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1 INTRODUCTION 

This trcatisc is concerned with the statistical information of extreme order st.atist.ics in 
cert.aill parametric models. Section 1.1 is a chapter-by-chapter overview of the contents 
of this paper. Section 1.2 eontains some basic definitions eoncerning st.atistical experi­
ments. In Section 1.3, we recall the main ideas eoneerning the eomparison of stat,istical 
experiments. 

1.1 Summary 

In thc aRymptotie thcory of st,at,isl,ics, loeal as weil as global results were established. Take, 
for exmnple, LeCam '., loeal and global asymptotie bounds for risk functions of estimates or 
the loeal and global asymptotie normality of statistical experiments. In t,he seeond chapter 
of the present paper, we formulate a global version of the loeal result of Jan.,.,cn and Rei"s 
(1988). We adopt their notation. 

Defore specifying our model, we give a short motivation. Assume that XI, ... , X" are the 
(random) lifetimes of n aggregates, and the lifetime distribution is unknown. In practice, 
one observes the failure times XI:" :=:; X 2:" :=:; ••• (so ealled "TypII-eensored data"). For 
obvious reasons, it often makes no sense to wait until the last aggregat has failed. So 
one has to eome to a statistieal dccision based on the first k « n) observations. Sinee 
Xk+I:", ... , X":" are not observed, wc suffer a loss of information. For many lifetimc mon­
eis, the smallest observations turn out t.o be very informat.ive. Consider the following 
partieular ease: The Weibull distribution with shape parameter a > -1 (for a = 0 we 
gel. the exponential distribution) is an important lifetime distribution, ami a large body of 
literature on statistical models has evolved for it (see~ for example, the book by Lawlcss 
(1982). For the exponential distribution with unknown loeation parameter the minimum 
XI:" eontains all the information. 

In the following, we study location models of Weibull type distributions "nenr" the 
exponential distribution. It turns out that the k smallest observations are important. In 
order to give a guide how to ehoose k if one aeeepts a given loss of information, one hll.~ 
to ealeulate the loss of informat.ion. This mathematieal problem is treaten within the 
defieieney concept of statistical experiments in the sense of LeCam. 

The starting point is a loeation family PI, t E lR, with Lebesgue density ft( x) = f( x - t), 
where f is of WeibnIl type; that is f has a representation 

where r varies slowly at zero. 

{ 
x'r(x) 

f(x) == o 
for x> 0 

for x :=:; 0 

It is Msnmed that the shape parameter a > -1 is known to the sta.tistician. If, for 
example, r(x) = (1 + a)exp(-x l +a

) we gel. the WeibnIl density. We gel. thc generali:>:ed 
Pareto density of type II if r(x) = (1 + a)l(o.l)(x). 



Now let X], ... ,Xn be i.i.d. random variables with eommon distribution Pt and let 
X I : n , ... ,Xn :n denote the pertaining order statisties. It is weil known that the order 
statistie (X I :n , .. . , X,,:n) is suffieient, i.e. it eontains all the information about the un­
known parameter. We reduee the number of order statisties to the k( n) lower extremes 
XI:", ... ,Xk(n):n amI ealculate upper bounds for the loss of information. These ealcula­
tions will be carried out within the framework of defieieney of statistieal experiments. We 
restrict ourselves to the ease -1 < a < 1. Notiee that for a ::::: 1 the LAN eondition holds. 
The latter ease is examined in Chapter 4. 

We eonsider the statistieal experiments E n, En,k, Gk and G whieh arise out of this 
context and whieh were already introdueed by Janssen and Reiss (1988). In Seetion 2.1, 
we eolleet their definitions. In Seetion 2.2, we establish an upper bound of the deficiency 
between E n and En,k using the Markov kernel eriterion. Seetion 2.3 is eoncerned with 
the asymptotie information eontained in the k smallest order statisties. Theorem 2.3.3 
shows the global sufficiency of the k(n) sma.llest order statistics. The comparison of the 
four experiments within the deficiency concept will be carried out in Section 2.4. As 
a suprising result, we find that b.(En,G) --; 0 and b.(En,k(n),G) --; 0 as n --; 00 and 
k(n) --; 00 (Theorem 2.4.1). This strengthens a result of Janssen (1989b). 

Chapter 3 is eoneerned with Weibull type densities having a compact support [0, bJ where 
o and bare singularity points. In contrast to the densities considered in the previous 
chapter, a second singnlarity occurs at the right endpoint. Because of this fact, we must 
take the upper extremes into consideration. In Section 3.1, we define these densities and 
introduee the statistical experiments En, En,k\,k" G\ 0G2 , and Gt,k\ 0G2,k,. Sections 3.2 
to 3.4 are organi7,ed similar to Sections 2.2 to 2.4. In particular, we show that the kl(n) 
lower and k2 ( n) upper extremes are asymptotically global "ufficient (Theorem 3.3.2). This 
extends a result of Weis3 (1979). 

Chapter 4 is concerned with Gaussian sequences of statistical experiments. We examine 
the borderline case of Weibull type densities with shape parameter a = 1 in Section 4.1. 
Here, we are in the almost regular LAN situation. If k(n) = o(n) tends to infinity at a 
sufficiently fast rate, thell one may cOlljecture that the k( n) lower order statistics are suf­
ficient. Theorem 4.1.1 gives the following solution: If limn_= k(n)/log(n) = 1, then the 
k(n) lower order statistics (XI :n, ... , Xk(n):n) are asymptotically sufficient. Conversely, if 
limn _= k(n)/log(n) = 0, the statistie (Xk(n)+l:n,'" ,Xn-k(n):n) turns out to be asymp­
totieally sufficient. Sectioll 4.2 provides a proof of the fact that in the regular LAN-ease 
(L2 -differelltiability), a fixed number of extremes does not contain any information (Theo­
rem 4.2.1). A characteri7,ation theorem is established in Section 4.3. We show that under 
monotone likelihood ratios, a sequence of experiments has a non- Gaus.,ian limit if and 
only if a fixed number of extreme order statisties, asymptotically, eontains information. 
This result is suggested by a well-known eriterion in the theory of sums of i.i.d. random 
variables. 

Chapter 5 is devoted to point proeesses. In Section 5.1, we reeall the definition of a point 
process and introdnce some notations used in later sect.ions. In Section 5.2, we show that 
in the i.i.d. ease the original experiment and the eorresponding point process experiment 
are equivalent (Corollary 5.2.2). Corollary 5.2.3 states that the loss of information due to a 
reduction of order statisties in the original experiment is the same as in the corresponding 
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point process experiment. Empirical point processes ofWeibull type sampIes are concerned 
in Scction 5.3. It is in this section that we combine the results of Chapter 2 and Section 
5.2. 

I wish to thank Prof. R.-D. Reiss for drawing my attention to the problem of global 
sufficiency. I am a.lso grateful to Prof. A. Janssen for valueable suggestions concernillg 
Chapter 4. 
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1.2 Statistical Experiments 

Here we list some basic definitions and recal! some facts concerning statistieal experiments. 
For the remaindcr of Seetion 1.2, we refer to Milbrodt and Strass er (1985) and Strass er 
(1985a). 

1.2.1 Definition. Let T", 0 be an arbitrary set. A "tatistical experiment for the para.m­
eter set T is a tripie 

(1.2.1) E = (n, A, {Pt : t E T}) 

where (n, A) is a sampie space and {Pt: t E T} is a family of probability measures. If T 
contains exactly two points, i.e. T = {t 1, t 2 }, then E is called a binary experiment. 

The experiment E is said to be homogeneous, if the measures Pt, t E T, are mutually 
equivalent, i.c. Ps « Pt and Pt « Ps for s, t E T. 

Thc log-likelihood process of E with base sET is thc proccss 

(1.2.2) ( dPt ) 
log( dP ) tET 

• 

dcfincd on (n, A, Ps). 

1.2.2 Definition. A homogeneous experiment E = (n, A, {Pt: t E T}) is called Gaussian 
if at least one log-likelihood process is a Gaussian process. 

For example, the statistieal experiment 

is Gaussian, and is cal!ed Gaussian "hift on IR, where N(p, (12) denotes the normal distri­
bution with expectation p and variance (12. 

Every log-likelihood process of a Gaussian experiment is a Gaussian proeess. 

1.2.3 Definition. Two statistieal experiments E = (nI, Al, {Pt : t E T}) anel F 
(n2 , A 2 , {Qt : t E T}) are called equivalent (briefly E ~ F) if 

(1.2.3) 

for every sET. 
Denote by [(T) the eol!ection of al! experiments for the parameter space T ([(Tl is not 

a set!). The elements of the quotient set [(T)/ ~ are cal!eel experiment types. 
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We denote the prodnct experiment of E and F by 

E ® F = (HI x H2 ,AI ® A 2 , {Pt ® Qt : t E Tl). 

Thc n-fold product. experiment of E = (H, A, {Pt: t E T}) is denoted by 

wbere (H",An) elenotes the n-folel proeluct space of (H,A) and Pt denotes tbe n-fold 
prodllct measure of Pt. 

1.2.4 Definition. A sequence of experiments 

converges weakly to E = (H, A, {Pt: t E T}) (brießy En -> E) if for every finite subset a 
of T and for every s E a 

(1.2.4) 

Tbe most import nut dass of limit experiments are tbe GanHian. 

1.2.5 Definition. A sequence of statistical experiments En = (Hn , An, {Pnt : t E T}) 
is called Ganssian sequence if the pertaining sequence of product experiments E~ = 
(H~, A~, {P::t : t E T}) has only Gaussian accumulation points. 

A sequence (En)nEN E f(lR) is called asymptotically normal if it converges weakly to a 
Gaussian shift (on lR). 

1.2.6 Definition. Let Pn anel Qn be probability measures on (Hn,A n ), nEIN. The 
sequence (Qn)nEJII is contiguous to the sequence (Pn)nEIN if 

(1.2.5) Pn{An) --+ 0, A" E An, implies Qn(An) --+ O. 

1.2.7 Definition. A sequence of experiments E n = (H n, An, {Pnt : t E T}) is contiguons 
iffor every pair (s, t) E Tx T the sequence of probability measures (Pn.)nEN aud (Pnt)"EN 
are mlltually contiguous. 

The meaning of contiguity is the following: The weak convergence of a contiguous sequence 
of experiments is equivalent to the weak convergence of one particular log-likelihood pro­
cess. 

If En -+ E weakly, then E is homogeneous Hf (En)"EIN is contiguous. 

Let us denote by 

(1.2.6) IIP - QII := Sllp IP(A) - Q(A)I 
AEA 

the variational distance between two probability measures P and Q, defined on some 
measurable space (H, A). 
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1.2.8 Definition. A sequence of experiments Eu = (nu, An, {Pnt : t E T}) is said to be 
infinitesimal if for every s, t E T 

(1.2.7) 

Intuitively speaking, the assumption of infinitesimality guarantees that the influence of a 
single measure is asymptotically negligible. 
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1.3 Comparison of Statistical Experiments 

When investigating a complicated statistical experiment, it is sometimes useful to eon­
struct another experiment which is elose to the original one but is of statistically simple 
nature. The usual way to obtain an approximating experiment is to embed the original ex­
periment into a sequence of experiments and to expand the log-likelihood function. As one 
is normally more interested in approximations than in limit theorems, one has to estimate 
the distance of the two experiments. A natural quantity for comparing two experiments is 
the deficiency distance of LeCam. It is based on the comparison of risk functions available 
in the two experiments. 

The theory of comparison of statistical experiments was initiated by the papers of Black­
weil (1951) and LeCam (1964). For an excellent full depth treatment of this topic, the 
reader should consult the monograph by Strasser (1985 a). 

Let T i' 0 be an arbitrary set and consider the experiments 

and 

Moreover, we consider decision problems (T, D, W) consisting of a topological space D and 
a bounded, continuous loss function W : T X D -> R. If D contains two elements, one 
speaks of a testing problem. Let € :::: O. Eis called €-deficient w.r.t. F, if for every decision 
problem (T, D, W) and for every decision function P2 in F there exists adecision function 
PI in E such that for every t E T the following inequality between the risk functions is 
valid: 

(1.3.1) f f W(t,x)pI(wI,dx)dPt(wd ln,lD 
::; f f W(t,X)p2(W2,dx)dQt(W2)+€SllPxEDIW(t,x)l. ln,lD 

The deficiency of E W.r.t. Fis the number 

(1.3.2) b(E, F) = inf{€: E is € - deficient W.r.t. F}. 

Eis called more informative than F, if b(E, F) = O. The deficiency between E and F 
is the symmetrical quantity 

(1.3.3) t:,.(E,F) = max{b(E,F),b(F,E)}. 

E and F are equivalent iff t:,.( E, F) = O. 
The deficiency is a pseudodistance on the collection f(T) of all experiments for the 

parameter space T. Moreover, (f(T)/~, t:,.) is a complete metric space. 
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A sequence of experiments E n E [(T) converges (in the strong sense) to an experiment 
E E [(T), if fl.(E,,, E) ---> 0 as 11 -> 00. The sequence (En)n converges weakly to E 
iff fl.(l'(En, E) ---> 0 as n -> 00 for every finite subset a of T . . With fl.(l' we denote the 
restriction to the parameter set a. 

Now, the filmous random.ization criterion due to LeCam. (1964) says that 

(1.3.4) 8(E, F) = infsup IIQt - M Ptll 
M tET 

where the infimum is taken over all tran3ition3 (3tocha3tic operator.,) from the L-space 
L(E) of the experiment E to the L-space L(F) of the experiment F. In the case of equal 
sampIe spaces we get fl.(E, F) :::: SUPtET 11Ft - Qtll, since the identity defines a transition. 

If, in addition, E is a dominated experiment and F is such that 112 is Polish (i.e. 
metrizable as complete, separable metric space) aud A2 is the Borel u-field, then the 
Markov kernel criterion holds, i.e. the infimum in (1.3.4) can be taken over all Markov 
kerne!s J( : A 2 x 111 -> [0,1] from (11 1 , Ad to (112 , A2 ), where by definition 

(1.3.5) 

If J( Pt = Q t for some kerne! !( then E is more informative than F. In this case, E is 
also called Blackwell 3ufficient 01' exhau3tive for F. 

In general, it is not possible to calculate the deficiency; some exceptional cases may 
be found in the paper of Torger"en (1972). Due to the Markov kernel criterion, an upper 
bound of 8(E, F) is obtained by SUPtET IIQt -J(* Pt 11 where J(* is some appropriate Markov 
kerne!. The choice of the kerne 1 J(* is crucia!. 

The relation between sufficiency and deficiency is the following. Let X : 111 ---> 112 be 
any A1,A2 -measurable map with C(XIPt ) = Qt. Clearly, Eis more informative than F, 
since the transition 

satisfies J( Pt = Q t. If X is a sufficient statistic, then the statistical experiments E and 
F are equivalent. If, in addition, 112 is Polish, then F is even Blackwell sufficient for E: 
First, choose a conditional distribution P( ·IX) E ntET Pt(·IX) which is independent of 

the parameter t. Second, find aversion P('IX) of PCIX) which is the regular conditional 
distribution. The kerne! 

satisfies kQt = Pt. For more details concerning Blackwell sufficiency see Heycr (1982). 
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An experiment (n, A, {P, : t E T}) is said to be "totally uninformative" or "trivial" 
if all measures P, are equal (see Hellcr (1982), p. 240, LeCam (1986), p. 19). Such an 
experimmt is equiva.lent to E o = (IR,ß, {fO}) (Eo considered as an element of [(T». The 
totally uninformative experiment is the weakest element of [(T) in the sense that 

6(E,Eo) = ° \jE E [(T). 

The transition J(Blw) = ID(O), BE ß, satisfies 

fo(B) = J J(Blw)dP,(w), tE T. 

Now, we recall the definition of asymptotic sufficiency, see Stra.~.'er (1985 a), p. 422, 
423. Let E n = (nn, An, {Pn, : t E T}) be a sequence of statistical expf'riments, wllf'rc 
T is a Hilbert space with ° E T. Let X n be an An-measurable randolTl variable, and ld 
F(nn,An) denote the set of all critica.l functions defined on (nn,A fI ), nEIN. 

The sequence (Xn)n is aJlIm.ptotical/lI .w.fficient (for En ) if 

(1.3.6) 

for every t E T and for every sequence of critical functions <Pn E F(n,,, An), 11. E IN. 
The sequence (Xn)n is aJlImptotical/lI JlI.fficient lmiformlll on compact MLb.,et., of T if 

(1.3.7) 

for every compact set J( s:; T, and for every sequence of critical functions!pn E F(Dn, An), 
nEIN. 

Definition (1.3.7) is LeCam'J definition of asymptotic sufficiency, see the paper of LeCam 
(1956) and the book by LcCam (1986), Theorem 1, p. 177. 

In the last years, many papers have been concerned with the comparison of statistical 
experiments. Desides the previollsJy-mentioned papers and the lamolls paper 01 J'or.qer.qen 
(1970) we quote the following oues: 

Helgeland (1982) studied the incrcase in statistical information by adcling independent 
observations, where the underlying model is a I-parametric exponential family. 

Mammen (1983, 1986) deduced upper bounds for the gain of information due to addi­
tional independent observations for experiments which fulfill general dimensionality con­
ditions. Exponential families were also studied. 

One dependent case can be found in the article of Lindqvist (1984), where homogeneous 
Markov chains (Xn)n are concerned. Here the starting value X o is concerned to be the 
unknown parameter and the loss of information of X n is investigated if 11. tends to infinity. 

The deficiency of one shift experiment relative to another on infinite dimensional Danach 
spaces was studied by LlIuhgll (1987). 
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Janssen (1989a) was the first t,o recognize the importaIlCe of extreme order statistics 
for exponential families. It. was shown that the extreme order statistics asymptotically 
contain all t.he information. 

Approximate sufficicncy of sparse order statistics (also in nonparametric models) was 
investigated in the book by Reiss (1989). 

The dcficiency concept is a mathematically rigorous one. However, Lehmann (1989) in 
his article Comparing loeation models came to the condusion that the requirements for an 
experiment to bc more informative than another are "too strong to hold in many situations 
in which intuition suggests tImt one experiment is more informative than another". Olle 
natural approach to wcaken the requirements is to define the deficiency not for a.ll df'cisioll 
problems but only for some (appropriate) dass of decisioll problems. This approach will 
1l0t bc discussed is this paper. 
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2 LOCATION EXPERIMENTS OF WEIBULL TYPE 

The four sections of this ehapter concern loeation families of Weibull type densities. 

2.1 Definition and Notations 
Let P h tE IR, be a family ofprobability measures with Lebesgue dcnsity ft(x) = f(.7:-t), 

where f is of Weibull type; that is, f has a representation 

(2.1.1) { 
x'r(x) for x> 0 

f(x)= 0 forx:::;O 

where a > -1 and r varies slowly at zero. Dur starting point is the statistical experiment 

(2.1.2) 

where the normalizing sequenee (0" )nEIN will be explained in Section 2.3. (Throughout of 
this paper, the dependenee of the shape parameter a is suppressed in the notations since 
ais held eonstant.) 

The second experiment is 

(2.1.3) 

where 

(2.1.4) 

Notice that o(En,En,k) = 0, i.e. En is more informative than En,k. 
Finally, we consider the experiments G and G k which occur as limit experiments of E" 

and En,k, respectively. Let (Y;)iEl'l be an i.i.d. sequence of standard exponential randOlIl 
variables and denote 

(2.1.5) 

the m-th partial sumo 
Define 

(2.1.6) 

and 

(2.1.7) 

Then 

(2.1.8) 

and 

(2.1.9) 

m 
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The comparison of these experiments is carried out in Section 2.4, according to the following 
diagram: 

E 
(2.4.9) 

11 <-----+ En,k 
(2.4.21) 1 

G 
1 

<-----+ G k 
(2.4.16) 

12 
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2.2 Upper Bound of the Deftciency between E n and En,k 

Let -1 < 0. < 1 ancllet Pt bc defillcd a8 in Section 2.1. Denote with 

(2.2.1) 

the conditional distribution of (XJ:n, ... ,Xn:n) given (XJ:n, ... ,Xk :n) = (xJ, ... ,xk) 
=:;r. under the parameter t. It is well-known (see Reiss (1989), Theorem 1.8.1) that 

(2.2.2) 

where t y denotes the Dirae measure at y and the l'i, i E {I, ... , n - k}, are i.i.d. random 
variables with common distribution Pt,x. (the truncation of Pt on the left at .Tk). 

Let F denote the distribution function of Po. If F(Xk - t) < 1 then the distribution 
Pt,x. has the Lebesgue density 

(2.2.3) 

To obtain an upper bound of l:!,(En, En,k) we choose a kernel of the following type: 

(2.2.4) [{(n,k) .. ,x •.. n)('IXJ :n , ... ,Xk:n) K(X t :n , 

where K is an appropriate estimator of the unknown parameter. Jan33en and Rei33 (1988) 
eonsidered the kernel [{~n,k) for their loeal treatment of the problem on a right neighbor­
hood of O. In our situation, a plausible ehoiee of K will be the minimum, i.e. 

(2.2.5) 

Using the kernel 

(2.2.6) 

we will be able to verify the global sufficiency of the k( n) smallest order statistics. The use 
of kerneIs under an estimated parameter has turned out to be very successful in order to 
establish bounds of the deficiency, see e.g. Helgeland (1982), Mammen (1986) and Weis3 
(1979). The upper bound of l:!,(En,En,d will depend on three auxiliary functions h, g, 
and 'IjJ, cf. Janssen and Rei3s (1988), 

h(y) =yI -(y-1)I, y 2: 1, 

(2.2.7) ]

00 ( tJ 1 11 1 1 ) 2 
g(x) = J (Y'r'(xy) - (y - l)'r'(x(y - l)))/(r'(x)) - h(y) dy, 

'IjJ(z) = fooh2(y)dY,Z2:1. 

We note that hE L2(,\) ancl'IjJ == 0 for 0. = O. 
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2.2.1 Theorem. For k E {1, ... ,n}, tE lR, and E > 0 such that kln:S: F(E) < 1, the 
following inequillity llOlds: 

(2.2.8) 1I.c( (X I,,, ... , -"'nn )1Pt) - K~,:,k) .c((XI :n, ... , Xk:n)lPt) 11 

where 

and 

:s: (1- F(E))-t(n - k)hl,n(h,n + h,n,k) + Rn.k 

If,n = j l'(xJ)x~+1 d.c(XI:nIP;) (xtl, 

(0.<1 

Ii,n = j g(xtldC(XI:nlPon) (xd, 

(0,') 

Ii,n.k = j1 1/,(:k)dC((XI:n,Xkn)IP~')(.TI,xkl, 
XI 

(O.<Jx(O,<) 

We remark that the right-hand side of (2.2.8) is independent of the parameter t! 

PROOF OF THEOREM 2.2.1. For the sake of convenience, let us abbreviate the left-hand 
side of (2.2.8) by p(n, k, t). Similar to the proof of Theorem (2.8) of Janssen and Reiss 
(1988), WP obtain 

p(n,k,t) 

= sup Ij(I(;n,k)(BI;r,) - K17,k)(BI;r,)) dC((XI:n, ... , X k:n) IPt)Cr.l I 
DEBn 

:s: j sup IKin,k)(BI;r,) - Kt,k)(BI;r,)1 dC((X1:n, ... , Xk:n)IPt")(;r,) 
BEB" 

= j j IIPt;.k - P;',~:.II dC((XI:n,Xk:n)IPt)(XI,xk) 

,+t,+t 

:s: j j 11Pt':;;,k - P;',~:.II dC((-"'I:,.,-Yk:n)IPt")(XI, xd + Pt" {Xk:n > d t} 
t t 

,+t,+1 

:s: v''--2('--n---k'-) j j H(Pt,x., PXI,T') dC((X1:n, Xk:n)IPtn)(XI, Xk) + Pt{Xk:n > E + t}. 
t t 

The last stcp follows from the ine'luality 

H(p m, Qm) :s: ..j2;;;H(P, Q) 
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where 

dennte" the Hellinger dista.nce between the probability measures P and Q. 
In thp following, let (XI,Xk) E (t,E + t) X (t,E + t). Then we find that F(Xk - ,CI) :::: 

F(Xk - t) :::: F(E) < 1. Sinee x + y 2: 2..JXY for x, y 2: 0, we obtain 

2H2(Pt ,r., PXI,x.) = J Utl,~~ (y) - I~(;x. (y))2 dy 

= 2{ 1- ((1 - F(Xk - t))(1 - F(Xk - XI)))-1/2 7 11/2(y - t) l/2(y - xtl dy } 

= 2{ 1- ((1- F(Xk - t))(I- F(Xk - xtl))-1/2 

x [(1- F(Xk - t) + 1- F(Xk - xtl)/2 - ~ !U I/2(y - t) - 11/2(y - xtl)2 dy]} 

00 

:::: (1 - F(EW I 1 (l/2(y - t) -l/2(y - xtl)2 dy 

00 

= (1- F(E))-I 1 (l1/2(y) - 11/2(y - (XI - t)))2 dy, 

XIi:-t 

where the last step follows by substituting y by y + t, Combining these results, we get 

<+t,+t 

p(n, k,t):::: (1- F(€W! (n - k)! J J d(xi - t,xk - t)d.c((XI:n,Xk:n)IPt) (Xl,Xk) 
t t 

where 
i2 I( I I 2 d (Xl - t,Xk - t) = f'i(y) - f2(y - (XI - t))) l(x.-t,oo)(y)dy. 

Since {Pd is a loeation family, we obtain 

(2,2,9) 

p(n,k,t):::: (1- F(€W~ (n - k)! 11 d(xj,xkld.c((XI:n,Xk:n)!POn)(X\>Xk) 

(0,<) x (O,<! 
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Using the exponential bound for order statistics (see Reis.' (1989), Lemma 3.3.1) and the 
quantile transformation we get 

(2.2.10) 

for kln:S F(f) (cf. Lemma 2.8 of Janssen and Reiss (1988)). By substituting y by x)y 
and applying the Minkowski inequality, we obtain 

(2.2.11) 

d(x),xd = :1:: ( 1 (J!(XIY) - f~(xI(Y _1)))2 dY) t 
Xlt/ X l 

1 ~(JOO )t + r'(xd x ) 2 h2(y)dy. 

Xk/Xt 

Now, using the Cauchy Schwarz inequality, combining (2.2.9) - (2.2.11), and taking into 
acconnt the definition of 9 and 1/" the proof is completed. _ 

It is obvious that. using the kerncl [(~n,k) it is not possible to establish an upper bound 
of the deficiency independent of the parameter. ßecause of this, one has to restrict the 
parameter space to compact sets. 

Let us denote the right-hand side of (2.2.8) by D(n, k). Notice that D(n, k) is an upper 
bound of the deficicncy between E n and En,k, i.e. 

(2.2.12) 
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2.3 The Asymptotic Information Contained in the k Smallest Order Statistics 

Onee again, let F (knote the distribution function of Po. We recall that far t.he normalizing 
sequcnce On = F- 1

( *) oeeuring in En and En,k, we have (see Bingham et al. (1987), 
Theorem 1.5.12) 

(2.3.1) On = n -l/(I+a) L(..!:.) 
n 

for some slowly varying function L. 
From the theory of regular variation it is known that densities of type (2.1.1) fulfill the 

von Mise., condition 

(2.3.2) 
. xf(x) 
lun-F () =l+a x-o x 

(see Bingham et al. (1987), Proposition 1.5.10). Condition (2.3.2) implies that F belongs 
to the strong domain of attraction (see Falk (1985) or Sweeting (1985), i.e. convergence 
of the extremes holds w.r.t. the variational distance 

(2.3.3) 

We will assurne that for some € > ° 
(2.3.4) 

or 

(2.3.4') 

r is bounded on (o,€) and !iminf rex) > 0, 
xLO 

r is decreasing on (0, €). 

Note that rex) > ° for x E (O,xo) and for some Xo. 
In addition, we assurne that the following eondition of Janssen and Mason (1989) 18 

fulfilled. First, it i8 assumed that 

00 

(2.3.5 (i» J (l/2(x - t) _l/2(x»)2 dx = o(tI+ar(t») (t! 0) 

for each € > 0. 
Condition (2.3.5) (i) says that the Hellinger distance is mainly determined by the loeal 

behaviour of the density at the singularity 0. Moreover, no other singula.rities of higher 
order occur. 

Now, let 

rex) = l(.T)rl(x) = l(x)exp(l xo 

b(u) du) 
x u 

for some Xo > 0, I measurable and I(x) -> c E (0,00), b(x) -> 0, as x -> 0, be the Karamata 
representation of the slowly varying function r (see e.g. Bingham et al. (1987), Theorem 
1.3.1) It is known tha.t rl is absolutely continuous on (0, xo) with xr~(x)lrl(x) = b(x) a.e. 
(see Bingham et al. (1987), p. 15). 
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In addition, I is assumed to be continuous on [0, xo] with 1(0) > 0 and 

(2.3.5 (ii)) 

as t ! O. 

xo/2 ! (1 1 / 2 (x + t) _11/2(x))2 xarl (x)dx = 0(tl+a
7·(t)) 

o 

Undcr condition (2.3.5), fan.,sen and Mason (1989) proved that 

(2.3.6) !im g(x) = 0, 
X~O 

sce Lemma 10.13. 
Moreover, we nccd moment convergence of the normalized sequenee 0;;1 X I:n . Coneern­

ing limit thcorems for moments of extremes, we refer to Polfeldt (1970), p. 45, and to the 
book by Resnick (1987), Chapter 2. 

2.3.1 Lemma. Assllme that 

(2.3.7) EPoX I < 00 

El'o X~ < 00 

ifa E (-1,0] 

if a E (0,1). 

(2.3.8) limsup! :rl+ a d.c(o;;-IXI:nIP~') (.T):'S: C E (0,00) 
n--+(X) 

for somc eonstant C > o. 
Condition (2.3.7) is always satisfied in standard eases. 

PROOF OF LEMMA 2.3.1. Let. a E (-1,0] (the ease a E (0,1) may be treated in a similar 
way). Sinee F bclongs to the (weak) domain of attraction of a (min-)stable distribution, 
eondition (2.3.7) implies timt the first moment of 0;;1 X I :n eonverges to the first moment 
of the limiting distribution, i.e. 

(2.3.9) 

(see Resnick (1987), Proposition 2.1). 
Now the proof can be easily eompleted. _ 

2.3.2 Theorem. Let f be a dcnsity of type (2.1.1), and Ilssume that (2.3.4) (2.3.4')), 
(2.3.5), alld (2.3.7) are valid. There exists a constant C > 0 such that 

(2.3.10) 
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PROOF. 1) First, let condition (2.3.4) be fulfilled. Substituting onx for x, we obtain for 
some constant C > 0 

Moreover, 

(2.3.11) 

(n - k)If,n::; C(n - k)o,~+a J x~+l d.C(o;;-IXI:nIPon) (:cd· 

(0,6;;' ,) 

!im (n - k)(OnxJ)l+a r(OnXl) = (1 + a)x~+I. 
n~oo 

Taking into account Lemma 2.3.1 and eondition (2.3.4), we obtain 

limsup(n - k)I/2 II,n < <Xl. 

In the ease (2.3.4'), we proeeed as folIows: Let s > O. Then 

• 
(n - k) I;,n ::; J (n - k)(onxJ)Ha r(onxd dC( 0;;-1 XI:nIPo")(xtl 

o 
6~1~ 

+(n-k)o~+ar(Ons) J x~+ldC(O;;-lXI:nlPon)(xd· 
Janssen and Rei33 (1988) showed that 

(2.3.12) lim sup (n-k)(onxdHar(onxd=(I+a)sHa. 
n-oo O~Xl$S 

Now using (2.3.11), (2.3.12), and Lemma 2.3.1, we see that limsuPn~oo(n - k)1/2 II,n < <Xl 

also holds under condition (2.3.4'). 
2) An upper bound of /2,n is obtained as follows: 

Ii,n = J g(On xl)dC(o;;-lXI:nlPon)(xd 

(0,6;; I,) 

::; J g(On xtl dC (Si/(1+a»)(xtl 

(0,6;; 1,) 

+ c211C( 0;;-1 XI:nlPon) _ C(Si/(Ha») 11 
=: A~ + c2B~ 

where C2 := SUPO<x, <, g(xd. Notiee that C2 is finite because of (2.3.6). From (2.3.3), 
we know that B~ tends to zero as n tends to infinity. An applieation of the dominated 
convergence theorem 0/ Lebesgue shows that A~ also tends to zero as n tends to infinity. 

3) Similar to 2), we obtain 

12 < Eol.(Sk )1/(1+a») 3,n,k - 0/ SI 

+ IIhll~ IIC(o,~I(Xl:n,Xk:n)IPn - C(Si/(1+a),S!/(Ha»)II. 

The a.ssertion follows from 1) - 3) and inequality (2.2.8) .• 
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2.3.3 Theorem (Global Sufficiency). 5uppose that the conditiolls oE Theorem 2.3.2 
are Eulfilled. 

(i) Let a E (-1, 1), a i' O. There exists a constant C > 0 sudl tlJat 

(2.3.13) 

(ii) If a = 0 tllClI 

(2.3.14) 

Remark. Theorem 2.3.3 states thaI. the k(n) lower extremes (XI:", ... ,Xk(n):n) are 
asyrnptotically global sllfficient in the sense that 

(2.3.15 ) 

whenever k(n) with k(n) --; 00 as 11. --; 00. This has an important consequence in testing 
theory. Assume tImt 'Pn (X I, ... , X n) is a test for En. Then 

is a new test~based on the k smallest observations. We obtain 

for 11. --; 00 amI k( n) --; 00. 

In thc paper of Ja.n".'en amI Rei.'" (1988), it was shown tImt 

lim I3. s (En ,E" k(n») = 0, 
11-00 ' 

where 13.. indicates the restriction to the compact pa.rameter set [0, s]. 

PROOF OF THEOREM 2.3.3. (ii) is immedia.te from Theorem 2.3.2, since ~) == 0 for a = O. 
So it remains 1.0 consider the case a i' O. First observe that (z > 1) 

(2.3.16) 

To vcrify (2.3.16) use thc mean value theorem. Notice thaI, 

(2.3.17) 
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where the symbol 4, denotes equality in distribution and U1:k-1 is the minimum of k - 1 
i.i.d. (0, l)-uniform random variables (UI,o := 1). Now let k 2: 2 and choose (j E 0,1). 
From (2.3.16) and (2.3.17), we deduce: 

(2.3.18) 

E"'(U-I/(I+a») < _a_
2
_ J (u-I/(Ha) _l)a-1 dC(U .. _ )(u) 

'I' 1:k-1 - 4(1 _ a) I.k I 

(0,5) 

+ IIhll~ P{U1:k-1 > (j}. 

Onee more, applying the exponential bound for order statistics (compare with (2.2.10)), 
we see that . 

(2.3.19) 

holds. Abound of the other expression on the right-hand side of (2.3.18) is obt.ained as 
folIows: Substituting u by u/( k - 1), we get. 

(2.3.20) f (u-I/(Ha) -l)a- l dC(Uu_t}(u) 

(0,5) 

(k-I)5 

= (k -1)T-:r. f (um - (k -l)mr-1 
dC((k -l)UU-l) (u) 

o 
(k-I)5 

:::; (k -1)T-:r.(1- (j*)"-I J um- dC((k - 1)Uu_l) (u) 

o 

where the last ineqllality follows from the fact that for u E (0, (k - 1 )(j) we have 

If 

(2.3.21 ) limsllp J u(l-a)/(l+a) dC((k - l)U1:k-l) (u) < 00, 

k~= 
(O,(k-I)5) 

then the proof follows from Theorem 2.3.2 and (2.3.18) - (2.3.21). To verify (2.3.21), we 
may apply the same arguments used in the proof of Lemma 2.3.1. Notice that in case of 
the uniform distribution, moments of arbitrary order do exist. _ 
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2.4 Comparison of the Statistical Experiments En, En,k, G and Gk 

In Ja,n$"en (1!J8!J) (sec also .Tan""en and Reiss (1988» it was shown that i:J..(E",G) -+ 

o and i:J..(En,k(n)lG) -+ 0 as n -+ 00 and k(n) -+ 00, where s indicates the restriction 
to the compact parameter set [0, sJ, The next theorem states that the same holds on the 
whole realline, This is a suprising result, Usually, one has to restriet the parameter set 
to compact sets, spe LeCam (1!J86), Theorem 2 (Theorem of Lindae), p, 92, a.nd Remark 
2, p. 93. 

2.4.1 Theorem (Strong Convergence). Assume that the conditioIlS of Theorem 2.3.2 
are valid. Then 

(2.4.1 ) i:J.(E,,, G) -+ 0 as n -+ 00 

and 

(2.4.2) i:J.(En,k(n),G) -+ 0 a,5 n -+ 00 

wllCIlever I.:(n) :'S 11 and k(n) -+ 00 as n -+ 00. 

PnOOF. Theorem 2.3.3 stntes tImt i:J.(En,En,k(n» -+ 0 as n -+ 00, k(n) -+ 00. Now, by 
omitting the index s, we see tImt the proof of (2.4.1) is arepetition of the proof of Lemma 
(5.21) in .Tanssen amI Rei"s (1!J88). 

(2.4.2) is immediate from i:J.(En,k(n»G):'S i:J.(En,k(II),En) + i:J.(En,G) .• 

In the following, we establish rates of convergence. First, we proof 

2.4.2 Lemma. Let ffulfill (2.1.1) and let 0 < A < 1. There exists a constant C > 0 such 
that 

(i) for a E (-1, 1),a cf 0: 

(2.4.3) D( n, k) 

< C(k(a-I)/(2(l+a» + IIC(8-I(X. X. )Ip'n) _ C(SI/(l+a) SI/(l+a»)II~ _ n l.n, k.n 0 1 'k 

+ ( J g(tlnxJ)dC(S:/(l+a») (xI)) ~) 
(O,~;;' <) 

(ii) for a = 0: 

(2.4.4) D(n,lbC( J g(tlnxJ)dC(SJ)(xJ))~ 
(0,6;; I,) 

for a11 nEIN 8ml k :'S An. 

PnOOF. For k < An we have 

( k 2 ) ( 2) e.'rp -n(F(f)--) /3) :'Se.Tp -k(F(f)-A) /(3A) . 
n 

Now (2.4.3) aue! (2.4.4) follow from Theorem 2.2.1 ami from thc arguments of the proofs 
of Theorems 2.3.2 amI 2.3.3 .• 
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The lIpper bOllnds (2.4.3) lIud (2.4.4) involve the term g( "nxd. To establish rates of 
convcrgence one has (,0 impose fnrther assllmptions (cf. J anssen and Rei .• s (1988)). Let 

(2.4.5) "(x) = cexp(il(:r)), 0 < x< xo 

wherc c > 0 and il satisfies the condition 

(2.4.6) 

for SOIIle constant L > 0 and I > O. Note that limx_o r(x) = c, and timt condition (2.3.4) 
is flilfilled. 

Under condition (2.4.5), we may choose the normalizing seqllenee 

(2.4.7) 

Note that bn ~ On and that (2.3.3), (2.4.3), and (2.4.4) hold with "n replaced by b". 
First, we treat the case a I' O. 

2.4.3 Theorem. Let a E (-1,1), a I' O. Assume in additon to (2.1.1) and (2.4.5) timt f 
is absoiuteiy continIlaus on (0,00) and timt 

(2.4.8) 

Then for every A E (0,1) there exists a constant C > 0, such that for nEIN lind k :S An 
the following ineqllality ilOids: 

(2.4.9) ileEn, En,k) 

:s C ( (k(a-l)/2«I+a» + (~rr/(2(l+a» k t + (~) 1/2 + n max{ a-I,-2,),) /(2(l+a»). 

PROOF. Throughout, C denotes a generic constant which does not depend on n and 
k :S An. Under conditions (2.4.5) and (2.4.8), we have 

(2.4.10) g(x) :S Cxmin{l-a,2')'), 

with gas in (2.2.7). It was shown by Janssen and Rei.'s (1988) that 

ilex) = [X' (ya/2,.1/2(xy) _ (y _1)a/2r l/2(x(y _ 1)) _ cl /2h(y))2 dy 

= O(x min{l-a,2')')). 

Now, assertion (2.4.10) is immediate from 

and 
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Thus we have 

J g( 8n xtl d.C(S:/(I+a)) (xtl :::; c8~'in{l-a,2'y). 
(0.6;; 1 <) 

Taking account of (2.4.7), we obtain 

(2.4.11 ) J g(8
n x I )d.C(S:/(l+a)) (xtl:::; Cnmax {a-I,-2-y}/(l+ a). 

(0,6;; 1 <) 

Prom the proofs of Theorem 2.3.2 and Theorem 2.3.3, we know that 

The Corollary 5.5.5 in Rei .•.• (1989) implies 
(2.4.13) 

IIC(8;;I(X1n , ... , Xkn)IP~') - C(S:/(l+a), ... , S!/(l+a)) 11 :::; C(C~ p/(1+a) k! + ~). 
n n 

(Corollary 5.5.5 st.ill holds for c i' 1 + a and Cn = 8,.. To see this, examine the proof of 
Corollary 5.5.5: choose xo,,. = cnxo and /n(x) = ;!n/(fn». Hence, the asserted inequality 
is immediate from Lemma 2.4.2 aud (2.4.11) - (2.4.13) .• 

Now we treat. the case a = O. 

2.4.4 Theorem. Let f bc a dcnsity of type (2.1.1) for a = O. In a.ddition to (2.4.5), let f 
be a.bsolutely contiIHlOllS on (0, 00) ilnd 

(2.4.14 ) 100 1.f'(x)l~ 
o /(x)~-1 dx < 00 

for some 77 E (1,2]. TlJcn for k:::; >.n, >. E (0,1), tlle following inequality holds: 

(2.4.15) 

for some C > O. 

PROOF. As in Ja.nHcn aml Reis .• (1988) one may show g(.1') 
account of Lemma 2.4.2 (ii), we see tImt (2.4.15) holds .• 
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2.4.5 Theorem. 

(i) Let a E (-1,1), a i O. Thc!"c exists a canstant C > 0 such that 

(2.4.16) 

(ii) Let a = O. Then 

(2.4.17) 

PROOF. From (2.3.3), we know 

(2.4.18) 

Applying the triangle inequa.lity we obtain 

(2.4.19) 

Taking into account Theorem 2.3.2, 2.3.3, and 2.4.1, the proof is complete. _ 
From (2.4.13), we deduce 

(2.4.20) 

Now, we are ready to establish the rate of convergence of fl.(En, G). 

2.4.6 Theorem. Let f be a density of type (2.1.1) with a E (-1,1) amllet (2.3.7), (2.4.5), 
(2.4.8), and (2.4.14) be valid. Then 

(2.4.21 ) 

where 

l
a-I 

2(Ha) 

a - ")'(a-I) ß(" ) - (l-h)4(l+a) 

ma.T{ -" -%} 

for'V > 2(l+a) a..J. 0 
f - l-a' I 

for 0 < , < 2\1,!::), a i 0 

for a = O. 

PROOF. The calculations are similar to those of Janssen and Reiss (1988). We start with 
the ineqllality 

fl.(En, G) S fl.(En, En,k) + fl.(En,k, Gd + fl.( Gk, G). 

ASSllme first ai o. Combining (2.4.9), (2.4.20), and (2.4.16), we obtain 

fl.(En, G) S C (k(a-I)/(4(l+a» + (~p/(2(l+a» k~ : (~f/2 + nmax{a-I '-21'l/(2(l+a») 
n 11. 
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uniformly over 1'111 k :s; An if 0 < A < 1. 
Elementary calculations show tImt n-y/(I+-y) is the solut.ion of the equation 

x(a-l )/(1(l+a)) = (::. r/(2(l+a)) X1/4. 

n 

Hence we choose 
k(n) = [n-Y/(I+-Y)j. 

N -y(a-1) I 2(I+a) M· I l' -y(a-I) -:::kL 
O\V, (1+-Y)4(I+a) > - 2(1+"1) '* 'Y < -r=a. Oleover, t 1e re atJOns (1+-y)4(I+a) > 2(l+a) 

d -y(a-I) a-I t . 'all al'd an (1+-y)4(l+a) > 2(l+a) are nVI y v I . 

Notiee, that for 'Y 2 'Yo := 2\1~:) the assertion (2.4.6) holds for 10 instead of 'Y. We 
b' -Yo(a-I) a-I Th r ..J. 0 

o tam (l+-Yo)4(I+a) = 2(3+a)' us, lOr a r 

For a = 0 and k = 1, we dedllce from (2.4.15), (2.4.17), and (2.4.20) the upper bound 

Thus, (2.4.21) is shown to be valid._ 

REMARK. The explicit. reprcsentation of the limit experiment, namely, 

was exhibited by Ja.n,','en (1989 b). Furthermore, G is a Jta.ble Poisson experiment with in­
dex of stahility 1 +a. Stable experiment.s were introdueed under the label "scale invarianee" 
by Müller (1973) and were thoroughly invest.igated by Stra.,'Jer (1985 b). 

Sinee X-I is Frechet iff X is Weibu11, one may conjecture that. a11 results of this chapter 

earry over to location models of Frechet type densities, where S:,{(l+
a

) is replaeed by 
S;;;I/(l+

a
). But this is no longer true, since the transformation X-I does not lead to 

a location model. The Frcchet distribution has finite Fi,qher information for a11 shape 
parameters a > -1. Henee, we are in the usual LAN-ease, i.e. the product experiment·-­
rescaleel with On = n- 1 / 2 -eonverges weakly to a Ga.u,IJia.n shift. In this case, a fixed 
number of extremes asymptotica11y eloes not contain any information (see Section 4.2). 
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3 WEIBULL TYPE DENSITIES WITH COMPACT SUPPORT 

The next four sections are concerned with Weibull type densities having a compact support. 
This chapter is organi7.ed similarly 1,0 Chapter 2. 

3.1 Definition and Notations. Our starting point are Weibull type densities having a 
compact support [0, b], b > 0; thaI, is for some Xo 

(3.1.1) 

for 0 < x< Xo 

for b - x 0 < x < b 

for x r/:. [0, bJ 

where a > -1 and ri, i = 1,2, are slowly varying functions at zero. 
Throllghout, it is assumed that the shape parameter a is known. Again, we consider the 

non-regular case a E (-1,1). For example, we gel, the density of the uniform distribution 
lex) = l(O,I)(X) if a = 0, b = 1, and "1 = r2 == 1 (see the eomment on page 35). 

Let Pt, t E lR, be a loeation family defined via a density j of type (3.1.1). Moreovcr, 
X I :n, ... , X n :n are the order statisties of a sampIe of size n, where Xi are i.i.d. ra.ndolll 
variables with common distribution Pt. In contrast to the densities of type (2.1.1), we have 
a further singularity at the right-hand side of the range of the distribution. So we have 1,0 

include the upper extremes in our considerations. Inside (xo,b - xo), we claim that the 
density f behaves weil (see condition (3.3.6) (i)). 

For eonvenience, we introduce the abbreviations 

(3.1.2) 

In Seetion 3.3, we prove the global sufficiency of the k1 (n) lower and k2 (n) upper e?Otremes 

(Wn,k,(n), Zn,k,(n»)' 
We introduce the following statistical experiments. Let 

(3.1.3) En = (1R",Bn,{p~.t: t E lR}) 

where the sequence (on)n is explained in Section 3.3. 
The second experiment is 

(3.1.4) 

where 

(3.1.5) 

Obviously 
Vn.k1,k"t = .c( 0;;-1 (Wn,k" Zn,k,) + tIP;). 

Finally, we introduce the product experiments G1,k t 0G2 ,k, anel GI 0G2 which arise out 
of approximation to En,kl ,k, and En. Let (Y;,,)IEIN, i = 1,2, be a sequence of independent 
random variables, where Y1,1 and Y2,1 are standard exponential and negative standard 
exponential, respectively. We will denote the m - th partial sum by 

m 

(3.1.6) Si,rn = L Y;,I. 
1=1 
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Define (i = 1,2) 

(3.1.7) 

and 

(3.1.8) 

Then 

(3.1.9) 

and 

(3.1.10) 

- (( 1/(l+a) ) Qi.k;,t = C Si,,,. + t)",:;!.; 

- (1/(l+a) ) Qi,t = C (S;". + t)mEIN . 

- (ININ- ) Gi = IR ,8 ,{Q;,t: t E IR} . 

The comparison of t.he fom stat.istical experiments is carried out in Section 3.4, according 
to the following c1iagram: 

En 

(3.4.25) 1 
(3.4.6) 
<----+ 

(3.4.17) 

The decisive link betwccn E .. ,kt,k, and Gt,k t (/I)G2 ,k, turns out to be the product experiment 
-(1) -(2) 

En,k t (/I) E",k" whcre: 

(3.1.11) 

with 

(3.1.12) 
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3.2 Upper Bound of the Deftciency between En alld En,k"k, 

To csl,ablish an uppcr bonnd of t:..( E", Ell ,k, ,k,) we choose the kerne! 

(3,2.1) J(~7,k,,k,)(·lwk,,Zk,). 

This is the conditional distribution of (XI :n , •.. ,Xn:n) given Wn,k
l 

= Wk
l 

:= (.TI"'" XkJ, 
Z",k, = Zk, := (Xn-k,-I,""X n) under the estimation X I :n = XI' Again, we know from 
Rei .• s (1989), Theorem 1.8.1, that 

(3 2 2) p(n,k"k,)( I ) 
.. l\.t °Wk1,Zk, 

= f xt X ... X f Xk1 X l('Yl:n-k 1 -k 2 , ••• , Yn-k t -k 2 :n-k 1 -k 2 ) X fXn~k2+1 X ... X f Xn 

where Y;, i = 1, ... , n - k l - k2 , are i.i.d. random variables with common distribution 
Pt,X>I,Xn_.,+1 (the truncation of Po on the left at Xk and on the right at Xn-k,+I)' 

We denote by F the distribution function of Po and let jt(-) = je - t). If F(Xk l - t) "I 
F(Xn-k,+J - t) then the distribution Pt ,x>"Xn->2+1 ha~ the Lebesgue density 

- h 
(3.2.3) !t,X>I,Xn_>,+1 = F-( . _ t) _ F-( _ t) l[x. l ,x,,_.,+d· 

J·n-k,+1 Xk l 

We remark that 

(3.2.4) .c(XkpXn-k,+J)IPn (((Xk"Xn-k,+J): F(Xk l - t) = F(X ll -k,+1 - t)}) = 0 

and 

(3.2.5) 

The upper bound depends on the following auxiliary functions h, !/J, 91, 92, and 93: 

(3.2.6) 

h(y) = ya/21(o,oo)(Y) - (y -1)a/21(J,oo)(y), 

'IjJ(z) = 1.00 

h2(y), Z > 1, 

,/(2x) ..! « ! 

( ) _ / (y'rf(XY) - (y - l),rf(x(y -1» _ h( »)2 d 
91 x - 1/2 . Y y, 

I r l (X) 

1+,/(2x) 1 1 

( ) _ / (yhi(xy) - (y -l)hi(x(y -1) -1 ( »)2 d 
92 x - 1/2 l Y y, 

I r 2 (X) 

b-,/2 

93(.T) = (xl+ a rl (.T»)-1 / (lt(y) - jt(y - x»)2 dy, 

./2 

for some f E (0, xo/2) and 0 < x < f/2. 
Note Umt hE L2(,\) and ~) == 0 for a = O. 

29 



3.2.1 Theorem. Let 0 < E < xo/2. For kl , k2 E {l, ... ,11}, sudl tlJat kl + k2 ::::: n, 
1/11 ::::: F(E/2), kl/n ::::: F(f) < F(b - E) ::::: (n - k2)/n, the following inequality llOlds: 

(3.2.7) IIC((X I :n , ... , X n :" )IFt) - J(~7,k, ,k2
) C(Wn,kll Zn,k 2 )IFr) 11 

::::: (F(b - 3f/2) - F( E)) -1/2 X {(11 - kl - kd/2 il,n (12,n + ia,n,k, + i 4,,,) 
1/2 - - - ) } + (n - kl - k2) 15 ,n(/6 ,n + h,n,k 2 + R n,k J ,k2 

where 

and 

,/2 

ii,,, = J x~+lrl(xddC(XI:nIF~J)(x.I)' 
o 
,/2 

ii,,, = J gl(xJ!dL(X1:nIF;)(xIl, 
o 
, ,/2 

i{n,k, = J J 1j'(Xk,/Xl)dL(XI:n,Xk,:n)IFo")(XI,Xk,), 
o 0 

,/2 

i1, .. = J ga(xddC(XI:nIFon)(xJ), 
o 
,/2 

-2 J a+1 (- n) 15 ,n = XI !'2(:rddC X1:nlPo (xIl, 

o 
,/2 

ii,n = J g2(,rddC(Xl:"IF~')(xd, 
o 

R n ,k"k2 = exp(-n(F(E/2) -1/n)2/3) 

+ exp( -n(F(E) - kI/n)2/3) 

+ exp( -n(l - F(b - E) - kdn)2/3). 
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PROOF. Denote the left-hand side of (3.2.7) by p(n, kl , k2 , t). Then 

6+1 '+1 t+1 

~ J J J IIPI~;'~l,;nk~"+l - P;'~::l~!'~-"+' 11 
6-,+1 1 1 

6+1 ,+1 f+ 1 

~ V2( n - kl .- k2 ) J J J H (hx" ,Xn_',+" PX1 'X'l'X n - "+.) 
6-.+!! ! 

For XI E (t, ~ + t), Xk 1 E (t, E + t), and Xn-k,+1 E (b - E + t, b + t), we have 

F(Xn-k,+1 - t) - F(Xk l - t) 2: F(b - €) - F(€) 

F(Xn-k,+l - XI! - F(Xk 1 - XI! 2: F(b - 3E/2) - F(E). 
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At this stage, we may apply the same arguments used in the proof of Theorem 2.2.1 which 
yield 

(3.2.8) 

p(n, kl ,k2, t) ::::: (F(b - 3€/2) - F(€))-l/\n - kl - kd/2 

where 

b ,,/2 

X J J J J(.XI' Xk" Xn-k,+l) d.c((Xl:n, Xk,:n, Xn_k,+I:n)IPon)(XI, Xk" Xn-k,+t) 
b-, 0 0 

Similar t.o (2.2.10), we deduce the following exponential bounds: 

(3.2.9) 

P~'{XI:n > €/2} ::::: exp(-n(F(€/2) -1/n)2/3), for l/n::::: F(€/2), 

P~'{Xk':7' > €}::::: exp(-n(F(€) - kJ/n)2/3) , for kJ/n::::: F(€), 

POn{Xn_k,+I:n < b- €} ::::: exp(-n(l-F(b- €) - kz/nl/3) , for kz/n::::: 1- F(b- f). 

Moreover, for 0 < € < xo/2, 0 < Xl < €/2, and b - €/2 < Xn-k,+l < b 
(3.2.10) 

J?(x], ,'rk l ,.T n -kz+l) 

, /2 ::::: J (y~rt(y) - (y - xl)~rf(Y - xtl)2 dy 

+ X"J'+'((b _ y)~rj(b - y) - (b ~ y + xt)hj(b - y + xt))2 dy 

b-,/2 

b-,/2 

+ J (l1/2(y) - P/2(y - xtl)2 dy 

,/2 

=: AI(XI, Xk,) + A2(.XI ,Xn-k,+tl + B(xt). 

Taking int.o account (3.2.6), we obtain similar results 80S we did in (2.2.11): 

(3.2.11) 

~ 1 1 1 Xk 
Al (Xl, Xk.) ::::: .x l ' ri(x tJ (gI' (xd + 1/1 ,( -)) 

Xl 

~ ! ! ,b - X -k +1 
A2 (Xl,X n-k,+1):::::Xl ' ri(xJ)(gi(·XJ) +1/"'(1 + n, »). 

X] 
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Applying the Cauchy-Schwarz inequality and combining (3.2.8) - (3.2.11), the proof is 
complete .• 

Denote the right-hand side of (3.2.7) by D( n, k1, k2 ). Then 

(3.2.12) 

Notice that D(n, kI, k2 ) is independent oft. 
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3.3 The Asymptotic Information Contained in the k1 Lower and kz Upper 
Extremes 

Denote by P the distribution function of Po. Since ri is slowly varying, we already know 

that F-l:1/n)X1:n -; stl/(l + a) and F-l(II-I/n) (Xn:n - b) -; S~:p+a) weakly (or even in 

the strong sense) as n -; 00. In general, p-l(l/n) is not the right normalizing sequence for 
the maximum, since the sequence (P-I(l/n)1 P-I(1-1/n»)n does not necessarily converge 
(to some positive finite value). Therefore, we have to impose further assumptions. We 
claim that 

(3.3.1 ) 

where cE (0,00). 
Using the theory of regular variation, (3.3.1) implies 

(3.3.2) P-I(l/n) ~ c- I P-I(l - I/n) (n -; 00). 

We define 

(3.3.3) 

Now, Slutsky's Theorem (see e.g. Serfiing (1980), p. 19) states that o;;-I(Xn:n - b) --> 

cS;~(I+a), n -; 00. 

Once again, we know from Falk (1985) and Sweeting (1985) that convergence of the 
extremes holds w.r.t. the variational distance, i.e. 

IIC( O;;I(XI:n, ... , Xk,:n!POn) - C(S:!I(I+a), . .. ,S::~,I+a)1I --> ° 
(3.3.4) 

IIC( o;;I(Xn_k,+I:n - b, ... , X n:n - b!Po
n) - C(cS;:~:+a), ... , CS;:I(I+a) 11 --> ° 

as n --> 00. 

In analogy to condition (2.3.4) and (2.3.4'), we assurne that for some E > ° 
(3.3.5) 

or 

(3.3.5') 

for i = 1,2. 

ri is bounded on (O,E) and !iminf ri(x) > 0, 
xlO 

ri is decreasing on (0, E) 

In addition, we need conditions (cf. (3.27) in Janssen and Reiss (1988» which ensure 
the convergence of gi(X) to zero as x! 0, i = 1,2. 

First, we replace condition (2.3.5) (i) by 

b-, 

(3.3.6(i) ) J (il/Z(X - t) - jI/2(x»)2 dx = o(tI+ar(t») (t! 0) 

for each E > 0, where r E {rl,rz}. 
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Under condition (3.3.1), we see that if (3.3.6) (i) holds for rt then it also holds for r2 and 
vice versa. Condition (3.3.6) (i) says that the Hellinger distance is mainly determined by 
the local behaviour of the density j at the singularities 0 and b. 

Moreover, we assurne that condition (2.3.5) (ii) is valid for rt and r2. To be more precise, 
let 

%0 

lj(x)"'j(x) = Ij(x)exp(! bj~u) du) 

% 

be the Karamata repre3entation of rj, i = 1,2. We assurne that lj is continuous on [O,xo] 
with Ij(O) > 0 and 

%0/2 

(3.3.6(ii» ! (l:12(x + t) _IV2(x»)2xarj(x)dx = o(tt+ar(t») 

o 

as t ! o. 
Once again, Lemma 10.13 of Jan33en and Ma30n (1989) implies that under condition 

(3.3.6) 

(3.3.7) 

holds for i = 1,2. 

limgj(x) = 0 
%!o 

Note that if different shape parameters occur in the representation (3.1.1), we are again 
in the situation of one singularity. Under the present assumptions, we see that only the 
singularity of higher order-that is the singularity with the smaller shape parameter-has 
a dominate influence. 

Consider, for example, the generalized Pareto density fex) = (1 + a)xal(o,t)(X). We 
derive the representation 

0< x < Xo 

1- Xo < x < 1 

for some appropriate Xo with rt(x) =·1 +a and r2(x) = (1 +a)(l-x)a. Ha E (-1,0) 
we have a pole at 0 and a jump at 1. In this case, the lower extremes are relevant. The 
situation changes completely for a E (0,1). Only one singularity occurs, namely, ajump at 
the right endpoint. Hence, the maximum contains asymptotically all information. If a = 0 
two jumps occur. In this case, it turns out that the statistic (X t :n , X n :n ) is asymptotically 
sufficient. 

Since Po has a compact support the condition 

(3.3.8) 

trivially holds (cf. Lemma 2.3.1). 
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3.3.1 Theorem. Let j be a density oftype (3.1.1) and assume that the conditions (3.3.5) 
«3.3.5')) and (3.3.6) are fulfilled. There exists a constant C > 0 such that 

PROOF. As in the proof of Theorem 2.3.2, it is shown that 

limsup(n - k1 - kd/2 ij,n < 00 for jE {1,5} 
"--00 

!im ijn = 0 for jE {2,6} 
n-+oo ' 

!im j2 < E1/J(SI,k l )1/(1+ 0 »). 
n-+oo 3,n,k t - 5

1
,1 

The same arguments used for f 2 ,n show 

!im if n = O. 
n-+oo ' 

It remains to estimate the term i7 ,n,k,. We get 

It is well known that the lower and upper extremes are asymptotically independent (see 
e.g. Falk and Reiss (1988). This imp!ies that 

(3.3.10) 

as n -> 00. 

Summarizing the results above, the proof is complete._ 

Now, we are able to show the global sufficiency of the k1 (n) lower and k2(n) upper extremes. 

3.3.2 Theorem (Global Sufflciency). Suppose that the conditions of Theorem 3.3.1 
are fullfilled. 

(i) Let a E (-1,1), a f= O. There exists a constant C > 0 such that 

(3.3.11) 

(ii) Let a = O. Then 

(3.3.12) 
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PROOF. From the proof of Theorem 2.3.2, we already know that 

(3.3.13) E1jJ(( i,k 1 )1/(1+ a )) ~ Ck\a-I)/(1+a). 
1,1 

Thus in view of Theorem 3.3.1, it remains to be shown that 

(3.3.14) E1jJ(l + c( -:2,k' )1/(1+ a )) ~ Ck~a-I)/(1+a). 
1,1 

Now an application of the inequality (2.3.16) yields 

Since -S2,k, is distributed according to a gamma distribution with parameter k2 (thus 
having a density x --+ e- xx k ,-I/(k2 - 1)!, x > 0), it is not hard to verify (see Lemma 5.2 
of Jansun and Mason (1989)) that 

(3.3.15) 

for k > P > 0 where ko is defined by 

ko = 

and I] indicates the Gauss bracket. 
Hence (3.3.14) is shown._ 

{ 
p -1, 

[p], 

for pEIN 

for p ~ IN 

Remark. From Theorem (3.3.2) we deduce that 

(3.3.16) 

whenever min{ kl (n), k2( n)} --+ 00 as n --+ 00, i.e. the kl (n) smallest and k2 ( n) largest 
order statistics are asymptotically global sufficient. Moreover, in the case of jumps (a = 0) 
the statistic (XI:n,Xn:n) is global sufficient. This generalizes the result of Weiss (1979). 
Finally, we remark that Weiss has also used the kernel I<t,~,I), though it is not explicit 
stated there. 
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3.4 Comparison of the Statistical Experiments E .. , En ,k1 ,k2 , GI iSI G2 , and 

GI ,k1 iSI G2 ,k, 

We start wit,h 

3.4.1 Lemma. Let j be a density of type (3.1.1) and let 0 < A < 1. There exists a 
constant C > 0 such that 

(i) for a E (-1,1), ai- 0: 

(3.4.1 ) 
D(n,kl ,k2) 

< C (k(a-I)/(2(I+a» + k(a-I)/(2(l+a» 
- I 2 

+ IIC(O-I(X X )Ipn) _ C(SI/(l+a) SI/(l+a»)111/2 
n 1:n., kt:n 0 1,1' 1,k t 

+ IIC (O;I(XI:n, b - Xn_k,+I:n)l'po
n) - C( S:~(I+a») iSI C( _cS~:~:+a») 11

1/2 

6;;1,/2 

+ ( J 91(Onx J)dC(S::I(l+a»)(xJ) )1/2 

o 
6;;1 ,/2 

+ ( J 92(On Xd dC (s::p+a»)(x I ))1/2). 

(ii) for a = 0: 

(3.4.2) 

6;; 1 ,/2 

D(n,1,1):S C(( J 91(On xJ)dC(SI,J)(xJ))1/2 

o 
6;; 1'/2 

+ ( J 92(On xJ)dC(SI,J)(XJ) )1/2)-

o 

for alI nEIN and maxi k1 , k2} :S An. 

PROOF. For maxi k], k2} :S An we have 

exp( -n(F(f) - kI/n)2)/3) :S exp( -kl(F(f) - A)2/(3A)) 

exp( -n(1 - F(b - f) - kdn)2)/3) :S exp( -k2(1 - F(b - f) - W /(3A)). 
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Moreover 

,/2 

J 9i(xddC(X l :n IP;)(xt) 
o 

6;" ,/2 

::; c( J 9;(On x ddC (S::?+a»)(xI) + IIC(O;;IXI:nIP;) - C(S::I(I+O») 11) 
o 

for i = 1,2. 
From Section 3.3, we already know 

and 

where C > 0 is a generic constant. 
Recall that t/J == 0 if a = O. In view of (3.3.4) and (3.3.10), the assertion follows from 

Theorem 3.2.1.. 
In order to establish rates of convergence, we have to impose further assumptions: 

(3.4.3) r,(x) = ciexp(h,-{x)), 0 < x< xo 

where 

(3.4.4 ) Ihoj(x)1 ::; Ljx""l; 

for sorne cOllstant Li > 0 amI /'i > 0, i = 1,2. 
Obviollsly, condition (3.4.3) irnplics condition (3.3.5) and c = CI/C2, wherc c is the 

constant of (3.3.1). 

Let 6n be defined as in (2.4.7) (with Cl instead of cl. Note that (3.3.4), (3.3.10), (3.4.1), 
and (3.4.2) hold if On is replaced by 6". Again, we first treat the case of a "# o. 
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3.4.2 Theorem. Assume that { is o{ type (3.1.1) {or a E (-1,1), a i' O. In addition to 
(3.4.3) it is assumcd that {is absolutely contillllOus on (0, .1'0) and (b - xo, b) with 

(3.4.5 ) l
X

O(I'i(X))2 a 
-- X <00 

o I'j(x) 

i = 1,2. 
Tllen {or evelY .\ E (0, 1) there exists a constant C > 0 SUell that {or all nEIN, 

kl + k2 sn, and ma.T{ kl , k2} S .\n the {ollowing inequality holds: 

(3.4.6) 

Before proving Theorem 3.4.2, we recall the following results: 
From Rei.,s (1989), Corollary 5.5.5, we know that under conditioll (3.4.3) 

(3.4.7) IIL: (.5;;-1 (XI:", " . , X k1 :n )IPon) - L: (S:~(1+a), ... , S~:~l1+a)) 11 

s C( (~ rYl/(1+a)k~/2 + ~) 

and 

(3.4.8) 1IL:(.5;;-1 (Xn-k,+ln - b, .. . , X n:n - b)IPon) - L:(cS~:~:+a), .. . , CS~:I(1+a) 11 

s c((~:rY2/(1+a)k~/2 + ~) 

. wherc C > 0 ia a universal constant (cf. (2.4.13)). 
Obviously, (3.4.7) I)ml (3.4.8) imply 

(3.4.9) t,(E(1) G ) < C((~)'Yl/(1+a)kI/2 + kl ) 
n,k"l' 1,k1 - n 1 n' 

(3.4.10) 

and 

(3.4.11 ) 
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Fn.l~; 1111<1 Rei .•.• (]988 a) f'st.ahlislll'c! the rate 111, which smnple exl,remf's hecome illc!epf'lldplll 
(Sf'f' nlso 1,lw pnppr of Fn.l~; nnd K ohne (]986)). They Imv" shown thnt for I1rbit.rnry mndom 

vnrinhlrs ~I, ~2, ". 

(3,4.12) 

Not.r t.hnt, (3.4.12) il11pli('s 

(3.4.13) - -(I) -(2) ) ( klk2 )1/2) 
6, (En,k. ,k" En k. (l) En k, ::; C ( k "k---) . 

, , tl n - 1- '2 

PIlOOF OF TIIF.Ollt;M 3.4.2. Throl1ghout the proof, C ''''not.es a grl1rric C<JIlst,,,nt,, SillJilar 
10 (2.4.10), olle shows 

H"n('(', 

for i = 1,2, 
Sine" 

;,;; 1 ~ /2 J Yj(,snxd dC (S::i1+n»)(xtl <: CII",nr(n I, 2);) 

o 

IIC(~;;I(XI:n,b - Xn-k,+l:n)Ii';) - C(S::?+n» 6(1 .c(_."S~!i:+a»1I 

::; IIC(6;;1 XI:nli'~') - C(S:!i.1+R» 11 

+ IIC(6;;I(h - Xn-k,+l:n)Ii';) - .c(-cS~:i:+R»1I 

+ IIC(6;;I(XI:n,b - Xn-k,+l:n)Ii'~') - .c(6;;1 X1:nli';) 0 C(6;;I(h - Xn-k,+I:n)If>~')1I 

the proof follows from (3.4.7), (3.4.8), (3.4.12), anc! Lemma 3.4.1.. 

RF.MAIlIC To pstablish t,he ineql101ity (3.4.6), we have IIBPc! I,he asympt.ot.ic ind"pclleknce 
of extremes. The clisadvl1ntn,ge of this is thaI. we are in a trnde off situat.ion: The c1epcn­
dence c!pcrcases and the information increases as kl (n) and k2 ( n) tcncls to. infinil,y. Dut 
it turns out timt, the bonnd occuring in (3.4.13) hl1s no etominate influence on the rate of 
conV('fgen('(~ of 6,(En , GI 0 ( 2 ), I'tS the proof of Theorem 3.4.7 will show. 

Now, we consider t,he cnse a = O. 

3.4.3 Theorem. Let f be a aensit,y of type (3.1.1) with a = O. In addition 1.0 (3,4,3), 
assn/lle t.lmt fis ah"olnt,c1y continnollS on (0, xo) nnd (b - Xo, 0) witll 

ro " 

(3.4.14 ) J II'(xW' /f(x)~·-I dx + J II'(x)I'I' /f(X)~,-1 dx < 00 

o "-ro 

41 



for 7]i E (1,2]. i = 1,2. 
T}lrn fnr evel:Y A E (0,1), tllere exist" a collStant C > 0 slIch that. fnr nll 71 E IN. 

k1 + k2 ::; 11, and max {k1 , k2 } ::; An tl](' fnlln1Villg ineqllillity lwld,,: 

(3.4.15) 

PROOF. Similllr to the proof of Thmrem (4.1) in Jan .•.• m al1<i Rei .•.• (1988) Oll<' shows that. 

(3.4.16) 

for i = 1,2. 
Tnking into account Lemma 3.4.1 (ii) t,he proof can he ,'"sily cOlllplde,1. • 

3.4.4 Theorem. Let f oe a density nf Type (3.1.1) fOl' a E (--1,1) mI/I let cowlitiol/ 
(3.4.3) oe wtlid. Tbere exists a constant C > 0 slIeh tlwt, 

PnOOF. Sinn' 

the asscrHon ia immediat,e from (3.4.13) and (3.4.11) .• 

Thc corresponding result to Theorem 2.4.1 is the folIowill,!!; olle: 

3.4.5 Theorem (Strong Convergence). SlIppose that tllr condit.iol/s of Tlj('o/'l'Jll .1·14 
are fulfilJed. In addition, assllme tlwt conditioIJ (3.3.6) hold". Tllrn 

(3.4.18) 

and 

(3.4.19) 

wbenevcr min{k)(n), k2(n)} --t 00 as 71 -> 00. 

PnooF. We usc the arguments of Jan.'.,en ami ReiJ,' (1988). First., W(' show t.hat. (E"),, js 
a Cauchy sequence W.r.t. tJ.. 

Let f > O. In view of Theorem 3.3.2, we can choose k1 , k2 , and 71 EINsIIch t.hal. 
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for öl! 71 > 710. 

Sine<' 

L\.(En ,fq,k 2 ,Em,k t '''2) 

:s 6.(En'!'J,k"Gt,k,IZiG2,k,)+6.(Em,k"k"GI,k,IZiG2,k,) 

Theorem 3.4.4 implies that we can choose nl :2: no such that for all n, m :2: nl 

Hence 

whencvcr n, m :2: 111' 

In view of thc complcteness of the distance 6., the sequence (En)n converges to some 
experimf'nt F. So it remains to show F ~ GI lZi G2 . 

Far this, wc choose ~'I(n), k2(n) with min{k l (n),k 2 (n)} -+ 00 as n -+ 00, such tlmt 

(3.4.20) 

as n -+ 00. This is possible in view of Theorem 3.4.4. 
In addition, we know from Theorem 3.3.2 that 

(3.4.21 ) 

as 11 --t 00. 

Moreover, JanMcn (1989b) showed that Gi,ki -+ Gi weakly jf ki -+ 00, j = 1,2. Hence, 

(3.4.22) 

weakly as mill {kl ,kd -+ 00. Thus (3.4.20) - (3.4.22) shows 6.(F, GI lZi G2) = 0 and the 
assertion (3.4.18) is pmved. 

The assf'rtion (3.4.19) is ohvious from 

6.(En,kd ll ),k,(n), GI lZi ( 2) :s 6.(E." En,k,(n),k,(n) + 6.(En, GI lZi ( 2) .• 

We are now in the proper position to establish 

3.4.6 Theorem. 

(i) Let a E (-1,1), a "" O. There exists a COllstallt C > 0 such that 

(3,4.23) 6.(G (CA G C- F:A G ) < C (k(a-I)/(2(1+a)) + k(a-l)/(2(I+a))) I 'G 2, I,k, 'Y 2,k, _ 1 2 . 

(ii) For a = 0 

(3.4.24) 
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PROOF. First, observe timt 

6.(G1 0G2,G1,k t 0G2,k,):S 6.(G1 0G2,Enl+6.(En,E",kt ,k,l 

+ 6.(En ,k1 ,k" G1,k 1 0 G2,k,l· 

Applying Theorems 3.4.5, 3.3.2, and 3.4.4 and letting n tend to infinity, the assertion 
folIows .• 

The last theorem of this section concerns the rate of convergencc of the dcficif'IlCY bE'­
tween En and GI 0 G2 • 

3.4.7 Theorem. Let j be a density of type (3.1.1) with a E (-1,1) find let (3.4.3), (3.4.5), 
and (3.4.14) be fulfilled. Then 

(3.4.25) 

where"( = min{-Yl,1'2} and 

{ 

a-l 
2(3+a) 

- a - 1(a-l) 
ß(-y, ) - (1 +,\,)4(1 +a) 

max{-"(,-H 

J" - > 2(1+a) -I- () ,ar I _ I-a ' a I 

for 0 < "( < 2\1!:), a f 0 

for a = O. 

PROOF. Combining (3.4.6), (3.4.17), amI (3.4.23), we obtain 

6.(En,G10G2):s 6.(En,En,kt.k,) + 6.(En,k1 ,k"Gk1 0Gk,)+6.(Gk 1 0Gk"G1 0(2) 

< c(( k1 k2 )1/4 + 2nmax {a-I,-21}/(2(I+a)) 
- n( n - k1 - k2 ) 

+ t{kla-1)/(2(I+a» + (~)1/(2(1+a)\1/4 + (~)1/2}). 

First, we examine the case a f O. 

As in the proof of Theorem 2.4.6, we choose 
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Ekm(,llt,nry calC1llnt.ions yicld 

Thns, hy re!,rat.ing t.hr argnments of the proof of Throrem 2.4.6, we obtain the assertion 
for a f= O. 

The case a = 0 is immediate from (3.4.15) and (3.4.24). Note Umt the minimum Xl:" 
ami thr maximum X,,:n hrcomr independent with rate n- 1 (see (3.4.12)) .• 
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4 GAUSSIAN SEQUENCES OF STATISTICAL EXPERIMENTS 

In this chapter, we study order statistics in the case of Gaussian sequenccs. 

4.1 The Almost Regular LAN Case of Weibull Type Densities 

In this section, we discuss the borderline case a = 1. In the following let, Xl, ... ,X" b" 
i.i.d. random variables with common dcnsity ItO = 1(- - t), t E IR, whcre 

(4.1.1 ) I(x) = xr(x)l(o,oo)(x). 

Thereby, r is a normalized slowly varying function at zero; timt is 

(4.1.2) 
[60 

r(x) = eexp(1x b(u)du/u), 0< x < ,so, 

for some ,so and some constant e > O. Here, b is a function such tImt b( u) -> 0 as u 1 D. 
In addition, it is assumed that 1 is absolutely continuous on (0, (0) sllch that for all 

,s>0 

( 4.1.3) 
[00 (J'(X))2 

1. ~dx<oo. 

Then 1 has finite Fisher information iff 

(4.1.4) 160 r(x) 
--dx < 00. 

o x 

To verify (4.1.4) note that I' (x) = (1 - eb( x )),'( x) A-a.e. 

In the following, we restrict our attention to the case of infinite Fisher information. 
Jan33cn and Ma30n (1989) have recently shown that under condition (4.1.3), the sequence 

(4.1.5) 

is local asymptotic normal, where ,sn satisfies 

1i6or
(X) h(t) := - - dx. 

8 t :r 

If, in addition, r( x) is convergent to some positive constant c > D as .1: 1 D, tl1('n 

( 4.1.6) ,sn ~ (cnlog(n)/2)-1/2 

(see also Ibragimov and Has 'minskii (1981), Chapter II, Section 5). The rate,sn lies between 
the rate in the non-regular case (n-1/(I+a), -1 < a < 1) and the rate in the regular case 
(n-1

/
2

, finite Fisher information). Densities of type (4.1.1) with limxJo r(x) = c > 0 are 
almost smooth densities in the sense of Ibmgimov and Ha.< 'min.'lkii (1981). 

46 



Moreover, Jan,q,qen amI Mn"wn (1989) showed that the sequence 

(4.1.7) 
i=1 

is celltral, i.e. Z,,(X1, ... ,X,,) -> N(O,I) weakly under pon. The proof of this result. is 
non-trivial, since thc underlying statistical experiment is non-differentiable. 

With k = k(n) tendillg to infinity sufficiently fast, we shall see that the k(n) smallest 
order statistics are asymptotically sufficient. Recall, that in the non-regular case k( n) is 
allowcd to tend to infinity at any rate. 

4.1.1 Theorem. Let I be a dellsity of type (4.1.1). We assurne that -1'11 is llOll­
decreasing ill a lleighhorIlOod ofO and limx!o rex) = c E (0, (0). Let k(n) be a sequellce of 
positive illtegers, such tImt 1 ~ k( n) ~ n + 1 - k( n) ~ n alld k( n) -> 00 and k( n) 1 n -> 0 
as II -> 00. 

(i) Iflimn~oo log(k(n»llog(n) = 1 thell the k(n) lower illtermediate alld extreme order 
statistics 

(Xb " ... ,X k(n):71) 

are asymptotically sufflciellt lllliformly on compact sets. 
(ii) Iflirn,,~oo log(k(n»llog(n) = 0 thell the illtermediate alld celltral order statistics 

(Xk(n)+l:n,'" ,Xn-k(n):n) 

are asymptotically sufflciellt uniformly Oll compact sets. 

PnOOF. Ac! (i): Let F = Fo be the distribution function of Po. First, we show 

n f'(Xi ) P(; 
On 8( -I(X;) l(o,ß)(Xi ) - mß) ---> N(O, 1) 

for same ß > 0, wl!el"e mß = E p(; (- ~«~~I'll(o,ß)(XI»)' 
Sinee 

f'(Xr) 
Ep;;( f(Xr)) = 0 

we get 
f'(Xr) 

Epo" (- I(Xtl l(ß,oo)(Xd) = -mß· 

An applicatinn of t.he Tschebyschev incquality yields 
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Denote by P the distribution function of 

For thc rcmainder of the proof, we choose ß sllch that -1'/1 is non-decreasing on (0, ß)· 
Thcn 

i-= 1, ... , n. 

From the above considerations, we know that Pis in the domain of attractioll of a ~t.ahlc 
\aw of index 2. App\ying Theorem 1 of S. G.~örgö et al. (HJ86) we can find RCqll(,IlCCS 

An(k(n)) and Gn(k(n)) such that 

Furthermore, 

and 

where 

n-k(n) } 
An(k(n)){ L Xi:n - Gn(k(n)) -> N(O, 1). 

i=k(n)+1 

l
l - k (nJ/n 

- 1 Gn(k(n)) = n F- (u)du 
k(n)/n 

1 
An(k(n)) = n l / 2(J"(k(n)/n) 

(J"2(S) = 1.1

-' 1.1

-' (min(u,v) - uv) dP-I(u)dP-I(v) 

denotes the truncated variance function of P. Now, for some constants dn, we get 

n _ On {n-k(n) _ } n_ 
= On L Xi:n - An(k(n)) An(k(n)) . L X i:n - Gn(k(n)) - On. L X in . 
. 1=1 l=k(n)+1 .=n-k(n)+1 

It follows from the exponentia\ bonnd for order statistics (Reiss (1989), Lemma 3.1.1) t.hat 

pon{lon t Xi : n l2: f}:S p;'{Xn-k(n)+I:" < ß} n--=: O. 
i=n-k(n)+1 

Combining the above results, we conclude that 

k(n) 

on { L Xi:n - dn } 
t=1 

is central if On = o(A,,(k(n)). 
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.... 

A central scqucncc is known to be asymptotieally suffieicnt. This holds uniform on eompact 
set.s if, in addition, t.hc scquencc U6n En is equieontinuous (Stra .• ser (1985 a), Corollary 
81.5). But thc cquicontinuity follows from Lemma 2.1 of Janssen (1986), sinee the sequenee 
U6n EU is translation invariant 0.11(\ the limit experiment is continuous. 

To provc Thcorcm 4.1.1 (i), it remains to show that On = o(An(k(n)) is equivalcnt. to 
limn~oo log(k(n))/log(n) = 1. Sinee"Y; is in the domain of attraction of the normallaw, 
we know from M. C .• örgö et al. (1986) that the following two eonditions are satisfied: 

(4.1.8) a 2 is slowly varying at zero 

and 

(4.1.9) 

Morcover, thcy [>roved timt. whcnever (4.1.8) and (4.1.9) hold, we have 

(s 1 0) 

whcn' 

( 4.1.10) 

Since Ib(.T)I-> () as x -> 0, for cvcry € > 0 we ean find ß = ß(€) such that 

1 I>(x) - 1 /,(.T) 1 
-(1 + €)- :::: -- = --- :::: -(1 - €)-

x X f(x) x 

for xE (O,m. DeHot.e by P thc distribution function of .;L = (-1/Xd1(o,ß)(Xt). Then 

1-8 1-" 1-8 

(1- E)2 J (P- 1(U))2 du:::: J (F- 1(u))2 du:::: (1 + E)2 J (p- 1(U))2 du 

(4.1.11) 
1-8 1-" 1-8 

(1- f)2( J P-l(u)dll)2:::: (J F- 1(u)dll)2:::: (1 + €)2( J P- 1(u)dut 
• S 

Elemcnt.ary ca.lculations yield 

F(x) = { 

1, 

F(-I/x), for x:::: -1/ß 

F(ß), forxE(-I/ß,O) 

for x 2: 0 

and 
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P-1(u) = { - F-!(II)' for u E (O,F(ß)] 
0, for u E (F(ß), 1). 

Using the quantile transformation, we get 

From 

1-. F(ß) J (P- 1(u))2 du = J (P-1(U))2 du 

l/ß 

. 
j--l(F(ß)) 

J u
2 

dP(u) 

P-l(s) 

-l/ß J u
2 

dF(u) 

-l/F-l(s) 

1/F-1(s) 

u ---;;-r( - ) du J 2 1 1 
11..' u 

I/ß 

l/ß 

(apply Lemma 1.2.1 (a) of dc Haan (1970)) we conclude 

1/F-1(s) 

-r( -) du ~ c( -log(F-1
( s)) + 10g(ß)). J 1 1 

u u 
l/ß 

From the theory of regular variation it is known that F-1 (05) ~ .. 1/2 L( -'), s 1 0, for some 
slowly varying functioll L (Bingham ct al. (1987), Theorem 1.5.12). Hencc, we sce thaI, 

l-s 

(4.1.12) J ( ~ 1)2 C F- (u) du ~ -2(log(8) 

holds. 
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Next w(' show 

1- . ., 

(4.1.13) (J fo- l (u)du)2=0(log(s») (.s10). 

U sing the same arguments as ahove, we obtain 

1_.. I/F-'(.) 

(J fo- l (u)du)2 = ( J :2r(~)du)2 
.• I/ß 

I/F- 1 (.) 

~ (c J .!-. du)2 
u2 

I/ß 

= c2(F- 1(o5) - ß)2 = o(log(05)). 

Combinillg (4.1.10) - (4.1.13), we obtain 

72(8) 72(8) 
(l-f)2 ::;limillf CI () ::;limsup cI () ::;(1+€)2 . 

. '1 0 -2 og s .10 -2 og s 

From this we cOllclude timt bn / A n ( k( n)) --t 0 iff 

n l / 2 10g l
/
2(k(n)/n) log(k(n)) 1/2 

nl / 2 10gl / 2 (n) = (1 - log(n)) --t O. 

Ad (ii): Frnm S. C.,örgö amI Mason (1986), we know that 

k(n) 

A:Jl:(n){ 8 "t i :n - C~(k(n))} -+ N(O, 1), 

wh~r(' 
rk(n)/n 

C~(k(n)) = n Ja P-l(u)du 

antI 

jk(n)/n 
A:,(k(n)) = n- I/2( (p-I(u))2 du)-1/2. 

I/n 

Not.e tlmt. Pis rcgularly varying (at -00) with index -2. For some constants d:, we get. 
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Henee, 

n-k(n) 

Dn { L Xi:n-d~} 
i=k(nJ+I 

is eentral if Dn/A~(k(n» --4 O. 

From the first part of the proof, we already know timt 

A~(k(n» ~ n- I/2( (p-I(u»2 dU)-1/2 j
k(n)/n _ 

I/n 

_1/2(C )-1/2 ~ n 2"( -log(n/k(n» + log(n» 

( c )-1/2 
= 2"nlog(k(n» . 

Thus 

Dn log( k( n» 1/2 
A~(k(n» ~ ( log(n») . 

The proof is complete._ 

An example for a sequenee k(n) whieh satisfies the condition of Theorem 4.1.1 (i) is 
k(n) = ni-on with an --4 0 and anlog(n) --4 00. 

The simple reason that a fixed number of extremes does not contain any information 
is that they have the wrong rate of convergence: The rate of the normalizing constants 
of extremes (which ensure a non-degenerate limit law) does not coincide with the rat,(, of 
local alternatives of the underlying experiment. Recall, that in the non-regular cast' these 
rates are equal. To highlight this point consider the following example: 

Let f be the Weibull densitYj that is T'(X) = 2exp(-x2). In this case Wf' havf' DIl = 

(nlog( n »-1/2. For notational simplicity let again Wn,k 1 = (XI:n , ... ,Xk, on) amI ZIl.k, = 

(Xn-k,+I:n,"" X n:n). Then 

(4.1.14) 

where Eo = (lR, B, {EO}) denotes the totally uninformativc experiment.. 

To verify (4.1.14), we have to show that the log-likelihood pro<:ess of t,he binary ex~ 
periment (.c((Wn,kl' Zn,k,)!pon), .c((W",k" Zn,k, )IP';~ t») with base 0 converges weakly (on 
[-00,00]) to fO 80S n --4 00. In order to show this denote by F tbe Weibull distribution 
function and let m. = 11. - k1 - k2 • 
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First., sinee F- 1(1/n) ~ n- I/2 we obt.ain n l / 2 Xi:" -+ F;, where F; is the distribution func­

tion F;(x) = F(T) 2::::: (-log(F(:r»//I!, T > o. Moreover, note that the upper extremes 
belong t.o the domain of attraction of the Gumbel distribution. We know that we can 
choose thc nonnalizing constl"luts b" = F-I(I-I/n) and an = (nf(bn»-I (see e.g. Dn.vid 
(HJSI), p. 2G2 f.). Wc obtain b" = logl/2(n) and an = (2/ogl / 2(n»-I. 

At this point, straightforward calculations yield: 

d.c( (Wn,k" Zn,k, )IP;~t) 

d.c( (W",k, , Zn,k,) WJ') 

= TI f(X;:".- /i"t) it. f(X"-;+I:n - /int) x ((F(X"-MI:n - on t ) - F(~k,,, - o"t»)", 
;=1 f(·,"",,) j=1 !(X"-J+I:n) F(Xn-kdl:,,) - F(Xk,:!,) 

= it Xi:" - 6"t CTp( -(X;:" - /i"t)2) TI X,,-j+l:n - /i"t exp( -(Xn-j+l:n - /int)2) 

;=1 X;:" exp(-Xl,,) j=1 X,,-j+I:n exp(-X~_i+I:n) 

(
exp( -(Xk,:" - /i"tj2) - exp( -(Xn-k,+I:n - /int?») m 

x e:rp( -XL,,) - exp( -X~-kdl:n) 
k, \'" " k,,, 
TI · IOn - v"t . 2 2 TI Xn-i+l:n - u"i 2 2 = \'". c.rp(2o"tX;:n - o"i ) X. exp(2/i"tXn_i+I:n - /int ) 
i=l 4 l:n j=l n-J+l:n 

X (el·p( -(X k,:" - o"t)2 + XLn» m 

(1- ~el:p(log(n) + (Xk,:n - o"t)2 - (Xn-k,+I:n - o"t)2»)m 
X ~--~~~~~~~~--~~--~~~~~~~~-

(1 - ~cxp(log(n) + XL. - X~_k'+J:n»)m 

k, x' " k, /i _ TI ion - "nt ? . _ 2 2 TI Xn - j +l :n - nt . _ 2 2 - \'". CXP(_OntX"n 0n t ) X. exp(2ontXn_J+I:n °nt ) 
;=1 -< t:n j=l n-)+1:n 

X cxp(2m6"tXk,:" - m(6"t)2) 

(1- ~CXl)( -a;;-'(X,,-kdl:n - bn)a"(Xn_k,+I:,, + bll ) + op.;-(nO»)m 
X ~--~--.~------~--------------~.----------~~~-­

(1 - ~c.rp( -0.;;-1 (X,,-kdl:1l - b,,)a,,(X,,-k,+I:n + b,,))) m 

Wc havc 
X i:n - /illt n l /2/i"i 

_ = 1 - 1/2 -+ 1, 
X;:" n X;:" 

X"-J+I " - o"t a;;lont 
--=--'----- = 1 - 1 1 -+ 1, 

X n- J+1 n 0.;;- (X"-j+I:n - bn) + 0.;;- bn 

o"X"-J+I:" = (/i"all)a;;-I(X"_j+I:" - b,,) + /i"b" -+ 0 

and 

under Po" as n -+ 00. 
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Combining these results, we see that 

holds. 

dC((Wn,kl' Zn,k,llp6nnt ) -> 1 

d.c((Wn,k 1 , Zn,k, )IP;) 

REMARK. For a > 1 the Weibull distribution has finite Fi .• her informa.tion. We trcat this 
case in a more general context in the next section. 
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4.2 The Regular LAN Case 

In this section, we show that nnder the regular LAN condition (L2 -differentiabiIity) a fixed 
number of extremes does not contain any information. Though this result is intuitively 
e1eal' it is llot st.ated in literat ure. Nevertheless, a mathematically rigorous proof is given. 

First, let us reca.1! some facts concerning differentiable curves. Suppose (11, A, 1/) is a 
a-fillite measure space and let P be the set of al! probability measures on (11, A) which 

satisfy P« 1/. Tbe set Pis identified with a subset of L2(I1,A, I/) by P --+ (~~)1/2, 
PEP. 

Let t > O. A cnrve t -> Pt from (-t,t) to P is differentiable at t = 0 (or at Po) if the 
map 

( 
dPt )1/2 t --+ -
dl/ ' 

is differelltiable at t = O. If t -> Pt is differelltiable at t = 0 then the derivative is of the 
form t -> ~h, where h E L 2 (11, A, 1/). 

Moreover, h is a derivative if and only if 

for some 9 E L2 ( Po) ami 

h=gfdP Va;; 

J gdPo = 0 

(e.g. Stm.,.,cr (1!J85a), Theorem 75.2). 
The element 9 is ca.l!ed a ta.ngent vector at Po. The differentiability of a path implies 

(4.2.1) 

(Stm"ser (1!J85a), Lemma 75.7), where Nt denotes the singularity part of the Lebesgue 
decomposition of Pt W.r.t. Po. 

Morcover, wc dcl'ive the expansion 

(4.2.2) 
dPt 1/2 t 
(-) = 1 + -g + trt 
dPo 2 

with 

( 4.2.3) 

A path which admits an expansion (4.2.2) is called H ellinger differentiable. The Hellinger 
differcntiability is dosely rclated to val'iolls other differentiable concepts (DDC-differen­
tiable, weak differelltiable, see tJw book of Pfanzagl and Wefelmeyer (1985)). 
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Now suppose that t -+ Pt is differentiahle at Po with tangent vector g. Then the log­
likelihood proeess admits the fundamental expa.nsion (Strasser (1985a), Theorem 75.8) 

(4.2.4) 

i.e. the rescaled experiment 

E n = (lRn
, Bn

, {P:- 1/ 2t : t E lR}) 

eonverges weakly to the Gaussian shift 

The fottowing theorem sta.tes that the extreme order stat.istics asympt.otically cnutaiu no 
information. Denote by Eo = (lR, B, {fO}) the totatty uninformative experiment. Let Ft b .. 
the distribution function of Pt, Wn,k = (XI:", ... , Xk:n), and Zn,k = (Xn-k+I:n,"" X n:n). 

4.2.1 Theorem. Let Xi, 1 ~ i ~ n, be i.i.d. randorn variables with cornrnnn distribution 
Pt, t E lR. We assurne that Pt has a Lebesgue density ft and that t -+ Pt is differcIltiablc 
at t = 0 with tanget vector g. Then 

(4.2.5) 

for n -+ 00. 

Wn,kEn = (lRk, Bk, {C(Wn,k IP:- 1/ 2t ) : t E lR}) --> Eo 

Zn,kEn = (lRk,B k, {C(Zn,klP:-1/2t): t E lR}) --> Eo 

PROOF. Sinee Gaussian shifts are homogeneous, the sequenee (lRn
, Bn, {P~'-1/2t : t E lR}) 

is eontiguous. This implies the eontiguity of Wn,kEn and Zn,kEn. Henee, (4.2.5) is proved, 
if 

whieh is equivalent to 

(4.2.6) 

k 
'" I dPn- 1/2t (X·.) ( k)l 1 - Fn-'/2t(Xk:n) P(; 0 o og dF, I.n + n - og ()--> 
.=1 0 1 - Fo X k :n 

~ I dPn-'/2t (X ) ( k)l Fn-l/2t(Xn-k+I: .. ) P~' 0 o og dF, n-'+I:n + n - . og --> . 
• =1 0 FO(Xn-k+I:n) 

First, we know that 
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is a Lindeberg n,rmy in thc sense of Strasscr (1985 a); that is 

Hence, as n --> 00, 

(4.2.7) 

Sincc 

we get, 

Taking accollnt of (4.2.7) 

tim n J g~idP~' = O. 

(l9n; I>') 

1 dPn-l/2t ( (1 ) 
og~ Xi) = 210g 2gni + 1 , 

dPn-l/2t P;;. 
10g~(Xj:n) ---> 0, J = 1, ... , n. 

Next, wc treat t.hc term (n - k)log(Fn-l/2t(Xn-k+l:n)/Fo(Xn-k+l:n))' The Taylor ex­
pansion of .T --> log( 1 - x), Ix I < 1, yields 

Moreover, 

From (4.2.1), wc already know Hmt 
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Paying attention to (4.2.2), we obtain 

r(Po) ~P 

HJxn_>+ln (vf- 1
)( 

dP,,-1/2t + 1) dPo 
Po 

An 11.pplic11.tion of the Cauchy-Schwarz inequ11.lity yields 

We show that 

( 4.2.8) jW(PO) pn 
g2dPo ~ O. 

X n -A:+l:n 

Let € > O. Since 9 E L2 (Po), we can find 11. real number a < w( Po) such tImt 

rw(Po) 

Ja g2 dPo < €/2. 

Define 
An,k,a = {.f. E IR": X"-k+l:n(;r.):::; a}. 

We derive 

Hence, (4.2.8) is shown. 
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MoreoV(~r, 

k-I (-x)i 
P({l1(U"-kH" -1) ~ x}) ----4 exp(x) L -.,-, x< 0, 

i=O J. 

wherc [Ti:" (kuo!es t.Ilf' i-!b order statistic of 71 independent (0, 1)-uniformly distributed 
random variables. Thus, 

Thc sallle "rgunwnts show timt 

r(Po) p" 
1)1/2 J) r n -l/2t dPO ~ 0. 

X n _k+l:n 

Combining tbc "hove fI·sults, we sec timt 

( k)/ F,,-1/2t(Xn-k+l:n) P(;. ° 
71- og. ~ 

FO(Xn-HI:n) 

holds. In a similar way, we deduce 

59 



4.3 A Characterization Theorem of Gaussian Sequences via Extremes 

In this section, we show that under monotone likelihood ratios and certain regnlarity 
conditions the following holds: A limit experiment is non-Ga1t~"ian if am! only if a fixed 
nnmber of extreme order statistics asymptotica.lly contains information. 

Consider a homogeneons experiment E = (IR, ß, {Pt: t E IR}) with monotone likelihood 
rati08j that is 

where htt,t, : IR ---4 [0,00] is an increasing fnnction for t l < t2 and 5 is any sl.atistic. 
W.l.g. we assume that 5 == identity. Otherwise, consider the expC'riment 5.E 

(IR, ß, {C( 51Ft) : t E IR}) which is eql1ivalent to E since 5 is sufficient. Note thaI. C( 51Pt ) 

has monotone likelihood ratios in the identity. 
In addition, we assume that the family {Pt: t E IR} is LI-diifercntiahlc nt Po with 

derivative gELl (Po)j that is, the likelihood ratio admits an expansion 

(4.3.1) 
dPt 
dP

o 
= 1 + tg + tr· t , 

where Tt E LI(Po) with IITtIlL.(Pol -40 as t -4 O. The concept. of L 1-differentiahility is 
important in connection with local tests, see the book by Witting (1985). 

4.3.1 Theorem. Suppose that E = (IR, ß, {Pt: t E IR}) is a homogeneolls experimC'nt 
with monotone likelihood ratios (in tlle identity), Pt is continuous, and that t -4 Pt is 
LI-differentiable at Po. Assurne that 

where U6n EI is infinitesimal and F is homogeneous and not totally uninformative. In 
addition it is assumed that for some p ::::: 1 the normalizing seqllence (8" )"EIN satisfies 
8n = O(n- I/p ), 9 is p-integrable in a neighborhood of a(Po) and w(Po), and that the 
remainder term satisfies IIrtllLp(Pol -4 0 as t -4 O. 

Then the following assertions are equivalent: 

(i) F is non-Ga1t88ian. 

(ii) A fixed number of extreme order statistics asymptotically contains information; that 
is, the sequences of statistical experiments 

Wn,kEn = (lRk,ßk,{C(Wn,kIP6':,t): t E IR}) 

Zn,kE Il = (JRk,B k, {C(Zn,kIPl,:.t): t E IR}) 

have accumulation points, whidl are unequaJ the totally Iminformative experiment. 

In testing theory, Theorem 4.3.1 has the following meaning: If (P6':,to,P;':.t.)-4 Fand F 
is non-Gaussian, then we can find a test sequcnce based on a fixed llllmber of extremes 
which separates {to} and {td. 
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REMARIC Thc assumptions of this theorem necessarily imply that lim infn~= nOn:;:' !( 
fm som<' posit.ive constant K. Ot.herwise, if nOn -+ 0, the LI-differentiability implies 

which contradicts our assumpt.ion that F is not totally uninformative. 

Bcfore giving the proof, we remark that this result is motivated by a well-known result 
in the theory of sums of independent random variables. Let (enk)1 <k<kn be a tri angular 
array of rowwise independent real valued random variables (over s;~ probability space 
(n, A, P)). The variables e7lk are said to be infinite3imal if 

( 4.3.2) 

as Tl --+ 00. 

Suppose timt 
k n 

Lenk 
k=1 

converges to s01l1e (non-degenerate) limit law Q. Then Q is Gaussian iff 

(4.3.3) 

see Gnedenko and KolmogoTov (1968), p. 126,127. Condition (4.3.3) is, in turn, equivalent 
to 

(4.3.4 ) 
min e7lk --> 0 

I:<:;k:<:;kn 

max enk --> O. 
I:<:;k:<:;kn 

In this statistical ('ontext, we consider the an'ay 

( dP6nt ) 
(eill:<:;i:<:;» = log dP

o 
(Xi) I:<:;i:<:;,,' 

Concerning the equivalence of (4.3.3) and (4.3.4), the assumption of monotone likelihood 
ratios bec01l1cs plausible sinee (t > 0) 

PIlOOF OF TIIEORBM 4.3.1. We show: 

where Eo = (IIl, [3, {EO}) denotes the totally uninfonnative experiment. 
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We only consider the log-likelihood process with base O. This is suflkient in vicw of the 
contiguity of the sequence U6 n En. 

The log-likelihood processes of Wn,kEn and Zn,kEn are 

( 4.3.5) 

To verify (4.3.5) (note, that we did not assume Pt « A) wc makc use of the fact timt 
under pr the statistics Wn,k and Zn,k have the P,k-density 

d.c(Wn,klpr) n! n-k 
dP

t
k (XI,"" Xk) = (n _ k~(l - Ft(Xk» 

d.c (Zn,k IPr) n! n- k 
dPtk (Xn-HI, ... ,Xn) = (n_k)!(Ft(xn-Hd) . 

if Xl < X2 < ... < Xk, Xn-HI < ... < Xn, = 0 otherwise (see Rci,'j (1989), p. 33). Sillee 
Pt « Po, we have .c(Wn,kIPt) «.c(Wn,kIPon). For B E Bk we get (~= XI,"" .Tk) 

Analogue for Zn,k' 
First, we prove that under the present regularity conditions 

( 4.3.6) ( k)l 
F6nt(Xn-HI:n) pr; 0 

n - og --t . 
FO(Xn-HI:n) 

holds. As in the proof of Theorem 4.2.1, we have to show 
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as n ---> 00. 
The L1-differentinbility implies 

Notf' timt hy nss\Illlpt.ioll Pt, t E IR, are pairwise equivalellt. For p = 1 assertion (4.3.6) is 
obviollsly valid. 

Let p > 1. Cho()se a seqllence (an)nEN such that an 1 w(Po) and P~' ({Xn-k+l:1l :s: 
an}) ---> 0 as n ---> 00. For sufficiently large n we have gl(ao,w(Po» E Lp(Po). Define 

An,k,a = {Xn-k+l:n :s: a}. 

Thell for f > 0 

Since IIf}l(a .. ,w(Po))lIl~p(Po) ---> 0 as n ---> 00, we see that 

[w(l'o) po 

nbn J) Igl dPo --"-> 0 
X n _ k +1 :n 

holds. 
Morf'over, 

[w(Po) po 

nb" Jx
n
: .. hntldPo --"-> o. 

This follows form 

j
W(T'O) 

nbn Ir~ntldPu 
Sn-k+l"" 

l/P«( F(" ))(P-IJ!1,( 1 IPd D )I!1> j
W(PO) 

:s: n U n n 1- ""n-k+l:n) )( .. _.+1:0 T6 .. t "0 
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and 

Hence, (4.3.6) is proved. 
Similar to (4.3.6) one shows 

( 4.3.7) ( _ k)1 1 - F6nl(Xk:n) !L 0 
n og 1 _ FO(X

k
:n) . 

Now, suppose that F is Gaussian. (For the proof of this direction, the asstlillption of 
monotone likelihood ratios is not needed.) From Theorem (6.3) of Milbrndt ami Stra..,.,cr 
(1985), we know that 

This together with 

implies 

(4.3.8) dP6nl ( P; . 
log dP

o 
X j :n ) -----t 0, J = 1, ... , n. 

This proves one half of the assertion, if we combine (4.3.5) - (4.3.8). 
To prove the converse, note that for k > 1 

(There are several ways to see this: Wn.kEn -+ Eo is equivalent 1,0 II((Wn.kIP';:.,) -
C(Wn.kIP6':.1)1!-t 0 as n -t 00, s,t E IR. Now, the assertion follows from 1!.c(X1 :nIPL,)-­
C(X1:n IP6':.t)1! S I!C(Wn.kIP6':..) - .c(Wn •kIP6':.t)l!. Another way is to argue with the error 
function 01' the Mellin trans/orm (see Strass er (1985 a), Chapter 3). Observe thereby, that 
Wn.kEn is more informative than X1:nEn.) 
and 

Taking into account (4.3.5), (4.3.6), and (4.3.7) for k = 1, we obtain 

I dP6 .. t (X ) P; () 
og dP

o 
I:,,-----t 

dP6nt ( r; 
log dP

o 
X n:n) -----t O. 
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Since {PI: t E 'In} has monotone likclihood ratios, we deduce that 

( 4.3.9) n{ 1 dP6nt( )1 } Po max log-d-- Xi 2': E ---> O. 
I::;.::;n Po 

Not.ice that. for t < 0, dP6 .. t/dPo is decreasing. By assumption, I:~=llogd:~~'(Xi) con­
verges to some non-<Icgcnerate law. Combining these results, we obtain 

( 4.3.10) 

for some 11.(t) E 'In. and (12(t) > O. The homogeneity of F implies the contiguity of 
U6n E". This togcther with (4.3.10) implies the weak convergence of the binary exper­
iment (Po",p.: t ) to a binary Gaussian experiment, say, (Qo,Qt), t E IR. To prove that F 
is Gaussian, we havc to show that for finite subsets J E IR, 0 f/: J, 

is anormal distribut.ion. This is shown as follows (cf. the proof of Theorem 3.1 in Jan33en 
(1989 b »: First, Fis infinitely divisible, since F is the limit of an infinitesimal array (Mil­
brodt and Stra.'3er (1985), Theorem 5.11). Hence, Il is an infinitely divisible distribution 
on Ire. From (4.3.10), we know that C(pjlp) is a normal distribution for each projection 
Pj : 'In/ -+ IR on thc j-th coordinate, j E J. Let (Ptlt>o be the continuous convolution 
semigroup generated by Il( = IlI)' Then P is Gaussian iff the Levy-measure of the convo­
lution scmigroup vanishes. But this is equivalent to tPt(IRJ - (-f, f)J) -+ 0 for t -+ 0 and 
cach E > O. Using thc sub-additivity of measures, we obtain 

~Jlt(IRJ \ (_f,f)J)::; ~ L::C(pjlllt)(IR \ (-E,f») ---> O. 
JEJ 

Hcncc, It is normal._ 

REMARK 2. For P = 1, the assnmption of homogencity of E can be droppedj for P > 1, 
this assnmpt.ion can !w dropped whenever 

nP6nt{{Xn:n,W(PO» n N6 .. d -+ 0 

nP6nd(o(Po),XI:n) n N6 .. d -+ 0 

as n -+ 00. Note tImt t.he LI-differentiability implies Pt(Nt ) 
singularity part of Pt w.r.t. Po. 
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5 POINT PROCESSES 

The last cha.pter is devoted to point process('s. 

5.1 The Concept of Point Processes 

First, we recall the definition of a point process and fix some furt her nota.tions. 
Suppose S is locally compact with countable basis. We denote the corresponding Bore! 

(T-ficld with the symbol ß. Designate by M( S, ß) the set of all point rnc(wtrc .• defined on 
S. Recall that p. E M(S, ß), if there exists a denumerable set of points Xi E S, i E I, such 
that 

and 

p. = LEx, 
iEl 

p.(K) < 00 

for every compact set K. The set M(S, ß) is endowed with the (T-field M(S, ß), which 
is by definition the smallest a-field such timt the "projections" II --+ It(B), B E ß, are 
measurable. 

The space M(S,ß) is Polish in the vague topology. Moreover, the a-field M(S,ß) 
coincides with the Borel (= Baire a-field) W.r.t. the vaglle topology (see e.g. Kallenberg 
(1986)). 

A point proce88 (over some probability space (n,A,p)) is a measllrable map 

N: (n,A,p) --+ (M(S,ß),M(S,ß)). 

In other words, a point process is a random variable with val lies in the space of point 
measures. 

For example, 
n 

N .. O = L EX,(' n D) 
i=l 

defines a point process, where D ~ Sand Xi are random variables; N" is called trnncated 
empirical point proce.'8 or, if S = D, ernpirical point process. 

The most important dass of point processes are the Poisson processes: Given a Ra.don 
measure v on (S, ß), a point process N is called Poisson process with rnean rnea.mre (also 
called intensity) v, if N satisfies 

(i) V B E ß V k E INo: 

P{N(B) = k} = -k,-e ,1 V < 00 
{ 

(v(B»' -v(B) 'f (B) 

0, if v(B) = 00 

(ii) V nEIN V Bi E ß,1 :::; i :::; n, mlltally disjoint: N(Bi ), 1 :::; i :S n, are independent. 

Poisson processes OCCllr as (weak) limit processes in many cases. They play the saul" 
superior role as the norma.l distribution for sums of randOlll variables or as the extreme 
value distributions for extremes. 
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Point proccsscs in conncction with extreme value theory can be found in the book by 
Rr.snick (1987). 

An intcrcsting eharacterization was given in Fa.lk and Rei33 (1988 b): It was ShOWll that 
the cOllvcrgence of appropriatcly trulleated empirieal point processes to ccrtain Poisson 
processes (extremc wllue processes), measured W.r.t. the variational distance, holds if, and 
only if, thc undcrlying distribution belongs to the strong domain of attraction of a.n extreme 
value distribution. 

An important rdcrcnce for the statistical inference within Poisson models is the book 
by Karr (1986). 
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5.2 Statistical Experiments of Point Processes 

The aim of this seetion is to show, tImt tbe results of the seeond chapter ean be reformulated 
in terms of point processes. In the foUowing, we consider the measurable space (S, B) = 
(R, B). We shaU see, that in the i.i.d. ease the original experiment and the corresponding 
point process experiment are equivalent. A simple consequence of this fact is that the loss 
of information due to a reduetion of order statistics in the original experiment is the same 
as in the corresponding point proeess experiment. 

Let us introduce the sub-spaee J.fn of aU point measures with total mass n for n E ll'I: 

Mn = Mn(IR, B) = {/Ln E M(R, B) : I'n = t EX;l Xi E m} 
1=1 

It is obvious that Mn E M(R, B). The space Mn is endowed with the trace a-field 

Mn = Mn(R,B) = M(R,B) n Mn(R,ß). 

Now we consider the surjective map 

Nn : IRn ---> Mn 
n 

(XI,""X n )---> LEx;. 
i=] 

It is dear that Nn is ß:ym , Mn-measurable, where ß:ym denotes the a-field of measurable 
sets which are invariant under permutation: 

ß:ym = {B E ß: 7r(B) = B \;/7r E Sn}. 

Here, we denote by Sn the permutation group of order n. 
But more can be said about Nn • 

5.2.1 Proposition. Let T # 0 be an arbitrllry set. Tl1en Nn is a sufflcient statistic for 
En = (IRn, ßn, {Q~ : t E T}). 

PROOF. Let R< = ({XI, •.. , x n ) E IRn : XI ~ X2 ~ .,. ~ x n } be the cone of ordered values 
of the Eudidian-spaee IRn. The space IR< is equipped with the trace a-field ß~ = ßn nIR~. 
We consider the ß~, Mn-measurable mäp 

---> Mn 
n 

(XI:n, ..• , x n :n ) ----> LEx; 
i=l 

Then Nn = T n 0 (XI:n, .•. ,X n : n ). Since the order statistie is sufficiellt and Tn is bijective, 
the proposition is proved if 

(5.2.1) 
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First 

is a a-ficld. Sin,,, 

9 = {BI X ••• x B n : Bi E B, i = 1, ... , n} 

generates Bit we find that B!S is generated by 

9:; = 9 n 1R~ 
= {BI X ... X B n nIR!S: Bi E B,i = 1, ... ,n}. 

We show timt 9:; C T,~l(Mn) which implies (5.2.1). The set 

{t f,.; E M" : (l:I, ... , 'f,,) E BI X ... x Bn} 
1=1 

{

n n n n } 
= L f x; E M,,: L fr;(Bj) 2: 1,j = 1, ... ,n,L €x.(U Bj) = n E Mn 

i=l ;=1 i=1 j=l 

satisfies 

5.2.2 Corollary. Let E" as in Proposition 5.2.1 and let 

E).N) = (M,,, Mn, {.C(NnIQ;'): t E Tl) 

be the correspondill~ poini process experiment. Then E n and E~N) are equivalent: 

(5.2.2) 

We draw our attention to sparse order statistics Zn,r" .. ,r. 
1 :::; 1'1 < r2 ... < rk :::; 11., 1 :::; ~: :::; n. Define 

Since 

k 

Nn.rt, .... rk = L f.tYri :n " 

i=l 

Nn,r" .. ,r,(·) = L fX; (. n [Xr,:n, X r.:n]) 
i=l 

(Xr,:n,'" ,Xr .:n) with 

in distribution if Q is continuous , this point process is a tnmcated empirical point process, 
whereby the truncation is rnndolIl. 
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vVe define the statistica.l experiment 

amI the corresponding point process experiment 

5.2.3 Corollary. Adapting tbe notations oE above, we get 

(5.2.3) 

PROOF. We a.lready know that 

Applying the triangular inequality, the assertion follows from Corollary 5.2.2 .• 

To treat point measures with infinite mass as well, we consider thl' span' (S, B) 
(IR+,B n IR+) with IR+ = {x E IR: x 2: O}. Let 

M! = {p E M(IR+.B n 1R+) : p = LEX,} 
iEN 

Moreover, let Mt, be the restrietion of M(IR+, B n IR+) to M!. The space M! is Polish 
w.r.t. the vague topology, because it is a "Q6-set", i.e. M! is a countable intersediOll of 
open sets. We have 

nEIN 

= n (M(IR+,Bn~) n {p E M(IR+,B n IR+): p(IR+) > n}). 
nEN 

Note that the set {p E M(IR+, B n 1R+) : p(IR+) ::; n} is vaguely closed. 
Since p([{) = I:iEN Ex .([{) < 00 for compact sets [( (by dcfinition) the sequencl' (.1'i)iEIN 

has no (finite) accumulation points. 
We have 

whcre 
IR~ < = {(.Ti)iEIN E 1R~: Xi::; Xi+I, i E!N, liminfJ:j -> oo} 

'- t-(X) 

is the set of non-negative, increasing, amI unhoundcd scquenccs. 
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Dennt<> hy ß!,~ thC' r<'striction nf ßIN t,o R~,~. Recall, that R~ is Polish as counta.ble 

prodnct. of Polish span's. Sillee R~,~ is 1'1. clnsed snbset of R~, we know that 1R~,~ is also 
Polish. 

Thc following lemma has an application in the next scction. 

5.2.4 Lemma. The bijcctivc map 

T oo: 1R~,~ ---+ M! 

(Xi)iEN ---+ LEx; 
iEIN 

is ß!,~, M:.t, -mensurable ann 

(5.2.4) 

PilOOF. To verify tlw lIleflsurability, it is sllfficient to show that for B E ß n lR+ and 
k E IN'o 

where 
Ah(B):= {Il E M!: Il(B) = k}. 

For k = 0 we obtain 

Mo(B) = {IL E M!: Il(B) = o} 

= {L Ex; E M!: Xi i B Vi E IN'}. 
iEIN 

Henn, 

For kEIN' we ohtain 

Helle!' 

!vh(D) = {lI E M! : IL(D) = k} 

= {LEx; E M!: 3Xi"""Xi. with Xii E B, 
iEIN 

1::; j ::; k, Xj i B,j E IN' \ {Xi1l"" Xi,}}' 

T;;,I (Mk(B)) = U (( U 7r(B k X (Bc)"-k) X (BC)lN\{I,.,n1) nR~,~) E ß!.s-
1l>k rrESu 

The measurahility is sl!own. 
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Now, we proof the validity of thc equalit.y (5.2.4). The inclusion Mt, <;; T<x,(ß~,) is 
immediate from the properties of the map Too . Since tllf' Ilnderlying spaces are Polish, the 
converse inclllsion Too(ß~,:,,) <;; Mt, follows directly from the famous thwrclIl of Kura­
towski (see, for instance, Ja,cobs (1978), p. 420) .• 
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5.3 Empirical Point Processes of Weibull Type Sampies 

In t,his section, we wmhinc the resuHs of Chapter 2 8nd the previous section of this chapter. 
Wc aSSlIIlle that Xi, i EIN, are i.i.d. random variables with density of Weibull type (2.1.1). 
Let Sj, jE IN, he ddined <lS in (2.1.5). We consider the point processes 

n 

N n = Lf6;,X; 
i=1 

k 

Nn k = '""" f,-lX' 
• ~ V n I:n 

1=1 

Nt = L f s l/(1+a)+t 

jEIN ' 

k 

Ni..t = L f s l/(1+a)+t' 

j=1 ' 

Note, that Nt is a Poisson process with mean value function x ---> (x - t)I+a, X > t (see 
Resnick (1987), Corollary 4.19). 

We now definf' the corresponding point process experiments of En, En.k, G and Gk: 

E~N) = (Mn, Mn, {C(Nn!P6nt ) : t E lR.}) 

E~~) = (Mk , M k, {C(Nn.k!P6nt) : t E lR.}) 
G(N) = (M=, M=, {.c(Nn!po) : t E lR.}) 

G~N) = (Mk,Md.c(Ni..t)!Po): t E lR.}). 
From thc results of Section 5.2, we already know that 

6.(E~N), E~~») = 6.(E", En.d 

ami 
6.(E~),G~N») = 6.(En.k,Gk) 

Thc last cquality follows from 6.(G~N),Gk) = O. 
Moreover, we havc 6.(G,G(N») = O. This follows from Lemma 5.2.4 which states the 

sufficieucy of T 00' Thus 
6.( G~N) , G(N») = 6.( G k, G). 

Conscql1cutly, all resl1lts cstablished in Chapter 2 can be carried overj in particular, we 
havc (see Theorem 2.4.1) 

and 

6.(E(N) G(N») = o(no) 
n,k(n)' 

whenever k(n) tcnds to infinity as Tl tends to infinity. 
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Taking into account Theorem 2.4.5, we see that 

t.(dN) erN») -> 0 
k(n)' 

holds for k( n) -> 00 as n -> 00. Observe, that 

sup IC(N; tIPo)(M) - C(NtIPo)(M)1 = C(NtIPo)(Mk) = l. 
MEM(IR+,BnIR+) , 

REMARK 1. In the sense ofDefinition (12.2) in MilbrQdt (lD85), erN) is a. "tandard Pois"on 
experiment with intensities 

REMARK 2. Let J(~n,k)(·I!l:.), !l:. = (Xl>'" xd, Yi as in (2.2.2) and IV ... as in Section 5.2. The 

conditional distribution of 2:7=1 fX, given 2:~=1 fX',n = 2:~=1 f x , is equal to 

k n-k 

C(IVnlldn.k)CI!l:.)) = (Lfx, * C(L fy.l)(')' 
i=] i=l 

This becomes obvious from the fact, that a(Nn.k.tl = a(X1:n, ... ,Xk :n). 
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