Julius-Maximilians-Universitat Wirzburg

Institut fir Informatik
Lehrstuhl fir Kommunikationsnetze
Prof. Dr. P. Tran-Gia

Performance Challenges and Optimization
Potential of Peer-to-Peer Overlay
Technologies

Simon Oechsner

Wirzburger Beitrage zur
Leistungsbewertung Verteilter Systeme

Bericht 02/10

Wirzburger Beitrage zur
Leistungsbewertung Verteilter Systeme

Herausgeber

Prof. Dr. P. Tran-Gia

Universitat Wirzburg

Institut fir Informatik

Lehrstuhl fir Kommunikationsnetze
Am Hubland

D-97074 Wirzburg

Tel.: +49-931-31-86630
Fax.: +49-931-31-86632
email: trangia@informatik.uni-wuerzburg.de

Satz

Reproduktionsféhige Vorlage vom Autor.
Gesetzt inAIpX Computer Modern 9pt.

ISSN 1432-8801

Performance Challenges and Optimization
Potential of Peer-to-Peer Overlay
Technologies

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades
der Julius—Maximilians—Universitat Wirzburg

vorgelegt von

Simon Oechsner

aus

Wiirzburg

Wirzburg 2010

Eingereicht am: 31.05.2010

bei der Fakultat fir Mathematik und Informatik
1. Gutachter: Prof. Dr.-Ing. P. Tran-Gia

2. Gutachter: Prof. Dr. B. Stiller

Tag der mundlichen Priifung: 28.07.2010

Acknowledgements

This monograph is the distilled essence of over five yeargsdarch. It cannot
fully convey the history of the numerous small and large @b as well as
successes during that time, nor does it capture the ciremoss under which it
was written. Therefore, | would like to acknowledge here pleeple that have
made it possible with their support and help.

First of all, | owe many thanks to my advisor Prof. Phuoc T@ia; who gave
me the opportunity to enter the world of science and has duide there. His
untiring support and personal commitment made this thesisiple. Due to his
efforts, | was allowed to gather experience in industry abdpfojects, and was
able to visit international conferences in faraway co@stri

I would also like to thank Prof. Burkhard Stiller, who actesareviewer of this
thesis, and with whom | have had insightful discussions smiitderlying topic.
Furthermore, | am indebted to Prof. Reiner Kolla and Proéxahder Wolff in
their role as examiners at my defense, not the least for plagience in arranging
a date for it.

The fact that | could concentrate on the work for this thesis no small part a
feat of our chair secretary, Mrs. Forster, who valiantlyetits us from most of the
bureaucratic tasks. My thanks also go to the many proje¢h@a at Siemens,
Nokia Siemens Networks, DATEV, ATG and BSI | had the pleasafre/orking
with, and especially the partners from the SmoothIT projapart from them, |
would also like to thank Melanie Brotzeller, Jochen ProkepElorian Metzger
and Michael Lang, who worked on their diploma theses undersapervision
and thereby supported me in my project tasks.

Acknowledgements

One of the important benefits of being a part of our chair isoiygortunity to
work with great colleagues who are always there for disomssisolving seem-
ingly unsolvable problems or simply giving support. This&pecially true for
Tobias HoR3feld, who not only was a constant source of ideasmédue to his
insatiable scientific curiosity, but who also provided imeable professional as
well as personal advice in countless talks and trained mart@armarathon. In
the same vein, | would like to thank Andreas Binzenhdofer, wias (and still
is) a role model for me both as a scientist as well as a persothel last few
years, | worked especially close with Frank Lehrieder antt Btaehle, and ben-
efited very much from their experience, knowledge and ressdirior discussion.
Rastin Pries gave me valuable feedback on this work andfigignily improved
my skiing style. Thanks also go to Thomas Zinner, without mhour videos
would still be low-quality, and Robert Henjes for being areretlielpful office
mate. Barbara Staehle not only is a valued colleague, bubalsenvironmental
conscience. Apart from them, | thank Michael Duelli, MagthHartmann, Klaus
Heck, Matthias Hirth, David Hock, Michael Jarschel, AlegdanKlein, Dominik
Klein, Andreas Mader, Rudiger Martin, Michael Menth, Jendbké&ndt, Oliver
Rose, Daniel Schlosser, Kurt Tutschku and Florian Wamsethi® typical dis-
cussions in the coffee room and generally for creating teatgatmosphere at our
chair.

Finally, I am especially grateful for the never-ending sappand confidence
of my parents Traudl and Richard Oechsner. They always eaged me in my
plans and backed me up whenever necessary.

Contents

1

Introduction 1
1.1 Contribution
1.2 Outline.
Search and Lookup Overlays 7
2.1 Challenges in Structured Search Overlays 9

2.2 Background and RelatedWork
2.2.1 DistributedHashTables
2.2.2 One-hop DHT Architectures

2.3 Architecture of a Distributed Lookup Overlay 22
2.3.1 Layers of a Distributed Database
2.3.2 Implementation by a One-hop DHT

2.4 Analytical QueueingModel L.
241 OverallSystemModel.
2.4.2 Analytical Approach

2.5 Performance Evaluation
2.5.1 Influence of the System Size
2.5.2 Influence ofthe Redundancy

2.5.3 Reorganization Effortin Case of Failures 3 4

2.6 Lessonslearned

File-Sharing Overlays 49
3.1 Challengesin File-Sharing Overlays 1

Contents

3.2 Background and RelatedWork 53
3.2.1 TheBitTorrentProtocol 53
3.2.2 Approaches to Locality-Awareness 56

3.3 Locality-Awareness in File-Sharing Overlays 61
3.3.1 Biased Neighbor Selection 62
3.3.2 BiasedUnchoking 63

3.4 SimulationModel 64
3.4.1 Default Swarm and Topology Model 65
3.4.2 Flow-Based Underlay Model 67

3.5 Performance Evaluation 68
3.5.1 Characterization of Locality-Aware Mechanisms70
3.5.2 Locality-Awareness in Realistic Swarms 80
3.5.3 Degree of Locality-Awareness 91

3.6 LessonslLearned 94

Video Streaming Overlays 97

4.1 Challenges in Video Streaming Overlays 9 9

4.2 Background and RelatedWork 101
4.2.1 VoD StreamingviaP2P Overlays 101
4.2.2 VoD SupportinTribler 104
4.2.3 ScalableVideoCodecs 107
4.2.4 Integrating Scalable Video in P2P Overlays 101

4.3 Quality of Experience-Awareness in VoD Streaming Caes| . . 112
4.3.1 Shared Video File Adaptation 112
4.3.2 Adapted Chunk Selection Strategy 113
4.3.3 Playout Strategy of a Scalable Video 115

4.4 SimulationModel 115

4.5 Performance Evaluation of QoE-Aware Mechanisms 118
4.5.1 Influence of the NetworkLoad 119
4.5.2 Influence of Peer Heterogeneity and Server Breakdowi?1 .
4.5.3 Comparison of Download Strategies 124

Contents

4.5.4 Influence of Serving Times and Comparison of Chunk

Selection Strategies 125

46 LessonslLearned 128
5 Conclusion 131
Bibliography and References 135
Index 149

1 Introduction

And now for something completely different.
Monty Python (1969 - 1983)

Even after more than 40 years, many Internet applicatiomstlt relying on
the traditional, centralized client-server structurerdjéhe server offers func-
tionality used by the clients. This approach entails mamekits, such as a tight
control over the service by its provider and good possieilifor traffic manage-
ment through an intelligent placement of servers. Its digathges include high
costs, problems with scalability and vulnerability to fmés [96].

These disadvantages were one of the factors that playea @nrthe rise of
Peer-to-Peer (P2P) architectures, where each particgpargct as both client and
server at the same time. Such systems build a logical netamotiop of the In-
ternet by interconnecting hosts on application level. Bmmntoverlay is used for
these networks to discern them from the underlay, i.e., liysipal network. This
approach enables application developers to quickly depéoy services such as
Skype [88] without having to develop and invest into a compidrastructure
before.

There are currently three main overlay types that are widséd in the Inter-
net. These are search overlays, file-sharing overlays atebistreaming over-
lays. The aforementioned Skype implements a \Voice-ovéliiP) service that
enables millions of users to hold conversations over therhet without need-
ing the legacy telephone system. It utilizes a search oyvéd&eep track of a
users location in the network and to establish contact bextvesd hosts behind
firewalls [45].

1 Introduction

File-sharing is by the time of this publication the most #igant application
in the Internet, generating the largest share of consurafictf75, 77]. P2P file-
sharing clients enable a user to download content whilzing the upload band-
width of all participating users. This makes the contentrittistion much more
scalable than a client-server approach, since every nemirugige system adds
his own upload capacity. The most important examples ar@iff@rrent [66]
and eDonkey [35] protocols.

Video streaming is an application that gained enormous lpaipy recently
and produces an increasing share of today’s Internet tfafiic P2P overlays are
used for video streaming for the same reasons as for filérghdout face higher
demands. Therefore, they are not yet as wide-spread ahéiterg applications.
However, protocols that evolved from file-sharing as welhaw technologies
have emerged and become popular. Services like SopCaso{§JpLive [87]
gain importance and utilize overlays to reduce load on stieg servers [49].

These three most popular and relevant applications of ayeserve different
functions that complement each other. A search overlay eamskd for the lo-
cation of content which is then downloaded via a file-shadowgrlay or watched
using a video streaming overlay. This is reflected by the ¢oation of all three
mechanisms in clients like Vuze [91]. This software usesBiti€rrent protocol
as a basis for both file download and video streaming, andi$uaildistributed
search overlay using Kademlia [31].

Since all of these functionalities are provided by the setlbénd users, they
share some common features [41]. Overlays are distribysemms which typi-
cally continue to function even if part of the nodes compgsihe overlay fail or
leave the network. Each node in the overlay provides ressundich are con-
sumed by the other nodes. No node should be overloaded avidgin unfair
amount of resources, so that the load is distributed. Inrgé&rtde utilization of
resources needs to be managed in some way, keeping therefficiethe single
client and the efficiency of the complete overlay in balance.

Another common feature of the described overlay types is iimplementa-
tion in real applications and their usage under realistitd@@ons. As a result,

1.1 Contribution

they face challenges that are not only of academic intebestthat stem from
problems encountered during productive operation. Thuss,identification of
these challenges and according optimization of the ovelizgds to results that
have practical relevance.

1.1 Contribution

In this monograph, we improve the understanding of the ayesipes discussed
above by conducting a performance evaluation of previouslyonsidered, but
practically relevant scenarios. To this end, we discussdch of the predominant
overlays the problems they are currently facing in theiidspfield of applica-
tion.

We present novel approaches for their optimization witpeesto these chal-
lenges, and evaluate how these changes affect the perfoentdirthe systems.
This allows us to draw conclusions for the improvement ofeuir overlay tech-
nologies. These lead to the design of systems which redestiown optimiza-
tion potential and lets us derive recommendations for theifiguration. Thus,
we cover the current state of the art with respect to the egpverlay architec-
tures.

For search overlays, we extend existing approaches byatirgitthe influence
of system parameters on the peer load, and consequentlyeaediich perfor-
mance. We base this evaluation on an architecture builffficient search while
offering load distribution properties.

This enables the deployment of such a system for time-atiipplications,
e.g., in enterprise environments. We develop analyticastio describe the query
load on the participating nodes and show that a trade-offiden fast searches
and resource efficiency in terms of memory consumption £xihis trade-off
can be tuned using the parameters evaluated in this workrésudt, we provide
dimensioning guidelines for time-critical applications.

The relevant resource in file-sharing overlays is bandwith conduct a per-
formance evaluation to show that current approaches t@esidter-domain traf-

1 Introduction

fic are not incentive-compatible, since end users may sfrifen a reduced ap-
plication performance.

However, we show that efficient traffic management algorithoonserving
inter-domain bandwidth exist and add an own mechanism ghabinplemen-
tary to existing methods. We describe the effects introdumethese algorithms
into the overlay under realistic conditions. Again, theevaht traffic manage-
ment mechanisms can be influenced by their parameters,jagjaaschoose how
much fairness is sacrificed for bandwidth savings. Thisrzaa the effects for
the providers and the end users.

Finally, we provide a combination of existing video streagioverlays and a
new video codec to support peer heterogeneity. We investighether such a
combination is feasible without a large additional managienoverhead, relying
on local information and only adapting the peer behavior.

Our new overlay architecture is a promising solution for r@ating appli-
cation usable by a large set of clients with different acdeshe Internet. We
evaluate implementation alternatives for this new medrarand judge its per-
formance under varying conditions for the overlay. Our gfeancan be imple-
mented without adding additional signaling overhead argligible additional
complexity.

1.2 Outline

This work is structured as follows. In Chapter 2, we consgrch overlays and
the specific issues of these systems as they are deployeiiéalapplications.
After outlining these, we provide background informatidroat the mechanisms
of these overlays and review work in the same area as ours, Wexiescribe our
implementation of such a system, which serves as the basisifgerformance
evaluation. We develop an analytical model of this architerbased on queueing
theory, which we use to derive results about the searchidorat this search
overlay and its dependency on parameters like the system siz

Chapter 3 covers file-sharing overlays and their traffic abi@ristics. For the

1.2 Outline

most common protocol, BitTorrent, we provide a descriptiits key mecha-

nisms and give an overview on approaches for managing ffict\&/e develop an

algorithm complementary to the approaches from related wat is compared
to the existing mechanisms. Next, we discuss the resultssohalative perfor-

mance study for a range of different scenarios. Firstly, Wweeove the general
behavior of the algorithms before evaluating their perfange under conditions
met in real BitTorrent overlays. Then, we conclude thiseatibn by performing

a study on the parameters of the mechanisms.

Video-on-demand streaming overlays, a special form ofo/iteeaming over-
lays, are the topic of Chapter 4. Here, we investigate thienigation of these sys-
tems for heterogeneous peer environments. To this end,wexwreertain video
streaming architectures and a scalable video codec affexew possibilities in
supporting different video qualities. Our approach of inithg this codec into
existing overlay mechanisms is then presented. The evafuat this adaptation
is again conducted by means of simulation. After discusiegnodel and tools
used for this study, results considering different loadatibns and comparing
implementation alternatives are presented for heterageneverlays.

Chapter 5 summarizes our contributions and findings ab@ubtimization
potential of existing and widely-used overlay technolsgM/e conclude by dis-
cussing open questions and future avenues of research.

2 Search and Lookup Overlays

Looking? Found someone you have | would say, mm?
Yoda

Locating information is today a task as important as prangss. Especially
since the Internet has become a resource not only for uitiesrand big com-
panies, but also for the end user, the amount of data freesaible has seen an
explosive growth [60]. The sheer volume of information psied via websites,
of content available for download in server-based or P2Pt&rDistribution
Systems, or of user data in social networks, necessitatesyaonsearch for a
specific homepage, file, or entry. Without being able to sisely access this
store of data, it becomes useless, as extensive as it may be.

This problem is exacerbated by the fact that even the datasioigde service
has to be stored in a distributed fashion. Service provilileesGoogle [47], Ya-
hoo [67], or Amazon [57] collect and manage enough user imédion to make
it difficult to store it centrally on one physical machine.uBhthe complete data
set is segmented and distributed among a number of noddstheitaim to im-
prove scalability and to be more cost efficient. As a consecgiean internal
lookup system needs to be implemented within a single lbgiata structure or
database to find the storage location of specific entries [Bbkup system may
form an additional physical layer, or it may just implemembgical interface on
the machines comprising the distributed data storagermyisself.

There are many possible implementations of such a seardokup service.
Architecturally, a centralized server is the simplest waystore indexes which
map queries to data locations. However, such a system hasitieeha potentially

2 Search and Lookup Overlays

high query load and has to store a lot of lookup data itseltisTIn large-scale
systems, measures are taken to distribute both the loadhenset of lookup
entries to several servers. This can be done in a hieratdh&tgon, such as in
the Domain Name System (DNS) [20], or in a flat but scalablecstire, such as
used by the popular BitTorrent file-sharing protocol, whirses an overlay as a
distributed tracker alternative [91].

In this chapter, we discuss a group of overlays implemersuud a flat struc-
ture that offers one single functionality, namely to quesy d data entry. These
so-called Distributed Hash Tables (DHTs) combine scatghilith a guaranteed
search success if the queried entry is stored in the ovedldy This is a sig-
nificant improvement over earlier search overlays, whichewmsed on random
graphs and used query flooding mechanisms to locate en®2¢slh contrast,
DHTs use a defined overlay structure to enable a deternum@iting of a query
towards the storage location of the queried data, and areftiie the premier
example for the group of so-called structured overlays.

Since the publication of the first DHT implementations in 20they have not
only received considerable attention from academia, teitaégso implemented
in widely used applications, like the aforementioned distied tracker. This
example also illustrates how search overlays and contstildition overlays,
which we cover in other chapters, complement each otheh ihéir content lo-
cation functionality, DHTs can enable peers to join spefiligesharing or video-
streaming networks to download content.

In the following, we first present some of the challenges #ygiear with
the usage of DHT-based search overlays in Section 2.1. ifterducing DHTs
and illustrating the concept with selected popular examidiTs optimized for
search efficiency and related work on this topic is coverefdntion 2.2. Then,
our first contribution is an own specific DHT architecture ghis described in
detail in Section 2.3. Next, we develop in Section 2.4 anydital model describ-
ing the characteristics of this architecture with a focughenmain performance
indicator, the search time. Specifically, we provide in 8ec®.5 results for the
first moments of the search time in dependency of importararpeters such as

2.1 Challenges in Structured Search Overlays

the system size. Thus, guidelines for dimensioning areveléras well. Another
important aspect is the effort to conserve load distribuitiothe considered over-
lay. Here, we use a simulative approach to evaluate themysitece analytical
methods are not feasible. Finally, we conclude the chapt8eiction 2.6 with a
summary of all discussed issues.

2.1 Challenges in Structured Search Overlays

The search process in DHTs scales with the number of node®dbe overlay
structure and the deterministic placement of entries ompéges participating in
the overlay. Most of the well-known architectures offerting in O(log(N))
hops or a comparable length, whé¥eis the number of peers [24—26, 31]. How-
ever, these are overlay hops, i.e., the transmission of aagesfrom one peer
to another. In overlays deployed in the Internet and cormgisodes from all
around the world, one such hop may incur a long delay, sineesggpically do
not distinguish between an overlay neighbor in the sameatity neighbor on
a different continent. Thus, even if the number of these ligpgpt reasonably
small for larger systems, a search process may take a loeq3iBn41].

For some applications, this poses no problem. A searchdokér data in the
DHT implementation of BitTorrent may take several secondbtout having a
significant effect on the download time of a file, which is i ttange of min-
utes or even hours [36]. On the other hand, there are semwiaie rely on fast
search procedures to function properly. These servicanairdy found in enter-
prise environments, such as a mobile service providersydtere, a distributed
mobile subscriber database is queried every time a subsalilanges its state or
wants to access a specific service, sometimes more thanrotiee $ame opera-
tion [85]. A search taking more than a few milliseconds alge@olates the tight
timing bounds common in mobile core systems. Here, it doesatter whether
a DHT is used to implement the database itself or just a lod&yer of it. The
same applies to user databases behind webshops, e.g., Afgd@2owhere the
customer satisfaction strongly depends on the correctiarelyt reaction to his

2 Search and Lookup Overlays

actions. Another example is the DNS service, where a repianeof the tradi-
tional server hierarchy by a typical DHT would offer seveadvantages, but is
ultimately not viable because it is much slower in terms spmnse times [27].

For these time-critical applications, a special subgroftypldTs provide a
solution. These overlays forgo the complex routing of tgpiDHTS such as
Chord [26] or Kademlia [31], and instead store the addrestedi peers in the
overlay on every peer. This basically implements a full mesth the result that
only one overlay hop is needed for each peer to reach thegstéwaation of an
entry. Still, the distribution of the data relies on a haghfimnction, so that these
structures are called one-hop DHTSs.

In this chapter, we focus on small to medium scale one-hop ®that are
used for high-performance applications. Although, as axrpld above, a short
search time is already part of their architecture, therestilesome challenges
that must be considered when implementing such a systerdieStan the via-
bility of one-hop DHTs and their bandwidth overhead due ®tilgher effect of
churn, i.e., the constant process of hodes joining andrigdtie overlay, exist and
are reviewed in the next section. With our work, we providereniasights into
two additional topics of importance. The first is the intémade load increase
in such an overlay, which results from the fact that queriselto be forwarded
to and processed on more than one node. We analyze how thissatfie perfor-
mance of the system and which system parameters have antionptiis effect.
Additionally, we show what additional effort needs to beetakn order to ensure
load distribution even in small-scale systems.

2.2 Background and Related Work

In this section, we first explain the basic concepts of a DH&dee to under-

stand the specific architecture we evaluate. To providstiiting examples and
to emphasize the similarities between different impleragons, we present a
selection of instances found in literature. An overview be éxisting work on

one-hop DHTSs then provides the background for our work.

10

2.2 Background and Related Work

2.2.1 Distributed Hash Tables

A DHT is a hash-table data structure that is stored not on agsipal machine,
but on several. The links between the different parts of tha dtructure are
formed by the overlay, i.e., logical, connections betwémnrtodes or peers. We
will now explain how a DHT overlay is formed and how it is abderbute queries
efficiently.

The basis of a DHT is a hash function that places both peerdstams to
be stored in the overlay within an identifier space, whichygdally a range
[0;2™ — 1] for m = 128 or m = 160 in literature. A commonly used collision-
free hash function is SHA-1 [23]. Input to this function is @de identifier such
as the IP address in case of a peer, and a unique document mafile in case
of an item. Thus, each peer and each item is assigned a unidpitadentifier or
ID, cf. Fig. 2.1.

Peers Iltems

@} y, =132.187.12.121 2, = switorrent %

@} y, = 69.17.116.124 2, = oechsner.xml %

Hash function h(x)

0 21 32 42 48 om_q
Identifier Space

Figure 2.1:Hashing peers and items into the identifier space
The placement of the nodes introduces a logical separafidinecidentifier

space and therefore can be used to implement consisterih®d2h]. The iden-
tifier space is separated into ranges or slots, with each hethg responsible

11

2 Search and Lookup Overlays

for one such slot. This reduces the overhead of re-distrigutems when nodes
join or leave the system. Furthermore, it allows to map itémtkeir responsible
storage nodes.

A metric on the identifier space defines the peer closest togamn item
identifier and thus the node where the item is to be stored iy be the node
with, e.g., the numerically closest identifier, or the nodhhe lowest identifier
higher than the identifier of the item, also called successde. Thus, searches
can be routed deterministically to the node that is respdmgor the requested
entry. If it is stored in the overlay, it is stored on this n@del can be returned. As
a consequence, a search may return a false result only wétydow probability,
which cannot be eliminated entirely because of the preseftede churn. Thus,
a query may always get lost at a node going offline or may bdweddy a newly
joined node that has not yet taken over all of the entriesrgsponsible for.

The node identifier also governs to which other nodes a nédeaintains
overlay connections. These connections are stored in atagvw®uting or for-
warding table and map the identifiers .fs neighbors to their addresses in the
physical network, i.e., their IP addresses. The neighbossDHT can typically
be separated into two groups, peers that are close in théfidespace, and peers
a long distance away according to the used metric. The ficatpyis the neigh-
borhood ofA in the identifier space, and is needed to forward queriegyatom
last hops to their destination. In contrast, contacts imaote part of the overlay
serve as shortcuts through the structure and shorten thelizse of the search
process, when a query only needs to be forwarded to the rightxd the identifier
space. The structure of a DHT is defined by the overlay metritthe specific
rules which neighbors a peer should have. They differ forekaemple DHTs
presented in the following, while the basic principles expéd above remain the
same.

The actual search procedure in a DHT follows a common pattéthe re-
guested entry is not already given in form of an overlay idientby the search-
ing application, it is hashed by the first node receiving thery to construct a
valid identifier. This identifier or search key defines thetidesion of the query

12

2.2 Background and Related Work

routing process. As a consequence, DHTs only support eractts queries by
default, i.e., searches where the full key of the requestad is known.

After constructing an identifier for the search, the initialde starts a lookup
by forwarding the query according to the routing algorithfith® DHT. In gen-
eral and for the examples described below, this means a eodé/ing a query
forwards it to the neighbor whose identifier is closest tadtpiested key in terms
of the overlay metric. When finally the node that is respdeditr the requested
key is reached, it either returns the stored value or answegyatively if no stored
item exists for the key.

Chord

Chord was presented in [26] in 2001, and is one of the mostereted and the-
oretically evaluated DHTSs. It is based on a ring structueg ihformed by inter-
preting the identifier space of the underlying hash funcéiera circle mo@™,
i.e.,2™ = 0. Items are stored on the node with the lowest ID succeediaeg th
item’s ID, i.e., its successor, cf. Fig. 2.2.

In Chord, each nodel maintains connections to its immediatesuccessors,
which form A’s replication group. All items stored oA are copied on every
node in this replication group, to prevent data loss shaukthd a number of its
successors go offline in a very short time interval. A pegadabilization routine
ensures that each node knows its direct successor and @gsnbonsistencies
when new nodes join or old nodes leave the overlay.

A node could now already search for an item by simply sendiggeay along
the chain of successors until it reaches the destinatiois Jédarch, however,
would not scale, since it takes on averajehops in the default unidirectional
design, whereV is the number of nodes in the overlay. Therefore, each node
additionally maintains a table of so-called fingers, which peers at defined
places in the overlay in relation to the local peer. THeentry in this finger
table is the successor of the identifigls + 2°~*, whereid is the identifier
of node A. This enables a node to forward a query at least half way tsvias

13

2 Search and Lookup Overlays

31 0 2
28 EE

& 5
26%/ Q@

g 6

23%@} 3 s
%@10

& 5
7 B E 13
16 15

Figure 2.2:Placement of items in a Chord ring

destination with a single overlay hop, considerably shonig the search process
and enabling a lookup i®(log(N)). With the successors and the fingers, each
node has to store a routing table with a size also in the rahg&iag(NV)).

Pastry

Similar to Chord, Pastry [25] is based on a ring structuréh tie identifier space
forming the ring. The identifier space again is a rafige™ — 1], with m = 128.
However, Pastry uses a different algorithm than Chord tcséhe overlay neigh-
bors of a peer. Identifiers in Pastry are interpreted as etivda base®, so that
b consecutive bits of a peer identifier represent one digithERastry peer has

14

2.2 Background and Related Work

three different sets of neighbors: the routing table, thghtsrhood set, and a
leaf set.

The routing table is used in the first phase of the search psodtries in

the routing table of a peet are selected according to the length of the common
prefix their identifier shares withi 4. In row i of the routing table, contacts are
stored that share a prefix of length 1 digits withid 4, but differ in thei” digit.
In this row, columnj holds entries where th&" digit of the entry has the value
4. Thus, there arg” — 1 entries per row an@%J rows in the routing table. Since
the number of candidates per field in this table is limitedhigher row numbers,
not all fields do necessarily hold an entry.

The leaf set ofA contains the® peers that have the numerically closest iden-
tifiers toid 4, centered around! in the identifier space. Thus, it contaip$™!
peers with an ID higher thail 4, and2°~! peers with a lower ID. It is used for
the final routing step of a query.

Finally, the neighborhood set hold®&t! peers that are close twith respect
to the underlying topology, e.g., peers that have a shond4tip time to A. It
is used in the initial configuration steps of a joining nodd #&ies to ensure that
short underlay connections are chosen for overlay linksastno direct effect on
the overlay routing procedure of Pastry.

A node forwards a query to a neighbor that shares a longer conprefix
with the target ID. Thus, ideally the matched prefix growseaist by one digit
with each step. If no node can be found that shares a longfx piéh the target
ID, a neighbor is chosen that is numerically closer to thge&rThis can always
be achieved via the leaf set entries. Finally, when a queaghes a peer which
covers the target ID with its leaf set, this peer forwardsghery directly to its
destination, the node with the ID numerically closest tottrget ID. With this
routing procedure, messages in Pastry reach their targeflisy,, IV).

15

2 Search and Lookup Overlays

Kademlia

Kademlia [31] is a DHT that has a less rigid structure thandtier DHTS de-

scribed here. It utilizes the search requests themsehsatdize the overlay and
therefore saves signaling traffic. Additionally, queryting is more flexible and
can utilize shorter paths with respect to the underlyingvogt topology. Fur-

thermore, queries can be issued in parallel along sepaattis,[so that both the
search speed and reliability are improved. Although mueB lgork was pub-
lished on Kademlia than on Chord, it is much more widely usage example

is the distributed tracker feature of the BitTorrent Maieli[84] and Vuze [91]

clients, which are both based on the Kademlia DHT.

The exact metric used in Kademlia to define the distance legtiveo 160-bit
identifiersxz andy is the bitwise exclusive or (XOR) interpreted as an inteiger,
d(z,y) = = @ y. Since the XOR metric is symmetric, neighbor relationstiips
a Kademlia overlay are symmetric as well. This is a diffeestecChord, where a
finger of a peer does not usually have in its own routing table. The symmetry
property allows peers to use the origins of incoming queaespdates for their
routing table. In addition, for any given identifief 4 and any given distancA,
there is only one identifieid s so thatd(ida,idg) = A (unidirectionality). As
a result, searches for the same identifier converge alongptie path, with their
origin being irrelevant. This allows for additional optiation via the caching of
items.

The routing table of a Kademlia peer consists of so-callémigkets. Each
of these k-buckets holds up toaddresses of remote peers from a certain range
of the identifier space. Th&" k-bucket of a peerd holds only entriesB for
which 21997 < d(ida,idg) < 2'°°~“*1. This means that the first k-bucket
covers the distant half of the identifier space, the secondaatey, and so on.
The last k-bucket contains the peer itself. Thus, the entrighe first k-buckets
serve as shortcuts to quickly reach remote parts of theiférgpace, while the
neighborhood of the local peer is known in much more detiaitesit is covered
by more k-buckets, cf. Fig. 2.3. This allows for a routinglog(V)), similar

16

2.2 Background and Related Work

to Chord. However, in contrast to Chord or Pastry, a singlging algorithm
suffices to reach the target.

00...00 11..11

Figure 2.3:Tree structure of Kademlia, ovals show subtrees where pt@®d O
must have a contact

If a new contact is discovered, the least recently seen émtilye according
k-bucket is pinged. If it answers, the new contact is disedr®therwise, the old
contact is assumed to be offline and the new peer is inserted.algorithm is
based on the experience that a node which was online for atiorgis more
probable to stay online as well.

CAN

A Content Addressable Network, or CAN [24] is the name comimased for a
specific implementation of a DHT that formsiadimensional Cartesian coordi-
nate space on é-torus as its structure. Peers are assigned a specific pime of
coordinate space as their responsibility, their so-caltak, cf. Fig. 2.4. A peer
stores all items that have coordinates within its zone.

The routing table of a peed consists of all peers that have a zone border-
ing A’s zone alongl — 1 dimensions. Since CAN forms a Cartesian coordinate
space, a query can be forwarded in the direction of its detstim based on the
zones of the neighboring peers. The number of hops taken ANadverlay is in
O(dN'?).

17

2 Search and Lookup Overlays

& & &

Figure 2.4:Example of a 2-dimensional CAN network

At the core of CAN is the algorithm which manages the zoneseié peer
A joins the overlay, it selects a random poiRtand sends a query with that
destination. This query is routed to the peérthat holds the zone in whick
lies. Then, this zone is divided equally betwe¥rand A, along a dimension that
is determined by earlier splits that led to the creatiorXd$ zone. In case of a
2-dimensional CAN, zones are split alternating along ttexis-and the y-axis.
All items that have to be stored on the new node, as well asdighbors only
belonging to the new zone are handed overXhy

When a node leaves the overlay, its zone has to be taken owerdmaining
node. If a well-formed zone can be created by one of the neighit takes over
the orphaned zone. Otherwise, the neighbor with the smalbe® takes over. To
increase the robustness and content availability, thdaywean be strengthened
by implementing a number of different realities. Each reality is a separate and
independent coordinate space, with a single peer holdiriffleaeht zone in each
reality. Thus, items are stored redundanmttymes, and nodes can choose in which
reality to forward a query to circumvent routes blocked byrch This also speeds
up the search if a node selects close neighbors in terms eflaydproximity.

18

2.2 Background and Related Work

2.2.2 One-hop DHT Architectures

In contrast to the DHTSs described in the last section, a apeHT stores all
peers in the overlay as neighbors in the routing table of @acte. In this fully
meshed overlay network, each node only needs a single hapward a query
to its destination, hence the name one-hop DHT. Thus, threlseaocess itself is
greatly simplified and shortened. With routing being unseaey, the structure of
the overlay and its identifier space can also be kept simketyipically assumed
to be the identifier ring as used by Chord or Pastry. Howewecesevery node
has to maintain a complete view on the overlay, the maintemaffort to keep
all routing tables up to date is higher than for a multi-hogtegn. Every node has
to be informed about every state change caused by node ahhich leads to a
higher maintenance bandwidth consumption.

Still, the overlays considered here share the featuresrdistent hashing and
self-organization under churn conditions with multi-hopiDs. By knowing all
other peers in the overlay, a node can locally determine aohwbeer a given
item should be stored. Joining nodes still automaticalg taver items they have
to store, while the data of leaving nodes can be kept in theayeia redundancy
mechanisms. In order to improve the load distribution foaken systems, it is
often discussed to map a number of virtual nodes to each gaiysode. This
number can be tuned to the capacity of the physical node. Adeaeffect, this
feature decreases the effort for single nodes during reaaton.

Related Work

A general analysis of the necessity of a multi-hop routingssate in a DHT
is presented in [37]. The authors argue that routing intivaconly adds com-
plexity to the system and should be avoided if it is not altebjunecessary. To
judge when a multi-hop architecture is needed, a basic sisaty the necessary
node bandwidths is conducted. The effort needed to keepatimplete state up
to date at one node in a one-hop DHT is compared with the datatenance
traffic needed in any case, e.g., for downloading contenete modes that are

19

2 Search and Lookup Overlays

responsible for it. It is shown that only systems in the raof)¢0” nodes and
larger need a multi-hop structure when realistic nodeilifes are assumed.

In [34], an architecture for a one-hop DHT is presented tbales to up td.0®
nodes. The main indicator to determine the scalabilityésttindwidth overhead
needed to distribute state change information. This inftiom has to be made
available in the whole overlay since all nodes have to keejp thrwarding table
up to date in order to ensure a low query failure rate. To thi§ ¢he identifier
space, which takes the form of a ring, is segmented into Beecslices. Each
slice has one node selected as its slice leader. A slice ia aggmented into
units that have their own unit leaders. This structure isiuedorward all state
change information generated in a slice to the slice leddes. node collects all
information within a certain time interval and then distries the information to
all other slice leaders. These can then forward the noiifieatto the nodes in
their slices via the unit leaders.

An analysis in [34] shows how the query failure rate in thisteyn depends
on the length of the time interval in which state change imfation is collected,
as well as the time it takes to determine a state change aravward the in-
formation. The bandwidth overhead is also influenced byethses, but can
additionally be influenced by the number of slices and ufiite bottlenecks of
the system with respect to the used bandwidth are the skekets, which carry
the highest load and limit the scalability of the architeetu

The scalability properties of one-hop DHTs and their vi@piin compari-
son to multi-hop overlays are again discussed in [52]. Hamggrprise DHTSs are
identified as a major field of application, which shows diferfeatures in com-
parison to peer-to-peer end user systems. Thereby, thdifeidee and therefore
the overlay stability is much higher in enterprise netwoildse same is true for
the available capacity, both in terms of bandwidth and psicg. However, also
the load on these systems is increased, as the number oégjperisecond is sig-
nificantly higher than in an end user 'best effort’ applioatiThese observations
and assumptions coincide with our own.

20

2.2 Background and Related Work

Similar to [34], the focus of the analysis provided in [52pis the bandwidth
used by the overlay. Here, both the traffic needed for togotogintenance and
the query traffic is considered. It is concluded that onedbb{I's scale to a few
hundred thousand nodes. The operating points where a gn®Had is more
efficient than a multi-hop DHT are identified in dependenceystem size, node
lifetimes, and lookup rates. Neither the node load nor anddnt storage of
items in a single one-hop DHT are considered. However, ahitaoture for a
system of several site-redundant one-hop DHTSs as well ashalghierarchy of
one-hop DHTSs is proposed. The former provides resiliencetaork partitions
by storing data fully redundant on several sites, while #tief circumvents high-
latency hops which are an issue with other hierarchical DHTs

A one-hop DHT is used as a central architecture element infTSEE [69], a
proposal for combining the scalability of IP with the easeaffiguration of Eth-
ernet. It uses the DHT to store the mappings of Medium AccesgrGl (MAC)
addresses of hosts to their location, as well as the mappihtfs addresses to
MAC addresses. Thus, broadcasting protocols such as ARPHGP are re-
placed with lookups in the DHT, making the architecture alod. Switches are
used as the nodes comprising the DHT, and consistent hashaggin used as
the mechanism to assign items, i.e., mappings, to the reggerswitch.

The evaluated systems are in the range of several hundres$ mothe DHT.
The performance study focuses on the behavior of the sysieuiifferent pro-
tocol parameters, such as the timeout of cached entriethdforore, the routing
table size, i.e., the number of stored items per node, iddered. It is shown that
SEATTLE scales much better than large-scale Ethernet arfidrpes better than
comparable approaches. However, the performance chasticteof the one-hop
DHT are not considered in detail.

Dynamo [57] is an implementation of an architecture very mlike the one
analyzed in this chapter. It provides many services in ttafgim of the e-
commerce company Amazon. It is used by applications thatdoeed a com-
plex distributed relational database, but rather a simplevalue store such as
provided by DHTs. Therefore, it uses a one-hop DHT as onggdesimponent

21

2 Search and Lookup Overlays

to provide load distribution and redundancy while keephmgygearch times short.
However, the specific environment and service expectatibtise Amazon on-
line platform lead to a focus on availability additionally guaranteed response
times. Since Dynamo is used, e.g., to provide a shoppingseavice, it is abso-
lutely necessary that write actions succeed with a very pigbability in order
to prevent financial consequences and to keep the custosaisfaction high.
Consistency of the stored values is then achieved durirtyaparations. The de-
ployed Dynamo systems in a production environment typicatintain several
hundred nodes. While measurements of search latencieatdnhbalances in
a deployed system are presented, these only cover a verjicpacameter set
of a one-hop DHT architecture.

Improvements and implementation alternatives to the germere-hop DHT
architecture are discussed in [57] as well. The possibdftallowing clients to
address specific nodes in the overlay directly is raiseds Ttlients can deter-
mine the node that holds the desired data and query it dirddils circumvents
even the single hop that is normally necessary in a one-hop biit necessitates
that clients have a detailed view on the distributed systechcannot treat it as
transparent.

In contrast to the previous work described above, we focus more general
view on the system, its parameters and how they influenceatfermance. For
this, we do not focus on the bandwidth overhead, but takeaotount the query
load on the nodes themselves, which is neglected in theetelabrk. Our sys-
tem differs from other architectures since it implementeakup layer situated
between the applications and the data storage. This, howte&s not invalidate
the derived results for the case where the application da#ied directly in the
overlay, since the most important system characteriste$oand in both cases.

2.3 Architecture of a Distributed Lookup Overlay

As discussed in Section 2.1, we focus on a high-performarstgtaited index
based on a one-hop DHT. To this end, we develop and describisisection our

22

2.3 Architecture of a Distributed Lookup Overlay

own specific architecture suited for a relevant applicatimamely a distributed
database, similar to Dynamo [57] but with different reqoients. Thus, the sys-
tem discussed below implements a lookup layer for a virzrealidatabase which
consists of a number of physical database servers. Thissribahthe nodes in
this lookup layer only hold pointers to the storage locatibthe real data. The
one-hop DHT we develop an analytical model for is placed ia practically
relevant setting, which we therefore outline in the follogi

2.3.1 Layers of a Distributed Database

We consider a distributed database which stores a large ewaflentries, e.g.,
a subscriber database in a mobile network operator domairuser database of
a webshop. Due to the large amount of stored data, the datébalstributed
among several dedicated database servers, which form tkeela. To locate
specific data entries in this back-end, a front-end layarsfhe necessary lookup
and forwarding functionality, i.e., the front-end res@\vgueries to the database
and forwards them to the correct back-end server. This lotkyer stores point-
ers to back-end servers, one pointer for each database lkegeTpointers take
the form of < key, value > pairs, with the key being a reference to the original
database key queried and the value holding the address bftlieend server
where the associated database entry is stored, cf. Fig. 2.5.

The number of lookup entries which have to be stored in thetfemd de-
pends on the amount of data in the back-end. A complete lotdhlp may very
well be several dozen Gigabyte in size, e.g., for a datablaeational mobile
service provider. With even larger databases and more kieigsyalue grows.
This seems small if compared to hard disk space commonlaélai However,
the additional time consumed in the lookup layer should kg t@a minimum,
which leads to this data being kept in the Random Access MgitiAM) of
the nodes. RAM, while becoming more and more inexpensive, tisese orders
of magnitude still an important capital expenditure fadtothe equipment of
servers. Therefore, keeping the amount of data stored amggesiode low is a

23

2 Search and Lookup Overlays

Application
Q: User xyz?) clients
I ; Load distribution
Q: User xyz?) R:42] (Anycast, hardware, ...)

abc — 192.168.0.48
xyz - 192.168.0.21
tbh — 192.168.0.42

R:42 Front-end/

g lookup layer
=

N Back-end/

Figure 2.5:The basic system architecture

question of cost efficiency, and guidelines to system dinogitsg are valuable.

Applications, in case of a subscriber database e.g., atiogwr location man-
agement, issue queries to the database system, normaithsegfor one entry
at a time. These queries may be Lightweight Directory Acéassocol (LDAP)
messages or conform to other protocols suitable for acugsstlatabase. Since
the pointers stored in the front-end layer only change wigenentries are added
in the back end, or if entries are moved from one back-endeséovanother, the
bulk of queries is expected to consist of read operationshferfront-end, i.e.,
lookups for applications.

It would not be viable for external applications to know thiernal structure of
the database, such as the addresses of specific nodes iokbp layer. Instead,
the queries are sent to the system as a whole, e.g., in form afiycast address
like in the DNS architecture, or to one defined address whixlies as a load
distributor. Thus, application queries only see one virtsta storage system,
while its internal complexity remains hidden.

This entry point into the database system does not need nugib &nd
can therefore perform very efficiently. It forwards the desrto the front-end

24

2.3 Architecture of a Distributed Lookup Overlay

servers of the system. Basic load distribution may be caedugefore forward-
ing queries to the individual front-end servers. Howevkis tvork focuses on
the lookup layer itself. Once the query is in the front-engelathe database key
it contains is resolved to the address of the back-end sénlding the associ-
ated entry. Finally, the response with the queried datarigdfaled again via the
front-end to the application. This is done in order to neitatesonly a single
connection between the application and the database syatewell as to hide
the internal complexity of the latter.

2.3.2 Implementation by a One-hop DHT

The lookup layer of the basic architecture described ab®vew implemented
by a one-hop DHT. The interface of a DHT, namely the abilitystore and re-
trieve pairs of keys and values, is perfectly suited to susyxsteem. The original
database search keys, e.g., LDAP keys, can be hashed t@sdrash table keys.
The storage locations of the associated data sets are theeded values. The
particular implementation details of our system are dbscrin the following.

We consider a typical one-hop DHT with an identifier ring asstructure,
similar to [34] or [57]. The lookup entries are stored in thel'Daccording to
their keys, as described in Section 2.2. Each entry is staméts successor node
in the identifier ring. Additionally, it is stored oR — 1 successors of that node to
ensure redundancy and to prevent data loss, cf. Fig. 2.&, TiedeA is primarily
responsible for each entry falling in the ID range betwdeand its predecessor.
Due to the redundancyl can nevertheless resolve queries for all entries up to
the responsibility range of it — 1 predecessors. Herg,is a tunable parameter
that enables a trade-off between resource savings on onkdmshsystem load
and availability on the other hand, as we show in Section 2.4.

Thus, the normal system operation is as follows. An appticassues a query
to the database of which the lookup system is part of. Theseigpiare dis-
tributed evenly among the lookup nodes, e.g., by means ahglsiround robin
load distributor. When a query reaches a lookup nddehis node first hashes

25

2 Search and Lookup Overlays

Identifier space S ge_d;ndancy
< =
\ ..
\
Front-end 1
server

Responsibility
range of
node A

Figure 2.6:The structure of the considered one-hop DHT front-end layer

the database key of the query. Next, it checks whether iestthre lookup entry
associated with this key locally, including the redundastbred data. If this en-
try is not stored locally, the node determines which otheftenig responsible for
it via its routing table, and requests the entry from thatendd either case, the
original query is afterwards forwarded to the accordingkbeied database server,
whose address is the stored value of thé&ey, value > pair of the lookup en-
try. Finally, the response to this database query, whickadosithe requested data
itself, is forwarded to the application.

In case of an additional internal lookup, the node with thedst ID higher
than the hashed key searched for is always selected as pumsésde node. This
eases the routing process in case of node failures, anddsktililreturn valid
results as long as no data loss has occurred, which is ongjippesf R consecu-
tive nodes fail in a short time interval. While the query Idadone entry could
also be distributed among the nodes storing that entry, we assume that each
entry is queried with the same frequency, and thereforeddiianal gain can be
achieved by this measure.

26

2.3 Architecture of a Distributed Lookup Overlay

As we have seen in Subsection 2.2.2, systems like this aley#ebin real-
ity with a size smaller than a few hundred nodes. This redtigmall number
of nodes in the front-end layer invalidates a common assiomffor large-scale
DHTSs: the inherent load distribution. Since generally, eoéh a DHT are as-
signed their position in the identifier space of the overlgyalandom hash func-
tion, only a large number of nodes lead to a nearly equalibigion. This in turn
leads to an equal distribution of lookup entries to be stane@ach node, and,
assuming an equal probability for each entry to be querieal] ldistribution.
Conversely, a low number of nodes is not necessarily positdavell-distributed
in the ID space of the DHT by a random hash function, and tbesethe query
load may be skewed.

Moreover, the nodes storing more lookup data have to pravides memory.
If it can not be predicted how the load will be distributed,raddes have to be
equipped with enough resources to handle the worst casdtjmgsn higher costs
than necessary. One common way to circumvent this problémuse multiple
virtual nodes per physical node to reestablish an equailalisibn of nodes in
the identifier space.

Since we are interested in a system where the property of dadbution
is achieved, we consider an alternative solution here thatthe same effect
but offers itself more to analysis. We assume the randomayéd assignment
known from most DHTSs is replaced by a deterministic positigrof the nodes
in the overlay, assuring that each node is responsible éossdme amount of data.
Thus, we can assume almost perfect load balancing for olysasia

While the considered application of a critical databasemadlly warrants
the deployment of dedicated hardware with long Mean TimevBenh Failures
(MTBF) intervals, it is nevertheless possible that a nodener of its components
fails during normal operation. Node failures greatly ugheteven load distribu-
tion in the system, leading to overload and/or congestiahstwould therefore be
acted upon immediately. In order to keep the need for mambahiention low,
an automatic reorganization algorithm is used to reass$igrs of the remain-
ing nodes, thus again placing them equidistantly on thetifilenring. Since this

27

2 Search and Lookup Overlays

also includes a change in the responsibility ranges for eadk, a redistribution
of the lookup data is necessary in this case.

Apart from the aspect of node failures, the data stored intabdae changes
over time. Generally, the amount of data grows, which megsisauld be easy
to expand the system by adding new nodes, both to the backrehtb the front-
end layer. The system should scale with the number of ensiesideally, adding
new nodes does not involve major manual configuration.

Anchor
node A

E Failed
node B

New inter-node
distance

Overlapping

range “, b c

Figure 2.7:Reorganization after one node failure

We assume a simple heuristic is used to limit the amount af @aich has to
be transmitted over the network. This heuristic can copbk With node additions
and with node removals or failures. Starting from an ancladen each node
is positioned in the correct distance (computed with the nember of active
nodes) in the same order as before. Thus, there is a highlplibpthat the old
range of a node has a large overlap with its new range, medhaighe node
already stores much of the data it needs in the new situatfoRig. 2.7.

The same algorithm is used to add new nodes to the systenlirgnab easy

28

2.4 Analytical Queueing Model

expansion and scaling with increasing load. If more thanrauke is to be added
at the same time, the new nodes are inserted equally distdtwto the system,
so that again the overlap between old and new responsibélitges is high for
the 'old’ nodes.

2.4 Analytical Queueing Model

We now present our analytical model to evaluate the one-Hdp Brchitecture
presented in the last section. It is based on a queueing niaetier to con-
sider the query load at the lookup nodes. With this model, igeahble to analyze
the search time spent within the one-hop DHT in dependend¢e@main pa-
rameters influencing the system behavior, which are the ruminodes in the
system and the degree of redundancy. The number of nodethéasystem size,
is considered as an important parameter in the related \8dxBf, 52], while the
redundancy is generally neglected in these studies. Howaweresults show that
it has a significant influence. The search time is a perforemamgicator consid-
ered, e.g., in [57] and [33], and the most important paranfetehe considered
application [85].

2.4.1 Overall System Model

To evaluate the presented architecture, we employ thersystedel shown in
Fig. 2.8. In this model, we make some simplifying assumptidfirst, the pro-
cessing times for queries are assumed to be independemtlidantically dis-
tributed (iid), i.e., we do not differentiate between th@gessing of external
queries, internal queries, or response forwarding. Howeve assume a larger
variance in the service time to compensate for this. Seasadissume that the
popularity of each database entry, i.e., the frequency which it is queried,
is the same. Our third assumption is that the aggregatectfédfvs and query
arrivals at each node constitute a Poisson process.

29

2 Search and Lookup Overlays

The total initial query load offered to the system is credtgcdthe applica-
tions connected to the database system. The query arrigagsaumed to follow
a Poisson process with ralg. We further assume an equal distribution of this
load on each of thé& nodes in the system, resulting from the basic load distribu-
tion described in the last section. Each node is modeled anmef aM//GI/1
delay system with an arrival rafé’ and a processing timg with meanE[B], cf.
Fig. 2.8. The waiting timéV" is implicitly given by the node model and parame-
ters. The query forwarding duration over the network is niedéy the random
variableTr for the transmission time distribution.

Service

time Node
. sojourn
Wa't'ng time
time

Figure 2.8:System model

The search procedure follows the phase diagram depicteid.i2®. The first
lookup node is traversed in any case. With a probabllity p, this node holds
the lookup data for the query. Thus, the query can be direetiy to the back-
end and the response can be forwarded to the applicationfiher path of the
diagram). The probability — p depends on the share of lookup data a single node
stores. Since we consider content replication to increaaiahility and perfect
load distribution, each node stores a fractionfpfof all lookup entries, where
R is the redundancy factot (< R < N). Therefore, the probability to find the
gueried data on the first nodelis- p = % as well.

Consequently, with probability = % the query has to be forwarded to
a different node if the local node does not store the lookupyemecessary to
resolve the query. This leads to a hop within the overlay andditional node

30

2.4 Analytical Queueing Model

traversal as well (corresponding to the lower path in thgrdian). The response
from the second lookup node is then sent back to the initidéntaking a second
hop. The initial node can then forward the application queryhe database.
Finally, when the database server sends a response it is fagaiarded by the

initial node to the application.

Total search time Tg

1-p

p

Resolution/internal Resolution on the Forwarding to Forwarding of result
forwarding on the second lookup node database by by the first
first lookup node the first lookup lookup node

node
Figure 2.9:Phase diagram for the search procedure

An important aspect of the one-hop DHT under considerasdhat not each
query is resolved by the first node it encounters. Most of thélhspawn subse-
guent internal queries. Therefore, the query arrival ratma node must consider
this additional internal load. Each node initially receivts fair share of applica-
tion queries. With the total initial arrival rate beig, and the system consisting
of N nodes, this initial load at a specific node correspondgf;—t,ocf. Fig. 2.10.
Of these queries, the node can only resolve a fractienp = % locally, as
discussed above. The rest of the queries has to be resolvadsecond node,
and is consequently forwarded. This outgoing query flow isadlg split among
the N — 1 remaining nodes. Due to the symmetry of the traffic flows, traes
amount of queries (with rate- %0) is received. This traffic is therefore added to
the external query flow.

Allinternal queries are also answered, effectively daubptihe internal traffic.
This is due to the fact that the first node receiving the refgjisesesponsible
for resolving the complete query and forwarding the respaiosthe querying

31

2 Search and Lookup Overlays

%@} A g Front-end server

Application clients

Back-end database

Figure 2.10:The traffic flows contributing to the node arrival process

application. Some traffic could be saved if the databasealigation allows for
the second node or even a back-end server to answer theajapliquery instead
of the first reached node. However, we describe the most gleswed worst case
here with the least assumptions about the interface betexdennal application
and virtual database system.

Therefore, all application queries received by the initiadle are forwarded to
the responsible back-end database server, and the angeergaan forwarded
to the first node to be forwarded to the application. Thusyéte of% is again
received from the back end and processed, leading to a totadlaate of

o N—R o

N=@tp) =2) (2.1)

This means that we have to discern two different load valthesioad com-
puted from the application querips, and the actual node load including internal
queriesp™. The first value, which is seen from outside the system, maysbd as
the primary indicator when describing the system as a wiitdeever, the sys-
tem performance can only be evaluated with the second vahenormalized

32

2.4 Analytical Queueing Model

offered initial load of one node jg = 222121 With the total arrival rate*, the
actual node utilizatiop™ can be derived as

p" =X\ E[B]=po-(2+2p) (2.2)

While this internal load increase seems much, it is stilltén due to the single
hop that is necessary in the DHT. In a multi-hop overlay, ihésease would be
larger, roughly by a factor equal to the average number o$ roghe DHT.

2.4.2 Analytical Approach

In this section, we present the analytical model used tordestiow different
parameters affect the system performance. We focus on énehstmeT’s as the
primary performance indicator, i.e., the total time spgnalguery in the lookup
layer. We provide an approximate analysis of the search fimarder to be able
to evaluate the major factors influencing the system.

First, we analyze the distribution functidfis of the total search time, cf.
Fig. 2.9. It comprises the node sojourn time in the first nadited by a query in
the lookup layer, as well as the transmission times to anu ixsecond node if
an internal forwarding is necessary in the lookup layerhia tase, the sojourn
time on that second node as well as the second sojourn timeedir$t node is
also part of the total search time. Finally, the responsegsfeirwarded from the
back-end to the application is processed as well, leadiagdorth node sojourn
time. Assuming independent waiting time distributionslbhades, we arrive at
the Laplace-Transfornbs(s) of the search timé&s:

®s(s) = (1 —p)(@w(s)’®r(s)”) + p(Pw (s) @5 (s) Pr(s)?). (2.3)
Here,®5(s), Pw (s), and®r(s) denote the Laplace-Transforms of the distribu-

tion functions for the service tim8, the waiting timel//, and the transmission
time T'r, respectively. We model a single lookup node a4 AG1/1 — oo delay

33

2 Search and Lookup Overlays

system, using the Pollaczek-Khintchine formula [97]

_ s(1—p")
Pw (s) = s— A+ A Pp(s) (2.4)

and finally obtain

s(1—p")®s(s) * 2
+p (m) Dr(s)”. (2.5)

In general, it is numerically difficult to quickly obtain was in the time do-
main in order to gain basic insights into the system behatious, we directly
compute the mean value and variance of the search time.

From the phase diagram shown in Fig. 2.9, the mean searchHijffig] can
be given as

E[Ts] 2(E[W]+ E[B]) + 2p(E[Tr] + E[W] + E[B)])

(2+2p)(EW] + E[B]) + 2pE[Tr], (2.6)

with E[W] being the mean waiting time arfl[T"] being the mean transmission
time. Again, under the assumption ofAd/GI/1 — co delay system, we can
express the mean waiting time in the queue of a node accotalifakacs [19] as

) - 25 e
which leads us to
ETs] = (2 + 2p) (;{%[ii]) + E[B]) LB (28)

It should be noted that the second moment of the service tistebdition func-

34

2.4 Analytical Queueing Model

tion is needed in Egn. 2.8 in order to compute the mean seaneh The co-
efficient of variation of the search timer,can also be derived from Fig. 2.9.
Since we cannot simply add the weighted variances of the atlispof the phase
diagram, we first compute the variances of the search timeeafto paths sepa-
rately. From these values, we can compute the second mowofahtsse two dif-
ferent search time distribution functions. Finally, we gurte the second moment
of the total search time distribution function from the weied second moments,
and thus the coefficient of variation of the total search gssc

To this end, we define the search time distribution functionghe two paths
of the phase diagram, nameXyfor the search time of the upper path without any
additional hop, an@” for the search time in the lower path. In order to compute
the the second moments of these two distribution functismesalso need the
second moment of the waiting time [19]:

*E[B?]

EW?) =2E[W]* + 30—

(2.9)

Since we assume the independence of all distributions,

VAR[X] = 2(VAR[W]+ VAR|[B)])
3* (N E[B*? + 4E[B°|(1 — p*))
6(1—p)?
el BB (2.10)

and

VAR[Y] = 4(VAR[W]+VAR[B])+2-VAR|[Tr]
N (3*E[B?? +4E[B%)(1 — p"))
3(1—p*)?
+4(E[B*| - E[B])+2(E[T%]+E[TT]2). (2.11)

35

2 Search and Lookup Overlays

Now, we can compute the second momen&oéndY':

3A*(*E[B?)? + 4E[B%|(1 — p*))

E[X?)

6(1—p*)?
) NE[BY\® _A*E[B*E[B]
+2E[B7]+ 2 (2(1 _p*)) +2 30 = p) (2.12)
and
2 A"(BNE[B?]? + 4E[B%(1 — p*))
e 30—)
+4(E[B®] — E[B)?) + 2(E[T?] + E[Tr)?)
+ (4(% + E[B]) + 2E[Tr])°. (2.13)

With Eqgns. 2.12 and 2.13 we arrive at the second moment ofethiels time as
E[T3] = (1-p)- E[X*] +p- E[Y?],

and can finally derive the coefficient of variation of the tearch time from the
first moments of the service time distribution function ahe transmission time
distribution function:

VAR[Ts]
E[Ts]
V(1 —p)- E[X?*+p- E[Y?] - E[Ts]?
E[Ts] '

(2.14)

36

2.5 Performance Evaluation

2.5 Performance Evaluation

Using the analytical model presented in the last sectionnowe describe the
major performance characteristics of the observed oneEidp. In particular,
we discuss the most important parameters that can be ugdtltrnice the system
behavior, described by the search tiffile. These are the system size, i.e., the
number of lookup nodedv, and the redundancy fact®. Finally, we take a
closer look at the system behavior under expected churritoamesl

For the following results, we assume a service process witarm
E[B] = 1 ms and a coefficient of variation efs = 2. A node has to manage dif-
ferent tasks, i.e., checking if a query can be resolved pdakwarding queries
to other front-end nodes, creating back-end databaseegyarid forwarding the
results to applications. We reason that these differeksti@ad to a high variance
in the processing time of such a node. To model the internsfork transmis-
sion, i.e., query forwarding from front-end server to fremd server, we use an
exponential distribution with meam3 ms. We do not consider the querying of
the back-end database here, but focus on the time a quergisspethe lookup
system itself. The values both for the mean service time dswthe mean trans-
mission time are based on measurements conducted witheself hardware.
It is expected that they are lower in high-performance systeHowever, since
we provide our results for the mean search time normalizetthéynean service
time and in dependence on the system utilization, the atesellues are of less
importance.

2.5.1 Influence of the System Size

The first parameter of the system under consideration i&ziégs She more nodes
are used to construct the overlay, the less resources adedchem the single
nodes. Since typically less powerful equipment costs difraof the price of

high-end hardware, this may mean a significant cost advantegexplained in
Section 2.3. However, the number of lookup nodes also hasatdifluence on

37

2 Search and Lookup Overlays

*

Internal load increase p /pO
w
[¢3]
byl

10
15

w

20

N
3]
g

10° 10" 107 10°

System size N

Figure 2.11:nternal load increase in relation to the system size

the probabilityp that a query has to be forwarded within the lookup layer. &inc
p= %, more lookup nodes lead to a higher probability for two in&hops

if Ris kept constant. According to Eqgn. 2.2, this increasesfteeteve utilization

p* of the nodes.

Figure 2.11 shows this internal load increase in dependefitye system size
N and for different redundancy factofs We can observe that the internal load
increases quickly once the system gets larger than the deday factor. How-
ever, after a size of a few hundred nodes is reached, thealtlead increase is
already close to its maximum and grows only slowly. Therefand since real-
istic systems are of this size [57], we do not consider lasgstems. For systems
with less nodes tha®, no internal load increase exists, since the information is
stored fully redundant.

Now, we evaluate how this internal load increase affectsrthim performance
indicator of the system, the search time. To this end, Fi)2 Zompares the
mean search timeE[Ts] normalized byE[B] for an initial system utilization
po €]0;0.25], and for numbers of front-end nodes ranging frdfn= 5 to

38

2.5 Performance Evaluation

= 100. Additionally, the hypothetical case where every queryoisvarded
|nternally, i.e. th p = lisrepresented as an upper bound (dashed line). Larger
values forpg are not meaningful, since the effective utilization is uptttimes
larger due to the internal forwarding and therefpfe €]0; 1] for the chosen
range ofpo, cf. Eqn. 2.2. The redundancy factor is sefRo= 3, a typical value
used in practice [57].

Mean search time E[TS] (2/E[B])

0.05 0.1 0.15 0.2 0.25
Utilization Py

Figure 2.12:Mean search time for different system sizes

Ouir first observation is that the mean sojourn times increstsea larger sys-
tem. However, the load increase resulting from more frowt-gervers diminishes
for already large systems. This is due to the fact that thedading probability
p grows fast for smaller systems, as shown in Fig. 2.11. Agarnfthis, the
search times increase with a higher system and therefoeutdization. This is
expected, since the waiting time of queries increases wiemades are under
higher load.

Since time-critical applications do not only rely on a stagrage search time,
but also on a low variance of this time to guarantee a goodcgeiv most cases,

39

2 Search and Lookup Overlays

s
e
[

[any
T

0.9r

0.8

0.7f

0.6f

0.5f

Coeff. of var. of the mean search time Cr

04 0.05 0.1 0.15 0.2 0.25

Utilization Py

Figure 2.13:Coefficient of variation of the search time for different ys sizes

we also take a look at the coefficient of variatien, of the search time. This
value is shown in Fig. 2.13 for the same parameters as the sezach time
before.

Here, a larger system has a positive effect, since it redtiesariance of
the search time. In a large system, almost all queries takatamal lookup
and therefore visit lookup nodes more often. While each gssing time and
the associated waiting time may show a high variation, égpeing these times
repeatedly reduces the overall variance of the total setrgh For the same
reason, the variance in the search time is reduced with aehigystem load.
Since more queries experience waiting times if the nodézation grows, the
average search time increases, but the difference in thetstiaes experienced
by individual queries decreases.

For many applications, not only the variance of the searabgiis important,
but also the percentiles. Services in this case have to giegrghat, e.g., 99.9%
of all searches take less than a given time. However, sins&dlue depends on
the specific service time distribution, no general residts loe provided.

40

2.5 Performance Evaluation

2.5.2 Influence of the Redundancy

The second important parameter that influences the systieavioe is the redun-

dancy factorR. It is easier to configure than the system size, since it istagpa
the software implementing the overlay functionality. Thilee redundancy factor
can be changed during the system’s lifetime and even duongal operations.
In contrast, the system size is a result of dimensioningiderations made be-
fore the system deployment. Similar to the system size, édendancy has a
direct influence on the probability that a query has to be éoded internally in

the lookup layer, and therefore on the effective |lgéd front end server experi-
ences.

4 N
o 100
2
‘a
9 3.5 75
2 50
o
3]
£
= 3 25
I}
9
o
=
o 2.57
= 1
2 . . .
5 10 15 20 25

Redundancy R

Figure 2.14:nternal load increase in relation to the redundancy

This is visible in Fig. 2.14, where, similar to Fig. 2.11, tiiernal load in-
crease is shown, this time in relation to the redundancyfagt Different sys-
tem sizes are compared as well. An increase in redundansyegsteffective for
larger systems, where the internal load is reduced lesshéanore, one should
keep in mind that an increase in redundancy necessitategea Emount of re-

41

2 Search and Lookup Overlays

sources per node, so thaltis also limited by the node capacities. This is opposed
to the aim of larger systems to distribute the load among modes, with each
of them needing less resources.

Figure 2.15 shows the mean search times of queries norddliz&’[B] for
an example system with 20 nodes and different redundantyrgacanging from
R =1 (no redundancy) t& = 20 (full redundancy, no forwarding is required).
Again, only values opy that do not lead to system overload are used. We choose
this relatively small system size in order to see a signifieffiect of the forward-
ing probability for lower values of the redundancy.

40
35¢
301
25¢
201
151
10

Mean search time E[TS] (1/E[B])

5

0.05 0.1 0.15 0.2 0.25
Utilization Py

Figure 2.15:Mean sojourn time for different redundancy factors for atesys
consisting of 20 nodes

We can observe the same effect of the forwarding probalslityhe search
times. Systems with a higher redundancy and therefore arlpwbability p
show lower mean search times. On the other hand, a highendaday also
means that more data has to be stored on each node. In anyheaejundancy
factor can be used as a parameter to tune the system to the ofabe operator.
It can balance the resource efficiency of the lookup architeawith its perfor-

42

2.5 Performance Evaluation

s
l
(62}

[any
T

o
ul
T

Coeff. of var. of the mean search time Cr

0.05 0.1 0.15 0.2 0.25
Utilization Py

Figure 2.16:Coefficient of variation of the search time for different wedancy
factors

mance, while being less intrusive than a change in the nuotherdes.

We again consider the coefficient of variation of the searok in addition to
its mean value, cf. Fig. 2.16. For the same reasons as eggdl&m the system
size analysis, the variance in the search times decreatiea Wigher load for all
values ofR. Similarly, due to the higher number of node traversals efiheries,
systems with less redundancy show a lower coefficient oftiari for the total
search times.

2.5.3 Reorganization Effort in Case of Failures

One of the major reasons to employ an overlay for a lookupegy$s its ability
to react to changes in the system in a self-organizing fashidis is mainly
needed in case of churn. The cost for this feature is the eagrheeded to detect
changes in the system topology, and the mechanisms adapérgyerlay to the
new situation. While in the scenario considered here, ttesrat which nodes

43

2 Search and Lookup Overlays

join or leave the system are negligible in comparison to a Diklizing end user
hosts in the Internet, there is no guarantee that nodes gutmfail or that the
system will never be expanded. Therefore, we want to givergmession of the
effort needed to cope with such a situation without any mbimtervention.

Since load distribution is a critical characteristic foe tifficiency of the de-
scribed architecture, it has to be restored as soon as f@asibr one or several
node failures. The same applies to inserting additionakaadto the system.
However, we assume that an expansion is executed in a manegolaand con-
trolled manner. Apart from this, the reduction of serveseahcreases the load on
the remaining servers, even if an equal load distributionteaachieved. There-
fore, it is the worst case for the reorganization algorithm.

In order to conduct a first evaluation of the rather straimfwtfird method de-
scribed in Section 2.3, we conduct a Monte-Carlo simulatirdifferent node
failure scenarios. We vary the number of nodes that fail ameatly in a system
consisting of 40 nodes. For a given numlifeaf node failures, we select a random
subsetS of the nodes withS| = f. This experiment is repeated 10,000 times
for one value off, and confidence intervals are given for a confidence level of
99%. We record the amount of data that has to be moved duréngetirganiza-
tion phase in order to achieve equal load distribution ggaiative to the total
amount of stored data. We assume here that the data is platteughly equal
density on the identifier ring. Furthermore, we neglect sageere enough suc-
cessors of a failed node also fail, which results in the |dsgata. Since in this
case less data has to be transmitted over the network, therjiegl results are an
upper bound, even if data loss is an undesirable event.

Figure 2.17 shows these results for three different refptindactors,.R = 2,

R = 3andR = 4. The amount of data that has to be transmitted increases for
higher replication grades and a larger number of node &slufhe maximum
amount of moved data in the worst case equals100%, meaning that more
data has to be moved than there is in the ring. This initiatlynter-intuitive
characteristic stems from the fact that the responsikiligas of the reorganizing
nodes may overlap, meaning that several nodes have toseethie same data sets

44

2.6 Lessons Learned

if they have not stored them before the reorganization.

Due to fact that each node is responsible for a single, cootis range of the
identifier space, the number of data entries that have to hednto a new node
is not equally distributed among all nodes. Especially thecassors of a failed
node normally have to be moved across a larger distance iidénéfier space
than the following nodes. It is expected that different soks, such as the one
proposed in [57], might be able to reduce this unfairnesgeting the maximum
amount of data that has to be moved to a single node, and agr#dqthe time
it takes to reorganize. Still, the absolute amount of mowd cemains the same,
since it only depends on the system size and the redundancy.

2501

N

o

o
T

=

(6]

o
T

1001

% of original data moved

al
o
T

0 5 10 15 20
Number of failed nodes

Figure 2.17:Relative amount of data that has to be moved during reorgtioir
in a system with 40 nodes

2.6 Lessons Learned

Inthis chapter, we saw that DHTSs, although offering a sdalabd reliable search
functionality, still have to be optimized in order to be Mialsolutions for high-

45

2 Search and Lookup Overlays

performance applications. The demand for a fast searcls teaahe-hop DHTS,
which do not require a lengthy routing process. Still, theggtems come with
performance challenges of their own. While the internadiisancreased in every
overlay which involves the forwarding of queries, this efféas a significant
impact on architectures where resources on the partingpatdes are scarce.

There is an implicit trade-off between a fast search, wherélya redundant
storage of the data would be the best case, and a smaller aofostorage re-
sources per node, which necessitates a time-consumingahteuting process.
This is complicated by the fact that lookup data distriboi®not efficient for all
resources, since internal traffic means more consumed lhdtidand a higher
query load that has to be processed on the servers.

In our analysis, we identified this general trade-off betw#e node load and
search speed on the one hand, and the necessary storageessod overhead
for load distribution in case of failures on the other hanitithdugh fast lookup is
the main performance optimization goal, the amount of resssiper node and
the number of nodes are essential for a cost analysis angdi@ms dimensioning.
Additionally, these values govern in which load area theesyscan be used.

This trade-off can mainly be influenced by two parametensieta the system
size and the redundancy with which data is stored in the ayelrlarger systems
in general lead to a higher node load and longer searchesjreease of a one-
hop DHT. However, a system with more nodes needs less stoeagarces per
node. A higher redundancy factor, which is easier to configund change, has
the opposite effect: it lowers the search time and the nurobgueries a node
has to process in a given time, but each node has to store ratare d

In small-scale systems, an additional effect can be obdehwaad distribution
is no longer automatically given in these overlays if nodegdaced randomly in
the identifier space. Thus, a larger effort has to be madesorerihat the query
load is evenly distributed. This is especially true whenenfadlures occur and the
content in the overlay has to be re-distributed. Here, adrigpdundancy leads
to more generated traffic and therefore longer reorgawizaiines. The results
concerning the internal load increase of one-hop DHTs caextrapolated for

46

2.6 Lessons Learned

multi-hop DHTS. It can be generalized that more hops alsiean even higher
increase in the internal load apart from the longer seamh.tThis only under-
lines that one-hop DHTSs are better suited for high-perfareaapplications than
multi-hop DHTSs.

47

3 File-Sharing Overlays

Opportunities multiply as they are seized.
Sun Tzu (544 BC - 496 BC)

Emerging in the late 1990’s as an application, file-sharsrgt ithe time of this
publication the largest single bandwidth contributor ia thternet according to
recent studies [75, 77]. File-sharing applications caeroffood performance in
terms of download speed for end users, at least for popués [Al2]. Its popu-
larity can be explained by the fact that file-sharing netwgskovide content for
free, even if the legality of copying and distributing thésof copyright-protected
content is questionable.

The aim of file-sharing is to distribute data to all users inaatfand self-
organizing fashion, using resources like disk storage atdad capacity from
the clients themselves. It is also common for a file-sharpyieation to include
an index service that allows end users to search for spedficdnd sources for
them [35]. This service can take any of the forms discussebdrast chapter,
including an overlay. However, in this chapter we focus oa #éistual content
distribution of a file-sharing application.

The most widely used file-sharing applications and prowmcslch as Bit-
Torrent [66] or eDonkey [35], use overlays to distributeaddh contrast to the
search overlays of the previous chapter, these overlaysatiypdo not form a
pre-defined structure, but create a random, mesh-like dbgietwork. Neigh-
boring peers in this network exchange content data and djusitoute search
queries. However, signaling traffic is still necessary tmage the data exchange.

49

3 File-Sharing Overlays

The simplest forms of these overlays are loosely connettedtsres. Here, a
peer only has to find another peer storing the complete réepléike. The query-
ing peer then downloads the complete file like it would fromeaver. Thus,
each peer only has a few connections which are used to exeluatg [30]. This
is different in newer and more efficient overlays, where paifta file may be
downloaded from a single peer [35, 66]. This enables a dawhtd the same file
from many different sources at the same time, referred towds-source down-
load. Consequently, the number of overlay connections fmseathta exchange is
larger in these systems.

For the same reason, the complexity of the overlays is highevell. Mech-
anisms to achieve an efficient utilization of resources afadrdoad distribution
are part of currently popular overlays [35, 66]. Moreovée systems have to
take the effects of churn into account, although these asedgtical than for the
DHTs of the last chapter. Since no fixed structure has to bataiaed for the
overlay for it to function properly, churn is less dangertughe functionality of
the overlay here.

File-sharing overlays utilize the upload bandwidth andesie capacity of all
participating users. Each peer is supposed to upload dase idlready received
and which is needed by other peers. Since this techniqueeasdil to relieve
load on servers, P2P file-sharing is interesting for tradél content providers to
provide software patches or whole software distributi@&].

The popularity of file-sharing applications and the consetjy enormous
amount of traffic and costs generated by them leads to clygltefor the In-
ternet Service Providers (ISPs) of the end users partioipat file-sharing net-
works. We discuss these challenges in the Section 3.1. Teimtroduce the
most popular file-sharing protocol, BitTorrent, which igdsn our performance
evaluation, and present results from literature that degae to our work in Sec-
tion 3.2.

Our first contribution is a new approach to locality-awasndhe most ex-
tensively studied solution to the problem considered h&he specific imple-
mentation of our approach as well as that of the dominant amésm from lit-

50

3.1 Challenges in File-Sharing Overlays

erature are followed by our model for a simulative perforoeevaluation in
Section 3.3. This model specifically includes swarm topi@edased on mea-
surements of live BitTorrent swarms, in order to test whet8&s and end users
do profit from locality-awareness. Finally, we provide festrom this evaluation
in Section 3.5, comparing the different approaches andiderisg both relevant
perspectives, i.e., that of the ISPs and that of the end .Ud&rsharacterize the
basic features of the two approaches and evaluate thesffesst have on realis-
tic swarms as currently found in the Internet. Apart fronsthie show how the
relevant parameters of the two mechanisms influence theavier. The chapter
ends by summarizing the important conclusions from our expnts.

3.1 Challenges in File-Sharing Overlays

Ideally, every user in a file-sharing overlay uploads datatter peers. Since
file-sharing overlays grow to sizes of several 10,000 peerd,since there are
an even larger number of different overlays [78], the geleeramount of data
is enormous. P2P traffic is estimated to make up 50% of thédotesumer In-
ternet traffic in 2009, amounting to about four exabyte [Fgsulting from this,
one of the currently most pressing challenges is the diffit@nagement of the
generated data flows by network providers.

One of the reasons for this is that the source and destinafiarsingle data
transmission are determined only by the overlay. Neighimoafile-sharing over-
lay are generally not chosen according to their positioméutnderlay [35, 66].
This underlay-agnostic structure leads to overlay conmestspanning several
Autonomous Systems (ASes) and in the worst case severattmtinental links.
One ISP may administrate more than one AS, depending onjisrtance in the
Internet hierarchy, i.e., the Tier it belongs to. A Tierlyider with several ASes
typically has peering agreements with other Tierl prowd&ier2 providers may
only administrate a small number of ASes or even only a siA§lend forward
traffic to the rest of the Internet via their Tierl provideraatost. Similarly, a
Tier3 provider uses and pays for the services of a Tier2 gesviThus, over-

51

3 File-Sharing Overlays

lay connections do not only span ASes, but also provider ewdsy incurring
costs [40].

The longer such an overlay connection is, the more resoitrcessumes and
the more costs it creates for the underlay network providespecially traffic
flowing from Tier3 or Tier2 providers to higher tiers is cgstbr these ISPs, as
is traffic on intercontinental connections that has to bagparted via oceanic
cables. These costs caused by an underlay-agnostic ogénlayure constitute a
large saving potential for providers. Thus, it is curremtlgnajor interest of ISPs
to reduce these costs by managing P2P traffic more efficiently

Unilateral approaches from the ISPs to tackle this problesetbeen tried in
the past. One simple solution is to throttle the bandwidtR2®P connections, so
that less traffic is generated by them. In reality, this maidma has proven to
be problematic [59]. End users view this bandwidth redurcts a reduction in
service quality, if not as an intrusion in their way of usihg tnternet. Thus, user
satisfaction is severely reduced.

In addition, overlay providers and end users react to badhtivthrottling or
other harmful interventions of the ISPs by making P2P appiba traffic harder
to identify and to manage. The flexible utilization of porssveell as the encryp-
tion of P2P traffic [91] are steps in an arms race against |Sfchvonly leads to
even higher costs on the service provider side.

Thus, a new way of approaching the problem of managing PZRctia
needed. The experiences described above lead to the doncthat any suc-
cessful management scheme has to include the overlay prevahd the end
users. This approach is recently followed, e.qg., by Econdmaffic Management
(ETM) [1] or the efforts of the Application Layer Traffic Optization (ALTO)
IETF working group. Here, all participating partners hawebenefit or at least
not to be penalized by the traffic management, so that thepagake voluntar-
ily. More formally, it is required that the download perfaante of the end users
should improve or at least must not be decreased, while 1S sbould be low-
ered. This latter task is achieved by reducing the costsriAsS traffic. Next, we
present some mechanisms and architectures that implehigbesic idea.

52

3.2 Background and Related Work

3.2 Background and Related Work

In this section, we describe all relevant mechanisms ofdignt, the currently
most popular file-sharing protocol. BitTorrent is in widesgd use and creates a
significant share of today’s Internet traffic [77]. We delerihe key mechanisms
of standard BitTorrent. A detailed description of BitTarténcluding all mecha-
nisms and values mentioned below can be found in [50] and feBirge number
of BitTorrent application clients exist, introducing sesfemodifications of this
protocol. However, we focus on the common and standardresahere, which
define the behavior of the predominant BitTorrent clientd are therefore the
most relevant. This protocol is used in our performanceuatain of locality-
aware mechanisms, which are discussed in the second phis settion.

3.2.1 The BitTorrent Protocol

The BitTorrent protocol forms a mesh-based overlay andzas| multi-source
download to distribute content. For each shared file, ondayés formed, a so-
called swarm. To facilitate the multi-source download, arsHt file is split into
smaller pieces called chunks. These chunks are in turn agasrated into sub-
pieces or blocks. The size of these chunks and blocks canttmy ske initial
source, but should depend on the size of the file to be shaypital values are
a size of 256 or 512 KB for chunks and 16 KB for blocks.

Once a peer has downloaded a complete chunk, it can shaohtink with its
neighbors in the overlay. Thus, only a part of the file has tddsenloaded by a
peer in order to utilize its upload capacity. It is also eagiedownload different
parts of the same file from different peers. As a result, tkeesfireads much faster
than without the file partitioning.

Neighbor Set Management

Each peer has only a limited number of other peers in the swamich it has
direct contact. A peer joining a swarm typically initial&zé&s neighbor set by

53

3 File-Sharing Overlays

contacting a tracker, i.e., an index server with globaliimfation about the peer
population of a swarm, information containing the addressieall peers, and
typically statistical information about the overall dowat progress. A standard
tracker responds to queries with a random subset of all pPeers obtain the
address of the tracker for a swarm by downloading a .torrenfrim a website.
Once a peerd has received a list of contacts in the swarm, it tries to distab
connections to them. If it is successful, the according terpeerB is added to
A’s neighbor set and vice versa.

A new peer tries to establish a minimum number of neighbomeotions,
typically 40. Once it has reached this number, it does nodoagtively seek new
neighbors. However, it will accept incoming neighbor cactisns until it has
reached a maximum number of neighbors, by default 80. Sreopkkr lose too
many neighbors by churn so that it has less than 40 neighiberi, contact the
tracker and request new connections until the minimum nurabeeighbors is
reached again.

Each peer sends a message to new neighbors containing riesittyiravail-
able chunks and updates its neighbors whenever it has dadedioa new chunk.
Thus, neighbors know about each other’s download progresswhich chunks
the other has already downloaded. This enables apdersignal its interest in
downloading chunks to a neighbét holding chunks that peed is still miss-
ing. We say that peeA is interested in peeB. This allows peei3 to consider
only interested peers, i.e., peers that can actually dadndtiunks fronB3, in its
decision which peers should be allowed to download.

Choke Algorithm

A peer uploads data only to a limited number of its interesteidhbors in or-
der to avoid splitting its upload rate between too many pekngeer that may
request blocks from the local peer is called unchoked. Aleopeers are there-
fore choked, which is the default state. In standard Biietreach peer has four
unchoke slots that it assigns to interested neighborse tiegular unchoke slots

54

3.2 Background and Related Work

and one optimistic unchoke slot.

Every 10 seconds, a peer decides which of its interestedhbeig it will reg-
ularly unchoke for the next 10 seconds. The regular unchioks are awarded to
the peers that offer the currently highest upload rate tddt& peer. This strat-
egy is called tit-for-tat and provides an incentive for geter contribute upload
bandwidth to the swarm. If the local peer has already dovel@ddahe complete
file, i.e., it is a seeder, the slots are given to all intesteighbors in a round-
robin fashion.

Additionally, every 30 seconds a random peer that is cugraitoked is se-
lected for optimistic unchoking for the next 30 secondssTiiows a peer to dis-
cover new mutually beneficial data exchange connections.aésumed that an
optimistically unchoked peer reciprocates via the noritdibt-tat mechanism.

Chunk Selection Algorithm

Once a peerl has been unchoked by a neight#yit has to choose which chunk
to download fromB. From all the chunks tha® can offer and that are not com-
pletely downloaded byl, A chooses the chunk that is seen the least in its neigh-
bor set. This rarest first or least shared first strategy tmipsevent single chunks
from being shared much less than others. In the worst case;ah lead to the
vanishing of such chunks from the swarm, since they are étoneonly a few
peers that go offline at some point. This so-called chunk/atian can prevent
peers from downloading the complete file. Even if chunkstexrithe swarm but
are very rare, this increases the download times of peessupload capacity of
the few sources of a rare chunk becomes the bottleneck icabkis

Once a chunk has been selectddrequests missing blocks from this chunk
from B. In order to lessen the impact of the RTT betweeand B and to take
advantage of pipelining, several blocks are requestedralph with B serving
the requests one after anothdr.can request new blocks frof8 as long as it
remains unchoked at peé.

In normal operation, each block is only requested from ome gea time. This

55

3 File-Sharing Overlays

is changed in endgame mode, when a peer only misses a fewshitoikish the
download. In order to speed up this last phase, a peer regqihestnissing blocks
at all peers where it can get these in parallel. After a sisfabdownload, the
now superfluous requests are canceled again.

3.2.2 Approaches to Locality-Awareness

The random structure of a BitTorrent overlay, and of filerstgaoverlays in gen-
eral, leads to many overlay connections spanning severahd3SP boundaries.
The term locality-awareness denotes mechanisms that trylitte some knowl-
edge of the underlying network, so that the overlay can aeifg underlay.

Locality-aware mechanisms need a metric defining whichspaes 'close’ in
the underlay, and which are 'remote’. Since a common aim igdoice cross-
ISP traffic, a typical metric is that two peers are close ifythee in the same
AS [15,46, 70]. The related number of AS hops between twospegn also serve
as a metric. The RTT is another option, but is less stable apdrtds not only on
the topology, but also on the traffic load conditions in thivoek.

The impact P2P overlays have on ISPs networks, and the patgains that
locality-awareness can provide, are analyzed in [40]. dtidguishes the roles
of users, content providers and ISPs. For each of these grolup impact of
P2P usage in comparison to Content Distribution Network8N€) or servers
is characterized. While the negative effects of P2P on IS@seknowledged,
locality-awareness is presented as a simple mechanisroahdte used to dimin-
ish these effects. Itis also compared to a caching mechamigtemented by the
ISPs in terms of efficiency.

In the evaluation in [40], BitTorrent traces are used to wale the traffic
savings that can be achieved by locality-awareness. Flmvesrfrom an access
link of a university are analyzed to show that inter-AS baittflvcan be saved
by preferring local sources for data, and that download gicen be improved.
Similarly, a tracker log is evaluated to compare theorésgatems, namely a
central server, a standard P2P system, a perfect cachatggtr and a locality-

56

3.2 Background and Related Work

aware P2P scheme. While the idealized caching saves muadh tnadiic than
locality-aware P2P, the savings of the locality-awaretsafLin comparison to the
standard implementation are significant as well. Howerpbth evaluations,
a highly theoretical and idealized version of BitTorrent@sidered, so that the
results cannot be mapped to a realistic swarm.

One of the most influential works on locality-awareness &.[#ere, it is pro-
posed to use Biased Neighbor Selection (BNS) for BitTortiet P2P systems.
With BNS, the neighbor set of a peer is modified to containgreitially peers
in the same AS, cf. Fig. 3.1. One of two basic variants to immaet this is pre-
sented. Here, the tracker is modified to be aware of the A®gstbrs are located
in. It can then return a list of contacts which is tailoredhe tequesting peer, in-
stead of a random subset of all peers. The second alteriaper-based BNS,
where the peers themselves decide which neighbors to ch@oghis end, a
peer requests more contacts than in the standard impletioentaither by spec-
ifying a larger value in its request or by querying the tradlepeatedly. Then,
it rates the contacts by using some service offering lgcalitormation such as
described in [54], [74], or [68], and chooses accordinglye Tatter alternative
offers a higher degree of freedom for the users, since theyleaeide whether to
support locality-awareness or not.

The evaluation of BNS in [46] uses simulations with a homagers peer dis-
tribution of 700 peers over 14 ASes. The results show thaige fxaction of the
inter-AS traffic can be saved by BNS and the median as well @®%th per-
centile of the download times over all peers are decreasii@rént results are
reported in bandwidth throttling scenarios, where bo#tds are introduced in
the inter-AS links by the ISPs. Here, the download timesdase significantly,
while the traffic is reduced less than in the BNS case. Fintily combination
of bandwidth throttling and BNS shows that the peers utiiziocality can suc-
cessfully avoid the bottlenecks, since the download timesease only by up to
10% in the considered scenarios. The traffic savings areased even further in
comparison to the BNS case without bottlenecks.

In [70], an approach very similar to BNS is investigated bpexkments of up

57

3 File-Sharing Overlays

Remote ASes

Local AS Local AS

(a) Random neighbor set (b) Neighbor set with BNS

Figure 3.1:nfluence of BNS on a peer’s neighbor set composition

to 10,000 real BitTorrent clients which are homogeneougyributed among a
varying number of ASes. The aim of the study is to find out homidaality-
awareness can be taken without degrading the robustneggeeodmance of the
swarm. According to the results, BitTorrent locality cands&ven to extremes,
i.e., the neighbor set of all peers contains almost exahlysiocal peers, without
degrading the performance from the viewpoint of a P2P usem#rovement in
the download times of peers can be achieved when bottlemedhkter-AS links
are present. However, in the opposite case the download &wven increase in
the worst case in the evaluation. The performance of thederesl setup is worse
when churn is included, since then a larger number of peersotdinish their
download.

Another approach based on BNS is proposed in [54]. In thisitecture, peers
query an oracle server which is maintained by the ISP of thedhpective peers.
This server holds locality information and policies of tloedl ISP. It ranks the

58

3.2 Background and Related Work

peers according to the preferences of the ISP and sendsfitvisnation back to

the peers. The peers then base their selection of neightotiie bverlay on this
ranking. Consequently, they can include traffic enginegpialicies in their peer
selection. The evaluation in [54] is based on the Gnuteltagaol. Properties
of the overlay graph with and without usage of the oracleeseave compared.
It is shown that the overlay using the oracle server has mesé ¢onnections
spanning several ISP networks, while still being well-cected. Accordingly,

searches can be resolved in the AS where they originate vkitiher probability.

As a result, content traffic is also concluded to be more ipedl

The P4P project [74] goes further than earlier approachdsalso considers
the intra-AS topologies in addition to the AS topology ifsélo this end, the
concept of opaque IDs (PIDs) is used, which can stand for afsgients con-
nected via the same Point of Presence (PoP) of a provider,set af clients
with the same network status. The authors propose to cradfeacker similar
to the oracle of [54] which communicates to the P2P appbeatind gives rec-
ommendations about which peers to contact. Different dpétion functions are
presented that can be used by the iTracker to make its recodatiens.

The system used for evaluation implements the trackerebesgant of BNS,
since the iTracker communicates with the tracker of thelayeapplication. The
application tracker then returns a list of contacts to qugrpeers that contains,
in order of preference, peers in the same PID, peers in the #8rand finally
peers from the rest of the swarm. The evaluations includelations as well as
measurements in PlanetLab and in the network of Pando, a &&fr One of
the measured metrics is the download time for a completersyizg., the time
until all of a fixed number of peers have downloaded the fileotAar is the traffic
on the bottleneck link of the network. It is shown that the R#Btem improves
the download times of the swarms between 0 and 20%, whiledffetis reduced
significantly. The evaluated scenarios are not describeftail with respect to
their peer distribution in the topology.

Finally, a plugin called Ono for the open-source BitTorrelignt Vuze is pre-
sented and evaluated in [65]. The main difference of Onoasittdoes not rely

59

3 File-Sharing Overlays

on a central entity which guides the inclusion of peers innegghbor set of a
peer. Instead, it uses the similarity of the redirectiomoraf CDN servers as a
metric how close peers are. To this end, a peer sends DNSegueria defined
set of CDN servers, e.g., from Akamai. A large number of trsesgers exist at
selected points in the network, so that DNS can resolve themmway that IP ad-
dresses topologically close to the querying peer are retlfBach peer can then
build a vector with the probabilities with which it is resel¥to which IP address
of a CDN server. These vectors serve to determine the distfrtevo peers. The
Ono plugin tries to keep peers in the neighbor set that aseédtothe network by
re-inserting them whenever they are removed from the setra@sults presented
show that peers that are recommended by Ono have a shortestaSa to the
local peer than random neighbors. Thus, traffic exchang#utheése peers is also
less costly to the network. However, it is unclear how sigaifit these results are,
since the share of recommended neighbors to normal ones ab#erved clients
is not given.

In [82], the authors present three pitfalls for ISP-frign@82P design: lim-
ited impact, reduced performance and robustness, andaorglinterests. They
show that locality-aware peer selection has no impact wheretare only very
few peers of a swarm in the same AS. They prove this by theatstianalyz-
ing the performance potential of swarms based on collecsstter data, as well
as conducting measurements with a single peer with adagteavior in live
swarms. One of these modifications is using the Ono plugigiwis shown to
have a negligible effect. However, only four measuremepegrents were con-
ducted, which allow only for limited conclusions. Anothestilt for a theoretical
swarm shows that users may get less bandwidth if localitgraness is applied.
All'in all, several issues with the application of localiyvare mechanisms are
highlighted, but no performance evaluation of a detailedrawmodel including
these mechanisms is conducted.

In this work, we consider an additional and new locality-eevenechanism,
Biased Unchoking (BU), that is compared to and combined &\S. We eval-
uate these mechanisms under more diverse conditions ththe ielated work.

60

3.3 Locality-Awareness in File-Sharing Overlays

Apart from this, we study scenarios with swarm sizes and gisgributions ob-

served in real BitTorrent swarms [78, 83], i.e, with hetenogous peer distribu-
tions and heterogeneous access bandwidths of the peergutiVetiseir impact

on the performance of a BitTorrent network for the ISPs anctlie P2P user
and explain who can benefit from locality-awareness and vemmat. Our per-

formance evaluation includes a detailed model of clienthmaaisms, in contrast
to many high-level evaluations.

3.3 Locality-Awareness in File-Sharing Overlays

In this section, we describe the specific locality-awareptataons evaluated in
our experiments. We choose the BitTorrent protocol as tkesfilaring architec-
ture in which we implement these adaptations, since Bi€Fdris currently the
most commonly used application for file-sharing and cootsb a large share of
today’s Internet traffic, as shown in Section 3.2.

In order to evaluate the effect of locality-awareness orl$ts and on the end
user, we consider and compare two main client adaptatiatsutilize locality
information. From the related work, the best known appraa@&NS. We shortly
describe the specific implementation of BNS used in our éxpmts, as well as
our own locality-promoting client mechanism, BU.

Both mechanisms need a locality metric to decide which peergonsidered
closer than others. The predominant solution in litergteug, used in [15,46,70],
is to differentiate between peers in the the same AS (locats)eand peers in
other ASes (remote peers). Therefore, we keep this simfflerehtiation and
assume that all peers have access to the information whien peers are local
or remote to them. This could be implemented in practice fangle by an
information service provided by the ISP [68] or by contagtpublic databases.

61

3 File-Sharing Overlays

3.3.1 Biased Neighbor Selection

Since the willing cooperation of the user in any locality piation approach is
crucial for its success, we consider the peer-based BNSibeddn Section 3.2.
Peer-based BNS leaves it to the user client to gather lgdafibrmation about
potential neighbors and to decide which contacts shouldiiedato the neighbor
set. Thus, the user is not forced to promote locality.

The specific implementation used in our experiments quénegracker for a
much larger number of contacts (1000) than in the standgstbaph (50) [50].
This number should be larger than typical swarm sizes [#8],therefore allow
a peer to make the best selection among all peers in the swWémenpeer then
tries to keep a ratio dfs v s local neighbors in its neighbor set by an intelligent
selection from this larger set of potential neighbors. FegRi2 illustrates this for
Ilens = 0.8 and a number of neighbor§ = 5.

Tracker

Remote AS

Contacts returned
by the tracker.

Remote AS

&)
&

He

,
Local AS &

(1-Igns)IN =1 random neighbor

N
&

N = 5 neighbors

lgns N =4 neighbors
in the same AS

Figure 3.2:Peer-based Biased Neighbor Selection

62

3.3 Locality-Awareness in File-Sharing Overlays

To this end, connections to peers in the same AS are estedlisttil it reaches
the required number of local neighbors or no more local atgtare known. In
both cases, the missing number of neighbors is taken fronoteepeers until
the BitTorrent standard minimum value of 40 neighbors i<hed. Thus, the
composition of the initial neighbor set of a peer can be imfbeel, as well as
the addition of new neighbors whenever there are less neighiban the default
number. However, we do not filter which incoming connectiequests are ac-
cepted, so that the actual composition of a peer’s neighttomay differ from
the ideal values even if enough local peers exist.

If not mentioned differently, we séns = 0.9. This is a conservative choice
compared to [70], where values upi®99 are investigated, and [46] where 34
out of 35 neighbors are local if possible. However, this gadlready serves to
show the effects of locality-awareness on both P2P traffit download times
experienced by the users.

3.3.2 Biased Unchoking

The BU mechanism evaluated here is specifically tailorediftoBent-like P2P
networks. In contrast to BNS, which affects the establightnoé overlay con-
nections, BU changes the unchoking mechanism. While theposition of the
neighbor set influences the data traffic in the overlay ordjréctly, a change in
the unchoking procedure has a direct effect.

With BU, local neighbors are preferred in the unchoking pes; i.e., chunks
are preferentially uploaded to local peers. To this endpgitenistic unchoke slot
is assigned to a local neighbor with probability; if a local neighbor is present,
cf. Fig. 3.3. Otherwise, a remote neighbor is chosen. Viatithr-tat policy
of BitTorrent, this small modification has a strong impactashfour unchoke
slots, since local neighbors have a higher probability tavertheir worth to be
unchoked regularly. Still, we only affect the optimisticamoking slot directly,
thus avoiding to interfere with the tit-for-tat policy gawéng the remaining slots.

If not mentioned differently, we séisy = 0.9. Again, that is a more con-

63

3 File-Sharing Overlays

Remote ASes Local AS

Interested
neighbors

Optimistic Regular unchoking slots
unchoking slot (tit-for-tat)

Figure 3.3:Biased Unchoking

servative choice than in [15], but sufficient to show the istgn the traffic and
the download times. In addition, it leads to similar prefexs for local peers as
Iens = 0.9 in Section 3.3.1. Still, we also conduct a parameter studiaih
Iy andlpng in Section 3.5.3.

3.4 Simulation Model

The performance evaluation of the different scenarios waslacted by means
of a discrete event simulation. We first present the defanitigtion scenario
for our experiments. In contrast to the related work, it isdzhon measurements
of live swarms. Then, we describe the used simulator, whisb eaptures all
relevant overlay details in order to improve the quality leé tonclusions. This
level of detall is necessary to capture the specific efféztshave a large impact

64

3.4 Simulation Model

on the results, such as the number of local neighbors in m&esA

3.4.1 Default Swarm and Topology Model

We simulate one BitTorrent swarm which exchanges a file & $&4.6 MB gen-
erated from an example TV show of about 21 minutes length idiune quality.
This is a typical content being shared regularly and extehsin the Internet,
since TV shows are one of the content categories with thesangumber of
users [78]. The file is divided into chunks of 512 KB and evdryrik into blocks
of 16 KB, which are standard values for a file of this size [90].

We simulate the swarm for five hours in the steady state, atiatyithe longest
state of a popular swarm after its initial flash-crowd ph&$ew peers join the
swarm with an exponentially distributed inter-arrival &M with a mean value
of E[A] = 10s. The peers stay online for the full download duration of the fi
plus an additional, exponentially distributed seedingetiwith a mean value of
10 minutes. The average online times of the peers are in tigeraf half an
hour, so that we can assume that peers do not go offline diratgltration. As
a result, we measured that the swarm contains on averageEtbto 200 peers
depending on the specific parameters of the scenario. Thessimulation run
consists of about 2300 downloads in the default scenariis.i$la typical swarm
size for live swarms, as shown in [78].

The chosen values for the inter-arrival time and for theranlime ensure
that the upload capacity of the system is limiting the dowdlgerformance,
which is typically the case for live swarms due to the widesgrasymmetric
DSL access or end users. On the other hand, the demand igg®&laugh to
lead to unrealistic loads on the swarm in its steady stafe [78

We simulate a multi-AS underlay network in order to evaludie inter-AS
and intra-AS traffic generated by the overlay. This networkfs a star topology
and consists of one transit-AS and= 20 stub-ASes connected via inter-AS
links, i.e., the stub-ASes are all connected to the trakSitsut not directly in-
terconnected with each other, cf. Fig. 3.4. This numberud§-#tSes allows for a

65

3 File-Sharing Overlays

detailed view on single ASes, especially for scenarios whiee AS characteris-
tics differ.

« O \ Tracker Seeder @

° L]
1 .
* L]
@ StubAS 1 Stub AS
S

N\ Lt R

Inter-AS .
Transit AS Link
%@ ~ / .

. Stub AS 2 \< @
*

. Stub AS k A

@fAccess
Link
S$S Stub AS 3

& e &

Figure 3.4:Simulated network topology

The stub-ASes model the Tier2 or even Tier3 ISPs connectidgusers to
the Internet. The transit-AS models the Tierl core of therlmt. Since typically
peering relationships exist between these Tierl ASes,iaod the links connect-
ing them form no bottleneck, the traffic flowing between thenof no interest
to our evaluation. Therefore, we reduce the topology corityldy modeling
the core network as just one AS. From a client mechanism petisp, it is only
necessary to differentiate between peers in the same Aamate peers, so that
this abstraction has no effect on the function of the evalliatechanisms.

For the homogeneous peer distribution scenarios, the peealgrocess is
equally distributed over all stub-ASes, i.e., when a new pegves, it randomly
joins one of the stub-ASes. The transit-AS does not contajnragular peer.
In case of swarms where the number of peers is heterogegetiggibuted in

66

3.4 Simulation Model

the topology, the arrival process is split among the ASepgmt@mnally to the
targeted amount of peers per AS.

If not stated otherwise, the peers are connected to théirA8iwith an access
speed of 16 Mbit/s downstream and 1 Mbit/s upstream, whiehygoical values
for ADSL access. The tracker and the initial seeder are glat¢he transit-AS
for symmetry reasons. The seeder has a symmetric uploadasvriahd band-
width of 10 Mbit/s, respectively. It goes offline before tlystem reaches it steady
state to minimize its effect. We model the inter-AS links adlwimensioned in
the default scenario.

3.4.2 Flow-Based Underlay Model

For our simulation studies, we use the P2P simulation antbiyfing Java
framework ProtoPeer [76]. ProtoPeer contains a networkeifod bandwidth-
dependent overlay applications like BitTorrent. Furthere it facilitates the de-
velopment of overlay applications as only the specific pedalgior needs to be
implemented within the framework.

For the underlay network, we use the flow-based network modeided by
ProtoPeer. This network model mimics the property of TCR tiva capacity of
a link is shared among all data connections between two peséng this link.
To simulate this bandwidth allocation, the bandwidth of ¢benections are as-
signed according to the max-min-fair-share principle [9%]e time a connection
needs to transmit its data depends on the available bartdWidtien all data of
a connection is transmitted, the connection is removed fiteennetwork. The
use of such a flow-based network model for P2P simulationsojggsed in [28]
and [51]. These studies describe concrete implementaticthe bandwidth allo-
cation algorithms and evaluate their runtime speed. A coispaof the resulting
transmission times to a packet-based NS-2 simulation s@len in [28] and
shows that for our scenarios, a flow-based approach doescrifice exactness
but is still efficient.

Since the bandwidth allocation process is a costly operatieerms of com-

67

3 File-Sharing Overlays

putation time, we only allocate bandwidth to connectionsciwtsimulate the
transmission of a block of the shared file from one peer toterofThese are
called piece messages in BitTorrent and have a size of 16 KBtlfer messages
in the BitTorrent protocol are orders of magnitude smaltemnt piece messages
and are therefore assumed to have a negligible impact orattembidth dynamics
of the network.

While the network model was provided by ProtoPeer, the freonke does
not contain an implementation of the BitTorrent protocdheffefore, we use a
self-written implementation of BitTorrent according tcetdescriptions in [50]
and [66]. It includes all key mechanisms, in particular tiecp selection mecha-
nisms, the management of the neighbor set, and the chokathigoFurther-
more, the complete message exchange among the peers thesndmtween
peers and the tracker as well as between the peers and theatiion service
for locality data, is simulated in detail.

3.5 Performance Evaluation

In this section, we present the results from our performas@guation, using
the model and simulator described in the last section. Inettperiments, we
compare four different peer behaviors: regular BitTorr@tibreviated as 'Ref’
for the remainder of this chapter), BitTorrent with Biasedctoking (BU), Bit-
Torrent with Biased Neighbor Selection (BNS), and BitTatrevith both BNS
and BU (BNSBU). We evaluate the impact of the described iycalvareness
mechanisms both on the ISPs and on the end users.

With BU, a peer selects a local interested neighbor to beragtically un-
choked withigy = 0.9, cf. Section 3.3.2. For BNS, we set the fraction of local
peers that a peer tries to include in his neighbor séktas = 0.9. However,
since this is only a target value and since the number of geaTr&\S is low in
most of our scenarios, this value normally cannot be reacttags, the difference
is made up from remote peers, as described in Section 3.3.1.

We consider two main performance indicators, which are tisomost im-

68

3.5 Performance Evaluation

portant parameters in the related work [40, 46, 65, 70, 7hg first is the traffic

between ASes. This value allows to evaluate the saving patéar providers,

since inter-AS traffic is a major cost factor for ISPs. Sinceadety of charg-

ing models exist that are used to calculate actual pricetdffic, we focus on

the bandwidth itself to give a single value for comparisore &0 consider the
intra-AS traffic, i.e., the total amount of traffic that is kepthin each AS. This

allows for a better analysis of the efficiency of the diffarecality-awareness
mechanisms. In homogeneous scenarios, we evaluate theaffta in the com-

plete network, while we take a more detailed view on an ASllavease of

heterogeneous scenarios.

To compute the mean bandwidths for each scenario, we avédragenount of
traffic per link in each one minute interval per simulation.rWWe then compute
the mean values and their 95% confidence intervals of the Affeand intra-AS
bandwidth for the simulation runs with different seeds.

As the second performance indicator, we consider the daanlione for the
shared file for the end users. Since this value is the mostriapioperformance
characteristic once a file has been selected for downloadptures the service
guality of the overlay. The mean value of the download timshiswn over all
peers within a specific group, i.e., with a given access spee&dthin the same
AS. To this end, we average the values of individual peerSiwitne simulation
run, and then again compute the mean values and their 95%denoé inter-
vals over a number of runs with different seeds. We first etalthe considered
mechanisms under ideal, i.e., homogeneous conditionsdblbdo determine the
basic effects of the locality-awareness implementatibrfable 3.1. Afterwards,
results using a more realistic swarm model that is based @sunement studies
of live BitTorrent swarms are presented. Finally, we conduparameter study
for the valued s nvs andisu on the effect of the degree of locality-awareness.

69

3 File-Sharing Overlays

Table 3.1:0verview on evaluated scenarios

Scenario Changed Parameter | Scenario Type | Section

Swarm Load Seeding Time Homogeneous| 3.5.1

Swarm Dispersal Number of ASes Homogeneous| 3.5.1

Inter-AS Bottlenecks| Inter-AS Link Type Homogeneous| 3.5.1

Partial Locality Share of Locality- Homogeneous| 3.5.1
Promoting Peers

Peer Distribution Distribution of Heterogeneoug 3.5.2
Peers per AS

Access Bandwidth Peer Access Capacitigs Heterogeneoug 3.5.2

Degree of Locality | lsu,lsns Heterogeneousg 3.5.3

3.5.1 Characterization of Locality-Aware Mechanisms

For the following experiments, we distribute the peersamifly among the stub-
ASes, and use the single access capacity class defined inrS8et. Thus, we
can focus on the effects of the following overlay parametershe efficiency of
the locality-aware mechanisms. We consider different Isegharios, different
degrees of swarm dispersal, and scenarios with bottlenedke core network.
Finally, we judge how well locality-awareness works if néitgeers implement
the mechanism.

Effect of Swarm Load

In this experiment, we compare the performance of BNS and Bdéudifferent
load conditions. Load here means the download capacity démanerated by
the leechers in relation to the available total upload ciépaehich is provided
by both leechers and seeders. Thus, we vary the mean seedngftthe peers
from 5 to 30 minutes to generate different load scenarioangér seeding time
means a higher upload capacity in the swarm without chartgmigecher arrival
process. Therefore, longer seeding times reduce the lo#takiswarm, while
shorter seeding times increase it.

Figure 3.5 shows the mean value of the inter-AS bandwidthiHferdifferent

70

3.5 Performance Evaluation

mechanisms and load scenarios. To judge the share of tafféed that is inter-AS
traffic, the intra-AS traffic of every mechanism is also shawrtop of the inter-
AS traffic bars (labeled 'Intra-AS’). Thus, the complete mthe sum of both
and therefore the total average bandwidth utilized.

35
30
@ 25 L L L|
g _] [Jintra-AS
=20 Il Ref
5 By
315 [BNS
S N [IBNSBU
m 10 L
5
0 L

5 10 20 30
Seeding Time (min)

Figure 3.5:Mean bandwidth consumption for different seeding times

Our first observation is that the inter-AS bandwidth of reguBitTorrent is
almost unaffected by varying mean seeding times. With eedBitTorrent, only
a small fraction of the total traffic stays within the origiimg stub-AS. This
corresponds to the small fraction of local neighbors of a,pdeTable 3.2. With
BNS, a peer’s neighbor set contains a higher share of loeaslkan with regular
BitTorrent and this reduces the inter-AS traffic. The totaffic is reduced as
well, because each connection between two different ASesurnes bandwidth
on two links, and thus creates double the traffic that is tegoior an intra-AS
connection.

With BU, the amount of inter-AS traffic is smaller for shorteséng times.
While the inter-AS traffic is reduced significantly in the sago with 5 min-

71

3 File-Sharing Overlays

Table 3.2:Mean number of neighbors of a peer which are interested, (logg/
(middle), and both (bottom)

Seeding Interested Neighbors
time (min) 5 10 20 30
Ref 30.20 | 21.02 | 5.04 | 1.89
BU 30.35| 20.66 | 4.95| 1.90
BNS 30.02 | 20.43 | 4.83 | 1.92
BNSBU 30.03 | 20.67 | 4.79 | 1.90
Seeding Local Neighbors
time (min) 5 10 20 30
Ref 217 | 218 | 215 2.13
BU 225 | 222 | 217 2.14
BNS 6.71 | 6.68 | 7.15| 9.62
BNSBU 6.85 | 6.79 | 7.19 | 9.71
Seeding Local Interested Neighbors
time (min) 5 10 20 30
Ref 151 | 1.05 | 0.25| 0.09
BU 1.45 | 0.99 | 0.25| 0.10
BNS 465 | 3.19 | 0.82 | 0.45
BNSBU 446 | 3.11 | 0.81 | 0.45

utes mean seeding time, BU has almost no effect with 20 or 3iteé mean
seeding time. This is similar for the combination BNSBU, @thshows no large
additional traffic reduction in comparison to BNS alone. lemg mean seeding
times, BNSBU cannot save inter-domain traffic. In contriast,especially effec-
tive in scenarios with short seeding times. There, only ahalf of the traffic is
inter-AS traffic in our scenario. The reason is that BNS eesmbhch peer to know
the other peers in the same AS while BU assures that thess geeunchoked
whenever possible.

The fact that BU and BNSBU are more effective in scenarios Wwigh load
can be explained as follows. BU and also BNSBU can only workmwat least
one local, interested, and choked neighbor exists in thghber set of a peer.
Table 3.2 shows that this is only rarely the case in the saenhavith 20 or

72

3.5 Performance Evaluation

30 minutes mean seeding time. Consequently, BU is effeethven the load in
the swarm is high, i.e., when peers have several interesigtivors (marked in
bold). Then, they can select a local neighbor to be optinati unchoked.

This can also be observed in Fig. 3.6, where the CDF of theageenumber of
unchoke slots for local peers is plotted for two load scasagorresponding to 5
and 20 minutes mean seeding time. We can see that in the higtdgd system,
BU and especially BNSBU are able to give more unchoking ttmtscal peers
than for a low load.

1] 1]
0.8 0.8
w 0.6] w 0.6]
[a} [a}
o o
0.4 0.4
—Ref —Ref
—BU —BU
0.2 BNS 0.2 BNS
BNSBU BNSBU
G0 1 2 3 4 G0 1 2 3 4
Mean Local Unchoked Peers Mean Local Unchoked Peers
(a) 5 minutes seeding time (b) 20 minutes seeding time

Figure 3.6:CDF of the number of unchoked slots allocated to local nesghb

There seems to be a contradiction because BU only decides afy® unchok-
ing slot. However, optimistically unchoked peers may behaked regularly by
the tit-for-tat mechanism after having been 'discoverédoptimistic unchoking.
In this manner, BU indirectly allocates all upload slots gfeer preferentially to
local neighbors.

As expected, longer seeding times and therefore a largaruptoad capac-
ity in the system lead to shorter download times, cf. Fig. 3his effect would
increase as long as the download capacity of the peers isithotifilized.

However, we observe no impact of the evaluated mechanisntkeomean
download times of the file. The reason for this is the fact thebnly bottlenecks

73

3 File-Sharing Overlays

in the default scenario are in the access network. Theredarennection between
two peers in different ASes has the same bandwidth limitaéi® a connection
between two peers in the same AS. From an end user’s perspetiis means
that there is no difference between a local neighbor and atemeighbor, in

contrast to scenarios with bottlenecks in inter-AS linksSection 3.5.1.

20

15

E

@ Ml Ref

.E 10 N [8]

3 [@BNS

S [IBNSBU
s

o

a

[¢)]

5 10 20 30
Seeding Time (min)

Figure 3.7:Mean download times for different load scenarios

Effect of Swarm Dispersal

Next, we evaluate the impact of the distribution of peers diffarent number of
ASes, since a smaller number of potential local neighboiamséess opportunity
to promote locality. To this end, we vary the number of stubed in the simulated
topology. Since a new peer appears in each stub-AS with @gobhbility, each
stub-AS receives a smaller fraction of the swarm if thereraoze ASes. We
simulate topologies with 10, 20, and 40 stub-ASes, resylitin10%, 5%, and
2.5% of the swarm population per AS on average.

74

3.5 Performance Evaluation

Again, we take a look at the inter-AS bandwidth savings agdéy the differ-
ent mechanisms, cf. Fig. 3.8. In general, the gains madd mcality-promoting
mechanisms are larger if the fraction of the swarm in one A& ¢e. BNS profits
directly from more local peers since the share of local nedgs per peer is higher
as well. Similarly, BU has a higher probability to find a logatlerested neighbor
when there are more peers in the same AS. The combinatiorttofichanisms
utilizes both of these advantages, leading to a furtheifgiggnt improvement of
saved inter-AS bandwidth.

35
30 -
[l =l

25 M - B
g M || |[Jintra-AS
<20 L Il Ref
3 ElsU
°
315 B8NS
= W [IBNSBU
@ 10

5

0

10 5 2.5
Swarm Fraction per AS (%)

Figure 3.8:Mean bandwidth consumption for different swarm distribng

The inter-AS traffic reduction is decreased when the locatesbf the swarm
gets smaller. For the scenario with an average of 2.5% of ¢leespin one AS,
BNS and BU save only in the range of 8% of the inter-AS traffibjlesk BNS
and BU together still reduce the traffic of regular BitTortrby 30% in our setup.
The reason is that the combination of both mechanisms trigslize every local
neighbor. With BNS alone, the probability that a local néighis unchoked is
small. With BU alone, the probability that a local peer islie neighbor set is

75

3 File-Sharing Overlays

small. Consequently, they cannot reduce inter-AS traffio@in scenarios where
only a very small fraction of the peers resides in the same AS.

Since we have no bottleneck in the network, the location @ftri@rs does not
have an effect on the utilized download bandwidth per pesraAonsequence,
the download times are affected neither by the number of Atés nor by the
different mechanisms. For all configurations, the mean dioa¢htimes corre-
spond to the results of the default value of 10 minutes seetdime.

Effect of Inter-AS Bottlenecks

Here, we investigate the impact of inter-AS bottleneclkes, bandwidth limita-
tions of the links between the stub-AS and the transit-A% @periment is mo-
tivated by the fact that some providers throttle the bantwid P2P connections
leaving their network [65].

The authors of [65] show that under these conditions lgcalitareness leads
to a better application performance since the bottlenetdkit avoided and lo-
cal connections with higher throughput are preferred. Bggwhether BU also
works well under these circumstances, we limit the capadigach inter-AS link
in our topology to 3072 Kbit/s, i.e., three times the uploagarcity of one peer.
We compare the results to the scenario with no limitationtherinter-AS links,
labeled 'Access bottleneck’.

The inter-domain bottlenecks result in generally loweeirAS bandwidths
for all mechanisms, cf. Fig. 3.9. No more than 7.68 MB/s canffleaded from
all 20 ASes simultaneously, because each of the 20 links &a@tub-AS to the
transit-AS has a capacity of only 3072 Kbit/s. Since the stmaféic flows from
the transit-AS to the stub-ASes, this results in a total mamn inter-AS band-
width of 15.36 MBJ/s. In contrast to regular BitTorrent, thedlity-aware mech-
anisms keep the inter-domain traffic below that limit. Thasen is that inter-AS
connections whose bandwidth is limited on an inter-AS link lékely to be re-
placed by the intra-AS connections with higher bandwidthisTs caused by the
tit-for-tat policy of BitTorrent which allocates uploados$ to those peers from

76

3.5 Performance Evaluation

35
30

> 25 =
g ! ™ [[Jintra-AS
=20 Il Ref
= [[V
Ne)
215 B8NS
=] ™ [IBNSBU
@ 10 —

5

0

Access Inter-AS
Bottleneck Location

Figure 3.9:Mean bandwidth consumption with and without inter-AS lmtécks

which it gets the best download speed.

With inter-AS bottlenecks, the download times are no lorigéependent from
the mechanism, cf. Fig. 3.10, because different sources afidifferent band-
width for download. Thus, the download times for regularTBitent are much
longer than in the scenario where connections are limitgdmnthe access links.
In this scenario, local peers with good connectivity may tseal/ered only via
the regular unchoking process, so that many low-bandwiatihections via inter-
AS links are utilized. The effective capacity of the systemeduced, leading to
download times that are three times longer than without{A bottlenecks in
our scenarios.

The locality-aware mechanisms on the other hand fostertttieation of the
better connectivity between local neighbors since thesakleady preferred. In
our scenario, the combination of BU and BNS leads to only ghslincrease
in the mean download times compared to the scenario withmert-AS bottle-
necks. This can be explained by the fact that the mean infebandwidth in

77

3 File-Sharing Overlays

the scenario without inter-AS bottlenecks was alreadywele capacity limit
introduced by the inter-AS bottlenecks. Therefore, théquerance of BNSBU is
only affected to a minor degree. The impact of the inter-Agl&oecks is larger
for BNS and BU alone. Still, the mean download times are cmisbly smaller
than with regular BitTorrent. From this experiment we cowle that in case of
inter-AS bottlenecks, BU improves the mean download tim@apared to reg-
ular BitTorrent and the combination of BNSBU leads to shodimvnload times
than BNS alone.

35

30
=
£ 25
@ 20 Il Ref
E Y
kel [TIBNS
ER [IBNSBU
c
g 10
[a)

5

0

Access Inter-AS
Bottleneck Location

Figure 3.10:Mean download times with and without inter-AS bottlenecks

Effect of Partial Locality-Awareness

With this experiment, we investigate what happens if onlyaatfon of the peers
in the swarm promotes locality, while the rest uses the sedBitTorrent imple-

mentation. We vary the share of peers that utilize a localtyare mechanism
from 0% (corresponding to the Ref case) to 100% (corresponig the previous
results). Here, we again simulate the 3 Mbit/s bottlenedkéninter-AS links.

78

3.5 Performance Evaluation

The inter-AS traffic of the regular implementation is agaapped at the
bandwidth limit introduced by the inter-AS bottleneck Iikcf. Fig. 3.11. The
locality-aware mechanisms save some of this inter-AS traffen if only 25% of
the peers actively promote locality. The savings increasie te share of peers
utilizing locality-awareness. We also see that the additbBU again enhances
the BNS mechanism, since the combination of both leads ttatgest savings.

25
20 N
@
o [Jintra-AS
=l | = B Ref
S Il Ll BlBU
£ 10 | |EEBNS
g [IBNSBU
[an]
5
0 I

25 100

50 75
Locality Share (%)

Figure 3.11:Mean bandwidth consumption for different shares of logatito-
moting peers in the swarm

As in the experiment before, the introduction of the inte3-Bottleneck has
an impact on the download times of the peers, cf. Table 3.8 ,Hee show the
results separately for the two groups of peers, the onegddthatipport locality
and the ones that do not. All locality-aware mechanismstieatiorter download
times than the regular implementation for both groups. Bf/@nly a fraction
of the peers supports locality, it still helps the swarm bgegating new sources
faster and providing more upload bandwidth to the localniedgs of the locality-
promoting peers. However, BU alone performs worst of thedidaalgorithms.

79

3 File-Sharing Overlays

Table 3.3:Mean download times (in minutes) of locality promoting @e@ron-
locality promoting) peers for different shares of locafityomoting

peers.

Share (%) 25 50 75 100
Ref -(29.95) -(29.95) -(29.95) | -(29.95)
BU 23.33(25.26)| 20.64 (21.57)| 18.75 (19.01)| 17.30 (-)
BNS 13.14 (22.53)| 13.75 (18.78)| 13.72 (16.89)| 13.73 ()
BNSBU || 11.24 (20.40)| 11.47 (16.49)| 11.35 (14.70)| 11.62 (-)

Not only do the peers supporting BU experience the longeanliad times,
they also do not improve their performance significantlyrabe peers that do
not support locality.

In contrast, the peers implementing BNS and the combinati@NS and BU
decrease their download times of the file by more than 50%j\rseenario con-
sidered here. They also perform better than the group iggdoicality, although
this advantage diminishes when a larger part of the swarat#ity-aware. This
again is due to the fact that regular peers also profit fronb#teer performance
of the locality-aware peers.

3.5.2 Locality-Awareness in Realistic Swarms

In the previous section, we evaluated the locality-awasemeechanisms under
ideal conditions, i.e., for homogeneous access bandwalthl peers and a uni-

form peer distribution. While this allows for a charactatinn of the algorithms,

these conditions are not met in live BitTorrent swarms. Thues now consider

swarms that are modeled after realistic swarms encouniteted Internet. These

swarms have been characterized by measurement studibsas[#8] or [83].

Effect of a Heterogeneous Peer Distribution

We start by evaluating a scenario where the peer distribitinoong the ASes
is heterogeneous. We evaluate a swarm with a skewed disbribof the peers

80

3.5 Performance Evaluation

over the 20 simulated ASes. Measurements [78, 83] of liv&dient swarms
show that this is a much more realistic scenario than the#lgiassumed even
distribution of peers over the topology. Furthermore, gkiswness should have
an impact on the efficiency of a locality-awareness mecharsince ASes with
less peers have less opportunity for optimization, as shov@ection 3.5.1. We
use a hyperbolic distribution of the peers among the ASesaoped in [78].
Thus, we simulate a peer joining the system does this inkABth probability
P(k) according to

=

P(k) = kefl,... n) (3.1)

=

=1

For the sake of readability, we use the term 'large AS’ for 88®at hold a
large share of the swarm, and similarly call ASes with a inadit low number of
peers 'small’.

We can observe that the saving potential for inter-AS traffimvs with the
share of peers in an AS, cf. Fig. 3.12. Especially when implaing locality-
awareness both in the neighbor selection and in the unchgkiocess, larger
ASes can reduce their incoming and outgoing traffic by a mawdek factor than
ASes with only a few peers in the swarm. If such an AS belongs Teer2 or
Tier3 ISP which is charged by either its uploaded or dowrdgoattaffic or the
maximum of both, this translates into higher cost savings.

In contrast, ISPs with only a small number of peers per swaemnat likely to
profit much from locality-awareness, simply because thezepaly few options
for peers in these ASes to choose local neighbors. The Ipetteof such a peer’s
contacts have to be from remote locations even when it presriotality. This is
in line with the results shown in Section 3.5.1.

To judge the locality-aware mechanisms in this scenarimfaouser perspec-
tive, we compare the mean download times for peers in therdift ASes. Fig-
ure 3.13 shows the average download times of peers in thédodi ASes.

When BU is used, the download times for peers in larger ASeedse, while
the peers in smaller ASes take longer to download the files iEldue to the fact a

81

3 File-Sharing Overlays

o))

[¢)]

N W D

Inter-AS Bandwidth (MB/s)

=

OO
(&)]

10 15 20
AS ID

Figure 3.12:Inter-AS bandwidth per AS for a heterogeneous peer didtabu

peer using BU preferentially unchokes local neighbors #gilole, i.e, it uploads
to local neighbors. However, peers in small ASes know onlgnalsnumber, if
any, of local interested neighbors, and therefore can ordfepthem in the un-
choking process in rare cases. Thus, the upload capacitesétpeers is mainly
distributed among all ASes. In contrast, peers in large ABew interested local
neighbors almost all the time. Consequently, they uploaddeal neighbor very
often. Therefore, the upload capacity of peers in a large A®ainly utilized
for connections within that AS. Furthermore, large ASe®rex additional up-
load capacity from peers in small ASes when those peers tmiveearested local
neighbor in their neighbor set. That shifts the global altam of upload capacity
in the swarm towards large ASes.

In contrast, BNS leads to longer download times in the larg&sin com-
parison to both regular BT and peers in the rest of the swahis. dffect seems
counter-intuitive, but can be explained when considerirgdomposition of the

82

3.5 Performance Evaluation

[EnY
N

—Ref 1 4

_BU /“//\\"
BNS 171 ¢/1]
BNSBU

=
w

-
N

=
o
e~

Download Times (min)
=
T
ot
¥
: E -

0 5 10 15 20
AS ID

Figure 3.13:Download times per AS for a heterogeneous peer distribution

peer’s neighbor sets. A peer in a large AS initiates conaestimostly to peers
in the same AS using BNS, since there are enough suitablaatsravailable for
this. However, it still has a small number of remote neigsbmacause peers from
other ASes initiate connections to the local peer. On therdtland, a peer in a
small AS also has a high share of neighbors from the larges ASmply because
BNS can only add the small number of contacts from the samen@iSteen fills
the rest of the neighbor set randomly. Since more peersiexise larger ASes,
the probability for them to be chosen is also higher. Thisi$et® a larger num-
ber of neighbors in total for peers in larger ASes, cf. Fig43 Additionally, it
is more likely that a peer in a large AS is contacted by a rerpetr than vice
versa.

Since new peers enter the system without the file, they agecistied in every
other peer in their neighbor set. Let pdejoin the system after peet and recall
that B is interested inA if A has chunks of the file tha® still needs. Then, we

83

3 File-Sharing Overlays

54

—Ref

52} —BU
g BNS
%50_ BNSBU| |
2
= 48
S
‘5 46}
g
S gof eses i dity 1 RPET |
>
b
42t
40 - : ’
0 5 10 15 20
AS ID

Figure 3.14:Total number of neighbors per AS for a heterogeneous pegi-dis
bution

can say in general that the probability that pBes interested in peed is higher
than the probability thatl is interested imB. This means that peers preferentially
download data from those peers to which they initiated tmaeotion and upload
preferentially to peers which initiated a connection tatthe

Since peers in large ASes are contacted by local peers assvbly remote
peers from small ASes, they have more neighbors which aeecistied and de-
mand upload capacity than peers in small ASes, cf. Fig. aghermore, peers
from large ASes contact mainly local peers when they entisyistem due to
BNS. This means that they download mainly from local peersontrast, peers
in small ASes contact a higher number of remote peers, imdutiose located in
the large ASes, because only few local peers exist. Thexrgfoey also download
from remote neighbors. In addition, they utilize the upl@agpacity of the local
peers. In summary, peers in large ASes compete for the umgapadcity only

84

3.5 Performance Evaluation

30 -
—Ref
%’ 28l —BU
= BNS
.g 26} BNSBU| |
e
2
7 241
o
Q
S BRI
£
5 20}]
Q
1S
2 18f
16 - : ’
0 5 10 15 20
AS ID

Figure 3.15:Number of interested neighbors per AS for a heterogeneoes pe
distribution

at local peers while peers in small ASes demand upload dgpacihe whole
swarm. Hence, on average more upload capacity is allocatpédrs in small
ASes and average download times can increase for peerg@mA&es by using
BNS.

Returning to the download times of the peers, BNSBU showsebamation
of both effects described for BU and BNS. While the neighl&rcomposition
has the same characteristics as in the pure BNS case, thekimgipolicy of BU
offsets the disadvantages of peers in large ASes. Therdaf@elownload times
in larger ASes are shorter than in smaller ASes, but peelitatgest AS in our
scenario still take longer to download the file than in theoseldargest AS.

We conclude that, for the end user, the incentive to suppodlity-awareness
depends heavily on the type of mechanism used to do so, anis éwchtion. It
cannot be expected that a user will willingly participateaifocality-promotion

85

3 File-Sharing Overlays

scheme if he decreases his performance. On the other handsér can shorten
his download times by promoting locality with certain megisans, not much
effort will be needed to implement locality promotion.

Effect of Heterogeneous Bandwidth Distributions

The second simplifying assumption in the previous expemisés that the ac-
cess bandwidths of all peers are homogeneous. We now réteastsumption by
allowing peers with heterogeneous access speeds in thenswaere the peers
are again distributed uniformly over the ASes. Measuremanf58] show that
the peers in a swarm can be clustered according to their aspesds. For ex-
ample, 20% of the peers in a swarm have 128 Kbit/s upload d§pa06% have
256 Kbit/s, 40% have 512 Kbit/s, and the rest is faster. The@ie numbers
and cluster sizes depend mainly on the ISP where the peelscated. To keep
things simple, we abstract from the concrete numbers aradecteo equal sized
groups of peers: one with 16 Mbit/s down- and 1 Mbit/s uploapacity, as in the
default scenario, and one with 4 Mbit/s down- and 256 Kbif#foad capacity.
Consequently, half of the peers in the swarm are 'fast’ paadsthe other half
are 'slow’ peers. This suffices to show the basic effect bcawareness has on
swarms with heterogeneous bandwidth distributions.

With these two access classes, we consider two scenarite first one, we
assign one of the access classes to each AS, which meanH piesgtra in one AS
have a homogeneous access speed, but peers in differentisgetiffer in their
access capacity. In this scenario, all fast peers are kboat&Ses with IDs from
1 to 10 and all slow peers are located in the rest of the ASes. Mmics the
situation that some ISPs which are technologically moreaaded than others
offer their costumer higher access speeds. We denote #niago 'Fast vs. Slow
ASes’.

In the second scenario, denoted 'mixed access speedsifasiow peers are
equally distributed among all ASes. This scenario is quitemon in practice
because most ISPs offer their customers a choice betwderedif access speeds.

86

3.5 Performance Evaluation

Scenario 'Fast vs. Slow ASes’

To give an impression of the effect of locality-awarenesshantraffic, we again
show the sum of the bandwidth used in the downlink and thenkpif the in-
dividual ASes, cf. Fig. 3.16. We see that fast ASes profit nfoven locality
promotion in most cases because the peers in these ASestfirisldownload
faster and provide additional upload capacity to peersarstbw ASes. Thus, the
decrease in download bandwidth is smaller for the slow ASes.

2.5 T
—Ref

- —BU
% 2F BNS
\E/ BNSBU
=
S 1.5;
=
©
c
&

1}
% b L I
@
£05

0

0 5 10 15 20

AS ID

Figure 3.16:iInter-AS bandwidth per AS for heterogeneous AS access it&gsac

If the access bandwidth of the peers is tied to their locatedhevaluated
locality-awareness mechanisms lead to a more pronouncidrness in the
download times, cf. Fig. 3.17. While peers with a low acces=ed generally
take longer to download the file also in the regular BitTotresse, the differ-
ence in the download times between slow and fast peers Besesgnificantly
when the peers promote locality. This is due to the fact that peers tend to
prefer neighbors in the same AS which, due to the considerbsio, also have

87

3 File-Sharing Overlays

a high capacity. Thus, fast peers utilize more of their upplbandwidth to ex-
change data with other fast peers. Conversely, slow pemitthemselves by
choosing other slow peers as neighbors and/or in the unegglocess. That is
true for all investigated locality mechanisms and BNSBUtheesmost stringent
locality-promoting mechanism, increases the unfairnlessrost, i.e., it leads to
the largest difference between download times of peerserslitw and peers in
the fast ASes.

60 —

50
5
§,40
@ . Ml Ref
£ 30 i BU
o [BNS
3 [IBNSBU
20
o
[a}

10

0

All Peers Slow Fast
Peer Group

Figure 3.17:Download times per peer group for heterogeneous AS accpas-ca
ities

Additionally, the results show that locality-awarenessréases the mean
download times over all peers, cf. Fig. 3.17. In other woldsality-awareness
decreases the overall efficiency of the distribution predesthis scenario. In
general, users in ASes with a lower bandwidth than in theafetste swarm will
not profit from locality-awareness, and can therefore notXpected to adopt a
locality-promoting mechanism.

88

3.5 Performance Evaluation

Scenario 'Mixed Access Speeds’

In contrast to the previous scenario, the access bandwidttise peers in the
swarm are still heterogeneous, but both slow and fast peesanly distributed
among the 20 ASes. As aresult, the traffic savings by utiikiicality-awareness
are uniformly distributed among the ASes, cf. Fig. 3.18. iAgthe combination
BNSBU saves most inter-AS traffic in comparison to the regBi#Torrent im-
plementation.

2.5 T
—Ref

. —BU
% 2t BNS
s BNSBU
S
S5t Hihg ity rrtherg piT,
3
S AT et e s T e o o = T2
m | ~ = -
" 1
T
@
£05

0 , , , ,

0 5 10 15 20

AS ID

Figure 3.18:nter-AS bandwidth per AS for heterogeneous peer acceseitEs

As expected, the mean download times for the swarm as a whelaa
affected by the considered locality-awareness mechanism&ig. 3.19. The
download times are similar in all ASes as well, since theeerar topological
differences anymore.

While the groups of peers in the same AS experience the sagnagg/down-
load times, the same is not true if we differentiate betwemress types. Fig-
ure 3.19 additionally shows the mean download times per leszadity promo-

89

3 File-Sharing Overlays

tion mechanism and for the different bandwidths of the pelergeneral, the
peers with the fast access take less time to download thewfilieh is due to
their higher download capacity and because they are favoyetthe tit-for-tat
algorithm. BNS does not differ here from the regular BT inmpémtation. The
mechanisms including BU, however, lead to shorter downitaes for slow
peers and longer download times for fast ones. For the swarevehole, this
can be interpreted as a fairer distribution of the uploadgciy From the view-
point of peers contributing more resources, they have lesntive to do so if
they are not rewarded. We conclude that in this scenario BUBMSBU lead
to fairer download times while they increase the unfairirgbe scenario 'fast
vs. slow ASes’. This shows that the actual bandwidth distidm of peers has
a significant impact on the performance of locality-mechars experienced by
the user.

35
30 =
=
€25
3 20 Il Ref
£ LN
T 15 [TBNS
8 [IBNSBU
c
210
a
5
0
All Peers Slow Fast
Peer Group

Figure 3.19:Download times per peer group for heterogeneous peer acaess
pacities

90

3.5 Performance Evaluation

3.5.3 Degree of Locality-Awareness

From the conducted experiments, we conclude that localitgreness can under
realistic conditions introduce unfairness in a swarm witheterogeneous peer
distribution. Now, we want to find out whether the degree dhirness can be
influenced by the parameters of the locality-promoting naeggm. Typically,
this is a value which determines the probability that loedns are favored over
remote peers. In the algorithms considered here, thesbaledality values sy
andigns. Thus, we now vary both parameters, starting Wigh, which leads to
the most unfair download time distribution. The effect oa ttownload times for
values oflgy € {0.5,0.9} is shown in Fig. 3.20. For the evaluation, we use the
scenario with a skewed peer distribution and homogeneaesaspeeds in the
topology described in Section 3.5.2.

18 T
—BU, IBU =0.9
16k BNSBU, IBU =09
E --.BU,lBUZO.S
- BNSBU, IBU =0.5
o 14¢
S R A
- L i R --s.._‘_/l
3 . I1]
o 12f 1-1-3-FFI-I-F-FI-1 1
g ,If'I- {—I‘I 'I‘ I I
2 A
a E-
10} /f
8
0 5 10 15 20

AS ID

Figure 3.20:Download times per AS for different values lof,

With igy = 0.5, i.e., a less strict preference of local peers, the averaga-d
load times are more uniform over the individual ASes, esgiycior BU alone.

91

3 File-Sharing Overlays

For the combination of BNS and BU, the negative effect of BNiStle large
ASes, described in Section 3.5.2, is offset less with thiampater. Consequently,
the mean download times are equal for the small ASes, buttie IASes still
are at a disadvantage.

While a lower preference for local peers can reduce the urdss for end
users, it also influences the traffic savings achieved by dbality-promotion.
Figure 3.21 shows that the used inter-AS bandwidth inceeagé a lower degree
of locality-awareness. Thus, the paramétar can be used to influence the trade-
off between unfairness in the swarm and cost savings bydraigiuction.

3 r
—BU, |,,=09
250 = BNSBU, I, =0.9 1
---BU,1,,=05
2 BNSBU, |, = 0.5 ;

Inter-AS Bandwidth (MB/s)
N
IT (2]

o
3]

0 5 10 15 20
AS ID

Figure 3.21:nter-AS bandwidth per AS for different valuesigfy

A similar effect can be achieved by reducing the degree @fligcn the BNS
mechanism. We compare the download times of the peers iereliff ASes for
the locality-promotion schemes BNS and BNSBU wighvs € {0.5,0.9}. The
results are shown in Fig. 3.22. We observe that the significamease in the
average download time for the largest AS vanishedgars = 0.5, i.e., a lesser

92

3.5 Performance Evaluation

degree of locality. With BNS alone, the download times aidyfalistributed,
while the combination of BNS with BU shows the heavy unfagsef the BU
mechanism described earlier. This is duel o having the comparably high
default value of 0.9 in this experiment.

18 u
BNS, |BNS =0.9

16l BNSBU, IBNS =0.9
E BNS, IBNS =05
- BNSBU, IBNS =05
o 14t
£
=
ks
o 12p
c
2
<)
(@]

10f

8
0 5 10 15 20
AS ID

Figure 3.22:Download times per AS for different valuesiefn s

Again, the better fairness achieved by promoting localisslis paid for by
less savings in traffic, cf. Fig. 3.23. The largest AS, whioHanger experiences
any disadvantage from a user’s point of view wligiys = 0.5, now consumes
more inter-AS bandwidth.

These results show that more conservative parameters miigate the neg-
ative effects of locality-awareness but reduce simultasathe amount of inter-
domain traffic that can be saved.

93

3 File-Sharing Overlays

2.5 T
BNS, IBNS =0.9

B o BNSBU, |BNS =09]
el -
s BNS, lBNS =05
= BNSBU, | =0.5
§ 1.5} BNS]
=
=]
c
@
om 1}
0
T
@
£ 0.5

0

0 5 10 15 20

AS ID

Figure 3.23:Inter-AS bandwidth per AS for different valuesiofn s

3.6 Lessons Learned

Regarding file-sharing overlays, we can conclude that inéeéed possible to
reduce costly cross-ISP traffic using simple metrics anaigtitforward client
adaptations. Especially when combining a locality-awagigimbor selection and
a locality-aware unchoking mechanism, inter-AS traffic bansignificantly re-
duced. This is true both in comparison to the default impietatéon as well as in
comparison to the existing approach of neighbor selectionea The combina-
tion works best under high load conditions, i.e., when theag capacity in the
swarm is scarce. A necessary condition for large trafficraps/are a sufficient
number of peers in one AS, since otherwise it is impossibfgéer local peers
over remote ones. The larger the local share of a swarm isnthe traffic can
be saved.

While locality-awareness is nearly always beneficial faviders, this is not

94

3.6 Lessons Learned

true for end users. It strongly depends on the swarm chaistate and on the
AS a user is attached to whether a locality-aware mechartismens the down-
load time or increases it. In swarms where the peer distabuas well as the
access bandwidths are homogeneous, an end user may ontyfnarafiocality-
awareness if the inter-AS links constitute bottleneckhéfaccess networks are
the bottlenecks, then locality-awareness does not infeidre download times.
This changes in more realistic swarm scenarios. Live Bifliarswarms are
highly heterogeneous, both with respect to the distriloudigppeers among the In-
ternet topology as well as the access bandwidth of peersetdhdse conditions,
locality awareness leads to different results for difféignoups of peers.
Heterogeneous access bandwidths only have a minor effg distribution
of the different capacities is equal for all ASes. In thise;dscality-awareness
does not lead to a difference in download times between th8gs. In contrast,
if the access technology differs between ASes, then Igealitareness in con-
junction with the BitTorrent standard tit-for-tat mechsmileads to an even faster
download for high-capacity peers. This is paid for by lowewdload speeds for
the peers that are in any case hampered by a low access gapacit
For a heterogeneous peer distribution as observed in tambtt where a few
ASes hold a significant share of a swarm and the rest of thes peelispersed
among several ASes, the different mechanisms show vardecdt&f Biased Un-
choking favors peers in large ASes, leading to a faster doaehht the cost of
longer download times for peers in small ASes. Biased Neigl®zlection, on
the other hand, has an inverse effect only for a small numidinedargest ASes.
Both is in contrast to the default BitTorrent implementatiin which all ASes
show the same average download times. Thus, the stated ajiving all end
users incentives to promote locality is not met by the carsid approaches.
However, this unfairness for the end user can be decreasedjbgting the
degree of locality-awareness. Lesser enforcement of #fergnce of local peers
leads to a fairer distribution of download times, but alsduees the amount
of saved inter-domain traffic. This shows that the paramsetéthe considered
locality-awareness mechanisms can be used to tune a tfiaeeeen efficiency

95

3 File-Sharing Overlays

for the ISPs and the utility of the overlay for the end users.

To conclude, locality-awareness does not necessarilyttead improvement
for all involved parties. Especially the effect on the apgltion performance for
the end user has to be monitored if a locality-aware mectraigismplemented.
If users are meant to participate of their own accord in aliyeaware traffic
management scheme, the algorithms have to be tuned in ortertteneficial or
at least not detrimental for the users. Otherwise, diffene@ans of compensation
have to be found by ISPs in order to implement such an ar¢hiteavithout
resistance of the overlay users.

96

4 Video Streaming Overlays

All of the books in the world contain no more information than
broadcast as video in a single large American city in a singer.
Not all bits have equal value.

Carl Sagan (1934 - 1996)

Next to file-sharing, video streaming is the second largestributor to the
total consumer Internet traffic by the time of this publioatiestimated to amount
to 2.4 TB in 2009 [75]. While file-sharing traffic is expectedgrow, the share of
video streaming will grow even faster in the next few yeagplacing file-sharing
as the top consumer traffic source by 2011.

The large bandwidth consumption of video transmissiongéstd the fact that
videos in a good quality are of a large size in comparison tsicnor e-books.
This means that file-sharing networks used to distributeléinger content have to
be more efficient, as shown in the last chapter. Howevergusipure file-sharing
application, a video has to be downloaded completely befar@n be watched.
In contrast, video streaming allows a user to watch the wdeite it is still being
downloaded. Therefore, we distinguish between videoitigion by file-sharing
and by streaming mechanisms.

In video streaming, there is again a separation into twosela®f streams,
namely live streaming and video-on-demand streaming [[ilve streaming,
the content is played out roughly at the same time to all watchsers, similar
to current TV programs. Thus, all clients are interestedhingame piece of data
at the same time. This enables broadcasting content thaherated in real-time
by the source. In this case, the delay between the sourcehaendients is a

97

4 Video Streaming Overlays

measure of interest. For instance, users watching a liveesgame do not want
to see a goal scored a significant time after their neighbeeich

The second class of video streams is the so-called videdeorand (VoD)
streaming. Here, the complete video content is finalizedsamdable as a whole
before it is streamed, e.g., a movie library a user can ch&rose. Users can
request this content at any time, meaning that differentsuskow a different
progress in the video and are therefore interested in difteportions of it for
playout in the near future. Moreover, the video playout carfdst forwarded
or rewinded’, similar to watching a DVD. In this chapter, iecus on VoD
streaming applications.

The means to provide video content are similar to the oned fmesimple
content distribution, although the transmission techegymay be more sophis-
ticated. Again, the most straightforward solution is toyide one or several
streaming servers which upload the video data to client, iasdlone by pop-
ular video portals such as YouTube [92]. Due to the large Wadtti demands of
video streaming, large server and upload capacity is naggdeading to high
infrastructure demands and consequently high costs [AlinAile-sharing, this
promotes concepts utilizing the resources of the clients.

Thus, there exist P2P solutions that allow for videos to beasted in an over-
lay. Due to their cost advantage, it can be expected thatithady popular over-
lays will continue to grow. Thus, their efficiency is an imfaott research topic,
both due to the generated traffic as well as due to the probfekeeping end
user satisfaction on a high level. P2P video streaming shmasy characteristics
with its cousin P2P file-sharing, including the traffic maeagent challenges dis-
cussed in the last chapter. The solutions considered thereasily be applied to
many streaming overlays as well. However, in contrast tesfilaring, the service
quality of a video streaming application is highly sensitio inefficient resource
usage [94]. In file-sharing, where download times of sewmialites up to hours
are common [36], a delay in the range of a minute does nottaffecuser satis-
faction to a high degree. When watching a video, a forcedeoauthe stream in
the same time range can lead to a cancellation of the plagimae the quality is

98

4.1 Challenges in Video Streaming Overlays

experienced as too low. Thus, an overlay solution has toita@eccount higher
demands by the supported video streaming application.

In the following, we discuss in Section 4.1 additional ceafjies for video
streaming overlays that stem from the growing heteroggéiend user devices
used for watching a streamed video. Then, we review videecodnd P2P over-
lays from literature that support video streaming in Secti®, focusing on VoD
applications. Our own solution for the support of heteragers clients is pre-
sented afterwards in Section 4.3. For the evaluation oftihiieept, we conduct a
simulation study that tests how well heterogeneous cliarésupported by this
solution, and if it efficiently and automatically reacts teaoges in the overlay.
To this end, we first describe in Section 4.4 the used modethanthost relevant
parameters of the system. We then evaluate the results ohbanof parameter
studies and implementation alternatives in Section 4.3yaredrecommendations
for the design of an adaptive VoD streaming overlay. Finally summarize our
findings in Section 4.6.

4.1 Challenges in Video Streaming Overlays

As stated above, the efficiency of a video streaming ardhitetas an immediate
effect on the video quality experienced by the end user. @umging this prob-
lem is a growing heterogeneity of end user devices that awvidgy be streamed
to. A video streaming application client may be installedeoset-top box con-
nected to a Fiber-to-the-Home (FTTH) link and to a High-Digifim (HD) TV
device, requesting and being able to play out the highesiabla video resolu-
tion. At the other end of the spectrum, mobile devices likesBxeal Digital As-
sistants (PDAs) or mobile phones now have the capabilitydplay videos with
a lower resolution [93]. These devices may be connected iriglegs networks
with comparably low bandwidth. Thus, itis necessary to ftewa different video
stream to these devices than to a fixed-line high-resolufient.

This can be managed in VoD systems by generating a set ofseigeo
files, one for each class of supported clients [22]. The emd ashis applica-

99

4 Video Streaming Overlays

tion then has to select the stream that is proper for his dewowever, this
does not work very well for a P2P solution, since data fronfied#nt streams
cannot be exchanged and therefore different clients camilate each other’s
upload capacity. Thus, the high upload capacity of fixed-lifients is lost for
low-bandwidth mobile devices. One solution for this is teet@dvantage of scal-
able codecs that allow to extract substreams in differemideof quality, such as
the codec described in the next section.

Such an overlay has to ensure that a client's bandwidth isvasted to down-
load substreams that cannot be played out. Instead, a bak#y tjat is sustain-
able by the client needs to be supported by the overlay mérhanand addi-
tional data should only be downloaded when this quality ex@d. Otherwise,
the upload bandwidth of the peers is utilized inefficientig éhe resulting overall
quality is lower than possible.

Moreover, clients in such an overlay have to be able to adaphanging
network conditions, such as the capacity changes due to dnatue to a change
of a wireless access network. Otherwise, mobile clients\atibe seamlessly
integrated into a distributed streaming system, but hate tbanaged separately,
at the cost of a higher complexity.

While the normal process of clients going on- and offline dugssignificantly
change the total capacity of the overlay, most streaminglay® are supported
by dedicated seeds or servers that can fail as well. Thislghmi lead to the
streaming service being unavailable. Instead, the videdityushould automati-
cally be tuned to a supportable level, without needing meinpat from the user.
Thus, a single client software can be used for all types olsed devices, and the
management overhead by the content provider can be kept tnigum. Still,
it is necessary that the resource distribution, i.e., thezation of upload band-
width to requesting clients, is fair in the sense that peergributing more are
rewarded with a better video quality. Otherwise, an inaento provide upload
bandwidth would be missing, resulting in a reduced peeragpaf the network
and therefore higher costs for the content provider.

100

4.2 Background and Related Work

4.2 Background and Related Work

In this section, we first describe approaches implementig streaming func-
tionality in a P2P overlay, to show the similarities andeliénces to our architec-
ture. Then, we provide more details about the specific Bierdrderivate Tribler,
which we use as the basis for our approach to support hetggogs video qual-
ity in a P2P streaming overlay. Since we introduce mechanisnsupport scal-
able videos into the Tribler overlay, we describe the usedd®e Video Codec
(SVC) extension of the H.264/AVC codec. Then, we reviewteslavork which
also uses scalable video codecs, although for P2P livensitngaand not for P2P
\VoD.

4.2.1 VoD Streaming via P2P Overlays

Since P2P file-sharing has proven its efficiency in practisal, approaches uti-
lizing its scalability properties and self-organizati@afures have been proposed
in literature to support VoD streaming as well.

A VoD streaming system based on a random mesh overlay netwakal-
uated in [44]. Starting from a simple file-sharing netwonkhancements in the
chunk selection process are introduced and compared véfiece to the play-
out rates. In contrast to other systems, the initial serveidlowed to determine
the chunks to be uploaded in some of these strategies. Thegwa shows that
a hybrid server strategy, which considers the system as &eyperforms best.
This strategy both tries to upload chunks sequentially,aadditionally considers
the rarity of blocks in the neighborhood of a requestingntli®egarding client
strategies, a preference of chunks close to their playcadioe performs bet-
ter than a random or rarest first strategy. In both cases,dtliéi@n of network
coding improves the performance. Here, peers forward diceebinations of
a subset of chunks they have downloaded, increasing thaelnss$ of data for
other peers and easing the chunk selection process.

The evaluation in [44] uses a simulator that does not consiideerlay effects.

101

4 Video Streaming Overlays

The peers have an upload capacity of 500 Kbit/s in a homogensoenario,
while the capacity is varied between freeriders with no agland high capac-
ity peers in a heterogeneous scenario. For the latter, tistgts for the different
classes are shown. Peers have a low number of four to sixbeigitin contrast to
currently wide-spread implementations of both file-shguamd streaming over-
lays which use a much larger number. The assumed setup fimeshe length
of the initial buffering phase, are assumed to be 10 to 15 teflong.

A BitTorrent Assisted Streaming System for VoD (BASS) isganeted in [48].
It is argued that BitTorrent is not suitable for streaming da its design, and
therefore it is used only in addition to a dedicated stregnsierver. Thus, the
BitTorrent protocol is not changed except that a client doatsrequest chunks
containing frames with a playout time before its currentifpms in the video.
The chunks downloaded via BitTorrent are stored for futige, while all parts
of the video that could not be retrieved via the P2P overlaydawnloaded from
the server following an in-order strategy. It is assumed dndy a small number
of BASS users exist, since otherwise the assumption of chbeing available
with equal probability would not hold.

For the evaluation of BASS, a queueing system simulatiosésl that is based
on measurement data from a BitTorrent file-sharing swarra.eMaluation shows
that for the investigated scenario, the necessary strgaseirver bandwidth can
be reduced by one third through the support of a P2P overlay vilaiting time
of clients can be reduced as well, both in comparison to aBitTerrent overlay
and to a pure client-server scenario.

In [53], the assumption that BitTorrent cannot be modifieddweaming is
tested. An enhanced BitTorrent protocol hamed BiToS iseuesl and evalu-
ated, which uses a mixture of in-order and rarest-first chagikction mecha-
nisms. Different implementation alternatives for this nelunk selection strat-
egy are compared. However, the chunk selection is the onbharesm that is
adapted and it is stated that other changes to the protoealrarecessary. The
considered changes are the separation of the chunks thatst to be played
out into a high priority set, containing chunks close toitipéyout deadline, and

102

4.2 Background and Related Work

the remaining pieces. With probability a chunk from the high priority set is
requested, otherwise a chunk from the remaining set is chdésstrategy down-

loading the chunks in the high priority set sequentiallydmpared to the known
rarest-first mechanism in both sets wjth= 0.8, 1.

The evaluation uses a simulation of a flash crowd scenarib 400 peers
watching a 10 minute video. The rarest-first strategiestave/s to perform better
than the sequential one, especially for a high priority set&ining about 8% of
the complete file. In this case, the setting= 0.8 outperforms the system with
p = 1. A dynamic adaptation gf to the swarm situation is considered, but not
implemented or tested.

Toast, another BitTorrent-based support scheme for Voiesgris presented
in [56]. Similar to BASS, it shifts load from the dedicatedD/servers to a Bit-
Torrent overlay, with parts of the video that cannot be @eg#d by the overlay
being requested from the server. In contrast to BASS, theatian is based on a
measurement study of an implemented system. Differentlchatection mech-
anisms are compared, namely the rarest-first strategy ftantard BitTorrent,
in-order download, a strategy based on a beta distributiothe chunk prefer-
ences, which assigns higher priority to chunks closer tyquig and finally a
hybrid strategy mixing the in-order and the beta strateginthpducing priority
sets.

The main performance indicator observed in the evaluatidb6] is the load
reduction for the VoD server, i.e., its upload traffic sagitny utilizing the over-
lay network. The measurement experiments are conductedsearm with 300
clients, which show a deterministic inter-arrival time imsh scenarios. The up-
load capacity of the clients is varied between 1 Mbit/s, amdbit/s, i.e., the
stream bit rate. Finally, different seeding behaviors anesered. The results
show that longer seeding times lead to less server load odihe targer share of
available client upload capacity, and that propagatioayein the network have
no impact. The load on the VoD server is reduced by up to 90% tlé hybrid
strategy and the in-order strategy performing better intrsosnarios than the
beta and the rarest-first strategy.

103

4 Video Streaming Overlays

All of these systems, as well as the Tribler client describext, implement a
VoD streaming service utilizing P2P technology. Howeveeytare all based on
a single-layer video file. We extend this functionality taksble video codecs in
Section 4.3, utilizing the properties of a SVC video. Thus,a&n add support of
streams with different bandwidths while being able to sltairéhese streams in
a single overlay.

4.2.2 VoD Supportin Tribler

Our P2P VoD architecture is based on Tribler [73], which imti$ a BitTorrent
adaptation that offers video streaming capabilities. mftillowing, we give an
overview on the key mechanisms of Tribler and which of thafferdrom reg-
ular BitTorrent. In particular, these are the two most int@ot mechanisms of
BitTorrent presented in the last chapter, namely the tittdd strategy used in the
unchoking process and the chunk selection strategy.

Tribler uses the same structure for a shared file as BitTorfldre complete
file is separated into chunks and blocks that contain thedsaanf the video to
be streamed. The frames are made available to the buffer oftease video
player once they are downloaded. The mechanisms used fomsavad neighbor
management are the same as in BitTorrent as far as our appoaoncerned.
However, Tribler in its current form tries to integrate saedditional function-
alities like user preferences, search, trust relatiorssaiyul tracker distribution by
heavily utilizing social aspects. Since these mechanismwtiaffect the stream-
ing mechanism itself, we skip their description for the sakeonciseness.

Chunk selection

The main difference between a file download functionalitpfisred by BitTor-

rent and a VoD service as offered by Tribler is that a user efldter watches
the video while downloading it. Thus, the timing for dowrdiireg the parts of
the complete video file becomes critical, while chunks caddyenloaded in any

104

4.2 Background and Related Work

High Medium Low
priority priority priority
set set set

Video Playback Video
start position end

Figure 4.1:The Tribler chunk selection mechanism

order in a file-sharing overlay. In particular, chunks inbler need to be down-
loaded roughly in order so that a continuous playback of tlewis ensured.

To this end, the rarest-first chunk selection of BitTorrameplaced by a strat-
egy based on priority sets, cf. Fig. 4.1. From the currengh@ak position, all
chunks until the end of the movie are separated into three Sbe high-priority
set contains all chunks with frames from the playback pasitintil 10 seconds
after, while the mid-priority set contains the following 48conds of the movie.
The rest of the chunks is in the low-priority set. Chunks arst flownloaded
from the high-priority set, following an in-order strateggthin that set. When
no more chunks can be requested in that set, the chunks inithpriarity set
are downloaded according to the BitTorrent rarest-firsthmaatsm, and finally
the chunks of the lowest priority, also following the rarésdt strategy.

Unchoking

The tit-for-tat strategy employed to rate peers in the ukifgoprocess of Bit-
Torrent is based on the assumption that peers can exchantgentai.e., both
neighbors forming a connection have some content the otteds Since the
order in which peers download chunks does not matter in thesfiiring appli-
cation, this is true for enough overlay neighbors. Howewdth the application
VoD peers need to download chunks in roughly the order theypyed out.

105

4 Video Streaming Overlays

Downloader
from B

Interested peer B @}}
S

Local peer A ="

[4
’

Figure 4.2:The give-to-get mechanism

Therefore, peers that played back a longer part of the videgederally not need
any chunks from peers that are 'behind’ them in the playbaokgss.

Thus, it is much more probable that data exchange happensnoohe direc-
tion of an overlay connection in Tribler. This is taken inttcaunt by replacing
tit-for-tat with a strategy named give-to-get that favoeers that show a good
upload behavior to other peers instead of to the local pegr Zonsider the lo-
cal peer A, which has chunks a remote neighbor B wants to dmwnlB then
reports to which other peers it has uploaded data in the lsetonds (by default,
6 = 10s). Then A queries these peers to make sure that B does notitetkiglo
mechanism, cf. Fig. 4.2.

The rating value of B then is the amount of data it forwarded thoriginally
received from A. If there is a tie using this metric, B’s tot@load is considered
as a tie-breaker. This ensures that peers with a high uplmgakcity are not un-

106

4.2 Background and Related Work

choked by a large number of neighbors, but instead only bleateel subset. The
three peers with the highest rating are unchoked by A eversetdnds, similar
to BitTorrent. The optimistic unchoking of a random peerriaqticed as well, cf.
Section 3.2.

Give-to-get thus rewards peers that upload data and ainiscatlaging free-
riding, similar to tit-for-tat. However, it needs much maignaling overhead and
statistics for a peer’s neighbors than the simpler tittédr-

Playout strategy

In case frames are not received in time for their playougastiing clients have
two basic choices, frame dropping and stalling. With thet fiternative, the
missing parts are skipped and the player continues withakeavailable frames,
leading to artifacts in the video picture and ’jumps’ in thileymut sequence.
Stalling, which is the mechanism implemented in Tribleramethat the player
walits for the missing frames, forcibly pausing the videoimyithe waiting time.

In this case, the only experienced degradation in the videdity is the interrup-

tion of the watching process.

4.2.3 Scalable Video Codecs

After introducing the relevant P2P VoD streaming architee$, we now con-
sider the video codecs necessary to implement scalable sideaming in these
overlays. One of the most widely-used codecs today is théHIZU-T stan-
dard [39], also released as MPEG4/AVC by the 1SO. It offerswcimhigher
coding efficiency than older standards and therefore altbeefficient encoding
of current HD content. However, in its original form, i.e.,284/AVC, it only
supports a single layer video. As a consequence, diffeidebviles have to be
provided to support different stream bit rates and qualitie

The SVC extension of H.264/AVC [62] enables the encoding wideo file
at different qualities within the same layered bit streamisTincludes besides
different resolutions also different frequencies (framisplayed per second) and

107

4 Video Streaming Overlays

different qualities with respect to the Signal-to-NoisetiRgSNR). These can
be considered as a special case of spatial scalability wéhtical picture size
for base and enhancement layers. These three dimensionbaficements are
denoted as spatial, temporal and quality scalability.

Spatial Scalability

HD 15 Hz HD 30 Hz HD 60 Hz

HD Qo Qo Qo
SD15Hz SD30Hz SD60Hz ;
sD Q0 Q0 0 Quallty‘ .
Scalability
¥
CIF15Hz | |CIF30Hz | | CIF 60 Hz N
CIF Q0 Q0 Q0 e
15 Hz 30 Hz 60Hz Temporal Scalability

Figure 4.3:SVC cube, illustrating the possible scalability dimensiéor a video

Figure 4.3 gives an example of different possible scalgbiimensions for
a video file. The scalable video file can be watched in threfereifit temporal
resolutions (15Hz, 30 Hz, 60 Hz), three different spatiglotetions (Common
Intermediate Format (CIF), Standard Definition (SD), Higifibition (HD)) and
three different quality resolutions (QO, Q1, Q2). Each ef'tubcubes’ represents
a substream of the complete video stream in the best quality.

The left bottom 'subcube’, CIF resolution with 15Hz and dtyaQoO, is the
base layer. All other enhancement layers reference thela&gese Therefore, no
video can be played out if the necessary base layer framesissing. Thus, each
client should at least support the bit rate of the base laybetable to stream the
video.

108

4.2 Background and Related Work

Based on this layer, different types of enhancement layeraipa better video
experience with a higher resolution, better SNR or higreemt rate, respectively.
The more enhancement layers are available along any ofribe dixes, the higher
the quality in this respect is. If all enhancement layersaaeglable the video can
be played out in highest overall quality. If all enhancemagers within quality
QO are available, the video can be played back in HD-resmiwiith 60 Hz, but
only with a low SNR quality.

Every enhancement layer references all lower enhancemgrsiand the base
layer. Thus, layen of any scalability dimension can only played out ifal- 1
lower layers of that dimension, including the base layes, arailable as well.
This indicates a priorization of the layers according tartimelex. A client should
always strive to download the base layer before considegggesting the en-
hancement layers, in ascending order.

Format of a Video with Temporal Scalability

Since we consider the temporal scalability feature of th€8wdec in particular,
we describe it in more detail in the following. Temporal sdality implies that
the frames of the complete video can be separated into layéfseach addi-
tional layer doubling the frame rate of the video, cf. Figt.4A typical H.264
video contains three types of frames, namely intra-codgdrémes, prediction
(P-) frames, and bidirectional (B-) frames. Frames of th&t fiype, also called
key frames, are standalone pictures that can be display¢debyideo applica-
tion without needing any other frames. P-frames need irdgion from earlier |-
or P-frames, but can therefore also be smaller. FinallyaBes use information
both from earlier and later I- or P-frames, needing even dizda in the frame
itself.

The base layer of a temporal scalable video contains itedPaframes, while
the enhancement layers are made up from B-frames. Sincaliameement lay-
ers are referencing all layers below them, they cannot beglaut without these
layers. Only the base layer contains frames that exclysieférence frames in

109

4 Video Streaming Overlays

the same layer, meaning that this layer can be played ousél.it
However, the base layer also contains the largest franmes kiand P-frames

are typically larger than B-frames. Thus, there are difiees in the bit rate of
the respective substreams.

Layer 2
E

Layer 1 ?\

Layer O

—_ — — — forward
referencg

movie playout time

Figure 4.4:Frame structure of a video with temporal scalability

4.2.4 Integrating Scalable Video in P2P Overlays

An overview of adaptive video streaming techniques utiigP2P overlays is
given in [61]. Two methods to adapt the video quality and thedwidth de-
mand of a stream to network conditions are identified, narB8&¢ and Multi-
ple Description Coding (MDC), which can be achieved by ustogward Error
Correction (FEC). With MDC, the stream is encoded into s@vierdependent
descriptions, and the received quality is proportionalh tnumber of received
descriptions. MDC is less efficient in terms of compressieerbead than SVC,
but more resilient against packet loss. It is especiallfulsEmulti-path trans-
missions are used for the content, e.g., in a live streamieday utilizing mul-
tiple tree structures. Here, a part of the stream is tramsdih each tree, so that
one description per tree can be used.

In general, the path diversity inherent in P2P overlays ixchaled to be an

110

4.2 Background and Related Work

advantage for streaming applications. Regardless of thetste of the delivery
network, i.e., whether it forms a tree or a mesh, multiplehpab the receiver
enable bandwidth aggregation, packet loss de-correlatidndelay reduction. It
is also stated that receiver-driven approaches, wherenthgeints of the stream
coordinate the streaming process, are a suitable stradegyréaming. However,
optimal decisions can only be taken if global network knalgle is available,
which is an unrealistic assumption.

A P2P live-streaming system utilizing SVC is presented B].[Eirst, an over-
lay forming multiple trees and distributing a H.264/AVC gmlvia this multi-tree,
and a single-tree SVC overlay are compared theoreticalig. $hown that the
overlay based on the SVC video allows for a less complexibigton approach
while delivering a better quality and being fairer when tlierds show a hetero-
geneous capacity. Fairness here means that peers recanadity groportional
to their bandwidth contribution.

Next, a version of the Stanford Peer-to-Peer Multicast (8P PBrotocol
adapted to support SVC video is used for a measurement shalganpared
to a standard AVC version. The video uses the temporal stiglaleature of
SVC, consisting of the base layer and one enhancement Kyesverlay net-
work consisting of 100 peers is measured. The results shawtith SVC version
of the overlay consistently outperforms the AVC versionhwi¢spect to qual-
ity, packet losses and stalling occurrences when uploadoiigds scarce in the
system.

The systems in this section incorporate scalable or maltigiscription video
codecs. However, they are all designed for a live-strearapygication, which
differs from a VoD system. In a live streaming system, allrpegemand the
same content at roughly the same time. In contrast, clierasvoD system may
request the video at arbitrary times and are thereforedsted in different parts
of the video. Thus, the resulting demands on the chunk $etestrategy differ,
necessitating a different approach for VoD streaming. R, twe present our
own solution in the next section.

111

4 Video Streaming Overlays

4.3 Quality of Experience-Awareness in VoD
Streaming Overlays

In order to support heterogeneous video quality, we congidetemporal scal-
ability defined by the SVC extension of the H.264/AVC codexdascribed in
the last section. Measurements show that an increase ofahmefrate leads to
the best trade-off between a higher QoE of the end user artidih preserva-
tion [93]. In order to be able to support SVC videos with tengbgcalability, we
change the format of the file that is exchanged in the Tribharm, as well as
the chunk selection strategy. We describe these changhes foltowing.

We limit our evaluation to a video with three layers, the blger and two
enhancement layers. However, the approach describedseasily extensible to
a video with an arbitrary number of layers.

4.3.1 Shared Video File Adaptation

In both BitTorrent and Tribler, one file is shared per swarrhjol is separated
into chunks and blocks. We adapt this mechanism by logicsdlyarating the
video file to be shared into its layers. Conceptually, wettezech of the layers
as a separate file to be shared. Each of these files, whichimeeither the base
layer or an enhancement layer, comprises its own set of chanét blocks, just
like for a single file to be shared. This allows clients to adifferentiate be-
tween content belonging to different layers, while the basechanisms for data
transfer with the exception of the chunk selection remaiaffected. Thus, the
additional complexity by adding scalable videos is minigdaiz

The chunks of each layer are of the same size in our mechabigeto the
different sizes of the frame types, this leads to a differemhber of frames being
grouped in one chunk. While this means that chunks with timeesindex in
different layers do not necessarily hold video data for e time period, this
approach enables a fragmentation of the video independamt the streamed
content. It also simplifies the chunk selection, since tigerdhm does not have

112

4.3 Quality of Experience-Awareness in VoD Streaming Ques|

to take into account chunks of varying sizes.

Accordingly, the information in the torrent-file has to beustured to reflect
this format and to allow peers to derive the number of chunkdowwnload per
layer. Thus, each layer has an ID that, together with thelkchiDrwithin a layer,
allows to identify all chunks of the complete movie file.

4.3.2 Adapted Chunk Selection Strategy

Our aim is to download chunks so that a video quality is at@ithat can be
supported by the network capacity. Therefore, we pri@it@wer layers over
higher ones, while still keeping the set separation andrgéireorder download
strategy of Tribler, cf. Fig. 4.5. In the high-priority sete only download the
base layer of the video to make sure we can always play outitie®\and to
avoid stalling times. Thus, if chunks from the base layet #ra close to their
playout deadline are missing, they have the highest pyidoitoe downloaded.
As a consequence, a client never downloads the enhanceayems lfrom the
beginning of the video, which is a minor limitation of our hitecture and could
be circumvented by a longer buffering time.

High Medium Low
priority priority priority
Layer set set ; set ;
index ! !

s 4

2
1 i S _
0

Default order
of preference

Video Playback
start position

Video
end

Figure 4.5:Adapted chunk selection priority sets

113

4 Video Streaming Overlays

Beginning with the second or medium-priority set, we firstvdtoad chunks
of the base layer according to the rarest first policy withia $et. If all of these
are already downloaded or no chunk from that layer can betselewe start
downloading chunks from enhancement layer 1, also chodbmgarest chunk
in that set first. In general, we only download chunks fromghai enhancement
layer if all chunks of the lower layers are locally availablecannot be selected,
with one exception that is described below. The priorityhaf different chunks
thus reflects their relative importance, both in relatiothi® playout deadline as
well as with respect to the layer they belong to.

This strategy only relies on the current download state, the available and
missing chunks, in order to select the next chunk to be regdeSherefore, no
additional measurements like average QOE or download hidtithare used to
influence the chunk selection. This keeps the complexityoasds in current
overlays.

Finally, we have the same selection process in the lowdpyiset, which is
only considered if all chunks from the other two sets are doadfed or unavail-
able from other peers. We adapted the sizes of the priorityteel80 s and 360 s
for the first and the second priority set, respectively.

During our evaluation, we found that due to the strict ptipation of the base-
layer chunks, the content from the enhancement layers wasgdited much less,
which led to a lower overall quality of the video at the peénsorder to utilize
seeders better, we introduce a check whether a local peecli®ked by a seeder
or not. By default, the local peer prefers enhancement lalyanks if it is un-
choked by a seeder, if it cannot download a chunk from the-prgbrity set. It
will still download base layer chunks in the mid- and lowepity sets from seed-
ers if no enhancement layer chunks are eligible. We will caraghe strategies
with and without seeder distinction in Section 4.5.

114

4.4 Simulation Model

4.3.3 Playout Strategy of a Scalable Video

Since we want to consider the quality of the video playoutune@valuation, we
need to take into account the playout strategy of the plagewell. In Tribler,
the video playout is stalled whenever frames are not aJail@btime for their
playback.

Since we want to exploit the properties of a scalable video fie adapt this
strategy to only stall the video if frames from the base larermissing. In case
frames from enhancement layers are missing, the cliensmaythe video with
the highest number of layers attainable with the locallystng blocks, i.e., it
does not wait for missing frames from enhancement layersa Asnsequence,
a peer that finishes watching the complete movie does nossacly store the
complete video file, since it might have missed some churtks nhancement
layers.

By default, no chunks are requested that cannot be playedrbus, a peer
might never become a seed in the BitTorrent sense of the Wordeflect this
difference, we therefore use the expression 'serving tingtead of seeding time
for the interval a peer has finished watching the movie butilsasline and
providing its completed chunks to the swarm.

Additionally, we buffer the video for 60 s before startingpiay it out. Since
we do not consider a Constant Bit-Rate (CBR) video, but dsitenthe system
according to the mean bit rate, we aim at having enough daikable so that the
varying data rate of the video does not lead to a buffer ungieiduring playout.
We consider this waiting time to be tolerable for end usersifiteos of sufficient
length.

4.4 Simulation Model

In our performance study, we simulate one Tribler swarm foodrs in the steady
state. It shares an SVC video file with temporal scalabgisylescribed in the last
section. We use a self-written Java simulator that inclialekey mechanisms

115

4 Video Streaming Overlays

of Tribler and our adaptations. If not stated otherwise, \&eehtwo classes of
peers with different upload bandwidths of 128 Kbit/s and KBR/s, which are

in the following respectively denoted as 'slow’ and as "famters for the sake
of readability. These values are based on realistic acagsacities of typical

DSL connections with a download bandwidth of 1 Mbit/s and 2tbWe use

these relatively low access bandwidths to evaluate a defaahario where the
total bandwidth demand in the swarm cannot be met by theuptahd capacity.
Thus, we can observe peers that are not able to play out thgletnvideo, and
investigate whether our modifications work under theseuonstances.

In contrast to the model in the last chapter, we model thenkpf the peers
as the only network bottleneck here and again use a flow-hasaetlay model
to simulate the data transfer of blocks. We make this assampte to the low
upload capacity of the peers in comparison to their downlmattwidth and to
the video bit rate. Each block transmission constitutesflmve that shares the
bottleneck bandwidth fairly with all other flows from the saisource.

The shared video is based on a source video containing asdepi$ a popular
TV show and has a length of 22 min. The file has a total size & B& and a
overall average video bit rate of 336 Kbit/s. It is separated three layers using
the Joint Multi-View Video Model (JMVM) [79], with a Group{ePicture (GoP)
size of 16 embedded frames to achieve temporal scalabitityle 4.1 gives a
detailed overview on the characteristics of the individagéers.

We observe that the base layer with index 0 of the scalabkeovids the high-
est bit rate. This layer has to be played out by every peehatoan attained bit
rate lower than 229 Kbit/s will lead to stalling. The highayérs have less band-
width demand, but are still large enough that a streamindhar@sm needs to be
efficient to distribute them.

The peer arrival process is modeled by a Poisson processawitean inter-
arrival time E[A] of 5s. The peers are distributed among the two access band-
width classes according to a pre-defined share, by defalflbhthe peers per
class. Peers stay online until they have finished watchiagitteo plus an expo-
nentially distributed serving tim& with a default mean valu&[S] of 10 min.

116

4.4 Simulation Model

Table 4.1:Movie layer information
layer mean bit | mean frame| cumulative mean| size
index | rate (Kbit/s) | rate (fps) frame rate (fps) | (MB)

0 229 5.994 5.994 37.8
1 48 5.994 11.988 8.0
2 59 11.988 23.976 9.7

Adding the buffering time of 60s before starting the playband the video
length of 22 min, we thus get a mean number of roughly 400 avently online
peers, neglecting stalling times. A swarm of this size idisga for an average
file-sharing swarm [78]. The swarm size is higher than in thevipus chapter
since the online time of the peers now is governed mainly leyvideo length
and not by the download time of the peers.

Additionally to the peers, we have a numbeég.,.,...- of servers in the network
that act like normal peers but have the complete video froenstiart and are
assumed not to go offline during the simulation. A single sehas an upload
capacity of 512 Kbit/s, allowing us to scale the total senagracity by adjusting
the number of servers. A high number of servers reflects tbietifeat a high
capacity is provided by the content provider to support treasning service. By
default, we install 40 servers, leading to a total uploadacép of 20 Mbit/s. We
assume that a content provider has to support a number efetiffvideo streams,
so that this value is realistic for one single stream.

117

4 Video Streaming Overlays

4.5 Performance Evaluation of QOE-Aware
Mechanisms

In this section, we present the results from the conductadlation experiments.
Our main performance indicator for the evaluation is the-eser Quality of Ex-
perience (QoE) when watching the video. While the downlda is the most
important performance characteristic in file-sharingeeidtreaming users no-
tice several different parameters related to the watcheédoviWe evaluate two
metrics that can be easily measured and interpreted alsalisystems. Full ref-
erence metrics used in the related work for live streaminghsas PSNR [29],
are not applicable to our scenario, since any availabledrand especially the
full base layer, can be always played back without any distor Unavailable
B-frames are not played back at all.

The first considered metric is the number of layers playesdowtverage. This
allows us to see how many layers could be downloaded in timglégout. Since
we use stalling for the base layer only, this value is alwédysa 1 and below 3.
We first compute the mean value of layers played out for one@es the video
playout time, and then average over all peers in one run dfigfures, we show
the mean values and 95% confidence intervals of this value ¥euns with
different seeds.

As a second QOE indicator, we evaluate the total stalling taver the video
length. The longer the user has to wait for a forcibly paudddo; the lower the
quality is. We cumulate all stalling times for one user, dmehntagain compute
the mean value over all peers in one run. The average valde358h confidence
intervals are again calculated over 10 runs with differeets.

We tested the proposed architecture for different netwodd Iconditions.
Load is again defined as the download demand in comparisdmettotal up-
load capacity of the swarm, similar to Section 3.5. Howetrex,demand here is
characterized by the bit rate of the video with the highestligu To generate
different load situations, we vary the number of servers tiiedcomposition of
a peer set with heterogeneous access bandwidths, as wak agnving times

118

4.5 Performance Evaluation of QoE-Aware Mechanisms

Table 4.2:0verview on evaluated scenarios

Scenario Changed Parameter Section
Server Capacity Nserver 45.1

Peer Heterogeneity Share of slow peers 452,453
Server Breakdown Server reduction 45.2
Download Strategy Download after watching 45.3
Chunk Selection Strategy Chunk selection strategy at seederg.5.4
Serving Times E[S] 454

of the peers. Additionally, we test the different downloadi a&hunk selection
strategies described in Section 4.3, and evaluate the ifigkitf the algorithm in
a scenario where servers fail spontaneously. An overvietherexperiments is
given in Table 4.2.

4.5.1 Influence of the Network Load

First, we take a look at the relation between network resssuand the achieved
QoE. Additionally, we want to investigate how hybrid a P2RD\&ystem needs
to be, i.e., how many servers are needed, to provide a goditygodhe end user.
To this end, we vary the server upload capacity in the defaabhario.

We vary N from 1 to 80, which directly translates to the upload capacit
resources a content provider would offer to support theidigion effort. The
resulting QoE indicators for the two peer classes are degpictFig. 4.6 and 4.7.

The first observable effect is that a larger number of seread to a better
quality played out at the peers, i.e., more peers can plagnotg layers on aver-
age. This is expected, since more servers simply mean arhighead capacity
in the network without adding download demand. Thus, thd loahe system is
reduced. However, this also shows that our adapted chue&ts®i can make use
of the offered additional capacity by adapting the numberdfancement layers
downloaded in time for playback. With 60 or more servers, ae accumulated
30 Mbit/s server upload bandwidth, the quality of the videgdod or nearly per-
fect for all peers. In relation to the roughly 90 Mbit/s totaindwidth demand by

119

4 Video Streaming Overlays

the clients, this shows that the overlay can handle a largeopthe traffic load.
Still, under the specified conditions it cannot provide adyqoality all by itself,
as the low number of layers for just one server shows.

2.5f

Layers played out
N

1.5¢
—slow peers
—fast peers
1 ; . . : :
0 10 20 30 40
Server capacity (Mbit/s)

Figure 4.6:Mean number of layers played out for different number of eesv

Another interesting aspect of the architecture is that theragge number of
layers played out is higher for the set of fast peers. Alses¢tpeers experience
no stalling time, whereas the peers with less upload capsbiw a high mean
stalling time for a low number of servers. This can be exgdiwith the give-
to-get mechanism implemented in Tribler in the unchokingcpss. This mech-
anism prefers overlay neighbors with a good upload behanitiie unchoking
process of a local peer. Since peers with more capacity daadimore chunks,
they get a better give-to-get rating and are therefore mefen the unchoking
process. For a P2P VoD streaming overlay, this indicatesspes actually in-
fluence the quality they get by adapting the upload capakéy &llocate to the
application, in case they do not utilize their full uploagaaity. This is a good

120

4.5 Performance Evaluation of QoE-Aware Mechanisms

incentive for peers to contribute to the overlay.

70} —slow peers|{
—fast peers

Stalling time (s)
N w N al D
o o o o o

=
o

o

0 10 20 30 40
Server capacity (Mbit/s)

Figure 4.7:Mean stalling times for different number of servers

Finally, we observe that the stalling times are negligiloletfoth peer classes
for a server capacity of 10 Mbit/s or higher. We conclude ,teithough the ac-
cording values for the numbers of layers indicate that th@swcapacity is not
high enough to support the video in its highest quality, taseblayer is always
available. Thus, our strategy prefers the base layer entmugihsure that a peer’s
download slots are not wasted.

4.5.2 Influence of Peer Heterogeneity and Server
Breakdown

Next, we change the composition of the peer set by varyinghiaee of slow

peers between 0%, 10%, the default 50%, 90%, and finally 10@8ite keep-

ing the total number of peers stable. A lower number of fagrpenean less
total upload capacity in the swarm, so that we again influe¢nedoad with this

121

4 Video Streaming Overlays

parameter. Additionally, we investigate how the QoE-av&irategies cope with
different swarm compositions. To judge how flexible thesatsgies are without
manual parameterization, we let half of the initial 40 sesviail simultaneously
after half of the simulation runtime. We show the resultdfoth groups of peers,
i.e., peers going online before and after the server breakdo

3

2.5f

after
breakdown

Layers played out
N

1.5¢ \
I--..
—slow peers e ool ,
—fast peers
! 0 10 50 90 100

Share of slow peers (%)

Figure 4.8:Mean number of layers played out for different peer set caitions,
before and after server breakdown

Figure 4.8 shows again the average number of layers playefbiothe dif-
ferent peer set compositions. Similar to the previous testile average quality
decreases for both peer classes when less total uploadtydpawvailable in the
swarm. Due to the give-to-get rating, however, the fastpbkave to sacrifice less
quality than the slow peers. Since the fast peers in gensrabged higher, they
utilize the remaining upload capacity better than the slewrg, which have to
bear the consequences of the swarm capacity reduction.

The same effect can be observed for the peers that go ontieretlaé reduc-
tion of the server capacity. Both, fast and slow peers, cay plit less layers on

122

4.5 Performance Evaluation of QoE-Aware Mechanisms

average. However, the reduction is less for the fast pearsftir the slow peers
in comparison to the time when all 40 servers are active. iBragain due to the
higher give-to-get rating of the fast peers, which are thoeeepreferred in the
unchoking process of all peers and the servers. Fast pegrsigiless quality
than slow peers if there are more slow peers in the swarm.

70} | —slow peers

—fast peers
fet
@50 after ,’I {
_qg" 40} breakdown
230} ; before breakdown
e B
N 20t K

[any
(@]
—_

—

o

0 10 50 90 100
Share of slow peers (%)

Figure 4.9:Mean stalling times for different peer set compositiondpotee and
after breakdown

We again observe the occurrence of stalling just for thegpet are close to
the minimum playout quality, cf. Fig. 4.9. Especially thewlpeers experience
stalling times of up to a minute on average after the seneakefown. However,
even with the full server capacity the load in the swarm iht@gough for a high
fraction of slow peers that significant stalling occurrencan be observed. The
fast peers, on the other hand, show no or only very shorirgjalimes both before
and after the server breakdown. This coincides with theivelg high quality of
on average more than two layers in any case.

In general however, the chunk selection strategy adapte8\&€ copes with

123

4 Video Streaming Overlays

the node failures and the according load increase duringvthem lifetime with-
out any parameters needed to be adapted to the new situatfote the load is
high enough to lead to stalling, the total stalling times lawe enough that the
streaming process is not fully interrupted.

4.5.3 Comparison of Download Strategies

The variants of the download strategy we wish to compare iB1agkperiment
is the default strategy to stop downloading chunks when lieatchas finished
playing out the movie, and a strategy where the peer corgitmidownload the
complete movie in any case. In the latter case a client coeswpload capacity
of the swarm even if it no longer profits from it, while othergpg might put this
capacity to better use since they are still watching the mdwn the other hand,
the peer continuing to download may be able to provide morgecn after it

completes the movie file, and thus become a more valuableeéurchunks. We
compare these strategies again for different compositiéise swarm, similar
to the last section.

The results depicted in Fig. 4.10 show that this considemadoes not pay off
for the default setting of the serving time, i.e., 10 min.Hétpeers continue to
download after they have finished watching the movie, alfpeea average play
out less layers. Thus, we conclude that the upload capagitgumption of the
still downloading peers offsets the gain by having more sesifor the complete
video file. This is also due to the relatively high load of theasm, since there
is less upload capacity available in total than would be s&aey to serve every
peer. Therefore, upload bandwidth is more valuable thanoa gigstribution of
chunks, since many peers cannot play out all chunks in tleeast. For less
loaded swarms, e.g., for swarms where the peers stay onlioh fonger than
the movie playout time, this could change.

With respect to the stalling times, the strategy to contidaenloading also
performs worse than the default strategy, cf. Fig. 4.11.1¢hie fast peers can
download the base layer fast enough with both strategiessltw peers experi-

124

4.5 Performance Evaluation of QoE-Aware Mechanisms

3 T T
—slow peers
—fast peers
25f F---l
5
o
E download after default
%_ 2 watching ~._ Strategy
" =
g
3 I
1.5¢ . N
e B
1 X . . STt ---- =<
0 10 50 90 100

Share of slow peers (%)

Figure 4.10:Mean number of layers played out for different downloadtstes

ence stalling times of several minutes on average if peersnue@ to download.
In contrast, the default strategy leads to comparably stalling times even for
the slow peers, although these still can only play out thewid a relatively low
quality.

4.5.4 Influence of Serving Times and Comparison of
Chunk Selection Strategies

In this experiment, we influence the serving time of the paers the time peers
are online after they have finished watching the video. Sintib the seeding
time, a longer serving time leads to a higher available uptzacity and there-
fore less load. We vary the serving times from 5 to 30 min. Addally, we also
compare variants of the chunk selection strategy with thggegment. For the
chunk selection, we have the default implementation thatifizes chunks from

125

4 Video Streaming Overlays

300

—slow peers _,.—"I """" I
2501 —fast peers ,/l
@ 200f ’
2
£ . download after
> 1507 l/' watching
3
& 100
default strategy
50t
ot r = r : .
0 10 50 90 100

Share of slow peers (%)

Figure 4.11:Mean stalling times for different download strategies

enhancement layers when being unchoked by a seeder. Tdtegsttakes advan-
tage of the fact that seeders are sources for the enhanc¥thunks, which
have a lower availability than the base layer chunks undgir lnad conditions.
We compare this with a naive implementation that does notdisbetween seed-
ers and leechers to see whether this mechanism has an effect.

Figure 4.12 shows the mean number of layers played out fdr &toategies
with varying average peer serving times. For both chunkctiele mechanisms,
we see a direct effect of the higher serving times on the tyaflthe video. Since
peers that stay online longer can upload more data, theceetthe load on the
swarm. With a serving time of 30 minutes, all peers can playttoel video with
nearly maximum quality.

Still, we observe that the chunk selection that prefers ecdment layer
chunks when being unchoked by seeders leads to a highergaveideo qual-
ity for both peer groups. The quality gain of this strategyidiishes, however, if

126

4.5 Performance Evaluation of QoE-Aware Mechanisms

2.5f

Layers played out
N

1.5¢
/! —slow peers
1
—fast peers
L= . . . : ;
5 10 15 20 25 30

Serving time (min)

Figure 4.12:Mean number of layers played out for different chunk setecti
strategies

the peers show longer serving times, i.e., when the loackiewrarm is decreased.
This can be explained by the higher number of layers that eaidyed out by all
peers, and therefore a generally higher availability ofaacement layer chunks.

On the other hand, the stalling times for the slow peers agkeniwith the
more sophisticated chunk selection strategy in the scemdifh a serving time of
5 minutes, cf. Fig. 4.13. This can be attributed to the faat base layer chunks
are shared more with the naive chunk selection, and areftinermissing less
often when they are required for playback. Thus, in a swarth wihigh load,
it does not necessarily pay off for all peers to prefer to doad enhancement
layers, even if the opportunity to do so appears seldom.

Similar to the results in Section 4.5.1, we can see the meréer of the base
layer due to our strategy here. Stalling occurs only for giegrtime of 5 minutes
for the slow peers, where the number of layers played outSsof.lower on

127

4 Video Streaming Overlays

40

—slow peers
351 —fast peers |

30r

. seeder distinction
n 25 L

o

naive chunk selection

Stalling time (:
B RN
(%]

o

o O

5 10 15 20 25 30
Serving time (min)

Figure 4.13:Mean stalling times for different chunk selection stragsgi

average. Thus, in the other scenarios the base layer igtmedrenough to ensure
that, if enhancement layers are continuously availablgfyout, the base layer
is as well.

4.6 Lessons Learned

From the observed results, we conclude that we can efféctagapt existing

overlay mechanisms, in particular the chunk selectionyppert scalable videos.
The changes do not necessitate completely new overlay &glaely only on

knowledge the peers currently possess, i.e., which churksleeady down-
loaded and which are not. The evaluated architecture daeseeal QoE mea-
surements of the video played out or network probes to adagitanges in the
streaming process. The peers still react to changes in taenswapacity, and
should be able to react to varying network conditions as.Wélus, our mecha-

128

4.6 Lessons Learned

nism is easy to implement in practice and introduces no it signaling or
management overhead.

Due to the give-to-get unchoking mechanism, a basic suppohteterogene-
ity exists. Peers with a higher upload capacity are servél mvore bandwidth.
While the upload capacity of a peer might not always be catreelwith the video
quality that can be supported by the according end-usecégthie principal dif-
ferentiation between clients with heterogeneous accessidths is included in
the overlay mechanisms. The new chunk selection, on the logimel, ensures that
the bandwidth is used for downloading the video layers ireoad usefulness.

The results show that this priorization works well, sincengehat can support
the streaming of a higher level of quality do not experienia#isg. Since stalling
for scalable videos can only occur if frames from the baserlaye missing, this
proves that the base layer is always given the highest tyridrus, only peers
which cannot support the base layer bit rate are forced tegtne video.

We provided and evaluated implementation alternativeghferchunk selec-
tion and the download strategy. For the download strategyconclude that it
is not feasible for peers in a highly loaded swarm to contidoenloading the
video after the playout process has stopped. As long asdipkgaacity is scarce,
the negative effect of this additional bandwidth consupptiutweighs the better
chunk availability. Regarding the chunk selection, it paffso prefer download-
ing higher layers from seeders in our scenarios. Thus, théwealy high avail-
ability of the base layer is countered for peers that can atiphigher level of
quality. Still, this strategy can backfire if the load in tiveesm is high enough so
that peers can only sustain the streaming of the base lalgersWarm situation
as a whole therefore influences how well these strategidsrper

Regarding the feasibility of an overlay to support streamnour experiments
show that there is a need for a fixed server capacity in ordsupport an ac-
ceptable video quality for the users. The overlay alone tsatbe to provide
the necessary upload capacity under the evaluated loadiomsd This is in line
with results from literature. However, the peers contésignificant amount of
capacity resources that can therefore be saved by the $tigganrvice provider.

129

4 Video Streaming Overlays

Therefore, using an overlay with server support is a cdsttve alternative to
pure client-server streaming architectures. Moreovecesihe servers can partic-
ipate in the overlay with the same behavior as peers, it iplsino add to remove
server capacity during the lifetime of a swarm. In compagatblent-server sys-
tems, removing a server might result in a connection lossfaréfore in a stream
loss for the users connected to that server.

130

5 Conclusion

Now this is not the end. It is not even the beginning of the Badl.
it is, perhaps, the end of the beginning.
Winston Churchill (1874 - 1965)

In today'’s Internet, building overlay structures to pravia service is becom-
ing more and more common. This approach allows for the atilim of client re-
sources, thus being more scalable than a client-serverlrimottés respect [96].
However, in these architectures the quality of the proviekadice depends on the
clients and is therefore more complex to manage. Resodutization, both at the
clients themselves and in the underlying network, deteerttie efficiency of the
overlay application. Here, a trade-off exists between #s®urce providers and
the end users that can be tuned via overlay mechanisms. fBsosirce manage-
ment and traffic management is always quality-of-serviceagament as well.

In this monograph, the three currently significant and madely used over-
lay types in the Internet were considered. These overlagsmplemented in
popular applications which only recently have gained ingooce. Thus, these
overlay networks still face real-world technical challeagwhich are of high
practical relevance. We identified the specific issues foh ed the considered
overlays, and showed how their optimization affects thderaffs between re-
source efficiency and service quality. Thus, we suppliedinsights and system
knowledge that is not provided by previous work.

For search overlays and specifically Distributed Hash EafiTs), the cur-
rent state of research and the evidence in form of actualpfemented systems
show that one-hop structures are the most efficient solditiotime-critical ap-

131

5 Conclusion

plications. While best-effort services may use less imtenected overlays, a full
mesh is viable and necessary in enterprise environments.

However, these evaluations focus on overlay traffic as ttregoperformance
indicator, and neglect the processing and storage loadeondties themselves.
To remedy this, we presented an analysis based on a re@trgeself-developed
architecture. In contrast to the existing work, we evaldate query load on the
nodes. We showed that the internal query load is signifigdmitiher than the
externally seen load, up to a factor of 4 in the consideretkaysAdditionally,
we proved that storage space on the participating nodesecaaded for shorter
search times. This trade-off can be influenced by the sysizsrasd the redun-
dancy of stored data. Thus, such a system can be dimensioedoafigured
using our analytical model.

The main issue with the second class of overlays, P2P filerghsystems, is
the amount of generated inter-domain traffic. Currentlynynaesearch projects
and industry initiatives work on solutions for that problefthe Application
Layer Traffic Optimization (ALTO) IETF working group is in éhact of creat-
ing a standard for the implementation of these solutiong mMost promising
approach in this context is locality-awareness. We addedwn solution of Bi-
ased Unchoking to the existing Biased Neighbor Selectiochawgism, targeting
a different overlay mechanism. We showed that the two algms complement
each other and that their combination outperforms eactedfttividual solutions
alone in terms of traffic savings. Moreover, we observed tlopgsed mecha-
nisms in realistic scenarios. We used input from measurestadies to model
swarms that show a similar heterogeneity as live swarmsein pleer distribution
and their access bandwidths.

With this setup, we revealed previously unknown drawbacksxsting
locality-awareness solutions, namely the introductionrdgirness in the down-
load speed of the peers. In these scenarios, peers in smedltake significantly
longer (up to 20 percent) to download a file with the combaoratf both locality-
aware schemes. We showed that this can be regulated by bsinmatameters
offered by both Biased Neighbor Selection and Biased Uricigol&till, our con-

132

clusion is that locality-promotion mechanisms in theirreat form are not ben-
eficial for all clients, and are therefore unlikely to be guteel by the end users.

Finally, the overlays offering a video streaming serviceeveonsidered. The
developing problem of heterogeneous end user devices \ffétreht access
speeds has been addressed only recently with the adventicéraf scalable
video codecs. These have found their way into live-stregroirerlays, but not
into the VoD streaming class considered here.

Therefore, we developed adaptations to an existing VoDitethre, Tribler,
that enable the usage of scalable video codecs. We evalthatedystem in a
simulation study, and showed that different types of ciaran retrieve the video
according to their access capabilities. A base video quadin be provided in
most scenarios without any occurrences of stalling. Theaneimg capacity is uti-
lized to provide a higher quality according to a peer’s cégachus, the aim of
supporting heterogeneous clients with the same overlaaished. Additionally,
the peers adapt to the capacity available in the swarm byraattcally changing
the quality of the video played out. Thus, our architectuesdnot have to rely
on measurements as configuration input, which would addiaddl overhead.
Since such an architecture is feasible, it is most likely toatent providers will
harness the benefits of P2P video streaming, even if theyahhighly heteroge-
neous set of clients.

The aforementioned contributions comprise an evaluatfocurent overlay
challenges and the optimization potential of P2P overlefrielogies. On the ba-
sis of this work, future evaluations of the considered @yegimay be conducted.
For file-sharing networks, the current locality-promotiechemes may be im-
proved to introduce more fairness in real swarms. This weualslre that such a
traffic management scheme will be accepted by the users hasvgy the ISPs.
As a consequence, Economic Traffic Management would be imgiéed, where
all involved parties have an incentive to participate. k& ¢hse of VoD streaming
overlays, the same holds true, while additionally, the wamkthe streaming of
scalable videos could be expanded to include more than peedtfyscalability.

133

Bibliography of the Author

(1]

5]

— Journals and Book Chapters —

T. Hoffeld, D. Hausheer, F. Hecht, F. Lehrieder, S. Oerehsl. Papafili,
P. Racz, S. Soursos, D. Staehle, G. D. Stamoulis, P. Traya@dsB. Stiller,
FIA Prague Book, ISBN 978-1-60750-007-€h. An Economic Traffic
Management Approach to Enable the TripleWin for Users, J&Rd Over-
lay Providers, . Towards the Future Internet - A EuropearcReh Per-
spective: |I0S Press Books Online, 2009.

— Conference Papers —

M. Menth, J. Milbrandt, and S. Oechsner, “Experience &gagdmission
Control (EBAC)”, inThe Ninth IEEE Symposium on Computers and Com-
munications (ISCC2004Alexandria, Egypt, 2004.

J. Milbrandt, M. Menth, and S. Oechsner, “EBAC - A SimplelrAission
Control Mechanism”, inCNP 2004, 12th IEEE International Conference
on Network ProtocolsBerlin, Germany, 2004.

S. Oechsner and O. Rose, “A filtered beam search appra@asthieduling
cluster tools in semiconductor manufacturing”, limdustrial Engineering
Research ConferencAtlanta, U.S.A, 2005.

S. Oechsner and O. Rose, “Scheduling Cluster Tools UBiltgred Beam

135

Bibliography and References

(6]

(8]

(10]

(11]

136

Search and Recipe Comparison”, Winter Simulation ConferenceéOr-
lando, U.S.A., 2005.

F.-U. Andersen, K. Tutschku, T. HoR3feld, and S. Oechstéarlassliche
Peer-to-Peer Technologie als Steuerungsverfahren fliinftigge mobile
Zugangsnetze”, inl. ITG-Mobilfunktagung, Technologien und Anwendun-
gen, ISBN 3-8007-2942-®snabriick, Germany, 2006.

T. HoRRfeld, S. Oechsner, K. Tutschku, and F.-U. AnderSEmaluation of

a Pastry-based P2P Overlay for Supporting Vertical Handpue IEEE

Wireless Communications and Networking Conferehes Vegas, U.S.A.,
2006.

T. HoRRfeld, S. Oechsner, K. Tutschku, F.-U. Andersem, BnCaviglione,
“Supporting Vertical Handover by Using a Pastry Peer-terfaverlay Net-
work”, in Mobile Peer-to-Peer Computing MP2P’06, in conjunctionhwit
the 4th IEEE International Conference on Pervasive Conmguéind Com-
munications (PerCom’06Pisa, Italy, 2006.

S. Oechsner, T. HoR¥feld, K. Tutschku, and F.-U. Anders&upporting
Vertical Handover by a Self-Organizing Multi-DimensioiR2P Overlay”,
in 2006 IEEE 63rd Vehicular Technology Conferentéelbourne, Aus-
tralia, 2006.

S. Oechsner, T. Hof3feld, K. Tutschku, F.-U. Andersem B. Caviglione,
“Using Kademlia for the Configuration of B3G Radio Access Wst
in Mobile Peer-to-Peer Computing MP2P’06, in conjunctionhwihe 4th
IEEE International Conference on Pervasive Computing anch@unica-
tions (PerCom’06)Pisa, Italy, 2006.

S. Oechsner and P. Tran-Gia, “Performance EvaluatianReliable Con-
tent Mediation Platform in the Emerging Future Internet’20th Interna-
tional Teletraffic Congress (ITC20pttawa, Canada, 2007.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Oechsner, S. Soursos, |. Papafili, T. HoRRfeld, G. Bursulis, B. Stiller,
M. A. Callejo, and D. Staehle, “A framework of economic traffnanage-
ment employing self-organization overlay mechanisms”3id Interna-
tional Workshop on Self-Organizing Systems IWSQS/¥hna, Austria,
2008.

T. Zinner, S. Oechsner, T. HoR3feld, and P. Tran-Gia, t@:Trade-off be-
tween Efficiency and Congestion in Location-aware Overlaworks -
Example of a Vertical Handover Support System’8th International Con-
ference on Peer-to-Peer Computing (P2P 20@8chen, Germany, 2008.

S. Oechsner, T. HolR¥feld, and P. Tran-Gia, “Performdaealuation of a
Distributed Lookup System for a Virtual Database Servean’20th ITC
Specialist SeminaHoi An, Vietham, 2009.

S. Oechsner, F. Lehrieder, T. HoR¥feld, F. Metzger, Ksdep, and
D. Staehle, “Pushing the Performance of Biased Neighboec8eh
through Biased Unchoking”, iBth International Conference on Peer-to-
Peer Computing (P2P 2009%eattle, U.S.A., 2009.

R. Pries, D. Staehle, S. Oechsner, M. Menth, S. MentH, RinTran-Gia,
“On the Unfair Channel Access Phenomenon in Wireless LANs21st
International Teletraffic Congress (ITC 2Baris, France, 2009.

K. Pussep, S. Oechsner, O. Abboud, M. Kantor, and Blegtilimpact of
Self-Organization in P2P Overlays on Underlay Utilizatian The Fourth
International Conference on Internet and Web Applicatiand Services
Venice, Italy, 2009.

S. Oechsner, T. Zinner, J. Prokopetz, and T. HoRfeldpffrting Scalable
Video Codecs in a P2P Video-on-Demand Streaming System®1th ITC
Specialist Seminar on Multimedia Applications - TraffictfBemance and
QoE, Miyazaki, Japan, 2010.

137

Bibliography and References

General References

(19]

(20]

[21]

(23]

(24]

(25]

138

L. Takéacs, “A single server queue with Poisson inp@perations Re-
search Vol. 10, No. 3, 1962.

P. Mockapetris, “Domain Names - Concepts and Fadliti®RFC 1034,
1987.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. lreyiand D. Lewin,
“Consistent hashing and random trees: distributed cagtvioigcols for re-
lieving hot spots on the World Wide Web”, BITOC '97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computifegv York,
NY, USA, ACM, 1997.

G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. piman, and Y. A.
Reznik, “Video Coding for Streaming Media Delivery on thédmet”, in
DCC '01: Proceedings of the Data Compression Conferghi¢ashington,
DC, USA, IEEE Computer Society, 2001.

D. Eastlake 3rd and P. Jones, “US Secure Hash Algoritli§HA1).” RFC
3174 (Informational), 2001. Updated by RFC 4634.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and SeiSdr, “A Scal-
able Content-Addressable Network”, $iGCOMM '01: Proceedings of the
2001 Conference on Applications, Technologies, Architest and Proto-
cols for Computer Communicationgol. 31, New York, NY, USA, ACM,
2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, Deedized Object Lo-
cation, and Routing for Large-Scale Peer-to-Peer Systambliddleware
'01: Proceedings of the IFIP/ACM International ConfereraeDistributed
Systems Platforms Heidelbeigpringer-Verlag, 2001.

[26]

[27]

(28]

[29]

[30]

[31]

[32]

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.la&aishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for InteAmplications”,
in SIGCOMM '01: Proceedings of the 2001 Conference on Apptioat
Technologies, Architectures, and Protocols for Computem@unications
New York, NY, USA, ACM, 2001.

R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNSibg a Peer-to-
Peer Lookup Service”, itlPTPS '02: Revised Papers from the First Interna-
tional Workshop on Peer-to-Peer Syste@ambridge, MA, USA, Springer
Berlin/Heidelberg, 2002.

T. J. Giuli and M. Baker, “Narses: A Scalable Flow-Baségtwork Simu-
lator”, Computing Research Repository (CoR®). cs.PF/0211024, 2002.

L. Lu, Z. Wang, A. C. Bovik, and J. Kouloheris, “Full-Reence Video
Quality Assessment Considering Structural Distortion &lmdReference
Quality Evaluation of MPEG Video”, itn Proc. IEEE Int. Conf. Multime-
dia, 2002.

Q. Ly, P. Cao, E. Cohen, K. Li, and S. Shenker, “SearchReplication in
Unstructured Peer-to-Peer Networks” |@S '02: Proceedings of the 16th
international conference on Supercomputihggw York, NY, USA, ACM,
2002.

P. Maymounkov and D. Mazieres, “Kademlia: A Peer-t@pformation
System Based on the XOR Metric”, iPTPS '02: Revised Papers from
the First International Workshop on Peer-to-Peer Systebasnbridge, MA,
USA, Springer Berlin/Heidelberg, 2002.

D. Tsoumakos and N. Roussopoulos, “A Comparison of feé&reer

Search Methods”, iRroceedings of the Sixth WebDB Worksh®an Diego,
California, United States, 2003.

139

Bibliography and References

[33] A. Binzenhofer and P. Tran-Gia, “Delay Analysis of a @ivbased Peer-
to-Peer File-Sharing System”, ATNAC 2004 Sydney, Australia, 2004.

[34] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient Rowgifor Peer-to-Peer
Overlays”, iINnNSDI'04: Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementaankeley, CA, USA,
USENIX Association, 2004.

[35] O.Heckmann, A. Bock, A. Mauthe, and R. Steinmetz, “TB®ekey File-
Sharing Network”, ininformatik 2004, Informatik verbindgiM. R. Pe-
ter Dadam, ed.), Vol. 2 oBeitrage der 34. Jahrestagung der Gesellschaft
fur Informatik e.V. (GI) Ulm: GI, Gesellschaft fur Informatik, Bonn, 2004.

[36] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber),Aand L. Garcés-
Erice, “Dissecting BitTorrent: Five Months in a Torrent'gdtime”, in Pas-
sive and Active Network Measuremevibl. 3015/2004 of_ecture Notes in
Computer Sciengeépringer Berlin / Heidelberg, 2004.

[37] R. Rodrigues and C. Blake, “When Multi-Hop Peer-to4Pleeokup Mat-
ters”, in Revised Papers from the Third International Workshop orr-Pee
to-Peer Systems, IPTPS 20(®. B. . Heidelberg, ed.), Vol. 3279/2005 of
Lecture Notes in Computer Scienteé Jolla, CA, USA, Springer Berlin /
Heidelberg, 2004.

[38] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Jdseand J. D.
Kubiatowicz, “Tapestry: a Resilient Global-scale Overfay Service De-
ployment”, Selected Areas in Communications, IEEE Journal\@i. 22,
No. 1, 2004.

[39] International Telecommunication Union, “H.264 : Adwzed video coding
for generic audiovisual services.” ITU-T Recommendatiogg4, 2005.

[40] T. Karagiannis, P. Rodriguez, and K. Papagiannakiot$th Internet Ser-
vice Providers Fear Peer-Assisted Content DistributipimdMC '05: Pro-

140

[41]

[42]

[43]

[44]

[45]

[46]

[47]

ceedings of the 5th ACM SIGCOMM conference on Internet Measnt
Berkeley, CA, USA, USENIX Association, 2005.

K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “Awy and com-
parison of peer-to-peer overlay network schem&Jjmmunications Sur-
veys & Tutorials, IEEE2005.

J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “ThelBént P2P File-
Sharing System: Measurements and AnalysisReer-to-Peer Systems,IV
Springer Berlin / Heidelberg, 2005.

X. Zhang, J. Liu, B. Li, and Y. S. P. Yum, “CoolStreamibDgdNet: a data-
driven overlay network for peer-to-peer live media streagiiINFOCOM

2005. 24th Annual Joint Conference of the IEEE Computer ami@uni-
cations Societies. Proceedings IERBI. 3, 2005.

S. Annapureddy, C. Gkantsidis, and P. Rodriguez, “Rliog Video-on-
Demand using Peer-to-Peer Networks”, limternet Protocol TeleVision
(IPTV) workshop in conjunction with WWW "0B006.

S. A. Baset and H. G. Schulzrinne, “An Analysis of the p&yPeer-to-Peer
Internet Telephony Protocol”, INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceed2@36.

R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bated A. Zhang,

“Improving Traffic Locality in BitTorrent via Biased Neiglap Selection”,

in 26th IEEE International Conference on Distributed CompgtBystems,
2006. ICDCS 20062006.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. WaJlktBurrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Disttéml Storage
System for Structured Data”, @SDI '06: Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implement&éskeley,
CA, USA, USENIX Association, 2006.

141

Bibliography and References

[48] C. Dana, D. Li, D. Harrison, and C. N. Chuah, “BASS: Bitilent Assisted
Streaming System for Video-on-Demand”,IBEE 7th Workshop on Mul-
timedia Signal Processing, 2008006.

[49] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “Insitghinto PPLive:
A Measurement Study of a Large-Scale P2P IPTV Systemih iAroc. of
IPTV Workshop, International World Wide Web Confere2896.

[50] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Raresirg§t and Choke
Algorithms Are Enough”, inlMC ’06: Proceedings of the 6th ACM SIG-
COMM conference on Internet measuremégw York, NY, USA, ACM,
2006.

[51] F. L. Piccolo, G. Bianchi, and S. Cassella, “EfficientrBiation of Band-
width Allocation Dynamics in P2P Networks”, Proceedings of the Global
Telecommunications Conference, 2006. GLOBECOM '06, Sandisco,
CA, USA 2006.

[52] J.Risson, A. Harwood, and T. Moors, “Stable High-Catya®ne-Hop Dis-
tributed Hash Tables”, iflSCC '06: Proceedings of the 11th IEEE Sympo-
sium on Computers and Communicatipk¥ashington, DC, USA, IEEE
Computer Society, 2006.

[53] A. Vlavianos, M. lliofotou, and M. Faloutsos, “BiToS:nBancing BitTor-
rent for Supporting Streaming Applications”, INFOCOM 2006. 25th
IEEE International Conference on Computer Communicati@og6.

[54] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISRd B2P systems
co-operate for improved performanceRCM SIGCOMM Computer Com-
munications Review (CCRYol. 37, No. 3, 2007.

[55] P. Baccichet, T. Schierl, T. Wieg, and B. Girod, “Lowlale Peer-to-Peer
Streaming using Scalable Video Coding”, Rroc. International Packet
Video Workshop - PV20QTausanne, Switzerland, 2007.

142

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “lropging VoD
Server Efficiency with BitTorrent”, iMULTIMEDIA '07: Proceedings of
the 15th international conference on Multimedidew York, NY, USA,
ACM, 2007.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,LAkshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogébynamo:
Amazon’s Highly Available Key-Value Store’SIGOPS Oper. Syst. Rev.
Vol. 41, No. 6, 2007.

M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. SaréCharac-
terizing residential broadband networks”, IMC '07: Proceedings of the
7th ACM SIGCOMM conference on Internet measurepiéetv York, NY,
USA, ACM, 2007.

P. Eckersley, F. von Lohmann, and S. Schoen, “PackejdfpBy ISPs: A
Report On The Comcast Affair.”
https://lwww.eff.org/files/eff_comcast_report.pdf, Z00

J. F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. Mtbar, S. Minton,
I. Xheneti, A. Toncheva, and A. Manfrediz, “The Expandinggifal Uni-
verse.” White paper, 2007.

D. Jurca, J. Chakareski, J.-P. Wagner, and P. Fros$anm&bling Adap-
tive Video Streaming in P2P System$EEE Communications Magazine
\ol. 45, 2007.

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of thelgble Video
Coding Extension of the H.264/AVC StandartZEE Transactions on Cir-
cuits and Systems for Video Technologyl. 17, No. 9, 2007.

V. Aggarwal and A. Feldmann, “Locality-Aware P2P QueBgarch with
ISP Collaboration”,Networks and Heterogeneous Medi@l. 3, No. 2,
2008.

143

Bibliography and References

[64] T. Bocek, W. Kun, F. V. Hecht, D. Hausheer, and B. Stjll&SH: A Pri-
vate and Shared History-Based Incentive MechanismAIMS '08: Pro-
ceedings of the 2nd international conference on Autononrdtestructure,
Management and SecurjtBerlin, Heidelberg, Springer-Verlag, 2008.

[65] D.R. Choffnes and F. E. Bustamante, “Taming the TotraRractical Ap-
proach to Reducing Cross-ISP Traffic in Peer-to-Peer Syst&SHGCOMM
Comput. Commun. ReW¥ol. 38, No. 4, 2008.

[66] B. Cohen, “The BitTorrent Protocol Specification.”
http://www:.bittorrent.org/beps/bep_0003.html, 2008.

[67] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Sdten, P. Bohannon,
H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS10%4s
hosted data serving platformProc. VLDB Endow.\Vol. 1, No. 2, 2008.

[68] J.P. F.-P. Gimenez, M. A. C. Rodriguez, H. Hasan, T. lef3fD. Staehle,
Z. Despotovic, W. Kellerer, K. Pussep, |. Papafili, G. D. Stalis, and
B. Stiller, “A New Approach for Managing Traffic of Overlay Afications

of the SmoothIT Project”, iknd International Conference on Autonomous

Infrastructure, Management and Security (AIMS 20@¥men, Germany,
2008.

[69] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTIAScalable
Ethernet Architecture for Large Enterprises”,StGCOMM '08: Proceed-
ings of the ACM SIGCOMM 2008 conference on Data communitdtiew
York, NY, USA, ACM, 2008.

[70] S. Le Blond, A. Legout, and W. Dabbous, “Pushing BitEmtrLocality to
the Limit.” Tech. Rep. inria-00343822, 2008.

[71] Y. Liu, Y. Guo, and C. Liang, “A Survey on Peer-to-Peed®b Streaming
Systems” Peer-to-Peer Networking and Applicationsl. 1, No. 1, 2008.

144

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sf@ve-to-
Get: Free-riding-resilient Video-on-Demand in P2P Systgrim Multime-
dia Computing and Networking 2008ol. 6818, SPIE \ol. 6818, 2008.

J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yando#up, D. Epema,
M. Reinders, M. van Steen, and H. Sips, “Tribler: A sociabdxh peer-
to-peer system"Concurrency and Computation: Practice and Experience
Vol. 20, 2008.

H. Xie, R. Y. Yang, A. Krishnamurthy, Y. G. Liu, and A. 8#rschatz,
“P4P: Provider Portal for Applications'SIGCOMM Comput. Commun.
Rev, Vol. 38, No. 4, 2008.

I. Cisco Systems, “Cisco Visual Networking Index: Foast and Method-
ology, 2008-2013.” White Paper, 2009.

W. Galuba, K. Aberer, Z. Despotovic, and W. Kellererré®Peer: a P2P
toolkit bridging the gap between simulation and live deplment”, in
Simutools '09: Proceedings of the 2nd International Coafiee on Simu-
lation Tools and TechniquekCST, Brussels, Belgium, Belgium, ICST (In-
stitute for Computer Sciences, Social-Informatics an@éd@nmunications
Engineering), 2009.

Hendrik Schulze and Klaus Mochalski, “Internet Studpg/2009.”
http://www.ipoque.com/resources/internet-studie@0®

T. HoRRfeld, D. Hock, S. Oechsner, F. Lehrieder, Z. Déspia, W. Kellerer,
and M. Michel, “Measurement of BitTorrent Swarms and thes Fopolo-
gies”, Tech. Rep. 463, University of Wurzburg, 2009.

Joint Video Team (JVT) , “JIMVM (Joint Multiview Video Mdel) software
for the Multiview Video Coding (MVC) project of the Joint \iad Team
(JVT) of the ISO/IEC Moving Pictures Experts Group (MPEGY ahe
ITU-T Video Coding Experts Group (VCEG)”, 2009.

145

Bibliography and References

[80] B. Liu, Y. Cui, Y. Lu, and Y. Xue, “Locality-Awareness iBitTorrent-like
P2P Applications”JEEE Transactions on Multimedja/l. 11, 2009.

[81] Y. Lu, B. Fallica, F. A. Kuipers, R. E. Kooij, and P. V. Mibem, “Assessing
the Quality of Experience of SopCastht. J. Internet Protoc. Techngl.
\ol. 4, No. 1, 2009.

[82] M. Piatek, H. Madhyastha, J. John, A. Krishnamurthyd & Anderson,
“Pitfalls for ISP-friendly P2P design”, iklotNets 20092009.

[83] H. Wang, J. Liu, and X. Ke, “On the Locality of BitTorretased Video
File Swarming”, inProc. of the 8th International Workshop on Peer-to-Peer
Systems (IPTPS’0920009.

[84] “BitTorrent User Manual.”
http://www.bittorrent.com/btusers/guides/bittorreiser-manual, 2010.

[85] 3rd Generation Partnership Project, “Technical Sfeation Group Ser-
vices and System Aspects; IP Multimedia Subsystem (IMS)g&e (Re-
lease 10); 3GPP TS 23.228 V10.0.0", 2010.

[86] Blizzard Entertainment, Inc., “Blizzard DownloadeARQ..”
http://www.worldofwarcraft.com/info/fag/blizzarddmhoader.html, 2010.

[87] PPLive Inc., “PPLive.” http://www.pptv.com/en/, 201
[88] Skype Limited, “Skype.” www.skype.com, 2010.
[89] SopCast.com, “SopCast.” http://www.sopcast.corfil®

[90] Theory.org Wiki, “Theory.org BitTorrent Specificatid
http://wiki.theory.org/BitTorrentSpecification, 2010.

[91] Vuze, Inc., “Vuze - Technology.”
http://www.vuze.com/corp/technology.php, 2010.

146

[92] YouTube, LLC, “YouTube Home Page.” http://www.youtibom/, 2010.

[93] T. Zinner, O. Abboud, O. Hohlfeld, T. Hof3feld, and P. i+&@ia, “Towards
QoE Management for Scalable Video Streaming,”2iith ITC Special-
ist Seminar on Multimedia Applications - Traffic, Perforrserand Qok
Miyazaki, Japan, 2010.

[94] T. Zinner, T. Hof¥feld, T. N. Minash, and M. Fiedler, “Qoolled vs. Un-
controlled Degradations of QOE - The Provisioning-Delwetysteresis in
Case of Video”, ilNew Dimensions in the Assessment and Support of Qual-
ity of Experience (QoE) for Multimedia ApplicatignEampere, 2010.

[95] D. Bertsekas and R. Gallagh&ata Networks Prentice Hall, 1987.

[96] R. Steinmetz and K. Wehrl®eer-to-Peer Systems and Applications (Lec-
ture Notes in Computer Scienc&ecaucus, NJ, USA: Springer-Verlag New
York, Inc., 2005.

[97] H. Takagi,Queueing Analysis: A Foundation of Performance Evaluation
Vol. 1. Amsterdam, Netherlands: North-Holland, 1991.

147

ISSN 1432-8801

