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SUMMARY V 

Summary 
 

Background: In a previous study, nitrate reductase (NR, EC 1.6.6.1) from leaves of 

Ricinus communis L. showed different regulatory properties from most other higher 

plants NR's by an unusually strong Mg2+-sensitivity, a different pH-activity profile 

and only little ATP-dependent inactivation.  

 

The aim of this work was to elucidate the deviating properties of Ricinus NR in more 

details, from both molecular and physiological aspects. For that purpose, the NR gene 

from R. communis was cloned, expressed heterologously and characterized. 

 

Results: The deduced protein sequence showed that Ricinus NR shared high 

similarity with other NRs, apart from the N-terminal region. In the N-terminal region, 

the Ricinus NR possesses an acidic stretch which is conserved only in higher plants. 

Within the Moco-binding domain the Ricinus NR contained few amino acid residues 

which were unique in comparison with 17 plant NRs, including His103, Gln123, 

Val266 and Ala284 where other NRs possess asparagine, arginine, aspartate and 

proline.  

In the Dimer interface and Hinge 1 regions, the Ricinus NR also had some unique 

residues like Asn460 and Ala498 where other NRs have isoleucine and glycine 

instead. The Ricinus NR possesses an Arg482 which provides an additional predicted 

Trypsin cleavage site within 481KRHK484 (while most of plant-NRs possess KPHK). 

Additionally, the Ricinus NR contains a serine phosphorylation site (Ser-526) within 

the potential 14-3-3 binding motif 523KSVS*TP528, which is a common characteristic 

of nitrate reductases. In the C-Terminus of Ricinus NR a sequence 886CGPPP890 

confirmed that Ricinus NR is a NADH-specific enzyme. 

Functional Ricinus NR protein was expressed in Pichia pastoris and compared with 

the features of Arabidopsis NR2 synthesized by the same expression system (AtNR2). 

The recombinant Ricinus NR (RcNR) itself was unresponsive to the incubation with 

MgATP, and so was AtNR2. As yeast extracts might lack factors required for NR 

regulation, desalted leaf extracts containing NR kinases and 14-3-3s were prepared 

from 4-day darkened (and therefore NR-free) leaves of Arabidopsis (ADL), spinach 

(SDL) and Ricinus (RDL), and added to the assay of RcNR and AtNR2 to check for 
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ATP-dependent inactivation and Mg2+-sensitivity. When RcNR was combined with 

the NR-free extracts described above, it's unusually high Mg2+-sensitivity was 

restored only by incubation with RDL, but it remained unresponsive to ATP. In 

contrast, AtNR2 became inactive when incubated with the protein mixtures and ATP. 

It is obvious that one or some factors existing in RDL could interact with RcNR and 

therefore provide its high Mg2+-sensitivity. Interestingly, incubation of AtNR2 with 

different NR-free leaf extracts gave a significant activation of the enzyme activities, 

both in Mg2+ and EDTA, which were not observed in the case of RcNR. Moreover, 

using ammonium sulfate to fractionation the RDL revealed that about 0.2 mg of the 

protein factor(s) from 0-35% of ammonium sulfate precipitation was sufficient to 

provide the maximum inhibition of the RcNR. 

 

Conclusions: The insensitivity to ATP appears an inherent property of Ricinus NR, 

whereas the high Mg2+-sensitivity depends on one or several factors in Ricinus leaves. 

This as yet unknown factor(s) was boiling-sensitive and could be precipitated by 

ammonium sulfate. It appeared to interact specifically with recombinant Ricinus-NR 

to provide the Mg2+-sensitivity of the authentic leaf enzyme. Presumably, there is also 

a positive regulatory factor(s) for nitrate reductase existing in the leaves of higher 

plants. 



ZUSAMMENFASSUNG VII 

Zusammenfassung 
 

Hintergrund: In einer vorhergehenden Studie wurde gezeigt, dass die Nitratreduktase 

(NR, EC 1.6.6.1) aus Blättern von Ricinus communis L. im Vergleich zu NRs der 

meisten anderen höheren Pflanzen durch verschiedene Faktoren unterschiedlich 

reguliert wird. Die Aktivität ist ungewöhnlich Mg2+-sensitiv, zeigt ein verändertes 

pH-Profil und ist nur gering ATP-abhängig inaktivierbar. 

 

Das Ziel dieser Arbeit war, die abweichenden Eigenschaften von Ricinus NR, aus 

molekularer und physiologischer Sicht detaillierter aufzuklären. Zu diesem Zweck 

wurde das NR Gen von R. communis geklont, heterolog exprimiert und charakterisiert. 

 

Ergebnisse: Die abgeleitete Proteinsequenz zeigte, dass Ricinus NR hohe Ähnlichkeit 

mit anderem NRs teilte, abgesehen von der N-terminalen Region. In der N-terminalen 

Region besitzt die Ricinus NR eine säurehaltige Sequenz, die nur in den höheren 

Pflanzen konserviert ist. In der Moco-bindenden Region waren einige in 17 Pflanzen 

NRs konservierte Aminosäurepositionen verändert. Zu diesen Positionen gehörten 

His103, Gln123, Val266 und Ala284, die Asparagin, Arginin, Aspartat und Prolin in 

den anderen Pflanzen ersetzten. Auch an der Dimerisierungs- und Hinge 1-Region, 

zeigte die Ricinus NR eine veränderte Aminosäuresequenz. Anstatt Isoleucin und 

Glycin, besaß die Ricinus NR an den Stellen 460 und 498 Asparagin und Alanin. 

Durch ein Arg an der Stelle 482 kommt es zu einer zusätzliche Trypsinschnittstelle 

innerhalb des 481KRHK484-Motivs (die meisten NR besitzen hier KPHK). 

Zusätzlich enthält die Ricinus NR eine Serinphosphorylierungsstelle (Ser-526) 

innerhalb des möglichen 14-3-3 Bindemotivs 523KSVS*TP528, was eine allgemeine 

Eigenschaft von Nitratreduktasen ist. Im C-Terminus von Ricinus NR bestätigte die 

Sequenz 886CGPPP890, dass die Ricinus NR ein NADH-spezifisches Enzym ist.  

 

Die Ricinus NR und Arabidopsis NR2 (AtNR2) wurden in Pichia pastoris funktionell 

exprimiert und die Eigenschaften miteinander verglichen. Die rekombinante Ricinus 

NR (RcNR) selbst wurde nicht durch die Inkubation mit MgATP inhibiert, ebenso 

AtNR2. Da der Hefeextrakt vermutlich die Faktoren zur Regulierung der NR nicht 

enthält, wurden entsalzte Blattextrakte von Arabidopsis (ADL), Spinat (SDL) und 
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Ricinus (RDL) zugesetzt, die Kinasen und 14-3-3 Proteine enthielten. Damit keine 

endogenen NRs sich im Extrakt befinden wurden die Blätter vor Extraktion 4 Tage im 

Dunkeln gehalten. 

In Bezug auf die Inhibierung der NR durch ATP wurde festgestellt, dass die RcNR 

gegenüber einer solchen Inhibierung unempfindlich ist, AtNR2 dagegen in jedem Fall 

durch ATP inaktiviert wird. Bei Kombination von RcNR mit NR-freien Extrakten aus 

Pflanzen zeigte sich die erhöhte Mg2+-Sensitivität nur, wenn man RcNR mit RDL 

inkubierte, nicht aber wenn man RcNR mit SDL oder ADL inkubierte. Es liegt auf der 

Hand, dass ein oder einige Faktoren in RDL vorkommen, die mit RcNR interagieren 

und seine hohe Mg2+-Sensitivität hervorrufen. 

Außerdem, ergab eine Inkubation von AtNR2 mit unterschiedlichen NR-freien 

Blattextrakten eine bedeutende Aktivierung der Enzymaktivitäten, sowohl in 

Anwesenheit von Mg2+ als auch EDTA. Dies wurde jedoch nicht für die RcNR 

festgestellt. Nach Verwendung von Ammoniumsulfat zur Fraktionierung des RDL, 

fand man zusätzlich heraus, dass ungefähr 0,2 mg des Proteins der Fraktion die mit 0-

35% Ammoniumsulfat gefällt wurde ausreichten die maximale Hemmung des RcNR 

hervorzurufen. 

 

Schlussfolgerungen: Die Unempfindlichkeit gegenüber ATP erscheint eine 

angeborene Eigenschaft von Ricinus NR, während die hohe Mg2+-Sensitivität von 

einem oder einigen Faktoren in den Blättern von Ricinus abhängt. Diese(r) bis jetzt 

unbekannte Faktor(en) war Hitze-sensitiv und konnte durch Ammoniumsulfat 

ausgefällt werden. Er scheint spezifisch auf die rekombinante Ricinus-NR 

einzuwirken, und liefert eine Mg2+-Sensitivität vergleichbar dem authentischen 

Blattenzym. Außerdem gibt es vermutlich auch positiv regulierende Faktor(en) für die 

Nitratreduktase aus Blättern höherer Pflanzen. 
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1. Introduction 
 

1.1 Overview of nitrate assimilation in higher plants 

Nitrogen is one of the most important mineral elements that plants require. There are 

two routes of biological N acquisition: nitrate assimilation and nitrogen fixation. The 

nitrate assimilation pathway is the main entry for inorganic nitrogen which is later 

incorporated into organic compounds. Before entering the assimilation pathway, 

nitrate has to be taken up by the cell. Following its uptake from the soil by plant roots, 

nitrate is reduced to ammonium prior to assimilation into organic compounds. 

The first step of this process is a two-electron reduction of nitrate to nitrite, 

catalyzed by nitrate reductase (NR; EC 1.6.6.1-3). 

NO3
- + NAD(P)H + H+ +2e- → NO2

- + NAD(P)+ + H2O 

The second step is a six-electron reduction of nitrite to ammonium, catalyzed 

by nitrite reductase (NiR; EC 1.7.7.1). 

NO2
- + 6Fdred + 8H+ +6e- → NH4

+ + 6Fdox + 2H2O 

Subsequently, ammonium is incorporated into amino acids, catalysed primarily by 

glutamine synthetase (GS) and glutamate synthase (GOGAT) (for reviews, see 

Crawford, 1995; Lam et al., 1996; Stitt, 1999).   

 

1.2 Overview of nitrate reductase 

Nitrate reductase is a complex enzyme containing several prosthetic groups. Recent 

data on 3D structure of NR (Lu et al., 1994; Campbell, 1996), once thought to contain 

only 3 domains, indicate that it actually contains 5 structurally distinct domains. From 

the N-terminus to the C-terminus, these are: molybdenum cofactor (Moco), dimer 

interface, cytochrome b (Cb), FAD and NADH (Figure 1.1). When the FAD and 

NADH domains are combined, the cytochrome b reductase fragment (CbR) is formed. 

If the Cb domain is connected to CbR, it is called the cytochrome c reductase 

fragment (CcR). On the other hand, there are three sequence regions with no 

similarity to another protein and varying in sequence among NRs. Those are the N-

terminal regions, which are rich in acidic residues; Hinge 1, which contains a 

phosphorylation site and a trypsin proteolytic site; Hinge 2, which also contains a 

protease site. 

 



2 INTRODUCTION 

  

 

 
 

Figure 1.1 Sequence model of the enzyme. DI, dimer interface. (Campbell, 1999; 
modified)  
 

The native enzyme is a homodimer or a homotetramer (in case of Chlorella) (Howard 

and Solomonson, 1982). In higher plants, the size of a monomer is ranging from 100 

to 115 kDa. The intracellular location of NR is still discussed, but most evidence 

points to a cytosolic localization (for a review, see Solomonson and Barber, 1990).  

The first higher plant NR cloned was from barley (Cheng et al., 1986) and later a 

number of Nia sequences (including cDNA and genomic DNA) have been identified 

from different organisms. Three forms of nitrate reductase have been found in 

eukaryotes. The most common form in higher plants is a NADH-specific NR (EC 

1.6.6.1). A NAD(P)H-bispecific NR (EC 1.6.6.2) has been identified in several plants, 

existing as the sole isoform in Betula pendula (Friemann et al., 1991) or a second 

isoform along with the NADH-specific NR as in soybean and monocot species 

including maize, rice and barley (Kleinhofs and Warner, 1990). The third form is 

NADPH-specific (EC 1.6.6.3) which is present in fungi and in mosses.  

In addition to catalyze the formation of nitrite from nitrate, NR also has a secondary 

function in that it catalyses the production of nitric oxide (NO) from nitrite, and of 

molecular oxygen to superoxide (Dean and Harper, 1988; Yamasaki and Sakihama, 

2000). With the discovery of this novel function for NR, the biological significance of 

NR as a NO emitter and the induction of NR in response to pathogen attack or other 

stimuli known to induce NO production are drawing more and more attention in 

recent years. 

 

1.3 Regulation of NR 

Assimilatory nitrate reductase of higher plants is tightly regulated in a very complex 

manner. Some of the regulatory patterns are summarized in Figure 1.2. Nitrate 

NO3
-     Moco    DI

Hinge 1 Hinge 2

Cb                 CbR

CcR

N C Heme FAD   NADH 
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reductase is regulated at both the transcriptional and the post-translational level. The 

regulation of NR expression by nitrate, light and carbohydrates, the mechanism of its 

post-translational modulation and the role of its N-terminal domain in that regulation 

are described in the following sections. 

 

 
Figure 1.2 Schematic summary of the regulation of NR. The various signaling 
pathways include positive and negative effectors for gene expression and for post-
transcriptional regulation, NR protein synthesis and degradation and Molybdenum 
cofactor (Moco) incorporation (Solomonson, 1990; modified). 
 

1.3.1 Transcriptional regulation of NR 

1.3.1.1 By Nitrate 

As a signal, nitrate reprograms nitrogen and carbon metabolism and the expression of 

a selected group of genes (for reviews, see Crawford, 1995; Stitt, 1999; Tischner, 

2000). It has been known for decades that nitrate uptake and nitrate reductase activity 

increase after adding nitrate. In the absence of nitrate, NR mRNA was not detected in 

leaves and only low levels were present in barley roots, but could be detected in roots 

and leaves within 40 min after supplying nitrate to roots (Melzer et al., 1989). Very 

recently, microarray and RNA gel blot analyses were performed to identify 

Arabidopsis genes that responded to nitrate. The overall finding was that genes 

involved directly or indirectly in nitrate and nitrite reduction were the most highly 
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induced by nitrate. These results are not difficult to understand, because nitrite is toxic 

to plants and is usually not allowed to accumulate (Wang et al., 2000).  

Pretreatment of seedlings with cycloheximide to block cytosolic protein synthesis did 

not prevent nitrate induction of Nia mRNA in maize leaves (Gowri et al., 1992). In 

the case of Arabidopsis, nitrate increased the transcription of both Nia1 and Nia2 

genes. The 5' flanking regions of Nia1 deleted to -238 (NP1) and Nia2 deleted to -330 

(NP2) were demonstrated to be sufficient to confer reporter gene expression 

comparable to that of the entire regions prior to deletion (Lin et al., 1994). A further 

identification of the positive nitrate-response elements within NP1 and NP2 by 

performing a linker-scanning (LS) analysis has been reported (Hwang et al., 1997). 

Additionally, a cis-acting element which is necessary for nitrate-dependent 

transcription has been found in the promoter of NR gene from birch (Strater and 

Hachtel, 2000). 

 

1.3.1.2 By Light and carbohydrates 

Light is a major factor enhancing expression of NR genes as well as of many carbon 

fixation genes at different levels. In many species, Nia mRNA was rapidly increased 

when etiolated plants or dark-adapted green plants were transferred to light.  

In etiolated squash cotyledons, a red light pulse induced NR mRNA and a far-red 

light pulse reversed the induction (Rajasekhar et al., 1988). Blue light also induced 

NR mRNA accumulation in etiolated barley seedlings (Melzer et al., 1989). These 

limited findings suggest that light, acting via the photoreceptor phytochrome and 

perhaps the blue-light receptor plays a direct role in NR gene regulation in etiolated 

plants. However, Arabidopsis plants those were in continuous darkness for 16 days 

and were supplemented with sucrose, accumulated Nia1 mRNA to the same extent as 

those grown in light conditions. This is an indication that sucrose alone is sufficient to 

induce the full expression of the nitrate reductase gene in etiolated Arabidopsis plants. 

A subsequent exposure of the plants to light lead to no increase in Nia1 mRNA after 

12 hr of light treatment, some increase was observed after 24 hr (Cheng et al., 1992). 

In green plants, the effect of light is quite different from that on the etiolated seedlings. 

Only white light, but not red or blue light, stimulated NR mRNA accumulation in 

barley seedlings (Melzer et al., 1989). Using dark-adapted green plants, the 

Arabidopsis Nia1 gene was induced by white light. Like in the case of etiolated plants, 

sucrose could replace light in eliciting an increase of Nia1 mRNA accumulation in 
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dark-adapted green Arabidopsis plants (Cheng et al., 1992). Besides sucrose, glucose 

or fructose also induced NR mRNA as well as NR protein and activity in detached 

leaves of dark-adapted, sugar-depleted tobacco plants (Vincentz et al., 1993). 

Vincentz and Caboche (1991) demonstrated that CaMV 35S-NR transgenic tobacco 

plants accumulated high levels of the transcript that was not affected by dark 

treatment, indicating that light indeed plays a role in transcriptional regulation of NR 

gene. Furthermore, a 2.7-kb region of the 5' flanking sequence of the Arabidopsis 

Nia1 promoter could confer the light and sucrose response (Cheng et al., 1992), and 

the tobacco Nia1 promoter expressed the reporter gene in a sugar-inducible way 

(Vincentz et al., 1993). More recently, the light-responsive region of NR promoter 

from birch was identified (Strater and Hachtel, 2000). 

On the other hand, during a 24 hr light-dark regime, it has been reported that both 

tomato and tobacco NR mRNA increased drastically before the end of the dark period 

and reached a maximum at the beginning of the day. At the end of the day, the level 

of NR mRNA was then markedly decreased. No obvious correlation was detected 

between levels of NR mRNA and NR activity (Galangau et al., 1988). A similar 

phenomenon was also found in maize leaves in which NR  mRNA levels were low at 

the end of the dark period, peaked within 2 h in the light and decreased thereafter, 

whereas NR activity generally remained high (Huber et al., 1994). Apparently, the 

positive feed-forward induction of NR genes by sugars, and the negative feedback by 

nitrogen compound(s) from nitrate assimilation results in the diurnal oscillation of NR 

mRNA.  

 

1.3.2 Post-transcriptional regulation of NR 

1.3.2.1 By nitrate 

In addition to the transcriptional control of NR genes by nitrate, NR activity is also 

affected by nitrogen availability at the post-transcriptional level. One example from 

earlier studies was that in tomato plants after 8d of growth in the absence of nitrate, 

NR activity and protein decreased to lesser than 10% of the initial values, while Nia 

mRNA remained at a level close to normal (Galangau et al., 1988). More recently, 

tobacco suspension cells were used to determine the response of NR activity to 

exogenous nitrate levels. In this case, a long-distance transport of nitrate from roots to 

shoots is not required. The NR activity was found to increase as cell nitrate increased. 

The increase of NR activity appeared related, but not directly proportional, to the 
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intracellular level of nitrate (Zhang and MacKown, 1993). On the other hand, when 

nitrate supply to barley plants stopped and the internal nitrate concentrations became 

extremely low, NR protein and activity decreased very drastically during the day 

(Man et al., 1999).  

 

1.3.2.2 By light and carbohydrates 

Kaiser and Förster (1989) demonstrated that nitrate reductase activity in spinach 

leaves was rapidly decreased within minutes when rates of photosynthesis were 

decreased, e.g. by closure of stomata, or after lowering the external CO2 

concentration. . NR activity decreased rapidly to about 15% of the control with a half-

time of only 2 min after darkening of spinach leaves (Riens and Heldt, 1992). This 

rapid response to darkness shifting might help plants to avoid a build-up of nitrite, 

which is toxic to the cells. The inactivation of NR in response to CO2-deficiency 

indicates that photosynthetic fixation of CO2 appeared necessary for maximal NR 

activity (Klepper et al., 1971; Kaiser and Brendel-Behnisch, 1991). Additionally, CO2 

enrichment markedly elevated nitrate reductase activity in young, but not old, tobacco 

plants, presumably because growth rates were much greater in the younger plants and 

they needed the extra nitrogen provided by this phenomenon to maintain their 

heightened level of development (Geiger et al., 1998). The demonstration that light is 

an effective regulator of NR at the post-translational level by reversible protein 

phosphorylation (Kaiser et al., 1992; Huber et al., 1994), has been a major 

breakthrough in our knowledge on NR regulation. Thus, more details on this aspect 

are given below. 

 

1.3.3 Mechanism of the post-translational regulation of NR in higher plants 

A remarkable discovery in recent years has been the demonstration that in vivo NR 

activity is rapidly modulated by reversible protein phosphorylation and 14-3-3- 

binding in the presence of divalent cations (Figure 1.2; for reviews, see Kaiser and 

Huber, 2001; MacKintoch and Meek, 2001; Kaiser et al., 2002). 
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Figure 1.3 Post-translational regulation of NR. Explanations in the text. 

 

As already mentioned, NR activity in leaf extracts was rapidly reduced when plants 

were transferred to darkness or to low CO2 and NR activity was restored when the 

light was turned on or when plants were brought back to normal CO2 levels (Kaiser 

and Brendle-Behnish, 1991). Subsequently, Kaiser and Spill (1991) found out that NR 

was probably regulated by reversible protein phosphorylation. They further found that 

phosphorylation of NR per se was not sufficient for its inactivation, and two proteins 

were partially purified that appeared involved in the ATP-dependent inactivation 

process (Spill and Kaiser, 1994). In 1995, a protein termed "inhibitor protein (IP)" or 

"NR inhibitor protein (NIP)" was found, eluting with about 70 kDa from a sizing 

column (Bachmann et al., 1995; Glaab and Kaiser, 1995; MacKintosh et al., 1995). 

The "NR inhibitor protein" inactivated only phospho-NR, and this inactivation 

required divalent cations. After immunopurification and sequencing of a tryptic 

peptide, IP was identified for the first time as a member of the eukaryotic 14-3-3 

protein family (Bachmann et al., 1996a). Meanwhile, many studies highlight how 

phosphorylation inhibits NR activity, by identifying the regulatory phosphorylation 

site in the NR molecule and by determining the association between 14-3-3s and 

spinach phospho-NR in an isoform specific manner (Douglas et al., 1995; Bachmann 

et al., 1996b and 1996c; Moorhead et al., 1996; Su et al., 1996). Hence, a two-step 

regulation model of spinach NR was proposed (compare figure 1.3). According to this 



8 INTRODUCTION 

  

model, spinach NR is first phosphorylated on Ser-543, which is conserved among 

higher plant NRs, by a Ca2+-dependent NR-kinase (Douglas et al., 1997 and 1998) 

and then becomes inactivated upon binding of 14-3-3s in the presence of divalent 

cations. Therefore, in the presence of mM concentrations of free Mg2+, the remaining 

enzymatic activity represents that of the native free NR (NRact). In contrast, with 

excess EDTA, no 14-3-3-binding occurred and the measured activity therefore reflects 

the total amount of NR (NRmax). Originally it appeared that 14-3-3s bind directly to 

phosphoserine and divalent cations promote this binding (Athwal et al., 2000). 

However, it is not yet certain, whether divalent cations are required for 14-3-3 binding 

to phospho-NR, or whether they are needed for switching the complex from an active 

into an inactive form or both (Weiner and Kaiser, 2000). 

 

1.3.4 The role of the N-terminal domain in NR regulation 

Most of the NR protein sequence is well conserved among higher plants and other 

organisms, apart from the N-terminal region, which varies both in sequence and 

length among species. Therefore, to elucidate the potential role of the N-terminal 

domain in higher plants may contribute to unravel the complex networks of NR 

regulation. 

It has been shown that a tobacco NR with an internal deletion of 56 amino acids in the 

N-terminal domain (termed ∆NR) was no longer regulated by light-dark transition. 

Placing wild-type and transgenic plants C1 (transformed with CaMV 35S-NR 

construct) or del (transformed with CaMV 35S-∆NR construct) in the dark for 30 min 

revealed that in vivo inactivation by darkness occurred in wild-type and C1, but  was 

completely absent in ∆NR plants. Moreover, in vitro inactivation by MgATP was also 

abolished in ∆NR plant extracts (Nussaume et al., 1995). However, ∆NR appeared to 

be phosphorylated in the dark and endogenous 14-3-3 proteins could copurify with 

both NR and ∆NR (Lillo et al., 1997; Provan et al., 2000), indicating that they bound 

to both forms.  

Loss of the first 45 amino acids by proteolysis during purification of spinach NR 

resulted in an enzyme that could no longer be fully inhibited by 14-3-3-binding, 

although the truncated enzyme could be phosphorylated by NR kinase on Ser-543 at 

the same rate as intact NR (Douglas et al., 1995). 

The 56 amino acid region within the N-terminal domain of NR contains an "acidic 

stretch" conserved only in higher plants. Removal of the acidic stretch led to an active 
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enzyme which was more thermosensitive than the wild-type NR, but it was relatively 

insensitive to the inactivation by phosphorylation in the dark. The acidic stretch 

seemed to be required but not sufficient for the inactivation of NR (Pigaglio et al., 

1999). In addition, the deletion of 56 amino acids in the N-terminal domain showed 

that NADH to CcR activity (needs active FAD and heme-binding domains, compare 

Figure 1.1) was similar in C1 and del plants, but the terminal activity (associates with 

the MoCo-binding domain) was inactivated, indicating that the N-terminal region may 

be important for stabilizing the Moco-binding domain (Provan et al., 2000). 

Taken together, these data suggest that the N-terminal region of NR is in some way 

involved in and is required for the inactivation of the enzyme by phosphorylation. 

However, the exact role of this region is still under debate. 

 

1.4 An exceptional example from Ricinus 

Ricinus communis, or Castor Bean, is not a true bean, but a member of the spurge 

family or Euphorbiaceae. It is a very fast growing plant, it habitats ranging from cool 

temperate through tropical desert to wet forest life zones. Ricinus is reported to 

tolerate annual temperatures of 7.0 to 27.8°C and a wide range of soil pH from 4.5 to 

8.3 (Duke, 1983).  

In a previous study, NR from leaves and roots of hydroponically grown Ricinus 

behaved differently from all other NR studied so far (Kandlbinder et al., 2000). So far, 

NRs from different taxa of higher plants followed the light-dark transition or the 

diurnal fluctuation pattern, in which both NRact and NRmax were low during the night 

and increased during the first half of the day, with a significant decrease during the 

second half. In Ricinus, however, NRmax (indicating total active NR protein) 

underwent a similar pattern as, for example, spinach NR, whereas NRact was always 

extremely low with only little difference in light and dark. Therefore, the resulting 

activation state (NRact×100/NRmax) of Ricinus NR was always very low, usually less 

than 10% of NRmax throughout the day. 

Secondly, Ricinus NR had a different pH-profile in comparison with spinach NR. 

NRact in extracts from Ricinus was strongly increased by pH values below 7, and was 

extremely low at pH ≥ 7.3. This effect was actually caused by pH-dependent changes 

in the Mg2+-sensitivity of Ricinus NR. At pH 7.6 and pH 6.8, 50% inhibition of NR in 

spinach leaf extracts occurred at 3 mM and 1 mM Mg2+, respectively. With Ricinus 
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leaf extracts, 50% inhibition was obtained at less than 0.2 mM Mg2+ at pH 7.6, but 5 

mM Mg2+ was required at pH 6.8.  

Moreover, NR from spinach and other plants can be rapidly inactivated in vitro in the 

presence of MgATP. As described above, this inhibition requires protein kinase and 

14-3-3s. However, preincubation of Ricinus NR with MgATP gave very little 

additional inactivation. Removal of 14-3-3s by partial purification of NR, which 

activates NR from spinach, did not activate Ricinus NR. When pH values above 7, 

Ricinus NR appeared very Mg2+-sensitive and this high Mg2+-sensitivity does not 

require 14-3-3's binding as in other plant NRs. On the other hand, peptide antisera 

against the sequence around serine 543 of the spinach-NR cross-reacted with Ricinus 

NR indicating that Ricinus NR possesses the same potential 14-3-3 binding motif as 

spinach NR. Therefore, the molecular basis and the physiological relevance for the 

deviating properties of the Ricinus enzyme are not yet understood. 

 

1.5 Objective of this thesis 

 

The basic objective of this thesis was to elucidate the reasons behind the unusual 

regulatory properties of nitrate reductase from Ricinus communis L. both with 

respect to molecular and physiological aspects 

 

For that purpose, the first aim of this study was to clone the NR gene from Ricinus 

and eventually use a heterologous expression system to study the molecular properties 

of Ricinus NR, and to investigate the following problems: 

 

(1) Does the primary sequence of Ricinus NR differ from other NRs?  

Once the Ricinus NR gene was obtained, its deduced amino acid sequence could be 

used for sequence alignments to predict whether Ricinus NR would contain any 

unusual motifs or unique residues. For example, is the N-terminus of Ricinus NR 

sufficiently different from other NRs to provide its unresponsiveness to MgATP (as in 

the N-terminally deleted tobacco mutants where the ATP inactivation is abolished; 

Nussaume et al., 1995)? Furthermore, does a potential 14-3-3 binding motif exist in 

the Ricinus NR sequence, as already indicated by immunological studies?  
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(2) Heterologous expression of Ricinus NR in Pichia pastoris 

Transformation of the Ricinus NR gene into a heterologous expression system would 

provide an easy way to purify this enzyme for functional and regulatory studies. In 

addition, a heterologous expression system would be also advantageous for 

mutagenesis experiments. 

 

(3) Characterization of recombinant Ricinus NR 

Biologically similar recombinant NR's (e.g. Arabidopsis) expressed in Pichia could be 

used for a comparison with Ricinus NR from the same expression system. This would 

provide insight whether the different features of Ricinus NR are based on the NR 

protein itself or on some other factors. 
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2 Results 
 

2.1 Molecular cloning of NR gene from Ricinus 

2.1.1 The primary Ricinus NR gene sequence obtained by RT-PCR 

A partial Ricinus NR cDNA was obtained by RT-PCR (reverse transcription-

polymerase chain reaction). The main limitation of this technique is the need for 

precise sequence information from the target gene for the design of specific and 

efficient PCR primer. Therefore, based on sequence comparison we choose two 

regions where the amino acid sequences are entirely identical in 10 different NR-

sequences. The deduced protein sequences of these two regions are "IGGRMVKW" 

and "GMMNNCWF" which locate at 316 to 323 and 484 to 491 in spinach, 

respectively. The Ricinus communis' codon usage was subsequently used to 

backtranslate these amino acid sequences into nucleotide sequences and for the design 

of sense-primers. RT-PCR with RcNR-S1 (backtranslate from IGGRMVKW) and an 

appropriate antisense-primer from Arabidopsis Nia1 sequence yielded a cDNA-

fragment of the expected size of ca. 440 bp (Figure 2.1). Subsequently, this PCR 

product was cloned and sequenced and compared to database entries. The sequence 

shared high homology with NR known from many higher plants in the GenBank. 

 

 
 
Figure 2.1 A cDNA fragment of Ricinus NR gene was amplified by RT-PCR. 
Total RNA was used as the template for reverse transcription. Combination of the 
specific sense-primer for Ricinus NR gene and an antisense-primer from Arabidopsis 
Nia1 gene revealed a ca. 440 bp cDNA fragment. The first lane is a DNA-marker with 
two indicated fragments, 453 and 394 bp. 
 
 
 
 
 

453
394

Marker
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2.1.2 The Full-length Ricinus NR gene 

Since the primary sequence of NR from Ricinus is known, we used so-called 5'-

RACE and 3'-RACE (Rapid Amplification of cDNA Ends) to obtain the full-length 

Ricinus NR cDNA. 25mer gene specific primers for 5'-RACE (RcNR-AS-RACE) and 

3'-RACE (RcNR-S-RACE) PCR reaction were chosen from the partial Ricinus cDNA 

sequence mentioned above. Total RNA from Ricinus leaves was used as starting 

material for the amplification of full-length cDNA (Figure 2.2).  

 

 
 
Figure 2.2 Amplification of Ricinus NR cDNA fragments by 5'-RACE and 3'-
RACE PCR reaction. (A) Schematic representation of the relationship of gene 
specific primers to the cDNA template. (B) Analysis of PCR products from RACE. 
Lane 1 and lane 5 represent the Ricinus NR cDNA fragments amplified through 5'- 
and 3'-directions. Lane 2 and 6 show the overlapping region amplified by the gene 
specific primers. Lane 3, 4, 7 and 8 are the negative control which used only one of 
the primer pairs used in 5'- and 3'-RACE. DNA-markers with indicated sizes are 
shown on the left side. 
 

 

Combination of the cDNA fragments amplified by 5'-RACE and 3'-RACE revealed a 

length of 3021 nucleotides. An open reading frame of 914 amino acids was encoded, 

starting with the sequence MAASV that is conserved throughout all higher plant 

5' RACE 
1    2    3   4

3' RACE 
5    6    7   8

2036
1636
1018

 396

NNAAAAA-3' 

NNTTTTT-5' 

 5'- 

 3‘- 

Region to be amplified by 5‘-RACE
Region to be amplified by 3‘-RACE 

Region of overlap
(A) 

(B) 
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nitrate reductases (Miyazaki et al., 1991) except NRs from maize (Zea mays, 

MSTCV), Arabidopsis NR1 (MATSV) and Brassica napus (MATSV). 

 

2.1.3 Analysis of the deduced amino acids sequence 

Searching for the ORF of the Ricinus NR sequence against the Conserved Domain 

Database with the RPS-BLAST program revealed that Ricinus NR can be divided into 

distinct functional domains that bind a molybdenum-pterin cofactor (Moco), heme-Fe 

or FAD (flavin adenine dinucleotide) as in other higher plants. In Ricinus NR, the 

three prosthetic domains Molybdenum-MPT, heme-Fe and FAD are located at amino 

acid positions 92 to 321, 536 to 612 and 661 to 768 and are composed of 230, 77 and 

108 amino acids, respectively (Figure 2.3).  
 
 
 
 
Ricinus-NR : MAASVDNRQFH.LEPTLNGVVRPFKSGPTHRSDSPIRNGFNFTNQDFTR. :  48 
Arabidopsi : ---------YAR---G------SY-PPVPG-----KAHQNQT---TVFL. :  49 
Spinach-NR : ------.--Y-.PA-.MS----TPF-N.H------V---YT-S-PPSSNG :  46 
                                                                      
                                                                      
                                                                      
Ricinus-NR : .............SSSNKKPTPIMDDDFSSDDDEAD.......YGDLIRK :  78 
Arabidopsi : ................KPAKVHDD-E-V--E-ENETHNSNAVY-KEM--- :  83 
Spinach-NR : VVKPGEKIKLVDNNSNSNNGSNNNNNRYD--SE-D-DENEMNVWNEM-K- :  96 
                                                                      
                                                                      
                                                                      
Ricinus-NR : GNSELQPSILDPRDEGTADNWVERHPSMIRLTGKHPFNSEAPLTQLMHHG : 128 
Arabidopsi : S-A--E--V------Y---S-I--N---V--------------NR----- : 133 
Spinach-NR : -----E--SV-S-------Q-I--N---------------P---R----- : 146 
                                                                      
                                                                      
                                                                      
Ricinus-NR : FITPVPLHYVRNHGPVPKASWKDWTVEICGLVKKPTRFTMDQLVNDFPSR : 178 
Arabidopsi : --------------H----Q-AE----VT-F--R-MK-------SE-AY- : 183 
Spinach-NR : -L---------------N-K-E-----VT----R-I-----------Q-- : 196 
                                                                      
                                                                      
                                                                      
Ricinus-NR : ELPVTLVCAGNRRKEQNMVKQTIGFNWGAAGVSNSVWRGVPLHFVLKRCG : 228 
Arabidopsi : -FAA----------------KSK-----S----T--------CD--R--- : 233 
Spinach-NR : -F----------------T--S------S-A--T--------RD------ : 246 
                                                                      
                                                                      
                                                                      
Ricinus-NR : IYSRKKGALNVCFEGAEDLPGGG...GSKYGTSIKKEYAMVPSRDIILAY : 275 
Arabidopsi : -F---G---------S------AGTA--------------D--------- : 283 
Spinach-NR : VM-SL------------------...-------V-R-F—D--A------- : 293 
                                                                      
                                                                      
                                                                      
Ricinus-NR : MQNGELLAADHGFPVRMIIPGFIGGRMVKWLKRIIVTTKESDNYYHYKDN : 325 
Arabidopsi : -----Y-TP-------I--------------------------F--F--- : 333 
Spinach-NR : -----K-SP---Y-------------------------T----------- : 343 
                                                                      
                                                                      
                                                                      
Ricinus-NR : RVLPSHVDAELANAEAWWYKPEYIINELNINSVITTPSHEEVLPINSWTT : 375 
Arabidopsi : -----L------DE-G---------------------C---I----AF-- : 383 
Spinach-NR : -------------S------Q--------V-----S-C---I----A--- : 393 
                                                                      
                                                                      
                                                                      
 
Ricinus-NR : QRPYTLKGYAYSGGGKKVTRVEVTMDGGDTWQVCSLDHPEKPNKYGKYWC : 425 
Arabidopsi : ------------------------V---E--N--A---Q--------F-- : 433 
Spinach-NR : -----MR--------R---------------DI-E---Q-RGS----F-- : 443 
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Ricinus-NR : WCFWSLEVEVLDLLGAKEIAVRAWDETLNTQPEKLNWNVMGMVNNCWFRI : 475 
Arabidopsi : --------------S-------------------MI--L---M------V : 483 
Spinach-NR : -------------------G------S--------I------M------V : 493 
                                                                                                                                                                                                                  
Ricinus-NR : KTNVCKRHKGEIGIVFEHPTVPANQSGGWMAKERHLEISSENHPILKKSV : 525 
Arabidopsi : ------P-------------L-G-E------------K-ADAP-S----- : 533 
Spinach-NR : ------P-------------Q-G-K------R-------.DSG-T--RTA : 542 
                                                                      
                                                                      
             *                                                        
Ricinus-NR : STPFMNTSSKTVSMAEVKKHNSADSCWIIVHGHVYDCTRFLKDHPGGTDS : 575 
Arabidopsi : -------TA-MY--S------------------I-------M-----S-- : 583 
Spinach-NR : -------T--MY—S-------T---A--V---N--NA----------S-- : 592 
                                                                      
                                                                      
                                                                      
Ricinus-NR : ILINAGTDCTDEFDAIHSDKAKIMLEDYRIGELVDSTAYTTDSNASSPNN : 625 
Arabidopsi : ----------E--E--------K----------IT.-G-SS--..----- : 630 
Spinach-NR : ----------E-----------RL---F-----IS.-G--S--..---G- : 639 
                                                                      
                                                                      
                                                                      
Ricinus-NR : SVHGASNMS.QTPLAPIKEITPTPARNVALV.PREKIACKLVKKESLSHD : 673 
Arabidopsi : ----S-AVF..SL----G-A--..V--L---N--A-VPVQ--E-T-I--- : 676 
Spinach-NR : ----G-VY-GLAG----T-AV-..L-----N.--V--P---IE-V----- : 686 
                                                                      
                                                                      
                                                                      
Ricinus-NR : VRLFRFALPSDDQVLGLPVGKHIFLCATIDEKLCMRAYTPTSTIDVVGYF : 723 
Arabidopsi : --K------VE-M----------------ND---L-----S--V------ : 726 
Spinach-NR : --R---G---E----------------NV-D---------S--------- : 736 
                                                                      
                                                                      
                                                                      
Ricinus-NR : DLVIKVYFKGVHPKFPNGGLMSQHLDSLQLGSVIDVKGPLGHIEYAGRGN : 773 
Arabidopsi : E--V-I--G----R---------Y----PI--TLEI------V--L-K-S : 776 
Spinach-NR : ---V-----D---R-----V--------S---IV-----------L-K-- : 786 
                                                                      
                                                                      
                                                                      
Ricinus-NR : FMVHGKPKFAKKLTMLAGGTGITPIYQVIQAILKDPEDDTEMYVVYANRT : 823 
Arabidopsi : -T--------D--A----------V--I----------E-----I----- : 826 
Spinach-NR : -T-----------A-IS-----------M---------K---H------- : 836 
                                                                      
                                                                      
                                                                      
Ricinus-NR : EDDILLREELDSWAKEHHERLKVWYVVQESIKEGWQYSVGFITENILREH : 873 
Arabidopsi : -E---------G--EQYPD--------ES.A----A--T---S-A-M--- : 875 
Spinach-NR : -E---------K--D-FRD-V------EK.AE---K-DT---S-K---D- : 885 
                                                                      
                                                                
                                                                
Ricinus-NR : VPEGSD.DTLALACGPPPMIQFAVQPNLEKMNYDIKNSLLVF.. : 914 
Arabidopsi : I-D-L-GSA--M-------------------Q-N--EDF-I-.. : 917 
Spinach-NR : --AVG-.-V---T---------------D--GF---EQ--I-.. : 926 

 
Figure 2.3 Deduced amino acid sequences alignments. Amino acid sequences of 
Arabidopsis NR2 and spinach NR were compared to Ricinus NR (GenBank accession 
number AF314093). Like other plant NRs, Ricinus NR consists of three prosthetic 
domains which are marked by a shadow. The Mo-MPT domain with the nitrate-
reducing site spans from 92 to 321, the cytochrome b domain from 536 to 612 and the 
FAD domain from 661 to 768. Identical sequences are indicated by a dash, and gaps 
introduced for alignment purposes by a dot. Amino acids in a block represent the 14-
3-3 binding motif, where the phosphorylated serine residue is marked by an asterisk. 
A sequence involved in the character for a NADH:NR is underlined. 
 

 

The deduced amino acid sequence showed that Ricinus NR mRNA encodes a protein 

of 102.8 kDa with a high degree of similarity to NRs from other higher plants. The 
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highest similarity was found to the NR amino acid sequence from winter squash (78% 

identity, 87% similarity), petunia (78% identity, 86% similarity), tomato (77% 

identity, 87% similarity) and tobacco (78% identity, 87% similarity). Moreover, 

Ricinus NR shared 75% identity (85% similarity) with Arabidopsis NR2 or spinach 

NR and 73% identity (84% similarity) with Arabidopsis NR1.  

In contrast to the larger part of the sequence, the N-terminal regions of the NR 

sequences varied considerably (see Appendix 6.5). The molybdenum-MPT domain of 

Ricinus NR for example contains a cysteine residue (Cys-186) which is present in all 

eukaryotic NRs and is a part of a highly conserved region 
183TLVCAGNRRKEQNM196 (Figure 2.3). This key residue has been proposed to 

provide a ligand to molybdenum in the Moco binding region and is essential for NR 

activity (Barber and Neame, 1990; Solomonson and Barber, 1990; Garrett and 

Rajagopalan, 1994; Garde et al., 1995; Su et al., 1997).  

In the hinge region between molybdenum-MPT and heme-Fe domains, Ricinus NR 

possesses a conserved phosphorylation serine residue (Ser-526), which is within the 

14-3-3s binding motif 523KSVS*TP528 (Figure 2.3). This confirmed the result from our 

previous immunodecoration experiment where peptide antisera against the sequence 

around serine 543 of the spinach-NR cross-reacted with Ricinus NR (Kandlbinder et 

al., 2000). Moreover, within the FAD domain Ricinus NR possesses the motif 
886CGPPP890, characteristic for NADH-specific NRs (Schöndorf and Hachtel, 1995). 

In NAD(P)H NR-forms such as those of barley and birch only two proline residues 

are present (CGPPA). It has been demonstrated that substitution of a proline by 

alanine in the birch NAD(P)H-NR greatly increased preference for NADH. In the case 

of Ricinus NR, we have tested whether the recombinant enzyme could utilize NADPH 

as the reductant, but the recombinant protein had no NADPH:NR activity (not shown). 
 

2.2 Heterologous expression of RcNR in Pichia pastoris 

2.2.1 Construction 

The full-length cDNA of Ricinus NR (RcNR) was cloned into the pPICZA Pichia 

pastoris expression vector using Sac II and Apa I restriction enzyme sites. The 

plasmid was further transformed into E. coli for replication. The first evidence for the 

successful construction of pPICZA-RcNR clone was using gene and vector specific 

primers to check the construct by PCR (Figure 2.4).  
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Figure 2.4 Determination of the construct pPICZA-RcNR by PCR. Primers 
specific for the Ricinus NR gene and the vector pPICZA were chosen to perform the 
PCR reaction using the plasmid pPICZA-RcNR as the template. (A) Schematic 
representation of the construct pPICZA-RcNR and the positions of the primers. (B) 
Analysis of the PCR products using 1% agarose gel. M: DNA-marker. More details in 
the text. 
 

 

Primers 1 and 2 (5' and 3' AOX1) were vector specific which would amplify a DNA 

fragment of 2977 bp (see lane 4, Figure 2.4 B). Primers 3 to 6 were specific for the 

Ricinus NR gene. Combination of primers 3 and 4 (RcNR-SF-2 and RcNR-ASF) 

revealed a full-length RcNR DNA fragment of 2764 bp (lane 1, Figure 2.4 B). Using 

internal gene specific primer 5 (RcNR-S-RACE) together with primer 4 amplified a 

DNA fragment of 1736 bp (lane 3, Figure 2.4 B). Another combination of primer 3 

and 6 (RcNR-AS-RACE) amplified a DNA fragment of 1344 bp (lane2, Figure 2.5 B). 

These precise DNA fragments amplified by gene and vector specific primers 

confirmed that the construct was successfully created. 

The second evidence was the digestion pattern of the plasmid by Nco I restriction 

enzyme. Ricinus NR cDNA contains 3 Nco I restriction enzyme sites as well as one in 

pPICZA vector. Therefore, after Nco I digestion it would reveal 4 DNA fragments if 

the construct was correct (Figure 2.5). The predicted size of 4 DNA fragments is 2928, 

(A) 

1636

2036

3054

M  1  2  3  4
(B) 

RcNR
pPICZA 

Sac II Apa I 

1 2 
3 4 

5

6



RESULTS 19 
 

1968, 874 and 291 bp (which is in total 6061 bp), respectively. Analysis of the 

digestion mixture revealed that 4 DNA fragments were precisely produced by Nco I 

digestion. 

 

 

 
 

Figure 2.5 Nco I restriction enzyme digestion of the construct pPICZA-RcNR. 
Panel A illustrated the restriction enzyme sites of Nco I in the pPICZA-RcNR 
construct. Triangles labeled with numbers represent Nco I enzyme sites. Numbers 
with or without brackets indicate the positions corresponding to the pPICZA and 
RcNR sequence, respectively. Panel B showed the verification of DNA fragments 
after digestion of Nco I in 1% agarose gel. Sizes of the DNA-marker and the PCR 
fragments are indicated. 
 

In addition to the evidence mentioned above, the construct was also sequenced by 

using appropriate sequencing primers. The partial sequence of the construct obtained 

from the sequencing revealed that the cloning process was successful. It is noteworthy 

that in the construct a yeast consensus sequence was added to the RcNR sequence 
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right before the initiation ATG. This sequence is necessary for the yeast to initiate the 

translation and also appeared in the partial sequence (not shown). 

 

2.2.2 Transformation 

Having confirmed the correct construct pPICZA-RcNR, it was then linearized with 

Sac I restriction enzyme, transformed in P. pastoris to be integrated into the P. 

pastoris genome. At this stage, a direct PCR screening was used to identify whether 

the transformation was accomplished. Pichia transformants were tested for insertion 

of the Ricinus NR gene by using 5'- and 3'-AOX1 sequencing primers located at the 

vector pPICZA, as well as the internal gene specific primers (Figure 2.6).  

The unique Sac I restriction site would permit linearization of the construct at the 

AOX1 locus for efficient integration into the Pichia genome. After the digestion of 

Sac I restriction enzyme, the construct was linearized and revealed a total length of 

6061 bp (Figure 2.6A). This linearized plasmid was then used for transformation by 

using chemically produced competent Pichia cells and yielded 12 colonies. It is worth 

to mention that this alternative to electroporation is rapid and convenient but the 

transformation efficiency is low (3 µg plasmid DNA yields about 50 colonies). 

Genomic DNA of Pichia transformants, in the case of direst PCR screening, was used 

as the template and tested by PCR. The internal gene specific primers and 5'- and 3'-

AOX1 sequencing primers should amplify DNA fragments of 1344 and 2977 bp, 

respectively (Figure 2.6 B and C). However, using 5'- and 3'-AOX1 sequencing 

primers, an additional DNA fragment of about 2 kb was also amplified. No 

homologous sequence to 5'- and 3'-AOX1 sequencing primers was found in the 

Ricinus NR gene. 
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Figure 2.6 Linearization of the construct pPICZA-RcNR and direct PCR 
screening of Pichia clones.  Pichia cells were lysed by a combined enzyme, freezing 
and heating treatment. The genomic DNA was used directly as a PCR template. (A) 
Linearized construct with Sac I restriction enzyme before transformation. (B) After 
transformation, Pichia transformants 1 to 9 were tested for the insertion of RcNR by 
using internal gene specific primers. (C) Selected Pichia clones 1 to 5 were further 
tested, using 5'- and 3'-AOX1 sequencing primers. 
 

 

2.2.3 Expression 

The P. pastoris alcohol oxidase promoter (AOX1), which is inducible by methanol 

and produces alcohol oxidase up to 30% of total soluble protein, was used to drive the 

expression of NR cDNA. During a 72 hr induction period, transformants were 

collected for checking protein expression levels by SDS polyacrylamide gel 

electrophoresis (SDS-PAGE). However, proteins produced were not detected in a 

Coomassie-stained SDS-PAGE. Indeed, we always observed only an extremely weak 

Ricinus NR protein signal in the predicted molecular weight (MW) region, but very 

strong signals appeared in the lower MW region on the SDS-PAGE. Moreover, using 
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different peptide antisera to perform western blots revealed no successful results so 

far. One of the antisera raised against the maize NR peptide 

(PAESDNYYHFKDNRVLPSC) could recognize purified maize NR but failed to 

cross-react with recombinant Ricinus NR and Arabidopsis NR2, which was expressed 

in the same system. We also tried the other antisera raised against the spinach NR 

peptide (CGPTLKRTADTPFMNTTS), however, no signals of the predicted size for 

both, recombinant Ricinus and Arabidopsis NRs were detected. 

In order to test whether P. pastoris transformed with the NR expression plasmid 

pPICZA-RcNR could produce a functional enzyme, NR activity was measured in 

yeast cells (in vivo). Pichia transformants were induced with methanol within a 72 hr 

induction period. Pichia transformed with plasmid pPICZA-RcNR showed NR 

activity, whereas P. pastoris containing only a control expression plasmid (pPICZA) 

had no such activity throughout the induction period (Figure 2.7). The in vivo activity 

was compared with the recombinant Arabidopsis NR2 from the same system but 

using a different expression vector.  
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Figure 2.7 NR activity in yeast cells (in vivo). Pichia transformed with NRs from 
either Arabidopsis (pHILD2-AtNR2) or Ricinus (pPICZA-RcNR) and the expression 
vector (pPICZA) were tested for the NR activity in vivo. After incubation of the cell 
suspension (OD600=1) with substrate (50 mM KNO3), the nitrite content in the 
medium was visualised with the Griess Reagent.  
 
 
Before transferring Pichia transformed with the plasmid pPICZA-RcNR to the 

induction medium to induce expression, the Ricinus NR gene was already expressed 



RESULTS 23 
 

in the glycerol medium (Time 0). The regulation of the AOX1 gene is a two step 

process: a repression/derepression mechanism plus an induction mechanism. Growth 

on glycerol derepresses transcription, and is therefore optimal for induction with 

methanol. Theoretically, growth on glycerol alone (before induction) is not sufficient 

to express low levels from the AOX1 gene. Only methanol is able to induce detectable 

levels of AOX1 expression. However, a recently successful expression of tobacco NR 

in Hansenula Polymorpha using the MOX1 promoter also gave some expression in 

glycerol (personal communication). Thus, the expression of the Ricinus NR in 

glycerol medium could indicate that the promoter was not as tightly regulated as 

expected in our case.  

As already mentioned, nitrate reductase also catalyses the NAD(P)H-dependent 

reduction of nitrite to nitric oxide (NO). Therefore, NO emission can be used as an 

on-line indicator of a functional NR in Pichia transformants in vivo (Figure 2.8).  

 

 
Figure 2.8 NO emission of Pichia transformants (in vivo). Pichia strains A, B, C 
and D were used to measure NO emission in the gas phase. The plasmid transformed 
into Pichia GS115 strain were pHILD2-AtNR2 (A), pPICZ-lacZ (B), pPICZA-RcNR 
(C) and pPICZA (D). M indicates the growth medium. Continuous NO-emission was 
measured after transfer the transformants to the induction medium for 48 h and each 1 
mM nitrite was added as a substrate first in air, followed by incubation in nitrogen and 
subsequently by a second period in air. 
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Pichia cells transformed with Arabidopsis Nia 2 gene and Ricinus NR gene produced 

NO right after adding of 1 mM nitrite into the cell culture. Artificial activation of leaf 

NR by anoxia drastically increased NO production especially in the dark (Rockel et 

al., 2002). When switching back from anoxia to aerobic condition, NO emission 

decreased again. This typical pattern for NO emission was observed with both 

transformants (Figure 2.8 A and C). In contrast, Pichia clones which expressed the 

lacZ gene or which were transformed only with the expression vector did not produce 

NO under the same experimental conditions. NO emission is thus an easy in vivo test 

system to check for a successful expression of functionally competent recombinant 

Arabidopsis NR2 and Ricinus NR. 

 

2.3 Characterization of recombinant Ricinus NR 

2.3.1 Modulation of NRs from plant leaves 

NR from spinach and other plants can be rapidly inactivated in vitro in the presence of 

MgATP. This inhibition requires protein kinase and 14-3-3s. Before investigating the 

recombinant NRs, we first compared the ATP-dependent inactivation of NR in 

extracts from illuminated leaves of Arabidopsis, spinach and Ricinus (Table 1). 

Among these three plants, spinach NR was strongly inactivated by ATP, whereas 

Ricinus and Arabidopsis NR were only 9 to 25% inactivated. The initial activation 

state (AS) of NR in illuminated Arabidopsis and spinach leaf extracts was 70% and 

80%, but only 40% or  less in Ricinus (Kandlbinder et al., 2000). 

 

Table 1. ATP-dependent inactivation of NR in extracts from illuminated leaves of 
Arabidopsis, Spinach and Ricinus in vitro. NRact and NRmax represent the activities 
in the presence of either 10 mM Mg2+ or 10 mM EDTA. Activation state (AS) in 
percentage corresponds to NRact×100 / NRmax. For further details see experimental 
procedures. 
 

 Arabidopsisa Spinacha Ricinusa 
NRact    
           −ATP 4.0 ± 0.5 9.2 ± 1.3 6.5 ± 0.8 
           +ATP 3.0 ± 0.5 3.0 ± 0.3 5.9 ± 1.5 
NRmax    
           −ATP 5.6 ± 0.7 11.0 ± 1.5 14.8 ± 2.3 
           +ATP 5.9 ± 0.7 9.4 ± 1.2 14.9 ± 2.7 
AS (%)    
           −ATP 71 84 44 
           +ATP 51 32 40 

a Values are µmol NO2
- per g FW per hour [± SD, n=3 (n=4 for Ricinus)] 
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2.3.2 Modulation of NRs from yeast cells 

Having determined the response to ATP in the authentic plant NRs, Table 2 

demonstrates that neither recombinant Arabidopsis NR2 (AtNR2) nor recombinant 

Ricinus NR (RcNR) alone could be inactivated by ATP in crude yeast extracts. This 

might indicate that no suitable kinases exist in P. pastoris extracts, because 14-3-3 

proteins are common in yeasts and are able to bind to phosphorylated spinach NR in 

vitro (Moorhead et al., 1996). Next, NR-free plant leaf extracts were added to the 

recombinant NR's in order to add suitable protein kinase(s). AtNR2 showed about 5%, 

45% and 15% of ATP-dependent inactivation in mixture with Arabidopsis darkened 

leaf extracts (ADL), spinach darkened leaf extracts (SDL) and Ricinus darkened leaf 

extracts (RDL), respectively. Moreover, NRact and NRmax of AtNR2 were increased 

when mixing with NR-free extracts from leaves, but the activation states were not 

changed much (Table 2). In the case of the RcNR, only mixing with SDL gave a 

slight inhibition by MgATP. Surprisingly, the RcNR activity in the presence of Mg2+ 

(NRact) was dramatically decreased by incubation with RDL (with or without ATP) 

but not with SDL and ADL, whereas NRmax remained similar. Hence, the activation 

state dropped remarkably only when RcNR was mixed with RDL and this low 

activation state was similar to that of the authentic leaf enzyme, and independent of 

ATP. 
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2.3.3 RcNR has a high Mg2+-sensitivity when mixed with NR-free extracts from 

Ricinus leaves at pH 7.6, but not at pH 6.5 

In a previous study, nitrate reductase in extracts from hydroponically grown Ricinus 

leaves showed different sensitivity to pH and Mg2+ compared to spinach NR. NRact 

from spinach had a broad optimum between pH 6.5 and pH 7.5, whereas NRact from 

Ricinus had a distinct optimum around pH 6.5, and activity was very low at pH values 

above pH 7.3 (Kandlbinder et al., 2000). According to these findings, we also tested 

RcNR with regard to this unusual property. Figure 2.9 shows the time course of RcNR 

NRmax and NRact alone or after addition of a desalted, NR-free leaf extract from 

Ricinus (RDL). In general, no Mg2+ inhibition of the RcNR was observed without 

RDL. Incubation of RcNR with RDL at pH 6.5 increased both, NRmax and NRact. 

However, at pH 7.6, the mixture of RcNR plus RDL gave almost the same Mg2+-

sensitivity found with the authentic leaf extract. When AtNR2 was assayed under the 

same experimental conditions (pH 7.6), no such Mg2+ inhibition was observed. Taken 

the 10-min reaction into account, the Mg2+ inhibition caused by RDL incubation was 

about 60% (Figure 2.9B), which is consistent with the result shown in Table 2.  

 

Apparently Ricinus leaves contain a factor which specifically interacts with 

RcNR, providing the properties of the native NR enzyme in leaves.  
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Figure 2.9 Effect of desalted crude extract from darkened Ricinus leaf (RDL) on 
NRmax and NRact of recombinant Ricinus NR (RcNR). Reaction time for NR 
activity assays is as indicated. Vertical axis represents the nitrite formation. 100% 
corresponds to 22.1 and 21.5 nmol NO2

- per mg protein for pH 6.5 (a) and pH 7.6 (b), 
respectively. Data are means ± SD from 3 for pH 6.5 or 4 for pH 7.6 independent 
experiments. More details in the text. 
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We further tested whether the “Mg2+-sensitivity factor” was inactivated by boiling. 

Figure 2.10 shows that once the RDL was briefly boiled, the effect on NRact was 

eliminated. However, the supernatant of the boiled RDL somehow activated the 

recombinant enzyme activities, both in Mg2+ and EDTA. The same phenomenon also 

occurred with recombinant Arabidopsis NR2, indicating that this effect was not 

specific for Ricinus NR. Since the supernatant of the boiled RDL contains only low 

molecular weight solutes, it will be interesting to find it out which component was 

stimulatory. 
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Figure 2.10 Effect of the supernatant from boiled, desalted crude extracts of NR-
free Ricinus leaves [RDL(b)] on recombinant Ricinus NR (RcNR) at pH 7.6. RDL 
was briefly boiled (2 min) before adding into reactions. The nitrite formation was 
given by relating to the nitrite content of the 10-min time point of RcNR (EDTA). 
Reaction time for NR activity assays and the symbol for each line as indicated. The 
means and standard deviations of 3 replicates are given. 
. 
 

 

2.3.4 Protein fractionation by ammonium sulfate 

Ricinus leaves obviously contained one or several protein factor(s) which restored the 

high Mg2+-sensitivity which was lost for the recombinant Ricinus NR. In a first 

attempt to separate such factor(s) from the crude extract, ammonium sulfate 

fractionation was applied providing some crude purification of proteins. A step from 0 

to 35% (w/v) of ammonium sulfate (Fraction 1) indeed pulled down the protein 

factor(s) responsible for the high Mg2+-sensitivity of RcNR (Figure 2.11). However, 

the remaining protein fraction precipitating between 35 to 53% ammonium sulfate 
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(Fraction 2) also had some effect on RcNR. Brief boiling of the proteins again 

eliminated the effect. Interestingly, the stimulation of RcNR activity by the 

supernatant from boiled RDL (without ammonium sulfate fractionation) was 

abolished when using the supernatants from boiled Fraction 1 and 2. 
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Figure 2.11 Effects of ammonium sulfate precipitation of Ricinus darkened leaf 
extracts on RcNR. Ricinus darkened leaf extracts (RDL) were precipitated by 0-35% 
(Fraction 1) and 35-53% ammonium sulfate (AS) (Fraction 2). Pellets were 
resuspended in the extraction buffer followed by brief boiling or without that. Protein 
content of two fractions was measured. About 0.7 mg of proteins from each fraction 
was used for each measurement. All reactions were carried out in 10 mM MgCl2 for 
the indicated time. Data are mean values of two separate experiments.  
 
 

We also checked how much of Fraction 1 was required to saturate the response of 

RcNR to Mg2+ (Figure 2.12). 
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Figure 2.12 Effects of different concentrations of RDL Fraction 1 on RcNR. After 
0-35% of ammonium sulfate precipitation (Fraction 1), protein was diluted in 10 mM 
Mg2+ buffer to give the concentrations indicated.  
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It is obvious that 0.1 mg of Fraction 1 could provide a marked inhibition of RcNR. 

Moreover, 0.2 mg, which is equal to 0.02% (w/v), already caused maximum 

inhibition. 
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3 Discussion 
 

3.1 Deduced protein sequence of Ricinus NR  

A multi-alignment of all available NR sequences with related proteins and enzymes 

revealed that 21 specific residues out of 917 in Arabidopsis NR2 were invariant and 

played key roles NR functions (Meyer et al., 1991; Dwivedi et al., 1994; LaBrie and 

Crawford, 1994; Lu et al., 1995; Su et al., 1996 and 1997; Campbell, 1999). Our 

sequence analysis showed that Ricinus NR shares major similarities with other plant 

NRs and no drastic differences were identified, apart from the N-terminal region. The 

21 key residues found in Arabidopsis NR2 were entirely preserved in Ricinus NR 

(Appendix 6.4). However, there are some differences existing in Ricinus NR, if 

carefully analyzing the sequence alignment data, which might give some hints on 

structural features responsible for the unusual regulatory properties (compare 

Appendix 6.5 and 6.6). 

 

3.1.1 The N-terminus 

In spite of the disputed role of the N-terminus in NR, the comparison of this region 

from Ricinus NR with other higher plant NRs revealed that some interesting features 

(Appendix 6.5). As already mentioned, there is an acidic stretch conserved only in 

plant NRs. The character of this acidic stretch is two or three consecutive Ser residues 

followed by some Glu and Asp residues. Such a sequence is reminiscent of a 

consensus CK II (casein kinase II) phosphorylation site (S/TXXE/DX; Pearson and 

Kemp, 1991) and appears to be efficiently phosphorylated by human CK II in vitro 

(Pigaglio et al., 1999). In Ricinus NR the consensus Ser (position 58) was missing 

which was also absent in squash, chicory and monocots like barley, rice and maize 

(Appendix 6.5). Interestingly, using a program for inferring phylogenies revealed that 

Ricinus NR was most close to squash and chicory (discussed in 3.4). However, it is 

unknown whether this Ser is important for NR phosphorylation in Ricinus. 

Additionally, it has been shown that a tobacco NR with an internal deletion of 56 

amino acids in the N-terminal domain is no longer inactivated by MgATP (Nussaume 

et al., 1995). Since Ricinus leaf NR was insensitive to ATP, the variant N-terminal 

region might contribute.  
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3.1.2 The Moco-binding Region  

The prosthetic Moco-binding region is located at amino acid position 92 to 321 in 

Ricinus NR. It has been shown that NR is phosphorylated on multiple sites (Huber et 

al., 1992; LaBrie and Crawford, 1994; Huber et al., 1994); therefore, the highly 

conserved Ser residues in this region could be sites for NR phosphorylation. Sequence 

comparison of the Moco domain revealed that Ricinus NR possesses those highly 

conserved Ser residues (Ser211, 253, 258, 316, 357, 387 and 430) as Arabidopsis 

NR2 does. A recent study on site-directed mutagenesis of these Ser residues of 

Pichia-expressed Arabidopsis NR2 showed that none of these Ser residues are 

essential for the in vitro inhibition (Su et al., 1997). On the other hand, Ricinus NR 

did contain some unique amino acid residues when compared with other plant NRs 

(Appendix 6.6). For example, there is a His103 (basic amino acid residue) in Ricinus 

NR where all other NRs have aspargine (polar amino acid with uncharged R group) 

instead. In addition, Gln123 (others: Arg), Cys157 (most of others: Thr), Asn212 

(others: Thr), Val266 (others: Asp) and Ala284 (others: Pro) were found to be the 

specific residues in Ricinus NR. These amino acid residues might have an influence 

on the incorporation of Moco into the prosthetic domain. To date, very little is known 

about how Moco becomes incorporated into NR. One crystallograohic analysis of the 

Mo-enzyme suggests that the cofactor is deeply buried within the holo-enzyme so that 

Moco could only have been incorporated prior to or during completion of folding and 

dimerization of the apoprotein (Kisker et al., 1997; Enroth et al., 2000). Nevertheless, 

more investigations are required in order to find out whether these amino acid 

residues also play a role in the regulation of Ricinus NR. 

 

3.1.3 The Hinge 1 Region 

The potential 14-3-3 protein binding motif is located in Hinge 1 region of NR. It has 

been reported that the 14-3-3 protein binds directly to the regulatory phosphorylation 

site on phospho-NR (Bachmann et al., 1996c). Therefore, either the compounds which 

can interact with 14-3-3s such as divalent ions or AICAR or the sequence expanded 

outside the 14-3-3 binding region may influence 14-3-3 binding (Athwal et al., 

1998ab). If numbering the Ser526 of Ricinus NR as the position 0, the sequence 

alignments revealed that Ricinus NR has an alanine (Ala540) at position +14 where 

all other NRs have a serine residue (Appendix 6.6). In addition to that, the amino acid 

residues at minus positions (up to -18) also showed a possible role in the binding of 
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NR to the 14-3-3 protein (Athwal et al., 1998b). We found that an alanine (Ala498) 

instead of glycine positions at -28 is unique in Ricinus NR.  

Taken together, the sequence within this region of Ricinus NR showed some 

interesting characters. So far, we have no evidence whether 14-3-3 proteins indeed 

interact with NR in Ricinus. With respect to the observations mentioned above, it is 

likely that the interaction between Ricinus NR and 14-3-3s is different from other 

NRs. 

 

3.2 Heterologous expression of Ricinus NR  

Expression of full-length Ricinus NR in Pichia pastoris resulted in a functional 

enzyme. However, the levels of protein produced were not detected in a Coomassie-

stained SDS-PAGE. As a matter of fact, we always observed strong signals in the 

lower molecular weight region (70-80 kDa). This could be caused by inappropriate 

treatment of protein samples, or recombinant RcNR itself was protease sensitive. 

Interestingly, in the Hinge 1 region of Ricinus NR a residue Arg482 which provides 

an additional predicted Trypsin cleavage site within 481KRHK484 (while most of plant-

NRs possess KPHK) was found (Appendix 6.6). On the other hand, in recent work on 

heterologously expressed tobacco NR in the yeast Hansenula polymorpha the 

recombinant protein was also not detected on SDS-PAGE (Perdomo et al., 2002). 

This may indicate that only low levels of plant NRs were produced in yeasts. 

Moreover, the activities obtained in vitro from the recombinant Ricinus NR (RcNR) 

and the same system expressing Arabidopsis NR2 (AtNR2) were 2 to 4 nmol nitrite 

per mg protein per min, which are also very similar to tobacco NR expressed in a 

nitrate assimilatory yeast, Hansenula polymorpha (Perdomo et al., 2002).  

 

3.3 Characterization of recombinant RcNR  

3.3.1 In vitro inactivation by ATP 

One of the unusual characters of authentic Ricinus NR was its insensitivity to 

preincubation with ATP (Kandlbinder et al., 2000), which contrasted sharply with the 

situation in spinach and other plants (Kaiser and Spill, 1991; Huber et al., 1994). It 

has been shown previously that under continuous darkness for up to 6 days, spinach 

NR protein was almost completely degraded. However, NR kinase(s), NR 

phosphatase(s) and 14-3-3 proteins were still present (Glaab and Kaiser, 1996). 

Mixing AtNR2 (which, by itself, was not inactivated by preincubation with ATP) with 
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a NR-free spinach leaf extract (4-day darkness) resulted in significant inactivation of 

AtNR2 with ATP. In contrast, RcNR was never inactivated with ATP, neither after 

addition of Arabidopsis darkened leaf extract nor darkened leaf extract from Ricinus.  

As deduced from the sequencing data, Ricinus NR has a normal phosphorylation site 

in hinge 1. Consequently, lack of ATP-inactivation in a mixture of RcNR and leaf 

extracts may either reflect absence of a specific protein kinase activity, or a lack of 

specific 14-3-3 proteins. It has been shown previously that Ricinus leaves do contain 

14-3-3s (Kandlbinder et al., 2000), and so do yeast cells (Van Heusden et al., 1992; 

Gelperin et al., 1995). Addition of recombinant yeast 14-3-3s (up to 20 µg per mL), 

which efficiently inactivates phospho-NR from spinach (Moorhead et al., 1996), 

partially purified NR from spinach, transgenic tobacco plants and squash (Lillo et al., 

1997) and Arabidopsis cell extracts (Moorhead et al., 1999) did not at all affect RcNR 

activity (not shown). It seems obvious that the insensitivity to ATP is not due to the 

absence of the regulatory phosphorylation site nor to a lack of 14-3-3 proteins, but to 

some as yet unidentified structural deviations in the less well conserved parts of the 

protein, i.e. N-terminal domain. Therefore, the conclusion is that this ATP-

insensitivity is an inherent property of Ricinus NR. 

 

3.3.2 Specific protein factor(s) for high Mg2+-sensitivity of RcNR 

In crude yeast extracts, RcNR lacked the high Mg2+-sensitivity typically observed for 

NR in crude extracts from Ricinus leaves at pH 7.3, and was not much different in 

that respect from AtNR2 (Table 2). Loss of the unusual Mg2+-sensitivity of Ricinus 

NR might have two reasons: i) factors contained in the yeast extract might interact 

with NR to render it Mg2+ insensitive, or ii) the yeast extracts lacked factors required 

for the high Mg2+-sensitivity. 

Our data suggest that the latter explanation is correct. Leaves from Ricinus, as from 

spinach, can be made virtually NR free by exposing them to continuous darkness for 4 

days. Addition of such Ricinus extracts from darkened leaves (RDL) almost fully 

restored the high Mg2+-sensitivity of the authentic leaf enzyme. Boiling of the extracts 

prior to addition prevented the restoration of Mg2+-sensitivity, indicating that the 

required factor was probably a protein. This was further confirmed by using 

ammonium sulfate to successfully precipitate the factor(s). In conclusion, the unusual 

high Mg2+-sensitivity of Ricinus NR appears not an inherent property of the NR 
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protein itself. Rather, it is the consequence of an yet unidentified protein contained in 

Ricinus leaves that interacts with NR. 

We do not know whether Ricinus NR and the unidentified protein are in contact 

within the intact leaf cells, or whether they are separated by subcellular 

compartmentation. In the latter case, the high Mg2+-sensitivity of Ricinus NR 

observed in leaf extracts would represent an artifact due to homogenization of the leaf 

cells for extraction. But on the other hand, addition of RDL to AtNR2 did not increase 

the Mg2+-sensitivity of the latter. Thus, the interaction of the above-mentioned protein 

factor from Ricinus leaves with RcNR appeared specific for RcNR, pointing to the 

probability of a natural, non-artificial interaction. 

 

3.3.3 Possible regulatory factors of NR 

Incubation of AtNR2 with different NR-free leaf extracts gave a significant activation 

of the enzyme activities, both in Mg2+ and EDTA. This could be due to either a 

general positive factor for NR existing in leaves, or recombinant Arabidopsis NR2 

may contain special features in its sequence. However, such activation was not 

observed in RcNR (Table 2). If the first assumption is correct, in case of RDL, the 

disappearance of the positive effect in RcNR might be somehow counterbalanced by 

the negative factor(s) mentioned above. Mixing RcNR with ADL and SDL, however, 

should give the same activation, when the positive factor is common in plant leaves. 

Therefore, it seems that the second speculation is more likely, that Arabidopsis NR2 

possesses special structural characters. Nevertheless, it is also likely that Ricinus NR 

does not interact with that common factor, if there is any, because of its yet 

unidentified structural difference from other NRs. 

In addition to that, Ricinus leaf extracts apparently contained non-protein components 

that were able to increase both, NRmax and NRact of RcNR. It is yet unclear whether 

these components would abolish potentially negative effects of yeast compounds, or if 

they would directly interact with NR. The nature of these compounds is also unknown 

at present.  

Altogether, the unknown protein factor which renders RcNR Mg2+-sensitive is most 

probably not a 14-3-3 protein, nor appears the high Mg2+-sensitivity related to NR 

protein phosphorylation. In summary, our original conclusions that Ricinus NR has 

some unusual properties are confirmed by the above presented data. Additionally, 

Ricinus leaf cells contain a protein factor which appeared to interact specifically with 
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Ricinus NR to provide the unusual pH- and Mg2+-response. More investigations are 

required to identify the structural components in the RcNR protein that are 

responsible, to identify the protein factor and also to elucidate the physiological 

background and consequences of these extraordinary regulatory properties. 

 

3.4 The comparison of Ricinus and squash nitrate reductase 

Since we observed the unusual regulatory properties from Ricinus NR, one question 

arises regarding the physiological meaning of the specific properties of Ricinus NR. 

We are still not able to answer this question from our present data. From the 

evolutionary point of view, however, to figure out the phylogenies of Ricinus NR 

might give some hints. Using PHYLIP package to compare 18 NADH-specific nitrate 

reductases revealed that Ricinus NR was most close to squash NR (Cucurbita maxima) 

with respect to both full-length amino acid sequence and N-terminus comparisons 

(Appendix 6.7 and 6.8). 

Squash NR was first cloned in 1986 and a protein of 918 amino acids was encoded 

(Crawford et al., 1986; Hyde et al., 1991). Some studies in squash NR were done by 

Lillo and coworkers. They found that squash NR can be activated by substrates, a so 

called hysteretic behavior (Lillo and Ruoff, 1992). Two forms of NR, high and low 

activity forms, existing in squash crude extracts and purified enzyme in response to 

light-dark transition. The light form (high activity) was not inhibited by Ca2+ and 

Mg2+. The dark form (low activity) was in contrary strongly inactivated by both 

divalent cations (Lillo, 1993 and 1994). NR activity in crude extracts from light-

exposed plants or partially purified NR could be inhibited by Mg2+ after foregoing 

incubation with MgATP. Therefore, the inhibition by Mg2+ or Ca2+ was related to 

phosphorylation or a phosphorylated form of NR (Kaiser and Spill, 1991; Huber et al., 

1992; MacKintosh, 1992). However, squash NR can be converted to a form 

susceptible to Ca2+ and Mg2+ inhibition without preincubation with MgATP. Hence, 

for squash, no MgATP was necessary for converting the high activity form of the 

enzyme into low activity form. Assumption of a phosphorylation process resulting in 

decreased NR activity was irrelevant for squash NR.  

Furthermore, in the absence of Mg2+ the increase of NR activity of squash crude 

extracts by substrates was observed when made from dark-exposed leaves but not 

from leaves in the light. Partially purified squash NR, however, was found no 
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difference between NR extracted from leaves in the dark and light with respect to 

substrate activation (Lillo et al., 1997).  

Taken together, their conclusion was that an additional way of regulating NR 

independently of the phosphorylation state of the enzyme might exist. It was 

interesting that purified squash NR differed from the enzyme in crude extracts. Does 

that point to the existence in crude extracts of a possible regulatory factor for squash 

NR, similar as described above for RcNR? In summary, it may seem that Ricinus NR 

and squash NR share similar regulatory properties which appear in some way 

different from the common post-translational modulation. Certainly, it would be 

interesting to compare both enzymes in more details, especially under the same 

experimental conditions. 
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4 Materials and Methods 

 
4.1 Plant Material 

Spinach (Spinacia oleracea L. cv. Polka F1) was grown in soil culture in the 

greenhouse. The mean daylength was 11 h with supplementary illumination (HQi, 

400W; Schreder, Winterbach, Germany) at a total photon flux density of 250 to 400 

µmol m-2 s-1 photosynthetically active radiation. Air humidity varied from 60 to 80%, 

and day/night temperature from 20 to 26°C and 16 to 22°C. The plants were fed with 

a commercial nitrate fertilizer.  

 
Seeds of Ricinus (Ricinus communis L.) were germinated in soil and grown in the 

greenhouse under the conditions mentioned above. Plants were used for experiments 

after about 5 weeks (if not mentioned otherwise). 

 
Arabidopsis (Arabidopsis thaliana ecotype Columbia) was grown in soil (Type P, 

Gebr. Hagera Handelsges.m.b.H., Sinntal-Jossa, Germany) and exposed to white light 

for 8 h per day at 160 µmol m-2 s-1.  

 

4.2 RNA Protocols 

4.2.1 Total RNA Isolation 

Total RNA, for use as a template for cDNA synthesis, was isolated from the leaf 

tissue of nitrate-treated Ricinus plants using the Qiagen RNeasy Plant Mini Kit 

(Qiagen, Hilden, Germany). The procedure is based on the selective binding 

properties of a silica-gel-based membrane in a microspin column system. A 

specialized high-salt buffer system allows the binding of up to 100 µg of total RNA 

longer than 200 bp to the membrane.  

 
Leaf material was ground in the nitrogen to a fine powder using a mortar and pestle. 

100 mg of tissue powder was mixed with 900 µL Lysis buffer. The lysate was applied 

to a QIAshredder spin column and centrifuged for 2 min at maximum speed twice. 

The flow-through fraction was mixed with 450 µL of ethanol and transferred to an 

RNeasy spin column for absorption of RNA to membrane. After several washing and 

brief centrifugation the RNA was eluted in 30 µL DEPC-treated H2O twice. The 

concentration of RNA was read in a spectrophotometer (GeneQuqnt II, Pharmacia 
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Biotech) by measuring the absorbance at 260 nm. A ratio between A260 and A280 with 

a value of 2 was used as a criterion for pure preparation of RNA. The RNA was stored 

at -80°C. 

 

4.2.2 Electrophoresis of RNA 

Total RNA was used for a denaturing electrophoresis using formaldehyde-agarose 

gels. Formaldehyde forms unstable Schiff bases with the single imino group of 

guanine residues. These adducts maintain RNA in the denatured state by preventing 

intrastrand Watson-Crick base pairing. 

 
4 µL of formaldehyde gel-loading buffer was added to 6 µg total RNA and incubated 

at 65°C for 10 min. RNA samples were chilled for 2 min on ice and loaded in a 

formaldehyde-agarose gel. After electrophoresis of RNA (at 80V) in the presence of 

ethidium bromide, the 28S and 18S species of rRNA should be visible under UV 

illumination (ImageMaster VDS, Pharmacia Biotech). Distinct clear bands and the 

28S band should be stained at approximately twice the intensity of the 18S band prove 

the quality of the preparation. 

10× MEN-buffer:  
0.2 M MOPS 
0.01 M EDTA 
0.05 M Sodium acetate 

 
Gel loading buffer:    

720 µL Formamide 
160 µL 10× MEN 
260 µL 37% Formaldehyde 
180 µL H2O 
100 µL 80% Glycerol 
80 µL 2% Bromophenol blue  
3 µL 1% Ethidium bromide 

 
Formaldehyde-agarose gel (30 mL): 

0.3 g Agarose 
3 mL 10× MEN 
25.5 mL DEPC-treated H2O 

(Dissolved in the microwave, cooling to 50°C) 
1.62 mL 37% Formaldehyde  
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4.3 DNA Protocols 

4.3.1 Isolation of Plasmid-DNA from Escherichia coli 

Plasmid DNA isolation is based on alkaline lysis of bacterial cells followed by 

selective precipitation of genomic bacterial DNA and proteins by lowering the pH.  

 
1.5 mL of overnight grown plasmid containing E. coli culture in LB was harvested 

and lysed with 300 µL of P1 buffer. After addition of 300 µL of P2 buffer and gentle 

mixing by inversion, the mixture was incubated at RT for 3 min. Subsequently, 300 

µL of chilled P3 buffer were added, mixed and incubated on ice for 10 min. The cell 

debris and chromosomal DNA were precipitated with SDS and potassium acetate. 

After pelleting the debris the plasmid DNA was precipitated from the supernatant 

with 600 µL isopropanol. The DNA pellet was washed in cold 70% ethanol. After 

careful and complete removal of ethanol, the DNA was air-dried and then 

resuspended in TE buffer. The concentration of DNA was determined by UV 

spectroscopy at 260 nm. A ratio between A260 and A280 with a value of 1.8 was used 

as a criterion for pure preparation of DNA. The plasmid-DNA was stored at -20°C. 

 
LB medium: 1% Tryptone; 0.5% Yeast extract; 1% NaCl; pH 7.0. 
P1: 50 mM Tris-HCl pH 8.0; 10 mM EDTA; 100 µg/ml RNase A 
P2: 200 mM NaOH; 1% SDS 
P3: 3 M Potassium acetate pH 5.5 
TE buffer: 10 mM Tris-HCl pH 8.0; 1 mM EDTA 
 

4.3.2 Restriction Endonucleases Digestion 

In most cases two units of enzyme were used to completely digest 1 µg plasmid DNA 

during 1 h at 37°C. In the case of Sac II and Apa I double cleavage, buffer B+ (MBI 

Fermentas) was used for optimal condition (maximum activity) of both enzymes. 

Addition of 1/5 volume of loading buffer to stop the reaction and the digested mixture 

was subjected to electrophoresis. 

 

4.3.3 Electrophoresis of DNA 

Agarose gel electrophoresis is the easiest and most common way of separating and 

analyzing DNA. Most agarose gels are made between 0.7% and 2%. A 0.7% gel will 

show good separation (resolution) of large DNA fragments (5 to 10kb) and a 2% gel 

will show good resolution for small fragments (0.2 to 1kb). Routinely, 1% gels which 
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are suitable for a molecule range of 0.5 to 12 kb were used. The agarose was melted in 

1× TAE and mixed with 0.2 µg/mL ethidium bromide after cooling to 50°C. The 

DNA sample was mixed with an appropriate amount of loading buffer and subjected 

to electrophoresis, performed in a 1× TAE buffer system at a voltage of 5 to 10 V/cm. 

1 kb Ladder was used as molecule size marker (Gibco BRL, Eggenstein, Germany). 

The DNA could be checked by the fluorescence of the DNA-intercalating dye 

ethidium bromide under UV illumination. 

 
50× TAE buffer:  2 M Tris-Acetic acid pH 8.0; 50 mM EDTA pH 8.0 
Loading buffer (6×):  50% Glycerol; 7.5 mM EDTA; 0.4% Xylenxyanol;  

           0.4% Bromophenol blue 
 

4.4 Sequencing 

Sequence information was obtained by the Sanger-Coulson method using the 

“Thermo Sequence fluorescent labeled primer cycle” sequencing-kit with 7-deaza-

dGTP” (Amersam Pharmacia Biotech, Freiburg, Germany). Software for the 

sequencing was Base Imagir 4.0 (L1-COR, MWG-Biotech GmbH, Ebersberg, 

Germany). To compare the new sequences with already known entries the BLAST-

Algorithms (Altschul et al., 1990) of NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) 

were used. ClustalX and Genedoc software was used for sequence alignments. 

 

4.5 Molecular Cloning of Ricinus NR by RT-PCR  

RT-PCR (reverse transcription-polymerase chain reaction) was used for cloning the 

NR gene from Ricinus. The technique consists of two parts: synthesis of cDNA from 

RNA by reverse transcription (RT) and amplification of a specific cDNA by 

polymerase chain reaction (PCR). The first task when using RT-PCR for mRNA 

analysis is RNA isolation. The RNA should be high quality and free from genomic 

DNA contamination. Every RT-PCR begins with a reverse transcriptase reaction. The 

RT reaction uses a RNA template (typically either a total or poly(A) RNA sample), a 

primer (random or oligo dT primers), dNTPs, buffer and a reverse transcriptase (M-

MLV or AMV RT). After synthesis of the first-strand cDNA, a pair of specific 

primers is then used to amplify the target region via PCR.  
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PCR is a powerful technique that allows amplifying a specific DNA sequence 

millions of times in a few hours. During PCR, there are three basic steps. First, the 

target genetic material must be denatured, that is, the strands of its helix must be 

unwound and separated by heating to 90-96°C. The second step is hybridization or 

annealing, in which the primers bind to their complementary bases on the now single-

stranded DNA. The third is DNA synthesis by a polymerase. Starting from the primer, 

the polymerase can read a template strand and match it with complementary 

nucleotides very quickly. The result are two new helixes in place of the first, each 

composed of one of the original strands plus its newly assembled complementary 

strand. 

 
A Ricinus partial NR cDNA was amplified by RT-PCR. For reverse transcription a 

18mer oligo-dT oligonucleotide was used as the 3’primer. cDNA was synthesized 

from 6 µL of total RNA (c.a. 1 µg mRNA) with SuperScriptTM II RNase H- MMLV 

Reverse Transcriptase (Gibco BRL, Eggenstein, Germany) using the procedure 

detailed in the RETROscriptTM kit for the first-strand synthesis (Ambion). 

20 µL reaction: 
1 µg mRNA 
1 µL oligo dT18 (50 µM) 
4 µL H2O 

Mix the above components and heat the mixture at 70°C for 10 min. 
Remove tube(s) to ice; spin briefly, replace on ice. Subsequently add  

4 µL 5× first strand buffer 
2 µL DTT (0.1 M) 
2 µL dNTPs (5 mM each) 

Mix gently, spin briefly. Incubate the mixture at 37°C for 2 min for 
equilibration. Then add 1 µL (200 units) of SuperScript RT and incubate 
at 42°C for one hour. 

 
For PCR amplification an oligonucleotide corresponding to the conserved sequence 

5'-ATTGGTGGAAGAATGGTAAAGTGG matching positions 898 to 921 of the 

potato Nia gene coding sequence (Harris et al., 2000) was selected as a 5' gene-

specific primer. A 21mer oligonucleotide 5'-CACGAACAATCTCTTTGGCAC 

corresponding to the Arabidopsis Nia1 gene at positions 1343 to 1363 was used as the 

3'-primer. The component of the reaction was as the followings: 

50 µL reaction: 
1 µL RT reaction (see above) 
5 µL 10× PCR buffer 
2.5 µL MgCl2 (50 mM) 
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2.5 µL dNTPs (5 mM each) 
1 µL 5' gene-specific primer (20 µM) 
1 µL 3'-primer (20 µM) 
0.2 µL Taq DNA polymerase (5U/µL) 
36.8 µL dH2O 

 
Amplification was performed using an annealing temperature of 55oC. The cycling 

parameters were (a) heat 5 min., 94°C; (b) cycle 30: 94°C, 30 sec.; 55°C, 30 sec.; 

72°C, 30 sec.; (c) hold 5 min., 72°C. It produced a cDNA fragment of the expected 

size (ca. 440 bp based on the positions of the oligonucleotide sequence in the potato 

Nia gene sequence) which was subcloned into the pCR® 2.1-TOPO vector (Invitrogen, 

Groningen, the Netherlands) for DNA sequencing.  

 

4.6 Amplification of full-length Ricinus NR cDNA by RACE 

Following reverse transcription, the first-strand cDNA can be used in 5'-RACE and 3'-

RACE (Rapid Amplification of cDNA Ends). However, it is important to ensure that 

the first-strand cDNA reaches the end of an RNA template. This is achieved by using 

MMLV reverse transcriptase (RT). When certain MMLV RT variants reach the end of 

an RNA template, they exhibit a terminal transferase activity that adds 3-5 residues 

(predominantly dC) to the 3' end of the first-strand cDNA (Figure 4.1).  

 

 
Figure 4.1 Mechanism of SMART cDNA synthesis. (1) First-strand synthesis is 
primed using a modified oligo(dT) primer. (2) After reverse transcription reaches the 
end of the mRNA template, it adds several dC residues. (3) The SMART II 
oligonucleotide anneals to the tail of the cDNA and serves as an extended template for 
RT. After RT switches templates from the mRNA molecule to the SMART oligo, a 
complete cDNA copy of the original RNA is synthesized with the additional SMART 
sequence at the end. (4) The complete first-strand cDNA then would have an adaptor 
sequence at both ends. 



MATERIALS AND METHODS 45 
 

 

In the SMART technology (BD Biosciences Clontech, Heidelberg, Germany), this 

activity is harnessed by the SMART oligo whose terminal stretch of dG residues can 

anneal to the dC-rich cDNA tail and serve as an extended template for RT. After RT 

switches templates from the mRNA molecule to the SMART oligo, a complete cDNA 

copy of the original RNA is synthesized with the additional SMART sequence at the 

end. Since the dC-tailing activity of RT is most efficient if the enzyme has reached the 

end of the RNA template, the SMART sequence is typically added only to complete 

first-strand cDNAs. This process guarantees that the use of high quality RNA will 

result in the formation of a set of cDNAs that has a maximum amount of 5' sequence. 

The only requirement for SMART RACE cDNA amplification is that at least 23-28 

nucleotides of sequence information is known in order to design gene-specific primers 

for the 5'- and 3'-RACE reactions.  

 
The full-length Ricinus NR cDNA was obtained by following the manufacturer’s 

instructions (BD Biosciences Clontech, Heidelberg, Germany). 6 µg of total RNA 

were used for preparation of either SMARTTM first-strand cDNA synthesis (5'-RACE-

Ready cDNA) or standard first-strand cDNA synthesis (3'-RACE-Ready cDNA), 

depending on the presence of SMART II oligo (5'-

AAGCAGTGGTAACAACGCAGAGTACGCGGG-3') in the reaction or not. After 

generating RACE-Ready cDNAs, 5'-RACE and 3'-RACE were performed with the 

Advantage 2 Polymerase Mix (BD Biosciences Clontech, Heidelberg, Germany). 

PCR reaction was performed by using the gene specific primers 5'-

TCTCTTTGGCACCAAGGAGGTCCAG-3' for 5'-RACE and 5'-

GCTGAAGCATGGTGGTATAAGCCGG-3' for 3'-RACE, respectively. DNA was 

amplified by 25 cycles of 94°C for 10 sec, 68°C for 20 sec and 72°C for 3 min in a 

PCR-reaction.  
 

4.7 Pichia pastoris Expression System 

Yeast hosts that can be used for expression studies Saccharomyces cerevisiae, 

Schizosaccharomyces pombe, Pichia pastoris, Hansenula polymorpha, 

Kluyveromyces lactis, and Yarrowia lipolytica. The first three are the most widely 

used. Yeasts are particularly attractive as expression hosts for a number of reasons. 

They can be rapidly grown on minimal (inexpensive) media. Recombinants can be 

easily selected by complementation, using any one of a number of selectable 
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(complementation) markers. Expressed proteins can be specifically engineered for 

cytoplasmic localization or for extracellular export. And finally yeasts are exceedingly 

well suited for large-scale fermentation to produce large quantities of heterologous 

protein. 

The methylotrophic yeasts, H. polymorpha and P. pastoris, are unique in that they 

will grow using methanol as the sole carbon source. In P. pastoris, growth in methanol 

is mediated by alcohol oxidase, as enzyme whose de novo synthesis is tightly 

regulated by the alcohol oxidase promoter (AOX1). The enzyme has a very low 

specific activity. To compensate for this, it is overproduced, accounting for more than 

30 percent of total soluble protein in methanol-induced cells. Thus, by engineering a 

heterologous protein gene downstream of the genomic AOX1 promoter, one can 

induce its overproduction. 

 
Ricinus NR cDNA was inserted into the Sac II and Apa I site of the Pichia pastoris 

expression vector pPICZA (Invitrogen). The expression clone was transformed into P. 

pastoris strain GS115 by EasyCompTM Transformation, as described by EasySelectTM 

Pichia Expression Kit (Invitrogen, Groningen, the Netherlands). 

Growth media and conditions for selection of transformants were as described by the 

manufacturer (Invitrogen). ZeocinR transformants were selected. Cells expressing NR 

protein were identified as follows: To induce NR gene expression, which was driven 

by the alcohol oxidase promoter of P. pastoris, transformants were first grown in 

modified BMG(H) (Su et al., 1997) (1.34% [w/v] YNB, 1% [v/v] glycerol, 100 mM 

potassium phosphate, pH 6.0, 4×10-5% biotin, 0.2 mM sodium molybdate and w/o 

4×10-5% histidine) to an OD600 of 2 to 6. Cells were centrifuged and then resuspended 

in modified BMM(H) medium (1.34% [w/v] YNB, 0.5% [v/v] methanol, 100 mM 

potassium phosphate, pH 6.0, 4×10-5% biotin, 0.2 mM sodium molybdate and w/o 

4×10-5% histidine) at OD600 of 1 and grown for up to 72 h. Methanol (0.5% [v/v]) and 

sodium molybdate (0.2 mM) were added to the culture every 24 h. After a 48 h 

induction period the cells were collected by centrifugation to OD600 of ~20, frozen 

quickly in liquid N2 and stored at -80°C until ready to assay.  
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4.8 Protein Protocols 

4.8.1 Protein Determination 

The protein content of the samples was determined with BCA reagent (Pierce, 

Rockford, Ill, USA) and Bovine serum albumin (BSA) as a standard which is based 

on the method of Smith et al., 1985. Using the reaction of copper(II) with protein and 

the subsequent reaction of BCA with copper (I), a colormetric compound is formed 

which is quantified by spectroscopy.  

 

4.8.2 SDS-Polyacrylamide Gelelectrophoresis (SDS-PAGE) 

Protein separation by SDS-PAGE is used to determine the relative abundance of 

major proteins in a sample, their approximate molecular weights, and in what 

fractions they can be found. The purity of protein samples can be assessed. Different 

staining methods can be used to detect rare proteins.  

 
Pichia protein samples were obtained by phenol extraction/ammonium acetate 

precipitation. The samples were boiled in sample buffer (Roti®-Load 1; Roth, 

Karlsruhe, Germany) containing 2-mercaptoethanol which is a mild reducing agent 

for cleaving disulfide bonds to thiols, and SDS, an anionic detergent used for 

denaturation of native proteins. 20 µg of the protein solution were loaded onto the 

polyacrylamide gel and separated at constant 30 mA. As protein standards the 10 kDa 

Protein Ladder (Gibco BRL) was used. Compositions of the gel and buffers were as 

follows (Neville, 1971): 

 
Resolving gel: 14 mL of two 10% gels 

3.6 mL 40% Acrylamide/bisacrylamide (29:1 mix)  
2.8 mL Tris-HCl pH 9.18 
0.14 mL 10% SDS 
7.35 mL H2O  
6.25 µL TEMED  
22 µL 40% Ammonium persulfate 

 
Stacking gel: 10 mL of 4 gels 

1.5 mL 40% Acrylamide/bisacrylamide (29:1 mix)  
2.5 mL Tris-H2SO4 pH 6.1 
0.1 mL 10% SDS 
5.8 mL H2O  
10 µL TEMED  
25 µL 40% Ammonium persulfate 
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Running buffers: 
Lower: 424 mM Tris-HCl pH 9.18 
Upper: 41 mM Tris-Boric acid pH 8.64; 0.1% SDS 

 

4.8.3 Western Blot and Immunodetection of NR 

For transfer of proteins onto a nitrocellulose membrane (Schleicher und Schüll, 

Dassel, Germany) a semi-dry system (Biometra, Göttingen, Germany) was used. The 

transfer was performed at 0.8 mA/cm2 for 1 h. 

Anode (Top) 
3× Whatman 3MM filter paper/Anode buffer 1 
3× Whatman 3MM filter paper/Anode buffer 2 
Transfer membrane/Anode buffer 2 
SDS-PAGE gel 
3× Whatman 3MM filter paper/Cathode buffer 

Cathode (Bottom) 

Cathode buffer: 40 mM 6-Aminocapronic acid; 20% Methanol 
Anode buffer 1: 0.3 M Tris pH 8.8; 20% Methanol 
Anode buffer 2: 25 mM Tris pH 8.8; 20% Methanol 
 
For NR protein detection the immunoenzymatic staining method was used. The 

membrane with the bound proteins was further treated as follows: 

Process Buffer Time 
Blocking 5% milk powder in 1× TBS; 0.1% Tween 20 1 h at RT  
Washing 1× TBS; 0.1% Tween 20 2× 5 min  
Primary antisera 
incubation  

1:2000 in 1× TBS; 0.1% Tween 20 1 h at RT 

Washing 1× TBS; 0.1% Tween 20 3× 5 min 
2nd antibody-AP 
incubation 

1:3000 in 1× TBS; 0.1% Tween 20 45 min at RT 

Washing 1× TBS; 0.1% Tween 20 3× 5 min 
Staining AP conjugate substrate kit 5-30 min 
 
2nd antibody: Alkaline phosphatase (AP) labeled goat anti-rabbit IgG  

(Southern Biotechnology Associates, USA) 
AP conjugate substrate kit: AP color reagent A and B; development buffer  

(Bio-Rad, München, Germany) 
 

4.8.4 Ammonium Sulfate Fractionation 

Proteins are usually soluble in water solutions because they have hydrophilic amino 

acids on their surfaces. Increasing the salt concentration to a very high level will cause 

proteins to precipitate from solution without denaturation if done in a gentle manner. 

When salt, such as ammonium sulfate, is added to the protein solution, the salt ions 
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attract the water molecules away from the protein; hence, the protein molecules are 

forced to interact with themselves and begin to aggregate. If this is carried out on ice, 

the proteins will precipitate without denaturation. Thereafter, the proteins can be 

collected by centrifugation and then redissolved in solution using a buffer with low 

salt content. All procedures have to be carried out at 4°C. Ammonium sulfate is the 

most common salt used for this purpose because it is usually soluble in cold buffer.  

 
9 g of 4-day darkened Ricinus leaves were ground in liquid nitrogen and 3-fold (27 

mL) volume of extraction buffer (content see 4.9.2) was added to the fine powder. 

After grinding, the mixture was centrifuged at 14500 rpm for 15 min. The Supernatant 

was then filtered through a paper filter. Following the determination of the exact 

volume of the supernatant, the amount of ammonium sulfate corresponding to 35% 

(w/v) was slowly added to the supernatant while the latter was continuously stirred. 

The mixture was kept on a magnetic stirrer for additional 20 min prior to 

centrifugation at 14500 rpm for 15 min. After centrifugation, the pellet was 

resuspended in extraction buffer (Fraction 1) and kept on ice. The supernatant was 

used for further precipitation by adding an additional amount of ammonium sulfate to 

53% (w/v). Stirring and centrifugation procedures were repeated. The pellet was again 

resuspended in extraction buffer (Fraction 2), and kept on ice. The protein 

concentration of the two fractions was measured (see 4.8.1).  
 

4.9 NR activity Measurements 

4.9.1 Determination of NR activity in yeast cells (in vivo) 

Pichia transformants were tested for their NR-expression levels. Aliquots of the cell 

culture were taken every 24 h during a 72 h induction period. The NR activity was 

measured after suspending Pichia transformants (OD600=1) in 1 mL of 100 mM 

HEPES buffer pH 7.3 containing 50 mM KNO3. After a 30-min incubation at 28°C, 

nitrite released to the medium was determined as described below.  
 

4.9.2 Assay of NR activity in vitro 

For plant NRs: Leaf material from Ricinus and Arabidopsis was ground in liquid 

nitrogen and 1.5 mL (1.0 mL for Arabidopsis) of extraction buffer (100 mM HEPES, 

pH 7.6, 5 mM DTT, 10 mM MgCl2, 10 µM FAD, 10 µM sodium molybdate, 50 µM 
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Leupeptin, 2 mM Pefabloc, 0.02% casein, 0.5% polyvinylpolypyrolidone and 0.05% 

BSA) was added to 0.5 g FW. In the case of spinach, 1.0 mL of extraction buffer 

(without 0.02% casein, 0.5% polyvinylpolypyrolidone and 0.05% BSA) was added to 

0.5 g FW. After grinding, the suspension was centrifuged at 13000 rpm for 12 min at 

4°C. The supernatant was desalted on Sephadex G25 spin columns (1.6 mL resin 

volume for 650 µL extract, 4°C) equilibrated with extraction buffer.  

For recombinant NRs: Frozen yeast cells (OD600 of ~20) were thawed on ice and 

resuspended in 500 µL extraction buffer containing 100 mM HEPES, pH 7.6, 5 mM 

DTT, 10 mM MgCl2, 0.3% Triton X-100, 10 µM FAD, 10 µM sodium molybdate, 50 

µM Leupeptin, 2 mM Pefabloc and an additional protease inhibitor cocktail (Roche, 

Mannheim, Germany). An approximately equal volume of glass beads (450 to 600 

µm; Sigma) were added. The mixture was vortexed 8 times using 1-min bursts 

followed by 1-min cooling periods. The crude extract was centrifuged at 13000 rpm 

for 12 min at 4°C. 

The following assays were carried out with aliquots of the supernatant: 

(a) Determination of NRact: 100 µL of Pichia extracts were mixed with either 100 µL 

of desalted darkened-leaf extracts or extraction buffer. The mixture was incubated 

for 15 min at 24°C and then added to 800 µL reaction buffer (100 mM HEPES, if 

not mentioned otherwise, pH 7.6, 5 mM DTT, 10 mM MgCl2, 10 µM FAD, 10 

µM sodium molybdate, 50 µM Leupeptin, 2 mM Pefabloc, 5 mM KNO3 and 0.2 

mM NADH). The reaction was carried out at 24°C. After 10 min the reaction was 

stopped by adding 125 µL zinc acetate (0.5 M). 

(b) Determination of NRmax: The procedure was carried out as described above, except 

that the reaction buffer contained 10 mM EDTA instead of 10 mM MgCl2. 

Excess NADH was removed by 10 µM phenazine methosulphate (PMS) treatment. 

The colorimetric determination of formed nitrite was carried out as described 

previously (Hageman and Reed, 1980). 

 

4.9.3 ATP-dependent Inactivation in vitro 

Leaf extracts: Ricinus used in this experiment were 3-week old plants. All plants were 

illuminated at about 10 a. m. for one hour before harvesting the leaves. The 

composition of extraction and reaction buffers was described above but all were 
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adjusted to pH 7.3. 100 µL of the leaf extracts from Arabidopsis, spinach and Ricinus 

with or without 2 mM ATP plus 50 µM Cantharidin were preincubated for 15 min at 

24°C. Subsequently, 900 µL of reaction buffer containing either 10 mM MgCl2 or 10 

mM EDTA was added to the incubation mixtures. After a 5-min incubation, the 

substrates (5 mM KNO3 and 0.2 mM NADH) were added and the reaction was carried 

out for 5 min (3 min for spinach leaf extracts). Nitrite was assayed as before. 

Mixtures of recombinant NR’s and NR-free leaf extract: The desalted, NR-free 

extracts of Arabidopsis, Ricinus and spinach 4-day darkened leaves were used in the 

in vitro inactivation assay. 100 µL of P. pastoris extracts containing either 

Arabidopsis NR2 or Ricinus NR were mixed with 100 µL of plant leaf extracts or 

extraction buffer. The mixture was then incubated at 24°C for 15 min without or with 

ATP (2 mM) plus 50 µM Cantharidin in the presence of 10 mM MgCl2 in order to 

inactivate NR. 800 µL of reaction buffer (10 mM Mg2+ or 10 mM EDTA) was then 

added to the mixtures and incubated for 5 min. Thereafter, 5 mM KNO3 and 0.2 mM 

NADH were added and the reaction was carried out for 10 min and nitrite was 

determined as before.  

 

4.10 Gas Phase NO Measurements 

The principle for measuring nitrogen dioxide (NO2) is the gas phase 

chemiluminescense reaction of nitric oxide (NO) with ozone (O3). The reactions 

between NO and an excess amount of O3 can be described by the following formulae: 

NO + O3 → NO2 + O2     [1] 
NO + O3 → NO2* + O2   [2] 
NO2* → NO2 + hv           [3] 
NO2* + M → NO2 + M   [4] 
 
NO2*: the excited nitrogen dioxide molecule 
M: deactivating colliding partners (N2, O2, H2O) 
 

The spontaneous deactivation of NO2 occurs with emission of light [3]. By far the 

larger fraction of NO2* loses its excitation energy without light emission by colliding 

with other molecules (M) [4]. In order to achieve a high yield of light the reaction of 

NO with O3 needs to take place under low pressure. The light intensity generated from 

the chemiluminescent reactions [2] [3] is proportional to the mixing ratio of NO. A 

photomultiplier tube is used to convert the light energy emitted from [3] into electrical 
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impulses. The electrical impulses are counted over a chosen time interval. A 

microprocessor calculates the NO signal in ppb. 

 
For experiments with Pichia transformants, 1 mL of the cells (48 h induction) were 

collected and resuspended in 1 mL of fresh BMG medium (see 4.7) in a 5 mL beaker. 

The cells were then placed in a plastic bottle with 200 mL air volume and were 

continuously stirred. A constant flow of measuring gas (purified air or nitrogen) of 1.5 

L/min was pulled through the plastic bottle and subsequently through the 

chemiluminescence detector (CLD 770 AL ppt, Eco-Physics, Dürnten, Switzerland, 

detection limit 20 ppt; 1 min time resolution) by a vacuum pump connected to an 

ozone destroyer. The ozone generator of the chemiluminescence detector was 

supplied with dry oxygen (99%). The measuring gas (air or nitrogen) was made NO 

free by conducting it through a custom-made charcoal column (1 m long, 3 cm 

internal diameter, particle size 2 mm). After 5 min monitoring the baseline under the 

aerobic condition, 1 mM nitrite was added to the cell culture as the substrate for 

recombinant NRs.  NO emission was monitored for 5 to 10 min and then the 

measuring gas was switched to nitrogen to provide anoxic conditions. After 5 to 10 

min the sample was brought back to air. Calibration was carried out with NO free air 

(0 ppt NO) and with various concentrations of NO (1 to 35 ppb) adjusted by mixing 

the calibration gas (500 ppb NO in nitrogen, Messer Griesheim, Darmstadt, Germany) 

with NO-free air. Flow controllers (FC-260, Tylan General, Eching, Germany) were 

used to adjust all gas flows. 
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4.11 List of Chemicals 
 
Chemicals (Enzymes) Company 
  
6-Aminocapronic acid Fulka, Neu-Ulm 

10× TBS Bio-Rad, München 

Acetic acid AppliChem, Darmstadt 

Acrylamide/bisacrylamide Roth, Karlsruhe 

Agarose ICN, Eschwege 

Ammonium persulfate Bio-Rad, München 

Ammonium sulfate Merck, Darmstadt 

ATP Sigma, Deisenhofen 

Biotin Sigma, Deisenhofen 

Boric acid Grüssing, Filsum 

Bovine serum albumin (BSA) Biomol, Hamburg 

Cantharidin Biomol, Hamburg 

Casein Sigma, Deisenhofen 

DEPC Roth, karlsruhe 

Dextrose Merck, Darmstadt 

DTT Biomol, Hamburg 

EDTA Merck, Darmstadt 

Ethidium Bromide Roth, Karlsruhe 

FAD Sigma, Deisenhofen 

Glycerol Sigma, Deisenhofen 

HEPES Gerbu, Gaiberg 

Histidine Sigma, Deisenhofen 

Leupeptin Biomol, Hamburg 

Methanol Roth, Karlsruhe 

MOPS Merck, Darmstadt 

NADH Biomol, Hamburg 

NADPH Biomol, Hamburg 

Pefabloc Biomol, Hamburg 

Phenol Roth, Karlsruhe 

PMS Sigma, Deisenhofen 
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p-nitro-blue tetrazolium chloride Roth, Karlsruhe 

Polyvinylpolypyrolidone (PVPP) Sigma, Deisenhofen 

Potassium acetate Fulka, Neu-Ulm 

Potassium nitrate AppliChem, Darmstadt 

Potassium phosphate Merck, Darmstadt 

Restriction enzymes MBI, Heidelberg 

Sephadex G-25 Sigma, Deisenhofen 

SDS Roth, Karlsruhe 

Sodium acetate Sigma, Deisenhofen 

Sodium molybdate Merck, Darmstadt 

Sulfanilamide Serva, Heidelberg 

TEMED Sigma, Deisenhofen 

Tris ICN, Eschwege 

Triton X-100 ICN, Eschwege 

Tryptone AppliChem, Darmstadt 

Tween 20 Fulka, Neu-Ulm 

Yeast extract ICN, Eschwege 

Zinc acetate Merck, Darmstadt 
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6 Appendix 
 
6.1 Abbreviations 
 
% percent 
AICAR 5-aminoimidazole-4-carboxiamide riboside 
Ala alanine; A 
Arg arginine; R 
Asp aspartic acid; D 
AtNR2 Arabidopsis thaliana NR2 
ATP adenosine 5' triphosphate 
BMG buffered minimal glycerol 
BMM(H) buffered minimal methanol (histidine) 
bp base pair 
BSA bovine 
CaMV 35S Cauliflower mosaic virus 35s promoter 
cDNA complementary DNA 
cm2 square centimeter 
Cys cysteine; C 
d day 
DNA deoxyribonucleic acid 
dNTP 2'-desoxyribonucleosid-5'-triphosphate 
DTT 1, 4-dithiothreitol 
EDTA ethylenediamine tetraacetate 
FAD flavine adenine nucleotide 
FW fresh weight 
g gram 
Gln glutamine; Q 
Glu glutamic acid; E 
GOGAT glutamate synthase 
GS glutamine synthetase 
h hour 
HEPES N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid 
His histidine; H 
kDa kilo dalton 
LB Luria-Bertani 
M molar 
mA milli Ampere 
min minute 
mL milliliter 
mM millimolar 
MOPS 4-morpholinic-propansulfonic acid 
mRNA messenger RNA 
NADH nicotinamide adenine dinucleotide (reduced) 
NADPH nicotinamide adenine dinucleotide phosphate (reduced) 
NO nitric oxide 
NR nitrate reductase 
NRA nitrate reductase activity 
OD optical density 
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PAGE polyacrylamide-gelelectrophoresis 
PCR polymerase chain reaction 
pH potential of Hydrogen, pH scale is logarithmic 
phospho-NR phosphorylated-nitrate reductase 
PHYLIP Phylogeny Inference Package 
ppb part per billion 
Pro proline;P 
PVPP polyvinylpolypyrrolidone 
RACE Rapid Amplification of cDNA Ends 
RcNR Ricinus communis NR 
RNA ribonucleic acid 
RNase ribonuclease 
RT room temperature 
SD standard deviation 
SDS sodium dodecyl sulfate 
Ser serine; S 
TAE Tris-acetate-EDTA 
Taq Thermus aquaticus 
TBS Tris buffered saline 
TEMED N,N,N,N-tetramethylaminomethane 
Thr threonine; T 
Tm annealing temperature 
Tris Tris-(hydroxymethyl)-aminomethane 
V volt 
v/v volume/volume 
Val valine; V 
w/v weight/volume 
UV ultraviolet 
 

 

6.2 Oligo Nucleotide Primers 

 

Name Nucleotide Sequence Tm 
   
RcNR-S1 5'-ATTGGTGGAAGAATGGTAAAGTGG -3' 59.3 
AS-Arabidopsis  5'-CACGAACAATCTCTTTGGCAC-3' 62.7 
RcNR-S-RACE 5'-GCTGAAGCATGGTGGTATAAGCCGG-3' 66.3 
RcNR-AS-RACE 5'-TCTCTTTGGCACCAAGGAGGTCCAG-3' 66.3 
5'-AOX1 5'-GACTGGTTCCAATTGACAAGC-3' 57.9 
3'-AOX1 5'-GCAAATGGCATTCTGACATCC -3' 57.9 
RcNR-SF-2 5'-AAACCGCGGAATAATGGCGGCCTCTGTGGACA 

ACAGGC-3' 
>75 

RcNR-ASF 5'-TAGAATACTAGCAATGAATTCTTGATATC-3' 59.9 
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6.3 Vectors 

6.3.1 pCR® 2.1-TOPO 

 

 
source: http://www.invitrogen.com/content/sfs/vectors/pcr2_1topo_map.pdf 
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6.3.2 pPICZA 

 

 
One Nco I restriction enzyme site: 1898; One Sac I site: 209 

Source: http://www.invitrogen.com/content/sfs/vectors/ppicz_map.pdf 
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6.3.3 pHILD2 
 

 
 
Source: http://www.invitrogen.com/content/sfs/vectors/phild2_map.pdf 
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6.4 Key invariant residues in Ricinus NR 

 
Domain / Region Key Residues Function 

Mo-MPT 8 Nitrate reducing / Active site 

 Arg139 Nitrate binding 

 His141 MPT binding 

 Cys186 Mo ligand 

 Arg191 Nitrate binding 

 His286 MPT binding 

 Arg291 MPT binding 

 Gly300 Mo ligand 

 Lys304 MPT binding 

Dimer interface 2 Formation of stable dimer 

 Glu352 Ionic bond at interface 

 Lys391 Ionic bond at interface 

Hinge 1 1 

Ser526 

Regulatroy 

Phosphorylated 

Cytochrome b 

 

 

2 

His569 

His592 

Heme-Fe binding 

Heme-Fe ligand 

Heme-Fe ligand 

FAD 

 

 

5 

Arg709 

Tyr711 

Gly742 

Ser745 

Lys748 

FAD binding / Active site 

Binds FAD 

Binds FAD 

Binds FAD 

Binds FAD 

Binds NADH 

NADH 

 

 

3 

Gly791 

Cys886 

Phe914 

NADH binding / Actice site 

Binds NADH 

Active site 

C-terminal 
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6.5 Amino acid sequence alignments (N-terminus) 
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6.6 Amino acid sequence alignments (without N-terminus) 

Three prosthetic domains are marked by a shadow. Identical sequences are indicated 
by a dot, and gaps introduced for alignment purpose by a dash. Unique amino acid 
residue of Ricinus NR is labeled in blue color. T. platyph: Tilia platyphyllos, N. 
sylvest: Nicotiana sylvestris, N. tabacum: Nicotiana tabacum. 
 
 
Ricinus    : DEGTADNWVERHPSMIRLTGKHPFNSEAPLTQLMHHGFITPVPLHYVRNHGPVPK : 146 
AtNR2      : ..Y...S.I..N...............A...R...................H... : 151 
Spinach    : ......Q.I..N...................R......................N : 164 
AtNR1      : ..S...S.I..NS............A.A..PR...................A... : 157 
Lotus      : .Q......IS.NS.................PR....................... : 132 
Bean       : ......Q..A.NA............A.S..QR....................... : 125 
Soybean    : ......Q.IP.NA....F.......G.G..PR.........S..R.......... : 125 
Peach      : ..A.S.S..H.N.............C.A..AR...................V... : 137 
Squash     : ........I..NA..................R...................V... : 155 
Birch      : ..A.....I..NA..............A...R.........A............. : 140 
T. platyph : ..A.....I..N...............A...R....................... : 132 
N. sylvest : ........I..NF..................R....................... : 143 
N. tabacum : ........I..NF..................R....................... : 143 
Petunia    : ........I..NN.................AR....................... : 147 
Tomato     : ........I..NF.................SR....................... : 148 
Potato     : ........I..NF.................AR....................... : 148 
Brassica   : ..S.G.K.IH.NS............A.A..PR...................G... : 151 
Maize      : ......A.I..N.C.........L.C....AR.........A.........A... : 148 
                                                                           
                                                                           
Ricinus    : ASWKDWTVEICGLVKKPTRFTMDQLVNDFPSRELPVTLVCAGNRRKEQNMVKQTI : 201 
AtNR2      : .Q.AE.....T.F..R.M........S..AY..FAA................KSK : 206 
Spinach    : .K.E......T....R.I.........D.Q...F................T..S. : 219 
AtNR1      : .N.S......T....R.A....E...S......F..................... : 212 
Lotus      : .R.D......T....T.......R..RD.........................S. : 187 
Bean       : .N.E......T....R.......R..R...H..F.A................K.. : 180 
Soybean    : IK.DE.....T....RS.H...EK..R...H..F.A...........H.....S. : 180 
Peach      : G..Q......T....R.A....E...R..K...F..................... : 192 
Squash     : .K.A......C....R.A...........RF..F.A.................S. : 210 
Birch      : .R.E......C....R.A.....R..T..R...F..................K.. : 195 
T. platyph : ...D......T......M.L..V......Q...F..................K.. : 187 
N. sylvest : G..D......T....R.M............C........................ : 198 
N. tabacum : G..D......T....R.M..................................... : 198 
Petunia    : GM.D......T....R.M....E................................ : 202 
Tomato     : ...S......T....R.M...............F..................... : 203 
Potato     : ...A......T....R.M..................................... : 203 
Brassica   : .E.S......T....R.AGL..E...S......F..................... : 206 
Maize      : GD.AT.....T....R.A.L..E..ARD..AV.I....A............Q... : 203 
                                                                           
                                                                           
Ricinus    : GFNWGAAGVSNSVWRGVPLHFVLKRCGIYSRKKGALNVCFEGAEDLPGGG---GS : 253 
AtNR2      : .....S....T........CD.......F...G.........S......AGTA.. : 261 
Spinach    : .....S.A..T........RD.......M.SL..................---.. : 271 
AtNR1      : .....S....T........SE..........RG.................---.. : 264 
Lotus      : .....S....T......S.RH.....R.Q..SR...H.....D.......---.. : 239 
Bean       : .....S..T.T........RH.......L..G....H.S...........---.. : 232 
Soybean    : ........G.T........RH.......LA.M...MY.S...........---.. : 232 
Peach      : .....P....N........CD........G..S.................---.. : 244 
Squash     : ..........T....R...CD.......L.....................---.. : 262 
Birch      : ..........T........RD.......F..GR..F..............---.. : 247 
T. platyph : .S........T......L.CD.......F...HR................---.P : 239 
N. sylvest : .......A..T........RA.......F..N...........DV.....---.. : 250 
N. tabacum : .......A..T........RA....Y..F..N...........DV.....---.. : 250 
Petunia    : .......A..T........RA..........T...........DV.....---.. : 254 
Tomato     : .......A..T........RA.......Q.............SDV.....---.. : 255 
Potato     : .......A..T........RP.......H.............SDV.....---.. : 255 
Brassica   : .....S....T......A.SD..........RG.................---.. : 258 
Maize      : ..........T.....AR.RD.......VP..G.................---.. : 255 
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Ricinus    : KYGTSIKKEYAMVPSRDIILAYMQNGELLAADHGFPVRMIIPGFIGGRMVKWLKR : 308 
AtNR2      : ............D..............Y.TP........................ : 316 
Spinach    : .........F..D.A............K.SP........................ : 326 
AtNR1      : .........M..D.A..............TP........................ : 319 
Lotus      : ..S......V..D..............V..P........................ : 294 
Bean       : ......S..M..D..............P..P........................ : 287 
Soybean    : .........M..D..............P..P........................ : 287 
Peach      : .........V..D..............Q.MP........................ : 299 
Squash     : .........L..D.A............Q..P........................ : 317 
Birch      : .......Y.M..D.A.....G......R.SP........................ : 302 
T. platyph : .........F..D..............R..P........................ : 294 
N. sylvest : .........F..D.A............K..P........................ : 305 
N. tabacum : .........F..D.A............K..P........................ : 305 
Petunia    : .........F..D..............K.TP........................ : 309 
Tomato     : .........F..D..............M.SP........................ : 310 
Potato     : .........F..D..............M.SP.....................P.. : 310 
Brassica   : .........M..D.A..............TP........................ : 313 
Maize      : ......T..W..D..............P.LP............C........... : 310 
                                                                           
 
 
                                                                           
Ricinus    : IIVTTKESDNYYHYKDNRVLPSHVDAELANAEAWWYKPEYIINELNINSVITTPS : 363 
AtNR2      : ..........F...........L......DE.G.....................C : 371 
Spinach    : .....T........................S......Q................C : 381 
AtNR1      : ....PQ...S............L.......S.......................G : 374 
Lotus      : ....EE.C.GH...................E.G.....................C : 349 
Bean       : ....EQ.CESH..............P....E.G.....................C : 342 
Soybean    : ....EH.C.SH...................D.G.....................C : 342 
Peach      : .....R................................................C : 354 
Squash     : ........E.................D............H..............C : 372 
Birch      : ..............N...........D..K.........H..............C : 357 
T. platyph : ........ES.....................................X....M.C : 349 
N. sylvest : .....Q...S...........P........T.......................C : 360 
N. tabacum : .....Q...S...........P........T.......................C : 360 
Petunia    : .....Q..ES...........P................................C : 364 
Tomato     : .....Q..ES...........P................................C : 365 
Potato     : .....Q..ES...........P..EL............................. : 365 
Brassica   : ....PQ................Y.....P.E.S.....................G : 368 
Maize      : ....PA................................................G : 365 
                                                                           
 
 
                                                                           
Ricinus    : HEEVLPINSWTTQRPYTLKGYAYSGGGKKVTRVEVTMDGGDTWQVCSLDHPEKPN : 418 
AtNR2      : ........A..................................N..A...Q.... : 426 
Spinach    : ........A...............................D..D..E...Q..GS : 436 
AtNR1      : .A......A...............................D..S..E...Q.... : 429 
Lotus      : .D......A............S.....................F..A..QQ.... : 404 
Bean       : .D..............V..........................H..T........ : 397 
Soybean    : .............M..F.......................G.....T..C..... : 397 
Peach      : ........................................D.....T...Q.... : 409 
Squash     : ........A............S................S.......T......A. : 427 
Birch      : .........................................K.R..A........ : 412 
T. platyph : .D...........M................X.......D.......T........ : 404 
N. sylvest : ........A............S.......................ST.......T : 415 
N. tabacum : ........A............S........................T.......T : 415 
Petunia    : .....................S.....................N..T........ : 419 
Tomato     : ........A..................................S..T.......T : 420 
Potato     : ........A..............P...................S..T.......T : 420 
Brassica   : ........A..................................S..E...Q.... : 423 
Maize      : .D.......I....G............................L..H........ : 420 
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Ricinus    : KYGKYWCWCFWSLEVEVLDLLGAKEIAVRAWDETLNTQPEKLNWNVMGMMNNCWF : 473 
AtNR2      : .....................S....................I............ : 481 
Spinach    : ..........................G...............I............ : 491 
AtNR1      : .............D.......S..D.........F....D..I............ : 484 
Lotus      : ......................T..........A......N.I............ : 459 
Bean       : ......................T..........G......N.I............ : 452 
Soybean    : .................................A........I............ : 452 
Peach      : ..................S..V............Q.......I............ : 464 
Squash     : .....................S............H.......I............ : 482 
Birch      : .................................AH.......I............ : 467 
T. platyph : ...N......................S............X..I............ : 459 
N. sylvest : .....................S....................I............ : 470 
N. tabacum : .....................S....................I............ : 470 
Petunia    : .....................S....................I............ : 474 
Tomato     : .....................S........T...........I............ : 475 
Potato     : .....................R........I...H.......I............ : 475 
Brassica   : .............D.......S....................I............ : 478 
Maize      : ..........................................I............ : 475 
                                                                           
 
 
                                                                           
Ricinus    : RIKTNVCKRHKGEIGIVFEHPTVPANQSGGWMAKERHLEISSENHP-ILKKSVST : 527 
AtNR2      : ........P.............L.G.E............K.ADA..-S....... : 535 
Spinach    : ........P.............Q.G.K......R.......DSG.--T..RTA.. : 544 
AtNR1      : ........P.............R.G...........Q......SNN-T....... : 538 
Lotus      : ........P.............Q.G..P.......K.....QQDSRP........ : 514 
Bean       : ........P.............Q.G..P.......K...Q.Q-EAKPS....... : 506 
Soybean    : ........P.............Q.G..........K...K..-ESNPT....... : 506 
Peach      : ......................Q.G..........K..D--..SNT-T....... : 516 
Squash     : ........P.............Q.G.......DR.......T.SNQ-T....... : 536 
Birch      : ........A.M.....A.......G........R.KN..T..DANQ-S....... : 521 
T. platyph : ........P.............L.G.......T.A....K.IDAN.-T....... : 513 
N. sylvest : ...M....P.............Q.G................A.A.Q-T....... : 524 
N. tabacum : ...M....P.............Q.G................A.A..-T....... : 524 
Petunia    : ........P.............Q.G.L..............A.A..-T....... : 528 
Tomato     : ...M....P.............Q.G................AVA..-T....... : 529 
Potato     : ...MKCV.P.............Q.G................AVA..-T....... : 529 
Brassica   : ........P.............R.G...........Q..K...SH.-T....... : 532 
Maize      : ...V....P.............Q.G..P.....R.K...TAEAAA.-G..R.T.. : 529 
                                                                           
 
 
                                                                           
Ricinus    : PFMN---TSSKTVSMAEVKKHNSADSCWIIVHGHVYDCTRFLKDHPGGTDSILIN : 579 
AtNR2      : ....---.TA.MY..S..........C...............M.....S...... : 587 
Spinach    : ....---.T..MY..S..........A......N...A..........S...... : 596 
AtNR1      : ....---.A..MY.IS..R.......A............................ : 590 
Lotus      : ....---.FT.MY.IS.......P..A.....................AA......: 566 
Bean       : ....---.A..MF.VS.....S.P..A.............................: 558 
Soybean    : ....---.T..MYT.S..R...N...A..........W............R.... : 558 
Peach      : ....--T.....Y.LS..E....PQ.A....Q..........N.....A...... : 569 
Squash     : ....---.A.N.YTLS.......PQ.A.....................S...... : 588 
Birch      : ....---....MF..S........E.A............H........A...... : 573 
T. platyph : ....---.D...F..S..R.......A......N..............A...... : 565 
N. sylvest : ....---.A..MY..S..R..S....A..........A................. : 576 
N. tabacum : ....---.A..MY..S..R..S....A..........A..........S...... : 576 
Petunia    : ....---.A..MY..S..........A..........A..........I...... : 580 
Tomato     : ....---.A..MY..S..R....S..A..........A..........V...... : 581 
Potato     : ....---.A..MY..S..R....S..A..........A..........V...... : 581 
Brassica   : ....---.A..MY..S..R.....E.A.....................S...... : 584 
Maize      : ....TT-DVG.QFT.S..R..A.QE.A..A..................A...... : 583 
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Ricinus    : AGTDCTEEFDAIHSDKAKKMLEDYRIGELVDS-TAYTTDSNASSPNNSVHGASNM : 633 
AtNR2      : .........E...................IT--.G.SS..S--........S.AV : 638 
Spinach    : .............................IS--.G..S..SS--.G.....G.VY.: 647 
AtNR1      : .........E...................IT--.G.DS-----...V.......F : 638 
Lotus      : .........E...................IT--.G..S..S--........N.EF : 617 
Bean       : .............................IT--.G..SADS--........N.EF : 609 
Soybean    : .........E........Q..........TT--.C.NS..S--.S.P....R.DT : 609 
Peach      : ..............................T--.T.AS..TSN...I....PHRT : 622 
Squash     : .............................IT--.G.AS..SSN.....T.....N.: 641 
Birch      : .............................IT--.G.VS..----..S.......T : 622 
T. platyph : .............................IT--.G.AS..SMS...........M : 618 
N. sylvest : .............................IT--.G..S..----.G.....S.SF : 625 
N. tabacum : ......................E......LT--.G..S..----.G.....S.SF : 625 
Petunia    : .............................IT--.G..S..S.---......S.SF.: 630 
Tomato     : .............................IT--.G..S..S---..S....S.SI : 631 
Potato     : .............................IT--.G..S..S---..T....S.SI : 631 
Brassica   : .........E...................IT--.G.DS-----...V....G.SV : 632 
Maize      : ..................A..DT......ITTG.G.SS.-------.....G.VL : 631 
                                                                           
 
 
                                                                           
Ricinus    : S-------QTPLAPIKEITPT-----PARNVALVP-------REKIACKLVKKES : 669 
AtNR2      : FS--------L....G.A..-------V..L...NP------.A..PVQ..E.T. : 672 
Spinach    : .G------LAG....T.AV.-------L.....N.-------.V..P....E.V. : 682 
AtNR1      : GP--------L......L..-------QK.I...NP------....PV...E.T. : 672 
Lotus      : KH---------........TMSLPPL.R.K...I.-------....P....S.T. : 656 
Bean       : IH---------....N...TI--PPL.P.S...N.-------.Q..P....S.T. : 646 
Soybean    : IP---------.T....VITP------M.S...I.-------....P....S.T. : 642 
Peach      : .SEDISFLVT.........-------.VKS...T.-------....P....A.T. : 663 
Squash     : .---------H....R.AP-------VS.R...A.-------N...P....S.T. : 673 
Birch      : .---------H.......A-------.L.....I.-------GA..PT...Y.K. : 654 
T. platyph : .---------F......DA-------.T.P.....-------....P....E.T. : 650 
N. sylvest : .--------.F......LV.------AQ.S...I.-------....P....D.Q. : 659 
N. tabacum : .--------.F......LV.------AQ.S...I.-------....P....D.Q. : 659 
Petunia    : .--------GF......LA.------AV.S...I.-------....P....D.K. : 664 
Tomato     : .--------.F......LVQ.-----.T.S...I.-------....P....D.Q. : 666 
Potato     : .--------.F......LVQ.-----.T.S...I.-------....P....D.Q. : 666 
Brassica   : MS--------L....RQLA.-------TK.I...NP------....PV...E.T. : 666 
Maize      : .H---------....R.AVRA.---------..SNP------.D..H....G.KE : 662 
                                                                           
 
 
                                                                           
Ricinus    : LSHDVRLFRFALPS-DDQVLGLPVGKHIFLCATIDEKLCMRAYTPTSTIDVVGYF : 723 
AtNR2      : ......K......V-E.M.................D................... : 726 
Spinach    : ......R...G...-E................N..D................... : 736 
AtNR1      : ......K.......-E..Q.............N..D...........A..A..HI : 726 
Lotus      : ......V.......-E..Q................G...........G..E.... : 710 
Bean       : ..........E...-KN..................G.............EE..F. : 700 
Soybean    : ..........G...-.GL....A........V.................HE.... : 696 
Peach      : ..............-E..................EG..............E.... : 717 
Squash     : ......V......GGQ..A................G..............E..F. : 728 
Birch      : .........L....-....................D..............E...L : 708 
T. platyph : ..............-................V...D..............E.DH. : 704 
N. sylvest : ......K.......-E................V..D..............E.... : 713 
N. tabacum : ..P...K.......-E................V..D..............E.... : 713 
Petunia    : ......K.......-E................I..D..............E.... : 718 
Tomato     : ......K.......-E...................D..............E..F. : 720 
Potato     : ......K.......-E...................D..............E..F. : 720 
Brassica   : ......R.......-E..Q................D..............A...I : 720 
Maize      : ..R.......S...-P..................EG...........M..E..H. : 716 
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Ricinus    : DLVIKVYFKGVHPKFPNGGLMSQHLDSLQLG-SVIDVKGPLGHIEYAGRGNFMVH : 777 
AtNR2      : E.......G..............Y....P..-.T.E..........L...S.T.. : 780 
Spinach    : .........D..................S..-.I............L.....T.. : 790 
AtNR1      : .........D..................P..-.M............K.....L.S : 780 
Lotus      : E..................A........P..-.D............T.....L.. : 764 
Bean       : .........D.............Y.E..S..-.M............T.....T.N : 754 
Soybean    : ............................P..-..............T.....L.. : 750 
Peach      : .........N..................P..-AA............T...H.L.N : 771 
Squash     : E......................Y....E..-.T............T.....M.. : 782 
Birch      : .........NSN................P..-...H..........T.....L.. : 762 
T. platyph : .......................Y....P..-..............T.....S.. : 758 
N. sylvest : E..................Q...Y....P..-.F............Q.....L.. : 767 
N. tabacum : E..................Q...Y.......-.F............Q.....L.. : 767 
Petunia    : E..........V.......Q...Y....P..-AF............Q.....L.. : 772 
Tomato     : E..................Q........P..-AF............Q.....L.. : 774 
Potato     : E..................Q........P..-AF............Q.....L.. : 774 
Brassica   : .........N..............P...P..-A.............Q...K...S : 774 
Maize      : .........NE............Y....P..-.Y............T...S.V.N : 770 
                                                                           
 
 
                                                                           
Ricinus    : GKPKFAKKLTMLAGGTGITPIYQVIQAILKD-PEDDTEMYVVYANRTEDDILLRE : 831 
AtNR2      : ......D..A.....................-...E............E...... : 834 
Spinach    : .........A..S...........M......-...K...H........E...... : 844 
AtNR1      : .........A................S..S.-...E................... : 834 
Lotus      : ..H......A..............A......-...H.K................. : 818 
Bean       : ..S......A..............A......-...L...H............... : 808 
Soybean    : ......T..A..............V......-...C...H............... : 804 
Peach      : .........A..............A......-...E...........V....... : 825 
Squash     : .........A..............V......-...E..................D : 836 
Birch      : .E.......A.....................-...E...F............... : 816 
T. platyph : .........A.....................-...E................... : 812 
N. sylvest : ..Q......A..............M......-....................... : 821 
N. tabacum : ..Q......A..............M......-....................... : 821 
Petunia    : ..R......A..............M......-...E...H..............D : 826 
Tomato     : ..Q......A..............M.S....-......................D : 828 
Potato     : ..Q..P...A................S....-....................... : 828 
Brassica   : ......N..A................S..S.-...E................... : 828 
Maize      : ..Q.H.S..A..C......................H...H..............D : 825 
                                                                           
 
 
                                                                           
Ricinus    : ELDSWAKEHHERLKVWYVVQES--IKEGWQYSVGFITENILREHVPEGSD-DTLA : 883 
AtNR2      : ...G..EQYPD........ES---A....A..T.....A.......D.L.GSA.. : 886 
Spinach    : ...K..D.FRD........EK---AE...K.DT.....K...D...AVG.-.V.. : 895 
AtNR1      : ..EG..SK.K.........EI---A....S..T.....A.........LEGES.. : 886 
Lotus      : ...T...KYED.F......ET---A....G........G........AG.-.A.. : 869 
Bean       : ...T.....C..F......ET---A....G.G......A........A.S-.S.. : 859 
Soybean    : ...E...KY-D...........--.R...E........S..T....NA.P-.... : 855 
Peach      : ...A...K-Y..F......EN---GR...E.......DT.......D...-GS.. : 875 
Squash     : ...T...K-NQ...........--.R...E................AAAE-.... : 887 
Birch      : ...D...K-..........K..--KR...E......R.S...........-.V.. : 867 
T. platyph : ...G...K-.D...........--TRK..E..L.....R...D......K-.... : 863 
N. sylvest : ......EKIP..........D.--.....K..I.....A........P.H-T... : 873 
N. tabacum : ......EKIP..........D.--.....K..L.....A........P.H-T... : 873 
Petunia    : ......VKLP..........D.--.....K..T.....A.......LP.Q-T... : 878 
Tomato     : ...A..EQVPN...........--.T...K..T.....S........P.H-T... : 880 
Potato     : ...A..EQIPD...........--.T...K..T.....A.......QP.H-T... : 880 
Brassica   : ..EG..SK.PD........EI---A....E..T.....A.........LEGES.. : 880 
Maize      : ...R..A..PD........DQV..PE...K........A.........G.-.... : 879 
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Ricinus    : LACGPPPMIQFAVQPNLEKMNYDIKNSLLVF : 914 
AtNR2      : ....................Q.N..EDF.I. : 917 
Spinach    : .T...............D..G....EQ..I. : 926 
AtNR1      : ....................G....ED..I. : 917 
Lotus      : .............N......G.....D.... : 900 
Bean       : .T..................G.....D.... : 890 
Soybean    : .T..................G..TQ.N.... : 886 
Peach      : .........K.......L.....TTD..... : 906 
Squash     : ......A................T....... : 918 
Birch      : ....A.S...E..RL........T....II. : 898 
T. platyph : ...............K.........D..... : 894 
N. sylvest : .............N......G....D..... : 904 
N. tabacum : .............N......G....D..... : 904 
Petunia    : .............N......G....D..... : 909 
Tomato     : .............N......G....EE.... : 911 
Potato     : .............N......G....EE.... : 911 
Brassica   : ....................G....ED..I. : 911 
Maize      : .............S......K..MA..FV.. : 910 
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6.7 Phylogenies analysis (Full-length NRs) 
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6.8 Phylogenies analysis (N-terminus of NRs) 
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