
Markup Overlap: Improving Fragmentation Method

Mohamadou Nassourou
Department of Computer Philology & Modern German Literature

University of Würzburg
Am Hubland

D - 97074 Würzburg
mohamadou.nassourou@uni-wuerzburg.de

Abstract: Overlapping is a common word used to describe
documents whose structural dimensions cannot be adequately
represented using tree structure. For instance a quotation that
starts in one verse and ends in another verse. The problem of
overlapping hierarchies is a recurring one, which has been
addressed by a variety of approaches. There are XML based
solutions as well as Non-XML ones. The XML-based solutions
are: multiple documents, empty elements, fragmentation, out-
of-line markup, JITT and BUVH. And the Non-XML
approaches comprise CONCUR/XCONCUR, MECS, LMNL
...etc.
This paper presents shortly state-of-the-art in overlapping
hierarchies, and introduces two variations on the TEI
fragmentation markup that have several advantages.

Keywords: XML, Overlapping structures, Fragmentation.

Introduction

Overlapping is a common word used to describe documents
whose structural dimensions cannot be adequately represented
using tree structure. Non-hierarchical structures allow some
children to share simultaneously several parents. For instance
a verse that starts in one page and ends in the next one.
The problem of overlapping hierarchies is not a new one, and
has been addressed by several approaches. There are
Extensible Markup Language (XML) based solutions, as well
as Non-XML ones. The XML-based solutions are multiple
documents approach, empty elements, fragmentation, out-of-
line markup, Just In Time Trees (JITT), and Bottom Up
Vertical Hierarchies (BUVH), and the Non-XML approaches
are CONCUR, XCONCUR, MECS, LMNL ...etc.

The Non-XML approaches introduce new syntaxes and
semantics that need to be learned and understood. Not being
XML constitutes a major disadvantage for these solutions.

The XML based solutions such as empty elements require
customization of the existing standard XML tools in order to
retrieve data enclosed by those empty elements. Multiple
documents approach has unavoidable drawbacks such as data
multiplication, and waste of storage space. JITT [11] cannot
handle self-overlap, and validation across hierarchies is not
possible. BUVH [10] has got the disadvantage of being
computationally too intense. Stand-off markup is a tool
dependent technique.

These disadvantages altogether require the modification of the
standard tree structure of XML, which in turn could demand
the development of new tools and even new algorithms.

Based on these drawbacks and the tendency to strictly
maintain the tree structure of XML, I would suggest trying to
eliminate disadvantages introduced by the fragmentation
technique, because of its ability to cope with the XML
structural ideology. It is worth noting that fragmentation
provides a convenient method for handling overlapping
structures, as far as logical order is concerned. Hence
remodeling of the document logical structure could improve
fragmentation technique. In the first method that I am
proposing, remodeling of the document through empty
elements is employed. The second proposal requires virtual
extension of the TEI tagset. Both proposals eliminate the need
for explicitly joining fragments in order to reconstitute the
element they represent. In fact each fragment requires at least
two attributes an id, and a pointer to previous/next fragment.
These attributes are used to reconstruct the fragmented
element. The proposed methods reduce the number of needed
attributes, and enable the retrieval of the fragmented element
without explicitly joining the fragments. As consequence,
overall performance of XML-based solutions will be
improved.

Non-XML approaches

These approaches introduce new syntaxes and semantics
whereby elements do not need to form hierarchical structures
as in XML. The best known probably are Multi-Element Code
System (MECS) and Trivially Extended MECS (TexMECS)
developed by the University of Bergen [7], and the Layered
Markup and aNnotation Language (LMNL) [9]. In [7] a data
structure known as General Ordered-Descendant Directed
Acyclic Graph (GODDAG) for representing documents with
overlapping structures was proposed. SGML [3], which is
actually the forerunner of XML, also provided the CONCUR
feature for representing non-hierarchical structures.
XCONCUR has been proposed by [13, 14] as a way of
improving and implementing the SGML CONCUR feature.
Not being XML constitutes a major disadvantage for these
solutions. XML is an easy, human readable language that has
tools available for processing it. XML users would definitely
prefer solutions within XML itself than new syntaxes.

Even though these techniques have solved the problem in their
own ways, they do still have some disadvantages such as:

a) Inability to completely deal with self overlapping
b) Full validation is not possible.
c) XML schema needs to be modified.
d) Standard XPath/XQuery cannot extract information

from the markup.
e) Finally, there is need to learn these techniques before

using them.

XML-based Solutions

Overlapping structures cannot be easily represented using
XML due to the fact that, XML has got a tree data structure. A
child can have only one parent or be the parent itself.
Before delving into the Text Encoding Initiative (TEI)
proposed solutions, I would like to present a short analogy of
overlapping issue from our daily life.

How to solve a problem whereby a child belongs to more than
one father?
A judge might decide to select one of the following options:
1) Let them have the child simultaneously by living together:
 not easy because child’s father not known, and he might not
 be properly educated because of parents’ conflict.
 This sounds like milestones.
2) Let each one have the child for sometime: need to
 define time?
 This is Multiple documents approach: one original
 and several reference documents.
3) Keep the child in different place and allow each
 one to come and see him for sometime: time has to
 be defined?
 This case sounds like fragmentation and join.
4) Clone the child and give to each one of them: so
 who will get the original one?
 This is Multiple documents approach: original one is
 copied several times.
5) No one will get the child but they can see him
 from far: so who will get the child?
 This represents stand-off markup.

None of the above options will satisfy any of the fathers, as
long as each one is longing to have the child alone.

Throughout this paper, I will be using the following two
verses of chapter 36 (Ya-Sin) from the Quran (the Holy
book of Islam), containing a quotation split between the two
verses.
Verse 24:
"I would indeed, if I were to do so, be in manifest error.
Verse 25:
For me, I have faith in the Lord of you (all): listen, then, to
me!"

Marking up the grammatical view of the verses we get:

<book><chapter>

<verse n="24"><q>"I would indeed, if I were to do so, be in manifest error.
</verse>
<verse n="25">For me, I have faith in the Lord of you (all):
 listen, then, to me!"</q>
</verse>
</chapter>
</book>
Overlapping has occurred. The q element is divided between
the two verses.
To remediate this problem the TEI [1] proposes several
solutions, which are not sufficient due to their disadvantages
in one way or the other.
TEI guidelines for dealing with overlapping are:

1. Empty elements to delimit the overlapping elements.
2. Fragmentation to break down elements into smaller

sections which do not overlap.
3. Stand-off markup to separate markup and document

content.
4. Multiple documents approach to encode each

hierarchy separately.

Case 1, 2, and 4 are known to be in-line markup solutions
because markups are inserted into the document, while case 3
is known as the out-of-line markup in the sense that, it
separates markups with the document content.

Multi-colored trees [12], JITT (Just In Time Trees) [11], and
BUVH (Bottom Up Vertical Hierarchies) [10] are XML based
solutions but have not been strongly supported by TEI.

In this paper, variations of the standard fragmentation method
have been proposed. So let’s state the problem that needs to be
addressed.

Problem Specification

The problem can be generalized as follows: how to retrieve
any given element without explicitly joining the fragments?

To demonstrate my proposals I am going to use the previous
example.
Fragmentation recommends that one of the document
hierarchies be selected as primary, and overlapping elements
be modified by splitting them so that, they fit properly within
the hierarchy with the possibility of virtually reconstituting
them. Reconstitution of virtual elements is usually combined
with the fragmentation method.

Marking up our example with fragmentation we get:
<book><chapter>
<verse n="24"><q id="q1" next="#q2">
"I would indeed, if I were to do so, be in manifest error.</q>
</verse>
<verse n="25"> <q id="q2" prev="#q1">For me, I have faith in the Lord of
you (all): listen, then, to me!"</q>
</verse>
</chapter></book>

The attributes next and prev help to reconstitute the element
by joining the fragments accordingly. TEI provides ‘part‘
attribute as well for reconstructing the fragmented element.

The drawbacks of this method are:
a) Parser needs to know how to order the fragments
b) Number of fragments can grow up seriously
c) Number of fragments can be misleading about the
 actual instances of the element.

Selective AUgmented Fragmentation (SAUF)

The idea of SAUF comes from the fact that, a word that does
not fit at the end of a line of text could be handled in one of
the following ways:
 a) split the word into two, the first part with an added
 hyphen remains on the current line and the second part is
 written on the following line.
 b) write the word on the current line by using smaller
 font.
 c) leave the space empty at the end of the current line, and
 write the word on the next line.

Case (a) represents the standard fragmentation because the
word is split, and its parts could be joined using some
attributes like id, next/prev.
SAUF is a way of implementing case (c) and (b).
Above I used a word as an example; however it could be a
collection of words as well.

SAUF combines fragmentation, milestones and document
remodeling techniques to eliminate the drawbacks of the
fragmentation method.
It is called Selective AUgmented Fragmentation because one
of the fragments is selected, and its text node augmented.
Fragments that are reduced to milestone elements could be
seen as virtually non-empty milestones because of their metric
attributes. Following paragraphs will clarify this situation.

Fig. 2 shows a graphical representation of SAUF.

Fig. 1. SAUF graphical view

The algorithm to be used is explained with our previous
example:

1) Let the first fragment get the whole element

<book><chapter>
<verse n="24"><q id="q1" next="#q2">
"I would indeed, if I were to do so, be in manifest error. For me, I have faith
in the Lord of you (all): listen, then, to me!"</q>
</verse>
<verse n="25"> <q id="q2" prev="#q1">For me, I have faith in the Lord of
you (all): listen, then, to me!"</q>

</verse>
</chapter></book>

This introduces a repetition of the second verse. Adding a
copyOf/sameAs attribute in verse 25, we virtually eliminate
the repetition.
<book><chapter>
<verse n="24"><q id="q1">
 "I would indeed, if I were to do so, be in manifest error. For me, I have faith
 in the Lord of you (all): listen, then, to me!"</q>
</verse>
<verse n="25"> <q id="q2" copyOf="#q1"/>
</verse>
</chapter></book>

<book><chapter>
<verse n="24"><q id="q1">
"I would indeed, if I were to do so, be in manifest error. For me, I have faith
in the Lord of you (all): listen, then, to me!"</q>
</verse>
<verse n="25"> <q id="q2" sameAs="#q1"> For me, I have faith
 in the Lord of you (all): listen, then, to me!"</q>
</verse>
</chapter></book>

Remarks:
With this semi-SAUF method, it is possible to retrieve the
whole quotation.
However the size of the document increases which is not
desirable. Moreover the actual content of the augmented verse
is no longer retrievable. And searching for verses containing
only “faith” will produce erroneous result.

Therefore this increase in size must be solved with the help of
additional attributes.
The solution is to make the second fragment a Trojan
milestone, and add to both fragments two attributes: startPos
and Length to specify the text of each verse. Both startPos and
Length are normalized Unicode character offset.
The empty fragment is assigned an IDREF attribute pointing
to the selected fragment where to find its text node.
We get the following:

<book><chapter>
<verse n="24"><q id="q1" startPos="0" Length="m">
"I would indeed, if I were to do so, be in manifest error. For me, I have faith
in the Lord of you (all): listen, then, to me!"</q>
</verse>
<verse n="25"><q IDREF="q1" startPos="m+1" Length="n"/></verse>
</chapter></book>

The values "m" and "n" in Length="m" and Length="n"
represent the actual length (normalized Unicode character
offset) of the verse 24 and verse 25 respectively. These values
could be manually calculated. However for the sake of
accuracy, an XML editor supporting SAUF would be
recommendable for automatically generating them. Moreover
if any of the verses is altered, the editor must instantly detect it
and adjust the values accordingly.
It might be interesting to notice that, SAUF uses character
offset just as stand-off markup does.

An XML editor implementing this method is under
construction.

With this markup it is possible to retrieve the whole quotation
as well as individual verses. However it won’t be possible to
retrieve individual verses without knowing the startPos and
Length attributes. Therefore it is recommended to consult the
XML Schema to get full information about the fragments.
The q fragment in verse 25 is what I am calling a virtually
non-empty milestone element.
For instance using XPath notation one could write:

To obtain the whole quotation, one needs to use the fragment
which has been selected to hold the whole text. In this case it
is the one in verse 24.
//verse[@n=24]/q

To retrieve any particular verse, one has to get the attributes
startPos and Length of the verse, and then retrieve the text
from the selected fragment, starting from startPos till the
character whose offset is equal to startPos + Length.
With XPath notation:
//verse[@n=25]/q[@startPos] = m,
//verse[@n=25]/q[@Length] = n,
then from the text of the selected fragment, get the text
starting from startPos till the (m+n)th character offset.
The substring function could be used to retrieve the text.

The same procedure is valid for verse 24.

Now the question is, how to find out which fragment holds
the whole text of the overlapping element?
Well, by simply checking the startPos attribute. Normally the
fragment whose startPos value is the lowest is assumed to be
the selected one.

Is this method applicable to other overlapping structures
besides quotes?
Yes, following is another example involving line/sentence
overlap:

Let’s use a citation from René Descartes:
"Je pense donc je suis."

Suppose that we get a document in which this citation starts on
one line and ends on the next one. "Je pense donc" is on the
first line, and "je suis" on the next line.

Marking up both the physical and grammatical views of the
document yields the following:

<l n="1"><s>Je pense donc</l>
<l n="2">je suis</s></l>

The sentence overlaps with the lines.
Fragmenting it with SAUF, we get:

<l n="1"><s id="s1" startPos="0" Length="13">Je pense donc je suis</s>
</l>
<l n="2"><s IDREF="s1" startPos="14" Length="7"/></l>

To retrieve the whole sentence, we use the first line
//l[@n=1]/s

To obtain the exact text of the first line, we need to get the
values of startPos and Length attributes.

Using XPath:
//l[@n=1]/s[@startPos] = 0
//l[@n=1]/s[@Length] = 13
The actual text size is: 0+13 = 13
So the first 13 characters of the selected fragment constitute
the exact text of the line. The substring (text(),0,13) could be
used to perform the task.
To obtain the text of the second line, we follow the same
procedure.
//l[@n=2]/s[@startPos] = 14
//l[@n=2]/s[@Length] = 7
from the text of the selected fragment, get the text starting
from the 14th character till the 21th character (14+7) using
substring (text(),14,21).

Another example using the same citation by assuming that, it
is a quotation.
The mark up looks like this:
<l><s><q>je pense donc</l>
 <l>je suis</q></s></l>

Fragmenting it with SAUF, we get:

 <l n="1" ><s id="1" startPos="0" Length="13">
 <q id="1" startPos="0" Length="13">je pense donc je suis</q>
 </s>
 </l>
 <l n="2" ><s IDREF="1" startPos="14" Length="7">
 <q IDREF ="1" startPos="14" Length="7"/>
 </s>
 </l>

To obtain the whole quotation
//l[@n="1"]/s/q

To obtain the exact text of the first line, we need to get the
values of startPos and Length attributes.
Using XPath:
//l[@n=1]/s/q[@startPos] = 0
//l[@n=1]/s/q[@Length] = 13
The actual text size is: 0+13 = 13
So the first 13 characters of the selected fragment constitute
the exact text of the line. The substring (text(),0,13) could be
used to perform the task.

To obtain the text of the second line, we follow the same
procedure.
//l[@n=2]/s/q[@startPos] = 14
//l[@n=2]/s/q[@Length] = 7
from the text of the selected fragment, get the text starting
from the 14th character till the 21th character (14+7) using
substring (text(),14,21).

Advantages of the Method:

a) Existing XML technologies can process the document
 without any special customization.
b) No need to reconstitute the element from the fragments.
c) Statistically there is only one fragment that contains the
 text.
d) It is understandable and manually editable.

Disadvantages:
Of course it has got disadvantages as well, like choosing
arbitrary one hierarchy as the primary one. However this
selection is based on the user’s intention. The user decides
which element is a parent, a child, and so on.

Remarks:
One could argue that this method is not better than the
standard fragmentation, because the physical structure of the
document has been altered by expanding the content of
verse 24 and deleting the content of verse 25. In fact <lb>,
<pb>,<cb>,<handShift> proposed by the TEI are also altering
the document physical structure. However as far as logical
structure is concerned, it has indeed more advantages over the
usual fragmentation method for the reasons listed above.
Therefore to use fragmentation to its full strength, remodeling
of the document logical structure must be employed as well.

Extended Fragmentation (ExFrag)

ExFrag disagrees with the tag naming of fragments, and
proposes an extension of the TEI tagset by allowing virtual
addition of suffixes to existing TEI tags. It is actually a policy
and rule-based method.
As mentioned earlier the q fragments are given the very same
name of the element they represent, even though each one
contains only a portion of the text node. It would be more
intuitive to denote them with q1 and q2 which could indicate
at the level of syntax that, they are fragments of a q element.

Fig. 2 shows a graphical representation of ExFrag.

Fig. 2. ExFrag graphical view

A generalization of the method looks like this:

If any element overlaps with N other elements, fragment it N
times, and add a suffix to each element numbering from 1 to
N.

TEI Schema extension requires an addition of a global <any>
element which should be a combination of a TEI tag with a
digit. XML processors could split the element and identify
which TEI tag it corresponds to.

It must also be clearly mentioned in the documentation that a
TEI tag should only be adjoined with a digit if fragmentation
occurs. For instance a <q1> element without <q2> should
generate an exception error.

With XML schema the <any> element looks like this:
<xs:any minOccurs="0"/>

Using our previous example:
<book><chapter>
<verse n="24"><q1 id="q_verse_24_25">
"I would indeed, if I were to do so, be in manifest error. “</q1>
</verse>
<verse n="25"> <q2 IDREF="q_verse_24_25">For me, I have faith in the
Lord of you (all): listen, then, to me!"</q2>
</verse>
</chapter></book>

The first fragment is assigned an id which is referenced from
the remaining fragments using IDREF attribute. The id value
q_verse_24_25 says that it is a q element divided between
verse 24 and 25.
XML processors could implement this feature, and
automatically reconstitute any element through its id attribute.
Of course existing XML processors need to be extended to
have the capability of automatic reconstitution.
However even with the currently available standards (XSLT,
DOM …etc), ExFrag would be easier to process than the TEI
fragmentation method, because it has got less number of
attributes. In this method a parser needs to check the presence
of a digit at the end of an element, and the id. While with the
standard fragmentation a parser should either check the id, the
prev and next attributes, or the id, initial, middle, and last
attributes. Clearly it takes longer time and might even be more
complicated to process.
In addition, with this method one is assured that the instances
of an overlapping element cannot be erroneous, because the
distinction between fragments and elements is obvious.

Using XPath:

//verse[@n=24]/q or //verse[@n=25]/q will produce the full
quotation.

//verse[@n=24]/q1 or //verse[@n=25]/q2 will produce verse
24 and verse 25 respectively.

One more example with the citation of Descartes:

<p>
 <line n="1" ><s1 id="s_line_1_2">
 <q1 id="q_line_1_2">je pense donc </q1>
 </s1>
 </line>
 <line n="2" ><s2 IDREF="s_line_1_2">
 <q2 IDREF ="q_line_1_2"> je suis</q2>
 </s2>
 </line>
</p>

The id value s_line_1_2 says that it is an s element divided
between line 1 and 2.
The id value q_line_1_2 says that it is a q element divided
between line 1 and 2.

Retrieving with XPath:

//line[@n=1]/s/q or //line[@n=2]/s/q will produce the full
quotation.

//line[@n=1]/s1/q1 or //line[@n=2]/s2/q2 will produce the
corresponding fragment (or line text) respectively.

This method could be manually implemented. However an
XML editor supporting ExFrag would be recommendable for
automatically fragmenting and generating the ids accordingly.
This would improve coding time and the markup efficiency.

An XML editor implementing this method is under
construction.

Advantages:

The main advantage of this method is the fact that users or
programmers do not need to bother about reconstructing
fragmented elements. XML processors will automatically
figure out and combine the fragments.
Moreover fragments are easily visible from the syntax itself.
The method has also achieved the aim of reducing the number
of attributes, hence simplifying the process of segmentation
and reconstitution. Finally, instances of an overlapping
element can no longer be wrong.

Disadvantages:

New virtual tags have to be added to the TEI tagset.

Overlapping Markup Desiderata

Overlapping markup desiderata have been proposed by [5].
The paper argues that following points have to be fulfilled for
any solution to be a perfect one.

• Adequacy
• Human readability
• Maintainability
• Available implementations
• XML compatibility
• Ease of validation
• Validation across hierarchies
• Ease of formatting
• Ease of extracting multiple views
• Ease of extracting hierarchical subsets
• Continuity of text content

The proposed methods comply with these desiderata, and are
therefore good candidates for implementation in an XML
editor.

Discussion and Conclusion

Each existing method of solving overlapping problem has got
its pros and cons, therefore one should select the one that can
best deal with the kind of overlap that occurs.

Fragmentation seems to be the most appropriate solution in the
context of XML, because it is simple, human readable, and
support all the existing XML technologies.

The proposed Selective Augmented Fragmentation (SAUF)
and the Extended Fragmentation (ExFrag) methods have
several advantages over the standard fragmentation as

mentioned earlier. These methods eliminate mainly the need to
recompose the fragmented elements.

Of course everything has got its limitations. While SAUF
requires two new attributes (startPos and Length) in order to
compute the exact text node of each fragment, ExFrag
demands an extension of TEI tagset. However these
limitations do not require some modifications of the XML tree
structure ideology.

Referring to Non-XML solutions it would be a big win, if a
simple and manually editable methods for converting their
structures say MECS to standard XML could be developed.

References

[1] http://www.tei-c.org/release/doc/tei-p5-
 doc/en/html/NH.html
[2] W3C, Extensible Markup Language (XML).
 2000.
[3] W3C, Standard Generalized Markup Language
 SGML). 1999.
[4] W3C, XML Path Language (XPath) Version 1.0.
 1999.
[5] Steven DeRose. Markup Overlap: A Review and
 a Horse in Extreme Markup Languages
 2004 (Montréal, Québec)
[6] Durusau, P. and M. O'Donnell. Implementing
 Concurrent Markup in XML. in Extreme Markup
 Languages 2001. 2001. Montreal.
[7] Sperberg-McQueen, C. and C. Huifeldt.
 GODDAG: A Data Structure for Overlapping
 Hierarchies. in ACH-ALLC'99. 1999.
 Charlottesville, Virginia.
[8] http://www.jenitennison.com/blog/node/97
[9] http://xml.coverpages.org/LMNL-Abstract.html
[10] Patrick Durusau, Matthew Brook O'Donnell. Concurrent
 Markup for XML Documents (Europe 2002)
[11] P. Durusau, M.Brook O'Donnell "Just-In-Time-Trees
 (JITTs):Next Step in the Evolution of Markup?"
 Proceedings of 2002 Extreme Markup Languages
 Conference, Montreal, Canada 2002
[12] Jagadish, H. V., Laks V. S. Lakshmanan, Monica
 Scannapieco, Divesh Srivastava, and Nuwee
 Wiwatwattana. 2004. “Colorful XML: One hierarchy
 isn't enough.” Proceedings of the 2004 ACM SIGMOD
 International conference on management of data, Paris
[13] Witt, Andreas. “Multiple hierarchies: new aspects of an
 old solution.” In Proceedings of Extreme Markup
 Languages 2004
[14] Mirco Hilbert, Oliver Schonefeld, Andreas Witt
 (2005). Making CONCUR work. In: Proceedings of the
 Extreme Markup 2005, Montréal, Canada
[15] Schmidt, Desmond. “Merging Multi-Version Texts: a
 Generic Solution to the Overlap Problem.” Presented at
 Balisage: The Markup Conference 2009, Montréal,
 Canada, August 11 - 14, 2009. In Proceedings of
 Balisage: The Markup Conference 2009. Balisage Series
 on Markup Technologies, vol. 3 (2009).
 doi:10.4242/BalisageVol3.Schmidt01.

	Keywords: XML, Overlapping structures, Fragmentation.
	Introduction
	Let’s use a citation from René Descartes:

	from the text of the selected fragment, get the text starting from the 14th character till the 21th character (14+7) using
	substring (text(),14,21).
	Another example using the same citation by assuming that, it is a quotation.

	from the text of the selected fragment, get the text starting from the 14th character till the 21th character (14+7) using
	substring (text(),14,21).

