5n'

Concerning the equivalence of (4.3.3) and (4.3.4), the assumption of monotone likelihood
ratios becomes plausible since (¢ > 0)

9 dPs, ¢
i'n:l — "i:n-
Sim = log == (Xien)

PROOF OF THEOREM 4.3.1. We show:
Fis Gaussian < W, E, — E; and ZorE, — Ey
where Ey = (IR, B, {eg}) denotes the totally uninformative experiment.
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We only consider the log-likelihood process with base 0. This is sufficient in view of the
contiguity of the sequence Us, E™.
The log-likelihood processes of W, +E, and Z, +E, are

dAL(WailPP) & dpﬁ %

1_F6,.t(Xk:n)
log LW PP ZIO

1- FO(Xk:n)

(Xin)+ (n - k)log
(4.3.5) '
Fﬁnt(‘le—k+l:Tl)

log - .
FD()‘ n—k+1:n)

k
dL(Zn k|Ps ) Zl dP6 t(Xn i+1:0) + (1 — k)log

I AL(Zn P2

To verify (4.3.5) (note, that we did not assume P; < A) we make use of the fact that
under P the statistics W, ¢ and Zn; have the Pk-density

dC(W, i |P?) nl ek
“——dﬁtz——(ﬁ,.--wwk) = m)*!(l - Fy(zx))

dL(Zn x| PP n! .
———(-d_})tk_t—)(z"—k-"l’“.,xn) ( k)'(Ft(Tn k+])) k.

fzy <zp < - <Tg, Tnek41 < - < Tp, = 0 otherwise (see Rewss (1989), p. 33). Since
P, < Py, we have L(W, |PP) < L(W,,x|P$). For B € B* we get (z = zy,..., %)

P ({Wax € B})
= L(W.x|P)(B)
dL(W, & |PF)

W( z) dL(Wo k| Py )(2)

dPF LW, i|PM) dL(W, (| P§)

—1 n
J dPok( ) dPtk ﬂ)( dPnk (Q)) d‘C(I/Vn,kIPO )(2)

=/d112k(£17 xk)(i—:ft—(—aﬂ) dﬁ(Wn L{PO )('L‘],...,.‘Fk)
B

Fo(:L'k)
dP - 1 _-Ft(Xk:n) n—k n
/ Pk(Yln, . }lk:n)(_—'—l_Fo(ka)) dPg.

War€B

Analogue for Z,, .
First, we prove that under the present regularity conditions

Fs (Xp—k41:n) P_é‘) 0
FO(Xn—k-H:n) ’

holds. As in the proof of Theorem 4.2.1, we have to show

(4.3.6) (n — k)log

P,
n(F6,.t(Xn-—k+1:n) - F0(4Yn—k+1:n)) - 0
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as n — oo.
The L;-differentiability implies

w(Po)
In(Fﬁ,,l(‘X'n—k+]:n) - FO(Xn—k+1:n))| =|1l/

Xn-kttn

dPs,.
(d—PO 1) dPy|

w(Po) w(Po)
< n6,,t/ lg| dPo + nént/ [rs,¢| dPo.
p Xn—kgiin

Xomkdtm

Note that by assumption Py, t € R, are pairwise equivalent. For p = 1 assertion (4.3.6) is
obviously valid.

Let p > 1. Choose a scquence (@, )nen such that a, T w(Py) and PP ({Xnoks1m <
an}) — 0 as n — co. For sufficiently large n we have gl(,, w(p)) € Lp(Fo). Define

An,k.a = {Xn—k+]:n S (l}.

Then for € > 0

w(Py)
P&‘({n&n/ lgldPy > €})
Xn—ktin
w(Pg)
< PP (Anian) + PP ({nés /\ lgldPy > €} N A% 4. )
An—k4l:n

< P[;l({“{n—k+l:1l < {l"})

+ P ({6, (a1 = FoXoorsnn)) (|

Xnek4iin

w(Po)

9P dPo)7 > €} N AS ..

n,k.an

< P(;'({Xn_k+l:n < (ln})

n t/pg ‘s (r=1)/p w(Fe) H
+ I—)() ({n 'b,,(?l(l - F‘()(_\",k+1:"))) (/ Igl’I dP())p > E})

Since [|g1(a,, w(PopllL, (%) — 0 as n — 0o, we see that

w(Po) o
né, / lg]dPy =% 0
X

nek+lin
holds.
Morcover,
w(Po) pr
116,,/ {rs.|dPy — 0.
Xnwn
This follows form

w( o)
né, / Irs, 1| dPy

Non—k41m
w(Pg)
<P, (n(1 = F(Xu_q1:))) "7 ( / s o|P dPy) /!

Xnckttin
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and

w{Py) pr
/ . P dPy 255 0.

Xa—kgiin

Hence, (4.3.6) is proved.
Similar to (4.3.6) one shows

1 - Fs(Xkin) Po
4.3.7 n — k)log——7">——+ — 0.

( ) ( ) g 1"F‘O(‘Xk:n)

Now, suppose that F is Gaussian. (For the proof of this direction, the assumption of

monotone likelihood ratios is not needed.) From Theorem (6.3) of Milbrodt and Strasser

(1985), we know that
dPs,¢

lim nPJ’({Uog (X1 | >e}) =
This together with

dP,
P ({ltog = 6 :

(Xl > ) < PP (L ma log 72 (X0)] > )

= PJ(Ui<i<n{llog (2,; (X)) > €})

n dPs,. .
< g ({llog =2 (X2)| > })
implies
dP
(4.3.8) log "" (X] D20, =1,

This proves one half of the assertion, if we combine (4.3.5) - (4.3.8).
To prove the converse, note that for & > 1

WakEn — Ep implies W, 1 E,, = X1.n By — Ey

(There are several ways to see this: W, tE, — Ey is equivalent to |L(W,|Pf,) -
LW klPg )l — 0 as n — oo, s,t € R. Now, the assertion follows from |£(Xy..| g ,) -
L( Xinl PEI S WEWa il P ) — L(Wa k[P )]l Another way is to argue with the error
function or the Mellin transform (see Strasser (1985a), Chapter 3). Observe thereby, that
Wk E, is more informative than X;.,E,.)
and

Zy By — Ey implies Z, 1 En = XpnEn — Ey.

Taking into account (4.3.5), (4.3.6), and (4.3.7) for k = 1, we obtain

dP, Py
logﬁ(xh,,) 0

log Y X min) L, 0.

dP
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Since {P; : t € R} has monotone .likelihood ratios, we deduce that

dPs
dP,

(4.3.9) Py { max {log—2t(X:)| > €} — 0.

Notice that for ¢t < 0, dPs,(/dPy is decreasing. By assumption, Z?z'l log%,‘;—‘—(X,-) con-
verges to some non-degenerate law. Combining these results, we obtain .

" dp,

(4.3.10) > log y Po‘ (Xi) — N(u(t), 0% (1))
i=1

for some pu(f) € R and o2(t) > 0. The homogeneity of F implies the contiguity of
Us, E™. This together with (4.3.10) implies the weak convergence of the binary exper-
iment (P, P,) to a binary Gaussian experiment, say, (Qo, Q:), t € R. To prove that F
is Gaussian, we have to show that for finite subsets J € R, 0 ¢ J,

o= E((log%)jeJlQo)

is a normal distribution. This is shown as follows (cf. the proof of Theorem 3.1 in Janssen
(1989b)): First, F is infinitely divisible, since F is the limit of an infinitesimal array ( Mil-
brodt and Strasser (1985), Theorem 5.11). Hence, p is an infinitely divisible distribution
on R7. From (4.3.10), we know that £(p;|i) is a normal distribution for each projection
pj : R7 = R on the j-th coordinate, j € J. Let (st¢)i>0 be the continuous convolution
semigroup generated by p(= py). Then u is Gaussian iff the Levy-measure of the convo-
lution semigroup vanishes. But this is equivalent to {u,(RY — (~¢,€)’) — 0 for t — 0 and
each € > 0. Using the sub-additivity of measures, we obtain

1 1
T;L,(RJ \ (—fyf)J) < n Z 5(Pj|llt)(]R\ (—f’f)) — 0.
’ jeJ

Hence, ji is normal. m

REMARK 2. For p = 1, the assumption of homogeneity of E can be dropped; for p > 1,
this assumption can be dropped whenever

”PIS,.!{(Xn:fuw(PO)) n Nﬁ..l} -0
nPs, ¢ {(a(Po), Xi:n) N N5t} — 0

as n — o0o. Note that the L,-differentiability implies P;(N,) = o(t), where N is the
singularity part of P, w.r.t. Py.
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5 POINT PROCESSES
The last chapter is devoted to point processes.

5.1 The Concept of Point Processes

First, we recall the definition of a point process and fix some further notations.

Suppose S is locally compact with countable basis. We denote the corresponding Borel
o-ficld with the symbol B. Designate by M(S, B) the set of all point measures defined on
S. Recall that u € M(S, B), if there exists a denumerable set of points z; € S, ¢ € I, such

that
H= Z €x;
i€l
and
() < o

for every compact set . The set M(S,B) is endowed with the o-field M(S, B), which
is by definition the smallest o-field such that the “projections” p — p(B), B € B, are
measurable.

The space M(S,B) is Polish in the vague topology. Moreover, the o-field M(S,B)
coincides with the Borel (= Baire o-field) w.r.t. the vague topology (sce c.g. Kallenberg
(1986)).

A point process (over some probability space (£2, .4, P)) is a measurable map
N : (9, A P) — (M(S,B), M(S,B)).

In other words, a point process is a random variable with values in the space of point
measures.

For example,
n

Na()= Y ex,(-n D)
i=]1
defines a point process, where D C § and X; are random variables; N,, is called truncated
empirical point process or, if S = D, empirical point process.
The most important class of point processes are the Poisson processes: Given a Radon
measure v on (S, B), a point process N is called Poisson process with mean measure (also
called intensity) v, if N satisfies

(i)VBeBVYke Ng:
wB)N* —w(B)
P{N(B) =k} = e , ifv(B)< o
0, if v(B) =00
(iil) Vn € NV B; € B,1 < <n, mutally disjoint: N(B;), 1 <7 < n, are independent.

Poisson processes occur as (weak) limit processes in many cases. They play the same
superior role as the normal distribution for sums of random variables or as the extreme
value distributions for extremes.
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Point processes in connection with extreme value theory can be found in the book by
Resnick (1987).

An interesting characterization was given in Falk and Reiss (1988 b): It was shown that
the convergence of appropriately truncated empirical point processes to certain Poisson
processes (extreme value processes), measured w.r.t. the variational distance, holds if, and
only if, the underlying distribution belongs to the strong domain of attraction of an extreme
value distribution.

An important reference for the statistical inference within Poisson models is the book
by Karr (1986).
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5.2 Statistical Experiments of Point Processes

The aim of this section is to show, that the results of the second chapter can be reformulated
in terms of point processes. In the following, we consider the measurable space (S,B) =
(R, B). We shall see, that in the i.i.d. case the original experiment and the corresponding
point process experiment are equivalent. A simple consequence of this fact is that the loss
of information due to a reduction of order statistics in the original experiment is the same
as in the corresponding point process experiment.

Let us introduce the sub-space M, of all point measures with total mass n for n € IN:

M, = Mn(]R'y B) = {Pn € A’I(]R, B) n = Z €z Ti € ]R}

=1
It is obvious that M, € M(R, B). The space M, is endowed with the trace o-field
M, = M, (R,B) = M(R,B) N M,(R, B).

Now we consider the surjective map

N, R* — M,

(z1,...,20) — Z €, -

i=1

It is clear that N, is B}, ., Ma-measurable, where B}, . denotes the o-field of measurable

sets which are invariant under permutation:

Br,.={BeB:n(By=B VreS&.}

sym
Here, we denote by S, the permutation group of order n.

But more can be said about N,,.
5.2.1 Proposition. Let T # 0 be an arbitrary set. Then N, is a sufficient statistic for
E, =(R",B"{Q}:t€T}).
PROOF. Let R% = {(z1,...,zn) E R*: 21 S22 <+~ < z,} be the cone of ordered values

of the Euclidian space R”. The space RY is equipped with the trace o-field BZ = B"NIR%.
We consider the BZ, M —measurable map

Tyt RZ — M,

n

(Il:nr--vwn:n) — Zfz;

i=1

Then N, = mn 0 (Z1iny .+ »Tnn). Since the order statistic is sufficient and 7, is bijective,
the proposition is proved if
(5.2.1) T,,_I(M,.) = Bg.
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First
T:l (M)

is a o-ficld. Since

g:{Blx~~><B,,:B,-eB,i:l,...,n}

generates B" we find that B is generated by

={Bix- xBaNRYL: Bi € Byi=1,...,n}.

We show that G< C 7,7'(M,,) which implies (5.2.1). The set

{z €r; EM,,:(I],.-.,:IT",)GB] X XBn}

i=1
{Z €, €E My : e“(Bj) >1,7=1,..,n, €5, U

i=1 =

2

-
“.
1

-

satisfics
H(M)=By x---xB,NR%.»

5.2.2 Corollary. Let E, as in Proposition 5.2.1 and let

BN = (Mo, Mo, {L(Na|Q}) : t € T})
be the corresponding point process experiment. Then E, and E™M are equivalent:
(5.2.2) A(E,, EM)=0.

We draw our attention to sparse order statistics Zu ... = (Xriin, ... Xrn) with
1<ry<ry---<rpg<n, 1<k <n. Define

k
er,rx,.“,rk = § €Xpiin®
i=1

Since

N"»"lv-»-yrh(.) = Z €X; ( n [‘lezm er:n])
i=1

in distribution if @ is continuous , this point process is a truncated empirical point process,
whereby the truncation is random.
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We define the statistical experiment

En,r‘,”.,r

n 1eey

and the corresponding point process experiment

ENM = (M, M, {L(Np gy, |QF) : £ € TY).

n,TrY,..., T

5.2.3 Corollary. Adapting the notations of above, we get

(5.2.3) AENEMN Y = A(En, Enpy,re)-

N,Ty e Th

PRrOOF. We already know that

Applying the triangular inequality, the assertion follows from Corollary 5.2.2.m

To treat point measures with infinite mass as well, we consider the space (S,B) =

(R4, BNRy) with Ry = {zr € R:z > 0}. Let

Mt = {MEM(B+,BHR+)1H=Z%:}
ien

Moreover, let M, be the restriction of M(R4,BNR4) to MI. The space MF is Polish
w.r.t. the vague topology, because it is a "Gs—set”, i.e. ML is a countable intersection of
open sets. We have

ML =M®Ry,BNR)\ |J {rne MRy, BORy) : j(Ry) < n}
n€N

= n (M(]R+,Bﬂ Ry)n{pe MRy, BNRy) : p(Ry) > n})
n€N

Note that the set {p € M(R4,BNRy) : p(Ry) < n} is vaguely closed.
Since p(K) = 3 ;e €2:(K) < oo for compact sets K (by definition) the sequence (z;)ien
has no (finite) accumulation points.

We have
ME = {Z €z, (Ti)ien € ]RT,S}
1€EN
where
RY < = {(zi)ien € RY 12 S 24, i €N, liminf2; — oo}
S T1—00

is the set of non-negative, increasing, and unhounded sequences.
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Denote by BY _ the restriction of BN to RY _. Recall, that RY is Polish as countable
Y By < +,< +

product of Polish spaces. Since IR.]E'< is a closed subset of RY, we know that ]R]J'f'< is also
Polish. B -

The following lemma has an application in the next section.

5.2.4 Lemma. The bijective map
Too: RY o — ML

(zi)iew — ) _ €z

iEN
is BT,S , MY —measurable and
(5.2.4) Teo(BY ) = ME.
Proor. To verify the measurability, it is sufficient to show that for B € BN R, and

ke N,

Too (Mi(B)) € BY ¢
where
My(B):={p e ML : y(B) = k}.

For k = 0 we obtain
My(B) = {p € M}, : u(B) = 0}
:{ZeneM:o:m,-¢BVi€IN}.

tEN
Hence
7 (Mo(B)) = (BN nRY ..
For k € IN we obtain
M(B)={pe ML :u(B)=rk)}

= {Z €, € ML 3z, @i, with @y, € B,
€N

1<j <k Zj ¢B7jem\{$il7"'7zik}}.

Hence

T (Mu(B)) = | J (( L (B* x (B)"™*) x (BC)'N\“"“’")) ﬂmfﬁ,s) €BY ..

n>k TES,

The measurability is shown.
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Now, we proof the validity of the equality (5.2.4). The inclusion M} C roo(Bf,<) is
immediate from the properties of the map 7.,. Since the underlying spaces are Polish, the
converse inclusion TOO(B]E’() C MY follows directly from the famous theorem of Kura-
towski (sce, for instance, Jacobs (1978), p. 420).w
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5.3 Empirical Point Processes of Weibull Type Samples

In this section, we combine the results of Chapter 2 and the previous section of this chapter.
We assume that X;, 7 € IN, are i.i.d. random variables with density of Weibull type (2.1.1).
Let S;, 7 € N, be defined as in (2.1.5). We consider the point processes

n
Nn = Z 66",‘(-
i=1

k
Mok =D €7t x,n
i=1
*
Nt = Z ES;/(1+a)+t
JEN
k

*
Nk,t = E €g/(14e) 4
=1 °

Note, that N} is a Poisson process with mean value function # — (z — ¢)'*%, z > ¢t (see
Resnick (1987), Corollary 4.19).
We now define the corresponding point process experiments of E,, Ey, ¢, G and Gi:

EM = (Mn, Ma, {L(No|PE,) : t € R})
EN) = (My, My, {L(Noux|PL,) - t € R})
G = (Moo, Moo, {L(N)|Py) : t € R})
G = (M, My, {L(NE)IPo) 1 t €R}).
From the results of Scction 5.2, we already know that
AEM,ES)) = A(Bw, Eng)
and
AL, GM) = A(Eui, Gi)

The last cquality follows from A(G(kN), Gi) = 0.
Morecover, we have A(G,G™) = 0. This follows from Lemma 5.2.4 which states the
sufficiency of r4,. Thus

AGM, 6N = A(G,G).

Consequently, all results established in Chapter 2 can be carried over; in particular, we
have (see Theorem 2.4.1)

AEN, M) = ofn®)
and
AES ) G = o(n®)

whenever k(n) tends to infinity as n tends to infinity.
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Taking into account Theorem 2.4.5, we see that
(N) N
A(Gy, G — 0
holds for k(n) — oo as n — oo. Observe, that

sup [C(Ng, | Po)(M) — LN |Po)(M)| = L(NJ|Po)(My) = 1.
MeM(R4,BnR,)

REMARK 1. In the sense of Definition (12.2) in Milbrodt (1985), G'™) is a standard Poisson
ezperiment with intensities

B — Ep,N}(B), teR.

REMARK 2. Let I\”,("‘k)(-[g:_), z =(zy,.,21), ¥; as in (2.2.2) and N,, as in Section 5.2. The
conditional distribution of 3"%_; ex, given ELl €X;, = ZLI €r, is equal to

k n—k
LINETP(12) = (3 e * £ ex))()
=1 =1

This becomes obvious from the fact, that o(Np k1) = 6(Xyny -+ Xkin)-
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LIST OF SYMBOLS

3 existence

v for all

N positve integers

Ny =NuU {0}

R real numbers

R4 {zeR:z2> 0}

R" n-dimensional Euclidean space

RN {(zn)nen : zn € R}

R: {(z1,...,zx) € R 12y <+ <z}

1 A_ indicator function of a set A

A° complement of a set A

\ set difference

~ asymptotically equivalent

0,0 Landau symbols

f derivative of f

Xin i-th order statistic of Xy,..., X,

W,k = (X1 oy Xken)

T = (Xnkttom - Xoin)

a(X) o-field generated by X

o(P) ”left endpoint of a probability measure P”
w(P) "right endpoint of a probability measure P”
L(X|P) distribution of X under P

KP distribution of a Markov kernel K under P
F-1 quantile function of a distribution function ¥
EpX expectation of X w.r.t. P

Varp X variance of X w.r.t. P

Ep(Y|X) conditional expectation of ¥ given X w.r.t. P
N(g,0?) normal distribution with parameters y and o?
€y dirac measure in

A Lebesgue measure

dy integrating w.r.t. A

:—g likelihood ratio of @ w.r.t. P

pLv 1 absolutely continuous w.r.t. v

plv #(A) =0 and v(A°) = 0 for some A

Lp(u) space of the p-fold integrable functions w.r.t. p
I 2y norm of Ly(u)

(N

variational distance
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l.u [~

op,(n%)
E=(QA{P:teT})
&(T)
F(Q,A)
(P,Q)
PxQ
PRQ
EQF
En

8(E, F)
A(E, F)
Aq
E~F
E,—E

Hellinger distance

equality in distribution

convergence in P-probability

limy, o0 Pu{]Xn] > €} = 0 for some sequence (X
statistical experiment for a parameter set T
collection of all experiments for T'

set of critical functions defined on (2, A)
binary experiment

convolution of P and @

product measure of P and @

product experiment of E and F

n-fold product experiment of E

deficiency of E w.r.t. F

deficiency between E and F

restriction to the parameter set «

E equivalent to F

weak convergence of E, to E
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