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1. Summary 
 

Asymptomatic bacteriuria (ABU) represents the long term bacterial colonization of the 

urinary tract, frequently caused by Escherichia coli (E. coli), without typical symptoms of a 

urinary tract infection (UTI). To investigate characteristics of ABU E. coli isolates in more 

detail, the geno- and phenotypes of eleven ABU isolates have been compared. Moreover, 

consecutive in vivo re-isolates of the model ABU strain 83972 were characterized with regard 

to transcriptomic, proteomic and genomic alterations upon long term in vivo persistence in the 

human bladder. Finally, the effect of the human host on bacterial adaptation/evolution was 

assessed by comparison of in vitro and in vivo-propagated strain 83972. 

 

ABU isolates represent a heterologous group of organisms. The comparative analysis of 

different ABU isolates elucidated the remarkable genetic and phenotypic flexibility of E. coli 

isolates. These isolates could be allocated to all four major E. coli phylogenetic lineages as 

well as to different clonal groups. Accordingly, they differed markedly in genome content, 

i.e., the genome size as well as the presence of typical UPEC virulence-associated genes. 

Multi locus sequence typing suggested that certain ABU strains evolved from UPEC variants 

that are able to cause symptomatic UTI by genome reduction. Consequently, the high E. coli 

genome plasticity does not allow a generalized view on geno- and phenotypes of individual 

isolates within a clone. Reductive evolution by point mutations, DNA rearrangements and 

deletions resulted in inactivation of genes coding for several UPEC virulence factors, thus 

supporting the idea that a reduced bacterial activation of host mucosal inflammation promotes 

the ABU lifestyle of these E. coli isolates.  

 

Gene regulation and genetic diversity are strategies which enable bacteria to live and survive 

under continuously changing environmental conditions. To study adaptational changes upon 

long term growth in the bladder, consecutive re-isolates of model ABU strain 83972 derived 

from a human colonisation study and from an in vitro long term cultivation experiment were 

analysed with regard to transcriptional changes and genome rearrangements. In this context, it 

could be demonstrated that E. coli, when exposed to different host backgrounds, is able to 

adapt its metabolic networks resulting in an individual bacterial colonisation strategy. 

Transcriptome and proteome analyses demonstrated distinct metabolic strategies of nutrients 

acquisition and energy production of tested in vivo re-isolates of strain 83972 that enabled 
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them to colonise their host. Utilisation of D-serine, deoxy- and ribonucleosides, pentose and 

glucuronate interconversions were main up-regulated pathways providing in vivo re-isolates 

with extra energy for efficient growth in the urinary bladder. Moreover, this study explored 

bacterial response networks to host defence mechanisms: The class III alcohol dehydrogenase 

AdhC, already proven to be involved in nitric oxide detoxification in pathogens like 

Haemophilus influenzae, was shown for the first time to be employed in defending E. coli 

against the host response during asymptomatic bacteriuria.  

 

Consecutive in vivo and in vitro re-isolates of strain 83972 were also analysed regarding their 

genome structure. Several changes in the genome structure of consecutive re-isolates derived 

from the human colonisation study implied the importance of bacterial interactions with the 

host during bacterial microevolution. In contrast, the genome structure of re-isolates from the 

in vitro long term cultivation experiment, where strain 83972 has been propagated without 

host contact, was not affected. This suggests that exposure to the immune response promotes 

genome plasticity thus being a driving force for the development of the ABU lifestyle and 

evolution within the urinary tract. 
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1. Zusammenfassung 
 

Asymptomatische Bakteriurie (ABU) stellt eine bakterielle Infektion der Harnblase über einen 

langen Zeitraum dar, die häufig von Escherichia coli hervorgerufen wird, ohne dass typische 

Symptome einer Harnwegsinfektion auftreten. Um die Charakteristika von ABU E. coli 

Isolaten genauer zu untersuchen, wurden die Geno- und Phänotypen von 11 ABU-Isolaten 

verglichen. Außerdem wurden in mehreren aufeinanderfolgenden in vivo-Reisolaten des 

Modell-ABU Stammes 83972 die Veränderungen im Transkriptom, Proteom und Genom 

während einer langfristigen Persistenz in der menschlichen Blase charakterisiert. Schließlich 

wurde der Effekt des menschlichen Wirtes auf die bakterielle Adaptation durch einen 

Vergleich von in vitro- mit in vivo-kultivierten Stämmen abgeschätzt. 

ABU-Isolate stellt eine heterogene Gruppe von Organismen dar. Diese können den vier 

phylogenetischen Hauptgruppen von E. coli sowie unterschiedlichen klonalen Gruppen 

zugeordnet werden. Dementsprechend unterscheiden sie sich erheblich bezüglich der 

Zusammensetzung des Genomes, der Genomgröße und auch der Ausstattung mit UPEC-

typischen Virulenz-assoziierten Genen. Multi-Lokus-Sequenz-Typisierung legt nahe, dass 

bestimmte ABU Stämme sich durch Genomreduktion aus UPEC Stämmen entwickelt haben, 

die eine Harnwegsinfektion mit charakteristischen Symptomen auslösen konnten. Folglich 

erlaubt die hohe Genomplastizität von E. coli keine generalisierte Betrachtung einzelner 

Isolate eines Klons. Genomreduktion über Punktmutationen, Genom-Reorganisation und 

Deletionen resultierte in der Inaktivierung einiger Gene, die für einige UPEC Virulenz-

Faktoren kodieren. Dies stützt die Vorstellung, dass eine verminderte bakterielle Aktivierung 

der Entzündung der Wirtsschleimhaut den Lebensstil von ABU (bei diesen E. coli-)Isolaten 

fördert. 

Genregulation und genetische Diversität sind Strategien, die es Bakterien ermöglichen unter 

sich fortlaufend ändernden Bedingungen zu leben bzw. zu überleben. Um die 

anpassungsbedingten Veränderungen bei einem langfristigen Wachstum in der Blase zu 

untersuchen, wurden aufeinanderfolgende Reisolate, denen eine langfristige in vivo-

Kolonisierung im menschlichen Wirt beziehungsweise eine in vitro-Kultivierung 

vorausgegangen ist, im Hinblick auf Veränderungen Genexpression und Genomorganisation 

analysiert. In diesem Zusammenhang konnte gezeigt werden, dass E. coli in der Lage ist, 

seine metabolischen Netzwerke verschiedenen Wachstumsbedingungen anzupassen und 
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individuelle bakterielle Kolonisierungsstrategien entwickeln kann. Transkriptom- und 

Proteom-Analysen zeigten verschiedene metabolische Strategien zur Nährstoffbeschaffung 

und  Energieproduktion bei untersuchten in vivo-Reisolaten vom Stamm 83972, die es ihnen 

ermöglichen, den Wirt zu kolonisieren. Das Zurückgreifen auf D-Serin, Deoxy- und 

Ribonucleoside sowie die bidirektionale Umwandlung zwischen Pentose und Glucuronat 

waren hoch-regulierte Stoffwechselwege, die die in vivo-Reisolate mit zusätzlicher Energie 

für ein effizientes Wachstum in der Blase versorgen. Zudem wurden in dieser Studie die 

Netzwerke für eine Reaktion auf Abwehrmechanismen des Wirtes erforscht: Erstmals wurde 

hier die Rolle der Klasse-III-Alkoholdehydrogenase AdhC, bekannt durch ihre Bedeutung bei 

der Entgiftung von Stickstoffmonoxid, bei der Wirtsantwort während einer asymptomatischen 

Bakteriurie gezeigt.   

Aufeinanderfolgende in vivo- und in vitro-Reisolate vom Stamm 83972 wurden ebenfalls 

bezüglich ihrer Genomstruktur analysiert. Einige Veränderungen in der Genomstruktur der 

aufeinanderfolgenden Reisolate, die von einer humanen Kolonisierungsstudie stammen, 

implizieren die Bedeutung einer Interaktion der Bakterien mit dem Wirt bei der 

Mikroevolution der Bakterien. Dagegen war die Genomstruktur von Reisolaten eines 

langfristigen in vitro-Kultivierungsexperiments, bei dem sich der Stamm 83972 ohne 

Wirtskontakt vermehrt hat, nicht von Veränderungen betroffen. Das legt nahe, dass die 

Immunantwort eine Genomplastizität fördert und somit eine treibende Kraft für den ABU 

Lebensstil und die Evolution im Harnwegstrakt ist. 
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2. Introduction 
 

2.1. Epidemiology of urinary tract infection 
 

Urinary tract infections (UTIs) are considered to be the most common bacterial infection in 

industrialized countries. About every third woman might have UTI episode(s) that require 

antimicrobial therapy by the age of 24 years, and 40 % to 50 % of women will experience at 

least one UTI during their lifetime (Foxman, 2002). It is estimated, however, that 20 % of all 

UTIs occur in men and rates are lower in young men and increase dramatically with 

increasing age (Griebling, 2005).  

Patients with a normal genitourinary tract with no prior instrumentation are considered as 

“uncomplicated” (Stamm and Hooton, 1993). The majority of acute community-acquired, 

uncomplicated infections are caused by Escherichia coli (70 % to 90 %) or Staphylococcus 

saprophyticus (10 % to 15 %). Klebsiella, Enterobacter, and Proteus species and enterococci 

infrequently case uncomplicated cystitis and pyelonephritis (Ronald, 2002). The reservoir for 

these bacteria is the human bowel flora and most infections result from bacteria introduced 

into the bladder via the urethra. Sexual activity significantly increases the frequency of 

uropathogen transmission and UTI incidence (Foxman et al., 2002).  

Specific subpopulations are more often prone to UTIs. This group includes infants, pregnant 

women, the elderly, patients with spinal cord injuries and/or catheters, patients with diabetes, 

or patients underlying urologic abnormalities (Foxman, 2002). An abnormal urinary tract may 

lead to colonisation with less virulent organisms that rarely cause disease in the anatomically 

or metabolically functional one. While in uncomplicated UTIs the most common causative 

pathogen is Escherichia coli (E. coli), the etiology of complicated UTI is more diverse and 

frequently polymicrobial in nature (Ronald, 2002). However, E. coli causes about 40 % of all 

nosocomial UTIs and represents one of the most frequently isolated nosocomial pathogen 

(Struelens et al., 2004).  

UTI can also be classified by the site of infection, as follows: infection of the bladder 

(cystitis) or the kidneys (pyelonephritis). Bacterial colonisation of the urinary tract is often 

accompanied by a wide spectrum of symptoms (symptomatic infection) like burning or pain 
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during urination, fever, cloudy or bloody urine and increased urination frequency (Shaikh et 

al., 2007; Zorc et al., 2005).  

The presence of significant numbers of bacteria in the urine, however, might also not be 

associated with symptoms and is termed asymptomatic bacteriuria (ABU). ABU is probably 

the most common form of UTI with varying prevalence by age, gender, sexual activity and 

the presence of the genitourinary abnormalities (Table 1). ABU patients may carry more than 

105 bacteria/ml of urine for years, but do not develop symptoms (Lindberg et al., 1978). 

Asymptomatic bacteriuria is very common among elderly people with frequencies of 

colonisation ranging from 17 to 50 % in women and 6 to 34 % in men. However, 5% of 

young school girls will also be asymptomatically colonized once until the age of 15 (Raz, 

2003). Women with diabetes are reported to encounter ABU three-fold more often than non-

diabetics (Nicolle et al., 2006). In elderly patients with indwelling catheters draining in an 

open system, the incidence of bacteriuria is almost 100% and the vast majority of them are 

asymptomatic. 

Table 1: Prevalence of asymptomatic bacteriuria in selected populations (Colgan et al., 2006).  

Population  Prevalence (%) 
Healthy pre‐menopausal women 1.0 to 5.0 
Pregnant women 1.9 to 9.5 
Post‐menopausal women (50 to 70 years of age) 2.8 to 8.6 
Patients with diabetes   
         Women  9.0 to 27.0 
         Men  0.7 to 1.0 
Older community‐dwelling patients  
         Women (older than 70 years) > 15.0 
         Men  3.6 to 19.0 
Older long‐term care residents   
         Women  25.0 to 50.0 
         Men  15.0 to 40.0 
Patients with spinal cord injuries  
         Intermittent catheter  23.0 to 89.0 
         Sphincterotomy and condom catheter 57.0 
Patients undergoing hemodialysis 28.0 
Patients with an indwelling catheter  
         Short‐term  9.0 to 23.0 
         Long‐term  100 

 

Escherichia coli is the most common organism isolated from patients with ABU, however, 

other species like Pseudomonas aeruginosa, Enterococcus spp., and group B streptococci are 
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reported (Colgan et al., 2006). The microflora in patients with asymptomatic bacteriuria will 

be influenced by patient variables: healthy persons will likely be colonized by E. coli, 

whereas a nursing home resident with a catheter will most likely be colonized with a multi-

drug-resistant polymicrobic flora (e.g., P. aureginosa). Enterococci and Gram- negative 

bacteria are common in men (Warren et al., 1982) 

The treatment of asymptomatic bacteriuria is not always beneficial. Depending on the group 

of patients, if left untreated ABU protects from symptomatic infections (Hansson et al., 

1989a), and  recurrences of bacteriuria after treatment occur in 50 % to 80 % of patients 

(Hansson et al., 1989b). However, antibiotic treatment of ABU in pregnant women, patients 

prior to surgery and those with vesicoureteral reflux has been shown to be beneficial, if not 

necessary (Nicolle, 2006).  

 

2.2. Escherichia coli as a pathogen 
 

E. coli is a residential bacterium of the large intestine where it co-exists with the human host 

and both experience mutual benefits. However, there are several highly adapted clones that 

have acquired specific virulence attributes which confer an increased ability to colonize new 

niches and allows them to cause a broad spectrum of disease (Kaper et al., 2004). A subset of 

E. coli is capable of causing enteric/diarrhoeal diseases and another subset causes 

extraintestinal diseases. Among the intestinal pathogens, there are six well-described 

pathotypes: enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), 

enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli 

(EIEC) and diffusely adherent E. coli (DAEC) (Kaper et al., 2004). The E. coli pathotypes 

implicated in extraintestinal infections have been called ExPEC (Russo and Johnson, 2000). 

UTIs are the most common extraintestinal E. coli infections and are caused by uropathogenic 

E. coli (UPEC).  

Phylogenetic studies have shown that E. coli can be allocated to four main phylogenetic 

groups, designated  ECOR (E. coli group of reference strains) group A, B1, B2 and D (Herzer 

et al., 1990). Most strains responsible for UTI and other extraintestinal infections belong to 

ECOR group B2, or to a lesser extent, to group D, and they carry virulence determinants that 

are absent in ECOR group A and B1 strains (Johnson and Stell, 2000; Picard et al., 1999). 

Most of the commensal strains belong to ECOR group A. The various pathotypes of E. coli 
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tend to be clonal and are characterized by shared O (lipopolysaccharide, LPS) and H 

(flagellar) antigens that define serogroups (O antigen only) or serotypes (O and H antigens) 

(Kaper et al., 2004).  

Pathogenic E. coli strains are often characterized by the presence of specific virulence traits 

that contribute to their pathogenic potential and characteristically are absent among 

commensal strains (Johnson, 1991; Johnson and Stell, 2000; Kaper et al., 2004). Multiple 

studies on a number of UPEC strains implicate a variety of virulence and fitness factors that 

play an important role for urinary tract infection (Fig. 1). Generally, virulence and fitness 

factors can be grouped as adhesins, toxins and bacteriocins, iron acquisition systems, O-, K-

antigens and serum resistance.  

 

 

Fig. 1: Pathogenesis of urinary tract infection caused by uropathogenic E. coli. The figure shows the 
different stages of an ascending urinary tract infection and the involvement of particular virulence 
factors in that process (Kaper et al., 2004). 

 

 



Introduction 
 

20 
 

2.2.1. Virulence factors of uropathogenic E. coli  
 

Adhesins 
 

Adherence factors facilitate the colonization of the urinary tract and promote E. coli 

colonization and persistence in the colon or vagina, which may serve as a reservoir for 

ascending infection in the urinary tract (Johnson, 1991). They include fimbrial (fimbriae, pili) 

and afimbrial adhesins. Various adhesins have been identified and studied. The P- , type 1, S-, 

and F1C fimbriae exhibit a composite structure, consisting of a rod-shaped shaft of 6-7 nm in 

diameter comprising over a thousand major and minor subunits (Sauer et al., 2000). The 

adhesin is located at the very tip of the fimbriae, often connected with the shaft via the so-

called adapter pilus (Schilling et al., 2001). The adhesin and some other minor subunits are 

responsible for the specific binding to carbohydrate moieties on the surface of eukaryotic 

cells, therefore contributing to specific adherence (Johnson, 1991). The synthesis, export, 

correct folding and ordered assembly during fimbrial biogenesis occurs in a coordinated 

manner (Smyth et al., 1996). The P-, S- and F1C-fimbriae are more exclusively associated 

with extraintestinal E. coli isolates and the tip of these adhesins recognizes carbohydrate 

moieties: Galα(1-4)Gal, α-sialyl-2,3-β-galactose, and GalNAcβ(1-4)Galβ, respectively 

(Johnson, 1991). P fimbriae are shown to induce strongly inflammatory response (Bergsten et 

al., 2005; Wullt et al., 2002). 

Type 1 fimbriae are not only expressed by pathogenic strains, and there is no difference in fim 

gene frequency in more and less virulent strains in the urinary tract (Plos et al., 1991). This 

fimbrial type mediates adhesion to mannose-containing oligosaccharides, e.g. on bladder 

epithelial cells. Type 1 fimbriae promote attachment and virulence in the murine urinary tract 

infection model (Hagberg et al., 1983; Snyder et al., 2004). The fimbriae have been shown to 

enhance bacterial survival, to stimulate mucosal inflammation and to promote bacterial 

invasion (Anderson et al., 2003; Connell et al., 2000). Allelic variation exists in fimH, the 

gene for the lectin subunit of type I fimbriae. Sokurenko et al. (1997) have shown that type 1 

fimbriae with different fimH alleles vary in their ability to recognize various mannosides and 

only those capable of mediating high levels of adhesion via mono-mannosyl residues are 

more capable of mediating E. coli adhesion to uroepithelial cells. Therefore, it seems that 

certain variants of type 1 fimbriae may contribute more than others to E. coli urovirulence. 
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Most of the UPEC strains express curli fimbriae. It is suggested that these fimbriae play a role 

only in the early phase of infection (e.g., adherence to periurethral skin surface), since they 

are frequently expressed only at 30 °C (Olsen et al., 1993). In the last years, isolates have 

been detected in which co-expression of curli fimbriae and cellulose occurs at 30 °C as well 

as at 37 °C (rdar morphotype), but the importance of this trait for the survival and 

colonization in the host organism remains unclear (Zogaj et al., 2001).  

Flagella 
 

The bacterial flagellum is a long helical surface appendage composed of polymerized flagellin 

subunits encoded by fliC. Although it has never been proven, flagella-mediated motility has 

been hypothesized to play a role in the pathogenesis of UTI caused by UPEC (Emody et al., 

2003). Lane et al. (2005) demonstrated that flagella and flagellum mediated 

motility/chemotaxis may not be absolutely required but contributes to the fitness of bacterium 

and therefore significantly enhance colonisation of the urinary tract by UPEC. The same 

group later demonstrated that UPEC indeed utilize flagellin to ascend the upper urinary tract 

and fliC mutant bacteria were able to colonize the bladder but were significantly attenuated in 

the kidneys (Lane et al., 2007). Flagella are also implicated in virulence of other E. coli 

pathotypes, by inducing interleukin 8 expression and Toll-like receptor 5 (TLR-5) activation 

upon adhesion of EPEC to epithelial cells in vitro (Giron et al., 2002). Moreover, flagella 

have been shown to contribute to the virulence of other uropathogens, such as Proteus 

mirabilis (Mobley et al., 1996).  

Toxins 
 

Toxins are prominent virulence factors of bacterial pathogens. Three toxins play a major role 

during UTI: the cytotoxic necrotizing factor 1 (CNF-1), the cytolethal distending toxin (CDT) 

and α-haemolysin.  

The α-haemolysin is widely disseminated among pathogenic bacteria and widely distributed 

in UPEC as well as in EHEC isolates. The hly gene cluster encoding the toxin and the 

enzymes for its biosynthesis is located on PAIs or on plasmids. Secretion via the type I 

secretion pathway, a posttranslational maturation and the presence of a C-terminal calcium 

binding domain are characteristics of this pore-forming toxin (Johnson, 1991). α-hemolysin is 

able to lyse a broad range of host cells which probably contributes to inflammation, tissue 

injury, and impaired host defences (Cavalieri et al., 1984).  
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CDT is a secreted protein which has the capacity to inhibit cellular proliferation by inducing 

an irreversible cell cycle block at the G2/M position (Comayras et al., 1997). CDT is 

composed of three polypeptides (CdtA, B and C) which are all required for CDT activity. The 

direct role of the toxin in urinary tract infection, however, remains to be proven.  

CNF-1 is widely distributed in extraintestinal pathogens and belongs to a toxin family which 

modifies Rho, a subfamily of small GTP-binding proteins that are regulators of the actin 

cytoskeleton (Aktories, 1997). The gene for CNF-1 is chromosomally located on different 

pathogenicity islands of UPEC (Blum et al., 1994). Eukaryotic cells intoxicated with CNF-1 

exhibit membrane ruffling, formation of focal adhesions and actin stress fibers and DNA 

replication in absence of cell division. 

Iron acquisition systems 
 

Iron is needed by all living cells. E. coli uses iron for oxygen transport and storage, DNA 

synthesis, electron transport, and metabolism of peroxides. Ferric iron is highly insoluble and 

almost all of this iron is complexed with host iron proteins. Part of the host response to 

infection is to further reduce the amount of iron available for the invading pathogen (Der 

Vartanian et al., 1992). Pathogens are able to counter the iron restriction imposed by their 

hosts through the use of siderophores. Siderophores can compete with host iron-binding 

proteins and several siderophore-based transport systems are known to be required for 

effective host colonisation. The genes coding for the biosynthesis of such iron-uptake systems 

in E. coli may be located on plasmids or on the chromosome. The gene clusters encoding the 

enzymes for enterobactin (ent) and the ferric dicitrate transport system (fec) have a commonly 

conserved localization in the E. coli core genome. However the fec gene cluster has been 

identified to be PAI-encoded in Shigella flexneri (Luck et al., 2001). The iuc operon coding 

for aerobactin is either located on plasmids (pColV) or on different genomic islands, whereas 

the yersiniabactin-encoding HPI (fyu/irp) is widely distributed among Enterobacteriaceae and 

shows a rather conserved chromosomal localization at the asnT gene. The chu system is a 

well-characterized haeme transport system that firstly has been found in the chromosome of 

EHEC O157:H7 strains (Torres and Payne, 1997). This system enables the bacteria to utilize 

iron directly from the haeme and is widely distributed among UPEC isolates (Wyckoff et al., 

1998). The iro gene cluster (coding for the enzymes required for salmochelin biosynthesis), 

firstly described for Salmonella enterica (Baumler et al., 1996), is involved in the uptake of 

catecholate-type siderophore compounds. The iro genes are widely distributed among E. coli 
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isolates and can be chromosomally or plasmid-encoded (Dobrindt et al., 2003). The ability for 

iron acquisition of bacteria might be advantageous for their survival in the urinary tract, 

therefore it is considered an important fitness trait. 

O-, K-antigens and serum resistance 
 

Lipopolysaccharide (LPS) is a key component of the outer membrane of Gram-negative 

bacteria. It comprises three distinct regions: Lipid A, the oligosaccharide core, and commonly 

a long-chain polysaccharide O antigen that causes a smooth phenotype (Amor et al., 2000). 

Lipid A is the most conserved part of LPS. It is connected to the core part, which links it to the O 

repeating units. The O repeating units are highly polymorphic, and more than 190 

serologically distinguished forms in E. coli are known today (Orskov et al., 1977). Since LPS 

is located on the outer surface of bacterial cells, its expression is known to be responsible for 

many features of the cell surface of the Gram–negative bacteria, such as resistance to 

detergents, hydrophobic antibiotics, organic acids, serum complement factors, adherence to 

eukaryotic cells etc. (Barua et al., 2002; Jacques, 1996; Svanborg-Eden et al., 1987). It has 

been suggested that some of these characteristics, especially resistance to the bactericidal 

effect of the complement system, are dependent on the length of the O side chain (Porat et al., 

1992).  LPS is believed to significantly contribute to virulence by protecting bacteria from the 

bactericidal effect of serum complement (Reeves, 1995). 

Capsular polysaccharides, more than 80 types of which have been described for E. coli, are 

linear polymers of repeating carbohydrate subunits that sometimes also include a prominent 

amino acid or lipid component. They coat the cell, interfering with O-antigen detection and 

protecting the cell from host defence mechanisms (Johnson, 1991). Zingler et al. (1993) 

reported that the most frequent K antigens determined in 253 UPEC isolates are K1 and K5 

(31 % and 35 % of the cases respectively); nevertheless more than 26 different K-antigens 

were identified. The high prevalence of these two capsular serogroups is not astonishing, 

since both capsular oligosaccharides mimic human antigens by being antigenically and 

structurally similar to carbohydrates present in human glycosphingolipids, thus preventing 

effective immune response against bacteria expressing them. The K1 capsule is present in all 

MENEC isolates and contributes to the ability to cross of the blood-brain barrier (Kim, 2002).  
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2.3. Asymptomatic bacteriuria (ABU) 
 

2.3.1. UTI versus ABU 
 

While much effort was taken to characterise isolates and the virulence traits of bacteria 

causing symptomatic urinary tract infections (Brzuszkiewicz et al., 2006; Welch et al., 2002), 

not much is known why patients with ABU do not develop symptoms. The organisms 

recovered in many cases belong to the same types of bacteria that cause cystitis, the most 

common being E. coli (Raz, 2003). However, little is yet known about the difference between 

symptomatic and asymptomatic UTI in terms of pathogenesis, natural history and risk factors. 

Hanson (1982) suggested that strains with decreased virulence may colonize the urine rather 

than cause asymptomatic infection. Hull et al. (1998) compared virulence factors of isolates 

from UTI and ABU with isolates from patients with a neuropathic bladder due to spinal cord 

and brain injury. This group reported that UTI isolates are more likely than ABU strains to be 

haemolytic and exhibit mannose-resistant hemagglutination of human erythrocytes. It has 

been also shown that adhesiveness to human urinary tract epithelial cells was high for E. coli 

strains isolated from patients with acute pyelonephritis and acute cystitis, and low for 

asymptomatic bacteriuria strains (Edén et al., 1979). Taken together, it has been suggested 

that there might exist differences in the virulence between UTI and ABU isolates. However, 

the molecular basis for this is unknown.  

2.3.2. Escherichia coli strain 83972: a model ABU E. coli isolate 
 

Many uropathogenic E. coli isolates (e.g. strain 536, UTI89, CFT073, J96, NU14) are widely 

used as a model to investigate symptomatic UTIs. However, the only established prototypic 

ABU isolate is currently E. coli strain 83972. This strain has originally been isolated from a 

young Swedish girl, who carried it for at least three years without symptoms (Lindberg et al., 

1975). Isolate 83972 belongs to the phylogenetic lineage B2 of E. coli indicating a close 

relatedness to the UPEC strains, which cause symptomatic UTI. Moreover, it belongs to the 

same sequence type as UPEC strain CFT073 and commensal E. coli Nissle 1917 (Zdziarski et 

al., 2008) (Fig. 2). The strain does not express classical UPEC virulence factors, but 

genotypic analysis has revealed that this E. coli possess a large number of virulence-

associated genes (Dobrindt et al., 2003). A recent genotypic analysis of selected pathogenicity 

factors of strain 83972 suggested that the loss of functional type 1, F1C, and P fimbriae was 

due to deletions or multiple point mutations (Klemm et al., 2006; Roos et al., 2006a).  
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Fig. 2: Phenotypic comparison of E. coli strains CFT073, Nissle 1917 and 83972. All these strains 
belong to the same sequence type, ST 73 (Dobrindt, U.).  

 

Strain 83972 has been successfully used as a prophylactic agent in patients with recurrent 

urinary tract infections (Andersson et al., 1991; Sunden et al., 2006).  For this, the bladder of 

patients was deliberately colonised with a monoculture of E. coli 83972 and asymptomatic 

bacteriuria was established for up to three years (Wullt et al., 1998). In these cases successful 

long-term colonisation with strain 83972 prevented the establishment of symptomatic UTI. 

Deliberate colonisation with this strain has also been shown to reduce the frequency of UTI in 

patients with a neurogenic bladder secondary to spinal cord injuries (Hull et al., 2000). 

Interestingly, pre-incubation of catheters with strain 83972 has been reported to prevent 

colonisation by bacterial or fungal uropathogens (Darouiche et al., 2001; Trautner et al., 

2003). In all these cases, a controlled asymptomatic bacteriuria with strain 83972 did not 

jeopardize the health of the patients and reduced the necessity of antibiotic treatment. Thus 

further scientific efforts are required to establish colonisation with strain 83972 as a potential 

prophylactic approach against symptomatic UTI in a routine manner. Such an approach 

certainly improves the quality of life of people suffering from chronic UTI infections and 

reduces occurrence of antibiotic resistance.  
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2.4. Mechanisms of pathogen recognition 
 

The variation in urinary tract virulence reflects the ability of bacteria to trigger mucosal and 

systemic host responses. Through different molecular interactions bacteria may activate 

cellular responses, cause cell detachment, and invade or kill cells by apoptosis (Svanborg et 

al., 2001). Attachment to the mucosa is an essential step in pathogen recognition that activates 

the host defence signalling pathways (Bergsten et al., 2004).  UPEC use type 1-, F1C- and P- 

fimbriae for epithelial cell adherence at different stages of the infection (Johnson, 1991; 

Mobley et al., 1994; Wullt et al., 2002).  

Type 1- and P-fimbriated E. coli share the ability to activate epithelial cells, but they differ in 

receptor specificity. In case of P fimbriae, the receptors are glycosphingolipids with Galα(1-

4)Galβ receptor motifs, and the PapG tip adhesin binds to these oligosaccharide epitopes 

(Fischer et al., 2006). Type 1 fimbriae bind to mannose-containing oligosaccharides on 

bladder epithelial cells (Svensson et al., 1994). Host response to these two fimbriae is 

controlled by the Toll-like receptor 4 (TLR4), but different adaptor proteins are involved in 

the down-stream signalling (Fischer et al., 2006).  

LPS as a principal component of the Gram-negative cell suface (Yang et al., 1999).  Its 

recognition is mediated by CD14 that subsequently interacts with TLR4 (Beutler, 2000), 

followed by down-stream signalling. However, Samuelsson et al. (2004) demonstrated that 

CD14 is not expressed by the urinary tract epithelium. Therefore, the expression of fimbriae 

but not the presence of LPS-“coated” bacteria per se decides about the quantity of the host 

response (Svanborg et al., 2006).  

Down-stream signalling causes transcriptional activation and production of inflammatory 

mediators in the epithelial cell. As a result, chemotactic substances are secreted that include 

the chemokines IL 6 and IL 8 (Agace et al., 1993a). A chemotactic gradient is created and, in 

response to the gradient, neutrophils leave the bloodstream, migrate through the tissues and 

cross the epithelial barrier into the lumen (Agace et al., 1993b; Godaly et al., 1997; Hang et 

al., 1999). Neutrophils (PMNs) are phagocytes, capable of ingesting microorganisms or 

particles. They can internalise and kill many microbes by the formation of a phagosome into 

which reactive oxygen species and hydrolytic enzymes are secreted. Neutrophils have been 

shown to increase 43-fold expression of the inducible nitric oxide synthase (iNOS) during 

UTI when compared to non-infected controls (Wheeler et al., 1997). As a consequence, the 
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nitric oxide concentration in the urine during UTI is increased 30 to 50 times (Lundberg et al., 

1996).  

2.5. Nitric oxide - a host defence mechanism 
 

Nitric oxide (NO) at concentrations of approximately 10-7 M controls blood pressure in 

mammals and is a messenger in the central and peripheral nervous system (Fang, 2004). In 

addition to its natural physiological function, NO is a defence molecule against microbial 

infections (Bang et al., 2006; Bogdan, 2001; Coban and Durupinar, 2003; Fang and Vazquez-

Torres, 2002). Nitric oxide is potentially reactive because of the physical instability of 

oxygen- or nitrogen-based unpaired electrons in their orbits, which leads to a number of 

deleterious pathological consequences in vivo (Akaike, 2001). NO, being a lipophilic radical, 

diffuses across cell membranes and through the cytoplasm. Sustained NO generation by 

macrophages inhibits at higher concentrations key enzymes including terminal oxidases and 

other haem-containing enzymes that bind dioxygen, and Fe-S centres in enzymes such as 

aconitase. Toxic effects may also arise from reactions involving nitrosation or the 

peroxynitrate, formed from the reaction of NO with a superoxide anion (Hughes, 1999). 

These products may store NO or exert toxic effects while their formation may initiate redox 

or conformational changes (Poole, 2005).   

One particularly important effect of NO in the biological systems is its ability to cause 

genomic alterations (Sakai et al., 2006; Weiss, 2006; Wink et al., 1991). When DNA is 

exposed in vitro to HNO2 or to NO, the exocyclic amines of the nucleobases form unstable N-

nitroso (-N-N = O) derivatives that lead to deamination. Thus, adenine is deaminated to 

hypoxanthine, guanine is deaminated to xanthine, and cytosine is deaminated to uracil 

(Shapiro and Pohl, 1968). The deaminated products pair with different bases than their 

aminated counterparts. Therefore, they almost always produce mutations during subsequent 

replication. Nitrosation of cellular secondary amines and amides produces alkylating agents 

that cause mutagenic lesions at many sites in DNA (Victorin, 1994). Other DNA lesions 

include interstrand and intrastrand cross-links, protein-DNA cross-links, the formation of 

oxanine from guanine (Suzuki et al., 2000), and DNA replication block, which leads to base 

substitutions and single-base frameshifts involving translesion DNA synthesis (Sakai et al., 

2006).   
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NO and its congeners exert toxic effects, and microbes have evolved a number of mechanisms 

for coping with these reactive nitrogen species and their derivatives. Enteric bacteria, such as 

E. coli and Salmonella enterica serovar Typhimurium, use two major mechanisms to detoxify 

NO, the flavohemoglobin Hmp and the flavorubredoxin NorV (Poole et al., 1996; Poole, 

2005). The flavohemoglobin detoxifies NO by an O2-dependent denitrosylase mechanism, 

producing NO3
- under aerobic or microaerobic conditions or by the slower O2-independent 

reduction of NO to N2O (Poole, 2005). The flavoruboredoxin NorV along with its cognate 

reductase, NorW, however, catalyzes the reductive detoxification of NO only under 

microaerobic or anaerobic conditions (Gardner et al., 2002). The periplasmic cytochrome c 

nitrate reductase NrfA, which reduces NO2
- toNH3, may also be able to directly reduce NO  

(Poock et al., 2002).  

NO in the living cell interacts with biomolecules within its immediate environment and forms 

other reactive nitrogen species (RNS), such as S-nitrosoglutathione (GSNO) and nitrosothiols 

through interactions with glutathione (GSH) and thiols, respectively (Kidd et al., 2007). The 

GSH-dependent formaldehyde dehydrogenase AdhC is conserved from man to bacteria and 

has GSNO reductase activity (Liu et al., 2001), which can limit levels of S-nitrosoglutathione 

during nitrosative stress. Recently, it has been shown that AdhC is required for the defence 

against nitrosative stress in Haemophilus influenzae (Kidd et al., 2007), however, its function 

in Salmonella enterica serovar Typhimurium remains unclear (Bang et al., 2006).  

 

2.6. Genome plasticity and bacterial evolution 
 

Genome evolution is a continuous process that comprises long-term ‘macroevolution’ which 

over millions of years leads to the development of new species, and a short-term 

‘microevolution’ that alters already existing species/pathotypes enabling them to colonize 

new environmental niches (Ziebuhr et al., 1999). However, continuously changing 

environmental conditions force bacteria to start adaptive process.  Along regulatory responses 

that act at the expression level, microorganisms must have evolved strategies allowing the 

generation of genetic diversity (Arber, 1993). Point mutations, recombination between 

homologous DNA sites, and the action of transposable genetic elements are major 

mechanisms by which genome flexibility is achieved (Fig. 3). The capture and spread of 

genes by horizontal gene transfer involving plasmids, phages and other mobile elements also 
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contribute to this process. Finally, the clustering of genes on large genomic island and their 

mobilization enables bacteria to gain or lose huge amounts of DNA involved in adaptation to 

distinct ecological niches (Ziebuhr et al., 1999). 

 

 

Fig. 3.: Bacterial genome plasticity. There are three main forces that shape bacterial genomes: gene 
acquisition, gene loss and gene variation. All three can occur in a single bacterium. Some of the 
changes that result from the interplay of these forces are shown. 

 

E. coli migrating from the large intestine, its natural reservoir, to the urinary tract have to face 

challenging new conditions, incl. different growth rates, nutrient limitation, host response, and 

urodynamics in the bladder. Successful colonisation of this niche requires bacterial adaptation 

to these conditions. Therefore genome alterations in combination with selective pressure will 

contribute to that process.  

Point mutations are considered as driving forces in a slow evolutionary process. During 

replication, point mutations can be generated by slipped-strand mispairing, resulting in 

expression or non-expression of particular genes (Leathart and Gally, 1998). Regulatory 

genes which control coordinated gene expression under changing environmental conditions 

have also been found to be subject to point mutations and small deletions (Hengge-Aronis, 

1999). Some mutations, so called ‘pathoadaptive’ mutations, enable single bacterial clones to 

become more pathogenic without the acquisition of additional genes. This mechanism is 
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based on random mutagenesis which offers the bacterium a strong advantage under a selective 

pressure (Sokurenko et al., 1999). In addition to the modification of structural and regulatory 

genes, point mutations also contribute to the development of bacterial resistance to antibiotics 

(Musser, 1995).  

The generation of large deletions of the bacterial chromosome represents another major 

principle of genome plasticity. Excisions are frequently observed in Streptomyces spp., where 

large deletions comprising up to 800 kb of DNA occur (Birch et al., 1991). Recently it has 

been shown for the ABU strain 83972 that an internal deletion of 4.2 kb DNA stretch resulted 

in inactivation of type 1 fimbriae (Klemm et al., 2006). 

Bacterial insertion sequence (IS) elements are small mobile DNA units encoding only for 

features necessary for their own mobilization and mediate mutations and DNA 

rearrangements in bacteria (Mahillon and Chandler, 1998). IS elements can be regarded as 

repetitive DNA sequences, randomly distributed on the bacterial chromosome that have the 

capacity to cause inactivation of genes by random and in some cases also by site-specific 

transposition. In addition to simple transposition, IS elements also give rise to complex DNA 

rearrangements including deletions, inversions, gene amplifications and the fusion of two 

DNA molecules by co-integrate formation (Arber, 1993).  

Another way of genome rearrangements is acquisition or loss of particular regions on the 

bacterial chromosome, termed ‘pathogenicity islands’ (PAI) (Hacker et al., 1997; Hacker and 

Kaper, 2000). Similarly, there are DNA regions that do not contain virulence-associated 

genes, but nevertheless contribute to the fitness of the bacterium. These so-called genomic 

islands (GEIs) encode for additional traits that may be beneficial for the bacteria under certain 

growth conditions  (Hacker and Carniel, 2001). Genomic islands represent (formerly) mobile 

DNA elements and are considered to have been acquired by horizontal gene transfer, thereby 

contributing to the evolutionary potential of bacteria (Dobrindt et al., 2003; Hacker et al., 

2003). 

 

2.7. Bacterial population dynamics 
 

Biologists have long been interested in the observation of the dynamics of evolutionary 

changes. Charles Darwin remarked: “in looking for the gradations by which an organ in any 
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species has been perfected, we ought to look exclusively to its lineal ancestors; but this is 

scarcely ever possible, and we are forced in each case to look to species of the same group, 

that is to the collateral descendants from the same original parent-form” (Darwin, 1872). 

However, Darwin could only use a comparative approach by necessity, evolution nowadays 

can be assessed in action. Beyond simply observing evolution in nature, some biologists 

sought to carry out experiments that ran for many generations, with controls and replication, 

to test hypotheses  about the evolutionary process. In this context, microbial evolution 

experiments have received increasing attention.  

Richard Lenski captures microbial evolution in a conceptually simple approach: Populations 

are established from single clones, then propagated in a controlled and reproducible 

environment for many generations. A sample of the ancestral population is stored indefinitely 

(for example, frozen at –80 °C), as are samples from various time points in the experiment. 

After a population has been propagated for some time, the ancestral and derived genotypes 

can be compared with respect to any genetic or phenotypic properties of interest, which 

provides information on the dynamics of the evolutionary process and the extent of 

evolutionary change. Importantly, adaptation can be quantified by measuring changes in 

fitness in the experimental environment, in which fitness reflects the propensity to leave 

descendants (Lenski et al., 1991). 

The very extensive work of Lenski and colleagues resulted in many interesting conclusions. 

One feature that was seen, is that fitness gains are initially rapid but tend to decelerate over 

time (Cooper and Lenski, 2000; de Visser and Lenski, 2002; Lenski et al., 1991). In a 10,000 

generations experiment with 12 Escherichia coli populations, the morphology (cell size) and 

average fitness (measured in competition with the ancestor) evolved rapidly for the first 2,000 

generations and were nearly static for the last 5,000 generations (Lenski and Travisano, 

1994). Such dynamics indicate that populations, after being placed in a new environment, are 

evolving from a region of low fitness towards an adaptive peak or plateau. Evolutionary 

adaptation in experimental microbial populations typically occurs through the substitution of 

relatively few mutations that confer large benefits, as opposed to countless mutations with 

small benefits (Rozen et al., 2002). 12 replicate bacterial populations, although founded by 

the same clone, and evolving in identical environments, diverged from one another in their 

relative fitness, morphological features and performance in other environments (Korona et al., 

1994; Lenski et al., 1991).  
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These experimental conditions, however, are very distinct to those in the urinary tract. The 

inflow of urine into the bladder (Coolsaet et al., 1980) rather resembles a continuous than a 

batch bacterial culture. Moreover, intra-individual differences of patients are very prominent 

(Rezzi et al., 2007). Similar to a ‘natural experiment’ that involves the colonization of several 

neighbouring islands by the same ancestor species demonstrated that subtle environmental 

differences promoted divergence (Darwin, 1872), the urinary tract of individual patients 

might be considered as the “Galapagos archipelago” for the evolution of ABU E. coli strains.  

 

2.8. Aims of this work 
 

The role of multiple virulence-associated factors of uropathogenic E. coli involved in the 

development of symptomatic and chronic UTI has been elucidated so far, but only little 

information was available on characteristics of ABU isolates. Therefore one aim of this study 

was the detailed characterisation of clinical ABU isolates. The geno- and phenotypic diversity 

and relatedness of ABU isolates should be assessed using comparative genome hybridisation, 

pulsed-field gel electrophoresis and multi locus sequence typing. Moreover, virulence and 

fitness factors of this group of organisms should be further characterised and compared to 

those of UPEC and non-pathogenic E. coli strains.  

Another aim was the assessment of bacterial adaptation and microevolution in the urinary 

tract using ABU strain 83972 as a model. Consecutive re-isolates of this strain derived from a 

deliberate human colonisation study and in vitro continuous culture should be analysed with 

regard to phenotypic and genomic alterations. In vitro transcriptome and proteome analysis 

should be performed to assess bacterial adaptation upon prolonged growth of strain 83972 in 

the urinary bladder.  

 



Material 
 

33 
 

3. Material 

3.1. Strains 
All bacterial strains used in this study and their relevant genotype are listed in (Table 2). 

Table 2: Bacterial strains used in this study 
Strain Relevant propert ies  Reference 

UPEC 536 clinical isolate from pyelonephritis; O6:K15:H31 (Berger et al., 1982) 
CFT073 clinical isolate from pyelonephritis, O6:K2:H7 (Mobley et al., 1990) 
E. coli MG1655 F-, λ-, ilvG, rfb-50 rph-1 (Blattner et al., 1997) 
Nissle 1917 Probiotic Escherichia coli strain, O6:K5:H7 (Nissle, 1918) 
83972 Asymptomatic bacteriuria isolate (Lindberg and Winberg, 1976) 
83972cat CmR This study 
ABU5 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU20 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU21 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU27 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU37 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU38 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU57 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU62 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
ABU64 Asymptomatic bacteriuria isolate (Svanborg C, Lund) 
KA22 83972 strain derivate – human colonization study (Wullt B, Lund) 
KA25 83972 strain derivate – human colonization study (Wullt B, Lund) 
IJ15 83972 strain derivate – human colonization study (Wullt B, Lund) 
SN16 83972 strain derivate – human colonization study (Wullt B, Lund) 
SN25 83972 strain derivate – human colonization study (Wullt B, Lund) 
CK3 83972 strain derivate – human colonization study (Wullt B, Lund) 
CK6 83972 strain derivate – human colonization study (Wullt B, Lund) 
CK9 83972 strain derivate – human colonization study (Wullt B, Lund) 
CK12 83972 strain derivate – human colonization study (Wullt B, Lund) 
SR3 83972 strain derivate – human colonization study (Wullt B, Lund) 
SR6 83972 strain derivate – human colonization study (Wullt B, Lund) 
SR12 83972 strain derivate – human colonization study (Wullt B, Lund) 
POS6 83972 strain derivate – human colonization study (Wullt B, Lund) 
POS9 83972 strain derivate – human colonization study (Wullt B, Lund) 
POS12 83972 strain derivate – human colonization study (Wullt B, Lund) 
POS18 83972 strain derivate – human colonization study (Wullt B, Lund) 
83972_1.1 – 
83972_1.16a 

83972 strain derivates – continuous culture in LB 
+ NO This study 

83972_2.1 – 
83972_2.16 a 

83972 strain derivates – continuous culture in 
urine + NO This study 

83972_3.1 –       
83972_ 3.16 a 83972 strain derivates – continuous culture in LB This study 

83972_4.1 – 
83972_4.16 a 

83972 strain derivates – continuous culture in 
urine This study 

a) Sixteen independent re-isolates numbered from 1 to 16 
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3.2. Plasmids 
 
All plasmids used during this study are listed in (Table 3). 
 
Table 3: Plasmids used in this study. 

Plasmid Relevant propert ies  Reference 
pKD46 

 

pKD3 

pKD4 

pCP20 

repA101 (ts), araBp-gam-bet-exo (λ red recombinase 

under the contol of araB promotor), ApR (bla) 

oriRγ, ApR, cat-gene flanked by FRT sites 

oriRγ, ApR, npt-gene flanked by FRT sites 

Yeast Flp recombinase gene (FLP, aka exo) ts-rep, ApR, CmR 

(Datsenko and Wanner, 2000) 

 

(Datsenko and Wanner, 2000) 

(Datsenko and Wanner, 2000) 

(Datsenko and Wanner, 2000) 

 

3.3. Oligonucleotides 
 

All oligonucleotides used for PCR, RT-PCR, gene disruption using the λ Red-based method 

(Datsenko and Wanner, 2000) were purchased  from Sigma-Genosys (Steinheim, Germany). 

The sequences and the application of all oligonucleotides are listed in (Table 4).  

 
Table 4: Oligonucleotides used in this study. 

Primer  Primer sequence (5' - 3') Target gene Product 
size

Application 

papOP1f  cctccatcatgcctgttcag  pap operon  pap operon sequencing 
papSQ1  gggaaacatggcgcatca  pap operon  pap operon sequencing 
papSQ2  aagtcggttattgccggtgc  pap operon  pap operon sequencing 
papSQ3  agaaggtgctttctcagcagttgc  pap operon  pap operon sequencing 
papSQ4  tgcctgcaataccattgacgggt  pap operon  pap operon sequencing 
papSQ5  tggcatgatggtcagtgtgc  pap operon  pap operon sequencing 
papSQ6  tcaggacctggacagttcagttcg  pap operon  pap operon sequencing 
papSQ7  aaacgtggcggactggaaca  pap operon  pap operon sequencing 
papSQ8  aatgtccggtggaacacgtc  pap operon  pap operon sequencing 
papOP1f  cctccatcatgcctgttcag  pap operon  pap operon sequencing 
papSQ10  aagtcagcggtgggtatcgt  pap operon  pap operon sequencing 
papSQ12  tgcacttctgcccggaaaac  pap operon  pap operon sequencing 
papKf  gatgataaaaagcacaggcgct  pap operon  pap operon sequencing 
papSQ13  gaccctgacctttaagggaacg  pap operon  pap operon sequencing 
KM_papE-f  gaggaaaactgattattcctgc  pap operon  pap operon sequencing 
papEF multi  gcaacagcaacgctggttgcatcat  pap operon  pap operon sequencing 
papSQ15  tggttacagagtgacagcaggtctg  pap operon  pap operon sequencing 
papG AlleleIII-f  ggcctgcaatggatttacctgg  pap operon  pap operon sequencing 
papG AlleleIII-r  ccaccaaatgaccatgccagac  pap operon  pap operon sequencing 
papSQ16b  tctggcatggtcatttggtgg  pap operon  pap operon sequencing 
papG rev OP  tcatgagcagcgttgctgaacc  pap operon  pap operon sequencing 
focOP1f  tcagtgaagcatgcccacaaactg  foc operon  foc operon sequencing 
focSQ2  attaaggcagccctgtaggtgg  foc operon  foc operon sequencing 
focSQ3  tgatgacagatacggtgtgcgt  foc operon  foc operon sequencing 
focSQ4  ggctgtttttatccatgcgggtg  foc operon  foc operon sequencing 
focSQ5  ggaaaggcaaatggacaggtatgg  foc operon  foc operon sequencing 
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focSQ6  ccgggtaaattagagttcacccgtg  foc operon  foc operon sequencing 
sfaF3.2  gttgcagtacaggcaccga  foc operon  foc operon sequencing 
focSQ8  gtatgcaccgacaattcacggt  foc operon  foc operon sequencing 
focOP1r  agttcagggaccagctgatgtc  foc operon  foc operon sequencing 
focOP2f  tcaacgttgtatctgagtggcagc  foc operon  foc operon sequencing 
focSQ10  aggtgcatctgatacgcgca  foc operon  foc operon sequencing 
focSQ11  ggcaatgttcaggataacacctgc  foc operon  foc operon sequencing 
sfaG3.1  cattctcctgcatgctggc  foc operon  foc operon sequencing 
focSQ12  tgatagcagccaacagcacctc  foc operon  foc operon sequencing 
focSQ13  cagaatgaagatgcctctggtcag  foc operon  foc operon sequencing 
focSQ14  taggcagctctcctgtgagtctg  foc operon  foc operon sequencing 
focSQ15  ttcagaagtgcacctccgga  foc operon  foc operon sequencing 
focSQ16  cgatgtttaccggatgactgatgc  foc operon  foc operon sequencing 
focOP2r  aatcggtgcgcttgtcgatca  foc operon  foc operon sequencing 
hlyC for  gcatgtatcctggctctgg  hly operon 331 hly operon detection 
hlyC rev  caccctgatggctctgaat  hly operon 331 hly operon detection 
hlyA for  cgtgtacttggtggcgatg  hly operon 338 hly operon detection 
hlyA rev  tcaccgccatagagctggt  hly operon 338 hly operon detection 
hlyB for  ctggttacgtcgtcaggtg  hly operon 322 hly operon detection 
hlyB rev  gcgcatgatgacatgctcc  hly operon 322 hly operon detection 
hlyD for  tcgctcaaggacaacgcga  hly operon 336 hly operon detection 
hlyD rev  ctttccggactgactctcc  hly operon 336 hly operon detection 
hly for  ctgggatcgtactgtatgag  hly operon 7990 hly operon amplification 
hly rev  ccctgactcagactcacagc  hly operon 7990 hly operon amplification 
hlySQ1  actacagtctgcaaagcaatcctc  hly operon  hly operon sequencing 
hlySQ2  agctaatcaaccaactcgtggac  hly operon  hly operon sequencing 
hlySQ3  gatggtgacagtttacttgctgc  hly operon  hly operon sequencing 
hlySQ3.5  gcaatgtttgaacatgtcgccag  hly operon  hly operon sequencing 
hlySQ4  tccagaagcaagtctttgaccca  hly operon  hly operon sequencing 
hlySQ5  cagatctgcttgatggcgga  hly operon  hly operon sequencing 
hlySQ6  gcagttgtccggtaatgcca  hly operon  hly operon sequencing 
hlySQ7  ctgttaccgggaaactggca  hly operon  hly operon sequencing 
hlySQ8  tcctggtggaatcagtcacg  hly operon  hly operon sequencing 
hlySQ9  tcggtatcaaattctgagcaggtc  hly operon  hly operon sequencing 
hlySQ10  gaatatcagcttgtcacgcagc  hly operon  hly operon sequencing 
fimH All for  atgaaacgagttattaccct  fimH 525 fimH sequencing 
fimH All rev  cacatcattattggcgtaaatat  fimH 525 fimH sequencing 
KM-fimB-f  aataccgggcctcatgctg  fim operon 339 fim operon detection 
KM-fimB-r  gaatctccagtgacaacccg  fim operon 339 fim operon detection 
KM-fimE-f  atgcaggcggtgtgttacg  fim operon 390 fim operon detection 
KM-fimE-r  gttcataaccacaagcatgcc t  fim operon 390 fim operon detection 
KM-fimA-f  ggctctggctgatactacac  fim operon 437 fim operon detection 
KM-fimA-r  ccggttgcaaaataacgcgc  fim operon 437 fim operon detection 
KM-fimI-f  caatgtttgctctggccgg  fim operon 386 fim operon detection 
KM-fimI-r  gccgtttccagtttgctgg  fim operon 386 fim operon detection 
KM-fimC-f         aatggtggttgccggacg  fim operon 445 fim operon detection 
KM-fimC-r  gag aat tcg cgc tac gac g  fim operon 445 fim operon detection 
KM-fimD-f   gaatctgctggcggatgatg  fim operon 442 fim operon detection 
KM-fimD-r         catcgaaaatatcgccctgag  fim operon 442 fim operon detection 
KM-fimF-f  gcacgattactatccgcgg  fim operon 397 fim operon detection 
KM-fimF-r  ctgtgtcgccattagccg  fim operon 397 fim operon detection 
KM-fimG-f  atgaaatggtgcaaacgtggg  fim operon 434 fim operon detection 
KM-fimG-r         caatgctctgacctgtaacgg  fim operon 434 fim operon detection 
KM-fimH-f         gggctggtcggtaaatgc  fim operon 445 fim operon detection 
KM-fimH-r  catcgctgttatagttgttggtc  fim operon 445 fim operon detection 
fecR for  gcttagcacggcataccagt  fecR  Inverse PCR 
fecI for  tcacgcgtttggcgatagtg  fecI  Inverse PCR 
Del 2 for  ttctggcatgtgtcggtcag    Inverse PCR 
Del 3 for  tgctaaatcacgtcagcgct    Inverse PCR 
Del  4 for  gtcttcggtgaacgcactctg    Inverse PCR 
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Del 4 rev  aaaggctcaggtcggatacc    Inverse PCR 
Box  ctacggcaaggcgacgctga    Box PCR 
16SRNA_for  aactgagacacggtccagact  rrnB 330 qRT-PCR 
16SRNA_rev  ttaacgcttgcaccctccgt  rrnB 330 qRT-PCR 
frmA_for  tcaaacctggcgaccatgtg  frmA 268 qRT-PCR 
frmA_rev  agcaggcagacgtgttcatg  frmA 268 qRT-PCR 
hmpA_for  ggcaatatctcggcgtctgg  hmp 220 qRT-PCR 
hmpA_rev  actggtgtgtcatctgcgac  hmp 220 qRT-PCR 
tar_for  agtggcaactggcggttatc  tar 205 qRT-PCR 
tar_rev  cgttgcatatgtgaaacgctctg  tar 205 qRT-PCR 
metR_for  ttgccatagagtgccatagctg  metR 232 qRT-PCR 
metR_rev  tcaggtgctaacaccagacg  metR 232 qRT-PCR 
iutA_for  accatgatggagtttgaggctg  iutA 222 qRT-PCR 
iutA_rev  catgatgtccagccgattgg  iutA 222 qRT-PCR 
yeiC_for  gcgcaaactaatcaatccggtg  yeiC 215 qRT-PCR 
yeiC_rev  ctaaggttgcaatccgcgac  yeiC 215 qRT-PCR 
ABU_marker_for  tcttatccgcatgctgagagc  fim  83972 specific 
ABU_marker_rev  tgacctgtgcagtaccacgag  fim  83972 specific 
pABU_for  acatagatccctcatgcggtg  pABU  83972 specific 
pABU_rev  cgtcggtgttacagcgatgg  pABU  83972 specific 
 

3.4. Chemicals and enzymes 
 

All chemicals and enzymes used in this study were purchased from the following companies: 

New England Biolabs (Frankfurt am Main), Invitrogen (Karlsruhe), MBI Fermentas (St. 

Leon-Roth), Roche Diagnostics (Mannheim), Gibco BRL (Eggenstein), Dianova (Hamburg), 

Difco (Augsburg), Merck (Darmstadt), Oxoid (Wesel), GE Healthcare/Amersham 

Biosciences (Freiburg), Roth (Karlsruhe), Serva and Sigma-Aldrich (Taufkirchen), Axxora 

(Lörrach). Radionucleotides were purchased from GE Healthcare/Amersham Biosciences 

(Freiburg).  

The following commercial kits were used: 

- Plasmid Mini and Midi kit, QIAGEN (Hilden) 

- PCR purification kit, QIAGEN (Hilden) 

- Gel extraction kit, QIAGEN (Hilden) 

- RNeasy kit, QIAGEN (Hilden) 

- ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction kit, Applied 

  Biosystems (Foster City, USA) 

- ECLTM Direct Acid Labeling and Detection System, and ECLTM advance system, 

   GE Healthcare/Amersham Biosciences (Freiburg) 

- Roti-Nanoquant, Roth (Karlsruhe) 

- OpArray Hybridization Buffer Kit, Operon (Cologne) 
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3.5. Media, agar plates and antibiotics 
 

All media were autoclaved for 20 min at 120 °C, if not stated otherwise. Supplements for 

media and plates were sterile filtered through a 0.22 μm pore filter and added after cooling 

down the media to <50 °C. 

3.5.1. Media 
 

LB medium (Luria-Bertani): (Sambrook, 1989) 

10 g  Tryptone from casein 
5 g  Yeast extract 
5 g  NaCl   ad 1 l dH2O 

 

M63 minimal medium: 

 
1 x M63 media 
 
Ingredient   stock  final concentration for 800ml   
M63 salts   5x  1x   160 ml  
FeSO4    1 ‰  0.001 ‰  800 µl  
MgSO4   10 %  10 ‰   800 µl  
Thiamin   0.2%  0.5 ‰   2     ml  
Glucose   20 %  0.4 %   16   ml  
Casamino acids  10 %  1 %   80   ml  
KOH    10 M  pH 7   5.2  ml 
   

 
5 x M63 salts 
 
(NH4)2SO4   15   mM 8 g   
KH2PO4  100 mM 54.4 g   

ad up to 800 ml ddH2O and autoclave 

 
 
FeSO4    1 mg / 1 ml in H2O and sterile filtration 

MgSO4   10 g / 100 ml in H2O and autoclaving 

Thiamin   20 mg / 10 ml in H2O and sterile filtration 

Glucose  20 g / 100 ml in H2O and autoclaving 

Casamino acids 10g / 100 ml in H2O and autoclaving 

KOH   10 M in H2O and autoclaving 
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Urine 

Human urine was collected at least from 10 healthy male and female volunteers, 

pooled and sterilized by filtration. Sterile urine was stored at 4 °C not longer than one 

week.  

 

3.5.2. Agar plates 
 

LB agar plates: 

LB medium + 1.5 % (w/v) agar (Difco Laboratories, Detroit, USA) 

 
  

Motility agar plates 

  LB medium + 0.3 % (w/v) agar 

 

 Blood agar plates: 

  LB plates containing 5 % (v/v) washed sheep erythrocytes 

 

  Congo Red agar plates: 

  1 l autoclaved LB agar without salt 

1 ml 0.4 mg ml-1 Congo Red dye solution 

1 ml 0.2 mg ml-1 Coomassie brilliant blue R-250 

Dye solutions were stirred for 1h at 50 °C before sterile filtration 

  

MacConkey agar plates: 

  BBLTM MacConkey Agar, Beckton Dickinson 

 

3.5.3. Antibiotics 
 

When appropriate, media and plates were supplemented with the antibiotics listed in the Table 

5, in the indicated concentrations. Stock solutions were sterile filtered and stored at -20 °C 

until usage. 
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Table 5: Antibiotic substances used in this study. 
Antibiotic Stock concentration Solvent Working concentration 

Chloramphenicol (Cm) 50 mg ml-1 EtOH 20 μg ml-1 

Ampicillin (Ap) 100 mg ml-1 dH2O 100 μg ml-1 

Kanamycin (Km) 50 mg ml-1 dH2O 50 μg ml-1 

Streptomycin 20 mg ml-1 dH2O 20 μg ml-1 

 

3.5.4. DNA Markers 
 

To determine the size of DNA fragments in agarose gels, the “GenerulerTM” 1-kb DNA 

ladder, purchased from MBI Fermentas, was used (Fig. 4A), whereas in PFGE the Lambda 

Ladder PFG Marker from New England BioLabs was used (Fig. 4B).  

 

Fig. 4: DNA markers used for electrophoresis: (A) Generuler 1-kb DNA ladder 
(Fermentas); (B) Lambda Ladder PFG Marker (BioLabs) 

 
 
 

3.6. Technical Equipment 
 

2D-Electrophoresis chamber   Ettan DALT six, Amersham Biosciences 

Autoclaves    Integra Bioscience, H+P Varoclav  

Balances     IL-180, Chyo Balance Corp 

     Kern 470 

Ohaus Navigator 

Bioanalyzer     Agilent Technologies, 2100expert 

Centrifuges    Beckmann J2-HC® JA10 and JA20 rotors 
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     Beckmann L-70 Ultracentrifuge 

     Heraeus Sepatech Megafuge1.OR 

     Heraeus Sepatech Biofuge 13R 

        Hettich Mikro20 

Clean bench    NUAIRE, Class II, type A/B3 

Documentation    BioRad GelDoc2000 + MultiAnalyst Software V1.1 

Electrophoresis systems  BioRad 

Electroporator    Gene Pulser, BioRad 

Hybridization oven    HybAid Mini 10 

FastPrep    FastPrep-24 MP™ 

Isoelectric Focussing   MultiPhor, Amersham Biosciences 

Incubators    Memmert Tv40b (30 °C, 43 °C) 

     Heraeus B5050E (37 °C) 

Magnetic stirrer   Heidolf MR3001K 

MALDI-TOF-MS    Proteome-Analyzer 4700, Applied Biosystems 

Microarray scanner   GenePix 4000B, Molecular Devices 

Microarray hybridization chamber Scienion 

Micropipettes    Eppendorf Research 0.5-10 μl, 1000 µl 

     Gilson pipetman 20 μl, 200 μl 

Microwave AEG    Micromat 

Power supplies    BioRad Power Pac 300 

PCR-Thermocycler    Biometra T3 

pH-meter    WTW pH 525 

Photometer     Pharmacia Biotech Ultrospec 3000 

     Thermo Scientific NanoDropTM 1000 

Phosphoimager   Amersham Biosciences, Typhoon 4600 

Real Time PCR Thermocycler  Bio Rad, MyiQ 

Scanner     HP ScanJet IIcx 

Shakers     Bühler TH30 SM-30 (37°C, 150 rpm) 

Innova 4300, New Brunswick Scientific (37°C, 220 rpm) 

Innova 4230, New Brunswick Scientific (30°C, 220 rpm) 

Speedvac    Savant SC110 

Thermoblocks    Liebisch 

Vacuum Blotter    Pharmacia + LKD Vacu Gene Pump 
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Vaccum pump   Univac Uniequipe 

Videoprinter    Mitsubishi Hitachi, Cybertech Cb1 

Vortexer    Vortex-Genie 2TM Scientific Industries 

UV-Crosslinker    BioRad 

Waterbath    GFL 1083, Memmert 
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4. Methods 

4.1. Working with DNA 

4.1.1. Isolation of chromosomal DNA 
 

Bacteria from 1 ml an overnight culture were harvested by centrifugation for 4 min at 

maximum speed in a table centrifuge. After washing with 1 ml TNE buffer, cells were 

centrifuged for 4 min and resuspended in 270 µl TNE-X buffer. 30 µl lysozyme (5 mg ml-

1) were added and samples were incubated for 20 min at 37 °C. Afterwards, 15 µl 

proteinase K (20 mg ml-1) were added and further incubated up to 2 h at 65 °C until the 

solution became clear. The genomic DNA was precipitated by addition of 0.05 vol 5 M 

NaCl (15 µl) and 500 µl ice-cold ethanol.  After short incubation on ice DNA was 

collected be centrifugation for 15 min. After washing two times with 1 ml 70% (v/v) 

ethanol, DNA pellets were air-dried and redissolved in 100 µl 100 dH2O (Clermont et al., 

2000b).  

    TNE  

  10 mM   Tris 

  10 mM   NaCl 

  10 mM   EDTA 

 

TNE-X   

TNE + 1 % Triton X-100 

 

4.1.2. Precipitation of DNA with alcohol 
 

DNA was either precipitated with ethanol or isopropanol. In the first case, 0.1 vol 3 M 

Na-acetate (pH 4.8) were added to the sample prior to the addition of 2.5 vol ice-cold 100 

% (v/v) ethanol. For the precipitation with isopropanol, 0.7 vol were used. Samples were 

incubated at -80 °C before centrifugation (13,000 rpm, 4 °C, >20 min). The DNA pellet 

was washed with 70 % (v/v) ethanol, air-dried and resuspended in dH2O.   
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4.1.3. Determination of nucleic acid concentration and quality control 

Nucleic acid concentrations were determined either using a standard spectrophotometer in 

quartz cuvettes with a diameter of 1 cm or using a NanoDrop® instrument where cuvettes 

were not needed.  In both cases, absorption at 260 nm of 1.0 corresponds to 50 µg ml-1 

double stranded DNA or 40 µg ml-1 RNA. The purity of the preparations was determined 

by measurement of the absorption of the sample. DNA and RNA were considered 

sufficiently pure when the ratio A260 / A280 was higher than 1.8 or 2.0, respectively. 

Additionally, RNA integrity was determined by capillary electrophoresis using an Agilent 

2100 Bioanalyzer instrument.  

4.1.4. Polymerase chain reaction (PCR) 
 

This method allows the exponential amplification of DNA regions in vitro by using a heat 

stable DNA polymerase from Thermus aquaticus (Taq).  This way, even small amounts 

of template DNA can be amplified to high copy numbers and easily visualized.  

Standard PCR 
 

For routine PCR amplification, Taq DNA polymerase kits of different suppliers 

(QIAGEN, Sigma, Invitrogen, Roche) were used. Usually the reaction was performed in a 

final volume of 20 µl.  

Mix for one sample: 

 2 µl  10 x reaction buffer 

 2 µl   20 mM dNTP mix 

 0.6 µl   25 mM MgCl2 

 1 µl   10 pM primer solution 1 

 1 µl  10 pM primer solution 2 

 1 µl   100 ng µl-1 template DNA or boiled cells 

 0.05 µl  Taq DNA polymerase 

 12.35 µl  dH2O 

 

For the Sigma Red Taq polymerase kit, both primers and template DNA were added to 

8.6 µl dH2O and 10 µl 2x Red Taq ready mix (see the manufacturer’s instructions). 
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The thermal cycling profile was designed according to the elongation temperature 

(depending on the supplier), annealing temperature of the individual primers and the 

length of the expected amplification product: 

   

Initial denaturation  2 min  95 °C 

1. Denaturation  45 s  95 °C 

2. Annealing   45 s   54 – 60 °C 25 – 35 cycles 

3. Elongation   1 min / 1kb 72 °C 

Final elongation  10 min  72 °C 

 
 

PCR with proof-reading polymerases 
 

Either for site directed mutagenesis using PCR products or for sequencing, a different 

polymerase with 3’ → 5’ proof-reading activity was used in order to prevent 

misincorporations during extension. The composition of a typical PCR mix is given 

below.  

Mix for one sample (DAP Goldstar polymerase; Eurogentec): 

  5 µl  10 x Opti buffer 

 5 µl   20 mM dNTP mix 

 3.5 µl   50 mM MgCl2 

 1 µl   10 pM primer solution 1 

 1 µl  10 pM primer solution 2 

 1 µl   100 ng µl-1 template DNA 

 0.5 µl   DAP Goldstar polymerase 

 xxx µl   dH2O 

 ------ 

 50 µl 
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Followed by thermal cycling profile: 

 

Initial denaturation  2 min  95 °C 

1. Denaturation  45 s  95 °C 

2. Annealing   45 s   54 – 60 °C 25 – 35 cycles 

3. Elongation   1 min / 1kb 72 °C 

Final elongation  10 min  72 °C 

 

 

Mix for one sample (Phusion; Finnzymes): 

 10 µl  5 x HF or GC buffer  

 1 µl   20 mM dNTP mix 

 1.5 µl   50 mM MgCl2 (optional) 

 1 µl   10 pM primer solution 1 

 1 µl  10 pM primer solution 2 

 1 µl   100 ng µl-1 template DNA 

 0.5 µl   Phusion polymerase  

 xxx µl   dH2O 

 ------ 
 50 µl 

 

Followed by thermal cycling profile: 

 

Initial denaturation  30 s  98 °C 

1. Denaturation  10 s  98 °C 

2. Annealing   30 s   45 – 72 °C 25 – 35 cycles 

3. Elongation   30 s / 1kb 72 °C 

Final elongation  10 min  72 °C 
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Box PCR 
 

The Box PCR is a PCR-based DNA fingerprinting technique for identification and 

discrimination of bacterial strains. Repetitive intergenic sequence elements are amplified 

and this results in a strain-specific DNA band pattern (fingerprint), what allows a direct 

strain to strain comparison. PCR products obtained by amplification wit Box A1 primer 

were separated by 1.5 % agarose gel electrophoresis for 2 h at 140 mA.  

 

Mix for one sample: 

 2 µl  10 x reaction buffer 

 1 µl   20 mM dNTP mix 

 0.8 µl   25 mM MgCl2 

 0.2 µl   100 pM Box A1 primer 

 4 µl  5 x Q solution 

 1 µl   100 ng µl-1 template DNA or boiled cells 

 1 µl   Taq DNA polymerase 

 10 µl   dH2O 

 

 

 

Followed by thermal cycling profile: 

 

Initial denaturation  6 min  95 °C 

1. Denaturation  1 min  94 °C 

2. Annealing   1 min   53  °C               35 cycles 

3. Elongation   8 min   72 °C 

Final elongation  16 min  72 °C 
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Triplex PCR 
 

The affiliation of E. coli isolates to the four main phylogenetic groups (ECOR A, B1, B2, 

and D) was based on triplex PCR (Clermont et al., 2000a). In a single PCR reaction two 

genes (chuA and yjaA) and an anonymous DNA fragment (TspE4.C2) were amplified 

(standard PCR assay) and seperated by 1 % agarose gel electrophoresis. ECOR group 

determination was done as shown in Fig. 5. 

 

 

Fig. 5: A) Triplex PCR profiles specific for the four E. coli phylogenetic groups. Each 
combination of chuA and yjaA gene and DNA fragment TSPE4.C2 amplification allowed the 
determination of the phylogenetic group of a given strain; B) Lanes 1 and 2, ECOR group A; lane 
3, ECOR group B1; lanes 4 and 5, ECOR group D; lanes 6 and 7, group ECOR B2. Lane M, 
DNA size marker. 

 

Multiplex PCR 
 

In order to detect fitness- and virulence associated genes of extraintestinal pathogenic E. 

coli, a multiplex PCR was used (Johnson and Stell, 2000). For this, 29 primer pairs 

according to their respective PCR product size were sorted in five pools (Fig. 6). After 

electrophoresis in a 2 % agarose gel, each of the PCR products was represented by a 

single DNA band.  
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Fig. 6: Agarose gel showing PCR products from the multiplex virulence factor–PCR assay, as 
amplified simultaneously in 5 separate reactions using primer pools 1–5. M, molecular weight 
standard; +, positive control DNA; −, negative control DNA (Johnson and Stell, 2000). 

 

 

Mix for one pool: 

 2 µl  10 x reaction buffer 

 2 µl   20 mM dNTP mix 

 1.5 µl   25 mM MgCl2 

 2.5 µl  10 pM primer mix 

 1 µl   boiled bacterial cells 

 0.5 µl   Taq DNA polymerase 

 11.5 µl  dH2O 

 

Followed by the thermal cycling profile: 

 

Initial denaturation  5 min  95 °C 

1. Denaturation  30 s  94 °C 

2. Annealing   45 s   63 °C  30 cycles 

3. Elongation   3 min  72 °C 

Final elongation  10 min  72 °C 
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Inverse PCR (IPCR) 
 
In order to amplify unknown DNA with the help of a small region of known DNA 

sequence, an inverse PCR was carried out. Amplification by IPCR of unknown DNA 

regions flanking a particular gene requires a previous digestion of genomic DNA and 

identification of the corresponding restriction fragment which contains a part of the 

known sequence as well as unknown flanking sequences by Southern hybridization. The 

size of the required fragment should not exceed 1 – 3 kb to facilitate amplification by 

PCR. Genomic DNA was then digested with the chosen restriction enzymes. The sample 

was diluted and the restriction fragments were ligated in order to obtain circular DNA 

fragments. PCR amplification was performed with primers complementary to the ones 

used for probe generation, using the circularized genomic DNA fragments as a template. 

 

4.1.5. Sequence analysis 
 

The nucleotide sequences of genomic DNA or plasmid constructs were determined using 

fluorescent dye terminators (ABI prism BigDye terminator kit, Applied Biosystems). The 

sequencing-PCR mix for one sample was: 

30 ng   PCR product (or: 0.5 μg plasmid DNA) 

1.5 μl   10 pM primer 

2 μl   5 x buffer (kit component) 

2 μl   premix (kit component)   ad 10 μl ABI-H2O 

The thermal cycling profile for the PCR reaction was: 40 cycles of denaturation at 96 °C 

for 30 s, annealing at 60 °C for 15 s, and extension at 60 °C for 4 min, followed by final 

extension at 60 °C for 2 min. Sequencing products were purified by ethanol precipitation 

and analyzed in a ABI prism sequencer (Perkin Elmer). 

 

4.1.6. Multi locus sequence typing (MLST) 
 

The allocation of the isolates to different clonal lineages was done as stated on the 

following website: 

http://web.mpiibberlin.mpg.de/mlst/dbs/Ecoli/documents/primersColi_html. Briefly, 
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seven house-keeping genes of being typed E coli strain were amplified.  The PCR 

reaction contained 50 ng of chromosomal DNA, 20 pmol of each primer, 200 µmol (10 µl 

of a 2 mM solution) of the dNPTs, 10 µl of 10x PCR buffer, 5 units of proof-reading Taq 

polymerase and water to 100 µl. The thermal profile was as follows: 2 min at 95 °C, 30 

cycles of 1 min at 95 °C, 1 min at annealing temp, 2 min at 72 °C followed by 5 min at 72 

°C. Resulted PCR products were purified and subjected to sequencing. 

adk  adenylate kinase 

fumC  fumarate hydratase 

gyrB  DNA gyrase 

icd  isocitrate/isopropylmalate dehydrogenase 

mdh  malate dehydrogenase 

purA  adenylosuccinate dehydrogenase 

recA  ATP/GTP binding motif 

Sequences were analyzed using Vector NTI™ software. Sequence types (STs) were 

assigned using the E. coli MLST database hosted at the Max-Planck-Institute for 

Infection Biology (Berlin). 

4.1.7. Isolation of plasmids  
 

While using the QIAGEN Plasmid Midi and Mini Kit, bacteria were collected from 100 

ml over night cultures by centrifugation (6,000 rpm, 4 °C, 15 min) and resuspended in 4 

ml buffer P1, according to the manufacturer’s recommendations. After 5 min incubation 

at room temperature, 4 ml buffer P2 was added for lysis of the cells. After clearing of the 

suspension, 4 ml neutralization buffer P3 was added and samples were incubated for 10 

min on ice. Cell debris and genomic DNA was removed by centrifugation (11,000 rpm, 4 

°C, 30 min). Plasmid DNA containing supernatant was loaded on equilibrated columns by 

gravity flow. Columns were washed with buffer QC. Subsequently, plasmid DNA was 

eluted with 3.5 ml buffer QF and precipitated by addition of 0.7 vol isopropanol. After 

centrifugation (13,000 rpm, 4 °C, 20 min), DNA pellets were washed with 70 % (v/v) 

ethanol, air-dried and resuspended in water. 

Plasmid isolation using the QIAspin mini kit were performed in a similar way with some 

modifications: bacteria were harvested from 1-10 ml over night cultures, buffer N3 
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containing guanidine hydrochloride was used for neutralization, and plasmid DNA was 

purified from the supernatant by using small spin columns, which were centrifuged at 

13,000 rpm for 1 min DNA was eluted in a small volume of dH2O and directly used for 

further experiments. 

4.1.8. Enzymatic digest of DNA with restriction nucleases 
 

The DNA was dissolved in dH2O and mixed with 0.2 vol 10 x reaction buffer and 1 U of 

restriction enzyme per 1 µg of DNA. The final volume of the sample was 15 µl for 

plasmid DNA and 50 µl for genomic DNA. The reaction mixture was incubated 37 °C 

depending of the specific requirements of the enzyme (stated by supplier).  Plasmid DNA 

was digested for one to two hours and genomic DNA at least for 3 hours, eventually 

overnight. When appropriate, the reaction mix was stopped by heat inactivation (20 min 

at 65 °C). 

4.1.9. Horizontal gel electrophoresis 
 

For routine analytical and preparative separation of DNA fragments, horizontal gel 

electrophoresis was performed using agarose gels under non-denaturing conditions. 

Depending on the size of the DNA fragments to be separated, the agarose concentration 

varied between 1 and 2 % (w/v) in running buffer (1 × TAE). In order to have a visible 

running front and to prevent diffusion of the DNA, 0.2 vol loading dye was added to the 

samples before loading. The electrophoresis was carried out at a voltage in the range 

between 16-120 V. The gels were stained in an ethidium bromide solution (10 mg ml-1), 

washed with water and photographed under a UV-transilluminator. 

50x TAE buffer:   6x loading dye:  

 2 M Tris    0.25 % Bromophenol blue 

6 % (v/v) acetic acid (99.7 %) 0.25 % Xylenecyanol FF 

50 mM EDTA (pH 8.0)  15 % Ficoll (Type 400, Pharmacia) 

ad 1 l dH2O    30 % Glycerol 

ad 50 ml dH2O 
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4.1.10. Plus Field Gel Electrophoresis (PFGE) 
 

Isolation of high molecular weight genomic DNA 

 

Bacteria were grown overnight in 10 ml LB medium at 37 °C, then 4 ml of the culture 

were harvested by centrifugation and the pellet was washed two times with SE buffer. 

After resuspending the cells in 1 ml SE, OD600 was measured (100 μl cells + 900 μl SE 

buffer). When necessary, the optical density had to be adjusted in the range between 0.6 

and 0.7. LGT agarose (2 %) was prepared and cooled to 45-50 °C. 900 μl of the bacterial 

suspension were mixed with 900 μl agarose and poured into appropriate moulds by 

pipetting. After solidifying, agarose blocks were cut in pieces with approximately 

identical size (0.5 × 0.3 × 0.1 cm), and then incubated in 5 ml NDS solution (freshly 

supplemented with 2 mg/ml proteinase K) overnight at 50 °C with agitation. For the 

complete removal of the proteinase K, the blocks were washed at least four times for 2 h 

with TE buffer. So prepared agarose blocks with immobilized DNA were stored at 4 °C 

in TE buffer for at least one week before they could be used for restriction. 

SE buffer:    TE buffer: 

75 mM NaCl    10 mM Tris-HCl, pH 7.5 

25 mM EDTA, pH 7.5  1 mM EDTA, pH 7.5 

  NDS buffer:    LGT buffer: 

  1 % N-laurylsarcosine   10 mM Tris-HCl, pH 7.5 

500 mM EDTA, pH 9.5  10 mM MgCl2 

  2 mg/ml proteinase K   0.1 mM EDTA, pH 7.5 

 

4.1.11. Restriction of high molecular weight DNA 
 

LGT agarose blocks containing the high molecular weight DNA were transferred into a 

new Eppendorf tube. Blocks were pre-incubated 1 h at 50 °C in 1 ml 1 × NEB buffer. 

Restriction was carried out for 3 h at 37 °C in an 150 μl overall reaction mixture 

containing 1 x restriction buffer and 30 U restriction enzyme, when recommended with 

addition of BSA. 
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10 × NEB buffer: 

  50 mM NaCl 

  10 mM Tris-HCl 

  10 mM MgCl 

  1   mM DTT 

 

4.1.12. Separation of restriction fragments by gel electrophoresis 
 

High molecular weight DNA was separated on an 0.8 % (I-CeuI) and 1 % (XbaI, AvrI) 

(w/v) agarose gel (1 × TBE buffer with 1 mM urea) by horizontal electrophoresis. The 

gels were run for 21-24 h with pulse periods of 0.5-50 s. After staining in an ethidium 

bromide solution (10 g/ml), the gels were photographed on UV-transilluminator.    

 

4.1.13. Isolation of DNA fragments from agarose gels 
 

DNA was purified from agarose gels using the QIAquick Gel Extraction Kit (QIAGEN). 

Agarose pieces containing the DNA fragment of interest were cut out of the gel and 

subsequently melt for 10 min at 50 °C in QG buffer (supplied by the manufacturer). The 

DNA was separated from the rest of the solution by applying the mixture to QIAquick 

spin columns followed by centrifugation for 1 min. Columns were washed with 750 µl PE 

buffer (supplemented with ethanol). Residual PE buffer was removed by centrifugation (2 

x 1 min). Finally, DNA was by eluted from the column with 20-50 µl sterile dH2O.  

 

4.1.14. Ligation of DNA fragments 
 

Linearized vector and insert DNA after restriction digest can be ligated either due to the 

presence of sticky ends or by blunt-end ligation. The modifying enzyme for ligation 

process was a T4-DNA ligase (New England Biolabs). Best efficiencies were obtained 

using an insert/vector ratio of 3/1. Reactions were performed over night at 16 °C in a final 

volume of 15 μl containing 1.5 μl 10 x ligation buffer and 50 U T4 ligase. 
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4.1.15. Preparation of electrocompetent cells and electroporation 
 

50 ml LB medium were inoculated with 500 μl bacterial overnight culture and grown 

until OD600 of 0.6-0.8. The cells were collected by centrifugation for 10 min at 2,000 × g 

at 4 °C. The pellet was left on ice for 30 min and then washed with 50 ml ice-cold dH2O. 

After the second centrifugation step in the same conditions, pellet was resuspended in 25 

ml 10 % (v/v) glycerol, centrifuged again and finally resuspended in 600 μl of 10 % (v/v) 

glycerol. Cells were stored as 40 μl aliquots at -80 °C. For electroporation, one aliquot 

was thawed on ice and mixed with ~ 0.5 μg DNA. The mixture was applied into a “Gene 

pulser” cuvette (BioRad) with a distance between the electrodes of 0.1 cm and incubated 

for 10 min on ice. Cells were electroporated using a Gene pulser transfection apparatus 

(BioRad) at the following conditions: 2.5 kV, 25 μF, and 600 Ω for linear fragments or 

200 Ω for plasmids. Immediately after electroporation, 1 ml LB medium was added to the 

cuvettes. The mixture was transferred into a new tube and incubated at 37 °C (or 30 °C 

for temperature-sensitive plasmids) for 1 h before the cells were plated on selective agar. 

 

4.1.16 Gene inactivation by λ Red recombinase-mediated mutagenesis using linear 
DNA fragments 
 

The construction of the mutants was performed using linear DNA for recombination, as 

described by Datsenko and Wanner (Datsenko and Wanner, 2000). This method relies on 

the replacement of a chromosomal sequence with an antibiotic marker that is generated 

by PCR using primers with homology extensions to the flanking regions of the target 

sequence. Recombination is mediated by the Red recombinase derived from the λ phage. 

This recombination system consists of three genes (γ, β, exo), which encode the phage 

recombinases and an inhibitor of the host RecBCD exonuclease V, which normally 

mediates degradation of linear DNA in the cell. A schematic overview of the procedure is 

depicted in Fig. 7.  
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Fig. 7: Strategy for inactivation of chromosomal genes using PCR products 
(Datsenko and Wanner, 2000). 

 

Meanwhile, bacterial cells were first transformed with the pKD46 helper plasmid by 

electroporation. Transformants were selected at 30 °C on agar plates containing 100 μg 

ml-1 ampicillin. Of these transformants, electrocompetent cells were prepared from 50 ml 

LB cultures supplemented with ampicillin and 3 ml of a 0.1 M arabinose solution to 

induce the Red recombinase on the helper plasmid. 40 μl competent cells were 

transformed with 5 μl of the linear PCR fragment by electroporation. After the addition of 

1 ml LB medium to the cuvette, cells were allowed to recover by incubation for 2 h at 30 

°C with aeration. In contrast to normal electroporation, the cultures were then taken out of 

the incubator and left standing on the bench top over night at room temperature. On the 

next morning, cells were spun down, resuspended in 300 μl LB medium and distributed 

onto three agar plates supplemented with the appropriate antibiotic (Cm or Km, 

respectively). Transformants with confirmed allelic exchange were also re-streaked onto 

ampicillin-containing agar plates at 37 °C to confirm loss of the temperature-sensitive 

helper plasmid pKD46.  

The antibiotic marker could be removed with the help of the FLP recombinase (encoded 

on plasmid pCP20), which mediates recombination between the two FRT sites flanking 

the antibiotic cassette, thus leaving behind a complete deletion of the open reading frame. 

Electroporation was performed as described in section 4.1.15. Transformants were first 

selected on ampicillin-containing agar plates at 30 °C, and then re-streaked onto LB agar 
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plates with no antibiotic. These plates were incubated at 37 °C in order to induce the loss 

of the second helper plasmid pCP20. The deletion mutants now could be used to 

introduce a second or third mutation by starting the whole procedure from the beginning. 

All mutations were confirmed by both PCR and Southern hybridization. 

 

4.1.17. Southern Blot analysis 
 

Vacuum blotting 
 

For Southern blot analysis, 10 μg chromosomal DNA were restricted with an appropriate 

endonuclease, harboring 1 to 5-kb DNA fragments containing the target gene. The DNA 

fragments were separated by horizontal gel electrophoresis. Meanwhile, a nylon 

membrane (Nytran Super Charge; pore size 0.45 μm; Schleicher&Schuell, Dassel, 

Germany) of appropriate size was shortly preincubated in dH2O and then soaked for 10 

min in 20 × SSC. Afterwards, DNA was transferred from the agarose gel to the 

membrane using a vacuum blotter (Amersham-Pharmacia) by applying a 50 mbar 

vacuum. The following solutions were applied on the surface of the agarose gel during 

the blotting procedure:  

 

Depurinization solution (0.25 N HCl)        8 min 

Denaturation solution (0.5 N NaOH; 1.5 M NaCl)        8 min 

Neutralization solution (0.5 M Tris-HCl, pH 7.5; 1.5M NaCl)      8 min 

20 × SSC (0.3 M Na-citrate, pH 7.0; 3 M NaCl)    >50min 

 

After DNA transfer, the nylon membrane was incubated for 1 min in 0.4 N NaOH and 1 

min in 0.25 M Tris-HCl, pH 7.5 for neutralization. The membrane was then shortly dried 

and the DNA was crosslinked to the membrane by exposure to UV light. 
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Probe labelling (ECLTM Kit, Amersham Biosciences) 
 

For labelling of DNA probes, the ECLTM-Kit (enhanced chemoluminescence) was used. 

The binding of a DNA probe to the complementary sequence on the nylon membrane was 

detected by chemoluminescence. Positively charged horseradish peroxidase molecules 

were mixed with the negatively charged DNA probe. Addition of glutaraldehyd 

covalently linked the horseradish peroxidase molecules with the DNA probes. Reduction 

of H2O2 by the peroxidase requires the oxidation of luminol which results in light 

emission, which can be detected by suitable light-sensitive films, e.g. the Hyperfilm ECL. 

For labeling of the probe, 100 ng DNA per ml hybridization buffer in a final volume of 10 

μl in dH2O were denatured for 10 min at 90 °C and cooled for 5 min on ice. 

Subsequently, 10 μl labelling reagent and 10 μl glutaraldehyde were added. The mixture 

was incubated for 10 min at 37 °C and then added to the hybridization reaction. 

Hybridization and detection of the membrane 
 

Hybridization of the membrane was carried out over night at 42 °C in hybridization 

solution (10-15 ml), after the nylon membrane had been pre-incubated at 42 °C in the 

hybridization solution for 1 h. The next day, the membrane was washed twice for 20 min 

at 55 °C with wash solution I and two times for 10 min at RT with wash solution II. The 

membrane was placed on Whatman paper to remove the rest of the wash solution, and 

then incubated for 5 min in 5-10 ml detection solution I and detection solution II provided 

with the kit and mixed immediately (1:1) before application to the membrane. The 

membrane was superficially dried on Whatman paper and packed in saran wrap avoiding 

air bubbles on the top surface of the membrane. Chemoluminescence was detected by 

exposure of the membrane to Hyperfilm ECL. The exposure time depended on the signal 

intensity. 

Wash solution 1:  0.5 × SSC; 0.4 % (w/v) SDS 

Wash solution 2:  2 × SSC  
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4.1.18. Comparative Genome Hybridization 
 

Membrane Layout 
 

For genomes comparison, an E. coli K12-specific array (Panorama E. coli gene arrays 

from Sigma-Genosys, Cambridge, United Kingdom) and the E. coli “pathoarray” 

(Dobrindt et al., 2003) were used in combination. Therefore, by using both types of 

arrays, it was possible to estimate and compare the genomic content of different ABU 

strains.  

Probes synthesis 
 

2 µg of total genomic DNA (see section 4.1.1.) was used as a template for direct 

incorporation of [33P]-dATP  (Amersham Pharmacia, Freiburg, Germany) by a randomly 

primed polymerization reaction using 0.75 µg random hexamer primers (New England 

Biolabs, Frankfurt (Main), Germany) and 10 U Klenow fragment of the DNA polymerase 

I (New England Biolabs) according to manufacturer’s recommendations. Unincorporated 

nucleotides were removed with Microspin S 200 HR spin columns (Amersham 

Pharmacia). Incorporation rates of labelled nucleotides were determined by measuring 

radioactivity of the cDNA in the eluate (equals incorporated radionucleotides) and of the 

radioactivity retained in the column (equals unincorporated radionucleotides).  

 

radioactive count (eluate) 
Incorporation rate        X 100 % 

radioactive count (column + eluate) 
 
 
The obtained value can be used as a marker for the quality of reverse transcription and 

should be > 50 %.  

Hybridization and detection 
 

Hybridization of the labelled DNA to the membranes was performed as recommended in 

the technical protocol for the Panorama E. coli K-12 array (Sigma Genosys). After 10 min 

denaturation at 93 °C in hybridization buffer, labelled DNA was added to the pre-

hybridized membranes and incubated for 16 h at 65 °C in a hybridization oven. 
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Membranes were washed three times for 3 min in washing solution at room temperature, 

followed by three additional washing steps for 20 min at 65 °C. After washing, the 

membranes were sealed in plastic film and exposed to a PhosphoImager screen 

(Molecular Dynamics) for 48 h. Membranes could be re-used up to 10 times after 

stripping (see Panorama-Array manual). 

 

 

 

Hybridization buffer:    Washing solution:  

5 x SSPE       0.5 x SSPE 

2 % SDS      0.2 % SDS 

1 x Denhardt’s reagent 

100 μg ml-1 sonicated, denatured salmon testes DNA 

 

20 x SSPE:      100 x Denhardt’s reagent:  

3.6 M NaCl      % Ficoll (MW 400,000) 

0.2 M NaH2(PO4); pH 7.7   2 % polyvinylpyrrolidone  

20 mM EDTA     2 % BSA 

 

Quantification of hybridization signals 
 

Exposed PhosphoImager screens were scanned on a Typhoon 8600 variable mode imager 

(Molecular Dynamics) at 50 μm resolution. Spot intensities were measured with the 

ArrayVision software (Imaging Research, St. Catharines, Canada) using the overall spot 

normalization function of the program (Table 6). 
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Table 6: Parameters of the ArrayVision pre-set protocols (Wizard) used for reading intensity 
values. 
Parameter    E. coli K-12 array    E. coli pathoarray 

Array type    Radio-isotopic array   Radio-isotopic array 
Analysis type    Detection    Detection 
# of arrays    4      4 
# of extra channels   1     1 
Measure type    MTM density    MTM density 
Array organization   3 levels (18432 total spots)   2 levels (1536 total 
spots) 
Level 1 (Spots)   4 x 4      4 x 4 
Level 2 (Spot groups)  16 x 24     8 x 12 
Level 3 (sub-arrays)   3 x 1      - 
Spot shape    Circle      Circle 
Start position    Defined     Not defined 
Alignment    Not aligned    Not aligned 
Labels     Custom     Custom 
Replication    On      On 
Background    Corners between spots  Corners between spots  
    (average)    (average) 
Reference   All spots     All spots 
Segmentation:   Off      Off 
Anchors:    None      None 
 

Data analysis 
 

For each strain three independent hybridizations were performed. Mean values were 

calculated from the duplicate spots of the each gene in all three arrays. The mean of the 

normalized intensity values of the duplicate spots of each gene was used for further 

analysis. To avoid extreme intensity ratios for genes close to or below the detection limit, 

signal intensity values corresponding to a signal to noise (S/N) ratio <1.0 were scaled up 

to a value corresponding to an S/N ratio=1.0. ORFs were recorded as lacking/not 

detectable if the S/N ratio was below 1.0 in at least two of the three hybridization 

experiments. In addition, E. coli K-12 strain MG1655-specific ORFs were recorded as 

lacking/not detectable if the ratio of the individual S/N ratios of the analyzed strain and 

that of the reference strain MG1655 was <0.3 in at least two of three experiments. The 

missing/not detectable ORFs were then aligned with their chromosomal location to 

determine the number and the size of chromosomal regions absent in the different E. coli 

strain. In addition, the fact that the ORFs are arranged on the DNA macroarrays without 

regard to their chromosomal localization minimizes the record of false negative spots, at 

least with respect to regions consisting of more than one gene, because the probability 
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that two adjacent ORFs would be recorded as absent due to hybridization artifacts is very 

low. Multiple positive signals for single genes were verified by PCR. 

Hierarchical cluster analysis of the hybridization data was performed with the CLUSTER 

software (Eisen et al., 1998) based on the presence or absence of genes. Red and black 

denote the presence or absence of ORFs, respectively. The output was displayed with the 

software TREEVIEW (Eisen et al., 1998).  

 

4.2. Working with RNA 
 

For RNA work, special care had to be taken in order to prevent contamination of the samples 

with exogenous RNases. Gloves were worn throughout the whole experiment and RNase free 

pipette tips and reaction tubes were used. For all buffers and solutions, water was pre-treated 

over night with 0.1 % (v/v) diethylpyrocarbonate (DEPC) at 37 °C and autoclaved twice to 

remove remaining DEPC. 

 

4.2.1. Isolation of total RNA with RNAeasy Kit 
 

RNA was isolated using the RNeasy Mini kit (QIAGEN) according to the supplied protocol. 

All subsequent steps of the RNeasy protocol were performed at room temperature. For RNA 

isolation bacteria were grown at 37 °C in 125 ml of pooled human urine until the optical 

density OD600 reached 0.15. For RNA isolation from Luria Broth (LB) cultures, bacteria were 

grown without agitation at 37 °C in 25 ml until the OD600 reached 0.6. 50 ml of the urine 

culture and 4 ml of the LB culture were taken and centrifuged at 6000 rpm for 5 min. The 

supernatant was removed and pellets were resuspended in 20 ml (urine culture) and 4 ml (LB 

culture) of PBS and RNAprotect Qiagen 1:1 (v/v), respectively. Samples were incubated at 

room temperature (RT) for 5 min and centrifuged at 6000 rpm for 10 min. Bacterial pellets 

were either stored at -80 °C or bacterial RNA was immediately isolated. In the second case, 

bacterial pellets were resuspended thoroughly in 100 μl of lysozyme-containing TE buffer 

(50 mg/ml) and incubated at 37 °C for 5 s with vortexing every 2 min. The following steps of 

the protocol are consistent with those of the protocol supplied with the RNeasy Mini kit.  
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4.2.2. Removal of contaminating DNA by DNase treatment and RNA cleanup 
 

Contaminating DNA was removed from total RNA preparations by DNase I digestion. 15 μg 

RNA in a final volume of 85 μl were mixed with 10 μl 10 x DNase I buffer and 10 μl RNase- 

free DNase I (New England Biolabs). Samples were incubated for 1 h at 37 °C, followed by 

RNA cleanup using the RNeasy Mini kit (QIAGEN). According to the manufacturer’s 

instructions, 350 μl RLT buffer supplemented with 10 μl ß-mercaptoethanol and 250 μl 

100 % (v/v) ethanol were added to the DNase-treated RNA samples, before loading them onto 

the purification columns. After brief centrifugation, the columns were transferred to fresh 

collection tubes and washed twice with 500 μl RPE buffer. Finally, RNA was eluted from the 

column in 30 μl nuclease-free water.  

As a control for successful DNA removal, 2 μl of the DNase-treated RNA or 1 μl DNA as 

positive control were used as a template in a PCR reaction with primers binding within the 

coding sequence of the fimA gene. The DNase digest was considered as complete if no 

product could be amplified from the RNA samples.  

 

4.2.3. Reverse transcription (RT) for cDNA synthesis 
 
For cDNA synthesis, the Superscript III reverse transcription kit (Invitrogen) was used. 2 μg 

of total RNA in a final volume of 10 μl were mixed with 1 μg of random hexamer primers 

(Amersham Biosciences). Primer annealing was carried out at 65 °C for 5 min. After 5 min 

cooling, 9 μl of a reverse transcription mixture were added to the samples. The composition of 

the RT-mix for 1 sample was: 

1 μl  25 mM deoxynucleotide mix 

1 μl  0.1 M dithiothreitol (DTT; kit component) 

4 μl  5 x first strand buffer (kit component)  

1 μl  40 U μl-1 RNase OUT recombinant RNase inhibitor (Invitrogen) 

1 μl  200 U μl-1 Superscript III reverse transcriptase (kit component) 

 

cDNA synthesis was performed at 52 °C for 60 min, followed by heat inactivation of the 

transcriptase at 70 °C for 15 min. 
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4.2.4. Quantitative Real-Time PCR 
 

To evaluate expression of single genes, a quantitative Real-Time PCR (qRT-PCR) approach 

was used. This method employs polymerase chain reaction to amplify gene transcripts in 

presence of the SYBR Green I dye (BioRad). This fluorescent dye intercalates into double 

stranded DNA and emits signals collected by the optical camera within the MyiQ cycler 

(BioRad). The number of cycles needed to reach a certain fluorescent signal threshold (CT) 

was used to calculate transcript levels. Primers for selected genes were designed using the 

FastPCR software (Ruslan Kalendar, Institute for Biotechnology, University of Helsinki, 

Finland) with the following parameters: product length range from 190 to 300 nt; annealing 

temperature 57 - 59 °C. Before their use for expression profiling, the different primer pairs 

were checked for amplification efficiency with pooled cDNA from different experiments. 

Only primer pairs with an amplification efficiency of at least 90 % were used.  For copy 

number estimation, cDNA samples derived from the reverse transcription reaction were 100-

fold diluted in dH2O and the reaction mix was prepared (for one reaction) as follows: 

12.0 μl  cDNA 

12.5 μl  SYBR Green Mix 2 × 

0.25 μl  Primer 1 (10 μmol) 

0.25 μl  Primer 2 (10 μmol) 

 
 

With following thermal cycling profile: 

3 min 95 °C 

30 s 95 °C 

30 s 60 °C – 40 cycles 

20 s 72 °C 

30 s 95 °C – 57 °C (melting curve) 

 
All PCR reactions were done in triplicates in three independent experiments. To be able to 

compare transcript levels from different RNA preparations, the rrnB gene encoding for 16 S 

RNA was used as an internal control.  

 



Methods – Working with RNA 
 

64 
 

4.2.5. Expression profiling using DNA arrays 
 

Expression profiling is a technique to study the relative amounts of all transcripts at a given 

time of sample collection, thereby allowing to monitor the expression level of every single 

gene detectable by the array.  

Array Layout 
 

For expression profiling oligonucleotide glass microarrays (Operon Biotechnologies, Inc.) 

were used. A single Operon E. coli Custom 55156017 array contains 10816 longmer 

oligonucleotide probes covering the complete genomes of six Escherichia coli strains (6 

genomes and four plasmids). The number of open reading frames (ORFs) or genes 

represented is as follows: 4269 ORFs of non-pathogenic E. coli K-12strain MG1655, 5306 

ORFs of enterohemorrhagic E. coli O157:H7 strain EDL933, 5251 ORFs of 

enterohemorrhagic E. coli O157:H7 strain Sakai, 5366 ORFs of uropathogenic E. coli strain 

CFT073, 322 ORFs of uropathogenic E. coli strain 536, 448 ORFs of uropathogenic E. coli 

strain UTI89, 3 genes of EHEC plasmid OSAK1, 10 genes of EHEC plasmid pO157_Sakai, 

97 genes of EHEC plasmid pO157_EDL933 and genes of UPEC plasmid pUTI89. In 

addition, the array comprises also a number of positive and negative controls. Each probe 

contains an amino linker at the 5' end. Probes are spotted as single spots in 32 blogs (4 

columns, 8 rows), each blog with 18 columns x 19 rows.  

RNA isolation and cDNA labelling 

 
Total RNA was prepared from mid-log phase cultures grown in urine at 37 °C followed by 

DNase treatment, as described in section 4.2.2. All procedures involving fluorescent dyes had 

to be done quickly and by avoiding exposure to light because of photosensivity. All solutions 

were prepared with DEPC-treated water. All experiments were done in triplicates including 

the overnight culture. 

Reverse transcription was performed using SuperScript IIITM reverse transcriptase 

(Invitrogen) and the fluorescently labelled nucleotides Cy3- and Cy5-dCTP (Amersham 

Pharmacia, Freiburg, Germany). For primer annealing, 10 µg total RNA were mixed with 1 

µg of hexamer oligos in a total volume of 15 µl. The annealing mix was heated for 10 minutes 

at 70 °C, then cooled down to room temperature for 5 min followed by brief centrifugation. In 

the meantime, the reaction mix was prepared:  
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Reaction mix:    1 reaction  

5x first strand buffer   8 µl 

0.1x DTT    4 µl 

Nucleotide mastermix   4 µl 

RNaseOut     1 µl 

SuperScript IIITM (200 U/µl)   1 µl  

RNase free H2O   4 µl 

   

Then, 22 µl of the reaction mix was pipetted into a small PCR reaction tube together with 15 

µl annealing mix and 4 µl Cy3- or Cy5-dCTP (1 mM) was added. The total mix 41 µl was 

incubated for 1h at 46 °C in the thermoblock of a thermocycler. After 25 min, another 1 µl of 

SuperScript IIITM reverse transcriptase (200 U/µl) was added. The reaction was stopped by 

addition of 5 µl EDTA (500 mM) and to hydrolyze RNA, 10 µl NaOH (1 M) was added, 

followed by incubation at 65 °C for 15 min. The reaction mixture was cooled down to room 

temperature and 25 µl Tris-HCl (1M, pH 7.5) was added. 

Labelled targets were purified using the Qiaquick PCR Purification Kit (Qiagen) according to 

the manufacturer’s instructions with minor changes: Briefly, 5 volumes of PB buffer were 

added, the sample applied to column and centrifuged at max speed for 30 s. The column was 

then washed with 700 µl PE buffer and dried by centrifugation. cDNA was eluted in 30 µl 

dH2O. Of this, 1 µl was taken for quality control and quantification using the NanoDrop 

photometer. The remaining cDNA was dried using a vaccum centrifuge. The cDNA pellet 

was resuspended in 2 µl dH20.  

Array pre-hybridisation 
 

Arrays were cleaned by compressed air from dust particles and pre-hybridised in pre-warmed 

OPArray Pre-Hyb solution at 42 °C for 1 h. During that time Wash Solution 1 was prepared 

by diluting OpArray Wash B 1:40 (v/v) with chromatography grade H2O. Arrays were 

washed for 5 min at 20-25 °C and immediately transferred to a box with sterile H2O, rinsed 

for 30 seconds. This step was repeated twice. The slides were dried in Falcon tubes with a 

hole in the bottom by centrifugation at 1200 rpm for 10 min. Residual liquid was removed by 

compressed air.  
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Array hybridisation 
 

The hybridization chamber was rinsed with sterile dH2O and dried thoroughly. In the four 

corners of the chamber, 15 µl of sterile dH2O were added in order to keep the humidity during 

hybridisation time.  The OpArray was placed into the chamber with the DNA side up 

(barcode side up) and the spotted area was covered with a LifterSlip. Cy5- and Cy3-labelled 

targets were mixed with 36 µl of OpArray Hyb Buffer, denatured at 65 °C for 5 min and then 

applied slowly to one end of the LifterSlip in order to disperse across the OpArray surface. 

The hybridization chamber was closed and the arrays were incubated in a water bath at 42 °C 

for 14-16 hours. 

 

Post-Hybridization washing 
 

For Post-Hybridization washing following solutions were used: 

Wash Solution 2: 

50 ml OpArray Wash A 

 25 ml OpArray Wash B 

Bring Wash Solution 2 final volume to 500 ml with sterile dH2O 

 

Wash Solution 3: 

50 ml OpArray Wash A 

Bring Wash Solution 3 final volume to 500 ml with sterile dH2O 

Wash Solution 4: 

5 ml OpArray Wash A 

Bring Wash Solution 4 final volume to 500 ml with sterile dH2O 

After hybridisation was completed, arrays were washed in pre-warmed Wash Solution 2 at 42 

°C for 10 min, transferred to Wash Solution 3 and shaken for another 10 min at RT. 

Subsequently, arrays were washed twice in Wash Solution 4 at RT for 5 min. Alike in the pre-
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hybridisation step, drying was done by centrifugation of the array in Falcon tubes for 10 min 

and then the arrays were immediately scanned.  

Scanning 
 

Hybridised and washed slides were scanned using a GenePix Model 4000B Microarray 

Scanner (Axon Instruments Inc., Union City, CA 94587, USA) with a resolution of 5 μm 

pixel size. The excitation frequencies of the two lasers were 532 nm and 635 nm. The gain 

settings for the photomultiplier tubes were adjusted to use the entire dynamic range of the 

instrument and to get comparable fluorescence yields in both channels. Images of Cy3 and 

Cy5 signals were recorded as 2 layer 16bit TIFF files and analysed using the GenePix Pro 6.0 

software. 

Data analysis 
 

For each experiment, at least three independent hybridizations were performed, one with a 

dye switch. After removal of bad quality spots (if less than 70 % of foreground pixels were 

below background intensity plus 2 standard deviations in both channels or if the signal to 

noise ratio were below 3 in both channels or if the difference between ratio of medians and 

regression ratio exceeded 20 % in one of the channels) the remaining intensities were saved as 

gpr output data files. For statistical validation and further analysis the Acuity 4.0 (Molecular 

Devices, USA) software was used. For all data, the local background was subtracted from the 

intensity values of each spot on the array and normalized by both linear ratio-based methods 

and non-linear lowess including print-tip groups. For statistical significance, one sample t-test 

was applied and the resulting data set was exported to Microsoft Excel. Hierarchical 

clustering of genes for visualisation of expression patterns was performed with the CLUSTER 

software (Eisen et al., 1998). The output was displayed with the software TREEVIEW (Eisen 

et al., 1998). 

For data analysis, a cut-off value of 1.7 was used although the commonly used threshold 

value is twofold (DeRisi et al., 1997; Wildsmith and Elcock, 2001). Several studies have 

shown that a lower cut-off ranging from 1.4 to 1.74 can be used reliably if the results are 

reproducible in more replicates (Perez-Amador et al., 2001).  
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4.3. 2D protein gel electrophoresis 
 

4.3.1. Isolation of intracellular proteins and rehydration 
 

Bacteria were grown at 37 °C without agitation in 400 ml of pooled human urine until OD600 

= 0.2 and harvested by centrifugation (10,000 X g, 10 min, 4°C). Pellets were washed three 

times with decreasing volumes of TE buffer (1 x 50 ml TE, 1 x 25 ml TE, 1 x 10 ml TE) and 

were then resuspended in 700 µl TE buffer. Cell lysis was done using the FastPrep (MP™) 

device twice for 30 s at 5.5 x g with an incubation on ice for 1 min in between, followed by a 

two-step centrifugation for 10 min at 13,000 rpm at 4 °C. The supernatant was each time 

transferred into a fresh Eppendorf tube. The isolated intracellular proteins were frozen at -80 

°C or used immediately for 2D gel electrophoresis. 

300 µg of proteins were passively rehydrated on 17-cm, pH 4 to 7 immobilized pH gradient 

strips (Amersham Biosciences) in 330 µl of rehydration buffer in a total volume of 350 µl. 

When needed, the vacuum centrifuge was used to increased the protein concentration of the 

samples.  

Rehydration Buffer:  

0.76 g  1.5 M  Thiourea 

2.4 g  8 M Urea 

50 mg  1 % 3-[(3-Cholamidopropyl)dimethylammonio]-1 

propansulfonat (CHAPS) 

50 mg  12.9 mM DTT  

26 µl  0.04 %  Pharmalyte™ 3-10 for IEF 

xxx ml  H2O 

5 ml  

4.3.2. Isolation of outer membrane proteins and rehydration 
 

Bacteria were grown in 800 ml of pooled human urine at 37 °C in 2 l flasks, without agitation 

until OD600 = 0.2 and harvested by centrifugation (10,000 x g, 10 min, 4 °C). Pellets were 

washed and resuspended in 10 ml of 10 mM HEPES, pH 7.0, containing 250 U of benzoesane 

ultrapure nuclease (Sigma) and 400 µl of 25x complete EDTA-free protease inhibitor stock 

solution (Roche, # 11873580001). Following four passages through the chilled French 
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pressure cell at 15,000 psm, lysates were centrifuged (6000 x g, 10 min, 4 °C) to remove 

unbroken cells and cell debris, the supernatants were diluted to 60 ml with 0.1 M carbonate 

buffer, pH 11, and incubated with stirring at 4 °C for 1 h. Carbonate-insoluble membranes 

were collected by ultracentrifugation (120,000 x g for 1 h at 4 °C). The resulting outer 

membrane pellet was rinsed with 10 mM HEPES, pH 7.0 and solubilized in 800 µl 

rehydration solution I at room temperature for 30-60 min. Soluble OMPs were quantified 

using the Roti® Nanoquant solution (Roth) and either immediately used for 2D gel 

electrophoresis or stored at -80°C. 

 

4.3.3. Determination of protein concentrations 
 

Protein concentrations were determined using the Roti-Nanoquant solution (Roth) following 

the manufacturer’s instructions. 200 μl protein samples were mixed with 800 μl 1 x assay 

solution, and absorbance was measured at 590 nm and 450 nm. Protein concentrations were 

then calculated using the following formula (based on a bovine serum albumin (BSA) 

calibration curve): 

 
A590nm / A450nm – 0.4475 

μg protein = 
0.1132 

 

4.3.4. Protein rehydration 
 

17-cm, pH 4 to 7 immobilized pH gradient strips (Amersham Biosciences) were passively 

rehydrated overnight with 300 µg of outer membrane proteins in 315 µl rehydration solution-I 

and 35µl rehydration solution-II . 

 

Rehydration solution-I: 

1.52 g  1,5 M Thiourea 

4.8 g  8 M Urea 

xxx ml  H2O 

10 ml 
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Rehydration solution-II (10X):  

50 mg  1% 3-[(3-Cholamidopropyl)dimethylammonio]-1 

  propansulfonat (CHAPS) 

50 mg  12.9 mM DTT 

26 µl  0.04% Pharmalyte™ 3-10 for IEF 

474 µl  H2O 

 

4.3.5. Isoelectric focusing (IEF) 
 

During this step proteins were separated according to their isoelectric points (pI). The pI is the 

pH at which a protein will not migrate in an electric field and is determined by the charged 

groups in the protein. Proteins can carry positive, negative or no charge depending on their 

local pH, and for every protein there is a specific pH at which its net charge is zero; this is 

their isoelectric point. pI's generally fall in the range of 3 to 12, with most being between 4 to 

7. When a protein is placed in a medium with a pH gradient and subjected to an electric field, 

it will initially move towards the electrode with the opposite charge. During migration 

through the pH gradient, the protein will pick up or lose protons. As it migrates, the net 

charge and the mobility will decrease and the protein will slow down. Eventually the protein 

will arrive at the point in the pH gradient which is equal to its pI. Here, it will be uncharged 

and hence stop migration. If the protein should happen to diffuse to a region outside its pI it 

will pick up a charge and hence move back to the position where its charge is neutral. In this 

way proteins are focused into sharp bands. 

Rehydrated IPG strips were placed with the plus mark to the anode in a Protean IEF 

Multiphor cell. On both ends of the strips connecting papers soaked with water were placed. 

The IPG strips were placed in cover oil. Isoelectric focussing was performed with a 500-V 

linear ramp for 1 h, a 1000-V linear ramp for 1 h, and a 3500-V rapid ramp for 22 h. During 

the run, the connecting papers were exchanged 3 to 4 times in order to improve protein 

separation.  

4.3.6. Equilibration 
 

An equilibration step is necessary to saturate the IPG strip with SDS buffer system before the 

second dimension separation. Equilibration is a multi-step process to ensure that the proteins 

are suitable for SDS-PAGE analysis. This ensures that the strip has the correct pH suitable for 
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subsequent analysis and preserves the fully denatured state of the protein. Glycerol ensures 

that the proteins are adequately transferred from the first to the second dimension and reduces 

electroendoosmosis in the buffer upon application of the electrical field. Electroendoosmosis 

is the movement of buffer within the IPG (immobilized pH gradient) strip and is due to the 

fixed charge associated with the ampholytes present in the strip. Electroendoosmosis can 

interfere with protein transfer from the IPG strip to the second dimension. A second 

equilibration alkylates any thiol groups in the protein preventing their reoxidation. 

Reoxidation can result in protein smears within the gel. It also alkylates any remaining DTT 

to prevent smears of proteins and other artefacts which may occur during protein staining 

within the gel. 

Prior to separation in a second-dimension, the immobilized pH gradient strips were 

subsequently equilibrated in 50 ml equilibration buffer-I and 50 ml equilibration buffer-II 

each time for 25 min under gentle agitation.  

 

Preparation of equilibration buffers: 

 Basic buffer composition (100 ml): 

     

  3.3 ml   1.5 M Tris-HCL pH 8.8 

  36 g   6 M Urea  

  30 ml   30 % Glycerol (87 %) 

  4.0 g   4 % SDS 

  xxx   H2O 

  The solution can be stored in aliquots in 50 ml Falcon tubes at -20 °C. 

 

 Equilibration buffer-I:  

  300 mg  38.9 mM DTT 

  50 ml   Basic buffer 

 

Equilibration buffer-II: 

  2.25 g    24.3 mM iodacetamid 

  a few crystals   Bromophenol blue 

  50 ml   Basic buffer 
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4.3.7. Second dimension - separation based on size 
 

Proteins were subsequently separated on the basis of their molecular mass using sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). SDS binds to most 

proteins in a constant fashion (about 1.4 grams of SDS per gram of protein) and also masks 

any charge of the protein by forming large anionic complexes. SDS also disrupts any 

hydrogen bonds, blocks many hydrophobic interactions and partially unfolds the protein 

molecules minimising differences based on secondary or tertiary structure. Proteins move 

through the gel towards the anode during electrophoresis. The rate at which they move is 

inversely proportional to their molecular mass.  

 

Equilibrated IPG stripes with proteins resolved in the first dimension were applied to a second 

dimension gel and covered by 1 % agarose in 2 x electrophoresis buffer avoiding air bubbles.  

The lower electrophoresis unit was filled in with 1 x electrophoresis buffer and the upper unit 

with 2 x electrophoresis buffer. Second dimension separation was performed overnight at 6 - 

12 Watt (400 V, 300 mA).  

 

Polyacrylamide gel 12.5 % (6 gels, 400 ml) 

 66 ml  H2O 

 162 ml  Acrylamide A 30 % 

 68 ml  Acrylamide B 2 % 

 100 ml  1.5 M Tris-HCl pH 8.8 

 4 ml  10 % SDS 

 1 ml  10 % Ammonium persulfate (APS) 

 200 µl  N,N,N`,N`-tetramethyldiamin (TEMED) 

 

10 x Electrophoresis Buffer (1 l) 

    

 30.3 g  Tris 

 144 g  Glycin 

 10 g  SDS 

 xxx  H2O 
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4.3.8. Proteins staining 
 

After the second dimension, the gels were fixed by incubation for 1 to 2 h in fixing solution  

followed by washing in dH2O (2 x 10 min). Afterwards, the gels were incubated for 24 h in a 

Coomassie staining solution. On the next day, gels were washed 3 x 1 h in dH2O, wrapped in 

a plastic sleeve and scanned. 

 

Coomassie staining solution (B1131 G250 Brilliant Blue, Sigma)  

  150 ml  H2O 

  100 g  10 % Ammonium sulphate  

  100 ml  10 % H3PO4 (85 %)  

  1.2 g  0.12 % G250 Brilliant Blue   

  200 ml  20 % EtOH (100 %)   

  550 ml  H2O    

 

Fixation Solution (2 l) 

  800 ml  40 % Ethanol (100 % ) 

400 ml  20 % Acetic Acid (100 %) 

800 ml  H2O  

   

4.3.9. Analysis of 2-D Gels with the Delta-2D® Software (Decodon) 
 

The image analysis was performed with the Delta-2D® Software (http://www.decodon.com), 

which is based on dual-channel image system. Before, gels were scanned and saved as a gray 

scale TIFF image. An overlay of two wrapped 2-D gels was visualized by either green, red or 

yellow false colour code representing proteins expressed in the wild type, the mutant, or in 

both strains, respectively. In addition, a statistical analysis was performed based on spot 

intensities from at least 3 gel replicates.  

 

4.3.10. Protein identification by MALDI-TOF-MS 
 

In order to identify proteins separated during the 2-D electrophoresis, gels were washed in 

dH2O for 1 h followed by spot excision. Gel pieces with a diameter not bigger than 2 mm 
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from different parts of the spot were subjected to MALDI-TOF-MS (Matrix-Assisted Laser 

Desorption-Ionization – Time Of Flight Mass Spectrometer) at the Institute for Microbiology 

and Molecular Biology of the University of Greifswald. Proteins were digested with trypsin, 

mixed with a matrix solution and allowed to co-crystallise on a target plate. Laser-pulsed 

voltage was applied to the target plate to accelerate the ionised sample towards a time-of-

flight mass analyser. This peptide mass fingerprint was used to search databases to identify 

the protein.  

4.4. Analysis of lipopolysaccharides (LPS) 
 

4.4.1. Isolation of LPS 
 
For analysis of the LPS composition, cells from an agar plate or pellets of liquid cultures were 

used. After weight measurement, the cells were resuspended in an adequate amount of water 

so that the concentration was 1 mg cells per 30 μl suspension. 30 μl samples (i.e. 1 mg cells) 

were mixed with 10 μl 4 x SDS-sample buffer and incubated at 100 °C for 10 min. After brief 

cooling, 20 μl 1 x SDS-sample buffer supplemented with 100 μg proteinase K were added to 

the samples, which then were incubated at 60 °C for 1 h for removal of proteins. 30 μl of the 

LPS preparations were used for electrophoresis.  

 

4.4.2. Electrophoresis and staining with silver nitrate 
 

Separation of the LPS components was performed by denaturing polyacrylamide 

gelelectrophoresis (Tsai and Frasch, 1982). The acrylamide gel consists of two parts: a lower 

part mediating the separation, and an upper part, which is used for concentration of the 

sample in a single running front after entering the gel. 15 % separation gels were used in a 

format of 20 x 20 cm, and electrophoresis was carried out over night at 8 mA at room 

temperature.  The gel composition was: 

 
15 % Separation gel:   15 ml  30 % acrylamyde:bis-acrylamide (37.5:1) 

5 ml  1.5 M Tris-HCl, pH 8.8 

10 ml  dH2O 

300 μl  10 % (w/v) SDS 

250 μl  10 % (w/v) Ammonium persulfate (APS) 

8 μl   TEMED 
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5 % Collecting gel:  1.96 ml 30 % Acrylamyde:bis-acrylamide (37.5:1) 

2.8 ml  0.5 M Tris-HCl, pH 6.8 

4.6 ml  dH2O 

112 μl  10 % (w/v) SDS 

32 μl  10 % (w/v) APS 

 16 μl  TEMED  

10 x Running buffer:   30 g  Tris 

144 g  Glycine 

10 g solid SDS 

 ad 1 l  dH2O 

4 x SDS-loading buffer:  2.5 ml  1 M Tris-HCl, pH 6.8 

4 ml  50 % (v/v) glycerol 

0.8 g  solid SDS 

0.1 ml  ß-mercaptoethanol 

0.02 g  Bromophenol blue 

ad 10 ml dH2O 

 
After electrophoresis, the polyacrylamide gels were stained with AgNO3. All used devices 

were carefully washed with double-destilled water, and gloves were worn throughout the 

experiment. The gels were fixed over night in 100 ml 1 × fixation solution. The next day, the 

solution was replaced by 100 ml 1 × periodate solution and the gels were incubated for 5 min 

in for oxidation. Subsequently, the gels were washed three times for 30 min with dH2O, and 

then incubated for 10 min in silver nitrate solution. After three more washes for 10 min with 

H2O, gels were developed in developing solution preheated to 60 °C. As soon as the intensity 

of the appearing bands was satisfying, the reaction was stopped by incubation in 50  M EDTA 

solution for 10 min. 

 

2 × fixation solution:   250 ml  Isopropanol 

70 ml   Acetic acid 

ad 500 ml in  dH2O 
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Periodate solution:   0.87 g   Na-m-periodate (NaIO4) 

100 ml  1 × fixation solution 

Silver nitrate solution:  1.4 ml   1 M NaOH 

1 ml   NH3 (33 %) 

70 ml   dH2O 

1.25 ml  20 % (w/v) AgNO3 

Developing solution:   100 ml  2.5 % (w/v) Na2CO3 

27 μl   Formaldehyde (40%) 

 

4.5. Phenotypic assays 
 

4.5.1. Detection of type 1 fimbrial expression 
 

Overnight cultures of the strains to be tested and of a positive (E. coli strain Nissle 1917) and 

of a negative (E. coli strain AAEC189) control were grown. The mannose-dependent yeast 

agglutination assay was carried out by mixing 10 μl of the different bacterial overnight 

cultures with 10 μl yeast cell suspension (1 mg/ml Saccharomyces cerevisiae cells diluted in 

0.9 % (w/v) NaCl, with or without 2 % (w/v) mannose) on microscope slides (75:25:1 mm). 

The slides were kept on ice until the aggregation of yeast and bacterial cells was observed in 

absence of mannose. 

4.5.2. Detection of F1C and P fimbrial expression 
 
Overnight cultures of the strains to be tested and of a positive (E. coli strain Nissle 1917) and 

of a negative (E. coli strain AAEC189) control were grown. For the immunoagglutination 

assay, a polyclonal α-F1C or P fimbriae rabbit antibody was used (provided by Dr. S. Kahn, 

Würzburg), that was diluted 1:1000 in 1 × PBS. The immunoagglutination assay was carried 

out by mixing 10 μl of the bacterial overnight culture with 10 μl of the α-F1C or P fimbriae  

antibody solution on microscope slides (75:25:1 mm) and incubation on ice until the  

aggregation of the bacterial cells was clearly observed. 
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4.5.3. Detection of secreted α-hemolysin 
 

To test hemolytic activity, cells from E. coli colonies were spread onto sheep blood agar 

plates (Oxoid) with a toothpick and incubated over night at 37 °C. Lysis of the blood cells by 

α-hemolysin was detected by formation of clear halos around the colonies after incubation. 

 

4.5.4. Detection of biofilm forming abilities 
 

Biofilm formation was assessed in a microtiter plate assay modified after O’Toole and Kolter 

(1998). Bacteria were grown over night in pooled human urine or M63 medium at 37 °C with 

agitation.  

In M63 defined media  
 

On the next morning, 158 μl fresh minimal medium were distributed in a microtiter plate 

(8 wells per strain) and inoculated with 1.6 μl of the overnight cultures. 96 well plates were 

incubated statically at 37 °C for 24 h. Subsequently, were carefully washed twice with 1 x 

PBS and dried for 1 h at 80 °C. Biofilm was stained with 0.1 % crystal violet for 10 min. 

Staining solution was discarded and plates were rinsed twice with 1 x PBS. To quantitate the 

biofilm formation, wells were destained with 180 μl destaining solution (80 % ethanol / 20 % 

acetone) for 10 min. Remaining biofilm was dissolved by pipetting the solution up and down 

several times, before diluting the solution 10 times in dH2O and measuring absorbance at 570 

nm. 

In pooled, sterile human urine 
 

To access the biofilm forming ability in human urine, 24-well flat bottom polystyrene plates 

(# 83.1836 SARSTEDT, Sarstedt Tissue) were used. In each well 1.5 ml sterile urine was 

inoculated with 15 µl bacterial overnight culture. The plates were incubated statically at 37 °C 

for 24 h. Washing and staining procedure as described above. 

 

 

 

 
 



Methods – Continuous culture 
 

78 
 

4.6. Continous culture of E. coli in microfermenters 
 

Long term in vitro bacterial culture was established in order to propagate bacteria over 2000 

generations (Fig. 8; Fig. 9). Bacteria were grown under four different culture conditions: 

1. LB  
2. LB + Nitric Oxide 
3. Urine 
4. Urine + Nitric Oxide 
 

Single microfermenters in a form of glass tube with an air and media inflow and a media 

outflow were placed in a water bath at 37 °C. Fresh media was pumped in by a peristaltic 

pump from a media tank with the velocity of 500 ml per 24 h. Fresh solutions of nitric oxide 

containing media (25 mM DETA NOnate, Cayman Chemical, US) were supplied every 

second day because of the 58 h DETA NOnate half-life. Bacterial colonization of the fresh 

media reservoir was prevented by placing a hydrophilic filter in front of the each fermenter. 

Aeration of the culture was achieved by using an aquarium bubbler. Media and air inflow 

enhanced media outflow which was collected in an autoclavable tank. All elements were 

assembled and sterilized by autoclaving. Two days before inoculation, the microfermenter 

setup was tested for any leakage and potential contamination. Inoculation was performed by 

injection of 100 µl bacterial overnight culture into each of the microfermenters through a 

rubber gasket in the fermenter’s screw lid. Sampling was done weekly and bacteria were 

stored in glycerol stock cultures at –80 °C. At each sampling time point, bacteria were plated 

on McConkey and Congo Red agar plates in order to access the culture homogeneity. 

Moreover, the number of bacteria in the culture was assessed by counting colony forming 

units on agar plates and by OD600 measurements. Spontaneous mutator phenotype formation 

was monitored by plating bacteria on a streptomycin agar plates (100 µg/ml).  
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Fig. 8: Schematic construction of the single flow culture unit. Fresh media was pumped by a peristaltic 
pump into the microfermenter via hydrophilic filter. Media and air inflow forced media outflow to the 
waist container.   

 
Fig. 9: Four-chamber microfermenter setup. 1) LB + NO fresh media reservoir; 2) LB fresh media 
reservoir; 3) Fresh media loading system with a rubber gasket; 4) multi-channel peristaltic pump; 5) 
single fermenter chamber with a rubber gasket on the top for inoculation; 6) hydrophilic filter to 
prevent bacterial colonization; 7) fresh media loading reservoir; 8) fresh media loading peristaltic 
pump; 9) syringe needle for sterile media transfer; 10) sampling system, tubing kept always in ethanol  
11) hydrophobic filters for culture aeration system 
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4.7. In silico analysis 
 

For standard sequence comparison and similarity searches, the Basic Local Alignment Search 

Tool (BLAST) at the National Centre for Biotechnology Information (NCBI) homepage was 

used. For alignments of nucleotide and amino acid sequences, the BioEdit sequence alignment 

editor V7.0.1 and VectorNTI V7.0 was used. Genome comparison was performed using the 

Artemis Comparison Tool (ACT) Release 4 of the Sanger Institute. 
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5. Results 
 

5.1. Diversity of clinical ABU E. coli isolates 
 

The aim of this part of the study was the comparative geno- and phenotypic analysis of eleven 

ABU isolates to characterize in detail a larger group of strains of this pathotype and to extend 

the knowledge on the underlying molecular mechanisms of the ABU lifestyle.   

5.1.1. Analysis of relatedness of different ABU isolates  
 

Affiliation to the main E. coli phylogenetic lineages revealed that seven of the ABU strains 

tested belonged to ECOR groups B2 and D which typically include ExPEC isolates. Four 

isolates, however, represented members of the ECOR groups A and B1 (Table 7). For isolates 

of the latter phylogenetic groups, it is rather uncommon to be associated with extraintestinal 

infections.  

 

A more detailed analysis of the phylogenetic relationships by MLST further corroborated the 

finding that the ABU strains belong to multiple different phylogenetic lineages (Table 7). 

Among the strains of the same ECOR group, different non-related clonal groups have been 

observed. Interestingly, the majority of ABU isolates of ECOR group B2 belongs to the 

sequence type (ST) 73 which also comprises the well-characterized UPEC O6 isolate CFT073 

as well as the non-pathogenic fecal O6 isolate Nissle 1917. The STs 12 and 405 to which also 

ABU isolates have been allocated, comprise extraintestinal pathogenic as well as non-

pathogenic isolates of ECOR group B2 and D, respectively. So far, only non-pathogenic 

strains belonging to ECOR group B1 have been described for ST 53. 

 

 

 



 

 
 

 

 

 

Table 7: Genotypic characterization of asymptomatic bacteriuria E. coli strains by comparative genomic hybridization 

 ABU Strain 
 57 21 38 62 20 27 37 83972 63 64 5 
No. of E. coli strain 
MG1655 genes 
(n=4290) detected  

3798 (88.5 
%) 

3670 (85.5 
%) 

3588 (83.6 
%) 

3919 (91.4 
%) 

3853 (89.8 
%) 

3796 (88.5 
%) 

3796 (88.5 
%) 

3925 (91.5 
%) 

3804 (88.7 
%) 

3866 (90.1 
%) 

3813 (88.9 
%) 

            

No. of ExPEC genes 
(n=274) detected  

21  

(7.7 %) 

10  

(3.6 %) 

8 

(2.9 %) 

67 

(24.5 %) 

132 

(48.2 %) 

102 

(37.2 %) 

111 

(40.5 %) 

134 

(48.9 %) 

136 

 (49.6 %) 

140 

(51.1 %) 

52 

(19 %) 

No. of IPEC genes 
(n=101) detected 

2 

(2 %) 

1 

(1 %) 

2 

(2 %) 

3 

(3 %) 

5 

(5 %)  

3 

(3 %) 

4 

(4 %) 

6 

(6 %) 

2 

(2 %) 

4 

(4 %) 

18 

(18 %) 

            

ECOR group a) A B1 B1 B1 B2 B2 B2 B2  B2 B2 D 

Sequence Type b) 554 553 553 53 73 73 73 73 555 12 405 
a) Affiliation to the main phylogenetic lineages of E. coli was performed according to (Johnson and Stell, 2000). 
b) Multi locus sequence typing (MLST) was performed as described on the following website (http://web.mpiib-

berlin.mpg.de/mlst/dbs/Ecoli/documents/ primersColi_html). 
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5.1.2. Comparative Genomic Hybridization (CGH) 
 

In order to compare the genetic diversity of the different ABU E. coli isolates, the genome 

content was assessed by comparative genomic hybridization using an E. coli K-12 strain 

MG1655-specific array as well as the E. coli pathoarray. The results obtained from the K-12 

array assesses the common genomic content with non-pathogenic strain MG1655, whereas the 

”E. coli pathoarray” detects many virulence determinants and island-associated genes present 

in different ABU genomes.  

 

The CGH results demonstrated a considerable genetic diversity among the eleven ABU 

isolates tested (Fig. 10; Table 7). On average, 12.9 % of the translatable ORFs present in K-12 

strain MG1655 were not detectable in the individual isolates. Based on the functional 

classification of the GenProtEC database of the chromosomally encoded genes and proteins of 

E. coli K-12 (http://genprotec.mbl.edu), the majority of these missing ORFs in every strain 

can be functionally grouped as coding for hypothetical, unclassified or unknown gene 

products.  

 

 

Fig. 10: Analysis of the genome content of ABU E. coli isolates. Red and black denote the presence 
and absence of genes, detected by comparative genomic hybridization respectively. The dendrogram 
shows the estimated relationships of the different strains obtained by hierarchical cluster analysis of 
the hybridization signals. The individual STs and major phylogenetic groups of the ABU isolates are 
indicated. 
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The eleven E. coli isolates also exhibited a great diversity in ORFs which represent mobile 

genetic elements or code for structural components of the cell. The alterations were found to 

be scattered over the entire E. coli MG1655 chromosome. However, prophages of strain 

MG1655 represent chromosomal variation "hot spots". The individual isolates could be 

subgrouped according to their CGH barcodes into certain clusters which generally correlate 

with the main phylogenetic lineage of the individual isolates.  

 

Isolates of the ECOR groups A and B1 harboured markedly less ExPEC-associated genes (on 

average 9.7 % of the detectable ExPEC genes) than strains that belong to the ECOR groups 

B2 and D (on average 42.1 % of the detectable ExPEC genes), i.e. those phylogenetic groups 

that typically comprise extraintestinal pathogenic E. coli. Typical virulence-associated marker 

genes of intestinal pathogenic E. coli (IPEC) were usually only detected in very low amounts 

(on average 4.5 % of the detectable IPEC genes). The CGH results of the E. coli pathoarray 

were partially confirmed by PCR allowing the detection of typical ExPEC-associated and 

virulence-associated determinants coding for, e.g. different adhesins, toxins, the polyketide 

colibactin, siderophores, capsules (Table 7). Whereas the fimH gene coding for the adhesin of 

type 1 fimbriae was detectable in all strains tested, genes of the P- and S/F1C fimbriae-

encoding gene clusters are only present in ABU isolates of ECOR group B2. The screening 

for toxin-, siderophore system- and group II capsule-encoding determinants resulted in similar 

findings. 

 

These data indicate that ABU isolates differ considerably in their genome content with regard 

to the presence of virulence-associated genes of uropathogenic E. coli. The virulence-

associated gene content of about two thirds of the ABU strains analyzed resembles that of 

typical UPEC, whereas in one third of the ABU isolates only a small amount of such 

determinants exists. 
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5.1.3. Genomic fingerprints of different ABU isolates 
 

To further extend the genotypic comparison, the genome structure of the ABU strains was 

compared by PFGE and rep-PCR. Although the genetic fingerprints of individual isolates 

belonging to the same ST were very similar (Fig. 11A), the analysis of genomic XbaI 

restriction fragment patterns by PFGE indicated that members of the same ST differed 

considerably in their genome content and –structure (Fig. 11B).  

 

 

Fig. 11: Genomic fingerprints of asymptomatic bacteriuria E. coli isolates. The similarity of the 
genome structure was assessed by A) Box PCR and B) PFGE following XbaI digestion. 

 

These results demonstrate that ABU isolates do not represent a specialized bacterial clone, 

but, instead, are a diverse group of strains that evolved independently from different ancestors 

of different evolutionary E. coli lineages. 

 

5.1.4. Genome size of different ABU isolates 
 

The assessment of the genome size by analysis of genomic I-CeuI restriction fragment 

patterns by PFGE demonstrated that marked genome size differences exist even among strains 

of the same ST (Fig. 12; Table 8).  
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Fig. 12: Assessment of the genome size of asymptomatic bacteriuria E. coli isolates by PFGE 
following I-CeuI digestion. 

 

The genome sizes of ABU isolates of the ECOR groups A and B1 more closely resembled 

that of non-pathogenic E. coli K-12 strain MG1655 which belongs to ECOR group A as well. 

In contrast, those of members of the ECOR group B2 and D were generally larger than that of 

strain MG1655. However, the genome sizes of ABU isolates belonging to ST73 were, with 

one exception, always smaller than that of UPEC strain CFT073 which causes symptomatic 

UTI. 

 

    
   Table 8: Genome size of ABU E. coli isolates 

ABU Strain 57 21 38 62 20 27 37 83972 63 64 5 

Genome size [Mb] 4.2 4.7 4.7 4.7 5.3 4.9 5.1 4.9 5.1 5.1 5.1 

ECOR group A B1 B1 B1 B2 B2 B2 B2 B2 B2 D 

  

These data demonstrate that ABU isolates differ in genome size and differences exist even 

among isolates of the same ST. As compared to UPEC strain CFT073, ABU isolates of the 

same sequence type have a reduced genome size. 
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5.2. Phenotypic vs. genotypic characteristics of ABU E. coli isolates 
 

The carriage of virulence determinants and the ability to express them by different ABU E. 

coli isolates was compared.  A number of phenotypic tests were performed in combination 

with polymerase chain reactions where genetic determinants were investigated in more detail. 

 

5.2.1. Type 1 fimbriae  
 

The expression of type 1 fimbriae was tested by yeast agglutination in the presence or absence 

of mannose. Surprisingly, only four out of eleven tested strains were able to express 

functional type 1 fimbriae, however, GCH revealed presence of fimH in all of these isolates.  

Therefore, the completeness of the fim gene cluster was investigated by PCR-based screening 

for each individual gene of the fim determinant (fimB to fimH). Accordingly, the complete 

gene cluster could be detected in strains 5, 20, 57, 62, 63 and 64. The absence of functional 

type 1 fimbriae in spite of the presence of the complete fim determinant in strains 5 and 57 

suggested that these determinants have been inactivated by point mutations.  In case of strains 

27 and 37, a large 4,253-bp deletion within the fim gene cluster was observed which is also 

present in strain 83972. Due to this internal deletion including the fimEAICD genes, a 

truncated fimB gene is fused with a truncated fimD gene probably by recombination between a 

7-bp DNA motif GGCGTTT present in both genes. Moreover, in strains 21 and 38, a 29,349-

bp deletion of large parts of the KpLE2 phage element and the fim operon could be detected. 

In these strains, most likely insertion sequence (IS) element-mediated deletion was 

responsible for the loss of a chromosomal region ranging from a non-functional copy of IS1 

upstream of fecI to fimG (Fig. 13). The 29-kb chromosomal region has been replaced by a 

1,347-bp DNA stretch which represents a non-functional allele of an IS element, ISEhe3, 

frequently found, e.g. in Shigella flexneri.  

 

Consequently, the fim determinant of the ABU strains tested represents a heterogenous 

genomic region which is frequently subjected to point mutations and deletions which cause 

inactivation of this gene cluster. 
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Fig. 13: Genetic structure of the fim determinant and adjacent KpLE2 phage-like chromosomal region 
in asymptomatic bacteriuria E. coli isolates. The scheme is based on the E. coli K-12 chromosome. 
Genes of the fim determinant are indicated by hatched arrows, ORFs of the KpLE2 prophage are 
indicated by filled grey arrows. Dotted arrows represent the fec determinant located within KpLE2. 
The ORF A and non-functional ORF B of ISEhe3-like element that replaces large regions of KpLE2 in 
ABU strains 21 and 38 are indicated by black arrows.   

 

Moreover, analysis of the fimH allelic variation indicated that differences regarding the FimH 

amino acid sequence were visible between isolates of distinct phylogenetic groups (Fig. 14). 

Strains of ECOR groups A and B1 differed from those of groups B2 and D in the presence of 

valine at position 27 instead of alanine. The ABU isolates that belong to ECOR group B2 

exhibit the highest number of amino acid exchanges relative to FimH of E. coli K-12 strain 

MG1655. Interestingly, marked differences in the FimH amino acid sequence were even 

observed among the closely related B2 strains of ST73.   

 

 

 



Results 
 

89 
 

 

Fig. 14: Allelic variation of the FimH type 1 fimbrial adhesins among asymptomatic bacteriuria E. coli 
isolates.  The allocation of the individual strains to the main phylogenetic lineages and clonal groups 
has been indicated. 

 

5.2.2. P fimbriae 
 

To further extend the knowledge about fimbriae expression of the ABU strains, the expression 

of P fimbriae was tested. PCR screening resulted in five strains positive for the pap fimbrial 

determinant whereas agglutination with P-fimbriae-specific antibodies was positive only for 

ABU strain 64. Sequence analysis and comparison of the pap operons of ABU strains 27, 37 

63 and 83972 showed that these strains harbour the identical papG allele which codes for a 

non-functional P fimbrial adhesin. 

 



 
 

 
 

Table 9: Geno- and phenotypic characterization of selected virulence traits of asymptomatic bacteriuria E. coli strains 

 α−Hemolysin Type 1 
fimbriae 

P 
fimbriae 

F1C 
fimbriae 

Mo-
tility 

Colicins
/Micro-

cins 

Aero-
bactin LPS Other detected virulence-associated 

genes b) 

Strain hly Hly fim Fim pap Pap foc F1C [mm]     

ABU57 - - fimBEAICDFGH+ - - - - - 0 + - rough fyuA, iutA, kpsMT(II) 

ABU21 - - fimH+ - - - - - 13 + - smooth a - 

ABU38 - - fimH + - - - - - 9 + - smooth a - 

ABU62 - - fimBEAICDFGH+ + - - - - 24 - - smooth a iutA 

ABU20 + + fimBEAICDFGH+ + - - + + 5 + 
 - rough cnf1, clbA-Q, fyuA, iroN-B, 

kpsMT(II), malX 
ABU27 + - fimB'::'DFGH+ - + - + - 42 - - rough cnf1, clbA-Q, fyuA, iroN-B, malX 

ABU37 + + fimB'::'DFGH+ - + - + + 0 - - rough cnf1, clbA-Q, fyuA, iroN-B, 
kpsMT(II), malX 

ABU83972 + - fimB'::'DFGH+ - + - + - 9 - + rough cnf1, clbA-Q, fyuA, iutA, iroN-B, 
kpsMT(II), malX 

ABU63 + + fimBEAICDFGH+ + + - - - 42 - - smooth cnf1, fyuA, kpsMT(II), ibeA, malX 

ABU64 + + fimBEAICDFGH+ + + + + + 42 - - smooth cnf1, clbA-Q, fyuA, iroN-B, 
kpsMT(II), rfc, malX 

ABU5 - - fimBEAICDFGH+ - - - - - 0 + 
 - rough afa/draBC, fyuA, kpsMT(II), traT, 

malX 
a) The O side chains are shorter than those of smooth UPEC strain 536 (Fig. 17).  
b) The screening for the ExPEC virulence-associated genes was performed using a multiplex PCR describes before (Dobrindt et al., 2001). The 

screening for the colibactin polyketide determinant  and for the salmochelin determinant was performed as described previously (Nougayrède et 
al., 2006; Sunden et al., 2006). 
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5.2.3. F1C fimbriae  
 

The same approach was used to analyze functionality of F1C fimbriae where agglutination 

with antibodies specific for F1C fimbriae was positive only for isolates 20, 27 and 64. 

However, PCR-based detection of the F1C fimbriae-encoding gene cluster was also positive 

for strain 27 and 83972. Similarly, these three strains also differed in their ability to express 

functional F1C fimbriae. Comparison of the DNA sequence of the encoding foc determinant 

in these strains (Fig. 15) demonstrated that the A to T transition at the focD nucleotide 

position 1415 results in exchange of glutamine 472 against a leucine residue in the FocD 

fimbrial usher of the latter two strains. Mutation of this amino acid alone results in a non-

functional FocD usher protein (Table 10). 

 

 

Fig. 15 Amino acid alignment of FocD, SfaF and FimD fimbrial ushers. The conserved Gln472 
residue of FocD has been indicated in red. EcN, E. coli Nissle 1917. 

 

 

Table 10: Identification of the Gln472 → Leu substitution critical for FocD function 

Strain  FocD amino acid substitution Functional F1C fimbriae 
CFT073 Gln 472, Ala 889 + 
Nissle 1917 Gln 472, Ala 889 + 
ABU27 Leu 472, Val 889 -

ABU37 Gln 472, Val 889 + 
ABU83972 Leu 472, Val 889 -
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5.2.4. Expression of α-hemolysin  
 

The ability to express α-hemolysin was checked by plating bacteria on sheep blood agar 

plates. Only strains 20, 37, 63 and 64 were able to lyze erythrocytes, however, strains 27 and 

83972 harboured all genes of the hly gene cluster. Nucleotide sequence comparison of the hly 

operon of the closely related strains ABU27, ABU37 and ABU83972 revealed that the non-

hemolytic phenotype of strains 27 and 83972 relative to ABU37 is due to an A→T transition 

at the hlyA nucleotide position 416 thus resulting in a premature stop codon and thus a 

truncated HlyA toxin gene product (Fig. 16).  

 

 

Fig. 16: Inactivation of the hly determinant in strains 27 and 83972 

 

5.2.5. LPS O side chain expression 
 

The ABU isolates exhibited considerable diversity with regard to LPS O side chain 

expression (Fig. 17): strains that belong to ECOR group B2 either expressed long chain LPS 

or no side chains. Interestingly, all ST73 isolates tested exhibited a rough LPS phenotype. The 

O side chain length of the three isolates that belong to ECOR group B1 was shorter than that 

of smooth strains expressing long O side chains. ABU isolate 5 (ECOR group D) and 57 

(ECOR group A) did not express O side chains.  
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Fig. 17: Analysis of the LPS phenotype among asymptomatic bacteriuria E. coli isolates 

 

5.2.6. Biofim formation 
 

The ABU isolates differed markedly with regard to their ability to form biofilms (Fig. 18). 

Even among strains of the same sequence type, i.e. the strains of ST73, more than threefold 

differences were observed in their biofilm formation. 

 

 

Fig. 18: Analysis of biofilm formation of asymptomatic bacteriuria E. coli isolates in urine. The ability 
to form biofilms was compared to that of uropathogenic E. coli strain 536 that causes symptomatic 
urinary tract infections. 
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5.2.7. Growth characteristics of ABU E. coli isolates 
 

In order to characterize ABU isolates in terms of growth properties, the bacteria were grown 

statically at 37 °C in pooled human urine. As a control UPEC strains CFT073, 536, NU14 and 

J96, as well as non-pathogenic K-12 strain MG1655 were grown under the same conditions. 

With respect to growth rate and their final optical density, all ABU strains grew well in urine 

(Fig. 19). The isolates 83972, 20, 21, 37 and 62, however, grew better in the early exponential 

phase than isolates that belong to ECOR group A or D. The ABU model strain 83972 grows 

as fast as other tested UPEC strains except strain NU14 which grew rather like the E. coli K-

12 strain MG1655.   

 

Fig. 19: Growth characteristics of E. coli isolates in pooled human urine at 37 °C: A, B) ABU E. coli 
isolates; C) UPEC strains, K-12 strain MG1655 and ABU strain 83972.  

 

 

Taken together, a number of phenotypic tests revealed significant differences among 

investigated isolates with regard to expression of virulence factors. ABU strains often carried 

virulence determinants on the chromosome but did not express them. DNA amplification and 

sequencing led to the discovery that in many cases loss of the function was due to point 

mutations or IS mediated DNA deletions. Regarding LPS expression, no common pattern 

could be observed, and finally, all ABU isolates grew very well in urine.  
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5.3. Adaptive flexibility and genome plasticity of model strain 83972 
 

ABU strain 83972 has been successfully used in a medical treatment pilot study (2004-2006) 

for bladder colonization of patients suffering from recurrent urinary tract infections due to 

various bladder dysfunctions (Sunden et al., 2006). Access to consecutive re-isolates of strain 

83972 from different patients allowed us to study bacterial adaptation in response to host 

colonization. Microbial genome rearrangements and changes in the global gene expression 

profiles of the individual re-isolates were analyzed and correlated to host response. 

 

5.3.1. Patient colonization 
 

In the Department of Urology of the Lund University hospital (Sweden), the patients 

participating in the pilot study of deliberate bladder colonization with ABU strain 83972 were 

treated with appropriate antibiotics to sterilize their urinary bladder. After an antibiotic-free 

interval, the patients were catheterized and the bladder was emptied. Thirty millilitres of E. 

coli strain 83972 (105 colony-forming units (CFU)/ml) were instilled in the bladder and the 

catheter was removed. This procedure was repeated on the next 2 days. According to 

individual study protocols, subsequent urine samples were taken to assess host response 

parameters: interleukin 6 (IL 6) and interleukin 8 (IL 8) levels, numbers of 

polymorphonuclear cells (PMN), and to prove the success or failure of the colonization 

procedure. Urine samples have been obtained from the patients in monthly intervals and 

bacterial samples were stored in agar stamps at room temperature. Several re-isolates of strain 

83972 from different time points were subjected to phenotypic and genotypic characterisation.   
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Fig. 20: Schematic representation of the experimental design. Patients P1 to P6 were colonized with 
ABU strain 83972. Blue arrows illustrate the time of colonization. Re-isolates were collected at 
different time points. Re-isolates obtained from different inoculations of the same patient are 
represented on opposite sides of an arrow.  

 

 

5.3.2. Patients’ immune response upon colonization with strain 83972 
 

The colonized patients, four males and two females, differed with respect to their host 

immune response towards bacterial colonization of the bladder. The mean of IL 8 expression 

in the strongest “responder” KA was more than 8-fold higher than in patient SR and 6-fold 

higher in patient SN (Fig. 21). While IL 8 expression was very diverse among colonized 

patients, their IL 6 expression did not differ drastically. In patient IJ, however, the IL 6 

expression was more than 2-fold lower compared to that of the other patients. Noteworthy, in 

some patients only low IL 6 levels were detected in their urine, while their IL 8 expression 

was very high. The influx of PMNs into the bladder could be correlated with IL 8 expression, 

except for patient CK (Fig. 21; Fig. 22).  
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Fig. 21: Mean of host response parameters in urine samples collected from patients during the time of 
colonization with strain 83972: A). IL 8 expression; B) PMNs influx into the bladder; C) IL 6 
expression. These data were kindly provided by Dr. B. Wullt, Lund. 

 

To access the dynamics of host response upon asymptomatic bladder colonization by strain 

83972, the levels of IL 8 and PMN influx in the bladder at each sampling time point were 

compared (Fig. 22). Only patients KA and POS were permanently colonized by 83972 during 

the duration of the colonization study, whereas in patients SR, CK, IJ and SN the bladder was 

cleared once from strain 83972 so that they had to be re-colonized. Interestingly, the deviation 

of the IL 8 expression from the mean value in the first group of patients was very low and less 

than 2-fold and 4-fold for KA and POS respectively. In contrast, a 10- and 16-fold increase in 

IL 8 expression was followed by rapid bacterial clearance in patients IJ and SN, respectively. 

In patient CK, bacterial colonization of the bladder was lost already after a 3.5-fold IL 8 

induction, however, the bacteria were lost about one month after that event. 

Moreover, in patient SR a 3.8-fold induction of IL 8 (after 3 months) did not result in 

immediate bacterial clearance. However, bacteria were lost after eight months of bladder 

colonization and the host response at that time point was at the mean level. 
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Fig. 22: Levels of IL 8 and PMNs at each sampling time point. Black bars indicates time points 
corresponding to all investigated re-isolates, dotted double lines show bacteria clearance from the 
bladder. Single dotted line across the graph shows the mean of IL 8 expression. These data were 
kindly provided by Dr. B. Wullt, Lund. 

 

Taken together, the individual host response described as PMN influx into the bladder, IL6 

and IL8 production differed from patient to patient. At different time points of the 

colonization experiment, the levels of the response parameters were different. An increase in 

IL 8 expression generally correlated with an increase in PMN influx into the bladder. In a 

certain group of patients bacterial clearance was a direct follow up of increased host response.  
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5.3.3. Verification of the re-isolates  
 

Bacteria recovered from the patient’s urine samples were confirmed to be derivatives of strain 

83972 by means of PCR. Two genetic markers specific for the E. coli strain 83972 were 

amplified: a DNA fragment covering a 4.7-kb deletion in the fim gene cluster (Fig. 23) and a 

fragment of a cryptic plasmid specific for strain 83972. 

 

 

Fig. 23: Genetic organization of the fim loci in E. coli K-12 and E. coli 83972. P1 and P2 - primers 
used for PCR amplification. 

 

The two designed primer pairs did not result in amplification of a PCR product with several 

prototypic non-pathogenic and pathogenic E. coli strains. Accordingly, these primer pairs 

were confirmed to be specific for strain 83972. In contrast, all tested patient re-isolates were 

positive for both E. coli 83972-specific genetic markers (Fig. 24) thus proving that they 

indeed represent derivatives of strain 83972. 

 

Fig. 24: Verification of the patient re-isolates of E. coli strain 83972. A) PCR amplification of a 4.7-kb 
internal deletion region of the fim operon; B) PCR amplification of a DNA region of the cryptic 
plasmid found in strain 83972. 
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5.3.4. Genome structure of in vivo 83972 re-isolates 
 

Changes in the genome structure were assessed by PFGE following digestion with the 

endonucleases XbaI and AvrII, respectively (Fig. 25A and B). Depending on the enzyme used, 

different changes in the restriction pattern could be observed. Although most of the re-isolates 

exhibited the same DNA fingerprint as their parent strain 83972, significant changes in the 

genomic restriction pattern could be observed in five out of 16 re-isolates.  Upon digestion 

with XbaI, the strains IJ15 and SR6 resulted in similar changes of their restriction pattern 

indicating that similar rearrangements occurred in these strains. Only strain CK12 showed 

differences in the restriction pattern relative to that of strain 83972 upon digestion with XbaI 

and AvrII. Interestingly, in none of the re-isolates from patient POS modifications of the 

restriction pattern could be observed, although the latest re-isolate, POS18, colonized the 

bladder for 536 days. In contrast, strain SR12 exhibited significant changes in the PFGE 

pattern already after 54 days of bladder colonization.  

 
 

Fig. 25 Genomic fingerprints of in vivo re-isolates of strain 83972 from different human patients. 
Representative consecutive re-isolates from the same patient are indicated by an identical letter code. 
The numbers indicate the order of sampling time points. The genome structure was assessed by PFGE 
following: A) XbaI digestion; B) AvrII digestion; C) Comparison of the genome structure of different 
clones from the same urine samples by PFGE following AvrII digestion; D) Assessment of the genome 
size of in vivo re-isolates of strain 83972 by PFGE following I-CeuI digestion. Changes in the 
restriction pattern are indicated by red arrows. 



Results 
 

101 
 

Moreover, the analysis of the genomic I-CeuI restriction fragments by PFGE demonstrated 

that strain CK12 is the only re-isolate with a reduced genome size compared to strain 83972 

(Fig. 25D).  

In order to roughly assess the complexity of the E. coli 83972 population colonizing the 

bladder, different colonies from the same urine samples were subjected to PFGE following 

digestion with AvrII (Fig. 25C). It turned out, that all three tested re-isolates represented at 

least a major fraction of the bacterial population in the bladder of their hosts. While all four 

independent colonies tested from the urine sample KA25 and CK12 exhibited a uniform 

restriction pattern, one colony from the SR12 sample had the same restriction pattern as the 

parent strain 83972, the other three colonies had an identical DNA fingerprint that differed 

from that of strain 83972.  

Taken together, genomic alternations of in vivo re-isolates were accessed. Five out of 16 re-

isolates of strain 83972 showed changed genome structure as accessed by PFGE. Moreover, 

bacterial complexity in the bladder was low and in most cases analyzed re-isolate represented 

a major fraction of the bacterial population in the urine sample.  

 

5.3.5. Phenotypes of different in vivo re-isolates   
 

Motility 
 

As the first test, re-isolates were stabbed on urine swarm agar plates to assess their motility 

(Fig. 26). The parent strain 83972 exhibited a very low motility, however, was not completely 

non-motile when compared to strain 536Δfli used as a negative control. A number of re-

isolates showed a similar low motility. However, the strains IJ15, SN16, SN25, CK6, SR6 and 

SR12 exhibited higher motility than the strain 83972 (Table 11) and also differed among each 

other. Moreover, strains POS6 and POS9 were less motile than strain 83972, comparable to 

strain 536Δfli. These data demonstrate that strain 83972 is capable of modulating the 

swarming ability in response to the growth environment.  
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Fig. 26: Motility of in vivo re-isolates of strain 83972 on urine soft agar plates incubated overnight at 
37 °C.  

 

Growth characteristics 
 

The growth characteristics of the re-isolates in vitro were assessed in pooled human urine as 

well as in LB medium and compared to those of strain 83972 (Fig. 27; Table 11). Generally, 

almost all re-isolates did not reach the same final bacterial number and had lower growth rates 

in the urine compared with the parent strain. Only growth of strains CK3, CK9 and CK12 was 

similar to that of E. coli 83972. The most significant decrease in growth was observed in case 

of isolates from patient POS. Interestingly, only the re-isolate SN16 grew better than strain 

83972.  

Bacterial growth in Luria broth resulted in similar results relative to growth in urine where 

most of the re-isolates grew worse with respect to growth rate and optical density reached 

compared to the parent strain (Table 11). Re-isolates of patient SR, however, grew as well as 

parent strain 83972 in LB medium (data not shown). However, the differences were most 

prominent for re-isolates of patients KA, IJ and POS.  

These data may indicate a possible correlation between the growth characteristics of re-

isolates and the immune response of their specific host. In general, re-isolates from patients 

with a stronger host response grew more slowly than re-isolates from patients with weaker 

host response. However, bacterial growth characteristics as well as host response are very 

complex phenomena and differ from patient to patient.  
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Fig. 27: Growth characteristics of in vivo re-isolates of strain 83972 and their parent strain in pooled 
human urine. 

 

Competitiveness 
 

To test whether the re-isolates differ with respect to competitiveness in urine from their parent 

strain, E. coli strain 83872 was tagged with a chloramphenicol resistance cassette. Using the λ 

Red-mediated integration of linear DNA fragments into the bacterial chromosome (Datsenko 

and Wanner, 2000), the cat cassette was integrated into the bacteriophage λ chromosomal 

attachment site of strain 83972.   

For growth competition experiments, identical bacterial numbers of strain 83972cat and one 

re-isolate were mixed and grown for 72 h in pooled human urine. At different time points (6, 

24, 48 and 72 hours), the ratio of the parent strain 83972cat and the re-isolate was determined 

by counting colony forming units (CFUs) on LB agar plates supplemented with 

chloramphenicol and LB plates, respectively. The results of the growth competition 

experiments with the different re-isolates are shown in Fig. 28. 
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Fig. 28: Competitiveness in urine of in vivo re-isolates of E. coli 83972 against their parent strain 
derivative 83972cat. All experiments were performed in triplicates. The last graph shows the control 
experiment where the parent strain and its chloramphenicol-resistant variant 83972cat have been co-
cultured. 
 

In a control experiment, the parent strain 83972 was co-cultured with its chloramphenicol-

resistant derivative 83972cat which did not show any difference in competitiveness thus 

confirming that the introduction of the cat cassette had no negative effect on the growth rate. 

However, the re-isolates co-cultured in urine with strain 83972cat exhibited differences in 

their competitiveness. The most striking difference was observed for the re-isolates KA22 and 

KA25 which represented only 25 % or less of the total culture after 72 h of growth. Similarly, 

the fraction of re-isolates IJ15 and SN16 already decreased significantly after 6 h of co-

cultivation with strain 83972cat. With exception of strain SN16, this could be correlated with 

the reduced growth of these strains relative to their parent strain (Fig. 27). Most of the re-

isolates from patient POS as well as strain CK9 were also outcompeted to a different extend 

by the strain 83972cat. Generally, re-isolates which were shown to be less competitive were 

also characterized by slower growth rates in urine relative to the parent strain.  

Biofilm formation 
 

It has been published that increased biofilm formation is characteristic for ABU isolates and 

that this trait may be important for colonization of the urinary tract (Hancock et al., 2007). 

Consequently, re-isolates obtained from the human colonization study were investigated for 

their biofilm forming ability. For that purpose, bacteria were grown in microtiter plates in 

pooled human urine, as well as in M63 minimal medium, and the biofilm formation was 
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compared to that of strain 83972 (section 4.5.4.). In addition, UPEC strain 536 and non-

pathogenic laboratory K-12 strain MG1655 were included as positive and negative controls, 

respectively (Fig. 29).   

 

Fig. 29: Analysis of biofilm formation of in vivo re-isolates of ABU strain 83972 at 37 °C. A) Biofilm 
formation in pooled human urine; B) Biofilm formation in M63 media. Biofilm formation of the 
strains tested was normalized to that of parent strain 83972.   
 

Surprisingly, except for strain CK12, all re-isolates formed poorly biofilm in urine when 

compared to strain 83972.  Moreover, the ability to form biofilms of re-isolates SN25, CK6, 

SR12 and POS18 was as low as or less than that of non-pathogenic K-12 strain MG1655. The 

ability to form biofilms of the other seven re-isolates (KA25, CK3, SR3, SR6, POS6, POS9, 

POS12) was comparable to that of UPEC strain 536. In general, most of the tested re-isolates 

were not able to form as good biofilm as the ancestor strain 83972. In contrast, the biofilm 

assays in M63 minimal medium showed very distinct results. Except for strains CK6, CK12 

and SR12, biofilm formation of the re-isolates was comparable to that of their parent strain 

83972. Re-isolate CK6 formed nearly as much biofilm as strain 536, which was 7-fold higher 

than that of strain 83972.  

In general, biofilm formation could be correlated with the swarming ability (Fig. 26). Strains 

with increased motility formed less biofilm than strains exhibiting low motility.  The results 

of the phenotypic characterization of the in vivo re-isolates of strain 83972 are summarized in 

Table 10. 



 

 
 

Table 11: Geno- and phenotypic characterization of in vivo re-isolates of ABU strain 83972.  
Arrows up and down indicate better or worse than ABU83972, respectively; = no difference 

Re‐
isolate 

Date of 
isolation 

Duration of 
bladder 

colonization 
[days] 

IL6 
level in 
urine 
[pg/ml] 

IL8 
level in 
urine 
[ng/ml] 

No. of 
PMNs in 
urine 

x 104/ml

XbaI  SfiI  AvrII 
Genome 
size 

Motilit
Growth 

(UR) 

Growth 

(LB) 

Competi‐
tiveness(UR) 

Biofilm

(UR) 

Biofilm 

(M63) 

KA 22  2/22/2005  130  9  833  78  =  =  ↓  ↓  ↓  ↓  ↓ 

KA 25  5/17/2005  214  6  586  66  + =  =  ↓  ↓  ↓  ↓  ↓ 

IJ 15  8/9/2004  185  2  604  7  + + =  ↑  ↓  ↓  ↓  ↓  ↓ 

SN 16  1/17/2005  108  2.8  59  2  =  ↑  ↑  ↑  ↓  ↓  = 

SN 25  10/17/2005  24  2.8  41  nd  =  ↑  ↓  ↓  =  ↓  = 

CK 3  12/16/2004  83  2.8  287  3  =  =  =  ↓  ↑  ↓  = 

CK 6  3/23/2005  180  17  1069  16,7  =  ↑  ↓  ↓  =  ↓  ↑ 

CK 9  6/23/2005  63  5  586  22  =  =  =  ↓  ↓  ↓  = 

CK 12  9/23/2005  155  13  952  10  + + + ↓  =  =  =  =  ↑  ↑ 

SR 3  2/3/2005  77  21  278  13  =  =  ↓  =  ↓  ↓  = 

SR 6  4/5/2005  138  7  30  3  + + =  ↑  ↓  =  =  ↓  = 

SR 12  11/1/2005  54  10  245  21  + =  ↑  ↓  =  =  ↓  ↑ 

POS 6  12/2/2004  168  4  731  43  =  ↓  ↓  ↓  ↓  ↓  ↓ 

POS 9  3/4/2005  260  7  774  96  =  ↓  ↓  ↓  ↓  ↓  = 

POS 12  6/3/2005  351  9  505  29  =  =  ↓  ↓  ↓  ↓  = 

POS 18  12/5/2005  536  nd  nd  nd  =  =  ↓  ↓  =  ↓  = 

Differences in the restriction pattern are indicated by “+”. An increase or decrease of the traits tested relative to ABU strain 83972 is indicated by 
corresponding arrows; no differences between re-isolate and parent strain are indicated by “=”.
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Taken together, these date demonstrate differences in phenotypes of strain 83972 in vivo re-

isolates. Consequently, growth characteristics were affected and almost all re-isolates did not 

reach the same final bacterial number and had lower growth rates in the urine. Generally, re-

isolates that were characterized by slower growth rates in urine, were shown to be less 

competitive relative to the parent strain. These data also demonstrate that strain 83972 is 

capable of modulating the swarming ability in response to the growth environment. 

Furthermore, most of the tested re-isolates were not able to form as good biofilm as the parent 

strain 83972 and this phenotype could be correlated with the swarming ability.  
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5.3.6. Host independent growth of E. coli strain 83972  
 

Bacterial growth is modulated by several environmental factors like competition for nutrients, 

niche-specific conditions, or host response.  In order to identify host factors that affect 

bacterial growth and adaptation, an in vitro continuous culture system was designed in which 

cultures of strain 83972 could be propagated for more than 2000 generations without an 

impact of host factors. Consecutive in vitro re-isolates of strain 83972 were taken once a week 

and characterized with regard to their pheno- and genotypic properties.  

Strain 83972 was grown in LB medium and pooled human urine with and without addition of 

nitric oxide (NO). Under all four conditions, strain 83972 grew very well (Fig. 30) and the 

growth rates were comparable in cultures with and without NO. However, for cultures in LB 

medium with and without addition of NO the optical density and number of CFU tended to 

rise with time of the experiment. Also, in all four microfermenters the OD 600 and CFU 

slightly varied, what could be due to sampling errors. Nevertheless, an increase in OD 600 

always corresponded to an increase in CFU.  

 

 

Fig. 30: Growth dynamics of E. coli strain 83972 during continous culture experiments in LB medium 
+ NO A), urine + NO B), LB medium C) and urine D). 

 

At each sampling time point, bacteria were tested for spontaneous occurrence of resistance 

against streptomycin in order to monitor the occurrence of mutator phenotypes. Only three 
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resistant isolates were found, however, at different sampling points. Interestingly, all of the 

resistant clones were obtained from the urine + NO culture, after 1, 2 and 6 weeks of 

cultivation.  

Moreover, biofilm formation of strain 83972 differed under these four growth conditions (Fig. 

31). The addition of exogenous nitric oxide significantly decreased biofilm formation without 

affecting bacterial growth (Fig. 30). Scanning electron microscopy indicated that the drastic 

differences could be due to extracellular matrix production. Comparing samples from the 

urine cultures with and without nitric oxide indicated that the biofilm structure without 

exposure to nitric oxide is more homogenous and less densely packed with crystals and 

extracellular matrix (Fig. 31 B and D).  

 

 

Fig. 31: Biofilm formation of ABU strain 83972 in continous cultures in LB medium + NO A), urine + 
NO B) , LB medium C) and urine D). In each section of the figure: left – scanning electron 
micrograph of the biofilm architecture; right – overview of biofilm formation in the corresponding 
microfermenter. 

 

Taken together, an in vitro continuous culture system was designed in which strain 83972 was 

successfully propagated for more than 2000 generations and later on compared to those re-

isolates obtained from patient colonisation study.   
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5.3.7. Genomic and phenotypic properties of ABU strain 83972 grown in vitro 
 

In order to characterise genotypic and phenotypic properties of the strain 83972 after long 

term in vitro continuous culture, single in vitro re-isolates were defined. For this purpose, 17 

independent colonies from every microfermenter were picked at the last sampling event after 

more than 2000 generations. Every colony was subsequently grown overnight in the same 

medium in which it has been propagated before. Bacteria from these cultures which 

represented an individual 83972 in vitro re-isolate were stored in glycerol stocks at -80 °C for 

later experiments.  

Genetic structure of the in vitro 83972 re-isolates 
 

According to restriction pattern determined by pulsed-field gel electrophoresis following 

digestion with XbaI or AvrII, the genetic structure of all in vitro re-isolates was not altered 

and was identical to that of strain 83972 used for initial inoculation of the fermenters (Fig. 

32). This discovery is in contrast to the results obtained for the genome structure of in vivo E. 

coli 83972 re-isolates where multiple genome rearrangements were described even after less 

generations of growth in the human bladder (Fig. 25).  

 
Interestingly, even the addition of mutagenic nitric oxide did not result in genomic alterations 

in E. coli strain 83972. The fact that growth in the human bladder induced genomic alterations 

detectable by PFGE, but not in vitro culture in pooled human urine, indicates that specific 

conditions exist within the human urinary tract which are driving forces of bacterial genome 

plasticity.  
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Fig. 32: Comparison of the genome structure of in vitro re-isolates of E. coli strain 83972 by PFGE 
following restriction with XbaI (left column) and AvrII (right column). 17 independent colonies were 
picked after more than 2000 generations in continous cultures in LB medium + NO A), urine + NO B), 
LB medium C) and urine D). 
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Motility 
 

As already described before (section 5.3.5.), E. coli strain 83972 is able to modulate the 

expression of flagella. The comparison of motility of in vitro re-isolates corroborated these 

results. In general, growth in Luria broth resulted more frequently in the occurrence of 

isolates with a changed motility relative to the parent strain 83972 than growth in urine. 

Interestingly, increased motility was only observed among urine culture isolates. In LB + NO 

culture, 1/3 of bacterial isolates showed decrease in motility, whereas in LB without NO 

culture already 2/3 isolates were non-motile. Similarly, in the urine cultures, the addition of 

NO decreased double the number of non-motile 83972 isolates (Table 12). Interestingly, in 

LB and urine cultures without addition of NO, decrease in motility could be correlated with 

increased whole culture population biofilm formation (Fig. 31).  

 

          Table 12: Motility of in vitro 83972 re-isolates on urine soft agar plates.  

        Motility was measured as the diameter [mm] of the swarming zone on the agar plate. 
a) less motile than the wild type strain 83972 

        b) more motile than the wild type strain 83972 
 

Growth characteristics 
 

In addition, the growth characteristics of the in vitro re-isolates were tested in pooled human 

urine. In general, growth of all tested in vitro re-isolates did not differ markedly from those of 

their parent strain 83972 (Fig. 33). Nevertheless, most of the re-isolates from urine cultures 

Re‐isolate  LB + NO  UR + NO  LB ‐ NO  UR ‐ NO 
1 0.0 a 4.0 8.3 3.3 a 
2 2.7 a 9.3 0.0 a 7.0 
3 6.0 6.7 2.3 a 3.3 a 
4 5.3 7.3 11.0 12.7 
5 4.7 6.7 2.0 a 10.3 
6 6.3 7.3 2.0 a 8.0 
7 2.0 a 3.3 a 2.0 a 12.0 
8 6.3 14.0 b 0.0 a 6.0 
9 0.0 a 6.0 9.0 11.3 
10 3.0 a 2.0 a 13.7 3.0 a 
11 3.0 a 5.3 0.0 a 26.3 b 
12 5.0 6.3 0.0 a 3.0 a 
13 7.0 8.7 0.0 a 22.7 b 
14 5.0 6.7 0.0 a 22.0 b 
15 6.7 23.3 b 0.0 a 11.3 
16 5.3 6.3 0.0 a 3.0 a 
17 8.0 29.0 b 0.0 a 6.0 

83972 9.0 9.0 9.0 9.0 
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exhibited a slightly increased growth rate. Differences in the growth rates of re-isolates from 

LB cultures were always in range of the standard deviation.  

 

 

Fig. 33: Growth characteristics of in vitro re-isolates of strain 83972 and their parent strain in pooled 
human urine at 37 °C. 17 independent re-isolates were selected after more than 2000 generations in 
continous cultures in LB medium + NO A), urine + NO B) , LB medium C) and urine D). 

 

Biofilm formation 
 

Similarly, the comparison of biofilm formation by the in vitro re-isolates resulted in a very 

few significant differences when compared to that of parent strain 83972 (Fig. 32). If biofilm 

formation of the in vitro re-isolates was altered relative to strain 83972, increased biofilm 

formation was observed mainly for isolates from LB cultures.  Noteworthy, this observation is 
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in striking contrast to the results seen with the in vivo re-isolates (Fig. 26), which exhibited a 

remarkable decrease in biofilm formation. 

 

 

Fig. 34: Analysis of biofilm formation of in vitro re-isolates of ABU strain 83972 in pooled human 
urine at 37 °C. 17 independent re-isolates were selected after more than 2000 generations in continous 
cultures in LB medium + NO A), urine + NO B) , LB medium C) and urine D). Biofilm formation of 
the strains tested was normalized to that of parent strain 83972. 

 

Taken together, genotypic and phenotypic properties of the strain 83972 after long term in 

vitro continuous culture were assessed. Consequently, the restriction pattern determined by 

pulsed-field gel electrophoresis revealed that the genetic structure of all in vitro re-isolates 

was not altered and was identical to that of strain 83972. This is in contrast to the finding that 

the genome structure of in vivo E. coli 83972 re-isolates, even after less generations of growth 

in the human bladder, was affected in multiple re-isolates. The growth characteristics of the in 

vitro re-isolates tested in pooled human urine did not differ markedly from those of their 

parent strain 83972. Similarly, the comparison of biofilm formation by the in vitro re-isolates 

resulted in a very few significant differences when compared to that of parent strain 83972. 

These observations are in striking contrast to the results seen with the in vivo re-isolates.  
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5.4. Transcriptome analysis of 83872 re-isolates 
 
Multiple pheno- and genotypic experiments uncovered striking differences among in vivo 

83972 re-isolates. In contrast, in vitro re-isolates exhibited fewer alterations. To evaluate 

changes on the transcriptional level, microarray experiments were performed. The 

transcriptome of parent strain 83972 was compared with those of the in vivo re-isolates SR12, 

CK12, KA25 and one randomly chosen in vitro re-isolate 4.9 upon growth in pooled human 

urine.  RNA was extracted from the mid-logarithmic growth phase followed by reverse 

transcription using fluorescent labelled nucleotides. The resulting cDNA was hybridized to an 

oligonucleotide DNA microarray (OPERON). For each re-isolate three independent 

competitive hybridisations were performed.  

5.4.1. Significant changes in the expression pattern 
 

The statistical analysis using t-test showed a significant reproducibility of the triplicate 

hybridisations (Table 13). All changes in the expression patterns of the re-isolates must be 

due to prolonged growth either in the human bladder or in the continuous in vitro culture and 

could be still detectable after in vitro growth in pooled human urine. Exception for strain 

SR12, the vast majority of significantly affected genes in the other re-isolates were down-

regulated when compared to the parent strain 83972 (Table 13). Interestingly, in all in vivo re-

isolates the number of significantly affected genes was on average four-fold higher than in the 

in vitro-grown strain.  

      Table 13: Total number of de-regulated genes in the in vivo and in vitro re-isolates of ABU strain 
83972.  
 SR12 CK12 KA25 4.9 
p < 0.05 2960 2630 2944 2065 
up-regulated 170  (60 %) 35    (21 %) 35    (20 %) 6    (12 %) 
down-regulated 109  (40 %) 131  (79 %) 135  (80 %) 43  (88 %) 
Total a 279 166 170 49 

     a Number of significantly up- and down-regulated genes  
 
 

De-regulated genes were allocated to different functional categories (Fig. 35). The distribution 

of down-regulated genes among the re-isolates was very diverse, however, strains CK12 and 

KA25 exhibited a certain similarity in the expression pattern of de-regulated genes. Strain 

SR12 differed not only in the total number of down-regulated but also in the high number of 

up-regulated genes, from which the vast majority could be grouped as coding for hypothetical 
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proteins, carbon and energy metabolism, and motility proteins. The high energy consumption 

due to flagella expression may be one reason for the increased expression of many genes 

involved in transport and energy production.  

 

 
Fig. 35: Functional grouping of the de-regulated genes in in vivo and in vitro re-isolates of ABU strain 
83972 upon in vitro growth in pooled human urine.  

 
Apart from genes coding for hypothetical proteins and genes with unknown function, the 

second largest group of genes comprises those related to mobile elements like phages, 

transposons and plasmids (Fig. 35). 

 

5.4.2. Individual adaptation of re-isolates 

 
Hierarchical cluster analysis of all the genes affected as determined by microarray 

hybridisation demonstrated remarkable differences among the investigated re-isolates.  The 

cluster analysis grouped together genes with the same expression pattern and resulted in six 

subclusters, of which the first two subclusters represent groups of differently up-regulated 

genes in the re-isolates. The last four subclusters pinpoint genes which are only down-

regulated in the individual strain (Fig. 36).  
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Fig. 36: Hierarchical cluster analysis of all de-regulated genes in three ABU 83972 in vivo re-isolates 
CK12, KA25 and SR12 and one in vitro re-isolate 4.9 relative to their parent strain 83972. The strains 
were grown in vitro at 37 °C in pooled human urine. Each bar represents one gene and its expression 
level corresponds to the colour bar on the bottom left hand side. Numbers from 1 to 6 indicate six sub-
clusters of commonly regulated genes in one re-isolate. The datasets for each strain are mean values of 
the expression ratio from at least three independent microarray experiments. Genes without 
statistically significant changes in their expression pattern (p-value >0.05) are shown in black.  

 

Interestingly, in each strain distinct genes were affected. This illustrates the very unique 

environmental conditions faced by the different bacteria. Although the re-isolates SR12, 

KA25 and CK12 originate from the human colonization study, not many commonly de-

regulated genes could be observed. However, a subgroup of genes from the subcluster 1 and 4 

show similarity exclusively in between the in vivo re-isolates (Fig. 36). In contrast, only a few 

genes which were grouped into subcluster 4 were de-regulated in the in vitro re-isolate 4.9.  

 

Transcriptome changes of in vitro re-isolate 4.9 relative to parent strain 83972 
 

Interestingly, the two component system TorSR involved in the regulation of the carbon 

metabolism and anaerobic respiration (Jourlin et al., 1997) was down-regulated in re-isolate 

4.9. This regulatory system also controls the transcriptional regulation of the gadAX operon, 
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which was also down-regulated in strain 4.9 according to the array data. GadA, a glutamate 

decarboxylase, is part of the glutamate-dependent acid resistance system 2 (AR2) which 

confers resistance to extreme acid conditions. AR2 also protects the cell during anaerobic 

phosphate starvation when glutamate is available by preventing damage from weak acids 

produced from carbohydrate fermentation (Moreau, 2007). In addition to that, all genes of the 

regulon gcl-hyi-glxR-ybbVW-allB-ybbY-glxK involved in glyoxylate catabolism and the 

allantoin assimilation pathway turned out to be down-regulated. These reactions take place 

during anaerobic respiration.  

Taken together, among hypothetical proteins and phage-related genes, most of the changes in 

the global gene regulation pattern of the in vitro re-isolate 4.9 are implicated in anaerobic 

respiration (Table 24 and Table 25).  

 

Transcriptome changes of in vivo re-isolate SR12 relative to parent strain 83972 
 

Genes with higher expression levels in the in vivo re-isolates were grouped into the sub-

clusters 1 and 2. Most of them are exclusively up-regulated in strain SR12.  As already shown 

in Fig. 35, the affected genes encode for the flagella apparatus and chemotaxis, or are 

involved in carbohydrate transport and metabolism, as well as energy production and 

conversion (Table 18). 

Pentose and glucuronate interconversions as well as sialic acid, arabinose, mannose and 

xylose uptake and metabolism seem to be main pathways involved in extra energy delivery 

during growth in urine (Fig. 37). Most likely, up-regulation of these genes is directly 

connected to the nutrient availability during in vivo growth in the bladder. These sugars are 

taken up by a number of up-regulated uptake systems and degraded thus supplying the 

glycolysis with glyceroaldehyde-3-phosphate.  
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Fig. 37: Altered expression of sugar transport and degradation pathways in the in vivo re-isolate SR12 
compared to strain 83972. Red arrows indicate up-regulated genes during in vitro growth in pooled 
human urine.  

 

Moreover, a number of genes involved in the citrate cycle (TCA cycle) and glutamate 

metabolism were found to be affected in strain SR12 (Table 18 and Table 19). The two genes, 

glnG encoding the response regulator (NtrC, synonymous name GlnG) and glnL encoding the 

sensor kinase (NtrB, synonymous name GlnL) were down-regulated. NtrB functions as a 

membrane-associated protein kinase that phosphorylates NtrC in response to nitrogen- and 

carbon-limitation. This reflects adaptation to urine, which is a nitrogen-rich environment. This 

two component system regulates the expression of the glnALG and glnHPQ operons, which 

indeed were down-regulated according to the array results. In addition to that, purine 

degradation turned out to be down-regulated. Interestingly, D-serine uptake and deamination 

pathway to pyruvate were significantly up-regulated in re-isolate SR12 relative to parent 

strain 83972.  

 

Transcriptome changes of in vivo re-isolates KA25 and CK12 relative to parent strain 83972 
 

The hierarchical cluster analysis grouped most of the down-regulated genes together 

(subclusters 3-6; Fig. 36). Interestingly, major fractions of the genes with the same expression 

pattern were strain-specific. After functional classification, it turned out that most of the genes 



Results 
 

120 
 

encode for hypothetical, unclassified and unknown proteins. The second largest group of 

genes comprises those related to mobile elements like phages, transposons and plasmids 

(Table 21 and Table 23). The significance of this result might be questionable, since many of 

the de-regulated genes don’t represent complete transcriptional units. Nevertheless, each re-

isolate represents a unique gene expression pattern that is due to distinct environmental niches 

that bacteria have been growing in.    

 

5.4.3. Common adaptive patterns in re-isolates 

 
To identify general adaptation strategies to prolonged bacterial growth in urine, hierarchical 

cluster analysis was performed to group genes of at least two re-isolates that are commonly 

de-regulated. Altogether, 35 genes turned out to be similarly expressed in more than one re-

isolate relative to strain 83972 (Fig. 38).  

Four clusters of genes were formed according to similar changes of their expression pattern 

among at least two re-isolates. The clusters one and two represent genes which are similarly 

expressed in re-isolates CK12 and KA25. The last two clusters comprise commonly regulated 

genes of re-isolates SR12 and KA25.  

The first cluster comprises nine genes that are less expressed in re-isolates CK12 and KA25 

relative to the parent strain 83972. Except for the gene glpC, the remaining eight genes code 

for hypothetical proteins with predicted function. The meaning of this result is unclear as 

these nine genes represent single genes of polycistronic operons. Subcluster 2 consists of 

eight genes whose expression was similarly affected in strains CK12 and SR12. As already 

shown by phenotypic tests (Fig. 26), the in vivo re-isolates differed in their ability to express 

flagella. Although strain CK12 was as motile as the parent strain 83972, microarray data 

indicated that the expression of two genes, flgB and tar, which are involved in motility and 

chemotaxis, was down-regulated. In contrast, in strain SR12 these genes were up-regulated. 

This is consistent with the corresponding phenotype (section 5.3.5.).  
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Fig. 38: Hierarchical cluster analysis of commonly de-regulated genes in at least two re-isolates of 
strain 83972 relative to their parent strain. Numbers from 1 to 4 indicate the four main subclusters of 
commonly de-regulated genes. Clustered values are mean values of the expression ratio from at least 
three independent microarray experiments. Results with a p-value >0.05 are indicated in black colour. 

 

Moreover, together with flgB and tar, almost the entire determinants coding for the flagellar 

apparatus were significantly up-regulated in re-isolate SR12 (Table 18).  Several genes of 

subcluster 2 belong to gene clusters, e.g. yeiCNM as well as iucD, iutA and yfbA.  

 

The last two subclusters include 18 commonly de-regulated genes of re-isolates SR12 and 

KA25. While 16 genes were up-regulated, expression of the remaining two genes was 
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repressed relative to the parent strain 83972.  Interestingly, in the group of up-regulated genes 

the whole frmRAB gene cluster could be found. The FrmA protein is a glutathione-dependent 

alcohol dehydrogenase that is, together with FrmB, involved in the metabolism of 

endogenously formed formaldehyde and detoxification of exogenous formaldehyde (Gutheil 

et al., 1997). However, it was also shown that this alcohol dehydrogenase (also designated 

AdhC) is conserved from humans to bacteria and apart from the metabolic functions 

mentioned before is involved in the protection against nitrosative stress (Liu et al., 2001). In 

addition to that, the gene hmp encoding for flavohemoglobin was grouped right next to the 

frmRAB operon. Multiple studies describe the implication of Hmp in protection against NO 

released upon bacterial infection (Crawford and Goldberg, 1998; Poole et al., 1996). 

Moreover, many genes encoding proteins involved in glycine, serine, threonine and 

methionine transport and metabolism were found within the same subcluster (Fig. 38). The 

MetR protein was already shown to bind and modulate the glyA-hmp intergenic region. This 

results in induction of flavohemoglobin expression encoded by hmp gene (Membrillo-

Hernandez et al., 1998). Altogether, this supports the significance of the transcriptome data 

and functional relationship of genes as displayed in the cluster analysis. 

In contrast to the previously described up-regulated genes, two genes coding for putative 

dehydrogenases were down-regulated in strains SR12 and KA25 relative to strain 83972 

(subcluster 4; Fig. 38). Interestingly, both of them are located within a polyketide biosynthesis 

gene cluster (Nougayrede et al., 2006).  

 

5.4.4. Verification of microarray results by quantitative RT-PCR 
 

Quantitative RT-PCR was performed to verify changes of transcript levels of selected genes 

as determined by DNA array hybridization. In general, the trend of de-regulation of gene 

expression as determined by microarray results could be confirmed by quantitative RT-PCR. 

Transcript levels of the genes metR and hmp were about two times higher in strain SR12 than 

in strain KA25, while in strains CK12 and 4.9 the differences were not significant (less than 

2-fold) relative to strain 83972. The expression level obtained for the tar gene was 200-fold 

higher and 4-fold lower than in strains SR12 and CK12, respectively. A significant down-

regulation could be observed for expression of iutA and yeiC in strain CK12 (15- and 12-

fold), whereas in strain SR12 these genes were up-regulated 5- and 8-fold, respectively. The 
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transcript levels of the gene frmA encoding the glutathione-dependent alcohol dehydrogenase 

(AdhC) were analyzed in a larger number of in vivo re-isolates (Fig. 39 A). It turned out that 

frmA expression is up-regulated in other in vivo re-isolates as well. Moreover, frmA 

expression levels in strains isolated from the same patient were comparable, while they 

differed from patient to patient. The highest frmA transcript level could be observed in re-

isolates from patient SR (120-fold higher than in the parent strain). In re-isolates from patients 

KA and POS, the up-regulation was on average 40-fold and 5-fold, respectively. It is 

important to mention, that the patient SR was colonized twice during the course of study 

(Table 11) and that re-isolate SR12 was obtained from an independent inoculation event 

compared to strains SR3 and SR6. Taken together, the significant up-regulation of the gene 

frmA could be observed in all re-isolates obtained from the patients KA, SR and POS, 

indicating that the adaptation of bacterial gene regulation might be patient-specific.  

 

 

Fig. 39: Real Time-PCR-based quantification of transcript levels of selected genes in ABU re-isolates. 
Relative expression of hmpA, metR, tar, iutA and yeiC genes A) and of frmA B) in in-vitro re-isolate 
4.9 and all in vivo re-isolates. In all cases, the gene expression of the re-isolates was normalized to that 
of parent strain 83972. All experiments were performed in triplicate. Gene expression was 
standardized using the rrnB gene as an internal control.  
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Taken together, to evaluate changes on the transcriptional level, microarray experiments were 

performed with three in vivo (CK12, SR12 and KA25) and one in vitro (4.9) re-isolates and 

compared to that of the parent strain 83972. Genes affected as determined by microarray 

hybridisation demonstrated remarkable differences among the investigated re-isolates. Each 

re-isolate represented a unique gene expression pattern, however, a small fraction of genes 

that were commonly expressed in in vivo re-isolates SR12 and KA25 was detected. Among 

hypothetical proteins and phage-related genes, most of the changes in the global gene 

regulation pattern of the in vitro re-isolate 4.9 were implicated in anaerobic respiration. TCA 

cycle, differed sugars and amino acids transport and metabolism were found to be up-

regulated in re-isolate SR12 in response to prolonged growth in the bladder. Genes encoding 

for hypothetical, unclassified and unknown proteins as well phage and transposone related 

were the main fraction of those individually affected in strains CK12 and KA25. Whereas 

genes involved in protection against NO (frmAB, hmpA) released upon bacterial infection 

were commonly up-regalated in re-isolates SR12 and KA25 when compared to parent strain 

83972. Moreover, the significant up-regulation of the gene frmA could be observed in all re-

isolates obtained from the patients KA, SR and POS. Finally, many genes encoding proteins 

involved in glycine, serine, threonine and methionine transport and metabolism were found to 

be up-regulated in re-isolates SR12 and KA25 relative to parent strain 83972.  
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5.5. Changes in the cytoplasmic protein expression of the 83972 re-isolates 
 

To analyze changes in protein expression of the re-isolates derived from the human 

colonization study, a 2D protein gel electrophoresis approach was used. As already described 

(section 4.3.), cytoplasmic proteins were extracted from bacteria grown in vitro at 37 °C in 

pooled human urine. The extracted proteins were separated on the basis of their isoelectric 

point (pH range 4 to 7), followed by a separation according to their molecular weight. 

Representative cytoplasmic protein profiles are shown in Fig. 40.  

 

 

Fig. 40: Comparison of 2D cytoplasmic protein profiles from ABU strain 83972 and the in vivo re-
isolates KA25, CK12 and SR12 upon growth in vitro at 37 °C in pooled human urine.  
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5.5.1. Cytoplasmic proteome changes of in vivo re-isolate KA25 relative to parent strain 
83972 
 

Altogether, 18 differently expressed proteins were identified (Fig. 41). In accordance with the 

gene expression profiles on the transcriptional level (section 5.4.1), the number of repressed 

proteins was higher than that of induced proteins (13 – down, 5 – up) when compared to the 

cytoplasmic proteome pattern of ancestor strain 83972. These 18 proteins were identified by 

MALDI-TOF Mass Spectrometry (Table 14). Interestingly, the most striking differences 

between strains KA25 and 83972 were observed for the proteins FrmA and FrmB which were 

detectable in higher amounts in re-isolate KA25 than in strain 83972 (Fig. 41). As already 

described (section 5.4.3), expression of the corresponding genes was strongly up-regulated in 

strains KA25 and SR12 relative to their parent strain 83972.  

 

 

Fig. 41: Comparison of the cytoplasmic proteome of ABU strain 83972 and the in vivo re-isolate 
KA25.  Red-channel, cytoplasmic proteins of re-isolate KA25; Green-channel, cytoplasmic proteins of 
strain 83972.  Proteins with the same expression level are shown in yellow. On each gel 300 µg of 
cytoplasmic proteins were separated and Coomassie-stained. Differently expressed proteins were 
identified by MALDI-TOF mass spectrometry.  
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The isoelectric point and molecular weight of the FrmA is very close to those of SerA and 

GdhA (Table 14). The high amount of FrmA protein might be a reason for problems with 

GdhA identification in the re-isolate, where spot positions most likely overlap each other. The 

proteins YdfG and GlyA are involved in serine metabolism while FrmA and FrmB contribute 

to glutathione metabolism. GdhA is glutamate dehydrogenase that catalyzes the NADPH-

dependent amination of alpha-ketoglutarate to L-glutamate. It has been reported that impaired 

metabolism of these amino acids might be due to oxidative and nitrosative stress (Jarboe et 

al., 2008; Liu et al., 2001). Another over-expressed protein, YtfE, is involved in the repair of 

damaged iron-sulfur clusters, again due to oxidative and nitrosative stress (Justino et al., 

2007).  

Table 14: Differently expressed cytoplasmic proteins in the in vivo re-isolate KA25 and the ancestor 
strain 83972.  

Protein  Function  Mwb  pIb  UniProt  Expression 

FrmA  alcohol dehydrogenase AdhC  39358.99 5.85 P25437    ↑a

FrmB  S‐formylglutathione hydrolase  31424.48 5.81 P51025    ↑a

Tig  trigger factor  48250.71 4.81 Q8FKA7  ↑
GdhA  glutamate dehydrogenase  48581.37 5.98 P00370  ?
SerA  D‐3‐phosphoglycerate dehydrogenase 44044.59 5.93 P0A9T1  ↓
GlyA  serine hydroxymethyltransferase 45316.59 6.03 P0A826  ↓
GlgB  1,4‐alpha‐glucan branching enzyme 84362.92 5.93 Q1R5J4  ↓
GlgC  glucose‐1‐phosphate adenylyltransferase 50069.42 5.78 A1AGW3  ↓
XylA  xylose isomerase  49742.01 5.75 P00944  ↓
AraA  L‐arabinose isomerase  56088.96 5.95 Q8FL89  ↓
PykF  pyruvate kinase 50729.42 5.77 A2UN64  ↓
Zwf  glucose‐6‐phosphate 1‐dehydrogenase 55704.44 5.56 P0AC53  ↓
YdfG  L‐serine/L‐allo‐threonine dehydrogenase 27246.90 5.65 Q8FHD2    ↓a

HdhA  7‐alpha‐hydroxysteroid dehydrogenase 26763.58 5.38 Q0THK9  ↑
YtfE  regulator of cell morphogenesis and NO signaling 24896.65 5.24 Q0T9H5  ↑
YgbM  conserved protein  29216.99 5.09 Q46891  ↓
YeiC  hypothetical sugar kinase  38130.41 4.99 Q1R9Q6    ↓a

YeiN  putative uncharacterized protein 33003.96 5.11 Q0TFS5    ↓a

Arrows indicate changes of protein expression in re-isolate KA25 when compared to the strain 83972 
a – results consistent with microarray experiment 
b – Theoretical masses and isoelectric points were determined by using the ExPASy proteomics server     UniProt 
Knowledgebase (http://ca.expasy.org). 
 

The GlgB and GlgC proteins, involved in glycogen biosynthesis, were less abundant in the re-

isolate. In addition, multiple proteins like XylA, AraA, Zwf, PykF which play an important 

role in the central metabolism were also not as much expressed as in the strain 83972. 

Interestingly, two proteins, YeiC and YeiN, which are up-regulated in human urine (Roos et 

al., 2006b; Snyder et al., 2004), were lesser expressed in re-isolate KA25.  YeiC is a putative 
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sugar kinase from the ribokinase protein family catalysing degradation of pentose sugars. The 

second protein, YeiN, is not characterized yet. However, it shows more than 90 % homology 

to the indigoidine synthase A (IndA)-like protein from Thermotoga maritima. Indigoidine is a 

blue pigment that has been initially described in Erwinia chrysanthemi to be implicated in 

pathogenicity and protection from oxidative stress (Reverchon et al., 2002). HahA catalyzes 

the dehydroxylation of bile acids (Yoshimoto et al., 1991). By dehydroxylation, bile acids 

lose their detergent properties. An increased amount of HahA in re-isolate KA25 might have a 

positive effect when bacteria grow in the human bladder.  

5.5.2. Cytoplasmic proteome changes of in vivo re-isolate SR12 relative to parent strain 
83972 
 

The main alterations of the SR12 cytoplasmic proteome relative to that of parent strain 83972 

were very similar to that of strain KA25 (Fig. 42).  

 

Fig. 42: Comparison of the cytoplasmic proteome of ABU strain 83972 and the in vivo re-isolate 
SR12.  Red-channel, cytoplasmic proteins of re-isolate SR12; Green-channel, cytoplasmic proteins of 
strain 83972.  Proteins with the same expression level are shown in yellow. On each gel 300 µg of 
cytoplasmic proteins were separated and Coomassie-stained. Differently expressed proteins were 
identified by MALDI-TOF mass spectrometry. 
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Several de-regulated proteins were identified by MALDI-TOF (Table 15). Interestingly, the 

most striking differences of the SR12 cytoplasmic proteome profiles were exactly the same as 

those described in re-isolate KA25. The proteins FrmA and FrmB were significantly higher 

expressed than in the ancestor strain 83972 (Fig. 42). However, the expression level for both 

proteins in the re-isolate SR12 was twice as much as in KA25 and 100-fold more than both in 

CK12 and 83972 (Fig. 43). 

Table 15: Differently expressed cytoplasmic proteins in the in vivo re-isolate SR12 and the ancestor 
strain 83972.  

Protein  Function  Mwb  pIb  UniProt  Expression 

FrmA  alcohol dehydrogenase AdhC  39358.99 5.85 P25437    ↑a

FrmB  S‐formylglutathione hydrolase  31424.48 5.81 P51025    ↑a

GdhA  glutamate dehydrogenase  48581.37 5.98 P00370  ?
SerA  D‐3‐phosphoglycerate dehydrogenase 44044.59 5.93 P0A9T1  ↓
GlyA  serine hydroxymethyltransferase 45316.59 6.03 P0A826  ↓
GlgB  1,4‐alpha‐glucan branching enzyme 84362.92 5.93 Q1R5J4  ↓
GlgC  glucose‐1‐phosphate adenylyltransferase 50069.42 5.78 A1AGW3  ↓
PykF  pyruvate kinase 50729.42 5.77 A2UN64  ↓
Zwf  glucose‐6‐phosphate 1‐dehydrogenase 55704.44 5.56 P0AC53  ↓
YtfE  regulator of cell morphogenesis and NO signaling 24896.65 5.24 Q0T9H5  ↑
YeiC  hypothetical sugar kinase  38130.41 4.99 Q1R9Q6    ↓a

YeiN  putative uncharacterized protein 33003.96 5.11 Q0TFS5    ↓a

Arrows indicate expression changes of the protein in re-isolate SR12 when compared to the strain 83972 
a – results consistent with microarray experiment 
b – Theoretical masses and isoelectric points were determined by using the ExPASy proteomics server     UniProt 
Knowledgebase (http://ca.expasy.org). 
 
 
 

 
Fig. 43: Quantification of FrmA and FrmB protein expression in in vivo re-isolates of ABU strain 
83972. A) 3-D representation of the selected proteins spots; B) Change of protein expression in the in 
vivo re-isolate relative to strain 83972 calculated from normalized spot volumes in triplicate 
experiments. 

Moreover, the YtfE protein involved in NO signalling as well as the proteins SerA, GlyA, 

GlgB, GlgC, PykF and Zwf were similarly de-regulated as in strain KA25. Nevertheless, 

YeiC and YeiN were induced in re-isolate SR12 compared to that of re-isolate KA25.  
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5.5.3. Cytoplasmic proteome changes of in vivo re-isolate CK12 relative to parent strain 
83972 
 

The direct comparison of the intracellular proteomes of strain 83972 and re-isolate CK12 

allowed the identification of several differently expressed proteins (Fig. 44). In total, eleven 

candidate spots were detected to differ from the protein profile of strain 83972 (Table 16).  

Only one protein which was exclusively found in the CK12 isolate was unidentifiable.   

 

 
Fig. 44: Comparison of the cytoplasmic proteome of ABU strain 83972 and the in vivo re-isolate 
CK12.  Red-channel,  cytoplasmic proteins of re-isolate CK12; Green-channel, cytoplasmic proteins 
of strain 83972.  Proteins with the same expression level are shown in yellow. On each gel 300 µg of 
cytoplasmic proteins were separated and Coomassie-stained. Differently expressed proteins were 
identified by MALDI-TOF mass spectrometry. 

 

Whereas the above mentioned proteomes of the re-isolates KA25 and SR12 were very similar 

to each other, the one of strain CK12 was more distinct. The most prominent features of 

KA25 and SR12, namely increased amounts of FrmA and FrmB, could not be detected in 

strain CK12. Also common patterns in expression of YtfE, SerA, GlyA, GlgB, GlgC, XylA, 
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PykF were not detectable in strain CK12. This might indicate that expression of genes 

encoding for these proteins is functionally dependent and co-regulated with the frmRAB 

operon by the same factors. Two proteins, YeiC and YeiN, were identified as commonly de-

regulated in strains CK12 and KA25. Moreover, only Zwf turned out to be lesser expressed in 

all three in vivo re-isolates. One protein (Protein #1) which was exclusively expressed in re-

isolate CK12 but not in the parent strain and other re-isolates could not be identified.  

 

Table 16: Differently expressed cytoplasmic proteins in the in vivo re-isolate CK12 and the ancestor 
strain 83972. 

Protein  Function  Mwb  pIb 
UniProt
KB 

Expression 

Udp  Uridine phosphorylase  27027.89 5.81 P12758   ↑a

TufB  Translation elongation factor Tu 43182.39 5.30 A2UNY4  ↑
DeoC  Deoxyribose‐phosphate aldolase 27733.80 5.50 P0A6L0   ↑a

Protein #1  Not identified ‐ ‐ ‐  ↑
IucD  L‐lysine 6‐monooxygenase  48653.49 6.44 Q3L7J2   ↓a

PoxB  Pyruvate dehydrogenase  62071.44 5.86 Q8FJE2  ↓
Zwf  glucose‐6‐phosphate 1‐dehydrogenase 55704.44 5.56 P0AC53  ↓
YdeN  Putative sulfatase  62842.33 5.76 A1AB86  ↓
Cdd  cytidine deaminase  31539.87 5.42 P0ABF6   ↑a

YeiC  hypothetical sugar kinase  38130.41 4.99 Q1R9Q6   ↓a

YeiN  putative uncharacterized protein 33003.96 5.11 Q0TFS5   ↓a

Arrows indicate expression changes of the protein in re-isolate CK12 when compared to the strain 83972 
a – results consistent with microarray experiment 
b – Theoretical masses and isoelectric points were determined by using the ExPASy proteomics server     UniProt 
Knowledgebase (http://ca.expasy.org). 
 
 
Interestingly, the uridine phosphorylase (Udp), cytidine deaminase (Cdd) and deoxyribose-

phosphate aldolase (DeoC) proteins appeared also from the transcriptome data to be up-

regulated.  According to the protein profile, the Udp protein is one of the most significantly 

expressed proteins. Proteins Udp and Cdd are involved degradation of ribonucleosides (Fig. 

45), while Cdd and DeoC contribute to the degradation of deoxyribonucleosides (Fig. 46).  
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Fig. 45: Adaptation of the ribonucleoside degradation pathway in in vivo re-isolate CK12 of ABU 
strain 83972. The different steps of ribonucleoside uptake and degradation identified to be de-
regulated in the different re-isolates are indicated: significantly up-regulated genes according to 
microarray experiments a); over-expressed proteins according to cytoplasmic proteome comparison 
b); over-expressed proteins according to outer membrane proteome comparison c). 

 

According to the proteome comparison, only DeoC was found to be present in higher 

amounts, whereas microarray data indicated that the entire deoCABD operon was up-

regulated. In addition, transcriptome comparison indicated that the tsx gene encoding for a 

protein involved in the transport of ribo- and deoxy-nucleosides across the outer membrane of 

E. coli was up-regulated in re-isolate CK12. This result was also confirmed by comparison of 

the outer membrane protein expression (section 5.6). 
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Fig. 46: Adaptation of the deoxy-ribonucleoside degradation pathway in in vivo re-isolate CK12 of 
ABU strain 83972. The different steps of deoxy-ribonucleoside uptake and degradation identified to be 
de-regulated in the different re-isolates are indicated: significantly up-regulated genes according to 
microarray experiments a); over-expressed proteins according to cytoplasmic proteome comparison 
b); over-expressed proteins according to outer membrane proteome comparison c).  
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Taken together, to analyze changes in cytoplasmic proteins expression of the re-isolates 

derived from the human colonization study, a 2D protein gel electrophoresis approach was 

applied. In all three re-isolates (KA25, SR12, CK12) a number of 18, 12 and 11 proteins, 

respectively, turned out to be de-regulated. Interestingly, cytoplasmic proteome profiles of 

isolates KA25 and SR12 were comparable. The most striking differences between those 

strains and 83972 were observed for the proteins FrmA and FrmB. These results are in a strict 

accordance with microarray data. The proteome of strain CK12 was more distinct. The most 

prominent features of KA25 and SR12, namely increased amounts of FrmA and FrmB, could 

not be detected in strain CK12. Instead, degradation of deoxy- and ribonucleosides was up-

regulated in strain CK12 compared to SR12, KA25 and 83972.  
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5.6. Outer membrane proteome changes of the in vivo re-isolates of strain 
83972. 

 
Bacterial surface proteins have different main functions. They are involved in the uptake and 

transport of different substances into the cell, in adhesion, and in cell-to-cell communication. 

Microorganisms growing in the urinary tract encounter iron depletion. Thus they must have 

evolved multiple iron uptake mechanisms. Moreover, all proteins located on the bacterial 

surface are potential targets for antibodies of the human immune system.  

To extend our knowledge about changes in the outer membrane proteome and adaptation of 

ABU strain 83972 during growth in the human bladder, the membrane protein fractions of 

this strains and its in vivo re-isolates were compared. As already described (section 4.3), 

following bacterial growth in pooled human urine, carbonate-insoluble proteins were 

separated by 2D gel electrophoresis. Protein spots differing between the parent strain 83972 

and its derivatives were identified by MALDI-TOF mass spectrometry. 

Complete solubilisation of the membrane proteins is critical for proteomic analysis of 

membrane fractions. Using the carbonate extraction method, 19 different membrane 

associated proteins were identified (Table 17). This represents 73 % of the 26 predicted outer 

membrane proteins of E. coli strain K-12 (Molloy et al., 2000). However, many of the 

detected proteins (42 %) represented components of iron uptake systems which are not 

present in the strain K-12 strain MG1655.  
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Table 17: Changes in the outer membrane subproteome of the in vivo re-isolates of strain 83972 
following in vitro culture in pooled human urine. Expression of each protein in the re-isolates relative 
to that one of the strain 83972.  

Protein  Function  UniProt  Mwb  pIb 
Expression

KA25  KA12  SR12 
OmpA  outer membrane protein A  Q8CW76 41054.22 6.24 =  =  = 
OmpC  outer membrane protein C  Q8CVW1 39164.52 4.49 =  =  = 
OmpX  outer membrane protein X  P0A917 16382.89 5.30 =  =  = 
Tsx  nucleoside channel‐forming protein Q0TKN0 33624.03 5.18 =  ↑  = 
FadL  long‐chain fatty acid transport protein Q6KCX0 48910.28 4.80 =  =  = 
Ag43  Antigen 43 precusor  Q6KD18 107303.94 5.74 =  =  = 
TolC  outer membrane‐associated protein A1AFV8 54030.07 5.46 =  =  = 
BtuB  vitamin B12 transporter  Q8CVJ0 66315.91 5.27 =  =  = 
YeaT  membrane protein assembly factor P0A941 88426.12 4.87 =  =  ↓ 
Imp  LPS‐assembly protein  Q0TLT4 87051.03 4.98 =  =  ↓ 
Ihaa  exogenous ferric siderophore receptor O87518 73805.93 5.72 =  ↓  ↑ 
FecAa  iron(III) dicitrate transport protein P13036 81707.21 5.36 =  ↑  = 
IroNa  siderophore receptor  Q9RQ19 79384.89 5.79 =  ↑  ↓ 
IutAa  ferric aerobactin receptor  Q6Q7N8 81048.36 5.49 =  ↓  ↑ 
ChuAa  heme/hemoglobin receptor  Q8FCK0 71100.46 5.02 =  =  = 
FhuAa  ferrichrome‐iron receptor  Q8CWD4 82835.04 5.33 =  =  ↓ 
FhuEa  ferric‐rhodotorulic acid transporter Q0TIX2 74162.93 4.93 =  =  ↓ 
FliC  flagellar filament structural protein Q7DBI0 59951.79 4.70 =  =  ↑ 
FepAa  ferrienterobactin receptor  A1A8L5 73660.65 5.20 =  ↑  ↑ 
The expression of each protein in the re-isolates relative to that of the strain 83972 has been indicated. 
a) Proteins involved in iron acquisition 
b) Theoretical masses and isoelectric points were determined using the ExPASy proteomics server     
UniProt Knowledgebase (http://ca.expasy.org). 
 

The protein profiles of the three in vivo re-isolates were comparable. However, minor changes 

either in the composition or in the expression level could be detected. In general, protein 

separation was of a good quality and allowed precise alignment of the profiles from parent 

strain and its consecutive re-isolates (Fig. 47; Fig. 48; Fig. 49). Different protein isoforms 

could not always be perfectly aligned during in silico proteome comparison and are therefore 

either underlined or boxed as the same protein. All changes between the re-isolates and the 

wild type strain are summarised in Table 17. 

While the outer membrane protein profiles of the strains KA25 and 83972 were very similar 

(Fig. 47), the outer membrane proteome of re-isolate CK12 exhibited minor changes (Fig. 

48). The most prominent difference in the strain CK12 was the lack of the ferric aerobactin 

receptor protein IutA. Interestingly, the iron(III) dicitrate transport protein (FecA) was found 

to be located in almost the same position on the gel. Because of the almost identical 
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isoelectric points and molecular weights of these two proteins (Table 17), it is difficult to 

distinguish them when both proteins IutA and FecA are expressed together. 

 

Fig. 47: Comparison of the outer membrane proteome of ABU strain 83972 and the in vivo re-isolate 
KA25.  Red-channel,  outer membrane proteins of re-isolate KA25; Green-channel, outer membrane 
proteins of strain 83972.  Proteins with the same expression level are shown in yellow. On each gel 
100 µg of proteins were separated and Coomassie-stained. Differently expressed proteins were 
identified by MALDI-TOF mass spectrometry.  

 

These results are consistent with the microarray data, indicating that the iutA gene was 2-fold 

down- and the fecABCDE operon was 2-fold up-regulated relative to parent strain 83972 

(Table 21). Moreover, the protein profiles showed that the amount of Iha, the exogenous 

ferric siderophore receptor was significantly decreased in strain CK12, while another 

siderophore receptor, IroN, seemed to be present in higher amounts.   
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Fig. 48: Comparison of the outer membrane proteome of ABU strain 83972 and the in vivo re-isolate 
CK12.  Red-channel,  outer membrane proteins of re-isolate CK12; Green-channel, outer membrane 
proteins of strain 83972.  Proteins with the same expression level are shown in yellow. On each gel 
100 µg of proteins were separated and Coomassie-stained. Differently expressed proteins were 
identified by MALDI-TOF mass spectrometry. 

 

One more interesting protein that was found to be expressed in higher amounts in re-isolate 

CK12 than in strain 83972 is Tsx, the nucleoside-specific channel-forming protein. As already 

described in section 5.5.3, this protein facilitates the uptake of ribo- and deoxyribonucleosides 

from the environment. The tsx gene was 2-fold up-regulated in strain CK12 when compared 

to 83972. Moreover, other proteins involved in that uptake processes were identified to be 

present in higher amounts in the intracellular proteome of strain CK12 (Fig. 44). 
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Regarding strain SR12, some alterations in the outer membrane protein profile could also be 

detected (Fig. 49).  

 

Fig. 49: Comparison of the outer membrane proteome of ABU strain 83972 and the in vivo re-isolate 
SR12.  Red-channel,  outer membrane proteins of re-isolate SR12; Green-channel, outer membrane 
proteins of strain 83972.  Proteins with the same expression level are shown in yellow. On each gel 
100 µg of proteins were separated and Coomassie-stained. Differently expressed proteins were 
identified by MALDI-TOF mass spectrometry.  

 

The most striking difference was the presence of multiple isomeric forms of the protein FliC. 

As already shown, this strain is motile (Fig. 26) and many genes of the flagella regulon were 

up-regulated when compared to the parent strain 83972 (Table 18). 

In addition to FliC, the expression of different components of iron uptake systems was 

affected. First of all, the protein FhuE could not be detected and FhuA was much lesser 
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expressed than in strain 83972. In contrast to re-isolate CK12, the Iha protein was present in 

higher amounts and IroN was less prevalent than in the ancestor strain. Also the 

ferrienterobactin receptor FepA turned out to be present in higher amounts in the re-isolate 

SR12. However, many differences on the protein level were not as clear as for strain CK12 

and KA25. This might be due to the expression of flagella and a thus significant fraction of 

the FliC protein in the protein preparation.  

The fact that in all outer membrane protein proteomes of the three re-isolates and the parent 

strain 83972 some prototypic outer membrane proteins like OmpF, OmpW, YfiO and ZipA 

could not be detected indicates the limitation of 2D gel analysis of outer membrane proteins 

which can frequently not be resolved due to their high hydrophobicity. Gel-free analysis of 

outer membrane protein fractions may be a suitable alternative to get a more complete picture 

of the outer membrane proteome.  

 

Taken together, to assess changes in the outer membrane proteome and adaptation of ABU 

strain 83972 during growth in the human bladder, the membrane protein fractions of this 

strain and its in vivo re-isolates were compared. Together, 19 different membrane associated 

proteins were identified.  Many of the detected proteins (42 %) represented components of 

iron uptake systems. Outer membrane protein profiles of the strains KA25 and 83972 were 

very similar, however, the outer membrane proteome of re-isolate CK12 and SR12 exhibited 

already minor changes. In isolate CK12, nucleoside uptake system was up-regulated what 

clearly correlated with microarray data. In addition to that, the expression of different 

components of iron uptake systems was affected in isolates SR12 and CK12.  
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6. Discussion 
 

Asymptomatic bacteriuria (ABU) probably represents the most frequent form of urinary tract 

infections. Up to 6 % of healthy individuals and up to 50 % of elderly patients are estimated 

to be colonized by ABU strains (Colgan et al., 2006). Despite ABU isolates frequently reach 

cell densities of >105 bacteria/ml urine, colonization of the urogenital tract usually occurs in 

these cases without symptoms as the urogenital epithelia are rarely damaged and no 

inflammation is induced (Lindberg et al., 1978; Wullt et al., 2003). Several virulence-

associated factors of uropathogenic E. coli that contribute to colonization of the urinary tract 

and symptomatic UTI have been well characterized. However, little is known about the 

virulence determinants of ABU isolates. Moreover, gene expression of asymptomatic isolates 

has not been studied in detail and there is no study concerning the host-driven bacterial 

evolution within the urinary tract, promoting bacteria to enter a commensal-like state. 

 

In the first part of this work, a more general approach was used. To learn more about the 

characteristics of ABU isolates that may account for the ABU lifestyle, the genome content 

and phenotypic traits of eleven ABU isolates were studied in detail and compared to those of 

uropathogenic and non-pathogenic E. coli isolates. Later, the ABU model E. coli strain 83972 

was used to analyze the genome flexibility and adaptive changes during human bladder 

colonisation. 

 

6.1. Asymptomatic bacteriuria is caused by a heterogeneous group of E. coli 
isolates  
 

Interestingly, ABU isolates represent a rather heterogeneous group of organisms with regard 

to their phylogenetic lineage and repertoire of typical virulence-associated genes of UPEC. 

Although the majority of strains tested belongs to the ECOR groups B2 and D to which UPEC 

can be usually affiliated, some isolates could be grouped to the ECOR groups A and B1. 

These lineages normally include non-pathogenic as well as intestinal pathogenic variants. 

Accordingly, and in contrast to the strains of ECOR group B2 and D, typical UPEC virulence-

associated genes could not be detected in these ABU isolates and their pathoarray CGH 

barcode differs markedly from those ABU strains which seem to be more closely related to 

UPEC (Fig. 10; Table 7; Table 9) 
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The ABU isolates could be allocated to different phylogenetic lineages and different clonal 

groups. These results demonstrate that asymptomatic bacteriuria is not caused by one 

specialized clonal group of organisms. Instead, bacteria with different independent 

phylogenetic backgrounds are able to efficiently colonize the urinary tract without causing 

symptoms. Furthermore, comparison of the genome structure accessed by PFGE uncovered 

that even strains falling into the same ST differed markedly in the genome structure. It 

underlines the diversity and genome flexibility among strains causing ABU. 

 

6.2. Impaired ability of ABU isolates to express typical UPEC virulence 
factors 
 

As expected, the ABU strains of ECOR group B2 and D exhibited a pathoarray CGH barcode 

similar to those of archetypal UPEC variants which cause symptomatic UTI. This indicates 

that UPEC virulence-associated genes are present in the genomes of these ABU isolates. 

Their inability to cause symptomatic UTI cannot be attributed to the absence of such 

virulence-associated genes per se.  

 

Therefore, comparison of the foc determinants of the F1C-fimbriae-negative ABU strains 

83972 and 27 relative to F1C fimbriae-positive isolate 37 led to the discovery that one 

particular amino acid exchange in FocD (glutamine 472 → leucine) is responsible for the loss 

of the usher activity of FocD and thus the absence of functional F1C fimbriae in strains 83972 

and 27 (Table 10). This glutamine residue is conserved among the related usher subunits 

FocD, FimD and SfaF (Fig. 15) and its exchange probably results in an altered conformation 

or stability of the usher protein thus impairing its function.  

 

The accumulation of point mutations resulting in a loss of gene function is further 

corroborated by the DNA sequence comparison of pap determinants coding for P fimbriae. P 

fimbriae are considered as one of the most important virulence factors contributing to UTI 

(Plos et al., 1995; Vaisanen et al., 1981). Five out of eleven isolates tested were pap-positive 

(Table 9). Interestingly only one strain, ABU64, was able to express functional P fimbriae. 

The fact that P fimbriae trigger mucosal inflammatory responses to Escherichia coli in the 

human urinary tract (Bergsten et al., 2005) may explain the frequency of P-fimbrial 

inactivation in ABU isolates.  
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The type 1 fimbriae-encoding gene cluster, besides its inactivation by point mutations in 

strains 5 and 57, seems to represent a rather unstable genomic region involved in partial 

chromosomal deletions resulting in loss of a central 4.2-kb part of the operon or in larger 29-

kb deletions including adjacent DNA stretches. It is an interesting observation that in all cases 

of partial fim gene cluster deletion the fimH gene which is frequently used in generally 

accepted screening tests as a marker for the presence of the type 1 fimbrial gene cluster 

(Johnson and Stell, 2000), stays intact. Furthermore, it is tempting to speculate that also the 

loss of functional type 1 fimbriae may be correlated with the ABU lifestyle as it is non-

functional in the majority of strains tested.  

 

The comparison of other virulence-associated characteristics such as motility, LPS phenotype 

and biofilm formation further supports the finding that E. coli ABU isolates are not 

characterized by a common phenotypic appearance. Consequently, the establishment of 

asymptomatic bacteriuria not solely depends on a specific set of bacterial traits, but results 

from different bacterial colonization strategies. In this context, it has been recently suggested, 

that increased growth rates in urine enable ABU isolate 83972 to outcompete, e.g. 

uropathogenic E. coli isolates from symptomatic urinary tract infections (Roos et al., 2006b). 

However, growth characteristics of examined eleven ABU isolates were very diverse, in a 

range from the non-pathogenic strain K-12 to that of 83972, underlying complexity of the 

ABU phenomena.   

 

The detailed phenotypic and genotypic comparison demonstrated, that important virulence-

associated determinants such as those coding for α-hemolysin (hly), type 1- fimbriae (fim), P-

fimbriae (pap) and F1C-fimbriae (foc) have been frequently inactivated in ABU isolates by 

point mutations and (IS element-mediated) deletions. These findings are in accordance with 

results published recently by Klemm and co-workers who described the inactivation of 

fimbrial adhesin determinants in ABU model strain 83972 by point mutations and deletions 

(Klemm et al., 2006; Roos et al., 2006a). Our data suggest that, in addition to the bacterial 

traits, also host factors which allow urinary tract colonization by less specialized E. coli 

variants and even by those harbouring a functional hly and pap determinant contribute to the 

development of asymptomatic bacteriuria.  

 

The loss of virulence factors has been shown to reduce the host response to infection in 

animal models and specifically, the loss of fimbriae decreases the innate host response and 
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bacterial clearance from the urinary tract. More than 80 % of UPEC strains express P 

fimbriae, 14-30 % of UPEC strains express F1C fimbriae (Pere et al., 1987) and type 1 

fimbrial expression is quite frequent. P fimbriae enhance the establishment of bacteriuria and 

trigger the innate defence by stimulating the production of cytokines, which orchestrate the 

subsequent recruitment of inflammatory cells. Type 1 fimbriae have a similar function in mice 

and have also been shown to enhance intracellular persistence in the mouse bladder mucosa, 

but these effects have not been reproduced in the human urinary tract (Bergsten et al., 2005; 

Bergsten et al., 2007; Hultgren et al., 1985). The weak host response to ABU is therefore 

consistent with the loss of adherence and functional fimbriae. Our results thus suggest that the 

host response may drive co-evolution, and that virulence-associated genes with pro-

inflammatory effects may be targeted for inactivation. In this way, ABU isolates may succeed 

in persisting without inducing a bactericidal inflammatory response. 

 

Classical studies (Haldane, 1949) proposed that microbes evolve to increase their virulence. 

The theory was based mainly on the observation that virulence increases pathogen 

transmission between hosts thereby increasing the number of available multiplication sites for 

the microbe. Virulence for the urinary tract may in part fit this theory, but does not mainly 

serve to increase the number of infected hosts, but rather the number of sites in a given host. 

By expressing fimbriae and other virulence factors, UPEC establish a monoculture in the 

urinary tract, with less competition than in the complex and competitive intestinal microflora. 

Unfortunately, virulence is only partially successful, due to the brief time window between 

the establishment of bacteriuria and the activation of a host defence, which in most cases 

eliminates the infection. ABU is an interesting model to study the evolution of commensalism 

rather than virulence. The ABU strains, in contrast, avoid provoking a host response that leads 

to their elimination and instead, they establish long-term persistence. The loss of virulence 

may therefore be a preferred evolutionary strategy and there may be positive selection for 

variants, which are adapted for growth in the urinary tract. Advantages include a rich source 

of nutrients and the potential for transmission to new hosts. This is in contrast to acute 

pyelonephritis, which is associated with mortality, premature delivery and reduced fertility 

and thus with a potential loss of the ecologic niche. Our results clearly support the notion of 

reductive evolution as an attenuation mechanism converting virulent uropathogenic E. coli to 

asymptomatic carrier strains. While there was no common or specific set of genes that was 

inactivated or lost by all ABU isolates relative to virulent UPEC, the ECOR group B2 and D 
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isolates showed distinct mutations in virulence-associated genes rather than a large overall 

genome loss, which is consistent with an ongoing host-bacterial evolution. 

 

6.3. Genome reduction and evolution of ST 73 ABU strains 
 

This study suggests that ABU is caused by E. coli strains of different backgrounds, which 

share the ability to establish bacteriuria and to persist in the urinary tract, but the molecular 

details are poorly understood. Sequence type 73 represents an important and successful 

phylogenetic lineage within ECOR group B2, which also includes the prototypic UPEC strain 

E. coli CFT073 and the non-pathogenic E. coli strain Nissle 1917. The genomic and 

phenotypic diversity among members of ST73 reflects the genome plasticity of E. coli. 

Although four ABU strains as well as UPEC isolate CFT073 and non-pathogenic strain Nissle 

1917 belong to the same ST, they differ in the presence of functional fimbrial determinants as 

well as in their LPS and hemolytic phenotype (Grozdanov et al., 2002; Grozdanov et al., 

2004; Welch et al., 2002). The DNA sequence diversity of their fim, pap and foc genes is 

consistent with the phenotypic heterogeneity within this group of identical or very closely 

related organisms. However, genome size assessment could show that differences in between 

isolates exist.  Accordingly, the E. coli ST73 includes highly virulent uropathogenic, ABU as 

well as non-pathogenic variants, which may have arisen from a common ancestor by 

reductive evolution (Fig. 50). Our results confirm recent findings (Johnson et al., 2006; Wirth 

et al., 2006), that the current MLST schemes do not reliably predict the genotypes or 

phenotypes of individual isolates. 
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Fig. 50: Geno- and phenotypic diversity among closely related members of E. coli clonal group (ST 
73). The high E. coli genome plasticity results in a marked phenotypic variability among individual 
members of the same sequence type, which thus includes pathogenic and non-pathogenic variants. 
Genome reduction/loss of function contributes to the evolution of these ABU variants from 
uropathogenic ancestors. ST, sequence type; fim, type 1 fimbrial determinant; pap, P fimbrial 
determinant; papG, P fimbrial adhesin encoding gene; foc, F1C fimbrial determinant; focD, F1C 
fimbrial usher encoding gene.  

 

 

6.4. Host immune response during bacterial colonisation 
 

ABU development is affected by the quality of the host response. In the murine UTI model, 

an ABU-like state is created when the innate immune response is disturbed. The innate 

response is controlled by TLR4 and mutations, which disturb TLR4 signalling, result in an 

asymptomatic carrier state resembling human ABU. The infected mice fail to recruit the 

inflammatory cells, which are crucial for bacterial clearance (Frendeus et al., 2001a; Frendeus 

et al., 2001b; Hagberg et al., 1984) and as a result, bacteria persist in the urinary tract. In 

another study, the response of human epithelial cells, obtained from urinary tract surgery, to 

infection with either fimbriated or non-fimbriated bacteria was examined (Samuelsson et al., 

2004). It was shown that production of IL 6 and IL 8 correlated with bacterial fimbriation. 

Human uroepithelial cells possess the molecular machinery to respond to UPEC. It was 

speculated that differential expression of the membrane-bound receptors regulates its 

sensitivity to infection and allows discrimination between more-virulent (UPEC) and less-

virulent (ABU) strains. Therefore, the combination of the expression of different bacterial 
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surface-associated molecules and the host ability to sense them is critical for the development 

of symptoms and bacterial clearance or the asymptomatic carrier state. 

 

The lack of inflammation prevents the symptoms and tissue damage that are associated with 

symptomatic UTI in a fully responsive host. Recently, children with ABU were shown to 

express lower amounts of TLR4 than controls without a history of UTI and children with 

primary ABU had even lower levels than those who had an ABU recurrence after a prior 

symptomatic UTI episode (Ragnarsdottir et al., 2007). The TLR4 variations add an essential 

variable to the understanding of ABU. Independently of the host genetics, a “commensal” 

ABU strain would not be expected to cause symptomatic UTI, but a more virulent strain 

might cause symptoms and an attenuating host response in patients with normal TLR4 

expression, would eventually lead to ABU. Patients with low TLR4 levels would be expected 

to have a reduced innate response to infection, and would develop ABU also upon infection 

by more virulent. A good example for such strain is ABU 64, which in contrast to the other 

examined isolates was able to express many UPEC-associated virulence factors (Table 9). 

 

Bacteria were reported to actively modulate host immune response (Klumpp et al., 2001; 

Klumpp et al., 2006). UPEC strain NU14 suppresses both TNF-α- and LPS-mediated NF-KB 

activation and IL 6 secretion in urothelial cell cultures. Additionally, NU14 can inhibit IL 6 

secretion induced by nonsuppressor strain K-12 strain from urothelial cells in a mixed culture. 

Furthermore, examination of a panel of clinical E. coli isolates, broadly representing different 

phylogenetic groups, revealed that 15 of 17 strains also possessed the ability to suppress 

cytokine secretion (Billips et al., 2007). In addition, modulation of cytokine secretion was 

independent of the presence of type 1 fimbriae and 21 other known virulence factors. Another 

example how bacteria subvert host defences is expression of TIR (Toll/interlucin-1 receptor) 

domain containing proteins (Tcps). These proteins were found to be common in the virulent 

UPEC and were termed TcpC. TcpC acts by inhibiting Toll-like receptor (TLR) and myeloid 

differentiation factor 88 (MyD88) specific signalling, thus suppressing innate immunity and 

increasing virulence (Cirl et al., 2008).  

 

Asymptomatic bacteriuria, i.e. colonization of the urinary tract without causing significant 

host responses could be a combination of different strategies. First of all, it is patient-

dependent, and as already mentioned, due to variations of the uroepithelial host receptors 

(Ragnarsdottir et al., 2007; Samuelsson et al., 2004). Secondly, as a result of this study 
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(Zdziarski et al., 2008), bacteria might prevent recognition by their host and subsequent 

innate immune response activation due to point mutations in genes encoding for virulence 

factors.  Finally, ABU isolates might actively modulate the immune system by expressing so 

far unknown molecules, which are independent from still functional or already deactivated 

virulence factors. A high diversity among ABU strains suggests that a successful ABU state is 

a sophisticated process and is a combination of above mentioned components.  Therefore, 

future experiments should include sequencing of ABU genomes, looking for interkingdom 

crosstalk and a more detailed characterisation of ABU isolates regarding host response 

modulation. 

 

6.5. Host-bacterium interactions 
 

Already in 1989, Hansson and colleagues reported that long term carriage of bacteria in the 

urinary tract seemed to induce changes in bacterial surface antigens. However, at that time 

methods to analyse bacterial relatedness were not yet very well developed. Using multilocus 

enzyme electrophoresis and O antigen analysis they found that 10 out of 25 O-typeable strains 

converted to non-typeable while retaining the same electrophoretic type. It was suggested that 

the loss of surface antigens occurs during long term exposure of E. coli to the components of 

the urinary tract. This study was a consequence of the discovery that untreated asymptomatic 

bacteriuria in young school girls protected against invasion by other bacterial strains, often 

leading to symptomatic infections (Lindberg et al., 1978; Savage et al., 1975). Interestingly, 

in the next years one of the isolates, E. coli strain 83972, was used for deliberate patient 

colonisation (Andersson et al., 1991; Sunden et al., 2006). Thanks to the close collaboration 

with Catharina Svanborg and Björn Wullt (Lund), the consequences of host–bacterium 

interaction could be analyzed in more details. 

 

6.5.1. Bacterial variability and host response 
 

Consecutive re-isolates of strain 83972 derived from the patient colonisation study were 

analysed regarding their genome structure. It turned out that several bacterial clones have 

changed their restriction pattern indicative of DNA rearrangements, deletions or point 

mutations. One of the frequently observed DNA modifications are point mutations resulting 

in single nucleotide polymorphisms (SNPs). It is rather difficult to detect SNPs by the PFGE 



Discussion 
 

149 
 

approach, because it would then have to be located in the restriction site of the used enzyme. 

So far, only genome sequencing allows detection of unknown point mutations. However, in 

the genomics era with sequencing techniques becoming cheaper and faster, this might give us 

more insights into bacterial microevolution during host colonisation. Second, and most likely 

easier to detect by genomic fingerprints are DNA rearrangements mediated by mobile DNA 

elements. This includes IS element transposition, prophage insertions and excisions as well  

as acquisition  of larger DNA stretches called genomic or pathogenicity islands (Dobrindt et 

al., 2004; Hacker and Kaper, 2000).  

 

When bacteria enter a new host, as it was also the case for strain 83972 during deliberate 

colonisation studies, they enter a new environment and must start to grow and reproduce. The 

growth rate, the same colonization success, depends on several factors. Among the most 

important are the availability of nutrients, physical conditions like urodynamics in the bladder 

(Wullt et al., 1998), competitiveness against other microbes and antimicrobial host defences 

(Bergsten et al., 2005; Wullt et al., 2003). Even if the bacterium is able to initially multiply, 

due to its former life in the urinary bladder of a young girl for three years (Andersson et al., 

1991), its fitness is probably be suboptimal in the new niche. Optimal fitness has to be 

reached through a process of adaptation within this environment by modifications of pre-

existing genes. Thus, point mutations, gene loss and acquisition, IS element-mediated 

transposition may contribute to improve bacterial fitness. The cycles of natural selection will 

be repeated until the bacterium reaches an optimal adaptation state in the bladder of a 

currently colonised patient.  

 

Bacterial persistence in the urinary tract is not without an effect on the bladder physiology. 

Depending on the bacterial epitope, innate immune response is induced to a certain extent. 

Uropathogenic E. coli strains activate IL 6 and IL 8 chemokines. Activation is much stronger 

when bacteria express functional fimbriae, however, non-fimbriated isolates cause lower and 

delayed response (Samuelsson et al., 2004). Likely, in most cases asymptomatic bacteriuria 

isolates belong to the second group of ‘activators’. The same bacterium might have distinct 

activating abilities, what could be seen among colonized patients with strain 83972 (Fig. 21 

and Fig. 22), where the mean of IL 8 expression was very diverse, and in the strongest 

‘responder’ was over 8-fold higher than in the lowest one. On the other hand, the level of 

immune response may vary due to patients susceptibility to UTI and theirs prelevance to a 

group of low- or high-responders (Svanborg et al., 2006).   
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IL 6 may cause fever and triggers the acute phase response, while IL 8 recruits inflammatory 

cells to the site of infection (Hedges et al., 1995). The most important are neutrophils (PMN), 

which play a pivotal role in host defence against microbial infection (Engel et al., 2006; 

Haraoka et al., 1999). In response to pathogens, neutrophils adhere to the endothelium and 

transmigrate into the infected tissue, where their activation induces the production of nitric 

oxide (NO) and release of granular enzymes that eliminate the intruding pathogen. Nitric 

oxide synthesise (iNOS) from PMNs is 43-fold up-regulated in patients with urinary tract 

infections when compared to healthy individuals (Wheeler et al., 1997), what results in 30-

50 times higher NO concentrations in urine (Lundberg et al., 1996). Klemm and co-workers 

corroborated these results, finding genes involved in NO protection and metabolism to be 

induced in ABU strain 83972 upon intravesical growth in vivo (Roos and Klemm, 2006).  

Moreover, urine contains significant amounts of nitrate (Tsikas et al., 1994) and anaerobic 

NO3 metabolism results in the generation of additional nitric oxide. It is well documented, 

that nitrosating agents produce mutagenic lesions (Weiss, 2006). Therefore, regarding the 

frequent occurrence of mutations in the genomes of certain ABU isolates which are not 

mutators by themselves, it is tempting to speculate that prolonged growth in urine and 

exposure to immune response promotes the mutation rate thus being a driving force for the 

development of the ABU lifestyle and evolution within the urinary tract. 

 

The current approach, where the same bacterium was subjected to interaction with multiple 

human hosts, further corroborates this hypothesis. Numerous changes in the genome structure 

of consecutive re-isolates derived from the human colonisation study imply the importance of 

interactions with the host during bacterial evolution. Furthermore, genome structure of re-

isolates from the continuous flow culture, where strain 83972 was propagated without host 

contact, was not affected. However, two of four bacterial populations were propagated with 

addition of nitric oxide. Altogether, the results indicate that not only prolonged growth in 

urine and the presence of nitric oxide but also direct contact with the host tissues and selective 

pressure promote bacterial variability. Regarding the presence of nitric oxide in the 

continuous culture, it would need further investigation since it is difficult to stably provide the 

required concentration of this extremely instable compound.  Moreover, the mutagenic effect 

of NO is rather due to the occurrence of point mutations than to bigger DNA rearrangements 

detectable by PFGE and final conclusions can be drawn after the analysis of the genome 

sequences of bacteria grown with and without contact with the human host.  
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Taken together, so far not well-characterized host factors play an important role in evolution 

of bacterial commensalism within the urinary tract. Point mutations and other DNA 

rearrangements, unless they are deleterious, contribute to adaptation and survival of 

asymptomatic E. coli in the urinary bladder environment. Without doubt, positive selection of 

clones which do not activate a strong immune response favours bacteria which are less 

aggressive to the host. Moreover, detection of the genomic regions subjected to host-driven 

mutagenesis might help to discover new potential drug targets.  

 

6.5.2. Flagella expression / motility 
 

Although E. coli strain 83972 has been characterized in many details regarding the expression 

of different fimbriae (Klemm et al., 2006; Roos et al., 2006a; Zdziarski et al., 2008), not 

much is known about flagella expression by this strain. Both animal and human in vivo 

transcription studies indicate that motility is down-regulated during E. coli bladder 

colonisation (Roos and Klemm, 2006; Snyder et al., 2004). However, flagellum-mediated 

motility/chemotaxis was proven to be not required but beneficial during colonization of the 

urinary tract by contribution to the fitness of the bacterium (Lane et al., 2005). The parent 

strain 83972 used for both the human colonization study and the in vitro “2000 generation 

experiment” is very little motile. Whereas it was found that several in vivo re-isolates were 

characterized by different degrees of motility suggesting that its genetic determinants is intact 

and is subjected to active regulation. Moreover, bacteria grown in vitro in urine exhibited 

flagella up-regulation in a few cases, while none of the LB-grown re-isolates exhibited this 

phenotype. 

 

The flagella was shown to stimulate IL 8 production (Zhou et al., 2003). Therefore, in 

accordance with the model of ABU lifestyle where immune response activation is avoided, in 

most re-isolates some weak motility could be observed. Interestingly, close to the time points 

when most in vivo re-isolates with up-regulated flagella expression were found, host response 

was increased. Since in many cases only a few isolates from a certain time point were 

analysed, it is difficult to estimate how much of the bacterial population in the bladder is 

represented by the same phenotype. Because adhesion is not necessary for persistence of 

bacteria in the urinary tract (Andersson et al., 1991), other fitness factors might be more 

important. Heterogeneous cultures with regard to motility, like in the microfermenters, may 
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be advantageous for the ABU strain as urodynamic defects of colonized patients support 

colonisation with non-virulent strain 83972 (Wullt et al., 1998). A mixed bacterial population 

with a low percentage of motile individuals (minimal host response activation) could play an 

important role in bladder colonisation, especially at voiding time points. Because strain 83972 

does not adhere to the bladder tissue, the time shortly after voiding might resemble initial 

steps of urinary tract colonisation, for which flagella was reported to be beneficial (Lane et 

al., 2005). Therefore, future studies are needed to analyze the function and importance of this 

still not deactivated feature of strain 83972 for the establishment of asymptomatic bacteriuria. 
 

6.5.3. Biofilm formation 
 

Another suggested mechanism how bacteria colonise the urinary tract is biofilm formation.  

Whereas in nature bacteria often exist within biofilms (Costerton et al., 1999), formation of 

this structures within the urinary tract is still questionable. Although biofilm formation on 

abiotic surfaces is well reported and of particular interest in medical field, not much is known 

about biofilm structures in vivo within the bladder. Intracellular bacterial communities (IBC) 

are considered as one of the biofilm forms and rather restricted to pathogenic bacteria 

expressing type 1 fimbriae and flagellum (Anderson et al., 2004). Moreover, it has been 

reported that in vitro biofilm formation of a significant number of wild type E. coli isolates 

could not be correlated to any of the pathotypes and is dependent on the used medium 

(Reisner et al., 2006). On the other hand, Klemm and co-workers reported that asymptomatic 

bacteria isolates form significantly more biofilm than other uropathogenic E. coli strains and 

propose it to be the favourable strategy for successful ABU lifestyle (Ferrieres et al., 2007; 

Hancock et al., 2007). 

 

In contrast to that, our study did not reveal significant differences in biofilm formation of 

uropathogenic and ABU isolates. Moreover, the wild type strain 83972, being a relatively 

good biofilm former, did not preserve this phenotype after long term persistence within the 

bladder. Only one re-isolate was shown to be better and two other were nearly as good 

biofilm formers as their parent strain. However, this situation was observed only in human 

urine and already in laboratory medium M63 the differences could not be observed. This also 

further corroborates the results of Reisner and colleagues (2006). The transcriptome analysis 

of in vivo re-isolates confirmed luxS (ygaG), coding for protein involved in autoinducer 2 (AI-

2) biosynthesis, to be up-regulated. AI-2 is a quorum sensing (QS) molecule that also 
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negatively controls biofilm formation (Surette et al., 1999). While it has been proposed that 

asymptomatic bacteriuria isolates express more biofilm than symptomatic UPEC strains 

which is required for biofilm formation to colonise the bladder (Hancock and Klemm, 2007), 

our data show a reduction in this phenotype upon prolonged contact with the host. In 

agreement with that, biofilm formation of re-isolates derived from the ‘host free’ experiment 

was at least as good as that of the parent strain, sometimes even better.  

 

As already mentioned, the gene ygaG is involved in methionine metabolism, which was 

reported to be induced upon nitrosative stress (Flatley et al., 2005; Jarboe et al., 2008). This 

condition might be encountered by bacteria either during denitrification or NO-mediated host 

defence. Biofilm forming bacteria are in a very close contact with the host tissue, what 

increase the possibility of activation of the host immune system, the IL 8 recruit inflammatory 

cells to the site of infection and toxic nitric oxide is released (Hedges et al., 1995). As ABU 

isolates rather resemble commensal bacteria, an unnecessary immune system activation 

should be avoided. Interestingly, it was shown that NO causes dispersal of Pseudomons 

aeruginosa and Staphylococcus aureus biofilms (Barraud et al., 2006; Schlag et al., 2007). 

Because NO concentrations in the bladder are rather high and further elevated when host 

defence is activated, it is expected that asymptomatic bacteria will not form much biofilm and 

rather live as planktonic cells. Furthermore, our results of the microfermenter experiments 

support this hypothesis, as they showed a significant reduction in biofilm formation after 

addition of nitric oxide to the medium.  

 

6.5.4. Growth characteristics 
 

Presumably, the fast growth and efficient utilization of resources available in urine belong to 

the most important factors enabling ABU isolates to inhabit the urinary tract. In healthy 

adults, normal urine production ranges from 1-2 litres per day and single micturition results in 

release of 200-400 ml of urine. Following micturition, about 1 ml of urine remains in the 

bladder and might function as a sufficient inoculum for repeated bladder colonization until the 

next voiding episode. When growth rate is high enough so that the number of proliferating 

bacteria exceeds the number of those which are lost due to micturition, surface-associated 

growth is not needed to persist within the bladder (Gordon and Riley, 1992). The early phase 

of colonisation is critical in successful establishment of bacteriuria, because at that time point 

the innate immune system might be able to clear the bacteria. Therefore, fast growth in the 
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early exponential phase in combination with low host defence activation might be a 

successful strategy to establish a permanent asymptomatic bacteriuria.  

 

Indeed, the eleven tested ABU isolates exhibited good growth rates in vitro in human urine, 

however, varied from strain to strain. Moreover, the analysis of the re-isolates of strain 83972 

from the human colonisation study implicated that, depending on the patient, nutrients 

availability and the quality of the host response, these strains might not take advantage of 

their growth potential. The results demonstrate, that multiple in vivo re-isolates exhibited 

slower growth rates than their parent strain and in many cases different re-isolates from the 

same patient exhibited similar growth rates. This further underlines the importance of the host 

background. Without doubt, the extent of the host response is one of the most important 

factors for the modulation of bacterial growth in the bladder. ABU isolate 83972 does also 

induce a human immune response to a certain extent (C. Svanborg, personal communication). 

If bacteria grow too fast, their number might exceed a threshold that is considered to be 

dangerous and they will thus be subsequently cleared. As a consequence, the host defence, in 

case of asymptomatic bacteriuria, might function as a negative feedback and regulate 

commensalism in the urinary tract.  

 

6.6. Metabolic activity of ABU isolates 
 

Another critical and limiting factor during bacterial growth in the bladder is nutrient 

availability. The metabolic variability in an individuum and between different persons results 

in significant differences in the urine composition not only in between but also in the same 

host. Different reasons like genetic differences, age and lifestyle, nutrition, and exposure to 

specific chemicals result in a wide variety of urine compositions in individual patients (Rezzi 

et al., 2007; Stella et al., 2006). Changes in diet, day- and night-time, and different stages of 

hormonal cycle contribute to inter-individual fluctuations (Rezzi et al., 2007).  

 

Bacterial metabolic networks have to be adjusted to grow fast and optimally utilize nutrients 

present in the urine. This is achieved in many cases by transcriptional regulation of gene 

expression. Stable alterations in the expression of metabolic pathways, even after in vitro 

cultivation of re-isolates in urine, indicate that also stable DNA modifications (e.g. point 

mutations, insertions, deletion) contribute to this process. Transcriptome analysis of the 



Discussion 
 

155 
 

chosen re-isolates uncovered significant differences not only between in vivo and in vitro 

growth conditions, but also among in vivo re-isolates. Bacteria in individual hosts might 

approach slightly different strategies how to supply enough energy for fast proliferation. This 

has been very well demonstrated by the comparison of the transcriptomes of re-isolates SR12 

and CK12.  

 

Naturally occurring sugar acids such as galacturonate from pectin and gluconate and 

ketogluconate from muscle tissues are present in the food we eat (Peekhaus and Conway, 

1998). The bladder urothelium is covered by a thick layer of protective glycoprotein and is 

rich in N-acetylglucosoamine, N-acetylgalactosamine, sialic acid and lesser amounts of 

glucuronate and galacturonate. In line with that, the in vivo re-isolate SR12 possesses up-

regulated pathways of uptake and metabolism many of these sugars.  It has been already 

reported that during growth in urine E. coli induces expression of genes involved in uptake 

and utilization of the sugar acids galacturonate, glucuronate and galactonate (Roos et al., 

2006b). We found out, that the induction of these genes is not only de-regulated because of 

growth in urine but also depends on the patient and might be connected to the diet and 

physiological state.  

 

Another example of an alternative nutritional strategy of strain 83972 during growth in the 

bladder is the degradation of ribo- and deoxyribonucleosides. This is apparent from the 

proteome and transcriptome comparison of in vivo re-isolate CK12 and its parent strain 

83972. Nucleic acids are highly abundant in the urine when many epithelial cells undergo 

apoptosis and their DNA is degraded. Also bacterial lysis is a good source of freely available 

nucleic acids in the urine. In the re-isolate, the gene udp and its product uridine phosphorylase 

were found to be strongly up-regulated by transcriptome and cytoplasmic proteome 

comparison, respectively. This enzyme catalyses phosphorylation of uridine followed by the 

conversion to ribose and uracil. Uridine diphosphate serves as a glycosyl carrier in many 

important reactions like glucuronidation, where UDP-glucuronic acid (glucuronic acid linked 

via a glycosidic bond to uridine diphosphate) is an intermediate in the process (King et al., 

2000). In the animal body, glucuronic acid is often linked to the xenobiotic metabolism of 

substances such as drugs, pollutants, bilirubin, androgens, estrogens, mineralocorticoids, 

glucocorticoids, fatty acid derivatives, retinoids, and bile acids. The substances resulting from 

glucuronidation are known as glucuronides (or glucuronosides) and are typically much more 

water-soluble than the non-glucuronic acid-containing substance from which they were 
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originally synthesised. The human body uses glucuronidation to make a large variety of 

substances more water-soluble, and in this way, allow for their subsequent elimination from 

the body upon urination (King et al., 2000). Most likely bacteria might be able to employ 

enzymes like Udp to use uridine as a carbon source via the pentose phosphate pathway.  

 

One more example how bacteria utilize compounds from urine as a carbon source is D-serine 

metabolism. D-serine is excreted in human urine at concentrations ranging from 3.0 to 40 µg 

ml-1 (Brückner et al., 1994). An epidemiological study demonstrated that the dsdA gene 

encoding for the D-serine deaminase is more frequently present in uropathogenic than in 

faecal isolates (Roesch et al., 2003). Indeed, the asymptomatic strain 83972 possesses the 

dsdA gene and, depending on the colonized host, might use it to certain extent. In case of re-

isolate SR12, transcriptome analysis demonstrated that the genes dsdA and dsdX (encoding 

for D-serine transport) were significantly up-regulated compared to the parent strain 83972. 

Moreover, genes coding for proteins involved in L-serine metabolism were found to be down-

regulated indicating that D-serine but not L-serine is used by E. coli strain SR12 as a carbon 

source. Interestingly, D-serine inhibits in higher concentrations growth of E. coli by blocking 

the L-serine and pantothenate biosynthesis (Cosloy and McFall, 1973). Therefore, up-

regulation of D-serine catabolism by E. coli strains colonizing the urinary tract might have a 

dual function: nutrition and detoxification.  

 

Recent findings further underline the importance of D-serine during urinary tract colonisation 

in addition to the nutritional aspect. In vitro transcriptome analysis of UPEC strain CF073 and 

its dsdA mutant during murine infection revealed that a set of genes coding for virulence 

factors including P- and F1C fimbriae as well as alpha-hemolysin were up-regulated in the 

mutant. Moreover the dsdA mutant was hyperflagellated and outcompetes the wild type strain 

in the murine urinary tract (Haugen et al., 2007). dsdA expression is phase variable and this 

switch is linked to the expression of type 1 fimbriae and reciprocal to motility (Anfora et al., 

2007). Altogether, these findings underline the importance of serine homeostasis in the 

bacterial cell during growth in the urinary tract. According to this model, already inactivated 

virulence-associated genes in ABU strain 83972 would be further down-regulated due to up-

regulation of dsdA expression. Furthermore, increased D-serine transport into the cell would 

explain the increased flagella expression in re-isolate SR12.  
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D-serine deamination results in pyruvate and ammonia (Roesch et al., 2003) and the latter 

product can be used as a nitrogen source. In line with that, the transcriptome analysis of re-

isolate SR12 revealed along with the up-regulation of genes required for D-serine catabolism, 

induction of many genes involved in nitrogen homeostasis (Fig. 51). There are two 

physiologically independent pathways of ammonium assimilation in E. coli with glutamate 

and glutamine as primary products (Reitzer, 2003). Glutamate synthesis from α-ketoglutarate 

and ammonia (via the GDH pathway) is employed under energy-limited (presumably 

nitrogen-rich) conditions, whereas glutamine synthesis (via the GS-GOGAT pathway) is used 

under energy-rich conditions and consumes ATP (Helling, 1994). According to transcriptome 

data, the first pathway is particularly used by strain SR12 since the expression of glutamate 

dehydrogenase and glutamine synthetase-encoding genes was found to be up-regulated and 

down-regulated, respectively (Fig. 51). In addition, expression of the two-component system 

GlnGL, which is involved in response to nitrogen limitation and which positively regulates 

glutamine synthesis (Reitzer, 2003), was also found to be down-regulated on the 

transcriptional level. Moreover, transcriptome profiling uncovered glutamine transport to be 

repressed in strain SR12 relative to parent strain 83972. 
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Fig. 51: Model of D-serine catabolism and nitrogen assimilation in strain SR12. Red arrows indicate 
up-regulated, black down-regulated genes in strain SR12 when compared to strain 83972.  

 

Taken together, these data demonstrate that during growth in the urinary tract the E. coli 

metabolism and catabolism are efficiently adjusted to the specific nutrients supplied.  Strain 

83972 is able to take up and metabolize a number of sugars, sugar-derivatives and amino 

acids present in urine. Energy metabolism and nitrogen assimilation seem to be adjusted to 

the low energy and nitrogen-rich growth conditions in urine. 

 

6.7. Outer membrane protein profile and iron uptake 
 

For bacteria living within other organisms, the outer membrane is a critical barrier that 

directly interacts with the host components (Cullen et al., 2004). Depending on the bacterial 

colonization strategy, either many cell surface-associated proteins including adhesins will be 

expressed or only a minimal protein set that facilitates the acquisition of nutrients and 

macromolecules from the respective niche. E. coli associated with asymptomatic bacteriuria 

would be expected to fall into the second group because outer membrane proteins are known 
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to induce host response and immunogenic reactions (Hagan and Mobley, 2007). To 

characterise the expression of cell surface-associated structures, ABU strain 83972 was 

analysed with regard to the outer membrane protein (OMP) profile. 

 

2D gel electrophoresis (2D-GE) is a powerful tool to investigate the composition of protein 

fractions. Unfortunately, there are some drawbacks like protein solubility and their 

hydrophobic character. Another critical step is protein isolation (Molloy et al., 2000), as, 

depending on the cell lysis strategy, most of the loosely surface-associated proteins such as 

fimbrial components are removed and the remaining fraction consists of mainly integral 

OMPs. As the determinants coding for typical UPEC adhesins like F1C, P, type 1 fimbriae are 

non-functional in strain 83972 (Klemm et al., 2006; Roos et al., 2006a), and due to the 

bacterial cell lysis using the French press, it was not expected to detect these adhesins by 

means of 2D-GE. 

 

The three in vivo re-isolates (CK12, SR12 and KA25) and their parent strain 83972 exhibited 

very similar OMP profiles. Neverhtless, certain alterations in individual protein amounts were 

observed. Of the 18 detected proteins in parent strain 83972, eight proteins (FepA, FecA, 

FhuA, FhuE, ChuA, IutA, IroN and Iha) are known components of siderophore systems. 

Among the proteins which are not involved in iron uptake, OmpA and OmpC the major 

porins involved in diffusion and influx of nutrients into the periplasm (Garten et al., 1975) 

were the most abundant ones. This data further corroborate our expectations that the strain 

82972 is well adapted to growth in urine as an iron-limited medium. The expression of 

multiple iron uptake systems is therefore fundamental to efficiently grow in this niche 

(Andrews et al., 2003; Baumler et al., 1996; Torres and Payne, 1997).  

 

E. coli surface-exposed proteins are frequently anchored in the outer membrane and serve as 

antigens for the human immune system. It is expected that individual patients differ markedly 

in their efficiency to express defence mechanisms against bacteria. To analyse the impact of 

prolonged host-pathogen interaction, the outer membrane protein profile of the in vivo re-

isolates from individual patients were compared. The most abundant and rather constitutively 

expressed protein among the tested re-isolates was FepA, which is involved in transport of 

enterobactin-bound iron across the outer membrane (Sansom, 1999). The second most 

accumulated protein was IroN. In contrast to FepA, IroN amounts varied from strain to strain. 

Hagan and Mobley (2007) reported IroN to be immunogenic in mice. In the same study, the 
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proteins IutA, ChuA and Iha were mentioned to be antigenic in the murine model. We found 

out that IutA and Iha were differently expressed in the patients and that they were not 

expressed at all in re-isolate CK12. This shows that expression of multiple iron uptake 

systems in strain 83972 varies depending on the colonized host. Referring to the work of 

Hagan and Mobley (2007), many surface-associated proteins are immunogenic. Therefore, we 

propose that the quality of the host immune response plays an important role and directs the 

optimal expression of individual iron uptake systems under these conditions. 

 

6.8. Host defence-driven bacterial gene expression 
 
Changes in bacterial gene expression upon contact with the human host are intensely studied 

during the last years. This co-existence does also affect the host physiology. Even ABU 

isolates do induce host immune response, which involves chemokine production and 

neutrophile influx at the site of infection (Haraoka et al., 1999; Samuelsson et al., 2004). 

Neutrophiles are known to produce and release significant amounts of nitric oxide (NO), 

which is, however, also produced by other mammalian cells (Bogdan, 2001). Therefore, NO 

functions not only as an antimicrobial agent but also has a pleiotropic effect in the human 

body (i.e. signalling function) (Bogdan, 2001). It is interesting to understand how eukaryotic 

cells switch off these signals or protect themselves from NO and NO-related molecules 

produced for defence purposes. Recently, it has been shown that in eukaryotes the 

glutathione-dependent formaldehyde dehydrogenase (GS-FDH or ADH III) is required to 

control intracellular levels of both S-nitrosoglutathione (GSNO) and S-nitrosothiols (SNOs) 

(Liu et al., 2001). Moreover, the GS-FDH is conserved from humans to bacteria and the 

deletion the reductase-encoding gene in mice and yeast abolishes the GSNO-consuming 

activity and increases susceptibility to a nitrosative challenge.   

 

E. coli harbours the frmRAB gene cluster coding for the glutathione-dependent formaldehyde 

dehydrogenase and the S-formylglutathione hydrolase that were primary ascribed to 

formaldehyde detoxification. FrmR is predicted to be a negative regulator of the frmRAB 

operon. I addition to FrmB, E. coli possesses a second S-formylglutathione hydrolase encoded 

by yeiG, which in contrast to FrmB is constitutively transcribed (Gonzalez et al., 2006). 

Interestingly, the in vitro transcriptome analysis of the re-isolates from the human 

colonisation study revealed the frmRAB gene cluster to be de-regulated relative to the parent 
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strain. In two re-isolates (SR12 and KA25) these genes were found among the most strongly 

up-regulated genes when compared to their ancestor strain. Moreover, this observation was 

further corroborated on the protein level where FrmA and FrmB could be identified as the 

most up-regulated proteins in the cytoplasm when compared to strain 83972. These data 

indicate that the re-isolates SR12 and KA25 might have encountered during patient 

colonization conditions which demand either formaldehyde or nitric oxide detoxification.  

 

Many extensive studies regarding NO response faced by pathogens have shown a diverse 

number of genes to be affected (Flatley et al., 2005; Jarboe et al., 2008; Poole et al., 1996; 

Pullan et al., 2007). The gene hmpA coding for the NO-inducible flavohaemoglobin was 

found to be up-regulated in many bacteria during NO detoxification. In our study, we further 

corroborate these results, and demonstrate that prolonged exposure to host defence factors and 

most likely elevated concentrations of nitric oxide in the bladder lead to the up-regulation of 

hmpA expression in E. coli.  

 

The cytoplasmic protein profiles of the re-isolates SR12 and KA25 together with the 

transcriptome of re-isolate SR12 pinpointed a di-iron protein YtfE to be up-regulated when 

compared to the parent strain. Interestingly, growth E. coli ytfE mutants is impaired upon 

nitrosative stress and this effect was even stronger than for hmpA or norV mutants (Justino et 

al., 2005). NorV is a protein with non-heme di-iron site involved in NO detoxification 

(Gardner et al., 2002). Recent studies of the same working group revealed that YtfE is 

involved in iron-sulphur containing protein activity (Justino et al., 2007). Furthermore, YtfE 

is required during anaerobic respiration under iron-limiting conditions and is hypothesized to 

be involved in the biosynthesis and repair of iron-sulphur clusters. Thus, the comparison of in 

vivo re-isolates and the parent strain 83972 revealed another gene, ytfE, which is indirectly 

involved in stress response and NO detoxification during human bladder colonization.   

 

Chemostat-cultured E. coli exhibit distinct regulatory responses upon exposure to either NO 

or GSNO (Flatley et al., 2005; Pullan et al., 2007). While the genes hmpA and ytfE were 

described to be affected under both conditions, the Fnr and Fur regulon were exclusively de-

regulated during exposure to NO. The GSNO-specific response includes methionine 

biosynthesis, multidrug transport (mdtC) and amino acid transport (yhaO) (Pullan et al., 

2007). Analysis of the transcriptome of in vivo re-isolates indicated that the strains SR12 and 

KA25 exhibited, with minor exceptions, an expression pattern that resembled that of GSNO-
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exposed bacteria. While in strain SR12 none of the genes from Fnr and Fur regulon were de-

regulated, in strain KA25 transcript levels of the nrfHIEF gene cluster were up-regulated. In 

addition, norV and narV transcript levels were down-regulated. 

 

Interestingly, our study indicates for the first time that in E. coli methionine biosynthesis and 

protection against nitrosative stress might be linked to FrmA expression. As already 

mentioned above, FrmA (also designated as AdhC) belongs to the family of class III 

glutathione-dependent alcohol dehydrogenase and is reported to protect eukaryotic cells from 

antimicrobial nitric oxide (Hedberg et al., 2003; Liu et al., 2001). Kidd and colleagues (2007) 

discovered that the adhC gene in Haemophilus influenza is required for defence against 

nitrosative stress. Salmonella enterica mutants in adhC, however, were not impaired in NO 

detoxification (Bang et al., 2006). Up to date, nothing is known regarding the function of 

AdhC during urinary tract colonisation of E. coli, and therefore, a new model is proposed as 

follows (Fig. 52):  

 

 

Fig. 52: Model of nitric oxide detoxification based on hierarchical cluster analysis of genes differently 
de-regulated in in vivo re-isolates SR12 and KA25 relative to their parent strain 83972. The different 
genes and proteins found to be up-regulated in the transcriptome and proteome profiles of strains 
SR12 and KA25 are indicated in blue. Black dotted lines show known regulatory responses. Red 
dotted lines with a question mark indicate proposed new functional relationships. NO – nitric oxide, 
iNOS - inducible nitric oxide synthase, GSH – glutathione, GSNO - S-nitrosoglutathione, GSSG – 
glutathione disulphide, Hcy -  homocysteine. 
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It has been proven that NO and GSNO exhibit distinct chemical reactivities (Wink and 

Mitchell, 1998). NO is well soluble in water, diffuses easily through membranes and interacts 

with biomolecules within its immediate environment to form other reactive nitrogen species 

(RNS), such as GSNO and SNOs through interactions with glutathione (GSH) and thiols, 

respectively (Fang, 2004). GSNO has been shown to be dependent on the Dpp dipeptide ABC 

transporter (Abouhamad et al., 1991). The transcriptome analysis of in vivo re-isolates SR12 

and KA25 indicated, however, only one gene dppA from the entire dppABCDF operon to be 

up-regulated relative to strain 83972. Therefore, it is not clear whether in re-isolates SR12 and 

KA25 GSNO is only intracellularly formed by interaction of NO with GSH or whether it is 

also transported from the environment into the cell. The ex vivo character of the study 

increases the possibility of false-negative artefacts and future in situ experiments would be 

needed to address this question. 

 

Current experimental approaches tend to distinguish NO from GSNO response mechanisms 

(Flatley et al., 2005; Pullan et al., 2007). However, there are some implications that both of 

them take place at the same time depending on the redox state of the cell (Fang, 2004). Either 

imported or intracellularly formed GSNO nitrosates homocysteine, thereby withdrawing an 

intermediate product from the methionine biosynthetic pathway (Flatley et al., 2005). 

Homocysteine depletion results in free MetR, and this protein activates methionine 

biosynthesis and Hmp expression (Fig. 52). Hmp detoxifies nitric oxide. However, GSNO is 

still being formed and needs to be neutralized. Although, GSNO-induced gene expression has 

been analysed, it was not shown how this compound is metabolized by E. coli.  

 

Ammonia and glutathione disulphide (GSSG) are the main products of the AdhC enzyme. 

The yield depends on the free GSH pool in the cell (Liu et al., 2001), however, in the 

transcription profiles of in vivo re-isolates SR12 and KA25 the glutathione synthesis pathway 

was not affected. Interestingly, ammonium generated from the NO detoxification reaction 

might be incorporated to 2-oxoglutarate resulting in L-glutamate. This reaction is performed 

by methionine aminotransferase YbdL. 

 

Not much is known about the molecular basis of regulation of frmRAB expression. So far, 

only one report describes that an amber suppressor tRNA inactivates the repressor FrmR 

resulting in de-repression of the frmRAB operon (Herring and Blattner, 2004). These authors 

also identified another seven genes to be de-regulated by the same mechanism. Among those 
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were rbsDAC coding for proteins involved in ribose metabolism. However, the whole 

transcriptional unit consists of the rbsDACBKR genes. In our study only rbsB was 

significantly up-regulated, while the other genes were not de-regulated. Performed 

hierarchical cluster analysis of deregulated genes in strains SR12 and KA25 implies a 

functional relatedness of the metR, frmRAB, hmp and probably ybdL genes. Therefore, future 

studies are needed in order to uncover molecular mechanisms of frmA expression in E. coli.  

 

The expression level of this alcohol dehydrogenase in E. coli seems to be host-dependent. All 

analysed re-isolates from the same patient exhibited similar frmA transcript levels which 

varied from patient to patient. Interestingly, independent inoculation events of patient SR 

pinpointed that up-regulation of frmRAB transcription was not an accidental event and was 

not inherited to the next bacterial generations but occured upon exposure to the specific 

conditions existing in the bladder of patient SR.  

 

6.9. Implications and Outlook 
 

I this study, several aspects of asymptomatic bacteriuria were investigated. First of all, it was 

found that strains with different phylogenetic backgrounds have the ability to establish 

asymptomatic bacteriuria. Among those were strains that resembled rather commensal-like 

isolates as well as degenerated UPEC strains with inactivated virulence factors. It was also 

shown that ABU isolates belong frequently to a certain phylogenetic lineage (ST73), that also 

includes pathogenic and commensal strains. Furthermore, this study showed that the host 

plays an important role in bacterial micro-evolution. Future efforts might consider the detailed 

analysis based on complete genome sequences of several such closely related organisms and 

the identification of DNA regions that undergo modification upon exposure host defence 

mechanisms. This, in combination with drug development, might help to improve the quality 

of life of people frequently suffering from urinary tract infections.  

 

Another, very important implication of the presented study is the impact of host variability in 

the establishment of asymptomatic bacteriuria. It was documented that bacterial gene 

expression depends on the host background and is permanently regulated what allows the 

bacterium to persist in the bladder. Depending on the patient, E. coli strain 83972 was able to 
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take up and metabolize diverse carbon sources, thus being able to colonize this usually sterile 

niche and to avoid colonization by uropathogens causing symptomatic urinary tract infection.  

 

ABU strain 83972 was carefully characterized regarding many virulence and fitness factors, 

however, flagella has never been considered as an important factor during the establishment 

of asymptomatic bacteriuria. We were able to show that flagella are still functional and are 

expressed in several in vivo re-isolates. This supports its possible function during ABU. 

Thereby mutant analysis would be needed to define the importance of this still remaining 

intact bacterial surface-associated organelle. 

 

It has never been shown that host defence might trigger bacterial evolution. Here, due to the 

carefully designed study, we were able to show that in vivo growth in the human bladder but 

not in vitro growth in human urine triggered genomic changes in E. coli. Using single strains 

re-isolated from different host backgrounds bacterial co-evolution was captured. Future 

analyses should include the comparison of genome sequences of the parent strain and its 

consecutive in vivo re-isolates.  

 

Finally, the direct exposure of strain 83972 to host defence factors led to discovery that 

similar strategies of antimicrobial nitric oxide detoxification take place, both in humans and 

E. coli grown in the urinary tract. It has already been shown for Haemophilus influenza that 

AdhC is required for defence against nitrosative stress (Kidd et al., 2007) and this protein is 

conserved among many organisms (Liu et al., 2001), but it was never documented that 

uropathogenic or ABU E. coli isolates take advantage of it to detoxify reactive nitrogen 

species. Recently, Richardson et al. (2008) proved that Staphylococcus aureus, one of the 

most successful human pathogens, evades the antimicrobial activity of nitric oxide by 

expressing an NO-inducible L-lactate dehydrogenase (Ldh1), implicating the role of adaptive 

metabolism in microbial defence mechanisms. Therefore, much effort is needed to further 

assess the molecular basis of regulation of adhC expression by uropathogenic bacteria and its 

role during bladder colonisation.  

 

In summary, the presented work on the characterisation of asymptomatic bacteriuria E. coli 

isolates also addresses important aspects of commensalism, host-driven bacterial evolution 

and the impact of individual host repsonses during bladder colonisation.  
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8.2. Expression profiling data 
 

Data derived from expression profiling of three ABU 83972 in vivo re-isolates CK12, KA25 

and SR12 and one in vitro re-isolate 4.9, sorted according to their level of expression. 

Table 18/1: Genes with up-regulated expression in in vivo re-isolate SR12 
gene function ratio p-value 

fliC flagellin  8,66 0.001087 
frmA formaldehyde dehydrogenase, glutathione-dependent 6,42 0.003399 
fliM flagellar motor switch protein M  6,11 0.004536 
flgC flagellar basal-body rod protein C  6,10 0.050710 
flgB flagellar basal-body rod protein B  6,07 0.000233 
frmB predicted esterase  5,96 0.001933 
ygbK hypothetical protein  5,82 0.018833 
ygbK hypothetical protein  5,82 0.018833 
ydeN putative sulfatase ydeN precursor 5,71 0.009626 
ygbL hypothetical aldolase class II protein 5,64 0.018983 
fliI flagellum-specific ATP synthase  5,57 0.035347 
cheA fused chemotactic sensory histidine kinase  5,35 0.001679 
cheW purine-binding chemotaxis protein  5,34 0.001610 
fliL flagellar basal body-associated protein FliL  5,11 0.011405 
mglB transport of small molecules 5,03 0.029173 
araA L-arabinose isomerase  5,00 0.007611 
fliJ flagellar biosynthesis chaperone  4,96 0.012779 
fliZ FliZ protein 4,94 0.001242 
cheR protein-glutamate methyltransferase  4,90 0.029924 
yjhT hypothetical protein  4,76 0.017080 
frmR regulator protein that represses frmRAB operon  4,62 0.001138 
fliA flagellar biosynthesis sigma factor  4,58 0.001469 
motB flagellar motor protein MotB  4,49 0.000610 
ygbJ 6-phosphogluconate dehydrogenase 4,43 0.021442 
fliD flagellar capping protein  4,42 0.001895 
ygbN gluconate:H+ symporter, GntP family 4,38 0.042368 
rbsB D-ribose transporter subunit  4,38 0.011056 
yahK hypothetical zinc-type alcohol dehydrogenase 4,33 0.007739 
yeiC hypothetical sugar kinase  4,27 0.014557 
flgD flagellar basal body rod modification protein D  4,23 0.043625 
ybdL putative aminotransferase  4,23 0.001618 
yhjH EAL domain containing protein involved in flagellar function  4,18 0.037394 
flgF flagellar component of cell-proximal portion of basal-body rod  4,18 0.009644 
flgE flagellar hook protein E  4,16 0.012716 
yeiN hypothetical protein  4,14 0.017059 
dsdA D-serine dehydratase 4,07 0.063889 
lacA galactoside O-acetyltransferase  4,06 0.020097 
araD L-ribulose-5-phosphate 4-epimerase  4,04 0.006646 
araF L-arabinose transporter subunit  4,03 0.016067 
metA homoserine O-succinyltransferase  4,00 0.005343 
cheZ chemotaxis regulator, protein phosphatase for CheY  3,91 0.001710 
fliF flagellar M-ring protein  3,88 0.018288 
Tar methyl-accepting chemotaxis protein II  3,83 0.015660 
c0318  putative sugar-phosphate isomerase 3,80 0.040402 
fadH 2,4-dienoyl-CoA reductase 3,78 0.005511 
araG fused L-arabinose transporter  3,78 0.051022 
uidC predicted outer membrane porin protein  3,76 0.044296 
hmp fused nitric oxide dioxygenase/dihydropteridine reductase 2  3,68 0.000649 
c1273  antigen 43 precursor 3,68 0.044683 
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Table 18/2: Genes with up-regulated expression in in vivo re-isolate SR12 
gene function ratio p-value 

yjhS hypothetical protein  3,62 0.014845 
araB ribulokinase  3,62 0.018031 
metR DNA-binding transcriptional activator, homocysteine-binding  3,61 0.005323 

araE arabinose transporter  3,49 0.029326 
ydeU conserved protein, predicted pseudogene  3,47 0.003416 
flgN export chaperone for FlgK and FlgL  3,45 0.000976 
flgA flagellar basal body P-ring biosynthesis protein A  3,44 0.020545 
ygbM hypothetical protein  3,29 0.012104 
ybdH predicted oxidoreductase  3,26 0.004944 
malE maltose ABC transporter periplasmic protein  3,25 0.008623 
yhcH hypothetical protein  3,25 0.023108 
metB cystathionine gamma-synthase  3,23 0.005708 
fliG flagellar motor switch protein G  3,22 0.055549 
uxaB tagaturonate reductase  3,22 0.013546 
dsdX predicted transporter  3,22 0.069039 
lacZ Beta-galactosidase 3,21 0.022748 
pin putative DNA-invertase 3,18 0.049643 
nanK N-acetylmannosamine kinase  3,13 0.048044 
ygeA predicted racemase  3,13 0.010206 
UTI89_P090 hypothetical protein 3,12 0.028604 
wrbA TrpR binding protein WrbA  3,04 0.007790 
UTI89_C5097 hypothetical protein 3,04 0.008516 
tsr methyl-accepting chemotaxis protein I 3,01 0.001132 
iutA TonB-dependent ferric aerobactin receptor 2,98 0.010673 
cheB chemotaxis-specific methylesterase  2,95 0.005914 
flgM anti-sigma factor for FliA (sigma 28)  2,94 0.010655 
uxaC glucuronate isomerase  2,90 0.018853 
hisP histidine/lysine/arginine/ornithine transporter subunit  2,87 0.035457 
yeeS CP4-44 prophage; predicted DNA repair protein  2,82 0.043772 
tktB transketolase II 2,80 0.009529 
yeiM proton-driven nucleoside uptake system. 2,76 0.081431 
xylG fused D-xylose transporter  2,75 0.028536 
metF 5,10-methylenetetrahydrofolate reductase  2,75 0.006491 
kduI 5-keto-4-deoxyuronate isomerase  2,75 0.067555 
flhD transcriptional activator FlhD  2,73 0.012422 
c2347  hypothetical protein 2,72 0.005504 
yjhI predicted DNA-binding transcriptional regulator  2,71 0.079398 
ompF outer membrane porin 1a (Ia;b;F)  2,70 0.004687 
araJ predicted transporter  2,69 0.008024 
uidB glucuronide transporter  2,67 0.023007 
metL bifunctional aspartate kinase II/homoserine dehydrogenase II  2,66 0.005303 
manZ mannose-specific enzyme IID component of PTS  2,63 0.043059 
nagE fused N-acetyl glucosamine specific PTS enzyme 2,59 0.029942 
manX fused mannose-specific PTS enzymes: IIA  2,58 0.064599 
metQ DL-methionine transporter subunit  2,54 0.005116 
UTI89_C1735 hypothetical protein 2,53 0.036384 
uxaA altronate hydrolase  2,52 0.049642 
sucB dihydrolipoamide acetyltransferase  2,51 0.043394 
nanT transport; Murein sacculus, peptidoglycan 2,48 0.041061 
Z3657 hypothetical protein  2,48 0.017646 
flhC DNA-binding transcriptional dual regulator with FlhD  2,46 0.026071 
UTI89_C2987 bacteriophage V small terminase subunit 2,45 0.042589 
usp putative colicin 2,44 0.013607 
manY mannose-specific enzyme IIC component of PTS  2,42 0.051885 
phoH phosphate starvation-inducible  2,39 0.059384 
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Table 18/3: Genes with up-regulated expression in in vivo re-isolate SR12 
gene function ratio p-value 

ECP_4566 hypothetical transposase-like protein 2,39 0.039221 
yjhA N-acetylnuraminic acid outer membrane channel protein  2,37 0.049790 
iucD IucD protein 2,36 0.006012 
ycgR protein involved in flagellar function  2,36 0.015452 
nagA N-acetylglucosamine-6-phosphate deacetylase  2,35 0.000159 
nagB glucosamine-6-phosphate deaminase  2,35 0.021069 
xylH D-xylose transporter subunit  2,33 0.044072 
yidA hypothetical protein 2,33 0.007749 
yjhG KpLE2 phage-like element; predicted dehydratase  2,32 0.071624 
xylB xylulokinase  2,31 0.042449 
nanE predicted N-acetylmannosamine-6-P epimerase  2,30 0.017900 
fumC fumarate hydratase  2,29 0.028713 
mdh malate dehydrogenase  2,28 0.008209 
sdhB succinate dehydrogenase, FeS subunit  2,28 0.046384 
sucD succinyl-CoA synthetase subunit alpha  2,28 0.048211 
ytfE predicted regulator of cell morphogenesis  2,26 0.034695 
uxuA mannonate dehydratase  2,26 0.022885 
metI DL-methionine transporter subunit  2,24 0.014490 
c0323  putative exopolygalacturonate lyase 2,22 0.044032 
manA mannose-6-phosphate isomerase  2,22 0.023647 
pfkB 6-phosphofructokinase II  2,22 0.010508 
nanA N-acetylneuraminate lyase subunit 2,20 0.032583 
xylF D-xylose transporter subunit  2,19 0.015392 
ybiC predicted dehydrogenase  2,18 0.049839 
clpB ATP-dependent Clp protease 2,18 0.042639 
sdhA succinate dehydrogenase flavoprotein subunit  2,18 0.037097 
yjdI hypothetical protein  2,17 0.030119 
sdhC succinate dehydrogenase cytochrome 2,16 0.033638 
yrdA hypothetical protein  2,15 0.008492 
metC cystathionine beta-lyase  2,15 0.015372 
sdhD succinate dehydrogenase cytochrome  2,15 0.027522 
uidA beta-D-glucuronidase  2,12 0.070442 
kdgK 2-dehydro-3-deoxygluconokinase 2,11 0.044214 
fbaB fructose-bisphosphate aldolase  2,11 0.031618 
c1464  putative factor; DNA packaging, phage assembly  2,10 0.041981 
metN DL-methionine transporter subunit  2,10 0.012049 
sucA alpha-ketoglutarate decarboxylase  2,09 0.036161 
glpQ periplasmic glycerophosphodiester phosphodiesterase  2,09 0.056232 
yjdA conserved protein  2,07 0.047900 
oppA oligopeptide transporter subunit  2,06 0.010796 
yeaR hypothetical protein  2,06 0.010792 
flgH flagellar L-ring protein precursor H  2,05 0.059368 
sucC succinyl-CoA synthetase subunit beta  2,04 0.041434 
yeaG serine protein kinase 2,03 0.020852 
ybjP predicted lipoprotein  2,02 0.019312 
sodA superoxide dismutase 1,99 0.002197 
mbhA flagellar motor protein  1,99 0.006426 
icdA isocitrate dehydrogenase  1,98 0.001180 
sufA iron-sulfur cluster assembly scaffold protein  1,97 0.005700 
grxB glutaredoxin 2 (Grx2) 1,96 0.010410 
gdhA glutamate dehydrogenase  1,96 0.007256 
c0322  putative oligogalacturonide transporter 1,93 0.066034 
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Table 18/4: Genes with up-regulated expression in in vivo re-isolate SR12 
gene function ratio p-value 

yhaO predicted transporter  1,90 0.024590 
uxuB D-mannonate oxidoreductase, NAD-binding  1,90 0.014400 
xylA xylose isomerase  1,86 0.066314 
tas predicted oxidoreductase 1,85 0.009933 
rna ribonuclease I  1,84 0.022282 
metE homocysteine methyltransferase  1,84 0.015186 
gltA citrate synthase  1,83 0.031147 
ycjU predicted beta-phosphoglucomutase  1,79 0.016836 
yidA predicted hydrolase  1,79 0.025859 
iroB putative glucosyltransferase 1,78 0.015239 
flhA flagellar biosynthesis protein A  1,77 0.057666 
kduD 2-deoxy-D-gluconate 3-dehydrogenase  1,76 0.012391 
fliT predicted chaperone  1,73 0.031235 
ptsH phosphohistidinoprotein-hexose phosphotransferase  1,73 0.001322 
luxS S-ribosylhomocysteinase  1,72 0.012512 
pepN aminopeptidase N  1,60 0.016456 

 

 

Table 19/1: Genes with down-regulated expression in in vivo re-isolate SR12 
gene function ratio p-value 

c2464  putative acyl-CoA dehydrogenase -5,77 0.001178 
yajF inositol phosphate metabolism: fructokinase  -5,20 0.031784 
yjiH conserved inner membrane protein  -4,96 0.036361 
yqcB tRNA pseudouridine synthase  -4,58 0.007510 
ybbK predicted protease, membrane anchored  -4,53 0.075384 
glnG fused DNA-binding response regulator -4,51 0.024150 
malQ 4-alpha-glucanotransferase (amylomaltase)  -4,32 0.011202 
yphC predicted Zn-dependent dehydrogenase  -4,11 0.047909 
c2474  transposase -4,05 0.043321 
c1191 conserved hypothetical protein -3,93 0.013694 
Z1355 unknown protein -3,81 0.070836 
yraL predicted methyltransferase  -3,68 0.023138 
frwD predicted enzyme IIB component of PTS  -3,63 0.008823 
Z2106 unknown protein encoded within prophage CP-933O  -3,63 0.059160 
ygcF hypothetical protein  -3,62 0.046793 
ldcC lysine degradation: lysine decarboxylase, constitutive -3,61 0.018342 
ssb single-strand DNA-binding protein  -3,49 0.049279 
Z1778 unknown protein encoded by prophage CP-933N  -3,47 0.024673 
Z3957 hypothetical protein  -3,43 0.009223 
corA magnesium/nickel/cobalt transporter  -3,28 0.013879 
rnfE NADH-ubiquinone oxidoreductase  -3,17 0.039392 
ydgG predicted inner membrane protein  -3,07 0.087474 
yeaN predicted transporter  -3,05 0.056488 
sidI putative capsid morphogenesis protein encoded in CP-933I  -2,95 0.002663 
pqiB paraquat-inducible protein B -2,89 0.022660 
obgE GTPase involved in cell partioning and DNA repair  -2,89 0.075132 
yneF predicted diguanylate cyclase  -2,84 0.020621 
ybiR predicted transporter  -2,83 0.051678 
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Table 19/2: Genes with down-regulated expression in in vivo re-isolate SR12 
gene function ratio p-value 
hypF carbamoyl phosphate phosphatase -2,82 0.067106 
yfhK predicted sensory kinase in two-component system  -2,82 0.035332 
ygiQ hypothetical protein  -2,82 0.000802 
purE phosphoribosylaminoimidazole carboxylase catalytic subunit  -2,81 0.048854 

glnL sensory histidine kinase in two-component regulatory system -2,79 0.017928 
artJ arginine transporter subunit  -2,78 0.046050 
c3633  hypothetical protein -2,76 0.034726 
c2437 putative pesticin receptor precursor -2,73 0.049984 
paaH putative 3-hydroxyacyl-CoA dehydrogenase -2,70 0.049050 
c0349  putative transposase within prophage -2,68 0.041583 
c1189  putative 3-oxoacyl-[ACP] synthase; -2,68 0.027324 
cysP thiosulfate-binding protein precursor -2,67 0.029340 
yfeZ predicted inner membrane protein  -2,66 0.006973 
aroH 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase -2,61 0.038728 
yhiN predicted oxidoreductase with FAD/NAD(P)-binding domain  -2,60 0.060571 
c1536  putative factor; Integration, recombination -2,60 0.027013 
glnA glutamine synthetase -2,58 0.071730 
phnL carbon-phosphorus lyase complex subunit  -2,54 0.078754 
moaE molybdopterin synthase, large subunit  -2,54 0.055856 
proW glycine betaine transporter subunit  -2,53 0.002783 
recE exodeoxyribonuclease VIII -2,52 0.058425 
purF purine metabolism: Amidophosphoribosyltransferase -2,51 0.056675 
yadL predicted fimbrial-like adhesin protein  -2,50 0.052720 
c1259  hypothetical protein -2,50 0.000268 
ybjK predicted DNA-binding transcriptional regulator  -2,50 0.015125 
trmE tRNA modification GTPase  -2,48 0.006793 
pyrE pyrimidine metabolism:orotate phosphoribosyltransferase  -2,44 0.034673 
pgpA phosphatidylglycerophosphatase A  -2,44 0.007819 
eutB ethanolamine ammonia-lyase, large subunit, heavy chain  -2,42 0.034046 
yicM purine ribonucleoside exporter; predicted transporter  -2,41 0.007540 
mtlD mannitol-1-phosphate 5-dehydrogenase -2,40 0.041884 
purD phosphoribosylamine--glycine ligase  -2,40 0.044766 
dinD DNA-damage-inducible protein  -2,39 0.057304 
glnP glutamine ABC transporter permease protein  -2,38 0.002374 
glnH glutamine ABC transporter periplasmic protein  -2,35 0.022858 
rcsC hybrid sensory kinase in two-component regulatory system -2,34 0.031004 
c3749  conserved hypothetical protein -2,33 0.022805 
ECP_3783 putative F17-like fimbril adhesin subunit -2,32 0.048605 
ynjA hypothetical protein  -2,31 0.030621 
yjaA hypothetical protein  -2,30 0.002432 
rep DNA helicase and single-stranded DNA-dependent ATPase  -2,30 0.067267 
ydhA predicted lipoprotein  -2,29 0.033131 
sppA protease IV (signal peptide peptidase)  -2,28 0.045503 
yfiM hypothetical protein  -2,27 0.009797 
yhbE conserved inner membrane protein  -2,27 0.016936 
Z3312 | Z2347 putative superoxide dismutase  | copper-zinc superoxide dismutase  -2,26 0.011764 
frlC predicted isomerase  -2,26 0.027871 
ptr protease III  -2,25 0.048972 
Z2391 unknown protein encoded within prophage CP-933R  -2,24 0.028815 
rnhB ribonuclease HII  -2,23 0.012138 
glnQ glutamine ABC transporter ATP-binding protein  -2,22 0.001290 
trkD potassium transporter  -2,22 0.054158 
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Table 19/3: Genes with down-regulated expression in in vivo re-isolate SR12 
gene function ratio p-value 

hycH protein required for maturation of hydrogenase 3  -2,20 0.069761 
Z5294 hypothetical protein  -2,20 0.016938 
trkA potassium transporter peripheral membrane component  -2,19 0.063783 
c1523  unknown protein encoded by bacteriophage -2,16 0.047474 
rluB 23S rRNA pseudouridylate synthase  -2,16 0.006805 
rseC RseC protein involved in reduction of the SoxR iron-sulfur cluster  -2,15 0.041879 
c3411  N-acetylmuramoyl-L-alanine amidase amiC precursor -2,14 0.055017 
ycdC predicted DNA-binding transcriptional regulator  -2,14 0.074342 
yhhY hypothetical protein  -2,12 0.033298 
purH bifunctional phosphoribosylaminoimidazolecarboxamide  -2,11 0.066982 
purM phosphoribosylaminoimidazole synthetase  -2,07 0.007227 
ygjG probable ornithine aminotransferase -2,03 0.074282 
cysG siroheme synthase 1,3-dimethyluroporphyriongen III dehydrogenase -2,02 0.010059 
purK phosphoribosylaminoimidazole carboxylase -2,02 0.018088 
ydaN zinc transporter  -2,02 0.029881 
Z0721 hypothetical protein  -2,01 0.021130 
yjeS predicted Fe-S electron transport protein  -1,96 0.057172 
plsC 1-acyl-sn-glycerol-3-phosphate acyltransferase  -1,95 0.021872 
atpI F0F1 ATP synthase subunit I  -1,94 0.051568 
ECs1396  AidA-I  -1,94 0.002474 
folC bifunctional folylpolyglutamate synthase -1,94 0.020833 
ynjB putative thiamine transport system  -1,93 0.012330 
ygeD predicted inner membrane protein  -1,93 0.002465 
sdaA L-serine deaminase I  -1,92 0.036107 
hcaB 2,3-dihydroxy-2,3-dihydrophenylpropionate dehydrogenase  -1,90 0.067728 
yhjQ cell division protein -1,88 0.148903 
thiL thiamine monophosphate kinase  -1,84 0.006680 
hcaT predicted 3-phenylpropionic transporter  -1,81 0.024023 
yceP hypothetical protein  -1,77 0.048521 
proV glycine betaine transporter subunit  -1,77 0.044664 
yecS predicted transporter subunit -1,75 0.056760 

 

 

Table 20/1: Genes with up-regulated expression in in vivo re-isolate CK12 
gene function ratio p-value 

cdd cytidine deaminase  3,50 0.004303 
udp uridine phosphorylase  3,47 0.001118 
ycjU putative beta-phosphoglucomutase 2,58 0.006752 
Z3115 putative endonuclease encoded within prophage CP-933U  2,52 0.001105 
orn oligoribonuclease  2,40 0.001225 
yhfC hypothetical protein  2,39 0.007638 
deoB phosphopentomutase  2,31 0.003412 
yjgB predicted alcohol dehydrogenase, Zn-dependent and NAD(P)-binding  2,30 0.001156 
yhfC hypothetical protein  2,28 0.004610 
deoA thymidine phosphorylase  2,25 0.019214 
argA N-acetylglutamate synthase  2,23 0.020099 
c5039  putative lactate dehydrogenase 2,22 0.001756 
yrdA hypothetical protein  2,20 0.004322 
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Table 20/2: Genes with up-regulated expression in in vivo re-isolate CK12 
gene function ratio p-value 

edd phosphogluconate dehydratase 2,19 0.071959 
uidB glucuronide transporter  2,16 0.075343 
uidC predicted outer membrane porin protein  2,16 0.060678 
tsx nucleoside channel, receptor of phage T6 and colicin K  2,16 0.007529 
grxA glutaredoxin 1, redox coenzyme for ribonucleotide reductase (RNR1a)  2,14 0.031578 
c1464  putative factor; DNA packaging, phage assembly 2,13 0.039219 
eda keto-hydroxyglutarate-aldolase/keto-deoxy- phosphogluconate aldolase  2,12 0.073465 
rnk nucleoside diphosphate kinase regulator  2,12 0.010185 
yhcM conserved protein with nucleoside triphosphate hydrolase domain  2,11 0.011270 
deoD purine nucleoside phosphorylase  2,11 0.001030 
deoC deoxyribose-phosphate aldolase  2,08 0.021257 
uidA beta-D-glucuronidase  2,08 0.060042 
Z0893 putative methylaspartate ammonia-lyase  2,08 0.000045 
fecC KpLE2 phage-like element; iron-dicitrate transporter subunit  2,07 0.011613 
fecE KpLE2 phage-like element; iron-dicitrate transporter subunit  2,06 0.000662 
fecA KpLE2 phage-like element; ferric citrate outer membrane transporter  2,05 0.001410 
fecD KpLE2 phage-like element; iron-dicitrate transporter subunit  2,05 0.005962 
ada Ada transcriptional dual regulator 2,04 0.000854 
fecR transmembrane signal transducer for ferric citrate transport  2,02 0.005792 
fecI KpLE2 phage-like element; RNA polymerase, sigma 19 factor  2,01 0.000175 
ECP_2994 hypothetical protein 1,92 0.004457 
fadH 2,4-dienoyl-CoA reductase (NADPH2) 1,91 0.001996 
hmp fused nitric oxide dioxygenase/dihydropteridine reductase 2  1,16 0.020434 

 
 
 
Table 21/1: Genes with down-regulated expression in in vivo re-isolate CK12 

gene function ratio p-value 

sat hypothetical protein | Aecreted auto transpoter toxin -7,15 0.010209 
yraH predicted fimbrial-like adhesin protein  -6,88 0.069727 
iucD siderophore biosynthesis protein -6,59 0.007250 
iucA siderophore biosynthesis protein -6,56 0.019315 
c3604 hypothetical protein -5,74 0.015268 
insM transposase  -5,40 0.083988 
Z1486 BP-933W unknown protein encoded by bacteriophage -5,38 0.081437 
yhfL hypothetical protein -5,12 0.023448 
c1400  IS, phage, Tn; Phage-related functions and prophages -5,04 0.056116 
yjfY hypothetical protein   -4,89 0.009967 
ypdH predicted enzyme IIB component of PTS  -4,79 0.027572 
ybhM hypothetical protein  -4,64 0.020526 
c4657 hypothetical protein -4,39 0.026301 
c3201 hypothetical protein -4,27 0.036751 
Z3926 | Z3108 unknown protein encoded by prophageprophage -4,19 0.046835 
relE Qin prophage; toxin of the RelE-RelB toxin-antitoxin system  -4,16 0.054855 
c3389 hypothetical protein -3,98 0.048469 
torY TMAO reductase III (TorYZ), cytochrome c-type subunit  -3,87 0.020031 
ybfH hypothetical protein  -3,67 0.049534 
Z2801 hypothetical protein  -3,63 0.046724 
Z2973 CP-933T unknown protein encoded by prophage  -3,59 0.098665 
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Table 21/2: Genes with down-regulated expression in in vivo re-isolate CK12 
gene function ratio p-value 

ydfD Qin prophage; predicted protein  -3,47 0.010126 
Z3072 CP-933U  unknown protein encoded within prophage  -3,37 0.068793 
Z4824 hypothetical protein  -3,36 0.052374 
ydaV Rac prophage; predicted DNA replication protein  -3,36 0.072324 
yjgK hypothetical protein  -3,34 0.057853 
Z5898 hypothetical protein  -3,34 0.050561 
yidI predicted inner membrane protein  -3,30 0.013888 
ydfO Qin prophage; predicted protein  -3,29 0.098399 
ydfQ Qin prophage; predicted lysozyme  -3,29 0.044827 
Z3358 CP-933V putative repressor protein CI of prophage  -3,27 0.062914 
ulaA ascorbate-specific PTS system enzyme IIC  -3,25 0.051875 
yiaL hypothetical protein  -3,18 0.026400 
tar methyl-accepting chemotaxis protein II  -3,12 0.033779 
Z5080 hypothetical protein  -3,10 0.044743 
ydjK hypothetical metabolite transport protein ydjK -3,10 0.027336 
glpC sn-glycerol-3-phosphate dehydrogenase anaerobic -3,10 0.038206 
Z0959 CP-933K unknown protein encoded by prophage  -3,09 0.010552 
ybfL predicted transposase (pseudogene)  -3,07 0.084518 
Z1562 | Z1124 unknown in IS1N  | unknown in IS1N  -3,05 0.041266 
Z0326 CP-933I  unknown protein encoded in prophage  -3,05 0.083180 
yohC predicted inner membrane protein  -3,02 0.050355 
insH-5 Rac prophage; IS5 transposase and trans-activator  -3,02 0.021055 
iutA ferric siderophore receptor -3,01 0.032643 
Z1573 | Z1135 unknown in IS600  | unknown in IS600  -3,01 0.016242 
fadA putative fatty acyl chain dehydrase  -3,00 0.029667 
ssuA alkanesulfonate transporter subunit  -2,95 0.009536 
ybfB predicted inner membrane protein  -2,93 0.058313 
appY DLP12 prophage; DNA-binding transcriptional activator  -2,91 0.041079 
Z2386 CP-933R  unknown protein encoded within prophage  -2,91 0.060377 
bglH carbohydrate-specific outer membrane porin, cryptic  -2,90 0.014760 
flgB flagellar basal-body rod protein B  -2,90 0.014984 
bcsA cellulose synthase, catalytic subunit  -2,90 0.012511 
Z1816 CP-933N unknown protein encoded by prophage  -2,88 0.073381 
yafL predicted lipoprotein and C40 family peptidase  -2,86 0.021730 
yehD putative fimbrial-like protein  -2,85 0.019012 
ninE DLP12 prophage; conserved protein  -2,82 0.017317 
wcaB putative colanic acid biosynthesis acetyltransferase wcaB -2,81 0.055450 
Z1570 | Z1131 unknown protein -2,78 0.024227 
mhpF acetaldehyde dehydrogenase  -2,77 0.030248 
yfjX hypothetical protein  -2,76 0.035052 
ygiU hypothetical protein -2,76 0.010228 
yeiM proton-driven nucleoside uptake system. -2,76 0.002513 
Z1824 CP-933N unknown protein encoded by prophage  -2,75 0.071609 
Z1919 CP-933X  unknown protein encoded by prophage  -2,74 0.034168 
yfbJ hypothetical protein  -2,73 0.048817 
phnD phosphonate/organophosphate ester transporter subunit  -2,69 0.025084 
yjgG_2 hypothetical protein  -2,69 0.030505 
yqeG predicted transporter  -2,67 0.021998 
c3637  transport; Murein sacculus, peptidoglycan -2,66 0.056576 
yeiN hypothetical protein  -2,65 0.002642 
bcsZ endo-1,4-D-glucanase  -2,65 0.010404 
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Table 21/3: Genes with down-regulated expression in in vivo re-isolate CK12 
gene function ratio p Value 

yjcF hypothetical protein  -2,65 0.019733 
Z1850 CP-933C unknown protein encoded by prophage  -2,63 0.076467 
php predicted hydrolase  -2,62 0.036454 
ylbF hypothetical protein  -2,61 0.039153 
yphG hypothetical protein  -2,61 0.046571 
c4829 putative dehydrogenase (zinc binding) -2,60 0.027570 
yieK hypothetical protein  -2,59 0.039619 
yeiC hypothetical sugar kinase -2,58 0.005908 
ybbC hypothetical protein  -2,57 0.030611 
c2401 hypothetical protein -2,56 0.018391 
yegJ hypothetical protein  -2,56 0.020791 
hsdR endonuclease R  -2,55 0.079482 
Z1453 BP-933W unknown protein encoded by bacteriophage  -2,52 0.041217 
yfjW CP4-57 prophage; predicted inner membrane protein  -2,46 0.043008 
ydfP Qin prophage; conserved protein  -2,46 0.016802 
yjgH predicted mRNA endoribonuclease  -2,45 0.089219 
ygfO predicted transporter  -2,42 0.013830 
YtfJ protein YtfJ precursor -2,42 0.017480 
ydhV predicted oxidoreductase  -2,41 0.032830 
yfbA biosynthesis of siderophore group nonribosomal peptides -2,41 0.000590 
Z1495 BP-933W unknown protein encoded by bacteriophage  -2,40 0.048208 
UTI89_C1724 phage hypothetical protein -2,40 0.010787 
Z4330 putative transposase  -2,38 0.014206 
tynA tyramine oxidase, copper-requiring  -2,38 0.025944 
ynbA predicted inner membrane protein  -2,37 0.014359 
c0331  putative ribokinase -2,37 0.018014 
Z6022 putative integrase fragment  -2,35 0.018006 
yicO predicted xanthine/uracil permase  -2,33 0.040070 
Z3370 CP-933Vunknown protein encoded within prophage   -2,31 0.082537 
yobD hypothetical protein -2,31 0.015870 
yieL predicted xylanase  -2,26 0.046419 
ybeR hypothetical protein  -2,26 0.025934 
c4739 Conserved hypothetical protein -2,25 0.049342 
yfjL CP4-57 prophage; predicted protein  -2,25 0.053677 
mhpE 4-hydroxy-2-ketovalerate aldolase  -2,20 0.036397 
c4987  transcriptional regulator of sorbose uptake and utilization genes -2,19 0.043012 
c3172  putative head-tail joining protein of prophage -2,19 0.076821 
Z6065 CP-933P unknown protein encoded by cryptic prophage  -2,18 0.013040 
Z1431 BP-933W unknown protein encoded by bacteriophage  -2,17 0.008425 
yadD predicted transposase  -2,14 0.023019 
mcrA 5-methylcytosine-specific restriction endonuclease B  -2,14 0.008450 
c1444  IS, phage, Tn; Phage-related functions and prophages -2,13 0.039544 
Z1329 CP-933M unknown protein encoded by cryptic prophage  -2,11 0.014498 
c4565 predicted GTPase -2,10 0.033993 
frvX predicted endo-1,4-beta-glucanase  -2,08 0.010087 
Z2969 CP-933T  unknown protein encoded by prophage  -2,08 0.056358 
agaC N-acetylgalactosamine-specific enzyme IIC component of PTS  -2,07 0.017913 
narZ nitrate reductase 2 (NRZ), alpha subunit  -2,06 0.041511 
agaB N-acetylgalactosamine-specific enzyme IIB component of PTS  -2,04 0.015102 
ycjP predicted sugar transporter subunit -2,02 0.026653 
ydaG Rac prophage; predicted protein  -2,01 0.034160 
bglF fused beta-glucoside-specific PTS enzymes: IIA  -2,01 0.030471 
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Table 22: Genes with up-regulated expression in in vivo re-isolate KA25 
gene function ratio p-value 

frmA formaldehyde dehydrogenase, glutathione-dependent 5,84 0,001181 
frmB S-formylglutathione hydrolase 5,84 0,004392 
c0447 hypothetical protein 4,90 0.006958 
marR DNA-binding transcriptional repressor of multiple antibiotic resistance  4,42 0.000711 
marA DNA-binding transcriptional dual activator of multiple antibiotic resistance  3,82 0.004549 
frmR regulator protein that represses frmRAB operon  3,70 0.051727 
marB hypothetical protein 2,31 0.326488 
metA homoserine O-succinyltransferase  2,29 0.047671 
malY cystathionine beta-lyase 2,19 0.054391 
metR transcriptional activator protein 2,18 0.041275 
cynS cyanate hydratase  2,14 0.017838 
nrdH glutaredoxin-like protein  2,13 0.049231 
fadH 2,4-dienoyl-CoA reductase  2,12 0.003304 
nrdF ribonucleotide-diphosphate reductase beta subunit  2,11 0.042626 
nrdI hypothetical protein  2,11 0.041807 
ECP_0113 putative colicin 2,09 0.013642 
sgaE L-ribulose-5-phosphate 4-epimerase  2,09 0.046163 
fbaA fructose bisphosphate aldolase 2,06 0.044267 
nrdE ribonucleotide-diphosphate reductase alpha subunit  2,06 0.043463 
metK S-adenosylmethionine synthetase  2,02 0.012050 
yrdA hypothetical protein  1,96 0.002033 
metF 5,10-methylenetetrahydrofolate reductase  1,92 0.075932 
metC cystathionine beta-lyase  1,87 0.277647 
ybdL methionine aminotransferase  1,86 0.031802 
metA homoserine O-succinyltransferase  1,86 0.047671 
hmp fused nitric oxide dioxygenase/dihydropteridine reductase 2  1,78 0.061747 
dppA dipeptide transporter  1,77 0.021682 
grxB glutaredoxin 2 (Grx2) 1,76 0.047155 
metN DL-methionine transporter subunit  1,76 0.028322 
metI DL-methionine transporter subunit  1,74 0.067068 
ygaG S-ribosylhomocysteinase  1,71 0.006830 
metE 5-methyltetrahydropteroyltriglutamate- homocysteine methyltransferase  1,71 0.032650 
metB cystathionine gamma-synthase  1,71 0.024972 
metL bifunctional aspartate kinase II/homoserine dehydrogenase II  1,70 0.047098 
c1464  putative factor; DNA packaging, phage assembly 1,70 0.009964 
metQ DL-methionine transporter subunit  1,68 0.073134 

 

 

Table 23/1: Genes with down-regulated expression in in vivo re-isolate KA25 
gene function ratio p-value 

atoE short chain fatty acid transporter  -5,72 0.069676 
frwD predicted enzyme IIB component of PTS -5,21 0.037958 
Z5693 sensor protein - putative histidine kinase  -4,78 0.026828 
c1813 hypothetical protein -4,27 0.047535 
paaX transcriptional repressor of phenylacetic acid degradation -4,16 0.013937 
Z1421 hypothetical protein  -4,11 0.020400 
tdcR threonine dehydratase operon activator protein  -3,89 0.009255 
c1959 putative conserved protein -3,79 0.003945 
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Table 23/2: Genes with down-regulated expression in in vivo re-isolate KA25 
gene function ratio p-value 

ydhY predicted 4Fe-4S ferridoxin-type protein  -3,61 0.049761 
yahE hypothetical protein -3,52 0.031234 
Z1501 unknown protein encoded by bacteriophage BP-933W  -3,50 0.026269 
yfjK CP4-57 prophage; conserved protein  -3,45 0.002304 
yafX hypothetical protein  -3,44 0.025325 
yraJ predicted outer membrane protein  -3,43 0.027466 
c0747 hypothetical protein -3,42 0.001023 
Z5885 putative resolvase  -3,40 0.042101 
ypjC hypothetical protein  -3,23 0.017948 
ycjN predicted sugar transporter subunit -3,23 0.025068 
insE IS3 element protein InsE -3,22 0.034835 
Z2077 unknown protein encoded by prophage CP-933O  -3,21 0.016962 
yicO predicted xanthine/uracil permase  -3,20 0.005699 
kdpA potassium-transporting ATPase A chain -3,20 0.004882 
ydfD Qin prophage; predicted protein  -3,20 0.017029 
yqeH conserved protein with bipartite regulator domain  -3,18 0.031296 
yahF hypothetical protein  -3,17 0.003520 
yafW antitoxin of the YkfI-YafW toxin-antitoxin system  -3,11 0.040936 
c1172 conserved hypothetical protein -3,09 0.004755 
yfjS CP4-57 prophage; predicted protein  -3,06 0.012578 
yjgH predicted mRNA endoribonuclease -3,03 0.013229 
c4984  putative sorbose PTS component -3,01 0.023392 
ydaY Rac prophage; predicted protein  -3,01 0.026192 
ybbQ 2-hydroxy-3-oxopropionate reductase -2,96 0.025660 
ykgH predicted inner membrane protein  -2,96 0.032885 
Z3342 unknown protein encoded within prophage CP-933V  -2,96 0.020549 
Z1821 unknown protein encoded by prophage CP-933N  -2,95 0.038216 
c4729 hypothetical protein -2,89 0.009362 
glvC arbutin specific enzyme IIC component of PTS  -2,88 0.054861 
norV anaerobic nitric oxide reductase flavorubredoxin  -2,86 0.053927 
htrE predicted outer membrane usher protein  -2,84 0.051282 
ybeW chaperone protein hscC (Hsc62) -2,83 0.023761 
yffL CPZ-55 prophage; predicted protein  -2,83 0.029761 
lit e14 prophage; cell death peptidase, inhibitor of T4 late gene expression  -2,80 0.034710 
c1095 hypothetical protein -2,78 0.002111 
c2258 hypothetical protein -2,73 0.044759 
Z2978 putative replication protein for prophage CP-933T  -2,71 0.010364 
ygfO predicted transporter  -2,70 0.012161 
Z2121 unknown protein encoded within prophage CP-933O  -2,69 0.044869 
ydhV predicted oxidoreductase  -2,68 0.011086 
ygcU predicted FAD containing dehydrogenase  -2,66 0.002279 
yaiT hypothetical protein  -2,65 0.009854 
yfdP CPS-53 (KpLE1) prophage; predicted protein  -2,63 0.019085 
yieK hypothetical protein  -2,63 0.005401 
glvB arbutin specific enzyme IIB component of PTS  -2,62 0.005063 
c4897 hypothetical protein -2,62 0.021606 
yjcE putative Na(+)/H(+) exchanger yjcE -2,60 0.026146 
yahF predicted acyl-CoA synthetase -2,58 0.082086 
ykgI hypothetical protein  -2,58 0.029082 
insK IS150 conserved protein InsB  -2,56 0.055649 
idnK D-gluconate kinase, thermosensitive  -2,55 0.034975 
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Table 23/3: Genes with down-regulated expression in in vivo re-isolate KA25 
gene function ratio p-value 

ygfT fused predicted oxidoreductase: Fe-S  -2,54 0.044237 
phnK phosphonates transport ATP-binding protein phnK -2,54 0.007417 
ybhD DNA-binding transcriptional regulator - LysR family -2,54 0.021056 
frvB fused predicted PTS enzymes: IIB component/IIC component  -2,54 0.086101 
c2503  transposase -2,53 0.042108 
ymfE e14 prophage; predicted inner membrane protein  -2,53 0.038029 
ynbA predicted inner membrane protein  -2,53 0.038768 
wbdN glycosyl transferase  -2,50 0.040363 
yceO hypothetical protein  -2,48 0.025275 
c0964  phage baseplate assembly protein -2,48 0.043643 
glvG predicted 6-phospho-beta-glucosidase pseudogene)  -2,46 0.086063 
c4525  putative chormophorylate of CpcA -2,45 0.010128 
yehC putative chaperone protein  -2,45 0.029486 
c2493 putative carbohydrate kinase -2,44 0.034352 
yieL predicted xylanase  -2,44 0.007328 
eutK predicted carboxysome structural protein -2,44 0.055061 
glpC sn-glycerol-3-phosphate dehydrogenase anaerobic -2,43 0.093060 
UTI89_C2647 head assembly protein -2,43 0.010744 
gspG pseudopilin, cryptic, general secretion pathway  -2,42 0.020474 
ureG_2 | ureG putative urease accessory protein G -2,40 0.021704 
yhiP predicted transporter  -2,39 0.020535 
ydfW Qin prophage; predicted protein  -2,39 0.008525 
c0698 hypothetical protein -2,39 0.034227 
ybgO predicted fimbrial-like adhesin protein  -2,37 0.011815 
Z2040 unknown protein encoded by prophage CP-933O  -2,35 0.030302 
Z3058 putative outer membrane protein  -2,35 0.009608 
Z1500 unknown protein encoded by bacteriophage BP-933W  -2,35 0.034217 
yodB predicted cytochrome  -2,34 0.036985 
ydiL hypothetical protein  -2,33 0.042198 
narV nitrate reductase Z -2,32 0.019065 
yegR hypothetical protein  -2,32 0.011040 
ydjE predicted transporter  -2,32 0.044413 
ybcW DLP12 prophage; predicted protein  -2,31 0.003310 
yddH hypothetical protein  -2,30 0.020230 
ybeR hypothetical protein  -2,29 0.005551 
c1184 hypothetical protein -2,29 0.022967 
aufG hypothetical protein -2,28 0.006313 
yhcE hypothetical protein  -2,28 0.016783 
yubQ hypothetical protein -2,27 0.000349 
rfaI (glucosyl)lipopolysaccharide- alpha-1,3-D-galactosyltransferase  -2,27 0.007590 
yafM hypothetical protein  -2,26 0.022216 
c3499 putative conserved protein -2,24 0.038772 
racR Rac prophage; predicted DNA-binding transcriptional regulator  -2,23 0.042552 
Z2344 putative tail fiber protein encoded by prophage CP-933R  -2,22 0.028875 
yhhA hypothetical protein  -2,21 0.014581 
yqeA predicted amino acid kinase  -2,21 0.025598 
yghT  predicted protein with nucleoside triphosphate hydrolase domain  -2,21 0.057804 
c3660  unknown protein encoded by ISEc8 -2,19 0.023859 
Z1444 putative serine/threonine kinase encoded by bacteriophage BP-933W  -2,18 0.027910 
ygeX diaminopropionate ammonia-lyase  -2,17 0.062904 
ydiR predicted electron transfer flavoprotein, FAD-binding  -2,17 0.032109 
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Table 23/4: Genes with down-regulated expression in in vivo re-isolate KA25 
gene function ratio p-value 

Z3322 putative major tail subunit encoded within prophage CP-933V  -2,16 0.006953 
mhpD 2-keto-4-pentenoate hydratase  -2,14 0.035327 
yeeV hypothetical protein  -2,13 0.017854 
kdgK 2-dehydro-3-deoxygluconokinase -2,13 0.083520 
ydcE 4-oxalocrotonate tautomerase  -2,11 0.031150 
ydaF Rac prophage; predicted protein  -2,11 0.008177 
yehA predicted fimbrial-like adhesin protein  -2,10 0.052195 
c0290 hypothetical protein -2,09 0.004755 
ynjE predicted thiosulfate sulfur transferase  -2,09 0.047851 
yfcU putative outer membrane protein -2,09 0.045233 
Z3127 unknown protein encoded within prophage CP-933U  -2,08 0.004435 
acs acetyl-coenzyme A synthetase  -2,08 0.007537 
ybgQ predicted outer membrane protein  -2,01 0.024281 
Z1547 putative acyl-carrier protein  -2,00 0.013033 
Z2086 similar to division inhibition protein DicB within CP-933O  -2,00 0.018529 
sorE putative L-sorbose-1-P-reductase  -1,98 0.029065 
c3712  fatty acyl-CoA synthetase -1,95 0.018098 
c2464  putative acyl-CoA dehydrogenase -1,95 0.047393 
ypdG predicted enzyme IIC component of PTS  -1,94 0.061740 
eutE predicted aldehyde dehydrogenase, ethanolamine utilization protein  -1,94 0.020202 
yadD predicted transposase  -1,93 0.005070 
c2467  putative 3-hydroxyacyl-CoA dehydrogenase -1,84 0.079293 
yeiC hypothetical sugar kinase yeiC -1,61 0.030658 
yeiN hypothetical protein  -1,57 0.047133 
yeiM hypothetical transport protein -1,35 0.036098 

 
 
Table 24: Genes with up-regulated expression in in vitro re-isolate 4.9 

gene function ratio p-value 

ECP_2993 hypothetical protein 2,35 0.036780 

c1465 DNA packaging, phage assembly (Phage or Prophage Related) 2,22 0.009548 

pin pin; putative DNA-invertase 2,12 0.003612 

Z3115 putative endonuclease encoded within prophage CP-933U  2,09 0.009268 

ECs0762 3-methylaspartate ammonia-lyase  1,91 0.014568 
UTI89_C5097 hypothetical protein 1,90 0.041377 
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Table 25: Genes with down-regulated expression in re-isolate in vitro 4.9 
gene function ratio p-value 

gadA glutamate decarboxylase A, PLP-dependent  -5,64 0.017564 

yoeA CP4-44 prophage region  predicted hemin or colicin receptor -4,16 0.022580 

ykgJ predicted ferredoxin  -4,05 0.046764 

Z1636 | Z1196 hypothetical protein  | hypothetical protein  -3,70 0.041643 

yfcO hypothetical protein  -3,68 0.033515 

c0746  hypothetical protein -3,56 0.023946 

allB allantoinase  -3,40 0.046806 

torS TorSR Two-Component Signal Transduction System -3,40 0.047458 

glxR tartronate semialdehyde reductase, NADH-dependent  -3,29 0.040806 

yibV hypothetical protein  -3,20 0.015941 

prpE predicted propionyl-CoA synthetase with ATPase domain  -3,08 0.027409 

ECs1517  hypothetical protein  -3,06 0.014989 

guaD guanine deaminase  -3,03 0.019563 

ureD urease accessory protein -3,00 0.038031 

ybbV hypothetical protein  -3,00 0.024055 

ybbV hypothetical protein  -3,00 0.024055 

yffO CPZ-55 prophage; predicted protein  -2,83 0.015731 

c1939  hypothetical protein -2,71 0.006216 

ECs4865  hypothetical protein  -2,62 0.015320 

c1648  conserved hypothetical protein -2,60 0.012009 

csgF predicted transport protein  -2,59 0.049578 

Z1889 putative capsid protein of prophage CP-933X  -2,59 0.003177 

torR DNA-binding response regulator in two-component regulatory -2,54 0.040652 

yfjM CP4-57 prophage; predicted protein  -2,42 0.012904 

Z3104 | Z6051 putative endolysin of prophage  -2,37 0.013701 

ECs4985 putative tail protein  -2,28 0.043664 

ybbY predicted uracil/xanthine transporter  -2,25 0.047911 

gadX DNA-binding transcriptional dual regulator  -2,22 0.016524 

gcl glyoxylate carboligase  -2,22 0.058052 

eutA reactivating factor for ethanolamine ammonia lyase  -2,20 0.005029 

ybbW predicted allantoin transporter  -2,12 0.050637 

idnO gluconate 5-dehydrogenase  -2,12 0.016528 

hyi hydroxypyruvate isomerase  -2,11 0.043272 

Z2165 hypothetical protein  -2,11 0.016805 

Z1845 putative single stranded DNA-binding protein of prophage CP-933C  -2,11 0.048769 

tdcD Propionate kinase -2,10 0.038733 

yjaI hypothetical protein  -2,10 0.034414 

yehR hypothetical protein -2,09 0.032722 

ycjM predicted glucosyltransferase  -2,06 0.026288 

Z3269 hypothetical protein  -2,06 0.032001 

intT integrase for prophage CP-933T  -2,05 0.011732 

sgaE probable sugar isomerase -2,03 0.038324 
glxK glycerate kinase II  -2,02 0.028274 
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8.5. Abbreviations 
 
 
μg  microgram 
μl  microliter 
μM  micromolar 
μm  micrometer 
2D-GE  2 dimensional gel electrophoresis 
A  adenine 
a.a.  amino acid 
ABU  asymptomatic bacteruria 
Ap  ampicillin 
APS  ammonium persulfate 
bp  base pairs 
BSA  bovine serum albumin 
C  cytosine 
CFU  colony forming unit 
Cm  chloramphenicol 
DEPC  diethyl pyrocarbinate 
DNA  desoxyribonucleic acid 
DNase  desoxyribonuclease 
EAEC  enteroaggregative E. coli 
EDTA  ethylendiamintertraacetat 
EHEC  enterohemorrhagic E. coli 
EIEC  enteroinvasive E. coli 
EPEC  enteropathogenic E. coli 
et al.  et altera (and others) 
ETEC  enterotoxigenic E. coli 
EtOH  ethanol 
ExPEC  extraintestinal pathogenic E. coli 
Fig.  figure 
Fim    type 1 fmbriae 
FRT  Flp recognition target 
g  gram 
G  guanine 
GEI  genomic island 
GSH  glutathione 
GSNO  S-nitrosoglutathione 
h  hour 
i.e.  id est (this means) 
IL 6  Interleukin 6 
IL 8  Interleukin 8 
iNOS  inducible nitric oxide synthase  
IPEC  intestinal pathogenic E. coli 
IS  insertion sequence element 

 
 
 
 
kb  kilo bases 
kDa  kilo Dalton 
Km  kanamycin 
l  liter 
LB  lysogeny broth 
LPS  lipopolysaccharide acid 
M  molar 
mA  milliampere 
mg  milligram 
min  minute 
ml  milliliter 
mm  millimeter 
mM  millimolar 
ng  nanogramm 
NO  nitric oxide 
nt  nucleotides 
OD  optical density 
ORF  open reading frame 
PAI  pathogenicity island 
PBS  phosphate buffered saline 
PCR  polymerase chain reaction 
PFGE  pulls field gel electrophoresis 
PMN  polymorphonuclear cell 
RNA  ribonucleic acid 
RNase  ribonuclease 
RNS  reactive nitrogen species 
rpm  rounds per minute 
RT  reverse transcription 
RT-PCR reverse transcription PCR 
SD  standard deviation 
SDS  sodium dodecyl sulfate 
sec  second 
SNOs  S-nitrosothiols 
SNP   single nucleotide polymorphism 
ß-ME  beta-mercaptoethanol 
T  thymine 
TAE  Tris-acetate-EDTA 
TLR4  toll like receptor 4 
U  unit 
UPEC  uropathogenic E.coli 
UTI  urinary tract infection 
wt  wild typ

 


