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Abstract:  
 
The Visual Editor for XML (Vex)[1] used by TextGrid [2]and other applications has got rendering and layout engines.  
The layout engine is well documented but the rendering engine is not.  
This lack of documenting the rendering engine has made refactoring and extending the editor hard and tedious. For instance  
many CSS2.1 and upcoming CSS3 properties have not been implemented. Software developers in different projects such as  
TextGrid using Vex would like to update its CSS rendering engine in order to provide advanced user interfaces as well as support  
different document types. In order to minimize the effort of extending Vex functionality, I found it beneficial to write a basic  
documentation about Vex software architecture in  general and its CSS rendering engine in particular. The documentation is  
mainly based on the idea of architectural layered diagrams. In fact layered diagrams can help developers understand software’s  
source code faster and easier in order to alter it, and fix errors. 
 
This paper is written for the purpose of providing direct support for exploration in the comprehension process of Vex source code. 
It discusses Vex software architecture. The organization of packages that make up the software, the architecture of its CSS 
rendering engine, an algorithm explaining the working principle of its rendering engine are described. 
 
Keywords: CSS, Processing model, Software architecture, Software design. 
 
Introduction  
 
Structured data such as HTML, XML are usually formatted and presented using Cascading Style Sheets (CSS). 
Formatting and presenting structured data with style sheets is known as rendering. The technique of rendering HTML, XML with 
CSS is called CSS rendering engine.  
Vex is an editor for XML documents based on the Eclipse platform [3]. It hides the raw XML tags from the user, providing 
instead a wordprocessor-like interface. Vex uses CSS to style its editor’s content. Its layout engine has been documented as an 
implementation of the W3C CSS box model [4]. However there is no documentation about the architecture and design of its CSS 
processing model. If Vex had UML and sequence diagrams of its software, refactoring and extending its software would have 
been easier. Unfortunately those diagrams do not exist. In order to complement Vex documentation and facilitate the task of those 
who would like to factor and extend its functionality, I found it beneficial to document its software architecture in general and its 
CSS rendering engine in particular. The documentation is mainly based on architectural layered diagrams ideology.  
In fact layered diagrams can help developers understand software’s code faster and easier in order to alter it, and fix errors. 
 
This paper is written for the purpose of providing direct support for exploration in the comprehension process of Vex source code. 
 
Following is a description of the Vex Engine comprising rendering and layout engines.   
 
The Vex Engine 
 
The Vex engine comprises rendering and layout engine modules.  A rendering engine module transforms graphics elements and 
text that constitute a XML or web document into a raster that can be displayed on screens or papers, whereas a layout engine 
module computes the position of the textual and graphical elements to be displayed on a given page. 
A CSS processing model is part of the rendering engine module. However a CSS processing model could be split between the two 
modules. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig.1. shows the diagram of the Vex engine. 
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Fig.1. Architecture of Vex Engine 
 

Batik [5] was first used to parse CSS files, and then replaced with Flute [6], because Batik seems to have problems parsing some 
CSS rules where Flute does it without difficulty.   
Flute and Batik parsers do not present Tokenizers or Lexers separately, but rather consider them as modules of the parser. 
However this approach is undesirable as far as maintenance and reuse are concerned.  
SAX is used to generate an object model for XML documents.  
 
The task of the Matcher is to find out which CSS properties have to be applied to which XML element. It does that by comparing 
CSS selectors with XML tags.   
 
The Layout Engine draws XML elements on the Canvas by mapping the Labeled XML objects to SWT graphics primitives.  
It might be important to notice that making the mapping process within the Layout Engine increases the difficulty of refactoring 
and reuse. Therefore I would suggest a modification of the Vex Layout Engine. 
   
The Vex Layout Engine 
 
The purpose of the Vex Layout Engine is to create a visual representation of a document given a CSS stylesheet. This visual 
representation is a nested hierarchy of rectangular boxes, implemented as a tree of objects. There are two main types of box. Block 
boxes containing other boxes and stack their children vertically. Inline boxes whose children are stacked horizontally and are 
splittable to wrap content into a series of lines. 
 
The Vex Rendering Engine  
 
The rendering engine consists of a processing model. The processing model produces labeled XML objects made of XML 
elements with their corresponding stylesheets.  
 
The working principle of the Rendering Engine is explained with the following algorithm. 
 
 

1. First parse the CSS file using Flute/Batik/… which implements the SAC recommendation, Create a HashMap of rules 
with each one containing triplet of [Selector][property(ies)][value(s)].  

2. Then parse the XML document using SAX/DOM/… and create a tree structure of the document. Each element of the tree 
is made of [Element][attribute(s)][value(s)] 

3. Compare each [Element] with each [Selector] 
4. If a match is found 
5. Check if it is Pseudo-element, if it is not go to step 10   
6. Check if ‘content’ property is present, if it is there go to step 9 
7. Check if more properties are there, if yes then go to step 10 
8. Go to step 3 next element 
9. Evaluate value of content property. Eval() is a function that must be implemented to evaluate the value of the content 

property. For instance counter () function requires counting of some elements 
10. Then apply corresponding SWT/Swing/AWT drawing methods for each property (including inherited ones) to the text 

node of the XML element, and pass the drawing functions with the text node to the Layout Engine for display 
11. Repeat steps 3 to 10 till all the elements and selectors are covered 
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 Refactoring and Reuse of Vex Software 
 
After having presented the architecture of the Vex Engine, let’s describe and explain how Vex’s source code could be  
modified and reused in other applications. 
Generally refactoring and reuse are concerned with modifying software source code in order to improve its readability,  
maintainability, and facilitate its insertion in other software. 
 
In order to easily factor and extend the source code of Vex, we need first to understand how the packages are organized and  
linked to each other.  There are several tools [7] available for assisting developers in comprehending source code of software.  
However for someone who is interested in a quick and easy way of understanding Vex with the purpose of partly refactoring  
or extending its source code, then this paper is the most appropriate tool to consult. Nevertheless a complete graph  
of the whole software might increase the easiness of maintenance.   
 
Vex’s source code is organized in terms of packages. We will discuss about the rendering and layout engine processes. Therefore  
packages that deal with user interfaces, document source files and types, as well as reference libraries will not be explained.  
 
The packages listed below are just an overview, inline comments of each package and class offer rather more details.  
 
Following are the main directories that will be described: 

1. vex-toolkit  
2. vex-editor 

 
The vex-toolkit directory  
 
This directory contains classes for all backend functionality, especially the data model and the layout.  
It comprises the following packages: 
 
net.sf.vex : this package contains a class that extends and instantiates the Abstract base class (AbstractUIPlugin) for plug-ins that  
integrate with the Eclipse platform UI. 
 
net.sf.vex.action: this package contains classes that provide command objects that can act on VexWidget. 
 
net.sf.vex.core: this package contains classes  
 
net.sf.vex.css: this package contains classes implementing an object model for CSS stylesheets, the implementation of CSS    
parsing, as well as implementation of the CSS algorithms for calculating computed style values. 
 
net.sf.vex.dom: this package contains classes implementing an object model for XML documents, and implementation of XML  
parsing using SAX parser.  
 
net.sf.vex.layout: this package contains classes implementing Vex Layout Engine. It creates a visual representation of a 
document given a CSS stylesheet. This visual representation is a nested hierarchy of rectangular boxes, implemented as a tree of 
objects each implementing the W3C CSS box model. 
 
net.sf.vex.swing: this package contains classes that wrap AWT graphics functions, as well as user actions. 
 
net.sf.vex.swt: this package contains classes that implements SWT graphics primitives, as well as the implementation of Vex  
Widget based on SWT. Therefore it contains the main class (VexWidget) of Vex. 
 
net.sf.vex.undo: this package contains classes that control the do and undo actions. 
 
net.sf.vex.widget: this package contains interfaces and implementation classes based on Swing.  
 
 
The vex-editor directory 
 
This directory contains the Eclipse interfacing part i.e EditorPart. 
 
net.sf.vex.editor: this package contains classes that create the editor, Vex events, and user interfaces such as content  
assistants, menus. 
 
net.sf.vex.editor.action: this package contains classes that controls actions on Vex elements by adapting JFace Action to  
IVexAction instance. 
 
net.sf.vex.editor.config: this package contains classes about configurations items such as document types, styles, registration and  
identification of configuration sources and listeners. 



Basic Idea of Vex Rendering and Layout Process 
 
Understanding how vex-toolkit and vex-editor directories communicate with each other is fundamental for acquiring the ability of  
refactoring, reusing, and extending vex functionality. 
 
There are several tools [7] available for assisting developers in comprehending source code of software projects. 
 
Visual explanation by example is the best way of effectively propagating knowledge. Let’s consider a simple example of drawing  
a string on the canvas. 
 
The flow view of interaction between most relevant classes is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To make the explanation of the above diagram easy, let’s make an analogy.  
 
“We want to draw a text or graphic on a canvas according to a given styling format, and show it.” 
 
From this sentence one could try identifying the following elements: 
  

a. who is the presenter or shower 
b. who is the drawer 
c. what is to be drawn 
d. how it should be drawn 

 
The presenter is the vexeditor.java  
The drawer is the SwtGraphics.java 
The thing to be drawn is the Element.java 
The manner to draw is the Styles.java 
 
Now the drawer that is the SwtGraphics.java draws things one after the other according to given rules set by the 
VexWidgetImpl.java. Therefore there must be someone to transmit piecewise what to be drawn and how it should be drawn. This 
task is assigned to the Layout classes (e.g. BlockElementBox.java).  This means that Layout classes get as inputs the XML 
element to be drawn as well as the stylesheet to be applied to it.  
In fact all the classes in the Layout package will call the stylesheet class which is the generator of the Styles.java class. The  
Styles.java class holds  stylesheets for each XML element. The stylesheets class calls the Rule.java class in order to identify which  
selector matches XML tags. Based on this match Styles.java class for the identified XML element is instantiated. 
 
The VexWidgetImpl.java is a kind of instructor as well as coordinator to the Layout classes (e.g. BlockElementBox.java).   
 
Now we need to find out the process of generating what to be drawn, likewise the way to draw. Therefore the question is how 
Styles.java and Element.java are created and instantiated. 
The XML source document is loaded by the DocumentReader.java which calls the DocumentBuilder.java to perform the task of 
importing and instantiating the Document.java. The Document.java is in turn the one that calls and fills the Element.java which is 
required by the Layout classes. 
The DocumentReader.java assists the DocumentBuilder.java by providing it the SAX parser that actually does the parsing and the 
generation of the XML DOM. 
The StyleSheetReader.java loads the CSS file, calls the Flute Parser to tokenize and parse it. It then calls the 
StyleSheetBuilder.java to generate the StyleSheet.java and instantiate the Rule.java. 
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The StyleSheet.java will then call and instantiate the Styles.java according to Element.java and Rule.java. In other words the 
StyleSheet.java generates Styles.java by comparing Element.java with Rule.java. 
 
 
How to implement new CSS properties in Vex 
 
 For instance: 

• Implementing generated content such as attr(), counter(), first-line, first-letter functions, and so on. 
• Adding image support through the use of <graphic/> element recommended by the TEI [9], and so on. 

 
One might even be in need of implementing new user interfaces such as descriptive content assistant or favorite  
menu, …etc. 
 
Mastering the previously described Architecture of Vex Engine in Fig. 1 will make the task affordably easy. In fact it facilitates  
the identification of classes that need to modified or extended with new ones. In other words one should know whether the  
changes will affect the CSS path or XML path or both simultaneously. 
 
See Appendix section for working examples that provide a starting point for refactoring and extending Vex source code with new  
functionalities. Displaying graphics and adding support for CSS pseudo-elements are discussed in that section. 
 
 
 
Discussion and Conclusion 
 
The Vex engine consisting of layout and rendering engines has been explained.  The organization of packages that constitute the 
software, the architecture of its CSS rendering engine, an algorithm explaining the working principle of its rendering engine have 
been described. Some working examples of extending Vex functionality have been provided.  
However this paper is not in itself a sufficient document for completely understand Vex software. Based on this paper any 
interested person could further the exploration of the software. In fact I have not talked about other packages, and how to add 
support for different types of documents. This will be part of the future topics on understanding and extending Vex software. 
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Appendix 
 
 

1. How to display image in Vex editor 

Changes and additions that need to be made: 
 
Package net.sf.vex.css; 
 
StyleSheet.java 
/* 
add following code in the IProperty[] CSS_PROPERTIES = new IProperty[] {......};*/ 
 
new ImageHeightProperty(), 
new ImageWidthProperty(), 
new BackgroundImageProperty(), 
 
Styles.java 
/* 
add following code 
*/ 
    public float getElementWidth() {      
     float Image_Width_NORMAL = 50.0f;      
      if(this.values.get(CSS.WIDTH)!=null){ 
                   return ((Float)this.values.get(CSS.WIDTH)).floatValue(); 
        }  
        return Image_Width_NORMAL;  
    } 
    public float getElementHeight() { 
     float Image_Height_NORMAL = 50.0f; 
      if(this.values.get(CSS.HEIGHT)!=null){ 
             return ((Float)this.values.get(CSS.HEIGHT)).floatValue(); 
             } 
        return Image_Height_NORMAL;  
    } 
    public String getBackgroundImage() {      
     String image_loc= this.values.get(CSS.BACKGROUND_IMAGE).toString();       
     return image_loc;      
    } 
 
 
/* 
create ImageHeightProperty.java class as shown below 
*/ 
public class ImageHeightProperty extends AbstractProperty { 
    private static final float Image_Height_NORMAL = 50.0f; 
    public ImageHeightProperty() { 
        super(CSS.HEIGHT); 
    } 
    public Object calculate(LexicalUnit lu, Styles parentStyles, Styles styles) { 
     if(lu!=null){ 
             Float fObj = new Float(Math.max(Image_Height_NORMAL, lu.getFloatValue())); 
       return fObj; 
     } 
     return Image_Height_NORMAL;  
    } 
} 
/* 
create ImageWidthProperty.java class as shown below 
*/ 
public class ImageWidthProperty extends AbstractProperty { 
 
    private static final float Image_Width_NORMAL = 50.0f; 
    public ImageWidthProperty() { 
        super(CSS.WIDTH); 
    } 
    public Object calculate(LexicalUnit lu, Styles parentStyles, Styles styles) { 
     if(lu!=null){ 
     Float fObj = new Float(Math.max(Image_Width_NORMAL, lu.getFloatValue())); 

            return fObj; 
     } 
     return Image_Width_NORMAL;  
  } 
} 
 
 
 
 
 
 
 



/* 
create BackgroundImageProperty.java class as shown below 
*/ 
public class BackgroundImageProperty extends AbstractProperty { 
    private static final String bImage = ""; 
    /** 
     * Class constructor. 
     */ 
    public BackgroundImageProperty() { 
        super(CSS.BACKGROUND_IMAGE); 
    } 
    /** 
     * Calculates the value of the property given a LexicalUnit. Returns the value. 
     */ 
    public Object calculate(LexicalUnit lu, Styles parentStyles, Styles styles) { 
      
     if(lu!=null){ 
      if (lu.getLexicalUnitType() == LexicalUnit.SAC_ATTR) {  
       String sObj = new String(lu.getStringValue()); 
       return sObj; 
      }  
     }      
     return bImage;  
           }} 
 
/*********************************/ 
 
 
 
Package net.sf.vex.layout; 
 
BlockElementBox.java 
/* 
add following code in the protected List createChildren(LayoutContext context) method, just before “return childList;”  
 
*/ 
 Styles st = context.getStyleSheet().getStyles(this.getElement()); 
 if(this.getElement().getName().equals("graphic") && !st.getDisplay().equalsIgnoreCase(CSS.NONE)){ 
    if(this.getElement() !=null) { 
     this.callDrawImage(context, this.getElement(), st); 
    }  
 } 
 
/* 
add the two following methods   
*/ 
 private void callDrawImage(LayoutContext context, IVexElement element, Styles styles){ 
  String filename = element.getAttribute(styles.getBackgroundImage()); 
  if(filename != null){ 
    InlineBox markerInline; 
    markerInline = DrawImage(element, styles, filename);     
    this.beforeMarker = ParagraphBox.create(context, this.getElement(), 
    new InlineBox[] { markerInline }, Integer.MAX_VALUE); 
  } 
 } 
  
 private static InlineBox DrawImage(final IVexElement element, Styles styles, final String filename){    
                            float w = styles.getElementWidth(); 
  float h = styles.getElementHeight();   
  final int height = (int) h;  
  final int width = (int) w; 
  final int offset=5; 
  Drawable drawable = new Drawable() { 
   public Rectangle getBounds() { 
    return new Rectangle(0, -height, width, height); 
   } 
   public void draw(Graphics g, int x, int y) { 

final Image image = new Image(Idisplay,filename);   
g.drawImage(image, g.getClipBounds().getX()+offset, g.getClipBounds().getY()-height, width, height); 

   } 
  }; 
  return new DrawableBox(drawable, element); 
 } 
   
/*************************************/ 
 
 
 
 
 
 



Package net.sf.vex.core; 
 
Graphics.java 
 
/* 
add following line 
*/ 
    public void drawImage(Image image, int x, int y, int width, int height); 
 
/*************************************/ 
 
 
 
Package net.sf.vex.swt; 
 
SWTGraphics.java 
/* 
add following method 
*/ 
 public void drawImage(Image image, int x, int y, int width, int height) { 
  gc.drawImage(image, x+ originX, y+ originY);   
 } 
 
(For testing:  use <graphic url=”image file location”> in your XML file, and add graphic {width: XYZpx;    height:XYZpx;   display: block; background-
image: attr(url);} in your CSS file). The string “url” in <graphic> could be replace with any other string. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Adding Support for (TEI P5) Pseudo-elements functions: attr(), counter(), open-quote, close-quote 
 (The next paper will cover remaining pseudo-elements and classes) 
 

 
Changes and additions that need to be made: 
 
 
In vex-sac directory 
 
Package org.w3c.flute.parser 
/* 
    Open Parser.java, Parser.jj, and make following modification. Normally making the changes in Parser.jj only should be sufficient.   
*/ 
Add a “(” after counter as shown below. In fact this is an error from Flute itself. 
 
} else if ("counter(".equals(f)) { 
 
 
Package net.sf.vex.css; 
 
StyleSheet.java 
/* 
add following code in bold in the calculateStyles(IVexElement element) method, and extend the class with “GeneratedContentPropertiesImpl” as shown below.  
*/ 
public class StyleSheet extends GeneratedContentPropertiesImpl implements Serializable {…… 
…… 
  if (element instanceof PseudoElement) {   
   if(element.getName().equalsIgnoreCase("before")){      
    generateCounterBefore(element);   
                    }      
   lu = decls.get(CSS.CONTENT); 
   if (lu == null) { 
    return null; 
   } 
   Sring myStringValue = ""; 
   List<String> content = new ArrayList<String>(); 
   while (lu != null) { 
    if (lu.getLexicalUnitType() == LexicalUnit.SAC_COUNTER_FUNCTION) {   
  
     String val = lu.getParameters().getStringValue();      
     if(val.equalsIgnoreCase("div1")){ 
        content.add(Integer.toString(mc1)); 
     } 
     else if(val.equalsIgnoreCase("div2")){  
         content.add(Integer.toString(mc2)); 
     } 
     else if(val.equalsIgnoreCase("div3")){  
         content.add(Integer.toString(mc3)); 
     } 
 
    } else if (lu.getLexicalUnitType() == LexicalUnit.SAC_ATTR) { 
     String attributeName = lu.getStringValue(); 
     String value = element.getParent().getAttribute(attributeName); 
     if (value != null) 
     content.add(value); 
    } 
    if (lu.getLexicalUnitType() == LexicalUnit.SAC_STRING_VALUE) {  
     myStringValue = lu.getStringValue(); 
     content.add(myStringValue); 
    } 
    String re = lu.getStringValue(); 
    if (re != null) { 
     if (re.equalsIgnoreCase("open-quote") || re.equalsIgnoreCase("close-quote")) { 
      content.add("\""); 
     } 
    } 
    lu = lu.getNextLexicalUnit(); 
   }    
   styles.setContent(content);    
  } 
 
 
 
 
 
 
 
 
 
 
 



/* Create the following class */ 
 
import net.sf.vex.dom.IVexElement; 
public abstract class GeneratedContentPropertiesImpl { 
        public int mc1=0; 
  public int mc2=0; 
  public int mc3=0; 
   
 public GeneratedContentPropertiesImpl() {}   

public void generateCounterBefore(IVexElement element){ 
      if(element.getParent().getName().equalsIgnoreCase("body")){ 
   mc1=0; 
   mc2=0; 
   mc3=0;    
  } 
  else if(element.getParent().getName().equalsIgnoreCase("div1")){ 
   mc1++;  
   mc2=0; 
   mc3=0;    
  } 
  else if(element.getParent().getName().equalsIgnoreCase("div2")){ 
   mc2++; 
   mc3=0; 
  } 
  else if(element.getParent().getName().equalsIgnoreCase("div3")){ 
   mc3++;         
  } 
          } 
} 
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