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Abstract 
• English: 

The genus Borrelia belongs to the Spirochaetes phylum which is far related to Gram negative 

bacteria. This phylum possesses a characteristic long helically coiled shape with lengths that 

vary from 5 to 250 μm.  Other pathogens as Treponema and Leptospira which cause syphilis 

and leptospirosis, also belong to the Spirochaetes. Borrelia itself is the causative agent of two 

human diseases, the Lyme disease and relapsing fever. 

Borreliae are pathogenic bacteria which cycle between their arthropod vector, in most cases a 

tick, and a mammal host, very often small rodents. This complex life cycle requires an 

extraordinary protein up- and down-regulation in order to survive in such different organisms 

and avoid their immunologic systems. 

Lyme disease is a multisystemic disease that can affect different organs like skin, joints and 

nervous system. A red rash with concentric rings, called erythema migrans is a distinctive 

manifestation that allows clinical diagnosis. It appears after the bite of an infected tick and 

spreads out to diameters that can reach 15 cm. Relapsing fever is characterized by sudden 

recurrent fever peaks accompanied with chills, headache, muscle and joint pain and nausea. 

Both diseases are easily treated with antibiotics in early infection stages. 

Borrelia species possess a small genome. Many of their genes are related with virulence and 

the adaptation to the different hosts. The absence of genes in Borrelia involved in the 

biosynthesis of amino acids, fatty acids or nucleotide is very remarkable. This metabolic 

deficiency makes Borrelia species dependent on substances produced by the host.  

The first step in nutrient uptake is accomplished by porins. Bacterial porins are water-filled 

channels that facilitate the transport of essential molecules through the outer membrane. 

Four porins have been described in Borrelia up to this point. P66, P13 and Oms28 have been 

found in Borrelia burgdorferi while Oms38 was discovered in relapsing fever spirochetes. P66 is 

a singular porin with an extremely high single channel conductance of 11 nS. P13 is a small 

protein with an α-helical secondary structure which does not fit into the general porin model. 

The function of Oms28 as a porin has been questioned recently due to its periplasmic 

membrane-associated location. Finally, Oms38 is a specific porin for dicarboxilates with 

homologues in Lyme disease species. 
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The aim of this thesis was to broaden the knowledge of the P66 and P13 porins described in 

the genus Borrelia. Both differ in structure and size from the general Gram negative porin 

model and could be highly involved in specific tasks in the genus Borrelia.  

In the first project of this thesis, the presence and pore forming capacity of P66 was studied in 

several Borrelia species including members of the relapsing fever group. P66 is the best 

studied porin in Borrelia with a dual function as porin and adhesin. This knowledge is restricted 

to B. burgdorferi and little or nothing is known about homologues in other Borrelia species. 

Therefore, three Lyme disease and three relapsing fever species were chosen as representative 

agents of the genus and the pore forming activity of their P66 homologues was studied. Five 

out of the six homologues exhibited a similar single channel conductance in a range from 9 to 

11 nS. All of them showed no selectivity for cations or anions, and they were voltage 

dependent starting at different voltages from 30 to 70 mV. Only in the case of the B. hermsii 

homologue no pore forming activity could be established. It remains unclear if the lack of 

activity was due to an evolutionary loss of its porin function or to a higher sensibility to the 

detergents used for purification. 

 In another project, the controversial P66 pore diameter of B. burgdorferi was analyzed with an 

empirical method. In a former study, the diameter of the P66 channel was estimated to be 2.6 

nm based on theoretical considerations. This diameter is rather large and could impair the 

outer membrane protective function. Different non-electrolytes were used to study the P66 

pore diameter indicating a 1.8 nm entrance diameter and a 0.8 nm inner constriction. In 

addition, the blockage of the channel with some of those non-electrolytes disclosed an 

oligomeric organization formed by approximately eight independent channels. Such a 

structure has not been observed so far in any other living organism and could be exclusive of 

Borrelia or spirochetes. 

The third project of this thesis deal with the recombinant production of a B. burgdorferi 

protein with immunogenic potential. This protein might be used to develop new diagnosis 

tests and therapeutic treatments. P13 is an outer membrane protein present in LD and RF 

species and it does not have any other known bacterial homologue. These facts make of P13 a 

good candidate to be used as a therapeutic target. For such purpose, P13 was cloned in two 

organisms. First, in Escherichia coli were two different constructs were designed to establish 

the role of a periplasmic cleaved C-terminus. Second, in a virus based vector delivered by 

Agrobacterium tumefaciens into tobacco plant cells. The vector replicates inside the plant cells 

spreading the infection to adjacent cells and at the same time producing the recombinant 
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protein. This second expression method should enable the production of large amounts of the 

recombinant protein reducing time and costs. 

The last project of this thesis looked into the outer membrane complexome of B. burgdorferi 

focusing on the P13 and P66 porin complexes. Blue Native Page and second dimension 

SDS-Page were the technique chosen for this purpose. P66 could be shown to be the only 

protein involved in the formation of the 11 nS pore which complex is probably formed by eight 

monomers. It was also possible to divide this complex in two halves with approximately half 

the molecular weight and a conductance of 5.5 nS. In the case of the P13 complex, a possible 

association with the lipoprotein OspC was revealed. The gel extraction of the P13 complex and 

its test with the Back Lipid Bilayer assay exhibited a 0.6 nS activity. This is in high contrast with 

the 3.5 nS activity previously described for this protein. 

To sum up, P66 is a porin present in many Borrelia species including not only LD but also RF 

species and which homologues show similar biophysical properties. The diameter of this pore 

is smaller than previously thought and it has molecular weight sieving properties. In the case of 

P13, its recombinant procurement will allow the use of P13 as a diagnostic and therapeutic 

target. The possible association with OspC could facilitate to unravel in future experiments the 

function of this intriguing protein. 
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• Deutsch: 

Die Gattung Borrelia gehört zur Familie der Spirochaetes, welche sich den Gram-negativen 

Bakterien zuordnen lassen. Für diese Familie charakteristisch ist eine längliche, helikale Form, 

die Längen von 5 – 250 µm erreichen kann. Den Spirochaeten gehören diverse Pathogene an 

wie Treponema und Leptospira, die Erreger der Syphillis und der Leptospirose. Borrelien 

verursachen beim Menschen zwei schwere Krankheiten: Die Lyme-Borreliose (LB) und das 

Rückfallfieber (RF). 

Als Pathogen besitzen Borrelien einen Lebenszyclus, in dem sie zwischen Gliederfüßern als 

Vektoren und Säugetieren (oft kleinen Nagetieren) als Wirt wechseln. Um das Überleben in 

derart unterschiedlichen Organismen zu sichern und die Immunantwort des Wirtes zu 

unterdrücken, benötigt ein Organismus mit einem solch komplexen Lebenszyklus eine 

außergewöhnliche Regulierung der Proteinexpression.  

Die Lyme-Borelliose stellt eine multisystemische Krankheit dar, die verschiedene Organe, wie 

Haut, Gelenke und das Nervensystem betreffen kann. Häufig kommt es zu einer sich 

kreisförmig ausbreitenden Rötung, die erythema migrans genannt wird, die zur klinischen 

Diagnose genutzt wird. Sie erscheint nach einem Zeckenbiss und kann einen Durchmesser von 

bis zu 15 cm weit erreichen. Rückfallfieber erkennt man an plötzlich auftretenden 

Fieberschüben, die von weiteren Symptomen wie Schüttelfrost, Kopfschmerzen, Muskel und 

Gelenkschmerzen oder Übelkeit begleitet werden. Beide Krankheiten können in frühen Stadien 

der Infektion leicht mit der Gabe von Antibiotika behandelt werden. 

Die verschiedenen Arten der Gattung Borrelia besitzen ein relativ kleines Genom. Da 

außerdem viele der vorhandenen Gene für Virulenzfaktoren und wirtsspezifische Anpassungen 

codieren, fehlen den Borrelien wichtige Genen für die Biosynthese von Aminosäuren, 

Fettsäuren oder Nukleotiden. Diese metabolischen Defizite werden durch die Aufnahme von 

durch den Wirt produzierten Nährstoffen ausgeglichen. 

Den ersten Schritt der Nährstoffaufnahme übernehmen Porine. Dies sind wassergefüllte 

Kanäle, die die Aufnahme und den Transport von essentiellen Molekülen über die äußere 

Membran ermöglichen. P66, P13 und Oms28 wurden bei Borrelia burgdorferi, Oms38 bei 

Rückfallfieber verursachenden Spirochaeten gefunden. P66 ist ein einzelnes Porin mit einer 

extrem hohen Leitfähigkeit von 11 nS. P13 ist ein kleines Protein (13kDa) mit einer α-helikalen 

Sekundärstruktur, die keinerlei Ähnlichkeit zu den bisherigen Modellen von bekannten Porinen 
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aufweist. Aufgrund seiner Assoziation mit der periplasmatischen Seite der Membran wurde die 

Funktion als Porin für Oms28 in letzter Zeit stark angezweifelt. Oms38 ist ein Dicarboxylat-

spezifisches Porin mit Homologen bei Lyme-Borreliose verursachenden Arten. 

Das Ziel der vorliegenden Arbeit war das vorhandene Wissen über P66 und P13 als Porine der 

Gattung Borrelia zu erweitern. Die beiden Proteine unterscheiden sich strukturell stark von 

den bisher bekannten Porine Gram-negativer Bakterien und sind daher geeignete 

Forschungsobjekte, um die speziellen Anforderungen an Borrelienporinen zu erforschen. 

Das Ziel dieser Arbeit war die Erforschung der beiden in Borrelien beschriebenen Proteine P66 

und P13. Gerade weil sich beide in Aufbau und Größe von bekannten Porinen Gram-negativer 

Bakterien unterscheiden und somit in spezifische Prozesse bei der Gattung Borrelia involviert 

sein könnten, ist die Forschung auf diesem Gebiet auch weiterhin von höchstem Interesse. 

Im ersten Projekt dieser Arbeit wurden das Vorkommen und die porenformende Aktivität von 

P66 in verschiedenen Borrelia-Arten (Lyme-Borreliose und Rückfallfieber) untersucht. Bei P66 

handelt es sich um das am besten untersuchte Porin der  Borrelien, das eine Doppelfunktion 

als Porin und als Adhesin besitzt. Da sich alle bisherigen Ergebnisse auf B. burgdorferi 

beziehen, ist wenig bis gar nichts über homologe Proteine in anderen Borrelien-Arten bekannt. 

Deswegen wurden jeweils drei Arten, die Lyme-Borreliose und Rückfallfieber verursachen, 

ausgewählt und an deren P66-Homologe die porenformende Aktivität überprüft. Fünf von 

sechs zeigten dabei eine ähnliche Einzelkanalleitfähigkeit wie P66, die im Bereich von 9 – 11 nS 

lagen, bei gleichzeitig kaum vorhandener Selektivität für eine bestimmte Ionensorte. Auch eine 

Spannungsabhängigkeit, die bei 30 – 70 mV begann, war messbar. Nur im Fall von B. hermsii 

konnten keine Poren gefunden werden. Dabei ist noch nicht geklärt, ob das Fehlen der 

porenbildenden Aktivität einem evolutionären Verlust der Funktion als Pore oder einer 

höheren Anfälligkeit gegenüber den verwendeten Detergenzien geschuldet ist. 

In einem weiteren Projekt wurde der kontrovers diskutierte Porendurchmesser von P66 aus 

B.burgdorferi mit empirischen Mitteln analysiert. In früheren theoretischen Studien wurde der 

Kanaldurchmesser auf 2,6 nm geschätzt. Dieser sehr große Durchmesser würde allerdings die 

Schutzfunktion der Außenmembran verhindern. Mit Hilfe von ungeladenen Substanzen gelang 

eine Bestimmung des Innendurchmessers von P66 auf 1,8 nm am Eingang und 0,8 nm an der 

Engstelle der Pore. Zusätzlich führte eine unerwartete Blockierung der Pore durch einige dieser 

Substanzen zu der Erkenntnis, dass P66 einen oligomeren (wahrscheinlich oktameren) Aufbau 

besitzt. Ein solcher Aufbau konnte bisher noch nie nachgewiesen werden und könnte von 

daher ein einzigartiges Merkmal von Borrelien oder Spirochaeten sein. 
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Das dritte Projekt beschäftigte sich mit der rekombinanten Produktion eines Proteins von B. 

burgdorferi mit immunogenen Eigenschaften. Dieses könnte dazu verwendet werden, neue 

Diagnose Tests und Therapien zu entwickeln. P13 kommt in verschiedenen LB- und RF-Arten 

vor und besitzt kein bekanntes bakterielles Homolog. Diese Fakten machen aus P13 einen 

geeigneten Kandidaten als therapeutisches Ziel. Aus diesem Grund wurde das P13-Gen in zwei 

unterschiedliche Organismen kloniert. Zum einen in E. coli, wo zwei verschiedene Konstrukte 

zur Klärung der Rolle des periplasmatisch verdauten C-Terminus dienen sollten. Zum anderen 

in Tabakpflanzen über Agrobacterium tumefaciens, mittels eines Virus. Dabei vermehrt sich 

der Vektor in den Zellen der Pflanze, breitet sich aus und produziert gleichzeitig das 

gewünschte Protein. Mit Hilfe dieser zweiten Expressionsmethode sollte es möglich sein, große 

Mengen des rekombinanten Proteins zu erzeugen und gleichzeitig die Kosten und den 

Zeitbedarf zu senken. 

Das letzte Projekt beschäftigte sich mit dem Außenmembran-Komplexom von B. burgdorferi 

und konzentrierte sich dabei auf die Komplexe von P13 und P66. Blue Native PAGE und 2D-SDS 

PAGE wurden als Techniken ausgewählt. Es konnte gezeigt werden, dass P66 das einzige 

Protein ist, das am vermutlich oktameren Aufbau der 11 nS Pore beteiligt ist. Zusätzlich gelang 

es, den Komplex in zwei Hälften zu spalten, die ungefähr das halbe Molekulargewicht bei einer 

Leifähigkeit von 5,5 nS zeigten. Im Fall des P13-Komplexes konnte eine mögliche Verknüpfung 

mit OspC entdeckt werden. Die Gelelution des Komplexes und anschließende Tests mit Hilfe 

der Black-Lipid-Bilayer-Methode ergaben eine Aktivität von 0,6 nS. Dies steht im starken 

Gegensatz zu der vorher für P13beschriebenen Größe von 3,5 nS. 

Zusammenfassend lässt sich sagen, dass P66 ein in vielen Borrelienarten vorkommendes und 

damit weit verbreitetes Porin mit Homologen in LB- und RF-Spezies ist, die ähnliche 

Charakteristika besitzen. Der Durchmesser dieser Pore konnte unter Berücksichtigung der 

Eigenschaften eines molekularen Siebes genauer bestimmt werden. Im Fall von P13 könnte 

dessen rekombinante Produktion es erlauben, dieses Protein als Hilfsmittel zur Diagnose und 

zur medizinischen Therapie einzusetzen. Zusätzlich könnte der gefundene Bezug zu OspC dazu 

beitragen, in Zukunft mehr über die Funktion dieses interessanten Proteins herauszufinden. 
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• Español: 

El género Borrelia pertenece al filo Spirochaetes, que esta lejanamente relacionado con las 

bacterias Gram negativas. Este filo posee una forma característica enroscada con longitudes 

que varían desde los 5 hasta los 250 μm. Otros patógenos como Treponema y Leptospira, 

agentes etiológicos de la sífilis y la leptospirosis, pertenecen también a filo Spirochaetes. 

Borrelia por su parte puede producir dos enfermedades, la enfermedad de Lyme o fiebres 

recurrentes. 

Las especies de Borrelia son agentes patógenos cuyo ciclo de vida transcurre entre un vector 

artrópodo, en la mayoría de los casos una garrapata, y un hospedador mamífero, en muchos 

casos pequeños roedores. Este complejo sistema de vida requiere una extraordinaria 

regulación proteica para poder sobrevivir en organismos tan diversos y a su vez poder esquivar 

su sistema inmunológico. 

La enfermedad de Lyme es una enfermedad que afecta a diversos órganos incluyendo entre 

otros la piel, las articulaciones y el sistema nervioso. Una erupción roja con anillos 

concéntricos, denominada eritema migrans, es una manifestación típica que permite un 

diagnostico clínico. Aparece después de la picadura de la garrapata y se va extendiendo hasta 

alcanzar diámetros de hasta 15 centímetros. Las fiebres recurrentes se caracterizan por picos 

febriles que aparecen repentinamente y que van acompañados de escalofríos, dolor de 

cabeza, dolor muscular y de las articulaciones, así como de nausea. Ambas enfermedades son 

fáciles de tratar con antibióticos en estadios tempranos de la infección. 

Las especies de Borrelia poseen un genoma muy reducido. Además, muchos de sus genes 

están relacionados con su virulencia y con la adaptación a los diferentes organismos en los que 

viven. La ausencia de genes relacionados con la biosíntesis de aminoácidos, ácidos grasos y 

nucleótidos resulta sorprendente. Esta deficiencia metabólica hace de las especies de Borrelia 

dependientes de las sustancias producidas por el hospedador. 

El primer paso en la captación de alimentos en bacterias es realizado por las porinas. Las 

porinas bacterianas son canales rellenos de agua que permiten el transporte de sustancias 

esenciales a través de la membrana externa. Hasta la fecha, cuatro porinas han sido descritas 

en el género Borrelia. P66, P13 y Oms28 fueron encontradas en Borrelia burgdorferi mientras 

que Oms38 fue descubierta en especies que causan fiebres recurrentes. P66 es una porina 

atípica por una conductancia fuera de lo común de 11 nS. P13 es una pequeña proteína de 13 
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kDa con una estructura secundaria en α-hélice que no encaja en el modelo general de porina. 

La función de Oms28 ha sido puesta en tela de juicio recientemente debido a una posible 

localización periplásmica asociada a la membrana externa. Finalmente, Oms38 es una porina 

con especificidad por los dicarboxilatos con homólogos en las especies que causan la 

enfermedad de Lyme. 

El objetivo de esta tesis era ampliar el conocimiento de las porinas P66 y P13 descritas en el 

género Borrelia. Ambas difieren en estructura y tamaño del modelo general de porina en 

bacterias Gram negativas y por lo tanto podrían tener un papel muy relevante en este género. 

En el primer proyecto de esta tesis la presencia y capacidad formadora de poros de P66 fue 

estudiada en varia especies incluyendo miembros del género que causan fiebres recurrentes. 

P66 es la porina mejor estudiada en Borrelia, con una función dual como porina y adhesina. 

Este conocimiento está restringido a B. burgdorferi y nada o muy poco es conocido sobre sus 

homólogos en otras especies de Borrelia. Por ello, tres especies representantes de la 

enfermedad de Lyme y tres de las fiebres recurrentes fueron seleccionadas como 

representantes del género y la capacidad formadora de poros de sus homólogos de P66 fue 

estudiada. Cinco de los seis homólogos mostraron una conductancia de canal en un rango de 

entre 9 y 11 nS. Todos ellos resultaron ser no selectivos para cationes o aniones y una 

dependencia de voltaje comenzando a diferentes voltajes desde 30 a 70 mV. Tan solo en el 

caso del homólogo de B. hermsii no pudo ser establecida una actividad formadora de poros. Se 

desconoce si la falta de esta capacidad para formar poros es consecuencia de una perdida de 

la función como porina a lo largo de la evolución o si por el contrario este homólogo es más 

sensible a la presencia de los detergentes que se requieren para el proceso de purificación. 

En otro proyecto, el controvertido diámetro del poro formado por P66 en B. burgdorferi fue 

analizado con un método empírico. En un estudio previo, el diámetro de P66 fue estimado en 

2,6 nm basándose exclusivamente en consideraciones teóricas. Este diámetro para un poro es 

considerablemente grande y podría afectar a la función protectora de la membrana externa. 

Varios no electrolitos fueron usados para estudiar el diámetro del poro formado por P66 

poniendo de manifiesto un diámetro de la entrada del poro de 1,8 nm y una constricción 

interna de 0,8 nm. Además, el bloqueo del canal por alguno de los no electrolitos reveló una 

conformación oligomérica formada por aproximadamente ocho canales independientes 

asociados en un solo complejo. Una estructura tal no había sido previamente observada en 

ningún otro organismo y podría ser exclusiva de Borrelia o de las espiroquetas. 
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El tercer proyecto de esta tesis se centró en la producción recombinante de una proteína de 

B. burgdorferi con potencial inmunogénico. Esta proteína podría ser usada en el desarrollo de 

nuevas estrategias de diagnóstico y terapias. P13 es una proteína situada en la membrana 

externa de especies causantes de la enfermedad de Lyme y las fiebres recurrentes y no se 

conoce ningún otro homologo en otra bacteria. Esto hace de P13 un buen candidato para ser 

usado como diana terapéutica. Para tal fin, P13 fue clonado en dos organismos. Primero, en 

Escherichia coli donde dos injertos diferentes fueron diseñados para esclarecer la función de 

un péptido C-terminal digerido en el preriplasma. Y segundo, en un vector basado en el virus 

de la patata introducido en las células de la planta del tabaco a través de Agrobacterium 

tumefaciens. Este vector se replica dentro de las células vegetales infectando a las adyacentes 

a la vez que produce la proteína recombinante. Este segundo método hace posible la 

producción de grandes cantidades de la proteína recombinante reduciendo tiempo y costes. 

La ultima parte de esta tesis profundiza en el estudio de los complejos proteicos en la 

membrana externa de Borrelia burgdorferi centrándose en P13 y P66. Blue Native Page y 

SDS-Page en segunda dimensión fueron las técnicas elegidas para tal propósito. Se demostró 

que P66 era exclusivamente la responsable de la formación del complejo que forma poros de 

11 nS y que probablemente se trate de un octámero. Fue posible dividir el complejo en dos 

partes iguales con la mitad del peso molecular y una conductancia de 5,5 nS lo que denota una 

cierta simetría. En el caso del complejo formado por P13, una posible relación con la 

lipoproteína OspC fue puesta de manifiesto. La extracción del complejo formado por P13 y su 

análisis en membranas artificiales mostró una actividad formadora de poros de 0,6 nS. Este 

resultado contradice la conductancia de 3,5 nS atribuida a P13 en un estudio previo. 

En conclusión, P66 es una porina presente en muchas especies de Borrelia incluyendo no solo 

miembros causantes de la enfermedad de Lyme, sino también de las fiebres recurrentes y 

cuyos homólogos presentan propiedades biofísicas similares. El diámetro de este poro es más 

pequeño de lo que se consideraba actuando como filtro de sustancias en referencia a su peso 

molecular. En el caso de P13, su producción recombinante permitirá su uso para desarrollar 

nuevos test de diagnóstico más seguros y terapias contra la infección por esta bacteria. La 

posible asociación con OspC podría facilitar esclarecer en futuros experimentos la función de 

esta proteína tan fascinante. 
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1.1 The genus Borrelia 

1.1.1 Characteristics 

The genus Borrelia is included in the Spirochaetacea family. It is composed by 37 species 

described to the present. They have a very characteristic long and screwed shape [1] (Fig. 1-1). 

The size of an individual cell goes from 8 to 30 µm in length and from 0.2 to 0.5 µm wide. 

 

Fig. 1-1: Dark-field microscope image of 

B. burgdorferi cultivated in the laboratory. 

 

 

 

They have a peculiar small genome. Each cell holds a 0.9 Mbp chromosome and a set of linear 

and circular plasmids up to 21 described for B. burgdorferi B31 MI [2, 3]. The C+G content is 

around 27%. Having a reduced genome decreases the metabolic capacity of these species, 

which force them to live in association with a host that provides essential nutrients and 

substances [4-7]. 

Also typical from this genus is the periplasmic endoflagella. They are situated in both ends of 

the cells in groups of 7 to 11 endoflagella and they coil around the cell in the periplasmic 

space[8-10]. These flagella rotate around the longitudinal axis propelling the cell forward 

which makes Borrelia exhibit chemotaxis [11]. 



Introduction 

- 23 - 
 

Borrelia in vitro culture is complicated and it is cultivated in a rich growth medium called 

Barbour-Stoenner-Kelly II (BSK II) supplemented with rabbit serum [12]. The generation time of 

Borrelia is around 10 hours, much slower than the around 40 minutes required by E. coli [13].  

Is also distinctive the fact that Borrelia had antigenic variation which helps avoiding the host 

immune system [14]. 

 

1.1.2 Classification 

Spirochetes have been included in the group of the Gram negative bacteria because of 

possessing an outer membrane although they have many particular characteristics [15]. Inside 

this Phylum several genus are included like Treponema, Leptospira, Brachyspira and Borrelia. 

Borrelia is the subject of study in this thesis and it is as following classified: 

 

Kingdom Bacteria 

Phylum Spirochaetes 

Class Spirochaetes 

Order Spirochaetales 

Family Spirochateaceae 

Genus Borrelia 

Table 1-1: Classification of the genus Borrelia. 

 

1.2 Human infection 

The genus Borrelia is known to cause two illnesses, the Lyme disease and relapsing fever. Both 

of them affect several organs like skin, joints, heart and brain. 

 

1.2.1 Lyme disease and Relapsing Fever symptoms 

The Lyme disease, also called borreliosis, is a multisystemic illness caused by some Borrelia 

species, among them B. burgdorferi, B. afzelii and B. garinii are the major agents. 
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Lyme disease symptoms: 

• Erythema migrans: is a rash appearing as several annular rings that expand on the skin 

(Fig. 1-2). 

• Acrodermatitis chronica athropicans: It appears in the late stage of the disease and is 

characterized by limb inflammation and a bluish red discoloration (Fig. 1-3). 

• Arthritis 

• Paralysis  

• Heart damage 

• Vision problems 

 

Relapsing fever is also a multisystemic disease with a typical symptomatology. It is caused 

mainly by B. duttonii, B. hermsii and B .recurrentis. 

 

Relapsing fever symptoms: 

• Periods of high fever due to spirochetemy. 

• Headache, muscle- and rheumatic pains 

that can last 2 to 9 days. 

• Clouding of consciousness 

• Brain and meninges inflammation 

 

Fig. 1-2: Erythema migrans on 
the shoulder of a patient. 

Fig. 1-3: Acrodermatitis chronica 
athropicans. 

Fig. 1-4: Fever cycles typical of infections due RF 
spirochetes. 
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1.2.2 Lyme disease species and relapsing fever species 

Inside the Borrelia genus the different species are commonly divided depending on the illness 

they caused as seen in Table 1-2. 

 

Relapsing fever Lyme disease 

 

B. recurrentis 

B. hispanica 

B. crocidurae 

B. persica 

B. duttonii 

B. hermsii 

B. turicatae 

B. parkeri 

B. uzbekistania 

B. venezuelensis 

B. anserina 

B. coriaceae 

B. lonestari 

etc. 

 

 

B. burgdorferi s.s. 

B. garinii 

B. afzelli 

B. japonica 

B. andersonii 

B. valaisiana 

B. lusitaniae 

etc. 

 

Table 1-2: Classification of Borrelia species depending on the human illness they produce. 

 

1.2.3 History of Lyme disease and relapsing fever. 

Lyme disease 

Is common the mistake of thinking that the first Lyme disease report was from Lyme 

(Connecticut) during the 70s when Allen Steere described a high incidence of arthritis among 

children of this location [16]. 

The first record known of the disease is from 1883 in Breslau, Germany. Back then, a physicist, 

called Alfred Buchwald described a skin degenerative disorder called now acrodermatitis 

chronica athropicans [17]. 
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Later experiments carried out by a Swedish dermatologist called Arvid Afzelius showed a 

possible relation between the bite of a tick and the skin lesions that appeared short afterwards 

[18]. In the early 80s, Willy Burgdorfer proved the relation between the disease and a bacteria 

transmitted by the tick when he discovered the bacteria during examinations of Ixodes 

midguts [19, 20]. 

After that discovery, the transmission from vector to host was better studied, and nowadays 

genetic and molecular studies are being carried out to better understand the biology of 

Borrelia. 

 

Relapsing fever 

The first known records of relapsing fever go back to the ancient Greece. This illness was 

known for some doctors back then and the first clinical disease descriptions coincident with 

this illness have been documented by Hippocrates [21]. At that time, it was designated as 

“ardent fever”. 

During the following centuries different fever outbreaks may have been relapsing fever as well. 

Those outbreaks were called with different names as “tramp’s fever”, “gharib ghez”, 

“kimputu”. The term “Relapsing fever” was first used by David Craigie [22] to describe an 

outbreak of this illness in Edinburgh.  

In 1868 a German researcher called Otto Obermeier finally identifies in Berlin the cause of 

relapsing fever. He observed long bacteria mixed with blood cells [23] but was unable to 

explain the transmission of the spirochetes. This bacterium was called in his honour Spirocheta 

obermeieri, later known as Borrelia recurrentis. 

Dutton and Todd demonstrated the transmission of relapsing fever spirochetes using 

Ornithodoros moubata and a monkey model [24]. This finding was a consequence of Dutton 

getting infected [25]. He injured himself while performing an autopsy on a patient who had 

died from this disease and died himself from relapsing fever. 

Sergent and Foley identified in 1910 a second vector for transmission of relapsing fever 

spirochetes. They described that Borrelia could also be transmitted by human body louse [26]. 
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1.3 Vectors and Hosts. 

The main Borrelia transmission vectors are ticks of two genera. Lyme disease Borrelia species 

are transmitted by ticks of the genus Ixodes [19] while relapsing fever Borrelia species are 

transmitted by the genus Ornithodoros [27]. In the case of B. recurrentis a different 

transmission vector has been described. B. recurrentis is transmitted by the human body louse 

[28](Fig. 1-5). 

 

 

Fig. 1-5: Borrelia transmission vectors. A) Ixodes scapularis, which transmits Lyme 

disease Borrelia species, B) Ornithodoros moubata, transmission vector of relapsing 

fever Borrelia species and C) Pediculus humanus, vector for B. recurrentis. 

There are some differences in the way these two ticks spread the infection. Ixodes feeds on 

the mammal for long periods that last even days. On the other hand, Ornithodoros feeds much 

faster, usually during night periods leaving the host within a few hours. Transmission of the 

bacteria from the tick to the host takes hours in the case of Lyme disease species but only 

minutes in the case or relapsing fever species [29]. 

 

1.3.1 Borrelia life cycle: 

The species of the genus Borrelia are dependent bacteria that can only be found in association 

with its vectors and hosts. The vectors get the bacteria when they feed in an infected animal. 

From that moment, the bacteria will stay in the vector as well as it will infect other animals the 

tick feeds on. 

While the vectors are limited to ticks and the human body louse, the host can be a wide range 

of mammals and birds [6]. The larvae and nymph usually prefer small rodents like mouse and 

A B CA B C
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squirrels while the adults feed on bigger animals like deers, foxes and dogs. Humans are not a 

common host, but whenever they get infected they suffer from two possible diseases. 

The population of Borrelia is maintained in certain areas by the so called reservoirs (Fig.1-6). 

Those are usually small rodents that live in a restricted area, normally a forest, and they 

transmit the bacteria when new larvae or nymphs feed on them [6]. 

 

Fig. 1-6: Simplified Borrelia life cycle. Borrelia persists in small rodents infected with a 

high incidence denominated reservoirs. Tick vectors spread Borrelia to new mammal 

host, including deers, birds, dogs and even humans. Lime disease Borrelia species are 

transmitted by hard body ticks (Ixodes, central panel, above) and relapsing fever by 

soft body ticks (Ornithodoros, central panel, below). 

 

The life cycle of B. recurrentis and B. duttonii is somehow different. B. recurrentis is 

transmitted along with the human louse [28]and B. duttonii has humans as the only mammal 

host [30, 31]. 
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1.3.2 Borrelia world distribution 

The development of national health systems and international research nets allows the 

compilation of infection outbreaks and the production of distribution maps. Depending on the 

illness they cause Borrelia has different distribution zones. 

In the following map, the zone marked in blue corresponds to countries where Lyme disease 

cases have been reported. This illness is typical of two parallel zones in North America and a 

long stripe taking most of Europe and the central part of Asia (Fig. 1-7)[6]. 

 

Fig. 1-7: Word distribution of Lyme disease Borrelia species. 

Relapsing fever distribution is showed in the map of Fig. 1-8 .The species causing this illness 

are localized in Africa, Asia, Europe as well as Central America and Mexico [32]. 

 

Fig. 1-8: World distribution of relapsing fever Borrelia species. 
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1.4 Outer membrane in Borrelia 

Spirochetes belong to the Gram-negative bacteria even though they differ from the general 

model in many aspects. 

The genus Borrelia has two membranes and a periplasmic peptidoglycan layer as all Gram-

negative bacteria. In Borrelia, the flagellum is also found in this space, which is a peculiar 

characteristic of spirochetes (Fig. 1-9). 

One big difference between the Gram-negative bacteria and the spirochetes is the absence of 

lipopolysaccharides [33, 34]. Instead of them, the outer membrane in this genus is very rich in 

lipoproteins which are the primary interface between the bacterium and the host [35]. Borrelia 

outer membrane is considerably more fluid than in other Gram negative bacteria. They also 

possess a lower density of membrane spanning proteins [36, 37]. Porins, the focus of this 

thesis, are also found in the outer membrane of spirochetes with remarkable and unique 

characteristics. 

 

Fig. 1-9: Schematic comparison of the outer membrane in E. coli and B. burgdorferi. As 

mayor differences it can be appreciated the replacement of lipopolysaccharides in 

Escherichia by lipoproteins in Borrelia and a decrease in this last one of membrane 

spanning proteins. 
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1.5 Porins in Gram negative bacteria and porins in 

Borrelia 

Porins are a group of proteins located in the outer membrane of Gram negative bacteria that 

facilitate the transit of substances between the surrounding environment and the periplasmic 

space. Porins are also found in mycobacteria, chloroplasts and mitochondria [38, 39]. 

Porins form channels filled with water that allow a passive transport of molecules down their 

concentration gradient [40, 41]. The transport through the outer membrane does not require 

the use of energy in contraposition with the substrate translocation via transporters in the 

inner membrane. 

Most of the porins described to date form β barrels from antiparallel β sheets. Frequently, 

they are associated in oligomers that confer to the whole complex a higher stability (Fig. 1-10). 

In the outer membrane of Gram negative bacteria, channel-tunnel proteins like TolC in 

Escherichia and BesC in Borrelia are also found. They form pores in the outer membrane and 

are part of bigger complexes involved in drug-resistance known as efflux pumps. 

 

 

 

 

Fig. 1-10: Three examples of pore forming 

outer membrane proteins. Tsx is a 

monomeric specific porin for nucleosides 

[42], OmpC is a trimeric general diffusion 

pore [43] and TolC is a trimeric protein 

complex part of an efflux system [44]. 

OmpC forms a complex with three 

independent pores while trimeric TolC 

forms only one. All of them are described 

in E. coli. 
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Porins can be classified depending on the kind of molecules they transport [45]: 

General diffusion porins: are perforations in the outer membrane of bacteria that 

allow the transport of small molecules, ions and water. Examples of this kind of porins 

are OmpF and OmpC in E. coli [40]. 

Substrate-specific porins: are those porins that are specialized in the transport of 

certain molecules. Tsx is an example of this kind of porins in E. coli that is specialized in 

the nucleoside transport from the surrounding media to the periplasmic space [46, 

47]. Other examples include porin with specificity for sugars [48], phosphate [49]and 

antibiotics [50].  

 

1.5.1 Porins in Borrelia 

To this point, three porins have been identified in B. burgdorferi and one in relapsing fever 

species. Those are P66, P13 and Oms28 in B. burgdorferi and Oms38 in B .duttonii. 

P66 is a porin with an unusual high single channel conductance of around 11 nS [51, 52]. The 

biophysical characterization showed no ion selectivity and a voltage dependency above 60 mV. 

It has also been described a second function of this protein as an adhesin that binds integrins 

[53-55]. 

P13 has also been described as a porin in Borrelia [56]. However, many aspects of this porin 

remain unsolved such as its possible specificity for substrates or its molecular structure. It has 

a high number of paralogues that are potentially interchangeable with P13 [57, 58]. The 

biophysical analysis of P13 showed cation selectivity and no voltage dependency [56]. 

Oms28 was described as a porin with a conductance of 0.6 nS in 1M KCL [59]. Recent studies 

have questioned the function of this protein as a porin [60, 61]. 

Oms38 is the latest porin described in Borrelia. It has a small conductance of around 80 pS 

[62]. Homologues of this protein have also been found in LD species with similar pore forming 

activity (Thein, M.; unpublished data). 
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Methods 
 

 

 

 

2.1 Borrelia outer membrane isolation 

The outer membrane of Borrelia, also known as B-fraction [63] is obtained through a 

collaboration project with Prof. Dr. Sven Bergström from the Molecular Biology department of 

the University of Umeå. In this department, Borrelia species were cultivated and the outer 

membrane was isolated following the slightly modified protocol given elsewhere [63]: 

• Borrelia strains were cultivated in BSKII medium supplemented with 6% rabbit 

serum for Lyme disease strains and 10% rabbit serum plus 1.4% gelatin for 

relapsing fever strains. They were kept at 37 °C until cell density reached 

approximately 107-108 cells/ml. 

• 1 liter of BSK II medium was centrifuged at 9000 g for 20 min. at 4°C. 

• The cells were washed with 50ml TSM buffer and centrifuged at 9000 g for 15 min. 

at 4°C. 

• 1,2 ml of 8% octyl-β-D-glucopyranoside (OGP) in TSEA buffer was added to the 

washed cells and incubated 60 min. at 37°C 

• Cell lisates were centrifuged at 48000 g during 30min at 25°C 

• Supernatant was collected and incubated for 30 min at 56°C 

• The solution was centrifuged at 48000 g, 30 min. at 25°C 

• Supernatant was filtered through a nitrocellulose filter with a 0.45 µm pore 

diameter. 

• The filtered solution was dialyzed at 4°C in H2O during 48H. 

• The solution was centrifuged at 48000 g during 30 min. at 25°C. 

• The supernatant was discarded and the pellet was resuspended in 1ml H2O. 

• The pellet contained the outer membrane and was conserved at -20°C. 
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2.2 Fast Performance Liquid Chromatography 

The Fast Performance Liquid Chromatography (FPLC) is a common technique used in the 

laboratory to purify or separate proteins from a complex mixture. The diluted samples flow 

through a stationary phase made of gel beads. Depending on the properties of the beads used 

the proteins can be separated base on their size, hydrophobicity, charge or affinity to certain 

compounds. A pressure is applied to accelerate the process. 

 The eluted proteins are collected in different Eppendorf tubes in defined time intervals. In this 

way, the proteins are separated in different fractions. Fractions containing proteins are 

detected by a UV detector that shows a protein elution peak in the register. 

In this thesis, B-fractions were purified using different columns: 

• MonoQ 5/50 GL, Amersham Biosciences. Anion exchange chromatography. The 

matrix is positively charged binding proteins charged negatively. Using a salt 

gradient (0-1 M NaCl) the proteins are eluted and separated depending on their 

negative charge. 

• SuperdexTM 75 10/300, GE Healthcare. Gel filtration column used to separate 

proteins base on their size. 

To identify how many proteins were contained in each fraction and its molecular weight, SDS-

Page was performed. Low concentrated proteins samples were concentrated by the 

Wessel-Flügge method. 

 

2.3 Wessel-Flügge protein precipitation 

Some FPLC fractions contained diluted proteins. Sometimes, in order to see clearly some 

protein bands in SDS-Page bigger samples volumes were concentrated. The concentration 

method used was previously described by D. Wessel and U. I. Flügge [64] and it was performed 

as following described: 

• 400 µl of methanol were added to 100 µl of sample. The sample was mixed shortly 

using a vortex and centrifuged 10 s at 8600 g. 

• 100 µl of chloroform were added. The mixture was vortexed and centrifuged 10 s 

at 8600 g. 
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• 300 µl of H2Odd were added and mixed with a vortex. The sample was then 

centrifuged 1 min at 8600 g. 

• At this point, two phases could be observed in the sample. In the interphase were 

located the proteins. The supernatant was removed carefully with a Pasteur 

pipette avoiding the disruption of the interphase. 

• 300 µl methanol were added to the remaining solution and homogenized using a 

vortex. The sample was centrifuged 10 min at 8600 g. 

• The supernatant was discarded and the pellet, where the proteins were, was dried 

at room temperature approximately for one hour. 

 

2.4 SDS-Page 

Sodium Dodecyl Sulfate Polyacrylamide gel electrophoresis (SDS-Page) is a technique widely 

used in molecular biology to separate proteins according to their molecular weight. When a 

protein mixture is heated to 100 °C in presence of SDS, the detergent wraps around the 

polypeptide backbone. It binds to polypeptides in a constant weight ratio of 1.4 g/g of 

polypeptide. In this process, the intrinsic charges of polypeptides become negligible when 

compared to the negative charges contributed by SDS. These polypeptides after treatment 

become a rod like structure possessing a uniform charge density that has the same net 

negative charge per unit length. Mobilities of these proteins will be a linear function of the 

logarithms of their molecular weights. 

The SDS-Page has two regions. The upper part of the gel is the stacking gel and the lower part 

is called resolving gel. In this thesis, the stacking gel had always a 3% acrylamide concentration 

and the resolving gel had either 12% or 15% acrylamide (when not otherwise specified). 12% 

acrylamide gels were used with P66 samples while P13 samples were better visualized in 15% 

acrylamide gels.  

The SDS-Page in this thesis was performed according to the Laemmli gel system [65]. The 

samples were mixed with a reducing sample buffer (Redmix) prior to load the gel. The voltage 

used was 80 mV through the stacking gel and 120 mV through the resolving gel. 

LMW-marker (Amerham Biosciences) was used in most of the gels. Prestained PageRuler 

(Fermentas) was used whenever the gel was used to do a Western blot. 
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The recipes to cast the gels, to prepare the running and the sample buffers are included in 

section 7.5. 

 

2.5 BN-Page and second dimension SDS page 

Blue Native Polyacrylamide Gel Electrophoresis (BN-Page) is a technique developed by 

Schägger and von Jagow in 1991 [66]. In these gels the SDS is substituted by Coomassie® G-250 

as a charge-shift molecule.  

Coomassie® G-250 binds to proteins and confers it a negative charge while maintaining the 

protein native state. In this way, protein complexes and protein interactions can be studied 

[67]. 

Mild non-ionic detergents are used to solubilize membrane proteins complexes without 

disrupting them [68]. Digitonin and n-dodecyl-β-D-maltoside are commonly used maintaining 

protein complexes in their native state [69]. 

Three running buffers are needed to run these gels, the anode buffer, without Coomassie, and 

two cathode buffers, a dark-blue one containing 0.02% Coomassie and a light-blue buffer 

containing 0.002% Coomassie. The dark-blue buffer is replaced by the light-blue when the run-

front has reached two thirds of the total gel length in order to reduce the Coomassie 

background [70]. 

The B-fraction samples were solubilized in different concentrations of digitonin after the 

extraction process of the outer membrane proteins described in the section 2.1. 

BN Page and 2D SDS-Page gels were bought precast from Invitrogen (NativePAGE™ Novex® 4-

16% Bis-Tris Gels 1.0 mm, 10 well, Cat. No. BN1002BOX and NuPAGE® Novex 12% Bis-Tris Gel 

1.0 mm, 2D well, Cat. No. NP0346BOX). The marker used was NativeMark™ Unstained Protein 

Standard, Cat. No. LC0725). The running buffers were self-made as described elsewhere [70]. 

BN gels were stained with silver nitrate with a different protocol of the one described in the 

section 2.6 [71]. 

Second dimension SDS-Page from the BN-Page was performed as described in the Invitrogen 

user’s manual [67]. The BN-Page strips were incubated in three denaturing solutions previous 
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to the second dimension electrophoresis as described in the manual cited. MOPS SDS running 

buffer was used (see section 7.5). 

 

2.6 SDS-Page silver nitrate staining and gel drying 

Proteins separated by SDS-Page depending on their molecular weight were stained with silver 

nitrate [72]. This staining method has been proved to be very sensitive, detecting proteins in 

nanogram concentrations. 

The following protocol was used to stain SDS-Page. The composition of the A to D solutions is 

described in section 7.5: 

• The gel was immersed in 50 ml of Solution A during 10 min. to fix the proteins to 

the gel matrix. 

• The SDS-Page was washed twice with H2Odd during 5 min. 

• The water was discarded and the gel submerged in Solution B during 1min. 

• The gel was washed twice in H2Odd for 20 sec. 

• The gel was incubated in solution C for 10 min. 

• A wash step was required with approximately 40 ml H2Odd and 10 ml of Solution D 

for a few seconds. 

• The gel was developed in 40 ml Solution D supplemented with 100 µl Na2S2O3 (10 

mg/ml) and 25 µl formaldehyde (35%). 

• The staining reaction was stopped when the bands were visible with 2.5 ml of citric 

acid (2.3 M). 

All the steps were carried out at room temperature and the incubations in the different 

solutions were done on a shaker. 

Once the proteins were purified to homogeneity, their pore forming activity could be tested 

using the “Black Lipid Bilayer” assay. 

 

2.7 Black Lipid Bilayer assay 

The Black Lipid Bilayer assay (BLB) owes its name to the brownish color that the artificial 

membrane acquires when it reaches the bilayer state. This method has been described before 
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[73] and is used to test the pore forming activity of some proteins (porins, toxins and some 

peptides) from different bacteria, plant and animal cells. 

 

Method principles: 

This method is based on the ion-impermeable properties of lipid membranes which impede 

the electric current through them. Pore forming proteins get inserted in the membrane 

forming holes which increase the membrane conductance. The particular conductance of each 

porin depends on the size of the hole formed in the membrane and it can be influenced by 

internal charges. Insertions of porins in the membrane can be observed in a register as 

increasing-conductance steps with a typical value depending on the porin. 

Porins differ from each other in conductance and biophysical behavior. For example, the single 

channel conductance of Tsx of Escherichia coli is around 10 pS while a porin from Thermus 

thermophilus has an unusual conductance of 20 nS. Some of them are selective for anions or 

cations or are not ion selective. Some of them have a rigid structure that resists high voltages 

without any changes in conductance. Some of them are specialized in the transport of certain 

type of molecules. All these characteristics can be studied using the BLB assay. 

 

Devices and material used for this assay: 

A Teflon chamber divided into two compartments is required. The wall dividing both 

compartments has a 0.5 mm2 hole. Upon this hole an artificial membrane is spread. The 

central wall forms a light angle with the vertical wall to avoid the reflection of the light which 

could hinder the membrane observation. To observe the membrane at any time, the front wall 

of the chamber is a transparent window (Fig. 2.1). 
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Fig. 2-1: Teflon chamber used in the BLB assay. A) Lateral vision of the chamber, B) frontal 

view, where the window and the hole where the membrane is established can be 

appreciated, C) superior view showing the dividing wall of the chamber. 

 

 

The Teflon chamber is inserted in a metal support 

inside a metal box called Faraday cage. This metal 

container prevents the influx of external forces in 

the measurements and supports the rest of the 

components (Fig. 2-2). The Teflon chamber is filled 

with a salt solution in which two Ag/AgCl electrodes 

are immersed.  

 

 

 

One of the electrodes is connected to a voltage source; the second detects increases in 

membrane conductance and send the signal to an amplifier. The amplifier also filters the signal 

and is connected to a register where it is possible to observe single insertions of pore forming 

proteins in the artificial membrane (Fig.2-3). The records of the register can be afterwards 

mathematically analyzed. 

Fig. 2-2: Interior of the Faraday cage where the 
electrodes and the Teflon chamber are located. 



Methods 

- 40 - 
 

 

Fig. 2-3: Black Lipid Bilayer setup. Basic scientific instruments used to test the pore 

forming activity of proteins, toxins and peptides. 

In the BLB setup several other apparatus are required. An electrometer is used to verify the 

electrochemical symmetry of the electrodes. An oscilloscope helps to distinguish fast 

insertions in the membrane when the activity of the samples is too high to be recognized as 

individual pores by the recorder. A telescope and light help to check the formation of artificial 

membranes and the absence of bubbles attached to it. The granite panel and the pneumatic 

dampers hinder the influence of floor vibrations. A magnetic mixer is used during ion 

selectivity or titration experiments to quickly diffuse substances added to the salt solution. 

 

Artificial membranes: 

Several lipids with different characteristics (charge, length, etc) can be used to form artificial 

membranes in this method. Diphytanoyl phosphatidylcholine (DiphPC) was the only one used 

in this thesis. 

An impregnation of the hole in the Teflon chamber is required before spreading the 

membrane. For the impregnation, 5 µl of 2% DiphPC in chloroform is deposited in the hole and 

let dry for 15 minutes. After this time, the lipid has formed a lipid ring around the hole which 

increases the stability of the membrane. 

A solution of 1% DiphPC in n-decane and 10% butanol is used to form the membrane. Once the 

Teflon chamber is filled with the salt solution, 5µl of the lipid solution are placed upon a wire-

handle and spread with its help over the impregnated hole. 
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The membrane stops the ion flux through the hole and the conductance decreases to a 

negligible value. At the beginning the membrane shows a multicolor state indicative of a 

lamellar structure. After a short period of time the membrane starts to have black spots and 

finally turns completely dark (Fig. 2-4). This color is indicative of a single bilayer membrane, 

and is also the reason why the method is called “Black Lipid Bilayer”.  

 

Fig. 2-4: Formation of a single bilayer. Multiple layers are spread over the hole in the 

dividing wall showing multiple colors (A). As the membrane stabilizes, dark spots appear 

where a single bilayer is present (B). Eventually, the membrane stabilizes in a single bilayer 

presenting a dark color (C). 

The membrane must be observed through the front window to make sure that no bubbles are 

on the membrane which can interfere with the pore forming activity measurements. 

Before adding the protein sample, a period of time is waited as negative control (cero line). If 

after 5 minutes no activity due to contaminations appears in the register, the measure can 

proceed. 

 

With this method the pore forming activity of membrane proteins can be tested. If the protein 

tested shows some activity, some biophysical characterization can be done. Among the 

different characteristics that can be studied are the following; 

- Single channel conductance 

- Voltage dependency 

- Ion selectivity 

- Substrate specificity (Substrate titration) 

- Current noise analysis 

- Pore diameter 

A B C
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2.7.1 Single channel measurements 

Each pore forming protein has a defining conductance depending on how big is the ion flow 

through it. This varies depending on the channel diameter, channel internal charges and 

oligomeric constitution of a porin. 

A porin must be first purified to homogeneity and then added to the salt solution in the Teflon 

chamber to measure its single channel conductance. The proteins get inserted in the 

membrane increasing its conductance in a step-like manner. Each step corresponds to a 

protein or protein complex insertion. 

The single channel conductance of a porin is defined as the most common conductance value 

observed in a purified sample. Mathematically, the conductance of a porin can be defined as: 

(Eq. 1) 
eU

I
G    where:  G = conductance (S) 

      I = current (A)  

      Ue = applied voltage (V)  

The current of the system (I) is amplified and transformed in voltage, which is registered. This 

voltage (Ua) is proportional to the current (I). Vf (V A-1) is the conversion factor. The current is 

therefore defined as following: 

(Eq. 2) 
f

a

V

U
I    where:  Ua = output voltage (V) 

      Vf = amplification factor (V A-1) 

 

Substituting (2) in (1): 

(Eq. 3) 
ef

a

UV

U
G


  

 

In the praxis, the conductance Ua is evaluated using the records in the register. The record-

paper is divided in 100 boxes. The conductance per box results from dividing the total 

deviation Uv by 100. If Ua is substituted by Uv in the formula 3, the conductance per box (Gk) is 

the following: 
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(Eq. 4) 
100


ef

v
k

UV

U
G   where:  Gk = Conductance pro box (S). 

       Uv = full scale of the register (V). 

 

The single channel conductance of a certain porin can be obtained multiplying Gk by the 

number of boxes increased in the recorder when it gets inserted. 

 

2.7.2 Ion selectivity 

While some porins show no discrimination between different ions, others are more permeable 

to anions or cations. The reason for that behavior depends on the charge distribution in the 

entrance and interior of the channel. 

To test the ion selectivity of a channel, a concentration gradient is established between both 

sides of a membrane as described previously elsewhere [74, 75]. The kind of ion for which the 

porin shows specificity is preferentially transported to the diluted side of the chamber to 

equilibrate the concentration creating a potential difference. The potential difference works 

against the concentration gradient. This process stops when the electrochemical potential is 

equal in both sides. The potential difference can be then measured with an electrometer and a 

permeability coefficient (Pc/Pa) can be calculated using the Goldmann-Hodgin-Katz equation; 

 

(Eq. 5)     
  

 
  

           

          
    where: Vm = Membrane Potential 

      R = Gas Constant. 

      T = Thermodynamic temperature 

      F = Faraday constant. 

      Pc = Permeability constant of the cations. 

      Pa = Permeability constant of the anions. 

      Cc = Concentration in the Cis-compartment 

      Ct = Concentration in the Trans-compartment 

              where Ct>Cc 
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In the practice, the chamber is filled with 5 ml of salt solution 0.1 M in each side of the wall 

and the protein sample is added to the solution once the membrane is in place. After reaching 

at least 100 insertions in the membrane and a stationary phase (no new insertions), the 

measurement can start. In this experiment, the voltage applied in other measurements like 

single channel measurements or voltage dependency is not required and therefore it is 

switched off. 100 µl 3M salt solution are added to the cis-side of the chamber. At the same 

time, 100 µl 0,1M KCl are added to the trans-side, equilibrating the volume and avoiding ion 

transport due osmotic pressure. The voltage value is note down after the electrochemical 

potential is reached. The process is repeated several times increasing proportionally the salt 

concentration gradient. If the voltage increases in a positive manner the porin is considered 

cation selective (Pc/Pa > 1). In contrast, if the values are negative the porin is an anion selective 

porin (Pc/Pa < 1). A non-selective channel will display voltages values close to 0 and a Pc/Pa 

close to 1. 

Other salts are used in these measurements apart from the KCl, where the hydrodynamic 

radius of its cations and ions are different. In LiCl the cation (Li+) is bigger than the anion (Cl-) 

and in KCH3COO the anion (CH3COO-) is much bigger than the cation (H+). That way the 

transport of the different ions through the membrane is influenced. Non selective porins for 

example will show a negative membrane potential in presence of LiCl and values of Pc/Pa < 1 

because the transit of Cl- through the membrane is favored due to its smaller size. 

 

2.7.3 Voltage dependency 

Another test done using the BLB assay is the voltage dependency of a channel. Some pore 

forming proteins close partially or totally increasing the applied voltage during a 

measurement. The voltage at which they close is characteristic of the channel. 

In practice, a sample is added to the bathing solution where the membrane was previously 

formed. The measurement can start after reaching hundred pore insertions in the membrane 

and a stationary phase where no new insertions are appreciated. A positive 10 mV voltage is 

applied and the membrane is observed for a short period of time for closure of the pores. 

When the conductance is stabilized, the measurement is repeated with the same negative 

voltage (-10 mV). Increasing voltages (20, -20, 30, -30 and so on) are tested up to 100-150 mV. 

After finishing the measurements, a graphic can be done where the closure percentage of the 

pores is showed. 
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This graphic can show symmetric or asymmetric voltage dependence for positive and negative 

values or voltage independence. 

 

2.7.4 Substrate specificity 

Porins can be of two types, general diffusion porins or substrate-specific porins. The transport 

through general diffusion porins is fast and it does not decrease with an increase in the solute 

concentration. In the case of specific porins, the transported molecule had different binding 

sites in the channel and therefore the transport is slower (Fig. 2-5). The ion flow is interrupted 

and the conductance of the membrane decreases at certain concentrations of solutes for 

which the porin shows specificity. This characteristic can be used to determine if a porin is 

specific for particular solutes.  

 

Fig. 2-5: Relation between solute flow through 

a porin and the concentration of the solute in 

the salt solution. In general diffusion pores the 

flow had a linear correlation with the solute 

concentration while in specific porins the 

channel gets saturated with increasing 

concentrations of the solute.  

 

To test if a porin is specific for a substrate, a membrane is permeabilized with a porin sample. 

At least hundred pores must be inserted in the membrane and insertions must have reached a 

stationary phase. After that, increasing amounts of a compound are added to the 0.1M KCl salt 

solution in which the membrane was formed. If a porin transports a substance specifically 

through the membrane the ion flux will be interrupted, decreasing the total membrane 

conductance. 

A solution 1M of the possible specific substrate is prepared in standard measurements. In the 

first place, 1µl is added to each side of the chamber under stirring conditions. A few minutes 

must be waited to see if there is an effect in the membrane conductance. When the 

conductance is stable the same is repeated adding 2, 4, 8, 16, 32, 64 and 128 µl of the 

substrate. 
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After that, the binding constant can be calculated using the Michaelis-Menten constant, which 

relates the total membrane conductance with the increasing substrate concentration (1+K∙c); 

(Eq. 6)       
      

     
  where G(c) = Membrane conductance after adding the 

substrate 

G(max)= Membrane conductance before adding 

substrate 

      K= stability constant (l mol-1) 

      c= substrate concentration (mol l-1) 

 

2.7.5 Noise analysis. 

Titration experiments allow identifying a possible specificity of a channel for different 

substrates but do not allow the evaluation of the on- and off- binding rate constant. To get 

some information about the binding kinetics, the current noise is measured. Parallel to 

titration measurements, the frequency-dependence of the spectral density is evaluated using a 

Fourier transformation. A reference is taken from a membrane saturated with channels before 

adding any substance to the salt solution. This reference always exhibits a 1/f noise in a low 

frequency range. An increase in the spectral density can be observed above 200 Hz. This 

increase is caused by intrinsic noise of the preamplifier that produces frequency-dependent 

current noise through the membrane capacity Cm. The reference spectrum is subtracted from 

each spectrum taken after the addition of the substance to be tested. 

While channels that show no specificity for a certain substance exhibit a 1/f noise, the porins 

that bind a substrate show a current noise spectrum that can be fitted to a single Loretzian 

function [76, 77]. 

The experiments are done with the same bilayer setup used for titration measurements. A 

special amplifier and filter that allow working with high frequencies is needed. The amplifier is 

connected to a PC with an AD-converting card. A self-made computer program is used to 

measure the noise spectra in a frequency range (0-1000 Hz). The spectra were composed of 

400 points and they were averaged either 128 or 256 times. The values are represented in a 

plot using commercial graphic programs. An example can be seen in figure 4-5. 
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2.7.6 Channel diameter determination using non-electrolytes 

This method was described by Krasilnikov et al. in 1998 [78]. It has been used successfully to 

determine the channel diameter of several membrane pore forming proteins like colicin Ia 

[78]. It is especially appropriate because it avoids the potentially strong coulombic interactions 

that occur when using ionic probes and ion channels with fixed charges. 

The method is based in two principles; first, a salt solution containing 20% of a determinate 

non-electrolyte has a reduced conductivity between 40 and 70% of the original. And second, 

this decrease will only affect the conductance of a porin if the non-electrolyte is small enough 

to enter the channel. 

Using these two principles, solutions containing 1M KCl and 20% of a given non-electrolyte 

were used. Single channel measurements were carried out using each time non-electrolytes 

with increasing hydrodynamic radius. The non-electrolytes used, their hydrodynamic radius 

and the conductivity of each mixture are shown in the following table (Table 2-1).  

 

 

 

Table 2-1: Non-electrolytes used to determine the 

channel radius of porins and toxins. The 

hydrodynamic radii of these NEs goes from 0.2 to 

2.4 nm and the conductivity of the mixture is on a 

rage from 40 to 70 % of the original when only the 

salt solution without any NE is present (1M KCl at 

25 ˚C). 

 

 

 

As seen in the following graphic, the conductance of a pore in 1M KCl (horizontal line) is 

reduced with the small non-electrolytes that have access to the channel interior. The 
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conductance of the porin is not influenced anymore from a determined NE diameter because 

the NEs have no access to the channel interior (Fig.2-6). 

 

Fig. 2-6: Effect of different NE in the conductance of a 

porin. Small NEs enter the pore reducing the 

conductance of the porin. When the hydrodynamic 

radius of the NEs is too big to enter the channel, the 

conductance of the porin goes back to the original 

(horizontal line). 

 

A second concept introduced in this method is the “channel filling” (F). The channel filling 

describes the portion of a channel that is occupied by a particular NE. It is used to determine 

possible inner constrictions inside the channel.  

To calculate the channel filling, it is assumed that an ion channel can be treated as an 

equivalent ohmic resistor with resistance (R). This assumption can be extended to all channels 

with a linear current-voltage relationship. R can be seen as composed of two parts. One part 

corresponds to the portion of the channel length filled with the NE (F) and one part 

corresponds to the portion without NE (1-F). Thus, R can be written as: 

(Eq. 7) R = *F/(AΧi) + (1-F)/(AΧo)] 

where A = πr2/l, l is the channel length and r its radius, and Χo and Χi are the conductivities of 

the solution without and with a particular NE respectively. In assumption that AΧo is equal to 

the ion channel conductance in a solution without NE (Go), it can be shown that the filling (F) is 

given by: 

(Eq. 8) F = [(Go-Gi)/ Gi+/*(Χo -Χi)/ Χi] 

where Go is the single-channel conductance in a solution without NE (1 M KCl), Gi is the single-

channel conductance in the presence of a solution containing 20% (w/v) of an NE, Χo is the 

conductivity of the solution without NE (1 M KCl), and Χi is the conductivity of the solution 

containing 20% (w/v) of a given NE. 
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Assuming that the filling of the channel by two of the smallest NE (in this study ethylene glycol 

and glycerol) is close to the maximum possible level (100%), the filling can be calculated in 

terms of percentage (F%): 

(Eq. 9) F% = 2Fi/(F1+F2)*100% 

where Fi is the filling in the presence of a given NE and F1 and F2 represent the filling in the 

presence of ethylene glycol and glycerol in the bathing solution respectively. 

Most of the channels are not perfect cylinders, but funnel-like structures. Analyzing the filling 

of a funnel-like channel three events are possible (Fig. 2-7). If the NE is smaller than the 

narrowest part of the channel, the channel will be completely filled (F%=100%). In contrast, if 

the NE is bigger than the entrance, there will be no NE inside the channel (F%=0%). 

Intermediate-sized NEs will fill the channel to an extent inversely related to theirs sizes (F% 

between 0 and 100%). These NEs don’t fill the channel completely because its size is too big 

and they get stopped somewhere along the channel interior. 

 

Fig. 2-7: Possible channel filling events 

with NEs. When the NEs are smaller 

than the constriction zone they will fill 

100% of the channel (green). If they are 

bigger than the entrance, the NEs 

remain outside and the channel filling is 

0% (blue). NE with sizes in between will 

fill the channel to an extent inversely 

related to their sizes (yellow). 

 

According to this method, the radius of the constriction zone should be equal to the radius of 

the smallest NE that does not pass freely through the channel. 
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2.8 Western-Blot 

The Western-blot (WB) is a technique used in molecular biology to detect a specific protein in 

a sample using specific antibodies against this protein. The WB in this thesis were performed 

as previously described [79]. 

First the protein or proteins were separated in an acrylamide gel by molecular weight (SDS-

Page or BN-Page). Afterwards, the proteins were horizontally transferred or blotted to a PVDF 

or nitrocellulose membrane. Depending on the protein size, the transfer time varied. P13 

which is a 13 kDa protein was transferred in 12 minutes at 350 mA while P66 which has 66 kDa 

required 45 minutes. 

To blot the proteins from a gel to a membrane, the cassette and tank must be prepared as 

following: 

• PFDF membranes (7.5 x 8.5 cm) were pre-wetted in methanol for 5-10 seconds. 

Briefly afterwards, the membrane was place in deionized water for 2-3 minutes 

and then a few minutes more on the transfer buffer. 

• The gel and membrane were introduced in a cassette which was filled with the 

different components as described by the manufacturer. Proteins run towards the 

anode and consequently the membrane was situated closer to it than the gel. 

• The cassette was placed inside the tank and the tank was filled with Towbin buffer. 

An ice block was placed inside the tank to avoid overheating. 

The WB from BN-Page and second dimension SDS-Page were done following the instructions 

from the manual provided by Invitrogen [67]. The buffer used was Nu-Page Transfer Buffer 

(Invitrogen) and the proteins were blotted one hour at 30 V. 

Immunodetection: 

• Once the proteins were on the membrane, the rest of the surface was blocked 

with protein to avoid unspecific antibody binding to the membrane. 5% milk in TBS 

buffer was used during an incubation time from 1 to 12 hours (overnight). 

• After the blockage the membrane was washed 3 times during 10 minutes with TBS 

+ 1% Tween 20. During the washing steps the membrane was placed on a shaker. 

• The membrane was incubated during 1 hour in the first antibody. The antibody is 

properly diluted in TBS + 2.5% milk or BSA. Dilutions for the antibodies used in this 

thesis are indicated in section 7.10. 
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• The membrane was washed 3 times in TBS + 1% Tween 20 for 10 minutes each 

time. 

• After that, the membrane was again incubated for 1 hour in the second antibody. 

This antibody was diluted according to the manufacturer in TBS + 2.5% milk or 

BSA. 

• The membrane was washed twice in TBS + Tween 20. 

Development: 

The membrane was placed on a clean surface where the electrochemiluminescence reagents 

were added. The secondary antibody had linked a horseradish peroxidase and it was 

developed with the “ECL-detection kit” (GE healthcare). Equal volumes of reagent 1 and 

reagent 2 were mixed and incubated with the membrane for 1 minute. 

The remaining reagent solution was removed and the membrane was introduced in an x-ray 

cassette. An x-ray film was exposed to the membrane inside the cassette in a dark room and 

then it was developed as a traditional photo. First, it was submersed in the developing solution 

(Kodak), rinsed with water, immersed in the fixing solution (Kodak) and again rinsed with 

water before letting it dry. 

 

2.9 Gen cloning 

Multiple steps were taken to clone p13 in E. coli and A. tumefaciens. An overview of all those 

steps is shown in section 2.9.1. Fig. 2-8 shows the cloning process in Escherichia while Fig. 2-9 

shows the steps to clone p13 in Agrobacterium. 
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2.9.1 P13 cloning outline 

 

Fig. 2-8: p13 cloning in E. coli. 
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Fig. 2-9: p13 cloning in Agrobacterium 
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2.9.2 Constructs and primer design 

Cloning in E. coli 

Different structures were designed to be clone in E. coli. The first construct included the p13 

gen that originates the mature P13 protein. Construct 2 included the p13 gen and a 28 amino 

acid C-terminus that in Borrelia is cleaved after crossing the inner membrane, probably in the 

periplasm. The function of this C-terminus remains still unclear. This second structure had the 

aim of clarifying if this C-terminus was involved in the formation or oligomerization of the 

channel. Both constructs included an E. coli signal sequence required to transport the protein 

trough the inner membrane and a His10-tag for later purification. The signal sequence and the 

His-tag were added to the constructs by the pARAJS2 vector when the product of the first 

amplification was ligated to it. The primers, restriction enzymes and protease needed for the 

whole process shown in Fig. 2-8 are indicated in Fig. 2-10. 

 

Fig. 2-10: Constructs to be cloned in E. coli. Primers are indicated by an arrow in black. The 

restriction enzymes used are written in red and the protease to cleave the His-tag in blue. 

The places where the DNA or protein is cut are indicated by the broken lines. 

 

Primers G, E and F were designed to amplify the gen from the Borrelia DNA and to do check 

PCRs while the gen was included in the pCR®2.1-TOPO. Primer H together with E and F were 

used to do check the cloning process in the pARAJS2 vector. The nucleotide sequences of the 

constructs and the primers as well as the amino acid sequences of the proteins produced are 

included in section 7.8. 
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Cloning in Agrobacterium (Tobacco plant expression): 

The purpose of the expression in tobacco plants was to obtain a high amount of the 

recombinant protein and therefore only the mature form of P13 (without C-terminus) was 

cloned. In this case, a His6-tag was added to the p13 gen by the MIp13F primer during the first 

amplification from the Borrelia DNA (Fig. 2-11). 

 

Fig.2-11: Construct to be clone in A. tumefaciens to produce P13 in tobacco plants. 

Primers are indicated with an arrow in black, restriction enzymes are written in red and 

the protease in blue. The places where the DNA or protein is cut are indicated by the 

broken lines. 

The nucleotide sequence of the construct and the primers as well as the amino acid sequence 

of the protein produced are included in section 7.8. 

 

2.9.3 Polymerase Chain Reaction 

The polymerase chain reaction is a technique used to amplify or copy many times a 

determined DNA fragment. In this thesis two types of PCR were carried out: 

• Standard PCR: In this PCR only one fusion temperature was used. This kind of PCR 

was used in amplifications to check if the transformation in cells was successful. 

For this procedure Taq-polymerase which is faster but has a higher mutation rate 

was used. 

• Step PCR: In these PCR two annealing temperatures were used due to the different 

primers fusion –temperatures. This type of PCR was used to amplify Borrelia DNA 

and the polymerase used was the Pfu-polymerase. 

The mixture of the different components and the PCR cycles (time and temperature) are 

indicated in section 7.9. 
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2.9.4 Agarose gel electrophoresis and agarose gel elution 

The products of the PCR were run in agarose gels to check if the desired gen was correctly 

amplified. Those gels separate the DNA depending on their size .In that manner, the size of the 

DNA amplified was compared with a DNA marker to know if the size was correct.  

The gels used in this thesis were made of 1% agarose. Two markers were used, MassRulerTM 

DNA Ladder Mix (Fermentas) or GeneRulerTM 100bp Marker (Fermentas). The running buffer 

used was TAE and the applied voltage was 100 mV. 

To visualize the bands in those gels, they were submerged 15 minutes in an ethidium bromide 

solution (10 mg/ml) and then placed upon a black light. 

After checking the right size of the amplified gen, the DNA was extracted from the agarose gel. 

To do so the desired DNA band was excised from the gel with a scalpel. The DNA extraction 

was done using a commercial kit (QIAquick Gel Extraction, Qiagen).  

 

2.9.5 Vector cloning 

2.9.5.1 p13 cloning in E. coli 

The correct proceeding of the cloning process was confirmed as much as possible with check 

PCRs and vector sequencing. The p13 gen was cloned in two vectors. First of all in the 

pCR®2.1-TOPO which is an easy system to multiply the number of p13 copies,  permits an easy 

screening  of transformed colonies and allows an easy sequencing of the insert to dismiss any 

point mutation in the gene sequence. The second vector is the pARAJS2 that supplements the 

construct with an inducible promoter for the expression, a signal sequence to cross the inner 

membrane in E. coli and a His10-tag to facilitate the purification process. A complete diagram of 

the steps taken to clone p13 in E. coli is found in the section 2.9.1. 

 

p13 cloning in pCR® 2.1-TOPO vector: 

The TOPO TA cloning® is a highly efficient, fast, one-step cloning strategy that does not require 

special primers or any ligase to bind to the vector PCR products amplified with 

Taq-polymerase. 
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The DNA obtained from Borrelia burgdorferi B31A was isolated using a commercial kit 

(QIAamp DNA Mini Kit). The p13 gene was amplified using two sets of primers. Primers G and E 

were used to amplify construct 1 whereas primers G and F were used to replicate construct 2. 

Two different annealing temperatures were used to amplify the desired DNA fragments. 

Construct 1 was obtained with a PCR protocol that included 5 cycles with an annealing 

temperature of 45 °C and 25 cycles at 50 °C. Construct 2 did not required temperatures as low 

as construct 1 and the gene was amplified with 5 cycles where the annealing temperature was 

50 °C and 25 cycles at 55 °C. The product of the PCR was separated in a 2% agarose gel 

together with a DNA marker to verify the size of the amplified fragment.  

After the verifying that the fragments amplified corresponded to the size of the desired 

structures, they were ligated to the pCR® 2.1-TOPO vector. This vector was used to transform 

E. coli Top10F´ cells. The transformants were cultivated in agar/Amp/x-gal/IPTG plates at 37 °C 

overnight. Colonies with a white color have a DNA fragment inserted in the plasmid. Therefore, 

some white colonies were selected and tested with a PCR (primers G-E and G-F) to amplify the 

insert. The correct size of the insert was verified in a 2 % agarose gel with a DNA marker run 

together with the samples. 

The colonies that showed a correct size of the insert were cultivated in 5 ml LB medium 

supplemented with ampicillin at 37 °C overnight. After that, the pCR® 2.1-TOPO vector was 

extracted using a commercial kit (QIAprep Spin Miniprep Kit, Qiagen). The vector was sent to 

an external company to sequence the insert (SEQLAB, Sequence Laboratories Göttingen). Only 

100% coincidence sequences were used in the following steps rejecting the possibility of point 

mutations that could alter the protein functionality. 

 

p13 cloning in pARAJS2: 

The insert from the pCR® 2.1-TOPO plasmid was digested to be inserted in the new expression 

vector pARAJS2. The fragment and vector were ligated as described in the section 2.9.9 using 

the T4 polymerase. 

Once the vector was prepared, E. coli TOP10F’ cells were transformed with it. To be sure that 

the cells had not only the plasmid but also the insert, a check PCR was done (primers H-E and 

H-F). Only colonies where the fragment was amplified were used for posterior work. The 
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copies of the plasmid were produced in this strain and then extracted to transform the final 

strain where the recombinant protein was produced. 

A special strain of E. coli was used for expression in which eight outer membrane proteins are 

knocked out (E. coli BL21 Omp8 Rosetta) [80]. These cells were transformed by electroporation 

(see section 2.9.10). As usual, the success of the transformation was checked with a standard 

PCR where the insert was amplified (primers H-E and H-F). 

 

2.9.5.2 p13 cloning in Nicotiana benthamiana 

The cloning of p13 in N. benthamiana was done in a similar way as in E. coli. First, p13 was 

cloned in the pCR®2.1-TOPO vector. Afterwards, the insert was included in the pICH31160 

vector for Agrobacterium transformation. A complete diagram of the steps to clone p13 in N. 

benthamiana is found in the section 2.9.1. 

 

p13 cloning in pCR®2.1-TOPO and pICH31160: 

Borrelia DNA was used as template to express the mature P13 in the tobacco plant. A His6-tag 

was added to the insert by the MIp13F primer. The PCR used consisted in two annealing 

temperatures, 5 cycles at 45 °C and 25 cycles at 55 °C, respectively. 

To check the absence of point mutations in the p13 gene, the insert included in the 

pCR®2.1-TOPO vector was sent to be sequenced. A 100 % coincident sequence was digested 

from the TOPO vector (BsaI and XbaI) and ligated to the final vector, the pICH31160. With this 

vector A. tumefaciens cells were transformed. Colonies from Agrobacterium were collected, 

the fragment amplified by PCR (primers MIp13F and MIp13R) and the presence and size of the 

insert was proved in agarose gels. 

 

2.9.6 Over Night Cultures and type cultures 

Clones containing the vector and desired gen were cultivated overnight. 5 ml LB medium was 

prepared including the proper antibiotic. After that, the strain was inoculated and cultivated 

over night at 37 °C in a shutter. 
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In this thesis, different strains and species were used and transformed with vectors. The 

vectors used conferred a certain antibiotic resistance: 

• pCR®2.1-TOPO vector – Ampicillin 

• Rosetta – Chloramphenicol 

• pICH31160 - Kanamycin 

The final antibiotic concentration in the cultures was 0.1µg/ml ampicillin, 50 µg/ml kanamycin 

and 40 µg/ml chloramphenicol. 

For the type cultures, 1.2ml of LB culture plus antibiotic was mixed with 0.4 ml of glycerol. The 

sample was well mixed using a vortex and immediately frozen at -80°C. 

 

2.9.7 Plasmid Purification 

The pCR®2.1-TOPO and the pARAJS2 vectors were extracted from E. coli Top10F using a 

commercial kit (QIAprep Miniprep Kit, QIAgen) and the protocol followed was provided by the 

manufacturer. 

 

2.9.8 Digestion with restriction enzymes 

To separate the cloned gen from the pCR®2.1-TOPO plasmid, the vector must be incubated 

with restriction enzymes. This kind of enzymes cut the DNA in concrete places, called 

restriction sites, and set the fragment free. 

The restriction enzymes used in this thesis are shown in Fig. 2-10 and Fig. 2-11. 

This procedure takes two hours at 37 °C, which is the optimal temperature for the enzymes to 

be functional. The size of the fragment was verified with an agarose gel. 

Once the insert and the plasmid are prepared, the ligation can start. 
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2.9.9 Ligation 

The p13 insert was included in the pARAJS2 expression vector after its amplification in the 

pCR®2.1-TOPO vector. This vector includes a promoter before the gen to make the protein 

production possible. 

The pARAJS2 vector was mixed with the insert in a 1:3 rate. The ligase T4 (Fermentas) and the 

T4 buffer were added following the manufacturer instructions. In this case 10 μl from the 

vector and 30 μl from the insert were mixed with 2 μl from the T4 buffer and 1 μl from the T4 

polymerase. The final mixture was incubated overnight at 16 °C. 

 

2.9.10 Transformation 

In this thesis different types of cell transformations were used. 

To transform E. coli Top 10F´ a heat shock was used. The competent cells were taken from the 

-80 °C and placed in ice for 15 minutes. The DNA plasmid was added afterwards on top and the 

mixture was shuttled very carefully. The cells were placed at 42 °C for 30 seconds and then 

again in ice for 2 minutes. After that time, 450 µl SOC medium was added and the cells were 

placed at 37 °C for one hour. 

Electroporation was used to transform E. coli Omp8 Rosetta cells. The cells were placed in an 

electric field for 5 milliseconds in presence of the DNA plasmid. Then, 450 µl SOC medium 

were added to the transformants and they were placed in a shaker for one hour at 37 °C. 

Agrobacterium competent cells were obtained and transformed in the laboratory following the 

Höfgen and Willmitzer protocol [81] with some modifications: 

Preparation of Agrobacterium competent cells: 

• 200 ml of LB medium were inoculated with 1 ml A. tumefaciens overnight culture 

and placed at 28 °C under vigorous shaking. 

• The cells were cultivated until they reached the Log phase (OD550 0.5-0.8). 

• The cells were spun down at 3000 g during 10 minutes at room temperature. 

• The pellet was washed with 1x TE buffer. 

• The cells were resuspended in 10% of the initial LB medium volume and divided 

into Eppendorf tubes in 250-500 µl aliquots. 

• The cells were frozen in liquid nitrogen and then stored at -80 °C. 
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Cell transformation: 

• Agrobacterium competent cells (250 µl) were thaw in ice and the DNA plasmid was 

added (10 µl of DNA plasmid extracted from E. coli). 

• The mixture was kept 5 minutes in ice and then 5 minutes more in liquid nitrogen. 

• The sample was incubated 5 minutes more in water at 37 °C. 

• 1 ml of LB medium was added to the tube and mixed in a rocking platform shaker 

during 2 hours at room temperature. 

• The cells were spun down and inoculated in LB plates supplemented with 

kanamycin (pICH31160 vector confers kanamycin resistance). 

• The plates were incubated 2 days at 28 °C. 

• Some colonies were again inoculated in a new plate and incubated during 2 days 

at 28 °C. 

• LB liquid medium cultures were set. The presence of the plasmid plus insert was 

checked using PCR. 

• From the positive cases, type cultures were set. 

 

 

2.11 Expression in Escherichia coli 

The different steps followed to express and purify P13 in Escherichia are represented in the 

diagram of Fig. 2-12. The efficiency of P13 expression, cell fractionation and Ni Sepharose 

purification was tested using SDS-Page and WB. 
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2.11.1 Expression outline in E. coli 

 

Fig. 2-12: Expression and purification of P13 in E. coli. 
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2.11.2 Protein induction 

A day before expressing the desired protein, overnight cultures were set in 10 ml LB medium 

and incubated in a shaker at 37 °C. Also, 400 ml LB medium Erlenmeyer flasks were prepared 

to be used the next day. So many flasks were prepared as clones to be induced plus one to 

grow a negative control. 

The next day, the optical density of the overnight cultures was checked. The volume of this 

culture needed to be added to the 400ml flask to have an initial optical density of 0.05 was 

calculated. This procedure enabled the cultures to grow at the same rate. The proper antibiotic 

must be added to the medium before adding the bacteria. Incubation took place at 37 °C with 

vigorous shaking. 

The cultures were induced when they reached an optical density between 0.4 and 0.8. First, 

the cultures were placed 30 minutes at room temperature and then the arabinose was added 

to a 0.02% final concentration. After the induction with arabinose the flasks were placed in a 

room at 16 °C with vigorous shaking. 

The cultures were centrifuged after 4 hours at 3000 g for 15 minutes. The supernatant was 

discarded and the pellets were frozen until the purification process began. Purification 

processes were required due to the big amount of other proteins and compounds produced by 

E. coli. 

 

2.11.3 Protein extraction in Escherichia coli. 

The cells were centrifuged down after inducing the expression of the recombinant protein. The 

pellet was resuspended in 10 ml 10 mM Tris pH 7.5. 100 µl of a protease inhibitor (Protease 

Inhibitor Cocktail Set II, Calbiochem) was immediately added after resuspension. 

The cells were disrupted using a French Press. The sample was loaded 5 to 10 times in the 

piston and then forced at high pressure through a narrow valve. 

The sample was centrifuged at 3000 g for 5 min at 4 °C to separate the proteins and 

membranes from the cell debris. The supernatant was ultracentrifuged in a Beckmann 90 Ti 

rotor at 143000 g and 4 °C during 1 hour. The ultracentrifuge tubes were tared with a 0.001 g 

maximal error. The cytoplasmic proteins stay in the supernatant and the pellet is formed by 

the membranes and its proteins. The supernatant was dismissed. 
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The pellet was resuspended using 10 mM Tris pH 7.5 plus 1% LDAO. The detergent makes the 

membrane proteins soluble and with a second ultracentrifugation they were separated from 

the rest of the membrane which formed the pellet. The supernatant containing the membrane 

proteins and the recombinant porin was keep at -20 °C until further purification. 

 

2.12 Expression in Nicotiana benthamiana 

2.12.1 Agrobacterium infiltration and virus expression 

The expression in the tobacco plant is an expression system based in the infection with viral 

vectors that once inside the cell are replicated and infect the adjacent cells. The vector used in 

this thesis was developed from the potato virus X. The vector is first delivered into the tobacco 

cells by A. tumefaciens and confers to this bacterium a selective resistance against kanamycin. 

The transformed A. tumefaciens strain containing the gen of interest were cultivated overnight 

in presence of kanamycin. To infiltrate the different strains two methods were used: 

A syringe without needle was filled with the transformed strain and pressed against the 

inferior leaflet of the leaves where the stomata are. Carefully, the solution was injected to the 

leaf interior. A darker zone could be observed as the solution spread inside the leaf. 

The second way to infiltrate the tobacco plants required less time and improved the 

infiltration. The Agrobacterium 

transformants were diluted in a big glass 

beaker and the plant was immersed in it 

upside down. Plant and beaker were 

introduced in a vacuum chamber. The air 

in the chamber was emptied establishing 

a negative pressure for a few seconds. 

Then the valve was opened letting the air 

to go back inside the chamber and 

establishing a positive pressure forcing 

the Agrobacterium solution into the 

plant through the stomata. 

Fig. 2-13: Inoculation of Agrobacterium in tobacco plants 
using a vacuum chamber. When the atmospheric pressure is 
reestablished inside the chamber, the Agrobacterium 
solution is forced inside the leaves. 
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The recombinant protein expression worked better in younger leafs where larger amounts of 

recombinant protein were produced. The optimal expression time for P13 was between 8 and 

10 days after infiltration. After that time, the leaves were collected and frozen at -80 °C until 

the extraction procedure started. 

 

2.12.2 Protein extraction in Nicotiana benthamiana 

Ten days after infiltration the recombinant protein expression was at its higher level. A positive 

control was used to confirm this expression. The green fluorescent protein gene was cloned in 

the pICH31160 vector. In this way, the plants infected with this control will fluorescent under 

black light, making possible to quantify the expression. 

After checking the expression, the leaves were treated as following: 

• The collected leaves were crashed to powder using liquid nitrogen and a mortar. 

• 1 ml extraction buffer (see buffer section 7.5) was added to 500 mg plant powder. 

The mixture was let in a shaker overnight at 4 °C. 

• The suspension was centrifuged in a table centrifuge at maximal speed and the 

supernatant was kept. 

• The supernatant was filtered using a syringe connected to a 0.2 µl pore-diameter 

cellulose acetate filter. 

• 200 µl of the sample were precipitated using the Wessel-Flügge protocol to do 

SDS-PAGE and WB against the recombinant protein. 

 

2. 13 His-tag purification with Ni-NTA resins 

One of the reasons to clone the desired gen in the pARAJS2 vector was to have a His-tag 

fragment in front of the p13 gen.  

Ni-NTA resins have a high affinity for histidine amino acids. While other proteins do not bind to 

the matrix, proteins with a His-tag remain stuck to the resin. Elution of those proteins will 

occur with increasing amounts of imidazole in the elution buffer. 
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To do this purification a commercial kit was used (Ni-NTA spin kit, QIAgen). The protocol used 

is a variant of the original supplied by the commercial brand, to maintain the native state of 

the protein: 

• The Ni-NTA column was loaded with 600 µl of the sample and centrifuged 2 min. 

at 700 g. The process was repeated until the whole sample volume was filtered. 

The flow-through was saved to check binding efficiency. 

• the column was washed twice with 600 µl of washing buffer and centrifuged 2 

min. at 700 g. The flow-through was saved to check the binding efficiency. 

• The His-tag protein was eluted twice with 200 µl of elution buffer. Centrifuge 2 

min. at 700 g. Collect the flow-through where the recombinant protein is. 

The sample and buffer that pass through the column in the first two steps were checked 

together with the elution sample using SDS-Page and WB. That way, the His-tag binding 

efficiency and the purity of the elution could be determined.  

Ni SepharoseTM High Performance beads (GE Healthcare) were also used for the His-tag 

purification. The extraction buffer containing the plant proteins were cultivated in presence of 

the Ni Sepharose beads in a shaker overnight. The beads were recovered spinning down the 

samples at 700 g for 2 minutes. Several washing steps were carried out with increasing 

imidazole concentrations (up to 100 mM for E. coli samples and 70 mM for tobacco plant 

samples). The recombinant protein was eluted with 500 mM concentrations for samples 

produced in E. coli and with 80 mM for samples produced in Nicotiana.  

During the process of purification with the Ni beads the supernatants were saved. The binding 

efficiency was tested with SDS-Page and WB. 
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Up to date, four porins have been described in the genus Borrelia. Three of them, P66, P13 and 

Oms28 have been found in the Lyme disease (LD) causing B. burgdorferi, the other one, 

Oms38, in species causing relapsing fever (RF). 

P13 is a small protein of 13 kDa which monomer is too small to form a β-barrel like many 

porins do. Its structure and function in the biology of Borrelia is not very well understood. The 

function of Oms28 as porin has recently been called into question and Oms38 location in the 

outer membrane has still to be proved. On the other hand, P66 is the best studied porin in 

Borrelia, with a double function as porin and adhesin. It has an immunologic potential that can 

be used to develop new strategies for diagnose and to treat infections by Borrelia. 

However, P66 has mainly been studied in B. burgdorferi, and little or nothing is known about 

its function in other species. To gain some knowledge about other Borrelia species, its pore 

forming properties were studied in six species, three belonging to the Lyme disease (LD) 

causing species (B. burgdorferi, B. afzelii and B. garinii) and three that cause relapsing fever 

(RF) (B. duttonii, B. recurrentis and B. hermsii). 



Biophysical characterization of P66 in LD and RLF species 

- 68 - 
 

B. burgdorferi, B. afzelii and B. garinii were chosen because they are the world distribution 

etiologic agent of the Lyme disease. B. duttonii and B. hermsii represent the main relapsing 

fever causing agents transmitted by ticks and B. recurrentis is the agent of the louse-borne 

relapsing fever. 

 

3.1 Results 

3.1.1 LD and RF P66 gene sequence comparison 

The genome sequencing of many bacteria and its recent publication has made possible to 

obtain many Borrelia P66 gene sequences. The P66 sequences of the six chosen species (B. 

burgdorferi B31, B. afzelii PKo, B. garinii PBi, B. duttonii Ly, B. recurrentis A1 and B. hermsii 

HS1) were aligned (Fig. 3-1). The alignment showed highly conserved domains in all the 

sequences with an overall identity of 41%. Comparing only the LD sequences the homology 

increased to 90%. The same was done with the RF sequences and the homology reached only 

67%. This fact is remarkable because B. duttonii and the B. recurrentis have a 98% sequence 

identity, pointing out the divergence of B. hermsii during evolution. 

 

 

 

 

 

 

 

[Next Page] Fig. 3-1: Comparison of P66 sequences from three Lyme disease species 

(B. burgdorferi, B. afzelii and B. garinii) and three relapsing fever species (B. duttonii, 

B. recurrentis and B. hermsii). Conserved amino acids in all the species are indicated in 

green and amino acids conserved at least in three species are indicated in yellow. The red 

squares indicate predicted membrane-spanning β-sheet domains. 
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3.1.2 P66 secondary structure prediction 

Computer programs were used to predict the secondary structure of P66. These predictions 

reflected a possible β-barrel composed of 20 to 22 transmembrane β-sheets in all the 

sequences. In Fig. 3-1 amino acids shared by all the sequences are marked in green while 

amino acids present in at least three sequences are marked in yellow. Predicted β-sheet 

regions are framed in red. All sequences posses a 21 amino acid signal sequence required for 

the transport trough the inner membrane in agreement with a location of P66 in the outer 

membrane. 

 

3.1.3 Purification of the LD and RF P66 homologues 

P66 was purified from B-fractions which contained the outer membrane proteins using a FPLC 

system with a MonoQ column. P66 and homologues eluted when the NaCl gradient reached 

190 mM. In those cases where the P66 fraction contained other proteins, the process was 

repeated under the same conditions obtaining pure P66. To check P66 purity in the samples 

12% SDS-Page were used. P66 and homologues appeared in a 66 KDa band and no 

contaminants were observed staining the gels with silver nitrate (Fig. 3-2). P66 and 

homologues were additionally tested in WB using an antibody against B. burgdorferi P66 

(Fig. 3-2). While P66 and the LD homologues reacted positively against the antibody, only the 

homologue from B. hermsii showed a positive signal among the RF species. The WBs were 

repeated for B. duttonii and B. recurrentis using a higher concentration of the purified 66 KDa 

protein and increasing the P66 antibody concentration but none of them showed a positive 

signal. Finally the whole outer membrane protein fraction was tested to reject the idea of 

having isolated another 66 KDa protein. Again no positive signal was visible. 

Fig. 3-2: SDS-Page (A) and WB against P66 

(B) from different LD and RF Borrelia 

species. B. burgdorferi (B.b), B. afzelii (B.a) 

and B. garinii (B.g) belong to the Lyme 

disease species while B. duttonii (B.d), 

B. recurrentis (B.r) and B. hermsii (B.h) 

belong to the relapsing fever group. No WB 

signal against P66 was observed for B. 

duttonii and B. recurrentis (data not shown). 
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3.1.4 Single channel measurements of P66 and homologues 

The pore forming activity of P66 from B. burgdorferi was previously shown with a surprising 

high single channel conductance of 9.6 nS in 1 M KCl [52]. To test if the P66 homologues had a 

similar pore forming activity the BLB assay was used. P66 was again tested to have comparable 

conditions with those used for the rest of the homologues. The purified proteins were added 

to a 1 M KCl solution and the permeabilization of the membrane was studied. 

All the homologues excluding the one from B. hermsii exhibited step-like increases of the 

membrane conductance as the proteins inserted in the artificial membrane (Fig. 3-3). 

 

Fig. 3-3: Step-like increases of the membrane conductance as P66 and homologues 

inserted in the membrane. The salt solution in which the Diph-PC membranes were 

contained was 1M KCl and the temperature was 20 ˚C throughout.  

 

The conductance range of the pores inserted in the membrane went from 7 to 13 nS in 1 M KCl 

(Fig. 3-4). The characteristic conductance for each protein was considered to be the most 

frequent value, differing here in some cases one from each other. B. burgdorferi and B. garinii 

had a typical single channel conductance of 11 nS while B. afzelii and B. duttonii had a 9 nS 
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conductance. B. recurrentis showed a similar conductance to B. duttonii of around 9.5 nS 

consistent with their high amino acid sequence homology.  

Curiously, the homologue isolated from B. hermsii did not showed any pore forming activity 

when tested with the BLB assay. To make sure that the sample was not damaged a new outer 

membrane extraction was done. In addition, a different strain was used to reject a possible 

DNA mutation responsible for the P66 inactivation. Finally, an alternative extraction protocol 

described before was used [82]. None of these actions resulted in the observation of a pore 

forming activity from the B. hermsii P66 homologue. 

 

 

Fig. 3-4: Pore forming activity of purified P66 and homologues from LD and RF species. The 

histograms were created with at least 100 insertions for each sample. 1% DiphPC 

membranes in 1 M KCl were used for the experiments at room temperature. 

 

In some cases, like shown in the histogram of B. duttonii, another group of pores with a 

conductance between 4 and 6 nS was observed. In principle, these pores do not correspond 

with the P66 pore conductance. As addressed later in the discussion and in the “Analysis of 
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outer membrane complexes using BN-Page” project in this thesis, these pores are believed to 

be related with P66. 

The P66 proteins were tested in different KCl concentrations and in different electrolytes to 

gain some insight into the ion transport through them. The conductance of P66 and 

homologues was a linear function of the KCl concentration. This correlation is typical for 

diffusion porins which have no binding sites for anions or cations. Measurements with lithium 

chloride and potassium acetate, where anions and cations differ in size, showed a similar 

decrease in the single channel conductance. These results indicate that P66 channels have no 

apparent selectivity for ions or cations (Table 3-1). 

 

  B. b. B. a. B. g. B. d. B. r. B. h. 

Electrolyte Concentration (M) *γ+ G (nS) 

KCl 0.1 [0.77] 1.3  1.3 1.5 0.8 1.25 n.a. 

 0.3 [0.68] 3.5  3.5 3.5 2.25 2.75 n.a. 

 1 [0.6] 11.0  9.0 11.0 9.0 9.5 n.a. 

 3 [0.56] 30  33 35 20 25 n.a. 

LiCl 1 [0.77] 7.3  7.0 8.0 5.0 6.0 n.a. 

KCH3COO (pH 7) 1 [0.78] 6.7  6.5 6.5 4.0 5.0 n.a. 

 

Table 3-1: Conductance of P66 and homologues in different concentrations of KCl and in 

different salt solutions. The ion activity coefficients are indicated in brackets [γ] next to 

the molarity (M). Samples from B. hermsii were not active in BLB (n.a.). 

 

3.1.5 Selectivity measurements of P66 and homologues 

Zero-current membrane potential measurements were carried out to define the ion selectivity 

of P66 and homologues more precisely. Membranes with more than hundred inserted P66 

pores had been used to do the measurements. Five-fold gradients of potassium chloride, 
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lithium chloride and potassium acetate were established across the membranes. The results 

for KCl showed a small asymmetric negative potential at the diluted side of the membranes 

that reflects very light anion selectivity. When the KCl salt solution was replaced for LiCl the 

zero-current potential was more negative at the diluted side. When KCH3COO was used a 

slightly positive asymmetry potential took place at the diluted side. All of these results support 

the idea of a diffusion channel without selectivity for anions or cations. 

The permeability ratios shown in Table 3-2 for the different salt solutions were calculated 

using Eq. 5 indicated in the methods section (2.7.2). 

 

 B. b. B. a. B. g. B. d. B. r. 

Electrolyte Permeability ratios Pc/Pa (Vm [mV]) 

KCl 0.8 (-3.8) 1.0 (+0.6) 0.8 (-3.5) 0.9 (-1.8) 0.9 (-1.6) 

LiCl 0.5 (-11.1) 0.7 (-6.1) 0.5 (-11.3) 0.6 (-9.8) 0.8 (-2.8) 

KCH3COO (pH 7) 1.5 (+6.5) 1.2 (+3.2) 1.4 (+5.6) 1.1 (+1.7) 1.2 (+3.5) 

Table 3-2: Zero-current membrane potentials Vm (in brackets) and permeability ratios 

Pc/Pa of DiphPC membranes in presence of P66 and homologues measured for five-fold 

concentration gradients of three different electrolytes. 

 

3.1.6 Voltage dependence measurements of P66 and homologues 

As published elsewhere [52], P66 from B. burgdorferi possess a symmetric voltage 

dependency. In this previous study, a membrane saturated with P66 channels started to 

exhibit a decrease of the overall membrane conductance at voltages of about ±30 mV. The 

conductance of this membrane was reduced to half at ±70 mV and to 10% at ±100 mV or 

higher. To study if the homologues reacted in a similar way, voltage dependency 

measurements were performed. P66 from B. burgdorferi was again tested to have the same 

conditions for all proteins. 

The pore closure was calculated measuring the conductance of the membrane immediately 

after applying a voltage and again after some time of stabilization where no further decrease 

in the membrane conductance was observed. In the first measurement the channels are 
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considered to be totally open. If the channel shows voltage dependency it will show a 

determined closure that will reach a state of equilibrium some time after. The conductance at 

this point is considered to be final conductance. Comparing initial and final conductance, the 

percentage of pore closure can be calculated for each applied voltage. In Fig. 3.5 the pore 

closure at each voltage is shown for P66 and homologues.  

 

 

Fig. 3-5: Voltage dependency for P66 and its homologues in other species. After 

application of voltage and stabilization of the channels, the conductance of the membrane 

was measured (G) and divided by the initial conductance measured immediately after 

turning on the voltage (Go). The salt solution used was 1 M KCl at room temperature. The 

standard deviations did not exceed 0.03. 

 

Some of the homologues reacted strongly to the applied voltage like B. duttonii, showing some 

closure starting at ±20 mV. Many of them, like the homologues from B. afzelii, B. garinii and B. 

recurrentis started showing channel closure at voltages of around ±50 mV. The P66 protein 

from B. burgdorferi was the pore forming protein that showed a higher resistance against 

voltage-closure (70 mV). This result is in contrast with the previous study where the closure of 

P66 from B. burgdorferi started at ±30 mV. In addition, the overall closure of P66 is clearly 

smaller than the previous published reaching only a reduction of 20% at 90 mV. 
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3.2 Discussion 

3.2.1 P66 homologues are present in LD and RF species 

Up to date, the biology of the genus Borrelia was based on studies carried out in B. 

burgdorferi. Borrelia includes many species with different vectors and life cycles. To analyze if 

the different way of life could be related with differences in composition or function of the 

surface proteins, studies using other species of this genus are needed. Porins are among the 

outer membrane proteins and they have an important role in the exchange of different 

substances with the environment. One of the best known porins in Borrelia is P66, but the vast 

majority of the experiments dealing with this porin have been done in B. burgdorferi.  

In the present work six species of Borrelia were compared. Three of them caused the Lyme 

disease and are responsible for the global distribution of the disease. The other three were the 

main relapsing fever causative agents.  

The recent publication of some genomes in the net during the realization of this work made 

allowed doing a gene alignment for these six species. The P66 gene was found in all of them, 

showing a high conservation among homologues. The three species producing Lyme disease 

seem to be closer in the evolution sharing a 90% sequence homology while the RF species 

studied here differ to a larger extend. B. duttonii and B. recurrentis seem to be species 

extremely close related while B. hermsii had gene regions that are not shared with the other 

two RF species. 

In SDS gels all the homologues purified appeared to have a similar molecular weight of around 

66 KDa and seem to elute at similar salt gradients. The antibodies for the immunoassays were 

obtained from rabbits immunized with P66 from B. burgdorferi. Differences in the amino acid 

chain from B. duttonii and B. recurrentis could explain the absence of signal in the WB when 

using these antibodies. Nevertheless the high conserved regions between sequences and a 

single channel conductance in the same atypical range of P66 lead to the assumption that 

those two proteins are homologues of P66. In contrast, the homologue from B. hermsii reacted 

with the P66 antibody. Conserved amino acids between B. hermsii shared with LD but not with 

the RF species where the P66 antibody may bind could explain this fact. 
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3.1.2 Biophysical characterization of P66 and homologues 

Corresponding with the homology of the proteins, almost all of them showed membrane 

channel formation. The pores had a high single channel conductance in a range between 9 and 

11 nS.  

Only the homologue from B. hermsii lacks this channel formation ability after purification. 

Disruption of the protein during the purification was rejected testing the whole B-fraction in 

BLB assays. Using the whole outer membrane protein content displayed no single channel 

activity above 2 nS. One of the reasons for this lack of activity could be a bigger sensibility to 

detergents which are required to extract the outer membrane or the loss of the porin function 

due to amino acids mutations during the evolution process. In any case, further experiments 

are required to clarify why P66 shows no pore forming activity in this species. The results 

presented in this thesis are contrary to a previous study where outer membrane protein 

preparations were tested in artificial membranes showing a conductance of 7.2 nS among 

others [82]. No relation was shown in this study between this conductance and a possible P66 

homologue. In the present work whenever B-fractions from B. hermsii were tested such a 

single channel activity was not observed. 

P66 and the other four homologues showed similar biophysical characteristics. They seem to 

be water filled diffusion channels with no selectivity for anions or cations. All of them showed 

voltage dependency at voltages lower than 100 mV. Therefore these proteins seem to have a 

similar behavior and probably a similar function in all the species. 
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P66 channel diameter estimation 

using non-electrolytes 
 

P66 is a protein situated in the outer membrane of B. burgdorferi [83] with pore forming 

properties [52]. P66 is also present in other Lyme disease (LD) species and relapsing fever (RF) 

species with a similar porin activity [51]. It has an unusual high single conductance of 11 nS 

[51], which was previously thought to be indicative of a big diameter channel. Previous 

theoretical estimations of the P66 channel diameter lead to an estimate of 2.6 nm [52], which 

it is a rather large diameter compared to other pore forming outer membrane proteins [84]. If 

this would be the case, these big channels would allow a free molecule exchange between the 

environment and the periplasmic space, a fact that could impair the defense function of the 

outer membrane. A better understanding of the structure of the P66 porin could help to 

understand why the outer membrane of certain Borrelia strains contain small pores, such as 

Oms38 [62], next to big channels like P66. 

Therefore, an applied method using non-electrolytes (NEs) with known hydrodynamic radii 

[78] was used to calculate the real diameter of P66. This method was used before successfully 

[78, 85-93] and should provide a more accurate estimate of the P66 channel diameter using a 

biophysical approach. 

 

4.1 Results 

4.1.1 P66 pore diameter estimation 

The estimation of a channel diameter using NEs is a method based on the fact that small 

non-electrolytes that penetrate in a channel will reduce its conductance due to an increase in 

the solution viscosity that will make the ion flux more difficult. That way, the conductance of a 

pore is measured in a salt solution containing each time a different NE with increasing 
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hydrodynamic radius. As the diameter of the NE is increased, a point will be reached where it 

will not be able to enter the channel. From that point on, NEs with a larger radius will not enter 

the channel and the channel interior will be free of NEs. The conductance of the pore will be in 

those cases equal to the original measured in the salt solution. It is possible then to correlate 

the hydrodynamic radius of the smallest NE that do not enter the pore with the diameter of 

the pore. 

P66 from B. burgdorferi was measured in a salt solution (1 M KCl) each time with a different NE 

(20%). The P66 conductance for the independent measurements is summarized in the next 

table (Table 4-1). The molecular mass and hydrodynamic radius of the NEs and the 

conductance of the solutions are also indicated in the table. 

 

Non-electrolyte Mr (g/mol) r (nm) G (nS) Χ (mS cm-1) 

     

None - - 11.0 110.3 

Ethylene glycol 0062 0.26 16.5 157.2 

Glycerol 0092 0.31 15.5 149.1 

Arabinose 0150 0.34 17.0 163.7 

Sorbitol 0182 0.39 17.5 157.8 

Maltose 0360 0.50 18.0 173.8 

PEG 300 0300 0.60 17.5 145.5 

PEG 400 0400 0.70 10.9 146.4 

PEG 600 0600 0.80 10.9 154.1 

PEG 1000 1000 0.94 12.0 149.5 

PEG 3000 3000 1.44 10.5 148.9 

PEG 6000 6000 2.50 10.5 150.5 

Table 4-1: Non-electrolytes used to determine the P66 diameter. The molecular weight 

(Mr) and the radius (r) are indicated together with the conductance of P66 (G) and the 

conductivity of the solution (X) in presence of each NE. 

 

Examples of the measurements performed in the BLB assay in presence of different NEs are 

shown in the next figure (Fig. 4-2). In presence of maltose, the conductance of P66 was 

reduced to some extent (to approximately 70%). This decrease is in relation with the decrease 
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of the salt solution conductivity in presence of the NE. With PEG 400 and PEG 600 an 

unexpected big reduction in the P66 conductance and increase of noise was observed. This 

effect cannot be explained with the reduction of the salt solution conductivity and is later 

further discussed. P66 shows no conductance reduction in presence of PEG 1000 showing that 

this NE had no access to the channel interior. 

 

Fig 4-2: Four examples of BLB measurements of P66 in presence of different NEs. The 

histograms were done with at least hundred P66 individual insertions in presence of 

maltose (A), PEG 400 (B), PEG 600 (C) and PEG 1000 (D). Next to each histogram and 

example of P66 insertions in artificial membranes is shown. 

 

As summarized in the Table 4-1, NEs with a hydrodynamic radius of 0.94 nm or bigger were not 

able to get inside the channel showing P66 no reduction in its conductance (around 11 nS). 

Those NEs were PEG 1000, PEG 3000 and PEG 6000. In contrast, NEs with a hydrodynamic 

radius of 0.8 nm or smaller got inside the channel showing P66 the corresponding conductance 

reduction. The NEs used were ethylene glycol, glycerol, arabinose, sorbitol, maltose, PEG 300, 

PEG 400 and PEG 600. These results are again clearly summarized in the next figure (Fig. 4-1). 
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Fig. 4-1: Influx of NE with diferent 

molecular mass (A) and different 

hydrodinamic radius (B) in the P66 

conductance. Each point in the plot 

represents the most frequent conductance 

for P66 in the presence of a determined 

NE. 

 

The entrance radius of a pore forming protein is considered to be equal to the radius of the 

smallest NE that does not reduce its conductance. In the case of P66 this NE was PEG 1000, in 

which presence the P66 conductance was again around 11 nS. Therefore the P66 entrance 

radius is estimated to be 0.9 nS. 

 

A pore forming protein could be considered as a perfect cylinder or what it is more likely to 

happen in the nature a cylinder with irregularities in the channel interior. In the case of a 

perfect cylinder, the NEs will either fill the channel completely when they are small enough to 

enter the channel or not at all if they are too big. But in the case of having an inner constriction 

inside the channel, another event is possible. NEs small enough to enter the channel but too 

big to pass all the way trough it will be present only in a fraction of the channel. To analyze the 

idea of a possible constriction inside the channel the filling concept was introduced. This 

concept and the formulas to calculate the channel filling (Eq. 8 and Eq. 9) are explained with 

more detail in the methods section 2.7.6. This concept establishes that the radius of a 
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constriction zone should be equal to the radius of the smallest NE that do not pass freely 

through the channel and fill it only partially. 

In the measurements done using P66 from B. burgdorferi, NEs like ethylene glycol, glycerol and 

arabinose showed a channel filling close to 100%. NEs like sorbitol and PEG 300 filled the 

channel only partially. And NEs like PEG 1000, PEG 3000 and PEG 6000 didn´t fill the channel at 

all (F% values in Table 4-2). The smallest NE that did not fill the channel completely was 

sorbitol. Therefore the radius of the P66 constriction zone is considered to be equal to the 

sorbitol hydrodynamic radius, which is 0.39 nm.  

 

Non-electrolyte r (nm) F F% 

    

Ethylene glycol 0.26 10.75 0096.8 

Glycerol 0.31 10.80 0106.7 

Arabinose 0.34 10.78 0100.6 

Sorbitol 0.39 10.51 0065.8 

Maltose 0.50 10.76 0098.1 

PEG 300 0.60 10.33 0042.6 

PEG 400 0.70 nl. nl. 

PEG 600 0.80 nl. nl. 

PEG 1000 0.94 .-0.07 0009.0 

PEG 3000 1.44 10.04 0005.2 

PEG 6000 2.50 10.04 0005.2 

Table 4-2: P66 channel filling with different NEs. The hydrodynamic radius (r) of the 

different non-electrolytes are shown together with the P66 channel filling (F) and the 

channel filling expressed in percentage (F%). The formulas used to calculate F and F% are 

indicated in the methods section 2.7.6. 

 

The presence of PEG 400 and PEG 600 in the salt solution resulted in an unexpected reduction 

of P66 conductance close to 1 nS with a lot of noise and a contradictory channel filling higher 

than 100%. This decrease in conductance, which should be between 45 and 75 % of the 

original when using 1M KCl, is not in accordance with the reduction of the salt solution 

conductivity in presence of NEs. 
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The channel filling with maltose was close to 100%. However, smaller NEs like sorbitol do not 

fill the channel completely. To test if that effect was due to an interaction of the maltose with 

the channel interior, another NE with the same hydrodynamic radius (PEG 200) was tested. 

PEG 200 showed as well a reduced conductance of 6.5 nS with a channel filling of 64.1% which 

is in concordance with the rest of the measurements. 

 

4.1.2 Interactions of NEs with the P66 channel. 

To help understanding the interaction between maltose, PEG 400 and PEG 600 with this 

channel, multi-channel titration experiments with these and other NEs were performed. To do 

these experiments P66 was added to a 0.1 M KCL solution without NEs. When the pore 

forming activity reached a stationary phase with at least 100 pores inserted in the membrane a 

small amount of a NE was added. 

The NEs selected were maltose, PEG 400, PEG 600, maltohexaose, fructose, glucose, sucrose 

and related carbohydrates. An effect could only be seen after addition of PEG 400, PEG 600 

and maltohexaose. Those NEs caused a dose-dependent blockage of the channel conductance. 

The P66 conductance was blocked approximately 80 % after addition of 4.5 mM PEG 400 and 

PEG 600, and approximately 90 % after addition of 45 mM maltohexaose (Fig. 4-3). The 

blockage kinetics of PEG 400 and PEG 600 compared to maltohexaose were different. While 

the channel blockage after addition of maltohexaose was relatively fast, after addition of PEG 

400 and PEG 600 it took between 10 and 30 minutes to reach a stationary phase. Titrations 

with other NEs like glucose and maltose did not lead to any blockage of the P66 channel 

conductance (results not shown). 
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Fig. 4-3: Titrations of P66 with PEG 600 

and maltohexaose. Membranes 

permeabilized with at least hundred 

P66 units were titrated adding PEG 600 

and maltohexaose to a 0.1 M KCl 

solution. Additions of the NE are 

indicated with arrows together with 

the final concentration of the NE in the 

salt solution. Similar effects of those 

observed for PEG 600 were observed 

for PEG 400. 

 

 

4.1.3 Effect of PEG 400 and PEG 600 on a P66 single channel 

The blockage pattern of a single P66 unit could give important information about the 

organization of this porin. For example, trimeric porins like LamB form three independent 

channels, and its blockage with maltose occurs in three conductance decreasing steps. In the 

same way, blockage of one single P66 complex could give insight in its possible multi-channel 

organization. 

 In order to have just one single P66 unit inserted in the membrane, the sample was diluted to 

a great extend (1:10000) before adding a few microliters to the salt solution in the Teflon 

chamber. After getting the first insertion of a P66 channel in the membrane, the PEG 400 or 

PEG 600 was immediately added to the salt solution. Shortly after the addition the 

conductance through the membrane started to decrease. This decrease of conductance 
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happened in form of small steps down reducing the conductance. These steps are usually 

indicative of a protein complex where each step down represents a monomer being blocked. 

The P66 blockage occurred in approximately eight regular 1.5 nS steps (Fig. 4-4).  

 

Fig. 4-4: Blockage of a single P66 unit with PEG 400. After insertion of a P66 pore in the 

membrane 90 mM PEG 400 was added to the salt solution (indicated by an arrow). 

 

4.1.4 Current noise of P66 in presence of PEG 400, PEG 600 and 

Maltohexaose  

To investigate in detail the possibility of a P66 binding site for PEG 400, PEG 600 and 

maltohexaose the current noise of the blocked P66 channels was studied.  

Parallel to the titration measurements, the frequency-dependence of the spectral density of 

the current noise was analyzed using fast Fourier transformation. Fig 4-5 illustrates an example 

of a measurement with PEG 600. Before addition of NEs, a reference spectrum was taken to 

obtain the current noise of the open P66 channel, which exhibited 1/f -noise in the frequency 

range between 10 Hz and 100 Hz (Fig. 4-5, trace 1). The increase of the spectral density at 

frequencies above 200 Hz was caused by intrinsic noise of the preamplifier that produces a 

frequency-dependent current noise through the membrane capacity Cm. The reference 

spectrum was subtracted from each spectrum taken after the successive addition of NEs in 

increasing concentrations. In Fig. 4-5, trace 2 shows a spectrum taken after addition of PEG 

600 (9.6 mM; the reference spectrum of trace 1 was subtracted). The current noise spectrum 

of P66 after addition of PEG 600 could be fitted to a 1/f-function and is shifted to higher 

spectral density as compared to the reference spectrum (Fig. 4-5, trace 2). In further 
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measurements, the concentration of PEG 600 was increased in defined steps. At other 

concentrations of PEG 600 (18.7 mM and 30.0 mM) the power density spectrum corresponded 

to that of traces 3 and 4, respectively, in Fig. 4-5, which also could be fitted to a 1/f-function. 

This type of noise is expected for diffusion processes through open channels [76, 77]. The 

spectral density of current noise through P66 channels could also be fitted to 1/f functions 

after addition of PEG 400 and maltohexaose. 

 

Fig. 4-5: Power density spectrum of PEG 600 induced current noise of P66. Trace 1 shows 

the noise of P66 in 1 M KCl salt solution without PEG 600. Traces 2-4 show the power 

density spectra of P66 in presence of increasing concentrations of PEG 600. 

 

4.1.5 Blue Native Page analysis of the P66 complex  

Previously, samples analyzed with SDS-Page did not show any oligomeric association of this 

protein. SDS is an ionic detergent which can cause the dissociation of protein complexes. To 

avoid denaturation of P66 samples, they were analyzed using BN-Page [70, 71]. 

In this native gels stained with silver nitrate only one band was observed. This band had an 

estimated molecular weight of around 460 kDa. Since the proteins maintain their native 

conformation, the size estimation may have an expected error of around 15% [94]. The real 

molecular weight of the P66 complex should be in a range between 390 and 530 kDa. 
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This band was blotted to a PVDF membrane and incubated with P66 antibodies. The band 

reacted positively in this immunoassay showing the presence of P66 in this protein complex.  

 

Fig. 4-6: Blue Native Page (left) and WB (right) of a pre-purified P66 sample. P66 was 

obtained from a B-fraction sample purified by FPLC using a MonoQ column. The molecular 

weight used was NativeMark Unstained, Invitrogen and is indicated in kDa to the left. 

 

4.2 Discussion 

4.2.1 Pore estimation 

Previous studies tried to determine the P66 channel radius using only a theoretical approach 

[52]. The P66 conductance was considered to be equal to the conductivity of a simple cylinder 

of aqueous salt solution where the length of the cylinder was considered equal to the 

membrane thickness. The predicted diameter for P66 channel was estimated to be 2.6 nm[52]. 

This kind of estimation can only be considered preliminary because it does not take into 

account important parameters like charge and hydrophobic interactions inside the channel or 

oligomeric conformation. 
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The existence of a huge hole in the outer membrane of Borrelia burgdorferi is difficult to 

imagine. These pores could definitely impair the protection function of this membrane 

allowing the transport of harmful substances to the periplasmic space. In addition to that, it is 

also difficult to understand the presence of small porins like Oms38 described in B. duttonii 

[62] next to P66. Therefore, in order to study the P66 channel diameter in an objective 

experimental way the use of NEs was thought to be a good approach. 

The use of different NE to determine the channel diameter of pore forming proteins has been 

reported previously. The channel diameter of PA63 from Bacillus anthracis [95], the α-toxin 

from Staphylococcus aureus [92] and the colicin Ia channel from Escherichia coli [78] have been 

successfully estimated using this method. Because NEs are uncharged molecules, they avoid 

attraction/repulsion forces between ions and the channel interior charges. Additionally, the 

determination of the channel diameter using NEs is not influenced by oligomeric 

conformations which are usual for porins. 

Analyzing the results of the measurements in presence of different NEs it can be concluded 

that P66 has an entrance pore diameter of approximately 1.9 nm with a 0.8 nm inner 

constriction. An estimated error of 0.1 nm can be considered caused by a smearing in the 

molecular weight of the NEs and therefore their hydrodynamic radius [92, 95]. This size is in 

accordance with other porin diameters and is much smaller than the previously predicted 

value of 2.6 nm. A 0.8 nm constriction diameter does not allow an indiscriminate transport 

across the outer membrane rejecting the idea of a huge channel but does not explain the 

discrepancy between the diameter and the channel conductance. The oligomeric constitution 

of P66 could play a major role as discussed below in more detail. 

PEG 400 and PEG 600 blocked the channel in an unexpected way reducing the conductance to 

approximately 10 % of the original measured in 1M KCl. This effect is difficult to explain and is 

probably caused by the occlusion of the channel when a molecule gets blocked somewhere 

along the channel interior. This effect allowed gaining some insight in the arrangement of the 

P66 complex studying the single channel blockage of P66. 

 

4.2.2 Interactions of NEs with the P66 channel 

The drastic reduction of P66 conductance due to the addition of 20% PEG 400 and PEG 600 to 

the salt solution does not correspond to the decrease in the bulk conductivity of the salt 

solution which should be between 40 and 70 %. The multi-channel titration measurements 
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with PEG 400 and PEG 600 showed a P66 conductance reduction of 80-90 %. This blockage was 

surprisingly slow taking 10-30 minutes to reach a stationary phase after addition of the PEGs. 

This kind of slow blockage is not usual for substrate-binding porins. Because of that fact and to 

clarify if there was some kind of interaction with the channel interior the P66 current noise 

through opened and NE-induced closed state was measured. 

Current noise measurements and the subsequent analysis of the power density spectra 

obtained by Fourrier-transformation permitted the identification of binding sites in specific 

porins. In the case of a porin being specific for a substrate the noise is of Lorentzian type [96-

99]. In contrast, specific channel without substrate and diffusion porins show a 1/f- noise [76, 

77, 100]. In current noise measurements, P66 showed a 1/f- noise not only in the open state in 

absence of NEs, but also in presence of PEG 400, PEG 600 and maltohexaose. Well studied 

specific porins showed always the Lorentzian noise type and therefore the blockage of P66 by 

these NEs cannot be explained with specific binding sites. PEG 400 and PEG 600 probably 

diffuse through the channel getting stuck along the way due to their size. 

The blockage effect of those NEs also allowed studying the blockage of a single P66 channel. 

After the insertion of one single P66 channel in the membrane, PEG400 or PEG 600 was added 

to the salt solution. P66 conductance was blocked in about eight similar progressive steps. This 

blockage was reversible and some of the steps fluctuated between the opened and closed 

state. These effect leads to the idea of P66 being a bundle of channels rather than a huge 

channel as it was predicted before. In that case, P66 could build an unusual oligomeric channel 

conformation no described before for any organism. Some other porins with high single 

channel conductance have been described in spirochetes, like those from Spirochaeta aurantia 

and Treponema denticola [101, 102]. A possible gene homology and a similar organization as a 

bundle of pores must be studied. These studies might reveal a specific protein complex 

important for the spirochetes biology. 

 

4.2.3 Blue Native Page analysis of the P66 complex  

The results obtained with Blue Native gels confirmed an oligomeric conformation of P66. The 

P66 complex appeared as a 460 kDa band. Because the BN-Page separates proteins in their 

native state and the structure of different proteins can differ enormously a molecular weight 

error must be considered. This error is estimated to be around 15% [94]. Therefore, it can only 

be concluded that P66 is a big protein complex with a molecular weight in a range from 390 
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kDa to 530 kDa. Probably P66 is an octamer, but in any case indications described in the next 

chapter support the idea of a symmetric complex (hexamer, octamer or decamer) that can be 

divided in two equal parts as explained in the section 6 in detail. 
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Recombinant P13 in Escherichia 

coli and Nicotiana benthamiana 
 

One of the main aims of this thesis was the production of an outer membrane protein from 

B. burgdorferi that could be used in the diagnosis and treatment of Borrelia infections. The 

chosen protein was P13 as it is proved to be surface exposed and because researches in 

genome databanks revealed no homologues in other bacterial genera, even in the close 

related Treponema [103]. This protein is possibly involved in functions that are specific for the 

Borrelia pathogenesis and its production and isolation could help to clarify its structure and 

function which is not completely understood. 

Large amounts of the chosen protein are needed to develop these new strategies. Borrelia 

cells grow very slow and entail an infection risk. For those reasons, the recombinant 

expression of P13 seems to be the optimal approach for its production. In order to find the 

best expression system and to optimize the expression levels of the recombinant protein, two 

organism were selected: first, the well known E. coli used before successfully to express many 

other proteins, and second, a new system in the tobacco plant N. benthamiana which has been 

employed previously with Borrelia proteins with the possibility of a large-scale and cost-saving 

production [104].  

P13 is an outer membrane protein with an N-terminal signal sequence processed on its way 

through the inner membrane. It has also been described that the C-terminus is cleaved 

somewhere between the periplasmic space and the outer membrane [103, 105]. P13 has pore 

forming activity [56] but it is unknown if the C-terminus is required for the pore formation 

[105]. To look deeper into this question, two DNA fragments were designed to be cloned in E. 

coli. One of the inserts was the P13 gene with neither the N-terminus nor the C- terminus and 

the other one was the P13 gene only with the C-terminus. Both structures included an E. coli 

signal sequence from one of its outer membrane proteins (OmpF) to cross the inner 

membrane and a His-tag residue to facilitate purification of the recombinant protein.  
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Only one construct was designed to be cloned in the tobacco plant, the processed P13 protein 

with a His-tag for later purification. The aim of this cloning was to establish an easy and fast 

production of the protein in big amounts and at low cost. 

 

5.1 Results 

5.1.1 p13 expression in Escherichia coli 

After inducing the production of rP13 in E. coli and breaking the cells using a French press the 

cell debris was spun down (P1). The cell membranes with its embedded proteins and the 

cytoplasmic proteins were located in the supernatant (S1). The S1 was ultracentrifugated at 

143000 g for 1 hour. From this ultracetrifugation a pellet (P2) and a supernatant (S2) were 

obtained. The cytoplasmic proteins were found in the supernatant S2, while the membranes 

with its proteins were located in the pellet (P2). After discarding the S2, the P2 was 

resuspended in a Tris solution with 1% LDAO. After the addition of the detergent, the 

membrane proteins were soluble. A second ultracentrifugation at 143000 g was required to 

separate solubilized proteins from unsolubilized membrane patches and other components. 

The membrane proteins were then in the supernatant (S3). An overview of the whole cell 

fractionation is described in the next figure (Fig. 5-1). 

 

Fig. 5-1: Cell fractionation of E. coli cells. The centrifugation steps are shown in red squares 

while the products obtained are detailed in the blue squares. 
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To check if the protein was expressed during the induction and if the cell fractionation was 

correct, different samples were collected during the process and tested in a WB. The WB was 

performed without any further purification, and therefore the samples contained a high 

amount of E. coli proteins. A clear positive reaction against the P13 antibody could be 

observed in S3 as expected but part of the recombinant protein remained in P1 and P3 (Fig. 5-

2). 

 

Fig. 5-2: WB against P13 from the E. coli cell fractionation of 

construct 1. The marker is indicated right in kDa (Precision Plus 

Protein Prestained Standards Dual Color, BioRad). The different 

fractions are indicated above, and the origin of each one is 

explained in the Fig. 5-1. Similar results were obtained for 

construct 2. 

 

Using Ni-NTA Sepharose beads the protein content in the S3 was further purified. The 

recombinant protein had a polyhistidine-tag that binds strongly to the column matrix and it 

was eluted with an increase in the imidazole concentration. The different washing steps and 

the elution were tested in a WB. In Fig. 5-3 is possible to see how the recombinant protein 

eluted after the several washing steps when the imidazole concentration reached 500 mM. In 

the elution fractions several bands reacted against the P13 antibody in each construct sample. 

A 13 and a 17 kDa band were observed in the construct 1 sample. For the construct 2 sample, 

also two bands were visible, one that was approximately 13 kDa and a second one that 

reached 20 kDa. A third 30 kDa band was also present in all the elutions, even in the negative 

control. In the upper part of the WB two bands can be observed for const. 1 and 2. The height 

of these bands corresponds with the loading pockets of the gel showing some protein 

aggregation that hinder the entry of part of the recombinant protein in the gel. 
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Fig. 5-3: WB from the P13 purification using Ni-NTA Sepharose beads. Several washing 

steps (W2, W7 and W10) were checked to confirm that no premature elution occurred. 

W1-W9 were done with 50 mM imidazole and W10 with 100 mM imidazole. The two 

elution steps (E1 and E2 were done with a 500 mM imidazole concentration. The protein 

marker used was Precision Plus Protein™ standards Kaleidoscope (BioRad). 

 

5.1.2 p13 expression in Nicotiana benthamiana 

 

The expression process in the tobacco plants differs from the expression in E. coli. After 

infiltration of A. tumefaciens through the stomata in the tobacco leafs a production time was 

required. After that period, the leaves were collected and immediately crushed to powder 

using a mortar and liquid nitrogen. 

The powder obtained with the previous step was mixed with an extraction buffer. The mixture 

was incubated over night under vigorous shaking at 4 °C. The cell debris and other insoluble 

components were spun down. The extract was tested in SDS-Page and WB to prove the 

presence of rP13 (Fig. 5-4). 
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Fig. 5-4: SDS-Page and WB against P13 from the plant extract. 

The SDS-Page was stained with silver nitrate and the 

molecular weight is indicated in kDa. 

 

Great amount of plant proteins extracted together with the recombinant protein were visible 

on the SDS-Page making necessary further purification steps. The presence of rP13 was 

evidenced by the 13 kDa band that reacted against the P13 antibody in the WB. 

The remaining solution was incubated overnight in presence of Ni-NTA Sepharose beads for 

the purification. The His-tag in the recombinant protein bound to the beads and those were 

collected by centrifugation. Posterior washing steps with increasing concentrations of 

imidazole lead to purification of rP13. A SDS-Page and a WB were done to analyze the loss of 

protein during the washing steps and the purity of the protein in the elution fraction (Fig. 5-5). 

 

Fig. 5-5: SDS-Page and WB against P13 from the purification realized using the protein 

extract from tobacco plants. In the first lane, the extract solution after incubation with Ni-

NTA Sepharose beads is found (Extr.). W1 in the second lane is a wash step realized with 

20 mM imidazole. E1 and E2 are successive elution steps with a 250 mM imidazole. 
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5.1.3 Pore forming activity of rP13 in black lipid bilayers 

The two structures produced in E. coli were tested in artificial membranes to further 

characterize their pore forming activity. Additionally, a negative control without the pARAJS2 

plasmid was measured in BLB. The results are shown in the next Fig. 5-6. 

 

Fig. 5-6: Pore forming activity of purified rP13 produced in E. coli. The samples were 

measured with the BLB assay in 1 M KCL. A negative control (C-) was measured under the 

same conditions as construct 1 and 2. 

 

A main activity was observed in both constructs with a prevalent conductance of 2.75 nS and a 

secondary activity of 1 nS. The negative control displayed a similar pore forming activity with a 

main conductance of 2.5 nS and the same residual conductance of 1 nS. 

The voltage dependency of the 2.75 nS pore was measured to discern between a possible E. 

coli porin and rP13. The samples showed a voltage dependency around 100 mV (data not 

shown). rP13 voltage dependency was measured before determining that P13 was voltage 

independent at least until ±150 mV [56]. 
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More rigorous purification processes lead to a loss in the amount of rP13 in the samples. After 

those processes no pore forming activity close to that described for P13 could be observed in 

the samples. 

In the construct produced in N. benthamiana no activity close to 3.5 nS was observed (data not 

show) and therefore no further work was done with this construct in artificial bilayers. 

A possible explanation for the absence of P13 activity in the samples will be discussed in the 

next chapter, where another conductance was observed for P13 when extracting it from a BN-

Page. 

 

5.2 Discussion 

5.2.1 Production of P13 in E. coli 

Two constructs of P13 were produced in E. coli. One included a C-terminus which function is 

unknown and the other one contained the mature P13 protein without this C-terminus. These 

two constructs were produced in E. coli to evaluate if this C-terminus was somehow involved 

in the pore formation or had any other function. 

C-terminal processing of P13 is accomplished by a carboxyl-terminal protease designated CtpA 

[105]. CtpA belongs to a protease family first described in the cyanobacterium Synechocystis 

[106, 107]. Examples of ctpA homologues are present in Gram negative and Gram positive 

bacteria [108], chloroplast of algae [109], higher plants [110] and even in humans [111]. In 

prokaryotes the C-terminal processing is not well understood but there are some examples 

known of such proteins in different organism [112-116].  

Recombinant expression of P13 was successful in E. coli as it can be observed in the WB shown 

in Fig. 5-3. However, two bands were observed for each construct in the WB against P13. For 

construct 1, a 15 and an 18 kDa band could be observed. For construct 2, the bands had a 

molecular weight of approximately 15 and 21 kDa.  

In the samples, proteins from the outer and inner membrane may be found together since the 

cell fractionation only separates membrane proteins from cytosolic proteins. Outer membrane 

proteins present in the inner membrane waiting to be translocated may still have the signal 

sequence attached. This fact could explain the two molecular weights observed for each 

construct. One should correspond with the N-terminal processed protein and the other one 
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will still have the signal sequence. The unprocessed rP13 constructs should produce an 18.5 

kDa protein in the case of construct 1 and a 21.5 kDa protein for the construct number 2. 

Processed proteins should have a molecular weight of 16.2 kDa and 19.2 kDa for constructs 1 

and 2 respectively. The theoretical values of those bands are in agreement with what it is seen 

in the WB except in the case of processed construct 2.  

The processed construct 2 should have a His-tag and P13 including its C-Terminus with an 

approximate molecular weight of 19 kDa. However, in the WB the observed band had 

approximately 15 kDa. A possible P13 C-terminal processing in E. coli might be responsible for 

this discrepancy. A C-terminal protease is known in E. coli with a certain grade of homology to 

CtpA in Borrelia [105]. The major site of cleavage for this protein called Tps seems to be the 

amino acid alanine [116]. This fact coincide with the predicted cleave of P13 by CtpA. The C-

terminal processed construct 2 would have a 16 kDa molecular weight which is in agreement 

with the results observed in the WB. 

The amount of protein recovered after purification was enough to study its pore forming 

activity in artificial bilayers. The results for both constructs show an activity of around 2.75 nS. 

Unfortunately, the negative control displayed a very similar conductance. Previous studies 

done in the research group of Prof. Dr. Roland Benz in the Biotechnology Department of the 

University of Wuerzburg showed that untransformed E. coli BL21 Omp8 Rosetta used for the 

production of recombinant porins retained a similar pore forming activity even after rigorous 

purification with Ni-NTA resins (data not published). Therefore, the voltage dependency of the 

samples was tested to verify if indeed the activity came from an E. coli porin. The pores started 

to close at voltages near to 100 mV while P13 is described to be voltage independent at least 

up to ±150 mV voltages. That way, the 2.75 nS activity is believed to come from an 

unidentified E. coli porin. 

 

5.3.2 Production of P13 in Nicotiana benthamiana 

The expression of the processed P13 in the tobacco plant was thought to be a good expression 

system to get high amounts of the protein at low cost. Recombinant protein expressions in 

tobacco plants have successfully been achieved before [104, 117-119]. Therefore, the 

processed form of P13 was expressed with this method to be used afterwards as a possible 

vaccine candidate. 
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The expression of P13 in N. benthamiana was successful as determined by WB. The 

purification eliminated many of the other plant proteins contained in the sample as shown in 

the E1 and E2 in the SDS-Page from Fig. 5-5. Unfortunately, the expression yield was not as 

high as expected. Big amounts of plant material needed to be processed to get visible signals in 

WB. Because of the low amount of P13, the 13 kDa band was not clearly visible in SDS-Page 

stained with silver nitrate. The fact that P13 is a small hydrophobic protein makes the protein 

run in fuzzy bands in SDS gels and its observation much more difficult. 

The rP13 protein expressed in N. benthamiana showed no activity close to 3.5 nS in BLB. A lack 

of activity in the sample is difficult to explain. The right folding of the protein needs sometimes 

the help of chaperones or other complexes like Omp85 in bacteria [120]. Maybe Borrelia and 

Nicotiana are organisms so apart from another that they differ greatly in the folding machinery 

and therefore some proteins could be improperly folded losing their functionality. The same 

could also happen with E. coli which is not the closest bacteria to Borrelia. 

P13 is a Borrelia outer membrane protein with a described pore forming activity of 3.5 nS [56]. 

Tests done in BLB with rP13 were focused to try to find a similar activity that might be in a way 

influenced by the His-tag producing some conductance variance. But no activity close to the 

mentioned before was observed. The next chapter deals with the Borrelia outer membrane 

complexome where two complexes were clearly observed, one of them probably related with 

P13 and which elution showed a very different conductance for P13 than the published 

elsewhere before [56]. 
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Analysis of Outer Membrane 

Complexes using Blue Native Page 
 

 

 

 

Blue Native Page (BN-Page) is a kind of polyacrylamide gel with a neutral pH that allow the 

separation of protein complexes in their native state. BN-Page allows getting a molecular 

weight estimation of protein complexes with a standard deviation up to 15 %. The SDS 

detergent, which usually breaks the complexes, is substituted by Coomassie blue G-250 as 

charge-shift molecule. The Coomassie G-250 confers a negative charge to the proteins without 

any denaturation. 

BN-Page is also conceived to isolate proteins in their functional state and study the 

composition of macro complexes resolving them in a second dimension SDS-Page (2D SDS-

Page).  

 

6.1 Results 

6.1.1 Separation of the B-fraction from B. burgdorferi in BN-Page 

The B-fraction of Borrelia burgdorferi was studied using BN-Page to identify possible outer 

membrane complexes. B-fraction proteins were diluted in different concentrations of digitonin 

to find the optimal concentration for solubilization. Digitonin is a soft, non ionic detergent that 

maintains the complexes in its functional state. 
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In Fig. 6-1 a digitonin dilution series was carried out to find the optimal detergent 

concentration to solubilize the B-fraction of B. burgdorferi. 

 

 

Fig. 6-1: B. burgdorferi B-fraction solubilized in 

different concentrations of digitonin and 

separated in a 4-16% BN-Page. The different 

concentrations of digitonin used to solubilize the 

outer membrane proteins are indicated in the 

upper part. On the left side the molecular weight 

marker (NativeMark Unstained, Invitrogen) is 

shown in kDa. 

 

As shown in the gel above, two main complexes appeared in the BN-Page stained with silver 

nitrate. The bigger one had a molecular weight of approximately 480 KDa and the small one 

around 350 kDa. 

In BN-Page, it is important to find the optimal concentration of detergent to solubilize the 

membrane proteins [69]. The detergent concentration must be the lowest possible without 

loss of any band. At this detergent concentration the bands have to appear well defined and 

straight. At a certain detergent concentration, vesicles formed during the process of 

solubilization will appear at the bottom of the gel (visible in the 40.5 and 20.25 mM digitonin 

lanes, Fig. 6-1). At or above this detergent concentration should not be worked. Taking all of 

this in consideration the optimal detergent concentration to solubilize outer membrane 

proteins from the B-fraction of B. burgdorferi seems to be around 10.12 mM digitonin. 

To further investigate if these complexes had a relation with P13 and P66, two of the main 

transmembrane proteins in B. burgdorferi, Western blots (WB) were carried out using 

antibodies against them. Again, all the detergent concentrations were tested to observe 

possible protein complex fragmentation. The results are shown in the next figure (Fig. 6-2). 
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Fig. 6-2: Western blots against P13 and P66 using BN-Page to separate proteins from the 

B-fraction of B. burgdorferi solubilized in different concentrations of digitonin. In the 

upper part the concentration of digitonin for each sample is indicated. On the left side, the 

protein marker is shown in kDa (NativeMark Unstained, Invitrogen). The proteins were 

blotted at 30 mV const. during 60 min. to a PVDF membrane. 

 

In the WB against P13 one band reacts intensely with the antibody. The band corresponds to 

the 350 kDa band previously observed in the BN Page. The same WB was done for P66. In this 

case the antibodies reacted mainly against the 480 KDa band also observed in the BN-Page 

previously. In this WB, it is also possible to observe a second band that reacted with the P66 

antibody with a molecular weight of around 200 kDa.  

The WB of the dilution series corroborates that samples solubilized with 10.12 mM digitonin 

have an optimal detergent concentration where the antibody signal appears with the highest 

definition. 

 

6.1.2 Second dimension SDS-Page from BN-Page 

Second dimension gels were done to obtain a better understanding of the composition of 

these complexes. In the first dimension, the B-fraction proteins were separated in a BN-Page 

(4-16% acrylamide) using a 10.12 mM concentration of digitonin. After that, a strip/lane was 

cut from the gel and treated with three denaturing solutions (reducing, alkylating and 
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quenching solution) as described by the manufacturer to break the complexes into monomers 

[67]. The results of this second dimension are show in Fig. 6-3. 

 

Fig. 6-3: 2D SDS-Page from a BN-Page used 

in the first dimension. The B-fraction from 

B. burgdorferi was solubilized with 10.12 

mM digitonin and separated in a BN-Page 

(4-16 % acrylamide). The BN-Page strip 

was pretreated with denaturing solutions 

as described by the manufacturer [67] and 

separated in a SDS-Page (NuPAGE® Novex 

12% Bis-Tris Gel 1.0 mm, 2D well, 

Invitrogen). The gel was silver stained. The 

protein marker is indicated on the left side 

in kDa (PageRuler
TM

 Prestained Protein 

Ladder, Fermentas). 

 

As show in the 2D gel, the 480 kDa band was disrupted only in one component, a protein of 

approximately 66 KDa. As well, the band of around 200 kDa seemed to be composed only by a 

66 kDa protein. These results are in concordance with the WB shown in Fig. 6-2 that identifies 

P66 as component of these two complexes. 

The 350 kDa band broke down in different possible monomers. Different spots appeared in the 

same vertical line with different molecular weights of 14, 72 and 95 KDa approximately. In the 

previous WB shown in Fig. 6-2, P13 was identified as one of the possible components of this 

complex, but the identity of the 72 and 95 kDa components was unknown. 

Other complexes smaller than 200 kDa seem to appear in the BN-Page. These complexes were 

difficult to see when the gel was stained with silver nitrate and therefore they were not further 

characterized. 

P13 and P66 presence was again tested by WB of the second dimension gels. This experiment 

was mainly carried out to observe the correct division of the complexes into their monomers, 

especially in the case of the 350 kDa complex. As done before in the first dimension with the 

BN-Page, the proteins separated by 2D gels were transferred to PVDF membranes. 
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Immunoblots against P13 and P66 were completed with these membranes. The results are 

shown in Fig. 6-4.  

 

 

Fig. 6-4: WB against P13 and P66 realized from the 2D SDS-Page from the BN-Page in the 

first dimension. The first dimension run from right to left as shown in the previous figure. 

The molecular weight is indicated in kDa on the left side (PageRuler
TM

 Prestained Protein 

Ladder, Fermentas). 

 

The 480 and 200 kDa complexes reacted against the P66 antibody, making apparent the 

formation of these complexes by P66.  

The 350 kDa band seems to decompose in many spots with different molecular weights as 

shown in the 2D gels stained with silver nitrate (Fig.6-3). In the WB, many spots in the same 

vertical line reacted strongly with the P13 antibody, including the 72 and 95 kDa dots. Some 

other new dots not visible in gels stained with silver nitrate appeared in the WB 

 

6.1.3 Mass Spectrometry of the 350 and 480 kDa bands 

Since the bands identity was still not clear enough, especially in the case of the 350 KDa band, 

some samples were prepared and sent for mass spectrometry analysis. Both bands were 

excised from BN-Page and digested afterwards with trypsin. The results pointed the presence 

of OspC, a lipoprotein from B. burgdorferi, in the 350 KDa complex while the expected P13 

presence was not detected. The band of 460 KDa was indeed composed of P66. 
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6.1.4 Analysis of different B. burgdorferi mutants B-fractions by 

BN-Page 

To further analyze the OspC participation in the complex, different B. burgdorferi strains were 

tested in BN Page. B. burgdorferi B31 which is a wild type, B. burgdorferi B313 which does not 

express four lipoproteins (OspA, OspB, OspC and OspD)[121] and B. burgdorferi P13-18 which 

is a mutant for p13 [122]. In all cases, different concentrations of outer membrane proteins 

where solubilized in 10.12 mM digitonin and the remaining unsolubilized protein was removed 

from the sample by centrifugation as described in the methods. The gel was stained with silver 

nitrate .The results are presented in Fig. 6-5.  

 

 

 

 

Fig. 6-5: BN-Page from the B-fraction of 

B. burgdorferi B31 (wild type), B. 

burgdorferi B313 (Δ OspA, -B, -C, -D) and B. 

burgdorferi P13-18 (Δ p13). On the right 

side the protein molecular weight is 

indicated in kDa. On the upper side the 

strain is indicated and the concentration of 

the B fraction solubilized in 10.12 mM 

digitonin. 

 

In the gel, the thick 350 kDa band is visible in the B-fraction from B. burgdorferi B31. This band 

is much lighter in the outer membrane fraction from the B313 strain where a light band 

appears after developing the gel for a long time before stopping the staining process. The 350 

kDa band disappears completely in the p13 mutant where the P13 protein is not expressed. 

The observation of a 150 kDa band that appears much stronger in the lipoproteins deficient 

mutant is also remarkable. 
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A WB from the same gel against P13 was carried out. The results are shown in Fig. 6-6. 

 

 

 

Fig. 6-6: WB against P13 using different 

B-fractions from B. burgdorferi B31, 

B. burgdorferi B313, B. burgdorferi P13-18 

separated in a BN-Page. The different 

concentrations of B fraction solubilized in 

10.12 mM digitonin are indicated on the 

upper part. The marker is shown on the right 

side in kDa. 

 

The WB shows in the B31 strain a strong reaction of the P13 antibody with the 350 KDa bands. 

In the B313 strain, where many lipoproteins are knocked out, the signal is much fainter. In this 

strain a 150 kDa band mentioned before appears to react much stronger against the P13 

antibodies. In the case of the P13-18 stain the signal is completely nonexistent rejecting the 

hypothesis of a possible cross reaction of the P13 antibody with other B. burgdorferi outer 

membrane proteins. 

 

6.1.5 Pore forming activity of the 350 and 480 kDa bands 

In Borrelia, there are two main integral proteins described, P13 and P66. Both are described as 

pore forming proteins. Since the biggest membrane proteins complexes in the outer 

membrane of B. burgdorferi seemed to be composed at least partially by P13 and P66, their 

pore forming activity was assessed. To evaluate the activity of both bands in artificial lipid 

membranes, a BN Page was run using B. burgdorferi B31 B-fraction solubilized previously in 

10.12 mM digitonin. The 480 and 350 kDa bands were excised with a scalpel and crashed into 

little pieces. A 1% Genapol X-80 solution was added twice the weight of the gel and incubated 

over night at 4 °C with vigorous shaking. Further dilutions to reduce the activity whenever 

needed were also done with a 1% Genapol X-80 solution. 
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After the proteins were extracted from the gel the activity in BLB was measured. A summary of 

these activities is presented in Fig. 6-7. 

 

 

Fig. 6-7: Pore forming activity of the 480 and 350 kDa bands. The bands were cut and 

eluted in 1% Genapol from a BN-Page. In the upper row appears the activity from the 480 

kDa band and in the lower row the activity measured for the 350 kDa band. The activity 

was measured using the BLB assay. The results are summarized in a histogram where the 

insertional events (approx. 100 pores) are indicated in percentage in the Y-axis and the 

conductance in pS in the X-axis. To the right an example of the step-like pore formation 

was included with a conductance-time scale. The salt solution used was 1 M KCl, with an 

applied voltage of 20 mV and a amplification factor of 10
9
 V/A. 

 

As shown in the upper histogram, the 480 kDa band elution exhibited a well defined 11 nS 

pore forming activity in artificial membranes. A second conductance peak was observed in this 

sample with a lower frequency and a conductance of 6 nS. The steps formed in the register 
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were clear and reproducible in different measurements using different sample preparations. 

When the 350 kDa band activity was tested in BLB, a 0.6 nS activity was observed. In this case 

the steps were well defined at the beginning but with increasing noise after three or four 

insertions. At this point it was difficult to identify the exact single channel conductance of each 

new insertion (lower picture, right). Therefore, the histogram was done taking only into 

account the first clear pore insertions in the membranes. When the noise reached high levels, 

a new membrane was established. This procedure was repeated until the intersectional events 

were enough to perform a histogram (approx. 100 pores). 

 

6.1.6 BN-Page from rP13 produced N. benthamiana 

In the previous project P13 was recombinant expressed in the tobacco plant, 

Nicotiana benthamiana. The samples obtained in the tobacco plants were tested in BN-Page to 

study the oligomerization of P13. The recombinant protein was extracted and pre-purified with 

Ni-NTA resins. Although the samples still contained plant proteins no further purifications 

were done to avoid loss of rP13. The sample was tested with WBs from the SDS-Page and 

BN-Page as shown in the next figure (Fig. 6-8). 

 

Fig. 6-8: SDS-Page and WB from rP13 expressed in 

tobacco plants and the WB from the same sample in 

a BN-Page. The sample for the SDS-Page was boiled 

10 min. Markers are indicated in kDa. 

 

 

 

 

The sample was pre-purified with Ni-NTA and eluted with 80 mM imidazole without washing 

steps avoiding any lost of rP13. The reduction in plant proteins was obvious but further 

purifications are required to get a clean rP13 sample. The SDS-Page was run under denaturing 

conditions (Redmix reducing sample buffer and boiled at 100 °C, 10 min.). The plant proteins 

present in the sample are shown in the gel stained with silver nitrate. The presence of rP13 is 
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revealed by the 13 kDa band that reacted with the P13 antibody. No other plant protein 

reacted against the antibody rejecting a possible cross reaction between the P13 antibody and 

those proteins.  

On the right WB, the same sample was separated in a BN-Page. Two bands clearly reacted with 

P13 antibody, one around 80 kDa and the other one close to 150 kDa. This last one showed a 

more intensive antibody signal. 

 

6. 2 Discussion 

Borrelia is usually included in the group of Gram negative bacteria as it possesses two 

membranes. However, this genus has many distinctive characteristics that differ from the 

general Gram negative model. Borrelia has a more fluid outer membrane that lacks 

lipopolysaccharides. In addition, the exterior leaflet of the outer membrane has a high number 

(> 150) of lipoproteins that comprise the bacterium’s primary interface with its host [36, 123]. 

This outer membrane contains a very low density of membrane-spanning proteins. Two of 

these proteins are P13 and P66 which show a high preponderance in the outer membrane. P13 

and P66 have been described as proteins with porin properties. But both, P13 and P66, differ 

from the typical porin structure in Gram negative bacteria.  

Many porins have a tertiary structure composed of a β-barrel. In some cases, they associate in 

oligomers, often in trimers, to gain stability. In the case of P13, a monomer due its small 

molecular weight is not enough to form a pore. Its pore forming activity can only be explained 

by an association of different monomers to form an oligomer. Also its secondary structure in 

α-helix differs from the typical β sheet found in other porins [56, 103]. P66 forms channels 

with a very high single channel conductance of 11 nS which is very rare in porins [51]. As 

described in a previous chapter of this thesis (P66 channel diameter estimation using 

non-electrolytes) P66 could associate in an oligomeric protein complex formed possibly by 

eight independent channels. This association of so many channels together has not been 

shown before for any other described porin.  

The BN Page used in this chapter is a technique that has gained more importance in the past 

years to characterize protein complexes and protein interactions. It provides not only a close 

estimation of the molecular weight of a protein complex but also the opportunity to isolate 

protein complexes in a native state retaining their biological functions. Therefore, this 
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technique is a useful tool to study the arrangement and function of outer membrane proteins 

in Borrelia. 

 

6.2.1 Protein complexes in the B-fraction from B. burgdorferi 

When the B-fraction containing the outer membrane proteins of Borrelia is separated using a 

BN-Page mainly two big complexes were observed (Fig. 6-1). Their molecular weights were 

approximately 480 and 350 kDa. Proteins separated in BN-Page run folded in their native state 

and they are not linearized like in SDS-Page. Consequently, the number of shift molecules 

bound to the protein complexes depends on how the protein is folded. As well, the proteins 

will run differently depending on the shape of the complex. Globular or elongated complexes 

might run in a different way. Taken all together, the maximal molecular weight deviation of the 

BN-Page is estimated to be 15% for proteins that either bind Coomassie or have a isoelectric 

point (pI) below 5.4 [67].   

In fig. 6-2, the same BN-Page stained previously with silver nitrate was used to do two WBs 

using antibodies against P13 and P66. Those two proteins were described previously as porins, 

and hence they were a main subject of study in this work. Surprisingly the WB for P13 showed 

a strong reaction of the antibody against the 350 kDa band, while the P66 antibody reacted 

very strong against the 480 kDa band. These results manifested some kind of involvement of 

P66 in the 480 kDa complex and P13 in the 350 kDa complex. 

In the WB done with P13 antibodies (Fig. 6-2) the samples seemed to smear all the way 

through the lane. This effect was probably caused by the high hydrophobicity of P13 [124] that 

binds strongly to the detergent or Coomassie dye leaving a black background in the WB. A 

stronger signal was appreciated in the band where P13 possibly formed a complex. 

In the P66-WB a second band reacted positively against the P66 antibody with a molecular 

weight of around 200 kDa, approximately half of the MW of the 480 kDa complex. This band 

was probably a fragment of the 480 kDa complex dissociated due to the membrane 

solubilization with detergents. In previous BLB experiments using fractions from a FPLC 

purification a 6 nS activity was often found (data not shown). A 6 nS activity could come from 

the disruption of the P66 complex in two halves retaining enough stability to form 

independent channels in membranes. This idea was supported by the observation of a 6 nS 

activity when extracting the 480 kDa complex from the BN-Page with detergents as shown in 

the Fig. 6-7. 
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The second dimension gels proved that the 480 kDa complex was composed exclusively of a 66 

kDa monomer, identified in the WB of this second dimension as P66. The 200 kDa complex, 

which is thought to be a fragment of the 480 kDa complex, was only constituted by P66 as 

well. No other protein seems to be associated to P66 to form the 11 nS channel in the outer 

membrane of B. burgdorferi. The number of monomers involved in the formation of the 

channel is thought to be between 6 and 8. If the BN-Page results are compared to the PEG 

blockage of the P66 channel in 8 steps (Fig. 4-4), the P66 complex could probably form an 

octamer of 528 kDa. An octamer is within the molecular weight range of 480±72 kDa 

estimated using BN-Page. 

In the case of the 350 kDa complex, the second dimension gel contained three possible 

monomers with different molecular weights (13, 72 and 95 kDa) which could form part of the 

complex. One of them, the 13 kDa protein was not always visible when the gels were stained 

with silver nitrate. The P13-WB done using the second dimension gel showed that all the dots 

corresponding to the 13, 74 and 95 kDa and other dots not visible in the 2D-gel reacted against 

the P13 antibody. The denaturation solutions where the BN-Page strip was denatured were 

probably not sufficient to completely break down the complex to its monomers. 

Surprisingly, the mass spectrometry analysis showed no presence of P13 due to a high 

contamination with keratin but identified OspC as a possible second component of the 

complex. This association between transmembrane proteins and lipoproteins had already been 

observed in Borrelia. For example, the association between P66 and OspA was established in a 

former study [125]. OspA was postulated to act as a protective lipoprotein that limits the 

access to P66 and reduce its exposure to the host immune system. 

In the gel done with different strains of B. burgdorferi (Fig. 6-5), a thick 350 kDa band was seen 

in the B31 wild type strain. This band disappeared completely in the P13-18 samples where 

P13 is knock-out. P13 seems to be definitely a component of this complex.  

One last problem must be addressed concerning the P13-18 strain. This mutant was made 

from B. burgdorferi B31-A, a noninfectious high-passage B31 clone [126]. Plasmids are often 

lost during in vitro cultivation of B. burgdorferi [127, 128]. OspC is contained in the cp26 

plasmid. This plasmid encodes essential proteins like ResT and other proteins and cannot be 

displaced [129]. Therefore cp26 is present in all natural isolates and has never been lost during 

in vitro cultivation [3, 130-132]. The loss of the 350 kDa band cannot be attributed to the loss 

of the cp26 plasmid. In the same way, the absence of the band due the loss of proteins from 

other plasmids or the influx of those in the OspC expression cannot totally be excluded. 
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A faint 350 kDa band can be also noticed in the B313 samples. OspC is not present in this strain 

and consequently if it is part of the complex, the band should have disappeared completely in 

this strain. However, there are studies where it is claimed that other lipoproteins with similar 

molecular weight and structure like VslE, could replace OspC [133, 134]. This could be an 

explanation for the appearance of the faint 350 kDa band. 

The difference in the 350 kDa band intensity when comparing B313 to B31 samples cannot be 

attributed to a different protein concentration between samples. The samples were 

centrifuged preceding the load of the gel and pellets were visible. This indicates an excess of 

protein that could not be solubilized by the detergent. This fact should equalize to a certain 

extend the protein concentration between samples. 

In the B313 strain is also noteworthy the apparition of a 150 kDa band (Fig. 6-5). In the P13-WB 

from the same gel (Fig. 6-6), this band reacted strongly with the P13 antibody. If the 350 kDa 

band is a complex formed by P13 and OspC, the 150 kDa band may be the part of this complex 

formed by P13. The association with OspC might explain the increase in molecular weight. This 

hypothesis is supported by the surprising observation of a 150 kDa band in a sample from 

tobacco plants where rP13 was expressed. This band together with another one of 

approximately half the molecular weight reacted against the P13 antibody. 

To sum up, the 480 kDa complex seems to be composed only by P66. The band clearly bound 

Coomassie stain and P66 has a pI of 5.3. Fulfilling these two characteristics the maximal 

deviation calculated for the BN-Page is 15 %. Therefore the real molecular weight for the P66 

complex should be 480±72 kDa. In contrast, if the 350 kDa band is a complex formed at least in 

part for P13 which pI is 9.5, the determination of its real molecular weight could vary to a 

greater extend. A previous molecular weight calibration of BN-Page showed that some 

extremely basic proteins like P13 had a lower migration distances in BN-Page appearing to 

have a higher molecular weight [94]. Therefore, a concrete range value of the molecular 

weight of the P13 complex cannot be given. 

 

6.2.2 Pore forming activity of the 350 and 480 kDa bands 

The pore forming activity of both complexes could be measured in BLB experiments. Previous 

studies proclaimed that P66 and P13 formed holes in the outer membrane of Borrelia. The 

conductance for the pore formed by P66 was estimated to be between 9 and 11 nS in 1 M KCl 

[51, 52] while in the same salt solution P13 had a conductance of 3,5 nS [56, 57]. To confirm 
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this pore forming activity the 480 and 350 kDa band were excised from the gel and eluted in a 

detergent containing solution.  

Both samples exhibited pore forming activities in artificial membranes. The P66 complex 

showed an 11nS activity and a 5.5 nS activity in a lower frequency. This observation reinforce 

the hypothesis of P66 being a symmetric complex that can be separated in half by 

solubilization with detergents. This is not only supported by an activity with half of the 

conductance but also by the observation of a band with approximately half of the MW in the 

BN-Page WB for P66. 

In regards to the P13 band extraction a 3.5 nS activity was expected. However, none of the 

different samples isolated from different BN-Page showed a similar activity. The BLB 

measurements of the 350 kDa band and the realization of the corresponding histogram 

revealed a 0.6 nS activity. This find is in high contrast with the previous pore forming activity 

characterization of P13 published elsewhere [56]. The pores observed from the elution of the 

350 kDa band had some noise and after 3 or 4 insertions it was difficult to differentiate the 

exact conductance of new insertions. Although the noise was very high from that point on, the 

conductance of the membrane increased constantly. 

A 0.6 nS pore forming activity was previously described together with a 12.6 nS activity in 

outer membrane vesicles from B. burgdorferi B31 [135]. The 0.6 nS activity was afterwards 

attributed to Oms28 by the same group [59]. But recent studies show the lack of porin-like 

properties in Oms28 [61]. The existence of a protein in the outer membrane of Borrelia with a 

0.6 nS pore forming activity has been observed several times when B-fractions were analyzed 

with the BLB assay. The 350 KDa complex isolated from BN-Page where P13 is involved have a 

pore forming activity with the same conductance and therefore is a candidate to be the 

protein responsible for such activity. 

An unproven explanation for the 3.5 nS activity attributed previously to P13 could be a further 

disruption of the P66 complex. In the same way as observed before, P66 could not only break 

in two halves, but maybe in four, producing smaller complexes with a pore conductance of 

around 3 nS. A previous observation when the B-fraction from a p66 knock-out was measured 

in BLB could support this hypothesis. This B-fraction showed no 3.5 nS activity at all and a 

double p13/p66 knock-out reduced the conductance of the porins in the sample to 300 pS or 

below [122]. 
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If the association between P13 and OspC to form the 350 kDa complex is confirmed, further 

studies will be required to clarify if OspC forms part of the channel or it has another function, 

like for example the protection of P13 from the host immune system. 
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Equipment, Materials and buffers 

7.1 Lab equipment 

Autoclave        KSG 

Balance        Kern 

 “Black Lipid Bilayer” device     own fabrication 

BLB Amplifier      own fabrication 

BLB Electrodes       Metrohm 

BLB Electrometer     Keithley 617 

BLB Magnetic stirrer     Hanna Instruments 

BLB Oscilloscope     OWON 

BLB Recorder       Rikadenki 

BLB Teflon chamber     Own fabrication 

BLB telescope      Spindler und Hoyer 

BLB voltage source     own fabrication 

Centrifuge, cooled 15/50 ml tubes    Beckmann, Heraeus 

Centrifuge (Table)       Eppendorf 

Centrifuge (Ultracentrifuge)     Beckmann 

French press       SLM Instruments, Inc. 

FPLC        Amersham Biosciences  

Gel-fotography / UV cabinet     LTF Labortechnik 

Gel voltage source      Bio-Rad 

Laminar flow cabinet      Gelaire 

Magnetic stirrer      Hartenstein 

Microwave       Moulinex 

PCR machine       Perkin Elmer, Eppendorf 
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pH meter       WTW 

Pipettes       Eppendorf, Gilson, SLG, Brand 

Precision balance       Sartorius 

Protein electrophoresis chamber    Bio-Rad, Invitrogen 

Shaker        GFL 

Shaker (vascular movement)     Heidolph 

Spectrophotometer      Amersham Biosciences 

Stove        Memmert 

Vortex        Hartenstein 

Water purifier       Millipore 

Western-blots device      Bio-Rad, Invitrogen 

 

7.2 Materials 

The experiments to elaborate this thesis were done with materials bought by the 

Biotechnology Department of the University of Wuerzburg. 

- Chemical products: Sigma, Roth, Merck, Bio-Rad, Difco. 

- Lipids to form artificial membranes: Avanti Polar Lipids. 

- Restriction Endonucleases: Fermentas GmbH, NEB 

- PVDF membranes: Roth 

- Disposable materials: Falcon, Greiner, Eppendorf, Fortuna, Primo, Roth, etc. 

 

7.3 Commercial Kits 

Kits used in this work: 

“QIAquick Gel Extraction Kit Qiagen”- DNA purification from Agarose gels. 

“QIAquick PCR Purification Kit Qiagen” – Purification and concentration of PCR 
products. 

“QIAprep Spin Miniprep Kit Qiagen” – Bacterial DNA isolation. 

“Ni-NTA Spin Kit Qiagen” – “His-tag” protein purification. 



Equipment, materials and buffers 

- 117 - 
 

“ECL- detection kit” GE Healthcare – Western blot development. 

“TOPO TA Cloning® Kit” Invitrogen – Cloning and transformation of E. coli cells 

“Taq- Kit Fermentas Polymerase” – PCR components 

“Pfu- Kit Fermentas Polymerase” – PCR components 

 

7.4 Molecular weight markers. 

DNA molecular weight markers: 

GeneRulerTM
 100bp Marker (Fermentas)  

MassRuler™ DNA Ladder Mix (Fermentas) 

 

Protein molecular weight markers: 

LMW-Marker (Amersham Biosciences) 

Precision Plus Protein Prestained Standard (Dual Color) (Bio-Rad) 

PageRulerTM Prestained Protein Ladder, Fermentas 

NativeMark Unstained, Invitrogen 

 

7.5 .Buffers and Solutions 

Whenever the pH needed to be corrected, HCl (1M and 5M) and NaOH (1M) solutions were 

used. 

- Media and buffers to prepare the outer membrane of Borrelia. 

BSK II médium to cultivate Borrelia. 

 

TSM Buffer    10 mM Tris (pH 7,5) 

150 mM NaCl 

1 M MgCl2 
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TSEA Buffer    10 mM Tris (pH 7,5) 

150 mM NaCl 

10 mM EDTA 

0,05 % NaN3 

 

- Buffer to prepare Agrobacterium competent cells: 

 TE Buffer    10 mM Tris (pH 5, HCl) 

      1 mM EDTA 

 

- Extraction buffer for Nicotiana benthamiana: 

      50 mM NaH2PO4 

      50mM NaCl 

      50 mM Ascorbate 

      0.4 % LDAO 

      pH 8 

 

- Buffers and solutions for SDS-PAGE: 

 

Stacking gel (5 %)  Separation gel (12 %) 

H2Odd     1.72 ml    3.3 ml 

30% Polyacrylamide   0.76 ml    4.0 ml 

1 M Tris (pH 6,8)    0.76 ml    --- 

1,5 M Tris (pH 8,8)    ---     2.5 ml 

10% SDS     0.03 ml    0.1 ml 

10% APS     0.03 ml    0.1 ml 

TEMED      0.006 ml    0.008 ml 

 

* The indicated volumes are enough to prepare 2 SDS-Page, 1mm. 
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SDS-Page Running Buffer (1x Laemmli Buffer)  3.1 g Tris 

1.0 g SDS 

14.4 g Glycine 

up to 1000 ml H2Odd 

 

MOPS SDS-Page Running Buffer (1x)   10.4 g MOPS 

        6 g Tris Base 

        1 g SDS 

        0.3 g EDTA 

        up to 1000 ml H2Odd 

 

REDMIX Sample buffer (4x)    2.5 ml 0,5 M Tris (pH 6,8) 

4.0 ml 10 % SDS 

1.0 ml ß-Mercaptoethanol 

2.0 ml Glycerol 

0.01 % Bromophenol blue 

 

- Silver nitrate staining solutions: 

Solution A (1x)     20 ml Ethanol 

25 μl formaldehyde (37%) 

up to 50 ml H2Odd 

 

Solution B (5x)     0.5 g Na2S2O3 

up to 500 ml H2Odd 

 

Solution C (1x)    0.05-0.08 g AgNO3 

up to 50 ml H2Odd 
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Solution D (5x)     75 g Na2CO3 

up to 50 ml H2Odd 

 

- Western Blot Buffers 

Towbin Buffer    3.03 g Tris 

14.4 g Glycine 

200 ml Methanol 

1 g SDS 

up to 1000 ml H2Odd 

 

Nu-Page Transfer Buffer  4.8 gr Bicine 

     5.2 g Bis-Tris 

     0.3 g EDTA 

     200 ml Methanol 

     up to 1000 ml H2Odd 

 

TBS Buffer (10X)   24.2 g Tris 

80 g NaCl 

38 ml HCl (1M) 

up to 1000 ml H2Odd 

 

TBS + Tween Buffer (1X)  100 ml 10x TBS buffer 

1 ml Tween 20 

up to 1000 ml H2Odd 

 

Milk/BSA Buffer (5%)   0.5 g BSA 

up to 10 ml Buffer TBS (1X) 
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- FPLC Buffers 

MonoQ 

Low salt concentration buffer (Inlet A)   10 mM Tris (pH 8) 

0.4 % LDAO 

 

High salt concentration buffer (Inlet B)   10 mM Tris (pH 8) 

0.4 % LDAO 

1 M NaCl 

 Superdex 

        10 mM Tris (pH 8) 

        150 mM NaCl 

        0.4 % LDAO 

 

- Buffers and solutions for the agarose gel electrophoresis: 

 Agarose gel (1%)    2 g agarose 

       up to 200 ml H2Odd 

 

 TAE buffer (50x)    242 g Tris 

       57.1 ml Acetic acid 

       100 ml 0.5 M EDTA 

       up to 1000 ml H2Odd 

  

Ethidium bromide bath    10 mg/ml ethidium bromide 
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7.6 Culture media and agar plates: 

LB (Luria Bertani) medium    10 g Bactotryptone 

5 g yeast extract 

10 g NaCl 

up to 1.000 ml H2Odd 

 

LB plates     15 g Agar 

up to 1.000 ml LB medium 

 

LB/Amp plates    15 g Agar 

1.000 μl (100 mg/ml) Ampicillin 

up to 1.000 ml LB medium 

 

Amp/IPTG/X-Gal Plates   15 g Agar 

1.000 μl Ampicillin (100 mg/ml) 

20 μl IPTG (200 mM) 

40 μl X-Gal 

up to 1.000 ml LB medium 

 

7.7 Bacterial strains 

-Strains used to compare the porin content in different species or strains within the genus 

Borrelia: 

B. burgdorferi B31 (ATCC 35210), P13-18 [122], B313 [121] 

B. afzelii K78 [136] 

B. garinii PBi [137] 

B. duttonii 1120K3 [138] 

B. hermsii HS1 (ATCC 35209) 
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B. recurrentis A1 [139] 

 

- Bacterial species/strains used to obtain rP13: 

E. coli One Shot® TOP10F’ 

E. coli BL21 Omp8 Rosetta 

Agrobacterium tumefaciens 

 

7.8 Plasmids, primers and gene sequences. 

 

Plasmids: 

• pCR®2.1-TOPO®
 (Invitrogen) (Clonning vector) 

Size: 3.9 kb 

Important fragments: lacZα, f1 ori, kanamycin resistance, Ampicillin resistance, 

pUC ori, Plac 

 

• pARAJS2 (expression vector) 

Size: 5.942 kb 

Important fragments: ampicillin resistance 

 

• pICH31660 (expression vector in the tobacco plant) 

Size: 6440 bp 

Important fragments: kanamycin resistance. 

 

• Rosetta 

Important fragments: tRNA genes for the following codons: AGG, AGA, AUA, CUA, CCC, 
GGA. 

Chloranphenicol resistance (This plasmid was obtained from E. coli Rosetta (DE3) pLys) 
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Color caption for DNA and protein sequences: 

P13 mature gen  P13 C-terminus   Histidine-tag 

E. coli signal sequence  Factor Xa Protease  Restriction site 

Start/Stop codon  Primer 

 

Primers: 

Primer E CAACATCAACTCGAGGTTCTAGACCTCATTAAGCTACAT 

Primer F GACTCGAGGCAATCTAGAATTGCAATCAC 

Primer G CTAGCCATGGTCAAGCTAATGATTCTAAAAATG 

Primer H TTTGGTCTCAAGGTATGCGGGCGAAACTCCTAGGAATAG  

MIp13F TTTGGTCTCAAGGTATGCATCACCATCACCATCACGGCATTGAAGGCCGCA  

CTCAAGCTAATGATTCTAAAAATGGTG 

MIp13R:  TAGGGTCTCAAAGCTCTAGATTAAGCTACATTAAGGCTATTTTTTAGC 

 

DNA - Construct 1 in pCR®2.1-TOPO vector (primers G and E): 

CTAGCCATGGTCAAGCTAATGATTCTAAAAATGGTGCGTTTGGGATGAGTGCTGGAGAAAAACTTTTG 

GTTTATGAAACTAGCAAGCAAGATCCTATTGTACCATTTTTATTGAACCTTTTTTTAGGGTTTGGAATAG 

GCTCCTTTGCTCAAGGAGATATTCTTGGAGGTTCTCTTATTCTTGGATTTGATGCGGTTGGTATAGGGCT 

TATACTTGCGGGGGCTTATTTGGATATCAAAGCGCTTGATGGTATTACTAAAAAAGCTGCTTTTCAATG 

GACTTGGGGTAAGGGAGTTATGTTAGCAGGTGTGGTTACTATGGCTGTGACAAGATTAACAGAAATTA 

TTCTTCCATTTACATTTGCTAATAGTTATAATAGGAAGCTAAAAAATAGCCTTAATGTAGCTTAATGAGG 

TCTAGAACCTCGAGTTG 

 

DNA - Construct 1 in the pARAJS2 vector (primers H and E): 

TTTGGTCTCAAGGTATGCGGGCGAAACTCCTAGGAATAGTCCTGACAACCCCTATCGCGATCAGCTCTT

TTGCGTCGACGCATCATCACCATCACCATCACCATCACCACGGCGCCGAAGGCCGCCCCGGGATCCATG

GTCAAGCTAATGATTCTAAAAATGGTGCGTTTGGGATGAGTGCTGGAGAAAAACTTTTGGTTTATGAAA

CTAGCAAGCAAGATCCTATTGTACCATTTTTATTGAACCTTTTTTTAGGGTTTGGAATAGGCTCCTTTGCT
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CAAGGAGATATTCTTGGAGGTTCTCTTATTCTTGGATTTGATGCGGTTGGTATAGGGCTTATACTTGCG

GGGGCTTATTTGGATATCAAAGCGCTTGATGGTATTACTAAAAAAGCTGCTTTTCAATGGACTTGGGGT

AAGGGAGTTATGTTAGCAGGTGTGGTTACTATGGCTGTGACAAGATTAACAGAAATTATTCTTCCATTT

ACATTTGCTAATAGTTATAATAGGAAGCTAAAAAATAGCCTTAATGTAGCTTAATGAGGTCTAGAACCT

CGAGTTG 

 

Protein - Construct 1: 

MRAKLLGIVLTTPIAISSFASTHHHHHHHHHHGAEGRPGIHGQANDSKNGAFGMSAGEKLLVYETSKQDPI

VPFLLNLFLGFGIGSFAQGDILGGSLILGFDAVGIGLILAGAYLDIKALDGITKKAAFQWTWGKGVMLAGVVT

MAVTRLTEIILPFTFANSYNRKLKNSLNVA- 

 

DNA - Construct 2 in the pCR®2.1-TOPO vector (primers G and F): 

CTAGCCATGGTCAAGCTAATGATTCTAAAAATGGTGCGTTTGGGATGAGTGCTGGAGAAAAACTTTTG

GTTTATGAAACTAGCAAGCAAGATCCTATTGTACCATTTTTATTGAACCTTTTTTTAGGGTTTGGAATAG

GCTCCTTTGCTCAAGGAGATATTCTTGGAGGTTCTCTTATTCTTGGATTTGATGCGGTTGGTATAGGGCT

TATACTTGCGGGGGCTTATTTGGATATCAAAGCGCTTGATGGTATTACTAAAAAAGCTGCTTTTCAATG

GACTTGGGGTAAGGGAGTTATGTTAGCAGGTGTGGTTACTATGGCTGTGACAAGATTAACAGAAATTA

TTCTTCCATTTACATTTGCTAATAGTTATAATAGGAAGCTAAAAAATAGCCTTAATGTAGCTTTAGGAGG

ATTTGAACCTAGTTTTGATGTTGCAATGGGCCAATCCAGTGCTCTTGGGTTTGAACTGTCTTTCAAAAAA

AGCTATTAATTTTATTTATTACAAAAATGGGTGATTGCAATTCTAGATTGCCTCGAGTC 

 

DNA - Construct 2 in the pARAJS2 vector (primers H and F): 

TTTGGTCTCAAGGTATGCGGGCGAAACTCCTAGGAATAGTCCTGACAACCCCTATCGCGATCAGCTCTT

TTGCGTCGACGCATCATCACCATCACCATCACCATCACCACGGCGCCGAAGGCCGCCCCGGGATCCATG

GTCAAGCTAATGATTCTAAAAATGGTGCGTTTGGGATGAGTGCTGGAGAAAAACTTTTGGTTTATGAAA

CTAGCAAGCAAGATCCTATTGTACCATTTTTATTGAACCTTTTTTTAGGGTTTGGAATAGGCTCCTTTGCT

CAAGGAGATATTCTTGGAGGTTCTCTTATTCTTGGATTTGATGCGGTTGGTATAGGGCTTATACTTGCG

GGGGCTTATTTGGATATCAAAGCGCTTGATGGTATTACTAAAAAAGCTGCTTTTCAATGGACTTGGGGT

AAGGGAGTTATGTTAGCAGGTGTGGTTACTATGGCTGTGACAAGATTAACAGAAATTATTCTTCCATTT

ACATTTGCTAATAGTTATAATAGGAAGCTAAAAAATAGCCTTAATGTAGCTTTAGGAGGATTTGAACCT
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AGTTTTGATGTTGCAATGGGCCAATCCAGTGCTCTTGGGTTTGAACTGTCTTTCAAAAAAAGCTATTAAT

TTTATTTATTACAAAAATGGGTGATTGCAATTCTAGATTGCCTCGAGTC 

 

Protein - Construct 2: 

MRAKLLGIVLTTPIAISSFASTHHHHHHHHHHGAEGRPGIHGQANDSKNGAFGMSAGEKLLVYETSKQDPI

VPFLLNLFLGFGIGSFAQGDILGGSLILGFDAVGIGLILAGAYLDIKALDGITKKAAFQWTWGKGVMLAGVVT

MAVTRLTEIILPFTFANSYNRKLKNSLNVALGGFEPSFDVAMGQSSALGFELSFKKSY- 

 

DNA  in pICH31160 (primers MIp13F and MIp13R): 

TTTGGTCTCAAGGTATGCATCACCATCACCATCACGGCATTGAAGGCCGCACTCAAGCTAATGATTCTA

AAAATGGTGCGTTTGGGATGAGTGCTGGAGAAAAACTTTTGGTTTATGAAACTAGCAAGCAAGATCCT

ATTGTACCATTTTTATTGAACCTTTTTTTAGGGTTTGGAATAGGCTCCTTTGCTCAAGGAGATATTCTTGG

AGGTTCTCTTATTCTTGGATTTGATGCGGTTGGTATAGGGCTTATACTTGCGGGGGCTTATTTGGATATC

AAAGCGCTTGATGGTATTACTAAAAAAGCTGCTTTTCAATGGACTTGGGGTAAGGGAGTTATGTTAGCA

GGTGTGGTTACTATGGCTGTGACAAGATTAACAGAAATTATTCTTCCATTTACATTTGCTAATAGTTATA

ATAGGAAGCTAAAAAATAGCCTTAATGTAGCTTAATCTAGAGCTTTGAGACCCTA 

 

Protein – Tobacco plants: 

MHHHHHHGIEGRTQANDSKNGAFGMSAGEKLLVYETSKQDPIVPFLLNLFLGFGIGSFAQGDILGGSLILGF 

DAVGIGLILAGAYLDIKALDGITKKAAFQWTWGKGVMLAGVVTMAVTRLTEIILPFTFANSYNRKLKNSLNV 

A- 
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7.9 PCR preparation 

- Cloning PCR 

Master Mix   2.5 μl   Pfu-Buffer 

0.5 μl   100 pM forward primer 

0.5 μl   100 pM reverse primer 

2.5 μl   2 mM dNTPs 

0.5 μl   Pfu-Polymerase 

200-300 ng  Borrelia DNA 

up to 25 μl  H2Odd 

 

Step PCR temperature parameters: 

  Const. 1 5 min, 95 °C 
1 min, 95 °C 
1 min, 50 °C  5 cycles 
2 min, 72 °C 
1 min, 95 °C 
1 min, 55 °C  25 cycles 
2 min, 72 °C 
10 min, 72 °C 

    ∞ 4 °C 
 

Const. 2 5 min, 95 °C 
1 min, 95 °C 
1 min, 45 °C  5 cycles 
2 min, 72 °C 
1 min, 95 °C 
1 min, 50 °C  25 cycles 
2 min, 72 °C 
10 min, 72 °C 
∞ 4 ºC 
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- Standard (Check) PCR 

Master Mix  14.9 μl   H2Odd 

2.5 μl   10x Buffer (+KCl −MgCl2) 

1.5 μl   25 mM MgCl2 

0.5 μl   100 pM forward primer 

0.5 μl   100 pM reverse primer 

2.5 μl   2 mM dNTPs 

0.5 μl   Taq- Polymerase 

1   Colony 

 

Std PCR temperature parameters 5 min 95 °C 
1 min 95 °C 
1 min 55 °C  25 cycles 
2 min 72 °C 
10 min 72 °C 
∞ 4 ºC 

 
 
 
 

7.10 Antibodies 

 

Name   Directed against Dilution in TBS   Producer 

α- P66 mAb   P66    1:500    Dep. Microbiol. Umeå 

α- P13 rAb  P13   1:3000   Dep. Microbiol. Umeå 

α- mouse IgG   mouse antibodies 1:3000    GE Healthcare 

α- rabbit IgG  rabbit antibodies  1:3000    GE Healthcare 
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Abbreviations 
 

A  A    Adenine 

  Ag    Silver 

  AgCl    silver chloride 

  AgNO3    silver nitrate 

  Amp    Ampicillin 

  APS    Ammonium persulfate 

A. tumefaciens   Agrobacterium tumefaciens 

  

B  B.    Borrelia 

B.a    Borrelia afzelii 

B.b    Borrelia burgdorferi 

B.d    Borrelia duttonii 

B.g    Borrelia garinii 

B.h    Borrelia hermsii 

bp    base pair 

B.r    Borrelia recurrentis 

BSA    Bovine Serum Albumin 

 

C  C    Cytosine 

  Cl-    Chlorine anion 

 

D   DNA     Deoxyribonucleic acid 

  dNTP     Deoxyribonucleotide triphosphate 
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E  E. coli    Escherichia coli 

  ECL    Enhanced Chemiluminescence 

  ESS    Escherichia Signal Sequence 

 

F  Fig.    Figure 

FPLC    Fast Performance Liquid Chromatography 

 

G  G    Guanosine 

  g    Gravity acceleration constant 

 

H  H2Odd    Double distilled water 

  HCl    Hydrochloric acid 

 

I  IPTG    Isopropyl-β-D-Thiogalactopyranoside 

 

K  KCl    Potassium chloride 

  kDa    Kilodalton 

 

L  LB    Luria-Bertani 

  LDAO    Lauryl Dimethyl Ammonium Oxide 

  LMW    Low Molecular Weight 

 

M  mA    Miliampere 

mg    Milligram 

  MgCl2    Magnesium chloride 

  min    Minute 

ml    Milliliter 

  mM    Millimolar 

mV    Millivolts 
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N  NaCl    Sodium chloride 

  Na2CO3    Sodium carbonate 

  NaH2PO4   Sodium dihydrogen phosphate 

  NaN3    Sodium azide 

  NaOH    Sodium hydroxide 

  Na2S2O3   Sodium thiosulphate 

  Ni-NTA    Nickel-nitrilotriacetic acid 

  ng    Nanogram 

  nS    Nanosiemen 

 

O  OD    Optical density 

 

P   pA    Picoampere 

Page    Polyacrylamide gel electrophoresis 

  PCR    Polymerase Chain Reaction 

  Prof.    Professor 

  pM    Picomolar 

  pS    Picosiemens 

  Pfu    Pyrococcus furiosus 

  PVDF    Polyvinylidene fluoride 

 

R  rP13     recombinant P13 

  rpm    Revolutions per minute 

 

S   SDS     Sodium dodecyl sulphate 

 

T  T    Thymine 

  TAE    Tris-Acetat-EDTA 

  Taq    Thermus aquaticus 

  TBS    Tris Buffered Saline 
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  TEMED    N,N,N´-Tetramethylenediamine 

  Tris    Trishydroxymethylaminomethane 

 

U  UV    Ultraviolet 

 

W  WB    Western-blot 

 

X  X-gal    5-Bromo-4-Chloro-3-Indolyl-β-D-Galactoside 

 

α  α-mouse   mouse antibodies 

  α-rabit    rabbit antibodies 

  α-P13    Antibodies against P13 

  α-P66    Antibodies against P66 

 

μ  μgr    Microgram 

μl    Microliter 

  μm    Micrometer 
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