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1 Summary 
Ca2+ dependent cell adhesion molecules (cadherins) are central for a variety of cell and tissue 

functions such as morphogenesis, epithelial and endothelial barrier formation, synaptic 

function and cellular signaling. Of paramount importance for cadherin function is their specific 

extracellular adhesive trans-interaction. Cadherins are embedded in a cellular environment of 

intracellular and extracellular regulators that modify cadherin binding in response to various 

physiological and pathological stimuli. Most experimental approaches used for studying 

cadherin interaction however lack a physiological proof of principle mostly by not investigating 

cadherins in their physiological environment. In the present cumulative dissertation, 

experimental approaches were applied to characterize and modulate vascular endothelial 

(VE)-cadherin and desmocadherin functions in the (patho-)physiological contexts of endothelial 

permeability regulation and disturbance of  epidermal barrier function, which is typical to the 

blistering skin disease pemphigus, respectively. Whereas VE-cadherin is a key regulator of the 

endothelial barrier that separates the blood compartment from the interstitial space of tissues, 

desmosomal cadherins are crucial for maintenance of epidermal integrity and separation of the 

external environment from the body’s internal milieu. Cadherin functions were both 

investigated in cell-free and cell-based conditions: by using biophysical single molecule 

techniques like atomic force microscopy (AFM), cadherin function could be investigated in 

conditions, where contributions of intracellular signaling were excluded. These experiments 

were, however, compared and combined with cell-based experiments in which cadherins of 

epidermal or endothelial cell cultures were probed by laser force microscopy (laser tweezers), 

fluorescence recovery after photobleaching (FRAP) and other techniques.  

 

The autoimmune blistering skin diseases pemphigus foliaceus (PF) and pemphigus vulgaris 

(PV) are caused by autoantibodies directed against the extracellular domains of the 

desmosomal cadherins desmoglein (Dsg) 1 and 3, which are important for epidermal 

adhesion. The mechanism of autoantibody-induced cell dissociation (acantholysis) in 

pemphigus, however, is still not fully understood. For the first time, it is shown by AFM force 

spectroscopy that pemphigus autoantibodies directly inhibit Dsg3 adhesion by steric hindrance 

but do not inhibit adhesion of Dsg1. However, the full pathogenicity of the autoantibodies 

depended on cellular signaling processes, since autoantibodies targeting Dsg1 also resulted in 

loss of cadherin-mediated adhesion in cell-based experiments. However, two other signaling 

pathways that have been reported to be involved in pemphigus pathogenesis, i.e. epidermal 

growth factor receptor (EGFR) and c-Src activation, were not found to be important in this 

context. 

 

Furthermore, peptide-based modulators of cadherin functions were generated for Dsg1/3 and 

VE-cadherin. By comparing Dsg1, Dsg3 and VE-cadherin sequences to published X-ray 
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structures of cadherin trans-interactions, specific amino acid sequences of the binding pockets 

of these cadherins were identified. Peptide versions of these motifs were synthesized and the 

antagonistic functions of these “single peptides” were validated by AFM force spectroscopy as 

well as by cell-based assays. By linking two single peptides in tandem, stabilization of cadherin 

bonds because of by cross-bridge formation between trans-interacting cadherins was 

demonstrated. Protective effects of tandem peptides were shown by partly preventing 

pemphigus autoantibody-induced acantholysis, or in the case of VE-cadherin, by stabilizing 

endothelial barrier properties against barrier disrupting agents like the Ca2+ ionophore A23187 

and an inhibitory VE-cadherin antibody. Most importantly, VE-cadherin tandem peptides 

abolished microvascular hyperpermeability induced by the physiologic inflammatory agent 

tumor necrosis factor-α in the rat mesentery in vivo. Both classes of tandem peptides therefore 

can be considered as a starting point for the generation of potential therapeutic agents that 

might prevent cell dissociation in pemphigus and breakdown of the endothelial barrier under 

inflammatory conditions. 

 

 

Deutsche Zusammenfassung 
Die Familie der Ca2+ - abhängigen Adhäsionsproteine (Cadherine) spielt eine zentrale Rolle 

bei elementaren zellulären, geweblichen und Entwicklungsprozessen. Eine in der vorliegenden 

kumulativen Dissertation untersuchte Funktion von Cadherinen ist ihre zentrale Rolle beim 

Aufbau und der Aufrechterhaltung der epithelialen (epidermalen) Barriere der Haut und der 

endothelialen Barriere von Blutgefäßen. Cadherine vermitteln Adhäsion über eine 

extrazelluläre Bindung (Transinteraktion) mit Cadherinen auf der Zelloberfläche angrenzender 

Zellen. Die durch Cadherine vermittelte Zelladhäsion und die durch sie kontrollierte 

Barrierenbildung ist ein dynamischer Prozess, der durch extrazelluläre und intrazelluläre 

Modulatoren im Zusammenspiel mit vielfältigen physiologischen Prozessen reguliert wird. 

Verschiedene bedrohliche pathologische Prozesse wie die Blasen-bildende 

Pemphiguserkrankung der Haut oder die massive Ödembildung durch pathologische 

Erhöhung der Blutgefäßpermeabilität beruhen in wesentlichen Elementen auf Störungen  der 

Cadherinbindung. Verschiedene in vitro-Modellsysteme ermöglichen die Untersuchung von 

Teilaspekten der Interaktion von Cadherinen. Den meisten dieser Experimentalsysteme fehlt 

aber der realistische physiologische und gewebliche Bezug zur funktionellen Bedeutung der 

untersuchten Eigenschaften der Cadherine. In der vorliegenden kumulativen Dissertation 

wurden verschiedenste Ansätze zur Untersuchung aber auch zur Modulation von Cadherinen 

im Hinblick zweier (patho-)physiologischer Prozesse durchgeführt. Zum einen befasst sich die 

Doktorarbeit mit den Blasen-bildenden Hauterkrankungen der Pemphigus-Gruppe, bei welcher 

die Funktionsstörung desmosomaler Cadherine im Mittelpunkt steht. Zum anderen wurde das 

vaskuläre endotheliale (VE)-Cadherin und dessen Rolle bei der Regulation und pathologischen 
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Entgleisung der Gefäßpermeabilität untersucht. Diese Cadherine sind Teil einer epithelialen 

oder endothelialen Schicht, die das Körperinnere von der Außenwelt bzw. das Interstitium der 

Gewebe vom Blutkompartiment trennt und abschirmt. Die Funktion dieser Cadherine wurde in 

der Arbeit sowohl in Zell-freien als auch in Zell-basierten Experimenten analysiert: mittels 

biophysikalischer Charakterisierung auf Einzelmolekülebene durch Kraftspektroskopie mit dem 

Atomkraftmikroskop (AFM) konnte die Adhäsion (Transinteraktion) von Cadherinen frei von 

zellulären Einflüssen isoliert untersucht werden. Diese Einzelmolekülstudien wurden durch 

Laserkraftmikroskopie (Laserpinzette) und verschiedene zellphysiologische Untersuchungen 

an epithelialen und endothelialen Zellkulturen und Geweben komplettiert. 

 

Bei der autoimmunen Hauterkrankung Pemphigus foliaceus (PF) und Pemphigus vulgaris (PV) 

bewirken Autoantikörper, die gegen die desmosomale Cadherine Desmoglein (Dsg) 1 und 3 

gerichtet sind, eine Zelldissoziation (Akantholyse), die zu einer charakteristischen 

Blasenbildung auf der Haut der Patienten teils mit Ablösung der Epidermis führt. Der exakte 

Mechanismus dieser durch Autoantikörper verursachten Akantholyse ist jedoch in 

wesentlichen Zügen unverstanden. In der vorliegenden Arbeit wurde mit Hilfe der AFM-

Kraftspektroskopie zum ersten Mal gezeigt, dass Pemphigus-Autoantikörper direkt die Dsg3-

vermittelte Adhäsion durch sterische Behinderung inhibieren. Zusätzlich wurden auch 

Unterschiede in der Pathogenität der Autoantikörper in Abhängigkeit von zellulären 

Signalwegen gefunden. In früheren Studien konnte bereits gezeigt werden, dass neben der 

vermuteten Hemmung der Cadherinbindung durch die Autoantikörper auch inhibitorische, die 

Zelladhäsion herabsetzende zytoplasmatische Signalwege für die Pathogenese dieser 

Krankheit wichtig sind. Daneben belegen Experimente dieser Arbeit, dass die durch 

Autoantikörper vermittelte Akantholyse in unseren Versuchsbedingungen unabhängig von der 

in anderen Studien postulierten Beteilung des epidermalen Wachstumsfaktorrezeptors (EGFR) 

und von c-Src war. 

 

In weiteren Experimenten wurden spezifische Peptide zur Modulation der Funktion von Dsg1/3 

und VE-Cadherin entwickelt. Dazu wurden die Sequenzen von Dsg1, Dsg3 und VE-Cadherin 

mit den bereits beschriebenen Röntgenkristallstrukturen von anderen Cadherinen verglichen 

und eigene Strukturmodelle für Dsg1/3 und VE-Cadherin auf der Grundlage einer 

Analogiemodellierung generiert. Auf diese Weise wurden Sequenzabschnitte identifiziert, die 

für die Cadherin-Transinteraktion wichtig sind. Aus diesen Sequenzen wurden Peptide 

abgeleitet, die die Cadherinfunktion entweder in einer agonistischen oder antagonistischen 

Weise beeinflussen sollten. Die inhibitorische Funktion der Einzelpeptide wurde sowohl durch 

AFM-Kraftspektroskopie als auch in Zell-basierten Laserpinzetten-Studien validiert. Durch das 

Zusammenfügen von zwei separaten Einzelpeptidsequenzen wurden Tandempeptide erzeugt. 

Diese sollten die jeweilige Cadherininteraktion durch das Überbrücken benachbarter adhäsiver 
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Cadherindomänen stabilisieren. Der stabilisierende, protektive Effekt der Tandempeptide 

wurde sowohl in Einzelmolekülstudien als auch in Zellkulturstudien bestätigt. So verhinderte 

das Dsg-spezifische Tandempeptid teilweise die durch Autoantikörper hervorgerufene 

Akantholyse beim Pemphigus und das VE-Cadherin-spezifische Tandempeptid schützte die 

Endothelbarriere vor Permeabilitätserhöhung durch das Ca2+ - Ionophor A23187 oder durch 

einen inhibitorischen VE-Cadherin-Antikörper. Dieser schützende Effekt wurde auch in in-vivo-

Experimenten an perfundierten Mikrogefäßen des Rattenmesenteriums gezeigt, in denen das 

VE-Cadherin-Tandempeptid den Anstieg der Endothelpermeabilität durch den physiologischen 

Entzündungsmediator Tumornekrosefaktor-α verhinderte. Durch diese Experimente wurde 

eine protektive Wirkung beider Tandempeptide gezeigt. Diese Peptide können deshalb als 

Ausgangspunkt für die Identifikation von spezifischen therapeutischen Agenzien zur 

Prävention  der Akantholyse beim Pemphigus oder Verlust der VE-Cadherin-Bindung bei 

vaskulärer Hyperpermeabilität angesehen werden. 

 



Introduction                                                                                                                                              8 

 

2 Introduction 

2.1 Cell-cell adhesion 

During the evolution of higher order organisms on earth the formation of multicellular 

organisms (metabionta; or metazoa in the animal kingdom) was an essential step (Hynes and 

Zhao, 2000). But “sticking” cells together depended on the “invention”1 of a novel class of 

proteins: cell adhesion molecules (CAMs) and their molecular compositions, cell contacts 

(CCs). These are necessary to promote proper cell aggregation and tissue specification but 

also cellular communication in higher order organisms. The static view of CAMs and CCs as 

mere mortar for multicellular units, however, has changed in the last years to see them as 

integrative receptors communicating extracellular signals from the cell’s environment into 

intracellular compartments. Besides this so-called “outside-in signaling” function, changing 

structures or function of CAMs/CCs can directly influence the cell’s behavior towards attaching 

cells or certain stimuli, a range of functions termed as “inside-out signaling”. CAMs/CCs 

therefore act as both essential structural and signaling components of the cell. Hence, cell-cell 

adhesion is central to nearly all physiological processes. To account for the complexity of 

these, consequently several specialized CAMs and CCs have emerged. 

 

2.2 Cell contacts 

CCs can both mediate adhesion to the cell’s surrounding extracellular matrix (ECM) or to other 

cells. The first type of contacts is called cell-matrix contact, whereas the latter is called cell-cell 

contact (Benninghoff and Drenckhahn, 2008). Ultrastructurally, most contacts consist of three 

different parts: an extracellular and membrane-spanning part, a so-called intracellular plaque 

and associated filaments. This structure implies that CCs are directly linked to parts of the 

cellular cytoskeleton consisting mainly of actin and intermediate filaments and to a minor 

extend to microtubules. By that, precise positioning and strong anchorage of CCs is achieved. 

 

2.2.1 Cell-matrix contacts 
Cell-matrix contacts are asymmetrical in structure and necessary for cells to stick to the ECM. 

As all epithelial cells depend on basal lamina anchorage, these contacts are very important for 

the epithelium lining cavities and surfaces of organs and in particular for the epidermis closing 

the surface of the body and for the endothelium terminating interior surfaces of blood vessels. 

Moreover, they are essential for most cells to receive survival signals or even to differentiate 
                                            
1 Interestingly, the unicellular marine choanoflagellate Monosiga brevicollisis is known to already 

express 23 different members of the cadherin family of cell adhesion molecules pointing out the 

important role of cadherins for metazoan origins. In the choanoflagellate, cadherins are speculated to 

bind bacterial prey. (Abedin and King, 2008). 
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Figure 1: Organization of cell-cell contacts between endothelial cells. AJs  and TJs are the 

main cellular contacts in endothelial cells. Both contacts consist of (i) intercellular CAMs and (ii) 

intracellular plaque or adapter proteins for the anchorage to (iii) cytoskeletal components. In AJs, 

homophilically interacting VE-cadherins are indirectly or directly linked via catenins (α, β, γ, p120) and 

ZO1 to actin, which in turn is organized by α-actinin or Arp2/3. α-actin preferentially binds to actin as a 

homodimer and thereby regulates Arp2/3, whereas the binding of α-actin to β-catenin is dependent on a 

monomeric state. Contractile elements like myosin are able to alter actin organization by inducing 

constriction. Claudins and occludin are CAMs of TJs and coupled via ZO1-3 and cingulin to actin. As 

another CAM, nectin mediates homophilic interactions in endothelical cells and is coupled via afadin to 

the actin cytoskeleton. 

 

 

into their final cellular fate. Due to their diverse usage of CAMs for adhesion and as 

cytoskeletal components for anchorage two structural cell-matrix contacts can be 

distinguished: hemidesmosomes and focal contacts (Benninghoff and Drenckhahn, 2008).  

 

2.2.1.1 Hemidesmosomes 
Hemidesmosomes are related to desmosomes (see section 2.2.2.3.1) but anchor 

keratinocytes of the epidermis via integrin-type CAMs (see section 2.3.1.2) to the ECM (Litjens 

et al., 2006). Intracellulary, they are linked to the intermediate filament system via plaque 

proteins BP230 or plectins.  

 

2.2.1.2 Focal contacts 
In focal contacts, integrins anchor cells to ECM components and actin filaments inside the cell 

(Bershadsky et al., 2006). Plaque proteins needed for the anchorage of integrins to the actin 
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system are α-actinin, vinculin or talin. Often, specialized signaling kinases are also associated 

at cytoplasmatic plaques, such as focal adhesion kinase (FAK) and integrin-linked kinase 

(ILK). These are important regulators for cellular processes like apoptosis and proliferation. 

Contractile filament bundles (stress fibres) containing actin and myosin motor proteins also 

anchor to focal contacts and play an important role in cellular migration during which they 

dynamically change in size and composition. Both hemidesmosomes and focal contacts, 

accordingly, also communicate positional stimuli inside cells or act as biomechanical sensors.  

 

2.2.2 Cell-cell contacts 
Besides adhesion meant for forming multicellular units, cell-cell contacts also serve as 

intercellular communicators. Hence cell-cell contacts are divided into communication contacts 

(gap junctions), barrier contacts (tight junctions) and adhesion contacts (TJ).  

 

2.2.2.1 Communication contacts: gap junctions 
Gap junctions (Nexus, maculae communicantes) are connections providing metabolic or 

electrical coupling between neighboring cells or tissues by directly connecting the cytoplasm of 

two cells. Structurally, a gap junction is composed of two hemichannels (connexons) that 

connect in the intercellular space resulting in a thin 2-5 nm cleft between cells (Mese et al., 

2007). Connexons are built by compositions of connexin (Cx) hexamers. Connexin types 

account for different electric conductivity or molecule passage, for example. Tissues with 

 
Figure 2: Desmosomes in the human epidermis. In histological slices through the human 

epidermis several cell layers are visible (A). The lowest monolayer represents the stratum basale (S.b.), 

followed by multilayered stratum spinosum (S.s.), stratum granulosum (S.g.) and squamous stratum 

corneum (S.c.). Especially in the S.s., several desmosomes with attached filaments (f) are discernible in 

electron microscopic images (B). These cell-cell contacts are composed of interacting desmocadherins 

(desmogleins and desmocollins), which are intracellularly coupled via plakoglobin and plakophilins to 

desmoplakin. This molecule links the desmocadherins to the cytokeratin filament system. (© A and B: 

Masayuki Amagai, Keio University, Tokyo). 



Introduction                                                                                                                                              11 

 

important functions for gap junctions are cardiac muscle (for synchronization of electric 

stimulation leading to contraction; Cx43), neurons (as chemical synapses or for axonal 

structure; Cx32) or the eye lens (Cx50) (Benninghoff and Drenckhahn, 2008). 

 

2.2.2.2 Barrier contacts: tight junctions 
With the formation of vertebrate-specific tight junctions (TJs, zonulae occludentes) cells are 

able to seal the intercellular space, thus providing potentially impermeable barriers that lead to 

sealing of the intercellular space (Figure 1) (Forster, 2008). However, the permeability of these 

specialized CCs can be regulated and depends on the composition of the sealing CAMs. 

These include transmembrane proteins occludin and claudins, which are linked via plaque 

proteins (ZO1-3 or cingulin) to the actin cytoskeleton. Other CAMs in TJs are junctional 

adhesion molecules (JAM) A, B and C. Physiologically, TJs also are important for cellular 

polarity by preventing integral membrane proteins of the apical membrane from intermixing 

with basal positions. Moreover, TJ-mediated sealing is essential for the blood-tissue-barrier of 

blood vessels and also for the epithelial barrier of the intestine. In epithelial tissue, TJs form a 

sealing complex together with adherens contacts and desmosomes (see section 2.2.2.3). In 

general, TJs are also largely dependent on the proper function of adherens junctions. 

 

2.2.2.3 Adhesion contacts: desmosomes and adherens junctions 
Adhesion contacts mediate mechanical intercellular adhesion via specialized CAMs and strong 

anchorage to the cytoskeleton. In desmosomes, cadherins are linked to the intermediate 

filament system, whereas in adherens junctions they are anchored to the actin system. 

 

2.2.2.3.1 Desmosomes 
The Greek words “desmos” meaning bond and “soma” meaning body are combined in the 

name of these specialized adhesion contacts. Desmosomes, also known as macula adherens, 

are spot-like (0.1–0.5 µm) CCs, randomly arranged on lateral membrane sides (Figure 2) and 

were first described by the Italian pathologist Giulio Bizzozero (1846-1901) (Delva et al., 2009). 

They promote resistance against shearing forces and are found in most simple and stratified 

squamous epithelium, but also in muscle tissue of the heart. Desmosomal cadherins of the 

desmoglein (Dsg1 – Dsg4) or desmocollin (Dsc1 - Dsc3) family are the CAMs of desmosomes 

and share 30% homology to the classical cadherin of epithelial adherens junctions, E-cadherin, 

(Garrod et al., 2002). They are linked via the plaque proteins plakoglobin and plakophilins to 

the structural protein desmoplakin, which in turn promotes anchorage to the intermediate 

filament system (Delva et al., 2009). The intercellular space between desmosomal contacts is 

fairly wide (about 30 nm).  
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2.2.2.3.2 Adherens junctions 
Adherens junctions (AJs) are involved in various functions ranging from cell-cell adhesion, 

tissue homeostasis to control of epithelial and endothelial permeability or cell-cell 

communications. In AJs, cadherins mediate cell adhesion and are strongly anchored via 

catenin family proteins to the actin cytoskeleton (Figure 1) (Miyoshi and Takai, 2008; Meng 

and Takeichi, 2009). Important members of the catenin family include α-catenin, β-catenin, the 

related plakoglobin (also renamed as γ-catenin) (Ozawa et al., 1989) and p120 catenin 

(p120ctn) (Ishiyama et al.; Yap et al., 1998). β-catenin, plakoglobin and p120ctn directly bind to 

the cytoplasmic domain of cadherins. The interaction of β-catenin to E-cadherin is very strong, 

but can be modulated by phosphorylation (Lickert et al., 2000; Choi et al., 2006). The role of α-

catenin in the linkage of cadherins to the actin cytoskeleton has changed in the recent years. 

α-catenin does not directly bridge actin molecules to β-catenin, but indirectly mediates linkage 

to actin via a dynamic association with either β-catenin as a α-catenin monomer or with actin 

as a homodimer (Drees et al., 2005; Yamada et al., 2005). Other linking molecules are EPLIN, 

α-actinin, vinculin or ZO-1 (Meng and Takeichi, 2009). Recently, linkage to microtubules via 

adapter proteins Nezha and PLEKHA7, an interaction partner of p120ctn, has been identified as 

well (Meng et al., 2008). Depending on the microscopic ultrastructure, several AJ forms can be 

differentiated: punctum adherens, zonula adherens and fascia adherens.  

 

2.3 Characterization and classification of cell adhesion molecules 

Crucial to CCs and in particular cell-cell contacts are CAMs. Achieving robust but still dynamic 

cellular adhesion depends on several and different types of CAMs. Common structural 

features of CAMs are the extracellular (EC) domain mediating adhesion, a transmembrane 

part, and the intracellular (IC) domain that is important for intracellular anchorage or signaling 

functions. CAM-mediated interactions can be characterized by interactions of same 

(homophilic) or different members (heterophilic) of a certain CAM family. If binding to other 

CAMs or proteins occurs, the term heterotypic interaction is used. Binding of two opposing 

CAMs in antiparallel manner is described as a trans-interaction whereas cis-interactions 

normally involve parallel interactions of CAMs of the same cell. The strength of CAM-mediated 

intercellular adhesion amongst others depends on two factors: the affinity of CAM-CAM 

interactions and the avidity, i.e. the combined strength of multiple bond interactions. Avidity is 

rather more than just the sum of bonds, but combined synergistic strength of bond affinities. An 

important factor for avidity and intercellular adhesion strength in general is the amount or 

concentration of molecules present at the cell surface. Affinity is characterized by a 

dissociation constant that determines the propensity of an intermolecular complex to separate 

(dissociate) reversibly into its component molecules (equation 1). The dissociation constant is 
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usually denoted KD and is the inverse of the association constant KA. Kinetically, KD values can 

be described by the interplay of dissociation (koff) and association (kon) rates (equation 2).  

 

(equation 1) 

 

 

(equation 2) 

 

For classification, CAMs are divided by the need of Ca2+ for proper adhesion into Ca2+-

independent and Ca2+-dependent molecules. 

 

2.3.1 Ca2+-independent cell adhesion molecules 
2.3.1.1 Immunoglobulin-like cell adhesion molecules 
The group of Ca2+-independent CAMs consists of immunoglobulin (Ig)-like CAMs (Ig-CAMs) 

and integrins. Ig-like CAMs owe their name due to the structural similarity of one or more of 

their EC domains to Ig domains of immunoglobins (Vaughn and Bjorkman, 1996). Ig-CAMs are 

heterogeneously expressed in different tissues and involved in biological processes such as 

brain development, building of the vascular network or immunologic interactions (Aplin et al., 

1998). Ig-CAM-mediated binding normally involves homophilic trans-interactions. Multiple Ig-

CAM domains are believed to bind uncooperatively resulting in a zipper-like assembly 

(Tsukasaki et al., 2007), but with dissociation rates similar to other CAMs, e.g. cadherins (koff = 

1.5 s−1) (Vedula et al., 2007). Heterophilic interactions to heterophilic Ig-CAMs or other 

receptors such as growth factor receptors or even cadherins are known (Cavallaro and 

Christofori, 2004). Information about cytoskeletal anchorage of Ig-CAMs is limited. Important 

Ig-CAM members are the neural NCAM and netrins, platelet endothelial cell adhesion 

molecule (PECAM), intercellular adhesion molecules (ICAMs), vascular cell adhesion molecule 

(VCAM) and nectins. Nectins prefer heterophilic to homophilic partners as the former produce 

stronger bonds (Martinez-Rico et al., 2005). Furthermore, nectins are important for their role in 

establishment of AJs via the nectin – afadin system which is believed to prime adhesive 

interactions for cadherins and therefore can initiate AJ assembly as afadin directly interacts 

with α-catenin (Takai et al., 2003). 

 
2.3.1.2 Integrins 
Integrins form a family of cell-surface glycoproteins that mainly act as receptors for ECM 

molecules and are predominantly found in focal contacts and hemidesmosomes (Arnaout et 

al., 2007). They are not only important for ECM attachment but also for physiological 

processes such as cell motility, platelet activation or the binding of lymphocytes to the 
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endothelial surface. Integrins consist of obligate heterodimers containing one α- and one β-

subunit, which are non-covalently linked. At least 18 different α, and 8 different β proteins are 

known for mammals, resulting in the formation of numerous different integrins with specific 

ligand binding. A crystal structure of the extracellular integrin segment in complex with its 

ligand has been resolved (Xiong et al., 2002). Interestingly, integrins also have a Ca2+ binding 

site in their EC domain, although their binding is largely Ca2+-independent. Often, integrins 

heterotypically bind to large proteins such as collagens or fibronectin. For some integrins, 

however, the main adhesive sequence of the ligand consists of a short RGD (arginine-glycine-

aspartic acid) tripeptide. Integrin interactions with their ligands are characterized by low 

affinities (koff = 1.3 s−1) (Taubenberger et al., 2007), but usually avidity is increased by high 

integrin concentrations in the membranes. Moreover, cells can regulate the affinity of their 

integrins. Intracellular stimuli are known to activate integrins by altering its structural 

conformation (“inside-out signaling”). This is known to be important for platelet activation 

during blood clotting. Important integrin - ligand pairs are α5β1 and collagens, αLβ2 and ICAM or 

α6β4 and laminin 5.  

 
2.3.2 Ca2+-dependent cell adhesion molecules 
2.3.2.1 Selectins 
The second group of CAMs is characterized by its strong dependency for adhesion on divalent 

cations, mainly Ca2. Selectins form a small family of single-chain lectin-like glycoproteins 

(Gonzalez-Amaro and Sanchez-Madrid, 1999). Lectins in turn are polysaccharide-binding 

proteins. Structurally, selectins consist of an extracellular lectin domain, an epidermal growth 

factor (EGF)-type domain and several other regulatory EC domains. The IC domain links 

selectins to the actin cytoskeleton. There are three main members: leukocyte (L)-, endothelial 

(E)- and platelet (P)-selectin, with its respective ligands GlyCAM-1, E-selectin ligand and P-

selectin glycoprotein ligand-1. Selectins bind to sugar moieties on these ligands such as Lewis 

X-sialylated carbohydrates in a heterotypical manner. Selectins play important physiological 

roles in leukocyte homing and binding to endothelial cells and are also involved in platelet 

activation during inflammation. Selectin-mediated adhesion is strongly regulated by spatial and 

temporal expression of these CAMs. For example, P-selectin as a homing receptor for cells of 

the immune system is rapidly incorporated into endothelial membranes upon inflammatory 

stimuli by exocytosis of Weibel-Palade bodies. Selectins are characterized by apparent low 

affinity of adhesion with rapid associations and subsequent dissociations (koff = 0.2 - 0.8 s-1 

(Hanley et al., 2004)). However, even lower dissociation rates (koff = 0.02 s−1 (Fritz et al., 

1998)) have been found when analyzing P-selectin ligand interactions at lower loading rates 

indicating higher affinity under low forces. Moreover, a mechanism of catch bonds is proposed, 

where increase of force leads to the locking of the interaction (Marshall et al., 2003). All this is 

believed to enable the so-called “rolling” of leukocytes on endothelium activated by 
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inflammation: during high physiological forces, weak selectin interactions slow leukocytes 

down. After reaching lower “dragging” forces, selectin-mediated adhesion is increased. 

Involvement of other CAMs then leads to strong adhesion of the cells to the endothelium. 

 
2.3.2.2 Cadherins 
Ca2+ dependency of adhesion is expressed as part of the name of the largest CAM family 

found in adhesion contacts, i.e. Ca2+-dependent adhesion molecules, cadherins. These single-

span glycoproteins are essential for development, morphogenesis and tissue structure 

(Stepniak et al., 2009). Since the discovery of cadherins (Grabel et al., 1979; Yoshida and 

Takeichi, 1982) and the first cadherin molecule, which was termed uvomorulin (Peyrieras et 

al., 1983) and later renamed to epithelial (E-)cadherin, 113 human cadherin family members 

have been identified and state for an impressive functional spectrum (Nollet et al., 2000; 

Hulpiau and van Roy, 2009): reaching from classical cadherins (type I and II) and desmosomal 

cadherins (desmogleins and desmocollins) to protocadherins, flamingo-cadherins and FAT- or 

RET-like cadherins (due to its similarities to tumor suppressor FAT or protooncogen RET, 

respectively). Especially the protocadherins as the largest subclass of cadherins are only 

poorly understood and it is not clear whether they are adhesion molecules at all. All subclasses 

have slight to modest structural differences, but most of them contain the characteristic 

cadherin EC domains. The best-characterized cadherins, classical cadherins, are found in AJs 

and contain 5 conserved repetitive EC domains (EC1-EC5, each about 110 amino acids long, 

with dimensions of 45 x 25 x 25 Å), one transmembrane domain and a conserved IC domain. 

Via this last domain, catenin family proteins tightly anchor cadherins to the actin cytoskeleton. 

In a historical view, cadherins were believed to mainly interact homophilically by at first forming 

parallel cis-dimers at the cell surface, which in a second step interact in trans with opposing 

cis-dimers on the interacting cell surface. This view, however, has changed in recent years 

(see section 2.4). Moreover, single molecule cadherin binding is a low-affinity interaction (koff = 

1.8 s-1, kon ≈ 104 M-1s-1, KD ≈ 10-4 M as demonstrated for vascular endothelial (VE)-cadherin 

(Baumgartner et al., 2000; Baumgartner and Drenckhahn, 2002a). Strong adhesion is believed 

to be mediated by increased avidity by reduction of the lateral mobility through tethering to the 

actin cytoskeleton and by clusters of cadherins. However, recent biophysical data has 

questioned some of these views, too. 

 

2.4 Characterization of cadherin interactions 

2.4.1 Experimental approaches to determine cadherin interactions 
In recent years distinct and manifold strategies have been applied to precisely explore 

cadherin interactions at the molecular level (Table 1 and Figure 3) (Baumgartner and 

Drenckhahn, 2002a; Shapiro and Weis, 2009). These investigations closely correlated with the 
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identification of cadherin atomic structures. In the early years of cadherin research (1980s), 

mostly biochemical assays (coimmunoprecipitation and bead aggregations) were used. For 

this, cadherin extracellular domains were recombinantly expressed and tested. Also, mutated 

or domain-swapped cadherin constructs were used. For studying dimer formation, cadherins 

were often fused to Ig Fc domains to achieve stable dimers. Other strategies were also 

applied, including c-Jun/c-Fos- or COMP-, or FKBP-mediated oligomerization systems. 

Moreover, cadherins were investigated in the cellular context by cell aggregation experiments 

or artificial bead-cell contacts. Important structural insights stem from crystallization and 

followed by X-ray scattering or NRM analysis. But also electron microscopic techniques have 

been applied, ranging from simple imaging to 3D reconstruction techniques. Important 

progress for the elucidation of cadherin interactions, however, was achieved using biophysical 

techniques investigating single molecules. Most of these techniques such as atomic force 

microscopy (AFM) are based on forced cadherin interactions that are studied with single 

molecule precision. Some alterations of the AFM technique have been applied (surface force 

apparatus (SFA), biomembrane force probe (BFP), intermolecular force microscopy (IFM))2. 

Individual cadherin molecules on the surface of cells can be tracked by single molecule 

tracking (SMT). Insights into molecular cadherin dynamics were provided by the transfection of 

cell with cadherin-GFP fusion proteins and the analysis of these via fluorescence recovery 

after photobleaching (FRAP). Aside, theoretical models and molecular dynamics simulations 

have been employed. 

                                            
2 For abbreviations, please refer to table 1. 
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Table 1. Strategies for investigating cadherin interactions 
Biochemical assays  
 Mutated or truncated constructs (Ozawa et al., 1990a; Brieher et al., 1996; Ozawa and Kemler, 1998; 

Tamura et al., 1998; Yap et al., 1998; Troyanovsky et al., 1999; 
Chappuis-Flament et al., 2001; Shan et al., 2004; Sivasankar et al., 
2009) 

 EC domain-swapped constructs (Nose et al., 1990; Shan et al., 2000; Patel et al., 2006) 
 In-vitro assembly (Lambert et al., 2005) 
 Bead aggregation (Ranheim et al., 1996; Lambert et al., 2000; Chappuis-Flament et al., 

2001; Prakasam et al., 2006) 
 Gel filtration / gradient sedimentation  (Brieher et al., 1996; Chitaev and Troyanovsky, 1998; Legrand et al., 

2001; Baumgartner and Drenckhahn, 2002a) 
 Cross-linking  
  Chemical (Troyanovsky et al., 2003; Troyanovsky et al., 2007) 
  Ig Fc fusions (Moll and Vestweber, 1999) 
  c-Jun/c-Fos fusions (Ahrens et al., 2002) 
  FKBP fusions (Yap et al., 1997) 
  Cartilage oligomeric matrix  
  protein (COMP) fusions 

(Tomschy et al., 1996; Ahrens et al., 2003) 

  
Cell-based experiments  
 Cell aggregation (Nose et al., 1988; Angres et al., 1996; Niessen and Gumbiner, 2002; 

Shan et al., 2004; Shi et al., 2008; Katsamba et al., 2009) 
 Flow chamber analysis (Perret et al., 2002) 
 Laser tweezers (Sako et al., 1998; Baumgartner et al., 2003a; Baumgartner et al., 

2003b) 
 Artificial bead – cell contacts (Levenberg et al., 1998; Lambert et al., 2000; Baumgartner et al., 2003b) 
  
Structural analysis  
 Crystallization and X-ray analysis (Shapiro et al., 1995; Pertz et al., 1999; Boggon et al., 2002; Patel et al., 

2006; Parisini et al., 2007) 
 Nuclear magnetic resonance (NMR)  (Overduin et al., 1995; Haussinger et al., 2002; Miloushev et al., 2008) 
 Electron microscopy (EM) (Tomschy et al., 1996; Hewat et al., 2007) 
 Electron tomography (ET) (He et al., 2003) 
 Cryo-electron microscopy of vitreous  
 sections (CEMOVIS) 

(Al-Amoudi et al., 2007) 

  
Biophysical techniques  
 Atomic force microscopy (AFM) (Baumgartner et al., 2000; Panorchan et al., 2006b; Shi et al., 2008) 
 Surface force apparatus (SFA) (Sivasankar et al., 1999; Zhu et al., 2003; Prakasam et al., 2006) 
 Biomembrane force probe (BFP) (Perret et al., 2004; Bayas et al., 2006; Chien et al., 2008) 
 Intermolecular force microscopy (IFM) (Tsukasaki et al., 2007) 
 Single molecule tracking (SMT) (Sako et al., 1998; Iino et al., 2001; Baumgartner et al., 2003b) 
 Fluorescence recovery after  
 photobleaching (FRAP)  

(Adams et al., 1998; Lambert et al., 2007) 

 Fluorescence resonance energy transfer  
                (FRET) 

(Zhang et al., 2009) 

 Surface plasmon resonance (SPR) (Williams et al., 2002; Katsamba et al., 2009) 
 Theoretical models (Baumgartner and Drenckhahn, 2002b; Chen et al., 2005; Katsamba et 

al., 2009) 
 Molecular dynamics simulations (Cailliez and Lavery, 2006; Sotomayor and Schulten, 2008) 
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Figure 3. Proposed cadherin interaction schemes. Full-length C-cadherin structures (PDB 1L3W) 
have been used for illustration of cadherin interaction schemes (not to scale). (A) In the first models of 
cadherin interaction, cadherins where thought to interact as monomers via amino-terminal EC1 
domains. (B) N-cadherin EC1 domain crystals revealed both cis-interactions via Trp2 strand swapping 
and trans-interactions via the opposite, HAV-containing, surface. This was called the zipper model. (C) 
In C-cadherin full-length EC domain crystals, also both cis- and trans-interactions were resolved. Trans-
interactions, however, resulted because of Trp2-mediated strand swapping and cis-interactions involved 
EC1 and EC2/3 domains of adjacent cadherins. (D) For E-cadherin, T-cadherin and strand swapping 
cadherin mutants, crystal structures identified cis-interactions involving the Ca2+-binding linker regions 
between EC1 and EC2 domains (‘X-dimer’). (E) Biophysical experiments using the surface force 
apparatus indicated the presence of cadherin interactions involving multiple EC domains, with an 
important role for the EC3 domain. (F) In cryo-electron images of VE-cadherin EC14 domain-containing 
liposomes, VE-cadherin was found to form a hexameric structure and to interact via EC1-mediated 
interactions. (G) Cryo-electron microscopy of vitreous sections (CEMOVIS) revealed structured 
interactions of desmocadherins in the native epidermis which involved both cis- and trans-interactions 
similar to B. (H) In contrast to this, irregular and multiple interaction schemes (λ, S and W) were 
modeled in electron tomographies of plastic sections from neonatal mouse skin. (I) A parallel, multiple 
EC domain-involving cadherin trans-interaction was suggested by analyzing biophysical AFM 
experiments of E-cadherin. 
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2.4.2 Cadherin interaction 
2.4.2.1 First models 
As classical and desmosomal cadherins consist of 5 similar EC domains, much energy has 

been put into identification of the EC domain structure. Finally, this domain was found to be 

related to the already resolved Ig-fold forming a so-called Greek-key topology and being 

composed of a seven-stranded β-sandwich topology with Ca2+ binding sites located in between 

adjacent EC domains (Figure 4) (Overduin et al., 1995). Three Ca2+ ions are thought to locate 

in these linker regions and thus are important for proper structural conformation. Moreover, 

divers Ca2+ binding sites can be differentiated. These are located in linking regions between 

EC12 and EC23 domains and seem to differently regulate cadherin adhesion (Ozawa et al., 

1990c; Cailliez and Lavery, 2005). Also important for structural integrity are correct 

posttranslational modifications including glycosylations (Liwosz et al., 2006) and proteolytic 

cleavage. Unprocessed cadherin EC1 domains contain a N-terminal propeptide that needs to 

be cleaved off for proper adhesion (Haussinger et al., 2004). However, the whole cadherin EC 

domain consisting of 5 cadherin EC repeats was found to behave differently compared to just a 

connection of single cadherin EC repeats. Insights into the full-length EC domain structure 

gained important supramolecular information. Importantly, bended structures have been 

observed in full-length Xenopus laevis C-cadherin crystals (Boggon et al., 2002). With the 

solving of cadherin EC structures, a plethora of structural data became available to develop 

models for cadherin-mediated adhesion. During the recent years up to six different principle 

models for cadherin interactions have been proposed (Figure 3). As already stated, the 

prevalent first model for cadherin interactions was deducted mainly form biochemical data 

before high-resolution structures were available. Homophilic trans-Interactions of 

aminoterminal EC1 domains were believed to promote cadherin-based adhesion, as EC1 

 
Figure 4. X-ray diffraction structure of full-length C-cadherin EC domains. Five different EC 

domains are visible in the backbone representation of full-length C-cadherin EC domains. β-barrel 

structural elements are denoted as arrows. In the amino-terminal EC1 domain (blue), Trp2, which is 

implicated in the interaction mechanism of strand swapping, is colored red and represented with its side 

chains. The C-cadherin structure is overall bent. Structures are based on information in protein data 

bank (PDB) file 1L3W and rendered with Pymol molecular viewer (© DeLano Scientific LLC). 
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domains of different cadherins are extremely well conserved (for example, C-, E- and N-

cadherin EC1 domain structures superimpose within 1 Å).  

 

2.4.2.2 Linear zipper model involving Trp2 swapping 
After first X-ray structures of interacting N-cadherin domains were resolved by the Shapiro 

group, the so-called zipper model was proposed (Shapiro et al., 1995). In the first crystals 

(Figure 5), two different homophilic interactions schemes were observed giving rise to cis-

interacting dimers that trans-interact with cis-dimers from an opposing cell surface in a zipper–

like structure. Also, as a fundamental principle of cadherin interaction, the twofold-symmetric 

swapping model was proposed. It states that a conserved tryptophan residue at amino acid 

position 2 (Trp2) of the cadherin EC1 domain inserts into an also conserved hydrophobic 

pocket built by residues Tyr36, Ala78, Ala80, Ile92 and ILE94 of the partnering molecule and 

vice versa. This Trp2 exchange was believed to be the most prominent feature of cadherin 

interactions. Type II classical cadherins possess two N-terminal Trp, which are also involved in 

domain swapping: as a result, the angle between dimeric EC1 domains is far more constrained 

in type II compared to type I cadherins, suggesting extra rigidity in the corresponding type II 

dimer interface. Desmosomal cadherins lack this 2nd interface providing a more flexible 

 
Figure 5. N-cadherin EC1 crystals revealed trans-interactions via Trp2-mediated strand-

swapping and cis-interactions involving interfaces near HAV regions. (A) Trp2-mediated 

strand swapping was found in structures of cis-interacting N-cadherin EC1 domains (PDB file 1NCI). 

Trp2 (red) inserts into a hydrophobic pocket built by amino acids Tyr36, Ala78, Ala80, Ile92 and Ile94 

(represented in blue on the green EC1 domain). HAV regions consisting of His79, Ala80 and Val81 are 

colored in orange on the blue EC1 domain. (B) PDB file 1NCH revealed trans-interactions via amino 

acid residues near the HAV region (orange), which has been demonstrated to be involved in cadherin 

binding. In this interaction model, Trp2 (red) is pointing away from the adhesive interface indicating that 

strand swapping is not involved in this binding interface. Images are rendered with Pymol molecular 

viewer (© DeLano Scientific LLC). 



Introduction                                                                                                                                              21 

 

structure. Interestingly, Trp2 is also believed to confer Ca2+ responsiveness of cadherins: only 

at high Ca2+ concentrations Trp2 is free to bind to the hydrophobic pocket of cadherins, but at 

low Ca2+ concentrations it is buried inside its own protomer (“closed monomeric state”) and 

thereby acting as a competitive inhibitor of cadherin interaction (Chen et al., 2005). 

Confirmation was achieved by characterizing a N-cadherin antibody that specifically binds to 

Trp2, but only when it is buried in the monomeric cadherin state at low Ca2+ conditions 

(Harrison et al., 2005a). This behavior should also explain why the overall cadherin binding 

affinities are low even though the dimer interface has the characteristics of a high-affinity 

protein-protein complex. Various mutational analyses confirmed the importance of Trp2 for 

cadherin function. Especially, the indole functional group of Trp2 seems to be important for this 

since indole-3-acetic acid, a synthetic indole moiety, competed with Trp2 in the hydrophobic 

cadherin acceptor pocket and inhibited cadherin binding (Troyanovsky, 1999).  Moreover, 

during strand swapping, establishment of a salt bridge at the N-terminus involving Glu89 was 

found to be important for cadherin interaction (Harrison et al., 2005b).  

Nevertheless another interaction scheme was discovered in the first N-cadherin crystals. 

Strand swapping was first found to be important for building cis-dimers, whereas the trans-

interaction involved other residues on the opposite interface of the same EC1 domain: these 

included the so-called HAV (histidine-alanin-valin) motif (Blaschuk et al., 1990; Noe et al., 

1999) and had an increased area of buried surface compared to the Trp2 swap-interface. 

Ala80 as the central part of the HAV sequence is buried in the hydrophobic core accepting 

Trp2 of the cis-interacting cadherin. Experiments with synthetic peptides representing HAV- or 

corresponding cell adhesion region (CAR) sequences of desmocadherins confirmed the 

importance of these amino acids (Tselepis et al., 1998; Noe et al., 1999), although this trans-

interaction mechanism was questioned in later studies. In this context, important caveats for 

the interpretation of crystal structures have to be mentioned. Importantly, recombinant proteins 

produced in bacteria have been used with the potential of improper conformations via the 

following issues: i) the presence of unprocessed cadherin propeptides, ii) additional 

aminoterminal amino acids due to cloning artifacts, iii) lack of full-length EC domains and iv) 

lack of specific glycosylation. All these modifications have been found to alter cadherin 

structure and may therefore explain discrepancies between different studies. Finally, 

crystallization may generate crystal lattice packaging artifacts. Nevertheless, the zipper model 

seen in the first N-cadherin crystals was able to explain various experimental data on cadherin 

interaction at the molecular level and therefore was widely accepted as a suitable working 

model.  

2.4.2.3 Trp2 strand swapping in trans-interactions of full length C-cadherin  
Upon crystallization of the first full-length EC domain cadherin structure by Boggon et al. 

(Figure 4), the zipper model was slightly changed (Boggon et al., 2002). In C-cadherin 

interaction schemes, both cis- and trans-interactions were identified but strand swapping 
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occurred at the trans-interacting cadherin interface. Lateral cis-interactions were observed 

between EC1 and neighboring EC23 domains. In this potential cis interface Asp44 contacts the 

Ca2+ binding site. Mutations of Asp44 in R-cadherin indeed diminish adhesiveness (Kitagawa 

et al., 2000). An intriguing confirmation of Trp2-mediated trans-interactions was provided by 

biochemical cross-linking experiments by the Troyanvosky group (Troyanovsky et al., 2003). 

Using E-cadherin mutants with artificial cysteine residues and a cystein-specific cross-linker, 

trans-dimers involving Trp2 strand swapping were found to be the predominant form of 

cadherin interactions in cell culture conditions, but also lateral dimers were present: at 

micromolar Ca2+ conditions, E-cadherin was found to produce cis-dimers via the same 

adhesive interface. However, both cis- and trans-interactions obviously were mediated by the 

same adhesive interface (Klingelhofer et al., 2002). Interaction schemes involving HAV-

regions, as proposed by the first N-cadherin crystals, were excluded in this setup.  

 

2.4.2.4 Models involving multiple domain interactions 
Experiments with the use of the surface force apparatus (SFA) by the group of Leckband 

produced a strikingly different view on cadherin trans-interaction (Sivasankar et al., 1999; 

Sivasankar et al., 2001). In the SFA, two small opposing surfaces are brought into contact 

(Leckband and Sivasankar, 2000). With the help of a leaf spring below the lower surface and 

light passing through the apparatus resulting in changing interference finges, forces (resolution 

0.1 – 1 nN) and distances (with nm resolution) can be simultaneously measured, respectively. 

When cadherins were immobilized on two opposing SFA surfaces, multiple unbinding events 

were detected during retraction, which were believed to represent unbinding of full-length and 

partial overlapping domains. The EC3 domain was identified as the most important domain for 

cadherin adhesion. Thus in contrast to other models SFA-derived models describe trans-

interactions involving more than two EC domains. These experiments could help to explain the 

observation, that an antibody targeting the membrane proximal EC domain of E-cadherin is 

able to disrupt cadherin interaction (Ozawa et al., 1990b). Also, a newer and integrating study 

on N-cadherin-mediated cellular adhesion demonstrated that the EC12 domain is the minimal 

adhesive unit that promotes proper cell-mediated adhesion, and larger constructs with EC3 to 

EC5 enhance adhesion activity (Shan et al., 2004). According to the model of the Leckband 

group, multiple domain interaction schemes fit well into in-situ intercellular membrane 

distances (Leckband and Sivasankar, 2000). In AJs of fixed and dehydrated cells, transmission 

electron microscopy (EM) revealed intercellular gaps of 20-25 nm distance (Farquhar and 

Palade, 1965). In SFA experiments, the strongest force peak is seen at 25 nm membrane 

distance, which is explained by fully interdigitated structures. The end-to-end EC1 domain-

mediated adhesion of cadherins expects an intercellular space of 40 nm width (Boggon et al., 

2002). The discrepancy could, however, be explained by more bent cadherin structures. 

Moreover, results gained with SFA have been questioned. For example the importance of the 
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EC3 domain in cadherin interaction could be explained by the fact that mutations in the Ca2+ 

binding site between EC2 and EC3 domains also affect EC1 domain conformation, which is 

known to mediate strong adhesion (Troyanovsky, 2005). In a recent study, EC1 and EC5 

domains of E-cadherin were fluorescently labeled and fluorescence resonance energy transfer 

(FRET) was measured (Zhang et al., 2009). These results, however, showed that cadherins 

interact mainly in trans via EC1 domains. 

 

2.4.2.5 Interaction via Ca2+ binding linker regions (‘X-dimer’) 
Analysis of EM images of crystals of E-cadherin by the Engel group led to the proposal of a 

cis-interaction scheme, in which cadherin domains interacted laterally via their Ca2+ binding 

domains in the linker region between EC1 and EC2 (Pertz et al., 1999). This model was called 

the ‘X-dimer’ and required the ectodomains to be bent, as seen in EM images in which E-

cadherin (EC1-5) was pentamerized via fusion to the cartilage oligomeric matrix protein 

(COMP). In electron micrographs, dimer formation via cis-interacting aminoterminal EC 

domains was resolved together with intermittent trans-interactions with other cis-dimers 

(Tomschy et al., 1996). However, the molecular sites involved in trans-interaction of opposing 

cadherins were not resolved by this method. With the help of NMR studies, Ca2+-mediated 

“activation” of E-cadherin EC12 domain monomers was demonstrated by the same group: only 

in the Ca2+-bound state, monomers became oriented with an accessible adhesive interface 

(Haussinger et al., 2002). In general, NMR spectroscopy in solution avoids the problem of 

disturbing crystal forces and is well suited for the study of weak interactions between 

macromolecules. As a drawback of these E-cadherin interaction studies, Trp2 involvement was 

not found to be of significance for both cis- and trans-interactions. As an explanation for this 

discrepancy, it was proposed that an additional false methionine located at position 1, due to 

the cloning technique used, prevented proper cadherin conformations by disturbing the salt-

bridge involving Glu89. New crystal structures of human E-cadherin that lack N-terminal 

methionine confirm the interaction schemes described by Boggon et al. with the presence of 

the Glu89 salt bridge and Trp2 swapping in trans-interactions (Parisini et al., 2007). Therefore 

the interactions schemes involving the Ca2+ binding linker regions were considered pure 

crystallization artifacts for a long time. Two recent studies, however, shed new light on this 

topic and the complexity of cadherin interaction: the Shapiro group discovered a similar X-

dimer interaction scheme in the structure of the non-classical T-cadherin (Ciatto et al., 2010). 

Mutations in the linker region of T-cadherin disrupted the adhesive activity of T-cadherin. Since 

non-classical cadherins often lack the necessary strand-swapping sequence signatures, this 

interaction scheme may also be used by other cadherins besides T-cadherin. Interestingly, 

strand-swapping mutants of type I and II classical cadherins were also found to interact via 

linker region-involving X-dimers in crystal structures (Harrison et al., 2010). These findings 

suggest that X-dimers are existing binding intermediates that facilitate the formation of strand-



Introduction                                                                                                                                              24 

 

swapped dimers, which represent the final interaction state. Interestingly, X-ray structures of 

the EC domain of cadherin 23, which lacks the strand-swapping interface including Trp2, give 

rise to speculations on a novel adhesion mechanism involving polar amino acids that bind Ca2+ 

(Elledge et al., 2010). 

 
2.4.2.6 Insights into cadherin interactions obtained with biophysical force 

spectroscopy 
With the development of highly sensitive biophysical techniques, dynamic insights into 

cadherin interactions have been gained. These techniques are able to describe molecular 

interactions of single molecules by determining binding affinities, kinetics and unbinding forces. 

This is based on theoretical calculations describing the weak non-covalent interactions that 

exist between cadherin interactions (Bell, 1978; Evans and Ritchie, 1997). These bonds will 

 
Figure 6. Investigating single molecule binding by atomic force microscopy (AFM) force 

spectroscopy. Cadherin fusion proteins were covalently coupled to the AFM tip and mica plates via 

flexible and bifunctional PEG-crosslinker and monitored by force-distance cycles (A). Molecules were 

brought into contact by repeated downward (approach) and upward movements (retrace) of the AFM tip 

(B). During upward movement, a downward deflection of the cantilever occurred if plate- and tip- bound 

cadherin molecules underwent transinteractions (C). After reaching the critical unbinding force, the bond 

broke and the cantilever jumped back to the neutral position. In a sample force-distance plot, several 

unbinding events of cadherin molecules are shown (D). By analyzing these curves, binding probability 

and activities as well as unbinding forces and lengths were determined. 
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break under any level of external pulling force if held for sufficient time. Thus, when tested with 

sensitive biophysical techniques, the adhesion strength (i.e. unbinding force) has time- and 

loading rate-dependent properties.  

AFM provides a tool to investigate surfaces at the nanoscale, working similar to a record player 

with a small tip scanning the surface (Figure 6). In AFM force spectroscopy, this technique is 

used to measure forces between molecules attached to the AFM setup. For example, 

recombinant cadherin molecules are attached to the tip of the AFM probe and also a suitable 

substrate, such as mica plates. This coupling is achieved by sophisticated chemical coupling. 

Coupling of molecules via flexible polyethylene glycol (PEG) linkers (Ebner et al., 2007) allows 

the molecules to freely diffuse within the radius of the length of the linker and to undergo 

unimpaired encounter reactions. During AFM force spectroscopy measurements, the cadherin-

coated tip is brought into contact with the cadherin-coated plate by cyclic upward and 

downward movements. So-called force-distance cycles are consequently recorded. If during 

the contact phase the cadherin molecules attached to the tip and plate bind to each other, 

deflection of the AFM cantilever will occur during the following retrace movement until the bond 

undergoes disruption. Specific single unbinding (disruption) events are then characterized by 

abrupt jumps of the cantilever toward the neutral position. The shape of the cantilever 

deflection during retrace allows distinguishing between specific and unspecific interactions, 

because the flexible PEG linkers undergo characteristic elongation curves during extension. By 

definition, the unbinding force is the force producing the most frequent failure of bonds in 

repeated tests of breakage, i.e., the rupture force distribution peak. Consequently, for analysis 

of AFM experiments (see Figure 6) several theoretical considerations have been made to use 

experimental AFM data for determination of molecular binding characteristics. As stated 

above, unbinding forces (f) depend on the loading rate (r). The loading rate is composed of the 

velocity of unbinding ruptures v (derived from the time - dependent change in displacement 

(ds/dt) and the effective spring constant k of the AFM probe, which also includes the elasticity 

of the linker which is placed in between tip and bound protein (equation 3).  

 

(equation 3) 

 

By stepwise increasing loading rates, unbinding forces increase in a logarithmic way. This 

dependence is due to changing lifetimes τ (= 1 / koff) of the adhesion complexes that depend 

on both intrinsic bond kinetics at zero force (k0) and response of bond kinetics to external 

forces f (equation 4). χβ is the reactive compliance and describes the distance between the 

maximum of the barrier potential and the minimum of the meta stable state.  

 

(equation 4) 
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The lifetime of bonds at zero force (τ0 = 1 / k0
off) can be estimated by extrapolation of the force-

dependent lifetime of the bonds to zero force, according to Bell's equation and estimation of 

koff(f) from the probability of the survival of a given bond and the width of the force distribution 

via the following equation 5 (Bell, 1978; Evans and Ritchie, 1997) (T = temperature, kB = 

Boltzmann constant, f* = most likely force, i.e. peak of force distribution). 

 

 (equation 5) 

 

 

AFM single molecule force spectroscopy and similar single molecule techniques therefore 

provide an optimal framework for analyzing cadherin interactions.  

In a pioneering approach to characterize cadherin interaction by AFM, short VE-cadherin 

lifetimes, low unbinding forces and a strong cooperative Ca2+ dependency of cadherin 

interactions were determined (Baumgartner et al., 2000). Moreover, multiple unbinding forces 

at a given loading rate were observed, which were attributed to different and multimeric 

interactions similar to the zipper model but contrary to models involving multiple overlapping 

EC domains. Similar observations were made for other cadherins, including desmocadherins, 

E-cadherin, LI-cadherin, N-cadherin or cadherin-11 (Baumgartner et al., 2003a; Waschke et 

al., 2007; Wendeler et al., 2007; Heupel et al., 2008). 

Recent AFM-based cadherin experiments interpreted multiple unbinding forces during 

cadherin interaction in another way: Perret et al. found multiple bonds in E-cadherin 

interactions by applying a special jump/ramp method (Perret et al., 2004). This led to the 

identification of several distinct bonds involved in cadherin unbinding that were normally 

hidden states in Gaussian distributions of unbinding forces. In detail, special jump/ramp modes 

of force spectroscopy were used to better resolve distributions of unbinding forces, which were 

fitted to two regression curves yielding two different k0
off.  Similar states were observed in 

another study with N-, C- and E-cadherin (Shi et al., 2008). Moreover, two different force peaks 

were resolved during cadherin unbinding: a low force peak (which had been identified in prior 

studies) and a high force peak. By using these high force peaks in equation 4/5 additionally 

very long lifetimes of cadherin interaction were identified. Interestingly, long lifetime cadherin 

interactions were also observed in biochemical studies (Troyanovsky et al., 2007). In another 

study, full-length cadherins were found to involve two additional longer-lived bonds in cadherin 

interactions (Bayas et al., 2006). Biphasic unbinding via fast, low probability and slow, high 

probability binding states were found to be independent of IC domains, but strongly dependent 

on EC3 domain. It was argued that the fast process required EC1 domain interactions 

involving Trp2, whereas the other state required at least EC3 or more domains (Chien et al., 

2008). 
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Other biophysical techniques also provided important information about cadherin interactions. 

In single molecule FRET experiments, cadherins were found to interact via EC1 domains, but 

no cis dimerizations were detected. It was concluded that lateral aggregation of cadherins for 

example via fusion to Ig-Fc domains to generate stable dimers, only cooperatively increased 

probability of cadherin interactions but failed to increase unbinding forces per se (Zhang et al., 

2009). Interestingly, cadherin interactions were found to have a memory (Zarnitsyna et al., 

2007): Cadherin interactions were negatively “remembered” and consequently led to 

decreased binding probability after the initial interaction. AFM and FRET experiments have 

given strong insights for a induced-fit mode of cadherin interaction (Sivasankar et al., 2009). 

Cadherin mutants lacking Trp2 were found to directly interact via EC1 domains with other 

cadherins, but only with 25% of the force of wild type (wt) cadherin interactions. Together with 

results which concluded that Trp2 is normally hidden inside its own β-barrel in monomeric 

states but extending from it in the hydrophobic pocket of another cadherin after dimerization, 

this points to the induced-fit model, where multiple interaction schemes lead to an initial 

complex that in turn is strengthened via strand-swapping.  

A biophysical study by Tsukasaki et al. provided interesting explanations for different unbinding 

states of cadherin interactions (Tsukasaki et al., 2007). Cadherins were found to act 

cooperatively as a parallel-like multiply-bonded system, consistent with the “fork initiation and 

zipper” hypothesis. 4 different binding states between paired cadherins were identified to 

mediate slow stabilization in cell-cell zippering processes. The multiple tandem-aligned 

domains of cadherins then cooperatively act as a macro-single bond to strengthen adhesion. 

The EC domains of cadherin pairs were thought to bind in parallel fashion even though the 

overall orientation of the two cadherins is antiparallel, explaining different outcomes of 

cadherin crystals. 

 

Nevertheless, although single molecule experiments provided important insights into cadherin 

interaction, several caveats for these experiments have been mentioned. These include the 

use of recombinant proteins, in particular when recombinant cadherins from different species 

are used in the same study. Another critical aspect refers to the analysis of unbinding force 

distributions in AFM data, because some hidden states are unable to be detected and require 

special experimental procedures. Data interpretation may become speculative if the 

discrimination between different EC domain interactions, cooperative cadherin clustering or 

different energy barriers is not taken into account. Fast cycling rates in AFM force 

spectroscopy could bias the measurements of cadherin bonds towards weaker bonds with 

faster kinetics, because stronger bonds involving slow kinetics are unable to form within the 

cycle (Shi et al., 2008). Partial unfolding events of cadherin domains could contaminate 

unbinding force distributions (Sotomayor and Schulten, 2008). AFM experiments are 

sometimes accompanied by chemical problems because of undirected and inflexible cadherin 
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coupling when not using PEG linkers. Importantly, in AFM experiments artificially enforcing and 

detaching cadherin interactions could bias cadherin adhesion. 

 

2.4.2.7 VE-cadherin hexamer structures 
For VE-cadherin, a type II classical cadherin found in endothelial cells (see section 2.6.1.2), a 

hexameric interaction scheme has been discussed (Bibert et al., 2002; Hewat et al., 2007). In 

cryo-electron microscopic images, in-vitro assemblies of VE-cadherins EC1-5 proteins into lipid 

bilayers resulted in the formation of hexamers, consisting of a trimer of dimers with each 

aminoterminal EC1 domain producing an antiparallel contact. This should explain why i) in X-

ray and electron microcopy EC1 domain are central for adhesion and ii) why SFA 

measurements or AFM measurements of VE-cadherin resulted in multiple unbinding events, 

because in the hexameric structure all three bonds should break one each other, with partial 

unwinding after each breaking event. However, proof of hexameric structures in EC1-5 domain 

proteins is lacking and recently, in electron microscopic studies using COMP-mediated 

immobilization, VE-cadherin interactions followed a mechanism similar to classical E-cadherin 

(Ahrens et al., 2003). 

 

2.4.2.8 Interaction and ultrastructure of desmosomal cadherins 
Cell adhesion recognition (CAR) sites were early reported to be important for desmocadherin-

mediated adhesion (Runswick et al., 2001). These amino acids are part of the hydrophobic 

pocket involved in classical cadherin strand dimer formation and are similar to the HAV-

sequence of classical type I cadherins. In recent years, application of sophisticated electron 

microscopic techniques have led to new insights into desmosome structure and bulk 

desmocadherin interactions. He et al. resolved desmocadherin interactions by fitting C-

cadherin crystals into electron densities obtained from electron tomographic reconstructions of 

sections from freeze-substituted and plastic-embedded samples from neonatal mouse skin (He 

et al., 2003). Electron tomography is a technique for obtaining 3D images from structures in 

sections analyzed by transmission EM. Data collection for electron tomography involves 

collecting images while tilting the specimen around a single axis. Interacting desmocadherins 

recurred at three shapes of interactions (named W-, l- and S-shapes) and both Trp2 swapping 

like and independent trans-interactions as well as cis-interactions were observed. This seams 

feasible because Trp2-mediated swapping as seen in C-cadherin crystals is most likely to 

apply also for desmocadherins as deduced from structural analyses, although desmocadherin 

structures are missing (Posy et al., 2008). The overall ultrastructure of the intercellular space 

of desmosomes appeared flexible but rather unstructured with loosely appearing 

desmocadherins between opposing cells. In clear contrast to this study, highly structured 

assemblies of desmocadherins were found with cryo-electron microscopy of vitreous sections 

(CEMOVIS) and 3D reconstructions (Al-Amoudi et al., 2007; Al-Amoudi and Frangakis, 2008). 
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This technique allows the observation of biological specimen in their native and hydrated state 

because of the absence of staining reagents or dehydration steps. In CEMOVIS images, very 

structured EC1 domain-mediated interactions were seen, potentially involving Trp2 swapping. 

Also trans W-like interactions and V-like structures between molecules emanating from the 

same cell membrane were discernible which may represent cis-interactions. The atomic 

modeling of these interactions was based on first cadherin structures resolved by the Shapiro 

group (see above). These highly ordered desmocadherin structures seen in CEMOVIS are 

similar to early electron microscopic images (Rayns et al., 1969). When comparing 

desmosomal structures of He et al. (2003) and Al-Amoudi et al. (2007), the latter probably 

represent the native situation because of better structural preservation. However, these studies 

may also represent different stages of desmosome assembly, with the structured assemblies 

representing mature desmosomes. An interesting fact which adds to this is the observation by 

the Garrod group that desmocadherins may interact in a Ca2+-independent, so-called hyper-

adhesive state (Garrod et al., 2005). Ca2+ irresponsiveness is explained by retention of 

cadherin-bound Ca2+ via cis-interactions of single molecules and appearance of an intercellular 

midline. It is believed to involve intracellular signaling with PKCα, acting specifically on 

desmosomes but not on AJs. Structures by Al-Amoudi et al. (2007) may represent such hyper-

adhesive desmosomes. Interestingly, highly ordered AJ ultrastructures have not been 

observed, yet (Miyaguchi, 2000). 

 
2.4.3 Determining cadherin specificity: homophilic vs. heterophilic 

interactions 
Together with the quest for elucidating cadherin interactions, scientists have always aimed to 

explain the mechanism of cadherin specificity, i. e. the proper sorting of one cell expressing a 

certain cadherin from other cells expressing different cadherins. In early studies, mainly 

homophilic cadherin interactions were observed and consequently were thought to be the 

reason for specificity of tissue separation (Takeichi, 1988).  

Newer studies, however, also indicated heterophilic interactions, especially of cadherins of the 

same family. Identification of a peptide antagonist blocking E- and N-cadherin interaction, both 

classical type I cadherins, for example demonstrated the homology in binding sequences for 

classical type I cadherins (Devemy and Blaschuk, 2009). Moreover, recent studies identified 

cadherin interactions to be quite promiscuous, especially on cell-free single molecule levels. 

Surface plasmon resonance studies with N- and E-cadherin found heterophilic interactions 

which were intermediate in strength as compared to both homophilic interactions and, in a 

theoretical model, this could explain partly intermixed cell aggregation behaviors of these 

cadherins (Katsamba et al., 2009). But also contradicting results with identical cell-free 

interactions were found that were unable to describe cell sorting of these cadherins (Shi et al., 

2008), and the question remained how molecular specificity is achieved instead. 
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Structural insights into type II classical cadherins demonstrated that these differ from type I 

classical cadherins in their EC1 domain interaction, mainly because of the presence of an 

additional Trp, which is not compatible with EC1 domain swappings seen in type I cadherins 

(Patel et al., 2006; Miloushev et al., 2008). Nevertheless, both Trps are essential for type II 

interactions (May et al., 2005). In type II interactions, an extended burried surface (2fold 

compared to type I) was found in EC1 domain interactions. Moreover, type I classical HAV 

sequence is altered to QAI in type II cadherins, but obviously not involved in adhesive binding 

(Shimoyama et al., 1999). All these data suggest that heterophilic interactions between 

different type I and II classical cadherin subgroups are unlikely on the single molecule level. 

Interesting experimental data of domain-swapped cadherin constructs demonstrated that EC1 

domains directly confer homophilic interactions (Patel et al., 2006), although contradicting 

results have also been presented (Niessen and Gumbiner, 2002; Shi et al., 2008). As a result 

of EC1 domain homologies, in bead and cell aggregation assays, very promiscuous 

interactions of different types of cadherins were reported (Niessen and Gumbiner, 2002). 

However, it was also concluded that cadherin function was strongly dependent on the 

experimental conditions used (e.g shaking at low or high rpm, time scale of mixing or cadherin 

expression levels) indicating kinetic differences underlying cadherin adhesion. 

In another study, full-length cadherins were found to involve two additional longer-lived bonds 

in cadherin interactions (Bayas et al., 2006). Low force peaks were attributed to fast 

interactions via EC1-2 domains, strong interaction with long life times via EC1-5 domains, and 

again pointing to an important role for the EC3 domain. Also, low force peaks were found to be 

similar for different cadherins, whereas strong force peaks were specific for different cadherins. 

Newer SFA experiments and bead aggregation assays confirmed these findings (Prakasam et 

al., 2006). In cellular conditions this could lead to establishment of specific cadherin 

interactions (Panorchan et al., 2006b). Simulations of molecular dynamics looking at buried 

surfaces of cadherin interactions but not at energy contribution also identified a swapped and a 

staggered dimer interface, the later being weaker but sequence-dependent, whereas the 

swapped interfaces were nearly sequence-independent (Cailliez and Lavery, 2006). 

 

Theoretical investigations on the impact of homophilic and heterophilic interactions on cadherin 

specificity nicely demonstrated that proper cadherin-mediated cell sorting is only possible 

when cadherins display low affinities (Baumgartner and Drenckhahn, 2002b; Chen et al., 

2005). Binding free-energy differences associated with homophilic and heterophilic complexes 

are quite small resulting in proper and cooperative cell sorting. If interactions were of high 

affinity, both homo- and heterophilic interactions would lead to strong interactions and 

consequently no differences between homo- and heterophilic were observable. In this 

situation, all cadherins would participate in the dimeric interactions and all cells would 
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immediately stick to each other, leaving no space for cellular specificity. In an analogy, cells 

expressing different cadherins may act like an intermixing solution of water and oil (Steinberg, 

2007). 

Another important factor for cadherin specificity is spatially and temporally controlled 

expression. Cadherin interaction strongly depends on expression levels of cadherins and can 

lead to binding differences even when expression is changed by 25%. If cadherin 

concentrations are artificially increased (such as in over-transfection studies) binding specificity 

is lost because of the occurrence of artificial heterophilic interactions at these expression 

levels. In physiological cellular situations, local cadherin concentrations in the cellular junction 

are lower than the KD of the cadherin interaction and consequently multiple cadherins remain 

as (competitive) monomers. Nevertheless, besides of these structural aspects several other 

physiological regulators of cadherin function exist. 

 

2.5 Physiological regulation of cadherin function 

Cadherin interaction and consequently cadherin function on cells can be regulated via two 

physiological approaches. The first one targets the EC domain, whereas the second indirectly 

alters cadherin function by addressing the IC side. 

 

2.5.1 Outside – in signaling 
Inhibiting cadherin interaction effectively blocks cadherin function. Several mechanisms exist 

to prevent cadherins from forming molecular trans-interactions. These include Ca2+ chelation, 

as Ca2+ is needed for proper structural conformation. VE-cadherin interaction has been found 

to strongly depend on a threshold Ca2+ concentration (KD = 1.3 mM). For E-cadherin, several 

Ca2+-dependent activation steps have been reported: at micromolar concentrations, monomers 

established correct conformations, whereas cis-interactions only formed in the presence of 

milimolar Ca2+ concentrations (Koch et al., 1999). In another study, Ca2+ has been found to be 

important for adhesive trans- but not for lateral cis-interactions (Chitaev and Troyanovsky, 

1998). Spatial lowering of the extracellular Ca2+ concentration therefore is an effective 

mechanism for regulating cadherins, which has been reported for VE-cadherin during 

inflammation or neural cadherins during synaptic plasticity for example (Baumgartner et al., 

2003a; Baumgartner et al., 2003b).  

Cleavage of cadherin EC domains by proteases is another mechanism to inhibit its functions. 

Subtilisin-like proteases, which are important for cleaving prosequences from immature 

cadherins (Posthaus et al., 2003), γ-secretase (Marambaud et al., 2002), or metalloproteases 

(Klessner et al., 2009) serve as examples . 

For several cadherins, heterotypic interactions were found. Crosstalks with growth factor 

receptors have been identified for N-, E-, and VE-cadherin. The latter was also found to 
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interact via EC domains with a special phosphatase, altering intracellular cadherin function 

(Nawroth et al., 2002). Trans-interacting E-cadherin molecules may recruit epidermal growth 

factor receptor (EGFR) resulting in phosphatidylinositol-3-kinase and Akt activation, which is 

thought to finally result in cell contact-mediated inhibition of cell proliferation (Muller et al., 

2008). This mechanism is believed to be part of the so-called "contact inhibition". E-cadherin 

has been found to serve as a receptor for natural killer cell receptor KLRG1 (Li et al., 2009). 

VE-cadherin has further been shown to interact via their EC domain with fibrinogen (Gorlatov 

and Medved, 2002). 

Surprisingly, extracellular phosphorylation of cadherin domains was reported for drosophila Fat 

cadherin (Ishikawa et al., 2008). Finally, cadherin interaction itself alters cadherin function and 

may induce “outside-in signaling”. Much information regarding signaling has been concluded 

from integrins where both inside-out and outside-in signaling is well established. For cadherins 

extracellular signals can be transduced into the cytoplasm especially via anchorage of 

cytoplasmatic plaque proteins of the catenin family, since these have been found to exhibit 

various signaling functions (see section 2.5.2). 

 
2.5.2 Inside – out signaling 
Because of the overall low affinity of cadherins, intracellular lateral clustering of cadherins via 

cytoskeletal anchorage has been assumed to promote strong adhesion (Yap et al., 1997). 

Important functions have been attributed to adapter proteins of the catenin family (Gooding et 

al., 2004). Theoretical calculations confirmed this hypothesis and predict that numbers of 

trans-interacting molecules depend on the degree of damping of their lateral mobility by 

cytoskeletal tethering (Baumgartner and Drenckhahn, 2002b). Some calculations predicted 

that the actin cytoskeleton is needed for adherent cells to form AJs (Dallon et al., 2009). 

Special residues in IC cadherin domains have been identified to be important for cadherin 

interaction. Loss of membrane-proximal IC domains was found to prevent dimerization and 

weaken adhesion, but this is only partly explained by prevention of p120ctn-mediated clustering 

(Ozawa and Kemler, 1998; Ozawa, 2003). 

However, even some full-length cadherins lack this typical cytoskeletal anchorage: the LI-

cadherin IC domain is very short and does not bind catenins (Kreft et al., 1997) and T-cadherin 

is anchored to membranes via a glycosylphosphatidylinositol link only (Vestal and Ranscht, 

1992). Most cadherin constructs lacking IC domains promote basal adhesion, but this 

adhesion cannot be increased as observed for full-length cadherins (Yap et al., 1998; Shan et 

al., 2004; Chien et al., 2008). In AFM force spectroscopy experiments with recombinant 

cadherins on living cells, highly increased unbinding forces were observed which were 

dependent on the intracellular anchorage to actin or catenins and in contrast to cell-free 

experiments (Panorchan et al., 2006a; Bajpai et al., 2008; Pittet et al., 2008).  
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On the other hand, cytoskeletal modulation by actin- or cytokeratin-disrupting agents was 

found to dramatically reduce AJ- or desmosome-mediated adhesion (Kouklis et al., 1994; 

Baumgartner et al., 2003b). Increase in intracellular Ca2+ has been found to lead to loss of 

cadherin-mediated adhesion by depolymerizing actin filaments via activation of the Ca2+-

dependent protein gelsolin (Yin and Stossel, 1979). Alternatively, PKCα is activated at high 

Ca2+ conditions leading to cadherin-mediated cell dissociation (Tiruppathi et al., 2002). In 

endothelial cells, the calmodulin-dependent myosin light chain kinase (MLCK) induces a Ca2+-

dependent MLC phosphorylation which leads to cell contraction and loss of AJ-mediated 

adhesion (Dudek and Garcia, 2001). However, this cytoskeletal anchorage has to be able to 

dynamically react to different situations (Baumgartner et al., 2003b). Moreover, two actin 

populations have been found to be important for Drosophila E-cadherin: small, stable actin 

patches for homophilic clusters, in contrast to a rapidly turning contractile actin network 

governing lateral cadherin clustering (Cavey et al., 2008). 

Members of the catenin family act as both structural plaque proteins and dynamical 

communicators for signaling functions (Hubner et al., 2001). For several members of this 

family important functions, including regulation of proliferation, gene expression, signaling 

networks and cross talk to other adhesion contacts were demonstrated. Especially AJ-specific 

β-catenin and plakoglobin are best characterized in this context (Zhurinsky et al., 2000). 

Catenin phosphorylation directly alters cadherin adhesion (Lickert et al., 2000). It is still unclear 

whether this occurs via structural changes of the EC domain or solely via cytoskeletal 

decoupling. The role of α-catenin in stabilizing cadherin-based adhesion has been strongly 

revised in recent years: in contrast to previous opinions, α-catenin does not bind to β-catenin 

and F-actin at the same time. Instead, α-catenin binds to actin as homodimers, and has more 

affinity to β-catenin in a monomeric than a dimeric form (Nelson, 2008). α-catenin was found to 

rather stabilize junctions by blocking Arp2/3-mediated dynamic actin remodeling. Small 

GTPases of the family of Ras homology proteins like RhoA, Rac1 and Cdc42 are also known 

to directly alter cadherin function by modifying cytoskeletal anchorage, cadherin trafficking and 

recycling (Fukata et al., 1999; Wojciak-Stothard and Ridley, 2002). However, catenins like 

p120ctn also directly regulate RhoA and Rac1. As an example of a cadherin-associated kinase, 

c-Src has been demonstrated to be important in the regulation of cadherin function by 

interfering with catenin function via their phosphorylation (Wallez et al., 2007).  

 
2.5.3 Cadherin regulation by expression levels and endocytosis 
As already pointed out when discussing cadherin specificity, expression levels of cadherins are 

essential for the proper regulation of adhesion. Many zinc finger transcription factors control 

cadherin expression, for example Slug or Snail, which are considered as repressors of E-

cadherin transcription (Cano et al., 2000). Also, microRNAs specific for endogenous cadherin 

mRNAs have been found, most of them with repressing, but some also with activating function 
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(Gregory et al., 2008). Interestingly, the catenin-binding region of cadherin consists a “PEST” 

motif that targets molecules to proteosomal degradation. This domain, however, is normally 

hidden because of the posttranslational association of cadherins with β-catenin in the 

endoplasmatic reticulum (Hinck et al., 1994; Chen et al., 1999). Beside these aspects, 

convincing studies provided evidence that levels of adhesion-accessible cadherins are strongly 

regulated by their dynamic turnover (Troyanovsky et al., 2006). Endocytosis was found to be a 

strong inducer of loss of cell adhesion. For example, by blocking endocytosis, E-cadherin-

mediated interactions were rendered resistant against various adhesion-disturbing signals, 

including Ca2+ chelation. Biochemical studies found long lasting cadherin dimers to increase 

after inhibition of endocytosis. Various modes of endocytosis, including clathrin-, caveolin- or 

ubiquitin-mediated pathways, have been found to be involved (Fujita et al., 2002; Yap et al., 

2007; Delva and Kowalczyk, 2009). A recent study using different E-cadherin mutants which 

were tracked by a photoconvertible GFP-variant reported a half-residence time for single 

cadherins in AJ of 2 min and proposed an alternate ATP-dependent but endocytosis-

independent release of cadherins from the cell membranes (Hong et al.). An interesting 

hypothesis states, that cadherin endocytosis is actually necessary for proper cadherin function 

(Troyanovsky et al., 2007): E-cadherin dimers were not found to form spontaneously, but were 

induced after lowering pH levels. This is explained by decreasing activation energies needed 

for dimer formation. Low pH levels in late endosomes for example could do a similar job. After 

recycling of endocytosed cadherin dimers to the cell surface, effective cadherin adhesion is 

possible. This theory, however, could not be experimentally verified yet. 

 

2.6 Cadherins in pathological processes 

Surface expression, junctional recruitment, binding activity, cytoskeletal linkage and other 

properties of cadherins are regulated at different levels in cells (Stepniak et al., 2009). Several 

mutations in genes coding for cadherins have been associated with hereditary human 

diseases (El-Amraoui and Petit, 2009). Also, many pathological conditions directly alter and 

affect cadherins (Berx and van Roy, 2009; El-Amraoui and Petit, 2009). This work focused on 

pathological conditions affecting VE-cadherin and desmocadherin function, which represent 

essential components of epidermal and endothelial barriers. For these cadherins, additional 

introductory information is provided below (section 2.6.1) and in the introductions of the 

manuscripts in section 3. But there are also several other examples of cadherins in 

pathological processes. For example, cadherin modifications are the basis of many malignant 

cancers. Often, loss of E-cadherin function leads to the migratory and invasive phenotype of 

the so-called epithelial-mesenchymal transition (EMT), finally leading to metastases (Van Aken 

et al., 2001; Jeanes et al., 2008). In some cases, however, cadherin overexpression promotes 

tumor invasiveness, and consequently are markers thereof (Hazan et al., 2004). Several 



Introduction                                                                                                                                              35 

 

recent studies outlined the role of neural cadherins, namely protocadherins, in the 

development of psychiatric disorders (Lachman et al., 2008). In some of the patients with 

mental disorders, M-cadherin mutations affecting cadherin adhesion were found (Bhalla et al., 

2008). Several deafness disorders like cases of autosomal recessive Usher syndrome are 

linked to mutations of cadherins. This can be explained by the fact that cadherin 23 and 

protocadherin 15 have been found to interact to form tip-links between stereocilia of sensory 

hair cells (Roux et al., 2006; Kazmierczak et al., 2007; Schwander et al., 2009). In patients with 

hypotrichosis, i.e. loss of hair growth, and juvenile macula dystrophy of the eye mutations in P-

cadherin were reported (Indelman et al., 2002) and in arrhythmogenic right ventricular 

dysplasia (ARVD), mutations in desmocadherins, mainly Dsg2, inhibit its proper function and 

lead to cardiomyopathy (Awad et al., 2006; Lai-Cheong et al., 2007).  

 

2.6.1 Cadherins are pathologically targeted at physiological borders 
Epithelial cells line the surfaces and cavities throughout the body and are essential for the 

inside and outside directed body compartmentalization. This work focused on pathological 

conditions of the epidermal and endothelial barrier, involving desmocadherins and VE-cadherin 

or blistering skin disease pemphigus and vascular inflammation, respectively (Figure 7). 

 
2.6.1.1 Pemphigus family of blistering skin diseases 
Pemphigus is a severe and potentially life-threatening autoimmune blistering skin disease 

associated with autoantibodies directed to specific keratinocyte surface antigens (Figure 8) 

(Stanley and Amagai, 2006; Waschke, 2008). Main characteristic of Pemphigus is the 

appearance of skin blisters. The term pemphigus is derived from the Greek word “pemphix” 

meaning blister. Microscopically, blisters develop intraepidermally, in contrast to diseases of 

 
Figure 7. Target cadherins. In this work, target cadherins and the corresponding pathological 

conditions included desmocadherins in blistering skin disease pemphigus and VE-cadherin in 

endothelial barrier dysfunction. 
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the pemphigoid group, which are characterized by sub-epidermal erosions and blisters. There 

are two main types of pemphigus: pemphigus vulgaris (PV) and pemphigus foliaceus (PF), 

which differ in the histological localization of blisters: in PV, blisters appear in suprabasal 

layers of the epidermis and spread from a mucosal infestation (mainly orally) to whole skin 

involvement. In PF, blisters histologically develop in more superficial layers and involve 

epidermal skin only. Moreover, drug-induced or tumor-associated (paraneoplastic) forms of 

pemphigus and an endemic variant of PF (fogo selvagem (Culton et al., 2008)) have been 

reported. Pemphigus blisters often disrupt upon mechanical stress, which may lead to 

erythemateos blisters and aggravating super-infections. The pemphigus family of blistering 

skin diseases is not limited to humans and variants of this disease have been shown to occur 

in dogs, cats and horses. In humans, the incidence of pemphigus is about 0.75 – 5 cases per 

million, peaking around the 4th to 6th life decade with PV being the predominant form.  

Clinical diagnoses mainly rely on the clinical and histological appearance. However, to exclude 

clinical similar phenotypes like Hailey-Hailey’s disease or Impetigo bullosa, autoantibody 

profiling is essential for a precise diagnosis. Pemphigus autoantibodies normally belong to the 

IgG4 subclass (Futei et al., 2001) and are targeted against desmocadherins. PF is usually 

characterized by an autoantibody profile including IgG directed against Dsg1 but not Dsg3. 

Autoantibodies against Dsg3, but not to Dsg1, are present in patients with mucosal dominant 

PV. In PV patients afflicted with both mucous membrane and skin blisters, IgG to both Dsg3 

and Dsg1 are mostly detected. 

 
Figure 8. Autoimmune blistering skin disease pemphigus. (A) Pemphigus patients often present 

with mucous and epidermal skin blisters that, upon rupturing, lead to aggravating super-infections. (B) 

Histologically, typical epidermal cleavage planes are identified, such as suprabasal splitting in the 

pemphigus variant pemphigus vulgaris. (C) Antigenic targets of this autoimmune disease are 

keratinocyte surface antigens, and especially desmocadherins desmoglein 1 and 3. (© A: Masayuki 

Amagai, Keio University, Tokyo, B: Jens Waschke, University of Würzburg). 
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Several decades ago, pemphigus was a life-threatening disease. With the discovery and 

application of immunomodulatory drugs the situation of pemphigus patients improved. Often, 

patients are treated with high doses of glucocorticoides or cytostatica drugs to suppress 

inflammation and immune reactions. Additional treatments include plasmapheresis or injection 

of high doses of IgG (Jessop and Khumalo, 2008). Recently, monoclonal CD20 antibody 

rituximab was used to deplete B-cells in otherwise refractory patients. This might turn out to 

become an effective though expensive therapy (Joly et al., 2007). Nevertheless, pemphigus 

patients still suffer from high morbidity and social impairments. Specific treatments aimed to 

the main causes of pemphigus disease are missing. Therefore, specific treatments of the main 

causes of the disease still need to be developed. 

 

2.6.1.1.1 Induction of pemphigus by pathogenic Dsg autoantibodies 
1964, Beutner et al. identified antibodies in pemphigus erosions (Beutner and Jordon, 1964). 

Some years later, the pathogenicity of these autoantibodies was clearly demonstrated by 

passively transferring purified IgG fractions of pemphigus patients into neonatal mouse skin 

(Anhalt et al., 1982). The mice developed skin blisters with identical histology as seen in PV or 

PF. In the following years, autoantibodies were characterized to bind to a 160 kDa antigen in 

PF and a 130 kDa antigen in PV, which were later identified as Dsg1 and Dsg3, respectively 

(Stanley et al., 1986; Amagai et al., 1991). In later follow-up studies, experimental Dsg1 and 

Dsg3 antibodies were shown to provoke blister formation in mice and blister formation was 

prevented by antigen absorption of these antibodies (Amagai et al., 1994). In recent years, the 

group of Amagai provided convincing evidence for pathogenicity of autoantibodies in an active 

disease model of mice (Amagai et al., 2000b). After injecting recombinant Dsg3 into Dsg3 

knockout mice, the animals developed anti-Dsg3 antibodies. Then, B-cells of these mice were 

isolated and adoptively transferred into immunodeficient but Dsg3-expressing mice. These 

again produced anti-Dsg3 antibodies, which potently induced pemphigus phenotypes. In 

contrast to a plethora of studies in which pathogenicity of Dsg autoantibodies was clearly 

demonstrated there is, however, evidence supporting the hypothesis that in pemphigus 

patients autoantibodies may occur that are directed to other targets including cholinergic 

receptors (Nguyen et al., 2000a), pemphaxin (Nguyen et al., 2000b) or E-cadherin 

(Evangelista et al., 2006; Evangelista et al., 2008). These autoantibodies might also contribute 

to skin blistering. In addition, pathogenic non-autoantibody factors in pemphigus patients’ sera 

such as Fas ligand are discussed (Puviani et al., 2003). Whether these different autoantibodies 

or factors are pathogenic or just represent an epiphenomenon secondary to acantholysis is a 

matter of debate (Nguyen et al., 2000c; Amagai et al., 2006). Genetic variants important for 

pemphigus pathogenesis have been reported for HLA subtypes (Tron et al., 2005) but not for 

mutations in Dsg molecules (Capon et al., 2009). 
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2.6.1.1.2 Steric hindrance and desmoglein compensation theory 
The correlation between clinical phenotypes and the Dsg autoantibody profiles is widely 

accepted. However, there are also cases where the antibody profile against Dsg1 and 3 in PV 

does not strictly correlate with clinical phenotypes. Because Dsg3 was found to be the target 

antigen of PV autoantibodies and to be a cadherin-type adhesion molecule, it was suggestive 

to believe that Dsg3 antibodies could directly interfere with Dsg3 trans-interaction (Figure 9A). 

In PV and PF, Dsg autoantibodies are also primarily directed against desmocadherin EC1 

domains (Amagai et al., 1992; Sekiguchi et al., 2001; Yokouchi et al., 2009), which are known 

to be essential for cadherin interaction (as discussed above). Also, it has been reported that 

AK 23, a monoclonal antibody generated in the active pemphigus mouse model and binding to 

the aminoterminal EC1 domain, is pathogenic (Tsunoda et al., 2003). In contrast, antibodies 

against the middle portion or the juxtamembrane part of the Dsg3 EC domain had no 

pathogenic effect. These data supported the view that pathogenic PV-IgG could interrupt Dsg3 

trans-interaction. Together with this concept of steric hindrance, the desmoglein compensation 

theory was proposed trying to explain clinical and histological phenotypes of certain 

pemphigus subtypes. It states that Dsg1 and Dsg3 can functionally compensate each other in 

epidermal adhesion. In the non cornified multilayered epithelium of mucosal layers, Dsg3 is the 

predominant form whereas Dsg1 is only poorly expressed. Therefore Dsg3 autoantibodies are 

often found associated with oral blisters. Since Dsg3 is mainly expressed in basal layers of 

 
Figure 9. Models explaining pemphigus pathogenesis. Currently, there are two opposing 

models explaining pemphigus pathogenesis: On the one hand, it was proposed that antibody-induced 

direct inhibition of desmoglein trans-interaction is the major pathogenic mechanism responsible for 

cellular dissociation (A). On the other hand, the contribution of intracellular signaling induced by binding 

of pemphigus autoantibodies is believed to cause loss in desmoglein binding (B).  
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both the epidermis and mucosal layers, blisters develop preferentially suprabasally. In 

mucocutaneus PV forms, typically both Dsg3 and Dsg1 autoantibodies are present in affected 

patients, which in addition to mucosal blistering also have epidermal blisters because both 

Dsg1 and Dsg3 are targeted and no longer can compensate each other. In PF, which is 

characterized by the presence of Dsg1 antibodies, epidermal adhesion is selectively disturbed 

in superficial layers, were Dsg1 is predominantly expressed and Dsg3 is mainly lacking. This is 

true for apical layers like stratum superficiale. Here, low Dsg3 expression is not able to 

compensate for the loss of Dsg1 function so that the blisters mainly appear superficially. 

Diseases involving bacterial toxins corroborated the desmoglein compensation theory because 

in staphylococcus scaled skin syndrome, where exfoliative toxin A/B extracellulary cleave 

Dsg1, superficial skin splitting occurs (Amagai et al., 2000a). In pregnant women with PF, 

neonates usually do not develop the disease although autoantibodies are crossing the 

placental borders. This phenomenon was explained by compensation with strong expression 

of Dsg3 in all layers in neonatal epidermis (Wu et al., 2000). Targeted disruption of Dsg3 in 

mice also caused a similar but not identical PV phenotype (Koch et al., 1997). Nevertheless, 

due to some inaccurate assumptions of Dsg expression profiles in humans, the compensation 

theory cannot explain all features of pemphigus histologies (Mahoney et al., 1999; Spindler et 

al., 2007). Moreover, involvement of other desmocadherin molecules like desmocollin 3 in 

pemphigus pathogenesis may be relevant (Chen et al., 2008; Spindler et al., 2009). The 

compensation theory therefore represents a simplified but straightforward explanation for 

pemphigus pathogenesis but lacks to include recent molecular findings, which also involve 

cellular signaling in pemphigus.  

 

2.6.1.1.3 Cellular signaling in pemphigus 
There is an ongoing debate whether acantholysis - the cellular hallmark of pemphigus 

pathogenicity, i.e. cell-cell dissociation – can be induced by other mechanism than steric 

hindrance (Figure 9B). The involvement of other mechanisms such as cellular signaling or Dsg 

endocytosis triggered by Dsg or non-Dsg autoantibodies has been reported. At least for PF, 

cellular signaling seems to be important because it was demonstrated that PF-IgG caused 

keratinocyte dissociation and loss of Dsg1 trans-interaction without directly blocking Dsg1 

trans-interaction (Waschke et al., 2005), indicating that direct inhibition of Dsg trans-interaction 

may not be relevant for PF pathogenesis. 

Over the past several years, the contribution of certain signaling pathways to the pemphigus 

pathogenesis has been studied: since the first discovery of PV-IgG-induced signaling by the 

group of Kitajima in the mid 90s, the involvement of other molecules is known, ranging from 

proteases [urokinase-type plasminogen activator (Morioka et al., 1987; Esaki et al., 1995) and 

matrix metalloproteinase 9 (Cirillo et al., 2007)], receptors [epidermal growth factor receptor 

(EGFR) (Frusic-Zlotkin et al., 2006; Chernyavsky et al., 2007), Fas ligand (Puviani et al., 
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2003)], proteins involved in apoptosis [caspases (Frusic-Zlotkin et al., 2006; Schmidt and 

Waschke, 2009)] or desmosomal adapter proteins [plakoglobin (Caldelari et al., 2001; de Bruin 

et al., 2007), RhoA (Waschke et al., 2006) and p120ctn (Kawasaki et al., 2006; Chernyavsky et 

al., 2008)] to kinases [protein kinase C (PKC) (Kitajima et al., 1999), p38 mitogen-activated 

protein kinase (p38MAPK) (Berkowitz et al., 2005; Berkowitz et al., 2006; Berkowitz et al., 

2008a; Berkowitz et al., 2008b; Lee et al., 2009), c-Src (Chernyavsky et al., 2007) and cyclin-

dependent kinase 2 (Cdk2) (Lanza et al., 2008)] and transcription factors [c-Myc (Williamson et 

al., 2006)] or other enzymes [nitric oxide synthase (NOS) (Marquina et al., 2008)]. However, 

although blocking of single signaling steps seems to be effective in preventing PV-IgG-

mediated acantholysis in vitro and in vivo (Sanchez-Carpintero et al., 2004), the mechanisms 

involved in desmocadherin-mediated outside-in signaling as well as the interplay of various 

pemphigus signaling pathways leading to acantholysis remain unclear.  

Other important hallmarks in pemphigus are disruption of desmosome assembly (Mao et al., 

2009) and loss of desmosomal contacts, which is accompanied with endocytosis of Dsg 

molecules (Aoyama and Kitajima, 1999; Calkins et al., 2006; Delva et al., 2008) and 

“cytokeratin retraction” (Wilgram et al., 1961; Wilgram et al., 1964). The latter describes the 

phenomenon that cytokeratin filaments disappear from cell borders in acantholytic 

keratinocytes and accumulate perinuclearly.  

 

Obviously, it could be stated that pemphigus is a simple disease with the pathogenic 

mechanism clearly identified. Nevertheless, explanations for pathogenic cell dissociation, 

which could finally lead to the identification of specific therapeutic interventions are difficult. 

Furthermore, pathologic processes in pemphigus are hard to identify because of the partly 

unknown physiological functions of desmocadherins and desmosomes in general. 

 
2.6.1.2 Vascular inflammation 
Endothelial cells form a single cell sheet lining the inner surface of blood vessels. VE-cadherin 

is the predominant cadherin expressed in these cells and essential for stabilizing endothelial 

cell-cell contacts. In contrast to VE-cadherin, N-cadherin is diffusely distributed in the plasma 

membrane of endothelial cells. VE-cadherin is only weakly or not at all expressed in other cells 

(Boda-Heggemann et al., 2009). With its adhesive functions it is an essential component of the 

barrier between blood and surrounding tissues, termed endothelial barrier (Figure 1) (Dejana 

et al., 2008; Vandenbroucke et al., 2008). Together with sealing functions of TJs and nectin-

based connections, VE-cadherin-specific AJs are important for both maintenance and 

regulation of endothelial permeability.  

In several pathological processes, loss of VE-cadherin function has been demonstrated 

(Corada et al., 1999; Hordijk et al., 1999; Alexander and Elrod, 2002). In septic conditions, 

when bacteria invade the bloodstream, infections cause inflammatory processes that involve 
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leakage of the blood vessel lining and consequently lead to life-threatening organ swellings or 

tissue bleedings. VE-cadherin was found to be one of the molecules targeted by several 

inflammatory mediators such as vascular endothelial growth factor (VEGF), histamine, 

thrombin and tumor necrosis factor-α (TNF-α) (Rabiet et al., 1994; Rabiet et al., 1996; 

Andriopoulou et al., 1999; Nwariaku et al., 2002; Konstantoulaki et al., 2003; Angelini et al., 

2006). The impact of loss of VE-cadherin function was clearly demonstrated in vivo where 

vascular permeability was increased after application of the VE-cadherin-specific monoclonal 

antibody (mAb) 11D4.1 (Corada et al., 1999). VE-cadherin is not only extracellularly targeted, 

but often the intracellular cytoskeletal anchorage or the phosphorylation status regulate its 

function. Actin depolymerization or MLCK activation quickly result in loss of VE-cadherin-

mediated adhesion and endothelial gap formation. More specific knowledge of (VE-)cadherin-

mediated interactions might open perspectives for specific pharmacological modulation of VE-

cadherin function and consequently be a promising way for the treatment of vascular leakage.  

 

2.7 Aim of this study 

The exact mechanism of cadherin trans-interaction is still a matter of debate. Multiple models 

have been proposed and many experimental approaches exist; however, most of them lack 

physiological proof of principle, mostly by investigating cadherins outside their physiological 

environment. In the present cumulative dissertation, experimental approaches to characterize 

and modulate cadherin functions should be performed in the (patho-) physiological contexts of 

the epidermal skin blistering disease pemphigus affecting desmocadherins and endothelial 

dysfunction involving VE-cadherin. The aims of the different studies were as follows: 

 

2.7.1 Characterization of cadherin trans-interactions 
Cadherin interaction should be characterized in both cell-free and cell-based conditions. By 

using AFM force spectroscopy as a biophysical single molecule technique (Figure 6), cadherin 

function could be investigated in conditions, where contributions of intracellular signaling were 

excluded. These experiments were compared and combined with cell-based experiments. For 

example, the adhesion of cadherin-coated beads to the cell surface of epidermal or endothelial 

should be analyzed by laser tweezer experiments (Figure 10). These experimental approaches 

allowed us to identify and to differentiate between modulations of cadherin function, which 

depend on the cellular environment, as compared to mainly biophysical or mechanistic 

properties of cadherins. 

In detail, cell-free AFM experiments using desmocadherin fusion constructs were applied to 

clarify the mode of trans-interactions of these cadherins. Homophilic and heterophilic Dsg3 

interactions were to be characterized and compared to Dsg1 interactions, as both are 
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important in pemphigus pathogenesis. Moreover, we aimed to investigate the effects of 

pemphigus autoantibody on these interactions to gain insights into pemphigus pathogenesis. 

For VE-cadherin, several fusion constructs involving a new protein linkage system (SNAP-tag) 

for AFM experiments were developed aiming to get insights into the difference between the 

molecular adhesion of cadherin monomers vs. dimers. 

 

2.7.2 Investigation of cadherin-mediated signaling 
Pemphigus is a promising model disease to study consequences of loss of (desmo)cadherin-

mediated binding. By using pathogenic pemphigus autoantibodies, cadherin-mediated outside-

in signaling should be investigated. Especially, we aimed to investigate the cross-talk of 

epidermal growth factor receptor (EGFR) with Dsgs and its contribution to pemphigus 

pathogenesis. However, although blocking of single signaling steps seems to be effective in 

preventing PV-IgG-mediated acantholysis in vitro (Sanchez-Carpintero et al., 2004) and in 

vivo, integrative studies investigating the interplay of these pathways are lacking. With the help 

of those studies, however, the identification of upstream key networks should be possible. We 

therefore also sought to further clarify the role of cellular signaling in pemphigus in this study. 

 

2.7.3 Modulation of cadherin function by peptides 
Based on the insights gained in the first part of the study, an approach to modulate cadherin 

function was developed: we aimed to identify peptides targeting cadherin adhesive sequences, 

which should either inhibit or promote cadherin interactions. Since crystal structures of the 

 
Figure 10. Principle of laser tweezer experiments using cadherin-coated microbeads on cultured 

cells. On cultured cells expressing the cadherin of interest, cadherin-coated microbeads could be 

trapped in a laser beam focus to distinguish bound from unbound beads (A). Images B-G display the 

capture of a microbead (white arrow) in the laser focus (marked by crosshairs). In D, the microbead is 

dragged into the laser beam focus plane above the cell surface and subsequently can be moved by 

laser displacement using the help of a piezo-driven x-y-stage. Scale bar = 10 µm. 
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target cadherins Dsg3/1 and VE-cadherin were missing, cadherin monomeric structures had to 

be rendered by modeling the sequences into already resolved cadherin structures (i.e. E-

cadherin). Cadherin interactions of the resulting structures then had to be modeled based on 

known schemes found in N-cadherin crystals (see section 2.4.2.2). By determining amino acid 

sequences that apparently were important for these interactions we aimed to identify 

antagonistic peptides (“single peptides”) that could be used as specific inhibitors of the 

respective cadherin’s interaction. In a further step, we sought to generate agonistic peptides 

(“tandem peptides”) that promote cadherin interaction by combining two of these single 

peptides via a flexible linker. Based on our hypothesis these tandem peptides should stabilize 

cadherin interactions by simultaneously binding to adhesive sequences of two neighboring 

cadherin molecules. We aimed to use such peptides as specific modulators of cadherin 

interactions. 

As the main focus of this study laid on the pathological conditions pemphigus and vascular 

leakage, such peptides should be developed for desmocadherins Dsg1 / Dsg3 and VE-

cadherin. The functions of these peptides had to be tested in cell-free single molecule 

experiments as well as in several in-vitro and also in-vivo systems. Ultimately, the different 

types of tandem peptides were intended to act as potential therapeutic reagents preventing 

desmocadherin-mediated cell dissociation in pemphigus and loss of VE-cadherin-based 

adhesion in vascular dysfunction. 
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3 Scientific publications and additional results 

3.1 Scientific publications  

 

3.1.1 Publication 1: Pemphigus vulgaris IgG directly inhibit desmoglein 3-
mediated transinteraction 

 

Heupel WM, Zillikens D, Drenckhahn D, Waschke J 

Pemphigus vulgaris IgG directly inhibit desmoglein 3-mediated trans-interaction 

J Immunol. 2008;181:1825-1834. 

 

Reproduced / adapted with permission by the Journal of Immunology. Copyright 2008. The 

American Association of Immunologists, Inc. 

URL: http://www.jimmunol.org/cgi/content/full/181/3/1825  
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3.1.2 Publication 2: Pemphigus vulgaris IgG cause loss of desmoglein-
mediated adhesion and keratinocyte dissociation in HaCaT cells 
independent of epidermal growth factor receptor 

 
Heupel WM ¶, Engerer P ¶, Schmidt E, Waschke J 

Pemphigus vulgaris IgG cause loss of desmoglein-mediated adhesion and keratinocyte 

dissociation in HaCaT cells independent of epidermal growth factor receptor  

Am J Pathol. 2009 Feb;174(2):475-85. Epub 2009 Jan 15. 

 

Reprinted from Am J Pathol 2009, 174:475-485 with permission from the American Society for 

Investigative Pathology.  

DOI: 10.2353/ajpath.2009.080392  
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3.1.3 Publication 3: Peptides targeting the desmoglein 3 adhesive 
interface prevent pemphigus autoantibody-induced acantholysis in 
pemphigus 

 
Heupel WM ¶, Müller T ¶, Efthymiadis  A ¶, Schmidt E, Drenckhahn D, Waschke J 

Peptides targeting the desmoglein 3 adhesive interface prevent pemphigus autoantibody-

induced acantholysis in pemphigus 

J Biol Chem. 2009 Mar 27;284(13):8589-95. Epub 2009 Jan 21 

 

Reproduced / adapted with permission by the Journal of Biological Chemistry. 

DOI: 10.1074/jbc.M808813200 
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3.1.4 Publication 4: Endothelial barrier stabilization by a cyclic tandem 
peptide targeting VE-cadherin transinteraction in vitro and in vivo 

 

Heupel  WM ¶, Efthymiadis A ¶,  Schlegel N, Müller T, Baumer Y, Baumgartner W, Drenckhahn 

D, Waschke J 

Endothelial barrier stabilization by a cyclic tandem peptide targeting VE-cadherin trans-

interaction in vitro and in vivo 

J Cell Sci. 2009 May 15;122(Pt 10):1616-25. 

 

Reproduced / adapted with permission by the Journal of Cell Science. 

DOI: 10.1242/10.1242/jcs.040212 
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3.2 Additional experiments and methods 

 

3.2.1 Investigating VE-cadherin interactions using site-directed coupling 
by SNAP-tag technology and AFM force spectroscopy 

 

Introduction 
Cadherins are known to interact in a polar way with specialized EC domains. For the 

investigation of cadherin interactions in AFM force spectroscopy, site-directed coupling of 

recombinant molecules to the AFM surfaces is required. Using the SNAP-tag technology such 

a method was developed. In this technology, modified human DNA repair protein O6-

alkylguanine-DNA alkyltransferase is used as a protein tag, which can be fused to the proteins 

of interest (Keppler et al., 2003). Endogenously, this enzyme irreversibly transfers alkyl groups 

from its substrate, O6-alkylguanine-DNA, to one of its cysteine residues in the active site. 

Increasing substrate specificity and abolishing cross-reactivity with endogenous substrates 

generated the so-called SNAP-tag enzyme. This enzyme shows high specificity for O6-

benzylguanine (BG) only. Therefore, SNAP-tag-coupled proteins can be used for direct 

coupling to BG-containing surfaces. 

 

Methods and Results 
Different VE-cadherin-SNAP-tag fusion proteins were cloned, purified and characterized, to be 

finally used in AFM force spectroscopy experiments (Figure 11). First of all, a monomeric 

fusion protein consisting of VE-cadherin EC1-5 domains, the SNAP-tag and a carboxyl-

terminal poly-histidine-tag (for purification) was cloned (VE-EC15-SNAP-his, see addendum). 

Secondly, a VE-cadherin fusion protein additionally consisting a modified FKBP 

homodimerizing domain was generated (VE-EC15-FKBP-SNAP-his). For this, the “ARGENT 

Regulated Homodimerization Kit” was utilized (ARIAD, Cambridge, MA, USA (Spencer et al., 

1993). It is based on the human protein FKBP12 (FK506 binding protein 12) and its small 

molecule ligands. Endogenously, FKBP is an immunomodulatory protein targeted by the 

immunosuppressant rapamycin and other ligands. By modifying FKBP ligand specificity, a 

homologue with high affinity to a synthetic ligand but not cross reacting with endogenous 

ligands was generated. Chemical compound AP20187 consists of two artificial FKBP ligands 

and therefore can be used to link two proteins containing a FKBP domain with subnanomolar 

affinity. VE-EC15-FKBP-SNAP-his could consequently be used as a protein in AFM force 

spectroscopy that could be selectively dimerized by addition of half-equimolar concentrations 

of AP20187. A third construct included a fragment coding for the Fc part of human IgG1, 

including the hinge region and Ig domains CH2 and CH3, and consequently served as a stable 
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Figure 11. Characterization of VE-cadherin SNAP-tag fusion constructs. Several VE-cadherin 
constructs have been designed and cloned to achieve cadherin monomers (VE-EC15-SNAP-his, A), 
inducible dimers (VE-EC15-FKBP-SNAP-his, B) and permanent dimers (VE-EC15-Fc-SNAP-his, C). 
Each fusion construct contained the SNAP-tag sequence and a poly-histidine-tag at the C-terminus. 
Selective dimerization was achieved by addition of the FKBP domain-crosslinking agent AP20187. 
Fusion proteins were produced by stably transfected CHO cells into the cell culture supernatants. 
Immunofluorescent studies using an anti-SNAP-tag antibody revealed a cytoplasmatic staining of the 
fusion protein-producing endoplasmatic reticulum and Golgi network (as seen for example in the VE-
EC15-FKBP-SNAP-his-producing cell line, D; scale bar = 20 µm). Fusion proteins were purified by 
immobilized Ni2+/ nitrilo triacetic acid - affinity chromatography. Coomassie-stained SDS-PAGE 
identified protein bands migrating above 130 kDa in elution fractions 3-1, 3-2 and 3-3 as seen in a 
sample purification of VE-EC15-FKBP-SNAP-his (E). In Western blot experiments using anti-VE-
cadherin antibodies (G), purified proteins migrated at the expected molecular mass under reducing 
conditions (VE-EC15-SNAP-his: 88 000, VE-EC15-FKBP-SNAP-his: 100 000, VE-EC15-Fc-SNAP-his: 
114 000; note that molecular weights are shifted to higher values in SDS-PAGE because of additional 
glycosylation of cadherin ectodomains in eukaryotic cell cultures). Dot blot experiments demonstrated 
the presence of both SNAP- and his-tags in all fusion proteins (H). Functionality of SNAP-tags was 
validated by coupling of a fluorescent benzylguanine dye (SNAP-Vista-Green) to SNAP-tag-containing 
cadherins and subsequent SDS-PAGE. Fluorescent signals were detected with a fluorescence detection 
system (Typhoon Scanner, GE Healthcare) (I). Selective dimerization of VE-EC15-FKBP-SNAP-his 
upon incubation with half-equimolar concentrations of AP20187 and subsequent crosslinking via DMP 
was demonstrated in Coomassie-stained SDS-PAGE (F). After incubation of the dimerizer, protein 
bands of this fusion protein shifted to largely higher molecular weights. 
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dimer, with the Fc domain being known to induce dimers via disulfide bond formation. 

Sequence integrities of the cloned constructs were confirmed by sequencing.  

Because of the lack of a transmembrane segment, recombinant proteins were supposed to be 

released into cell culture supernatants due to the presence of a signal peptide. For purification 

of recombinant proteins, the constructs were transfected into wild-type Chinese hamster ovary 

(CHO) cells using Effectene transfection reagent (Qiagen, Hilden, Germany) and stable-

transfected cell lines were obtained using single cell subsplitting and subsequent 

characterization of fusion protein production. After collecting cell culture supernatants of 

serum-free CHO express media (Promocell, Heidelberg, Germany), proteins were purified 

using Ni-NTA agarose chromatography according to the manufacturer’s protocol (Roche, 

Mannheim, Germany). The proteins were eluted by imidazole buffer (200 mM imidazole, 1 M 

NaCl, 10 mM NaH2PO4 (pH 8)) and immediately subjected to buffer exchange against HBSS 

via PD-10 desalting columns (GE Healthcare, München, Germany). 

In Western blotting experiments of purified proteins, all three mouse VE-cadherin fusion 

proteins migrated at the expected molecular weights: VE-EC15-SNAP-his (88 000), VE-EC15-

FKBP-SNAP-his (100 000), VE-EC15-Fc-SNAP-his (114 000), considering that molecular 

weights are shifted to higher values in SDS-PAGE due to additional glycosylation of cadherin 

EC domains. Proteins were all detected by anti VE-cadherin antibodies (Gotsch et al., 1997). 

Dot blotting with the respective antibodies from abcam (Cambridge, UK) and biocat 

(Heidelberg, Germany) confirmed the presence of his- and SNAP-tag in fusion proteins. The 

functionality of the SNAP-tags was validated by coupling of a fluorescent and BG-containing 

dye (SNAP-Vista-Green) to SNAP-tag-containing cadherin proteins and subsequent SDS-

PAGE. Fluorescent signals were detected with a fluorescent gel detection system (Typhoon 

Scanner, GE Healthcare; FITC filter settings, 488 nm excitation). For dimerizing constructs, 

stable dimer generation was confirmed in non-reducing SDS-page where VE-EC15-Fc-SNAP-

his migrated at twice the molecular weight as the monomer (data not shown). Selective 

dimerization of VE-EC15-FKBP-SNAP-his upon incubation with half-equimolar concentrations 

of AP20187 for 1 h and subsequent cross linking by addition of 30x molar excess of dimethyl 

pimelimidate (DMP; Pierce, Schwerte, Germany) for 1 h at pH 9.0 (the reaction was stopped 

by addition of 120x molar excess of tris for 15 min) was demonstrated in Coomassie-blue-

stained SDS-PAGE (F). Incubation with the dimerizer shifted protein bands of this fusion 

protein to largely much molecular weights. 

 
SNAP-tag-mediated coupling provides promising features for AFM force spectroscopy. 

Nevertheless, it also requires efficient and specific chemical coupling steps prior to SNAP-tag-

BG linkage. For proper coupling chemistry, commercially available BG-maleimide (Covalys, 

Witterswil, Switzerland), which was to be coupled to PDP-PEG18 linked to APTES-coated 

Si3N4 plates and AFM tips via NHS-mediated binding (Ebner et al., 2007), did not dissolve in 
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aqueous solutions. Aqueous solutions, however, were necessary to achieve proper maleimide-

mediated reactions with activated PDP groups. As a result, no specific coupling of BG-

maleimide to PDP-PEG18 was achieved. Dissolving BG-maleimide in DMP or DMSO-

containing solvents did not yield better results. Because of the unavailability of other BG-

linkers suitable for our purposes, SNAP-tag-mediated coupling of VE-cadherin constructs 

failed. Nevertheless, alternatives for these procedures are on the way (see Discussion).  

 



Discussion                                                                                                                                              90 

 

4 Discussion 

4.1 Integrative summary of results 

In the present manuscripts, roles of desmosomal cadherins and VE-cadherin under 

pathophysiological conditions of pemphigus and vascular inflammation were investigated and 

peptide-based modulators of cadherin functions were characterized and applied as potential 

therapeutic reagents. 

 

4.2 Direct inhibition vs. desmoglein-mediated signaling in blistering 
skin disease pemphigus 

Since the discovery of desmosomal cadherins as key targets in autoimmune blistering skin 

disease pemphigus, the hypothesis of direct inhibition of cadherin function as the major 

pathogenic event in this disease has been proposed. Experimental proof, however, had been 

lacking. By applying cell-free single molecule AFM force spectroscopy we were the first to 

directly demonstrate the postulated inhibition of Dsg3 transinteraction by PV autoantibodies 

(Figure 12A, 1). This effect was independent of the autoantibodies’ Fc fragments, the dimeric 

autoantibody structure and the polyclonal character of PV-IgG, as it could be induced by PV-

IgG Fab fragments or monoclonal pemphigus antibody AK23, respectively. Recombinant Dsg3 

molecules used in these experiments were fully functional as demonstrated by AFM force 

spectroscopy, binding of Ca2+ and immunoprecipitation with AK23, which has been shown to 

bind conformation-specific to the  Ca2+-sensitive adhesive interface of Dsg3. 

The importance of Dsg3 for desmocadherin function under mechanical stress has been 

proposed long ago. Further support for steric hindrance as main cause for PV came from the 

phenotype of Dsg3 knockout mice, which developed blisters under mechanical stress although 

establishing functional desmosomes. Interestingly, as another important factor, loss of Dsg 

molecules on keratinocyte surfaces in response to pemphigus autoantibodies has been shown 

to be a result of desmocadherin endocytosis. In the physiological context, however, it is difficult 

to compare inhibition of desmocadherin function by autoantibody-induced steric hindrance with 

complete loss of desmocadherin molecules from the cell surface of knockout animals. In the 

case of steric hindrance, intracellular desmocadherin domains are still present and 

desmocadherin-mediated signaling could continue, probably in an altered way. Transgenic 

expression of EC domain-truncated desmocadherin constructs in mice adds to these 

hypotheses with their partly unexpected phenotypes (Holthofer et al., 2007). In future studies, 

role of heterophilic interactions of Dsg3 molecules with other desmosomal cadherins, such as 

desmocollins 1-3 in establishment of epidermal barrier function should be investigated. Effects 

of pemphigus autoantibodies on heterophilic interactions are possible as well. Accordingly, in a 

recent study involving Dsc3, homophilic interactions and heterophilic interaction with Dsg1 but 
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not Dsg3 have been identified (Spindler et al., 2009). Nevertheless, pemphigus autoantibodies 

affected Dsc3-mediated adhesion in cell-based experiments only. 

 

Although this work provided evidence for steric hindrance in pemphigus, pemphigus still 

emerges as a complex disease and is not just explained by a partial loss of desmocadherin 

function, since in addition, other relevant aspects have been revealed by our studies. It 

remains unclear, whether blocking the function of a single desmoglein is sufficient to cause the 

observed splitting of desmosomes in acantholytic cells. A recent study showed that in the 

presence of PV-IgG, desmosomes can still be formed, although PV-IgG were detected in the 

desmosome cores by EM (Aoyama et al.). Moreover, in the case of both PF- and PV-IgG, AFM 

experiments failed to detect direct autoantibody-mediated inhibition of Dsg1 interactions 

(Figure 12A, 2). In contrast to this, both PF-IgG and PV-IgG induced overall loss of adhesion of 

Dsg-coated microbeads to the surface of cultured keratinocytes. We therefore concluded that 

PV- and PF-IgG-mediated cellular signaling might essentially contribute to pemphigus 

pathogenesis (Figure 12A, 3). This was corroborated by the use of desmocadherin-stabilizing 

tandem peptides. In cell-based experiments, these were only effective to partly stabilize Dsg3-

mediated binding, which had been shown to be directly inhibited in AFM studies. Loss of Dsg1-

based adhesion, however, could not be prevented. Together, these findings strongly indicate 

that pemphigus autoantibodies induce cellular signaling events that independently result in 

loss of desmocadherin adhesion. Indeed, activation of a plethora of signaling cascades in 

pemphigus has been reported in the meantime. Blocking certain signaling cascades has been 

shown to block acantholysis in vivo (Sanchez-Carpintero et al., 2004; Berkowitz et al., 2006; 

Lanza et al., 2008). However, the mechanisms involved in desmocadherin-mediated outside-in 

signaling as well as the temporal and spatial interplay of these pathways has only been partly 

identified. 

 

In other studies, we therefore focused on the importance of specific signaling pathways in 

pemphigus by discriminating between primary signaling events that directly lead to 

acantholysis and secondary events, which are activated in response to acantholysis. In  

several other studies for example, EGFR or c-Src activation were shown to be involved in 

pemphigus (Frusic-Zlotkin et al., 2006; Chernyavsky et al., 2007). However, we demonstrated 

that PV-IgG-induced acantholysis was independent of EGFR and c-Src activation in our model 

system (Figure 12A, 4). In our experiments pemphigus autoantibodies led to strong 

keratinocyte dissociation even in the presence of functional inhibitors of EGFR and c-Src. 

Importantly, this does not exclude the possibility that secondary activation of EGFR worsens 

the primary effects of PV-IgG and therefore contributes to pemphigus pathogenesis. As a 

potential mechanism, EGF produced by acantholytic keratinocytes could lead to activation of 

EGFR signaling in the same and neighboring cells. This has been shown to lead to a migratory 
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keratinocyte phenotype, which in some aspects is similar to acantholytic keratinocytes. Similar 

mechanisms could explain the finding of apoptotic phenotypes in pemphigus: Fas ligand has 

been shown to be increased in pemphigus patients’ sera, but could not induce primary events 

of pemphigus pathogenesis on its own. On the other hand, Fas receptor activation is known to 

be a potent inducer of caspases, which were reported to be active in late stages of acantholytic 

keratinocytes (Schmidt and Waschke, 2009). 

 

Since the first discovery of PV-IgG-induced signaling by the group of Kitajima et al. in the mid 

90s (Esaki et al., 1995; Aoyama et al., 1999), the involvement of several signaling pathways in 

pemphigus has been studied. These include receptors, desmosomal adapter proteins, kinases 

as well as transcription factors. Among the plethora of identified molecules, plakoglobin and 

p38MAPK appear to have central roles in pemphigus pathogenesis. Plakoglobin not only 

constitutes a major structural component of desmosomes but also functions as a shuttling 

signaling molecule, communicating signals from AJs to desmosomes and the nucleus, where it 

has been demonstrated to inhibit c-Myc function (Williamson et al., 2006). More importantly, 

PG deficiency has been demonstrated to prevent pemphigus autoantibody-induced 

acantholysis (Caldelari et al., 2001). On the other hand, p38MAPK activation has been 

demonstrated for both PF- and PV-IgG, although direct inhibition has only been identified in 

PV-IgG, yet. Still, this demonstration of desmocadherin-induced signaling takes a key place in 

pemphigus signaling as several groups have shown p38MAPK to be an upstream signaling 

molecule (Berkowitz et al., 2005; Berkowitz et al., 2006; Waschke et al., 2006; Berkowitz et al., 

2008b). p38MAPK has been linked to perturbation of cytokeratin and actin networks, both 

directly or via heat shock protein (HSP) 27 or RhoA. The latter links desmocadherin 

rearrangements to alterations of keratinocyte AJs and its major adhesion molecule E-cadherin. 

The failure of p38MAPK inhibitors in preliminary and initial clinical studies (D. Rubenstein, 

University of North Carolina, personal communication) and the hypothesis, that p38MAPK 

activation is just a salvage pathway of acantholytic keratinocytes, should not impede further 

strategies involving this molecule. 

Integrative studies investigating the interplay of several signaling pathways are lacking. Such 

studies may help to identify essential upstream signaling molecules which would extend our 

understanding of both pemphigus pathogenesis and the physiological mechanisms regulating 

desmosome-mediated adhesion. 

 

By using dimeric peptides that stabilize Dsg trans-interaction, we prevented pemphigus 

autoantibody-induced cell dissociation, indicating that inhibition of Dsg3 trans-interaction by 

pemphigus autoantibodies directly contributes to acantholysis. Nevertheless, this approach 

was unable to block PF-IgG-induced effects, which have been shown to be independent of 

loss of Dsg1 trans-interaction. Consequently, signaling is also an essential part in pemphigus 
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Figure 12. Cellular mechanisms of 
acantholysis and “multiple hit” model of 
pemphigus pathogenesis. (A) In an 
overview of pemphigus autoantibody-induced 
cellular acantholysis, several important 
mechanisms have been highlighted. Yellow 
numbers represent findings identified in the 
present work. Please refer to the text for full 
explanations. (B) The “multiple hit” model of 
pemphigus pathogenesis states that several 
different mechanisms together contribute to 
pemphigus progression. For example, both 
PV- and PF-IgG inactivate Rho A, which can 
lead to both superficial and deep epidermal 
splitting. In this scenario, p38MAPK signaling 
which is placed upstream of RhoA might be 
crucial. As a secondary effect, steric 
hindrance of Dsg3 trans-interaction by PV-
IgG may worsen the primary effects of the 
various autoantibody-induced signaling 
events. This could account for the more 
severe phenotype of PV compared to PF, 
where no steric hindrance occurs. Modified 
from (Waschke, 2008). 
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pathogenesis. Still, in most cases a discrimination between the following activation 

mechanisms of acantholytic signaling cascades in pemphigus is difficult: Activation (i) in 

response to loss of desmocadherin function, (ii) in response to desmocadherin clustering, (iii) 

in response to allosteric alteration of Dsg structure, (iv) by autoantibody-induced loss of 

heterotypic interactions and (v) by non-desmocadherin autoantibodies or serum components of 

pemphigus patients. Based on these considerations, future studies need to address these 

mechanisms to ultimately gain insights into therapeutic niches for a specific treatment of 

pemphigus. 

 

Summarizing views on pemphigus pathogenesis support the “multiple hit” hypothesis of 

pemphigus pathogenesis (Figure 12B). It states, that several and different mechanisms 

account for the differences in blister formation and clinical progression between PV and PF. 

Both PV- and PF-IgG might activate major signaling pathways, such as PG-dependent 

p38MAPK activation, subsequently leading to histological microblisters in many epidermis 

layers. In a second step, specific mechanisms such as steric hindrance of Dsg3 binding or 

Dsg3 depletion in the case of PV and Dsg1 depletion in the case of PF may lead to final, 

pemphigus subtype-specific suprabasal and superficial blisters, respectively. 

 

4.3 VE-cadherin as a key component of the endothelial barrier 

Vascular endothelial (VE-) cadherin is the predominant cadherin expressed in endothelial cells 

and has been shown to be essential for the stabilization of the endothelial lining of the inner 

surface of blood vessels and for the regulation of the barrier between blood and surrounding 

tissues (Dejana et al., 2008; Vandenbroucke et al., 2008). Loss of VE-cadherin function in 

pathological processes has been demonstrated (Corada et al., 1999; Hordijk et al., 1999; 

Alexander and Elrod, 2002) and VE-cadherin was found to be one of the target molecules 

modulated by signaling of several inflammatory mediators such as histamine, thrombin and 

TNF-α. In our study, VE-cadherin has been confirmed to be a core element of the endothelial 

barrier. Both the modification of VE-cadherin function by extracellular inhibition via an antibody 

directed against VE-cadherin EC domains or the intracellular increase of Ca2+ resulted in loss 

of VE-cadherin-mediated binding and endothelial barrier breakdown. By the application of 

extracellular VE-cadherin-cross-bridging tandem peptides designed to stabilize VE-cadherin 

bonds these effects could be partly reversed. Therefore, VE-cadherin turns out to be an 

interesting therapeutic target for stabilizing endothelial barrier functions. This has also been 

confirmed in in-vivo experiments were the increase of microvessel permeability in response to 

TNF-α treatment was completely prevented by preincubation with the cross-bridging tandem 

peptide. Interestingly, the inflammatory mediator TNF-α, which has been reported to inhibit VE-

cadherin function via inhibition of VE-cadherin anchorage to the actin cytoskeleton, was unable 
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to exert its barrier-disrupting function when VE-cadherin was extracellulary stabilized by 

tandem peptides. 

4.4 Peptides modulating cadherin function 

For both diseased conditions, pemphigus skin blistering and vascular dysfunction, peptides 

stabilizing trans-interactions of cadherins have been designed to specifically strengthen these 

adhesion molecules and to inhibit dissociation under pathological processes. At the beginning 

of this strategy, cadherin structures of the so-far unresolved cadherins VE-cadherin and 

Dsg1/3 had to be determined. This was accomplished by aligning the respective cadherin 

amino acid sequences to the resolved E-cadherin structures. On the basis of the postulated 

structures of VE-cadherin and Dsg3/1, homophilic interactions were modeled by fitting them 

into the trans-interaction scheme of N-cadherin, which had been resolved as well. In the trans-

interacting N-cadherin structure, an adhesive region near to the known “HAV” sequence was 

identified that displayed a large inter-cadherin interface (see section 2.4.2.2). Consequently, 

similar adhesive regions could be modeled and peptides corresponding to these adhesive 

structures were identified for VE-cadherin and Dsg1/3 interactions. The “single peptides”, 

fulfilled the prediction to inhibit trans-interaction, whereas the tandem constructs of two 

peptides connected to each other by a flexible linker (“tandem peptides”) acted as cadherin 

cross-bridging agents. 

One example of the various hypothetical modes of tandem peptide action might involve cross-

bridging of cadherin molecules in a parallel fashion (Figure 13). Nevertheless, since cadherins 

are flexible molecules both cis and trans-interactions may be stabilized because of similar 

adhesive interfaces. More interestingly, by applying this strategy, Trp2 residues, which were 

identified to be core elements of cadherin interactions, are still freely accessibly for interactions 

in tandem peptide-crossbridged cadherin dimers. The peptides obviously act in a stabilizing 

way by not directly interfering with the other important adhesive interface including Trp2 and 

the corresponding hydrophobic binding pockets for Trp2. Peptides mimicking the mode of 

action of Trp2 for example probably would not lead to enhanced stabilization by competing 

with natural interaction schemes. TP-mediated mechanisms of cadherin stabilization, however, 

probably include several effects on the suprastructural organization, which are difficult to 

separate from each other. Because of entropic reasons, main stabilizing effects of the tandem 

peptides may involve cooperative effects of several tandem peptides on cadherin clustering, 

similar to the proposed function of cytoskeletal anchorage. This clustering may rely on several 

interaction mechanisms. However, competition of mainly hydrophilic peptide-cadherin 

interactions with aqueous solvents might weaken these interactions.  

 

By comparing cadherin amino acid sequences, it becomes obvious that the identified peptides 

are highly conserved in the respective cadherins of mammals. In the case of VE-cadherin for 
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example, the core amino acids VDA of the sequence RVDAE are identical in VE-cadherin of 

mouse, rat and human origin. Still, this sequence seems to be very specific for VE-cadherin, 

since other type II cadherins such as cadherins 6, 11 and 18 do not share this sequence 

(Figure 14). In addition, the corresponding acceptor sequence of RVDAE peptides involving 

Tyr80 is conserved in many type II cadherins. Another study using the antagonistic VE-

cadherin cyclic peptide CDAEC inhibited retinal neovascularization in-vivo, confirming our 

results with the antagonistic single RVDAE peptides (Navaratna et al., 2008).  

 

 
 

Figure 13. VE-cadherin tandem peptide interaction. By simultaneously binding to the adhesive 

interfaces of two opposing cadherins, the tandem peptide might mediate stabilization of cadherin 

interactions. Tandem peptide atoms are represented as cyan sticks and the resulting surface is 

transparently visible. VE-cadherin EC1 main amino acid structure and transparent surfaces are also 

depicted. Note, that the two VE-cadherin EC1 domains are oriented in parallel and both Trp2 (red) are 

freely accessibly for additional interactions facilitating cadherin clustering. Structures were rendered with 

Pymol molecular viewer (© DeLano Scientific LLC). 
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Although agonistic and antagonistic effects of single and tandem peptides were shown in 

various assays including AFM, laser tweezers, FRAP, TER and microvessel perfusions, direct 

binding of peptides to cadherin molecules could not be determined, for example in BIAcore 

studies using surface plasmon resonance. These experiments were not successful because 

homophilic binding of full-length cadherin-Fc constructs was too weak to be detected and 

specific binding of SP and TP to recombinant cadherins could not be unequivocally 

demonstrated most likely because peptide-cadherin affinities were probably too low. 

Nevertheless, binding of the Dsg1/3 single peptide to Dsg1-Fc was demonstrated in 

preliminary isothermal titration calorimetry (ITC) experiments. This is a physical technique 

used to determine thermodynamic parameters of chemical interactions by calorimetrically 

measuring thermal changes between highly sensitive cells upon injection of a ligand (i.e. 

peptide) to its receptor (i.e. cadherin). With this technique a dissociation constant of KD = 2.5 

µM ± 4.0 µM was measured for interaction of single peptides with desmoglein 1-Fc in aqueous 

solution. Although this affinity may rather seem low, low KD of cadherin interactions themselves 

might not necessarily need high affinities of peptides towards cadherin interfaces. 

 

Physiologically and in the cellular context, it has to be pointed out that the mode of action of 

tandem peptides may also include other mechanisms, as shown for N-cadherin dimeric 

peptides by the Doherty group (Williams et al., 2002). In their work, it was demonstrated that 

agonistic N-cadherin peptides promoted axonal outgrowth via activation of fibroblast growth 

factor receptor (FGFR). Structural changes in N-cadherin clustering consequently influenced 

heterotypic cadherin interactions. A similar mode of action is possible for our cadherin tandem 

peptides, although our results indicate that cross-bridging of trans-interacting VE-cadherin 

molecules itself is effective to mechanically strengthen cadherin interactions and probably 

represents the primary mechanism.  

 
Figure 14. Sequence alignment of cadherin EC1 domains. Amino acid sequences of VE-cadherin of 

mouse, rat and human origin, different type II cadherins (human cadherin-18, -11 and -6) and human N-

cadherin were compared by ClustalW software alignment. Different amino acids are color-coded due to 

uncharged polar (purple, salmon, green (proline)), aromatic (orange), positively (blue) and negatively 

charged (red) residues. Human VE-cadherin peptide sequence RVDAE is located at amino acid position 

53. 
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A definite explanation of the stabilizing effect of tandem peptides remains elusive. Promising 

strategies involve mutational alterations of cadherin sequences, which have been reported to 

mediate adhesion either in cis or trans. Moreover, NMR studies could provide insights into 

exact TP structures. As a caveat, tandem peptides intrinsically have reduced concentration 

ranges because of competitive equilibria between displacement and dissociations reactions 

from cadherins at higher concentrations. This might limit the practical effectiveness of tandem 

peptide action. Despite these uncertainties, protective actions and concentration ranges of 

these peptides were demonstrated, both in-vitro and in-vivo. 

For potential therapeutic use in humans, improvements and modifications of peptide structures 

have to be made. However, a cyclic pentapeptide containing the HAV-sequence and inhibiting 

N-cadherin trans-interaction has already been commercially developed and is undergoing 

clinical trials as a therapy for treating melanomas (ADH-1 / Exherin™ developed by Adherex 

Technologies, Inc, Durham, USA). It was reported that intravenous doses up to 500 mg/m2 

body surface were safely tolerated in patients (Kelland, 2007). Small molecule drugs mimicking 

same effects would minimize risk of immunological reactions in patients and also dramatically 

decrease the costs of production. As a first step in this direction, full alanine scanning of the 

parent peptide would be needed to determine the core amino acid sequence that is essential 

for the observed protective effects. Afterwards, in-silico screenings of suitable small molecules 

mimicking the structure of the thus identified core sequence could identify target substances 

for downstream in-vitro and finally in-vivo studies. Recently, this strategy has been 

successfully applied to identify inhibitory small molecule substitutions for ADH-1 (Burden-

Gulley et al., 2009; Burden-Gulley et al., 2010). 

 

4.5 Cadherin interaction 

Various models for cadherin interactions have been proposed in the literature. When trying to 

develop an unifying theory of cadherin interactions several conditions have to be considered 

and experimental findings both from a structural, biochemical, biophysical and most of all 

physiological and pathological conditions must be included: 

 

(i) In various experimental setups, monomeric cadherin constructs have been shown to 

directly interact on their own. In a recent study, it has been reported that cis dimer 

formation increased binding probability but did not change adhesion strength (Zhang et 

al., 2009).  An explanation for the failure to detect monomeric interactions in some in-

vitro conditions may be the finding that cadherin monomers can exhibit a “closed” 

monomeric state, which directly competes and hinders interactions. It has been 

proposed that several in-vivo conditions, such as a pH shift and Ca2+ increase reduce 
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energy barriers needed to open the monomeric cadherin structures for dimer 

formations. It is becoming obvious that differentiation between cis- and trans-

interactions of cadherins is often not possible. It has not only been demonstrated that 

both ways of interactions share the same adhesive interface but also that 

supramolecular composition emerges as an essential mechanism in cadherin-mediated 

adhesion. In crystal structures of C-cadherin full-length EC domain constructs, both cis- 

and trans-interactions have been resolved to form dense cadherin clusters. In support 

of this, electron microscopic studies of carefully fixed epidermal sheets revealed 

desmosomal cadherins to be organized in a similar that is highly structured fashion. 

Mature cadherin-based contacts obviously exhibit a supramolecular organization that is 

required or allows strong adhesion. 

(ii) The importance of EC1 domains for cadherin interactions has been unequivocally 

demonstrated. EC1 domains mostly confer specificity for cadherin interactions because 

they mediate initial encounter reactions. However, some biophysical experiments 

indicate the presence of multiple EC domain interactions for strengthening of cadherin 

binding. These may either develop in a direction perpendicular or parallel to cell 

membranes. Although multiple domain interactions have been questions, this does not 

exclude the possibility that these interactions occur and contribute to the dynamic 

establishment of mature, EC1 domain-based adhesions. The absence of multiple 

domain structures in cadherin crystals obviously is due to the use of cadherin EC12 

domain proteins for crystal generation. The single cadherin EC domain interaction 

probably may exhibit a hierarchy of cadherin bonds, which are hidden in some 

experimental conditions. 

(iii) For EC1 domain-based interactions, various atomic models have been described. But 

still, these different structures may describe different variations of cadherin interactions 

that all contribute to overall cadherin cluster formation. EC1 domain interactions that 

involve Trp2-mediated strand swapping seem to be highly conserved for type I and II 

cadherins as well as for desmocadherins. But also other interfaces such as HAV-

related regions contribute to overall adhesion as indicated by cross-bridging cadherin 

peptides in our studies. High structure flexibility as indicated by the structure of various 

cadherins opens the possibility that cadherin cis- and trans-interactions may occur 

between opposing or adjacent cadherins but via the same adhesive interface. 

(iv) Cell-free determinations of heterophilic interactions between different cadherins do not 

represent physiologic conditions. Theoretical calculations predict that specificity of 

cadherin interactions relies on low binding constants of single molecules, which are 

shared among most cadherin subtypes. Cadherin specificity is then achieved via 

cadherin concentration levels. In this context, the recent findings of fast (but weak) and 

slow (but strong) binding kinetics of cadherin interactions corroborate this model. Fast, 
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but weak interactions may rely on Trp2-mediated strand swapping, a mechanism that is 

shared among most cadherins. Slow, but strong interactions then additionally form by 

using other adhesive interfaces. The final interaction is then characterized by a 

supramolecular organization that involves multiple three-dimensional cadherin 

interactions conferring cadherin specificity.  

 

Taken together, cadherins definitely are more than just low-affinity glue (Troyanovsky et al., 

2007). They are sophisticated structures containing hidden adhesive sites and are highly 

regulated under cellular control, which all has to be considered in future investigations. 

 

4.5.1 Future strategies for investigating cadherin interactions 
The attempt of SNAP-tag-mediated direct coupling of proteins for AFM force spectroscopy 

failed due to the hydrophobicity of a cross linking reagent. BG-maleimide, which had been 

provided by a commercial supplier, was unsuitable for the planed experiments because it did 

not dissolve in aqueous solutions that were needed for proper coupling reactions. In the 

meantime, negotiations on the commercial production of an alternative agent, called C8 

propanoic acid benzylguanine (CBG)-maleimide, have been started (Figure 15). This reagent 

has a BG modification that does not hinder binding to SNAP proteins but strongly increases 

solubility in water. Alternatively, SPDP-treatment of CBG-NH2, another commercial building 

block using water-soluble CBG, would yield CBG-NH-PDP, which could be attached to AFM 

 

 

Figure 15. SNAP-tag-mediated directed coupling of fusion proteins 

to AFM tips. To achieve an oriented and specific coupling 

mechanism, Si3N4-tips are amino-functionalized and subsequently 

NHS-PEG-PDP crosslinkers are attached. CBG-maleimide serves as a 

linker for the immobilization of a SNAP-tag-containing cadherin fusion 

protein (molecules not to scale). 
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tips by PEG-maleimide linkers. Using these two linkage steps, specific coupling of CBG 

substrates to AFM tips and mica plates should be easily achieved by already established 

linkage protocols (Ebner et al., 2007).  

 

Promising strategies to study adhesion in response to cadherin oligomerization may include 

chimeric fusion proteins of the FKBP-FRB system (Belshaw et al., 1996; Luik et al., 2008). This 

system includes two protein-protein binding motifs: (i) the FK506 binding protein (FKBP) and 

(ii) FRB, a mutated FKBP rapamycin binding domain of FRAP (FKBP and rapamycin-

associated protein/mammalian target of rapamycin) (Chen et al., 1995). AP21967, a chemical 

derivative of the immunosuppressive drug rapamycin, can be used as a heterodimerizing 

agent connecting the two binding motifs. FKBP and FRB could either be fused to artificial 

cadherin constructs or endogenous cadherin sequences. In combination with linkage to Ig Fc 

domains, a network of oligomerized cadherin molecules could be generated (Figure 16). The 

resulting adhesion of these cadherin-based structures could be easily measured via cell- or 

bead-binding experiments. Furthermore, attachment of CFP and YFP fluorescent proteins for 

 

Figure 16. FKBP/FRB-mediated cadherin oligomerizaiton For inducing efficient cadherin 

oligomerization, cadherin constructs are dimerized via Ig-Fc fusion constructs first. In addition, the 

heterodimerizing protein motifs FKBP and FRB in combination with a heterodimerizing agent (such as 

AP21967) could lead to oligomerized cadherin networks. Attachment of CFP and YFP fluorescent 

proteins for FRET studies could serve as a sensor for cadherin oligomerization. 
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FRET studies could serve as a sensor for cadherin oligomerization and visualize 

oligomerization in live cell experiments.  

 

As already discussed above, determination of heterophilic interactions is strongly dependent 

on the physiological and cellular background. Future studies should therefore be based on 

investigations of the in vivo situation. So far, CEMOVIS-based structures of desmosomal 

cadherins gave the best structural predictions to explain both biophysical properties and other 

structural findings of cadherin interactions. It is therefore essential to combine new 

ultramicroscopic studies with model systems or organisms that effectively represent 

physiological conditions, because even studies with transfected cadherin molecules disturb 

physiological regulation patterns of cadherins for example. Promising AFM experiments 

investigating heterophilic interactions might include strategies to directly measure cadherin 

interactions on cells or assess cell-to-cell adhesion by depositing single cells on AFM tips. 
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6 Appendix 

6.1 Addendum 

6.1.1 Vector construction of VE-cadherin-SNAP-his constructs 
VE-EC15-SNAP-his 

Addition of 3’-terminal poly-histidine tag including stop codon was achieved by oligo annealing 

of primers 5’- GATCCCATCATCATCATCATCATTAA GC -3’ (forward) and 5’- 

GGCCGCTTAATGATGATGATGATGATGG-3’ (reverse) into BamHI/NotI-digested SNAP-tag 

vector pSEMS1-26 (Covalys, Figure 16) to generate pSEMS1-26m_6xhis_STOP. Full-length 

mouse VE-cadherin EC domain was amplified via primers 5’-

GGATATCGCCACCATGCAGAGGCTCACAGAGCT-3’ and 5’- 

GGAATTCCTGGGCTGCCATCTCCTCAC-3’ from template pIRES-VE-EC-1xFKBP-His6 

(Gutberlet, 2006) and inserted into EcoRV/EcoRI – digested pSEMS1-26m-6xhis-STOP to 

yield VECad_pSEMS1-26m6xhis-STOP. Sequence integrity for all constructs was confirmed 

by sequencing. 

 
Figure 17. pSEMS1-26m vector map for the generation of VE-cadherin-SNAP-tag fusion 

constructs.  © Covalys Inc 
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VE-EC15-FKBP-SNAP-his 

Vector VECad_FKBP_pSEMS1-26m6xhis-STOP was generated by cloning a VE-cadherin-

FKBP fragment from template pIRES-VE-EC-1xFKBP-His6 (Gutberlet, 2006) via primers 5’-

GGATATCGCCACCATGCAGAGGCTCACAGAGCT-3’ and 5’- 

GGAATTCTTCCAGTTTTAGAAGCTCCA-3’ into EcoRV/EcoRI-digested pSEMS1-

26m_6xhis_STOP. 

 

VE-EC15-Fc-SNAP-his 

Vector VECad_Fc_pSEMS1-26m_6xhis_STOP was cloned by inserting Fc fragment of human 

IgG 1 (including the hinge region and Ig domains CH2 and CH3) of pEGFP-Cad11-Fc (Heupel 

et al., 2008) via primers 5’- GGAATTCCCCAAATCTTGTGACAAAAC-3’ and 5’- 

GGAATTCTTTACCCGGGGACAGGGAGA-3’ into EcoRI-digested VE-EC15-SNAP-his. 

Correct orientation was verified by restriction enzyme digest with EcoNI. 
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6.1.2 List of abbreviations 
 
3D three dimensional 
A adenosine 
aa amino acid 
AFM atomic force microscopy 
Ala (A) alanine  
Arg (R) arginine 
Asn  (N) asparagine  
Asp (D) aspartic acid  
bp base pair 
BSA bovine serum albumin 
C cytidine 
Ca2+ calcium  
CAR cell adhesion recognition  
CHO cells Chinese hamster ovary cells 
CK cytokeratin 
Cys (C) cysteine  
Da dalton 
Dsc desmocollin  
Dsg desmoglein  
EC extracellular 
ECL enhanced chemoluminescence 
EDTA ethylenediamine tetraacetic acid 
EGF epidermal growth factor 
EGFR epidermal growth factor receptor 
FCS fetal calf serum 
FKBP FK506 binding protein 
G guanosine 
Gln (Q) glutamine  
Glu (E) glutamic acid  
Gly (G) glycine  

HaCaT cells human adult low calcium 
elevated temperature cells 
HAV “histidin-alanine-valine” motif of 
cadherin interaction 
HBSS Hank’s buffered salt solution 
His (H) histidine  
IC intracellular 
Ig immunoglobulin  
Ile (I) isoleucine  
Leu (L) leucine  
Lys (K) lysine  
MAPK mitogen-activated protein kinase 
Met (M) methionine  
Ni2+-NTA nickel-nitrilotriacetic acid 
PAGE polyacrylamide gel electrophoresis 
PBS phosphate buffered saline 
PDB protein data bank 
PF pemphigus foliaceus  
Phe (F) phenylalanine  
Pro (P) proline  
PV pemphigus vulgaris  
PV-IgG pemphigus vulgaris autoantibodies 
SDS sodium dodecyl sulfate 
Ser (S) serine  
T thymidine 
Thr (T) threonine  
Trp (W) tryptophan  
Tyr (Y) tyrosine  
Val (V) valine 
wt wild type 
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