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0. Abstract 

English

While depressive disorders are, to date, diagnosed based on behavioral 

symptoms and course of illness, the interest in neurobiological markers of psychiatric 

disorders has grown substantially in recent years. However, current classification 

approaches are mainly based on data from a single biomarker, making it difficult to 

predict diseases such as depression which are characterized by a complex pattern of 

symptoms. Accordingly, none of the previously investigated single biomarkers has 

shown sufficient predictive power for practical application.  

In this work, we therefore propose an algorithm which integrates neuroimaging 

data associated with multiple, symptom-related neural processes relevant in 

depression to improve classification accuracy. First, we identified the core-symptoms 

of depression from standard classification systems. Then, we designed and 

conducted three experimental paradigms probing psychological processes known to 

be related to these symptoms using functional Magnetic Resonance Imaging. In 

order to integrate the resulting 12 high-dimensional biomarkers, we developed a 

multi-source pattern recognition algorithm based on a combination of Gaussian 

Process Classifiers and decision trees.  

Applying this approach to a group of 30 healthy controls and 30 depressive in-

patients who were on a variety of medications and displayed varying degrees of 

symptom-severity allowed for high-accuracy single-subject classification. Specifically, 

integrating biomarkers yielded an accuracy of 83% while the best of the 12 single 

biomarkers alone classified a significantly lower number of subjects (72%) correctly.  

Thus, integrated biomarker-based classification of a heterogeneous, real-life 

sample resulted in accuracy comparable to the highest ever achieved in previous 
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single biomarker research. Furthermore, investigation of the final prediction model 

revealed that neural activation during the processing of neutral facial expressions, 

large rewards, and safety cues is most relevant for over-all classification. We 

conclude that combining brain activation related to the core-symptoms of depression 

using the multi-source pattern classification approach developed in this work 

substantially increases classification accuracy while providing a sparse relational 

biomarker-model for future prediction. 
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Deutsch

Während depressive Erkrankungen bislang größtenteils auf der Basis von 

Symptomen auf der Verhaltensebene und den jeweiligen Krankheitsverläufen 

diagnostiziert werden, hat das Interesse an der Verwendung neurobiologischer 

Marker bei psychischen Erkrankungen in den letzten Jahren stark zugenommen. Da 

jedoch die momentan verfügbaren Klassifikationsansätze zumeist auf Informationen 

eines einzelnen Biomarkers beruhen, ist die Vorhersage von auf der Symptomebene 

so komplexen Erkrankungen wie Depressionen in der Praxis deutlich erschwert. 

Dementsprechend konnte keiner der einzelnen bisher untersuchten Biomarker eine 

Vorhersagegüte erreichen, die für die praktische Anwendung eines solchen Ansatzes 

im klinischen Alltag ausreichend wäre. 

Vor diesem Hintergrund schlagen wir deshalb zur Verbesserung der 

Klassifikationsgüte einen Algorithmus vor, der Messdaten vielfältiger 

depressionsrelevanter neuronaler Prozesse integriert. Zunächst wurden hierzu die 

Kernsymptome depressiver Erkrankungen aus standardisierten 

Klassifikationssystemen ermittelt. Anschließend entwickelten wir drei experimentelle 

Paradigmen, welche die Messung neuronaler Korrelate der mit den depressiven 

Kernsymptomen assoziierten psychologischen Prozesse mittels funktioneller 

Kernspintomographie ermöglichen. Um die resultierenden 12 hochdimensionalen 

Biomarker zu integrieren, entwickelten wir basierend auf der Kombination von Gauß-

Prozess Klassifikatoren und Entscheidungsbäumen einen zweistufigen 

Mustererkennungsalgorithmus für multiple, hochdimensionale Datenquellen. 

Dieser Ansatz wurde an einer Gruppe von 30 gesunden Probanden und 30 

unterschiedlich schwer betroffenen und unterschiedlich medizierten stationären 

depressiven Patienten evaluiert. Insgesamt ermöglicht der Ansatz eine hohe 

Klassifikationsgüte auf Einzelfallebene. Insbesondere die Integration der 
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verschiedenen Biomarker führte zu einer Klassifikationsgüte von 83%, wohingegen 

die alleinige Klassifikationsgüte der 12 einzelnen Biomarker mit bestenfalls 72% 

deutlich geringer ausfiel. 

Somit konnte der entwickelte Klassifikationsansatz in einer heterogenen, im Alltag 

aber typisch anzutreffenden depressiven Patientenstichprobe, eine 

Klassifikationsgüte erreichen, die mit der bislang bestmöglichen durch einzelne 

Biomarker erreichten Klassifikationsgüte in selektiven Einzelstichproben vergleichbar 

ist. Darüber hinaus zeigte die Analyse des empirischen Prädiktionsmodells, dass die 

Kombination der neuronalen Aktivität während der Verarbeitung von neutralen 

Gesichtern, großen monetären Belohnungen und Sicherheitssignalen zur optimalen 

Gesamtklassifikation führt. Zusammenfassend lässt sich schlussfolgern, dass der im 

Rahmen dieser Arbeit entwickelte, zweistufige Mustererkennungsalgorithmus für 

multiple, hochdimensionale Datenquellen die Klassifikationsgüte substantiell 

verbessert und erstmals die Konstruktion eines effizienten relationalen Biomarker-

Modells für zukünftige Vorhersagen ermöglicht. 
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1. Introduction 

Psychiatric disorders are currently diagnosed based on behavioral symptoms and 

course of illness according to standard classification systems such as DSM-IV (APA, 

1994) or ICD-10 (WHO, 1992). Thus, specific behavioral and cognitive patterns – 

rather than etiology or pathophysiological mechanisms – are central to diagnosis. 

Over the last decades, the emerging consensus about the disorders and their 

symptoms has enabled scientific investigation of the respective disorders fostering 

the development of standardized instruments for diagnosis and the optimization of 

disease-specific treatments and evaluation protocols. In parallel, the understanding 

of the psychological processes associated with certain symptoms increased and 

technological advances made the investigation of the physiological underpinnings of 

such processes feasible (see 3.1.2 Biological markers of depression). In particular, 

genetic analyses and neuroimaging methods such as electroencephalography 

(EEG), positron emission tomography (PET), or functional magnetic resonance 

imaging (fMRI) have contributed greatly to our understanding of the biology of mental 

processes in humans, both normal and pathological.  

Based on these developments, the interest in biomarkers of mental diseases has 

increased dramatically in recent years. In 2008 the number of relevant publications 

was more than eighteen times higher than in 2000 (Singh & Rose, 2009). The 

Biomarker Definitions Working Group (2001) has defined a biomarker as “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes or pharmacological responses to a 

therapeutic intervention”. Thus, biomarkers might improve diagnosis of a particular 

medical condition or predict a patient’s response to treatment enabling custom-

tailored interventions. In addition, identifying biomarkers and investigating their 
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interrelations might, in the long run, help to uncover causal pathophysiological 

processes which may lead to physiology-based rather than behavioral-symptom 

guided nosological entities and enable custom-tailored therapeutic interventions. 

Generally, biomarkers would be most needed in heavily disabling disorders for 

which diagnosis or prediction of treatment response is difficult. For depression with 

its high prevalence and high degree of suffering (see 3.1.1.1 Epidemiology of 

depression), biomarkers thus appear most valuable. While first suggestions to 

integrate biomarkers into standard diagnostic systems have been made (e.g. for 

bipolar disorder in DSM-V; Phillips & Vieta, 2007) and significant predictors of 

treatment response have been identified (Costafreda, Chu, Ashburner, & Fu, 2009; 

Costafreda, Khanna, Mourao-Miranda, & Fu, 2009), so far none have displayed 

sufficient predictive power for practical application (Singh & Rose, 2009; 3.2 

Summary and goals of the study). 

Against this background, we will develop a procedure which draws on clinical 

expertise, progress in the identification of correlates of mental disorders, and recent 

advancements in the field of pattern recognition alike to improve the predictive power 

of biomarkers of depression: Following this procedure, first, the core-symptoms of 

depression are identified from standard classification systems (3.1.1.2 Symptoms 

and diagnosis of depression). Then, three experimental paradigms probing 

psychological processes known to be related to these symptoms (3.1.2 Biological 

markers of depression) are designed and conducted acquiring task-related 

neuroimaging data from 30 depressive patients and 30 healthy control subjects (3.3 

Materials and Methods). Finally, data from the resulting 12 biomarkers (3.3.3 

Functional Magnetic Resonance Imaging) are integrated to allow for high-accuracy 

single-subject classification. As currently no method for the integration of the results 

of multiple high-dimensional biomarkers is available, we propose a principled 
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algorithm based on pattern recognition which is able to integrate information from 

multiple high-dimensional sources (Part I – Integrating biomarkers: development of a 

multi-source pattern classification algorithm).1 Additionally, we will quantify the utility 

of each biomarker and investigate the model of the interrelations of those markers as 

well as the network of brain regions underlying prediction. Finally, we will discuss the 

resulting integrated biomarker model in the context of depression as well as 

directions of future research. 

1 Note that for ease of reading, we will describe the multi-source pattern classification algorithm 
developed in this work before outlining and discussing the study and its results. 
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2. Part I – Integrating biomarkers: development of a multi-

source pattern classification algorithm 

As mentioned above, no biomarkers have found their way into practical 

application, yet. To understand why psychiatry, in spite of tremendous progress over 

the last decades, has not succeeded in identifying biomarkers of sufficient predictive 

power, one needs to appreciate the vast complexity and heterogeneity of the 

physiological processes underlying psychiatric conditions: Virtually all mental 

disorders are assumed to be caused by complex interactions of personal experience, 

learning history, and individual personality traits as well as genetic and epigenetic 

factors. Thus, a large number of highly dynamic and interacting mechanisms – 

mainly within but not limited to the central nervous system – have to converge on 

various timescales to constitute a disorder. Hence, common techniques to measure 

potentially relevant physiological properties and processes suitable for use as 

biomarkers often yield very high-dimensional datasets. Typical results of genetic or 

neuroimaging analyses, for instance, can easily generate hundreds of thousands of 

individual measurements per person. In order to obtain a useful biomarker, a rule for 

prediction needs to be derived from datasets consisting of such measurements from 

a larger number of subjects.  

Circumventing the problem of dimensionality, a vast body of research has 

identified potential biomarkers by considering subsets or statistical summaries of 

group data. Selection of such subsets or summary parameters is commonly guided 

by theoretical considerations specific to a disorder. As the aim of biomarker research 

is to identify characteristics relevant to individual predictions, studies have moved 

away from group data towards the evaluation of predictive power for single subjects 

(Caruana, Karampatziakis, & Yessenalina, 2008). In contrast to group analyses, 
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single-subject approaches predict characteristics of individuals (e.g. diagnosis or 

treatment response) by means of a previously learned rule rather than comparing 

(group) statistical parameters such as the mean of a group of subjects. Simple 

examples are psychometric tests for which a previously determined cut-off value 

enables classification of individual subjects (e.g. for depression: Beck, Steer, Ball, & 

Ranieri, 1996).  

In recent years, methods which enable single-subject predictions not from a single 

value, but based on the aforementioned high-dimensional datasets have been 

developed and are increasingly used (Mourao-Miranda, Bokde, Born, Hampel, & 

Stetter, 2005; Marquand, Mourao-Miranda, Brammer, Cleare, & Fu, 2008; Marquand, 

et al., 2009; Davatzikos, et al., 2005; Davatzikos, et al., 2005; Bode & Haynes, 2009; 

Haynes, 2009). These so-called pattern recognition algorithms have brought single-

subject predictions based on genetic or neuroimaging data within reach. As one of 

the first, Davatzikos et al. (2005) successfully classified patients suffering from 

schizophrenia and healthy controls using a support-vector machine (SVM) on 

structural MRI data. Using a similar approach on genetic data, Huang and Kecman 

(2005) predicted colon and lymphoma cancer with significant accuracy. 

Despite these advances, current pattern recognition approaches are mostly based 

on single biological markers, such as for instance genetic data or the neural 

responses related to a single pathologically deviating process alone. While first 

attempts to combine two sources of potentially clinically relevant data have been 

successful in the field of neuroimaging (Calhoun, Maciejewski, Pearlson, & Kiehl, 

2008; Michael, Calhoun, Andreasen, & Baum, 2008) and for the prediction of breast 

cancer based on genetic data (Zeng & Liu, 2009), to date, a principled method 

integrating results from multiple classifiers is not available. Considering the fact that 

all psychiatric disorders are diagnosed based on multiple symptoms associated with 
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a potentially large number of physiological processes, this appears conceptually 

unsatisfying and methodologically suboptimal. In the following, we will therefore 

propose a principled procedure integrating information from multiple high-

dimensional biomarkers in order to allow for a more comprehensive, biomarker-

based classification of psychiatric disorders. While we developed and implemented 

the algorithm for use with neuroimaging data and provide examples from this context, 

it can be used to identify and be applied to biomarkers of any data type and scale 

including mixed analyses of genetic, psychometric, and neuroimaging data.  

2.1. Approaches to classification 

Basically, classification is analogous to regression when the variable predicted is 

discrete. From this point of view, classification is the prediction of class labels from 

the data. It follows that a classifier is a function that predicts the class label of the 

class to which a sample (i.e. for instance a subject) belongs based on the values of 

the features of that sample ( x i ; i.e. for instance the voxel values). In order to be able 

to predict a class label, a function f mapping the data to the labels needs to be found. 

In other words, we need to model the relationship between a sample’s features and 

its class label. The resulting model f which predicts a class label from a sample is 

called a classifier. From a geometric point of view, one can consider the samples as 

points in a space where each feature corresponds to one dimension (feature space) 

– e.g. a three dimensional space, if three measurements have been made. Then, 

classification corresponds to finding a decision boundary – e.g. a plane in the case of 



17

three features – which separates the classes2. Such a decision boundary is 

equivalent to the function f which maps the data to the labels. 

Traditional approaches

When attempting to integrate multiple biomarkers to obtain a prediction – that is 

find a classifier f which maps the biomarker data to the labels (patients, controls) – 

the greatest challenge lies in the enormous number of features per sample (i.e. the 

amount of data per person). A single fMRI whole-brain volume can easily consist of 

150,000 measurements (voxels). Traditional methods such as for example 

discriminant analysis (and all methods derived from it, such as multiple regression 

analysis), cannot handle this number of features: Apart from a multitude of other 

requirements which may or may not be met by the dataset, discriminant analysis 

cannot be used if the features (e.g. the voxel values) are redundant. As this would 

obviously be the case for neighboring voxels, the thus present multicollinearity leads 

to an ill-conditioned predictor matrix which cannot be inverted. Thus, no estimation 

would be possible. While the common solution to reduce dimensionality by selecting 

specific (potentially linearly independent) features has been used successfully in this 

context and in pattern recognition in general, this approach requires hypotheses 

about the data (e.g. regions of interest in the brain) which might not always hold true 

or be inappropriate for the question at hand. This is particularly problematic in the 

context of a new methodological development such as the one presented in this work 

(for an overview of methods for feature selection or dimensionality reduction, see 

Pereira, Mitchell, & Botvinick, 2009). In summary, traditional methods such as those 

2 Note that the decision boundary does not need to be a plane in feature space, but can take infinitely 
many shapes which correspond to a plane in hyperspace. For the sake of simplicity and visualization, 
we assumed a linear kernel function which would restrict the decision boundary to the shape of a 
plane in feature space. In those cases, the mapping function f is also linear. In this work, linear 

kernels/ covariance functions are used as they best avoid overfitting while enabling a valid mapping 
procedure (see 2.3.4 Multivariate feature mapping). 
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from the family of discriminant analyses can either not be used for the classification 

of extremely high-dimensional data or require substantial, often hypothesis-driven 

and thus subjective data preparation steps. 

Pattern recognition approaches

More recent developments in the field of pattern recognition can, however, 

classify datasets of higher dimensionality and do not put constrains on the properties 

of the data: Generally, pattern recognition is a field within the area of machine 

learning which is concerned with automatic discovery of regularities in data through 

the use of computer algorithms. Using these regularities, it can classify data into 

different categories (Bishop, 2007). For instance, in the context of neuroimaging, 

brain images are treated as spatial patterns, and pattern recognition approaches are 

used to identify statistical properties of the data based on which the two groups of 

subjects (e.g. patients and controls) can be discriminated. 

A classifier based on pattern recognition is first trained by providing examples of 

the form �� c,x  where x  represents a spatial pattern (i.e. the features) and c  is the 

class label (e.g. 1��c  for patients and 1��c  for controls). Each spatial pattern (e.g. 

whole brain image) corresponds to a point in feature space. During the training 

phase, the pattern recognition algorithm estimates the mapping function ( f ) 

corresponding to the hyperplane which optimally separates the samples in feature 

space according to the class label. Once the decision function is determined from the 

training data, it can be used to predict the class label of a new, previously unseen 

sample. In this context, it is essential to obtain a decision function that not only 

classifies the training data correctly, but also does the same for the test data. One 

needs to be aware that a classifier which perfectly predicts the labels of the training 

data is by no means guaranteed to predict the labels of a new dataset correctly. The 
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term “overfitting” is used to refer to cases where the model fits the training data very 

well, but performs badly on new data. Thus, the accuracy of a classifier always needs 

to be evaluated using data which was not seen by the classifier before (for details, 

see Probability prediction and accuracy estimation at the end of 2.3.1 First-level 

prediction and Class membership prediction and accuracy estimation at the end of 

2.3.2 Second-level prediction). 

The most widely known method of pattern recognition is the support-vector 

machine (SVM; Vapnik, 1995) algorithm. As described above, binary classification 

can be understood in terms of finding a decision boundary which optimally separates 

the two classes. Directly using this idea, SVMs work by constructing the maximum 

margin hyperplane which finds the single hyperplane with the maximum distance 

between the plane and the points closest to the plane (the so-called support vectors). 

This simple approach guarantees an optimal separation of the dataset given a 

defined kernel function. However, the predictions of SVM are categorical. Hence, 

they do not provide probabilities or confidences associated with the classification 

scores. Basically, the output of an SVM classifier consists of a vector containing 

binary class labels (e.g. -1 for class A and 1 for class B). 

Gaussian Process (GP) classifiers (Rasmussen & Williams, 2006) are another 

example of a pattern recognition classifier. While performing with comparable 

accuracy on neuroimaging data (Marquand, et al., 2009), they provide probabilistic 

class label predictions. GP classifiers are based on Bayesian probability theory and 

are therefore guaranteed to handle probability distributions correctly. GP classifiers 

are most easily understood as a distribution over functions. GP inference consists of 

applying Bayes’ rule to find the (posterior) function distribution that best approximates 

the training data. Specifically, GP classification is an extension of the GP regression 

model in which data are classified by applying a latent regression model, which is 
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then constrained to the unit interval to produce probabilistic predictions (for details, 

see 2.3.1 First-level prediction). 

2.2. Goals and challenges of algorithm development 

Goals of algorithm development

The main goal of algorithm development is the construction of a procedure which 

allows for single-subject classification based on multiple high-dimensional biomarkers 

such as those commonly obtained using neuroimaging or genetic analyses. 

Integrating a potentially large number of biomarkers, it is also of interest – for 

research as well as for potential application – which biomarkers contributed in what 

way to classification (e.g. which genes or brain regions play which role for prediction). 

From this, we derive four specific aims: 

1) The algorithm must be able to classify groups based on multiple, high-

dimensional datasets (i.e. biomarkers). 

2) In order to efficiently identify those datasets holding maximum predictive 

power, it must be possible to quantify the contribution of each biomarker to 

over-all prediction. 

3) As is already possible today, we want to quantify the contribution of each 

biomarker’s single features to classification. This enables the identification of 

the most discriminative properties of the single dataset. 

4) Combining multiple biomarkers, we want to quantify the contribution of single 

features to over-all classification. In contrast to (3), this would enable the 

identification of the most discriminative properties of a biomarker in the context 

of all other biomarkers. 
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As it greatly enhances practical applicability, we will use only methods which could 

be applied to biomarkers of any level of measurement and data type, including 

neuroimaging, genetic, and psychometric data.  

Challenges of algorithm development

As outlined above, methods of pattern recognition developed in recent years are 

able to classify high-dimensional datasets with high accuracy. A growing body of 

evidence mainly from neuroimaging underlines this (Mourao-Miranda, Bokde, Born, 

Hampel, & Stetter, 2005; Marquand, et al., 2008; Marquand, et al., 2009; Davatzikos, 

et al., 2005; Davatzikos, et al., 2005; Bode & Haynes, 2009; Haynes, 2009). New 

challenges arise, however, when aiming to integrate data not from one, but from 

multiple biomarkers: For prediction, at least one dataset (e.g. a whole-brain volume) 

per biomarker has to enter the analysis for each subject. If, for instance, only five 

whole-brain volume scans which might be potential biomarkers are considered, this 

amounts to at least 750,000 measurements per person which corresponds to a 

feature space with 750,000 dimensions. While methods of pattern recognition have 

yielded very good results in recent years, mostly single brain volumes have been 

considered so that no data on classification performance is available for ultra-high 

dimensional datasets as they emerge when combining biomarkers. From a 

theoretical perspective, increasing the number of dimensions of feature space 

beyond the already challenging numbers currently used, might be problematic (for an 

empirical evaluation of high-dimensional methods, see Caruana, et al., 2008). 

Even disregarding these mathematical issues which might in the long-run be 

solved using more powerful kernel combination methods or automatic feature 

selection approaches, the problem of interpretability arises when combining datasets 

(i.e. biomarkers): While at first sight, it might seem desirable to base prediction on all 
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features irrespective of their source, this procedure would identify a pattern of 

discriminative features across biomarkers. This entails that the contribution of one 

biomarker to over-all classification would only have meaning in the context of the 

other biomarkers which were entered in the analysis. In the field, classification would 

then rely on a large number of highly complex, non-linear, multivariate interactions of 

for example brain regions measured during task A and (other) regions measured 

during task B and C. Furthermore, removing even a single biomarker – i.e. a 

subspace of the over-all feature space – would change the discriminative pattern 

learned by the classifier and alter predictions for new data in a completely 

unforeseeable manner. This would make the independent evaluation of single 

biomarkers within the set impossible. Furthermore, it would not allow for a 

quantification of the contributions of each biomarker’s single features to classification. 

2.3. Algorithm development 

Addressing these issues, we provide a solution based on a two-level procedure: 

On the first level, we use pattern recognition classifiers on each biomarker 

independently (2.3.1 First-level prediction). For b biomarkers, this creates 

b classifiers acting independently in each of the b feature spaces. Thereby, the 

number of dimensions to be considered by each classifier is limited to the maximum 

number of features for a single biomarker ( d ). Thus, the available pattern recognition 

algorithms ought to be able to provide reliable and accurate single-subject 

predictions for each single biomarker independently. Analysis on the second level is 

then based on the matrix containing the predictions made by each classifier for each 

person. This way, the ultra-high dimensional classification problem is reduced to a 

lower-dimensional space. For b datasets containing d features, the problem is 
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reduced from a db� -dimensional space to a b -dimensional space. For 20�m

subjects and 10�b  biomarkers containing 000,150�d  features each, for instance, 

the problem is reduced from 20 objects in a 1,500,000-dimensional space to 20 

objects in a 10-dimensional space. The challenge for second-level classification now 

lies in the fact that the new feature space is by orders of magnitude more densely 

occupied than the original space, rendering linear decision functions inappropriate 

while non-linear classifiers run the risk of overfitting while simultaneously hampering 

a straightforward interpretation of the results. With a decision tree algorithm, a 

powerful while easily interpretable classifier is chosen to address these issues (for 

the choice of method and details on tree classification, see 2.3.2 Second-level 

prediction).  

2.3.1. First-level prediction 

As outlined above, pattern recognition algorithms can be used to obtain single-

subject predictions from high-dimensional datasets. GP classifiers appear particularly 

well suited for the two-level approach (i.e. for producing input for second-level 

classification outlined in section 2.3.2 Second-level prediction) since GP output 

consists of class probabilities which – in contrast to the binary outputs of other 

pattern recognition classifiers such as SVM – preserve a maximum of information.3

As the performance of GP classifiers is comparable to that of SVM (Marquand, et al., 

2009) while mapping feature weights (for details, see 2.3.4 Multivariate feature 

mapping) is more flexible, we will use GP classifiers for all first-level predictions.  

3 Note that procedures have been suggested to transform SVM output into class probabilities. This 
does, however, require a nested-cross-validation procedure which is prone to overfitting and can thus 
be unstable in smaller samples and nested subsamples. Furthermore, these approaches rely basically 
on Bayesian posterior probabilities – a feature already inherent in all GP methods (Dai, Srikant, & 
Zhang, 2004).  
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In the following, we will outline the basic mathematical ideas necessary to 

understand how first-level predictive probabilities for second-level classification are 

obtained (for an in-depth introduction to Gaussian Processes including fundamental 

proofs related to equations outlined in this section, see Rasmussen & Williams, 

2006). Basically, a GP classifier can be seen as a function which predicts a subject’s 

probability to be a member of class -1 based on a multivariate pattern within that 

subject’s features. As GP classification is an extension of the GP regression model, 

we will first describe GP regression to then show how GP classification probabilities 

can be obtained from this. Finally, we outline how learning – i.e. the estimation of 

certain GP parameters from a training dataset – is conceptualized.  

Gaussian Process Regression

As in all regression and classification problems, we begin with a set of training 

data },{ yD x�  where x  is an m � d matrix (m training samples with d features each) 

consisting of input vectors x i  while y  is a column vector of target variables where 

y i � {�1,�1} for binary classification (for multi-class classification, see Rasmussen & 

Williams, 2006; for regression y i � �). Training samples are indexed by i �1,...,m. As 

outlined above, a classifier can be seen as a function of the features which allows for 

an accurate prediction of a target *y  from a previously unseen sample x * (i.e. not 

the training data). For Gaussian Process Regression (GPR), this is an estimate of the 

target variable while for binary Gaussian Process Classification (GPC) predictions 

consist of class probabilities. In this work, class probabilities for each subject are 

calculated as the conditional probability to be in class -1 (which will later denote the 

patient group; see 3.3.1 Participants) given the previously seen samples and the new 
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sample: )*,|1*( Dyp x�� . For GPR as well as for GPC, inferences are made in 

accordance with Bayesian probability theory (see below).  

Mathematically, a Gaussian process (GP) is defined as the generalization of the 

multivariate Gaussian distribution to infinitely many dimensions with the constraint 

that drawing examples from any finite dimensional subspace must always yield a 

multivariate Gaussian distribution. In much the same way that drawing examples 

from the well known univariate Gaussian distribution will always yield a Gaussian 

distribution, drawing from a GP will always yield a multivariate Gaussian distribution. 

While a Gaussian distribution can be defined by its mean and variance (i.e. its mean 

vector and covariance matrix for multivariate Gaussian distributions) a GP is uniquely 

described by its mean and covariance functions ( )),(),((~ jikmNGP xxx ). 

Against this background, GPR can basically be seen as a Bayesian extension of a 

simple regression model 	�� wxTy , where w  is a vector of weights and 	 ~ N(0,
 n

2)

is a Gaussian noise term. In Bayesian statistics, so-called posterior probabilities 

(probabilities taking into account knowledge we have gained considering the training 

samples) are basically calculated from prior probabilities (only considering knowledge 

we had before, i.e. none when calculation starts which corresponds to a zero-mean 

prior) and their respective conditional probabilities using Bayes’ theorem. 4

Colloquially, it could be stated as  

termionnormalizat

priorlikelihood
datapredictionp

_

*
)|( � , 

where )|( datapredictionp  is the probability of the prediction after we have taken the 

prior and the likelihood of the data into account (normalized by a constant). In a GP 

4 In case of ordinary least square regression, w  would be estimated simply by yTT xxxw 1)( �� . 
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model, a zero-mean GP prior is placed over the weights before the posterior 

distribution is computed by 

),|(

)|(*),,|(
),,|(

�
��

�
Xy

wwXy
yXw

p

pp
p �     equation 1 

Here, the vector T

myy ],...,[ 1�y  denotes the targets (labels for classification), 

p(w |�)  describes the prior, the likelihood is denoted by ),,|( �wXyp , and �  is a 

vector of hyper-parameters (for the estimation of the hyper-parameters, see Learning 

in GP models below). The denominator is called the marginal likelihood (or model 

evidence) and can be expressed as p(y |X,�) � p(y |X,w)p(w)dw� . Thus, the 

posterior probability of a GP model is computed by calculating the product of the 

likelihood and the prior and then dividing it by the model evidence.  

When making a prediction for a previously unseen sample, we integrate (average) 

over all possible values for w, weighted by their posterior probability: 

�� wwxwx dDpfpDfp ),|()*,,|*(*),,|*( ��� . Thus, GP predictions are a weighted 

average of all possible linear models5 under the prior assumptions, based on the 

samples that have already been seen.  

Alternatively, we can understand the construction of a GP classifier as the 

selection of a function )(xf  which maps the data to the labels (i.e. to the values for 

GPR). Viewing a GP as a distribution over functions (a process “containing infinitely 

many functions”), we can select the most likely function given the samples we have 

seen. To make a prediction for a new sample, we again place a zero-mean GP prior 

5 Analogues to our consideration regarding the shape of the SVM hyper-plane (2), the model in this 
case does not need to be linear. Its form depends on the choice of the kernel or the covariance 
function in GP models. Here, a linear covariance function is used as they best avoid overfitting while 
enabling a valid mapping procedure (see 2.3.4 Multivariate feature mapping). 
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over the distribution of functions, and then use Bayes’ rule to determine the posterior 

distribution evaluated at the training data (Figure 1). 

Figure 1. Schematic representation of Gaussian process prediction from one-dimensional 

data (x). (a) Sample functions drawn from the prior distribution. (b) Sample functions drawn 

from the posterior distribution after data have been added (black crosses). Top panels show 

values of the (latent) function and bottom panels show the function after squashing it through 

the probit likelihood [to obtain classification probabilities; see Gaussian Process 

Classification]. Grey shaded areas indicate 95% confidence intervals and one test data point is 

shown in blue (from Marquand, et al., 2009). 

An attractive feature of GPR models is that the likelihood and the prior are both 

GPs. It follows that the posterior distribution is also Gaussian. Thus, the mean and 

variance uniquely defining it can be computed in closed form: 
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),(~*),,|*( 2

� NDfp x

yCk 1* �� T
         equation 2 

***)*,( 12 kCkxx ��� Tk


where IKC
2

n
�� . K is a kernel matrix describing the covariance between each 

data sample (i.e. ),,( �jiij k xxK � ). Similarly, k*� [k(x1,x*),...,k(xm ,x*)]
T  is a vector of 

covariances between the test (x*) and training data (X). There are a number of 

possible forms for the covariance function (Rasmussen & Williams, 2006) but here 

we use a linear covariance function which is parameterized as: 

oT

l
�� XXK 2

1        equation 3 

l is a length-scale parameter that controls how rapidly predictive variance grows with 

increasing distance from the data points. As one would intuitively expect, predictive 

variance is large in intervals of values for which little data is available. o is a bias term 

accommodating the offset from zero similar to the constant in linear regression (for a 

description of how the hyper-parameters are calculated, see Learning in GP models). 

Gaussian Process Classification

GPC is an extension of GPR and predicting class labels is done by placing a GP 

prior over an unconstrained latent function and computing its posterior distribution. 

Thereby, the GPR predictions are constrained to the unit interval [0 1]. While there 

are several possibilities for this latent function, in this work we use the probit 

likelihood )(x� as it ensures that an approximation of the posterior by a Gaussian is 
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appropriate (see below; for a detailed discussion of how probability outputs are 

obtained using a latent function, see Rasmussen & Williams, 2006, chapter 3).  

Exact inference for GP classification is not analytically tractable (i.e., it cannot be 

computed in closed form as possible for the regression model) because after 

applying the latent function, the likelihood and the posterior are no longer Gaussian. 

Instead, the posterior needs to be approximated by a Gaussian. We use the 

expectation propagation (EP) algorithm which has been shown to have superior 

performance to other approximation methods (Kuss & Rasmussen, 2005; Nickisch & 

Rasmussen, 2008; for a detailed description of EP, see Rasmussen & Williams, 

2006, pp. 52-60). Finally, predictions can be made by integrating over the 

approximated posterior distribution. 

Learning in GP models

Learning in a GP model refers to finding the best functional form and hyper-

parameters for the covariance function given the training data (which given the zero 

mean is sufficient to uniquely define a GP). This is commonly done by maximizing 

the logarithm of the marginal likelihood which, for GPR, can be computed in closed 

form: 

�� �� 2lnln),|(ln
22

11

2
1 nTp ���� �

CyCyXy     equation 4 

where �C refers to the evaluation of C  given hyper-parameters � .6

The marginal likelihood corresponds to the total probability of the data given the 

model hyper-parameters. It has the attractive property that it constitutes a trade-off 

6 Again, in GPC models, exact computation of the marginal likelihood is analytically intractable (again 
because of the non-Gaussian likelihood). However, it can be approximated using EP. Computationally, 
we implemented this by minimizing )),|((ln �Xyp� which is equivalent. 
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between good fit to the data and a penalty for model complexity. Thus, simpler 

models are favored which provides protection against overfitting. In this work, we use 

the marginal likelihood to select hyper-parameter values as well as a linear 

covariance function for prediction. The main reason for this is that the use of a linear 

kernel permits the straightforward construction of a multivariate mapping 

representation (2.3.4 Multivariate feature mapping). 

Probability prediction and accuracy estimation

In order to predict a subject’s probability to be in class -1 (i.e., to be a patient in 

the later study) a leave-one-out cross-validation (LOO-CV) is done during which this 

subject is excluded from the GPC training data (i.e. this sample is not considered 

during the estimation of the hyper-parameters).7 Thus, the procedure ensures that 

the classifier never knows the true label of the subject whose probability is to be 

predicted. This way, we avoid high accuracy rates simply due to overfitting. The 

LOO-CV yielding the vector containing each subject’s probability to be in class -1 

(pGP) is conducted as follows: In each leave-one-out run, we use data from all but 

one subject per group (S-1 of the S subjects per group) to train the classifier. 

Subsequently, the probability to be in class -1 of the remaining pair of subjects (one 

patient and one control), which was so far unseen by the algorithm, is calculated. 

This procedure is repeated S times, each time leaving out a different pair of subjects, 

yielding each sample’s probability to be in class -1 for each biomarker. Single 

classifier accuracy is calculated as the ratio of correct predictions over number of 

cases. 

7 For ease of reading, we will refer to the vector containing each subject’s predicted probability to be in 
class -1 calculated in accordance with this procedure as pGP for the rest of this work. 
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2.3.2. Second-level prediction 

By using single GP classifiers on each of the biomarkers, we have reduced the 

number of dimensions of the over-all problem space to the number of biomarkers. 

Basically, this corresponds to a projection of each single biomarker’s feature space 

onto one dimension. Combining these dimensions, a new, lower-dimensional 

problem space is created in which final classification must now be performed. 

Choosing a suitable second-level classification algorithm from the large number of 

possibilities (e.g. discriminant analyses, Naïve Bayesian Classifiers, kernel density 

estimations, kth nearest neighbors, SVM, or another GPC, to name only a few) a 

number of fundamental issues need to be considered: Second-level space is very 

densely occupied in comparison to the first-level spaces. For example, for 20 

subjects and 10 common neuroimaging biomarkers with 150,000 dimensions each, 

the ratio of objects to dimensions increases from
75000

1
to 2. While this is generally 

desirable, a linear decision boundary might no longer suffice to separate the classes 

in this case. However, non-linear classifiers will not readily allow for an interpretation 

of the contribution of a single biomarker to final classification as the weights of the 

respective functions (or the projections on the weight vectors) are inherently 

multivariate, i.e. interdependent. In order to keep results transparent and 

interpretable – also regarding the later mapping procedure (2.3.4 Multivariate feature 

mapping) – while benefiting from the power of a non-linear classifier, we adopt a 

decision tree approach developed by Breiman et al. (1984). 

The Classification and Regression Tree (CART) algorithm

Basically, the CART algorithm determines a set of if-then logical conditions that 

allow for the classification of subjects. Those conditions define for each relevant 
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variable (for how to determine this relevance, see below) a threshold value. If a 

subject’s value on this variable is lower than the threshold, it is classified in one 

group, if it is equal to or higher than the threshold it is placed into the other. 

Specifically, in the first step, the entire dataset (in our case the bm� matrix 

containing the pGP-vector for each biomarker) is split into two subsets based on the 

single variable which produces the most homogeneous subsets in terms of class 

labels.8 Two (more homogeneous) subsets of the original data are thus created. This 

corresponds to creating two subspaces of the original feature space. Each of the two 

resulting datasets is again split based on the variable which produces the most 

homogeneous subsets in terms of class labels for each respective subset. The 

process continues yielding four subsets of the original data, then eight and so on. 

Each new subset is more homogeneous in terms of class labels than the one from 

which it was created. In classification tree terminology, a “tree”-structure with two 

“branches” growing from each “node” is created. At each node, we find the variable 

which, split at the optimal value, creates two branches so that the resulting two nodes 

are maximally homogeneous or “pure”. With this procedure, the feature space is 

partitioned into increasingly many subspaces which are increasingly pure in that they 

contain more and more subjects carrying the same label.  

Following Breiman et al. (1984), we determine the impurity i  of a node t  based 

on Gini’s diversity index. For binary classification, it can be calculated by 

8 Note that Breiman et al. (1984) have also suggested trees which use linear combinations of variables 
to split each node. For reasons of interpretability, we choose to use their initial suggestion and do not 
consider splits based on combinations of variables. For the same reason, we do not employ the 
related procedures of tree boosting which base classification upon combining trees obtained by 
repeatedly re-sampling subsets of the data. For testing purposes, we nonetheless used stochastic 
gradient boosting (Friedman, 2002) on the data obtained in “Part II – Classification in the context of 
depression”. Due to enormous overfitting – as is often seen with increasingly powerful methods – 
accuracy rates did not improve. 
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])|1()|1([1)( 22 typtypti ������      equation 5 

where )|1( typ ��  and )|1( typ �  denote the proportion of subjects from group 1 and 

group 2, respectively, relative to the total number of subjects in t. Based on this, the 

variable selected for the next split must be the one which reduces )(ti  most. 

Obviously, this corresponds to maximizing )()( childrenparent titi � , where )( parentti  is the 

impurity of the node to be split and )( childrenti is the impurity of the resulting two nodes. 

The main problem to be solved by the algorithm is to determine when to stop 

growing the tree (i.e. splitting nodes further). If we set no stopping criteria, the tree 

will grow, reaching increasingly high classification accuracy until all samples in a 

node carry the same label (and are thus classified correctly) or until there is no 

meaningful information left which could decrease impurity of the nodes. While 

potentially performing extremely well on a given dataset, such a tree would be very 

likely to misclassify new samples. That is, it would be highly prone to overfitting. In 

order to avoid this, splitting nodes is stopped if Gini’s splitting criterion based on 

))()(max( childrenparent titi �  is no longer fulfilled (for details on the implementation of the 

criterion, see Breiman, 1996) and/or the number of samples in parentt  is lower than 10.  

In summary, we use GP classification probabilities (pGP-vectors for each 

biomarker) as predictors based on which the algorithm constructs a classification 

tree. This corresponds to finding those variables most useful for the partitioning of the 

dataset into purer subsets and assigning a set of if-then logical conditions that allow 

for the classification of subjects in each subsample. This procedure is inherently non-

linear – allowing for high flexibility in the densely occupied pGP-vector space – while 

enabling simple interpretation and identification of the variables relevant for the 

classification within each subspace. While in the context of this work we construct the 
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tree from the pGP-matrix containing class probabilities, it is easily possible to include 

variables of any level of measurement such as psychometric scores or low-

dimensional genetic data. 

Decision tree visualization and interpretation

To visualize the structure of the tree, we calculate a tree based on all subjects 

using the procedure described above. Note that samples with a value lower than the 

threshold for this variable are depicted as the left branch whereas samples with a 

value equal to or higher than the threshold for this variable are shown as the right 

branch. 

We call the resulting structure the “optimal tree” as it considers the data from all 

subjects (in contrast to the tree generated using the leave-one-out procedure 

described below in Class membership prediction and accuracy estimation). 

Additionally, for a node parentt  to be split, we require that each of the nodes childrent

potentially generated contain no less than 10% of the samples. This is done to avoid 

displaying practically irrelevant nodes. Also it ensures a reasonable number of 

samples for the generation of node-specific multivariate maps (see 2.3.4 Multivariate 

feature mapping). 

Class membership prediction and accuracy estimation

In order to calculate the overall prediction accuracy of this approach while 

avoiding high accuracy rates simply due to overfitting, a leave-one-out procedure is 

implemented in analogy to the one used to determine the accuracy of the single GP 

classifiers. Note that we use the same LOO-CV structure in the single classifiers and 

in the decision tree, which ensures that at each cross-validation fold, the test set is 

completely independent of the training set. In each leave-one-out run, we use the 
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predictive probabilities from all but one subject per group (S-1 of the S subjects) to 

train a decision tree model. Subsequently, the class memberships of the remaining 

pair of subjects are calculated based on the training tree model. This procedure is 

repeated S times, each time leaving out a different pair of subjects, yielding each 

sample’s predicted overall class membership. Again, accuracy is calculated as the 

ratio of correct predictions over number of cases. 

2.3.3. Significance Testing 

To establish whether the observed single GP classification accuracies are 

statistically significant, we run each GP classifier 1000 times with randomly permuted 

labels and count the number of permutations which achieved higher accuracy than 

the one observed with the true labels. The p-value is then calculated by dividing this 

number by 1000. 

In order to test whether the combination of data sources results in substantially 

increased classification accuracy compared to the accuracy obtained from the most 

informative of the sources alone, we proceed as follows: First, we obtain an estimate 

of the expected best single GP classification accuracy under permutation. This is 

done by running each GP classifier independently for all biomarkers with randomly 

permuted labels and taking the maximum accuracy. Doing this 1000 times provides a 

distribution of maximum accuracy under permutation. The median of this distribution 

constitutes the best estimate for the expected maximum single GP classification 

accuracy under permutation. Secondly, we re-run each GP classifier independently 

for all biomarkers with randomly permuted labels. This time, however, we calculate 

the accuracy of the decision tree based on the predictive probabilities derived with 

the randomly permuted labels. Doing this 1000 times provides a distribution of 
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decision tree accuracy under permutation. Subtracting the best estimate for the 

expected maximum single GP classification accuracy under permutation calculated 

above from this distribution creates the distribution of the expected difference 

between decision tree accuracy and single best accuracy under permutation. As the 

null hypothesis is that the decision tree does not substantially outperform the best 

individual classifier, the p-value is then calculated by counting the number of times 

that this expected difference under permutation exceeds the difference between the 

decision tree accuracy and the single best GP classification observed with the true 

labels and dividing it by 1000. 

2.3.4. Multivariate feature mapping 

In the following, we will outline how quantification of the contribution of each 

biomarker’s single features to classification is commonly evaluated for single GP 

classifiers (see Decision boundary weight and group distribution mapping). This 

enables the identification of the most discriminative properties of a single dataset. 

With regard to the new multi-source classification algorithm developed in this work, 

we will then propose a way to identify the most discriminative properties of each 

biomarker in the context of over-all classification, i.e. within the optimal decision tree 

(see Node-specific group distribution mapping). 

Decision boundary weight and group distribution mapping

For single GP classifiers, it is possible to obtain two representations of the 

contributions of the single features to classification. In both cases, this is achieved by 

calculating a linear combination of the subjects’ feature vectors ix  (i.e. all data). The 
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methods differ mathematically only regarding the coefficients (weights) used to 

calculate the linear combination of the data. 

The first method – decision boundary weight w-mapping – is analogue to the 

weight vector in SVM discriminant mapping. The so-called weight-vector w is 

orthogonal to the hyperplane separating the two classes.9 For each feature, its value 

represents the contribution of this feature to the construction of the hyperplane 

(Mourao-Miranda, et al., 2005). It is calculated by 

)(
1 1
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i ii
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�        equation 6 

where i�  is the predictive mean (specifically, it consists of the last two weighting 

coefficients derived from GPC training with all samples; for details, see Marquand, et 

al., 2009). As one would intuitively expect considering the concept of decision 

boundary construction from the adjacent support-vectors in the SVM approach, 

samples closer to the hyperplane carry higher weights w . Being simply a linear 

combination of the sample data weight by the predictive mean i� , the w -map 

basically quantifies a feature’s contribution to the construction of the hyperplane (i.e. 

the decision boundary) considering all other features. Thus, it is a multivariate 

representation of the decision boundary. 

Maps generated with the second method – group distribution g-mapping 

(Marquand, et al., 2009) – are calculated by weighting each sample by the mean of 

the (latent) function (
 ; from equation 2) at each training point: 

9 Using a GP classifier, there obviously is no hyperplane in the regular sense. As noted above, 
however, any decision function of a binary classifier f can be described as a plane separating the two 

classes. To allow intuitive visualization, we adopt the feature space view in this section. 
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         equation 7 

Unlike w ,g  quantifies the distribution of the classes with respect to each other. 

Thereby, it is a multivariate quantification of the difference between the predicted 

groups on a given dimension (feature). Figure 2 shows a schematic illustration and a 

geometric interpretation of w  and g in a hypothetical two-dimensional feature space. 

Figure 2. Geometric interpretation of Gaussian process mapping methods in a two-

dimensional feature space. Each mapping method constructs a vector from a weighted 

combination of data points and the size of each data point is proportional to the magnitude of 

the weighting coefficient. The classifier is trained to separate crosses (class 1) from circles 

(class 2) and the shaded area indicates distance from the decision boundary. a) In GPC w-

mapping, samples closer to the decision boundary carry higher weight and the weight vector 

(w ) is orthogonal to the decision boundary. b) In GPC g-mapping, samples further from the 

decision boundary carry higher weight and the vector ( g ) describes how classes are 

distributed relative to one another. Axis labels contain the projection of the map vector onto 

each axis and a univariate t-statistic for each data dimension (from Marquand, et al., 2009). 

Node-specific group distribution mapping

For single GP classifiers, the two mapping approaches described above are valid 

representations of the decision boundary and the group distribution, respectively. 
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However, they provide no information regarding the contribution of a single feature in 

the context of the combination of multiple classifiers. For the newly developed multi-

source classification method, we thus propose an additional mapping algorithm. 

The aim is to construct a map quantifying the multivariate group distribution of the 

two classes for each dimension (feature) from a single biomarker in the context of the 

optimal tree model (see 2.3.2 Second-level prediction). In other words, we seek to 

construct a group distribution g-map as described above which is specific to each 

node of the optimal decision tree. As such, it ought to contrast the two groups of 

subjects classified at that node considering only the biomarker data for this node.  

This is done by constructing a map from the distribution of features at each node 

of the decision tree, where only the subset of samples found at each node is 

considered. The weighting factor in this case is the predictive probability adjusted by 

the node’s decision threshold. In analogy to the g-map for single classifiers, it can be 

calculated by 

� �
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)( x        equation 8 

where nodem  denotes the number of samples at the respective node, ip  are the GPC 

predictive probabilities for each sample10 and nodep  is the probability threshold for that 

node determined by the optimal decision tree. The key idea in our approach is to 

scale the node-specific data ix  with the predictive probabilities ip  for each sample 

present at the respective node. In order to contrast specifically those subjects which 

have been classified to different groups at the present node, we set the mean of ip

at each node to 0 by subtracting nodep . This assigns those samples classified by the 

10 Note that ip simply denotes the i th component of the pGP vector for the respective node. 
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decision tree as being in the right branch a positive weight ( 0�� nodei pp ); those 

classified as being in the left branch will carry a negative weight ( 0�� nodei pp ).  

The map can be interpreted as providing a measure of how samples in the two 

branches emerging from each node are distributed relative to one another and to the 

decision boundary provided by the first-level classifier. Thus, to understand which 

features contribute to prediction within the optimal decision tree, it is necessary to 

navigate through the tree beginning at the root node. At each node, the contribution 

of each feature to class distribution is described by equation 8. In analogy to single 

classifier group distribution g-mapping, the decision boundary is not changed by the 

procedure, i.e. the hyper-parameters remain the same as for the single classifier 

mappings. Summarizing, noded -maps show the multivariate, node-specific group 

distribution of the two classes with respect to the original single classifier decision 

boundary. 

2.4. Summary 

In the previous sections, we have outlined how classifiers can predict to which 

one of two classes (e.g. patient or healthy control) a subject belongs based on high-

dimensional data. While recently developed pattern recognition methods are highly 

successful performing such classifications based on a single high-dimensional 

biomarker, no currently available algorithm is able to integrate multiple high-

dimensional datasets. We addressed this problem by developing a two-level 

procedure: On the first level, high-dimensional data from each single biomarker is 

used to predict each subject’s probability to be in a certain class. Specifically, we are 

able to obtain a class probability prediction for each subject and biomarker using a 

GPC. On the second-level, we then classify each subject based on its GPC class 
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probability predictions from each biomarker (pGP) using a CART algorithm. In 

summary, the basic idea consists of first reducing dimensionality of the problem 

space while not losing essential information on the first level. Then – on the second 

level – a non-linear CART classifier generates final classifications based on first-level 

predictions. For the new procedure, we then developed a method enabling 

significance testing as well as an algorithm allowing for the quantification (mapping) 

of the contribution of each biomarker’s single features to final CART prediction. 

In summary, the algorithm now allows for single-subject classification based on 

multiple high-dimensional biomarkers such as those commonly obtained using 

neuroimaging or genetic analyses. In addition, it can be assessed which biomarkers 

are relevant and in what way the relevant markers contribute to classification (e.g. 

which genes or brain regions play a role for prediction). 
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3. Part II – Classification in the context of depression 

For depression with its high prevalence, high degree of suffering (see 3.1.1.1 

Epidemiology of depression), and low treatment efficiency (Hennings, et al., 2009), 

many attempts to identify biomarkers have been made. To date, however, this 

research has not yielded biomarkers suitable for practical application (3.2 Summary 

and goals of the study). As a first step toward improving predictive accuracy in 

comparison to previous attempts, we will – in Part II of this work – suggest combining 

multiple biomarkers of depression and test the approach by classifying depressive 

patients and healthy control subjects: First, we will identify the core-symptoms of 

depression from standard classification systems (3.1.1.2 Symptoms and diagnosis of 

depression) and outline three experimental paradigms (3.3.2 Tasks and procedures) 

probing neural processes known to be related to these symptoms (3.1.2 Biological 

markers of depression). Then, we will use the multi-source pattern classification 

algorithm developed in Part I of this work to integrate these measurements in order to 

improve classification accuracy. Finally, we will investigate which biomarkers are 

essential in the integrated biomarker model and outline the neural processes relevant 

in this context. 

3.1. Introduction 

In this section, we will introduce the concept of depression, summarize 

epidemiological data, and outline the symptoms and diagnostic criteria of depression. 

In order to identify potentially suitable biomarkers, we will then review the literature 

on biomarkers of depression with a focus on evidence from neuroimaging. 
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3.1.1. The concept of depression 

Colloquially, depression can refer to both a transient mood state as well as to a 

common affective disorder characterized by persistent negative mood, anhedonia, 

and deficient cognitive, circadian, and psychomotor functioning (Seminowicz, et al., 

2004). In psychiatry, the term is used to denote the latter condition most often called 

Major Depressive Disorder (for detailed diagnostic criteria and terminology, see 

3.1.1.2 Symptoms and diagnosis of depression).11 Over more than a century, a vast 

body of theory has grown to explain causes and account for symptoms of the 

disorder, incorporating advances in the fields of behavioral and cognitive psychology, 

medicine, and biology. Evidence suggests a complex interaction of personal 

experience and learning history, individual personality traits, and genetic factors to 

contribute to affective disorders (Ebmeier, Donaghey, & Steele, 2006; see Gotlib & 

Hammen, 2009, for an in-depth treatment). 

3.1.1.1. Epidemiology of depression 

The World Health Organization (WHO) currently considers depression the single 

most burdensome disease in terms of total disability-adjusted life years for people in 

mid-life worldwide (Murray & Lopez, 1996). In industrialized nations, it even is the 

most burdensome disease over all age-groups (Lopez & Murray, 1998). This is due 

to the interaction of relatively high lifetime prevalence, early age of onset, a 

substantial rate of chronic manifestation, and high role impairment (Gotlib & 

Hammen, 2009). In addition to an increased risk of suicide (Bostwick & Pankratz, 

2000; Bronisch & Wittchen, 1994), depression has been found to adversely affect 

11 In the context of this work, the term depression (depressive/depressive patients) will consistently be 
used to refer to individuals who are currently suffering from a Depressive Episode as defined by ICD-
10 or DSM-IV or who are recovering from a recent one.  
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interpersonal relationships (Wade & Cairney, 2000) as well as decrease workplace 

productivity (Kessler, et al., 2006). 

While up to 20% of adults report recent depressive symptoms as assessed by a 

screening scale (Kessler, et al., 2001), studies using structured diagnostic interviews 

based on DSM-IV criteria yield point prevalences of Major Depression between 2 and 

4% (WHO International Consortium in Psychiatric Epidemiology, 2000). Twelve-

month prevalence estimates based on structured diagnostic interviews of adults in 

the USA are at 6.6%. Importantly, almost 90% of these cases are classified as 

clinically depressed with moderate, severe, or very severe symptoms according to 

standard Hamilton Rating Scale for Depression severity thresholds (Kessler & 

Merikangas, 2004). Thus, roughly 5.9% of the population experienced clinically 

significant depressive symptoms with duration of at least one month during the 

previous one-year period. Based on the same data, life-time prevalence estimates lie 

at 16.6% (Kessler, et al., 2005; this result is confirmed by an independent data set by 

Haro, et al., 2006). With 6.9 and 14%, respectively, twelve-month and life-time 

prevalences in Europe (Wittchen & Jacobi, 2005) are comparable to rates in the 

USA. 

The onset of depression commonly lies between 19 and 44 years of age 

(interquartile range; median: 32 years) with 10% of all cases not having the first 

episode before the age of 55 years (Kessler, et al., 2005). Furthermore, about 80% of 

depressive patients experience more than one episode in their life (Kessler, et al., 

2003). The median recovery time is 6 weeks with 90% recovering within a year 

(Kendler, Walters, & Kessler, 1997). However, recovery time for psychiatric in-

patients is generally longer and more variable (Brugha, et al., 1990). 

Epidemiological studies have furthermore identified a number of risk factors for 

depression, the largest of which are gender and environmental adversities. 
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Considering life-time prevalence, women are affected roughly twice as frequently as 

men (Blazer, Kessler, McGonagle, & Swartz, 1994). Additionally, evidence suggests 

a substantial role of stressful life-events such as unemployment, loss of close 

personal relationships, and major health problems (Kessler, 1997). 

3.1.1.2. Symptoms and diagnosis of depression 

Reflecting the fundamental disturbances in affective functioning, depression is 

generally classified as a mood disorder. Its foremost characteristics are an excessive 

negative affect (e.g. lowered mood) and a persistent deficiency in positive (e.g. 

anhedonia). Other symptoms may include alterations in cognitive, circadian, or 

psychomotor functioning. Most commonly, depression is diagnosed based on the 

criteria outlined in DSM-IV or ICD-10. Generally, the two standard classification 

systems define mental disorders based on their symptoms, that is specific 

observable behavioral and/or cognitive patterns, rather than on etiology or 

pathophysiological mechanisms. 

In DSM-IV, Major Depression is characterized by the occurrence of one or more 

depressive episodes. Diagnosis of such an episode requires at least five out of the 

following nine symptoms to be present during the same 2-week interval:  

1) depressed mood on almost all days for most of the day, 

2) diminished interest or pleasure in all or almost all activities on almost all days 

for most of the day, 

3) weight gain or loss (without a diet) or change of appetite,  

4) insomnia or hypersomnia,  

5) psychomotor agitation or retardation,  

6) fatigue or loss of energy,  
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7) feelings of worthlessness or excessive or inappropriate guilt,  

8) diminished ability to think or concentrate or indecisiveness, 

9) recurrent thoughts of death or suicidal ideation or suicide attempt. 

Importantly, the two core-symptoms – depressed mood and diminished interest or 

pleasure – have to be present among these five symptoms. 

In its section on Mood Disorders, the ICD-10 distinguishes between the concepts 

of Depressive episode and Recurrent Depressive Disorder. The latter is defined by 

the occurrence of at least two Depressive episodes. In analogy to DSM-IV criteria, 

lowered mood and a reduced capacity for enjoyment and interest are the essential 

symptoms with lowered mood varying little from day to day, independent of 

circumstances. The additional symptoms also virtually mirror the ones listed in DSM-

IV (for a systematic comparison see Gruenberg, Goldstein, & Pincus, 2005).  

In summary, both standard classification systems ground their definitions in the 

occurrence of at least one depressive episode. This episode, in turn, necessarily 

comprises symptoms of lowered mood and anhedonia while other symptoms are 

non-essential for diagnosis. 

3.1.2. Biological markers of depression 

Over more than two decades, research has consistently identified differences 

within the nervous system between depressive patients and healthy controls. It is 

beyond the scope of this work to provide a comprehensive review of the vast 

literature on these differences. As affective alterations are most essential in 

depression – both in terms of diagnosis (3.1.1.2 Symptoms and diagnosis of 

depression) and individually perceived degree of suffering – we will focus on 

behavioral and neurophysiological deviations related to these symptoms, while 
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omitting the field of cognitive deficits and their physiological correlates (for a 

summary, see Mössner, et al., 2007). In the following, we will first briefly outline 

deviations in emotional processing as they relate to the cardinal symptoms of 

depression to then focus on the neural basis of depression before closing with a 

concise summary of other biomarkers which have been suggested within the field of 

neuroscience.  

3.1.2.1. Processing of emotional stimuli 

The two cardinal symptoms of depression – lowered mood and anhedonia – are 

related to a number of altered affective and motivational processes which affect 

behavior and cognition of depressed individuals (for theoretical consideration on how 

mood might affect behavior/cognition, see Rottenberg & Johnson, 2007). As the 

identification of neurobiological markers – particularly those derived from functional 

neuroimaging – is based on neural processes associated with these altered 

cognitions and behaviors, we will, in the following, outline key-findings in this area. 

Studies investigating the processing of emotional stimuli have focused mainly on 

the investigation of emotional facial expressions (for reviews, see Leppanen, 2006 

and Bylsma, Morris, & Rottenberg, 2008). In this line of research, patients suffering 

from major depressive disorders showed impairments in the identification of affect in 

happy and sad facial expressions (Rubinow & Post, 1992; Surguladze, et al., 2004). 

Furthermore, patients were shown to preferentially attend to sad facial expressions: 

In a dot-probe task, subjects are simultaneously shown two photographs depicting 

faces with different emotional expressions – one on the left and one on the right side 

of the screen. After the disappearance of the pictures, a dot (probe) is shown in the 

location of one of the previously seen photographs (cues) and subjects are instructed 
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to indicate the position of the dot (left or right) by pressing one of two buttons. At a 

delay of 1000 ms between the cues and the probe, subjects suffering from Major 

Depression respond significantly faster if the probe is located in the position of the 

previously displayed sad facial expression. This effect is not seen for neutral, happy, 

or angry facial expressions. From this, the authors conclude that clinically depressed 

individuals show an attentional bias towards sad emotional stimuli. Importantly, this 

effect was not found in patients suffering from Generalized Anxiety Disorder or Social 

Phobia suggesting that the attentional bias to sad faces might be specific to 

depression (Gotlib, Krasnoperova, Yue, & Joormann, 2004; Gotlib, et al., 2004a). 

Surguladze et al. (2004) investigated happy facial expressions: Comparing 

healthy controls with depressed patients, they demonstrated impairments in 

discrimination accuracy for mildly happy expressions. However, Suslow et al. (2004) 

showed a similar bias away from happy faces only for those depressive patients 

suffering from comorbid anxiety while they failed to find the effect in a sample of 

depressive patients who were free of comorbidities. Other studies raise similar 

concerns related to the specificity of the effect to depression (Gilboa-Schechtman, 

Presburger, Marom, & Hermesh, 2005; Gotlib, Kasch, et al., 2004). 

Also, the processing of neutral facial expressions is altered in acutely depressed 

individuals: When asked to indicate whether a facial expression is neutral, happy, or 

sad, depressive persons – in comparison to healthy controls – falsely classify 

significantly more neutral expressions as sad. Also, the time needed for classification 

of neutral faces is higher in depressive individuals (Leppanen, Milders, Bell, Terriere, 

& Hietanen, 2004). From this, it appears that depressive individuals do not perceive 

neutral facial expressions as unambiguously neutral, but need more time to process 

the stimuli while still erroneously attributing sadness to them.  
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In addition to these findings concerning mainly the online processing of emotional 

facial expressions, depressive patients have consistently shown a memory bias 

toward mood congruent stimuli. Specifically, they remember more items with 

negative (e.g. words such as “guilt” or “tears”) than with positive or neutral valence in 

free recall tasks. This is true also for supra- as well as subthreshold recognition tasks 

(for a review, see Colombel, 2007). 

Moreover, evidence shows alterations in the responsiveness to reward and 

punishment: Henriques & Davidson (2000) conducted a verbal memory task in which 

subjects suffering from depression failed to alter their strategy of responding in 

reaction to changing monetary reward. However, their response changed in reaction 

to monetary loss, demonstrating an understanding of the task, as well as an ability to 

generally strategically adapt response patterns. This effect was still present after 

exclusion of subjects with comorbid symptoms of anxiety (compare potentially 

contradicting evidence related to the attentional bias away from possibly rewarding 

happy faces). The same group had previously shown this effect in a non-clinical 

sample showing depressive symptoms (Henriques, Glowacki, & Davidson, 1994). 

Furthermore, an increased sensitivity to failure (Elliott, et al., 1996) has been 

observed. Specifically, depressive patients – in comparison to healthy controls – 

were much more likely to commit an error in a series of neuropsychological test 

items, if they had failed to solve the previous item.  

In summary, depressive patients show an increased propensity to negative 

emotional processing as well as altered reward processing (for reviews see 

Leppanen, 2006; Bylsma, et al., 2008; Chau, et al., 2004; Drevets, 2001).  
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3.1.2.2. Neuroimaging markers 

Anatomical and resting state studies

Converging evidence has been accumulated which suggests the involvement of a 

wide network of distributed brain structures in the pathological processes relevant in 

depression. Using Positron Emission Tomography (PET) during wakeful rest, 

deviating cerebral blood flow and glucose metabolism within the prefrontal cortex and 

the limbic system have consistently been found in depressive patients in contrast to 

healthy controls. Studies report reduced metabolism mainly in the anterior cingulate 

cortex as well as in frontal regions. Elevated activation is consistently found in the 

amygdala, medial thalamus, and ventrolateral and orbitofrontal areas (Ito, et al., 

1996; Kennedy, Javanmard, & Vaccarino, 1997; for reviews see Drevets, 2001; 

Manji, Drevets, & Charney, 2001). Moreover, glucose metabolism in limbic, thalamic, 

and basal ganglia structures predicts symptom severity as measured with the 

Hamilton Depression Rating Scale (HDRS, Hamilton, 1960) further elucidating the 

involvement of these regions in depression.  

In an attempt to identify regions specifically associated with psychopathological 

components, three HDRS factors were found to correlate significantly with glucose 

metabolism: Psychic depression – mainly mirroring depressed mood, suicidal 

ideations, and feelings of worthlessness and hopelessness – correlated positively 

with metabolism in the cingulate gyrus, thalamus, and basal ganglia. Sleep 

disturbance correlated positively with metabolism in limbic structures and basal 

ganglia while loss of motivated behavior was negatively associated with parietal and 

superior frontal regions (Milak, et al., 2005). 

Studies employing structural neuroimaging methods have shown reductions in 

volume for the orbitofrontal cortex (Bremner, et al., 2002), the subgenual anterior 

cingulate gyrus (Botteron, Raichle, Drevets, Heath, & Todd, 2002; Drevets, et al., 
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1997), the amygdala (Sheline, Gado, & Price, 1998), and the hippocampus 

(Bremner, et al., 2000; Sheline, Sanghavi, Mintun, & Gado, 1999) in depressive 

patients. Additionally, reward-related structures such as the putamen (Husain, et al., 

1991), and the caudate (Krishnan, et al., 1992) displayed decreases in volume. 

Likewise, drug-naïve depressive patients suffering from their first major depressive 

episode showed significant gray-matter volume reduction in limbic regions including 

hippocampus and parahippocampus extending into the medial temporal lobe (Zou, et 

al., 2010). 

In addition, research into the causes of differential treatment response has 

provided particularly valuable insights (for a review, see MacQueen, 2009): Using a 

multivariate pattern recognition algorithm on anatomical MRI data, Costafreda et al. 

(2009) were able to predict response to pharmacological treatment (but not to 

cognitive behavioral therapy) with an accuracy of 89%. In particular, increased grey 

matter density in the anterior and posterior cingulate cortices increased the 

probability of clinical remission in response to fluoxetine. Increased density in the 

orbitofrontal cortex increased the probability of residual symptoms of depression 

following this medication. With the same approach, diagnostic classification of 

depressive patients and controls was, however, only at 68% (Costafreda, et al., 

2009). Further evidence additionally suggests regional cerebral blood flow in the 

rostral anterior cingulate to predict response to medication (Joe, et al., 2006; 

Mayberg, et al., 1997). Using electrophysiological methods, this result was replicated 

(Mulert, et al., 2007) and extended by Pizzagalli et al. (2001) who showed that 

activation in the rostral part of the anterior cingulate is associated with magnitude of 

response to pharmacological treatment. To this end, relative theta power of the EEG 

measured during the first week of treatment predicted response to selective serotonin 

(5-HT) reuptake inhibitors (SSRIs; Iosifescu, et al., 2009).  
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In this context, the fact that depression can be treated effectively with SSRIs gave 

rise to the notion that 5-HT plays a decisive role in major depressive disorder. The 

principal centers for serotonergic neurons are the rostral and caudal raphe nuclei. 

From the rostral raphe nuclei, axons ascend to the cerebral cortex, limbic regions 

and specifically to the basal ganglia. Serotonergic nuclei give rise to descending 

axons, some of which terminate in the medulla, while others descend the spinal cord. 

Generally, depression is associated with alterations in 5-HT neurotransmission and 

studies show that tryptophan depletion can induce symptoms of depression 

(Delgado, et al., 1990): P-chlorophenylalanine (PCPA), a specific inhibitor of 

tryptophan hydroxylase which is the rate limiting enzyme in the biosynthesis of 5-HT, 

and a tryptophan-free drink induced a rapid onset of clinical depression in patients 

with previous depressive episodes. Furthermore, in patients with a depletion-induced 

depressive relapse, tryptophan depletion resulted in a decreased glucose 

metabolism in the middle frontal gyrus, thalamus, and orbitofrontal cortex. Validating 

these results, decreased glucose metabolism in these regions correlated with 

increased depressive symptoms (Bremner, et al., 1997). Within this framework, 

Pezawas et al. (2005) reported effects of 5-HTTLPR genotype on grey matter volume 

in regions relevant for depression, namely perigenual cingulate and amygdala. 

Directly linking depression to 5-HT neurotransmission, Reivich et al. (2004) showed 

increased serotonin transporter availability in frontal and cingulate regions using a 

radioligand which binds specifically to the 5-HT transporter. Using a similar approach, 

decreased 5-HT1A receptor levels in depressive patients in midbrain raphe, parietal, 

and occipital cortex regions have been shown (Drevets, et al., 2000). While this effect 

cannot be shown in midbrain raphe, cortical areas continue to display lowered 5-

HT1A receptor levels after recovery (Bhagwagar, et al., 2004). 
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Moreover, neuroimaging findings as well as evidence from animal models strongly 

suggest an involvement of the dopaminergic system in depression (for reviews, see 

Dunlop & Nemeroff, 2007; Nestler & Carlezon, 2006). In this line of research, the 

mesolimbic dopamine pathway linking the ventral tegmentum to the ventral striatum, 

the hippocampus, the amygdala, and the septum, has commonly been associated 

with reward processing (Day & Carelli, 2007). Thus, especially anhedonia as one of 

the major symptoms of depression has been the focus of attention: Tremblay et al. 

(2005) were able to verify the involvement of dopamine-related neuroanatomical 

structures in altered reward processing in major depressive disorder: Depressive 

patients showed a hypersensitivity to the rewarding effects of dextroamphetamine 

associated with altered brain activation in ventrolateral prefrontal cortex, orbitofrontal 

cortex, caudate, and putamen. In addition, functional polymorphisms of the D4

receptor, dopamine transporter, and Catechol-O-methyl transferase, all closely 

associated with dopamine metabolism, have been shown to influence depression-

related processes (for a review, see Dunlop and Nemeroff, 2007). In accordance with 

Davidson and colleagues’ (2002) considerations concerning the heterogeneity of 

symptoms clustered to form a DSM-IV or ICD-10 diagnosis, Bragulat et al. (2007) 

found that different symptoms (affective flattening, psychomotor retardation, and 

impulsivity) in depression entail different regional presynaptic dopaminergic function 

in the caudate, parahippocampus, and parahippocampal gyrus. 

In addition to the roles of 5-HT and dopamine, γ-aminobutyric acid (GABA) 

neurotransmission has recently drawn increasing interest: Studies utilizing Magnetic 

Resonance Spectroscopy (MRS) revealed decreased frontal and occipital GABA 

concentrations while glutamate concentrations in occipital regions were elevated in 

depressive patients compared to controls (Sanacora, et al., 2004; Sanacora, et al., 

1999; Hasler, et al., 2007). Furthermore, evidence suggests that decreased GABA 
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and increased glutamate levels in frontal and occipital-parietal regions persist after 

recovery (Bhagwagar, et al., 2007; Bhagwagar, et al., 2008). It is speculated that 

lowered glial cell numbers which have been reported in affective disorders (Harrison, 

2002; Ongur, et al., 1998) might cause decreased GABA levels as particularly 

astrocytes are an essential source of the GABA precursor glutamine (Bhagwagar, et 

al., 2008). 

Imaging of task-related activation

The analysis of task-related activation is of particular interest as it allows for a 

specific probing of neural processes during behavioral tasks. Focusing on the 

processing of emotional facial expressions, neural activity in depressive patients, but 

not in controls, was found to increase linearly in response to increasingly intense sad 

faces in areas known to be involved in emotional processing (putamen, 

parahippocampal gyrus/amygdala) and in the analysis of stimulus features (fusiform 

gyrus). In response to increasingly intense happy faces, a linear increase in putamen 

and fusiform gyrus was observed in healthy controls, but not in patients (Surguladze, 

et al., 2005). Evidence from a study employing multivariate pattern classification 

showed substantial contributions of frontal regions (middle and superior frontal gyrus) 

as well as precuneus, postcentral gyrus, inferior occipital gyrus, and fusiform and 

lingual gyri to the correct classification of depressive patients based on the neural 

response during the presentation of sad faces (accuracy = 74% and 76% for medium 

and high intensity sad faces, respectively). Corresponding to the impaired recognition 

of neutral facial expressions on the behavioral level (Leppanen, et al., 2004), 

depressive patients could also be identified based on their neural response pattern 

following neutral facial expressions (accuracy = 87%). Here, again frontal regions as 

well as precuneus, postcentral gyrus, inferior occipital gyrus, and lingual gyrus 
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contributed to classification accuracy. In addition, involvement of the anterior 

cingulate and the parahippocampal gyrus was shown (Fu, et al., 2008). 

In response to negative words, Siegle et al. (2002) found prolonged activation in 

the amygdala. While activation in healthy controls decayed within 10 seconds, 

activation in depressive patients continued for roughly 30 seconds. In particular, it 

also continued when a distracting task (Sternberg memory paradigm) followed the 

negative word.  

As for regional cerebral blood flow during rest (see above), evidence suggests 

that treatment response can also be predicted from task-related functional 

neuroimaging data (Siegle, Carter, & Thase, 2006): Specifically, response to 

cognitive behavioral therapy was optimal if patients’ sustained reactivity to emotional 

stimuli was low in subgenual cingulate cortex while activation of the amygdala was 

high. In the same line of research, treatment response was predicted with more than 

78% accuracy using multivariate pattern recognition algorithms based on neural 

responses following the presentation of sad facial expressions. Regions contributing 

most to classification included a complex network of anterior cingulate, frontal 

regions, as well as occipital and parietal areas. Interestingly, using neutral facial 

expressions with the same algorithm provided an equally large accuracy rate 

(Costafreda, et al., 2009). 

In addition, neuroimaging studies integrating data from genetic analyses provide 

detailed information on the role of 5-HT: Heinz et al. (2005) provided evidence that a 

polymorphism of the serotonin transporter gene (SLC6A4) modulates amygdala-

prefrontal coupling. Moreover, Pezawas et al. (2005) performed a functional analysis 

of perigenual cingulate and amygdala – for which volumetric differences associated 

with a functional 5' promoter polymorphism of the serotonin transporter gene have 

been shown (see above) – demonstrating differences in coupling during perceptual 
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processing of fearful stimuli. Specifically, short-allele carriers showed relative 

uncoupling of this circuit. 

Focusing specifically on the neural correlates of anhedonia in depression, 

Keedwell et al. (2005) showed that severity of anhedonia is positively correlated with 

reward-related activity in the ventral medial prefrontal cortex while it is negatively 

correlated with activation in the amygdala and the ventral striatum. In line with this, a 

decreased response of ventral striatal structures to rewards has consistently been 

observed in depressive patients (Epstein, et al., 2006; Pizzagalli, et al., 2009). During 

anticipation of rewards, patients displayed increasing anterior cingulate activation 

with increasing magnitude of reward (Knutson, Bhanji, Cooney, Atlas, & Gotlib, 

2008). 

3.1.2.3. Other biological markers 

In addition to the behavioral and neuroimaging biomarkers outlined above, a large 

number of candidate biomarkers have been suggested from various fields of 

neuroscience and medicine (for a review, see Mössner, et al., 2007). In the following, 

we will summarize a number of the more robust findings.  

One of the most reliable markers for depression is a decreased imipramine 

binding to the high-affinity serotonin transporter on platelets: Meltzer and Arora 

(1986) found a generally decreased binding capacity as well as a decreased binding 

affinity in depressed subjects. This is supported by a meta-analysis of 76 studies 

(Ellis & Salmond, 1994). These findings also hold if only high-affinity binding sites are 

considered (this is of particular importance, as results considering low-affinity binding 

sites have been methodologically criticized; Mellerup & Plenge, 1988). While arguing 

for the face validity of the results, the fact that the decrease in binding capacity was 
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substantially reduced in medicated patients compared to subjects who had been 

medication-free for more than four weeks, might pose difficulties for diagnostic 

application.  

Investigating the serum, increased levels of interleukin (IL)-6 and soluble IL-2 

receptor (sIL-2R; Maes, Meltzer, Bosmans, et al., 1995; Maes, Meltzer, Buckley, & 

Bosmans, 1995; Sluzewska, et al., 1996) have been observed in depressive patients. 

In the context of classification, it appears noteworthy that Maes et al. (1995) used 

Linear Discriminant Analysis (LDA) with IL-6, sIL-6R, sIL-2R, and the highly 

correlated transferrin receptor as well as the product term IL-6 * sIL-6R obtaining a 

within-sample accuracy of 84%. Unfortunately, the authors did not test the LDA 

function on independent data (i.e. cross-validate their results) to obtain an estimate of 

the accuracy within the population. Thus, even neglecting the problem of overfitting 

with four intercorrelated parameters, this value must be seen as the upper bound of 

accuracy that can possibly be obtained using the parameters. 

Additionally, serum levels of brain derived neurotrophic factor (BDNF; Karege, et 

al., 2002) are decreased while several fibroplast growth factor (FGF) system 

transcripts have been found to be disregulated in depression (Evans, et al., 2004; for 

a review of these and other markers, see Mössner, et al., 2007). Both neurotrophins 

might be of particular value in the search for treatment response markers as both 

substances have been associated with the mechanism of action of SSRIs (Russo-

Neustadt, et al., 2001; Evans, et al., 2004). Moreover, FGF gene expression is 

altered in unipolar depressive individuals, but not in bipolar patients stressing the 

specific diagnostic potential of this parameter (Evans, et al., 2004).  
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3.2. Summary and goals of the study 

Summary

Depression is a highly common, in many cases severe and often chronic disorder 

with significant consequences for subjective quality of life, interpersonal relationships, 

and working productivity. While substantial and persistent lowered mood and 

anhedonia have to be present to justify the diagnosis of depression, the frequently 

encountered impairments of cognitive, circadian, and psychomotor functioning are 

non-essential. Furthermore, research has provided compelling evidence showing 

altered affective and motivational processing on the behavioral level while in-vivo 

neuroimaging studies have begun to elucidate the complex neural underpinnings of 

pathological deviations in depression. Generally, the involvement of prefrontal and 

occipital regions, the basal ganglia, and the limbic system in depression has reliably 

been replicated using different techniques and paradigms.  

Based on this evidence, substantial attempts have been made to identify potential 

biomarkers of depression which might aid in diagnosis or predict treatment response 

or course of illness. However, data on single subject classification accuracy is 

particularly scarce: For instance, of the 31 studies considered above which directly 

compare depressive patients and healthy controls, the majority (19) do not provide 

sufficient information for accuracy calculations (mainly as a single effect size 

estimation is not feasible for mass univariate neuroimaging analyses). However, two 

studies do provide direct accuracy estimates while for another ten studies it was 

possible to calculate accuracies from statistical data given in the respective articles: 

Generally, accuracies range between .56 and .87 (Table 1. Accuracy estimates of 

previously identified biomarkers of depression).  



59

Table 1. Accuracy estimates of previously identified biomarkers of depression 

Biomarker description accuracy estimate12 study reference 

bias attending to sad facial expressions < .57 Gotlib, et al., 2004 

identification of neutral facial 

expressions (hit-rate) 
< .70 Leppanen, et al., 2004 

lower occipital GABA concentration 
< .65 

< .75 

Sanacora, et al., 1999 

Sanacora, et al., 2004 

lower frontal GABA concentration < .57 Hasler, et al., 2007 

lower occipital glutamate concentration < .80 Sanacora, et al., 2004 

amygdala activation following negative 

words (left; right) 

< .78; 

< .76 
Siegle, et al., 2002 

structural whole-brain MRI .68 Costafreda, et al., 2009 

whole-brain fMRI BOLD response to 

neutral faces 
.87 Fu, et al., 2008 

whole-brain fMRI BOLD response to 

mildly sad faces 
.74 Fu, et al., 2008 

whole-brain fMRI BOLD response to 

highly sad faces 
.76 Fu, et al., 2008 

imipramine binding to platelets < .61 Meltzer & Arora, 1986 

sIL-2R serum levels 
< .67 

< .78 

Maes, et al., 1995 

Sluzewska, et al., 1996 

BDNF serum levels < .56 Karege, et al., 2002 

From these mixed results it appears that among the five studies obtaining the 

highest accuracy, four are functional neuroimaging studies which show deviations in 

task-related activation – three use multivariate methods. Against this background, it 

12 For those studies which provided a single statistical parameter (e.g. t- or F-values) meaningful for 
group comparison, Pearson correlation r was calculated as a measure of effect size (respective 
formulas are provided in Hunter & Schmidt, 1990). Then accuracy was calculated using the Binomial 
Effect Size Display principle (Rosenthal & Rubin, 1982; assuming a symmetrical cost function it 

follows:
2

1

2
��

r
accuracy ). 
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is essential to note that none but the two studies which provided direct accuracy 

estimates tested their results on independent data as no single-subject prediction 

was originally intended. As they, thus, did not obtain an unbiased estimate of the 

accuracy within the population, the values represent the upper bound of the accuracy 

that can optimally be obtained using the studies’ parameters.13 In addition, the real-

life utility of the study which obtained the by far highest accuracies on independent 

data (up to 87%; Fu, et al., 2008) cannot be assessed easily: Primarily, the use of a 

sample containing a group of unmedicated and acutely depressive patients makes an 

estimation of the accuracy in a heterogeneous psychiatric sample difficult. 

Considering these limitations, it must be concluded that – while using a multivariate 

method with task-related functional neuroimaging data appears most promising – 

none of the currently available biomarkers has shown sufficient predictive power for 

practical application in psychiatry. 

Goals of the study

In order to improve the predictive power obtained with biomarkers, it might be 

most instructive to consider the diagnostic process employed in psychiatry today: 

Diagnoses made by experienced clinicians using standardized tools are undoubtedly 

the gold standard on which decision-making in psychiatry is based.14 As psychiatric 

disorders are defined by specific behavioral and cognitive patterns, the clinician 

needs to integrate his observations and the patient’s reports for each symptom to 

obtain reliable and valid data based on which the presence or absence of a defined 

13 For descriptive reasons, we ran the decision tree algorithm without using independent data (i.e. 
without leave-one-out cross-validation) and obtained an accuracy of 95%. Running single GP 
classifiers without cross-validation usually yields perfect accuracies due to the ultra-high 
dimensionality of the data. 
14 Note that accuracy in primary care settings differs: General practitioners classify about 35% of their 
patients incorrectly (accuracy = .65; not depressed/depressed) while not detecting 51% of depressive 
patients (sensitivity = .49; Mitchell, Vaze, & Rao, 2009). 
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disorder is judged. Following the same principle, integrating multiple physiological 

markers tied to specific symptoms ought to improve both validity and accuracy of 

biomarker-based classification.  

With its ability to assess neural responses directly linked to behavior and 

cognition (see 3.3.3 Functional Magnetic Resonance Imaging), fMRI can provide 

data on single symptom-related processes. As outlined above, neural correlates of 

specific behaviors and cognitions have already been identified and used successfully 

in classification (3.1.2 Biological markers of depression). Using the multi-source 

pattern classification algorithm developed in this work, an integration of such 

symptom-related markers measured with fMRI ought to be possible. Considering 

previous results and the prominent role of lowered mood and anhedonia in 

depression as defined by DSM-IV and ICD-10, combining neuroimaging data 

measured during emotional processing appears most promising. Specifically, we will 

measure neural responses to four different emotional facial expressions as well as to 

reward- and loss-related stimuli of varying intensity (3.3.2 Tasks and procedures). 

Thereby, we incorporate neural responses associated with behavioral and cognitive 

patterns related to the core-symptoms of the disorder which have robustly been 

shown to deviate in depression. 

In order to provide a realistic estimate of the approach’s potential real-life utility, it 

is essential to run the algorithm on a sample of patients as it can commonly be found 

in psychiatric settings. This requires inclusion of a heterogeneous group of patients 

regardless of current therapeutic intervention or medication who present with varying 

degrees of depressive symptoms. 

In summary, we will use the multi-source pattern classification algorithm 

developed in this work to integrate fMRI BOLD data acquired with multiple paradigms 

and conditions related to emotional processing and anhedonia. Following our 



62

approach, we will use the GP classifiers to obtain a participant’s probability of being a 

patient for each of the symptom-related neural processes. In the second step, these 

classification probabilities associated with each biomarker will be integrated using a 

decision tree algorithm (compare 2.3 Algorithm development).  

We hypothesize that 

(1) single GP classifiers based on neural correlates of the processing of emotional 

facial expressions can classify depressive patients and controls which have 

not previously been seen by the algorithm with significant accuracy. 

(2) single GP classifiers based on neural correlates of the processing of reward- 

and loss-related stimuli can classify depressive patients and controls which 

have not previously been seen by the algorithm with significant accuracy. 

(3) combining the predictive probabilities obtained from each GP classifier will 

result in significantly increased classification accuracy compared to the 

accuracy obtained from the most accurate of the single GP classifiers alone. 

If high-accuracy classification is possible, it is of great interest how classification 

was achieved and which properties of the data have contributed. Thus, we will 

quantify the utility of each single biomarker and derive a decision tree which models 

the interrelations of the relevant markers. Using multivariate spatial mapping, we will 

furthermore identify those brain regions which contributed most to overall 

classification within the decision tree. Finally, we will discuss the resulting integrated 

biomarker model and the network of contributing regions in the context of depression. 
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3.3. Materials and Methods 

3.3.1. Participants 

A total of 31 psychiatric in-patients from the University Hospital of Psychiatry, 

Psychosomatics and Psychotherapy (Würzburg, Germany) were recruited. All were 

in a depressed phase or recovering from a recent one. Specifically, patients were 

diagnosed with recurrent depressive disorder (F33; n=10), depressive episodes (F32; 

n=15), or bipolar affective disorder (F31; n=5) based on the consensus of two trained 

psychiatrists according to ICD-10 criteria (DSM-IV codes 296.xx). In addition, 

patients were interviewed using the Montgomery-Åsberg Depression Rating Scale 

(MADRS; Montgomery & Asberg, 1979). One patient was excluded due to a panic 

attack during the measurement, leaving 30 patients for further analysis.  

We explicitly recruited patients who were on a variety of medications and who, at 

the time of the measurements, presented with varying degrees of depressive 

symptoms from severe to currently almost symptom-free. Accordingly, self-report 

scores in the German version of the Beck Depression Inventory – Second Edition

(BDI-II; Beck, et al., 1996) on the day of the experiment ranged from 2 to 42 (mean = 

19, standard deviation SD = 9.4). Choosing a well-diagnosed, but heterogeneous 

group of patients with varying degrees of depressive symptoms while not excluding 

medicated patients ought to provide a more realistic estimate of the algorithm’s 

potential real-life utility. Exclusion criteria were age below 18 or above 60 years, 

comorbidity with other currently present Axis I disorders, mental retardation or mood 

disorder secondary to substance abuse, medical conditions or medication as well as 

severe somatic or neurological diseases. Patients suffering from bipolar affective 

disorder were in a depressed phase or recovering from a recent one with none 

showing manic symptoms. All patients were taking standard antidepressant 
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medications, consisting of SSRIs, tricyclic antidepressants, selective noradrenaline 

re-uptake inhibitors, noradrenaline and serotonin selective inhibitors, or 5-HT2 

antagonists. Patients were free of antipsychotic medication with the exception of 

quetiapine for which up to 300 mg/day were generally allowed. However, no dose of 

quetiapine was given on the day of the experiment so that at least 16 hours (≈ 3-4 

plasma half-life times and ≈ 2-3 D2-receptor half-life times; Gefvert, et al., 2001) had 

passed since the last administration. 

Thirty comparison subjects from a pool of 94 participants previously recruited by 

advertisement from the local community were selected as to match the patient group 

in regard to gender, age, smoking, and handedness using the optimal matching

algorithm implemented in the MatchIt package (Ho, Imai, King, & Stuart, 2007) for R 

(http://www.r-project.org/). For a summary of the demographic features of the 

matched groups see Table 2. 

Table 2. Demographic features of the matched samples 

Variable Patients n=30 controls n=30 

Gender (male/female) 18/12 19/11 

mean age (SD) 38.1 (11.0) 36.0 (9.1) 

Smoking status 

(smokers/non-smokers) 
14/16 12/18 

handedness (right/left) 28/2 29/1 

BDI-II score (SD) 19 (9.4) 4 (4.6) 

In order to exclude potential Axis I disorders, the German version of the 

Structured Clinical Interview for DSM-IV (SCID; Wittchen, Zaudig, & Fydrich, 1997) 

Screening Questionnaire was conducted. Additionally, none of the control subjects 

showed pathological BDI-II scores (mean = 4.3, SD = 4.6). 
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From all participants, written informed consent was obtained after complete 

description of the study. The study was approved by the Ethics Committee of the 

University of Würzburg and all procedures involved were in accordance with the 

latest version (fifth revision) of the Declaration of Helsinki. 

3.3.2. Tasks and procedures 

Setting and external conditions

All measurements were conducted at the Research Center Magnetic Resonance 

Bavaria (MRB e.V., Würzburg, Germany). While the control subjects independently 

arranged transportation, patients were met at their ward and taken to the site under 

supervision of a member of the examination team (psychologist or physician). At the 

MRB, the details of the study protocol were explained and participants completed the 

German version of the Beck Depression Inventory – Second Edition (BDI-II; Beck, et 

al., 1996; German version: Hautzinger, Keller, & Kühner, 2006). For other studies, 

participants completed five additional psychometric paper-pencil tests, namely the 

Sensitivity to Punishment Sensitivity to Reward Questionnaire (SPSRQ; Torrubia, 

Ávila, Moltó, & Caseras, 2001), the Zahlen-Verbindungs-Test (ZVT; Oswald & Roth, 

1987), the Positive and Negative Affect Schedule in its state version (PANAS; 

Krohne, Egloff, Kohlmann, & Tausch, 1996), State-Trait-Angstinventar (STAI; Laux, 

Glanzmann, Schaffner, & Spielberger, 1981) and State-Trait-Ärgerausdrucks-

Inventar (STAXI; Schwenkmezger, Hodapp, & Spielberger, 1992). Controls 

furthermore completed the Anxiety Sensitivity Index (ASI; Alpers & Pauli, 2001), the 

Panik und Agoraphobie-Skala (PAS; Bandelow, 1997) and the German version of the 

Structured Clinical Interview for DSM-IV (SCID; Wittchen, et al., 1997) Screening 

Questionnaire. Then, standardized instructions for all three paradigms were given 
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and potential questions were addressed. For safety reasons, all participants were 

screened for metallic objects directly before entering the MRI chamber.  

In the MRI measurement room, participants were acquainted with the response 

pad needed during the second and third paradigm. Subsequently, participants were 

ear-plugged, comfortably placed on the stretcher, and moved into the scanner. Head 

movements were minimized by using a cushioned head fixation device. Stimuli were 

presented via MRI-compatible goggles (VisuaStim; Magnetic Resonance 

Technologies, Northridge, CA). Even though participants were instructed to lie still 

and focus on the task, communication was possible at all times via a microphone and 

speakers in the MRI chamber. Additionally, an emergency button was put on the 

subject’s chest. After completion of the three paradigms, control subjects participated 

in an additional experiment. Furthermore, anatomical and resting state MRI data was 

acquired from all participants after the functional paradigms. In total, patients and 

controls spent no more than 45 minutes in the scanner. After the study, participants 

were debriefed, blood for genetic analysis required in another study was taken from 

the control subjects, and patients were escorted back to their ward. Blood from the 

patients was collected in their ward.  

Task description

FMRI data was acquired during a total of three independent paradigms: The first 

paradigm consisted of passively viewing emotional faces. Sad, happy, anxious, and 

neutral facial expressions were used in a blocked design, with each block containing 

faces from eight individuals (four female, four male) that were taken from the 

Karolinska Directed Emotional Faces database (Lundqvist, Flykt, & Öhman, 1998). 

Every block was repeated four times in a random fashion. Each face was shown 

against a black background for two seconds and was directly followed by the next 
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face. Thus, each block had a duration of 16 seconds. Face blocks were alternated 

with blocks of the same length showing a white fixation cross on which the participant 

had to focus. Subjects were instructed to attend to the faces and empathize with the 

emotional expression.  

The second paradigm was a modified version of the Monetary Incentive Delay 

(MID) Task developed by Knutson et al. (2001) which has been used previously 

(Hahn, et al., 2009). In order to familiarize subjects with the task, each participant 

completed ten practice trials prior to data acquisition. During each trial, participants 

saw one of three different cue shapes (presentation time 2000 ms each) followed by 

a fixation cross as they waited a variable interval (2250 – 2750 ms). Thereafter, they 

had to respond in-time (i.e. while the target was visible) with a button press to a white 

target square which appeared for a variable length of time depending on the subject’s 

previous performance. Specifically, the mean reaction time obtained from the ten 

practice trials was used as the initial target duration. It was increased by 30 ms if the 

subject failed to respond fast enough on more than one out of the last three 

consecutive trials. Likewise it was decreased by 30 ms if the subject succeeded on 

more than two out of the last three consecutive trials. This approach ought to ensure 

participants’ success on an average of 66% of the trials, thereby yielding a proportion 

of hits and misses comparable to that reported by Knutson et al. (2001). Additionally, 

target duration was set as to never decrease below 100 ms and never exceed 1000 

ms. As this adaptive algorithm was used to alter target durations, reaction times 

cannot be meaningfully interpreted and are therefore excluded from further analysis. 

Feedback (2000 ms), which followed the disappearance of the target, informed 

participants of whether they had reacted in time during that trial and indicated their 

cumulative total win in Euros at that point. Cues signaled the possibility of winning 

0.05 € (n = 20; a circle with one horizontal line) or 1.00 € (n = 20; a circle with three 
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horizontal lines). The third cue (n = 20; a triangle) indicated that no money could be 

won during this trial. The three trial types were randomly ordered within the 

experiment and the length of the inter-trial interval was randomly jittered in steps of 

83 ms between 83 and 2000 ms. 

The third paradigm was also adapted from Knutson et al. (2001) and exactly 

mirrored the second paradigm. However, participants started with an initial amount of 

10 Euros of which they were instructed to lose as little as possible. In contrast to the 

second paradigm, cues signaled the possibility of losing 0.05 € (n = 20; a square with 

one horizontal line) or 1.00 € (n = 20; a square with three horizontal lines). The third 

cue (n = 20; a triangle), again, indicated that no money could be lost during this trial. 

3.3.3. Functional Magnetic Resonance Imaging 

Blood Oxygen Level Dependent (BOLD) imaging

Generally, fMRI relies on measuring the hemodynamic response as a surrogate of 

neural activity. Specifically, fMRI BOLD measurement takes advantage of the fact 

that changes in neural activation lead to regional changes in the concentration of 

oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) by means of neurovascular 

coupling: Following neural firing, regional O2Hb levels decrease as neurons use 

oxygen, thereby increasing the relative level of HHb in the blood (Heeger & Ress, 

2002; Vanzetta & Grinvald, 1999). Following this initial, often very light effect, a much 

larger increase of O2Hb levels occurs due to a massive oversupply of oxygen-rich 

blood. O2Hb levels reach their maximum after approximately 6 seconds (Fox, 

Raichle, Mintun, & Dence, 1988; Heeger & Ress, 2002). The result of this oversupply 

of oxygen is a large decrease in the relative level of HHb. Eventually, the level of 

HHb slowly returns to its original baseline level after an initial undershoot after 



69

approximately 24 seconds (Heeger & Ress, 2002). As O2Hb is diamagnetic while 

HHb is paramagnetic, the relative level of HHb can be assessed with fMRI (for details 

concerning MRI physics underlying BOLD imaging, see e.g. Filippi, 2009). 

It must be noted that assessing the concentration changes of O2Hb and HHb in 

the brain is an indirect measure of neural activity, as outlined above. This entails that 

any event leading to a vascular response in the brain leads to signal changes in the 

fMRI BOLD raw data. Moreover, irregularities in neurovascular coupling as 

associated with disorders impacting neurovascular processes (Iadecola, 2004) might 

also hamper interpretation of BOLD signal changes. However, by means of event-

locked extraction and modeling procedures, signal changes specific to the 

components of a functional task can be derived (see Data preprocessing and 

extraction below), while in the context of this study, we assume comparable 

hemodynamic response shapes of patients and controls. 

fMRI data acquisition

For all three paradigms, imaging was performed with the same parameters using 

a 1.5 T Siemens Magnetom Avanto TIM-system MRI scanner (Siemens, Erlangen, 

Germany) equipped with a standard 12 channel head coil. In a single session, 

twenty-four 4-mm-thick, interleaved axial slices (in-plane resolution: 3.28 x 3.28 mm) 

oriented at the AC-PC transverse plane were acquired with 1 mm interslice gap, 

using a T2*-sensitive single-shot echo planar imaging (EPI) sequence with following 

parameters: repetition time (TR; 2000 ms), echo time (TE; 40 ms), flip angle (90°), 

matrix (64x64), and field of view (FOV; 210x210 mm2). The first six volumes were 

discarded to account for magnetization saturation effects.  
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Data preprocessing and extraction

Data were preprocessed using the Statistical Parametric Mapping software 

(SPM5, Wellcome Department of Cognitive Neurology, UK). Slice-timing correction 

was applied, images were realigned, spatially normalized and smoothed, using an 8 

mm FWHM Gaussian isotropic kernel. From this data, information for Gaussian 

process classification was extracted as follows: 

For the first paradigm (viewing emotional faces), the mean value of the time 

series in each voxel was subtracted from each time point. Subsequently, the onset of 

each block was shifted by one TR to account for the hemodynamic delay and the 

average of eight consecutive volumes (i.e. the length of one block) was computed to 

construct a feature vector x i  (with dimensionality d  equal to the number of voxels in 

the whole-brain mask). This procedure yielded four training samples – corresponding 

to the four repetitions of each block – for each facial expression. For each of these 

expressions, the test examples were created by averaging all training examples for 

each subject. 

As the second and third paradigm (processing of reward and loss) were realized 

in a rapid event-related design, relevant information has to be extracted using a 

standard convolution model as implemented in SPM5 for each subject: Generally, a 

temporal overlap of the hemodynamic responses occurs if the stimuli are spaced 

closer together than the duration of the hemodynamic response cycle which returns 

to baseline after 10 to 12 seconds or more (Boynton, Engel, Glover, & Heeger, 1996; 

Buckner, et al., 1996). In order to obtain sufficient statistical power and avoid the 

induction of confounding states (e.g. boredom), however, a larger number of trials 

has to be presented in a randomized fashion while keeping total measurement time 

in a tolerable range. Thus, the question arises, how temporally overlapping 

hemodynamic responses following rapidly presented stimuli can be disentangled and 



71

their amplitude quantified. Within the standard modeling approach applied in this 

work (Friston, et al., 1994; Friston, Jezzard, & Turner, 1994) it is assumed that 

stimulation will elicit neural firing followed by a hemodynamic response (see Blood 

Oxygen Level Dependent (BOLD) imaging). The shape of this hemodynamic 

response function (HRF) can be modeled using a Gaussian normal distribution. 

Provided successive hemodynamic responses summate linearly – as has been 

shown for inter-stimulus intervals of as low as 2 seconds (Dale & Buckner, 1998) – 

the General Linear Model (GLM) can be applied. In the GLM,15 the fMRI time series 

of each voxel (data vector y ) is predicted on the basis of a set of reasonable HRFs 

which are convolved with the event sequence of the experimental trials yielding the 

design matrix x . To bind the variance induced by potential movement artifacts, 

measurements of movement in the 3 directions of translation and 3 degrees of 

rotation were added as regressors to the design matrix. Then data was modeled as 

	� �� xy , where�  is the weight vector and 	  represents an error term. Within this 

framework, the estimation of the � -weights quantifies the contribution of the HRF to 

the explanation of the data y  which in the current context corresponds to an estimate 

of the amplitude of the hemodynamic response. Assuming 	  to be uncorrelated, 

independent and normally distributed, the unbiased ordinary least square estimates 

of �  are given by yTT xxx 1)( ��� . As, however, several physiological processes, 

such as respiration or blood-pressure changes, might pose confounding factors, the 

time series in each voxel were high pass filtered to 
128

1
Hz and corrected for temporal 

auto-correlation using an autoregressive model with a lag of 1 (Orcutt & Cochrane, 

15 It is important to note that common notation within the GLM differs from the notation regularly used 
in pattern recognition (used in Part I of this work). In contrast to pattern recognition, y  denotes the 

single voxel time-series data (not the labels) while x represents the design matrix (not whole-brain 
data) mainly derived from the experimental setup. While a complete integration of the fMRI GLM 
model into GPR is possible (Marquand, et al., 2009), we use the common, though overlapping 
notation for both methods to avoid confusion. 
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1949) before � -weights were estimated. Following the rational based on the 

mechanisms of neurovascular coupling, � -weights might now be interpreted as brain 

activation (Friston, et al., 1994; Friston, et al., 1994).  

In the rapid event-related framework of paradigms two and three (processing of 

reward and loss), the � -weights for the cue and feedback in each condition were 

estimated for each subject as described above. Specifically, this procedure yielded 

six � -maps per subject corresponding to the anticipation of large, small, and no 

reward or loss, respectively. Likewise, twelve � -maps corresponding to large, small, 

and no reward/loss feedback following a correct or an incorrect response, 

respectively, were obtained. If the number of trials on which a single subject’s � -

estimates were based was below six – due to e.g. an extremely low number of 

incorrect responses for a particular subject – this condition was excluded from further 

analysis for all subjects. Applying this criterion, valid data associated with actual 

small and large reward feedback as well as with avoidance of small and large losses 

could be obtained from the feedback phases of the second and third paradigm. By 

collapsing the data from actual small and large loss feedback, these two conditions 

could additionally be included. The feature vectors x i  (for each subject) were 

constructed directly from each condition’s � -map.  

To address the concern that classification results might be driven by differences in 

movement between patients and controls during the measurements, we used a GPC 

to classify patients and controls based on their movement parameters acquired 

during each paradigm. LOO-CV did not yield significant accuracies for any of the 

three paradigms.  

Finally, for all three paradigms, a mask containing all intracerebral voxels was 

applied, yielding whole brain data for Gaussian process classification. In summary, 
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for each of the 60 subjects, data from 15 conditions (see Figure 3 for a complete list) 

could be extracted for use in classification. 

3.3.4. Algorithm application 

Whole-brain data from the 15 conditions and 60 subjects were analyzed using the 

multi-source pattern classification algorithm outlined in this work (see 2.3 Algorithm 

development). Specifically, the feature vector x i  for each subject consisted of all ( d ) 

intracerebral voxels measured in the respective condition (see Data preprocessing 

and extraction for details). In order to benchmark the single GP classifiers’ 

performances, we compared GP classifier accuracies to the performance of linear 

support vector machine classifiers which constitute the most widely used pattern 

recognition approach in the field of neuroimaging (Fu, et al., 2008; Marquand, et al., 

2008; Mourao-Miranda, et al., 2005).  

In terms of coding and implementation, GP classification was performed using a 

customized version of the Gaussian processes for machine learning (GPML) toolbox 

for Matlab (http://www.gaussianprocess.org/gpml). We used a linear covariance 

function and estimated hyper-parameters controlling bias and regularization using an 

empirical Bayesian approach (for details, see 2.3 Algorithm development). To 

improve visualization of brain regions important for classification and eliminate noise 

components, we thresholded all multivariate discrimination maps at 30% of the 

maximum intensity and 5 continuous voxels (for successful application of weight-map 

thresholding, see e.g. Costafreda, et al., 2009). SVM calculations were done using 

the LIBSVM library for Matlab (http://www.csie.ntu.edu.tw/~cjlin/libsvm) where 

classification was performed using a linear kernel. In all cases, we fixed the SVM 
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parameter C which controls the trade-off between maximizing the margin and 

permitting misclassification to the default value of one.  

Particularly in the context of neuroimaging, it is of great interest which regions 

contribute most to classification. As described in detail above (2.3.4 Multivariate 

feature mapping), we can differentiate between two general mapping approaches: 

one which quantifies the contribution of each voxel to the decision boundary (weight 

maps) and one showing the distribution of the two groups relative to one-another with 

respect to this decision boundary (distribution maps). Thus, weight maps derived 

from neuroimaging data are a spatial representation of a GP classifier’s decision 

boundary while group maps constitute a spatial quantification of the difference 

between the two classes, i.e. subjects classified as patients or controls. Based on 

this, node-specific spatial distribution maps, as reported here (3.4.3 Multivariate 

spatial mapping of neural processes), can be understood to show those brain regions 

on which subjects classified at each node of the decision tree differ most relative to 

the decision boundary (a list containing information on all regions contributing to the 

formation of the decision boundary for each relevant biomarker can be found in the 

Appendix in Table A - 1, Table A - 2, and Table A - 3; for computational details, see 

2.3.4 Multivariate feature mapping). 

3.4. Results 

3.4.1. Classification based on single biomarkers 

Independent GP classification of the data from each of the 15 conditions revealed 

significant accuracies for a total of 8 conditions (Figure 3).16 The median accuracy for 

16 As we did not intend to draw inferences based on the performance of any single classifier, we did 
not perform multiple comparison correction for the 15 tests. 
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all GP classifiers was at 60% while the single best classifier (anticipation of no loss) 

performed at an accuracy of 72%. 

Furthermore, we compared the GP classifiers to the standard SVM approach. 

Generally, both algorithms performed comparably, with slight advantages for the GP 

classifiers which reached accuracies at least as high as the SVM in all but one of the 

15 cases (for an overview, see Figure 3).  

Figure 3. Gaussian Process classification accuracies in percent (black bars) for all 15 

conditions compared to support-vector machine accuracies (shaded bars). * and + indicate 

above chance-level classification accuracy (*: p < .05; +: p < .10).

3.4.2. Integrated biomarker classification 

Integrating the descriptive probabilities from all single GP classifiers using the 

decision tree algorithm leads to an accuracy of 83%. This constitutes an 

improvement in accuracy of 11% (p=.017) in comparison with the single best of all 

GP classifiers. The boost in accuracy compared to the median of all GP classifiers 

amounts to 23% (Figure 4). 
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Figure 4. Increase in accuracy for the decision tree model integrating conditions (83%) in 

comparison to the median of all Gaussian Process (GP) classifiers (60%) and the most 

accurate single GP classifier alone (72%).

Investigating the optimal decision tree model revealed which conditions were 

relevant for overall classification (Figure 5): The entire subject group was best 

classified by splitting the pGP for neutral facial expressions at .46. In the second step, 

those subjects with a pGP for neutral facial expressions lower than .46 (left branch) 

were best classified by splitting the pGP for actual large reward at .39. For those 

subjects more likely to be patients based on the pGP for neutral facial expressions

(right branch), the best classification was obtained based on the pGP for anticipation 

of no loss splitting at .47.  

In summary, integrating pGP using a decision tree algorithm substantially boosted 

classification accuracy by considering GP predictive probabilities derived from three 

conditions. Note that these conditions are not those with the highest single GP 

classification accuracies. While there are three conditions related to the processing of 

emotional facial expressions among the four most accurate single GP classifiers, 

only the pGP for neutral facial expressions is relevant for the construction of the tree 
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model. Furthermore, while the single GP classifier based on actual large reward does 

not classify the entire sample above chance level (see Figure 3), it nonetheless 

contains information essential for the classification of participants into subsamples. 

Figure 5. Optimal decision tree model showing variables relevant for overall classification. 

Subjects’ predicted probabilities to be a patient (pGP) derived from fMRI data related to the 

processing of neutral facial expressions was most informative for classification of the whole 

sample. Subjects in the two resulting subsamples could be classified best using pGP derived 

from data related to reward (actual large reward) and safety (anticipation of no loss). Brain 

maps show node-specific distribution maps: shades of blue indicate classification to the left 

branch; shades of red indicate classification to the right branch. 

3.4.3. Multivariate spatial mapping of neural processes 

For all three biomarkers relevant for final prediction, a complex, intercorrelated 

pattern of regions was found to contribute to classification (Figure 5; node-specific 

maps; a complete list with information for all regions can be found in the Appendix in 

Table A - 4, Table A - 5, and Table A - 6). In the first classification step (split on 
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neutral facial expressions) this network includes a large occipital-parietal cluster 

containing the fusiform gyrus which contributes to classification to the right branch of 

the tree. In addition, smaller clusters within the caudate as well as in frontal regions 

show highest coefficient scores, suggestive of an important difference in these 

regions. While regions indicating classification to the left branch also include occipital 

regions (inferior occipital gyrus) and the lingual gyrus, mainly frontal regions (superior 

frontal and middle frontal gyrus) are essential. 

Following the tree to the node-specific map for anticipation of no loss, we again 

find an extended occipital-parietal cluster comprising the cuneus, the lingual gyrus 

and the precentral gyrus. This time, however, it is characteristic of classification to 

the left branch (controls; as opposed to the right branch for neutral facial 

expressions). Likewise, the lingual gyrus now shows coefficient scores characteristic 

of classification to the right branch (patients). 

Investigating the split on actual large reward, an extensive parietal cluster 

including the post central gyrus is characteristic of right-branch classification 

(controls) in this subsample. Furthermore, we find smaller clusters in superior 

temporal regions as well as the thalamus and the amygdala. Areas characteristic of 

left-branch classification (patients) are the cuneus and again the lingual gyrus. 



79

4. Discussion 

In this work, we sought to improve the predictive power of biomarkers of 

depression by combining multiple neurobiological markers. First, we identified the 

core-symptoms of depression from standard classification systems (3.1.1.2 

Symptoms and diagnosis of depression). Then, we designed and conducted three 

experimental paradigms probing psychological processes known to be related to 

these symptoms (3.1.2 Biological markers of depression). In order to integrate the 

resulting 12 high-dimensional biomarkers (3.3.3 Functional Magnetic Resonance 

Imaging), we developed a multi-source pattern recognition algorithm based on a 

combination of GPC and CART (Part I – Integrating biomarkers: development of a 

multi-source pattern classification algorithm). Applying this method to a group of 30 

healthy controls and 30 depressive in-patients who were on a variety of medications 

and displayed varying degrees of symptom-severity allowed for high-accuracy single-

subject classification. Specifically, integrating biomarkers yielded an accuracy of 83% 

while the best of the 12 single biomarkers alone classified a significantly lower 

number of subjects (72%) correctly. Thus, integrated multi-source biomarker-based 

classification of a heterogeneous, real-life sample resulted in accuracy comparable to 

the highest ever achieved in previous single biomarker research (Fu, et al., 2008). In 

addition, the high-accuracy results reported by Fu et al. (2008) were obtained in 

specifically selected, homogeneous group of unmedicated participants.  

Investigation of the final prediction model revealed that neural activation during 

the processing of neutral facial expressions, large rewards, and safety cues is most 

relevant for over-all classification. While neutral facial expressions were most 

informative, actual large reward and anticipation of no loss classified the resulting two 

subsamples optimally. This underlines the general strength of the algorithm to 
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specifically include non-redundant sources of information from a larger number of 

biomarkers into the model. We conclude that combining brain activation related to the 

core-symptoms of depression using the multi-source pattern classification approach 

developed in this work substantially increases classification accuracy while providing 

a sparse relational biomarker-model for future prediction. 

4.1. Single biomarkers of depression 

Investigating the single biomarkers acquired in this work, we were able to provide 

evidence showing that neural correlates of emotional processing – which had 

previously been identified as biomarkers of depression on the group-level – are also 

useful for single-subject classification. A total of eight single biomarkers classified the 

sample above chance level: half of these are based on neural responses to 

emotional facial expressions (happy, sad, anxious, and neutral facial expressions). 

The remaining four classifiers rely on data from anticipation of no reward, anticipation 

of large reward, anticipation of no loss, and avoiding small loss. 

Neural responses during anticipation of no loss appear to have the highest 

predictive power. While behavioral studies specifically investigating the anticipation of 

no loss are missing, a neuroimaging study also using a version of the MID task 

showed activation in the middle and inferior frontal gyri as well as in parietal regions, 

the insula, caudate, and thalamus in depressive patients and controls. However, 

univariate analyses employed in this study did not show significant differences in 

these regions between depressive patients and healthy controls (Knutson, et al., 

2008). Interestingly, the multivariate approach used in the current work reveals that 

all of the relevant regions identified by Knutson et al. (2008) – except for the 

thalamus – contribute to the formation of the decision boundary (compare decision 
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boundary weight map for anticipation of no loss, Appendix Table A - 3) and thus hold 

substantial predictive power. As the previous study did find those regions to play a 

role in the processing during the anticipation of no loss, we can only assume that 

mass univariate statistical testing with a sample size of 26 (14 depressive patients 

and 12 controls), as conducted in the previous study, provided too little statistical 

power to detect significant differences between patients and controls. Alternatively, it 

is conceivable that information differentiating the groups is coded in the interrelation 

of the regions which is disregarded by univariate approaches. From a theoretical 

point of view, the cue indicating no loss – independent of the subject’s performance 

in this trial – might be interpreted as a sign of safety in a context of potential losses. 

As depressive patients have been shown to be more risk averse than healthy 

controls (Smoski, et al., 2008), such “safe trials” may appear more positive to 

depressive individuals than to controls. This also fits with findings by Elliott et al. 

(1998) concerning behavior in response to feedback who concluded “that depressive 

individuals generally behave as if they expected failure while healthy participants 

behave as if they expected success”. When expecting to be unable to respond in 

time during the MID task (vs. expecting to succeed on that trial), a trial in which no 

loss can occur independent of the behavioral performance is much more positive. 

The same line of arguments might explain the significant predictive power based on 

avoiding small loss.  

Considering the differences in reward-processing which have consistently been 

found between depressive individuals and controls (3.1.2 Biological markers of 

depression), the predictive power of neural responses during the anticipation of large 

and no rewards appears consistent with literature. Examining responses during the 

anticipation of large reward, we found highly similar regions to contribute to the 

formation of the decision boundary which have been identified in previous mass 
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univariate approaches as well: While previous studies identified the ventral medial 

prefrontal cortex, the amygdala, and the ventral striatum (Keedwell, Andrew, 

Williams, Brammer, & Phillips, 2005; Epstein, et al., 2006; Pizzagalli, et al., 2009), 

regions contributing to the formation of the decision boundary in our study included 

inferior, medial and superior frontal gyri, the amygdala as well as a large cluster 

within the caudate (Appendix Table A - 2). In analogy to those previous studies 

showing positive correlations of anhedonia with reward-related activation in frontal 

areas and negative correlations with the amygdala, we find that frontal areas 

contributed to the classification of patients while the amygdala classified controls.  

Further investigation of single classifiers shows that neural responses to 

emotional faces provide consistently good classification accuracies for neutral, sad, 

anxious, and happy facial expressions. This is in line with the numerous findings 

concerning an attentional bias and altered behavioral responses to facial expressions 

such as higher error rates and longer reaction times for the identification of neutral, 

sad, and happy facial expressions (3.1.2.1 Processing of emotional stimuli; for 

reviews, see Leppanen, 2006 and Bylsma, et al., 2008). Considering previous 

studies using pattern recognition approaches, our results mirror findings related to 

sad and neutral facial expressions by Fu et al. (2008) while – at least nominally – 

showing lower accuracies. Anatomically, a highly similar pattern of discriminating 

regions for neutral faces is identified; including medial, middle and superior frontal 

gyri, the cuneus, the precuneus, lingual, precentral, postcentral, superior parietal as 

well as the parahippocampal gyri (Appendix Table A - 1). As the experimental 

conditions were very similar and as the decline in accuracy becomes even more 

evident if we use the same pattern recognition method employed by Fu et al. (SVM 

as used for benchmarking in this work; Fu, et al., 2008) while the contributing regions 

are largely the same, we conclude that a comparable decision boundary was 
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learned. However, it did not lead to equally good performance in our sample. 

Comparing the carefully chosen, unmedicated, acutely depressive subjects with our 

heterogeneous sample, this does not come as a surprise. It underlines, however, the 

importance of using subjects from a population for which accuracy estimation is 

relevant.  

From this we conclude that – as hypothesized – single GP classifiers based on 

neural correlates of the processing of emotional facial expressions as well as those 

based on data from reward- and loss-processing can classify depressive individuals 

and controls which have not previously been seen by the algorithm with significant 

accuracy. Arguing for the validity of the approach, the regions contributing to 

classification include those which have previously been reported for mass univariate 

approaches while largely replicating those previously identified using multivariate 

pattern recognition.  

4.2. Combining symptom-related biomarkers of depression 

In psychiatry, the basic diagnostic process involves obtaining information on the 

symptoms a patient displays and combining this data for each symptom to yield a 

basis for valid diagnosis. This is mirrored in the standard classification systems such 

as DSM-IV or ICD-10 which outline detailed symptom-based criteria necessary for 

the diagnosis of psychiatric disorders. Striving to improve the accuracy of current 

biomarker-based classification, we adopted the idea of gathering symptom-related 

data and combining it for final classification. While the symptoms required for 

diagnosis by standard classification systems are mainly assessed based on patients’ 

self-reports and clinical observation of behaviors, we sought to measure and 

combine multiple symptom-related neurobiological markers. Thus, we first identified 
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the core-symptoms of depression from standard classification systems to then obtain 

data on the neural processes known to be associated with these symptoms. In order 

to combine the resulting high-dimensional neurobiological markers, we developed a 

multi-source pattern classification algorithm based on a combination of GPC and 

CART (Part I – Integrating biomarkers: development of a multi-source pattern 

classification algorithm).  

In accordance with our main hypothesis combining multiple biological markers of 

depression significantly improved classification accuracy. Specifically, integrating the 

predictive probabilities obtained from each GP classifier using a decision tree 

resulted in an accuracy of 83%. This constitutes an 11% increase in accuracy 

compared to the most accurate of the single GP classifiers alone and a 23% increase 

in comparison to the median of all single classifiers (Figure 4). As during the entire 

process of classification the algorithm was never provided with a subject’s true class 

label, but only applied the classification rule learned from the other participants, it is 

reasonable to assume that classifying new subjects will lead to comparable 

accuracies. In summary, integrated biomarker-based classification of our 

heterogeneous, real-life sample of patients and controls resulted in accuracy 

comparable to the highest ever achieved in previous single biomarker research (Fu, 

et al., 2008) while no longer evaluating performance based on a homogeneous group 

of unmedicated participants.  

Investigating the optimal tree model underlying final prediction identified three 

biomarkers mainly driving this substantial improvement of single-subject classification 

accuracy: Specifically, neuroimaging data related to the processing of neutral facial 

expressions was most informative for classification of the whole sample. This result is 

in line with evidence showing altered processing of neutral facial expressions 

(Leppanen, et al., 2004) in depression. Also, the results mirror findings by Fu et al. 
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(2008) who reported neutral facial expressions to have highest predictive power to 

classify depressive patients. Furthermore, even though data from sad, happy, and 

neutral faces all provide relatively high accuracies on the single classifier level, 

incorporating information from other emotional facial expressions is no longer of 

significant utility after splitting the sample based on data derived from neutral facial 

expressions. It appears that data from sad, happy, and neutral facial expressions 

provide similar information so that additionally incorporating data from sad or happy 

facial expressions does not substantially increase accuracies in any of the two 

subsamples resulting from the split based on data from neutral faces.  

Examining the node-specific map for neutral facial expression (Appendix Table A 

- 4) reveals that the two resulting groups differ most in brain regions which have 

previously been shown to be relevant in depression: In line with Fu et al. (2008), we 

found a large occipital-parietal network including the fusiform gyrus to contribute to 

classification. As an area essential for the processing of stimulus features, the 

fusiform gyrus has also been shown to be differentially activated in response to 

emotional facial expressions in depressive individuals and controls using mass 

univariate testing (Surguladze, et al., 2005). Furthermore, the involvement of clusters 

within the caudate as well as in frontal regions is in line with previous evidence from 

task-related functional (Fu, et al., 2008; Keedwell, et al., 2005; Knutson, et al., 2008; 

Epstein, et al., 2006; Pizzagalli, et al., 2009) as well as structural and metabolic data 

(Krishnan, et al., 1992; Bremner, et al., 2002; Ito, et al., 1996; Kennedy, et al., 1997) 

in depression. 

Subjects in the two subsamples resulting from the split on neutral facial 

expressions can be classified best using data related to reward (actual large reward) 

and safety (anticipation of no loss; Figure 5). These results fit well with previous 

studies showing reward- and loss-related deviations on the behavioral level in 
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depression (Elliott, et al., 1996; Henriques, et al., 1994). Furthermore, we can – in the 

context of tree classification – analyze the interrelations between the multiple 

biomarkers: While single classifiers based on happy, sad, and anxious facial 

expressions have much higher predictive power than the one based on actual large 

reward, it is nonetheless the latter variable which is selected within the decision tree. 

Obviously, facial expressions data discriminates well between depressive individuals 

and controls (Figure 3), however, the information obtained from each single classifier 

is largely redundant (i.e. similar individuals are classified correctly and incorrectly 

based on this data). However, subjects who were misclassified by neutral facial 

expression alone can be classified correctly based on actual large reward. In this 

context, it appears noteworthy that even though the single GP classifier based on 

actual large reward does not classify the entire sample above chance level, it 

nonetheless contains information essential for the classification of participants into 

subsamples. This underlines a general strength of the decision tree which subdivides 

the sample into a number of subsamples. Thereby, information that did not possess 

significant predictive power for the whole dataset can very well be of importance in a 

subsample (for details, see 4.3 Methodological considerations).  

From the mathematical construction of the node-specific distribution maps (2.3.4 

Multivariate feature mapping), it follows that only those features (brain regions) will 

contribute to classification at a given node which are not redundant with respect to 

the subjects classified before (see above). Thus, the node-specific distribution maps 

for actual large reward and anticipation of no loss (Appendix Table A - 5 and Table A 

- 6) show regions which add new information to classification rather than those 

regions most relevant for the whole group. Thus, for the second split only regions 

relevant for the correction of previous misclassifications are central. While these 

maps cannot readily be compared to maps derived from existing approaches (e.g. t- 
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or F-maps or SVM w-maps), it is most striking that regions previously (on the first 

split) indicating classification to one side of the tree contribute to classification to the 

other side of the tree on the next level. This way, information complemental to that 

used in the previous split is important to classification even though the pattern of 

relevant regions is similar. Prominent exceptions are the contribution of the amygdala 

and the thalamus for classification at the actual large reward node which could not be 

found in the previous map pattern.  

When speculating on why so highly similar regional patterns – containing mainly 

occipital-parietal and frontal regions – emerge at each node in spite of the 

fundamentally different tasks, at least two explanations come to mind: For one, all 

tasks conducted in this work require the processing of visual stimuli. As it has been 

shown that neural responses in depressive patients differ in areas relevant for the 

processing of stimulus features (Surguladze, et al., 2005), the classifiers might have 

learned to differentiate patients and controls based on alterations in early visual 

processing or top-down regulation of such mechanisms. Differences in spatial and/or 

temporal dynamics in these areas between the three relevant tasks (neutral facial 

expression, actual large reward, and anticipation of no loss) might then provide 

sufficient unique information at each node to enable high-accuracy classification. 

Classification based on electrophysiological data – such as EEG – with its superior 

temporal resolution might help to shed light on this issue. The other explanation for 

the highly similar patterns in all three variables might come from metabolic 

alterations: Especially in the occipital and frontal regions in question, differences in 

GABA and glutamate levels between depressive patients and controls have been 

observed (Sanacora, et al., 1999; Sanacora, et al., 2004; Hasler, et al., 2007; see 

also 3.1.2.2 Neuroimaging markers). This might impact glutamatergic 

neurotransmission directly as well as indirectly via structural changes (loss of tissue; 
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Bhagwagar, et al., 2008). Considering the central role of astrocytes for both 

GABAergic neurotransmission (through the GABA precursor glutamine) and the 

BOLD response (through neurovascular coupling; Rossi, 2006), these metabolic 

alterations in depressive patients might impact measurements during all paradigms 

and conditions. Although beyond the scope of this work, it would be highly interesting 

to examine the interaction of (persistent) metabolic changes and (dynamic) task-

related alterations in depression. 

In the ongoing debate concerning the potential neurobiological foundations of 

diagnostic categories defined in standard classification systems, it has often been 

questioned whether particular disorders constitute neurobiologically meaningful 

entities which are unique for every disorder (for an overview, see Davis, Hanson, & 

Altevogt, 2008). In contrast, research has been highly successful in identifying neural 

correlates of specific symptoms. In this work, we thus chose to focus on correlates of 

a specific pattern of symptoms (lowered mood and anhedonia) rather than attempt to 

directly investigate a more abstractly defined, single disorder. Based on this, we 

assessed multiple symptom-related neural processes in patients sharing current or 

recent depressive symptoms who had been diagnosed with one of three distinct 

mood disorders (Recurrent depressive disorder, Depressive episodes, and Bipolar 

affective disorder). Our results show that accurate classification is possible in such a 

diagnostically heterogeneous group, suggesting shared neural mechanisms related 

to altered affective and motivational processing in all patients who display (or have 

recently displayed) severe depressive symptoms. Underlining the stability and real-

life utility of the approach, such a high-accuracy classification can be obtained even if 

patients are differently medicated and vary greatly in regard to current severity of 

symptoms. In summary, combining neurobiological markers related to the core-

symptoms of depression using the multi-source pattern classification approach 
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developed in this work substantially increased classification accuracy while providing 

a sparse relational biomarker-model for future prediction. This model identified neural 

correlates of the processing of neutral facial expressions as well as reward- and loss-

related biomarkers to be most relevant for over-all classification. Arguing for the 

validity of the rule learned by the classification algorithm, the regions essentially 

contributing to classification are those which have previously been shown to differ 

between depressive patients and controls using multivariate as well as mass 

univariate neuroimaging methods. 

4.3. Methodological considerations 

When developing the algorithm used in this work, the main goal was the 

construction of a procedure which would allow for single-subject classification based 

on multiple high-dimensional biomarkers. We achieved this by first reducing 

dimensionality of the problem space to then apply a non-linear classifier to the 

resulting data.  

On the first level, we trained and tested with GP classifiers to determine a 

subject’s probability to be a patient for each single biomarker independently using a 

LOO-CV procedure. As GP classifiers suitable for neuroimaging data are a relatively 

new development (first publication by Marquand, et al., 2009), we benchmarked our 

first-level GP classifiers by comparing their performances to SVM, the most widely 

used pattern recognition method in neuroimaging. In accordance with the only other 

study using the two approaches (Marquand, et al., 2009), we found comparable 

accuracies for GP classifiers and SVM. As largest margin classifiers such as SVM 

can be shown to optimally classify the training data (Vapnik, 1995), it follows that the 

decision boundaries learned by the GP classifiers are also close to optimal. In 
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addition, comparable accuracies obtained with LOO-CV imply comparable 

generalization of the classifier functions. Together with the generally good 

accuracies, it can be concluded that linear SVM and GP classifiers are not prone to 

overfitting even in high-dimensional datasets. Importantly, the similar performance of 

GP classifiers and SVM speaks to the stability and suitability of the approximations 

(expectation propagation estimate of the maximum marginal likelihood) and 

transformations (probit likelihood constrain on regression to obtain probabilistic 

output) used in GPC (see 2.3.1 First-level prediction) as SVM results can be 

computed in closed form and thus do not rely on such methods. 

When performing dimensionality reduction as is done on the first level, information 

potentially relevant for classification is lost. As our approach projects approximately 

150,000 data points per biomarker and subject onto a single dimension (the 

probability to be a patient), the loss of information might be extreme. Results show, 

however, that information relevant for classification is very well preserved. In this 

context, it is particularly intriguing that the approach does not make any prior 

assumptions about which features might be relevant while reducing dimensionality to 

the lowest possible value of 1. From this point of view, our algorithm turns out to be 

similar to other feature selection methods with the characteristic that dimensionality 

reduction is maximal. The main improvement in comparison to other methods of 

feature selection lies in the fact that due to using LOO-CV on both levels, one does 

not need to find a selection criterion on the training data alone. Classification of 

subjects is done solely based on first-level test data predictions. This way, whole-

brain information is considered and can be analyzed using the mapping procedure 

introduced while dimensionality and sample size (if reasonable to estimate accuracy) 

are no longer problematic.  
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In the next step, CART partitions second-level space thereby considering only 

information for the next split that is not redundant. It follows that information which did 

not possess significant predictive power for the whole dataset can very well be of 

great importance in a subsample (as is the case for actual large reward). In addition 

to this, class boundaries which are fixed at p=.5 on the first level can then be 

optimized for each subsample independently, thereby improving classification 

accuracy.  

As computations involved in learning the hyperparameters of the covariance 

function on the first level and finding a function which non-linearly partitions second-

level space – while mathematically principled – are far too complex to be transparent 

to humans, it is of great importance to be able to investigate the processes driving 

classification. Therefore, we chose a second-level classifier producing a simple 

series of if-then conditions (tree model) which can easily be understood. Also, the 

idea of selecting the variable which leads to the largest reduction of node impurity 

(2.3.2 Second-level prediction) is intuitive.  

Understanding the processes which drive GP classification is much more 

complex, though. It is hardly possible to fully grasp the interaction of first-level 

multivariate patterns and second-level tree classification. To make this over-all 

classification more transparent, we thus developed a method which quantifies the 

contribution of single features to classification at each node (2.3.4 Multivariate 

feature mapping). The resulting node-specific distribution maps enable the 

identification of the most discriminative properties of a biomarker in the context of the 

second-level biomarker model. Generally, regions shown on multivariate maps are 

not independent of each other, but constitute a meaningful pattern only together. 

Thus, all areas depicted form a highly complex net of interdependencies which needs 

to be interpreted cautiously. However, the node-specific maps identify those features 
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(brain regions) uniquely contributing at each partitioning of second-level space. Thus, 

brain regions relevant at each node are highlighted making the classifier function 

more accessible and speculations about neural mechanisms underlying classification 

feasible. 

4.4. Limitations  

When performing classification in the context of depression – particularly when 

introducing a new algorithm to do so – a number of issues need to be addressed. In 

the following, we will first consider open methodological questions to then outline 

potential issues in the clinical context. 

Methodological issues

Basically, classification is the prediction of class labels based on a rule learned 

from a training dataset. Thus far, we assumed that we know the true labels of every 

sample used to train the classifier. When, for instance, predicting an experimental 

condition from the data, this assumption is always true, because the researcher who 

designed the experiment knows exactly which condition was presented at which point 

during the experiment. In biomarker research, this is not always the case. For 

instance, a subject diagnosed with depression by the examiner might in fact suffer 

from another disorder. Thus, all accuracy estimates given in this work assume that 

the class labels provided by the examiner are true, i.e. all patients truly suffer from 

depression while all controls are free from psychiatric disorders. We addressed this 

problem by making the process of diagnosing a patient as reliable and transparent as 

possible. Specifically, we used two experienced examiners in conjunction with 

standardized psychometric tools. Also, we recruited only controls which passed a 
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standardized screening for psychiatric disorders and who reported no other relevant 

physical problems (for details see 3.3.1 Participants). While diagnosis as conducted 

for this study is the gold standard in psychiatry, we cannot quantify the extent to 

which mislabeled cases are nonetheless present in the sample. Methodologically, a 

number of procedures have been suggested to solve the so-called imperfect 

reference problem of classification (for a review of current approaches see Rutjes, 

Reitsma, Coomarasamy, Khan, & Bossuyt, 2007). Generally, procedures correct the 

imperfect reference or construct a (more accurate) reference from two or more 

available references. The first approach is feasible if the degree of imperfection (i.e. 

reliability and validity of the reference) is known. For the second method, procedures 

(tests) are combined weighting each test with a measure of its quality in order to 

obtain higher accuracy of the reference. In a way, our approach of combining the 

judgments of two experienced clinicians aided by standardized assessment tools is 

an example of this second method. While it ought to increase reliability and validity of 

our reference, again, we cannot quantify the error inherent in this procedure. A third 

idea involves a highly pragmatic approach: The results of the index test (in our case 

the classifier) are examined with regard to their practical meaning and consistency 

using available evidence or theoretical assumptions. Investigating the relevant 

features (brain regions) and comparing the results with evidence from previous 

studies is an example of the third approach. In this context, it appears positive that 

the regions essentially contributing to classification in this work are those which have 

previously been shown to differ between depressive patients and controls. A 

quantitative comparison of activation patterns obtained from multivariate and mass 

univariate method would be needed in this case. However, no such method is 

currently available. In the future, meta-analytic forms of pattern recognition might 

help with such problems. In summary, we have sound reasons to believe that our 
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reference standard is valid. However, exact quantification of potential errors is not 

possible. Thus, the accuracies obtained in this work must be seen as the lower 

bound of the true accuracy achievable. 

In addition to the imperfect reference problem, the effects of preprocessing the 

data are unknown. As we did not intend to optimize accuracy for this specific dataset, 

but to provide a method suitable for a wide range of applications involving high-

dimensional functional neuroimaging markers, we did not use customized 

preprocessing, but applied the two most common forms of data preparation in 

neuroimaging: averaging for blocked designs and hemodynamic modeling for rapid 

event-related data (3.3.3 Functional Magnetic Resonance Imaging). If research ever 

identifies biomarkers useful for practical application using the algorithm proposed in 

this work, a principled comparison of different preprocessing procedures ought to be 

conducted. This might enable customized preprocessing for those (final) biomarkers 

which are to be used in a clinical context, potentially further improving accuracy. For 

this work, we can only conclude that the most common preprocessing steps have led 

to accuracies equal to or higher than all currently available methods. 

When performing classification in the context of this work, we refer to the data 

extracted from the 12 conditions of the three paradigms as potential biomarkers. 

While this is true, the data from the 12 conditions is by no means independent. This 

is also underlined by the selection of variables relevant for CART classification which 

shows a high degree of redundancy particularly within the datasets obtained during 

the processing of facial expressions (3.4.2 Integrated biomarker classification). 

Against this background, we cannot exclude the possibility that certain biomarkers 

only hold predictive power in the context of the other conditions or even paradigms. 

For example, neutral faces might elicit different neural activation patterns when 

presented amongst happy, sad, and anxious faces then in the context of other 
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neutral faces or for instance images of objects. Likewise, a cue signaling safety from 

monetary loss will probably be perceived differently depending on the amount of 

money that can be lost in other trials. These effects do not allow the conclusion that 

neutral facial expressions in conjunction with the relevant conditions from the MID 

task alone are in any way sufficient for classification. In other words, neither the 

neural responses measured nor the mathematical representation of the pattern 

discriminating patients and controls are independent of the experimental context. 

While this seems trivial, it will be an important field of investigation for biomarker 

research to not only discover markers, but to construct experiments which elicit 

suitable functional dynamic processes including trait as well as state markers. 

Clinical considerations

In this work, we classified depressive patients and healthy controls with high 

accuracy by combining information from multiple biomarkers. Thus, we have shown 

that, based on the data provided, the algorithm can differentiate patients and 

controls. In diagnostics, however, the problem in most cases is not binary 

classification between individuals with a disorder and those without it, but the 

challenge is to assign the correct diagnosis from a variety of possibilities. If the 

algorithm is to be helpful in a diagnostic context, its specificity to depression needs to 

be demonstrated. Based on the data obtained in this work, it might be possible that 

the algorithm learns a rule which does not classify depressive patients, but generally 

discriminates between healthy individuals and mentally ill patients. While this would 

raise highly interesting questions about shared mechanisms of psychiatric disorders, 

the algorithm’s lack of specificity might render it powerless in differential diagnostics. 

As we carefully designed tasks related to the core-symptoms of depression and 

identified regions relevant in depression to contribute substantially to classification, 
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we have sound reason to believe that the algorithm is specific to depression. 

However, only further studies including other, similar pathologies such as anxiety 

disorders can shed light onto this issue. 

Regarding specificity, a similar issue arises from the inclusion of patients suffering 

from bipolar disorder as done in this work (5 of the 30 patients): While unipolar and 

bipolar patients present with similar symptoms during depressive phases, evidence 

suggests that bipolar depression is characterized by more psychotic symptoms as 

well as increased psychomotor retardation (for a comprehensive summary, see 

Gotlib & Hammen, 2009). Likewise, neurobiological studies report large overlap 

between the neural substrate relevant in unipolar and bipolar depression while the 

neural correlates of specific processes differ considerably (for in-depth review and 

discussion, see Phillips & Vieta, 2007). Assigning the same label to neurobiologically 

potentially different subjects (i.e. patients) might pose a problem to classification as 

the rule learned from a sample mainly consisting of unipolar depressive patients (25 

of 30 subjects) might not generalize well to bipolar patients. This problem can also 

not be mitigated by the fact that an unknown number of patients currently diagnosed 

with unipolar depression might display symptoms of mania in the future and thus 

ought to be diagnosed with bipolar disorder as well. Based on the very high accuracy 

achieved in this work, however, it appears unlikely that excluding the relevant 

patients would have substantially improved classification accuracy. More importantly, 

though, mapping the areas relevant for classification at each node did not yield one 

or more distorted or uninterpretable maps as would be expected when mixing 

samples with arbitrary class labels, but revealed the involvement of regions which 

have previously been reported in depression. While the low number of bipolar 

patients does not permit statistically meaningful inferences, we furthermore 

investigated how the five bipolar patients were classified within the optimal tree 
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model. Interestingly, 4 out the 5 patients were classified to the same terminal node 

created from the split based on actual large reward. It appears that the tree model 

recognizes bipolar patients as showing a different neural response pattern and 

classifies them into a separate node accordingly. As the low number of bipolar 

patients does not allow for an interpretation, only a study containing sufficiently many 

bipolar patients would be able to shed light onto this issue (for a recently initiated 

collaboration addressing this, see 4.5 Future directions). Summarizing, patients 

suffering from bipolar disorder are mainly classified correctly and thus do not lead to 

a substantial attenuation of prediction accuracy. Additionally, the classifier appears to 

account for potentially altered neural responses by adjusting tree structure. 

In psychiatric research, it is often impossible to randomly assign subjects to the 

experimental conditions. Thus, all differences or discriminant patterns found in a 

study such as ours might be induced by factors associated with but not causally 

related to the class labels, i.e. the disorder. When classifying medication-free controls 

and patients all of which are on a variety of medications, it is conceivable that the 

classifier learned to differentiate between medicated and unmedicated subjects. 

While we cannot directly address this concern, the fact that the patients were on a 

variety of medications with different mechanisms of action makes it unlikely that the 

classifier could have derived a reasonable rule from drug-associated neural response 

patterns. Also arguing against a rule based on drug effects, regions relevant for 

classification are highly similar to those found by Fu et al. (2008) who measured 

unmedicated patients. Furthermore, evidence suggests that neural responses in a 

number of regions become more similar to the patterns in healthy controls following 

pharmacological intervention or psychotherapy (Joe, et al., 2006; Fu, et al., 2008). 

This would obviously impair classification rather than foster it.  
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Beside these problems related to finding specific biomarkers with sufficient 

predictive power, the most fundamental limitation of biomarker-based classification in 

depression lies in the nature of psychiatric disorders. Generally, a diagnostic 

procedure based solely on biomarkers can never be a substitute for thorough clinical 

examination and assessment of behavioral and cognitive symptoms. Additionally, 

psychiatric disorders have subjective components and individual aspects relevant for 

all aspects of treatment. Especially for psychotherapy establishing a relationship 

between patient and clinician is central. Furthermore, a patient’s individual view of 

the disorder and the context in which symptoms developed and persist are essential 

for planning and conducting a successful therapeutic intervention. Thus, the 

classification approach proposed in this work – even if with all current issues solved 

and pitfalls circumvented – could never be a substitute for in-depth psychiatric 

examination. However, the results of this work show the potential of biomarkers to be 

a substantial diagnostic aid. The decision to which extent such a tool is helpful will – 

for the foreseeable future – have to be made for each individual case by an 

experienced clinician. 

4.5. Future directions 

While classification algorithms such as the one outlined in this work are by no 

means meant as a substitute for a thorough clinical examination and a proper 

diagnostic process (see above), particularly the capability of this approach to model 

the interrelation of multiple neurobiological markers could be of great utility. This is 

especially true when investigating symptom-related neural processes rather than 

aiming for mere classification accuracy. In this context, we showed that classification 

specifically relies on data derived from neural mechanisms associated with neutral 
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facial expressions as well as with reward- and loss-related processes. Incorporating 

other promising markers such as imipramine binding or MRS data measuring GABA 

and glutamine concentrations (3.1.2.2 Neuroimaging markers) might further improve 

prediction accuracy. As CART handles probabilities as well as any other type of data 

at all levels of measurement, such low-dimensional markers could be introduced 

directly into second-level analysis. Without using GPC, this would provide information 

on whether a single marker adds relevant information to over-all classification.  

Moreover, the algorithm enables imaging genetics analyses without constrains on 

the number of genes or imaging paradigms as alpha inflation due to multiple 

comparisons and non-linear gene-gene or gene-image interactions are no longer 

problematic. If a smaller number of potential markers (e.g. certain single nucleotide 

polymorphisms) are of interest, first-level GPC can be omitted, directly entering the 

data into second-level CART. This procedure would additionally reveal interactions 

between genes and neuroimaging markers as well as between multiple genes. Such 

investigations based on the dataset used in this work are currently underway. The 

major limitation in this context would, however, be that no gene or brain region could 

be understood on its own, but only in the context of the multivariate 

interdependencies relevant for prediction.  

It would, furthermore be particularly interesting to add psychometric markers and 

analyze which biomarkers become redundant. This might hint at the psychological 

processes associated with each marker. 

Introducing biomarkers specific to different disorders, the algorithm ought to be 

able to differentiate between multiple disorders. Patients should be classified based 

on those biomarkers (i.e. at those nodes) relevant for their specific disorder. In this 

context, CART can be used as a cluster analytic method: classifying patients with 

different disorders ought to result in nodes (i.e. clusters) containing patients suffering 
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from one disorder. Such an approach would also be highly interesting regarding the 

ongoing debate concerning the potential neurobiological foundations of diagnostic 

categories defined in standard classification systems. As it has often been 

questioned whether particular disorders constitute neurobiologically meaningful 

entities (for an overview, see Davis, et al., 2008), such a method which clusters 

patients with different ICD-10 or DSM-IV diagnoses might help to identify groups of 

patients more homogeneous in regard to biological processes. 

While a necessary step to identify potential biomarkers of depression and 

demonstrate the predictive power of the new algorithm, classifying depressive 

patients and healthy controls might not be the research question most valuable for 

future practical application. Predictions for disorders in which misclassification of 

patients is more frequent would be of much greater utility. In this context, we have 

recently initiated projects which aim to differentiate between subtypes of attention 

deficit hyperactivity disorders (ADHD) as well as between unipolar and bipolar 

patients.17 While data of this work points toward possible high prediction accuracy for 

the differentiation between bipolar and unipolar depressive patients, only the now 

available larger sample can provide more conclusive evidence. In the long term, we 

furthermore aim to predict treatment response in anxiety disorders based on a 

combination of fMRI BOLD and arterial spin labeling (ASL) measurements. 

Also, the algorithm is of further methodological interest: As our approach 

generally allows for the integration of multiple data sources, it can be used to 

combine data from different acquisition technologies with different sampling rates and 

dimensionalities such as EEG and functional Near-Infrared Spectroscopy (fNIRS), 

fNIRS and fMRI, as well as ASL and fMRI. When aiming for classification accuracy 

17 Projects will be conducted in collaboration with Dr. M. Schecklmann (Würzburg, ADHD) and Dr. M. 
Pyka (Marburg, uni-/bipolar classification). A Wellcome Trust project combining multiple inputs to 
classifiers has also been initiated (Prof. Shaw-Taylor, London). 
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for a specific purpose rather than the identification of interpretable processes, 

optimizing the input data and selecting the most discriminant features appears most 

promising.18 To enable the classification of conditions rather than groups of subjects, 

which is particularly important for basic research, we have already implemented a 

suitable add-on to the current algorithm. 

In summary, we developed an algorithm which is able to integrate multiple high-

dimensional biological markers. Applying this method to classify depressive patients 

and healthy control subjects, we substantially improved the predictive power of 

biomarkers of depression. Furthermore, investigation of the final prediction model 

revealed that neural activation during the processing of neutral facial expressions, 

large rewards, and safety cues is most relevant for over-all classification. We 

conclude that combining brain activation related to the core-symptoms of depression 

using the multi-source pattern classification approach developed in this work 

substantially increases classification accuracy while providing a sparse relational 

biomarker-model for future prediction. In light of these findings, it appears that 

biomarker research in conjunction with recent methodological advancements has 

brought practical application of biomarkers as diagnostic aids within reach. 

18 The respective projects have been initiated in collaboration with Dr. A.-C. Ehlis (Würzburg; EEG and 
fNIRS), S. Heinzel (Würburg; fMRI and fNIRS), and in the framework of a project of the 
Interdisziplinäres Zentrum für klinische Forschung (IZKF) 
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6. Appendix 

Table A - 1. Decision boundary weight map: neutral facial expressions

Brodmann 

Area 
Weight 

cluster size 

(mm3) 

peak voxel 

(MNI) 

Fusiform Gyrus  -12.75 1304 [-46 -62 -20] 

Lingual Gyrus  12.35 1208 [8 -98 -14] 

Middle Occipital Gyrus 18 -9.99 1752 [44 -80 -16] 

Superior Frontal Gyrus  -9.69 1560 [-18  66 10] 

Superior Temporal Gyrus 22 9.55 3216 [66 -24 0] 

Fusiform Gyrus 19 9.54 1080 [54 -66 -18] 

Optic Tract  -9.48 576 [-6 0 -16] 

Cuneus  -9.43 312 [-10 -104 -4] 

Superior Temporal Gyrus  9.23 616 [60   4  -4] 

Middle Occipital Gyrus  -8.97 3192 [30 -94 6] 

Superior Frontal Gyrus 6 -8.89 504 [-4 16 68] 

Precuneus 7 -8.57 2552 [4 -74 44] 

Calcarine_R  -8.51 2000 [2 -76 6] 

Postcentral Gyrus 2 8.50 440 [20 -34 76] 

Cuneus  8.34 1376 [2 -86 34] 

Inferior Parietal Lobule  -8.20 1536 [42 -50 58] 

Cuneus 19 8.01 728 [-4 -88 36] 

Superior Parietal Lobule 7 -7.86 424 [-26 -70 56] 

Superior Frontal Gyrus 10 7.72 1504 [18 68 18] 

Uncus 28 7.72 1232 [22 8 -32] 

Superior Parietal Lobule 7 7.55 1784 [-36 -62 56] 

Inferior Frontal Gyrus 47 7.54 2128 [-52 18 -6] 

Frontal Lobe  7.14 680 [-18 32 -16] 

Precentral Gyrus 6 7.14 408 [-8 -20 78] 

Temporal_Mid_L  -7.13 1480 [-46 -2 -20] 

Frontal_Sup_L  -7.00 776 [-20 -4 74] 

Fusiform Gyrus 37 6.99 608 [50 -44 -20] 

Middle Frontal Gyrus  6.98 2816 [-40 50 -10] 

Superior Temporal Gyrus 38 6.93 568 [44 22 -30] 

Inferior Frontal Gyrus 47 -6.90 560 [-16 20 -20] 

Superior Frontal Gyrus 11 -6.83 504 [18 50 -18] 

Inferior Frontal Gyrus  -6.83 1072 [34 26 -14] 

Medial Frontal Gyrus  -6.82 832 [8 66 12] 

Middle Occipital Gyrus  6.80 2000 [-46 -76 -16] 
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Middle Occipital Gyrus 19 -6.77 472 [-34 -96 10] 

Frontal Lobe  6.75 912 [8 44 -24] 

Superior Frontal Gyrus  -6.67 280 [-24 52 -18] 

Inferior Frontal Gyrus  -6.55 1168 [46 40 6] 

Superior Frontal Gyrus 10 6.55 336 [28 62 6] 

Parahippocampal Gyrus 36 -6.48 2016 [-36 -32 -24] 

Middle Temporal Gyrus  6.47 1096 [52 -74 24] 

Superior Frontal Gyrus 8 6.43 2168 [-24 34 56] 

Extra-Nuclear  -6.41 288 [0 8 4] 

Lateral Ventricle  6.36 344 [-22 -44 8] 

Superior Temporal Gyrus 38 -6.32 1032 [-36 16 -22] 

Extra-Nuclear  -6.31 2208 [20 -42 20] 

Fusiform Gyrus  -6.31 728 [-28 -62 -14] 

Cuneus 19 -6.28 280 [-26 -94 24] 

Transverse Temporal Gyrus 42 6.28 672 [-66 -18 12] 

Paracentral Lobule 5 6.27 560 [-4 -48 62] 

Inferior Temporal Gyrus  -6.18 640 [58 -32 -20] 

Superior Frontal Gyrus 10 6.10 304 [-34 62 22] 

Frontal_Inf_Oper_L  -6.00 1040 [-46 16 20] 

Cuneus 17 -5.98 1048 [-4 -84 2] 

Superior Temporal Gyrus 39 -5.95 776 [-50 -56 8] 

Precuneus 7 -5.94 296 [-2 -60 44] 

Precentral Gyrus 6 5.93 232 [36 -24 68] 

Middle Frontal Gyrus  -5.89 448 [-32 40 -8] 

Inferior Frontal Gyrus 47 5.82 480 [52 40 -6] 

Inferior Parietal Lobule 40 5.82 600 [-56 -36 30] 

Postcentral Gyrus 3 5.67 488 [44 -24 60] 

Middle Frontal Gyrus  5.66 336 [42 56 -6] 

Supramarginal Gyrus  -5.66 488 [48 -50 28] 

Middle Temporal Gyrus  -5.65 504 [-52 -22 -8] 

Superior Parietal Lobule 7 5.65 256 [-36 -74 46] 

Corpus Callosum  -5.64 344 [-2 -34 6] 

Precentral Gyrus 6 5.62 432 [-64 -8 28] 

Extra-Nuclear  -5.59 264 [-20 -24 24] 

Superior Frontal Gyrus 10 -5.56 256 [24 50 -4] 

Middle Occipital Gyrus  5.50 224 [-40 -86 -2] 

Superior Temporal Gyrus  -5.49 824 [60 -48 8] 

Frontal Lobe  5.45 296 [24 -16 28] 

Precuneus 7 -5.41 488 [18 -56 58] 

Posterior Cingulate 29 -5.40 408 [-4 -58 8] 

Inferior Frontal Gyrus 45 -5.36 416 [-56 38 4] 
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Precuneus 7 -5.28 296 [-14 -76 48] 

Middle Temporal Gyrus  5.27 264 [48 -60 2] 

Anterior Cingulate  -5.26 272 [-2 32 8] 

Putamen  5.16 1304 [32 -10 2] 

Putamen  5.16 256 [14 10 -8] 

Parahippocampal Gyrus  -5.10 256 [24 -46 -10] 

Cingulate Gyrus  5.08 472 [-4 -42 30] 

Thalamus  5.07 312 [-10 -30 8] 

Thalamus  4.96 232 [16 -32 12] 

Frontal Lobe  -4.79 280 [28  44 8] 
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Table A - 2. Decision boundary weight map: actual large reward

Brodmann 

Area 
Weight 

cluster size 

(mm3) 

peak voxel 

(MNI) 

Superior Frontal Gyrus 6 -18.50 264 [-4 -18 78] 

Medial Frontal Gyrus  -17.71 264 [0 -16 76] 

Caudate  -14.95 1864 [4 4 6] 

Parietal_Inf_L  -12.75 1336 [-50 -44 56] 

Precentral Gyrus  -12.68 448 [18 -20 78] 

Frontal_Sup_Medial_L  -12.64 808 [2 60 30] 

Lingual Gyrus  12.46 1104 [-18 -90 -14] 

Postcentral Gyrus 1 11.66 296 [30 -34 72] 

Lingual Gyrus 17 10.96 2720 [10 -96 -8] 

Cuneus 30 10.71 1200 [4 -68 4] 

Corpus Callosum  -10.66 336 [0 -42 4] 

Postcentral_L  10.54 440 [-30 -36 72] 

Paracentral Lobule  10.17 936 [-4 -34 72] 

Paracentral Lobule 4 9.79 232 [0 -34 74] 

Inferior Frontal Gyrus 47 -9.49 304 [-54 18 -2] 

Cuneus 18 -9.38 344 [-6 -100 18] 

Cuneus 19 -8.83 672 [4 -88 36] 

Extra-Nuclear  -8.82 400 [-2 -26 10] 

Middle Frontal Gyrus 10 -8.82 528 [-44 50 22] 

Postcentral Gyrus 3 8.56 224 [12 -28 78] 

Medial Frontal Gyrus 6 -8.41 552 [2 -4 56] 

Lingual Gyrus 18 8.32 224 [-6 -80 -10] 

Superior Frontal Gyrus 6 8.23 624 [22 28 60] 

Medial Frontal Gyrus 6 -8.22 304 [-2 -6 56] 

Superior Temporal Gyrus 22 -7.96 224 [64 -12 4] 

Amygdala  6.78 248 [-20 -8 -12] 

Superior Temporal Gyrus 39 -6.54 240 [52 -56 10] 



115

Table A - 3. Decision boundary weight map: anticipation of no loss

Brodmann 

Area 
Weight 

cluster size 

(mm3) 

peak voxel 

(MNI) 

Medial Frontal Gyrus 6 15.71 5488 [0 -12 76] 

Middle Occipital Gyrus  14.08 7040 [42 -74 -16] 

Medial Frontal Gyrus 6 13.79 592 [-4 -14 76] 

Inferior Parietal Lobule 40 12.48 3872 [44 -42 60] 

Cuneus 18 10.92 10160 [-16 -100 4] 

Lingual Gyrus 18 -10.90 1896 [-2 -86 -4] 

Posterior Cingulate 23 10.26 1088 [-2 -58 12] 

Corpus Callosum  10.26 1752 [0 -42 4] 

Caudate  10.05 1200 [4  6 4] 

Cuneus  9.94 1408 [2 -84 32] 

Precuneus  8.92 648 [28 -50 2] 

Superior Frontal Gyrus 8 -8.87 1320 [12  44 54] 

Cuneus 17 -8.75 1048 [8 -96 0] 

Middle Frontal Gyrus 10 8.32 2944 [-46  48 16] 

Inferior Frontal Gyrus 47 8.07 232 [-54  20 -2] 

Posterior Cingulate 23 7.78 368 [2 -62 12] 

Cuneus  7.66 256 [10 -102 18] 

Insula  7.56 1144 [44 4 -8] 

Cingulate Gyrus 32 7.02 576 [4 12 38] 

Parietal_Inf_L  7.00 1720 [-46 -52 56] 

Middle Frontal Gyrus 10 6.96 1024 [44 44 22] 

Superior Temporal Gyrus  6.82 1568 [54 -58 14] 

Medial Frontal Gyrus 6 6.57 296 [2 -4 56] 

Middle Frontal Gyrus 8 6.52 392 [-54 14 42] 

Postcentral Gyrus  6.30 272 [-6 -44 76] 

Precuneus  6.08 656 [-14 -80 38] 

Postcentral Gyrus  5.85 336 [-60 -12 18] 

Precentral Gyrus  5.80 296 [58 -16 42] 

Precuneus  -5.70 216 [40 -76 36] 
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Table A - 4. Node-specific distribution map: neutral facial expressions

Brodmann 

Area 
Weight 

cluster size 

(mm3) 

peak voxel 

(MNI) 

Inferior Occipital Gyrus  -8.47 1264 [-32 -88 -22] 

Inferior Parietal Lobule 39 6.33 298240 [42 -68  40] 

Lingual Gyrus 17 -5.42 400 [12 -96 -18] 

Superior Frontal Gyrus 10 -5.28 2400 [-28  68   6] 

Precuneus 7 -4.99 280 [-2 -60  64] 

Superior Frontal Gyrus 10 -4.41 1552 [30  66   2] 

Medial Frontal Gyrus 10 3.70 416 [10  64  14] 

Caudate Body  3.59 648 [6   4  10] 

Fusiform Gyrus 37 3.47 552 [36 -48 -20] 

Inferior Temporal Gyrus 20 -3.41 296 [-36   0 -50] 

Middle Frontal Gyrus  3.34 272 [26   2  68] 

Middle Frontal Gyrus 46 3.34 1048 [-48  30  22] 

Inferior Frontal Gyrus  3.28 1144 [48   8  36] 

Medial Frontal Gyrus 10 -3.21 288 [14  62   4] 

Superior Temporal Gyrus  3.18 440 [-44  10 -22] 

Middle Frontal Gyrus  3.12 384 [36  44  18] 

Middle Temporal Gyrus  3.03 1168 [-52 -16  -6] 

Precentral Gyrus  2.95 312 [48  -6  48] 

Inferior Parietal Lobule  2.94 344 [52 -24  30] 
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Table A - 5. Node-specific distribution map: actual large reward

Brodmann 

Area 
Weight 

cluster size 

(mm3) 

peak voxel 

(MNI) 

Postcentral Gyrus  15.68 21040 [30 -38  70] 

Lingual Gyrus 17 14.33 7672 [-12 -94  -8] 

Lingual Gyrus 17 13.46 4504 [6 -100   -8] 

Paracentral Lobule 4 11.18 7024 [0 -36  74] 

Postcentral Gyrus 40 10.14 1344 [64 -24  14] 

Corpus Callosum  9.53 3224 [0 -38   4] 

Thalamus  8.77 1952 [8  -4  14] 

Superior Temporal Gyrus 38 7.75 584 [-52  18  -8] 

Superior Temporal Gyrus 38 7.68 512 [52  16 -10] 

Precuneus 7 7.55 352 [-2 -62  60] 

Postcentral Gyrus 7 7.46 336 [-20 -56  68] 

Middle Frontal Gyrus  6.99 888 [-50   6  46] 

Posterior Cingulate 30 6.59 1864 [6 -62   4] 

Precuneus 7 6.53 240 [-2 -80  44] 

Paracentral Lobule 31 6.37 400 [2 -32  48] 

Cuneus 18 -6.36 320 [6 -100   18] 

Inferior 40 6.28 416 [62 -46  22] 

Amygdala  6.25 304 [20   0 -18] 

Cingulate Gyrus 32 6.24 496 [-2  18  38] 

Sub-Gyral  6.16 520 [36 -68 -16] 

Fusiform Gyrus  5.89 272 [-42 -56 -20] 

Lingual Gyrus 18 -5.67 232 [2 -80  -2] 

Inferior Parietal Lobule 40 5.36 272 [-40 -58  54] 
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Table A - 6. Node-specific distribution map: anticipation of no loss

Brodmann 

Area 
Weight 

cluster size 

(mm3) 

peak voxel 

(MNI) 

Lingual Gyrus  -12.30 10920 [-14 -98 -10] 

Precentral Gyrus 6 -11.27 34744 [36 -26  68] 

Lingual Gyrus  -10.00 9192 [26 -94 -10] 

Extra-Nuclear  -8.44 14216 [-6  0  4] 

Inferior Frontal Gyrus 47 -8.29 6248 [-52  18  -6] 

Superior Parietal Lobule 7 -8.01 9440 [-36 -62  58] 

Cuneus 18 -7.53 10728 [-2 -82  22] 

Superior Temporal Gyrus 38 -6.74 1984 [50  16 -12] 

Superior Frontal Gyrus 6 -6.53 5080 [-4  -8  74] 

Precentral Gyrus  -6.03 736 [-30 -26  72] 

Superior Temporal Gyrus 22 -6.01 1976 [58 -60  14] 

Middle Frontal Gyrus 6 -5.95 1040 [-32  -2  66] 

Lingual Gyrus 18 5.88 272 [-2 -84  -4] 

Precuneus 19 5.64 352 [42 -74  42] 

Superior Occipital Gyrus  -5.18 1680 [-34 -80  24] 

Middle Frontal Gyrus  -4.96 1784 [-44  48  12] 

Cuneus 19 4.95 744 [16 -100   22] 

Superior Frontal Gyrus 6 -4.86 440 [-2  12  62] 

Paracentral Lobule 31 -4.76 384 [2 -18  50] 

Sub-Gyral  -4.56 648 [42  -8 -14] 

Precentral Gyrus  -4.29 256 [56   6  10] 

Inferior Frontal Gyrus 9 -4.06 632 [54   4  36] 

Cuneus 19 -4.03 224 [28 -84  26] 
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