НЕЭМПИРИЧЕСКИЕ РАСЧЕТЫ СТРУКТУРЫ И СТАБИЛЬНОСТИ БОРОГИДРИДОВ ЦИНКА, КАДМИЯ, РТУТИ ТИПА MBH₄ И HMBH₄

© 1993 г. А. С. Зюбин, М. Каупп, О. П. Чаркин, П. ф. Р. Шлойер

В рамках неэмпирического подхода с использованием квазирелятивистского эффективного псевдопотенциала с явным учетом двадцати электронов (20ve-ECP) рассчитаны геометрические параметры, гармонические частоты, характеристики распределения электронной плотности, относительные стабильности би- и тридентатной конфигураций и энергии отрыва BH₃ и H₂ для молекул HMBH₄ и радикалов MBH₄ (M = Zn, Cd, Hg). Оптимизация геометрических параметров выполнена с учетом электронной корреляции в рамках второго порядка теории возмущений по схеме Меллера-Плессета (MП2) с частично поляризованными базисами, включающими d-AO на атомах бора и металлов. Энергетические характеристики уточнялись в рамках четвертого порядка теории возмущений (МП4) с более гибкими базисами, включающими p-AO на атомах водорода и f-AO на атомах металлов. Б данной работе опробован также псевдопотенциал 2ve-ECP с явным учетом только двух электронов атома М. Это приближение правильно воспроизводит тенденции изменений рассчитанных свойств в рассмотренной группе соединений, но погрешности определения молекулярных характеристик, прежде всего энергетических, достаточно существенны, особенно для борогидридов ртути.

Найдено, что геометрические параметры и характеристики ИК спектров для рассмотренных систем и однотипных борогидридов ряда Ве - Ва имеют много общего. При условии одинаковой координации М-ВН₄ замена атома металла существенно сказывается лишь на значениях равновесных расстояний R(BM) и соответствующих частот f(BM), а также частот, связанных с вращением аниона

 BH_4^- в поле катиона металла. Остальные характеристики весьма консервативны и меняются в пределах нескольких процентов. В то же время поведение энергетических свойств в рядах борогидридов подгрупп IIA и IIБ оказывается существенно различным: если для первых характерна тридентатная структура основного изомера, увеличение устойчивости к отрыву молекулы BH_3 и возрастание энергетической разницы между би-(b) и тридентатной (t) конфигурациями при движении вниз по подгруппе, то для последних устойчивость к отщеплению BH_3 падает, особенно существенно для борогидридов ртути, конфигурация (t) дестабилизируется, энергетическая разница между структурами (b) и (t) для борогидридов Zn и Cd мала (т.е. обмен концевых и мостиковых протонов должен идти в них без существенных затрат энергии), и, начиная с HCdBH₄, конфигурация (b) оказывается предпочтительной. Все эти закономерности определяются особенностями электронного строения металлов подгруппы IIБ: высокими значениями потенциалов ионизации и энергий промотирования E(s-p), E(s-d).

введение

На основании многочисленных данных эксперимента, полученных как для кристаллических веществ и растворов, так и для соединений в газовой фазе [1 - 13], а также с помощью прецизионных квантово-химических расчетов [14 - 28], выявлена достаточно полная картина геометрического и электронного строения и стабильности для борогидридов щелочных и щелочно-земельных металлов главных подгрупп. Для первых характерна тридентатная (t) координация аниона ВН₄ к катиону металла; бидентатная (b) конфигурация отвечает вершине барьера на пути обмена концевых и мостиковых протонов, причем энергетическая разница $\Delta E(bt)$ между структура- $M_{H}(b)$ и (t) монотонно уменьшается при движении вниз по подгруппе. У борогидридов щелочно-зе-

мельных металлов тридентатная координация М-ВН₄ также является предпочтительной, но характер изменения $\Delta E(bt)$ и устойчивости отдельных молекул к распаду оказывается более сложным [19 - 28], что связано с особенностями строения электронной оболочки металла, прежде всего с уменьшением энергии промотирования электрона с s- на d-AO при движении вниз по подгруппе от Ве к Ва. У металлов подгрупп IE, IIE закономерности строения электронных оболочек существенно иные, что должно приводить к отличиям в строении и стабильности их борогидридов по сравнению с однотипными соединениями подгрупп ІА и ІІА. Действительно, согласно данным, представленным в обзоре [2], для CuBH₄ наиболее стабильна бидентатная конфигурация; этот результат был получен и в расчетах, представленных в [5]. Аналогичная координация предсказана и для Zn-BH₄ [19], однако расчеты [19] были выполнены без учета электронной корреляции, которая в данном случае может привести к инверсии конфигураций (b) и (t) на энергетической шкале вследствие малой величины $\Delta E(bt)$. Тем не менее нежесткий характер вращения ВН₄-группы скорее всего сохранится и при уточнении результатов. Вероятнее всего, именно это является причиной необычного характера ИК спектра СН₃ZnBH₄ [2]. Неясно, однако, как будут меняться величины $\Delta E(bt)$ и стабильность молекул при движении вниз по подгруппе. Можно ожидать, что закономерности, характерные для ряда Ве - Ва [28], в этом случае не будут иметь места. Поэтому целью данной работы является выяснение структуры и строения, стабильности и величин барьеров на пути обмена концевых и мостиковых протонов у борогидридов Zn, Cd, Hg на примере неэмпирических расчетов простейших систем с одной ВН₄-группой: радикалов МВН₄ и молекул НМВН₄.

МЕТОДИЧЕСКАЯ ЧАСТЬ

Все расчеты рассмотренных в данной работе соединений были выполнены с помощью программного комплекса ГАУССИАН-90 [29]. При этом для атомов Zn, Cd, Hg использовали два типа квазирелятивистских полулокальных псевдопотенциалов: с явным учетом двадцати "валентных" электронов (20ve-ECP), т.е. находящихся на ns-, (n-1)s-, (n-1)p- и (n-1)d- AO, с базисом 8s7p6d1f [30, 31], и 2ve-ECP, в котором в остов не включены только электроны ns-оболочки, с

Рис. 1. Три-(t), би-(b) и монодентатная (m) конфигурации систем МВН₄ и НМВН₄.

базисом 4s2p1d [30, 32, 33]. Для ВН₄-группы использовали псевдопотенциал 3ve-ECP (В) [34] со стандартным базисным набором 6-31Г** [35 - 37], из которого исключены базисные функции, описывающие остовные АО. Экспоненциальные множители f-AO (20ve-ECP) и d-AO (2ve-ECP) были оптимизированы в данной работе с помощью МП2-расчетов (т.е. с учетом электронной корреляции в рамках второго порядка теории возмущений по схеме Меллера–Плессета [38, 39]) изолированных атомов в первом случае и дигидридов MH₂ во втором. Найденные значения для Zn, Cd, Hg равны соответственно 4.09; 1.71; 1.10 (f-AO) и 0.20; 0.154; 0.162 (d-AO).

По аналогии с [28], продолжением которой является данная работа, мы использовали следующие обозначения базисных наборов:

2ve-ECP:

b1 - (4s2p1d/3s2p1d)M, (4s4p/2s2p)B, (4s/2s)H; b2 - b1 + d(B); b3 - b2 + p(H).

20ve-ECP:

b1 - (8s7p6d/6s6p3d)M, (4s4p/2s2p)B, (4s/2s)H;

b3 - b1 + d(B); b5 - b3 + f(M) + p(H).

Kaĸ и [28], сокращения В типа МП4/b5//МП2/b3 обозначают расчет на уровне МП4ОДТЧ (т.е. в рамках четвертого порядка теории возмущений по схеме Меллера-Плессета с учетом одно-, двух-, трех- и четырехкратных возбуждений из основного детерминанта) с базисом b5 и геометрическими параметрами, оптимизированными $M\Pi 2/b3$, в рамках МП4/b5//МП2/b5//МП2/b3 - расчет того же уровня, но с уточнением расстояния М-В с помощью его сканирования в рамках МП2/b5 (как и в [28], с шагом 0.05 Å). При этом лишь в расчетах MII2/b3 электронную корреляцию учитывали для всех электронов; в рамках МП2/b5 наиболее низколежащие (n - 1)s- и *p*-АО атома М в активное пространство не включали, поскольку на примере расчетов ZnBH4 было найдено, что их влияние незначительно: 0.1 - 0.2 ккал/моль для $\Delta E(bt)$ и 0.3 - 0.4 ккал/моль для DE(BH₃).

Как правило, частоты колебаний и их интенсивности вычисляли на уровне ССП/b1 в гармоническом приближении, затем геометрические параметры уточняли в рамках МП2/b3 с последующим сканированием расстояния М-В в базисе b5 и расчетом энергетических характеристик на уровне МП4/b5. Найденные таким образом для изучаемых систем геометрические параметры, гармонические частоты и интенсивности колебаний, а также энергетические характеристики приведены в табл. 1 - 5, их би- и тридентатные конфигурации изображены на рис. 1.

Как и у борогидридов ряда Ве - Ва [28], геометрические параметры ВН₄-группы очень слабо меняются как при расширении базисного набора от b1 к b3, так и при учете электронной корреляции: вариации расстояний В–Н не превышают 0.01 Å, а валентных углов Н–В–Н – 0.5° - 1.0° (табл. 1). Нежесткое расстояние В–М более чувствительно к качеству приближения, причем результаты существенно зависят от типа использованного псевдопотенциала. Для соединений цинка и кадмия расчеты в рамках 20ve-ЕСР и 2ve-ЕСР дают практически совпадающие геометрические параметры; для борогидридов ртути различия в равновесных расстояниях R(BM) достаточно заметны (0.05 Å, табл. 1), т.е. качество псевдопотенциала 2ve-ЕСР для ртути оказывается заметно ниже, чем для Zn и Cd. При учете электронной корреляции в расчетах с псевдопотенциалом 2ve-ECP сокращение R(BM) имеет величину 0.03 - 0.05 Å, тогда как при использовании 20ve-ECP оно составляет 0.05 - 0.09 Å, а при учете еще и f-AO – 0.10 - 0.13 Å (табл. 1), т.е. влияние поляризации (n - 1)d-оболочки оказывается весьма существенным.

Соединения данного типа являются нежесткими по отношению к вращению фрагмента BH₄, и по этой причине характер стационарных точек потенциальной поверхности (ПП) весьма чув-

Таблица 1. Геометрические параметры, энергии нулевых колебаний (ЭНК, ккал/моль) и количество мнимых частот n_i для *b*- и *t*-конфигураций радикалов MBH₄ и молекул HMBH₄ (M = Zn, Cd, Hg) в различных приближениях (см. обозначения в тексте)

Система, структура,			R(A)	3), Å		θ(ABC), град		ЭНК
ба	зис	MB	BH _b	BH,	MH'	MBH _b	MBH,	14	
	·····			ZnBH ₄ ,	2ve-ECP	**************************************			
t	ССП/b1	2.12	1.25	1.19	-	68.6	180.0	0	24.1
	МП2/b2	2.09	1.25	1.20	-	68.8	180.0	0	24.1
b	CCII/b1	2.28	1.28	1.20		54.3	120.6	0	24.1
	МП2/b2	2.24	1.27	1.20	—	55.5	120.3	1	23.9
			I	' ZnBH ₄ , 2	Ove-ECP	•	•		
t	ССП/b1	2.11	1.25	1.19	-	68.6	180.0	0	23.8
	МП2/b3	2.03	1.25	1.19	-	68.8	180.0		-
	MII2/b5	2.01	1.25*	1.19*	-	68.8*	180.0*	-	-
Ь	CCII/b1	2.26	1.29	1.20	-	54.2	120.4	0	24.2
	MII2/b3	2.17	1.28	1.20		55.6	119.9	-	-
	МП2/b5	2.15	1.28*	1.20*	-	55.6*	119.9*	-	-
		l	ł	HZnBH4,	2ve-ECP	I			
t	ССП/b1	2.06	1.25	1.18	1.56	68.7	180.0	0	28.4
	МП2/b2	2.04	1.25	1.19	1.56	68.8	180.0		-
b	ССП/b1	2.22	1.29	1.20	1.56	54.6	120.6	0	28.4
	MII2/b2	2.19	1.28	1.20	1.56	55.8	120.5		-
	' 1		1	HZnBH ₄ ,	20ve-ECP				
t	ССП/b1	2.05	1.25	1.18	1.54	68.6	180.0	0	28.1
	MII2/b3	1.98	1.26	1.19	1.51	68.6	180.0	-	-
	МП2/b5	1.96	1.26*	1.19*	1.51*	68.6*	180.0*	_ ·	
Ь	ССП/b1	2.20	1.29	1.19	1.55	54.5	120.4	0	28.8
	MII2/b3	2.12	1.28	1.20	1.52	55.8	120.8		-
	МП2/b5	2.09	1.28*	1.20*	1.52*	55.8*	120.8*		-
	1,		!	CdBH ₄ ,	2ve-ECP				1
t	ССП <i>/b</i> 1	2.34	1.25	1.19		70.1	180.0	0	23.6
	MII2/b2	2.32	1.25	1.20		70.6	180.0	-	-
Ь	ССП/b1	2.50	1.28	1.20	-	55.1	121.0	1	23.1
	MT12/b2	2.46	1.27	1.21		56.5	120.7		-
	, • •		I	CdBH ₄ , 2	Ove-ECP				1 00 0
t		2.34	1.25	1.19		70.1	180.0	0	23.5
	MII2/b3	2.26	1.25	1.20	-	70.9	180.0		

1389

Таблица 1. Окончание

.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Система	CTDVKTVDA.		R(Al	3), Å		Ө(<i>ABC</i>) , град		7 2	אוזכ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ба	зис	MB	BH _b	BH,	MH'	MBH _b	MBH,	n _i	JIK
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t	MII2/b5	2.22	1.25*	1.20*		70.9*	180.0*		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ь	ССП/b1	2.48	1.28	1.20	-	55.3	120.7	0	23.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		MII2/b3	2.40	1.27	1.20		56.8	120.2	-	-
t CCIII/b1 2.27 1.25 1.19 1.70 70.3 180.0 - - b CCII/b1 2.42 1.25 1.20 1.71 55.3 120.8 0 27.5 b CCII/b1 2.42 1.28 1.20 1.71 56.8 120.8 0 27.5 t CCII/b1 2.27 1.25 1.19 1.67 70.9 180.0 - - t CCII/b1 2.27 1.25 1.19 1.67 70.9 180.0 - - t CCII/b1 2.42 1.29 1.20 1.70 75.5 120.3 - - t CCII/b1 2.32 1.25 1.20 - 71.3 180.0 2 22.9 MIT2/b2 2.29 1.25 1.20 - 71.3 180.0 2 22.9 t CCII/b1 2.32 1.25 1.20 - 71.3 180.0		MII2/b5	2.36	1.27*	1.20*	-	56.8*	120.2*	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•			HCdBH ₄ ,	2ve-ECP			•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	ССП/b1	2.27	1.25	1.19	1.70	70.3	180.0	0	27.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		MII2/b2	2.25	1.25	1.20	1.71	70.8	180.0	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b	ССП/b1	2.42	1.28	1.20	1.70	55.3	120.8	0	27.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		МП2/b2	2.39	1.27	1.20	1.71	56.8	120.8		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					HCdBH4,	20ve-ECP		-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	ССП/b1	2.27	1.25	1.19	1.69	70.4	180.0	2	27.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		МП2/b3	2.20	1.25	1.19	1.67	70.9	180.0	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	MII2/b5	2.16	1.25*	1.19*	1.67*	70.9*	180.0*	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ь	ССП/b1	2.42	1.29	1.20	1.70	55.5	120.6	0	27.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		МП2/b3	2.33	1.28	1.20	1.68	57.0	120.3		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MII2/b5	2.29	1.28*	1.20*	1.68*	57.0*	120.3*	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 000/11		1 .	HgBH ₄ ,	2ve-ECP				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t		2.32	1.25	1.20	-	71.3	180.0	2	22.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	z	M112/62	2.29	1.25	1.21	-	72.2	180.0	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D		2.46	1.28	1.20	-	55.9	120.1	0	23.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		M112/02	2.44	1.27	1.21		57.4	119.7	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	CCT/b1	0.27	1 1 0 7	HgBH ₄ , 2	20ve-ECP				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ł	MT12/63	2.37	1.25	1.20	-	72.2	180.0	2	22.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MT12/05	2.20	1.24	1.21	-	75.0	180.0	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	b	ССП/Ь1	2.25	1.24*	1.21*	– . 1	75.0*	180.0*	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ū	МП2/63	2.51	1.28	1.20	-	56.4	119.7	1	22.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MTT2/b5	2.41	1.20	1.20	-	58.6	118.8	_	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m	$CC\Pi/b1$	3.62	1.20	1.20*	-	58.6*	118.8*	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		МП2/b3	3.02	1.02	1.19		94.2	0.0		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5.20	1.51	HHaBH	2vo ECD	96.5	0.0	-	-
$b \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	ССП/b1	2.24	1.25	1 10	1 66	70.0	1000		1 273
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MI12/b2	2.22	1.25	1.19	1.00	70.9	180.0	2	21.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ь	ССП/b1	2.38	1.29	1.20	1.07	/1.4 550	180.0		28.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		МП2/b2	2.35	1.27	1.20	1.00	57.1	120.5	U	20.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,			HHeBH.	20ve-FCP	57.1	120.4		_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	ССП/b1	2.29	1.25	1.19	1 64	710	100.0	^	077
$b \begin{array}{ c c c c c c c c c c c c c c c c c c c$		MTI2/b3	2.21	1.25	1.20	1.62	72.0	100.0	L	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		МП2/b5	2.18	1.25*	1.20*	1.62*	72.0	100.0		_
$m \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b	ССП/b1	2.43	1.29	1.20	1 64	74.0" 56 1	100.0™ 100.1	- 1	28.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		МП2/b3	2.34	1.28	1.20	1.63	577	120.1	L	
m CCII/b1 3.93 2.26 1.19 1.67 91.4 0.0 $-$ MII2/b3 3.22 1.55 1.20 1.64 96.6 0.0 $ -$		MT12/b5	2.30	1.28*	1.20*	1.63*	57.7	119./ 110 7*		_
MII2/b3 3.22 1.55 1.20 1.64 96.6 0.0 -	m	ССП/b1	3.93	2.26	1.19	1.67	01 /	117./*		-
		МП2/b3	3.22	1.55	1.20	1.64	96.6	0.0		

* Параметры фиксированы.

.

1390

.

ствителен к уровню приближения. Например, для ZnBH₄ и CdBH₄ в рамках 2ve-ECP конфигурация (t) является локальным минимумом, a (b) – седловой точкой, тогда как при использовании 20ve-ЕСР обе эти структуры становятся локальными минимумами (табл. 1). Однако соответствующие частоты очень малы (~100 см⁻¹, табл. 2, 3), и вполне можно ожидать, что при учете электронной корреляции энергетически менее выгодная конфигурация трансформируется в седловую точку, как это имело место для НВеВН₄ и ВеВН₄ [22, 28]. Для HgBH₄ и HHgBH₄ на ССП-уровне конфигурация (t) имеет две мнимые частоты, а (b) - одну; единственным минимумом ПП оказывается наиболее стабильная на этом уровне приближения структура (т), соответствующая комплексу BH₃-HHg или BH₃-HHgH. Однако при учете электронной корреляции относительное положение этих конфигураций на энергетической шкале становится иным: бидентатная структура является основной, а (m) оказывается наименее выгодной и лежит выше на 7 ккал/моль для HgBH₄ и 10 ккал/моль для HHgBH₄. Соответственно (b) должна превратиться в минимум, а (m) – в седловую точку ПП. Для рассмотренной группы соединений частотный анализ полезен в основном для оценки изменений энергии нулевых колебаний (ЭНК) при распаде системы: в этом случае они достаточно существенны и достигают 3 - 4 ккал/моль (табл. 4). При определении энергетической разницы между би- и тридентатной структурами ($\Delta E(bt)$) влияние ЭНК невелико (0.2 - 0.5 ккал/моль) и сопоставимо с погрешностью определения разности самих ЭНК.

Если отбросить наиболее низкочастотные колебания, связанные с вращением фрагмента ВН₃, то рассчитанные в рамках 2ve-ECP и 20ve-ECP интенсивности и положение линий в ИК спектрах вполне удовлетворительно согласуются между собой (табл. 2), и их можно использовать для интерпретации экспериментальных данных подобных систем.

Влияние электронной корреляции на рассчитанные энергетические характеристики для рассмотренных систем оказывается примерно таким

Таблица 2. Гармонические частоты $f(cm^{-1})$ и относительные интенсивности линий RI (%) в ИК спектрах t- и , b-конфигураций радикалов MBH₄ (M = Zn, Cd, Hg)

	······	· · · · · · · · · · · · · · · · · · ·	, ,					Ба	зис						
					2ve-	ECP						20ve	-ECP		
Конфи Непри	пурация.		Zn	BH₄		Cd	BH4	Hgl	BH ₄	Znł	3H4	Cdl	3H4	Hgl	BH4
предст	авление		Т/Ь1	MI	2/b2	CCI	I/b1	CCI	П/b1	CCI	1/b1	CCI	1/b1	CCI	1/b1
		f	RI	f	RI	f	RI	f	RI	f	RI	f	RI	f	RI
		,		200		107	2			154	8	125	6		-
	E	232	7	302	9	200	51	415	61	481	66	422	59	405	80
		475	28	493	5	1214	10	1203	10	1215	10	1213	10	1197	11
	E	1223	8	1152	25	1214	18	1131	1	1242	48	1216	31	1087	1.
t	A_1	1252	38	1193		1210	5	1330	7	1350	4	1341	4	1318	6
	E	1355	3	1312	1	1342	75	2223	100	2227	51	2215	64	2232	100
	E	2234	50	2308	100	2224	100	2299	89	2305	100	2294	100	2295	81
	A_1	2314	100	2321	25	2505	54	2636	26	2742	53	2696	53	2628	22
******	A1	2733	48	2/01	- 55	20/4		140	0	110	1	86	0	186	0
	B_1	70	1	-		-	11	260	0	432	14	383	12	369	14
	A_1	419	12	426	17	337		343	1	598	2	499	1	-	-
	<i>B</i> ₂	589	2	639	3	48/		1057		1103	2	1094	2	1025	1
	B_1	1108	2	999		1100	21	1183	33	1209	22	1202	23	1182	43
	A_1	1208	19	1159	15	1197		1258		1250	0	1255	0	1249	0
b	A_2	1256	0	1186	0	1203	6	1288	7	1368	8	1319	6	1287	7
	B_2	1348	7	1309	4	1292		1200	9	1510	49	1458	25	1358	12
	A_1	1483	32	1442	23	1419	20	1020	24	1939	13	1945	15	1895	20
	B2	1957	14	2110	8	19/1	100	2073	100	2080	100	2077	100	2048	100
	A_1	2095	100	2156	100	2102	21	2500	21	2636	22	2611	21	2608	23
	A_1	2627	21	2604	21	2595	21	2599	32	2715	34	2687	31	2697	36
	B_1	2705	30	2694	24	2008	29	2005			L	L			

1000

Таблица 3. Гармонические частоты $f(cm^{-1})$ и относительные интенсивности линий в ИК спектрах RI(%)для *t*- и *b*-конфигураций молекул HMBH₄ (M = Zn, Cd, Hg), рассчитанные в рамках CCII/*b*1

ая.	ရ ရ		*		Ба	зис	· · · · · · · · · · · · · · · · · · ·		
paup	TCHE			2ve-]	ECP			20ve-	ECP
pary	CTAB	HZn	BH4	HCd	BH ₄	HHg	BH ₄	HZn	BH ₄
Конс	Henn	f	RI	f	RI	f	RI	f	RI
	E	224	18	162	11			88	17
	E*	450	39	389	38	436	25	463	38
	A_1	525	33	448	23	473	29	534	38
	E	1228	. 9	1220	8	1212	7	1219	9
	A_1	1288	34	1234	11	1205	7	1274	40
1	E	1376	8	1359	8	1355	9	1370	10
	A_1^*	1887	53	1728	45	1937	49	1988	62
	E	2.254	100	2239	100	2242	100	2250	100
	A_1	2308	79	2297	63	2293	67	2301	77
	A_1	2776	34	2726	29	2725	28	2786	36
	B_1	94	2	70	1	132	2	137	4
	B ₂ *	362	24	302	22	261	13	352	28
	B_1^*	420	39	370	35	433	24	454	46
	A_1	454	9	394	8	415	9	468	12
	B_2	706	5	604	6	623	6	728	7
	B_1	1111	3	1108	3	1085	3	1102	4
	A_1	1217	21	1205	22	1203	30	1220	31
b	A_2	1258	0	1264	0	1259	0	1251	0
	B ₂	1378	7	1317	8	1329	8	1400	9
	A_1	1547	46	1479	19	1501	27	1576	84
	A_1^*	1872	43	1714	34	1912	55	1969	84
	<i>B</i> ₂	2006	73	2001	78	1989	75	1997	89
	A_1	2083	100	2082	100	2068	100	2075	100
	A_1	2650	22	2624	21	2632	26	2657	31
	B_1	2730	39	2700	34	2713	40	2738	56

* Колебание М-Н',.

же, как и у борогидридов подгруппы IIA [29]: тридентатная конфигурация стабилизируется на 1 - 2 ккал/моль сильнее бидентатной, энергия, необходимая для разделения системы фрагменты, увеличивается на 10 - 15 ккал/моль (табл. 4, 5). При этом различия значений, рассчитанных в рамках второго, третьего и четвертого порядков теории возмущений, а также с базисами b3 и b5, невелики – 0.2 - 0.5 ккал/моль для величин $\Delta E(bt)$ и 1 - 2 ккал/моль для энергий разделения на фрагменты, т.е. вполне удовлетворительные результаты для более сложных соединений подобного типа можно получать уже на уровне MII2/b3.

Использование для энергетических характеристик псевдопотенциала 2ve-ECP приводит к достаточно заметным погрешностям: для соединений цинка, кадмия стабильность бидентатной структуры завышается на 1 - 2 ккал/моль, а затраты энергии, необходимые для отрыва BH₃, – на 3 - 4 ккал/моль. Для соединений ртути эти погрешности растут до 3 и 10 ккал/моль соответственно, т.е. приближение 2ve-ECP оказывается слишком грубым (табл. 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Электронная структура рассмотренных соединений достаточно проста. У радикалов MBH₄ неспаренный электрон расположен на молекулярной орбитали a₁, состоящей в основном из s(M)-AO. В рамках анализа заселенностей по Малликену атом металла имеет небольшой положительный заряд (0.1 - 0.3 е) и образует двухэлектронные трехцентровые мостиковые связи М-H_b-B: плотности перекрываний Q(М-H_b) составляют 0.15 - 0.35 е (они уменьшаются от ZnBH₄ к HgBH₄), а $Q(B-H_b) = 0.40 - 0.60$ е, т.е. вполне сопоставимы по величине. Мостиковые связи не образуются лишь у монодентатной (m) конфигурации частицы HgBH4, представляющей собой донорно-акцепторный комплекс HgH · BH₃, в котором плотность перекрывания $Q(B-H_b)$ составляет лишь 0.1 е. При переходе от радикалов MBH₄ к молекулам НМВН4 (т.е. при замене неспаренного электрона связью МН) характеристики распределения электронной плотности фрагмента МВН4 меняются слабо.

Закономерности изменений геометрического строения у борогидридов ряда Zn - Нg оказываются примерно такими же, как и у борогидридов Ве - Ва [28]: переход от радикалов MBH₄ к молекулам НМВН₄ мало сказывается на значениях геометрических параметров фрагмента М-ВН4, расстояния В-Н, на 0.06 - 0.09 Å длиннее, чем В-Н, причем в бидентатной конфигурации поляризация ВН₄-группы немного сильнее (табл. 1). Имеются, однако, и некоторые отличия: если в ряду Ве - Ва расстояние М-В монотонно растет, то у борогидридов Zn - Нg такой рост имеет место лишь при переходе от Zn к Cd, тогда как у соединений Cd и Hg оно практически одинаково вследствие эффекта лантанидного сжатия; у молекул НМВН₄ расстояние *R*(BM) на 0.05 - 0.06 Å короче, чем у радикалов МВН₄, т.е. связь М-Н ослабляет взаимодействие М⁺-ВН₄ менее существенно, чем мало поляризуемая "жесткая" s(M)-AO. Еще одно отличие - если у борогидридов ряда Ве - Ва величины углов НьВНь чуть меньше значения для тетраэдрического угла, то в ряду Zn - Hg они могут быть и немного больше, особенно для соединений

Таблица 4. Энергетические характеристики *b*- и *t*-конфигураций радикалов MBH₄ и молекул HMBH₄ (M = Zn, Cd, Hg) в различных приближениях (см. текст): $E_{полн}$ – полная энергия (ат. ед.) основной структуры (тип указан в скобках), ΔE – относительные энергии возбужденной конфигурации, *DE*, *DE*^{*} – энергии отрыва BH₃ для основной структуры (без и с учетом ЭНК, ккал/моль)

	- <i>Е</i> _{полн}	ΔΕ	DE	DE'		-Еполн	ΔΕ	DE	DE
	.2ve	-ECP ZnBH	4(<i>t</i>)	L	20ve	-ECP		$ZnBH_4(t)$	<u> </u>
ССП/b1	5.8480	0.3	18.2	13.5	ССП/b1	230.9119	0.7	16.0	11.8
МП2/b2	5.9780	2.1	34.0	29.3	МП2/b3	231.3681	1.2	30.5	26.2
1		/b3//MII2/b2		L		/ <i>b5//</i> 1	ип2/ <i>b5//</i> МI	12/b3	
CCII	5.8663	0.5	19.6	14.9	ССП	230.9302	-0.1	17.5	13.3
MII2	6.0094	1.9	35.7	31.0	MII2	231.3676	1.0	32.2	28.0
МПЗ	6.0320	1.8	34.8	30.1	МП3	231.3559	1.1	32.1	27.8
МП4	6.0388	1.8	34.9	30.2	MII4	231.3967	0.8	31.4	27.2
P		HZnBH ₄ (t)	•	F		•	$HZnBH_4(t)$		
CCII/b1	6.4337	0.0	18.7	13.8	ССП/b1	231.5012	-1.3	14.9	11.3
МП2/b2	6.5798	2.2	35.3	30.3	МП2/b3	231.9805	0.8	31.3	27.7
•		, /b3//MП2/b2		•		<i> b5 /</i> 1	ип2/b5//мі	12/b3	
CCII	6.4536	0.3	20.2	15.2	ССП	231,5211	0,6	16.6	13.0
MII2	6.6179	1.9	36.4	31.4	MII2	231.9884	0.6	32.5	28.9
МПЗ	6.6451	1.8	35.9	30.9	MII3	231.9769	0.8	32.5	29.0
МП4	6.6529	1.8	36.2	31.2	МП4	232.0233	0.5	32.4	28.8
	l	$CdBH_4(t)$		•			$CdBH_4(t)$	ז ייקייני ו	11.5
ССП/b1	5.7760	0.8	18.2	13.5	ССП/b1	171.7863	-0.4	15.5	11.5
МП2/b2	5.9020	1.7	33.3	28.6	MI12/b3	172.0118	0.6	29.4	25.4
		/b3//MI12/b2		•		/b5//1	ИП2/ <i>b</i> 5//МI	12/63	11.0
ССП	5.7935	0.4	18.9	14.2	ССП	171.8035	-0.4	15.9	11.9
MII2	5.9337	1.5	35.0	30.3	МП2	172.2020	0.3	30.0	20.7
MII3	5.9558	1.4	34.0	29.3	MII3	172.2119	0.2	30.0	20.0
MII4	5.9624	1.4	34.1	29.3	МП4	172.2251		50.0	20.0
		HCdBH ₄ (t)				1 100 0 5 11	$HCOBH_4(D)$	126	08
ССП/b1	6.3440	0.3	17.7	13.7	ССП/b1	172.3641	1.4	15.0	2.0
МП2/b2	6.4860	1.8	33.2	29.2	МП2/b3	172.6088		12/62	2 4 ,J
		<i> b3//M</i> TI2/b2	2			///CU//I	VIII2/03//1VII	12/05	10.4
ССП	6.3640	0.0	18.6	14.6	CCII	172.3833	12	20.8	26.0
МП2	6.5250	1.2	34.3	30.3	MI12	172.8080	1.5	29.2	25.4
МПЗ	6.5515	1.2	33.8	29.8	MII3	172.8202	1.0	29.6	25.8
МП4	6.5593	1.2	34.1	30.1	MI 14	172.0355	HoBH.(b)		
		$HgBH_4(b)$				157 1160	33	1.1	-2.6
CCII/b1	5.8388	1.7	7.2	2.3	MT12/62	157 6855	2.8	14.4	10.6
МП2/b2	5.9650	0.6	22.5	17.0	WI112/05	157.0055	лп2/b5//MI	12/b3	
		/b3//MI12/b2		1 27	ССП	157 4639	4.2	1.0	-2.8
ССП	5.8569	2.2	8.6	3.7	MIT	157,8993	3.5	14.2	10.4
MII2	5.9969	0.8	25.6	20.7	MIT2	157,8984	3.5	14.2	10.4
МПЗ	6.0190	0.9	24.9	20.0	MTT4	157,9152	3.4	14.5	10.8
МП4	6.0257	0.9	24.9	20.0	141114	1 10/10/2022	HHgBH₄(b)	1	
		$HHgBH_4(b)$		1 21	CCIT/b1	158.0310	4.3	0.7	2.2
ССП/b1	6.4155	1.7	7.2	3.4 00.2	MTT2/b3	158.2924	3.2	16.5	13.6
МП2/b2	6.5568	0.3	26.1	22.5	141112/05	/b5//N	/ITI2/ <i>b5//</i> MI	12/b3	
0		/b3//MI12/b2	10.2	95	ССП	158.0530	4.8	0.7	2.2
CCII	6.4366	2.5	12.5	24.0	мп2	158.5174	4.0	17.4	14.5
MII2	6.5964	0.9	27,8	24.0	МПЗ	158.5165	4.1	16.1	13.2
МП3	6.6226	0.9	27.1	23.3	MTT4	158.5356	3.9	17.1	14.2
MII4	6.6302	0.9	27.5	43.1		L		<u></u>	

- -----

ртути (на 4° - 5°, табл. 1), что, вероятно, вызвано влиянием остовных электронов атома металла.

Характеристики ИК спектров, рассчитанные в гармоническом приближении для борогидридов Zn, Cd, Hg, различаются в этом ряду довольно мало (табл. 2, 3) и при условии одинаковой координации M-BH₄ оказываются весьма сходными с аналогичными данными, полученными в [28] для борогидридов Be - Ba. Различия существенны лишь для низкочастотных колебаний, связанных с вращением BH₄-группы (линии E, B₁, B₂), и валентного колебания M-BH₄ (A₁). Здесь следует отметить, что при переходе от борогидридов кадмия к борогидридам ртути эта частота почти не уменьшается, т.е. силовая постоянная f(BM), как и расстояние R(BM), при этом мало меняется.

Энергетические характеристики борогидридов Zn, Cd, Hg оказываются существенно иными, чем у аналогичных соединений Be - Ba [28].

Таблица 5. Энергии отрыва молекулы H₂ DE, DE (без и с учетом ЭНК, ккал/моль) для радикалов MBH₄ и молекул HMBH₄ в различных приближениях (см. текст)

)ve-ECP	Znl	BH ₄ Cd		BH4	HgE	8H4*	$HZnBH_4$	HCdBH ₄	HHgBH ₄
Б	DE	DE	DE	DE	DE	DE	DE	DE	DE
ССП/b1	29.2	23.7	27.7	22.4	9.1	2.5	29.0	26.6	10.7
MII2/b3	37.9	32.4	35.8	30.5		-	39.6	35.0	19.6
	•	<i>/b5</i>	//МП	2/b5/	/MII2	2 <i>/b</i> 3	I		
ССП	31.5	25.9	29.0	23.7	9.4	2.8	31.8	28.3	12.3
MII2	40.7	35.2	37.2	31.9	19.6	13.1	42.3	37.6	22.1
МП3	40.8	35.3	37.1	31.8	21.6	15.1	42.9	37.7	22.7
MII4	38.8	33.2	36.3	31.0	22.2	15.6	41.3	37.5	22.7

* Разложение на $H_2 + Hg + BH_2$.

Таблица 6. Потенциалы ионизации (ПИ), энергии промотирования E(s-p), E(s-d) для атомов металлов M и их катионов M⁺ [40, 41], энергии атомизации D_0 (МН) для двухатомных гидридов щелочноземельных металлов [42] (все величины в ккал/моль)

Атом		М		N		
	ПИ	E(s-p)	E(s-d)	E(s-p)	E(s-d)	<i>D</i> ₀ (МН)
Be	215	63	-	91		47
Mg	176	63	137	102	204	31
· Ca	141	43	58	72	39	39
Sr	131	41	52	68	42	38
Ba	120	35	26	58	14	45
Zn	217	92	179	138	276	20
Cd	207	86	169	125	256	16
Hg	241	107	204	147	299	8

Прежде всего это касается характера изменения энергетической разницы между би- и тридентатной конфигурациями $\Delta E(bt)$: если в ряду Ве - Ва структура (t) всегда была основной, а $\Delta E(bt)$ немонотонно возрастала, то в ряду Zn - Нg эта величина мала и относительная стабильность конфигурации (t) для более тяжелых М падает. Это приводит к инверсии конфигураций (b) и (t) на энергетической шкале: если для ZnBH4, HZnBH4 основной была структура (1), то для HgBH₄, HHgBH₄ -(b) (табл. 4). При этом для борогидридов Zn, Cd величина $\Delta E(bt)$ мала и они должны быть нежесткими к вращению ВН₄-группы. Конечно, при столь малой разнице нельзя гарантировать надежность определения типа основной конфигурации, однако тенденции изменения величины $\Delta E(bt)$ в ряду и нежесткий характер вращения аниона ВН₄ должны быть выявлены правильно.

Обычно монодентатная конфигурация (m) на 15 - 20 ккал/моль менее стабильна, чем (b) или (t) [14, 15], однако для борогидридов ртути эта разница оказывается заметно меньше (7 -10 ккал/моль). При этом, как уже отмечалось выше, связь В--Н_b в этой структуре резко ослаблена и ее электронное строение соответствует молекулярному комплексу HgH · BH₃ или HHgH · BH₃.

Как и для других борогидридов щелочных и щелочноземельных металлов, для рассмотренных соединений отрыв BH_3 требует меньших энергетических затрат, чем отщепление молекулы водорода (табл. 4 и 5). При движении вниз по подгруппе величина $DE'(BH_3)$ падает, причем особенно резко для борогидридов ртути (табл. 4). Для HgBH₄ и HHgBH₄ удвоенная величина $DE'(BH_3)$ оказывается ниже энергии образования диборана из двух молекул BH_3 [22], поэтому данные системы должны быть термодинамически неустойчивыми к распаду с выделением B_2H_6 .

Таким образом, для однотипных борогидридов щелочноземельных металлов главной и побочной подгрупп наблюдается сходство структурных параметров и характеристик ИК спектров при условии одинаковой координации М-ВН4. В то же время характер изменения энергетических свойств - устойчивости молекул к распаду и энергетической разницы между би- и тридентатной конфигурациями – оказывается существенно иным. Как было показано в [28], особенности энергетических характеристик борогидридов Са, Sr, Ва объясняются наличием низколежащих вакантных d-AO, что делает ионы этих металлов хорошими π-акцепторами. Для ионов Zn, Cd, Hg не только d-AO, но и p-AO лежат на энергетической шкале гораздо выше, чем s-АО (табл. 6), поэтому донорно-акцепторное взаимодействие между ионами М+ и ВН4 идет в основном по о-системе и не различается существенно для би-и тридентатной конфигураций (см. подробнее [28]). С учетом этого понятна небольшая величина $\Delta E(bt)$ для этих систем, однако увеличение относительной стабильности бидентатной конфигурации в ряду Zn - Hg требует дополнительных объяснений. По нашему мнению, этот эффект связан с увеличением поляризуемости остова металла в этом ряду (согласно [34] соответствующие значения для Zn, Cd, Hg равны 2.30; 4.98; 8.42 а. е.), которое для бидентатной структуры должно приводить к большему понижению энергии в связи с менее симметричным окружением иона M⁺. Действительно, в приближении 2ve-ECP, где поляризуемость иона M⁺ учитывается гораздо менее полно, стабилизация бидентатной конфигурации менее существенна (табл. 4).

Для того чтобы понять причины неодинакового поведения $DE(BH_3)$ в рядах борогидридов подгрупп IIA и IIБ, представим процесс отщепления BH_3 на примере систем MBH_4 следующим образом:

$$\begin{split} \mathrm{MBH}_4 & \to \mathrm{M}^+ + \mathrm{BH}_4^- \to \mathrm{M}^+ + \mathrm{H}^- + \mathrm{BH}_3 \to \mathrm{M} + \mathrm{H} + \\ & + \mathrm{BH}_3 \to \mathrm{MH} + \mathrm{BH}_3. \end{split}$$

Тогда

$$\begin{split} DE(BH_3) &= DE(M^+ + BH_4^-) + DE(BH_3 + H^-) + \\ &+ C\Im(H) - \Pi U(M) - D_0(MH) = DE(M^+ + BH_4^-) - \\ &- \Pi U(M) - D_0(MH) + \text{const,} \end{split}$$

где СЭ – сродство к электрону, ПИ – потенциал ионизации, D₀(MH) – энергия диссоциации для двухатомной молекулы, $DE(M^+ + BH_4^-)$ – энергия, необходимая для разделения системы МВН4 на ионы. К сожалению, в конечном выражении лишь величины ПИ(М) определены достаточно надежно. Конечно, значения $DE(M^+ + BH_4^-)$ можно было бы вычислить с помощью полученных в наших расчетах полных энергий для систем MBH₄, однако вряд ли имеет смысл объяснять поведение одной расчетной величины с помощью другой того же уровня сложности. Поэтому для получения качественной картины мы попытались оценить поведение $DE(\overline{M}^+ + BH_4^-)$ на основе электростатической модели, приняв заряды ионов равными ±1, ионные радиусы R(M⁺) для катионов металла по Полингу и $R(BH_4^-) = 1.40$ Å в соответствии с расстоянием Li-В в LiBH₄. В этом случае $DE(M^+ + BH_4^-)$ для M = Be, Mg, Ca, Sr, Ba,Zn, Cd, Hg равны соответственно 149, 162, 139, 131, 121, 149, 140, 133 ккал/моль. Наиболее надежные данные для D₀(MH) представлены в [42] (табл. б). Объединяя эти величины, получаем в ряду ВеВН₄ - ВаВН₄ сначала существенное, а затем медленное увеличение DE(BH₃); переход к борогидридам Zn, Cd и особенно Hg ведет к резкому снижению DE(BH₃). Эта картина находится в качественном согласии с результатами неэмпирических расчетов. Наиболее серьезное расхождение проявляется в том, что модель предсказывает увеличение DE(BH₃) при переходе от BeBH₄ к MgBH₄, тогда как оно имеет место между MgBH₄ и CaBH₄. Очевидно, причиной этого является неточность оценки $DE(M^+ + BH_4^-)$. Тем не менее эта простая модель воспроизводит основные тенденции изменений $DE(BH_3)$ для рассмотренных систем. На ее основе можно заключить, что наиболее существенным факторсм, определяющим изменения $DE(BH_3)$ в рассмотренных рядах, является ПИ(M), и резкая дестабилизация борогидридов подгруппы IIБ связана с высокими значениями потенциалов ионизации для этих металлов.

Таким образом, данные расчеты демонстрируют существенные различия в поведении энергетических характеристик у борогидридов щелочноземельных металлов главной и побочной подгрупп: относительной стабильности би- и тридентатной конфигураций и энергии, необходимой для отрыва BH₃. Для ряда Ве - Ва характерна тридентатная координация $M-BH_4$ и величина $\Delta E(bt)$ растет при движении вниз по подгруппе. Значения $DE(BH_3)$ также растут, хотя и немонотонно, причем наиболее существенный скачок имеет место между M = Mg и M = Ca. У борогидридов Zn, Сd. Нд величины DE(BH₃) снижаются, причем особенно резко для ртути. Тридентатная конфигурация дестабилизируется наиболее существенно, в результате чего основной становится бидентатная структура; энергетическая разница $\Delta E(bt)$ мала, в особенности для M = Zn, Cd, т.е. обмен концевых и мостиковых протонов в борогидридах этих металлов должен идти без существенных энергетических затрат. Все эти особенности связаны с различием в строении электронных оболочек у металлов подгрупп ИА и ИБ: быстрым снижением энергий промотирования E(s-p), E(s-d) и ПИ в ряду Ве - Ва и высокими значениями этих величин для Zn, Cd, Hg. Такие же закономерности изменения энергетических характеристик должны иметь место и для борогидридов Cu, Ag, Au, поскольку энергии промотирования и потенциалы ионизации для этих металлов столь же высоки. В то же время структурные параметры и характеристики ИК спектров при условии одинаковой координации М-BH4 различаются далеко не столь существенно и имеют много общих черт для всей рассмотренной группы систем. Замена одного атома металла другим приводит в основном к изменению расстояния R(BM) и соответствующей частоты f(BM). Можно ожидать, что такие же особенности будут иметь место и для более сложных борогидридов типа M(BH₄)₂ и M(BH₄)₃, но взаимное влияние ВН₄-групп может привести к снижению *DE*(BH₃) и небольшой дестабилизации тридентатной конфигурации, вследствие чего и для борогидридов цинка бидентатная координация М-BH4 может стать предпочтительной. Структурные параметры и характеристики ИК спектров, вероятно, изменятся слабо.

. . . .

В заключение авторы считают своим приятным долгом поблагодарить Немецкое исследовательское общество (DFG) за финансовую поддержку этих исследований. Все расчеты были выполнены в Институте органической химии Университета Эрлангена-Нюрнберга на ЭВМ Convex C-220s и на ВЦ им. Лейбница в Мюнхене на ЭВМ Cray Y-MP4.

СПИСОК ЛИТЕРАТУРЫ

- Жигач А.Ф., Стасиневич Д.С. // Химия гидридов. Л.: Химия, 1969. 676 с.
- Marx T.J., Kolb J.R. // Chem. Rev. 1977. V. 3. N. 2. P. 263.
- 3. Muetterties E.L. // Boron Hydride Chemistry. Academic: N. Y., 1975. 445 p.
- Housecroft C.E., Fehler T.P. // Advances in Organomet. Chem. 1981. V. 21. P. 57.
- Химия неорганических гидридов / Под ред. Кузнецова Н.Т. М.: Наука, 1990. 287 с.
- 6. Electron deficient boron and carbon clusters / Olah G.A., Wade K., Williams R.E. ed. r. Wiley-Interscience Publ.; N. Y., 1990. 379 p.
- Tung Tsang, Farrar T.C. // J. Chem. Phys. 1969. V. 50. N. 8. P. 3498.
- Тарасов В.П., Бакум С.И., Привалов В.И., Шамов А.А. // Журн. неорган. химии. 1990. Т. 35. № 7. С. 1815.
- Bauer S.M. // J. Am. Chem. Soc. 1950. V. 72. N. 1. P. 622.
- Cook T.H., Morgan G.L. // J. Am. Chem. Soc. 1970.
 V. 92. N. 22. P. 6493.
- Gundersen G., Hedberg L., Hedberg K. // J. Chem. Phys. 1973. V. 59. N. 7. P. 3777.
- Kamashima Y., Yamada C., Hirota E. // J. Chem. Phys. 1991. V. 94. N. 12, P. 7702.
- Pianalto F.S., Bopegedera A.M.R.P., Fernando W.T.M.L. et al. // J. Am. Chem. Soc. 1990. V. 112. N. 22, P. 7900.
- 14. Boldyrev A.I., Charkin O.P., Rambidi N.G., Avdeev V.I. // Chem. Phys. Letters. 1976. V. 44. N. 1. P. 20.
- Болдырев А.И., Чаркин О.П., Рамбиди Н.Г., Авдеев В.И. // Журн. структур. химии. 1977. Т. 18. № 1. С. 16; 1978. Т. 19. № 2. С. 203.
- Baranov L.Ya., Boldyrev A.I. // Chem. Phys. Letters. 1983. V. 96. N. 2. P. 218.
- 17. Bonaccorsi R., Scrocco E., Tomasi J. // Theor. Chim. Acta. 1979. V. 52. N. 1. P. 113.
- Dill J.B., Schleyer P.v.R., Binkley J.S., Pople J.A. // J. Am. Chem. Soc. 1977. V. 79. N. 19. P. 6159.
- 19. Зюбин А.С., Мусаев Д.Г., Чаркин О.П. // Координац. химия. 1987. Т. 13. № 10. С. 1329.

- 20. Зюбин А.С., Чабан Г.М., Горбик А.А., Чаркин О.П. // Журн. структур. химии. 1985. Т. 26. Т. 5. С. 12.
- 21. Ahlrichs R. // Chem. Phys. Letters. 1977. V. 19. N. 1. P. 14.
- DeFrees D.J., Raghavachari K., Schlegel H.B. et al. // J. Phys. Chem. 1987. V. 91. N. 7. P. 1857.
- 23. Чаркин О.П., Бонаккорси Р., Томази Я., Зюбин А.С. // Журн. неорган. химии. 1988. Т. 33. № 2. С. 322.
- Чаркин О.П., Бонаккорси Р., Томази Я., Зюбин А.С., Мусаев Д.Г. // Журн. неорган. химии. 1987. Т. 32. № 11. С. 2644. № 12. С. 2907.
- 25. Stanton J.F., Lipscomb W.N., Bartlett R.J. // J. Chem. Phys. 1988. V. 88. N. 9. P. 5726.
- Bonaccorsi R., Charkin O.P., Tomasi J. // Inorg. Chem. 1991. V. 30. N. 15. P. 2964.
- 27. Ortiz J.V. // J. Am. Chem. Soc. 1991. V. 113. N. 4. P. 1102.
- Зюбин А.С., Каупп М., Чаркин О.П., Шлойер П.ф.Р. // Журн. неорган. химии. 1993. Т. 38. № 4. С. 677.
- 29. Frisch M.J., Head-Gordon M., Trucks G.W. et al. Pittsburg. Gaussian Inc., PA 1990.
- Kaupp M., Stoll H., Preuss H. // J. Comput. Chem. 1990.
 V. 11. N. 9. P. 1029.
- 31. Andrae D., Haussermann U., Dolg M. et al. // Theor. Chim. Acta. 1990. V. 77. N. 1. P. 123.
- 32. Fuentealba P. Diss. Universitat Erlangen-Nurnberg, 1984.
- 33. Schwerdtfeger P. Diss. Universitat Erlangen-Nurnberg, 1986.
- 34. Preuss H., Hoss W., Igel-Mann G. et al. // Inst. Theor. Chem. Univ. Stuttgart. 1990. Arbeitsbericht 27. 417 p.
- Hariharan P.C., Pople J.A. // Theor. Chim. Acta. 1973.
 V. 25. N. 2. P. 213.
- Francl M.M., Pietro W.J., Hehre W.J. et al. // J. Chem. Phys. 1982. V. 77. N. 7. P. 3654.
- Frisch M.J., Pople J.A., Binkley J.S. // J. Chem. Phys. 1984. V. 80. N. 7. P. 3265.
- 38. Möller C., Plesset M.J. // Phys. Rev. 1934. V. 46. P. 618.
- Pulay P. Modern Theoretical Chemistry / Ed. Schaefer H.F. Plenum: N.Y., 1977. V. 4. P. 153.
- 40. *Moore C.E.* Atomic Energy Levels. Wash.: Nat. Bur. Stands US. Circ. 467. 1949. V. 1. 309 p.; 1952. V. 2. 229 p.; 1958. V. 3. 246 p.
- Чаркин О.П. Структура и стабильность изолированных неорганич. молекул. Молекулярная структура и хим. связь. М.: ВИНИТИ, 1976. Т. 4. 110 с.
- 42. Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. N. Y., 1979, 716 p.