
Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik

Dissertation

Competitive and Voting Location

Joachim Spoerhase

October 2010

Supervisor: Prof. Dr. Hartmut Noltemeier

Referees: Prof. Dr. Hartmut Noltemeier
Prof. Dr. Alexander Wolff
Prof. Dr. Horst A. Eiselt

Zusammenfassung

Gegenstand dieser Arbeit sind bestimmte Klassen von Standortproblemen.
Bei einem Standortproblem geht es darum, einen geeigneten Standort
für eine neu zu eröffnende Einrichtung zu finden. Beispiele für solche
Einrichtungen sind Geschäfte, Warenlager, Fabriken, Krankenhäuser, aber
auch Server in einem Computer-Netzwerk. Welche Standorte geeignet
sind, wird durch ein numerisches Qualitätsmaß vorgegeben, das auf den
Abständen des jeweiligen Standorts zu den Kunden oder Benutzern der
Einrichtung beruht. Aufgrund der Vielzahl möglicher Anwendungen gibt
es verschiedenste Arten solcher Qualitätsmaße.

In dieser Arbeit werden zwei Klassen von Standortproblemen, soge-
nannte kompetitive Standortprobleme und Voting-Standortprobleme, unter-
sucht. Im Folgenden werden beide Problemklassen kurz dargestellt.

Für viele in der Fachliteratur betrachtete Standortprobleme unterstellt
man einen einzelnen, monopolistischen Anbieter, der einen Standort für
eine neu zu eröffnende Einrichtung sucht. Im Gegensatz dazu geht man
bei kompetitiven Standortproblemen von zwei oder mehr Anbietern aus, die
um Kundschaft konkurrieren. Die vorliegende Arbeit konzentriert sich auf
Modelle mit genau zwei Wettbewerbern, genannt Leader und Follower. Es
wird angenommen, dass diese Anbieter ähnliche Produkte zu ähnlichen
Preisen anbieten. Aus Sicht der Kunden unterscheiden sich die Anbieter
dann lediglich durch ihre Standorte. Jeder Kunde wählt den ihm nächstge-
legenen Anbieter. Die Platzierung der Einrichtungen von Leader und Fol-
lower erfolgt sequentiell: Zunächst wählt der Leader seinen Standort. Die
Kenntnis dieses Standorts ermöglicht es dem Follower, einen Standort für
seine Einrichtung zu bestimmen, der seinen eigenen Ertrag (Gesamtbedarf
seiner Kunden) maximiert. Dadurch wird das Verhalten des Followers für
den Leader vorhersehbar, was dieser bei seiner initialen Entscheidung be-
rücksichtigen kann, um einen für ihn optimalen Standort zu finden. In den
hier betrachteten Modellen agieren die Wettbewerber rein eigennützig.

Bei Voting-Standortproblemen geht es hingegen um soziale Gesichtspunk-
te: Ein Anbieter versucht, einen Standort zu bestimmen, der die Benutzer
oder Kunden soweit wie möglich zufrieden stellt. Solche Fragestellungen
sind beispielsweise bei der Planung öffentlicher Einrichtungen relevant.

3

In den meisten Fällen gibt es keinen Standort, der von allen Benutzern
favorisiert wird. Daher muss ein Kompromiss gefunden werden. Hierzu
werden Kriterien betrachtet, die auch in Wahlsystemen eingesetzt werden:
Ein geeigneter Standort wird als Sieger einer gedachten Wahl verstanden,
bei der die möglichen Standorte die zur Wahl stehenden Kandidaten und
die Kunden die Wähler darstellen.

Der Zusammenhang zwischen kompetitiven Standortproblemen und
Voting-Standortproblemen besteht darin, dass Standorte, die vorteilhaft
für den Leader im kompetitiven Modell sind, auch gute Kompromisse im
Sinne der Voting-Standortprobleme sind.

Die zentrale Fragestellung dieser Arbeit ist, wie schnell sich kompeti-
tive Standortprobleme und Voting-Standortprobleme algorithmisch lösen
lassen. Als Maß für die Effizienz eines Algorithmus dient seine asympto-
tische Laufzeit. Als Entscheidungsraum werden Graphen verwendet. Das
heißt, die potentiellen Standorte und die Kunden werden durch Knoten
oder Punkte auf Kanten eines Graphen modelliert. Die Abstände zwischen
Kunden und Standorten ergeben sich durch Kürzeste-Wege-Distanzen im
zugrundeliegenden Graphen.

Im Folgenden werden wesentliche Ergebnisse der vorliegenden Arbeit
zusammengefasst.

Im ersten Teil der Arbeit werden relaxierte Einfachstandortprobleme behan-
delt. Bei einem Einfachstandortproblem platziert jeder Anbieter genau eine
Einrichtung. Durch die Relaxierung wird eine gewisse Zurückhaltung der
Kunden modelliert, wie sie in der realen Welt beobachtet werden kann: Ein
Kunde ist erst dann bereit, zu einem neuen Anbieter (Follower) zu wech-
seln, wenn dieser signifikant besser als der bereits existierende ist. Im hier
untersuchten Modell muss dazu die Differenz der Abstände des Kunden
zu Leader bzw. Follower eine vorgegebene Schranke überschreiten.

Zuerst werden monotone Gewinnfunktionen als ein neues und allgemeines
Modell für relaxierte kompetitive Standortprobleme und Voting-Standort-
probleme eingeführt (Kapitel 3). Alle aus der Fachliteratur bekannten Ein-
fachstandortprobleme, die in dieser Arbeit betrachtet werden, lassen sich
durch monotone Gewinnfunktionen beschreiben. Es ergeben sich jedoch
auch neue, bislang noch nicht untersuchte Probleme.

Im ersten Teil der Arbeit werden monotone Gewinnfunktionen vorran-
gig auf Baumgraphen betrachtet. Wir entwickeln einen Linearzeit-Algorith-
mus zur Bestimmung einer optimalen Lösung für eine monotone Gewinn-
funktion auf einem Baum (Kapitel 4).

Das Problem, die Menge aller Lösungen einer monotonen Gewinnfunk-
tion auf einem Baum zu bestimmen, erweist sich als schwieriger (Kapi-
tel 5). Wir beweisen (für bestimmte Rechnermodelle) eine untere Laufzeit-

4

schranke vonΩ(n logn), wobei n die Anzahl der Knoten im Baum ist. Auf
der anderen Seite wird ein Algorithmus mit einer optimalen Laufzeit von
O(n logn) zur Bestimmung der Lösungsmenge vorgestellt. In bestimmten
Spezialfällen ist sogar lineare Laufzeit möglich. Als Nebenprodukt ergibt
sich ein Linearzeit-Algorithmus für das sogenannte Stackelbergproblem mit
parametrischen Preisen. Dies ist eine wesentliche Verbesserung gegenüber
dem bekannten Algorithmus mit einer Laufzeit von O(n3 logn).

Der zweite Teil der Arbeit befasst sich mit kompetitiven Mehrfachstand-
ortproblemen. Hier platzieren Leader und Follower eine vorgegebene An-
zahl von Einrichtungen. Kompetitive Mehrfachstandortprobleme erwei-
sen sich als wesentlich schwieriger als die entsprechenden Einfachstand-
ortprobleme.

Zunächst wird die Komplexität kompetitiver Mehrfachstandortproble-
me auf allgemeinen Graphen untersucht (Kapitel 7). Wir betrachten das Pro-
blem des Leaders (Leader-Problem), eine optimale Platzierung zu finden,
und zeigen, dass das korrespondierende Entscheidungsproblem Σ

p
2 -voll-

ständig ist. Dies verschärft das bekannte NP-Schwere-Resultat und legt
nahe, dass das Leader-Problem schwieriger ist als viele typische, in der
Fachliteratur untersuchte Optimierungsprobleme.

Wir untersuchen auch die Approximierbarkeit kompetitiver Mehrfach-
standortprobleme. Wir geben eine untere Schranke von n1−ε für die Ap-
proximierbarkeit des Leader-Problems an. Diese zeigt, dass es (unter der
Annahme P 6= NP) keinen Approximationsalgorithmus für das Leader-
Problem gibt, der auch im Worst-Case zufriedenstellend approximiert. Für
das Follower-Problem ergibt sich ein Verfahren mit konstanter Approxi-
mationsgüte. Wir zeigen, dass diese Güte die bestmögliche ist.

In den verbleibenden Kapiteln werden die kompetitiven Mehrfach-
standortprobleme für Bäume und Pfade untersucht.

Der Komplexitätsstatus des Leader-Problems auf Bäumen ist eine seit lan-
gem offene Frage (Hakimi, 1990). Wir zeigen, dass das Leader-Problem so-
gar auf Pfaden NP-schwer ist, was diese Frage somit beantwortet (Kapi-
tel 9). Auf der positiven Seite wird ein vollpolynomielles Approximations-
schema (FPTAS) für Pfade entwickelt. Für verschiedene Spezialfälle des
Leader-Problems auf Bäumen stellen wir effiziente Algorithmen vor oder
beweisen die NP-Schwere.

Für das Follower-Problem auf Bäumen ist bereits ein Polynomialzeit-Algo-
rithmus bekannt. Wir konzentrieren uns auf einen Spezialfall, in dem der
Follower nur eine Einrichtung platziert, der Leader jedoch mehrere (Kapi-
tel 8). Wir entwickeln einen Algorithmus mit O(n logn) Laufzeit, der das
entsprechende Follower-Problem für Bäume löst. Dieser schlägt das bis-
lang schnellste Verfahren, welches eine Laufzeit von O(n log2 n) hat.

5

Abstract

The subject of this thesis is the investigation of certain classes of location
problems. A location problem aims at finding a suitable location for a new
facility that is to be opened. Examples for such facilities are shops, ware-
houses, plants, hospitals, but also servers in a computer network. The
adequacy of a location is specified in terms of a given numerical quality
measure that is based on the distances between the respective location and
the customers or users of the facility. Due to the multitude of possible ap-
plications there is also a variety of different quality measures.

This thesis focuses on two classes of location problems: so-called com-
petitive location problems and voting location problems. In the following both
problem classes are briefly described.

Many location problems dealt with in the literature assume the existence
of a single monopolistic provider who wants to open a new facility and
looks for a good location. In contrast, competitive location investigates sce-
narios where two or more competing providers place their facilities and
users can decide between the providers. In this thesis, models with two
sequentially acting competitors, leader and follower, are considered. It is
assumed that both competitors offer the same type of good or service at
the same price. Hence the user preference can be expressed solely in terms
of distances to the locations of the facilities. Every customer chooses the
closest competitor. Once the leader has chosen a location, it is the fol-
lower’s turn to determine a location maximizing his own revenue (the to-
tal demand of his customers). Hence the follower’s reaction is predictable,
which the leader can take into account when making the initial decision. It
is assumed that the competitors act non-cooperatively.

Voting location, in contrast, aims at identifying locations that meet social
criteria. The provider wants to satisfy the users (customers) of the facility
to be opened. In general, there is no location that is favored by all users.
Therefore, a satisfactory compromise has to be found. To this end, crite-
ria arising from voting theory are considered. The solution of the location
problem is understood as the winner of a virtual election among the users
of the facilities, in which the potential locations play the role of the candi-
dates and the users represent the voters.

7

The link between competitive and voting location is that a location
which is advantageous for the leader in competitive location is also a good
compromise in terms of voting location.

The main question of this thesis is how fast competitive and voting lo-
cation problems can be solved algorithmically. The measure for the effi-
ciency of an algorithm is its asymptotic running time. The decision space
is always a graph. That is, the potential locations and the customers are
modeled by nodes or points on edges of a graph. The distances between
customers and locations arise from the shortest-path distances in the un-
derlying graph.

In the following we summarize some important results of this work.
The first part of this thesis examines relaxed single location problems. In a

single location problem each provider places exactly one facility. The re-
laxation is a means of modeling some kind of reluctance of the customers
as it can be observed in the real world: A customer is willing to change
his provider only if the new provider (the follower) is significantly better.
In the model investigated here, a customer changes to the follower if the
difference of the distances of this customer to leader and follower, respec-
tively, exceeds a given threshold.

First, we introduce monotonic gain functions as a new and general model
for relaxed competitive and voting location problems. (Chapter 3). All par-
ticular single location problems that are known from literature and treated
in this thesis can be described by such a monotonic gain function. But also
new problems arise.

In the first part of this thesis we examine monotonic gain functions pri-
marily on tree graphs. We develop a linear time algorithm for determining
an optimal solution of a monotonic gain function on a tree (Chapter 4).

The problem of computing the set of all solutions of a monotonic gain
function on a tree turns out to be more difficult. We prove a lower bound
of Ω(n logn) on the running time of any algorithm (in terms of certain
computer models), where n is the number of nodes in the tree. On the
other hand, an algorithm with an optimal running time of O(n logn) is
proposed. In certain special cases we can even achieve linear time. As a
byproduct we obtain a linear time algorithm for the so-called Stackelberg
problem with parametric prices. This is a considerable improvement upon
the existing algorithm that has a running time of O(n3 logn).

The second part of this thesis deals with multiple competitive location.
Here, leader and follower place a given number of facilities each. It turns
out that multiple competitive location problems are much harder than their
counterparts in single competitive location.

8

First, the complexity of multiple competitive location problems on gen-
eral graphs is analyzed (Chapter 7). We consider the problem of the leader
(leader problem, for short) to find an optimal placement and show that the
corresponding decision problem is Σp

2 -complete. This sharpens the known
NP-hardness result and suggests that the leader problem is harder than
many typical optimization problems known from the literature.

We investigate also the approximability of multiple competitive location
problems. We prove a lower bound of n1−ε on the approximability of the
leader problem. This shows (assuming P 6= NP) that there is no approxi-
mation algorithm which approximates satisfactorily also in the worst case.
For the follower problem an algorithm with a constant approximation ratio
is given. It is also shown that this factor is best possible.

In the remaining chapters multiple competitive location problems are
investigated on trees and paths.

The complexity status of the leader problem on trees has been a long-
standing open question (Hakimi, 1990). We show that the leader problem
is NP-hard even on paths thereby answering this question (Chapter 9). On
the positive side a fully polynomial time approximation scheme (FPTAS)
for paths is developed. Additionally, we consider several special cases
of the leader problem on trees for which we either propose efficient al-
gorithms or provide NP-hardness proofs.

For the follower problem on trees a polynomial time algorithm is already
known. We focus on the special case where the follower places only one
facility while the leader locates a plurality of facilities (Chapter 8). We
present an algorithm that runs inO(n logn) time. This beats the best exist-
ing algorithm for this problem, which has a running time of O(n log2 n).

9

Contents

1. Introduction and Preliminaries 13
1.1. Introduction . 13
1.2. Preliminaries . 20

2. State of the Art and Research Objectives 29
2.1. A Brief Overview . 29
2.2. A Classification of the Problems Under Investigation 31
2.3. Previous Results and Research Objectives 35

I. Single Location 39

3. Monotonic Gain Functions 41
3.1. User Preference . 42
3.2. Competitive Location Problems 43
3.3. Voting Location Problems . 47
3.4. Relaxed User Preferences . 49
3.5. Generalization to Monotonic Gain Functions 53
3.6. Concluding Remarks . 58

4. Computing a Φ-Solution of a Tree 59
4.1. Introduction . 59
4.2. Computing the AbsoluteΦ-Score of a Point 62
4.3. Computing an AbsoluteΦ-Solution 66
4.4. Discussion of DiscreteΦ-Solutions 81
4.5. Strong Φ-Solutions . 82
4.6. Competitor-Sensitive Gain Functions 83
4.7. Concluding Remarks . 84

5. Computing all ϕ0-Bounded Solutions of a Tree 85
5.1. Leader Independent Monotonic Gain Functions 86
5.2. Computational Lower Bound for the Absolute Security Set . 90
5.3. Computing the Set of All ϕ0-Bounded Solutions 93

11

Contents

5.4. Computing All ϕ0-Tolerant Solutions on Trees 100
5.5. Characterization of ϕ0-Tolerant Solutions for Leader Inde-

pendent MGFs . 102
5.6. Computing AllΦ-Solutions on Trees 103

6. Summary and Further Remarks 107
6.1. Summary . 107
6.2. Remarks on General Graphs 107
6.3. Threshold Functions . 110
6.4. Basic Properties of Threshold Functions 111
6.5. Future research . 112

II. Multiple Location 113

7. Multiple Competitive Location on General Graphs 115
7.1. Introduction and Problem Definition 115
7.2. Relations Between Absolute and Discrete Model 118
7.3. Complexity of the Leader Problem 122
7.4. Approximability . 131
7.5. Conclusion and Further Remarks 134

8. The Follower Problem on Trees 135
8.1. Tamir’s Algorithm . 136
8.2. Single Follower on Trees . 137
8.3. Concluding Remarks . 152

9. The Leader Problem on Trees and Paths 153
9.1. Absolute (r, p)-Centroid on Paths 153
9.2. Discrete (r, p)-Centroid on Paths 156
9.3. Discrete (r, p)-Centroid on Trees 160
9.4. An FPTAS for (r, p)-Centroid on Paths 163
9.5. (1, p)-Centroid on Trees . 171

10.Summary and Further Remarks 175
10.1. Summary . 175
10.2. Incremental Aspects . 176
10.3. Future Research . 181

12

1. Introduction and Preliminaries

1.1. Introduction

Location Problems

An old saying states that the three attributes of property that matter most
are location, location, location. In fact, the choice of adequate locations
for facilities is one of the fundamental problems arising from economic and
public planning. Here, we use the notion “facility” in the broadest sense.
It refers to any object for which it makes sense to speak of the quality of
its location. Examples are shops, warehouses, plants, hospitals, schools,
libraries, air and marine ports, but also servers in a computer network.

The origins of location theory, the field of locational issues, date back to
the beginning of the 19th century when locational decision were mainly
examined from the viewpoint of economic geography. Today, location has
become a well-established, interdisciplinary field with a large body of pub-
lications in economy, geography, game theory, and computer science.

There are several reasons why location theory plays such a vital role.
First, locational decisions are ubiquitous in human life. This ranges from
the choice of well located flats by private individuals to the strategic place-
ment of department industrial plants, or even the political and economic
decisions for the location of a new airport. Second, opening a facility often
involves considerable setup costs and is thus inherently long term or even
irrevocable. This makes it especially important to select such a location
carefully. And finally, locational decisions can have significant impact on
private, economic, or public life. For example, one may think of the mani-
fold effects for the citizens and the economy of a given town when a new
department store is opened.

There are two main approaches in location theory.
The first direction deals with descriptive models and is mainly treated

by economists and geographers. The goal is to explain existing locational
configurations, for example, why some branches of industry are spatially
concentrated around certain centers. In this area the focus is placed on
developing realistic models that are able to describe the real world.

13

1. Introduction and Preliminaries

The second approach aims at providing quantitative methods that sup-
port the actual process of decision making. For example, we might ask at
what specific place in a given town we should locate a new school such
that a certain, well-defined quality criterion is met. Such problems are tack-
led by computer scientists and operations researchers when they deal with
locational problems. And also this work belongs to that line of research.

Since our problems require the formulation of objective quality mea-
sures, we will not be concerned with locational decisions of single indi-
viduals, say, how to find a good flat in a given town. Such decisions are
often dominated by subjective factors and considerations which are only
valid in that particular case. Rather, we will investigate large-scale scenarios
(such as finding locations for schools, libraries or fast food stores) that af-
fect a plurality of users and where subjective factors of single individuals
may be neglected.

Due to the wide-ranging applicability of this kind of questioning there
is, however, no universal quality criterion of a location. Rather, an appro-
priate placement of facilities depends heavily on the respective scenario.

• A public library may be located so as to minimize the sum of distances
to its readers (social welfare).

• The placement of hospitals requires that each potential patient have a
sufficiently quick access route.

• The placement of servers in a computer network could maximize the
quality of service.

• Transmission antennas could be placed so that as many clients as pos-
sible are covered.

• Ambulance or tow truck stations along major motorways (interstate
highways) could require quick routes to key stretches.

Besides the quality criteria, these examples also differ in the structure of
underlying decision space (that is, where the facilities can be placed): The
example of the transmission antennas allows the provider to place within
a given planar region. In contrast, the remaining examples involve some
kind of network (road or computer network). The tow truck example differs
from the other network scenarios in that the underlying network (motor-
ways) has a particularly simple and sparse structure. In fact, a large part of
this thesis is devoted to location problems on such simple network struc-
tures.

14

1.1. Introduction

If one abstracts from the concrete case of application, the main concern
is to select a location from a given space of potential positions such that
the demands of the users of the facility are served according to a certain
quality measure such as cost, travel distance or gain. We speak of a location
problem. One often encounters scenarios where a multitude of facilities are
to be placed all at once. Such problems are named multiple location problems.
For example, we may imagine a fast food chain establishing a number of
stores in a given city. The chain might aim at scattering its stores over the
city so that as many customers as possible find at least one store in their
vicinity.

There are two main steps when solving a locational problem in the afore-
mentioned sense.

The first step consists in formulating an appropriate model and includes
in particular the identification of a space of potential locations as well as
the definition of an adequate quality measure.

In this work, we will mainly address the second step, namely, finding
good or even optimal solutions to given locational models. That is, we are
looking for algorithms that compute optimal or approximate solutions for
certain location problems and use only a reasonable amount of computa-
tional resources such as time or space. As location problems, especially
multiple ones, are often extremely difficult to solve we will also prove that
some of the problems in question do not admit efficient algorithms at all.
We remark that our analyses are of theoretical nature, that is, we concen-
trate on provable results on the asymptotic running time and the approxi-
mation performance of algorithms and the complexity of problems. We do
not provide experimental evaluations or heuristic approaches.

We will focus on two sorts of location problems: voting location problems
and competitive location problems.

Voting Location

Many location problems in literature are formulated from the viewpoint of
the provider which locates the facility. We remember the example of the
fast food chain that wants to locate a number of new stores in a given city.
The goal of this company could be, for example, to minimize the setup
costs of the stores, to maximize the revenue generated by the customers, or
to maximize the net profit.

Voting location aims at satisfying the users (customers) of the facilities
to be opened. The vital problem is that in general, different users have
different perceptions of what a good location is. Therefore, the goal is to

15

1. Introduction and Preliminaries

find a satisfactory compromise that is tolerated by a majority of the users;
much as in elections where a group of individuals decides on a candidate
that may be considered acceptable by that group as a whole. To put it
another way, voting location aims at identifying locations that meet social
criteria. The solution of a location problem is understood as the winner
of a virtual election among the users of the facilities. Therefore, we will
consider criteria arising from voting theory.

The generic situation of an election, independent from location prob-
lems, is as follows. A number of candidates are up for election. There are
voters each of which has preferences concerning the candidates. Based on
those preferences a winner of the election is then determined by means of
a suitable social choice function.

For this thesis, the Condorcet criterion is of special importance. A candi-
date A of an election is a Condorcet winner if there is no candidate B that is
preferred over A by an absolute majority of the voters. Figure 1.1 depicts

Voter 1 Voter 2 Voter 3

Candidate B Candidate C Candidate D
Candidate A Candidate A Candidate A
Candidate D Candidate B Candidate C
Candidate C Candidate D Candidate B

FIG. 1.1.: Example of an election illustrating the Condorcet criterion. Each col-
umn specifies the preferences of the respective voter where a candidate
is preferred over another one if he occurs further up in the column.

an example of an election. Here, each column specifies the preferences of
the respective voter. For example, Voter 1 prefers Candidate B over Candi-
date A and Candidate A over Candidate C. In this scenario, Candidate D
is no Condorcet winner since Candidate A is preferred over D by Voters 1
and 2, which is an absolute majority. Neither are Candidates B and C Con-
dorcet winners. In contrast, Candidate A is a Condorcet winner since every
opposing candidate is preferred by at most one voter.

We remark that the Condorcet criterion takes into consideration the com-
plete preference structure of the voters. This has to be compared with elec-
toral systems in which each voter casts a vote only for his favorite candi-
date. Electoral systems of this kind are often found in real political sys-
tems. Making use of such a system, Candidate A in Figure 1.1 would not
win since he were the only Candidate who has not got any vote. In fact
Candidate A seems to be a “suitable” compromise since, albeit not the fa-

16

1.1. Introduction

vorite of anyone, he is tolerated by all voters and may be considered as a
“stable” solution.

A critical lack of the Condorcet principle is that a Condorcet winner does
not need to exist. For an example, consider the scenario depicted in Fig-
ure 1.2. For this reason we will consider several relaxations of the Condorcet

Voter 1 Voter 2 Voter 3

Candidate A Candidate C Candidate B
Candidate B Candidate A Candidate C
Candidate C Candidate B Candidate A

FIG. 1.2.: Example of an election where no Condorcet winner exists.

criterion. One popular relaxation is the Simpson criterion where we require
that the strongest opposition of the winner be preferred by a minimum
number of voters.

In this thesis, we will apply voting to location theory in the following
way. The users of the facilities play the role of the voters and the potential
locations are considered as the candidates being up for election. The out-
come of the location problem is then the location that corresponds to the
winner of the corresponding virtual election. The preferences of the users
arise from the distances between the users and the potential locations. That
is, the users want to live as near to the facility as possible. The Condorcet
principle can then be reformulated for location problems as follows. A lo-
cation x is a Condorcet location if there is no location y such that more than
half of the users is closer to y than to x.

Competitive Location

As we have seen, location theory deals with problems of optimally plac-
ing facilities so as to serve the individual demands of a given set of users.
Many problems, including those we have discussed in the previous sec-
tions, consider the case where one monopolistic provider places all of the
facilities. To put it another way, it is often assumed that all facilities are
placed with respect to a uniform quality criterion.

Modern market economies are usually governed by competitive mecha-
nisms whereas monopolies, often highly regulated, is desired only in a
limited number of specific market ranges. The interaction of different au-
tonomous actors or players, which is also a main aspect of competition,
is the domain of the flourishing field of game theory. To combine location

17

1. Introduction and Preliminaries

theory and game theory by introducing competition in locational models
might thus be seen as a contemporary aim.

Competitive location investigates scenarios where two (or more) providers
place their facilities and users can decide between the providers.

In this thesis, we primarily assume that all competitors provide the same
type of good or service, hence the user preference can be expressed solely
in terms of distances to the locations of the servers. We will also assume
that the competitors act non-cooperatively. That is, every competitor tries
to maximize his own benefit.

Let’s take up the example of the fast food chain and assume that the
company has found adequate locations for its stores. As the business is
going well and the chain’s success becomes known, a second, competing
company enters the market. Suppose that the differences regarding the
choice of products, quality and price are negligible between both com-
panies. Then it seems natural that a customer is willing to switch to the
new company if the access route is shorter. Since we assume that the com-
petitors act non-cooperatively, the new company aims only at maximizing
its own revenue, which reduces to the maximization of sales as prices are
fixed. More precisely, it seeks to locate its stores so that there are as many
customers as possible for which the nearest store belongs to the new com-
pany.

Another example of competition for good locations are the aforemen-
tioned tow truck stations along major motorways. In case of a breakdown
a car driver will prefer the closest station in order to get help as quickly
as possible. A special feature of this scenario is the particularly simple
structure of the underlying road network. This makes it easier to tackle
the problem by means of efficient algorithms. In fact, identifying simple
network structures that allow to solve competitive location problems effi-
ciently is one of the main aspect of this thesis.

We will consider competitive location problems with two, sequentially
moving players. In our terminology, the company (or more generally the
provider) that comes first will be called leader and the second one follower.

The behavior of leader and follower depends heavily on their knowledge.
In the foregoing example we assumed that the leader is not aware of the
follower’s plans of entering the market. The situation changes dramati-
cally if the leader knows in advance the number of facilities to be placed
by the follower. Once the leader has chosen his location, it is the follower’s
turn to determine an optimal location. Hence the follower’s reaction is
predictable, which the leader can take into account when he makes the ini-
tial decision. We call the resulting problem the leader problem. The follower

18

1.1. Introduction

problem consists in determining an optimal placement for the follower un-
der the presence of existing (leader) facilities.

It will be a recurring theme of this thesis that the leader problem is sub-
stantially harder to solve than that of the follower. But just for this very
reason, the leader problem will also turn out to be a lot more interesting
with respect to the techniques used to settle its computational complexity.

Overview

This thesis is divided into two parts.
The first part deals with single voting and competitive location. That

is, each provider places a single facility. In this part, the focus will be on
particularly fast algorithms on tree graphs.

The second part examines multiple voting and competitive location prob-
lems where a given number of facilities is to be placed. Here, we will
concentrate on the complexity and approximability of those location prob-
lem. That is, we will systematically identify classes of graphs for which
the problems are efficiently solvable and more complex classes for which
they are hard. We will also investigate conditions under which we can ef-
ficiently compute approximate solutions that come close to the optimum.

Acknowledgments

I want to thank my adviser Professor Hartmut Noltemeier for his guid-
ance and many valuable suggestions without which this thesis would not
have been possible. I also thank PD Dr. Hans-Christoph Wirth for nu-
merous, fruitful research discussions and for proofreading this thesis; Pro-
fessor Alexander Wolff for giving me the opportunity to finish this work,
for proofreading and many valuable improvement suggestions; Professor
H.A. Eiselt for many valuable improvement suggestions; Marc Spislän-
der for proofreading; and Lisa Zauner, my colleagues, my family and my
friends for their backing and patience during my research.

Credits

The results on the complexity (Section 7.3.2) and approximability (Sec-
tion 7.4) of the (r, p)-centroid and the (r, Xp)-medianoid problem and the
algorithms for computing the set ofϕ0-bounded, the set ofϕ0-tolerant and
the set of efficientΦ-solutions of leader independent monotonic gain func-
tions on trees (parts of Chapter 5) are based on joint work with Hartmut

19

1. Introduction and Preliminaries

Noltemeier and Hans-Christoph Wirth [NSW07]. The result on incremen-
tal (r, p)-centroid on degree-bounded graphs (Section 10.2) was jointly ob-
tained with Hartmut Noltemeier, Jan Wiefel and Hans-Christoph Wirth
[Wie08]. All other results (except for Section 8.2.4) were developed with
Hans-Christoph Wirth [SW10, SW09b, SW09a, SW09c, SW08, SW07]. The
algorithm of Section 8.2.4 has not been published yet.

1.2. Preliminaries

We assume that the reader is already familiar with the basics in theoretical
computer science and graph theory. The aim of this section is to fix nota-
tions and terminology informally. Papadimitriou [Pap94], Ausiello et al.
[ACG+99] and Even [Eve79] give more formal and comprehensive intro-
ductions to these fields.

The knowledgeable reader may skip this section confidently and use it
as a reference when needed.

1.2.1. Decision and Optimization Problems

The subject of this thesis is the analysis of several computational problems
from the area of competitive and voting location.

One of the most basic sort of computational problems consists in decid-
ing whether a given instance of the problem satisfies a certain property.

Definition 1.2.1 A decision problem Π is characterized by a countable
set D of instances and a partition Y ∪ N of D into a set Y of positive and a
set N of negative instances.

In practical scenarios, we often encounter problems where we have to
compute a solution which is as good as possible according to some given
quality measure.

Definition 1.2.2 An optimization problem Π is a tuple (D, SOL,m,goal)
satisfying the following properties.

1. D is some countable set of instances.

2. SOL is a mapping that assigns to each instance I ∈ D a non-empty
set S(I) of feasible solutions.

3. m is a function, called goal function, that assigns to each pair (I, s) with
I ∈ D and s ∈ SOL(I) a positive rational numberm(I, s) representing
the quality of the feasible solution swith respect to I.

20

1.2. Preliminaries

4. goal ∈ {min,max} specifies whetherΠ is a minimization or a maximiza-
tion problem.

By SOL∗(I) we denote the set of optimal solutions of instance I, that is, all
solutions from SOL(I) such that m(I, s) is maximum if goal = max and
minimum if goal = min. The corresponding value of the goal function is
denoted bym∗(I).

There are several ways to consider an optimization problem Π as a com-
putational problem:

Construction problem Given an input instance I ∈ D compute some op-
timal solution s ∈ SOL∗(I).

Evaluation problem Given an input instance I ∈ D compute the value
m∗(I).

Decision problem Given an input instance I ∈ D and a positive number
K decide whether m∗(I) ≥ K if goal = max. If goal = min decide
whetherm∗(I) ≤ K.

1.2.2. Algorithms

We will mainly analyze problems from an algorithmic point of view. That
is, we will investigate the existence of algorithms meeting certain criteria.

In our context, an algorithm is what can be expressed as a program on a
RAM (random access machine [Pap94]). A RAM is a simple abstract ma-
chine capable of modeling essential aspects of real computers. A RAM
owns a countably infinite number of registers. Each of these register can
store an integer number. The machine can perform the following opera-
tions: arithmetic operations (+, −, ×, /), direct and indirect addressing and
branching. A program is a sequence of instructions each of them referring to
an operation of the above type.

Since arithmetic operations on the rationals can easily be simulated by
integer arithmetic we will assume that our algorithms can also cope with
rational numbers.

In order to allow our algorithms to solve problems we designate some
of the registers to specify the input and the output of the algorithm, respec-
tively. For all problems we will deal with, it is possible to represent the
input and the output by sequences of integer values.

21

1. Introduction and Preliminaries

1.2.3. Running Time of Algorithms

In the simplest case, the running time of an algorithm under a given input
is the number of operations performed during the execution of the corre-
sponding program. We call this model unit-cost RAM.

Following common practice, we will not be interested in the running
time of an algorithm for a concrete input but rather in the asymptotic growth
of the running time as a function of the input size. To this end we will make
use of the well known big-oh notation.

Definition 1.2.3 Let f, g : N→ R+ be two functions.

1. We say that f ∈ O(g) if there are positive numbers c, n0 such that
f(n) ≤ cg(n) for all n ≥ n0.

2. We say that f ∈ Ω(g) if g ∈ O(f).

3. We say that f ∈ Θ(g) if f ∈ O(g) and g ∈ O(f) holds.

4. We say that f ∈ o(g) if f ∈ O(g) but not f ∈ Ω(g).

5. We say that f ∈ ω(g) if f ∈ Ω(g) but not f ∈ O(g).

As it is the case for real computers, we imagine that the values stored
in the registers of a given RAM are represented as a sequence of bits. The
number of bits used to represent a value n ∈ N is called the size of n.
Using the standard binary representation of integers we may assume that
the size of a number n isO(logn). The size of the input can be represented
in several ways. For example, we may simply count the number of integer
values the input consists of. A more refined analysis may additionally take
into account the size of those values.

We call an algorithm efficient if its running time is polynomially
bounded. More formally, its running time is O(nk) for some fixed k

where n represents the size of the input. For example, we can sort a set of
n integers in time O(n logn) using the well-known merge sort algorithm.
This is certainly a polynomial running time and therefore merge sort is an
efficient algorithm.

It has been observed that the unit-cost RAM model, in its full general-
ity, is not realistic since it allows for the multiplication of arbitrarily large
numbers in a single step of computation [Pap94].

A more realistic model, called log-cost RAM assigns to each operation a
time which is logarithmic in its operands. This is motivated by the fact
that real processors use O(logn) bits to represent a number n and only a
constant number of bits are manipulated during a single clock cycle.

22

1.2. Preliminaries

For the sake of simplicity, we will use the unit-cost model avoiding “mis-
use” in the above sense, that is, we will take care that the registers always
store values whose size is polynomially bounded in the input size.

1.2.4. Complexity Classes

We say that a decision problem Π reduces to some decision problem Π ′ if
there is an efficient algorithm that computes for each instance I of Π some
instance f(I) of Π ′ such that I is a positive instance for Π if and only if f(I)
is a positive instance for Π ′. Intuitively, this says that Π is not harder than
Π ′ since we can decide Π efficiently if we can do so for Π ′.

A complexity class is a class of decision problems. A problem Π (not nec-
essarily a decision problem) is hard for a complexity class C (also called
C-hard) if every problem in C reduces to Π. The problem Π is called com-
plete for C (also called C-complete) if Π is additionally in C; this means in
particular that Π is a decision problem. The problems that are complete
for some complexity class C are often considered as the “most difficult”
problems in that class.

The complexity class P consists of all decision problems that admit ef-
ficient algorithms. The class NP contains all decision problems for which
there is an efficient algorithmA (that is, a program of a RAM) such that for
any instance I the following holds.

• If I is a positive instance then there is some s such that A accepts the
pair (I, s) and the size of s is polynomially bounded in the size of I.

• If I is a negative instance then A rejects (I, s) for any s.

The class NP is a superset of P. In fact, it is widely believed that P 6= NP,
that is, NP is supposed to be a proper superset of P. Papadimitriou [Pap94]
provides a detailed discussion of this issue.

A common way to justify that a problem is not efficiently solvable con-
sists in showing that it is NP-hard. This implies that there is no polynomial
time algorithm for this problem unless P = NP.

Let C be a complexity class that contains C-complete problems. A RAM
augmented by an oracle for C is defined like the ordinary RAM but furnished
with an additional operation allowing to decide some C-complete problem
in constant time. If D is a complexity class whose definition is based on
the RAM model then DC denotes the complexity class that is defined like
D with the only difference that we use a RAM augmented by an oracle for
C instead of an ordinary RAM.

23

1. Introduction and Preliminaries

The polynomial time hierarchy [SU02] is a natural way to generalize the
classes P and NP by means of oracle machines. In particular, we set Σp

0 := P
and Σp

i+1 := NPΣ
p
i . It is clear that the family Σp

0 ⊆ Σ
p
1 ⊆ Σ

p
2 ⊆ . . . of this in-

ductively defined complexity classes actually forms a hierarchy. Moreover,
it follows immediately from the definition that Σp

0 = P and Σp
1 = NP. Simi-

lar to the P 6= NP conjecture many researchers believe that all of the above
inclusions are proper. Again, we are able to bound the complexity of a
decision problem from below by using the concept of completeness. More
precisely, if we could show a Σp

i+1-complete problem to be also in Σp
i , this

would imply that Σp
i = Σ

p
i+1 = . . . holds. In other words, the polynomial

time hierarchy would collapse to the ith level.

1.2.5. Approximation Algorithms

For many optimization problems we do not currently know efficient algo-
rithms. Therefore, one tries to develop approximation algorithms computing
not always optimal but yet good solutions. An approximation algorithm
A for a optimization problem Π is an efficient algorithm that computes for
every instance I ∈ D a feasible solution s ∈ SOL(I). The ratio of an ap-
proximation algorithm is given by its relative deviation from the measure
m∗(I) of an optimal solution.

Definition 1.2.4 Let Π be an optimization problem and r be a mapping
that assigns to each instance I a positive number r(I). An approximation
algorithm A is said to be an r-approximate if for all instances

max
{

m∗(I)

m(I, A(I))
,
m(I, A(I))

m∗(I)

}
≤ r(I) .

1.2.6. Graph Theory

Most of the problems considered in this thesis can be described by means
of graphs. We distinguish between directed and undirected graphs.

Directed Graphs

A directed graph G = (V, R) is characterized by a finite, non-empty set V of
nodes and a finite set R of arcs. Here, an arc is a pair (u, v) of distinct nodes.
We say that u is the source and v is the target of arc (u, v).

A directed graphG ′ = (V ′, R ′) is a subgraph of graphG = (V, R) if V ′ ⊆ V
and R ′ ⊆ R holds. We write G ′ ⊆ G. The graph G ′ is a proper subgraph of G
if G 6= G ′ holds additionally.

24

1.2. Preliminaries

Given some directed graph G = (V, R) the out-degree deg+(u) of a node
u is the number of arcs (u, v) ∈ R emanating from u. The in-degree deg−(v)
of node v is the number of arcs (u, v) ∈ R reaching v. The degree deg(u) :=
deg+(u)+deg−(u) of node u is the sum of the in-degree and the out-degree
of u.

A path is a finite sequence P := (v1, . . . , vk) of pairwisely distinct nodes
such that for any pair vi, vi+1 of consecutive nodes there is an arc (vi, vi+1).
We say that P meets vi for any vi in P. We call v1 start node and vk end node
of P. We say also that vk is reachable from vk. We point out that a path may
consist of a single node.

Two nodes are called connected if they are reachable from one another.
A graph is connected if any pair of nodes in it is connected. A (strongly)
connected component of a given graph G is a connected subgraph G ′ of G
such that there is no connected subgraph G ′′ satisfying G ′ (G ′′ ⊆ G.

Consider a directed graph G = (V, R). Assume further that we associate
with each arc (u, v) ∈ R some arc length c(u, v). That is, we define a function
c : R → Q. Then the length c(P) of some path P = (v1, . . . , vk) is the sum∑k−1

i=1 c(vi, vi+1) of lengths of arcs in P. If P consists of a single node then
c(P) = 0. Let u, v be (not necessarily distinct) nodes. Then the distance
d(u, v) induced by c is defined by the length

d(u, v) := inf { c(P) | P is a path with start node u and end node v }

of some shortest path from u to v. Note that d(u, v) = +∞ if there v is not
reachable from u. It is easy to verify that the distance function d is a metric
on V if all arc lengths are non-negative.

Undirected Graphs

An undirected graph G = (V, E) consists of a finite and non-empty node set
V and a finite set E of edges. An edge is an unordered pair (u, v) of distinct
nodes. That is, we do not distinguish between (u, v) and (v, u). We call u
and v end nodes of the edge and say that u and v are incident to (u, v).

The subgraph relation is defined analogously to the directed case. Let
G = (V, E) be an undirected graph and V ′ ⊆ V be some node set. Then
the subgraph G[V ′] induced by V ′ is defined to be the graph (V ′, E ′) where
E ′ contains all edges from Ewhere both end nodes are in V ′. By G−V ′ we
denote the induced subgraph G[V − V ′].

Two distinct nodes u, v are called adjacent to one another if there is some
edge joining u and v. We call v neighbor of u and vice versa. The set of
neighbors of u is denoted by N(u). The degree deg(u) of node u is the
number |N(u)| of neighbors of u.

25

1. Introduction and Preliminaries

Given some undirected graph, a path is a finite sequence P := (v1, . . . , vk)
of pairwisely distinct nodes such that any pair vi, . . . , vi+1 of consecutive
nodes is joined by some edge. As for directed graphs a path may consist of
a single node. We call v1, vk end nodes of P and say that they are connected.

A undirected graph is called connected if every pair of nodes is. A con-
nected component is a connected subgraph G ′ such that any subgraph G ′′

satisfying G ′ (G ′′ is not connected.
A cycle is a sequence (v1, v2, . . . , vk, v1) such that (v1, . . . , vk) is a path,

k ≥ 3, and vk, v1 are adjacent.
A graph that does not contain cycles is a forest. A tree is a connected for-

est. Given some tree, it is a well-known and basic fact that there is exactly
one path for any node pair u, vwith end nodes u and v [Har72]. We denote
this path by P(u, v).

An r-rooted tree is a tree T = (V, E) where r ∈ V is some distinguished
node called root. Let T be r-rooted. Node v is called descendant of u if the
path P(r, v) meets u. If v is a descendant of u and u and v are adjacent then
v is a child of u and u is the parent of v. We remark that u is a descendant of
itself. We use the notation Tu to denote the subtree of T induced by the set
of descendants of u. We call Tu the subtree hanging from u.

Let T be an tree and u, v be distinct nodes. Then Tu(v) denotes the subtree
hanging from vwhen T is considered as u-rooted.

Let G = (V, E) be an undirected graph and c : E → Q+
0 be a function

assigning to each edge some non-negative length. As in the directed case
we define the length of a path P = (v1, . . . , vk) by c(P) :=

∑k−1
i=1 c(vi, vi+1) and

the distance d(u, v) of two nodes u, v by

d(u, v) := inf { c(P) | P is a path with end nodes u and v } .

It is easy to observe that d defines a metric on the node set.
Let u be a node. Then the eccentricity ecc(u) is given by maxv∈V d(u, v).

The diameter diam(G) is defined by maxu∈V ecc(u). The radius rad(G) is
minu∈V ecc(u).

Consider an undirected graph G = (V, E) with positive edge lengths
c : E → Q+. An edge of the graph can be considered as an infinite set of
points. A point x on edge e = (u, v) is specified by the distance from one
of the endpoints of e, and the remaining distance is derived from the in-
variant c(u, x) + c(x, v) = c(e). Notice that the set of points of a graph
includes the set of nodes. All points which are not nodes are called inner
points. If x is an inner point of an edge (u, v) we call u, v neighbors of x and
set N(x) := {u, v}. In what follows, we will use G (and e) both for denot-
ing the graph (the edge) and for denoting all of its points, as the meaning

26

1.2. Preliminaries

will become clear from the context. In the sense of these considerations the
edge length function d is extended to a distance function d : G × G → Q+

0

defined on all pairs of points. The distance of a point x to a finite point
setM is given by d(u,M) := infm∈M d(u,m).

Now assume that w : V → Q+
0 is a function which assigns to each node v

some weight w(v). If G ′ = (V ′, E ′) is a subgraph of G, then w(G ′) denotes
the weighted sum

∑
v∈V ′ w(v) of the nodes of G ′.

If T is a tree we make use of the notation wu(v) := w(Tu(v)). The no-
tations Tu(v) and wu(v) are easily extended to the case where u or v are
points, namely by temporarily adding a new node at the position of the
point. The α-ball around point x is the point set Sα(x) := {y ∈ T | d(x, y) ≤
α }.

Unless otherwise stated, we will use n to denote the number |V | of nodes
of a given graph G = (V, E).

27

2. State of the Art and Research
Objectives

This chapter embeds the topics covered by this thesis in the existing re-
search on location, in particular on competitive and voting location. The
goal is to enable the reader to classify the results developed in this work.
To this end, we briefly review some of the results that are related to this
work. Based on that, we formulate our main research questions.

2.1. A Brief Overview

The rigorous mathematical analysis of locational issues was initiated in the
book “Der isolierte Staat” [vT26] by von Thünen in 1826. This, and also
the subsequent works were mainly considered from the viewpoint of eco-
nomic geography. The models employed were of descriptive nature and
operated mostly on continuous spaces, for example, the Euclidean plane
or the real line.

Weber was the first to consider location problems from our optimiza-
tion point of view. In his seminal work “Theory of Location of Industries”
[Web29] he introduced the problem of determining a point (facility) in the
plane that minimizes the sum of distances to a given finite set of points
(customers). This problem is called Fermat-Weber or also geometric median
problem. Competitive location has been introduced by Hotelling in his mile-
stone work “Stability in Competition” [Hot29] where he investigates com-
peting providers placing facilities on a line segment.

In contrast to the aforementioned works, this thesis will not deal with
continuous decision spaces. Rather, we will analyze our problems on net-
works (graphs), which is common in combinatorial optimization and oper-
ations research. This is due to the fact that in the majority of applications
the facilities and customers are located at some supply network and the
distances are induced by shortest paths rather than by the euclidean met-
ric.

The first to consider such discrete location problems was Hakimi. He intro-
duced the famous p-median and p-center problems on networks [Hak64].

29

2. State of the Art and Research Objectives

The p-median problem asks for a p-element set of points (facilities) in a
given graph such that the sum of distances from the nodes (customers) of
the network is minimized. Here, the distance equals the length of some
shortest path to the closest facility. The p-center problem seeks to minimize
the maximum among those distances. A p-median solution is desirable in
an application in which the costs for getting connected to some facility are
borne by customers themselves. A p-median set simultaneously minimizes
the average connection cost but also the overall financial burden for the cus-
tomers as a community (social welfare). A p-center solution is appropriate
in scenarios in which there is an upper bound on the cost imposed on any
customer. A striking example is the location of one or more hospitals where
it must be guaranteed that the access route for each potential patient is suf-
ficiently quick. The work of Hakimi lead to the rapidly growing field of
network location, also called discrete or facility location, which is today firmly
embedded in combinatorial optimization and operations research. Mir-
chandani, Francis [MF90], Hamacher and Drezner [Dre09, HD01] provide
comprehensive introductions and surveys to this field.

It was also Hakimi who brought competition into network location
[Hak83]. He introduced the most basic competitive network location
problems called (r, Xp)-medianoid and (r, p)-centroid, which are formally
defined in Chapter 7 starting from page 116. In his model two providers,
called leader and follower, place facilities sequentially. After both competi-
tors have placed their facilities each customer connects to the facility that
is closest to him. The aim of both competitors is to maximize their own
revenue, which is measured by the total number of customers they serve.
The (r, Xp)-medianoid problem is the one of the follower. It starts from
the premise that the leader has already chosen some p-element set Xp for
his facilities. Then, the follower chooses a set Yr of r positions such that
as many users as possible are closer to Yr than to Xp. The leader problem,
(r, p)-centroid, consists in determining a set Xp of p points such that the
maximum gain of the follower is minimized. In terms of competitive
location, this thesis is concerned with exactly these two basic problems
(r, Xp)-medianoid and (r, p)-centroid and some of their variants.

The concept of voting location, in particular that of a Condorcet location,
has been introduced by Hansen and Thisse [HT81]. Recall that in voting
location the customers are regarded as voters and the potential placements
for the facilities play the role of candidates being up for election. The prob-
lem asks for the placement that corresponds to the winner of the election
according to some suitable social choice function. The preferences of the
users are modeled by the distances in the underlying graph. More pre-
cisely, a user u prefers a location x over location y if and only if x is closer

30

2.2. A Classification of the Problems Under Investigation

to u than y is. Hansen et al. [HTW90] provide a comprehensive overview
on voting location.

In this thesis, we will examine a relaxed preference model that has been
introduced by Campos and Moreno [CM03]. In that model, a user is indif-
ferent between two locations if the difference in the distances is less than
a fixed bound. For exact definitions we refer the reader to Chapter 3 on
page 43.

2.2. A Classification of the Problems Under
Investigation

Hamacher and Nickel [HN98] suggest a classification scheme for location
models. Eiselt and Laporte [ELT93] classify particularly competitive loca-
tion problems. In the following, we briefly discuss both systems. Our aim
is not only to classify the problems examined in this thesis, but also to give
the reader some feeling for the degrees of freedom in the model and also
the diversity in locational analysis.

It is a well-known fact that the distinction between competitive and vot-
ing location arises rather from the different motivations than from math-
ematical viewpoints. (At least, this is the case for the sort of problem we
are going to discuss.) We will often see that one and the same problem
has meaningful interpretations in both models. Thus, if we make a general
statement about, say, competitive location the same will mostly hold also
for the voting model and vice versa.

2.2.1. The Scheme of Hamacher and Nickel

The classification scheme of Hamacher and Nickel [HN98] encodes a loca-
tion problem by a 5-tuple of the form

Number/Space/Constraints/Customers/Objective .

For each position some specific symbol indicates the respective choice. For
example, the p-median problem on a graph is represented by the string
“N/G/·/d(V,G)/Σ”.

Number refers to the number and type of facilities to be opened. In almost
all problems that we consider a given number of points has to be
placed on a graph, that is, either at its vertices or at inner points of
edges.

31

2. State of the Art and Research Objectives

In Part I of this thesis we deal with single location problems where
this number equals one (in the classification scheme that is symbol-
ized by the character “1”). In Part II multiple location problems are
examined, that is, the number of facilities is part of the input (symbol
“N”).

In the literature there are many models in which the facilities are
not merely points, but rather more complex structures such as lines,
paths or trees. In fact, we consider in Section 8.2.2 one such example
where we place a tree-shaped facility. That can be symbolized by “1T”.

We remark that there are also location models in which the number
of facilities is not given in advance (symbol “#”). For example, the fa-
mous facility location problem [BK67, BK77] assigns to each node some
setup cost and asks for a finite set of nodes minimizing the sum of
setup cost and transportation cost.

Space specifies the decision space, that is, the underlying topology of the
model. Here, Hamacher and Nickel distinguish between continuous,
network and discrete location models. Continuous location deals with
d-dimensional euclidean spaces Rd or even general Hilbert spaces. In
network location points (that is, nodes or inner points) of a given graph
form the potential locations and shortest paths induce distances. In
discrete location the set of potential locations is finite and arbitrary dis-
tance functions may be used. We investigate network location prob-
lems. In particular, we consider general graphs and trees (symbols
“G” and “T”) as decision spaces.

Constraints refers to particularities of the location model such as feasi-
ble solutions or capacity constraints. We do not use such restrictions
(symbol “·”). An example where such constraints are specified is the
capacitated facility location problem in which the total setup cost is lim-
ited by a given budget.

Customers specifies the relation between the customers (or more gener-
ally existing facilities) and the new facilities.

In our case, the customers are located at the nodes of the graph.

Concerning the set of potential locations, we distinguish between the
absolute and the discrete version of a network location problem. In
the absolute version, facilities may be placed at nodes and at inner
points of edges as well. The discrete version restricts the set of poten-
tial locations to the node set of the graph. Of course, the discrete ver-

32

2.2. A Classification of the Problems Under Investigation

sion can also be viewed as a discrete location problem in the aforemen-
tioned sense. To denote the absolute version we may use the symbols
“d(V,G)”, or “d(V, T)” in the tree case. Here, d(·, ·) indicates that we
are using shortest path distances, the first argument represents the
set of customers and the second one the set of potential locations.
Consequently, the discrete version is symbolized by “d(V,V)”.

Objective The fifth and last position expresses the kind of objective function
employed by the location model. In our case, we are dealing with a
competitive location model, which is symbolized by “Σcomp”.

2.2.2. The Scheme of Eiselt, Laporte, and Thisse

Regarding competitive location the scheme of Hamacher and Nickel dis-
tinguishes only between competitive and non-competitive problems. Here
the taxonomy of Eiselt, Laporte, and Thisse comes into play. Their naming
scheme is especially designed for competitive location problems and thus
allows for more details of the model. The scheme consists of five positions,
too. The general form is

Space/Number/Pricing/Rules/Customers .

Space specifies the decision space and the symbols “N” and “T” are used
to denote graphs (“networks”) and trees, respectively.

Number refers to the number of players, which is two in our case. We re-
mark that there are also competitive models in which there is a free
market entry, that is, the number of players is not known in advance.

Pricing specifies the pricing policy. In this thesis, we assume that the com-
petitors sell their goods or services at fixed prices. In other words,
the price is no decision variable. In most cases, the competitors offer
their good even at the same price. Therefore, the prices do not influ-
ence the competitive process at all and are thus neglected. The only
model where we discuss prices is the Stackelberg problem with paramet-
ric prices in Section 3.4. Here, the prices of the competitors may vary
but are still given as part of the input. The taxonomy uses the symbol
“∅” for non-existing or fixed prices.

For the sake of completeness we briefly outline possible policies for
variable prices. Eiselt et al. distinguish between mill pricing, uniform
delivered pricing, and perfect spatial discriminatory pricing. In all three

33

2. State of the Art and Research Objectives

models the customers pay the price for the good, but they differ in
what way the customers bear the transportation cost.

The mill pricing policy models the scenario where the good is sold
at the facilities and the transportation costs are imposed on the cus-
tomers. In the other two models those costs are born by the respective
competitor himself.

In the uniform delivered pricing model the prices for the goods are the
same for all customers.

The spatial discriminatory pricing model allows the competitors to sell
the good at a price that is dependent on where the respective cus-
tomer is located.

Rules is concerned with the rules of the game. Eiselt et al. distinguish three
types of equilibria. As common in game theory, an equilibrium is a
combination of strategies pursued by the players such that no player
has an incentive to change his strategy unilaterally.

The first type of equilibrium considers the case where both players
move simultaneously and is called Cournot-Nash equilibrium. Situa-
tions like this occur when the competitors plan independently from
each other. It is important that the leader-follower model we in-
troduced informally does not have this property since the follower
knows the placement of the leader.

The second type of equilibrium is of interest when prices are in-
cluded. The subgame perfect Nash equilibrium assumes that the de-
cision process of the competitors is divided into two stages. First,
the locations are chosen and second, the prices are determined. This
allows the competitors to calculate their prices with the knowledge
of the opponent’s locations.

In the third model, called Stackelberg equilibrium, the competitors
move sequentially. In fact, our leader-follower model fits into this
context, which is abbreviated by “V”. Competitive location models
that are based on Stackelberg equilibria are also called sequential
location problems. A comprehensive overview [EL96] over that topic
is provided by Eiselt and Laporte.

Customers characterizes the behavior of the customers. In our scenario, we
assume that every customer minimizes his or her distance to the facil-
ities, which is denoted by “D”. Other models consider abstract utility
functions which need not be based purely on distances. Examples are

34

2.3. Previous Results and Research Objectives

the sum of price and transportation cost or accessibility criteria. Fur-
thermore, one can distinguish between deterministic and probabilistic
models.

Besides what follows from the above classification we will assume the
following.

• The customers choose to which facility they connect. This is in con-
trast to models in which customer allocation is part of the decision
making.

• Customer preferences are based on proximity. We do not employ
attraction or utility functions that respect further factors.

• The facilities are desirable, that is, customers prefer to be close to
them.

• The competitors charge fixed or equal prices.

• The demand of the customers is inelastic, that is, the demand is inde-
pendent from distance (essential goods).

It should also be mentioned that we do not rule out co-location, that is,
we allow multiple facilities to be placed at the same location. However,
the general framework of so-called monotonic gain functions, which we in-
troduce in Chapter 3, allows us to modify problems so that co-location is
unprofitable (strong Φ-solutions in Section 4.5) and therefore avoided by
the competitors. It is well-known that permitting or prohibiting co-location
can have dramatic impact.

2.3. Previous Results and Research Objectives

As we indicated in the introduction, we focus on provable results on effi-
cient, exact or approximation algorithms. Thus we do not consider heuris-
tic approaches or experimental evaluations of algorithms, for which a great
deal of literature already exists; especially in the field of competitive loca-
tion.

The first part of this thesis deals with single competitive and vot-
ing location problems that fall into the category 1/G/·/d(V,G)/Σcomp

in the Hamacher-Nickel taxonomy for general location problems and
N/2/∅/V/D in the Eiselt-Laporte-Thisse system for competitive location.
In particular, we examine the (1, 1)-centroid problem and relaxed variants.

35

2. State of the Art and Research Objectives

For the understanding of the following considerations it is crucial that
the competitive (1, 1)-centroid problem is equivalent to the Simpson prob-
lem from voting location (confer Section 3.3).

For general graphs, the fastest known algorithm for (1, 1)-centroid and
the equivalent Simpson problem is due to Hansen [HL88] and has a run-
ning time of O(|V |4|E|2 log(|V ||E|) logw(G)). Although this running time
is polynomial it is not satisfactory when handling large instances. As we
shall see in Section 6.2, there are indications that it might be quite difficult
to come up with “very fast” algorithms for general graphs.

Recently, Campos and Moreno introduced a relaxed user preference model
in voting location [CM03, CM08]. It is assumed that a user prefers some fa-
cility over another one only if the former is significantly closer to the user. If
the difference between the distances is below a given threshold the user is
indifferent between both locations. Campos and Moreno generalize the con-
cept of Condorcet and Simpson locations to this relaxed model and suggest
polynomial time algorithms. Their algorithms are of enumerative nature
and we suspect, as we do for the unrelaxed model, that it is difficult to
devise substantially faster algorithms.

The relaxed preference model has originally been formulated for the
Simpson and Condorcet location problems. There are, however, many
other voting location problems that bear resemblances [HTW90] and that
allow this concept to be applied. Moreover, the relaxed preference model
can also be interpreted in the competitive location model. In practice, users
show a kind of reluctance against new providers. It is hence natural to as-
sume that a user is only willing to change his provider if the new provider
is significantly closer. Another interpretation assumes a difference in prices
[Eis92] and hence a customer changes only if the difference in distance
compensates the price difference. Our first aim is thus to work out the
common properties of voting and location problems that allow the relaxed
model to be applied. This is accomplished in Chapter 3 by means of so
called monotonic gain functions, which enable us to formulate general re-
sults and algorithms subsequently.

The aforementioned difficulty of those problems on general graphs mo-
tivates to investigate simpler graph structures. Competitive and voting loca-
tion problems are often examined on tree graphs [MZH83, HTW86, Hak90,
HTW90, Eis92, EL93, EL96, GP03]. Tree graphs appear quite often in prac-
tical applications as they constitute the “cheapest” graphs connecting a
given set of nodes (for example, one may think of backbone networks in
computer networks). Moreover, it has turned out that the absence of cycles
in the network often dramatically reduces the complexity of sequential lo-
cation problems, which are rather “messy” on general graphs. In fact it is

36

2.3. Previous Results and Research Objectives

known [HTW86] that the (1, 1)-centroid and the Condorcet problem can be
solved in linear time on trees by means of Goldman’s algorithm [Gol71] for
computing a median of a tree.

This and other strong positive results for the unrelaxed model suggest
to investigate also the relaxed model or even monotonic gain functions on
tree graphs.

Eiselt [Eis92] investigates the Stackelberg problem with parametric
prices on trees (which fits into the relaxed model and is essentially equiv-
alent to the relaxed Simpson problem, confer Section 3.4). He shows that,
having the prices fixed, it is generally beneficial for each competitor to act
as the follower. This phenomenon is called the first entry paradox.

Garcia and Pelegrin [GP03] analyze the same problem from an algorith-
mic viewpoint and provide an O(n3 logn) time algorithm for trees. How-
ever, such a running time might be considered as rather impractical.

Therefore, in Chapters 4 and 5, we investigate the existence of fast al-
gorithms for general monotonic gain functions on trees. The super-cubic
algorithm of Garcia and Pelegrin [GP03] for the Stackelberg problem with
parametric prices (that is, for the relaxed model) on trees and the linear
time algorithm of Goldman [Gol71] for the unrelaxed case may serve as
“yardsticks”.

In the second part of this thesis, we analyze multiple competitive
and voting location problems. These problems can be classified by the
string n/G/·/d(V,G)/Σcomp in the Hamacher-Nickel system and again by
N/2/∅/V/D in the Eiselt-Laporte-Thisse system. In particular, we exam-
ine the (r, p)-centroid and the (r, Xp)-medianoid problem. There is a recent
overview [SSD07] of results on these problems. A survey on sequential
location [EL96] is provided by Eiselt and Laporte.

In the multiple location case, we are mainly concerned with complexity
theoretic and approximability questions. The focus is not on particularly
fast algorithms. Rather, we examine the existence of polynomial time (ap-
proximation) algorithms and hardness results, respectively.

Both problems, (r, Xp)-medianoid and (r, p)-centroid, are known to be
NP-hard on general graphs [Hak83]. The (r, p)-centroid problem is not ap-
proximable within a constant factor [Hak90]. These results, however, leave
some important questions open. While the decision problem of (r, Xp)-
medianoid is in NP, the same is not clear for the more complicated (r, p)-
centroid. In fact, Hakimi [Hak90] conjectures the (r, p)-centroid problem
to be “exceedingly difficult”. Moreover, the non-approximability result for
(r, p)-centroid does not rule out algorithms with a good input-dependent
ratio such as O(logn). The approximability of the follower problem is
open, too.

37

2. State of the Art and Research Objectives

These questions are tackled in Chapter 7. First, we will discuss the exact
complexity of the (r, p)-centroid problem on general graphs giving justifi-
cation to Hakimi’s conjecture that it is extremely difficult. Then we exam-
ine the existence of approximation algorithms with good input dependent
performances and the approximability of the follower problem.

We remark that Campos and Moreno [CM08] investigate the p-Simpson
problem, which is a special case of the discrete (r, p)-centroid problem.
They provide exact exponential time algorithms by means of linear integer
programming.

The negative results for general graphs motivate the investigation of the
problems on trees as in the single location case.

In fact, the (r, Xp)-medianoid problem is known to be efficiently solv-
able on trees in O(rn2) time [Tam96]. Tamir’s algorithm also solves the
p-median problem on trees in time O(pn2), which is the fastest algorithm
known for this problem.

Whether the leader problem is polynomially solvable on trees is a long-
standing open question and has first been asked by Hakimi [Hak90]. The
question is repeated in the overview of sequential location problems [EL96]
of Eiselt et al. and Benati [Ben00].

In Chapter 9 we answer Hakimi’s open question concerning the com-
plexity of (r, p)-centroid on trees. We shed also some light on the complex-
ity and approximability of the problem on paths and on the case where the
leader locates one facility and the follower locates multiple facilities.

Let’s return to the follower problem on trees. In the single location case
((1, X1)-medianoid) the problem is trivially solvable in linear time. Is such
an improvement in running time still possible if the number of facilities of
the leader, whose locations are part of the input and thus no decision vari-
ables, is unrestricted? Applying Tamir’s algorithm [Tam96] to this case
yields a quadratic running time, which is also achieved by a naive ap-
proach (see Section 8.2). Kim et al. [KLTW96] suggest an algorithm that
solves the problem in O(n log2 n) time. Their approach applies even to a
much more general scenario where a tree-shaped facility is to be located
on a tree.

In Chapter 8 we show how to improve the algorithm of Kim et al. even
in the general case of a tree-shaped facility.

38

Part I.

Single Location

39

3. Monotonic Gain Functions
The aim of this chapter is to introduce a novel framework, called monotonic
gain function (MGF), which constitutes a generalization and unification of
all particular location problems investigated within the first part of this
thesis. The problems we are going to model with the help of MGFs are
single location problems, that is, each provider always places one single
facility or server. In particular we examine single competitive (Section 3.2)
and single voting location problems (Section 3.3) on graphs.

As we have seen in the introduction, competitive location addresses the
situation where two or more competing providers offer the same type of
goods or service to a finite set of customers located at the nodes of the
graph. Different competitors may supply their product from different sites.
Each customer is assumed to bear transportation costs thereby incurred
and hence to select the provider whose facility is closest to him. In a nut-
shell: Providers compete for location but not for quality or prices of goods.
In our particular problem setting we are given two suppliers, leader and
follower, each of which places exactly one facility and tries to serve as
much demand as possible. Here two crucial points must be stressed: First,
competitors make their decisions in a sequential manner, that is, one after
the other. And second, we rule out any kind of cooperation.

In contrast to the non-cooperative behavior of suppliers in competitive
location, voting location implies one central and social planning instance.
Here the process of decision making may be understood as a collective
action which yields a compromise respecting the wishes and preferences
of the single users as far as possible.

Surprisingly, it turns out that both of these seemingly contrary paradigms
lead to the same complex of mathematical problems [Hak90, HTW90]. In
both settings, we deal with the preferences of users basing on the distance
to potential locations of a facility. Moreover, we shall see that the loca-
tional decision of the leader in competitive location can also be viewed as
a particularly fair compromise in voting location: There is no alternative
placement that is preferred by a large portion of the users.

From a mathematical point of view, the problems we shall examine differ
not so much in whether they belong to competitive or voting location as in
how they deal with the users’ preferences.

41

3. Monotonic Gain Functions

The first question is on what basis a user prefers one location over the
other. In the simplest case a user chooses a facility x if it is closer to him
than its opponent y is, and he is undecided if and only if both distances
are equal (unrelaxed user preference). But it might also be argued that
users disregard very small differences in distance, that is, they only affect
significantly better sites (relaxed user preference).

The other question is how undecided users react. For example, we could
assume that they always select the leader facility or alternatively, that they
divide their demand equally between leader and follower. We shall see
that those degrees of freedom bring about a variety of location criteria and
problems.

This chapter is organized as follows. We first discuss in Sections 3.1, 3.2
and 3.3 the standard unrelaxed user preference model and proceed in Sec-
tion 3.4 with an additive indifference relation [CM03] and a mill pricing model
[GP03] as extensions of the standard model. The reader will be faced with
a multitude of problem definitions, which often bear resemblances, some-
times differ merely in details or are patently reformulations of each other
arising from different application domains. The reason for this “tangle”
is a lack of systematics in literature for this special sort of sequential lo-
cation problems. As a way out we finally introduce the aforementioned
framework of monotonic gain functions in section 3.5, which enables us
to formulate general results and algorithms in subsequent chapters. It is
to be hoped that the notion of monotonic gain functions will result in a
clearer, more systematic and deeper understanding and maybe also in new
insights into the investigated complex of problems.

3.1. User Preference

In the sequel we are given an undirected graph G = (V, E) with positive
edge lengths c : E → Q+ and non-negative node weights w : V → Q+

0 . We
assume that the competitors may place their facilities or servers on points
of the graph, that is, on nodes or inner points of edges. The users, on the
other hand, are located only at the nodes of the graph. The weightw(u) of
node u represents the demand of the user located at u. Both competitors sell
the same good at the same price. The good is essential for users, that is, each
users is supposed to meet his full demand. Transportation costs, modeled
by edge lengths, are born by the users themselves. Thus it is reasonable to
assume that

• users always use shortest paths and

42

3.2. Competitive Location Problems

• connect to the closest server or facility.

As described in Section 1.2 the edge lengths c induce a distance function
d : G × G → Q+

0 on the graph G viewed as a point set. Recall that d(x, y)
denotes the length of a shortest path between points x, y ∈ G according to
c. This complies with the above assumption of users moving along shortest
paths.

The user behavior is formalized as follows.

Definition 3.1.1 (User preference) Let x, y ∈ G be points of a graphG =
(V, E), that is, either nodes or inner points of edges of G. A user u ∈ V
prefers point x over point y, denoted by x ≺u y, if

d(u, x) < d(u, y) .

The user u is indifferent, x ∼u y, if d(u, x) = d(u, y).

In our competitive scenario we assume that if user u prefers x over y
then the full demandw(u) of u is served by x. Thus it is favorable for both
competitors to be preferred by as many users as possible.

We use the following notation: The set of users preferring x over y is
denoted by U(x ≺ y) := {u ∈ V | x ≺u y }, and its weight by w(x ≺ y) :=
w(U(x ≺ y)). Analogously we define the set U(x ∼ y) := {u ∈ V | x ∼u y }

of undecided users and its weight w(x ∼ y) := w(U(x ∼ y)). Now we are
able to formulate the main problems under investigation in this piece of
work.

x

y

FIG. 3.1.: Two competing facilities x and y are placed at the middle of edges. Ev-
ery vertex hosts a user with unit demand. All edges have unit length.
Nodes preferring x are colored black. White nodes prefer y. The gray
node is undecided. We obtain w(x ≺ y) = 4, w(x ∼ y) = 1 and
w(y ≺ x) = 5.

3.2. Competitive Location Problems

In this and in the following section we are going to introduce and discuss
competitive and voting location models based on the standard (unrelaxed)

43

3. Monotonic Gain Functions

user preference. We consciously avoided to start with the more general
relaxed user preference model, which will be considered in Section 3.4.

Centroid and x-Medianoid

Centroid and x-medianoid belong to the most prominent representatives of
sequential location problems [EL96], which constitute an important field
in competitive location. They are characterized by competitors locating
their servers one after the other. In our case we are given two competitors,
leader and follower, placing one facility each.

The user preference model in Definition 3.1.1 describes the static situ-
ation where the competing providers have already placed their facilities.
Now we are going to specify how the competitors make decisions and
what rules they obey. Since it is easier to motivate let us first assume that
the leader has already chosen his position and that the follower is trying to
determine a location maximizing his own revenue (follower problem).

Definition 3.2.1 (x-Medianoid [Hak83]) Let x ∈ G be a leader place-
ment and let

Γ(x) := max
y∈G

w(y ≺ x)

be the maximum influence any follower placement can gain over the fixed
leader placement x. An absolute x-medianoid of the graph is any point y ∈ G
where w(y ≺ x) = Γ(x) is attained.

For an illustrative example of an absolute x-medianoid, see Figure 3.2.

u1

u2

y ′

y
u3x = u4

FIG. 3.2.: Assume that the leader has located his facility x at node u4. If the
follower selects y ′, he serves users U(y ′ ≺ x) = {u1, u2}, that is,
w(y ′ ≺ x) = 2. But y is a better choice since w(y ≺ x) = 3. In fact
y is an x-medianoid and so are all points 6= x not lying at edge (u1, u2).
We obtain Γ(x) = 3.

Surely choosing an x-medianoid as server location may be considered
as a rational follower strategy. It complies with our assumption of selfish
players. On the other hand this makes the follower’s reaction predictable

44

3.2. Competitive Location Problems

for the leader: Once he has chosen a position x the follower will achieve a
gain of Γ(x); and clearly he has no option but to serve the remaining de-
mandw(G)−Γ(x). Thus maximizing the gain of the leader simply amounts
to minimizing that of the follower.

Definition 3.2.2 (Centroid [Hak83]) Let

Γ ∗ := min
x∈G

Γ(x) .

An absolute centroid of the graph is any point x ∈ G where Γ(x) = Γ ∗ is
attained.

For an illustrative example of an absolute centroid see Figure 3.3.

u1

u2

u4 u3

FIG. 3.3.: Consider the same graph as in Figure 3.2. Assume, however, that the
leader has not located his facility yet. We have seen that Γ(u4) = 3. The
same holds for inner points of edge (u4, u3). If x is located at the middle
of edge (u3, u2) then the follower achieves Γ(x) = 3, too, by placing at
adjacent node u3. Similarly we have Γ(x) = 3 for any inner point x ∈ G.
For node u1 we obtain Γ(u1) = 3 if the follower will select the midpoint
of edge (u3, u2). Analogously Γ(u2) = 3. On the other hand, if x is
placed at u3 the follower has no chance of serving more than two users.
Hence Γ∗ = Γ(u3) = 2 and u3 is the unique centroid of the graph.

The notions discrete x-medianoid and discrete centroid are defined similarly,
with the server points restricted to nodes x, y ∈ V rather than points.

Centroid and x-medianoid have originally been introduced in Hakimi’s
seminal paper [Hak83] for multiple competitive location problems (con-
fer Section 7.1). In the original terminology of Hakimi centroid or
x-medianoid would be called (1, 1)-centroid or (1, X1)-medianoid re-
spectively. For the time being we focus on single leader and follower
placements and therefore use the simplified terms.

Stackelberg Location

The reader may have noticed that the users treat leader and follower asym-
metrically in the above definitions. If a user is indifferent, he is implicitly

45

3. Monotonic Gain Functions

assumed to be served by the leader. This could be justified by, for example,
an additional effort needed for reconnecting from leader to follower or by
implying users of conservative nature.

But we may also suppose more active users treating leader and follower
as fully equivalent providers. We model this behavior by ascribing one
half of the demand w(x ∼ y) of the undecided users to each competitor.
This leads immediately to the notion of Stackelberg locations:

Definition 3.2.3 (Stackelberg [HTW90]) Let x ∈ G be a leader place-
ment and

Σ(x) := max
y∈G

w(y ≺ x) + 1

2
w(y ∼ x).

Then an absolute Stackelberg location is a point that minimizes Σ(·). We write

Σ∗ := min
x∈G

Σ(x) .

As in the case of centroid and x-medianoid we introduce a discrete vari-
ant of Stackelberg location by restricting the set of potential locations for
leader and follower to the node set.

Nash Solution

Assume that leader and follower have already chosen their locations ac-
cording to the Stackelberg model. In this situation we may ask whether
both competitors are actually content with the resulting locational pattern
in the sense that neither of them has any incentive to change his position
unilaterally. While this condition is true for the follower it does not need
to hold for the leader position (confer Figure 3.4).

y

x

x ′

FIG. 3.4.: Points x and y are optimal Stackelberg leader and follower positions,
respectively. By switching from x to x ′ the leader can increase his pay-
off.

46

3.3. Voting Location Problems

A pair (x, y) of points meeting the above stability criterion will be called
a Nash solution named after and inspired by the eponymous equilibrium in
game theory.

Definition 3.2.4 (Nash solution [HTW90]) A pair (x, y) of points in
a graph is called an (absolute) Nash solution if no party can increase
its payoff by moving to another location where the payoff is given as
w(y ≺ x) + 1

2
w(y ∼ x). Formally, the pair (x, y) must satisfy

w(y ≺ x) + 1

2
w(y ∼ x) ≥ w(y ′ ≺ x) + 1

2
w(y ′ ∼ x) and

w(x ≺ y) + 1

2
w(x ∼ y) ≥ w(x ′ ≺ y) + 1

2
w(x ′ ∼ y) for all x ′, y ′ .

The reader familiar with the general concept of Nash equilibria may won-
der why we define Nash solutions just for Stackelberg payoff w(y ≺ x) +
1
2
w(y ∼ x) but not for the simpler centroid payoff w(y ≺ x). (The original

notion of a Nash equilibrium does not impose any restriction on the payoff
function.) The reason is, that there is no temporal element in the definition
of a Nash solution: Basically, it is not specified in which order the locations
x and y have been selected or if they have been placed even simultane-
ously. So there is no reasonable argument to include any asymmetry in
payoff into this definition as it were the case for centroid and x-medianoid
(confer motivation of Stackelberg model).

3.3. Voting Location Problems

Condorcet and Simpson

The notion of a Condorcet location is inspired by the eponymous criterion
known from voting theory. A candidate of an election is called a Condorcet
winner, if there is no opponent which is preferred by more than one half of
the voters’ weight. In order to apply this criterion to our location setting,
we identify users with voters and potential locations with the candidates
being up for the election. We suppose that a voter (user) u prefers a can-
didate (location) x over y if and only if d(u, x) < d(u, y), that is, x ≺u y.
Using our standard notation we are able to define the Condorcet location
formally.

Definition 3.3.1 (Condorcet location [HT81]) Let x, y ∈ G be points.
We say that y dominates x if w(y ≺ x) > 1

2
w(G). Moreover x is called a

Condorcet location if there is no point dominating x.

47

3. Monotonic Gain Functions

A main drawback of this concept is, that a Condorcet location does not
always exist. Consider for example an equilateral triangle with one user
located at each vertex (confer Figure 3.4). Then any vertex is dominated by
each of the inner points of the opposite edge. On the other hand each inner
point of an edge is dominated by its adjacent vertices.

In order to overcome these difficulties Campos and Moreno [CM03] in-
troduce the notion of a γ-Condorcet location, where 0 ≤ γ ≤ 1. Here the
requirement of the Condorcet criterion is relaxed. A point y dominates x
only if w(y ≺ x) > γ · w(G). Since each point is a 1-Condorcet location
we are now able to always guarantee the existence of an γ admitting a
γ-Condorcet location.

Definition 3.3.2 (γ-Condorcet location [CM03]) Let 0 ≤ γ ≤ 1. A point
x is called a γ-Condorcet location if there is no y such that w(y ≺ x) >
γ ·w(G).

It appears reasonable to understand the parameter γ as a degree of sta-
bility of the solution. More precisely we consider locations with smaller γ
as more stable than those with a larger one. Finally we are interested in
the most stable location admitted by the problem instance which leads to the
following definition.

Definition 3.3.3 (Simpson location [HL88]) Let γ∗ be the smallest γ
such that a γ-Condorcet location exists. Then each γ∗-Condorcet location
is called a Simpson location.

In this definition, the minimum γ∗ always exists since there are only finitely
many user parties (subsets of the node set).

Clearly a Condorcet location exists if and only if γ∗ ≤ 1
2
. In this case each

Simpson location is also a Condorcet location.

Plurality and Security

In the definition of the Condorcet location x, only voters against x are taken
into account while all undecided users are actually treated as if they voted
for x. This can pretend a high stability of a solution which does not actually
exist. The concept of plurality location is a way to deal with this situation
as only decided users are respected.

Definition 3.3.4 (Plurality location [WM81]) A point x is called a plural-
ity location if there is no point y such that w(y ≺ x) > w(x ≺ y).

48

3.4. Relaxed User Preferences

Clearly, each plurality location is also a Condorcet location. Thus a plu-
rality location does not need to exist either. An obvious way to relax the
plurality criterion is to minimize the difference between the weights of the
follower and the leader party. This leads to the following definition.

Definition 3.3.5 (Security location [Sla75]) Let x be a point and

∆(x) := max
y∈G

(w(y ≺ x) −w(x ≺ y)) .

Then a security location is a point that minimizes ∆(·). We write

∆∗ := min
x∈G

∆(x) .

Clearly a plurality location exists if and only if ∆∗ ≤ 0. In this case each
security location is also a plurality location.

Comparison Between Voting and Competitive Location Models

As mentioned in the introduction of this chapter, from a mathematical
point of view the concepts of competitive and voting location bear resem-
blances to each other or are even equivalent. In particular it is immedi-
ately clear that the notion of a Simpson location and a centroid are math-
ematically equivalent. If we take into account that the user parties always
form a partition of the node set of the input graph we obtain the relation
w(x ≺ y)+w(y ≺ x)+w(x ∼ y) = w(G). Plugging this into Definition 3.3.5
we obtain

∆(x) = max
y∈G

2(w(y ≺ x) + 1

2
w(y ∼ x)) −w(G) = 2 · Σ(x) −w(G) .

Since w(G) is constant over all feasible solutions each security location is
also a Stackelberg location and vice versa.

Not quite so obvious is the following relation between plurality and
Nash locations.

Theorem 3.3.6 (Nash and plurality [HTW90]) The set of Nash solutions is
equal to the set of pairs of plurality locations. 2

3.4. Relaxed User Preferences

Relaxed User Preferences in Voting Location

The relaxed user preference model was introduced by Sloss [Slo78] in the
context of voting theory. Campos and Moreno [CM08, CM03] tied in with

49

3. Monotonic Gain Functions

that model and investigated relaxed variants of γ-Condorcet and Simp-
son locations for which they provided enumerative polynomial-time algo-
rithms.

Relaxed user preferences in voting location can be motivated by the ob-
servation that the standard preference model does not take into account
how much but only if a user prefers one location over the other. Therefore
even very small differences in distance can prevent a location from being a
Condorcet or plurality solution. Clearly this property is rather undesirable
not least because in reality small distance differences would be ignored by
users or may arise from measurement errors.

By contrast the relaxed preference model is based on the assumption that
a user only prefers one of the locations x or y if their distance difference
exceeds a given threshold α; otherwise the user is undecided.

Definition 3.4.1 (Relaxed user preference [Slo78, CM03]) Let α ≥ 0. A
user u α-prefers point x over point y if

d(u, x) < d(u, y) − α . (3.1)

The user u is α-undecided if |d(u, x) − d(u, y)| ≤ α.

We use the following notation: The set of users α-preferring x over y is de-
noted by Uα(x ≺ y) and called the x-party. We usewα(x ≺ y) := w(Uα(x ≺
y)) to denote its weight. Similar notations apply to the set Uα(x ∼ y) of
undecided users and the y-party Uα(y ≺ x). As in many cases the indiffer-
ence parameter α becomes clear from the context we often suppress α in
the notation. We simply write U(x ≺ y), w(x ≺ y), U(x ∼ y) or w(x ∼ y)
and use the terms “to prefer” and “undecided”. For an illustration of re-
laxed user preferences confer Figure 3.5.

x

y

FIG. 3.5.: Preferences under the relaxed model with α := 1. In comparison to
the unrelaxed case (cf. Figure 3.1) the set Uα(x ∼ y) of undecided users
grows. We have wα(x ≺ y) = 3 and wα(y ≺ x) = 4.

A straightforward application of the relaxed preference model to the vot-
ing location problems introduced above leads to the following definitions.

50

3.4. Relaxed User Preferences

Definition 3.4.2 ((α, γ)-Condorcet [CM03]) A location x is an (α, γ)-
Condorcet location if there is no y ∈ G such that wα(y ≺ x) > γ ·w(G).

For given α and γ let C(α, γ) denote the set of all (α, γ)-Condorcet lo-
cations. Campos and Moreno [CM03] prove some basic properties of the
(α, γ)-Condorcet criterion for which we introduce the following terms:

Monotonicity The family (C(α, γ))α,γ of (α, γ)-Condorcet sets is inclusion-
wise increasing with respect to both parameters α and γ.

γ-Minimality For any α ≥ 0 there is a smallest γ, denoted by γ∗(α), such
that C(α, γ) is not empty.

α-Minimality For any 0 ≤ γ ≤ 1 there is a smallest α, denoted by α∗(γ),
such that C(α, γ) is not empty.

Those observations allow us to formulate the following definitions.

Definition 3.4.3 (α-Simpson [CM03]) Letα ≥ 0 be given. Anα-Simpson
location is an (α, γ∗(α))-Condorcet location.

Figure 3.6 shows an example where the set of unrelaxed Simpson locations
and the set of (relaxed) 1-Simpson locations are disjoint.

Definition 3.4.4 (γ-Tolerant and Efficient Condorcet [CM03]) Let 0 ≤
γ ≤ 1. Then any (α∗(γ), γ)-Condorcet location is called a γ-tolerant Con-
dorcet location. An (α, γ)-Condorcet location is called efficient if α = α∗(γ)
and γ = γ∗(α).

The relaxed pendants of plurality and security location are defined as
follows.

Definition 3.4.5 (α-Plurality and α-Security [CM08]) A point x is an α-
plurality location ifwα(y ≺ x) ≤ wα(x ≺ y) for all y ∈ G. A location is called
an α-Security location if it minimizes ∆α(z) := maxy∈G(wα(y ≺ z) −wα(z ≺
y)) among all z ∈ G.

Relaxed User Preferences in Competitive Location

The relaxed user preference model can also be interpreted in the setting
of competitive location: Once the leader has placed his facility and serves
the whole demand users are supposed to exhibit a reluctance against a
new provider (the follower) entering the market. A user is only willing
to reconnect to the follower if his location is significantly better, that is,

51

3. Monotonic Gain Functions

Ω

FIG. 3.6.: Consider the α-Simpson problem for α := 1. Unmarked nodes and
edges are unit weighted. The center node is the sole α-Simpson loca-
tion. Thus γ∗(α) = 0. If weight Ω is sufficiently large then the leftmost
node is the single (unrelaxed) Simpson solution. We obtain γ∗(0) = 2.
This demonstrates that relaxed and unrelaxed solutions can form dis-
joint location sets.

closer to the user. This behavior is also modeled by means of relaxed user
preferences. The following definitions are straightforward generalizations
of their unrelaxed counterparts.

Definition 3.4.6 (α-x-Medianoid) Let x ∈ G be a leader placement and

Γα(x) := max
y∈G

wα(y ≺ x).

An absolute α-x-medianoid of the graph is any point y ∈ G where wα(y ≺
x) = Γα(x) is attained.

Definition 3.4.7 (α-Centroid) Let

Γ ∗α := min
x∈G

Γα(x) .

An absolute α-centroid of the graph is any point x ∈ G where Γα(x) = Γ ∗α is
attained.

Definition 3.4.8 (α-Stackelberg) Let x ∈ G be a leader placement and

Σα(x) := max
y∈G

wα(y ≺ x) +
1

2
wα(y ∼ x) .

Then an absolute α-Stackelberg location is a point that minimizes Σα(·). We
write

Σ∗α := min
x∈G

Σα(x) .

The relaxation parameter α can also be interpreted in a scenario known
as mill pricing: here each competitor sells the good at a fixed price specific
to this competitor and the individual user costs are determined by the sum
of the user-server distance and the service price of the server to which the
user is connected. Input parameters p, q ∈ Q+

0 specify the prices when a
user connects to the leader or the follower: The total serving cost of user u

52

3.5. Generalization to Monotonic Gain Functions

when connecting to the leader x or the follower y, respectively, are defined
by L(u) := p+d(u, x) or F(u) := q+d(u, y). Each user u decides to connect
to one of the servers according to the following rule set [GP03].

1. If L(u) 6= F(u), then user u will choose the server with smaller total
serving costs.

2. If L(u) = F(u) and d(u, x) 6= d(u, y), then user u chooses the nearest
server.

3. If L(u) = F(u) and d(u, x) = d(u, y), then user u splits his de-
mand w(u): the leader serves (1 − f(u)) · w(u) and the follower
serves f(u) · w(u), where f : V → [0, 1] is an additional function
specified by the input instance.

Again leader and follower move sequentially and try to maximize the de-
mand they serve. Garcia and Pelegrin [GP03] call the resulting optimiza-
tion problem Stackelberg location with parametric prices. They state that for
the case p > q the problem becomes trivial: the follower can place right at
the leader’s position and thus gain all users.

Assume that the prices satisfy p < q. As in this case rule 3 never applies,
the user preference rules are greatly simplified: a user u prefers the fol-
lower y over leader x if and only if d(u, x) − d(u, y) ≥ αwhere α := q− p.
Except for the equality in this condition this yields the α-centroid problem.
Note that the problem is not equivalent to the α-Stackelberg location prob-
lem (confer Definition 3.4.8) due to the different treatment of undecided
users.

Now let p = q: If d(u, x) = d(u, y) then Rule 3 applies, that is, user u
assigns a portion f(u) · w(u) of his demand to the follower and the rest
(1− f(u) ·w(u)) to the leader. Thus the demand served by the follower can
be expressed by w(y ≺ x) + (f ·w)(U(y ∼ x)) which has some similarities
with the unrelaxed preference model (confer Section 4.6).

3.5. Generalization to Monotonic Gain
Functions

Monotonic Gain Functions and Φ-Solutions

If we set the indifference α to zero we arrive at the unrelaxed preference
model. Therefore all relaxed problems defined in Section 3.4 are general-
izations of their unrelaxed equivalents in Sections 3.2 and 3.3. In the sequel
we are going to develop a framework, called monotonic gain functions,
which generalizes all relaxed (and therefore also unrelaxed) competitive

53

3. Monotonic Gain Functions

and voting location models introduced so far. As we are always dealing
with the more general relaxed model we will omit the parameter α from
all notations (for the sake of simpler notations).

A gain function Φ : G × G → Q maps a point pair (y, x) to the value
Φ(y, x) which measures in some sense the influence of a follower point y
after leader point x has already been placed into the graph. In order to
emphasize the intuitive meaning of Φ(y, x) we use the notation Φ(y ≺
x) := Φ(y, x). We require that any gain function have a finite image.

Given a gain function, the notions absolute score and absolute solution are
defined as follows:

Definition 3.5.1 (AbsoluteΦ-score andΦ-solution) For any gain func-
tionΦ, the absoluteΦ-score of a leader point x is defined as

Φ(x) := max
y∈G

Φ(y ≺ x) .

The absoluteΦ-score of a graph is defined asΦ∗ := minx∈GΦ(x). An absolute
Φ-solution of a graph is a point xwithΦ(x) = Φ∗.

We notice that the maxima and minima in this definition always exist
since Φ has a finite image.

One might imagine theΦ-scoreΦ(x) of point x as the instability of x since
it measures the maximum influence the follower can gain in presence of x.
In this sense the Φ-score Φ∗ of a graph is the minimum instability achiev-
able by the leader. Briefly speaking, the smaller Φ∗ the better placements
are possible for the leader.

Many economical models known from the literature see stability as a
mere 0–1 concept. In contrast, the notion of stability induced by mono-
tonic gain functions is of gradual nature. We mention that there are other
stability concepts with this property such as the stability continuum intro-
duced by Bhadury and Eiselt [BE95].

Definition 3.5.2 (DiscreteΦ-score andΦ-solution) Discrete Φ-score
and solution are defined as in 3.5.1, except that x and y are restricted to
nodes of the input graph.

Definition 3.5.3 (Witness) A witness of leader x is a point ywhere

Φ(y ≺ x) = Φ(x).

IfΦ(y ≺ x) measures the instability of the leader xwhen confronted with
follower y then there is a natural monotonicity requirement: Φ should not
decrease if we move the points x, y in such a way that the follower influ-
ence w(y ≺ x) increases while the leader influence w(x ≺ y) decreases.

54

3.5. Generalization to Monotonic Gain Functions

Definition 3.5.4 (Monotonic gain function) A gain function Φ(y ≺ x)
is called monotonic, if there is a function ϕ : Q+

0 ×Q+
0 → Q such that

1. Φ(y ≺ x) = ϕ(w(y ≺ x), w(x ≺ y)) for all points x, y ∈ G
2. ϕ is monotonically increasing in the first parameter and monotoni-

cally decreasing in the second parameter
3. ϕ can be evaluated in constant time.

Note that the last requirement can be also achieved after a preprocessing
step which itself may need more than constant time. This may be necessary
if the evaluation of ϕ(·, ·) comprises graph-dependent parameters like the
total weight w(G) of all users.

Once again, we emphasize that we are always operating with relaxed
user preferences. Thus w(y ≺ x) is a shorthand notation for wα(y ≺ x) etc.
We remark that this does not lead to conflicts with notation used for the
unrelaxed model in Section 3.2 and 3.3 as the latter is obtained as a special
case when settingα := 0. In this sense we are extending our notation instead
of redefining it.

Observation 3.5.5 (Simpson, security, Stackelberg) The monotonic gain
functions

Γ(y ≺ x) := w(y ≺ x)
∆(y ≺ x) := w(y ≺ x) −w(x ≺ y)
Σ(y ≺ x) := w(y ≺ x) + 1

2
w(x ∼ y)

induce the α-Simpson problem, the α-security problem, and the α-Stackelberg
problem, respectively.

Observation 3.5.6 (Further examples) Let λ ∈ [0, 1]. Then the following
gain functions are monotonic:

R(y ≺ x) := w(y ≺ x)
w(x ≺ y)

N(y ≺ x) := w(y ≺ x) +w(y ∼ x)

Ψ(y ≺ x) := w(y ≺ x) + λ ·w(y ∼ x)

The gain function R is may be considered as a variation of security lo-
cation where difference is replaced by ratio (the case w(x ≺ y) = 0 is to
be handled appropriately). While for Simpson location it is assumed that
users are conservative, the gain functionN implies novelty oriented users:

55

3. Monotonic Gain Functions

If a user is indifferent between the competitors he always connects to the
new facility, that is, to the follower. Unfortunately, this brings about a dis-
proportional disadvantage of the leader: If the follower chooses the same
location as the leader does he serves the whole demand w(G). Hence all
x ∈ G are N-solutions. Finally the MGF Ψ is a generalization of Γ , Σ and
N: Setting λ := 0, λ := 1

2
or λ := 1 we obtain the MGF Ψ = Γ , Ψ = Σ and

Ψ = N, respectively. We call Ψ generalized Stackelberg function.

Leader Independent MGFs

It is noteworthy that the Simpson MGF Γ differs from all other above MGFs
in that it only depends on the weight of the follower party. We call such
MGFs leader independent.

Definition 3.5.7 (Leader independent MGF) A MGF Φ induced by
function ϕ is called leader independent if ϕ only depends on the first
parameter.

An arbitrary leader independent MGF Φ may be considered as a coars-
ening of the Simpson MGF Γ since each Simpson location is also a Φ-
solution. Moreover if ϕ is strictly increasing in the first parameter then Φ
becomes equivalent to the Simpson MGF.

Tolerant and Efficient Φ-Solutions

Recall that a point x is an (α, γ)-Condorcet location if Γ(x) ≤ γ ·w(G). The
following definition is a straightforward generalization of this concept.

Definition 3.5.8 (ϕ0-boundedΦ-solution) Let Φ be an MGF and α an
indifference threshold. Let further ϕ0 ∈ Q. A point x is called a ϕ0-bounded
Φ-solution if Φ(x) ≤ ϕ0. The set of all ϕ0-bounded Φ-solutions for param-
eter α is denoted by S(α,ϕ0).

Note that ifϕ0 < ϕ(0, 0) then any point is dominated by itself and S(α,ϕ0)
is empty. Therefore we assume in the sequel that ϕ0 ≥ ϕ(0, 0).

It is not hard to prove that the basic properties of the (α, γ)-Condorcet
sets C(α, γ) carry over to leader independent MGFs.

Lemma 3.5.9 (Monotonicity) Let Φ be a MGF. Then the family of sets
(S(α,ϕ0))α,ϕ0

is monotonically increasing with respect to ϕ0. If Φ is leader
independent this holds for parameter α, too.

In what follows we use the notation ϕ(wy) := ϕ(wy, 0) for leader inde-
pendent MGFs.

56

3.5. Generalization to Monotonic Gain Functions

Proof (Lemma 3.5.9). The monotonicity with respect to ϕ0 is trivial.
To prove the monotonicity with respect to α consider two fixed points

x, y ∈ G and a user u preferring y over x, that is, d(u, x) − d(u, y) > α.
If we increase the indifference parameter α this inequality may become
untrue. In other words u may leave follower party U(y ≺ x) and enter the
party U(y ∼ x) of undecided users. Clearly, no users enters U(y ≺ x) and
hence w(y ≺ x) cannot increase. Therefore if we increase α then w(y ≺ x)
and thus also ϕ(w(y ≺ x)) cannot increase as well. Here, we exploit the
monotonicity and leader independency of ϕ(·, ·). 2

Figure 3.7 demonstrates that for leader dependent MGFs the monotonic-
ity with respect to α does not need to hold.

1+ ε

1+ ε

1+ ε

1+ ε

FIG. 3.7.: Consider the security MGF ∆. The leftmost node is in S(0, 0) but not
in S(ε, 0) for ε > 0 since it is then dominated by the rightmost node.
Unmarked nodes and edges are unit weighted.

The analogue to γ-minimality, calledΦ-minimality, holds also for general
MGFs and follows immediately from the existence of the minimum Φ∗ in
Definition 3.5.1.

Observation 3.5.10 (Φ-Minimality) Let Φ be a MGF and α ≥ 0 an in-
difference threshold. Then there is a smallest ϕ0, denoted by Φ∗(α), such that
S(α,ϕ0) is non-empty. 2

Clearly, Φ∗(α) equals the Φ-score Φ∗ but we sometimes use the former
notation to emphasize its dependency from α.

Recall that S(α,ϕ0) is empty for any ϕ0 < ϕ(0, 0) and α ≥ 0. On the
other hand, if ϕ0 ≥ ϕ(0, 0) and α ≥ diam(G) then S(α,ϕ0) contains all
points of G. Together with the monotonicity property we conclude.

Observation 3.5.11 (α-Minimality) Let Φ be a MGF and ϕ0 ≥ ϕ(0, 0).
Then there is a smallest α ≥ 0, denoted by α∗(ϕ0), with non-empty S(α,ϕ0). 2

The validity of the basic properties for leader independent MGFs enables
us to generalize the notions of γ-tolerant and efficient Condorcet locations.

57

3. Monotonic Gain Functions

Definition 3.5.12 (ϕ0-TolerantΦ-solution) Let Φ be a leader indepen-
dent MGF and ϕ0 ≥ ϕ(0). Then each x ∈ S(α∗(ϕ0), ϕ0) is called a ϕ0-
tolerantΦ-solution.

Definition 3.5.13 (EfficientΦ-solution) Let Φ be a leader independent
MGF and ϕ0, α ∈ Q. Then x ∈ S(α,ϕ0) is called an efficient Φ-solution, if
α = α∗(ϕ0) and ϕ0 = Φ∗(α).

3.6. Concluding Remarks

In this chapter we have introduced a new model called monontonic gain
functions which generalizes several problems from the area of competi-
tive and voting location such as Stackelberg, (1, 1)-centroid, Simpson, Con-
dorcet, Security and Plurality. Monotonic gain functions emerge from two
basic properties inherent in all those problems: First, they are based on
distance-based user preferences. Second, the underlying optimization pro-
cess is two-stage (leader and follower in competitive location, candidate
and opposition in the voting scenario). Without any difficulties, mono-
tonic gain functions cope with the relaxed user preference model intro-
duced by Campos and Moreno [CM03]. Besides the most obvious notion a
Φ-solution on a given graph for some monotonic gain functionΦ, we have
also introduced related concepts such as ϕ0-bounded, ϕ0-tolerant and effi-
cientΦ-solutions.

The following two chapters will be devoted to algorithmic aspects re-
lated with monotonic gain functions. Specifically, we will develop fast al-
gorithms for tree graphs. As we shall see, the framework of monotonic
gain functions helps formulate general algorithms and results for compet-
itive and voting location problems.

58

4. Computing a Φ-Solution of a
Tree

4.1. Introduction

As mentioned in Chapter 2 there are three main reasons why we focus
on tree graphs: First of all, the problems under consideration seem to be
quite “unapproachable” on general graphs, which motivates to study sim-
pler graph structures. Second, tree graphs appear quite often in practical
applications. And third, a whole series of positive results and fast algo-
rithms already exist for the unrelaxed variants of those problems on a tree.
It is therefore an interesting question how far such results carry over to
the more general relaxed user preference model or even monotonic gain
functions.

4.1.1. General Graphs

Hansen and Labbe [HL88] developed a polynomial-time algorithm for the
(unrelaxed) absolute centroid problem on a general graph G = (V, E) with
integral node weightsw. The running time of this quite involved algorithm
is O(|V |4|E|2 log(|V ||E|) logw(G)). Although centroid is therefore efficiently
solvable the above asymptotic running time involves large exponents and
might be considered as rather impracticable.

Even if we restrict ourselves to the discrete centroid (discrete Simpson
problem) the situation does not become much easier. Campos and Moreno
[CM03] suggested an enumerative algorithm for computing the Condorcet
set C(α, γ) in cubic time. We will argue later in Section 6.2 that computing
the set C(α, γ) is as least as hard as solving the vector maximization problem
[KLP75], which is a problem of fundamental importance and has already
been investigated thoroughly in literature. From our result it follows that
an algorithm which is essentially faster than the enumerative approach of
Campos and Moreno [CM03] would lead to an algorithm for the vector
maximization problem that supersedes the fastest algorithms known to-
day.

59

4. Computing aΦ-Solution of a Tree

4.1.2. Trees

There is a great deal of literature investigating sequential and voting lo-
cation problems on tree graphs [Sla75, WM81, HTW90, Eis92, GP03]. One
of the most impressive results is that on trees unrelaxed (but not relaxed,
confer Figure 4.1) centroid, Condorcet, Simpson, plurality and security all
coincide with the set of medians [HTW90]. One could say that central plan-
ning, voting and competition lead to the same locational outcome in this
particular setting. On the algorithmic side this leads to a linear time algo-
rithm for all these problems using the well known algorithm of Goldman
[Gol71] for computing the set of medians of a tree.

It is natural to ask whether this is true for all MGFs. Indeed we can prove
that the following weakening of the above observation holds for all MGFs.

Theorem 4.1.1 For the unrelaxed user preference α = 0 and for any mono-
tonic gain functionΦ, any absolute weighted median of a tree is also aΦ-solution.

Proof. Let x be an arbitrary point of a tree T . We assume w. l. o. g. that x is a
node for otherwise we could create a zero weighted node at x. By T − xwe
denote the forest obtained by deleting x and all edges incident to x from T .

Now let y 6= x be any point. It is then obvious that the y-party U(y ≺
x) is always contained in one single connected component Cy of T − x.
Moreover the x-party U(x ≺ y) contains at least all nodes of T that are not
in Cy.

It is a basic fact known from location theory that a point x ∈ T is a median
of T if and only if all connected components of T − x have weight at most
1
2
w(T) [Gol71]. Thus if m is a weighted median and y 6= m then w(y ≺
m) ≤ 1

2
w(T) ≤ w(m ≺ y) (here we exploit that α = 0). Hence, if y is a

witness ofm and x 6= m is an alternative point, we obtain:

Φ(m) = Φ(y ≺ m)

= ϕ(w(y ≺ m), w(m ≺ y))
≤ ϕ

(
1
2
w(T), 1

2
w(T)

)
≤ ϕ(w(m ≺ x), w(x ≺ m))

= Φ(m ≺ x)
≤ Φ(x) .

It remains to consider the case where m itself is the only witness of m.
ThenΦ(m) = ϕ(0, 0) = Φ(x ≺ x) ≤ Φ(x). 2

60

4.1. Introduction

We conclude that an unrelaxed Φ-solution can always be computed in lin-
ear time.

Clearly if we set Φ :≡ 0 each point of the tree is a Φ-solution. Hence
there can be unrelaxedΦ-solutions that are not a median.

Unfortunately Theorem 4.1.1 does not hold for the relaxed user prefer-
ence: We see in Figure 4.1 an example which demonstrates that in the case
α > 0 the sets of all medians, α-Simpson and (strong) α-Security solutions
may actually be pairwise disjoint. Hence finding a relaxed Φ-solution of

m u v

1 10 3 2 0 0 10 1 112

FIG. 4.1.: Example where median {m}, relaxed strong1 security solution {u} and
relaxed Simpson solution {v} are unique and pairwise different. All
edges have unit length and the indifference parameter is α = 4.

a tree seems to be a nontrivial task.
Algorithms for relaxed sequential location problems on trees have been

investigated by Garcia and Pelegrin [GP03]. They investigate the problem
of determining all Stackelberg solutions with parametric prices (akin to α-
Simpson problem) of a tree. The running time of their quite complicated
algorithm is O(n3 logn). Recall that we use n to denote the number |V | of
vertices of the input graph G = (V, E), which is a tree in this case.

Eiselt [Eis92] examines a competitive location problem that is similar to
the relaxed Nash location problem. Also sequential variants are considered
but not from an algorithmic viewpoint.

Apart from the equivalence between medians and unrelaxed sequential
location on trees there is another interesting special case relating MGFs
with central planning: Assume that we increase α until it attains the radius
rad(G) of G. Then each α-Simpson location becomes an absolute center of
the tree and vice versa.

We conclude from the above observations that any algorithm which is
able to compute a Φ-solution for arbitrary Φ and α ≥ 0 must be so gen-
eral that it “includes” especially the computation of medians, centers and
also of fixed-priced Stackelberg solutions of trees. Computing a median
or a center of a tree are already nontrivial problems but can be solved in
linear time by the well known algorithms of Goldman [Gol71] and Han-
dler [Han73], respectively. Indeed we are able to generalize both results:
In this chapter, we will present a linear time algorithm computing a relaxed

1A strong solution excludes the slightly pathological case of all users being undecided.
See Definition 4.5.1.

61

4. Computing aΦ-Solution of a Tree

Φ-solution (and thus also the score Φ∗) for an arbitrary MGF Φ. Hence
our algorithm may be understood as a general procedure for solving not
only voting and competitive location but also certain planning problems
(like median and center) on a tree in linear and hence optimal time. As a
byproduct, we shall see in Chapter 5 that our algorithm enables us to com-
pute the entire set of Stackelberg solutions with parametric prices in O(n)
time which is significantly faster than Garcia and Pelegrin’s O(n3 logn)
algorithm.

4.2. Computing the Absolute Φ-Score of a Point

We first investigate the problem of computing the relaxed Φ-score of a
leader point x in a tree. Consider the case where two points x, y are given.
By definition the three sets U(x ≺ y), U(x ∼ y), and U(y ≺ x) form a par-
tition of the tree T . We show in the following lemma that each of the
three sets is actually a connected subtree (in the case d(x, y) ≤ α the sets
U(x ≺ y) and U(y ≺ x) are empty as all users are undecided). Confer Fig-
ure 4.2 for an illustration.

ỹ

U(x ∼ y)

x̃ U(y ≺ x)U(x ≺ y)

FIG. 4.2.: Any tree is partitioned in x-party, y-party, and the set of undecided
users. Each of the three parties induces a subtree unless it is empty.
Notice that x, y do not necessarily fall into their respective party if they
are inner points of edges.

Lemma 4.2.1 (Front nodes) Let x, y ∈ T be points such that d(x, y) > α and
let P be the shortest node terminated path containing P(x, y) as a subpath. Then
there are nodes x̃, ỹ on P such that U(x ≺ y) = Tỹ(x̃) and U(y ≺ x) = Tx̃(ỹ).

The nodes x̃, ỹ are called front nodes. These nodes are of special importance
since they completely characterize the above mentioned partition of the
tree, from which the desired value Φ(y ≺ x) can be derived. We remark
that x̃ = x or ỹ = y can occur. It is even possible that x /∈ Tỹ(x̃) or y /∈ Tx̃(ỹ)
(confer Figure 4.3).

Proof (of Lemma 4.2.1). Let x0 be the end node of the path P that is closer to x
than to y. For any node z, let the projection of z be the node z̄ on P where

62

4.2. Computing the AbsoluteΦ-Score of a Point

d(z, z̄) is minimal. Since d(z, x) − d(z, y) = d(z̄, x) − d(z̄, y) it follows that
the preferences x ≺z y and x ≺z̄ y are identical. Choose node x̃ ∈ P such
that x ≺x̃ y and d(x0, x̃) is maximal. Then the nodes on path P that prefer x
are exactly those on the subpath P(x0, x̃). If v ∈ T is an arbitrary node, then
x ≺v y if and only if its projection v̄ prefers x, that is, v̄ ∈ P(x0, x̃). This is
equivalent with v ∈ Ty(x̃) = Tỹ(x̃). The situation for ỹ is symmetric. 2

Consider a leader x, a follower y and the path P(x, y) with endpoints x
and y. Now assume that ymoves along P(x, y) approaching the leader. As
long as d(x, y) > α, the movement of y can affect the weights of the parties
in two ways: On the one hand, the influence w(y ≺ x) of the follower can
increase because it retains all users in Tx(y) and comes closer to all other
users. On the other hand, the influencew(x ≺ y) of the leader can decrease
since y approaches all users of the leader party. By the monotonicity prop-
erty,Φ increases with decreasing d(x, y). We formulate our considerations
in the following lemma:

Lemma 4.2.2 Let x, x ′, y, y ′ be (not necessarily distinct) points such that x
and y ′ lie on the path P(x ′, y) and d(x ′, y ′) > α and d(x, y) > α holds. Then

Φ(y ′ ≺ x ′) ≥ Φ(y ≺ x) .

Proof. Let’s start with the leader-follower configuration (x ′, y) and assume
that we move the follower towards x ′ until we reach the configuration
(x ′, y ′). According to our above considerations we have that w(y ′ ≺ x ′) ≥
w(y ≺ x ′) and w(x ′ ≺ y ′) ≤ w(x ′ ≺ y). Hence Φ(y ′ ≺ x ′) ≥ Φ(y ≺ x ′) by
the monotonicity property ofΦ.

Now assume that we, starting from configuration (x ′, y), shift the leader
towards y until we reach the configuration (x, y). By symmetry we con-
clude that w(x ≺ y) ≥ w(x ′ ≺ y) and w(y ≺ x) ≤ w(y ≺ x ′) holds. Hence
Φ(y ≺ x ′) ≥ Φ(y ≺ x), which completes the proof. 2

Let’s go back to our above thought experiment of a follower y approaching
the leader x. As long as the follower remains outside the α-ball Sα(x) it
increases Φ(y ≺ x). However, when y arrives at the border of Sα(x) all
users become suddenly undecided since then |d(u, x) − d(u, y)| ≤ α for all
users u. Hence a local maximum ofΦ(y ≺ x) is attained when the follower
has reached a distance d(x, y) “slightly larger than α”.

To formalize the expression “slightly larger than α”, observe that any
user within the α-ball Sα(x) around x either belongs to the x-party or is
undecided. The same holds for the α-ball around y. Now assume that y
has been moved so close to x that all inner nodes on the path P(x, y) are

63

4. Computing aΦ-Solution of a Tree

part of the intersection Sα(x) ∩ Sα(y). Then it is clear that the follower can
not increase his gain by further approaching x, since all inner nodes on
P(x, y) are and remain undecided.

The above condition is met if there is no node u on the path P(x, y) such
that 0 < d(x, u) < d(x, y) − α or α < d(x, u) < d(x, y).

Now we define

ε(x) := min
(
{d(x, u), d(x, u) − α | u ∈ V } ∩Q+

)
and observe that any point y at distance α+ ε(x) from x satisfies the above
condition.

Definition 4.2.3 (α-neighborhood) Let x be a leader point. Any point y
with d(x, y) = α + ε(x) is called an α-neighbor of x. The set of all α-
neighbors of x is denoted by Nα(x).

We may imagine an α-neighbor of some point x as a point whose distance
to x is “slightly larger” than α or that is “infinitesimally close” to the α-ball
Sα(x).

We remark that the auxiliary definition of ε(x) helps us construct a well-
defined and finite set of α-neighbors for the purpose of theoretical inves-
tigations. Later in Lemma 4.2.5 we will give a simple characterization of
front nodes that avoids an explicit calculation of α-neighbors.

From the above observations we can conclude that, in order to compute
Φ(x), it suffices to consider nodes in the α-neighborhood of x:

Lemma 4.2.4 (Witness) For each leader x there is a witness y ∈ Nα(x)∪ {x}.

Proof. Let y ′ be a follower node such that Φ(x) = Φ(y ′ ≺ x). If d(x, y ′) ≤
α, then all nodes are undecided, that is, U(y ′ ∼ x) = V . Since also U(x ∼

x) = V we can concludeΦ(x ≺ x) = Φ(y ′ ≺ x) = Φ(x) and hence x itself is
a witness.

If d(x, y ′) > α, then consider the α-neighbor y of x on path P(x, y ′).
According to Lemma 4.2.2 we have that Φ(y ≺ x) ≥ Φ(y ′ ≺ x). Since
Φ(y ′ ≺ x) was maximal this shows Φ(y ≺ x) = Φ(x). Note that if P(x, y ′)
does not contain an α-neighbor then there is an α-neighbor y such that
P(x, y) contains y ′. Due to the definition of an α-neighbor, Φ(y ′ ≺ x) can-
not be greater thanΦ(y ≺ x). 2

Consider a pair (x, y) of leader and follower. Once the pair (x̃, ỹ) of
associated front nodes is known, the value Φ(y ≺ x) = ϕ(wx̃(ỹ), wỹ(x̃))
can be easily computed as it only depends on the weights of the subtrees

64

4.2. Computing the AbsoluteΦ-Score of a Point

hanging from the front nodes. For the sake of easier presentation we write
ϕ(y, x) := ϕ(wx(y), wy(x)) in the sequel. If we assume that the weights
of all possible subtrees { Tu(v), Tv(u) | (u, v) ∈ E } have already been com-
puted as a preprocessing step (which needs two DFS traversals and there-
fore takes O(n) time) the function value Φ(y ≺ x) = ϕ(ỹ, x̃) can be eval-
uated in O(1) time when the front nodes (x̃, ỹ) are known. The following
lemma provides a tool for constructing front nodes (see Figure 4.3 for an
illustration).

Lemma 4.2.5 (Characterization of front nodes) Let x be a point and y be
an α-neighbor of x. Then the front nodes x̃, ỹ are characterized as: The path
P(x̃, ỹ) is the shortest node-terminated path that contains P(x, y) as a subpath.

x̃

U(x ∼ y)

ỹ

α + ε(x)

U(y ≺ x)U(x ≺ y) x y

FIG. 4.3.: Characterization of front nodes x̃ and ỹ if y is an α-neighbor of x.

Proof. Consider an arbitrary node z and its projection z̄ onto P(x̃, ỹ). If z̄
is an inner node on P(x̃, ỹ), it is undecided since y is an α-neighbor of x.
Otherwise, z is part of one of the subtrees Tx̃(ỹ) or Tỹ(x̃) and clearly prefers
x or y, respectively. 2

We now argue that during the process of determining front nodes it is
not necessary to actually execute a computation of α-neighbors using the
function ε(x) outlined above. Observe that for a given point x, any edge
(u, v) contains an α-neighbor of x if and only if d(x, u) ≤ α < d(x, v); if that
condition is met, v is the desired front node. Obviously the set of all front
nodes can be enumerated by a simple depth-first-search traversal starting
at x.

Theorem 4.2.6 (AbsoluteΦ-score of a point) For any MGF Φ on a tree,
the absolute scoreΦ(x) of a given point x can be computed in time O(n). 2

65

4. Computing aΦ-Solution of a Tree

y

T

W1

W2

Tx

α

x x

T ′

W2

Tx

W1

FIG. 4.4.: Example for collapsing subtrees. If y is a witness of x then the subtree
Tx contains at least one optimum. Moreover, if we simplify T to T ′, we
can guarantee that any optimum of T ′ that lies in Tx is also an optimum
in the original tree T .

4.3. Computing an Absolute Φ-Solution

In this section we develop an algorithm that computes for any monotonic
gain function Φ on a tree an absolute Φ-solution in linear time. The rough
idea of the algorithm is to maintain a sparsified version of the input tree
that is divided into a so-called leader tree and two follower trees. The leader
tree is always a subtree of the input tree and is guaranteed to contain a
Φ-solution, that is, an optimal placement for the leader. The leader tree
and the follower trees are iteratively shrunken during the execution of the
algorithm. When the number of remaining nodes has reached O(1), the
iteration stops and a solution can be found and output in constant time.

4.3.1. An Introductory Example

Consider the example depicted in Figure 4.4 showing a point x with wit-
ness y of distance d(x, y) > α. First, we claim that the subtree Tx towards
witness y (that is, the subtree induced by the node set (V − Ty(x)) ∪ x)
contains at least one optimum. This follows from the fact that for any
point x ′ /∈ Tx we have that Φ(x ′) ≥ Φ(y ≺ x ′) ≥ Φ(y ≺ x) = Φ(x) by
Lemma 4.2.2. Therefore, either x itself is optimal or all optima must lie in
Tx. This observation will be called “guide rule” since it shows the direc-

66

4.3. Computing an AbsoluteΦ-Solution

tion to the optimal leader placements and allows us to narrow down our
further search to Tx. In fact, the guide rule will be used in our algorithms
to reduce the size of the leader tree (confer procedure HALVELEADER in
Section 4.3.3).

Although we can restrict our search to Tx, we can, of course, not simply
delete the nodes outside Tx since they still could serve as potential locations
for the follower (“follower tree”). However, we can considerably simplify
the part of the tree that lies outside Tx and outside the α-ball Sα(x).

To this end consider an arbitrary point x ′ ∈ Tx and assume that its wit-
ness y ′ does not belong to Tx.

If y ′ is inside Sα(x), say, the root node of the gray colored subtree of
weight W2 in Figure 4.4, then the actual structure of the tree outside Sα is
not crucial for computing the Φ-score of x ′. It would thus be sufficient to
retain only one node of that subtree and to assign to it weight W2 as it is
done in the tree T ′ on the right side of the picture. To put it more algo-
rithmically, we may merge all nodes outside Sα(x) with the closest node
inside.

But what if the witness y ′ lies outside Sα(x)? To allow for this case
we could keep one single representative node whose weight is that of the
heaviest subtree outside Sα(x). In our example this isW1.

To summarize, a situation like the one in Figure 4.4 allows us to discard
all nodes (except one) that are contained neither in Tx nor in Sα(x). Our
transformation guarantees that any optimum of T ′ that lies in Tx is also an
optimum of T . Thus it suffices to solve the problem on T ′ rather than to
search the whole tree T . We will use this idea in the procedure DISCARD-
FAR (confer Section 4.3.6) to reduce the size of the tree iteratively.

We learn from this example that it is possible to maintain a sparsified ver-
sion of the input tree that essentially keeps aggregated weights in certain
nodes organized in so-called follower trees. This way we can guarantee the
invariant that any point with minimum Φ-score in the current leader tree
has also minimumΦ-score in the initial tree and both scores are identical.

4.3.2. Terminal Trees

Let T be a tree and u, v two designated nodes called terminal nodes. The
two terminal subtree (2TS) Tuv induced by u and v is the maximal subtree of T
containing both u and v as leaves. The actual data structure employed by
our algorithm is called a terminal tree and defined as follows (see Figure 4.5
for an illustration):

67

4. Computing aΦ-Solution of a Tree

follower tree leader tree follower tree

u
v

FIG. 4.5.: Example of a terminal tree with terminals u, v.

Definition 4.3.1 (Terminal tree) A terminal tree is a tree T = (V, E) with
two distinguished terminal nodes u, v ∈ V . The 2TS Tuv induced by u and
v is called the leader tree of T . The trees Fu := Tv(u) and Fv := Tu(v) are called
follower trees of T .

Our algorithms maintains a terminal tree that is shrunken iteratively un-
til the number of nodes reaches a constant. The linear running time of our
algorithm is achieved since first, each iteration takes a time linear in the
size of the current terminal tree and second, this size is guaranteed to de-
crease by a constant factor after a constant number of iterations. To this end
we employ two procedures (confer Figure 4.6): Procedure HALVELEADER
reduces the size of the leader tree by identifying new terminals and thus
moving some nodes from the leader tree into the follower trees. In con-
trast, procedure HALVEFOLLOWER discards nodes from a follower tree,
maintaining the weights accordingly. Note that only HALVEFOLLOWER
actually reduces the size of the current terminal tree.

��
��
��
��
��

��
��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

a) b) c) d)

FIG. 4.6.: a) current terminal tree, follower trees shaded gray. b) terminal tree
after HALVELEADER. c) terminal tree after HALVEFOLLOWER (discard
near). d) terminal tree after HALVEFOLLOWER (discard far).

4.3.3. Sparsifying the Leader Tree

The first ingredient of our algorithm is the subroutine HALVELEADER that
decreases the size of the leader tree by almost half of its nodes. Before we
describe this procedure, we formulate the aforementioned guide rule.

68

4.3. Computing an AbsoluteΦ-Solution

To this end let x be a node in a tree T and y 6= x be some point of T . The
y-component of T at x, denoted by Cx(y), is the subtree induced by the node
set (V − Ty(x)) ∪ x. For an illustration confer Figure 4.7.

Lemma 4.3.2 (Guide rule) Let T be a tree, let x ∈ T be a node of T , and
let y ∈ T be a witness of x such that y /∈ Sα(x). If there is an x ′ ∈ T with
Φ(x ′) < Φ(x) then x ′ ∈ Cx(y). On the other hand, if x is a witness of itself then
Φ(x) = Φ∗.

Proof. Let x ′ ∈ Ty(x) be an arbitrary point. Then

Φ(x ′) ≥ Φ(y ≺ x ′) ≥ Φ(y ≺ x) = Φ(x)

by Lemma 4.2.2.
For the second claim observe that if x is a witness of itself then all nodes

are undecided. Thus Φ(x) = Φ(x ≺ x) = ϕ(0, 0). Moreover, ϕ(0, 0) =
Φ(x ′ ≺ x ′) ≤ Φ(x ′) for all other points x ′, hence Φ(x) is optimal. 2

As a consequence of the guide rule, observe that if we have identified a
witness y of a point x then we can narrow down the search for optima to
the component Cx(y).

An x-split of T is the collection {Cx(y) | y ∈ N(x) } of components induced
by the neighborhood of x (confer Figure 4.7). For a finite set S of points of
tree T , the S-split is the result of iteratively splitting at all x ∈ S. Observe
that any S-split forms a partition of the edge set of the tree T , and nodes
of S always appear as leaves in the resulting subtrees. We call a node set S
a valid split if none of the resulting subtrees contains more than two nodes
of S (confer Figure 4.7).

A valid split set is helpful for the development of a divide and conquer
algorithm: given a current leader tree and a valid split set, any of the gen-
erated subtrees can serve as a new leader tree since it is surrounded by
at most two split nodes which can be used to define a new 2TS. If such a
subtree contains only one split node then choose an arbitrary leaf as the
second terminal to obtain a valid 2TS.

The following lemma shows that an appropriate valid split set can be
formed with the help of unweighted medians.

Lemma 4.3.3 (Valid subdivision by unweighted median) Given a tree
with terminals u, v, let n ′ be the number of nodes in the 2TS Tuv. Now let m be
the unweighted median of Tuv and m ′ be the projection of m onto path P(u, v).
Then the set {m,m ′, u, v} is a valid split set and each 2TS induced has at most
n ′/2+ 1 nodes. This split can be computed in O(n ′) time.

69

4. Computing aΦ-Solution of a Tree

y1

y2

y3

Cx(y3)

x

Cx(y2)

Cx(y1)

(a)

(b)

(c)

FIG. 4.7.: (a) x-split (b) valid split (c) invalid split; split nodes are marked black.

Proof. The claim that {m,m ′, u, v} is a valid split set follows easily from
distinguishing the cases that either m lies on path P(u, v) or that it does
not. Confer also Figure 4.8.

The other claim follows from the fact that each connected component of
the forest Tuv −m has at most n ′/2 nodes due to the median property of
m. The unweighted median can be computed in linear time employing
Goldman’s algorithm [Gol71]. 2

m ′

u v

m

u v

m

FIG. 4.8.: The two cases in the subdivision of a 2TS.

Letm andm ′ be as in Lemma 4.3.3. Suppose that y, y ′ are witnesses and
α-neighbors of m,m ′, respectively. From the guide rule we deduce that a
point x with minimum Φ-score in L (that is, Φ(x) = minz∈LΦ(z)) must lie
in the intersection of the components, that is, in the subtree

L ′ := Cm(y) ∩ Cm ′(y ′) ∩ L . (4.1)

70

4.3. Computing an AbsoluteΦ-Solution

This is exactly one of the 2TSs generated by the valid split set and can then
serve as a new leader tree (confer Figure 4.10).

We summarize our considerations in the following algorithm:

1 input terminal tree T with terminals u, v and leader tree L
2 letm be an unweighted median of L
3 letm ′ be the projection ofm on path P(u, v) (m ′ = m allowed)
4 {u, v,m,m ′} is a valid set of split nodes

and generates a partition of L into subtrees
5 determine a witness y ∈ Nα(m) ∪ {m} ofm
6 and a witness y ′ ∈ Nα(m

′) ∪ {m ′} ofm ′

7 if both witnesses are α-neighbors then
8 use the guide rule and Equation (4.1)

to determine the relevant subtree L ′

9 and output this as the new terminal tree
10 else
11 we haveΦ(z) = Φ(z ≺ z) for z = m or z = m ′

12 output optimum z and stop main algorithm

FIG. 4.9.: Algorithm HALVELEADER

Lemma 4.3.4 (Halve leader tree) Let T be a terminal tree with leader tree L.
Then we can identify in timeO(|T |) a new leader tree L ′ ⊆ L of size |L ′| ≤ 1

2
|L|+1

which satisfies minx∈L ′ Φ(x) = minx∈LΦ(x).

Proof. We claim that algorithm HALVELEADER depicted in Figure 4.9 per-
forms the desired construction. The correctness of the algorithm is an im-
mediate consequence of the fact that we restrict the leader set according to
the guide rule. For the bound on the running time it suffices to observe
that the unweighted median can be determined in linear time employing
Goldman’s algorithm [Gol71]. 2

We point out that the size of the current tree T is not changed by an
execution of algorithm HALVELEADER since it basically shifts nodes from
the leader tree into the follower trees.

The above procedure can be repeated iteratively on the current terminal
tree until the leader tree consists only of a single edge. At this time we
know that there is aΦ-solution on that edge. This situation is dealt with in
the following section.

71

4. Computing aΦ-Solution of a Tree

m ′
v

m

u

m m

m ′ m ′
u

FIG. 4.10.: Example of the execution of HALVELEADER. Left: start of a phase
with the leader tree separated by a valid split set {u, v,m,m ′}; Right:
possible states at the end of the phase. The shaded areas depict the
follower trees.

4.3.4. Finding an Optimum on a Single Remaining Edge

We now investigate the case where we have identified (for example, by
iterating HALVELEADER) a single edge carrying the desired point of mini-
mum Φ-score. We reduce this case to the computation of an optimal point
in a modified tree.

To this end, we identify a set Xe of so-called critical points on the remain-
ing edge e = (u, v). These are points where the value of Φ could change.
Clearly, this set of critical points has to contain points with a distance of
exactly α to a node of T . Let

Xe := {point x ∈ e | d(x, z) = α for some node z ∈ V } ∪ {u, v}

be the set of critical points on e. We sort point set Xe so that for Xe =
{x0, . . . , xk} we have x0 = u, xk = v, and d(u, xi) < d(u, xi+1) for all i. Note
that |Xe| ≤ n+ 2.

We claim that there are no more critical points on the edge e; in partic-
ular, the value of Φ is constant on each of the open intervals (xi, xi+1) for
i = 0, . . . , k−1. This follows from applying Lemma 4.2.5: For any two inner
points x ′, x ′′ of the same interval, the sets of edges containing α-neighbors
of x ′ and x ′′, respectively, are identical. Moreover, also the sets of corre-
sponding front nodes coincide. Hence the user preferences and, in turn,
theΦ-scores must be the same.

As a result, the function Φ(·) is piece-wise constant on any edge. And
even more importantly, we have reduced the problem of finding an opti-
mal solution within all points of some edge to finding an optimal solution
for a discrete set of nodes.

4.3.5. A First O(n logn) Algorithm

We compute the absoluteΦ-score of a tree in two phases.

72

4.3. Computing an AbsoluteΦ-Solution

Phase 1 starts with the input tree T0 and chooses two arbitrary leaves as
terminals. This defines T0 to be the initial leader tree. Then we execute
algorithm HALVELEADER repeatedly until the current leader tree consists
of exactly two nodes connected by one edge. Theorem 4.3.4 guarantees
that this edge always contains an optimal leader point.

At the beginning of phase 2, determine the set of critical points as out-
lined in the previous section. We add this set as real nodes on the edge.
Now continue iterating HALVELEADER until we terminate again with a
subedge, at which time an optimal point has been found.

Lemma 4.3.5 An absolute Φ-solution can be found in time O(n logn) in a
tree for all monotonic gain functionsΦ.

Proof. The correctness follows immediately from the guide rule. For the
running time we observe that the first phase ends up with a single edge
after O(logn) calls to HALVELEADER each of which takes O(n) time. The
computation and sorting of the critical points needsO(n logn). The rest of
phase 2 has clearly the same complexity as the first phase. 2

We are going to improve this result in the sequel by developing an algo-
rithm with linear running time.

4.3.6. Sparsifying the Follower Tree

We now describe an operation that removes nodes from the follower tree.
As motivated above we require the terminal tree to reflect the actual Φ-
scores at least for those nodes in the leader tree. In contrast to the opera-
tion HALVELEADER described in the preceding section, the new operation
HALVEFOLLOWER must take special care during removal of nodes, as the
Φ-score of a leader node can decrease when its witness happens to reside
in the follower tree and is selected for removal. The desired invariant is
formalized by the notion ofΦ-equivalence.

In this section we use subscript notation ΦT and ϕT(y, x) to denote the
scores in a tree T , when the underlying function ϕ mentioned in Defi-
nition 3.5.4 is fixed. Recall that the latter is an abbreviation ϕT(y, x) :=
ϕ(wx(y), wy(x)), where the subtree weightswx(y) andwy(x) are computed
with respect to T . NotationΦ and ϕ(y, x) without subscripts is used when
the underlying tree becomes clear from the context.

Definition 4.3.6 (Φ-equivalent terminal tree) Let T be a terminal tree
such that its leader tree L is a subtree of the input tree T0. Tree T is called
Φ-equivalent to T0 if

73

4. Computing aΦ-Solution of a Tree

(i) ΦT(x) ≥ ΦT0(x) for all points x ∈ L and
(ii) minx∈LΦT(x) = Φ

∗
T0

.

Let T be a terminal tree with leader tree L and assume that it is Φ-
equivalent to input tree T0. A point x∗ ∈ L with ΦT(x

∗) = minx∈LΦT(x)
is called an L-optimum. Each L-optimum in the current tree is also an op-
timal point in the original tree T0 with respect to ΦT0 . (Notice that the
converse does not hold in general.) Moreover, the set of L-optima in-
duces always a connected subtree, which is a consequence of the guide rule
(Lemma 4.3.2). Namely, if x lies on path P(x ′, x ′′) then either Φ(x ′) ≥ Φ(x)
or Φ(x ′′) ≥ Φ(x) depending on where the witness of x lies. To find an op-
timum placement for the leader (with respect to the original tree) it thus
suffices to restrict the view to the current leader tree L.

As motivated in the introductory example, the main purpose of the fol-
lower tree is to collect nodes removed from the leader tree. Such nodes
may be needed to furnish certain nodes of the leader tree with a suitable
witness in order to prevent that their Φ-score decreases. To this end it is
not required that the follower trees be actually subtrees of T0 and in fact
their structure can be completely different from that of the corresponding
part of the input tree.

From the following lemma we learn that property (i) of Φ-equivalence
is tantamount to the property that the weight of the heaviest subtree with
distance at least α to a given point x ∈ L is never decreased by a sparsyfy-
ing modification made to the follower trees during our algorithm. Recall
that we have made a similar observation in our introductory example.

Lemma 4.3.7 Let x ∈ L be a point in the leader tree, F be one of the follower
trees, F ′ := F − Sα(x), and y ∈ F ′ be chosen so that wx(y) is maximal. Then
maxy ′∈F ′ Φ(y ′ ≺ x) = ϕ(y, x).

Proof. Let y∗ ∈ F ′ be an α-neighbor of x that attains maxy ′∈F ′ Φ(y ′ ≺ x).
Let ỹ be the front node of the follower party U(y∗ ≺ x). From Lemma 4.2.1
and Lemma 4.2.5 we deduce that Φ(y∗ ≺ x) = ϕ(ỹ, x). Let y be chosen
as in the statement of this lemma, and let y ′′ be the α-neighbor of x on
the path P(x, y). Then Φ(y∗ ≺ x) ≥ Φ(y ′′ ≺ x) = ϕ(y ′′, x) ≥ ϕ(y, x) by
monotonicity. Furthermore, ϕ(y, x) ≥ ϕ(ỹ, x) = Φ(y∗ ≺ x) since y was
chosen maximal and the subtrees Ty(x) and Tỹ(x) are identical; here we
exploit the fact that y, ỹ are part of the same follower tree. 2

In the sequel we describe a linear time operation that halves the size of a
follower tree but does not affect the Φ-equivalence of the current terminal
tree T . To this end let T be the current terminal tree, L be its leader tree,

74

4.3. Computing an AbsoluteΦ-Solution

u be one of its terminals, and δ > 0 be an arbitrary number specifying a
distance. As previously stated Fu denotes the follower tree incident with
terminal u. We define subsets F+, F− ⊆ Fu of far and near points (confer
Figure 4.11) by

F+ := {y ∈ Fu | d(u, y) ≥ δ } and F− := {y ∈ Fu | d(u, y) ≤ δ } .

We will later choose δ as the median of the distances of all nodes in Fu its
terminal u and this way divide the set of follower nodes in two almost
equal sized parts, V ∩ F+ and V ∩ F−. (It is guaranteed in particular that
both F+ and F− are nonempty.)

The main idea is to reduce the size of the follower tree by essentially
discarding either the nodes in F+ or in F− from it. To this end we employ
two subroutines DISCARDFAR (see Figure 4.13) and DISCARDNEAR (see
Figure 4.14) that discard the nodes (and incident edges) in F− or F+, respec-
tively, while taking further care that the Φ-scores of leader points do not
decrease which is a main ingredient to maintain the Φ-equivalence prop-
erty. Of course, those algorithms can not operate on the infinite point sets
F−, F+. Instead, they actually employ similarly defined node sets (confer
Step 3 in Figure 4.12):

F̃+ := {node y ∈ Fu − u | d(u, y) ≥ δ } and

F̃− := {node y ∈ Fu − u | d(u, y) ≤ δ } .

Nevertheless, let’s use the point sets F+ and F− in the following verbal de-
scription of the algorithms and in the proofs, which will simplify the pre-
sentation.

After determining F+, F− (or F̃+, F̃−, respectively) our algorithm deter-
mines a point h ∈ F+ with d(u, h) = δ such that wu(h) is maximal. This
defines a partition

L− := { x ∈ L | d(h, x) > α }

L= := { x ∈ L | d(h, x) = α }

L+ := { x ∈ L | d(h, x) < α } .

The following two lemmas show to which extent the operations DIS-
CARDFAR and DISCARDNEAR can change the Φ-scores of the leader tree
and which parts are not affected.

Lemma 4.3.8 (DISCARDFAR) The execution of DISCARDFAR does not de-
crease the Φ-score of points in L+ and leaves the Φ-score of points in L− ∪ L=
unchanged.

75

4. Computing aΦ-Solution of a Tree

L−

L=

L+

u

δ

h ′

F+F−

h

α

FIG. 4.11.: Illustration of the sets used in the construction.

Proof. Let T be the current terminal tree and T ′ be the new terminal tree
after the execution of DISCARDFAR. Observe that for any point y the exe-
cution of the algorithm leaves all weights wx(y) unchanged as long as y is
not removed.

Consider a point x ∈ L+ with a witness y. If y /∈ F+ then Φ(x) does not
change. Assume y ∈ F+. If y lies within Sα(x) then ΦT ′(x) ≥ ΦT ′(x ≺ x) =
ΦT(x ≺ x) = ΦT(x). Otherwise we may assume that y is anα-neighbor of x.
ThenΦT(x) = ϕT(y, x). Since in tree T we havewx(y) ≤ wx(h ′) we can con-
cludeϕT(y, x) ≤ ϕT(h ′, x) which equalsϕT ′(h ′, x) since we only collect the
weight of the subtree in the node h ′. Since dT ′(x, h ′) > α (confer Step 5 in
DISCARDFAR) there must be a y ′ ∈ T ′ such thatΦT ′(y

′ ≺ x) ≥ ϕT ′(h ′, x) by
Lemma 4.3.7. Clearly ΦT ′(x) ≥ ΦT ′(y

′ ≺ x) which finally shows ΦT ′(x) ≥
ΦT(x).

It remains to show thatΦT ′(x) = ΦT(x) for all x ∈ L− ∪ L=.
At first consider x ∈ L= and let y ′ be its witness in T ′. If y ′ ∈ T − F+

then the claim follows from the above stated observation that the weights
of subtrees are never changed. Otherwise by construction of T ′ the
point y must lie on the new edge incident with h ′. Hence ΦT ′(y

′ ≺ x) =
ϕT ′(h

′, x) = ϕT(h
′, x). By Lemma 4.3.7 this equalsΦT(x).

The arguments for x ∈ L− are similar with h ′ replaced by h, which com-
pletes the proof. 2

Lemma 4.3.9 (DISCARDNEAR) The execution of DISCARDNEAR does not
decrease the Φ-score of points in L− and leaves the Φ-score of points in L= ∪ L+
unchanged.

Proof. Let T be the current terminal tree and T ′ be the new terminal tree
after the execution of DISCARDNEAR. Observe that for any x ∈ L and
y 6= h the execution of the algorithm leaves all weightswx(y) and distances
d(u, y) unchanged as long as y is not removed.

76

4.3. Computing an AbsoluteΦ-Solution

Consider a point x ∈ L− with a witness y. If y /∈ F− then Φ(x) does not
change. Assume y ∈ F−−u. Clearlywx(y) ≤ w(Fu−u). On the other hand
wx(h) = w(Fu − u) in T ′ and henceΦT(x) = ϕ(y, x) ≤ ϕ(h, x) ≤ ΦT ′(x).

Now assume that x ∈ L= ∪ L+ and y is a witness of x. If y ∈ F− then
d(x, y) ≤ α and hence also x is a witness of itself. The case y ∈ F+ − F− is
trivial due to the above observation. 2

The preceding lemmas show that both discard operations are suited to
maintain property (i) in the definition of Φ-equivalence. However we do
not know so far whether the L-optimum is contained in L+ or L= or L− and
hence which operation to apply. The following lemma states a criterion to
distinguish those cases.

Lemma 4.3.10 (Φ-equivalence) Let T be a terminal tree that isΦ-equivalent
to the input tree T0. If there is an x ∈ L= which has a witness y ∈ Th(x) then T
remainsΦ-equivalent after the execution of DISCARDFAR. Otherwise, if such an
x does not exist, DISCARDNEAR maintainsΦ-equivalence.

Proof. Assume there are x ∈ L= and y ∈ Th(x) as stated. Due to the
guide rule the subtree Th(x) contains an L-optimum. On the other hand
Th(x) is contained in L− ∪ L=. Then the claim follows immediately from
Lemma 4.3.8.

Otherwise, if there is no such x, then L=∪L+ must contain an L-optimum:
Let x ′ be a point in L− and x be the closest point in L=. Then Φ(x ′) ≥ Φ(x)
by the guide rule, since the witness of x lies outside of Th(x). The claim
follows from Lemma 4.3.9. 2

A straightforward implementation of a test which distinguishes both
cases of the above lemma would be too expensive: L= might contain Θ(n)
many points, and for each point determining a witness needs a linear time
depth first search traversal. We will now describe a faster test routine with
overall running time O(n) and establish that this is still correct. The test
traverses for each point x ∈ L= only the subtree Th(x) and determines a
“quasi-witness” of x local to this tree. Since all those trees are node dis-
joint, the linear running time is obvious.

Definition 4.3.11 (Quasi-witness) Let x ∈ L=. An α-neighbor y ∈ Th(x)
is called quasi-witness of x ifΦ(y ≺ x) is maximum under all points in Th(x).
The set Xq consists of all points in L= which have quasi-witnesses and Yq

is a set which contains for each x ∈ Xq an arbitrary representative quasi-
witness.

77

4. Computing aΦ-Solution of a Tree

1 input terminal tree T with follower set Fu
2 let δ be the median of the multiset {d(u, y) | node y ∈ Fu − u }

3 compute follower sets F̃− := {node y ∈ Fu − u | d(u, y) ≤ δ }
F̃+ := {node y ∈ Fu − u | d(u, y) ≥ δ }

4 determine point h in Fu with maximum weight wu(h)
and distance δ to u

5 if h is not a node then replace it by a new zero weight node
6 compute L=, Xq, Yq

7 if Xq is not empty then
8 determine the set S of pairs (x, y) satisfying condition (4.2)
9 if |S| = 1 (say, S = {(xc, yc)}) and xc has a witness in Th(xc)

10 then DISCARDFAR and stop
11 else if δ > α then
12 DISCARDFAR and stop
13 DISCARDNEAR

FIG. 4.12.: Algorithm HALVEFOLLOWER

Observe that the set Xq and a corresponding set Yq can be computed in
O(n).

Lemma 4.3.12 (Test criterion) Assume that L= ∪ L+ 6= ∅ contains no L-
optimum. Then there is an xc ∈ Xq with quasi-witness yc ∈ Yq such that all
L-optima are contained in Th(xc). Moreover, (xc, yc) is the only pair (x, y) with
x ∈ Xq and corresponding quasi-witness y ∈ Yq such that

ϕ(y, x) = max
y ′∈Yq

ϕ(y ′, x) . (4.2)

With the help of Theorem 4.3.12 we are able to formulate the algorithm
HALVEFOLLOWER (confer Figure 4.12). It remains to describe how Step 8
of that algorithm is carried out. We first determine y1, y2 ∈ Yq such that
the weights wh(y1), wh(y2) are the two heaviest ones. Let x1, x2 be the
corresponding points in Xq. For each x ∈ Xq, in order to examine if the
pair (x, y) satisfies condition (4.2) we only need to compare ϕ(y1, x) with
ϕ(y, x) (with the exception of the case x = x1 where we compare ϕ(y2, x)
with ϕ(y, x) instead.)

Proof (of Theorem 4.3.12). If L= ∪ L+ contains no L-optimum then all L-
optima are contained in one single subtree Th(x) for some x ∈ L=. Clearly
x has no witness outside of Th(x) by the guide rule (Lemma 4.3.2). Since

78

4.3. Computing an AbsoluteΦ-Solution

1 determine node h ′ ∈ F̃+ − F̃− with maximum wu(h
′)

2 let D← F̃+ − {h, h ′}

3 for all edges (s, t) with s ∈ Fu −D and t ∈ D
4 add weight ws(t) to node s and discard subtree Ts(t)
5 increase the length of the edge incident to h ′ to +∞ (e.g. add α)

FIG. 4.13.: Algorithm DISCARDFAR to discard most nodes in F+

1 set w(h)← w(F̃−)

2 let D← F̃− − {h}

3 for all edges (s, t) with s ∈ D and t ∈ Fu −D
4 connect t to node h via a new edge of length d(u, t) − δ
5 discard all nodes of D− {u} from the tree

FIG. 4.14.: Algorithm DISCARDNEAR to discard most nodes in F−

x ∈ L= ∪ L+ and x is not an L-optimum by premise, x cannot be a witness
of itself; therefore we can assume the witness to be an α-neighbor. We can
conclude that x ∈ Xq and that the corresponding quasi-witness y ∈ Yq is in
fact a proper witness.

Consider x ′ ∈ Xq − x and let y ′ ∈ Yq − y be the corresponding quasi-
witness. Let y ′′ be an α-neighbor of x on path P(x, y ′). Then Φ(y ′′ ≺
x) < Φ(y ≺ x) for otherwise Th(x) could not contain points with Φ-scores
strictly smaller thanΦ(x) by the guide rule. Since

ϕ(y, x ′) ≥ ϕ(y, x) = Φ(y ≺ x)
> Φ(y ′′ ≺ x) = ϕ(y ′′, x)
≥ ϕ(y ′, x)

≥ ϕ(y ′, x ′)

we can conclude ϕ(y, x) > ϕ(y ′, x) and ϕ(y, x ′) > ϕ(y ′, x ′). This com-
pletes the proof. 2

Lemma 4.3.13 (Halve follower tree) Let T be a terminal tree Φ-equivalent
to the input tree T0, let Fu be its follower tree. Then the algorithm HALVEFOL-
LOWER constructs a follower tree F ′u with size |F ′u| ≤ 1

2
|Fu|+2 such that replacing

Fu by F ′u does not invalidate theΦ-equivalence of T . The running time is O(|T |).

79

4. Computing aΦ-Solution of a Tree

Proof. At first consider the case where Xq is not empty and the condition in
Step 10 is met. By the guide rule Th(xc) and therefore L− ∪ L= contains an
L-optimum and by Lemma 4.3.8 the invocation of DISCARDFAR maintains
Φ-equivalence.

Now assume that Xq 6= ∅ but the condition in Step 10 is not satisfied,
that is, S contains at least two pairs or Th(xc) contains no witness of xc. By
Theorem 4.3.12 L=∪L+ contains an L-optimum which allows the execution
of DISCARDNEAR in Step 13.

It remains to consider the case Xq = ∅. Then either L= ∪ L+ is empty
and δ > α; in this case DISCARDNEAR is applicable. Otherwise by Theo-
rem 4.3.12 L=∪L+ must contain an L-optimum and DISCARDFAR maintains
Φ-equivalence.

The claim on the running time of the algorithm is clear since the compu-
tation of the median in line 3 can be carried out in linear time with the well
known median-of-medians algorithm [BFP+73]. 2

4.3.7. The Main Algorithm

We now describe the main algorithm. During the execution the algorithm
maintains a current terminal tree T with leader tree L, terminals u, v, and
follower trees Fu, Fv. The terminal tree is initialized with the input tree T0
and two arbitrary leaves playing the role of the terminals (thus initially the
leader tree L is identical with T0 and the follower trees are empty). Iter-
atively the algorithm determines a maximum among the sizes |L|, |Fu|, |Fv|

(ties are broken with a preference for a follower tree) and halves that com-
ponent using one of the subroutines HALVEFOLLOWER or HALVELEADER
described above. The algorithm ends at last when the size of T falls below
6 (then neither the leader tree nor the follower tree can further be reduced
by the subroutines) at which time the L-optimum solution in the result-
ing leader tree can be determined in constant time using the algorithm
from Section 4.3.5. The correctness of this algorithm follows from Theo-
rem 4.3.13 and Theorem 4.3.4.

We now analyze the running time. To this end we subdivide the se-
quence of iterations into phases; each operation HALVEFOLLOWER termi-
nates a current phase. Let ni denote the size of the terminal tree after the
ith phase. Observe that HALVELEADER does not change the terminal tree’s
total size. If HALVEFOLLOWER is executed this is because there is a fol-
lower tree of size f ≥ 1

3
ni; the resulting size f ′ satisfies f ′ ≤ 1

2
f + 2. Hence

we can deduce that ni+1 ≤ 5
6
ni+ 2 for all i. Moreover in each phase we can

have at most two calls to HALVELEADER before an HALVEFOLLWER inter-

80

4.4. Discussion of DiscreteΦ-Solutions

venes. Therefore the running time of phase i is linear in O(ni−1). Since
the sequence (ni)i is bounded from above by a geometrically decreasing
sequence this yields an overall linear running time:

Theorem 4.3.14 (AbsoluteΦ-solution of a tree) For any monotonic gain
function, an absoluteΦ-solution can be found in timeO(n) in a tree with n nodes.

Corollary 4.3.15 An absolute relaxed Simpson, Condorcet, security, plural-
ity, (1, 1)-centroid and Stackelberg solution of a tree can be computed in linear
time. 2

4.4. Discussion of Discrete Φ-Solutions

In this section we are investigating the problem of computing a discrete
Φ-score, that is, the case where leader and follower are restricted to place
on nodes of the tree only. It turns out that in many aspects the problem is
similar to the absolute case discussed above so that it suffices to report the
main differences here.

The first difference affects the definition of the α-neighborhood.

Definition 4.4.1 (α-neighborhood) Let x ∈ V be a leader node. A
node y ∈ V is called an α-neighbor of x if it is the only node on the
path P(x, y) whose distance to x is strictly greater than α. The set of all
α-neighbors of x is denoted by Nα(x).

It is easy to see that we still can assume without loss of generality that
for a leader x a witness can always be found in the set Nα(x) ∪ {x} (confer
Lemma 4.2.4).

A consequence of α-neighbors being nodes only is that the distance from
a leader to its witness can actually exceed α by far. In this case the leader
party grows in direction to the witness and the front node is no longer
necessarily in the vicinity of the leader.

Theorem 4.4.2 (Characterization of front nodes) Let x be a leader node
and y be an α-neighbor of x. Then the front node x̃ is the d(x,y)+α

2
-neighbor of y

on P(x, y), and the front node ỹ is y itself.

Proof. As in the proof of Lemma 4.2.1 we only consider projections of
nodes on P(x, y). A node z ∈ P(x, y) prefers x if and only if

d(z, y) − d(z, x) > α ⇐⇒ 2 · d(z, y) − d(x, y) > α

⇐⇒ d(z, y) >
d(x, y) + α

2
.

81

4. Computing aΦ-Solution of a Tree

The node z on P(x, y) which satisfies this condition and maximizes d(x, z)
is the front node x̃. Since it simultaneously minimizes d(z, y), it is the
d(x,y)+α

2
-neighbor of y on the path.

The remaining claim, ỹ = y, is clear since y is chosen to be an α-neighbor
of x. 2

To determine all α-neighbors of x, we perform a depth first search traver-
sal from x and maintain distances d(x, y) to the root where y is the cur-
rently traversed node. If y is an α-neighbor, the corresponding front node x̃
can be found as follows: Let x = v0, v1, . . . , vk = y be the path of nodes on
the stack when the depth first search traversal arrives at the α-neighbor y.
Then x̃ = vi where i is the maximum index such that d(vi, x) < (d(x, y) −
α)/2. This node can be found in O(logk) ⊆ O(logn) by binary search in
the array (vi)i.

Theorem 4.4.3 (DiscreteΦ-score of a node) For a given node x, the dis-
crete score Φ(x) can be computed in time O(n logn) on a tree for all monotonic
gain functions. 2

Observe that a guide rule (confer Lemma 4.3.2) holds similarly in the
discrete case with the only difference that the operation HALVELEADER
takes now O(n logn) time. This yields the following result:

Theorem 4.4.4 (DiscreteΦ-solution of a tree) A discrete Φ-solution can
be computed in an n-node tree in O(n (logn)2) time for any monotonic gain
function. 2

4.5. Strong Φ-Solutions

Let’s return to absolute MGFs. It is no serious restriction to assume that
our input tree does not have zero-weight leaves since such leaves can be
removed without affecting the weight of any subtree.

Making this assumption, it is not hard to see that w(y ≺ x) = 0 if and
only if d(x, y) ≤ α. The monotonicity property of any gain function Φ
requires that Φ(y ≺ x) equal the same constant Φ0 for all pairs (x, y)
with distance at most α. The relation Φ(x ≺ x) = Φ0 thus establishes a
lower bound on Φ(x) for each point x. However, the value Φ0 ∈ Q is not
uniquely determined and can in fact be chosen arbitrarily without violat-
ing the monotonicity property. One can observe that while the constantΦ0

is decreased the set ofΦ-solutions shrinks simultaneously.

82

4.6. Competitor-Sensitive Gain Functions

From a certain point of view the observation that the follower y can al-
ways locate at x and enforce the gain Φ(y ≺ x) = Φ(x ≺ x) = Φ0 yields
somewhat uninteresting solutions: it provides no further information on
the stability of x as this placement is possible for each point. This suggests
to fade out the impact of location duplication and require that the follower
place at a location substantially different from the leader, that is, at distance
larger than α. This is enforced by setting Φ0 := −∞. The resulting set of
solutions is called strong solution set:

Definition 4.5.1 (StrongΦ-solution) Let Φ be a monotonic gain func-
tion induced by a function ϕ : Q × Q → Q. Let Φ ′ be the monotonic gain
function defined by

Φ ′(y ≺ x) :=

{
ϕ(w(y ≺ x), w(x ≺ y)) if d(x, y) > α
−∞ otherwise .

Then the Φ ′-solutions are called strongΦ-solutions.

Consider the security MGF ∆. Since ∆0 := ∆(x ≺ x) = 0 we obtain
∆∗ ≥ 0. Now let m be an weighted median of the given tree. Then each of
the connected components obtained by removing m from T has a weight
of at most 1

2
w(T). Let y be a witness of m which we can assume to be a

neighbor of m. Then ∆(y ≺ m) = wm(y) − wy(m) ≤ 1
2
w(T) − 1

2
w(T) = 0.

Hence ∆∗ = 0. This relation is no longer true for strong security solutions
as pointed out in Figure 4.1.

4.6. Competitor-Sensitive Gain Functions

An intrinsic property of the suggested model of monotonic gain functions
as specified in Definition 3.5.4 is that the leader and the follower share
the same estimations on the weights of users. An obvious extension of the
model is hence to have two different weight functionswL, wF for the leader
and the follower, respectively, and to change Definition 3.5.4 to

Φ(y ≺ x) := ϕ(wF(y ≺ x), wL(x ≺ y)) (4.3)

which we call a competitor sensitive gain function. Albeit strictly speaking
this is not a monotonic gain function, it can easily be seen that the approach
outlined in this chapter can be adapted to also handle this extended model.

This can be applied to a generalization of the Stackelberg problem. Nor-
mally, when a user is undecided, his demand is split equally amongst

83

4. Computing aΦ-Solution of a Tree

the two competing providers [HTW90]. There can, however, be situa-
tions where undecided users split their demand on a per user basis among
the two competitors. This can formally modeled by introducing a func-
tion f : V → [0, 1] which specifies the individual user demand gained by
the follower in the case where the user is undecided. (The original Stack-
elberg problem is then the special case of f ≡ 1

2
.) Thus we end up with a

gain function

Φ(y ≺ x) := w(y ≺ x) + (f ·w)(y ∼ x) . (4.4)

This can be modeled by a competitor sensitive gain function: to this end
definewF := (1− f) ·w andwL := f ·w and ϕ(µ, ν) := (f ·w)(T) +µ−ν for
all µ, ν ∈ Q; it is easy to verify that plugging this into (4.3) yields (4.4).

4.7. Concluding Remarks

The main contribution of this chapter is a linear time algorithm for com-
puting a Φ-solution of a monotonic gain function Φ on a tree graph. This
generalizes well-known results of several unrelaxed competitive and vot-
ing location problems to the relaxed preference model of MGFs. In com-
parison with Goldman’s algorithm [Gol71] for computing a median of a
tree (and hence also unrelaxed Simpson, Condorcet, centroid etc.), our ap-
proach for the general, relaxed model requires far more involved divide-
and-conquer techniques: The main idea was to construct a geometric de-
creasing sequence of sparser and sparser trees carrying enough informa-
tion to retrieve an optimum of the original tree. The algorithm stops when
a constant number of nodes is reached. We have also discussed a similar
algorithmic approach for handling the discrete model where facilities are
to be located at the nodes of the graph. It is an interesting open question
whether the additional logarithmic factors included in the running time of
that algorithm are really necessary.

84

5. Computing all ϕ0-Bounded
Solutions of a Tree

Recall that any unrelaxed centroid of a tree is also a median and vice versa.
It is a well-known fact that the set of medians of a tree is either a single node
or an edge. Thus, an optimal leader position for the centroid problem is not
always uniquely determined. Rather, there can be infinitely many optima.
Such an outcome gives the leader more leeway and he has then the oppor-
tunity to choose one of those centroids according to a secondary criterion.
For example, he may pick a location that minimizes the production cost
among all optima. But he could also identify places being particularly at-
tractive for the customers, for example, due to good parking facilities. In
some situations it can therefore be favorable to have the complete set of
centroids at hand. Of course, this can also be desirable for general mono-
tonic gain functions.

In Chapter 4 we have presented an optimal algorithm for computing
one single Φ-solution of a tree. Since a point x is a Φ-solution if and only
if it is Φ∗-bounded, that is, if Φ(x) ≤ Φ∗, the set of Φ-solutions equals
S(α,Φ∗). (Confer Definition 3.5.8 for the definition of ϕ0-boundedness.)
Hence determining all Φ-solutions is a special case of computing the set
S(α,ϕ0) of all ϕ0-bounded solutions for a given ϕ0, which is the problem
we are going to discuss in this chapter.

Garcia and Pelegrin [GP03] investigate the problem of computing the
complete set of Stackelberg solutions with parametric prices of a tree.
They suggest a quite complicated algorithm with overall running time
O(n3 logn). The main idea of their algorithm is to move, in a first phase,
a point in small steps along edges in the tree until an arbitrary optimal
position has been found, and in a second phase extend the set of optimal
solutions by similar small point shifts. The algorithm that we present in
this chapter is also based on a two-phase approach: The first phase de-
termines one initial Φ-solution which allows the second phase to explore
the entire set of Φ-solutions. In contrast to the algorithm of Garcia and
Pelegrin our approach does not employ local improvement steps but can
rather be considered as a dynamic programming approach.

85

5. Computing all ϕ0-Bounded Solutions of a Tree

At first glance it seems obvious to adapt the algorithm of Chapter 4 for
computing a single Φ-solution so that it is able to maintain the entire so-
lution set. Let’s remember the main ideas of that algorithm: It creates a
decreasing sequence of trees being Φ-equivalent to the input tree T0 (con-
fer Definition 4.3.6). If we end up with a tree Tfinal such that the number
of nodes is smaller than a given constant n0 we determine a Φ-solution x.
Due to the Φ-equivalence of Tfinal the solution x is guaranteed to be a Φ-
solution in T0, too. Having this in mind, it seems natural to compute the
complete set of Φ-solutions of Tfinal and then to transform it back into the
original tree T0.

Unfortunately, a closer look reveals that we sometimes lose necessary in-
formation about the input tree T0 during the sparsifying process: Assume
that the set of centroids forms an edge of T0. If we now create more than n0
zero-weighted dummy nodes at that edge, clearly all of them being opti-
mum, our algorithm will return at most n0 of them.

Nevertheless, we can obtain valuable information from the algorithm of
Chapter 4: The Φ-score Φ∗ of the input tree. In fact, the exploration phase
of our algorithm will use that knowledge to compute the solution set by
means of a dynamic programming approach.

The chapter is organized as follows: We start with computation of the
set of ϕ0-bounded solutions for leader independent MGFs. We will see
that this case is solvable in linear time. Since the Stackelberg problem with
parametric prices is leader independent our algorithm brings the running
timeO(n3 logn) of Garcia and Pellegrin’s algorithm [GP03] down toO(n),
which is optimal. We will then argue that the same problem for leader
dependent MGFs is harder. In particular we will prove a lower bound of
Ω(n logn) for the security function. This shows also that it is easier (in
terms of the asymptotic running time) to compute one single Φ-solution
than all of them. Finally, we present an algorithm that determines all ϕ0-
bounded solutions for an arbitrary MGF in O(n logn) time, which is opti-
mal.

5.1. Leader Independent Monotonic Gain
Functions

In this section we describe the computation of the set of all ϕ0-bounded
solutions for a leader independent MGF for a given ϕ0. Throughout the
remainder of this section we assume that ϕ0 ≥ ϕ(0) where we use the

86

5.1. Leader Independent Monotonic Gain Functions

≤ ϕ0

> ϕ0

α

> ϕ0

δx(v1)

x
v1

v3 v2

δx(v2)

≤ ϕ0

≤ ϕ0

δx(v3) = −∞

≤ ϕ0

≤ ϕ0

FIG. 5.1.: Illustrating the proof of Lemma 5.1.1.

notation ϕ(wy) := ϕ(wy, 0). If ϕ0 were smaller than ϕ(0) no ϕ0-bounded
solution would exist since any point would be dominated by itself.

First we define for each pair (u, v) of points the value δu(v) as follows:

δu(v) := sup{d(u, y) | node y ∈ Tu(v) and ϕ(wu(y)) > ϕ0 } . (5.1)

This value δu(v) denotes the largest distance between the current candi-
date u and any node in the subtree Tu(v) that dominates u. Here, dominat-
ing means only that there is a subtree whose weight is sufficiently large.
If δu(v) > α holds additionally, this implies that there is a node y with
Φ(u) ≥ Φ(y ≺ u) ≥ ϕ(wu(y)) > ϕ0. Thus, δu(v) > α proves that the
score Φ(u) exceeds the bound ϕ0 and hence u cannot be ϕ0-bounded.

We now use these values to characterize the set S(α,ϕ0). Recall that the
neighbors of an inner point on edge (u, v) are just the nodes u and v.

Lemma 5.1.1 A point or node x ∈ T belongs to S(α,ϕ0) if and only if δx(v) ≤
α for all neighbors v of x.

Proof. From Lemmas 4.2.1 and 4.2.4 we obtain that x has Φ-score at most
ϕ0, if and only if for each y with d(x, y) > α the condition ϕ(wx(y)) ≤ ϕ0
holds. See also Figure 5.1. 2

We argue that knowledge of the values δu(v), δv(u) for all edges (u, v)
of the tree is sufficient to output the desired set S(α,ϕ0) as a collection of
nodes, edges, and edge segments.

87

5. Computing all ϕ0-Bounded Solutions of a Tree

vu

α

δu(v)

α

δv(u)

x

FIG. 5.2.: Interval test on edge (u, v).

According to Lemma 5.1.1, to check whether a node u ∈ V is ϕ0-
bounded, it suffices to inspect the δ-values on the edges incident to u,
which takes time O(deg(u)). Therefore, we can determine all nodes that
are ϕ0-bounded in linear time once the δ-values have been computed.

The inner points that are part of the solution set can be characterized as
intervals: Let x ∈ (u, v) be an inner point on some edge (u, v). Then x is
ϕ0-bounded if and only if (confer also Figure 5.2).

δu(v) − α ≤ d(u, x) ≤ d(u, v) − δv(u) + α . (5.2)

We call this condition interval test. The corresponding intervals can be de-
termined for all edges in linear total time if the δ-values are known.

Hence, in order to compute the set of ϕ0-bounded solutions we only
need to determine δu(v) and δv(u) for all edges (u, v). We will see that this
can be carried out in linear time by a dynamic programming approach.
According to the above observations this yields a linear time algorithm for
computing the set ofΦ-solutions for any leader independent MGFΦ.

The algorithm that accomplishes this is based on a routine for propagat-
ing the δ-values among incident edges (confer Fig. 5.3 for details). Let (u, v)
be an edge. Then propagate(u, v) computes δu(v) if the values of δv(u ′) are
known for each u ′ ∈ N(v) different from u. This can be done as follows: If
v does not dominate u then δu(v) = −∞. Otherwise the following equation
holds and can be derived by elementary considerations:

δu(v) = d(u, v) + max { δv(u
′) | u ′ ∈ N(v) and u ′ 6= u } ∪ {0} .

Note that propagate(u, v) takes time O(deg(v)) where deg(v) denotes the
node degree of v.

Let s be an arbitrary node and consider T as an s-rooted tree. The al-
gorithm computes the values δu(v) for all edges (u, v) by two depth first
search traversals:

88

5.1. Leader Independent Monotonic Gain Functions

1 procedure propagate(u, v)
2 if ϕ(wu(v)) ≤ ϕ0 then return −∞
3 δ← 0

4 for each u ′ ∈ N(v), u ′ 6= u do
5 δ← max{δ, δv(u ′)}
6 return δ+ d(u, v)
7

8 procedure propagate_up(u)
9 for each son v of u do

10 propagate_up(v)
11 δu(v)← propagate(u, v)
12

13 procedure propagate_down(u)
14 for each son v of u do
15 δv(u)← propagate(v, u)
16 propagate_down(v)

FIG. 5.3.: Subroutines used for computing the set ofΦ-solutions on trees.

The first traversal invokes propagate_up(s). This subroutine traverses
the tree bottom up and calculates the value δu(v) for all edges (u, v) where
u is the father of v. The running time is linear in the number of nodes:
this follows since propagate(·, v) takes timeO(deg(v)) and is called exactly
once for each node v.

The second traversal invokes propagate_down(s) and is a top-down
traversal that computes the missing values δv(u). A naive implementation
as in Fig. 5.3 results in a quadratic runnning time since propagate(·, u)
would be called at least deg(u) − 1 times for each node u. This can
be avoided as follows: When node u is reached, first traverse the set
of all neighbors of u (that is, the sons and the father) and determine
v1 := arg maxv∈N(u) δu(v) and v2 := arg maxv∈N(u)−v1 δu(v). Then, in-
stead of invoking propagate(v, u), we compare each son v of u with v1.
Assume that u dominates v, that is, ϕ(wv(u)) > ϕ0 holds. If v 6= v1
then δv(u) = max{δu(v1), 0} + d(v, u) otherwise, if v = v1, we have that
δv(u) = max{δu(v2), 0} + d(v, u). With this modification we can evaluate
the values δv(u) for all sons v of u in total running time O(deg(u)), which
guarantees an overall linear running time.

This yields the following result:

89

5. Computing all ϕ0-Bounded Solutions of a Tree

Theorem 5.1.2 Let T be a tree with n nodes, let Φ be a leader independent
MGF, and let ϕ0 > 0. Then the set of all ϕ0-bounded solutions can be computed
in O(n) time. In particular, this holds for the set ofΦ-solutions.

Proof. The first claim has been proved above. In order to compute the set
ofΦ-solutions we determine previously the scoreΦ∗ by means of the algo-
rithm of Chapter 4. 2

Corollary 5.1.3 In a tree with n nodes, the set of all Stackelberg solutions with
parametric prices can be computed in O(n).

Proof. Recall the definition of the Stackelberg problem with parametric
prices (confer Section 3.4) where leader and follower sell their good at dif-
ferent prices p and q, respectively. In the case p ≥ q, the leader captures
nothing [GP03]. The nontrivial case p < q is similar to the α-Simpson
problem as pointed out in Section 3.2. We first compute the Stackelberg
score Σ∗ with the help of the algorithm described in Chapter 3: The essen-
tial difference between the underlying user preference models is that users
satisfying the equality d(u, y) = d(u, x) − α decide for the y-party in the
Stackelberg case while they are undecided in the monotonic gain function
model. This suggests to redefine the α-neighborhood (for the original defi-
nition confer Def. 4.2.3) of a point x to be the setNα(x) := {y | d(y, x) = α },
and it is easy to observe that with this alternative definition the algorithm
indeed computes the Stackelberg score.

The linear-time computation of the δ-values has been outlined above
and is not changed. In the subsequent edge tests (confer Equation (5.2)
on page 88) we basically replace ≤with <. 2

5.2. Computational Lower Bound for the
Absolute Security Set

In this section we contrast the linear-time results for the set of Φ-solutions
of leader independent MGFs established above with a lower bound of
Ω(n logn) for computing the whole security set. This shows that in gen-
eral computing the set of all Φ-solutions (and hence also of ϕ0-bounded
solutions) becomes harder when the monotonic gain function no longer
depends solely on the weight of the follower party. Furthermore it demon-
strates that the computation of allΦ-solutions is more difficult than finding
an arbitrary representative of that set since the latter problem can be solved
in linear time. More precisely, we prove a lower bound of Ω(n logn) for

90

5.2. Computational Lower Bound for the Absolute Security Set

the exploration of the absolute security set in a unit cost RAM model as
defined by Ben-Amram and Galil [BG01]. In Section 5.3 we will com-
plement this result by developing an algorithm with a matching running
time O(n logn).

To derive the lower bound we make use of general results for several
computation models from [Yao91, BG01] which can essentially be sum-
marized as follows: Let (Wn)n∈N be a sequence of point sets where each
set Wn ⊆ Rn is scale invariant (this means that z ∈ W implies λz ∈ W
for all λ > 0) and rationally dispersed (which means that for every x ∈ Rn
and every ε > 0 there is a rational z in the ε-neighborhood of x such that
x ∈W ⇔ z ∈W). Then the problem of deciding whether a given x ∈ Zn is
contained inWn needsΩ(logβ((Wn)

◦)) time. Here, β(X) denotes the num-
ber of connected components of a set X, X the closure of X, X◦ the interior
of X, and ∂X = X− X◦ the boundary of X.

In the sequel we are going to define a set W with n! connected com-
ponents which, according to the above mentioned results, needs time
Ω(n logn) to be decided. Then we show that the set W can be decided by
computing the security set, which yields the desired lower bound. To this
end we define the setW ⊆ R2n as follows:

W := { (d1, . . . , dn, w1, . . . , wn) | dj ≤ di ⇒ wj ≤ wi for all i, j = 1, . . . , n } .

Observe thatW is scale invariant and rationally dispersed.

Lemma 5.2.1 The set (W)◦ has at least n! many connected components.

Proof. Let π ∈ Sn be a permutation in the symmetric group Sn. Consider
the set

Wπ :=

{
(d1, . . . , dn, w1, . . . , wn) ∈W

∣∣∣∣ dπ(1) < . . . < dπ(n) and
wπ(1) < . . . < wπ(n)

}
.

For different permutations π, the setsWπ are maximally connected subsets
of (W)◦ and pairwise disjoint. This follows from the following observation:
If z ∈ ∂W then there must be indices j 6= i such that dj = di or wj = wi.
Since dj = di implies wj = wi we can assume that dj ≤ di and wj = wi.
For each ε > 0 consider the point z ′ with is derived from z by replacing the
coordinates d ′i := di + ε, d ′j := dj − ε, w ′i := wi − ε, w ′j := wj + ε. Then
z ′ /∈ W because in the ε

2
-neighborhood of z ′ there is no point of W and

hence z /∈ (W)◦. Thus (W)◦ ⊆ W◦ and in fact (W)◦ = W◦. It is not hard to
see that the sets Wπ are the connected components of W◦. Hence (W)◦ has
at least n! many connected components. 2

91

5. Computing all ϕ0-Bounded Solutions of a Tree

v
w(xi) = wi

α+ 1
2

...

...
w(xj) = wj

w(yi) = wi

w(yj) = wj

α+ 1
2

...
...

...

...

α− di +
1
2

dj α− dj +
1
2

di

FIG. 5.4.: Star constructed from a tuple (d1, . . . , dn, w1, . . . , wn) for which mem-
bership in W has to be decided. Observe that ∆(xi) > 0 if and only if
wj > wi for some jwith dj ≤ di.

Together with the results of Ben-Amram and Galil [BG01] it follows that
in the unit cost RAM model with integer inputs the complexity of deciding
membership forW isΩ(n logn).

Now we are going to show that deciding whether the security set of a
given tree contains a particular subset of the nodes is as least as hard as
deciding membership in W. Let z := (d1, . . . , dn, w1, . . . , wn) ∈ Z2n be
given. We construct a tree T as a star consisting of a center node v and 2n
nodes xi, yi for i = 1, . . . , n. Confer Figure 5.4. The node weights are set
to w(xi) := w(yi) := wi. With α := 2 ·maxi di the edge lengths are set to
d(v, xi) := di and d(v, yi) := α− di +

1
2

for all i.
Assume that the leader locates at a leaf xi with ∆(xi) > 0. Then the

follower won’t locate at an edge incident with some xj since d(xi, xj) =
di + dj ≤ α for all i, j. Instead the follower will pick a position on an edge
incident at some yj with dj ≤ di for otherwise we had again d(xi, yj) =
di+α−dj+

1
2
< α. Hence the security score of xi is determined by ∆(xi) =

max{wj −wi | dj ≤ di } ∪ {0}. Then it is clear that ∆(xi) = 0 for all i if and
only if z ∈ W. On the other hand ∆∗ = 0 since ∆(v) = 0. We can conclude:
the node set {x1, . . . , xn} is contained in the security set if and only if z ∈W
which completes the reduction.

Theorem 5.2.2 (Lower bound) The complexity of the computation of the ab-
solute security set of a tree isΩ(n logn) in the unit cost RAM model. 2

As a consequence of this result the algorithm in the following section for
general monotonic gain functions is optimal.

92

5.3. Computing the Set of All ϕ0-Bounded Solutions

5.3. Computing the Set of All ϕ0-Bounded
Solutions

In this section we develop an algorithm that outputs the set of all absolute
ϕ0-bounded Φ-solutions in a tree where Φ is an arbitrary monotonic gain
function and ϕ0 ≥ ϕ(0, 0) is a given bound. To this end we introduce
for each point u and neighbor v ∈ N(u) a value δu(v) which denotes the
maximum distance of u to a node y ∈ Tu(v) that dominates v, that is,

δu(v) := sup{d(u, y) | node y ∈ Tu(v) and ϕ(y, u) > ϕ0 } . (5.3)

This is a straightforward generalization of (5.1) since in the case of a
leader independent MGF we have ϕ(y, u) = ϕ(wu(y)). Recall that we set
ϕ(y, u) := ϕ(wu(y), wy(u)). Observe that the set can be empty; in that
case δu(v) = sup ∅ = −∞.

Lemma 5.3.1 A point or node x ∈ T is ϕ0-bounded if and only if δx(v) ≤ α
for each neighbors v of x.

Proof. Assume that δx(v) > α for some neighbor v of x. Then there is a
node y ∈ Tx(v) with d(x, y) > α and ϕ(y, x) > ϕ0. Let y ′ ∈ P(x, y)∩Nα(x).
Obviously, wx(y ′) ≥ wx(y) and on the other hand the leader party is now
exactly Ty(x) (confer Lemma 4.2.5). Hence Φ(x) ≥ Φ(y ′ ≺ x) = ϕ(y ′, x) ≥
ϕ(y, x) > ϕ0.

Conversely, if Φ(x) > ϕ0 then there is an α-neighbor y of x that is also
a witness. Let ỹ be the front node of y (which possibly coincides with y).
Then ϕ(ỹ, x) = Φ(y ≺ x) = Φ(x) > ϕ0 and d(x, ỹ) > α. Hence δx(v) > α
for the neighbor v of x on the path P(x, ỹ). 2

Lemma 5.3.1 allows us to explore the set ofϕ0-bounded solutions by means
of the interval test (5.2), exactly as we did for leader independent MGFs in
the preceding Section. Again the running time is linear when all δ-values
are known. Thus it remains to discuss how these δ-values can be computed
when a leader dependent monotonic gain function is involved.

In the case of a leader independent MGF we were able to compute the
δ-values by a fast propagation of these values among incident edges. More
precisely, if (u, v) is an edge and ϕ(wu(v)) > ϕ0, then δu(v) = d(u, v) +
max{ δv(u ′) | u ′ ∈ N(v) and u ′ 6= u } ∪ {0}. This reflects the fact that the Φ-
score depends only on the weight of the follower party. Specifically, for a
given u 6= y, the value ϕ(y, x) = ϕ(wu(y)) is constant for all x ∈ Ty(u).
Unfortunately, an analogous relation does not hold for general MGFs any-
more: Now the Φ-score depends on the weights of both the follower and
the leader party.

93

5. Computing all ϕ0-Bounded Solutions of a Tree

5.3.1. Degree Bounded Trees

We are now going to describe how to compute the desired δ-values. To
simplify the presentation we first restrict ourselves to the case where the
input tree is degree-3-bounded. Later we will argue (see Section 5.3.2) how
the algorithm can be modified to work with general trees.

The main algorithm divides the input tree recursively into two-terminal
subtrees (2TSs). Given two terminal nodes u and v recall that the 2TS Tuv is
the unique maximal subtree Tuv of T that contains u and v as leaves. Confer
also Section 4.3.3.

Since we are dealing with a degree-3-bounded tree the valid subdivision
rule of Lemma 4.3.3 yields now a bounded number of 2TSs.

Lemma 5.3.2 Let Tuv be a 2TS, letm be the unweighted median of Tuv, and let
m ′ be the projection ofm onto path P(u, v). Then the valid split set {m,m ′, u, v}
induces at most five new 2TSs to which we refer as child 2TSs of Tuv.

Proof. This property follows easily from Lemma 4.3.3 and the degree-3-
boundedness. Confer also Figure 4.8. 2

Our algorithm computes, for each 2TS S that occurs during the recursive
division and for each edge (u, v) of S, a restricted δ-value that is defined as

δSu(v) := sup{d(u, y) | node y ∈ Tu(v) ∩ S and ϕ(y, u) > ϕ0 } . (5.4)

The restricted value δSu(v) denotes the maximum distance to any node
dominating u, where only nodes from the 2TS S are taken into account
as valid opposition nodes. During the execution of the algorithm we
propagate the restricted δ-values from single edges (at the bottom of the
recursion) towards larger 2TSs ending up with the input tree, where the
unrestricted δ-values according to (5.3) will have been computed.

Let S be a 2TS with child 2TSs Si and assume that the restricted δSi-values
have already been computed. In order to determine the δS-values for the
parent 2TS we essentially have to update the δSi-values with a loosened
restriction that an opposition may also place within a child Sj 6= Si: For
any edge (u, v) ∈ Si we have the relation

δSu(v) = max{δSiu (v)} ∪
{
d(u, y)

∣∣∣∣ node y ∈ Sj for some Sj ⊆ Tu(v)
and ϕ(y, u) > ϕ0

}
.

In the remainder of this section we will describe how all these values can
be computed at once efficiently in total linear time O(|S|).

To this end we consider each pair (Si, Sj), Si 6= Sj, and handle the case
where the leader locates in Si and the follower in Sj (the opposite direction

94

5.3. Computing the Set of All ϕ0-Bounded Solutions

wsj
(y)

d(sj, y)d(u, ti)
wti(u)

u v

si

Si

LSi(ti)

ti sj

LSj(sj)

z y

Sj

tj

FIG. 5.5.: Situation in algorithm COMPUTEDELTAVALUES.

is symmetric). The above operation is supported by lists stored in the child
2TSs, and the update of the restricted δ-values can be carried out for each
edge in a single traversal of these lists.

For each 2TS S := Tst with terminals s, t we maintain two lists
LS(s), LS(t). We describe the construction of LS(t) only, as the other
list is defined symmetrically. The list LS(t) contains for each edge
e = (u, v) ∈ Tst (directed such that v is the endpoint of e closest to t)
the entry

(
e, d(u, t), wt(u))

)
. The lists are kept sorted by the weights.

If the 2TS S contains only one edge, e = (s, t), the list is initialized with
one element: LS(t) := 〈(e, d(s, t), wt(s))〉. The restricted δ-values are ini-
tialized as follows:

δSs(t) :=

{
d(s, t) if ϕ(t, s) > ϕ0,
−∞ otherwise .

If the 2TS S consists of more than one edge and is subdivided into child
2TSs Si (with terminals si, ti), we consider each pair (Si, Sj) of distinct chil-
dren and traverse their lists LSi(ti) and LSj(sj) in parallel and in descending
order with respect to the weights. (The situation is illustrated in Figure 5.5
and the details of this algorithm are drawn out in Figure 5.6.) We main-
tain two pointers to an edge (u, v) in the list LSi(ti) and to an edge (z, y)
in list LSj(sj), respectively, with the invariant that y is the least-weighted
node still dominating u, that is, ϕ(y, u) > ϕ0. Moreover we store in dmax

the largest distance encountered in the list LSj(sj) so far. In other words,
the value dmax describes the maximum distance from sj to a node in Sj that
dominates u. Whenever the pointer in LSj(sj) reaches the least weighted
node dominating u, we update the value δSu(v) := max{ δSu(v), d(u, ti) +
d(ti, sj) + dmax } and advance the pointer in LSi(ti). This way, (that is, by a
single traversal of both child lists) all values in the parent list are updated,
and the running time for handling a pair (Si, Sj) is linear in the size of Si

95

5. Computing all ϕ0-Bounded Solutions of a Tree

1 input: a 2TS S
2 for all child 2TSs Si of S
3 initialize δSu(v)← δSiu (v) and δSv(u)← δSiv (u) for all (u, v) ∈ Si
4 for each pair Si, Sj of different child 2TSs
5 let ti ∈ Si, sj ∈ Sj be the terminals closest to each other

6 assume wti(u1) ≥ . . . ≥ wti(ul) for edges (uk, vk) ∈ LSi(ti)
wsj(y1) ≥ . . . ≥ wsj(yl ′) for edges (zk, yk) ∈ LSj(sj)

7 initialize k← 1, k ′ ← 1, dmax ← −∞
8 while k ≤ l
9 while k ′ ≤ l ′ and ϕ(yk ′ , uk) > ϕ0

10 dmax ← max{dmax, d(sj, yk ′)}
11 k ′ ← k ′ + 1
12 δSuk(vk)← max{δSuk(vk), d(uk, ti) + d(ti, sj) + dmax)}

13 k← k+ 1
14 output: restricted values δSu(v) for all (u, v) ∈ S

FIG. 5.6.: Algorithm COMPUTEDELTAVALUES.

and Sj. Since the number of children is constant the execution of Algorithm
COMPUTEDELTAVALUES in Figure 5.6 is in fact O(|S|).

The list LS(t) of the parent S consists of a merge of the lists LSi(ti) of
all children Si, where in each entry (·, d(u, ti), ·) the distance is updated
to d(u, t) := d(u, ti) + d(ti, t). (Here we assume that the terminal nodes
si, ti of Si are ordered such that ti is the terminal node closest to t.) This
computation can be implemented by linear traversals of the lists of type
LSi(ti) in a merge-sort like manner, as they have already been presorted in
the preceding recursion level.

Theorem 5.3.3 For any monotonic gain functionΦ, any degree-3-bounded n-
node tree, and any bound ϕ0, the set of all ϕ0-bounded solutions can be computed
in time O(n logn).

Proof. For proving the correctness it remains to show that the values com-
puted by the algorithm comply with the definition given in (5.4). This can
be easily shown by structural induction over the depth of the decomposi-
tion into 2TSs.

96

5.3. Computing the Set of All ϕ0-Bounded Solutions

FIG. 5.7.: Reduction of a general tree to a degree-3-bounded tree by node split-
ting. Dotted lines represent zero-length edges.

We claim that the running time of the algorithm is O(n logn). This fol-
lows from the fact that the running time T(n) on an n-node tree can be
bounded by

T(n) = c · n+

r∑
i=1

T(ni) ≤ c · n · log
2
n

where c is a constant (describing the effort for dividing the problem into
and merging it from subproblems of size ni ≤ n/2 each) and r ≤ 5 is the
number of subproblems. The size bound ni ≤ n/2 is guaranteed since we
use a median node for splitting the current subtree. 2

5.3.2. General Trees

We are now going to loosen the temporary restrictions imposed in the pre-
vious section. If an input tree is not degree-3-bounded we can enforce
this property by splitting nodes of larger degree and inserting zero-length
edges. This is can be accomplished successively in the following way: If
u is a node with neighbors v1, . . . , vk and k ≥ 3, we replace u by a path
u1, u2, . . . , uk of length zero and connect ui with vi by an edge of length
d(u, vi). We set w(u1) := w(u) and w(ui) := 0 for all i ≥ 2. Confer Fig-
ure 5.7. This construction increases the size of T by a factor of at most
two. Now we can employ the algorithm of the preceding section to com-
pute the δ-values in the modified tree, which takes time O(n logn). We
actually want, however, to determine the δ-values for the original tree.
To this end, we observe that any edge (u, v) in the original tree has a
uniquely determined representative (u ′, v ′) in the modified tree. We sim-
ply set δu(v) := δu ′(v ′) to retrieve the desired δ-values.

There seems, however, to be a flaw in this approach at first glance: Until
now we have assumed that our input tree contains no zero-length edges
(confer Section 1.2). If the tree does contain zero-length edges then the

97

5. Computing all ϕ0-Bounded Solutions of a Tree

conclusions drawn from Lemma 5.3.1 are no longer true. This is due to the
fact that for a given leader-follower pair (x, y) with y ∈ Nα(x) Lemma 4.2.5
does not need to hold, that is, the leader party U(x ≺ y) could contain
nodes not lying in Ty(x) (namely those with distance zero to x). Thus, there
can be “wrong” δ-values in the modified tree. Nevertheless, this does not
invalidate the correctness: It is not hard to see that only the zero-length
edges themselves are affected by this problem. The edges corresponding
to edges in the original tree have always positive length and their δ-values
can be taken from the corresponding edges in the expanded tree, whereas
the values of the added zero-length edges are simply ignored.

Corollary 5.3.4 For any monotonic gain functionΦ, any n-node tree and any
boundϕ0 the set of allϕ0-bounded solutions can be computed in timeO(n logn).
In particular, the same holds for the set ofΦ-solutions. 2

In what follows we discuss some simplifications for specific monotonic
gain functions and shed some light on how far our approach can be applied
to the discrete case.

5.3.3. Strong Φ-Solutions

Let’s make the assumption that the input tree does not have zero-weighted
nodes of degree less than three. As argued in Section 4.5 we do not loose
any relevant information if we drop zero-weighted leaves. As regards
zero-weighted nodes of degree two, one can observe that any two edges
incident with such a node can be glued together to one edge without dis-
torting the distance relations between the remaining nodes.

Consider the security MGF ∆. As shown in Section 5.2 there is a
lower bound of Ω(n logn) for the complete exploration of the set of all
∆-solutions. However, the first phase of the algorithm, namely the compu-
tation of the optimal security score ∆∗, becomes trivial since ∆∗ = 0 holds
for each tree.

If we proceed to the strong security score∆ ′ the case∆ ′(x) < 0 can indeed
occur. Moreover, the solution set does not necessarily contain a weighted
median as demonstrated in Figure 4.1. While this complicates the compu-
tation of the optimal ∆ ′-score, that is, the first phase of our algorithm, the
exploration phase is now much simpler since the solution set cannot con-
tain inner points of more than one edge: For, if x1 and x2 are inner points of
different edges, each node u on path P(x1, x2) must have a strong security
score ∆ ′(u) < max{∆ ′(x1), ∆ ′(x2)} (confer proof of the next theorem).

These considerations carry over to all functions ϕ that are strictly mono-
tonic in the second parameter.

98

5.3. Computing the Set of All ϕ0-Bounded Solutions

Theorem 5.3.5 Let ϕ : Q × Q → Q be a function increasing in the first and
strictly decreasing in the second parameter. Let Φ be the induced monotonic gain
function. Then the set of all strong Φ-solutions is a closed segment of one single
edge and can be determined in linear time.

Proof. Let x1, x2 be inner points of distinct edges and u be a node on path
P(x1, x2). Let y be a witness ofu, that is,Φ(y ≺ u) = Φ(u). One of the paths
P(u, x1) and P(u, x2) intersects P(u, y) only at u. Assume that this applies
to x1. Then wy(x1) < wy(u) and wx1(y) = wu(y) due to our assumption
that all zero-weighted nodes have degree at least three. Hence

Φ(x1) ≥ Φ(y ≺ x1) ≥ ϕ(y, x1) > ϕ(y, u) = Φ(u) ,

which shows the first claim.
To prove the second claim consider an optimal point x. We are going to

show that it is possible to identify the edge (u, v) containing the solution
set in linear time. This establishes the claim since once we know edge (u, v)
we are able to compute δu(v) as well as δv(u) in linear time and thus can
determine the solution set by the interval test (5.2).

If x is an inner point of an edge (u, v) we are done. So let x be a node.
Compute an optimal follower location y and a neighbor v ∈ N(x) such that
y is not contained in the subtree Tv(x). This is possible in O(n). Owing to
the strict monotonicity of ϕ all points x ′ 6= x in Tv(x) have a score Φ(x ′) ≥
Φ(y ≺ x ′) > Φ(y ≺ x) = Φ(x). This shows that the solution set is a subset
of the edge (x, v) and completes the proof. 2

5.3.4. Comparing Absolute and Discrete Model

Let’s take a look at the discrete case where leader and follower place their
facilities only at nodes of the tree. There seems to be no obvious way to
adapt our approach to this model. This is surprising at first glance since
one could conjecture that a solution arising from discrete model is merely
a subset of the absolute solution set constructed by intersecting with the
node set. This conjecture, however, is not true: The example in Figure 5.8
shows that in fact it is possible that the absolute strong security set and
the discrete strong security set may be arbitrary many nodes apart from
each other. For a given k ∈ N, the graph consists of 2k + 3 nodes. All but
one node (with weight 2k − 1) have unit weight. In the absolute case, the
leader places at the node xabs with a leader party weight of 2k + 1 and a
follower party weight of 1, resulting in a strong security score of −2k. In
the discrete case, the leader places at xdiscr and gains 4k while the follower
gains 1, resulting in a strong security score of 1− 4k.

99

5. Computing all ϕ0-Bounded Solutions of a Tree

3k+ 2

2k− 1

xabs xdisc 3k+ 2
.

k k α := 2k+ 1

k−2︷ ︸︸ ︷
2k−1︷ ︸︸ ︷

k︷ ︸︸ ︷

FIG. 5.8.: Example where the discrete and the absolute strong security solution
set are separated by arbitrarily many nodes. Node weights and edge
lengths are 1 unless otherwise indicated.

What prevents us from using the recursive dividing algorithm described
in the previous sections for the discrete model is that the leader party
U(x ≺ y) may contain nodes outside the subtree Ty(x) hanging from leader
node x; in fact it can be a subtree with a root node on the path P(x, y). De-
termining these subtrees is treated in Section 4.4.

If we, however, restrict our attention to leader independent gain func-
tions, the structure of the leader party is clearly no longer important. This
enables us to formulate Theorem 5.1.2 also for the discrete model.

Theorem 5.3.6 Let Φ be a leader independent monotonic gain function and
ϕ0 be a bound. Then the set of discrete ϕ0-bounded Φ-solutions can be computed
in linear time. In particular, this holds for the set of allΦ-solutions.

Proof. We claim that the approach of Section 5.1 works also for determining
the set of discrete ϕ0-bounded solutions. It is easy to observe that in the
case of leader independence the discrete and the absolute Φ-scores of a
node are identical which shows the first claim.

As a consequence, if the absolute optimum found by the algorithm sug-
gested in Chapter 4 falls on a node then it is also a discrete optimum. If it
falls on an inner point of an edge then by the monotonicity property one
of the endpoints of that edge must be a discrete optimum. TheΦ-scores of
these two endpoints can be determined in linear time. This completes the
proof. 2

5.4. Computing All ϕ0-Tolerant Solutions on
Trees

Recall that a point x is called ϕ0-tolerant for an MGF Φ and a fixed bound
ϕ0 if x is in the set S(α∗(ϕ0), ϕ0) (confer Definition 3.5.12). In other words,

100

5.4. Computing All ϕ0-Tolerant Solutions on Trees

we are looking for a solution where α has the smallest possible value such
that aϕ0-bounded solutions exists. This has to be compared with the prob-
lem of findingΦ-solutions where we fix α and try to minimize ϕ0.

As we have demonstrated in Section 3.5, the family (S(α,ϕ0))α,ϕ0
is

not always monotonic with respect to α on general graphs. In contrast,
monotonicity does hold for arbitrary MGFs on trees as a consequence of
Lemma 5.3.1: Observe that the definition of the δ-values is independent
of α. Hence, if we increase α the set of points satisfying the condition in
this Lemma, that is, S(α,ϕ0), increases inclusion-wise.

Lemma 5.4.1 On a tree, the family of sets (S(α,ϕ0))α,ϕ0
is monotonically in-

creasing with respect to both parameters α and ϕ0 for an arbitrary MGFΦ. 2

This result suggest that minimizing α on trees might lead to “well-
structured” problems that admit efficient algorithms, similar to the mini-
mization of ϕ0 (that is, findingΦ-solutions).

In this section we investigate the computation of allϕ0-tolerant solutions
of a tree for a given ϕ0 ≥ ϕ(0, 0). According to Lemma 5.3.1 a point x ∈ T
isϕ0-bounded if and only if δx(v) ≤ α for all v ∈ N(x). For the definition of
δx(v) confer Equation (5.3) on page 93. Let us now fix a point x and define
the value

α∗(x) := max
(
{ δx(v) | v ∈ N(x) } ∪ {0}

)
.

It is clear that x is in S(α,ϕ0) if and only if α ≥ α∗(x). Observe that in
the above definition of α∗(x) values δx(v) = −∞ might occur. This is why
we include the additional zero into the right-hand expression. We obtain
immediately:

α∗(ϕ0) = min
x∈T

α∗(x) .

Assume that we have determined the δ-values with the help of the algo-
rithm of Section 5.3, which takes O(n logn) time. Then we can compute
α∗(x) for any node v ∈ V in O(deg(v)) time. Hence, to determine α∗(·) for
all nodes v ∈ V we need time O(n) once the δ-values are known.

Now we are going to determine for every edge (u, v) a segment con-
taining exactly those inner points with minimum α∗(·) among all inner
points of (u, v). To this end let x be an inner point of (u, v). Then δx(v) =
δu(v) − d(u, x) and δx(u) = δv(u) − d(u, v) + d(u, x). Observe that α∗(x) =
max{δx(u), δx(v), 0}. Therefore, our desired segment consists exactly of all
inner points x such that the distance d(u, x) minimizes the piecewise linear
and convex function

f(z) := max{δu(v) − z, δv(u) − d(u, v) + z, 0} .

101

5. Computing all ϕ0-Bounded Solutions of a Tree

Determining those segments for all edges takes timeO(n). Hence the set of
all points or segments minimizing α∗(·) can be determined in total linear
time when all δ-values have been computed. Since the δ-values can be
determined in O(n logn) for general and in O(n) for leader independent
MGFs this yields:

Theorem 5.4.2 The set of (absolute) ϕ0-tolerant solutions of an n-node tree
can be determined in O(n logn). If the underlying MGF is leader independent
this takes linear time. 2

Note that Lemma 5.3.1 also holds for the discrete case as long as the
underlying MGF is leader independent. Hence we can apply the above
approach also to this case:

Corollary 5.4.3 The set of discrete ϕ0-tolerant solutions of a tree for a leader
independent MGF can be computed in linear time.

5.5. Characterization of ϕ0-Tolerant Solutions
for Leader Independent MGFs

In this section we will take a closer look at ϕ0-tolerant solutions of leader
independent MGFs (again, we assume ϕ0 ≥ ϕ(0)). As pointed out in the
previous section the set of those solutions can be computed in linear time.
Nevertheless it is worth investigating the structural properties of this set.
In what follows we present a more general view on the problem and a
relation to centers on trees. This allows us to derive an algorithm for com-
puting efficient Φ-solutions (confer Section 3.5). Our considerations also
lead to a simpler algorithm for computing ϕ0-tolerant solutions and we
conjecture it would also be faster in practical implementations.

We define a digraph GT for the input tree T as follows: For each (undi-
rected) edge (u, v) in T we add the (directed) arc (u, v) to GT if ϕ(wu(v)) >
ϕ0. In other words, the arc (u, v) indicates that the subtree Tu(v) is heavy
enough to dominate all points lying outside. We call such a subtree Tu(v)
qualified. Note that the construction of GT allows also adding pairs of anti-
parallel arcs. We call a strongly connected component of GT nontrivial if it
contains more than one node.

Lemma 5.5.1 The digraph GT contains at most one nontrivial strongly con-
nected component.

102

5.6. Computing AllΦ-Solutions on Trees

Proof. Assume we have two such strongly connected components. Let
(u, v), (v, u) be a pair of antiparallel arcs in the first component, x be a
node in the second component. Without loss of generality, x ∈ Tu(v). Since
by definition, Tv(u) is qualified, this holds also for each super-tree, hence
u can be reached from x in graph GT . By interchanging the role of the two
components we show also that x is reachable from u which completes the
proof. 2

Lemma 5.5.2 Let GT contain a nontrivial strongly connected component CT .
Then a point x is in S(α,ϕ0) if and only if its eccentricity ecc(x) in CT is at most
α.

Proof. If ecc(x) > α then there is an arc (u, v) in CT such that Tu(v) is qual-
ified and d(x, v) > α. Then v dominates x. Let ecc(x) ≤ α. Since all arcs
outside the component CT are directed towards CT itself, tree Tx(v) is not
qualified for any node v /∈ CT . Thus no node with distance > α can domi-
nate x. 2

Lemma 5.5.3 If GT contains a nontrivial strongly connected component CT ,
then α∗(ϕ0) equals the radius of CT and the set of ϕ0-tolerant solutions coincides
with the center ofCT . Otherwise, α∗(ϕ0) = 0 and the median of T is aϕ0-tolerant.

Proof. The first statement has been shown in the previous considerations.
Assume now that GT has no nontrivial components. A node u is ϕ0-
tolerant if and only if the outdegree deg+(u) = 0, for, otherwise it would be
dominated by its neighbor. Since GT does not contain a nontrivial strongly
connected component, there are at most n − 1 arcs and hence there exists
at least one node with this property. 2

Theorem 5.5.4 The set ofϕ0-tolerant solutions for a leader-independent MGF
on a tree can be computed in O(n).

Proof. The algorithm starts by computingGT and CT in linear time. If there
is a nontrivial component CT , it is actually a cactus and the center of the
underlying tree can be computed in linear time as described in [Han73].
Otherwise, we refer to Theorem 5.1.2. 2

5.6. Computing All Φ-Solutions on Trees

In this section we develop an algorithm for determining the set of all ef-
ficient Φ-solutions in trees. Recall that a pair is efficient if there is a pair

103

5. Computing all ϕ0-Bounded Solutions of a Tree

(α,ϕ0) such that x ∈ S(α,ϕ0) but S(α − ε,ϕ0) and S(α,ϕ0 − ε) are empty
for any ε > 0.

We use a similar construction as before. To this end we now replace
the cactus CT with the underlying subtree. Let’s start with the smallest
possible value ϕ0 = ϕ(0). With continuously increasing ϕ0, CT shrinks
in general. Let α be the radius of CT , that is, α∗(ϕ0). Obviously, α is a
step-wise monotonically decreasing function of ϕ0. At each point where α
decreases, (α,ϕ0) must be an efficient pair.

Observe that the changes in CT appear only at those values of ϕ0 where
ϕ0 attains the value

ϕ̃(e) := min{ϕ(wu(v)), ϕ(wv(u))}

for some edge e := (u, v). In other words, ϕ̃(e) is the smallest value of ϕ0
for which edge e is not contained in CT .

Hence we do not need to compute CT each time from scratch: Instead,
we can update CT by removing those edges with smallest value of ϕ̃. To
this end, we need to compute ϕ̃ in a preprocessing step (which can be
performed in linear time), and then sort the edges according to ϕ̃.

In order to update the set of ϕ0-tolerant (or equivalently the center) of
the tree CT efficiently, we make use of results by Alstrup et al. [AHT00].
They provide a data structure, called top trees, that allows us to maintain
the center of a dynamic tree in logarithmic time. In particular, they show
that the center and the radius of an n-node tree can be updated inO(logn)
time per edge removal. The preprocessing time for building the top tree is
O(n).

This yields the algorithm depicted in Figure 5.9 and the following result.

Theorem 5.6.1 Given a leader independent MGF Φ and an n-node tree, the
set of efficient (absolute)Φ-solutions can be computed in O(n logn) time.

Proof. The correctness for the case of a non-trivial component CT has been
argued above. If ϕ0 induces only trivial components then α∗(ϕ0) = 0 ac-
cording to Theorem 5.5.3. Hence the Φ-solutions for α = 0 are the corre-
sponding efficientΦ-solutions.

For the running time observe that any edge is deleted at most once.
Hence there are O(n) edge removals each of which consumes time
O(logn) for updating center and radius of CT . 2

As in the previous cases, there is no significant difference between the
absolute and the discrete model for leader independent MGFs. We only

104

5.6. Computing AllΦ-Solutions on Trees

have to maintain discrete instead of absolute centers of component CT .
Thus for leader independent MGFs the set of efficient discreteΦ-solutions
can also be determined in O(n logn).

1 ϕ0 ← ϕ(0)
2 let α←∞
3 compute CT for ϕ0
4 compute ϕ̃-values for all edges of CT
5 sort edges increasingly according to their ϕ̃-value
6 while CT contains at least one edge
7 if the radius of CT is smaller than α then
8 output the center of CT
9 α← radius of CT

10 delete from CT all edges with minimum ϕ̃-value
11 in doing so, maintain center and radius of CT
12 end while
13 output all Φ-solutions for α = 0

FIG. 5.9.: Algorithm for computing all efficientΦ-solutions of a tree.

105

6. Summary and Further
Remarks

6.1. Summary

In the first part of this thesis we have considered single location problems
from the area of competitive and voting location. First, in Chapter 3, we
introduced a new concept called monotonic gain functions that unifies all
particular optimization problems under investigation. In Chapter 4 we
have studied the efficient computation of oneΦ-solution and related prob-
lems on trees. In particular we have given in Section 4.3 a linear time al-
gorithm for computing the Φ-score of a tree. In Chapter 5 we have also
analyzed the complexity of exploring the complete set of all ϕ0-bounded
solutions. For the case of leader independent MGFs we have presented a
linear time algorithm. As a byproduct this brings down the running time
of O(n3 logn) for computing all Stackelberg solutions on trees with para-
metric prices [GP03] to O(n). For general monotonic gain functions Φ we
have provided an algorithm to compute the set of all ϕ0-bounded solu-
tions with running time O(n logn) and a matching lower bound proving
that this running time is optimal. We have also shown that on trees, the
set of ϕ0-tolerant Φ-solutions can be obtained in O(n logn) and O(n) for
arbitrary and leader independent MGFs, respectively. For leader indepen-
dent MGFs Φ we have developed an O(n logn) algorithm for computing
the set of efficient Φ-solutions. Figure 6.1 gives an overview of the most
important complexity results known for monotonic gain functions.

6.2. Remarks on General Graphs

In this section we discuss an observation concerning the computation of
Φ-solutions on general graphs. This observation justifies that the situation
on general graphs might be harder than on trees.

The fastest published algorithm [HL88] for computing an (unrelaxed)
absolute Simpson solution of a general graph has a running time of

107

6. Summary and Further Remarks

problem
property

placem
entofleader

and
follow

er

ofM
G

F
absolute

(atpoints)
discrete

(atnodes)

Φ
-score

O
(n

)
[Thm

.4.3.14]
O
(n

log
2
n
)

[Thm
.4.4.4]

(optim
al)

setof
general

O
(n

log
n
)

[C
or.5.3.4]

O
(n

2log
n
)

Φ
-solutions

(optim
al)

[Thm
.5.2.2]

[enum
eration]

strong
O
(n

)
[Thm

.5.3.5]
(optim

al)

leader
O
(n

)
[Thm

.5.1.2]
O
(n

)
[Thm

.5.3.6]
independent

(optim
al)

(optim
al)

ϕ
0 -tolerant

general
O
(n

log
n
)

[Thm
.5.4.2]

O
(n

2log
n
)

Φ
-solutions

[enum
eration]

leader
O
(n

)
[Thm

.5.4.2]
O
(n

)
[C

or.5.4.3]
independent

(optim
al)

(optim
al)

efficient
leader

O
(n

log
n
)

[Thm
.5.6.1]

O
(n

log
n
)

[Thm
.5.6.1]

Φ
-solutions

independent
(optim

al)
(optim

al)

T
A

B
L

E
6.1.:O

verview
ofthe

com
plexity

bounds
obtained

in
firstpartofthis

thesis
for

M
G

F-related
problem

s
on

trees.

108

6.2. Remarks on General Graphs

O(|V |4|E|2 log(|V ||E|) logw(G)) which, albeit polynomial, might be too
time-consuming for practical purposes. To the best of our knowledge no
further improvements in asymptotic running time have been made since
then.

The discrete case has been considered by Campos and Moreno [CM03].
Notice that Campos and Moreno use a slightly different model where
users and locations belong to possibly different, finite setsU and L, respec-
tively. Furthermore user weights and a distance function d : U × L → Q+

0

are specified. They give a polynomial algorithm for computing the set
C(α, γ) of (α, γ)-Condorcet solutions. The running time of their algorithm
is O(|U||L|2). Applying this to our scenario where n = |V | = |U| = |L|, we
obtain a performance of O(n3). Although their algorithm is quite simple
and enumerative in nature we will give some evidence that developing
a significantly faster algorithm is at least no easy task. In particular, we
can show that computing C(α, γ) on a graph is as least as hard as solv-
ing the vector maximization problem. We remark that vector maximization
should not be confused with vector optimization in the usual mathematical
programming context.

The vector maximization problem determines for a given set S of n vec-
tors in Rk the set of maximal vectors. A vector u = (u1, . . . , uk) is called
maximal if there is no v = (v1, . . . , vk) ∈ S such that u 6= v and ui ≤ vi for
all 1 ≤ i ≤ k. This problem was introduced in [KLP75] and is well inves-
tigated in the literature (see [GSG04] for a comprehensive survey) due to
its fundamental nature and a large body of applications. From our result
it follows that an algorithm for computing C(α, γ) with running time sig-
nificantly faster than O(n3) as stated in [CM03] would imply an algorithm
for the vector maximization problem that is also faster than the currently
known algorithms.

Theorem 6.2.1 If t(·, ·) is a function such that there is an algorithm computing
the set C(α, γ) of discrete (α, γ)-Condorcet solutions in time O(t(|U|, |L|)) for
the model of [CM03], then this implies an algorithm for the k-dimensional vector
maximization problem with running timeO(k|S| log |S|+t(k, |S|)). In particular,
this holds for the unrelaxed case.

Proof. We describe an algorithm for the vector maximization problem that
calls a subroutine for computing C(α, γ). To this end, let S = {x1, . . . , xn}

be a set of n k-dimensional vectors. For each 1 ≤ i ≤ k let �i denote a
lexicographic order of S such that the i-th coordinates of the vectors have
the highest priority. For 1 ≤ i ≤ k and 1 ≤ j ≤ n let ν(i, j) := |{ xr ∈ S :
xj �i xr }|. The values of ν can be computed in O(kn logn) time. Now we

109

6. Summary and Further Remarks

introduce a set U = {u1, . . . , uk} of users and set L := S. We connect each
pair ui, xj by an edge of length d(ui, xj) := ν(i, j). We set w ≡ 1, γ := n−1

n

and α := 0.
Observe that a node x ∈ L is dominated by some node y 6= x if and only

if d(ui, y) < d(ui, x) for all ui ∈ U. To put it in the language of vector
maximization, x is dominated if and only if y�i x for all i, or equivalently,
if and only if yi ≤ xi for all iwhere x = (x1, . . . , xn) and y = (y1, . . . , yn).

From the above considerations it follows that the set C(α, γ) is exactly
the set of maximal vectors of S. By introducing an additional user uk+1
with an appropriate weight, we can even assume that 0 < γ < 1 is fixed to
some value. 2

The naive approach for solving the vector maximization problem is to
compare all pairs of vectors, which leads to a running time of O(k|S|2).
To the best of our knowledge, there are no algorithms (see [GSG04] for a
comprehensive survey) with a better asympotic running time if k is part of
the input. For fixed k, algorithms with running time O(|S| logk−2 |S|) have
been developed [KLP75]. But clearly, this does not supersede the naive
approach if k is part of the input.

In terms of computing the set of Condorcet solutions this means that an
algorithm being faster than the straightforward, enumerative approach of
Campos and Moreno [CM03] would imply also a faster algorithm for the
well-studied vector maximization problem. This is one of the motivations
why we have not concentrated on sequential location problems for general
graphs but on the more promising special case of tree networks.

6.3. Threshold Functions

In this section we introduce threshold functions as a concept that covers
both the additive indifference suggested by Campos and Moreno (see Sec-
tion 3.4) as well as obvious generalizations, for example, multiplicative
indifference. We can show that most of the basic properties mentioned by
Campos and Moreno [CM03] and in Section 3.5 continue to hold in the
generalized model.

A function δ : Q+
0 ×Q+

0 → Q+
0 is called a threshold function if δ(0, y) = 0 for

all y ∈ Q+
0 and δ is (weakly) monotonically increasing in both parameters.

Given a threshold function δ and a parameter β ≥ 0, we replace the defini-
tion of relaxed user preference stated in (3.1) on page 50 to the general for

U(y ≺ x) := {u ∈ V | d(u, y) < d(u, x) − δ(β, d(u, x)) } (6.1)

110

6.4. Basic Properties of Threshold Functions

Examples: The additive α-indifference introduced in [Slo78] and [CM03]
is modeled by the threshold function δ : (β, d) 7→ βwith parameter β := α.
We can also model a multiplicative indifference where a user is undecided
if the ratio of the distances to two facilities does not exceed a factor α by
choosing the threshold function δ : (β, d) 7→ β · d and β := α− 1.

Replacing the additive indifference (3.1) by (6.1) we can define mono-
tonic gain functions, Φ-score, Φ-solutions and ϕ0-bounded solutions also
for this extended preference model. The set of ϕ0-bounded solutions for
some fixed threshold function δ and a given indifference parameter β is
denoted by S(β,ϕ0).

6.4. Basic Properties of Threshold Functions

In Sections 3.4 and 3.5 we have considered basic properties that hold
for (α, γ)-Condorcet and MGFs, respectively. It is not hard to see that
monotonicity and Φ-minimality also hold for the generalized indifference
model:

Lemma 6.4.1 (Monotonicity) The family (S(β,ϕ0))β,ϕ0
of ϕ0-bounded Φ-

solutions is monotonically increasing with respect to ϕ0. If Φ is leader indepen-
dent this family is also monotonically increasing with respect to β.

Lemma 6.4.2 (Φ-Minimality) For any β ∈ Q+
0 , there is a smallest ϕ0, de-

noted byΦ∗(α) such the set S(β,ϕ0) is not empty. 2

While minimizing the second parameter, ϕ0, is possible for all threshold
functions, this does not hold in general for the first parameter,β. To see this
consider, for example, the multiplicative threshold function δ : (β, d) 7→
β · d. Since the function value vanishes for zero-distances, we can easily
construct instances where β-minimality does not hold. Consider for exam-
ple a graph consisting of one single edge with unit-weighted nodes. Then
for any β ∈ Q+

0 there is no (β, 1
3
)-Condorcet solution since any point x is

dominated by some node y different from x.
In a certain sense we need to require threshold functions to attain a

threshold value large enough for creating indifferent solutions in every sit-
uation. To this end, we call a threshold function δ invertible if the value

min{β ≥ 0 | δ(β, d) ≥ c }

is well defined for all c, d ∈ Q+
0 . Then we have the following result:

111

6. Summary and Further Remarks

Lemma 6.4.3 (β-Minimality) For all invertible threshold functions and each
ϕ0 ≥ ϕ(0, 0), the value

β∗(ϕ0) := min{β ∈ Q+
0 | S(β,ϕ0) 6= ∅ } 2

is well defined.

We remark that while the multiplicative threshold function is not invert-
ible, for each ε > 0 the function

δ(β, d) := β ·max{d, ε}

is invertible and comes closest to the multiplicative threshold function.

6.5. Future research

The results of the first part of this thesis suggest two future research direc-
tions. On the one hand, one could try to obtain non-trivial results for graph
classes beyond trees. On the other hand, it would be interesting to extend
the existing results to more powerful and more realistic location models.

Some specific questions are the following. Are there more efficient algo-
rithms for handling the discrete location case on trees? This concerns the
computation of the Φ-score as well as the computation of all Φ-solutions.
It would also be interesting to investigate the computation of efficient Φ-
solutions for arbitrary MGFs on trees. More complex graph classes that
could be examined are tree-width bounded, planar and Euclidean graphs.

Our algorithms for the additive indifference model on trees do not im-
mediately carry over to general threshold functions since then the parties
of the competitors do not need to be subtrees hanging from some node
which is a basic ingredient of our algorithms. Thus it would be worth in-
vestigating this more general scenario.

Another promising research direction would be to study competitive lo-
cation models based on attraction functions that depend not only on the
distance but also on the specific location or other factors such as workload,
purchase prices or transportation cost. Finally, one could also investigate
scenarios where the prices are not fixed but part of the decision making of
the competitors. It is also reasonable to assume that the competitors can
design their facilities by varying certain parameters that have an impact
on the attraction of the facility. For an overview of competitive location
models we refer to Eiselt et al. [ELT93].

112

Part II.

Multiple Location

113

7. Multiple Competitive Location
on General Graphs

7.1. Introduction and Problem Definition

In the second part of this thesis we will examine multiple competitive and
voting location problems. These problems are natural generalizations of
their pendants in single location considered in the first part. In multiple
competitive, location we allow leader and follower to place more than one
server each, that is, the placements of the competitors are (finite) point sets.
In multiple voting location, the candidate placements are point sets of equal
size.

In the case of single location problems our research was motivated by the
existing linear-time algorithms for trees under the unrelaxed model. Our
goal was to find similar results also for the more general and also more re-
alistic, relaxed model (confer monotonic gain functions in Section 3.5). Al-
though the relaxed case has turned out to be substantially more involved,
we were able to develop fast and for the central problems even optimal
algorithms.

In contrast, we will see that the computation of optimal solutions in the
multiple location scenario is inherently difficult even under the unrelaxed
model. Therefore our goal is no longer to add more complexity to the
model (with the intention to obtain more realistic models) but rather to
examine the boundary of efficient solvability and approximability by con-
sidering simpler and more special problem instances. For this reason, we
will restrict ourselves to the investigation of the unrelaxed model and the
most basic sequential location problems, namely medianoid and centroid
(or in the voting parlance Simpson and Condorcet, respectively).

There are several possibilities to extend our single location models to the
multiple case. For example, we might require the competitors to place their
servers alternately. Such a problem has been investigated by Chawla et al.
[CRRS06] with respect to the existence of solutions in the n-dimensional
Euclidean space. From a computational point of view, problems with alter-

115

7. Multiple Competitive Location on General Graphs

nately moving players and variable number of moves are often PSPACE-
hard [GJ79] and thus extremely difficult.

We consider a two-stage scenario: The leader selects a specified number
p of locations for his servers. Afterwards the follower places r servers. The
number r is known by the leader in advance, and the follower knows the
exact positions of the leader’s servers. As in the single case, both competi-
tors aim at maximizing their own benefit corresponding to the weight of
users they serve.

As in the single case we will always assume that we are given an undi-
rected graph G = (V, E) with positive edge lengths c : E → Q+ and non-
negative node weights w : V → Q+

0 . Recall that the edge lengths induce a
metric d : G×G→ Q+

0 of shortest path distances on the set of points of the
graph.

In order to define medianoid and centroid in the multiple location sce-
nario, we first need to adapt our notions of distances and preferences
(confer Definition 3.1.1 on page 43) appropriately for sets of locations:
Let X, Y ⊂ G be finite sets of points, specifying a server placement of the
leader and the follower player, respectively. The distance of a user u ∈ V
to a finite point set M is given by d(u,M) := minm∈M d(u,m). The user u
prefers the follower if d(u, Y) < d(u,X). By U(Y ≺ X) we denote the set of
users preferring Y over X. We call this user set Y-party. The weight of the
Y-party is denoted by w(Y ≺ X) := w(U(Y ≺ X)). X-party and U(X ≺ Y)
are defined analogously.

We are now ready to define problem of the follower:

Definition 7.1.1 ((r, Xp)-Medianoid) Let r, p ∈ N and let Xp ⊂ G be a
set of p points. Then

wr(Xp) := max
Yr⊂G
|Yr|=r

w(Yr ≺ Xp)

is the maximum influence any r-element follower placement can gain over
the fixed leader placement Xp. An absolute (r, Xp)-medianoid of the graph is
any set Yr ⊂ G of |Yr| = r points where w(Yr ≺ Xp) = wr(Xp) is attained.

The problem of the leader is formulated in terms of the gain achievable
by the follower:

Definition 7.1.2 ((r, p)-Centroid) Let r, p ∈ N. Then

wr,p := min
Xp⊂G
|Xp|=p

wr(Xp)

116

7.1. Introduction and Problem Definition

is the minimum gain any leader placement must leave to the follower. An
absolute (r, p)-centroid of the graph is any set Xp ⊂ G of p points where
wr(Xp) = wr,p is attained.

The above definitions of absolute (r, Xp)-medianoid and absolute (r, p)-
centroid refer to point sets on the input graph. The computational prob-
lems of determining an absolute (r, Xp)-medianoid and an absolute (r, p)-
centroid are optimization problems. We will use the terms absolute (r, Xp)-
medianoid and absolute (r, p)-centroid also for these optimization prob-
lems and as well for the corresponding decision problems as the meaning
will become clear from the context.

The notions discrete (r, Xp)-medianoid and discrete (r, p)-centroid are de-
fined similarly, with the server sets restricted to nodes, that is, Xp, Yr ⊆ V ,
rather than points.

As in the single-location case, competitive location problems have their
counterparts in voting location. Multiple voting location has first been con-
sidered by Campos and Moreno [CM08]. Besides the introduction of this
problem field, the authors give exact exponential time algorithms based on
integer programming techniques. In comparison to single voting location,
in the multiple case candidates of the virtual election are always p-element
location sets. A p-Simpson solution can be defined as a (p, p)-centroid. A
p-Condorcet solution is a p-element point set X such that wp(X) ≤ 1

2
w(G).

The set X is a p-γ-Condorcet solution if wp(X) ≤ γ · w(G). Again the inten-
tion of voting location is to formalize some notion of social stability: For a
p-Condorcet solution there is no opposing candidate placement being pre-
ferred by a majority of the users. The p-Simpson problem tries to minimize
the influence of opposing candidates.

Besides stating some basic discretization results on absolute (r, p)-
centroid and (r, Xp)-medianoid, this chapter is primarily devoted to the
analysis of the complexity and the approximability of these problems on
general graphs.

The NP-hardness of (r, p)-centroid and (r, Xp)-medianoid has been
shown by Hakimi [Hak90]. Additionally, Hakimi proves that there is no
constant-factor approximation algorithm for (r, p)-centroid unless P = NP.
However, the results of Hakimi leave several questions open: First, it is
easy to see that discrete (r, Xp)-medianoid is in NP: Given any bound W,
simply guess an r-element node set Yr and verify that w(Yr ≺ Xp) ≥W. In
the case of (discrete) (r, p)-centroid there is no straightforward, efficiently
verifiable certificate proving (or disproving) that wr,p is smaller than a
specified bound. This is mainly because checking whether wr(Xp) ≤ W

holds for a given point set Xp and a given bound W is already NP-hard

117

7. Multiple Competitive Location on General Graphs

(as follows from the hardness of the follower problem). Indeed, Hakimi
[Hak90] states that (r, p)-centroid seems to be “exceedingly difficult”. We
will justify Hakimis conjecture by showing that the decision problem of
(r, p)-centroid is in fact Σp

2 -complete. Recall that Σp
2 is the class of problems

decidable in polynomial time by a non-deterministic turing machine with
access to an oracle for NP. It is widely believed that Σp

2 is a proper superset
of NP. A definition of the class Σp

2 can also be found in Section 1.2.
But also the approximability of multiple competitive location prob-

lems is not completely resolved by Hakimi’s results. To the best of our
knowledge no upper or lower bound regarding the approximability of
(r, Xp)-medianoid has been published. We will show that there is an
approximation-preserving reduction from (r, Xp)-medianoid to the well
known maximum coverage problem which yields a tight bound of ap-
proximability.

The constant-factor lower bound of Hakimi [Hak90] for (r, p)-centroid
does not rule out the existence of good input-dependent approximation
ratios such as O(logn). We will, however, sharpen Hakimi’s result by
showing that for no ε > 0 there is an (n1−ε)-approximation algorithm for
(r, p)-centroid unless P = NP. Roughly speaking, there is probably no
efficient algorithm with a “reasonable” worst-case approximation factor.

7.2. Relations Between Absolute and Discrete
Model

From an algorithmic point of view we face the problem of an infinite solu-
tion space in the absolute case. In the single case on trees we resolved this
for the follower problem by means of the α-neighborhood (confer Defini-
tion 4.2.3). The leader problem was tackled with the help of critical points
(confer Section 4.3.4) which could be determined efficiently.

Megiddo et al. [MZH83] introduce so called boundary points as a concept
allowing a discretization of the absolute (r, Xp)-medianoid problem. We
remark that the authors consider a more general scenario, called maximum
coverage location problem (confer Definition 8.1.1 on page 136), of which
(r, Xp)-medianoid is a special case. Given a point set Xp a point z is a
boundary point if there is a node u such that d(u, z) = d(u,Xp). Santos-
Peñate et al. [SSD07] call z a (u,Xp)-isodistant point. In the sequel we will
adopt the latter terminology. Moreover, we will call a point Xp-isodistant if
it is (v, Xp)-isodistant for some v ∈ V .

118

7.2. Relations Between Absolute and Discrete Model

Such (v, Xp)-isodistant points are of particular importance: They consti-
tute exactly the boundary of the connected point set of all positions where
the follower claims the node v. Hence the gain of the follower is constant
within each interval limited by Xp-isodistant points. Indeed, Megiddo et
al. observe that for any point y within any open edge segment contain-
ing no Xp-isodistant points the party U(y ≺ Xp) is the same. Moreover,
they observe that any edge has O(n) many Xp-isodistant points and thus
that the set B of all Xp-isodistant points has polynomial size O(n|E|). Now
consider the connected components of G − (B ∪ V) each of which is an
open edge segment. From each of these segments we choose one arbitrary
representative. Let C be the set, called candidate set, which consists of all
such representatives, all boundary points and all vertices. According to the
above considerations we can conclude that there is an (r, Xp)-medianoid Yr
with Yr ⊆ C. Moreover, the setC has polynomial size and can be computed
in polynomial time.

Theorem 7.2.1 (Discretization (r, Xp)-medianoid [MZH83, SSD07])
Given an instance of absolute (r, Xp)-medianoid we can compute in polynomial
time a finite point set containing an optimal follower placement. 2

Santos-Peñate et al. [SSD07] note that similar discretization results are
not known for the more sophisticated (r, p)-centroid problem on general
graphs. We will justify this in Sections 9.1 and 9.2 by showing that it is
not possible at all to identify such a finite set in polynomial time unless
P = NP. This holds even for the very simple case of a path. It will, how-
ever, turn out convenient to have at least some finite (but possibly expo-
nentially large) candidate set at hand. To this end, we will assume that
all edge lengths are integral which can be achieved by scaling all rational
edge lengths with their lowest common denominator. Note that this can
be carried out with polynomial effort.

Theorem 7.2.2 (Discretization of (r, p)-centroid) Let G be a graph whose
edge lengths are positive integers. Then there is an (r, p)-centroid Xp for G such
that d(x, v) ∈ 1

2
N for each x ∈ Xp and each vertex v.

Proof. We assume without loss of generality that all edges have unit length,
which can be achieved by creating zero weighted nodes at an integer grid.
Now let Xp be an (r, p)-centroid.

We transform Xp into a new set X ′p by moving each point to the nearest
node, unless the point is the midpoint of an edge. Notice that each point
moves by less than 1

2
by this transformation. Therefore, all isodistant points

move by less than 1
2
.

119

7. Multiple Competitive Location on General Graphs

We show that wr(X ′p) ≤ wr(Xp). Assume the contrary. Then there must
be an interval between two X ′p-isodistant points where the follower gains a
set of nodes that was not present in the original instance. This means that
there must be a pair (i1, i2) of two isodistant points on an edge which has
interchanged its relative position during the transformation. More exactly,
if i1, i2 are the distances of the points to one fixed endpoint of the edge
before the transformation, and i ′1, i

′
2 are the positions after the transforma-

tion, then we must have i1 ≥ i2 and i ′1 < i ′2. Obviously i ′1, i
′
2 are either

endpoints or midpoints, that is, i ′1, i
′
2 ∈ {0, 1

2
, 1} (where for the sake of an

easier presentation we identify points with their respective distances).
If one of those points, say i ′1, is a midpoint then the point has not moved

at all, that is, i1 = i ′1. This implies that point i2 has moved by at least 1
2

which is impossible. On the other hand, if both i ′1, i
′
2 are endpoints, the

total sum of the movement is at least 1which is again a contradiction. This
shows the claim. 2

We have seen how to discretize the absolute follower and the absolute
leader problem: We are able to identify finite candidate sets that are guar-
anteed to contain an optimal solution. In a certain sense, these results can
be considered as a reduction from the absolute to the discrete case. From an al-
gorithmic point of view it will turn out that the discrete variant is easier to
attack than the absolute one. Therefore, the foregoing discretization results
will help derive upper bounds on the complexity also in the absolute case.

In the following sections we will pursue the contrary goal: We will try to
develop lower bounds on the complexity and the approximability of (r, p)-
centroid and (r, Xp)-medianoid. Again, it will be easier to formulate our
arguments for the discrete case first. Thus, in order to extend these results
also to the absolute case, we need a reduction in the reverse direction, that
is, from the discrete to the absolute case.

The following result shows that we can construct for any discrete in-
stance of the leader problem an absolute instance such that the respective
values of wr,p differ only insignificantly. Since we are going to deal with
different problem instances of (r, p)-centroid we will use superscript nota-
tion wIr,p, wIr(Xp) and wI(Yr ≺ Xp) to emphasize the dependence of these
values from the problem instance I.

Theorem 7.2.3 Let k be some fixed positive integer. Then we can efficiently
construct for any instance I of discrete (r, p)-centroid an instance I ′ of absolute
(r, p)-centroid such that |wIr,p −wI

′
r,p| ≤ ε and w(G) = w(G ′). Here, G = (V, E)

is the graph of instance I, G ′ is the graph of I ′ and ε = maxv∈V w(v)/nk.

120

7.2. Relations Between Absolute and Discrete Model

Proof. The graph G ′ we are going to construct consists of two layers: The
first layer contains exactly the node set V . Each node of the first layer has
weight zero. The second layer contains for any node v ∈ V a collection
of l := max{p, r} · nk nodes v1, . . . , vl each of weight w(vi) := w(v)/l. Let
u, v ∈ V be (possibly equal) nodes of graph G. Then we connect u in the
first layer with each vi in the second layer by an edge of length d(u, vi) =
diam(G)+dG(u, v)+ 1. This completes the construction of the graph G ′. It
is clear that w(G) = w(G ′). Note that only nodes of the second layer have
positive weights. Thus only these nodes are relevant for the respective user
parties. Moreover we remark that any placement for the discrete instance
I may also be viewed as a placement in the absolute instance I ′ within the
first layer. By observing that the graph G ′ is in fact metric, it follows easily
that wI(Yr ≺ Xp) = wI

′
(Yr ≺ Xp) for all sets Xp, Yr ⊆ V .

Let Xp and Yr be leader and follower placements in I ′, respectively. As-
sume that y ∈ Yr − V is a point that is not part of the first layer. Point y
lies on some edge (u, vi). Now assume that sj 6= vi is some node of the
second layer preferring y over Xp. Since dG ′(vi, sj) ≥ 2 · diam(G) + 2 >
dG(u, s) + diam(G) + 1 = dG ′(u, sj) any shortest path between sj and y
meets u. Thus, if we replace the follower server y with u, the gain of the
follower decreases by at most ε

r
, namely the weight of the node vi. Per-

forming this transformation for any point in Yr − V we arrive at a set τ(Yr)
of first-layer nodes such that wI ′(τ(Yr) ≺ Xp) ≥ wI

′
(Yr ≺ Xp) − ε. Symmet-

rically, we obtain that wI ′(Yr ≺ τ(Xp)) ≤ wI
′
(Yr ≺ Xp) + ε. Since the nodes

of the first layer are exactly the nodes of our original graph G the transfor-
mation τ(·) may be seen as mapping placements of the absolute instance I ′

to placements of the discrete instance I. The above inequalities show that
the absolute error of this transformation is small.

We are now going to show that |wIr,p − wI
′
r,p| ≤ ε. To this end let XIp

and XI ′p be (r, p)-centroids of I and I ′, respectively. Moreover let YI ′r be an
(r, τ(XI

′
p))-medianoid. Then

wIr,p = wI(XIp)

≤ wIr(τ(X
I ′

p))

≤ wI
′

r (τ(X
I ′

p)) = w(Y
I ′

r ≺ τ(XI
′

p))

≤ wI
′

r (Y
I ′

r ≺ XI
′

p) + ε

≤ wI
′

r,p + ε

To show that wIr,p is not smaller than wI
′
r,p − ε, consider an (r, XIp)-

medianoid ZI ′r in the absolute instance I ′. We obtain:

121

7. Multiple Competitive Location on General Graphs

wI
′

r,p ≤ wI
′

r (X
I
p) = w

I ′(ZI
′

r ≺ XIp)
≤ wI

′
(τ(ZI

′

r) ≺ XIp) + ε
≤ wIr(X

I
p) + ε

= wIr,p + ε 2

7.3. Complexity of the Leader Problem

Hakimi [Hak83] proved the NP-hardness of (absolute and discrete) (1, p)-
centroid, that is, of the leader problem for r = 1. The corresponding
decision problem, which asks whether there is a p-element point set Xp
such that w1(Xp) ≤ W for a given bound W, is in NP and hence also
NP-complete. This follows from the fact that an (1, Xp)-medianoid of
a p-element point set Xp can be determined in polynomial time (confer
Section 8.2). Indeed, a non-deterministic turing machine may guess a p-
element point set and then compute a (1, Xp)-medianoid Y1. Finally, it can
verify in polynomial time whether or not w1(Xp) = w(Y1 ≺ Xp) exceeds
W. Note that guessing Xp in the absolute case includes the application
of the discretization result stated in Theorem 7.2.2. More precisely, each
point in Xp is determined by an edge and a half-integral distance to one of
its end nodes. These considerations can be straightforwardly generalized
to arbitrary r ≥ 1 as long as r is fixed, that is, if it is not part of the input.
Again, this is due to the polynomial-time solvability of (r, Xp)-medianoid
for fixed r [Hak90].

The situation becomes more involved if r is part of the input. In this case,
the computation of an (r, Xp)-medianoid itself is already NP-hard [Hak83]
and there is no obvious alternative way to construct witnesses proving that
wr,p ≤W for a given boundW. In other words it is not clear whether (r, p)-
centroid is in NP at all. Hakimi [Hak90] conjectures that the (r, p)-centroid
problem seems to be “exceedingly difficult”.

One may object that it is quite a theoretical question whether or not
(r, p)-centroid is in NP since its hardness is already known. But it can
be argued that this question very well has practical implications. In fact,
the knowledge that a given problem is an NP-optimization problem (that
is, its decision problem is in NP) allows us to apply various practical,
heuristic approaches. We remark that many heuristics are based on the
fact that the goal function of the underlying problem is polynomially com-
putable. This concerns for example the greedy strategy as well as many

122

7.3. Complexity of the Leader Problem

meta-heuristics such as hill climbing, tabu search, simulated annealing, ge-
netic algorithms etc. Thus, if we were able to formulate (r, p)-centroid as
an NP-optimization problem we could immediately apply all these general
tools for attacking NP-hard optimization problems. Unfortunately, it will
turn out that such a formulation probably does not exist. We will show
that (r, p)-centroid is Σp

2 -complete, which rules out that it is in NP unless
the polynomial-time hierarchy collapses to NP, which is widely believed
to be false.

The class Σp
2 is part of the polynomial time hierarchy (confer Section 1.2)

and contains all decision problems that can be described using a logical
formula of the form ∃x ∀y ϕwhere ϕ is a quantifier-free formula [SU02].

We will prove the Σp
2 -completeness of (p, p)-centroid, which implies

the Σp
2 -completeness of the decision problems for p-Simpson and p-γ-

Condorcet. The hardness proof uses a reduction from the decision problem
∃∀3SAT. We briefly recall some preliminaries. Let X denotes a set of logical
(that is, binary) variables. If x ∈ X is a variable, then ¬x is its negation. The
set { x,¬x | x ∈ X } is the set of literals. A term is a conjunction of literals.
A formula is in disjunctive normal form (DNF) if it is a disjunction of terms.
A formula in 3-DNF is a disjunction of terms where each term consists of
exactly 3 literals. An assignment X0 for a set X of variables is a mapping
X0 : X → {0, 1}. If all variables of a formula ϕ are defined this way, the
truth value of the whole formula is determined and denoted by X0(ϕ). If
X0 is an arbitrary assignment, then X0 : x 7→ 1 − X0(x) is the assignment
generated from X0 by flipping the truth value of each variable.

The decision problem ∃∀3SAT is defined as follows: Let X = {x1, . . . , x|X|}

and Y = {y1, . . . , y|Y|} be disjoint sets of logical variables and let ϕ be a 3-
DNF over X ∪ Y, decide whether the formula ∃x1 . . . ∃x|X| ∀y1 . . . ∀y|Y| ϕ is
satisfied, where xi ∈ X and yj ∈ Y.

Theorem 7.3.1 ([SU02]) The problem ∃∀3SAT is Σp
2 -complete. 2

Let |ϕ| denote the number of terms in ϕ. A variable xi is called trivial
in ϕ if ϕ contains either xi or ¬xi but not both.

Corollary 7.3.2 ∃∀3SAT is Σp
2 -complete, even if |X| = 2|ϕ| + |Y| and ϕ con-

tains no trivial variables.

Proof. We show that the known hardness result from above continues to
hold even with the additional restrictions. If ϕ contains a trivial variable,
say xi or ¬xi, then add a new term xi∧¬xi∧zwhere z is any literal distinct
from xi and ¬xi. To enforce |X| = 2|ϕ| + |Y|, add yet unused variables to X
or to Y respectively, which are nontrivial by definition. 2

123

7. Multiple Competitive Location on General Graphs

vsv1 . . .

FIG. 7.1.: An s-diamond to the left and a term component to the right. Terminals
are marked black and non-terminals are marked white.

Theorem 7.3.3 Discrete (r, p)-centroid is Σp
2 -complete. This holds even when

the underlying graph is bipartite and r = p.

Proof. First, we convince ourselves that (r, p)-centroid is in Σp
2 . To this end,

we consider an instance of (r, p)-centroid which consists of a node and
edge-weighted graph along with numbers r, p and a boundW. The task is
to decide whether wr,p ≤ W by means of a non-deterministic polynomial
time turing machine having access to an oracle for NP. First, we guess an
(r, p)-centroid Xp non-deterministically. Then we consult our oracle for NP
to check whether wr,p = wr(Xp) ≤ W. Here, we exploit that the decision
problem for (r, Xp)-medianoid is in NP. The time needed for this computa-
tion is clearly polynomially bounded.

Now, we show that (r, p)-centroid is also complete for Σp
2 . To this end we

use a reduction from ∃∀3SAT where the additional requirements of Corol-
lary 7.3.2 are fulfilled. Letϕ be a respective formula and let X, Y be defined
as above.

For a literal l of ϕ let ν(l) denote the number of appearances of l in ϕ.
We set M := max{ν(xi), ν(¬xi) | xi ∈ X }, N :=

∑
(ν(yi) + ν(¬yi)) and

W := m ′M + 3|ϕ| + |Y| +N − 1, where m ′ is the number of used variables
from X.

The graph constructed in the sequel consists of several subgraphs that
we call components. These components will then be combined to the graph
of our instance for (r, p)-centroid. In doing so, we will guarantee that
the mentioned subgraphs only intersect at dedicated nodes called termi-
nal nodes. In contrast, non-terminal nodes are part of only one component.

We use two main types of components: An s-diamond has two termi-
nal nodes t1, t2 and s further nodes v1, . . . , vs, where each vi is connected
both to t1 and t2. A term component is a cycle C6 where three pairwise non-
adjacent nodes are terminals. Confer Figure 7.1. The total graph is com-
posed by connecting diamonds and term components at terminal nodes.

124

7.3. Complexity of the Leader Problem

∈ X ∪ Y
diamond

terminal
nonterminalT(c)

¬l2 l3 ¬l3l1 ¬l1

l1 l3

Lc(l2) Lc(l3)Lc(l1)

T(c)

l2 ¬l2 l3 ¬l3l1 ¬l1

l1 l3

l2

Lc(l2) Lc(l3)Lc(l1)

l2

l2

negative instancepositive instance

FIG. 7.2.: Illustration of the reduction. Note that a literal li may represent a
negated variable in which case ¬li denotes the non-negated variable.

All edges in diamonds and term components as well as all non-terminal
nodes are unit-weighted, whereas the terminal nodes are zero-weight.

For each variable xi ∈ X, let C(xi) be a (W + 2)-diamond, called the vari-
able component, with terminal nodes xi and ¬xi. Similarly, add a 1-diamond
C(yi) for each yi ∈ Y. For each term c = l1 ∧ l2 ∧ l3 in ϕ, add a term
component with terminal set {l1, l2, l3}. Now connect each of these terminal
nodes li by a new diamond Lc(i) to the corresponding terminal node in the
variable component. We adjust the size of these connecting diamonds so
that the degree of each used literal l over X in the variable components is
M+W+2; obviously this can be achieved, for example, by choosing exactly
one (M− ν(l) + 2)-diamond and all remaining diamonds as 1-diamonds.

Now, connect the variable nodes x1 and ¬x1 by edges of length 2 to all
non-adjacent non-terminal nodes in the graph. This completes the con-
struction of the graph. Note that every edge connects a terminal and a
non-terminal node. Hence the graph is bipartite. Finally, we set r := p :=
|X| = 2|ϕ|+ |Y|. Confer Figure 7.2.

The idea of the proof is to establish a relationship between assignments
of the variables of the ∃∀3SAT instance on the one hand and p-element
node subsets of the (r, p)-centroid instance on the other hand. Throughout
the following proof we identify assignments and node subsets in the natu-
ral way, that is, that a terminal node of a variable component is part of the
subset if and only if the corresponding literal is set to 1.

A p-element node subset Xp is called a valid X-placement if it contains for
each variable xi ∈ X exactly one of the terminal nodes xi,¬xi of the corre-
sponding variable component; a valid Y-placement Yr is defined in a simi-
lar way. Note that a valid X-placement can be treated as an X-assignment
in the aforementioned sense. The converse also holds.

125

7. Multiple Competitive Location on General Graphs

We claim that any Xp withwr(Xp) ≤W must be a valid X-placement. In-
deed, if there is a variable component C(xi) such that none of its terminals
is occupied by Xp then each of these terminals is preferred over Xp at least
W + 1 non-terminals of C(xi).

We call all non-terminal nodes vwith d(Xp, v) > 1 follower nodes.
We state the following observation: If Xp is a valid X-placement, then

there is a Yr where all non-terminal nodes preferring Yr over Xp are actually
follower nodes. This can be shown as follows: First observe that since only
non-terminal nodes have positive weight, terminal nodes do not have any
impact on the valuew(Yr ≺ Xp). Second, let Yr be an opposition and let v be
a non-terminal node in U(Yr ≺ Xp) which is not a follower node. Then v ∈
Yr, and v is preferred by no node other than v itself. Thus we can replace v
by any yet unused follower node without decreasing the valuew(Yr ≺ Xp).

Let Xp be a leader placement with wr(Xp) > W. As before there is a
Yr such that all non-terminals in U(Yr ≺ Xp) are follower nodes. From
w(Yr ≺ Xp) ≥W + 1 it follows that Yr must be preferred over Xp by all fol-
lower nodes. Thus each term component must contain at least two nodes
from Yr. On the other hand, each variable component C(yi) must con-
tain at least one node from Yr. Since term and variable components do
not have common nodes we can deduce the following observation: For a
valid X-placement Xp we have wr(Xp) > W if and only if there is a valid
Y-placement Yr such that:

(i) each variable component C(yi) contains exactly one node from Yr,
(ii) each term component contains exactly two nodes from Yr, and

(iii) each literal component contains at least one node from Xp ∪ Yr.

This means that (as follows by simply counting the available facilities) each
node from Yr is either part of a variable component or a term component,
in particular it cannot be a non-terminal node in a literal component.

We complete the proof by showing that the instance of ∃∀3SAT is satis-
fied if and only wr,p ≤W in the (r, p)-centroid instance constructed.

To this end, let Xp be an assignment for the variables in X such that the
formula ∀yϕ is satisfied. Then we claim that Xp satisfieswr(Xp) ≤W (con-
fer Fig. 7.2 left): For the sake of a contradiction, consider a leader place-
ment Yr satisfying conditions (i)–(iii) stated above. Then (Xp ∪ Yr)(ϕ) = 1.
Consequently there exists a term c = l1 ∧ l2 ∧ l3 such that (Xp ∪ Yr)(li) = 1
for all i. Hence, the complementary assignment Xp ∪ Yr does not contain
any of l1, l2, l3 in the variable components. To satisfy condition (iii), Yr must
contain all three terminal nodes of T(c), which contradicts condition (ii).

Conversely, assume that ∃x∀yϕ is not true. Let Xp be an arbitrary valid
X-placement (confer Figure 7.2 right). Then there exists an Yr such that

126

7.3. Complexity of the Leader Problem

(Xp ∪ Yr)(ϕ) = 0, hence for all terms c = l1 ∧ l2 ∧ l3 there is at least one
literal li such that (Xp ∪ Yr)(li) = 0. Then the set Y ′r := Yr can be com-
pleted to form an follower placement that dominates Xp at the end: Since
(Xp ∪Yr)(li) = 1, we can add the two terminals lj, j 6= i, of the term compo-
nent T(c) to Y ′r . After this has been performed for all terms, conditions (i)–
(iii) from above are satisfied for the set Y ′r ; hence w(Y ′r ≺ Xp) > W. 2

We observe that the reduction used in the above proof also works for the
absolute case:

Corollary 7.3.4 Absolute (r, p)-centroid is Σp
2-complete even when the under-

lying graph is bipartite and r = p.

Proof. First, we claim that absolute (r, p)-centroid is in Σp
2 . To this end,

we employ the discretization result stated in Theorem 7.2.2: We guess an
(r, p)-centroid Xp non-deterministically. In doing so, each point of Xp is
either a node or can be described by an edge and the half-integral distance
to one of its end nodes. Hence a polynomial number of non-deterministic
bits is sufficient to guess Xp. Then we consult our oracle for NP to check
whether wr,p = wr(Xp) exceeds the bound specified in the instance of the
decision problem. Here, we exploit that the decision problem for absolute
(r, Xp)-medianoid is in NP as pointed out above.

In order to show that absolute (r, p)-centroid is complete for Σp
2 we em-

ploy Theorem 7.2.3. Let I be the instance constructed in the proof of Theo-
rem 7.3.3. Let us now construct some instance I ′ of absolute (r, p)-centroid
by choosing k = 1 in Theorem 7.2.3. The theorem guarantees that the ab-
solute error of this reduction is strictly smaller than 1/n which is without
loss of generality smaller than 1

3
. Therefore, if wIr,p ≤W then wI ′r,p ≤W + 1

3

and if wIr,p ≥ W + 1 then wI ′r,p ≥ W + 2
3
. Thus wIr,p ≤ W if and only if

wI
′
r,p ≤W + 1

3
. 2

Since the decision problems of (p, p)-centroid and of p-Simpson are both
equivalent to p-γ-Condorcet, we obtain immediately.

Corollary 7.3.5 Absolute and discrete p-Simpson and p-γ-Condorcet are Σp
2 -

complete. 2

In the statement of the corollary the parameter γ is part of the input.
One may ask for the complexity of the problem if γ is fixed. Note that
if γ comes close to 0 (resp. 1) the restriction imposed on any p-γ-solution
X becomes very strong (resp. weak). In fact, if γ ∈ {0, 1} the problem is

127

7. Multiple Competitive Location on General Graphs

(trivially) decidable in polynomial time. One might even suspect, that for
large enough γ < 1 a p-γ-Condorcet solution always exists.

The following theorem shows that this intuition is wrong: The above
mentioned trivial cases γ = 0 and γ = 1 are the only ones where p-γ-
Condorcet can be decided in polynomial time.

Theorem 7.3.6 If P 6= NP, p-γ-Condorcet is efficiently solvable if and only if
γ ∈ {0, 1}.

Before proving this theorem, it should be pointed out that its statement is
a significant sharpening of the so-called Condorcet paradox. Remember the
introductory example depicted in Figure 1.2 at the very beginning of this
thesis. The example shows an election with three candidates A,B,C none
of them being a Condorcet winner. Specifically, the situation is as follows:
Candidate A dominates candidate B, that is, an absolute majority of two
thirds of the voters prefers A over B, which suggests that A is significantly
better than B. But there seems to be an even better candidate since C is
preferred overA by two thirds of the voters, too. SoC should be better than
A and all the better than B. The latter, however, is not true: B dominates C
and not the other way round.

This paradox can easily be generalized to elections with arbitrarily large
numbers of candidates and voters where the candidates constitute a large
cycle along which they dominate each other. In doing so, the fraction of
users preferring a candidate over the next one can be brought arbitrarily
close to 1 by increasing the number of voters and candidates.

The proof of the theorem is based exactly on this idea. We are going
to construct a graph in which the preference structure resembles “cyclic”
elections like those mentioned above. However, our proof shows not
only that there are arbitrarily bad voting location instances but estab-
lishes also the NP-hardness of the corresponding decision problem. To
this end, we will “embed” an instance of the well-known NP-complete
3-DIMENSIONAL MATCHING problem [GJ79] into a cycle-shaped graph
and boost the number of nodes until we achieve the desired fraction γ.

Proof (of Theorem 7.3.6). Let’s start with the discrete case. We reduce from
the NP-complete 3-DIMENSIONAL MATCHING problem (3DM for short),
which is defined as follows. Let M be a subset of R × S × T where R, S, T
are pairwise disjoint sets of cardinality q. Decide whether M has a perfect
matching, i. e. a set M ′ ⊆ M such that |M ′| = q and the elements of M ′

pairwise do not have common coordinates.
Given an instance I of 3DM and positive integers m,k such that m ≥

|M| + 3q we construct an instance I(m,k) of p-γ-Condorcet in the follow-
ing way (confer Figure 7.3): The underlying graph G = (V, E) of I(m,k)

128

7.3. Complexity of the Leader Problem

...

m+ 1

xl = (r, s, t)

t0, . . . , tk−1

s0, . . . , sk−1

r0, . . . , rk−1

xj
m+ ((j− ir) mod m)

xl
xir

vi xi

Vin

Vout

Vmid

vl

m

FIG. 7.3.: Illustration of an instance I(m,k). Node xl represents the triple (r, s, t)
from the perfect matching. Node xir corresponds to r ∈ R. Thick edges
are of weightm.

consists of three sets Vin, Vmid and Vout of nodes. The cardinalities of these
node sets are |Vout| = 3qk and |Vin| = |Vmid| = m, respectively. By construc-
tion we guarantee thatM∪R∪S∪T ⊆ Vmid holds. The elements of Vmid, Vin

are indexed somehow. Note that any element u ∈M∪R∪S∪T can be iden-
tified with some xiu ∈ Vmid, where iu is a suitable index in {0, . . . ,m − 1}.
The set Vout contains for each u ∈ R∪ S∪ T exactly k elements u0, . . . , uk−1.
Now let E be the union of Vout × Vmid and Vmid × Vin. Define the lengths
of the edges in E as follows: Let u ∈ R ∪ S ∪ T . Then u corresponds to
a node xiu ∈ Vmid and to some node set {u0, . . . , uk−1} ⊂ Vout. Let xj be
an arbitrary element of Vmid. If xj ∈ M and u is a coordinate of xj then
c(ul, xj) := m else c(ul, xj) := m + ((j − iu) mod m) for all 0 ≤ l ≤ k − 1.
For xj ∈ Vmid and vi ∈ Vin we set c(vi, xj) := m + ((j − i) mod m). While
the nodes in Vout∪Vin have unit weight, all nodes in Vmid have weight zero.
Finally, let p := q which completes the construction. Confer Figure 7.3 for
an illustration.

Let X, Y be p-element placements. Observe that only the nodes in Vout ∪
Vin have an impact on the value w(Y ≺ X) since all nodes in Vmid are zero
weighted. Hence we call the nodes in Vout ∪ Vin essential. Now let 0 ≤ i ≤
m − 1 and xi ∈ Vmid. We define i ′ := (i − 1) mod m. Verify that xi ′ is
preferred over xi by all essential nodes whose distance to xi exceedsm.

Now let M ′ be a perfect matching of the 3DM instance I and consider
X :=M ′ as a candidate placement in I(m,k). We claim that w(Y ≺ X) ≤ m
for any p-element node set Y. To this end let Yio be the set of essential

129

7. Multiple Competitive Location on General Graphs

nodes in Y and let y ∈ Yio. Observe that y is the only essential node in
U(y ≺ X). It follows that w(Yio ≺ X) ≤ p. Now let Ymid := Y ∩ Vmid. Since
d(u, Vmid) = m for all essential nodes u ∈ V , Ymid can only be preferred by
essential users u ′ for which d(u ′, X) > m holds. Since M ′ = X is a perfect
matching, d(uj, X) = m holds for all uj ∈ Vout. It follows that U(Ymid ≺ X)
and Vout are disjoint. Furthermore, there are exactly p nodes u ∈ Yin such
that d(u,X) = m. Hence w(Ymid ≺ X) ≤ m − p. We conclude that indeed
w(Y ≺ X) ≤ w(Yio ≺ X) +w(Ymid ≺ X) ≤ m − p + p = m, hence our claim
holds.

On the other hand, ifX is a p-element node set that is not a perfect match-
ing for I thenwp(X) ≥ m−p+k. To see this, let Xmid := X∩Vmid and define
an opposing candidate Y such that Y ⊇ { xi ′ | xi ∈ Xmid }. The case where
X and Vmid are disjoint is trivial. We verify that Y is preferred by all es-
sential users u such that d(u,X) > m. First we count the nodes uj ∈ Vout

such that d(uj, X) ≤ m. To this end, let u ∈ R ∪ S ∪ T . Consider the
corresponding xiu ∈ Vmid and assume that d(uj, X) ≤ m for some corre-
sponding uj ∈ Vout. This can only be the case if either uj ∈ X or xiu ∈ X
or u is covered by X. Since X is no perfect matching there must be an u
not covered by M and such that xiu /∈ X. Hence there are at least k − |Xout|

corresponding nodes uj ∈ Vout for which d(uj, X) > m is satisfied. Here
we set Xout := X ∩ Vout. A similar argument shows that Vin contains at least
m− |Xmi| nodes vj such that d(vj, X) > m. Here, Xmi := X∩ (Vmid ∪Vin). We
conclude w(Y ≺ X) ≥ k− |Xout|+m− |Xmi| = m− p+ k.

To summarize, we have shown that if I has a perfect matching then
wp,p ≤ m and otherwise wp,p ≥ m− p+ k. Our aim is to choose m,k such
thatm ≤ γ ·w(V) andm−p+k > γ ·w(V) is satisfied. If we could achieve
this, the 3DM instance I would have a perfect matching if and only if the
constructed voting instance I(m,k) admits an p-γ-Condorcet solution. The
difficulty is that in the above inequalities the total numberw(V) of users is
not constant but itself depends onm and k by the relationw(V) = m+3pk.
This, however, is not a serious problem: If we ensure that k is large enough
in comparison to p, andm is large in comparison to 3pk, those inequalities
can be made true by means of elementary calculations. Note that we ad-
ditionally need to require that m be larger than |M| + 3q since we have to
embedM∪R∪S∪T into Vmid. As this only adds an additional lower bound
on m the solvability of the above linear inequality system is not affected.
In fact, it is possible to calculate m and k in polynomial time so that they
fulfill the inequalities and their values are polynomially bounded in the
input size of I. This allows us to construct I(m,k) with polynomial effort.

As in the proof of Corollary 7.3.4 we extend this result also to the abso-
lute case with the help of Theorem 7.2.3. Note that it is essential here that

130

7.4. Approximability

the reduction from the discrete to the absolute case do not alter the total
weight of the graph. 2

7.4. Approximability

In this section we study the approximability of multiple competitive lo-
cation problems, that is, (r, Xp)-medianoid and (r, p)-centroid, on general
graphs. For the first problem we give an optimal approximation while for
the latter we sharpen Hakimi’s result and show that (r, p)-centroid is es-
sentially not approximable at all (unless P = NP).

7.4.1. Follower Problem

The (r, Xp)-medianoid problem turns out to be strongly related to the
MAXIMUM COVERAGE problem [Hoc97], for which a tight bound of ap-
proximability is known [KMN99]. The latter problem is defined as follows.
Given a finite set M with weights wC : M → Q+

0 , a collection S ⊆ 2M of
subsets of M, and a positive integer k ≤ |S| find a subset S ′ ⊆ S such that
|S ′| = k and wC(

⋃
S ′) is maximal. Khuller et al. [KMN99] showed that

MAXIMUM COVERAGE can be approximated within a factor of e/(e − 1)
and that for any ε > 0, it is not possible to approximate the problem within
a factor of e/(e− 1) − ε unless P = NP.

Theorem 7.4.1 The absolute and the discrete (r, Xp)-medianoid problem are
both equivalent to MAXIMUM COVERAGE under approximation preserving re-
duction and hence approximable within e/(e − 1) but not within e/(e − 1) − ε
for any ε > 0 unless P = NP.

Proof. Again we start with the discrete case. Consider an instance of MAX-
IMUM COVERAGE. We construct a graph G = (V, E) in the following way:
For each m ∈ M and each M ′ ∈ S we introduce nodes in G with weights
w(m) := wC(m) and w(M ′) := 0, respectively. Furthermore we connect
m ∈ M and M ′ ∈ S by an edge if and only if m ∈ M ′ holds. The leader
placement Xp consists of p := k additional, zero-weighted nodes such that
Xp and M ∪ S are disjoint. Now we connect each node v in Xp with each
M ′ ∈ S by an edge. Finally, we set the weights of all edges to 1.

First observe that d(m,Xp) = 2 for each node m corresponding to an
element of M. Moreover, these nodes are exactly the ones with positive
weight. Now consider any follower node y. If y corresponds to an element
of M then y is the only node of positive weight in U(y ≺ Xp). Now let

131

7. Multiple Competitive Location on General Graphs

M ′ be some neighbor of y being simultaneously an element of S. Then y is
still contained in U(M ′ ≺ X). Thus, if we replace ywithM ′, the follower’s
gain can not decrease. Hence, we may assume that the follower placement
Yr contains only elements of S. Now consider an arbitrary node m of pos-
itive weight and M ′ ∈ S. It is clear by construction that d(m,M ′) = 1 if
m ∈ M ′ and otherwise d(m,M ′) ≥ 2. Therefore, the elements of posi-
tive weight in U(M ′ ≺ Xp) are exactly the elements of M covered by M ′.
Thus the gain w(Yr ≺ Xp) of the follower placement equals exactly the
weight wC(

⋃
Yr) of elements covered by Yr where Yr is considered a fea-

sible solution of MAXIMUM COVERAGE. Hence the weight of an optimal
solution S ′ for MAXIMUM COVERAGE equals the value wr(Xp) for r = k.
We conclude that (r, Xp)-medianoid is as least as hard to approximate as
MAXIMUM COVERAGE. In the absolute model there is obviously no ben-
efit to place a server at an inner point of some edge. Therefore we do not
need to consider this case separately.

Conversely, given an instance of (r, Xp)-medianoid we construct an
equivalent instance of MAXIMUM COVERAGE as follows: First set M := V ,
wC := w and k := r. Then, let the collection S consist exactly of the sets
U(y ≺ X) for all y ∈ V .

Again it follows easily that wr(Xp) and the optimal weight of the MAX-
IMUM COVERAGE instance are equal which completes the proof of the
equivalence of the two problems.

The absolute case is tackled analogously by letting M be the set of
candidates (confer the discussion of discretizing (r, Xp)-medianoid in
Section 7.2) instead of merely the set V of nodes.

The stated bounds now follow from the approximability properties of
MAXIMUM COVERAGE [KMN99]. 2

7.4.2. Leader Problem

We now study the approximability of the leader problem (r, p)-centroid. It
will turn out that this problem is not satisfactorily approximable on gen-
eral graphs. The following result is a strengthening of the lower bound of
Hakimi [Hak90] who showed that (r, p)-centroid admits no constant-factor
approximation algorithm.

Theorem 7.4.2 The absolute and the discrete (r, p)-centroid problem cannot
be approximated within n1−ε unless P = NP. In particular, this holds for any
fixed r ≥ 1.

Proof. Again we start with the discrete case. Let GC = (VC, EC) be an undi-
rected graph. A subset V ′ ⊆ VC is called a vertex cover if each e ∈ EC is

132

7.4. Approximability

incident to a node v ∈ V ′. The NP-complete decision problem VERTEX
COVER (confer [GJ79]) asks whether, given a graph GC and a natural num-
ber k ≤ |VC|, the graph GC has a vertex cover containing at most k nodes.

Given an instance of VERTEX COVER and an arbitrary positive integer s,
we construct an instance I(s) of (r, p)-centroid: The underlying undirected
graph G = (V, E) of I(s) is obtained by replacing each edge (u, v) ∈ EC by
an s-diamond D(u, v) with terminal nodes u, v. The notion s-diamond is
defined exactly as in the proof of Theorem 7.3.3; see also Figure 7.1. Note
that the reduction ensures VC to be a subset of terminal nodes of V . Finally
we set p := k.

We are now going to show that wr,p ≤ r if GC has a vertex cover and
otherwise wr,p ≥ s. This gap producing reduction will then enable us to
derive the desired inapproximability bound by choosing s large enough.

First assume that GC has a vertex cover V ′ containing at most p = k

nodes. Now consider Xp := V ′ as a leader placement in I(s). Since each
non-terminal node in G is adjacent to a node in Xp, it follows easily that
each node y ∈ V can be preferred over X by at most one user. Hence
w(Yr ≺ Xp) can not exceed r for any r-element node set Yr.

On the other hand, given a leader placement Xp we construct a set of
nodes in VC by replacing each non-terminal node in Xp by an adjacent ter-
minal node. We denote this set by τ(Xp).

Let Xp be a leader placement such that wr(Xp) < s. We claim that in this
case τ(Xp) is a vertex cover ofGC. To this end assume thatGC has no vertex
cover with at most k nodes. Then, for any placement Xp there is an edge
(u, v) that is not covered by τ(X). It is clear that each follower placement Yr
containing u is preferred by all s non-terminal nodes of D(u, v) and hence
w(Y ≺ X) ≥ s.

Note that n depends linearly on s. Thus we can determine a suitable s in
polynomial time such that the equation rn1−ε < s is satisfied. Furthermore
s is itself polynomially bounded by the input size of the VERTEX COVER
instance, which ensures that I(s) can be constructed in polynomial time.
Let A be an algorithm approximating (r, p)-centroid within n1−ε, and let
XA be the result obtained by applying A to I(s). Further assume that GC

has a vertex cover with at most p = k nodes. Then τ(XA) is a vertex cover
of GC. For, the performance guarantee of A yields wr(XA) ≤ rn1−ε < s.

Hence a polynomial running time for A would imply VERTEX COVER∈
P as follows: First compute s and I(s). Then apply A to I(s). Finally, check
whether τ(XA) is a vertex cover for GC.

As in the proof of Corollary 7.3.4 we extend this result also to the abso-
lute case by means of Theorem 7.2.3. 2

133

7. Multiple Competitive Location on General Graphs

7.5. Conclusion and Further Remarks

In this chapter we have investigated the complexity and the approxima-
bility of multiple competitive location problems on general graphs. We
have shown that (r, p)-centroid is Σp

2 -complete which suggests that it is
substantially more complex than typical NP-hard optimization problems
whose objective function is efficiently computable. In terms of approxima-
bility, we have shown that for any ε > 0 there is no n1−ε-approximation
algorithm for (r, p)-centroid unless P = NP. Roughly speaking, there is
no approximation algorithm for this problem with a reasonable worst case
behavior.

The complexity status of (r, Xp)-medianoid has already been settled by
Hakimi [Hak83]. He has shown that its decision problem is NP-complete.
To the best of our knowledge its approximability has not been examined
yet. We have established a simple equivalence between (r, Xp)-medianoid
and the well-studied MAXIMUM COVERAGE problem. This yields a tight
bound e/(e− 1) for the approximability of (r, Xp)-medianoid.

For general graphs, we have resolved the complexity and the approx-
imability of the problems satisfactorily. Hence, we will concentrate in sub-
sequent chapters on special types of instances. As in the single location
case we will examine the problems on trees. In the case of the sophisticated
(r, p)-centroid problem, we shall see that it is even worth investigating the
simple case of a path.

134

8. The Follower Problem on
Trees

This chapter is devoted to analyzing the complexity of the follower prob-
lem, namely (r, Xp)-medianoid, on trees. As in the single server case, the
problem turns out to be significantly easier on trees than on general graphs.
We have seen in the preceding chapter that (r, Xp)-medianoid is NP-hard
on general graphs and have even stated a lower bound of approximability.
In contrast, the problem becomes efficiently solvable on trees. Specifically,
we shall see in Section 8.1 that it is a special case of the so called maximum
coverage location problem, which can be solved with an algorithm of Tamir
[Tam96], in O(rn2) time.

In the remainder of this chapter we concentrate on the case where the
follower places only one server (aka single maximum coverage location) in
the presence of a multipoint leader placement. We start with the observa-
tion that in this specific case Tamir’s algorithm leads in this specific case to
a quadratic running time which, asymptotically, is not faster than the naive
approach of performing a depth first search traversal from every node.

Our first non-trivial approach to attack single maximum coverage loca-
tion is based on a so called recursive coarsening technique which we present
in Section 8.2.1. The resulting algorithm has a subquadratic running time
of O(n log2 n/ log logn).

In Section 8.2.2 we describe a general model of Kim et al. [KLTW96] for
locating a tree-shaped facility on a tree. In this context we consider the indi-
rect covering subtree problem which has single maximum coverage location
as a special case. In Section 8.2.3 we then briefly reproduce an algorithm
of Kim et al. with running time O(n log2 n) for indirect covering subtree
which is, albeit subquadratic, slightly slower than our tailor-made recur-
sive coarsening algorithm for single maximum coverage location.

Finally, in Section 8.2.4 we present an improvement of the algorithm of
Kim et al. which leads to an surprisingly simple algorithm for indirect cov-
ering subtree (and thus also single maximum coverage location) with run-
ning timeO(n logn). To the best of our knowledge this is the fastest known
algorithm for this class of problems.

135

8. The Follower Problem on Trees

8.1. Tamir’s Algorithm

The (r, Xp)-medianoid problem on trees has first been studied by Megiddo
et al. [MZH83]. In that work the authors investigate the more general max-
imum coverage location problem which is defined as follows:

Definition 8.1.1 (Maximum Coverage Location on a Tree [MZH83])
The input instance consists of a tree T = (V, E) with edge lengths c : E→ Q+

0

inducing a distance function d : T × T → Q+
0 . Additionally, there are func-

tions ρ,w : V → Q+
0 specifying the sensitivity radius ρ(v) and the demand

value w(v) for each node v ∈ V . Moreover, we are given a positive
integer 1 ≤ k ≤ n.

When a subset F ⊆ G of facilities (points) has been chosen, a node v ∈ V
is said to be covered by F if and only if d(v, F) ≤ ρ(v). The gain W(F) of F is
the sum

∑
{w(v) | d(v, F) ≤ ρ(v)} of the demand of the nodes covered by

F. The goal is to find a point set F ⊆ G of size |F| = k whose gain W(F) is
maximum.

It is easy to see that an instance of the (r, Xp)-medianoid problem can
be formulated as a maximum coverage location problem: Leave the input
tree unchanged, and define the sensitivity radius of each node to be ρ(v) :=
d(v, Xp) − ε where ε is a suitably small constant. The number of facilities
is k := r. Then the total demand W(Yr) of nodes covered by any r-element
point set Yr is exactly w(Yr ≺ Xp).

Using the concept of boundary points (confer Section 7.2) Megiddo et al.
[MZH83] reduce the (absolute) maximum coverage location problem to its
discrete counterpart where only node sets F ⊆ V are taken into account. In
particular, they show that for any instance of maximum coverage location
it is possible to identify efficiently a candidate set C ⊆ G that contains
at least one optimal solution and has size O(n). For this reason, we will
restrict ourselves to the discrete maximum coverage location problem in
what follows.

The central result of Megiddo et al. [MZH83] is a polynomial-time al-
gorithm for discrete maximum coverage location with running time of
O(k2n2). In their original work, Megiddo et al. claimed even a running
time O(kn2). However, Broin and Lowe [BL86] pointed out an mistake in
the argumentation of Megiddo et al. and proved the slightly lower perfor-
mance stated above.

Later, Tamir [Tam96] actually improved this running time toO(kn2). His
result applies to an even more general model than maximum coverage lo-
cation. In this model, each node v is associated with a non-negative setup

136

8.2. Single Follower on Trees

cost c(v) and a non-decreasing function fv. The problem consists in deter-
mining a k-element node set Fminimizing the total cost

c(F) +
∑
u∈V

fu(d(u, F)) .

By setting c ≡ 0 and

fu(x) =

{
−w(u) if x ≤ r(u)
0 otherwise,

the cost of any k-element node set F in Tamir’s model equals the negative
gain −W(F) of F in maximum coverage location. We obtain

Theorem 8.1.2 The absolute and the discrete (r, Xp)-medianoid problem on an
n-node tree can be solved in O(rn2) time. 2

8.2. Single Follower on Trees

In this section we examine (1, Xp)-medianoid on trees, that is, the follower
places one single server in the presence of a multipoint leader placement.
Note that for p = 1, this amounts to the (single) x-medianoid problem
investigated in the first part of this thesis. Indeed, in Theorem 4.2.6 we
have observed that this simple case can be solved in linear time.

For p ≥ 2 a quadratic running time can be obtained with the following
trivial approach. For any node vwe determine the distances d(u, v) to each
node u ∈ V by means of one depth-first search. In doing so, we sum up
the weights of all nodes u where d(u, v) ≤ ρ(u). Hence we can compute
the gain W(v) of v in linear time. Performing this for all nodes v ∈ V we
can compute all optimal nodes in quadratic time.

Can we improve this trivial upper bound? Unfortunately, Tamir’s algo-
rithm [Tam96] does not help here, since it yields quadratic running time for
r = 1, too. An algorithm faster than the naive approach has first been sug-
gested by Kim et al. [KLTW96]. The authors provide an algorithm for solv-
ing the so called indirect covering subtree problem on a tree in O(n log2 n)
which contains maximum coverage location as a special case.

In the following subsection we describe a new, slightly faster algorithm
for single maximum coverage location. We then reproduce the algorithm
of Kim et al. briefly in Section 8.2.3. Finally, we improve their algorithm
and achieve a running time of O(n logn), see Section 8.2.4. This is the best
bound currently known.

137

8. The Follower Problem on Trees

8.2.1. A Recursive Coarsening Algorithm for Single
Maximum Coverage Location

In this subsection we present an algorithm with running time O(n log2 n
/ log logn) for solving the maximum coverage location problem. The ap-
proach is based on the so-called recursive coarsening technique. The algo-
rithm is slightly faster than the previously best algorithm of Kim et al.
[KLTW96] which has a running time of O(n log2 n) and will be described
later in Section 8.2.3.

In the process of my research, the idea of coarsening has been an im-
portant intermediate step in devising the two-terminal subtree technique,
with which we have already become acquainted in Chapters 4 and 5, in
order to determine Φ-solutions and the set of ϕ0-bounded solutions. In-
deed, we will use this technique once again in Section 8.2.4 for developing
an O(n logn) algorithm for single maximum coverage location, which is
faster than the coarsening approach described in this section and also than
the algorithm of Kim et al. The reader might argue that this stronger result
makes the recursive coarsening technique obsolete. However, I feel that
its description might nevertheless be valuable. First of all, it documents
the progress being made during our research. Moreover, it underlines the
effectiveness of the 2TS technique. Specifically, we will learn that a small
modification of the approach causes a significant speedup and simplifica-
tion. And finally, it may well be that the coarsening idea turns out to be
fruitful for other optimization problems on trees.

In order to avoid confusions, we emphasize that the order in which the
results are presented in this thesis is guided by thematic and systematical
viewpoints and does not match the chronological order in which they have
been developed. As mentioned above, the idea of coarsening is in fact a
predecessor of the two-terminal subtree technique and has been devised
in the context of single maximum coverage location. Thus this chapter is
the best place to go also into the details of this preliminary approach and
to explain also some motivations and ideas behind the 2TS technique.

The naive approach of solving the single maximum coverage location
problem is to determine for each possible facility position u ∈ V the weight

W(u) :=
∑

{w(v) | d(u, v) ≤ ρ(v) }

of nodes covered by facility u, and then choosing a facility with maximum
value as the solution. As observed above, the number W(u) can be deter-
mined in linear time by a depth-first search traversal of the tree. This yields
an algorithm with running time O(n2).

138

8.2. Single Follower on Trees

It is not hard to see that this approach performs some redundant com-
putations. The property whether a node is covered by a facility or not de-
pends only on their distance and not on the exact position in the tree. Thus
it is possible to gather the distance information for one facility and reuse
part of that information for subsequent traversals. To be (a little) more
precise, we store sorted lists at certain nodes which contain the distance
information of all nodes in the subtree hanging from this node. Thus we
can avoid repeated traversals of the same subtree since whenever a depth
first search traversal reaches such a list it can replace traversing the subtree
by reading the stored information.

The drawback of this approach is that maintaining these lists does not
come for free. In particular it is not possible to store the lists at each of the
nodes, as this would take more time than the naive approach. Thus we
introduce the notion of a coarsened tree. This tree is constructed by identi-
fying a suitable subset of the nodes, called the guard nodes, then splitting
the tree at the guard nodes, and contracting each of the resulting trees into
a single edge. The distance lists described above are then stored only at
guard nodes. Then we solve the problem recursively locally on each of
the contracted subtrees and globally with the help of the lists stored at the
guard nodes.

Obviously the number of guard nodes and the size of the resulting sub-
trees are inversely proportional. Our analysis carefully balances those two
parameters so that we can provide an algorithm which is substantially
faster than the naive approach described above.

Coarsening the Tree

For the definition of a k-coarsening we make use of the notions terminal,
two-terminal subtree (2TS) and valid split as they have been introduced
in Section 4.3. (Originally, the definition of a k-coarsening was not based
on 2TSs. Here, we are using a reformulation for the sake of a uniform
terminology.)

Definition 8.2.1 (k-coarsening) Let T = (V, E) be a tree, k ∈ N, n ≥ 2k.
A tree T̃ = (Ṽ, Ẽ) is a k-coarsening of T if

1. Ṽ ⊆ V and |Ṽ | ≤ 2∆k where ∆ is the maximum node degree in T . We
call the nodes in Ṽ guard nodes.

2. The set Ṽ of guard nodes forms a valid split. The induced 2TSs are
called super edges and constitute the edge set Ẽ.

3. The end nodes of a super edge are its terminals.
4. The size |ẽ| of each super edge ẽ in E is at most n/k.

139

8. The Follower Problem on Trees

A coarsening of a tree may be regarded as a generalization of the sub-
division of T into 2TSs by splitting at the median (confer Lemma 4.3.3.
There, we subdivided a tree into O(∆) subtrees of which each had size at
most n/2. By comparison, a k-coarsening splits intoO(k∆) subtrees of size
at most fracnk. We use the more vivid notion of a super edge instead of
2TS since we will deal with T̃ as a tree in its own right and perform basic
operations such as depth first search traversals on it.

Lemma 8.2.2 A k-coarsening of a tree always exists and can be computed in
linear time.

Proof. Let T = (V, E) be given. Choose an arbitrary root and perform a
depth first search traversal. We divide the tree into super edges starting
near the leaves. To this end, maintain at each node u the current size s(u)
of the super edge u belongs to, and a number f(u) which counts the guard
nodes in that super edge. If u is a leaf, then s(u) = 1 and f(u) = 0.

Otherwise, let u be an inner node with sons v1, . . . , vr. Assume as in-
duction hypothesis that s(vi) < n/k and f(vi) ≤ 1 for i = 1, . . . , r. Let
s := 1 +

∑
i s(vi) and f :=

∑
i f(vi). If both s < n/k and f ≤ 1, then set

s(u) := s, f(u) := f and continue the traversal. Otherwise, mark u as a
guard node and set s(u) = 1 and f(u) = 1. If u is marked as a guard node
but f = 0, this defines a set of super edges near the periphery of the tree
without a second endpoint; in this case select for each son of u an arbitrary
leaf in that subtree below the son and mark it also as a guard node.

Properties 2, 3, and 4 are clear by construction. It remains to show that
the number of guard nodes constructed by the algorithm is not too large
as stated by property 1. This follows from a potential function argument.
We call a guard node to be active if it is adjacent to a regular node not yet
assigned to a completed super edge. The potential function Φ counts the
number of active guard nodes. ObviouslyΦ ≥ 0 and initiallyΦ = 0.

We investigate two cases where a new guard node is created: When it is
created due to exceeding the size bound n/k, this increasesΦ by at most 1.
Moreover, this increase can happen no more than k times during the whole
algorithm since none of the n nodes is counted more than once. On the
other hand, when a new guard node is created due to the guard node count
overflowing, we replace at least two active guard nodes by the new active
node. Thus the value ofΦ decreases by at least 1. From these observations
it follows that the total number of guard nodes that are active at some time
during the algorithm is at most 2k. The remaining guard nodes are the
ones which are inserted at the periphery of the tree as described above.
Each of the already counted 2k guard nodes can carry at most ∆ − 1 of
them; hence the total number of guard nodes is at most 2∆k. 2

140

8.2. Single Follower on Trees

1 input: Tree T = (V, E)
2 W(v)← 0 for each v ∈ V
3 construct coarsened tree T̃ = (Ṽ, Ẽ)

4 for each super edge ẽ = (u, v) ∈ Ẽ
5 if |ẽ| > 2
6 COMPUTEWEIGHTS(T [ẽ− {u, v}])

on tree induced by ẽ− {u, v}

7 compute Lu(v)← COMPUTESUPEREDGELIST(u, v)
8 for each v ′ ∈ ẽ
9 setW(v ′)←W(v ′)+∑

{w(z ′) | (z ′, ρ ′) ∈ Lu(v) and ρ ′ ≥ d(v, v ′) }
10 handle list Lv(u) analogously
11 output: the weightW(v) for each v ∈ V

FIG. 8.1.: Algorithm COMPUTEWEIGHTS.

In the following we assume that the input tree T is 3-regular and hence
∆ = 3. This is accomplished by the same construction we used in Sec-
tion 5.3.1 to compute allϕ0-bounded solutions on a degree-3-bounded tree.
Recall that this operation increases the size of the node set size by a factor
of less than 2. This will enable us to construct super trees of sizeO(k) each
of whose super edges contain at most n/k nodes.

Super Edge Lists

For each super edge ẽ = (u, v), we define the super edge list Lu(v) to be the
set

Lu(v) := { (v ′, ρ ′) | v ′ ∈ Tu(v) and ρ ′ = ρ(v ′) − d(v, v ′) } .

The set Lu(v) is organized as a sorted list where the numbers ρ ′ play the role
of the keys. This list is stored at the guard node v. The purpose of list Lu(v)
is to maintain the coverage information of all nodes in the subtree Tu(v)
when a facility is placed outside this subtree: A node v ′ ∈ Tu(v) is covered
by facility f ∈ V − Tu(v) if and only if d(f, v) ≤ ρ ′ where ρ ′ is the key of v ′

stored in the list.
We first describe the algorithm COMPUTESUPEREDGELIST depicted in

Figure 8.2. This algorithm uses a depth first search traversal of the coars-
ened tree to compute the list Lu(v) for a given super edge (u, v). Let z1 and
z2 denote the sons of v in T̃ . Assume that Lv(z1) and Lv(z2) have already
been computed. This scenario is depicted in Figure 8.3.

141

8. The Follower Problem on Trees

1 input: super edge (u, v)
2 if Lu(v) has already been computed, then return Lu(v)
3 initialize Lu(v)← ∅
4 for each super edge ẽi = (v, zi) incident with (u, v)
5 L ′v(zi)← COMPUTESUPEREDGELIST(v, zi)
6 decrease all keys in L ′v(zi) by d(v, zi)
7 merge sorted lists Lu(v)← Lu(v) ∪ L ′v(zi)
8 compute special list

Li ← { (v ′, ρ ′) | v ′ ∈ ẽi, ρ ′ := ρ(v ′) − d(v, v ′) }
9 merge sorted lists Lu(v)← Lu(v) ∪ Li

10 output: List Lu(v)

FIG. 8.2.: Algorithm COMPUTESUPEREDGELIST.

At this point we are able to compute Lu(v). Observe that each node v ′

in Lu(v) is either an element of one of the super edges (v, z1), (v, z2) or it
appears already in one of the lists Lv(z1), Lv(z2). In the latter case, the key
for v ′ in the list Lu(v) is given by its key in Lv(zi) minus the distance d(v, zi).
This is implemented efficiently as follows. First create copies L ′v(z1), L ′v(z2)
of lists Lv(z1), Lv(z2) and keep the original lists at their super edges for later
reference. This takes overall time O(|V |) for both lists. Second, in each
copied list Lv(zi) decrease all keys uniformly by the value d(v, zi). Notice
that this does not affect the order in the lists and thus takes overall time
O(|V |) for both lists. Third, we obtain Lu(v) by merging the lists Lv(zi) and
two special lists L1, L2 of the nodes in (v, z1), (v, z2), namely Li := { (v ′, ρ ′) |
v ′ ∈ (v, zi) and ρ ′ = ρ(v ′) − d(v, v ′) } for i = 1, 2. The computation of all
distances d(v, v ′) and the sorted lists Li needs time O(|V |/k · log(|V |/k)) per
super edge. The time for the merge operations is clearly in O(|V |).

The Covered Demand

Let v ′ be a node in super edge ẽ = (u, v). Recall that v ′ covers all nodes
z ′ with ρ(z ′) ≥ d(v ′, z ′). If z ′ /∈ ẽ, then it appears w.l.o.g. as a pair (z ′, ρ ′)
in the list Lu(v), and the above condition is equivalent to d(v ′, v) ≤ ρ ′.
Hence the total weight of all nodes in T − ẽ covered by v can be computed
by traversing both super edge lists Lu(v) and Lv(u) and summing up the
weights of all nodes satisfying this condition. The weight of the nodes cov-
ered by z ′ in the super edge ẽ itself is computed by applying the algorithm
recursively to the tree T [ẽ − {u, v}]. At this point, the guard nodes u, v are
removed for technical reasons to avoid double counting their weight.

142

8.2. Single Follower on Trees

v

u

L1

z1
Lv(z1)

L2

Lv(z2)
z2

Lv(u)

Lu(v)

FIG. 8.3.: Computation of the Super Edge Lists. Guard nodes u, v, zi are painted
black, super edges ẽ = (u, v) and ẽi = (v, zi) are painted gray. Rectan-
gular areas mark the nodes contained in the respective lists.

Our implementation is as follows. Let ẽ = (u, v) be a super node and
let v1, . . . , vt be its nodes. We assume in particular vt = v. Sort the nodes
such that d(v1, v) ≥ . . . ≥ d(vt−1, v). Let L := Lu(v) be the super edge
list of v w.r.t. u sorted with descending key values. We maintain a cur-
rent node vi and a corresponding pointer p pointing to the first element
in L with radius strictly smaller than d(vi, vt), together with a variable W
summing the weight of all nodes before p. It is easy to observe that when
we move through the list v1, . . . , vt, then the pointer p advances linearly
through L and the weight W can be maintained by adding the weights of
the visited nodes. Thus the total time for handling a set Lu(v) is bounded
by O(n/k · log(n/k) + n).

The Total Running Time

We now estimate the total running time of algorithm COMPUTEWEIGHTS
(see Figure 8.1) within one single level of recursion. To this end, consider
first the call to COMPUTESUPEREDGELIST in line 7. As can been seen in
line 2 of COMPUTESUPEREDGELIST, this subroutine is called at most twice
per super edge, namely once in each direction. This leads to an overall
running time ofO(k (n/k · log(n/k)+n)) ⊆ O(n logn+kn) for computing
all super edge lists.

As pointed out before the handling of a list Lu(v) in Line 8 of algorithm
COMPUTEWEIGHTS can be implemented with running time O(n + n/k ·

143

8. The Follower Problem on Trees

log(n/k)). As this happens at most twice per super edge we obtain the
same overall time O(n logn+ kn) for handling all super edge lists.

Finally the algorithm solves the problem recursively for each super edge
ẽi or more precisely for each induced subtree Ti := T [ẽi−{ui, vi}] whereui, vi
are the endpoints of ẽi. Let ni := |Ti| denote the size of this subtree. Clearly
the sum

∑
i ni of these sizes is at most n since different super edges are

disjoint except for the endpoints which are removed from the subtrees Ti.
Moreover ni ≤ n/k as this condition holds already for the guard edges ẽi.

This allows us to estimate the total running time by the following recur-
rence equation, for some constant c:

h(n, k) ≤ c · (n logn+ k · n) +
∑
i

h(ni, k) (8.1)

We prove by induction that (8.1) is solved by the function

h(n, k) ≤ c · n · (logn+ k) · logn
logk

. (8.2)

The induction basis is clear. As induction hypothesis we assume that (8.2)
holds for h(ni, k). Plugging this into (8.1) yields

h(n, k) ≤ c · n · (logn+ k) +
∑
i

c · ni · (logni + k) ·
logni
logk

≤ c · n · (logn+ k) +
∑
i

c · ni · (logn+ k) · log(n/k)
logk

≤ c · n · (logn+ k) + c · n · (logn+ k)
(logn

logk
− 1
)

= c · n(logn+ k)
logn
logk

as claimed in (8.2). Let N be the size of the original input instance and
choose k := logN. This yields the following main result.

Theorem 8.2.3 The single maximum coverage location problem on trees can
be solved in time O(n (logn)2/ log logn). 2

8.2.2. Tree-Shaped Facilities

In this section we examine the discrete subtree location model of Kim et al.
[KLTW96], which is a generalization of the single maximum coverage lo-
cation. Based on this model we will develop in the next section an efficient
algorithm which solves single maximum coverage location as a byproduct.

144

8.2. Single Follower on Trees

The discrete subtree location model is as follows: We are given a tree T
along with edge weights c : E → Q+ inducing a distance function d : T ×
T → Q+

0 . Besides, a mapping t : V × V → Q specifies the transportation cost
t(u, v) between any node pair u, v ∈ V . Here, t(u, v) may be interpreted
as the cost imposed on the provider when customer u utilizes the service
provided by a facility placed at v (for example when transporting a good).
The transportation cost t(u, v) is zero if u = v. We remark that in most
practical applications t(u, ·) is increasing in the distances d(u, ·), that is,
d(u, v) ≥ d(u, v ′) implies t(u, v) ≥ t(u, v ′). The following considerations
and results, however, are also valid in the more general scenario in which
t(u, ·) is allowed to be uncorrelated to the actual distances in the tree.

If Y is a subtree of T then t(u, Y) denotes the transportation cost t(u, y)
between u and the unique node y ∈ V(Y) closest to u according to the
distance d(u, ·), that is, y is the only node y ∈ Y such that the path P(u, y)
contains no edge from Y. Note that, since the transportation cost may be
independent from the distances in the tree, y does not need to be the node
minimizing the transportation cost t(u, ·). Such a scenario may occur in
reality when the users decide which facility they use but the provider has
to bear cost.

If U ⊆ V is a node set, we define t(U, Y) :=
∑

u∈U t(u, Y). In other words
t(U, Y) is the total transportation cost for the set U of customers induced
by facility Y. We write t(Y) := t(V, Y). Now, the goal of the discrete subtree
location problem is to identify a subtree Y of T such that c(Y) + t(Y) is
minimum. Here, c(Y) represents the setup cost of the tree-shaped facility Y
and t(Y) is the total transportation cost induced by Y.

The subtree location model is quite general and contains several well
known location problems as a special case.

The direct covering subtree problem has been investigated by Church and
Current [CC93]. In their model the transportation cost t(u, v) is zero if
u = v and w(u) otherwise. Here, w(u) is some weight depending only on
the user node u. In other words, the transportation cost equals the total
weight of nodes not contained in the subtree Y. Another problem, called
median subtree location problem uses transportation cost proportional to the
distance. Specifically, we set t(u, v) = w(u) · d(u, v). This problem can be
considered as a generalization of the well known 1-median problem.

The indirect covering subtree problem is a generalization of the direct sub-
tree location model. Similar to the maximum coverage location problem
we assign to each node u a sensitivity radius ρ(u). Then, the transportation
cost t(u, v) is zero if d(u, v) ≤ ρ(u) and w(u) otherwise. The total trans-
portation cost incurred by some subtree Y thus equals the sum of weights
w(u) of nodes u where d(u, Y) > ρ(u). Clearly, this is equivalent to max-

145

8. The Follower Problem on Trees

imize the sum of weights of nodes u where d(u, Y) ≤ ρ(u). Therefore, if
we were able to enforce Y being a node rather than a subtree we would
arrive at the single maximum coverage location problem. In fact, this can
easily be achieved by scaling all edge weights and radii by a suitably large
constant which makes non-trivial subtrees too expensive in terms of their
setup cost. Thus, single maximum coverage location is a special case of the
indirect covering subtree problem.

8.2.3. The Algorithm of Kim et al.

In the sequel we will briefly describe the approach of Kim et al. [KLTW96]
for solving the discrete subtree location problem.

To this end we assume that the input tree T is rooted at some distin-
guished node s. For technical reasons we shall adopt the convention that
s is the father of itself. The authors reduce the solution of the problem to
the computation of the values t(v), t(Tv, v) and t(Tv, f(v)) for each node v
of T . Here, t(v) is the total transportation cost induced by service node
v, t(Tv, v) is the transportation cost for the users in the subtree Tv hanging
from vwhen a service node is located at v, and t(Tv, f(v)) is the transporta-
tion cost within Tv induced by the father f(v) of v. The authors show that
one can determine in linear time an optimum to the subtree location prob-
lem once these values have been precomputed for all nodes v. This can be
seen as follows.

Let v be a node of T . Assume that we have computed the values t(v),
t(Tv, v) and t(Tv, f(v)). Then let us define

C(v) := min{ c(Y) + t(Tv, Y) | Y is a subtree of Tv containing v } ,

and

C+(v) := min{ c(Y) + t(Tv, Y) | Y is a subtree of T+v containing f(v) } ,

where T+v equals the union of Tv with the edge (v, f(v)).
It is not hard to see that the optimum can now be expressed by

min
v∈V

(C(v) + t(v) − t(Tv, v)).

Moreover, Kim et al. demonstrate that the C(·)- and C+(·)-values can be
computed in linear time by means of a simple bottom-up dynamic pro-
gramming approach. To this end assume that v is a leaf of T . Then

C(v) = 0 and C+(v) = min{t(v, f(v)), c(v, f(v))} .

146

8.2. Single Follower on Trees

Otherwise, we have
C(v) =

∑
u is son of v

C+(u) ,

and
C+(v) = min{C(v) + c(v, f(v)), t(Tv, f(v))} .

From these equations it follows that indeed an optimal solution can
be determined in linear time in a bottom-up fashion once the values
t(v), t(Tv, v) and t(Tv, f(v)) have been computed for each v ∈ V . In gen-
eral, we need time Ω(n2) to calculate these t-values. However, Kim et al.
provide faster algorithms for several interesting special cases. Specifically,
they develop linear time algorithms for solving the above introduced di-
rect covering subtree and the median subtree location problem. They also
suggest a subquadratic algorithm for the indirect covering subtree prob-
lem which contains our single maximum coverage problem as a special
case. In the sequel we give an outline of their algorithm.

Indirect Covering Subtree in Subquadratic Time

The algorithm of Kim et al. for solving the indirect covering subtree prob-
lem is based on the so called bitree model. In this model each (undirected)
edge (u, v) of the input tree is replaced by two anti-parallel, directed arcs
(u, v), (v, u). We call the resulting tree T ′ bitree of T . With each arc (u, v)
of the bitree we associate a cost cT ′(u, v) representing the length of this
arc. But in contrast to the edge lengths of the input tree T , we allow these
lengths to be negative. This induces a distance function dT ′ : V × V → Q
where dT ′(u, v) is the length of the unique u–v path in T ′. Now we define
our transportation cost t ′(u, v) between two arbitrary nodes u, v to be zero
if dT ′(u, v) ≤ ρ(u) and w(u) otherwise. We set t ′(v) =

∑
u∈V t

′(u, v).
The algorithm of Kim et al. is based on a subroutine for efficiently com-

puting t ′(·) on a given bitree T ′. By means of this subroutine it is then quite
easy to retrieve the values t(v), t(Tv, v) and t(Tv, f(v)) for each node v of the
input tree T . It follows from the above discussion that the knowledge of
these values enables us to identify an optimal tree-shaped facility.

The algorithm uses a divide-and-conquer technique to calculate t ′(·).
Specifically, it partitions the node set into two sets V1, V2 with the following
properties

(i) V1 ∪ V2 = V ,

(ii) V1 ∩ V2 = {z} for some node z,

147

8. The Follower Problem on Trees

(iii) |Vi| ≤ 2
3
n+ 1

3
for i = 1, 2, and

(iv) Vi induces a subtree Ti of T for i = 1, 2.

Such a decomposition along with the split node z can be determined inO(n)
[KA75].

Let v be an arbitrary node. Then

t ′(v) = t ′(V1, v) + t
′(V2 − z, v) . (8.3)

First, we will show that the second term t ′(V2 − z, v) can be computed
in O(n logn) time for all nodes v ∈ V1. To this end consider the list L1
containing all nodes v in V1 sorted in increasing order with respect to their
distance d(z, v) from the split node z. The list L2 contains all nodes u of
V2 − z sorted in increasing order with respect to the value ρ(u) − d(u, z).
It is clear that both lists can be constructed in O(n logn). Now we merge
both lists into one sorted list L. (Ties are broken in favor of nodes from V1.)
We observe that the term t ′(V2− z, v) equals the sum of all weightsw(u) of
nodes u ∈ V2−z such that ρ(u)−d(u, z) < d(z, v). Note that the respective
hands of this inequality are exactly the sorting keys of the lists L2 and L1,
respectively. Thus, the values t ′(V2 − z, v) can be computed all at once by
a single traversal through the combined list L where we keep track of the
sum of weights of all nodes from V2− z encountered so far. Symmetrically,
we can now compute t ′(V1, v) for all nodes v ∈ V2 − z.

Finally, we apply this procedure recursively to the sub-bitrees induced
by V1 and V2 − z, thereby computing the values t ′(V1, v) for all v ∈ V1 and
t ′(V2 − z, v) for all v ∈ V2 − z, respectively. The values t ′(·) can now be
obtained by Equation (8.3).

The running time h(n) of the resulting algorithm can be determined by
using the recurrence equation

h(n) = O(n logn) + h(|V1|) + h(|V2|) ,

where |Vi| ≤ 2
3
n + 1

3
and |V1| + |V2| = n + 1. Using standard inductive

arguments [AHU74] one can easily show that h is O(n log2 n).
To sum up, we are able to compute the values t ′(·) in time O(n log2 n)

on the bitree T ′ for the input tree T . It remains to explain how we can use
this information to determine t(v), t(Tv, v) and t(Tv, f(v)) for all nodes v of
the input tree T which, in turn, is sufficient to build an optimal tree-shaped
facility.

First we describe how we can determine t(·). For this purpose we simply
set cT ′(u, v) := cT ′(v, u) := cT(u, v) for all edges (u, v) of the input tree T . It
is then immediately clear that t(v) = t ′(v) for all v ∈ V .

148

8.2. Single Follower on Trees

In order to compute t(Tv, v) for all v ∈ V we set cT ′(u, f(u)) := cT(u, f(u))
and cT ′(f(u), u) := −∞ for all u 6= s. This constructions ensures that the
transportation cost t ′(u, v) is always zero if u is not a descendant of v. Thus
t(Tv, v) = t

′(v) holds for this construction.
Finally, we wish to determine t(Tv, f(v)). To this end we introduce on

each edge (v, f(v)) of T a new node f ′(v) such that edge (v, f ′(v)) has length
cT(v, f(v)) and edge (f ′(v), f(v)) has length zero. This increases the number
of nodes to 2n − 1. We set w(f ′(v)) and ρ(f ′(v)) to zero. It is easy to see
that t(Tv, f(v)) in the original tree equals t(Tu, u) in the newly constructed
undirected tree where u := f ′(v). At this point, t(Tu, u) can be computed
for all nodes u in total timeO(n log2 n) as described above. This completes
the description of the algorithm of Kim et al.

Theorem 8.2.4 ([KLTW96]) The indirect covering subtree problem on an n-
node tree can be solved in O(n log2 n) time. 2

8.2.4. An O(n logn)-Time Algorithm

In this section we describe an algorithm for the indirect covering subtree
problem with running time O(n logn).

Our algorithm uses the algorithmic framework of Kim et al. described
in the preceding section. Specifically, we will provide an improved routine
for computing the values t ′(·) on a given bitree in O(n logn) time which
can then be extended to an algorithm with the same asymptotic running
time for the solving indirect covering subtree problem.

Recall the basic steps of the algorithm of Kim et al. Their algorithm par-
titions the node set V into two sets V1, V2 of bounded size such that both
induce subtrees and have exactly one node in common. Then it sorts the
sets Vi and computes, by means of a clever merge procedure, for all v ∈ Vi
the transportation cost t ′(v, Vj) of the users in Vj where j 6= i. Applying
this recursively to the subtrees induced by V1, V2 the algorithm determines
the t ′-values. Our coarsening algorithm presented in Section 8.2.1 may be
regarded as a refinement of this algorithm. Instead of partitioning into
two node sets it decomposes the tree into O(logn) node sets (called super
edges).

My observation when developing the following O(n logn)-time algo-
rithm has been that the running time of these approaches would be im-
proved if one could avoid the explicit sorting, which causes the additional
log-factor. In fact, we will modify the routine such that sorting is no longer
performed explicitly but rather by recursion. To this end we will devise a

149

8. The Follower Problem on Trees

routine that does not only compute t ′(·) for a given sub-bitree but also suit-
ably sorted lists of nodes. The difficulty lies in the fact that a direct appli-
cation of the decomposition technique by Kim et al. would face a possibly
superconstant number of such lists to be computed at a single recursion
step which compromises the desired asymptotic running time.

Fortunately, we can overcome this problem with the help our two-
terminal-subtree technique devised in Section 4.3.3 for computing the Φ-
score of a tree and later used in Section 5.3 for computing all Φ-solutions
of a tree. This refined decomposition method ensures that we have to de-
termine sorted lists only for the two terminals of a given sub-bitree at any
recursion step. Of course this two-terminal property is also satisfied in the
coarsening decomposition. However, this approach employed extensive
sorting which caused its slow-down.

Let T = (V, E) be the input tree. We assume that T has maximum de-
gree 3. Otherwise, we may split nodes of larger degree by introducing
suitable zero-length edges and zero-weighted nodes (confer Section 5.3.2).
Let T ′ be the bitree corresponding to T .

If s and t are distinct nodes then T ′st denotes the maximal sub-bitree of T ′

having s and t as leaves. Let Vst be the node set of T ′st. We call s and t termi-
nals and T ′st two terminal sub-bitree (TTSB). These definitions are analogous
to the ones in Section 4.3.3 for computing Φ-solutions of an (undirected)
tree.

Consider an TTSB T ′st. We define the lists Ld,s(T ′st) and Lρ,s(T ′st). Each
of them contains all nodes v of T ′st. Both lists are sorted in increasing or-
der with respect to the values d(s, v) and ρ(v) − d(v, s), respectively. Lists
Ld,t(T

′
st) and Lρ,t(T ′st) are defined symmetrically.

Our algorithm divides the input bitree recursively into TTSBs (confer
Section 5.3.1). Since we are dealing with a degree-bounded bitree we
can subdivide any TTSB S into at most five child TTSBs by means of
Lemma 5.3.2. Each of these child TTSBs has at most 1

2
|S|+ 1 nodes.

The algorithm computes t ′(v, S) for all v ∈ S as well as the four lists
Ld,s(S), Ld,t(S), Lρ,s(S) and Lρ,t(S) for any TTSB S occurring during the
recursion. We shall see that this information can be propagated induc-
tively from child towards parent TTSBs such that we will have computed
t ′(·, T ′) = t ′(·) at the top of the recursion.

To this end consider an arbitrary TTSB S = T ′st being subdivided into
at most five child TTSBs Si with terminals si, ti. Moreover, assume that
we have already computed t ′(·) and the four L-lists for each of the child
TTSBs.

We start with computing Ld,s(S). To this end we maintain a list L which
is initialized with an empty list. Now we perform the following opera-

150

8.2. Single Follower on Trees

tions for all child TTSBs Si: Assume that si is the terminal of Si closest to s.
Then the list Ld,si(Si) contains all nodes v ∈ Si with associated sorting keys
dT ′(si, v). Now we create a copy L ′ of this list and add the value dT ′(s, si)
to all sorting keys which does not affect its order. As a result L ′ contains
all nodes v of Si sorted with respect to their distance dT ′(s, v) from termi-
nal s. Finally we merge L with L ′. After having carried out this for all
child TTSBs Si the list L equals obviously the list Ld,s(S). The list Lρ,s(S)
is computed very similarly with the difference that we subtract the value
dT ′(si, s) from the sorting keys when handling the list Lρ,s(Si). The respec-
tive lists for terminal t are computed symmetrically. The total running time
for computing the four lists associated with S is clearly O(|S|).

We are now going to explain how t ′(v, S) can be determined for all v ∈ S.
To this end assume that v is contained in Si. Since we already know t ′(v, Si)
by the inductive hypothesis it suffices to determine t ′(v, Sj) for all Sj 6= Si
and to add these values to t ′(v, Si). Consider an arbitrary Sj 6= Si. and
assume that si, sj are the terminals of these TTSBs closest to each other. We
create a copy L ′ of list Lρ,sj(Sj) and subtract the distance dT ′(sj, si) from all
sorting keys in this list. As a result L ′ contains all nodes u of Sj sorted with
respect to the key ρ(u) − dT ′(u, si). At this point we can compute t(v, Sj)
for all v ∈ Si by using exactly the same merge-and-scan technique as in the
algorithm of Kim et al. described in Section 8.2.3. The running time is now
O(|Si| + |Sj|) since the necessary sorted lists have already been computed.
Thus we can compute t ′(v, S) for all v ∈ S in total timeO(|S|) once we know
the t ′-values and respective lists for all child TTSBs of S.

Note that the bottom of the recursion, that is, when T ′st consists merely
of the pair (s, t) and (t, s) of anti-parallel arcs can easily be handled in
constant time.

To sum up, this leads us to an algorithm whose running time h(|S|) can
be described by the following recurrence

h(|S|) = O(|S|) +

k∑
i=1

h(|Si|) ,

where k ≤ 5,
∑k

i=1 |Si| = |S| and |Si| ≤ 1
2
|S| + 1. This implies that h(n) is

O(n logn).

Theorem 8.2.5 The indirect covering subtree problem and hence also the dis-
crete single maximum coverage location and the discrete (1, Xp)-medianoid prob-
lem can be solved in time O(n logn). 2

151

8. The Follower Problem on Trees

Kim et al. show in Section 3.3 of [KLTW96] that a set of O(n) critical
points for absolute single maximum coverage location can be found in time
O(n logn). We can infer immediately

Corollary 8.2.6 The absolute single maximum coverage location problem and
the absolute (1, Xp)-medianoid problem can be solved in time O(n logn) on any
n-node tree. 2

8.3. Concluding Remarks

In this chapter we have investigated the complexity of the follower prob-
lem on trees. We have started with the observation that (r, Xp)-medianoid
can be solved on trees in polynomial time O(rn2) by a dynamic program-
ming algorithm of Tamir [Tam96]. We have then examined the case of a
single follower, that is, the (1, Xp)-medianoid problem on trees. First, we
have developed a recursive coarsening algorithm that solves the problem
in O(n log2 n/ log logn) time and is significantly faster than Tamir’s algo-
rithm for the special case r = 1. Then we have considered a general model
of Kim et al. for locating tree-shaped facilities on a tree. We have briefly
described an algorithm of Kim et al. based on the above model for solving
the indirect covering subtree problem in O(n log2 n) time, which contains
(1, Xp)-medianoid as a special case. Finally, we have presented an improve-
ment of their approach that results in a surprisingly simple algorithm for
solving indirect covering subtree in O(n logn) time.

It would be interesting to investigate the existence of lower bounds for
indirect covering subtree as we have done for the problem of computing
the set of allΦ-solutions in Chapter 5. It would also be worth investigating
its complexity on paths.

152

9. The Leader Problem on Trees
and Paths

This chapter is devoted to analyze the complexity of the leader problem,
that is, of (r, p)-centroid on trees and path graphs. Indeed, the positive
results for the follower problem on trees that were presented in the pre-
ceding chapter may awake the hope to obtain similar results for the leader
problem, too. But we have also seen in the preceding chapters that the
leader problems is almost always significantly harder than the follower
problem. In fact, the question of whether (r, p)-centroid is efficiently solv-
able on trees has been a long-standing open question [Hak90, EL96, Ben00].
In this chapter we show that absolute (r, p)-centroid is already NP-hard on
paths. On the other hand, we give a polynomial-time algorithm for dis-
crete (r, p)-centroid on paths. To the best of our knowledge this is the first,
non-trivial special case where (r, p)-centroid is efficiently solvable. This
positive result, however, cannot be generalized significantly. Specifically,
we prove that discrete (r, p)-centroid is already hard on slightly more com-
plex graphs, namely spiders.

Finally, we will shed some light on the approximability of the leader
problem on simple graphs. Specifically, we provide a fully polynomial
time approximation scheme (FPTAS) for absolute (r, p)-centroid on paths.

9.1. Absolute (r, p)-Centroid on Paths

In this section we show that the absolute (r, p)-centroid problem is already
NP-hard when the underlying graph forms a path. In our hardness proofs
we make use of a reduction from the well-known PARTITION problem,
which is NP-complete [GJ79]. PARTITION is defined as follows. Given a
multiset S = {s1, . . . , sn} of integers with total sum S∗ :=

∑
S, is there a

sub-multiset S ′ ⊂ S such that
∑
S ′ = 1

2
S∗?

Let a path graph G = (V, E) be given by its node set V = {v1, . . . , vn}

and edge set E = {(v1, v2), . . . , (vn−1, vn)}. We consider the path as a closed
interval [0, c(E)] on the real line with length c(E) =

∑
e∈E c(e).

153

9. The Leader Problem on Trees and Paths

Consider a leader placement Xp = {x1, . . . , xp} ⊂ G of |Xp| = p points
sorted such that d(v1, x1) < . . . < d(v1, xp). This defines a partition of the
path into at most p + 1 interior-disjoint intervals T0 = [v1, x1], Ti = [xi, xi+1]
for i = 1, . . . , p− 1, and Tp = [xp, vn].

Consider an interval [xi, xi+1] of size t := d(xi, xi+1) = xi+1 − xi induced
by some leader placement. By placing one server into that interval, the
follower can gain all nodes of any open interval]a, b[⊂ [xi, xi+1] of size
d(a, b) = t/2. An optimal placement of the follower can be found with a
simple linear time sweep algorithm [MZH83].

Theorem 9.1.1 (Absolute (r, p)-centroid on path) The absolute (r, p)-
centroid problem is NP-hard on a path.

Proof. Let an instance of problem PARTITION be given. Construct a path
P = (a, u1, v1, z1, . . . , un, vn, zn, b) with 3n + 2 nodes (confer Figure 9.1).
To define the weights, let smax := maxi si, let D := 2nsmax + 1, and let
Ω := 2nD + 1. Let w(a) := w(b) := Ω, and for i = 1, . . . , n set w(ui) := D,
w(vi) := si and w(zi) := s̄i := D − si. The nodes u1, . . . , un and z1, . . . , zn
are referred to as heavy, whereas v1, . . . , vn are called light nodes.

. . .

. . .
u1 v1 z1 u2 v2 z2 un vnzna b

2D+ 1
2
s1 2D+ 1

2
s2 2D+ 1

2
sn

Ω s1 D s2 D sn ΩD s̄1 s̄2 s̄nnode weight

D D D D D D D
2

s1

2
s2

2
sn

2
edge length D

2

FIG. 9.1.: Illustration of the path construction.

We define the edge lengths as follows: d(a, u1) := D/2, d(ui, vi) := D,
d(vi, zi) := si/2, d(zi, ui+1) := D, and d(zn, b) := D/2. The total length of
the path is thus 2nD+ S∗/2.

We set the number of leader positions to p := n + 1 and the number
of follower positions to r := n. We will show in the sequel that there is
an (r, p)-centroid of gain wr,p ≤ n · D + 1

2
S∗ if and only if the instance of

PARTITION admits a subset S ′ of sum S∗/2.
“If”: Assume that the instance of PARTITION is solvable with solution S ′,

that is,
∑
S ′ = 1

2
S∗. Place two servers of the leader at the border nodes a, b.

The remaining n − 1 leader servers partition the path into n intervals Ti
of length ti (i = 1, . . . , n). The path partition is called valid if for each
i = 1, . . . , n the interval Ti contains the three nodes ui, vi, zi as inner nodes.

154

9.1. Absolute (r, p)-Centroid on Paths

Choose the server positions such that ti := 2D + si if si ∈ S ′ (“long inter-
val”) and ti := 2D otherwise (“short interval”). Observe that this yields a
valid interval division. The gain of the follower in interval Ti when placing
one server isD if it is a short interval andD+si if it is a long interval (we as-
sume that the follower chooses positions maximizing his gain). There is no
advantage in placing two servers into the same interval as the gain would
be 2D in that case. Hence we can assume w.l.o.g. that the follower places
exactly one server per interval and thus achieves the total gain nD+ 1

2
S∗.

“Only if”: Consider the case of a leader placement with follower gain
wr,p ≤ n·D+ 1

2
S∗. We claim that the leader chooses a valid interval division.

It is clear that the leader places two servers at the two nodes a, b of
weightΩ. Let (t1, . . . , tn) be the sequence of interval lengths of the leader’s
placement.

Assume for contradiction that the right endpoint of some interval Ti is at
the node zi or to the left of it. The remaining n − i intervals to the right of
interval Ti cover a path length of at least d(zi, b) > 2(n − i)D + 1

2
D, so by

averaging there must be an interval of length larger than(
2+

1

2(n− i)

)
D >

(
2+

1

2n

)
D > 2D+ smax .

By construction of the path, any interval of length larger than 2D + smax

contains at least two heavy nodes that are inner nodes and that are within
maximum distance of D + 1

2
smax. Hence in that particular interval the fol-

lower can gain both heavy nodes by placing a single server. Let H :=
miniw(zi) = D − smax be the smallest weight among the heavy nodes.
Placing the remaining n − 1 servers at free heavy nodes, this yields a total
gain of at least

2H+ (n− 1)H = nD+

(n−1)smax+1︷ ︸︸ ︷
D− (n+ 1)smax > nD+

1

2
S∗

for the follower, contradicting the premise. By an analogous argument we
can show that the left endpoint of interval Ti does not lie at ui or to the
right of it. This shows the claim.

From this property we deduce that each interval left by the leader has in-
ner nodes of total weight 2D. Since the follower can always gain weightD
by placing at ui, we can assume w.l.o.g. that the follower places exactly
one server into each interval. Moreover the length of each interval Ti is
bounded from above by 2D+ si, otherwise the follower could cover all in-
ner nodes of Ti with a single server which would lead to a total gain of at
least 2D+ (n− 1)H > (n+ 1)H contradicting the premise.

155

9. The Leader Problem on Trees and Paths

We distinguish two kinds of intervals, namely those of length ti ≤ 2D,
which we call short intervals, and those of length 2D < ti ≤ 2D + si, called
long intervals. We define the set S ′ ⊆ S to be the set of those si where Ti is a
long interval. As argued above the follower places exactly one server into
each interval Ti. This defines for each interval a number wi denoting the
follower’s gain in that interval. Obviously wi = D for short intervals and
wi = D+ si for long intervals. This yields ti −D ≤ wi. Hence

S∗

2
=

n∑
i=1

(ti − 2D) ≤
n∑
i=1

(wi −D) ≤ S
∗

2

where the first equality follows from the fact that the path has length 2nD+
1
2
S∗, and the last inequality follows from the premise wr,p ≤ nD + S∗/2.

Thus we can conclude that∑
S ′ =

n∑
i=1

(wi −D)︸ ︷︷ ︸
0 for short int.
si for long int.

=
S∗

2

which completes the proof. 2

9.2. Discrete (r, p)-Centroid on Paths

Many optimization problems exhibit an optimal substructure property
[CLR90] (or principle of optimality [ACG+99]): essentially this means that
a problem instance can be separated into independent subproblems such
that optimal solutions of these subproblems can be combined to solve
the original problem optimally. This property is exploited by widespread
algorithmic techniques like divide and conquer, greedy, or dynamic pro-
gramming.

In the case of the discrete (r, p)-centroid problem on a path this suggests
the following approach. Consider a path P with an (r, p)-centroid Xp and a
node x ∈ Xp. Let P1, P2 be the subpaths resulting from splitting P at x. One
could suspect that for suitable p1, p2, r1, r2 there are (ri, pi)-centroids on Pi
such that their union forms an (r, p)-centroid on P, with the reasoning that
no user in one subpath ever patronizes any server on the other subpath.

The following example, however, shows that the (r, p)-centroid problem
on paths does not exhibit the optimal substructure property even when
r = p = 2. Confer Figure 9.2. The path consists of 2k+1 nodes v0, . . . , v2k or-
dered such that v0 is the central node and all nodes with even index are as-
cending to the left and those with odd index ascending to the right. For 0 ≤

156

9.2. Discrete (r, p)-Centroid on Paths

b
.

a c Ω
.

v2i−1 v2k−1

1
+
(2
i
−
1)
ε

1
+
(2
k
−
1)
ε

(k
+
1)
ε

1
+
2k
ε

Ω

v2k

w 1
+
2i
ε

v2i

1 1
+
ε

1
+
2ε

v2 v0 v1

FIG. 9.2.: (2, 2)-centroid does not satisfy the optimal substructure property.

i ≤ 2k, node vi has weight 1+ i ·ε for some small ε > 0. The left end is aug-
mented by two nodes a, c of weight w and some large constant Ω, respec-
tively, and the right end by a node b of weight (k+1)ε. The edge (c, v2k) has
lengthΩwhile all other edges are of length 1. LetW :=

∑2k
i=0w(vi)+w(b).

We are going to show that changing the weightw = w(a) within the inter-
val [1, 1

2
(W − 1 − ε)] can enforce any node vi to become part of the (2, 2)-

centroid.
Since w ≤ 1

2
(W − 1 − ε) one can see that the leader always places one

server at node c and the other server at one of the nodes vi. For r = 1, 2 let
wr(i) be the maximum weight that the follower can claim when the leader
places at vi and the follower places r servers on the node set V − {a}. By
elementary calculations it follows that

w1(2i− 1) =W − k+ i− k(k+ 1)ε+ (i2 − 1)ε

w1(2i) =W − k+ i− k(k+ 1)ε+ i(i+ 1)ε

w2(i) =W − 1− iε

which shows that w1 is strictly increasing with i while w2 is strictly de-
creasing. On the subpath V − {a} the (1, 2)-centroid is {c, v0} and the (2, 2)-
centroid is {c, v2k}.

We now turn our view back to the whole path. The optimal substructure
property would imply that regardless of the weight w of node a there is
a (2, 2)-centroid that contains either v0 or v2k. This, however, is not true.
If the weight of a is set to w := w2(i) − w1(i) for some i then {c, vi} is the
unique (2, 2)-centroid on the whole path. This is easy to verify: First it is
clear that w2({c, vi}) = w2(i). Consider w2({c, vj}) for j 6= i. If j > i then the
follower places at a and gains w +w1(j) = w2(i) −w1(i) +w1(j) > w2(i).
If j < i then the follower places both servers near vj and gains at least
w2(j) > w2(i).

This is a surprising paradox: When the path is split at node c, which
is always part of a (2, 2)-centroid, changes in the weight of node a affect
the solution in the other subpath. Moreover, from the view of node a a
user on this node never connects to any server placed on the right subpath

157

9. The Leader Problem on Trees and Paths

V− {a}; one thus would not expect it to have any influence on the decisions
local to that subpath. As a consequence, a straightforward application of
divide-and-conquer techniques cannot be successful in attacking the cen-
troid problem on a path.

The Algorithm

Let G be the input path with ordered vertex set V = {v1, . . . , vn}. In or-
der to compute a discrete (r, p)-centroid, we reduce this problem to the
k-sum shortest path problem, which has been solved by Punnen and Anneja
[PA96] within a framework for general k-sum optimization problems where
the underlying minisum problem is efficiently computable. We will for-
mally define k-sum optimization problems and minisum problems later
(see Definition 9.4.1).

Definition 9.2.1 (k-sum shortest path) Given a positive integer k, a di-
graph G with positive arc lengths, and nodes s and t in G. A k-sum short-
est (s, t)-path is a path from s to twhere the sum of the k longest arcs is as
small as possible.

We define a new digraph G ′ as depicted in Figure 9.3. Start with a node
set V ′ := {uij | i = 1, . . . , n and j = 1, . . . , p }. For any i, j ∈ {1, . . . , n}, i < j,
and any k ∈ {1, . . . , p − 1} add a path of two consecutive arcs (introducing
a new vertex in the middle) from ui,k to uj,k+1. This models the case that
the leader places the kth server at vi and the next server at vj. Moreover,
add new super nodes s, t to the graph and add arcs from s to u11, . . . , un1
and from u1p, . . . , unp to t.

The lengths of the arcs are determined by the gain of the follower on
partial intervals. Let w1(i, j) denote the maximum weight that a single
follower server can claim on the partial interval between two consecutive
leader servers placed at vi and vj. Similarly, let w2(i, j) =

∑j−1
l=i+1w(vl) be

the maximum weight that can be claimed with two follower servers. For
any path of two arcs connecting uik to uj,k+1, set the length of the first arc
to w1(i, j) and the length of the second arc to w2(i, j) −w1(i, j). Finally, for
i = 1, . . . , n, set the length of arc (s, ui1) to

∑i−1
l=1w(vl) and that of arc (uip, t)

to
∑n

l=i+1w(vl). This completes the construction of the acyclic graph G ′.

Lemma 9.2.2 The r-sum length of an s-t-path through nodes ui1,1, . . . , uip,p
equals the follower gain wr(Xp) where Xp = {vi1 , . . . , vip}.

Proof. By construction, any (s, t)-path in G ′ meets exactly p nodes of the
initial node set V ′. This establishes a one-to-one relationship between

158

9.2. Discrete (r, p)-Centroid on Paths

.

.

...
...

...
...

...
...

...
...

uj1 un1

u1k uik

uj,k+1u1,k+1

u1p unp

s

t

u11 u21 ui1

FIG. 9.3.: Auxiliary graph to solve the discrete (r, p)-centroid on a path.

placements of the p servers of the leader and (s, t)-paths in the auxiliary
graph.

First, we observe that the follower has no incentive to place more than
two servers into one interval because two servers are already sufficient
to gain interior nodes of that interval. Now observe that for any i < j,
w1(i, j) ≤ w2(i, j) ≤ 2w1(i, j). Therefore the follower can achieve the
maximum gain by a simple greedy strategy: given the p + 1 intervals
left by the leader, determine for each interval (ui, uj) the (incremental)
gain δ1(i, j) := w1(i, j) of placing one server and the incremental gain
δ2(i, j) := w2(i, j) − w1(i, j) ≤ δ1(i, j) of placing two servers. The follower
gain wr(Xp) is the sum wmax of the r largest numbers out of the multiset of
all incremental gains, which is also the r-sum length of the s-t-path in G ′.
This can be seen as follows. The gain wr(Xp) can be expressed as the sum
of r incremental gains. Hence the follower gain cannot be larger thanwmax.
On the other hand, this value can indeed be realized by a follower place-
ment since δ1(i, j) ≥ δ2(i, j) for each interval (ui, uj) as observed above. (If
δ2(i, j) > δ1(i, j) then it could happen that δ2(i, j) is included in the sum
achieving wmax but δ1(i, j) is not. Then wmax could not be realized by an
r-element follower placement.) 2

The (r, p)-centroid minimizes the follower gain wr(Xp) over all server
placements Xp, which corresponds to an r-sum minimization of paths in

159

9. The Leader Problem on Trees and Paths

the graph G ′: An r-sum shortest (s, t)-path in graph G ′ is equivalent to a
solution of the (r, p)-centroid problem on path G.

Theorem 9.2.3 (Discrete (r, p)-centroid on path) A discrete (r, p)-centroid
of an n-node path can be found in O(pn4) time.

Proof. Punnen and Aneja [PA96] showed that the k-sum optimization
problem can be solved inO(M · t) time whereM is the number of different
weights of items in the ground set and t is the time needed for solving
one instance of the underlying minisum problem. In our setting the set
of ground elements is the set of arcs of size O(pn2) but with only O(n2)
different weights. The minisum problem (shortest s-t-path in an acyclic
graph of O(pn2) arcs) can be solved in time O(pn2). 2

In Theorem 7.2.2 we have characterized a set of so-called critical points
for any instance (r, p)-centroid problem, which is guaranteed to contain
an optimal leader placement. Unfortunately this point set is exponentially
in size and thus not immediately amenable for algorithmic purposes. It
would be much more desirable to have an efficiently computable set of
critical points at hand such as the Xp-isodistant points for the follower
problem. Santos-Peñate et al. [SSD07] give an overview of discretization
results for more sophisticated variants of the follower problem. The au-
thors also remark that, in contrast to the follower problem, discretization
results are rather scarce for (r, p)-centroid. The results on absolute and
discrete (r, p)-centroid on paths justify this observation. In fact it follows
immediately that no efficient discretization is possible even on paths: If
there were an algorithm enumerating critical points for any instance of the
absolute leader problem then the absolute leader problem could be solved
efficiently by the algorithm for the discrete case.

9.3. Discrete (r, p)-Centroid on Trees

In this section we are going to show that determining a discrete (r, p)-
centroid is NP-hard on a spider, that is, a tree where only one node has
degree larger than 2.

Theorem 9.3.1 (Hardness of (r, p)-centroid on a spider) The problem of
determining a discrete (r, p)-centroid on a spider is NP-hard.

Proof. Let an instance of the NP-complete problem PARTITION be given as
in Section 9.1. We construct a spider as depicted in Figure 9.4. The node set

160

9.3. Discrete (r, p)-Centroid on Trees

c

u1

ū1

v1

un

ūn

tn

t1

vn

Ω3

Ω3

Ωsn

sn

Ω3 +Ω2

...

c ′ h

Ω4Ω3 + 1
2
ΩS∗ 0

o

FIG. 9.4.: Discrete (r, p)-centroid is NP-hard on a spider.

consists of a central node c and for i = 1, . . . , n, of a leg with nodes c–ti–ui–
ūi–vi. The weights of the nodes are w(c) := Ω3, w(ti) := Ωsi, w(ui) := Ω3,
w(ūi) := si, and w(vi) := Ω3 +Ω2. Finally, we add a special leg c–o–h–c ′

of weightw(h) := Ω4,w(o) := 0, andw(c ′) := Ω3+ 1
2
ΩS∗. Here we choose

Ω := 1+ nS∗. All edges have unit length.
We set r := p := n + 1 and claim that there is an (n + 1, n + 1)-centroid

of weight

W := (n+ 1)Ω3 + nΩ2 +
1

2
S∗(Ω+ 1)

if and only if the instance of PARTITION is a “yes”-instance.
“If”: Let S ′ ⊆ S with

∑
S ′ = 1

2
S∗. Place leader facilities at h, and, for

each i at ūi if si ∈ S ′ and at ui otherwise. Considering the gain of the
follower observe that it is not possible that the follower claims c and one
of the ui with a single server only. Since

w(c) +
∑
j

w(tj) = Ω
3 +ΩS∗ < Ω3 +Ω2 = w(vi),

for any i, it is optimal to claim all peripheral nodes vi. This is accomplished
by placing at vi if si ∈ S ′ and at ūi otherwise. This way the follower claims
all nodes vi, i = 1, . . . , n, and the nodes ūi where si /∈ S ′, with a total
weight of

n(Ω3 +Ω2) + S∗ −
∑

S ′ = n(Ω3 +Ω2) +
1

2
S∗ .

161

9. The Leader Problem on Trees and Paths

The remaining server can be placed either at c ′ or at the central node c
where it claims c and each node ti with si ∈ S ′. This contributes a weight
of

Ω3 +Ω
∑

S ′ = Ω3 +
1

2
ΩS∗

which is the same for both cases. Adding both terms shows that the total
weight of the (r, p)-centroid is exactly equal toW.

“Only if”: In an optimal solution it is obvious that the leader places one
server at the node h of weight Ω4. Further observe that there are enough
nodes of weight Ω3 or greater (namely the 2n + 2 nodes ui, vi, c, c ′) such
that the follower can always place only at those nodes and thus gain at
leastΩ3 per server.

We claim that the leader chooses on each leg either the node ui or ūi: If
the leader places a server at central node c or at one of the ti, then there are
n−1 additional servers left to place. This would leave at least one leg j free
to the follower so that he could place at node uj and gain both uj and vj of
weight more than 2Ω3 with a single server, resulting in a total of more than
(n + 2)Ω3. As a consequence, the leader must choose, on each leg, either
ui, or ūi, or vi. If the leader would place at the peripheral node vi, then
the follower could place at ti which would claim both ui and the central
node c with this server, which yields a similar contradiction. This shows
the claim.

Let S ′ := { si | leader places server at ūi } ⊆ S the set of items where the
leader places a server at the outer node in the corresponding leg. Suppose∑
S ′ > 1

2
S∗. Then the follower places, for i = 1, . . . , n, on leg i next to the

leader. In doing so, he claims the node vi, and, if si /∈ S ′, node ūi. The
remaining server is placed at the central node c and claims the nodes ti
where si ∈ S ′. This yields a follower gain of

n(Ω3+Ω2)+(S∗ −
∑

S ′)︸ ︷︷ ︸
>0

+Ω3+Ω
∑

S ′︸ ︷︷ ︸
≥S∗/2+1

> n(Ω3+Ω2)+Ω3+(Ω+1)
1

2
S∗ =W

where we make use of
∑
S ′ ≥ 1

2
S∗ + 1 and Ω > S∗. Suppose

∑
S ′ < 1

2
S∗.

Like above the follower places n servers on the periphery; the remaining
server is placed at c ′. This yields a gain of

n(Ω3 +Ω2) + (S∗ −
∑

S ′)︸ ︷︷ ︸
>S∗/2

+Ω3 +
1

2
ΩS∗ > W .

This completes the proof. 2

162

9.4. An FPTAS for (r, p)-Centroid on Paths

9.4. An FPTAS for (r, p)-Centroid on Paths

Recall that the leader problem has quite unsatisfactory approximability
properties on general graphs. Specifically, we have shown in Section 7.4.2
that (r, p)-centroid is not approximable within a factor of n1−ε unless P =
NP. This suggests to investigate the approximability on simpler graph
classes. In this section we consider the problem on path graphs since it
is NP-hard even in this simple special case as shown in Section 9.1. In
particular, we show that absolute (r, p)-centroid admits a fully polynomial
time approximation scheme (FPTAS) on a path graph. This means that we
can find an (1 + ε)-approximate solution for any ε > 0 in time polynomial
in the input size and 1

ε
. This is, in a certain sense, the best possible approx-

imative behavior we may expect from an NP-hard optimization problem.
The main idea of our approach is to develop first a pseudo-polynomial dy-
namic program for absolute (r, p)-centroid which can then be extended to
an FPTAS by means of scaling techniques [PS98].

In the sequel we shall assume that all node weights and edge lengths
are positive integers which can be achieved by multiplying all fractions in
the input with their least common denominator. Now let G = (v1, . . . , vn)
be the input path, w : V → N+ the node weights, and c : E → N+ the edge
lengths.

As in the algorithm for discrete (r, p)-centroid on a path we will use
the framework for k-sum optimization of Punnen and Anneja [PA96], which
allows us to decompose any problem instance into smaller subproblems.
Recall that a naive implementation of such an approach does not work as
pointed out in Section 9.2.

The general definition of a k-sum optimization problem is as follows:

Definition 9.4.1 (k-sum optimization problem [PA96]) An instance of
a k-sum optimization problem is given by a setM of ground elements, a family
F ⊆ 2M of subsets ofM and a cost function c : M→ N+. Let S = {s1, . . . , sl}

be a set in F . Assume that c(s1) ≥ c(s2) ≥ . . . ≥ c(sl) holds. Then we
denote by ck(S) the sum

∑k
i=1 c(si) of the k most expensive elements of S.

The goal is to identify a set S ∈ F such that ck(S) is minimum.

In most applications of k-sum optimization the set F is not given ex-
plicitly. Consider for example the k-sum shortest path problem (which we
used in Section 9.2 to solve discrete (r, p)-centroid) where M is the set of
edges of the input graph and F is the family of all edge sets of paths con-
necting some given node pair s and t.

The main result of Punnen and Anneja [PA96] is that a k-sum problem is
efficiently solvable if this holds for the corresponding minisum problem. An

163

9. The Leader Problem on Trees and Paths

instance of the corresponding minisum problem is specified by the input
data of the k-sum problem and additionally by a non-negative integer z.
Given some ground element m we define its z-reduced cost by c(z)(m) :=
c(m) .− z. Here, x .− y := max{x − y, 0} denotes the asymmetric difference of
x and y. The goal of the minisum problem is to identify a set S ∈ F such
that c(z)(S) :=

∑
s∈S c

(z)(s) is minimum.
Punnen and Anneja show the following main theorem.

Theorem 9.4.2 ([PA96]) Let a k-sum optimization problem with ground set
M be given and assume that we can solve the corresponding minisum problem in
O(f(|M|)) time. Then the k-sum problem can be solved in O(|M|f(|M|) + |M|2)
time. 2

We are now going to formulate (r, p)-centroid as a k-sum optimization
problem in order to apply the above theorem of Punnen et al. As in the
NP-hardness proof of (r, p)-centroid on paths in Section 9.1 we identify the
pathGwith an interval [0, c(G)] on the real line. Now consider an arbitrary
leader positioning Xp = {x1, . . . , xp}. We assume w.l.o.g. that x1 < . . . < xp
holds where we identify the points xi with real numbers. Moreover, we
assume that x1 = v1 and xp = vn, that is, that the leader occupies the end
nodes of path G. This can be enforced by adding dummy nodes that are
sufficiently far away and have sufficiently large weight, and by increment-
ing p accordingly.

Consider now any leader placement Xp = {x1, . . . , xp}. For any inter-
val [xi, xi+1] we denote by wj(xi, xi+1) the maximum gain of the follower
when he places j = 1, 2 servers into the interval [xi, xi+1] after the leader
has located servers at the endpoints xi, xi+1 of the interval. Obviously,
w2(xi, xi+1) equals the total demand within the open interval]xi, xi+1[,
that is, the weight of all nodes lying in the interior of this interval. It
is easy to see (confer also Section 9.1) that the value w1(xi, xi+1) equals
the weight of the heaviest open sub-interval]a, b[⊂ [xi, xi+1] of length
d(a, b) = d(xi, xi+1)/2. It is therefore clear that w1(xi, xi+1) ≥ 1

2
w2(xi, xi+1).

We define now the incremental follower gain (confer also proof of
Lemma 9.2.2) δ1(xi, xi+1) := w1(xi, xi+1) and δ2(xi, xi+1) := w2(xi, xi+1) −
w1(xi, xi+1) when the follower places one and two servers into the interval,
respectively. The above considerations imply that δ1(xi, xi+1) ≥ δ2(xi, xi+1).
Hence, the maximum gainwr(Xp) of the follower when he locates r servers
in the presence of placement Xp is exactly the sum wmax of the r largest
elements of the multiset

δ(Xp) := { δj(xi, xi+1) | i = 1, . . . , p− 1 and j = 1, 2 }

164

9.4. An FPTAS for (r, p)-Centroid on Paths

of all incremental follower gains. This can be seen as follows: The gain
wr(Xp) can be expressed as the sum of r incremental gains from the multi-
set δ(Xp). Hence the follower gain can not be larger thanwmax. On the other
hand, this value can indeed be achieved since δ1(xi, xi+1) ≥ δ2(xi, xi+1) for
each interval [xi, xi+1] as observed above.

This suggests to formulate (r, p)-centroid as a k-sum optimization prob-
lem in the following way: The family F consists of all of multisets δ(Xp)
where Xp ⊂ G is some p-element point set containing the end nodes of the
input path. The set M :=

⋃
F ⊂ N of ground elements contains all incre-

mental gains associated with some placement. Since the ground elements
represent the costs themselves the cost function c : M → N is simply the
identity. Finding an (r, p)-centroid is then equivalent to identifying some
set δ(Xp) for which cr(Xp) is minimum. In the terminology of Punnen et al.
(r, p)-centroid is an r-sum optimization problem. Note that our algorithm
will not deal with this representation in an explicit way.

Given a placement Xp we will denote the elements of δ(Xp) by δ1(Xp) ≥
. . . ≥ δ2p−2(Xp). Note that δi(Xp) = wi(Xp) −wi−1(Xp). Now, we are going
to consider the minisum problem corresponding to (r, p)-centroid. In our
context we define the z-reduced follower gain by

w(z)(Xp) :=

2p−2∑
i=1

(δi(Xp)
.− z)

for any z ∈ N. The goal of the corresponding minisum problem is to find a
placement Xp such that w(z)(Xp) is minimum. According to Theorem 9.4.2
it suffices to solve this minisum problem. We will show that this can be
done in pseudo-polynomial time by means of a dynamic programming
approach.

Consider two points a, b lying on the input path G and a point set X ⊆ P
where P = [a, b] is the subpath between a and b. Then we denote by
w

(z)
P (X) the z-reduced follower gain of X locally on path P, that is, when P

is considered as a separate path independent from G. Let x be some point
in X such that a < x < b. The point x partitions X into two sets Xl and Xr

containing all elements ≤ x and ≥ x, respectively. The crucial point is now
that the minisum formulation, in contrast to the r-sum version, does satisfy
the optimal substructure property (confer also Section 9.2) in the sense that
the relation w(z)

[a,b](X) = w
(z)
[a,x](Xl) +w

(z)
[x,b](Xr) holds.

Recall that an analogous relation is not true for the r-sum formulation
since here, the follower has to distribute his r facilities to both sub-
intervals. Therefore, the respective gains in these intervals does not need
to sum up when switching to the complete interval [a, b].

165

9. The Leader Problem on Trees and Paths

z-reduced gain ≤W0

x1 xi
π servers

xπ = R
(z)(π,W0) x

≤ W̃

FIG. 9.5.: Illustration of Equation (9.1)

We are now going to exploit the decomposability property of the min-
isum problem to devise a dynamic program for solving it in pseudo-
polynomial time. We use the notation w(z)(xi, xi+1) := w

(z)
[xi,xi+1]

({xi, xi+1}) to
denote the z-reduced gain in interval [xi, xi+1] when the leader occupies its
endpoints xi, xi+1.

Assume the path is populated incrementally with leader servers from
left to right. Let R(z)(π,W) =: R denote the rightmost feasible leader posi-
tion of placing π servers such that w(z) restricted to the interval [0, R] does
not exceed W. More formally, R is the maximum real number that fulfills
the following property: Consider the subpath P of the input path induced
by the interval [0, R]. Then there is a π-element leader placement Xπ con-
taining the point R such that w(z)

P (Xπ) ≤W.
By the optimal substructure property we obtain the following simple

equation for any π = 1, . . . , p− 1 andW = 0, . . . , w(G),

R(z)(π+ 1,W) = max
{
x ∈ G ∃(W0, W̃) : W0 + W̃ =W and

w(z)
(
R(z)(π,W0), x

)
≤ W̃

}
. (9.1)

For an illustration of the situation referred to by this equation confer Fig-
ure 9.5.

We are now going to compute the values R(z)(·, ·) systematically by
means of dynamic programming techniques. The relevance of this should
be clear since the w(z)-optimum weight can be derived from the outcome
vector R(z)(p, ·) of the dynamic programming table by

min
Xp

w(z)(Xp) = min{W | R(z)(p,W) = d(v1, vn) } ;

a corresponding leader server placement Xp can be derived from maintain-
ing the positions during the dynamic program.

The dynamic program is depicted in Figure 9.6 and 9.7. It iterates over
increasing values for π = 1, . . . , p. For π = 1 we observe that a facility is
always located at v1 and thus we need only to store the entry R(z)(1, 0) = 0
in the dynamic programming table. Now we assume that we have already
filled our table for parameter π. We proceed to π + 1 by iterating over all
entries R(z)(π,W0) stored in the table. For each such entry xπ := R(z)(π,W0)

166

9.4. An FPTAS for (r, p)-Centroid on Paths

1 input: instance of (r, p)-centroid with path G, a non-
negative integer z

2

3 W ← w(V − v1 − vn)

4 for allW0 = 1, . . . ,W and π = 1, . . . , p
5 R(π,W0)←⊥
6 end for
7

8 R(1, 0)← 0

9 for π := 1 to p− 1
10 forW0 := 0 toW
11 if R(π,W0) = ⊥ then
12 continue with nextW0

13 xπ ← R(π,W0)
14 scanPathStartingFrom(xπ)
15 end for
16 end for
17

18 output min{W | R(p,W) = d(v1, vn) }

FIG. 9.6.: Dynamic program for solving the minisum problem corresponding to
(r, p)-centroid

we systematically scan (confer Figure 9.7) the points x > xπ from left to
right and calculate the z-reduced weight W̃ := w(z)(xπ, x) of the interval
[xπ, x]. Whenever we reach a point x where the z-reduced weight changes
this defines one more interesting position xπ+1 := x for the (π+ 1)st server,
and we store the entry R(z)(π+ 1,W0 + W̃) := xπ+1.

It remains to describe in detail how the scans mentioned above can be
performed efficiently. An implementation of this procedure is depicted in
Figure 9.7 on page 168. To this end consider a fixed point xπ. We gener-
ate a list of O(n2) points which is guaranteed to contain all points x where
w(z)(xπ, x) changes. These points are stored in the list Lscan in the algo-
rithm. It is clear that w(z)(xπ, ·) can only change at positions where so does
w1(xπ, ·) or w2(xπ, ·).

Recall thatw2(xπ, x) equals the weight of the open interval]xπ, x[, that is,
the weight of all nodes lying in the interior of this interval. Thus there are
O(n) points, namely all nodes v ≥ xπ, where w2(xπ, ·) can change (confer
line 3).

167

9. The Leader Problem on Trees and Paths

1 procedure scanPathStartingFrom(xπ)
2

3 Lscan ← { v ∈ V | v ≥ xπ }
4 sort Lscan

5 let Lpairs be the list of all node pairs (u, v)
6 sorted increasingly w.r.t. primary sort key d(u, v)
7 and decreasingly w.r.t. secondary sort key w(P(u, v))
8 for all pairs (u, v) in Lpairs in sorting order order
9 xπ+1 ← xπ + 2 · d(u, v)

10 if xπ ≤ u ≤ v ≤ xπ+1 and xπ+1 /∈ Lscan

11 insert xπ+1 into Lscan

12 end if
13 end for
14

15 W̃ ← 0

16 wi ← 0 for i = 1, 2
17 for all points xπ+1 ∈ Lscan in sorting order
18 R(π+ 1,W0 + W̃)← xπ+1
19 if xπ+1 is a node
20 w2 ← w2 +w(xπ+1)
21 end if
22 if xπ+1 has been induced by pair (u, v)
23 w1 ← max{w1, w(P(u, v))}
24 end if
25 W̃ ← (w1

.− z) + ((w2 −w1)
.− z)

26 end for

FIG. 9.7.: Subroutine scanPathStartingFrom

168

9.4. An FPTAS for (r, p)-Centroid on Paths

The value w1(xπ, x) equals the weight of the heaviest open sub-interval
]a, b[⊂ [xπ, x] of length d(a, b) = d(xπ, x)/2. To enumerate all critical
points corresponding to changes of w1(xπ, ·) we use a list Lpairs of all node
pairs (u, v). This list is created in a preprocessing step and sorted with
respect to d(u, v). The list Lscan of points wherew1(xπ, ·) could change con-
tains all xπ+1 := xπ + 2 · d(u, v) where xπ ≤ u ≤ v ≤ xπ+1 (confer loop in
line 8). We say that (u, v) induces xπ+1 and remember for each such xπ+1 by
which pair (u, v) it has been induced. The secondary sort key w(P(u, v))
of list Lpairs ensures that we remember only the pair (u, v) with the heav-
iest subpath P(u, v). In fact, the gain w1(xπ, xπ+1) is just the weight of the
heaviest sub-path P(u, v) inducing critical points in the interval]xπ, xπ+1[.
Thus we can compute all the reduced follower gainsw(z)(xπ, ·) in total time
O(n2) by a linear scan through the sorted list Lscan of all critical points
(confer loop in line 17) while maintaining the weight w1 the heaviest of
such subpaths P(u, v) inspected so far as well as the weight w2 of the path
]xπ, xπ+1[(confer lines 20 and 23).

The pseudo-polynomial running time of the above dynamic program
follows easily from Theorem 9.4.2.

Lemma 9.4.3 The problem of determining wr,p and a corresponding leader
placement Xp (that is, where wr(Xp) = wr,p is attained) can be solved in pseudo-
polynomial running time O(p · n2 ·w(G)2).

Proof. The correctness follows from the above discussion.
To analyze the running time we consider any inductive step π 7→ π + 1

described above. During such a step we inspectO(w(G)) entries R(π+1, ·)
and perform the scan routine for each of them. This takes O(w(G) · n2).
Since we perform p such inductive steps we obtain time O(pn2w(G)) for
solving the minisum problem. The preprocessing of sorting the all node
pairs takesO(n2 logn) and is dominated by the main routine since we may
assume that w(G) isΩ(n).

The time needed to solve the r-sum problem, which is the actual (r, p)-
centroid problem, follows immediately from Theorem 9.4.2 since the
ground elements of the minisum problem are the incremental gains which
vary in a domain of O(w(G)) elements. 2

From this result we can derive a fully polynomial time approximation
scheme (FPTAS) applying a scaling technique to the weights of the nodes.
The algorithm is based on the general approach for deriving an FPTAS
from an pseudo-polynomial time algorithm [PS98]. However, there are
some details that require additional work.

169

9. The Leader Problem on Trees and Paths

Theorem 9.4.4 (Approximation) There is an FPTAS for absolute (r, p)-
centroid on a path with running time O(pn6 1

ε2
).

Proof. Let K ∈ N and assume that we scale down (with rounding) the node
weights w by factor K, that is, we use the weight function w ′ ≡ bw

K
c rather

than w. We use the notations w ′(Yr ≺ Xp), w ′r(Xp) and w ′r,p when referring
to these modified weights. We will show that K can be chosen to ensure an
approximation ratio of 1+ε and simultaneously a running time polynomial
in n and 1

ε
.

To this end let Xp and X ′p be the (r, p) centroid w.r.t. weightsw andw ′, re-
spectively. Consider the (r, X ′p)-medianoid Yr w.r.t. the unmodified weights
w. Then we have

wr(X
′
p) = w(Yr ≺ X ′p)
≤ K · (w ′(Yr ≺ X ′p) + n)
≤ K ·w ′r(X ′p) + nK
≤ K ·w ′r(Xp) + nK
≤ wr(Xp) + nK .

Here, the inequality in the second line follows from the observations that
the term wr(Yr ≺ X ′p) is a sum of at most n node weights and that w(v) ≤
K ·w ′(v) + 1 holds for any node v.

From this equation we infer immediately thatX ′p is a (1+ε)-approximation
if nK ≤ ε · wr(Xp). Of course, we do not know wr(Xp) so we need a rea-
sonable lower bound for it. To this end consider the set X ′′p consisting
of the heaviest p nodes on path G. Moreover let ṽ be an heaviest node
in V − X ′′p . It is now easy to see that wr(Xp) ≥ w(ṽ) and moreover
that wr(Xp) ≤ wr(X

′′
p) ≤ n · w(ṽ). Due to the lower bound we may set

K := b ε·w(ṽ)
n
c and guarantee the desired approximation ratio. The upper

bound helps us achieve a polynomial running time. In fact, we can now
restrict ourselves to entries R(z)(π,W) with W ≤ n · w(ṽ) in the dynamic
program which brings down its running time toO(p ·n4 ·w(ṽ)2). By using
the scaled weights w ′ we obtain time O(pn6 1

ε2
). 2

We remark that the running time of the above FPTAS could be improved
if we could quickly compute lower and upper bounds on wr,p. For exam-
ple if we had constant factor estimations then the running time could be
brought down to O(pn4 1

ε2
). I believe that this is possible.

170

9.5. (1, p)-Centroid on Trees

9.5. (1, p)-Centroid on Trees

In Section 8.2 we have studied the single follower problem (1, Xp)-
medianoid, that is, when the leader has placed a plurality of servers.
We have seen that there are algorithms for this problem that are signifi-
cantly faster than the general follower problem on trees. In this section we
examine the other side of the coin. We investigate the (multiple) leader
problem under the requirement that the follower places only one server.
We will see that this problem can be solved efficiently on trees. In our
algorithm we exploit the fact that (1, p)-centroid can be viewed as a mini-
max problem, and such problems are easier to attack than r-sum problems
in general.

9.5.1. Discrete (1, p)-Centroid on a Tree

At first we consider the discrete (1, p)-centroid problem. Choose an arbi-
trary node s ∈ V , and connect s to a new node s0 of weight 0 by an edge
of length∞. Then choose s0 as the root of the tree. We can assume w.l.o.g.
that the leader does not place at node s0 of zero weight.

Let X ⊆ V − s0 be a node subset and W ∈ N. Set X is called W-bounding
if

1. w1(X) ≤W and
2. for all x ∈ Xwith father x ′ we have w1(X− x+ x ′) > W .

Lemma 9.5.1 If w1,p ≤W then |X| ≤ p for allW-bounding sets X ⊆ V .

Proof. Assume that w1,p ≤W and let X∗ with |X∗| ≤ p be an optimal leader
placement. Consider an arbitrary W-bounding set X. Map each node
from X∗ to its closest ancestor in X (this allows us in particular to map a
node to itself). We claim that this mapping is surjective which completes
the proof.

Assume for contradiction that there is a node v ∈ X which is not in the
image of the mapping, and let u be the father of v. By property 2 there
is an y ∈ Tu such that w(y ≺ X − v + u) > W. Consider the maximal
subtrees T ′ and T ∗ that contain the node y but no node from X− v+ u and
X∗, respectively, as inner nodes. First, y lies in the subtree Tu. Moreover,
the closest ancestor of y in X is v (elsew(y ≺ X) = w(y ≺ X− v+u) > W).
This implies that no inner node of T ′ can be part of X∗, for, otherwise v
would be the image of this node contradicting the premise. Hence T ′ is a
subtree of T ∗. Moreover, w(y ≺ X∗) ≥ w(y ≺ X − v + u) > W which is a
contradiction. 2

171

9. The Leader Problem on Trees and Paths

We propose the following algorithm: Initialize the node setXwhich shall
be W-bounding at the end to X ← ∅. Start at the newly introduced root
node s0 and perform a depth first search traversal of the tree. Whenever
the traversal returns from a node v back to its father u perform the test
whether there is an y ∈ Tv such that w(y ≺ X + u) > W. If this is the case,
then add the node X← X+ v.

Lemma 9.5.2 Given a positive integer W, the algorithm constructs a W-
bounding set.

Proof. To show property 1 assume for contradiction that w(y ≺ X) > W

for some y at the end of the algorithm. Consider the maximal subtree of T
which contains y and does not contain nodes from X as inner nodes. Let
u ∈ X ∪ {s0} be the root of this subtree, and v /∈ X be its son in the subtree.
At the time where the above test was executed for the edge (u, v) the result
was w(y ≺ X ′ + u) ≤ W. Since X ′ + u ⊆ X + s0 we have also w(y ≺ X) =
w(y ≺ X+ s0) ≤ w(y ≺ X ′ + u) ≤W which contradicts the premise.

Property 2 is immediate from the construction of the test, since it can
be observed that after the test for a node v has been performed, no more
nodes from the subtree Tv are later added to X. 2

Theorem 9.5.3 (Discrete (1, p)-centroid on a tree) A discrete (1, p)-
centroid on a tree can be found in time O(n2 logn logw(T)).

Proof. We perform a binary search to find the smallest weightW ∈ [0,w(T)]
such that there is aW-bounding set Xwith at most p elements. By 9.5.1 and
9.5.2 the set found by this approach has follower gain w1,r and is therefore
an (1, p)-centroid.

A straightforward implementation would compute a (1, X)-medianoid
in the current subtree below each single edge. Using Theorem 8.2.5 on
page 151 this yields the proposed running time. 2

9.5.2. Absolute (1, p)-Centroid on a Tree

In order to solve the problem in the absolute case, we make use of the
discretization result stated in Theorem 7.2.2. We point out that from this
result one can only derive that the positions of the leader are discretized to
positions in 1

2
N, while the positions of the follower are still unrestricted.

Since the number of critical points in this theorem is possibly exponen-
tially large a direct application to the algorithm stated in the previous sec-
tion would yield a new instance where the node number and thus the run-
ning time of the algorithm would no longer necessarily be polynomially
bounded. Hence we propose a modification of the previous algorithm.

172

9.5. (1, p)-Centroid on Trees

We start the algorithm on the unaltered input tree. Whenever in the
original algorithm there is a test on an edge (u, v) to be performed, we now
essentially have to determine a point on that edge which is W-bounding.
By our discretization result it turns out that it is sufficient to restrict the
tests to (exponentially many) discrete points on that edge. Since all those
sub-edges are threaded on the original edge, the interesting point which is
W-bounding can be found by a binary search without actually creating all
those points as real nodes. This shows the following result:

Corollary 9.5.4 (Absolute (1, p)-centroid on a tree) An absolute
(1, p)-centroid on a tree can be found in time O(n2 logn logw(T) logD) where
D := maxe d(e).

Proof. The running time follows from similar arguments as above. Notice
that the absolute (1, X)-medianoid can be computed in O(n logn) accord-
ing to Corollary 8.2.6. 2

We remark that the polynomial solvability of (1, p)-centroid on trees
leads to a very simple approximation algorithm for arbitrary r ≥ 1.

Corollary 9.5.5 There is an r-approximation algorithm for absolute and dis-
crete (r, p)-centroid on a tree.

Proof. Let Xp be an (r, p)-centroid and X ′p and (1, p)-centroid. Since the
incremental gains wi+1(Xp) − wi(Xp) decrease in general for increasing i.
We have thatwr(X ′p) ≤ rw1(X ′p) ≤ rwr(Xp). Since an (1, p)-centroid can be
computed in polynomial time the theorem follows. 2

9.5.3. Discrete (1, p)-Centroid on a Pathwidth-Bounded
Graph

In this section we oppose the positive results for the (1, p)-centroid on trees
with a hardness result for a slightly more complex graph class, namely the
class of pathwidth-bounded graphs. A path decomposition of a graph (V, E)
is a path with node set V ′ and a mapping p : V → 2V

′ such that p(v) is a
path for all nodes v ∈ V and p(v1) ∩ p(v2) 6= ∅ for all edges (v1, v2) ∈ E.
The width of the decomposition is maxv ′∈V ′

∣∣{ v ∈ V | p(v) 3 v ′ }
∣∣ − 1. The

pathwidth of a graph is the minimum width of a path decomposition.

Theorem 9.5.6 (Hardness on pathwidth-bounded graphs) Determin-
ing a discrete or an absolute (1, p)-centroid on a pathwidth bounded graph is
NP-hard.

173

9. The Leader Problem on Trees and Paths

a1

v ′1

A

Bbnb1

an

u1

v ′′1v1

ū1

a2

b2

. . .

. . .

FIG. 9.8.: Discrete (1, p)-centroid is NP-hard on a pathwidth bounded graph.

Proof. Let an instance of problem PARTITION be given as in Section 9.1.
Construct a graph as follows (confer Figure 9.8): Start with two paths a1–
a2–. . . –an–A and b1–b2–. . . –bn–B. For each i = 1, . . . , n, add a connecting
path ai–ui–vi–ūi–bi and complement it by ui–v ′i–ūi and ui–v ′′i –ūi to form
a diamond. All edges have unit length except for the edges on the initial
a-path and b-path which have length < 1

n
. The node weights are set to

w(ui) := w(ūi) := si and w(vi) := w(v ′i) := w(v ′′i) = Ω for an Ω > S∗. The
weights of the ai, bi nodes is set to 1 and finally w(A) := w(B) := Ω+ 1.

We claim: For p := n there is a discrete (1, p)-centroid of weight W :=
1
2
S∗+n+Ω+1 if and only if the PARTITION instance is solvable. (The proof

for the absolute case is identical.)
“If”: Let S ′ ⊂ S be a subset with

∑
S ′ = 1

2
S∗. For each i = 1, . . . , n place

the leader at ui if si ∈ S ′ and at ūi otherwise. The follower places a server
at B and claims all b-nodes, plus those nodes ūi where si ∈ S ′ which results
in a total gain ofW.

“Only if”: Consider diamond i. If the leader places no server, the fol-
lower could claim more than 3Ω. Hence there must be one server per di-
amond. If the leader places a server at a v-node, the follower could still
claim more than 2Ω. As a consequence, the leader places either at ui or at
ūi. Let S ′ := { si | the leader places server at ui }.

The follower can not claim two or more v-nodes with a single server.
Hence it is optimal to place a server on A or Bwhich claims a fixed weight
ofΩ+ 1+n, plus the weight

∑
S ′ (if the follower places at B) or S∗−

∑
S ′

(if the follower places a server at A). If
∑
S ′ 6= 1

2
S∗ this is larger thanW.

The proof is completed by the observation that the constructed graph
has pathwidth 7. 2

174

10. Summary and Further
Remarks

10.1. Summary

The second part of this thesis has been devoted to analyzing the com-
plexity and approximability of multiple competitive location problems. We
have started by examining (r, p)-centroid and (r, Xp)-medianoid on gen-
eral graphs in Chapter 7. We have seen that the follower problem is NP-
hard and that we can give a tight bound of approximability by proving
equivalence to the maximum coverage problem. Moreover, it has turned
out, that the leader problem is much more difficult both in terms of com-
plexity and of approximability. Specifically, we have shown that (r, p)-
centroid is Σ2p-complete on general graphs and cannot be approximated
within a factor of n1−ε.

These negative results have guided us to examine the problems on sim-
pler graph classes like trees and paths. Here, it has turned out that the fol-
lower problem can be efficiently solved on trees by an algorithm of Tamir.
We have then concentrated on the case of a single follower who faced a
plurality of leader servers. Here, we have proposed an O(n logn)-time
algorithm for the more general indirect covering subtree problem which
is faster than an existing algorithm of Kim et al. [KLTW96] for the same
problem.

Finally, in the previous chapter we have investigated the (r, p)-centroid
problem on tree and path graphs. Specifically, we have shown that the ab-
solute version is NP-hard even for the simple case of a path, which resolves
a long-standing open problem [Hak90, EL96, Ben00]. On the positive side
we demonstrate that the discrete version of this problem is polynomially
solvable on a path by reducing it to a k-sum shortest path problem [PA96]
on an acyclic graph. But already for a slightly more complex graph class,
namely spiders, the discrete version also becomes intractable. Thus we
resolve the complexity status on trees also for the discrete case.

Santos-Peñate et al. [SSD07] approach the absolute (r, Xp)-medianoid
problems by polynomial discretization, that is, in the infinite set of points

175

10. Summary and Further Remarks

one can identify polynomially many points and solve the discrete prob-
lem on this finite set. Since we have shown that on paths the absolute
(r, p)-centroid is NP-hard while the discrete is not, we conjecture that such
a polynomial discretization is unlikely to work for the absolute (r, p)-
centroid problem in general. (Notice that the discretization provided in
Theorem 7.2.2 on page 119 is not polynomial.)

We have also shed some light on the approximability of the leader prob-
lem on path graphs which was motivated by the hardness on paths and
the bad approximation behavior on general graphs. Specifically, we have
shown that the leader problem allows an FPTAS on paths.

Finally, we have investigated the (1, p)-centroid problem on trees, which
has turned out to be solvable in polynomial time for both the absolute and
the discrete case. We have opposed this positive result by showing that
(1, p)-centroid becomes NP-hard on graphs of bounded pathwidth.

Table 10.1 provides an overview on the complexity status of the (r, p)-
centroid problem, that is, the problem of optimally placing the leader. For
completeness we have added the known results for the corresponding fol-
lower problem variants. Notice that in the follower problem we do not
distinguish between absolute and discrete model since the complexity is
the same in both cases. An overview of the approximability is given in
Table 10.2.

In the following section we are going to discuss some extended issues re-
lated with competitive location. These topics have not been systematically
studied in this thesis and could be subject to further research.

10.2. Incremental Aspects

In all problem settings we have considered so far we were assuming that
leader and follower know the exact numbers of facilities in advance. While
the decisions on the location of a facility is often irrevocable, the number of
facilities to be opened is not. In fact, we often encounter incremental behavior
of providers. This means that a certain number of facilities is opened at
the beginning; and later this number is incremented, for example, due to
increased budget or demand. Of course, it is usually undesirable to close
existing facilities. So the problem amounts to extending a given placement
by a certain number of additional facilities so as to maximize the demand
served.

For example, Chrobak et al. [CKNY08] considered the incremental me-
dian problem which addresses such a situation. The authors assume in their
model that a sequence F1 ⊆ F2 ⊆ . . . Fn is generated by the algorithm such

176

10.2. Incremental Aspects

(r
,p

)-
ce

nt
ro

id
(t

he
le

ad
er

pr
ob

le
m

)
(r
,X

p
)-

m
ed

ia
no

id

ab
so

lu
te

di
sc

re
te

(t
he

fo
llo

w
er

pr
ob

le
m

)

ar
b.
r

ar
b.
p

N
P-

ha
rd

on
pa

th
[9

.1
.1

]
O
(p
n
4
)

on
pa

th
[9

.2
.3

]
O
(n

)
on

pa
th

[M
Z

H
83

]

N
P-

ha
rd

on
sp

id
er

[9
.3

.1
]
O
(r
n
2
)

on
tr

ee
[M

Z
H

83
]

Σ
p 2
-c

om
pl

et
e

on
gr

ap
h

[7
.3

.3
]

N
P-

ha
rd

on
gr

ap
h

[M
Z

H
83

]

r
=
1

ar
b.
p

O
(n

2
lo

g
n

lo
g
W

lo
g
D
)

on
tr

ee
[9

.5
.4

]
O
(n

2
lo

g
n

lo
g
W

)
on

tr
ee

[9
.5

.3
]
O
(n

lo
g
n
)

on
tr

ee
[8

.2
.6

]

N
P-

ha
rd

on
pa

th
w

id
th

bo
un

de
d

gr
ap

h
[9

.5
.6

]
O
(n

2
lo

g
n
+
n
m
)

on
gr

ap
h

[b
y

en
um

er
at

io
n]

r
=
1

p
=
1

O
(n

4
m
2

lo
g
m
n

lo
g
W

)
on

gr
ap

h
[H

L8
8]

O
(n

3
)

on
gr

ap
h

[C
M

03
]

fo
r

tr
ee

s,
cf

.P
ar

tI

T
A

B
L

E
10

.1
.:

C
om

pl
ex

it
y

of
th

e
(r
,p

)-
ce

nt
ro

id
pr

ob
le

m
.W

:=
∑ w

(v
)

an
d
D

:=
m

ax
e
∈
E
c
(e
).

Th
e

ha
rd

ne
ss

re
su

lt
s

fr
om

th
e

di
sc

re
te

ca
se

al
so

ap
pl

y
to

th
e

ab
so

lu
te

ca
se

.

177

10. Summary and Further Remarks

(r, p)-centroid (r, Xp)-medianoid

hardness approximability approximability

Graph Σ
p
2 -complete [7.3.3] lower bound n1−ε

[7.4.2]
tight bound (1− 1

e
)

[7.4.1]

Tree NP-hard [9.1.1] r [9.5.5] 1 [Tam96]

Path NP-hard [9.1.1] FPTAS [9.4.4]

TABLE 10.2.: Approximability of the (r, p)-centroid and the (r, Xp)-medianoid
problem.

that |Fk| = k. The goal is to construct a sequence in which Fk is a good
approximation of the optimal k-median solution for any k. The authors
gave an incremental algorithm that guarantees a constant relative devia-
tion from the optimum.

Of course, there is no hope to devise an algorithm with similar properties
for our (r, p)-centroid problem since the requirement for an incremental
algorithm is even stronger than for offline approximation algorithms from
which we may not expect good performances.

Therefore, we will consider a relaxed problem: Assume we are given
an optimal (r, p)-centroid. Is it possible to extend it to a good leader
placement for (r, p + 1)-centroid? Since it is already difficult to determine
an (r, p)-centroid a positive result would not immediately contradict our
lower bounds on approximability.

Definition 10.2.1 Let Xp be an (r, p)-centroid and let Xp⊕1 be a (p + 1)-
element leader placement such that wr(Xp⊕1) is minimum among all (p +
1)-element placements containing Xp. Then we call Xp⊕1 an incremental
(r, p⊕ 1)-centroid.

We remark that some caution is needed for this definition since different
(r, p ⊕ 1)-centroids of the same instance need not have the same measure-
mentwr(·). This is because there might be distinct (r, p)-centroids inducing
different sets of feasible placements in the preceding definition.

Our question is whether each (r, p ⊕ 1)-centroid constitutes a good ap-
proximation for (r, p + 1)-centroid which would guarantee good exten-
sibility properties of our problem. Unfortunately, our hopes are quickly
deceived by the example depicted in the left part of Figure 10.1. Here, the
only (1, 1)-centroid takes the node in the middle of the path. Thus any
extension to a two-element placement grants the follower a gain of Ω. On

178

10.2. Incremental Aspects

Ω Ω

...
...

...
...

...
...

...v1 v4
... v5 v6 v7 v8 v9v2 v3

FIG. 10.1.: Examples for bad incremental behavior. All edges and gray nodes
have unit weight. White nodes have zero weight. The weight Ω is
chosen suitably large. The upper example refers to a (1, 1⊕1)-centroid
and the lower one to a (2, 3⊕ 1)-centroid. Detailed descriptions can be
found in the text.

the other hand, when placing at both end nodes, the follower gets only one
user. Hence the deviation of the (1, 1⊕ 1)-centroid from the (1, 2)-centroid
can become arbitrarily large.

One can, however, observe that the validity example hinges strongly on
the fact that the follower places only one server. In fact, we will show in
the following theorem that for r ≥ 2 the deviation can be bounded in terms
of the maximum degree ∆(G) of the input graph. Thus we obtain constant
factors for degree-bounded graphs and in particular for paths where the
case r = 1 already behaves arbitrarily bad.

Theorem 10.2.2 Let Xp⊕1 be any incremental (r, p⊕ 1)-centroid where r ≥ 2.
Then

wr(Xp⊕1) ≤ 2 ·
(
1+ max

{
1,
∆(G)

r

})
·wr,p+1 .

Proof. Let Xp be any (r, p)-centroid and Xp+1 be any (r, p+1)-centroid. Sup-
pose that we remove some point x ∈ Xp+1 from Xp+1 which yields the place-
ment X ′p := Xp+1 − x.

The proof is based on the observation that wr(X ′p) is an upper bound on
wr(Xp). Thus the deviation of an incremental centroid from the optimum
can not be larger than the benefit the follower gets when x is removed x
from Xp+1. We shall see that if this benefit were very large then it would
mainly be caused by the large weight of x itself whereas the residual ben-
efit would be comparatively small. As a consequence, all points in Xp+1
would have to be nodes of such a large weight that Xp would inevitably be
a subset of Xp+1. Then Xp could be extended to Xp+1, which is a contradic-
tion.

179

10. Summary and Further Remarks

Consider now some (r, X ′p)-medianoid Yr. Let U ′ := U(Yr ≺ X ′p) − x and
B := w(U ′) − wr(Xp+1) be the above mentioned residual benefit. Clearly,
wr(Xp) ≤ w(X ′p) ≤ wr(Xp+1) + B+w(x).

It is not hard to see that the benefit B can only be caused by users u
switching from the leader to the follower party when removing x. Thus
for all such users u the point x must be the closest one in placement Xp+1.
Therefore, if we define the set U ′x to contain all nodes u from U ′ such that
d(u,Xp+1) = d(u, x) then B ≤ w(U ′x) holds.

Let v1, . . . , vk be the neighbors of x where k := deg(x) is the degree of
x. We partition U ′x into sets U ′1, . . . , U

′
k where Ui contains all nodes u ∈ U ′

such that vi is met by some shortest path from u to x. Note that the sets U ′i
can be made pairwisely disjoint by breaking ties arbitrarily. Suppose that
these sets are ordered such thatw(U ′1) ≥ . . . ≥ w(U ′k) and that the follower
places l := min{r, k} facilities at the nodes v1, . . . , vl in the presence of the
leader placement Xp+1. Then the follower gains at least

∑l
i=1w(U

′
i), which

is surely smaller than the optimal follower gain wr,p+1. This implies that
B ≤ w(U ′x) ≤ k

l
wr,p+1.

We obtain

wr(Xp)

wr,p+1
≤

wr(X
′
p)

wr,p+1

≤ wr,p+1 + B+w(x)

wr,p+1

≤
(
1+

k

l

)
+
w(x)

wr,p+1

≤
(
1+ max

{
1,
∆(G)

r

})
+
w(x)

wr,p+1
.

We infer from this equation that the deviation of Xp from Xp+1 depends
on the weight w(x). It is intuitively clear that if all weights of points in
Xp+1 were large enough the optimal leader placement Xp would have to
occupy p of them. More formally, let x be the lightest point in Xp+1 and
assume for contradiction that w(x) > c0wr,p+1 holds where c0 := 1 +

max
{
1, ∆(G)

r

}
. Due to the above inequality w(X ′p) is bounded from above

by w(x) + c0wr,p+1. Moreover, if Xp were not a subset of Xp+1 the follower
would gain at least 2w(x), which is strictly larger than the gain for X ′p.
(Here, we exploit that r ≥ 2.) This, however, is a contradiction since Xp is
optimum by premise. We conclude thatw(x) ≤ c0wr,p+1. Together with the
above inequality the claim follows. 2

180

10.3. Future Research

In Figure 10.1 we give an instance which demonstrates that the estima-
tion given in the preceding theorem is not that bad. In this example we
demonstrate that there is indeed a class of instances where the deviation
is Ω(∆(G)). Each graph in this class consist of eight s-diamonds for some
s ∈ N. Clearly, ∆(G) = 2s. It is easy to observe that the (2, 4)-centroid
chooses the nodes v2, v4, v6, v8 so as to occupy each of the eight diamonds.
Hence the follower achieves a gain of at most two. On the other hand,
the (2, 3)-centroid {v2, v5, v8} cannot be extended to a node set occupying
all diamonds and therefore leaves a gain of at least ∆(G)

2
to the follower.

Thus the deviation is at least ∆(G)
4

= Ω(∆(G)). Note that the (2, 3)-centroid
(v2, v5, v8) is not unique. This could, however, be achieved by giving the
nodes v2, v5, v8 a small weight.

We remark finally that Theorem 10.2.2 yields a factor 4 for path graphs.
For this class Wiefel [Wie08] has constructed instances with a deviation
of 3 which is tighter than the general lower bound provided in Figure 10.1.
Moreover, he has shown that the factor 4 still holds on spiders of un-
bounded maximum degree.

10.3. Future Research

This short section is devoted to future research related to the second part
of this thesis, that is, to multiple competitive location. For open problems
in the single location case we refer to Section 6.5.

For the follower problem, a series of positive results have been developed.
We have provided approximation algorithms for general graphs and exact
efficient algorithms for special cases such as trees. Therefore, future re-
search could extend such results: One could investigate in how far more
complex graph classes (for example, tree-width bounded graphs) admit ef-
ficient algorithms. It would also be interesting to investigate the follower
problem in more realistic models involving, for example, attraction func-
tions rather than functions only based on distance, or models taking into
account purchase price and transportation costs. Certainly, a whole series
of further extensions are imaginable here.

The leader problem, however, seems extremely difficult even in very sim-
ple cases. Future algorithmic oriented research could therefore explore
more sophisticated graph classes. It seems, however, less promising to
concentrate on more powerful location models, at least, using the analysis
techniques employed in this thesis.

Some specific problems that could be tackled are the following. Study
the approximability of (r, p)-centroid on trees or tree-width bounded

181

10. Summary and Further Remarks

graphs. One could also investigate the fixed parameter tractability of the
leader problem: What happens if r is a parameter and thus not part of the
input? Notice that the problem is efficiently solvable for r = 1. Finally,
we remark that the main purpose of the research in the second part has
been to distinguish NP-hard from polynomial-time solvable problems and
I believe that the algorithms proposed here can be improved in terms of
running time.

Another interesting direction for future research would be to develop
incremental algorithms that are capable of reporting reasonable approxima-
tions. At least for path graphs such algorithms are not ruled out by our
lower bounds.

182

Bibliography

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation.
Springer, Berlin, Heidelberg, New York, 1999. [pp. 20, 156]

[AHT00] S. Alstrup, J. Holm, and M. Thorup. Maintaining center and
median in dynamic trees. In Proceedings of the 7th Scandina-
vian Workshop on Algorithm Theory (SWAT 2000), volume 1851 of
Lecture Notes in Computer Science, pages 46–56. Springer-Verlag,
2000. [p. 104]

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Anal-
ysis of Computer Algorithms. Addison-Wesley, Reading, MA,
USA, 1974. [p. 148]

[BE95] J. Bhadury and HA Eiselt. Stability of Nash equilibria in loca-
tional games. RAIRO. Recherche opérationnelle, 29(1):19–33, 1995.
[p. 54]

[Ben00] S. Benati. NP-hardness of some competitive location models
with probabilistic choice rules. Studies in Locational Analysis,
14:211–231, 2000. [pp. 38, 153, 175]

[BFP+73] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tar-
jan. Time bounds for selection. Journal of Computer and System
Sciences, 7(4):448–461, 1973. [p. 80]

[BG01] A. M. Ben-Amram and Z. Galil. Topological lower bounds on
algebraic random access machines. SIAM Journal on Computing,
31(3):722–761, 2001. [pp. 91, 92]

[BK67] O. Bilde and J. Krarup. Bestemmelse af optimal beliggenhed af
produktionssteder. Research Report, IMSOR, Danmarks tekniske
Hojskole, 1967. [p. 32]

[BK77] O. Bilde and J. Krarup. Sharp lower bounds and efficient algo-
rithms for the simple plant location problem. Studies in integer
programming, page 79, 1977. [p. 32]

183

Bibliography

[BL86] M. W. Broin and T. J. Lowe. A dynamic programming al-
gorithm for covering problems with (greedy) totally balanced
constraint matrices. SIAM Journal Algebraic Discrete Methods,
7(3):348–357, 1986. [p. 136]

[CC93] R. Church and J. Current. Maximal covering tree problems.
Naval Research Logistics, 40(1):129–142, 1993. [p. 145]

[CKNY08] M. Chrobak, C. Kenyon, J. Noga, and N. E. Young. Incremental
medians via online bidding. Algorithmica, 50(4):455–478, 2008.
[p. 176]

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, USA, 1990. [p. 156]

[CM03] C. M. Campos Rodríguez and J. A. Moreno Pérez. Relaxation
of the condorcet and simpson conditions in voting location. Eu-
ropean Journal of Operational Research, 145:673–683, 2003. [pp. 31,
36, 42, 48, 49, 50, 51, 58, 59, 109, 110, 111, 177]

[CM08] C. M. Campos Rodríguez and J. A. Moreno Pérez. Multiple vot-
ing location problems. European Journal of Operational Research,
191(2):437–453, 2008. [pp. 36, 38, 49, 51, 117]

[CRRS06] S. Chawla, U. Rajan, R. Ravi, and A. Sinha. Min-max pay-
offs in a two-player location game. Operations Research Letters,
35(5):499–507, 2006. [p. 115]

[Dre09] Z. Drezner. Facility Location: A Survey of Applications and Meth-
ods. Springer, Berlin, 2009. [p. 30]

[Eis92] H. A. Eiselt. Hotelling’s duopoly on a tree. Annals of Operations
Research, 40:195–207, 1992. [pp. 36, 37, 60, 61]

[EL93] H. A. Eiselt and G. Laporte. The existence of equilibria in the
3-facility hotelling model in a tree. Transportation Science, 27:39–
43, 1993. [p. 36]

[EL96] H. A. Eiselt and G. Laporte. Sequential location problems. Eu-
ropean Journal of Operational Research, 96:217–231, 1996. [pp. 34,
36, 37, 38, 44, 153, 175]

[ELT93] H. A. Eiselt, G. Laporte, and J.-F. Thisse. Competitive location
models: A framework and bibliography. Transportation Science,
27(1):44–54, 1993. [pp. 31, 112]

184

Bibliography

[Eve79] S. Even. Graph Algorithms. Pitman, London, 1979. [p. 20]

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability (A
guide to the theory of NP-completeness). W.H. Freeman and Com-
pany, New York, 1979. [pp. 116, 128, 133, 153]

[Gol71] A. J. Goldman. Optimal center location in simple networks.
Transportation Science, 5:212–221, 1971. [pp. 37, 60, 61, 70, 71, 84]

[GP03] M. D. García Pérez and B. Pelegrín Pelegrín. All Stackelberg
location equilibria in the Hotelling’s duopoly model on a tree
with parametric prices. Annals of Operations Research, 122:177–
192, 2003. [pp. 36, 37, 42, 53, 60, 61, 85, 86, 90, 107]

[GSG04] P. Godfrey, R. Shipley, and R. Gryz. Maximal vector computa-
tion in large data sets. Technical report, CS-2004-06, University
of York, 2004. [pp. 109, 110]

[Hak64] S. L. Hakimi. Optimal locations of switching centers and the
absolute centers and medians of a graph. Operations Research,
12:450–459, 1964. [p. 29]

[Hak83] S. L. Hakimi. On locating new facilities in a competitive en-
vironment. European Journal of Operational Research, 12:29–35,
1983. [pp. 30, 37, 44, 45, 122, 134]

[Hak90] S. L. Hakimi. Locations with spatial interactions: Competitive
locations and games. In [MF90], pages 439–478. 1990. [pp. 36,
37, 38, 41, 117, 118, 122, 132, 153, 175]

[Han73] G. Y. Handler. Minimax location of a facility in an undirected
tree graph. Transportation Science, 7:287–293, 1973. [pp. 61, 103]

[Har72] F. Harary. Graph Theory. Addison-Wesley, Boston, MA, USA,
1972. [p. 26]

[HD01] H. W. Hamacher and Z. Drezner. Facility Location: Applications
and Theory. Springer, Berlin, 2001. [p. 30]

[HL88] P. Hansen and M. Labbé. Algorithms for voting and competi-
tive location on a network. Transportation Science, 22(4):278–288,
1988. [pp. 36, 48, 59, 107, 177]

[HN98] H. W. Hamacher and S. Nickel. Classification of location mod-
els. Location Science, 6:229–242, 1998. [p. 31]

185

Bibliography

[Hoc97] D. S. Hochbaum, editor. Approximation algorithms for NP-hard
problems. PWS Publishing Co., Boston, MA, USA, 1997. [p. 131]

[Hot29] H. Hotelling. Stability in competition. The Economic Journal,
39(153):41–57, 1929. [p. 29]

[HT81] P. Hansen and J.-F. Thisse. Outcomes of voting and planning:
Condorcet, weber and rawls locations. Journal of Public Eco-
nomics, 16(1):1–15, 1981. [pp. 30, 47]

[HTW86] P. Hansen, J. F. Thisse, and R. W. Wendell. Equivalence of solu-
tions to network location problems. Mathematics of Operations
Research, 11:672–678, 1986. [pp. 36, 37]

[HTW90] P. Hansen, J.-F. Thisse, and R. E. Wendell. Equilibrium analysis
for voting and competitive location problems. In [MF90], pages
479–501. 1990. [pp. 31, 36, 41, 46, 47, 49, 60, 84]

[KA75] A. N. C. Kang and D. A. Ault. Some properties of a free centroid
of a free tree. Information Processing Letters, 4:18–20, 1975. [p. 148]

[KLP75] H. T. Kung, F. Luccio, and F. Preparata. On finding the max-
ima on a set of vectors. Journal of the ACM, 22(4):469–476, 1975.
[pp. 59, 109, 110]

[KLTW96] T. U. Kim, T. J. Lowe, A. Tamir, and J. E. Ward. On the location
of a tree-shaped facility. Networks, 28(3):167–175, 1996. [pp. 38,
135, 137, 138, 144, 146, 149, 152, 175]

[KMN99] S. Khuller, A. Moss, and J. Naor. The budgeted maximum cov-
erage problem. Information Processing Letters, 70:39–45, 1999.
[pp. 131, 132]

[MF90] P. B. Mirchandani and R. L. Francis. Discrete Location The-
ory. Series in Discrete Mathematics and Optimization. Wiley-
Interscience, New York, USA, 1990. [pp. 30, 185, 186]

[MZH83] N. Megiddo, E. Zemel, and S. Hakimi. The maximum cover-
age location problem. SIAM Journal on Algebraic and Discrete
Methods, 4(2):253–261, 1983. [pp. 36, 118, 119, 136, 154, 177]

[NSW07] H. Noltemeier, J. Spoerhase, and H.-C. Wirth. Multiple voting
location and single voting location on trees. European Journal of
Operational Research, 181(2):654–667, 2007. [p. 20]

186

Bibliography

[PA96] A. P. Punnen and Y. P. Aneja. On k-sum optimization. Oper-
ations Research Letters, 18:233–236, 1996. [pp. 158, 160, 163, 164,
175]

[Pap94] C. M. Papadimitriou. Computational Complexity. Addison-
Wesley, Reading, MA, USA, 1994. [pp. 20, 21, 22, 23]

[PS98] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimiza-
tion. Dover, Mineola, NY, USA, 1998. [pp. 163, 169]

[Sla75] P. J. Slater. Maximin facility location. Journal of National Bureau
of Standards, 79B:107–115, 1975. [pp. 49, 60]

[Slo78] J. L. Sloss. Stable outcomes in majority voting games. Public
Choice, 15:19–48, 1978. [pp. 49, 50, 111]

[SSD07] D. R. Santos-Peñate, R. Suárez-Vega, and P. Dorta-González.
The leader-follower location model. Networks and Spatial Eco-
nomics, 7:45–61, 2007. [pp. 37, 118, 119, 160, 175]

[SU02] M. Schaefer and C. Umans. Completeness in the Polynomial-
time Hierarchy: Part I: A Compendium. ACM Sigact News,
Complexity Theory Column 37, 33(3):32–49, 2002. [pp. 24, 123]

[SW07] J. Spoerhase and H.-C. Wirth. Security score, plurality solution,
and Nash equilibrium in multiple location problems. In ECCO
XX, ECCO XX, 2007. [p. 20]

[SW08] J. Spoerhase and H.-C. Wirth. Approximating (r, p)-centroid on
a path. In CTW, CTW, 2008. [p. 20]

[SW09a] J. Spoerhase and H.-C. Wirth. An O(n (logn)2/ log logn) algo-
rithm for the single maximum coverage location or the (1, Xp)-
medianoid problem on trees. Information Processing Letters,
109(8):391–394, 2009. [p. 20]

[SW09b] J. Spoerhase and H.-C. Wirth. Optimally computing all so-
lutions of Stackelberg with parametric prices and of general
monotonous gain functions on a tree. Journal of Discrete Algo-
rithms, 7(2):256–266, 2009. [p. 20]

[SW09c] J. Spoerhase and H.-C. Wirth. (r, p)-centroid problems on paths
and trees. Theoretical Computer Science, 410(47–49):5128–5137,
2009. [p. 20]

187

Bibliography

[SW10] J. Spoerhase and H.-C. Wirth. Relaxed voting and competitive
location under monotonous gain functions on trees. Discrete
Applied Mathematics, 158:361–373, 2010. [p. 20]

[Tam96] A. Tamir. An O(pn2) algorithm for the p-median and related
problems on tree graphs. Operations Research Letters, 19:59–64,
1996. [pp. 38, 135, 136, 137, 152, 178]

[vT26] J. H. von Thünen. Der isolierte Staat. 1826. [p. 29]

[Web29] A. Weber. Theory of Location of Industries. Chicago University
Press, Chicago, 1929. [p. 29]

[Wie08] J. Wiefel. Approximationsalgorithmen und inkrementelles Ver-
halten für kompetitive Lokationsprobleme. Diploma Thesis,
University of Würzburg, 2008. [pp. 20, 181]

[WM81] R. E. Wendell and R. D. McKelvey. New perspectives in com-
petitive location theory. European Journal of Operational Research,
6(2):174–182, 1981. [pp. 48, 60]

[Yao91] A. C.-C. Yao. Lower bounds for algebraic computation trees
with integer inputs. SIAM Journal on Computing, 20(4):655–668,
1991. [p. 91]

188

	Introduction and Preliminaries
	Introduction
	Preliminaries

	State of the Art and Research Objectives
	A Brief Overview
	A Classification of the Problems Under Investigation
	Previous Results and Research Objectives

	Single Location
	Monotonic Gain Functions
	User Preference
	Competitive Location Problems
	Voting Location Problems
	Relaxed User Preferences
	Generalization to Monotonic Gain Functions
	Concluding Remarks

	Computing a -Solution of a Tree
	Introduction
	Computing the Absolute -Score of a Point
	Computing an Absolute -Solution
	Discussion of Discrete -Solutions
	Strong -Solutions
	Competitor-Sensitive Gain Functions
	Concluding Remarks

	Computing all 0-Bounded Solutions of a Tree
	Leader Independent Monotonic Gain Functions
	Computational Lower Bound for the Absolute Security Set
	Computing the Set of All 0-Bounded Solutions
	Computing All 0-Tolerant Solutions on Trees
	Characterization of 0-Tolerant Solutions for Leader Independent MGFs
	Computing All -Solutions on Trees

	Summary and Further Remarks
	Summary
	Remarks on General Graphs
	Threshold Functions
	Basic Properties of Threshold Functions
	Future research

	Multiple Location
	Multiple Competitive Location on General Graphs
	Introduction and Problem Definition
	Relations Between Absolute and Discrete Model
	Complexity of the Leader Problem
	Approximability
	Conclusion and Further Remarks

	The Follower Problem on Trees
	Tamir's Algorithm
	Single Follower on Trees
	Concluding Remarks

	The Leader Problem on Trees and Paths
	Absolute (r,p)-Centroid on Paths
	Discrete (r,p)-Centroid on Paths
	Discrete (r,p)-Centroid on Trees
	An FPTAS for (r,p)-Centroid on Paths
	(1,p)-Centroid on Trees

	Summary and Further Remarks
	Summary
	Incremental Aspects
	Future Research

