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ZUSAMMENFASSUNG

Im Rahmen dieser Arbeit werden theoretische Modelle zur Beschreibung von

Valenz- und Rumpf-angeregten elektronischen Zuständen diskutiert. Im Fall der

Valenz-Anregungen wurden time-dependend Hartree-Fock (TD-HF) und time-

dependent Dichtefunktionaltheorie (TD-DFT) Methoden mit verschiedenen Funk-

tionalen für ein Perylenbisimid (PBI) System validiert. Eine einfache Anal-

yse der Charaktäre der angeregten Zustände wurde vorgeschlagen, die auf den

berechneten Übergangsdipolmomenten basiert. Dieser Ansatz ist allerdings auf

Zustände beschränkt, die ein signifikantes Übergangsdipolmoment aufweisen.

Deshalb wurde eine allgemeinere und fundiertere Methode entwickelt, die auf

einer Analyse der berechneten CIS Wellenfunktion basiert. Darüberhinaus wurde

ein literaturbekannter Model-Hamiltonoperator Ansatz von einem lokalisierten

Molekülorbitalbild (MO) abgeleitet, das aus der generelleren Analyse-Methode

resultiert. Auf diesem Weg ist ein Zugang zu diabatischen angeregten Zustän-

den und korrespondierenden Kopplungsparametern auf der Basis von ab ini-

tio Rechnungen gegeben. Für rumpfangeregte elektronische Zustände wurden

drei Methoden für C 1s-angeregte und ionisierte Zustände verschiedener kleiner

Moleküle validiert. Darüberhinaus wurde die Basissatzabhängigkeit dieser Zu-

stände untersucht. Anhand der Resultate wurde die frozen core Näherung aus-

gewählt um rumpfangeregte Zustände von Naphthalintetracarbonsäuredianhy-

drid (NTCDA) zu berechnen. Um experimentelle Ergebnisse zu erklären, wurde

ein Algorithmus entwicklet, der die Exzitonenkopplungsparameter im Fall von

nicht-orthogonalen MOs berechnet.





ABSTRACT

This work focuses on theoretical approaches for predicting the valence and core

excited states of aggregate systems.

For the valence excitations, TD-HF and TD-DFT with different functionals have

been tested at the Perylene bisimide (PBI) system. A simple character analysis

method based on the calculated transition dipole moments is proposed. How-

ever, this method does not work for excited states without any transition dipole

moment. Thus, we proposed a more general and more valid method based on

a calculated CIS type wavefunction for the character analysis. Furthermore, a

model Hamiltonian method is derived from a localized picture. The energies of

the diabatic states and the corresponding coupling parameters were also deter-

mined on the basis of ab initio calculations.

For the core excitation, three different methods were validated for C 1s-excited

and ionized states if several small molecules. Also we tested the basis sets de-

pendence of these core excited states. Based on those results, we chose the

frozen core approximation method to evaluate the core excited states of NTCDA

molecules. In order to explain the findings in the experiments, we developed

an algorithm to evaluate the exciton coupling parameter where non-orthogonal

MOs are used.
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CHAPTER 1

INTRODUCTION

In the last decades, π-conjugated smart materials become increasingly impor-

tant in everyday life.[1,2,3,4,5,6,7,8,9,10,11,12,13] One remarkable example is the ap-

plication of organic light-emitting diodes[14] (OLED) in small displays. Com-

pared with the liquid crystal displays (LCD), which is one of the most ma-

ture technology in this field, OLEDs benefit from better performance such as

wider viewing angles, improved brightness, and better power efficiency. Be-

sides, due to the electrical properties of (semi)conductors, organic materials

are also used in semi-conducting layers of field-effect transistors (FET).[1,2,15,16]

Rubrene-based organic FETs are found to have the highest carrier mobility 20 -

40 cm2/(V·s).[17,18,19]

Another notable application of organic materials is in organic solar cells. They

are discussed and developed as cheap substitutes for inorganic solar cells. How-

ever, presently the low energy conversion efficiency of organic solar cells is the

main bottleneck which limits its usage. This drawback is partially due to the

rather inefficient excitation energy transport (EET).[13,20] Computations may be

useful for illuminating this inefficient EET,[21,22] but this is still a challenge as

the EET in organic materials is determined by the interplay of a multitude of

effects. Recent works concerning the exciton transfer process and excited state

properties are discussed in detail in the latter sections (see sections 4.1.1, 4.2.1,

4.3.1 and 4.4.1).

In this work, the valence and core excited states for large π-conjugated aggre-

gate systems are investigated by different theoretical approaches. We used a

serials of well established quantum chemical procedures to calculate the corre-

sponding physical properties. Their performances are discussed in detail.

7



1. Introduction

For a proper interpretation of the calculations, it is important to know the char-

acter of the excited state. For that purpose, we developed a method for ana-

lyzing the characters of excited states of aggregate systems. This method has

been compared with other analysis methods. Within the character analysis we

obtain insight into the character mixing and the coupling between the excited

configurations.

Another important property, the exciton coupling parameter VEC, has been stud-

ied for both valence and core excited states. An algorithm is proposed for eval-

uating VEC when non-orthogonal MOs are used. Besides, the electron (hole)

transfer parameter is calculated in a model Hamiltonian method. This method

allows to determine the energies of the diabatic excited states, their coupling

parameters and to perform the character analysis as a function of the geometri-

cal structure of the aggregates.

8



CHAPTER 2

UNDERSTANDING EXCITED STATES OF MOLEC-
ULAR AGGREGATES

2.1. CHARACTER OF AN AGGREGATE EXCITED STATE

Excited electronic states in aggregates can have charge transfer (CT) or neutral

excited (NE) characters. The definitions of CT and NE states for aggregates are

given by Peterlenz[23] in a localized picture. If an electron is excited from an

occupied orbital of one monomer to a virtual orbital of itself, this is defined as

an NE state (Fig. 2.1 left). Since the excitation is restricted to a single monomer,

this type of excitation results in no charge separation. In contradiction to that,

in an excited state where an electron is excited from one monomer to another

one is called CT state (Fig. 2.1 right). At the first glance, one would assume that

a CT excitation introduces a charge separation and a substantially increased

dipole moment of the system. However, this is not always true. For example, in

a dimer system, it is possible that a CT state includes not only an excitation from

molecule A to monomer B, but also an excitation from B to A simultaneously.

Those two contributions may introduce same amount of charge separation and

compensate each other. This is always the case when the monomers are sym-

metrical to each other e. g. due to the fact that the geometry of the system has

a center of inversion or a mirror plane. An often used way to distinguish the

character of an excited state is to look at the corresponding orbitals which are

related to the excitation. This predicts the qualitative correct character for an

excited state if the corresponding orbitals are localized to each monomer. How-

9



2. Understanding excited states of molecular aggregates

ever, it immediately fails if some of the corresponding orbitals are delocalized

to the dimer system, because one can not easily specify the character of the cor-

responding excitation configuration. Unfortunately, this is often the case for an

aggregate system, especially when symmetry is used for the calculation of the

reference wavefunction.

2.2. THROUGH A LOCALIZED PICTURE

Peterlenz[23,24,25,26], Brédas[1,2,27,28,29] and Scholz[30,31] have considered ex-

cited states for dimer systems from a localized picture. In this model Hamiltonian

method, four diabatic configurations are taken into account and allow to calcu-

late the energy and other physical properties of the delocalized excited states.

For a dimer system which is composed of the monomers A and B, one first intro-

duces two lowest diabatic NE states and two lowest diabatic CT states. The two

NE states refer to excitations from the HOMO of monomer A to the LUMO of

the same monomer (|A∗B〉) and from the HOMO to the LUMO both on monomer

B (|AB∗〉), respectively. The two CT states refer to excitations from the HOMO

of monomer A to the LUMO of monomer B (|A+B−〉) and from the HOMO of

monomer B to the LUMO of monomer A (|A−B+〉), respectively. These excited

states correspond to Peterlenz’s definition[23] of NE and CT states in aggregate

systems.

The actual states are represented by linear combinations of these configurations

which can be obtained by diagonalizing the effective Hamiltonian matrix, a 4×4

matrix introduced by Petelenz. The non-diagonal elements in this matrix are the

so called coupling matrix elements or coupling parameters.

10



2.2. Through a localized picture









〈A∗B|
〈AB∗|
〈A+B−|
〈A−B+|









Ĥ
(

|A∗B〉, |AB∗〉, |A+B−〉, |A−B+〉
)

=









ENE VEC De Dh

VEC E ′
NE D′

h D′
e

De D′
h ECT W

Dh D′
e W E ′

CT









. (2.2.1)

ENE and E ′
NE are the excitation energies of |A∗B〉 and |AB∗〉 states respectively

ENE = 〈ΨAB∗ |Ĥ|ΨAB∗〉, E ′
NE = 〈ΨA∗B|Ĥ|ΨA∗B〉. (2.2.2)

VEC is the exciton coupling parameter which is the coupling between the two NE

states

VEC = 〈ΨAB∗ |Ĥ|ΨA∗B〉. (2.2.3)

ECT and E ′
CT are the excitation energies of |A+B−〉 and |A−B+〉 states respectively

ECT = 〈ΨA+B− |Ĥ|ΨA+B−〉, E ′
CT = 〈ΨA−B+|Ĥ|ΨA−B+〉. (2.2.4)

W is the coupling between these two CT states

W = 〈ΨA−B+|Ĥ|ΨA+B−〉. (2.2.5)

De
(
D′

e

)
is the coupling between the NE |A∗B〉

(
|AB∗〉

)
state and the CT |A+B−〉

(
|A−B+〉

)
state

De = 〈ΨA+B− |Ĥ|ΨA∗B〉, D′
e = 〈ΨA−B+|Ĥ|ΨAB∗〉. (2.2.6)

Dh
(
D′

h

)
is the coupling between the NE |A∗B〉

(
|AB∗〉

)
state and the CT |A−B+〉

(
|A+B−〉

)
state

Dh = 〈ΨA+B− |Ĥ|ΨAB∗〉, D′
h = 〈ΨA−B+|Ĥ|ΨA∗B〉. (2.2.7)

By diagonalizing this matrix, one gets the energies of the considered adiabatic

11



2. Understanding excited states of molecular aggregates

excited states as well as the expression of their wavefunctions. Furthermore,

the character of each excited state is obtained immediately (for more details

see section 4.2.5). These coupling parameters are often used for describing

related physical phenomenons. For example, the exciton coupling parameter

VEC, is widely used for explaining the shift of absorption spectra for aggre-

gate systems[3,32,33,34,35,36,37,38,39,40] and for calculating the exciton transfer

rate.[1,35,39,40,41,42,43,44,45,46,47] De (Dh) can be used to evaluate the electron

(hole) transfer rate[1,2,6,27,28,29,48]. Therefore, it is also called electron (hole)

transfer parameter. W is less often discussed because its absolute value is gener-

ally much smaller than those of the other coupling parameters.

2.3. THROUGH A SUPERMOLECULAR PICTURE

As mentioned in the last section, there are many kinds of methods which are

suitable for calculating excited states of aggregate systems. The most common

methods are configuration interaction type methods (CI and CASSCF) and prop-

agator approaches such as CC2, ADC, TD-DFT and TD-HF. In contrast to the

model Hamiltonian method, these methods are first principles approaches. They

require a reference ground state wavefunction for the aggregate system and con-

sider excited configurations based on the reference wavefunction. Therefore, in

most cases the MOs of the aggregate system are delocalized to the whole system,

and these diabatic configurations no longer fit Peterlenz’s definition for NE and

CT states. The resulting adiabatic excited states are orthogonal to each other,

which means that all the couplings of the diabatic states are already taken into

consideration within these methods.

Compared to the model Hamiltonian method, these first principles methods give

more accurate descriptions of the wavefunctions as well as the excitation ener-

gies and other physical properties of excited states of the aggregates. On the

other hand, each of these methods has its drawbacks. Configuration interac-

tion methods provide well defined wavefunction for excited states, but tend to

be very expensive and hampered by the notorious size consistency error. In

many cases, they extent the calculation limit for normal clusters. An exception

is the CIS approach which is, however, often not sufficiently accurate. There

are also many kinds of modified CC methods e.g. second-order approximate

coupled-cluster (CC2), which is less expensive and yields often an excellent de-

12



2.3. Through a supermolecular picture

scription for singly excited states. For further discussion of these methods, see

section 3.1. The performance of the random-phase approximation largely de-

pends on the reference wavefunction used. For example, the TD-HF method,

where the HF ground state wavefunction is used as a reference, normally overes-

timates the excitation energies. Results of the TD-DFT method strongly depends

on which exchange-correlation functional is used. In general, the generalised

gradient approximation (GGA) functionals (BLYP[49,50,51,52,53], PBE[49,50,54,55]

etc.) largely underestimate the excitation energy for CT states. Hybrid GGA

functionals (B3LYP[49,51,53,56,57], PBE0[49,50,54,55,58] etc.) can improve the de-

scription for CT states. They replace a certain amount of the exchange func-

tional by exact exchange. There is clear evidence that these functionals show

improved performance for a variety of properties. However, it is hard to find a

general way to fit the amount of exact HF exchange to the ground and excited

states of different systems. A possible solution to this point is the long range cor-

rected (LC) functionals (CAM-B3LYP[59] etc.). In the LC scheme, the exchange

functional is partitioned into long-range and short-range parts with respect to

the inter-electronic separation. The short-range part is represented by the ordi-

nary exchange-correlation functional, while the long-range part is replaced by

an exact exchange functional. This improves the performance for charge trans-

fer states which are poorly described with ordinary or hybrid GGA functionals.

However, in some cases, this type of functionals still fails in predicting the cor-

rect energy order of excited states (see section 4.1.3).
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CHAPTER 3

THEORETICAL METHODS

3.1. ELECTRON CORRELATION METHODS

3.1.1. CONFIGURATION INTERACTION

3.1.1.1. FULL CONFIGURATION INTERACTION

For an N electrons system the electronic ground state wavefunction Φ0 in the

Hatree-Fock (HF) approximation is given by a Slater determinant

Φ0 = |χ1χ2 · · ·χN |=
1√
N!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(x1) χ2(x1) · · · χN (x1)

χ1(x2) χ2(x2) · · · χN (x2)
...

... . . . ...

χ1(xN) χ2(xN) · · · χN (xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3.1.1)

where the {χ1,χ2, · · ·χN} are the occupied orthonormal spin orbitals. {x1,x2 · · ·xN}
are the combined spatial and spin coordinates for the electrons. In a Roothaan

HF variant, besides the N occupied orbitals, the M −N virtual orthonormal or-

bitals are also generated by the same SCF procedure. M is the number of basis

functions used in the HF calculation. The energy of the ground state is given as

E0 =
〈Φ0|Ĥ|Φ0〉
〈Φ0|Φ0〉

, (3.1.2)

where Ĥ is the electronic Hamiltonian. The HF ground state energy E0 is still

above the exact ground state energy E0. The difference E0−E0 is defined to be

the correlation energy. A possible way is to describe the exact ground state Ψ0
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3. Theoretical methods

as a linear combination of a complete configuration set. This complete configu-

ration set can be formed from the HF ground state Ψ0 and its excited configu-

rations {Φ1,Φ2, · · ·}. For clarification, the full configuration set is partitioned by

the number excited electrons. Therefore, the exact ground state wavefunction

is written as

Ψ0 = a0Φ0+∑
a,i

ci
aΦi

a + ∑
a<b,
i< j

ci j
abΦi j

ab + ∑
a<b<c,
i< j<k

ci jk
abcΦi jk

abc + · · · , (3.1.3)

where a,b,c · · · represent the occupied and i, j,k · · · the virtual orbitals. The ex-

cited configurations are constructed from the HF ground state Slater determinant

Φ0 by substituting the occupied orbitals in the subscript of the configuration, by

the virtual orbitals in the superscript of the configuration. For example, a doubly

excited configuration Φi j
ab has the following form

Φi j
ab = |χ1 · · ·χa−1χi χa+1 · · ·χb−1χ j χb+1 · · ·χN |=

1√
N!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(x1) · · · χa−1(x1) χi(x1) · · · χb−1(x1) χ j(x1) · · · χN (x1)

χ1(x2) · · · χa−1(x2) χi(x2) · · · χb−1(x2) χ j(x2) · · · χN (x2)
... . . . ...

... . . . ...
... . . . ...

χ1(xN) · · · χa−1(xN) χi(xN) · · · χb−1(xN) χ j(xN) · · · χN (xN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(3.1.4)

Similar to the equation (3.1.2), we obtain the exact ground state energy

E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

. (3.1.5)

By inserting the definition of Ψ0 equation (3.1.3), into the equation (3.1.5), we

obtain a general expression for the CI energy which can be minimized diagonal-
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3.1. Electron correlation methods

izing the so-called Full-CI matrix

Φi
a Φi j

ab Φi jk
abc Φi jkl

abcd · · ·
















|Φ0〉 |S〉 |D〉 |T〉 |Q〉 · · ·

〈Φ0| 〈Φ0|Ĥ|Φ0〉 0 〈Φ0|Ĥ|D〉 0 0 · · ·
〈S| 0 〈S|Ĥ|S〉 〈S|Ĥ|D〉 〈S|Ĥ|T〉 0 · · ·
〈D| 〈D|Ĥ|Φ0〉 〈D|Ĥ|S〉 〈D|Ĥ|D〉 〈D|Ĥ|T〉 〈D|Ĥ|Q〉 · · ·
〈T| 0 〈T|Ĥ〉|S〉 〈T|Ĥ|D〉 〈T|Ĥ|T〉 〈T|Ĥ|Q〉 · · ·
〈Q| 0 0 〈Q|Ĥ|D〉 〈Q|Ĥ|T〉 〈Q|Ĥ|Q〉 · · ·
...

...
...

...
...

... . . .
















, (3.1.6)

where the single, double, triple and quadruple excitation configurations are sim-

plified as S, D, T and Q respectively. Due to Brillouin’s Theorem,[60] the CI matrix

element between the HF ground state Φ0 and the singly excited configuration

vanishes. The Φ0 has also on interaction with to configurations which are more

than doubly excited because of the Slater-Condon rules.[60] This rule causes that

most CI-matrix elements in the Full-CI matrix vanish as well. One can further

simplify the matrix by constructing spin adapted configurations (SAC), as only

SACs with the same total spin interact with each other. For a singlet ground

state, the number of singlet SACs for an N electron system with M basis func-

tions is given by[61]

Number of SACs =
M!(M+1)!

(N
2 )!(

N
2 +1)!(M− N

2 )!(M− N
2 +1)!

(3.1.7)

For an instance, a benzene molecule with TZVPP[62] basis set (N = 42, M = 106),

there are about 1.0×10116 SACs. Therefore, the Full-CI method is only applicable

for small systems with very limited number of basis functions.

3.1.1.2. CONFIGURATION INTERACTION SINGLES

As discussed in the last section, the Full CI method is generally not applicable.

In this section, we are going to introduce the a truncated CI method, which is

called configuration interaction singles (CIS). It considers only the singly excited

configurations in the CI matrix. Since they have no interaction with the ground

state wavefunction, CIS is only meaningful for excited states.
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3. Theoretical methods

The whole set of singly excited configurations {|Φi
a〉, |Φ j

b〉 · · ·} forms a column

vector ~Φ. The CIS matrix A is given by

A = ~ΦT · Ĥ ·~Φ. (3.1.8)

The matrix element between the configurations |Φi
a〉 and |Φ j

b〉 is

〈Φi
a|Ĥ|Φ j

b〉= (E0+ εa − εi)δabδi j − (ia|| jb). (3.1.9)

Assuming a unitary matrix U can diagonalize the matrix A, one

U† ·A ·U = E. (3.1.10)

The diagonal matrix E immediately gives the energies of all excited states. By

inserting equation (3.1.8) to (3.1.10), the configuration vector ~Φ is transformed

to the singly excited state vector ~Ψ

U† ·~ΦT · Ĥ ·~Φ ·U = E →







~Ψ = ~Φ ·U,

~Ψ† · Ĥ ·~Ψ = E.
(3.1.11)

Besides the Full CI, CIS is the only size consistent (see appendix B) CI method.

That is because of Brillouin’s Theorem[60] that the CIS ground state is just the

HF ground state wavefunction. Since only the singly excited configurations are

taken into account in a CIS calculation, this method usually overestimates the

excitation energy.

3.1.2. COUPLED CLUSTER METHODS

As we know, the Full CI method is not generally applicable and CIS gives no

improvement for the ground state and only a qualitatively correct description of

excited states. Furthermore, other truncated CI methods suffer a lot form the

size consistency problem. Therefore, the Coupled Cluster (CC) method is pro-

posed that its any truncated level of theory is size consistent (see appendix B).

In intermediate normalization, the CC wavefunction for an N electron system is

given as

ΨCC = eTΦ0, (3.1.12)
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3.1. Electron correlation methods

where the reference wavefunction Φ0 is the HF ground state. The intermediate

normalization means that the CC wavefunction is not normalized but its overlap

with the reference wavefunction is unity

〈ΨCC|Φ0〉= 1, 〈ΨCC|ΨCC〉 6= 1. (3.1.13)

T is the so-called ’cluster operator’ that generates all possible excited configura-

tions

TΦ0 = ∑
i,a

t i
aΦi

a + ∑
i< j,
a<b

t i j
abΦi j

ab + ∑
i< j<k,
a<b<c

t iik
abcΦi jk

abc + · · · , (3.1.14)

where the t i
a, t i j

ab and t iik
abc etc. are the amplitudes for the corresponding excitation

configurations. For simplicity, T is given in the following terms

T = T1+T2+T3+ · · ·+TN , (3.1.15)

that T1, T2 and T3 etc. generate the first, second and third terms in the equation

(3.1.14) respectively by operating on Φ0.

We rewrite the exponential ansatz eT in equation (3.1.12) into the Tayler series

and sort them by different excitation levels

eT = 1+T+
1
2

T2+
1
6

T3+
1
24

T4+ · · ·

= 1+T1+(T2+
1
2

T2
1)+(T3+T1T2+

1
6

T3
1)

+(T4+T1T3+
1
2

T2
2+

1
2

T2
1T2+

1
24

T4
1)+ · · · . (3.1.16)

Therefore, the CC ground state energy is given by the time-independent Schrödinger

equation

ĤΨCC = ECCΨCC ↔ ECC eTΦ0 = ĤeTΦ0. (3.1.17)
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3. Theoretical methods

We multiply the equation (3.1.17) from the left with Φ0 and integrate

ECC〈Φ0|eTΦ0〉 = 〈Φ0|ĤeT|Φ0〉

ECC = 〈Φ0|Ĥ|(1+T1+T2+
1
2

T2
1+ · · ·)Φ0〉

= 〈Φ0|Ĥ|Φ0〉+ 〈Φ0|Ĥ|T1Φ0〉+ 〈Φ0|Ĥ|T2Φ0〉+
1
2
〈Φ0|Ĥ|T2

1Φ0〉+ · · ·

= E0+∑
i,a

t i
a 〈Φ0|Ĥ|Φi

a〉
︸ ︷︷ ︸

=0

+ ∑
i< j,
a<b

(t i j
ab + t i

at j
b − t i

bt j
a)〈Φ0|Ĥ|Φi j

ab〉
︸ ︷︷ ︸

=(ia|| jb)
+0. (3.1.18)

Note that

T2
1Φ0 = ∑

i, j,a,b

t i
at j

b〈Φ0|Ĥ|Φi j
ab〉

= ∑
i< j,
a<b

t i
at j

b〈Φ0|Ĥ|Φi j
ab〉+ ∑

i> j,
a<b

t i
at j

b〈Φ0|Ĥ|Φi j
ba〉

︸ ︷︷ ︸

exchange labels i and j

= ∑
i< j,
a<b

(t i
at j

b − t i
bt j

a)〈Φ0|Ĥ|Φi j
ab〉. (3.1.19)

Equation (3.1.18) shows that if we know the amplitudes of single and double

excited configurations, the CC energy is calculated. This fits to the Full CI pic-

ture, which shows that the Hatree-Fock determinant couples only with doubly

excited configurations. In the following section, we are going to introduce how

to calculate the amplitudes.

3.1.2.1. TRUNCATED COUPLED CLUSTER (CCSD AND CC2)

Coupled cluster singles and doubles (CCSD) as a generally applicable CC method

will be discussed. Its major approximation is that the cluster operator T is com-

posed of only single and double excitation operators

T = T1+T2, (3.1.20)
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3.1. Electron correlation methods

which simplifies the equation (3.1.16) to

eT = 1+T1+(T2+
1
2

T2
1)+(T1T2+

1
6

T3
1)

+(
1
2

T2
2+

1
2

T2
1T2+

1
24

T4
1)+ · · · . (3.1.21)

To calculate the single amplitudes, we multiply equation (3.1.17) from the left

with a singly excited configuration Φe
m and integrate

ECCSD〈Φm
e |eTΦ0〉= 〈Φm

e |Ĥ|
[
1+T1+(T2+

1
2

T2
1)+(T2T1+

1
6

T3
1+ · · ·)

]
Φ0〉

ECCSD ∑
ia

t i
a〈Φm

e |Φi
a〉= 〈Φm

e |Ĥ|Φ0〉+ 〈Φm
e |Ĥ|T1Φ0〉+ 〈Φm

e |Ĥ|(T2+
1
2

T2
1)Φ0〉

+ 〈Φm
e |Ĥ|(T1T2+

1
6

T3
1)Φ0〉+0

ECCSD tm
e = 0+∑

i,a
t i
a〈Φm

e |Ĥ|Φi
a〉+ ∑

i< j,
a<b

(t i j
ab + t i

at j
b − t i

bt j
a

︸ ︷︷ ︸
1
2T2

1

)〈Φm
e |Ĥ|Φi j

ab〉+

∑
i< j<k,
a<b<c

[
2(t i

at jk
bc − t i

bt jk
ac + t i

ct
jk
ab)

︸ ︷︷ ︸

T1T2

+(
t i
at j

btk
c−t i

at j
c tk

b−t i
bt j

atk
c

+t i
ct j

atk
b+t i

bt j
c tk

a−t i
ct j

btk
a
)

︸ ︷︷ ︸
1
6T3

1

]
〈Φm

e |Ĥ|Φi jk
abc〉

+0. (3.1.22)

Similarly, for getting the double amplitudes, we multiply the equation (3.1.17)

from the left with a doubly excited configuration Φmn
e f and integrate
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ECCSD〈Φmn
e f |eTΦ0〉= 〈Φmn

e f |Ĥ|
[
1+T1+(T2+

1
2

T2
1)+(T2T1+

1
6

T3
1)

+(
1
2

T2
2+

1
2

T2
1T2+

1
24

T4
1)+ · · ·

]
Φ0〉

ECCSD ∑
i< j,
a<b

(t i j
ab + t i

at j
b − t i

bt j
a)〈Φmn

e f |Φ
i j
ab〉= 〈Φmn

e f |Ĥ|Φ0〉+ 〈Φmn
e f |Ĥ|T1Φ0〉

+ 〈Φmn
e f |Ĥ|(T2+

1
2

T2
1)Φ0〉+ 〈Φmn

e f |Ĥ|(T1T2+
1
6

T3
1)Φ0〉

+ 〈Φmn
e f |Ĥ|(1

2
T2

2+
1
2

T2
1T2+

1
24

T4
1)Φ0〉+0

ECCSD (tmn
e f + tm

e tn
f − tm

f tn
e ) = 0+∑

i,a
t i
a〈Φmn

e f |Ĥ|Φi
a〉+ ∑

i< j,
a<b

(t i j
ab + t i

at j
b − t i

bt j
a

︸ ︷︷ ︸
1
2T2

1

)〈Φmn
e f |Ĥ|Φi j

ab〉+

∑
i< j<k,
a<b<c

[
2(t i

at jk
bc − t i

bt jk
ac + t i

ct
jk
ab)

︸ ︷︷ ︸

T1T2

+(
t i
at j

btk
c−t i

at j
c tk

b−t i
bt j

atk
c

+t i
ct j

atk
b+t i

bt j
c tk

a−t i
ct j

btk
a
)

︸ ︷︷ ︸
1
6T3

1

]
〈Φmn

e f |Ĥ|Φi jk
abc〉+

∑
i< j<k<l,
a<b<c<d

[

(
t i j
abtkl

cd−t i j
actkl

bd+t i j
actkl

db

−t i j
catkl

db+t i j
catkl

bd+t i j
cdtkl

ab

)
︸ ︷︷ ︸

1
2T2

2

+3(
t i j
abtk

c t l
d−t i j

abtk
dt l

c+t i j
actk

dt l
b−t i j

catk
dt l

b−t i j
actk

bt l
d

+t i j
adtk

bt l
c−t i j

adtk
c t l

b+t i j
datk

c t l
b+t i j

cdtk
at l

b−t i j
dctk

at l
b

)
︸ ︷︷ ︸

1
2T2

1T2

+
(

t i
at j

btk
c t l

d−t i
at j

c tk
bt l

d−t i
bt j

atk
c t l

d+t i
ct j

atk
bt l

d+t i
bt j

c tk
at l

d−t i
ct j

btk
at l

d

−t i
at j

btk
dt l

c+t i
at j

c tk
dt l

b+t i
bt j

atk
dt l

c−t i
ct j

atk
dt l

b−t i
bt j

c tk
dt l

a+t i
ct j

btk
dt l

a

+t i
at j

dtk
bt l

c−t i
at j

dtk
c t l

b−t i
bt j

dtk
at l

c+t i
ct j

dtk
at l

b+t i
bt j

dtk
c t l

a−t i
ct j

dtk
bt l

a

−t i
dt j

atk
bt l

c+t i
dt j

atk
c t l

b+t i
dt j

btk
at l

c−t i
dt j

c tk
at l

b−t i
dt j

btk
c t l

a+t i
dt j

c tk
bt l

a
︸ ︷︷ ︸

1
24T4

1

)
]

〈Φmn
e f |Ĥ|Φi jkl

abcd〉

+0. (3.1.23)

Besides the single and double amplitudes appearing in the equations (3.1.22)

and (3.1.23), there are several CI matrix elements, such as 〈Φm
e |Ĥ|Φi

a〉, 〈Φm
e |Ĥ|Φi j

ab〉,
〈Φm

e |Ĥ|Φi jk
abc〉, 〈Φmn

e f |Ĥ|Φi
a〉, 〈Φmn

e f |Ĥ|Φi j
ab〉, 〈Φmn

e f |Ĥ|Φi jk
abc〉 and 〈Φmn

e f |Ĥ|Φi jkl
abcd〉, needs

to be calculate. They can be derived by the Slate-Condon’s rule. With given initial

guess, the single and double amplitudes can be calculated iteratively. Normally,

for the CCSD method, the second order Møller-Plesset perturbation theory (MP2)

wave function is taken as initial guess for the single and double amplitudes.

CCSD method with moderate basis sets works well for calculating ground and

excited states. However, this method is still too expensive to perform on larger

molecules. O. Christiansen et al.[63] proposed a simplified CCSD method called

approximated coupled cluster singles and doubles (CC2) method. They take the
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3.2. Model Hamiltonian method

double amplitudes from MP2 results and keep them fixed while using equa-

tion (3.1.22) to calculate the single amplitudes iteratively. This approxima-

tion largely simplifies the computational cost for calculating double amplitudes

which are less important factors for singly excited states. Since the singly ex-

cited states are the naturally easiest approachable excited states, they are of

major interest for spectroscopic and opto-electronic applications. As a matter of

fact, the CC2 method nowadays is often used as a standard method for excited

states calculations of larger systems.

3.2. MODEL HAMILTONIAN METHOD

3.2.1. MATRIX ELEMENTS

As mentioned in section 2.2, the model Hamiltonian method is a useful tool and

has been widely applied for dimer systems.[25,28,29,30,31,64,65] In this section we

are going to derive this method through an ab initio way.

As an example, we consider a dimer system consisting of two identical monomers

A and B oriented in a specific symmetry. The ground state wavefunction Ψ0 of

the dimer system, neglecting any interaction between the monomers, is written

as

Ψ0 = |hAh̄AhBh̄B〉, (3.2.1)

where the hA (h̄A) and hB (h̄B) are the HOMO of monomer A and B with alpha

(beta) spin respectively. The four energetically lowest diabatic excited states in

equation (2.2.1) are given by

ΨA∗B =
1√
2
(|hAl̄AhBh̄B〉+ |lAh̄AhBh̄B〉), (3.2.2)

ΨAB∗ =
1√
2
(|hAh̄AhBl̄B〉+ |hAh̄AlBh̄B〉), (3.2.3)

ΨA+B− =
1√
2
(|hAl̄BhBh̄B〉+ |lBh̄AhBh̄B〉), (3.2.4)

ΨA−B+ =
1√
2
(|hAh̄AhBl̄A〉+ |hAh̄AlAh̄B〉), (3.2.5)
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where the lA (l̄A) and lB (l̄B) are the LUMO of monomer A and B with alpha

(beta) spin respectively.

We take Dh as an example. By inserting equations (3.2.3) and (3.2.4) in equation

(2.2.7) and assuming the MOs are orthonormalized, we get

Dh = 〈ΨA+B− |Ĥ|ΨAB∗〉

=
1
2

[
〈hA l̄BhBh̄B|Ĥ|hAh̄AhB l̄B〉+ 〈hA l̄BhBh̄B|Ĥ|hAh̄AlBh̄B〉

+〈lBh̄AhBh̄B|Ĥ|hAh̄AhB l̄B〉+ 〈lBh̄AhBh̄B|Ĥ|hAh̄AlBh̄B〉
]

=
1
2

[
− (hB|ĥ|hA)− (hBhB|hBhA)− (hAhA|hBhA)− (lBlB|hBhA)+(lBhA|hBlB)

+(lBhA|hBlB)

−(hB|ĥ|hA)− (hBhB|hBhA)− (hAhA|hBhA)− (lBlB|hBhA)+(lBhA|hBlB)

+(lBhA|hBlB)
]

= −(hB|F̂|hA)+2(lBhA|hBlB)− (lBlB|hBhA), (3.2.6)

where F̂ is the Fock operator. Similar operations can be done for De, VEC and W

(see appendix C for explicit derivations) which result in

De = (lB|F̂|lA)+2(hAlB|lAhA)− (hAhA|lBlA), (3.2.7)

VEC = 2(lAhA|hBlB)− (lAlB|hBhA), (3.2.8)

W = 2(hAlB|lAhB)− (hAhB|lBlA). (3.2.9)

Here, we use another approximation for the HOMO (ψH) and HOMO-1 (ψH−1)

of the dimer written as linear combination of the HOMOs (hA and hB) of the

monomers

ψH ≈ 1√
2
(hA −hB), ψH−1 ≈

1√
2
(hA +hB), (3.2.10)

which results in

hA ≈ 1√
2
(ψH +ψH−1), hB ≈ 1√

2
(ψH −ψH−1). (3.2.11)

Thus the one electron integral part of Dh in equation (3.2.6) (hB|F̂|hA) is given
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3.2. Model Hamiltonian method

as

(hB|F̂|hA) ≈ 1
2

(
ψH −ψH−1|F̂|ψH +ψH−1

)

=
1
2
(ψH |F̂|ψH)− (ψH−1|F̂|ψH−1)

=
1
2
(εH − εH−1). (3.2.12)

εH and εH−1 are the orbital energies of the HOMO and HOMO-1 of the dimer

respectively. A more precise way to present these integrals, which are given in

terms of monomer orbitals, is to transform the monomer MOs into dimer MOs

(for details about orbital transforming, see section 3.4.1)

hA = ∑
i

ChA
i ψi, hB = ∑

j
ChB

j ψ j. (3.2.13)

This leads to (hB|F̂|hA) as a linear combination of all the dimer orbital energies

(hB|F̂|hA) =

(

∑
j

ChB
j ψ j|F̂|∑

i
ChA

i ψi

)

= ∑
i

ChA
i ·ChB

i · εi. (3.2.14)

In most cases, equation (3.2.12) is a very good approximation for equation

(3.2.14). Similarly, the one electron integral part (lB|F̂|lA) of the electron transfer

parameter De can be written as

(lB|F̂|lA) = ∑
i

ClB
i ·ClA

i · εi

≈ 1
2
(εL − εL+1), (3.2.15)

The two electron integral parts of these coupling parameters have been writ-

ten in the chemists notation[60] that they can be understood as interactions be-

tween transition densities. In the exciton coupling parameter VEC, the first term

(lAhA|hBlB) is composed of a transition density corresponding to the LUMO to

HOMO excitation on A (lAhA) and a transition density HOMO to LUMO on B

(hBlB). Förster recognized that this integral can be approximated with spectro-

scopically available quantities.[32,66] For the second term (lAlB|hBhA), it describes

25



3. Theoretical methods

the interaction between a transition density corresponding to the LUMO of A to

LUMO of B transition (lAlB) and a transition density corresponding to HOMO of

B to HOMO of A transition (hBhA). This is called as the Dexter type transition.[67]

Similarly, the two electron integrals in the expressions of De, Dh and W are also

interpreted as transition density interactions. Those transition densities, which

are connected to two monomers e. g. lAlB and hBhA etc., are strong functions to

the distance between the two monomers. For aggregate systems, if the closest

intermolecular distance is about 3 - 4 Å or even larger, these integrals are rela-

tively small that we can use the following approximate equations for evaluating

the coupling parameters

VEC ≈ 2(lAhA|hBlB), (3.2.16)

De ≈
1
2
(εL+1− εL), (3.2.17)

Dh ≈
1
2
(εH+1− εH), (3.2.18)

W ≈ 0. (3.2.19)

3.2.2. SOLUTIONS OF THE MODEL HAMILTONIAN METHOD

The coupling matrix tells that the four lowest excited states are given as the

linear combination of these four diabatic excitation configurations (ΨA∗B, ΨAB∗,

ΨA+B− and ΨA−B+). Diagonalizing the coupling matrix leads to the energies of

the four lowest adiabatic excited states. Here, we will diagonalize the matrix H

in two steps, which helps to understand the physical meaning of the coupling

matrix and the corresponding excited states wavefunctions.

Due to the assumed symmetry of the system (Ci or Cs etc.), we can introduce a

unitary matrix U1 to block diagonalize the coupling matrix. U1 is given as

U1 =
1√
2









1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1









. (3.2.20)
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3.2. Model Hamiltonian method

We get the new coupling matrix H̃ from the unitary transformation

H̃ = U†
1 ·H ·U1 =









EF +VEC De +Dh 0 0

De +Dh ECT +W 0 0

0 0 EF −VEC De −Dh

0 0 De −Dh ECT −W









. (3.2.21)

According to the equation (2.2.1), the original basis set (column vector) is trans-

formed by the matrix U†
1

U†
1 ·









〈ΨA∗B|
〈ΨAB∗ |
〈ΨA+B−|
〈ΨA−B+|









=
1√
2









〈ΨA∗B|+ 〈ΨAB∗|
〈ΨA+B− |+ 〈ΨA−B+ |
〈ΨA∗B|− 〈ΨAB∗|

〈ΨA+B− |− 〈ΨA−B+ |









. (3.2.22)

The first term is a NE configuration which is the plus combination of two NE

diabatic configurations and the second term is a CT configuration which is the

plus combination of two CT diabatic configurations. Both of them belong to the

plus symmetry representation. Their linear combinations give the expression of

the adiabatic excited states which have the plus symmetry (Φ
1(+)

and Φ
2(+)

). It

also shows that the combined coupling parameter De +Dh is responsible for the

character mixing for the states Φ
1(+)

and Φ
2(+)

, that the larger is De +Dh, the

stronger is the character mixing for the two states.

The latter two configurations in the equation (3.2.22) belong to the minus sym-

metry and they are orthogonal to the first two configurations. They generate the

two adiabatic states which have the minus symmetry (Φ
1(−)

and Φ
2(−)

). Their

characters are depending on the value of the combined coupling parameter

De −Dh.

Since the H̃ matrix is block diagonalized, each block matrix can be treated sepa-

rately. Let’s take the upper block matrix to proceed solving the wavefunction. In

order to get the analytical solution, we use Jacobi’s Diagonalization[68] for the

2×2 matrix. A unitary matrix U2

(

cosα −sinα
sinα cosα

)

(3.2.23)
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is supposed to diagonalize the matrix

(

EF +VEC De +Dh

De +Dh ECT +W

)

. (3.2.24)

Therefore, the rotational angle α must satisfy the equation tan2α = 2(De+Dh)
EF+VEC−ECT−W .

This directly gives the solution for the two plus symmetry states

|Φ
1(+)

〉= cosα√
2

(|ΨA∗B〉+ |ΨAB∗〉)+ sinα√
2
(|ΨA+B−〉+ |ΨA−B+〉), (3.2.25)

E
1(+)

=
EF +VEC +ECT +W

2
−
√

(De +Dh)2+
(EF +VEC −ECT −W )2

4
, (3.2.26)

|Φ
2(+)

〉=−sinα√
2
(|ΨA∗B〉+ |ΨAB∗〉)+ cosα√

2
(|ΨA+B−〉+ |ΨA−B+〉), (3.2.27)

E
2(+)

=
EF +VEC +ECT +W

2
+

√

(De +Dh)2+
(EF +VEC −ECT −W )2

4
. (3.2.28)

For the two minus symmetry states, they can be solved in the similar way

|Φ
1(−)

〉= cosβ√
2
(|ΨA∗B〉− |ΨAB∗〉)+ sinβ√

2
(|ΨA+B−〉− |ΨA−B+〉), (3.2.29)

E
1(−)

=
EF −VEC +ECT −W

2
−
√

(De −Dh)2+
(EF −VEC −ECT +W )2

4
, (3.2.30)

|Φ
2(−)

〉=−sinβ√
2
(|ΨA∗B〉− |ΨAB∗〉)+ cosβ√

2
(|ΨA+B−〉− |ΨA−B+〉), (3.2.31)

E
2(−)

=
EF −VEC +ECT −W

2
+

√

(De −Dh)2+
(EF −VEC −ECT +W )2

4
, (3.2.32)

where the angle β should satisfy the equation tan2β = 2(De−Dh)
EF−VEC−ECT+W .
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3.3. Algorithms for evaluating transition density

3.3. ALGORITHMS FOR EVALUATING TRANSITION DENSITY

3.3.1. TRANSITION DENSITY AND TRANSITION DENSITY MATRIX

For a ground state Φ0

Φ0 = |χ̂1χ̂2 · · · χ̂n〉, (3.3.1)

and its resulting excited state Φex

Φex = |χ1χ2 · · ·χn〉, (3.3.2)

a first order transition density P[69] is given as

P = n
∫

dσ1 · · ·dσndr1 · · ·drnΦ∗
0Φex

=
n

∑
k,l

(−1)k+l
∫

χ̂∗
k χldσ1 · 〈χ̂1χ̂2 · · · χ̂n

︸ ︷︷ ︸

no χ̂k

|χ1χ2 · · ·χn
︸ ︷︷ ︸

no χl

〉

=
n

∑
k,l

(−1)k+l ·Tkl

∫

χ̂∗
k χldσ1. (3.3.3)

dσi and dri are the spin and spatial coordinates for electron ’i’. Tkl is the transi-

tion density matrix. For the case if the two sets of MOs for ground and excited

states are orthogonal to each other, T is the unit matrix[60]

Ti j = δi j. (3.3.4)

The following sections will discuss how to calculate the matrix T if nonorthog-

onal MOs are used. The nonorthogonal MOs give rise to the non-unit transition

density matrix, by taking the definition from equation (4.4.16)

Tkl = 〈χ̂1χ̂2 · · · χ̂n
︸ ︷︷ ︸

no χ̂k

|χ1χ2 · · ·χn
︸ ︷︷ ︸

no χl

〉. (3.3.5)

Matrix T is related the overlap matrix S between the ground and excited states
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in terms of MOs






S1,1 · · · S1,n
... . . . ...

Sn,1 · · · Sn,n







≡







〈χ̂1|χ1〉 · · · 〈χ̂1|χn〉
... . . . ...

〈χ̂n|χ1〉 · · · 〈χ̂n|χn〉






. (3.3.6)

Then Tkl equals the cofactor of the matrix element 〈χ̂k|χl〉 of the matrix S

Tkl = det















S1,1 · · · S1,l−1 S1,l+1 · · · S1,n
... . . . ...

... . . . ...

Sk−1,1 · · · Sk−1,l−1 Sk−1,l+1 · · · Sk−1,n

Sk+1,1 · · · Sk+1,l−1 Sk+1,l+1 · · · Sk+1,n
... . . . ...

... . . . ...

Sn,1 · · · Sn,l−1 Sn,l+1 · · · Sn,n















. (3.3.7)

Therefore, the matrix T is just the adjugate matrix of the matrix S

T = Sad j. (3.3.8)

When matrix S is non-singular, the adjugate matrix Sad j is calculated in the

following way

Sad j = detS ·S−1. (3.3.9)

If S is a singular matrix, S is not invertible. To calculate the Sad j becomes more

tricky. A modified Gauss-Elimination algorithm was proposed by Prof. Dr. M. Do-

browolski (Department of Mathematics, University of Würzburg, in April, 2009),

which can calculate the Sad j in any possible situation.

3.3.2. MODIFIED GAUSS-ELIMINATION ALGORITHM

By a standard Gauss-Elimination (GE) process for a matrix S, the resulting upper

triangular matrix U satisfies

U = G ·S, (3.3.10)

where the matrix G is the elimination matrix and has a unit determinant. Thus,

the determinant of matrix S equals the one of matrix U

detS = detU = (−1)α
n

∏
i=1

Uii. (3.3.11)

30



3.3. Algorithms for evaluating transition density

α is the total permutation number after the full pivot in the GE process. With

the pivot, one immediately gets an integer d such that the last d rows of matrix

U are zeros.

Based on different values of d, three cases are distinguished:

d = 0

Matrix S is a non-singular matrix, that it is invertible. Thus, the adjugate matrix

can be calculated with equations (3.3.9) and (3.3.11)

Sad j = (−1)α
n

∏
i=1

Uii ·S−1. (3.3.12)

d = 1

Matrix S is not invertible, that the equation (3.3.12) is not usable directly. There-

fore, we are trying to built a new invertible matrix St with a variable matrix

element t. Its adjugate matrix is a function of t. When t approaches 0, we get

the exact adjugate matrix of the singular matrix S.

First, we create a new invertible matrix Ut by only substituting the last matrix

element Unn in the triangular matrix U with a non-zero variable t

Ut =









U1,1 · · · U1,n−1 U1,n
... . . . ...

...

0 · · · Un−1,n−1 Un−1,n

0 · · · 0 t









. (3.3.13)

In order to satisfy the equation Ut ·S−1
t = G, the matrix S−1

t can be written in the

following form

S−1
t = Y+ t−1 ·Z. (3.3.14)

Just by taking the matrix Y with the form

Y =









S−1
1,1 · · · S−1

1,n−1 S−1
1,n

... . . . ...
...

S−1
n−1,1 · · · S−1

n−1,n−1 S−1
n−1,n

0 · · · 0 0









, (3.3.15)
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and matrix Z satisfies the equation

G′ = U−1
t=1 ·Z. (3.3.16)

where matrix G′ takes the form

G′ =









0 · · · 0 0
... . . . ...

...

0 · · · 0 0

Gn,1 · · · G−1
n,n−1 G−1

n,n









. (3.3.17)

Therefore, we get the adjugate matrix of S

Sad j = (−1)α
n−1

∏
i=1

Uii · lim
t→0

t(Y+ t−1Z) = (−1)α
n−1

∏
i=1

Uii ·Z. (3.3.18)

d > 1

For such case, all cofactors of the matrix S are 0, because each matrix of cofactor

will have at least one zero line. Therefore, the adjugate matrix of S is a trivial

zero matrix

Sad j = 0. (3.3.19)

3.4. CHARACTER ANALYSIS OF EXCITED STATES ON DE-

LOCALIZED PICTURE

3.4.1. BASED ON THE CIS TYPE WAVEFUNCTION

In the CIS approach, the adiabatic excited states for a system that is described

with a closed shell Slater determinant Ψ0 can be written as

ΨCIS = ∑
a,i

Cd
aiÊaiΦ0. (3.4.1)

Here the superscript d indicates that the canonical (delocalized) MOs are used,

Cd
ai is the CI (singles) coefficient for the excitation of the electrons from the

spatial orbitals i to a, and Êai is the spin-adapted single excitation operator rep-
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resenting an excitation of one electron from the occupied orbital i to the virtual

orbital a. The latter is defined by

Êai =
1√
2

(

â†
i âa + â†

ī
âā

)

, (3.4.2)

where â†
ā (âi) represents the common creation (annihilation) operator of the

spin orbital and the over-bar indicates β spin orbital.

Consider a dimer system which is composed of two monomers A and B. Accord-

ing to Peterlenz’s definition of CT and NE states,[23] an analysis of the character

of the CIS wave function requires a definition of the localized MOs. We have

chosen to take the canonical MOs of the monomers for this purpose. In or-

der to retain a proper definition of the wave function the localized MOs ψ̃ l are

orthonormalized using Löwdin’s method[70,71]. This leads to an orthonormal

basis set where each orbital is essentially localized on either one or the other

monomer.

With these definitions, the delocalized MOs ~ψd can be represented from the

localized orbitals by
~ψd = U · ~̃ψ l, (3.4.3)

where U is a unitary matrix. It includes two-step operations of an orbital trans-

formation (T) and an orthogonalization (D)

U = D ·T. (3.4.4)

Matrix T transform the delocalized MOs to localized MOs

ψd
m = ∑

p
Tm,pψ l

p. (3.4.5)

Its inverse matrix T−1 transforms the localized MOs back to delocalized MOs

ψ l
p = ∑

m
T−1

p,mψd
m. (3.4.6)
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Considering the orthogonality condition for delocalized MOs, we multiply equa-

tion (3.4.6) with ψd
n
∗ from the left and integrate over the space

〈ψd
n |ψ l

p〉= ∑
m

T−1
p,m〈ψd

n |ψd
m〉

On,p = ∑
m

T−1
m,p ·δn,m

On,p = T−1
p,n . (3.4.7)

On,p is the overlap between the delocalized and localized MOs. Since O and T

are unitary matrices, we get the matrix T

T = O (3.4.8)

Matrix D represents a standard Löwdin’s orthogonalization

D = S− 1
2 (3.4.9)

where the matrix S is the overlap matrix of the atomic basis sets.

Thus, the excited wave function in terms of the localized orbitals can be repre-

sented by

ΨCIS = ∑
ab

∑
i j

Cd
aiUbaU†

jiÊb jΨ0 = ∑
b j

Cl
b jÊb jΨ0, (3.4.10)

where the CI coefficients in the delocalized basis are given by

Cl
b j = ∑

ai
UbaCd

aiU
†
ji. (3.4.11)

As the localized orbitals can be unambiguously connected to the monomers, any

diabatic configuration in the last equation can be designated as a pure CT or NE

configuration and the CT contribution of the excited state is given by

PCT =
∑(Cl

CT)
2

∑(Cl)2 . (3.4.12)

This analysis method works well for aggregate systems, as long as the monomer

orbitals are well defined. However, the present method can not be easily applied

for single molecules. For that purpose, one needs a clear cut definition for dif-

ferent domains in the monomer. A possible solution would be using the natural

atomic orbitals (NAO) that form the domain basis set. This may be of interest
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3.4. Character analysis of excited states on delocalized picture

for large polyers or bio-molecules.

3.4.2. BASED ON THE SPATIAL OVERLAP

The most widely used method for calculating excited state properties of medium

or large size molecules is time-dependent density functional theory (TDDFT).

However, it is now well-known that it underestimates the excitation energies

of CT states substantially.[72,73,74,75] As mentioned before (section 2.3), long

range corrected (LC) functionals have largely solved this problem. Tozer et al.

established a method that evaluates the amount of CT character in an excited

state.[76,77] They found the spatial overlap of the orbitals involved in the excita-

tions correlates with the excitation energy error of an excited state. The spatial

overlap between the occupied orbital ϕi and the virtual orbital ϕa is given as

Oi,a =
∫

|ϕi(r)| · |ϕa(r)|dr. (3.4.13)

The moduli of the orbitals make sure that the integral would not be trivially

zero. This integral is about one if the electron, before and after excitation, is

located in the same spatial region. This ’unmoved’ behavior just fits to the idea

of an NE excitation. The NE character of an adiabatic excited state Λ, which is

given as a linear combination of these single excitation configurations, can be

written as

Λ =
∑i,a κ2

i,aOi,a

∑i,a κ2
i,a

, (3.4.14)

where the κi,a is the coefficient of the configuration Φi
a. This method gives a

possibility to analyze the character of an excited state for a monomer system.

Based on the idea, each excitation configuration has a clear ratio of each charac-

ter. Compared to Kasha’s definition[78], this method is more like analyzing the

character of an excitation process that any change compared with the ground

state wavefunction is taken as CT character.

For an extreme case, a dimer system consists of two monomers A and B with

infinite distance. The lowest monomer excited state would have the same wave-

function as the lowest dimer excited state. In the Tozer’s definition, the lowest

monomer excited state is not necessarily a pure NE state. Thus, the correspond-

ing dimer excited state should not be a pure NE state as well. However, in the

Peterlenz’s definition, the first dimer excited state is expected possessing pure
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NE character. This shows that the Tozer’s definition does not necessary satisfy

the Peterlenz’s definition for aggregates.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. METHOD VALIDATION FOR VALENCE EXCITED STATES

CALCULATION OF DYE AGGREGATES

4.1.1. INTRODUCTION

In the weak coupling case[32,79] the rate for the resonance energy transfer (RET)

process is given by Fermi’s golden rule[80,81]

kEET =
2π
h̄
|VEC|2JEET (4.1.1)

Here JEET represents the Franck-Condon weighted density i. e. the overlap of

the bands of the donor fluorescence and acceptor absorption spectra. VEC is the

electronic coupling matrix element between the two neutral states indicated in

Fig. 2.1 (left hand side). It is the central term in the EET as it represents the

electronic interaction that gives rise to the process.

The involved states in EET are the so-called neutral excited states which are called

Frenkel excitons in the context of solid state physics (Fig. 2.1 left hand side). The

coupling between both NE states which is central for the energy transfer process

can be approximated by the well-known Förster formula[32,66]

VEC =
~DA~DB

R3
AB

−3
(~DA~RAB)(~RAB~DB)

R5
AB

, (4.1.2)
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Figure 4.1.: The planar perylene tetracarboxylic bisimide (PBI) moiety.

where ~DA and ~DB are the transition dipole moments of both monomers and ~RAB

is the vector between A and B. As can be seen from this equation the mutual

orientation of the monomers in the aggregate is crucial for the efficiency of the

EET.

Besides these NE states, the transfer properties can also be influenced by so-

called charge-transfer (CT) states (Fig. 2.1 right hand side). They arise from

electron-transfer processes between the monomers. Pure CT states possess small

to vanishing transition dipole moments, causing small coupling matrix elements

within the Förster approach. If such states are populated after excitation they

act as a trap in the energy transfer process. Consequently, a reliable description

of the EET must comprise both kinds of states and their mutual interactions.

The potential importance of CT states for the spectral properties of 3,4,9,10-

perylene tetracarboxylic dianhydride (PTCDA) and their possible role as exciton

traps was pointed out by Bulovic et al.,[12,82] Gregg and coworkers,[83,84,85,86]

Gomez et al.,[87] Scholz et al.,[30] and Hoffmann et al.[64] In the latter work,

similar conclusions were also drawn for perylene tetracarboxylic bisimide (PBI)

(Fig. 4.1). However, these indications are not unambiguous since they are based

on empirical Hamiltonians for which the necessary parameters were fitted with

respect to the experimental spectra. Furthermore, recent experimental investi-

gations did not support an influence of charge-transfer states on the absorption

spectra of PBI aggregates.[21,88,89]

Computing the necessary parameters by quantum-chemical methods leads to a
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less ambiguous picture of the EET in aggregates, but naturally depends on the

accuracy of the underlying quantum chemical approaches. Indeed, computing

the coupling parameter VEC from the transition densities of the isolated chro-

mophores[46,90,91] a strong dependence on the underlying method is found. For

PBI aggregates Munoz-Losa et al.[90] found that TD-DFT employing the well

known B3LYP functional (TD-B3LYP) provided 20 to 40 % smaller coupling pa-

rameters than more sophisticated treatments as the symmetry adapted cluster-

configuration interaction (SAC-CI) approach or the complete active space self

consistent field (CASSCF) treatment. This finding agrees well with the calcu-

lations of Fückel et al.,[46] who found for a PBI dyad that TD-B3LYP predicts

15 % smaller coupling constants than the approximate coupled-cluster singles-

and-doubles (CC2) model. The configuration interaction singles excitation (CIS)

method which is closely related to time dependent Hartree-Fock (TD-HF) on the

other hand predicts values which are about 20 % larger[90] than the values ob-

tained from the more sophisticated treatments. The differences also seem to

be quite general with respect to the molecular system since for rubrene similar

trends were found by Gao et al.[92] They are also observed if VEC is computed

by a supermolecule approach.[2,22,93] For PBI dimers gas phase TD-HF gave a

coupling constant VEC of 1216 cm−1 (0.151 eV) while 875 cm−1 (0.108 eV) was

computed with TD-B3LYP.

This difference might result from the well-known drawbacks of TD-HF and TD-

B3LYP. While TD-HF tends to overestimate the excitation energies of CT states

even more than their NE counterparts, the opposite holds true for most TD-DFT

approaches. As a consequence TD-HF or related approaches predict the first CT

states of PBI dimers to lie about 3 eV above the NE states while TD-B3LYP pre-

dicts that the two lowest excited states have CT character.[91,94] This difference

is most probably owing to the poor performance of TD-B3LYP for low lying ex-

citations in spatially separated systems which is caused by the self-interaction

error.[72,73,74,75] The different energy order of these methods was also men-

tioned by Clark et al.[95] and Guthmuller et al.[93] Note that VEC was obtained

in all cases from the two electronic states with NE character.

A further test of the approaches was performed by Zhao et al.[91] in a work that

investigates the crystallochromic solid state effect of several PBI dyes.[96] They

computed the vertical excitation energies for twenty different crystal structures.

For that purpose π-stacked PBI dimers were taken from the crystal structure.

Their excitation energies were calculated and corrected for solid state effects.
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4. Results and Discussion

A comparison of the theoretical results with the experimental absorption max-

ima showed that TD-HF perfectly reproduces the experimental changes of the

excitation energies as a function of the crystal structure while TD-B3LYP failed

completely since it predicts blue shifts of the absorption maxima for substances

that show red shifts and vice versa. As the absorption maxima of the PBI deriva-

tives are assigned to transitions to the NE states, this result was not expected

because TD-B3LYP is generally known to describe excitations to NE states quite

accurately, typically TD-B3LYP excitation energies are more reliable than those

from TD-HF calculations.

As we will show in the present section, an explanation for the failure of TD-DFT

approaches is that the employed states represent a mixing of the NE and the

CT diabatic configurations. In this case wrong energetic order of both kinds

of states leads to wrong energetic positions and characters of the low lying ex-

cited states. To test this assumption, different quantum chemical approaches

are used to compute the energy ordering and the character of the states of PBI

dimers. The most accurate method employed in the present section is the spin-

component scaling modification of CC2 (SCS-CC2).[97] This method was shown

to describe the energy position of NE and CT states with remarkably small er-

rors typically below 0.15 eV. Thus, SCS-CC2 is clearly much more reliable than

TD-HF and any TD-DFT approach. Due to its accuracy SCS-CC2 provides a re-

liable picture about the energy order and the characters of the involved states.

But this method has limits as well, e. g. it cannot reliably describe doubly excited

states. However, more accurate methods, which overcome this limits, are by far

too expensive for such large systems like PBI dimers. Therefore, SCS-CC2 serves

as a reference to check the quality of less sophisticated linear response theories.

In this section we investigate pure GGA functional like BLYP and PBE and hy-

brid functions like B3LYP, BHLYP and PBE0. Within the description of charge

transfer (CT) states, these DFT functionals are well known to show a wrong

behavior of the exchange potentials, which should decay as −r−1 at large dis-

tances.[72,73,74,75] This behavior is approximately correct in LC functionals, so

that an improved description of CT states should result. To test the outcome of

such an LC functional for the present problem, we chose the popular CAM-B3LYP

functional as an example. This functional is a combination of the hybrid func-

tional B3LYP with a long-range correction for the two-electron operator (1/r12),

which contains three additional parameters.[59] Therefore, depending on r12

the mixture of exact Hartree-Fock and DFT exchange varies for different regions
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4.1. Valence excited states calculation of dye aggregates

Figure 4.2.: Torsional motion of the dimer system around the angle ϕ.

of the molecule. In the literature it was shown that CAM-B3LYP can describe

charge transfer states quite accurately for a wide range of molecules.[76,98,99]

4.1.2. CALCULATION PROCEDURE

The computations are performed for the PBI dimer as a model system for dye ag-

gregates. To investigate variations in energy order and characters of the involved

states as a function of the relative orientation of both monomers, potential en-

ergy curves are computed, which describe a torsion of the two monomers with

respect to each other (Fig. 4.2). Most of the calculations were performed with

the Turbomole 5.9 package[100] using the TZV[101] basis set for the hydrogen

atoms and the TZVP[97] basis at non-hydrogen atoms {TZV(P)}. Ground state

energies were calculated with BLYP,[49,50,51] PBE,[49,50,54,55] PBE0,[49,50,54,55,58]

BHLYP,[49,50,51,52,53] B3LYP,[49,50,51,53,56,57] CAM-B3LYP[59] and SCS-CC2.[63,97,102,103]

In order to speed up computational time, BLYP, PBE and SCS-CC2 were used

combined with the resolution of identity (RI) approximation[62,104,105] with
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4. Results and Discussion

the TZVP auxiliary basis sets.[101] The CAM-B3LYP calculations were performed

with the Gaussian09[106] program. For this method the 6-311G**[107,108,109,110]

basis set was employed.

Dispersive interactions are crucial for the ground and excited states of dimers

of large π-conjugated molecules. To take them into account we have included

Grimme’s empirical dispersion correction[111] and computed ground state ener-

gies at the dispersion corrected BLYP (BLYP-D) level. As shown previously the

binding energies resulting from BLYP-D/TZV(P) and SCS MP2/QZVPP[112] com-

putations are quite similar.[94]

Here, the PBI monomer structure from the work of Zhao et al.[91] was used.

This structure was optimized at the BLYP-D/TZV(P) level of theory. The dimer

structures were built up in a π-stacked face-to-face orientation with an inter-

molecular distance of 3.4 Å. For the potential energy curves shown in this work

the torsion angle about the stacking axis was varied from 0◦ to 90◦.

Excited state calculations were performed with SCS-CC2,[97] TD DFT,[113,114]

and TD-HF. While SCS-CC2 accounts for dispersion effects this is not the case

for the other methods. Hence, potential energy curves of the excited states were

approximated by adding the excitation energies of the considered method to the

BLYP-D ground state energy.[91] In the following these methods will be desig-

nated as TD-DFT-D and TD-HF-D. It has to be mentioned that the convergency

of the wavefunction for PBI dimers represents a big problem due to the small

HOMO to LUMO gap. For all the calculations presented here it was only possible

to achieve convergency, if HF wavefunctions were used as starting guess. While

this worked for the methods presented here, it fails for various other functionals,

especially long-range corrected ones.

It was already pointed out that the electronic states represent mixing of NE and

CT diabatic configurations. In the two state approximation the wave functions

of the two lowest lying adiabatic states (ψ1, ψ2) of 1B1 and 1B2 symmetry can be

written as linear combination of a NE and a zwitterionic configuration (Fig. 2.1)

ψ1 = aφNE +bφCT, ψ2 = cφNE +dφCT. (4.1.3)

Their corresponding transition dipole moments µ1 and µ2 are given as

µ1 = 〈ψ0|e~r|ψ1〉, µ2 = 〈ψ0|e~r|ψ2〉, (4.1.4)
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4.1. Valence excited states calculation of dye aggregates

where e~r is the dipole moment operator, ψ0 is the ground state wavefunction

and ψ1 and ψ2 are the adiabatic excited states. Also, considering the orthonor-

malization condition for the excited states ψ1 and ψ2, the following equations

are valid 





〈ψ1|ψ1〉= 1

〈ψ2|ψ2〉= 1

〈ψ1|ψ2〉= 0

→







a2+b2 = 1

c2+d2 = 1

ac+bd = 0

. (4.1.5)

With the assumption that the transition dipole moment of the CT configuration

µCT is negligible

µCT = e〈ψ0|~r|φCT〉= 0, (4.1.6)

and the NE configuration has a transition dipole moment µNE

µNE = e〈ψ0|~r|φNE〉. (4.1.7)

By inserting equation (4.1.3) into equation (4.1.4) and using equations (4.1.7)

and (4.1.6), we get

µ1 = e〈ψ0|~r|aφNE +bφCT〉
= e〈ψ0|~r|aφNE〉= aµNE, (4.1.8)

and

µ2 = e〈ψ0|~r|cφNE +dφCT〉
= e〈ψ0|~r|cφNE〉= cµNE. (4.1.9)

We can divide equation (4.1.8) by equation (4.1.9)

µ1

µ2
=

a
c
. (4.1.10)

Together with equation (4.1.5), we can calculate the CT ratio of the excited

states

CT1 =
b2

a2+b2 =
µ2

2

µ2
1 +µ2

2

, CT2 =
d2

c2+d2 =
µ2

1

µ2
1 +µ2

2

. (4.1.11)

However, the transition dipole moments of 1B2 states go to zero in the limit of
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ϕ = 0◦. As the corresponding squared transition dipole moments become very

small, for these states the analysis can only be applied for ϕ > 30◦. At 0◦ rotation

the symmetry of the dimer is D2h and so that 1B2 state becomes a 1B2g one and

the transition from the ground state to this state is symmetry forbidden. In the

following the symmetry of the structures at 0◦ and 90◦ (D2d) are decreased to

D2 for reasons of simplicity. But this change of symmetry does not change the

picture introduced above.

4.1.3. POTENTIAL ENERGY CURVES AND TRANSITION DIPOLE MO-

MENTS

In contrast to the local approach, the super molecule approach also accounts for

effects resulting from the mixing of orbitals of both monomers, i. e. it should be

the method of choice for aggregates with distances smaller than 4 Å.[37] In this

approach the electronic coupling matrix element VEC is given as one half of the

energy difference between the positive and the negative linear combinations of

both NE states.[90,115] Super molecule computations provide a delocalized pic-

ture for dimers consisting of two identical monomers. The resulting delocalized

adiabatic states are formally linear combinations of the diabatic NE and CT con-

figurations (Fig. 2.1). Hence, they can also be classified as NE and CT states.

Nevertheless, for such approaches the terms NE or CT excited state become mis-

leading as they actually characterize single diabatic configurations[61,116] rather

than complete adiabatic electronic wave functions. The natures of the latter are

determined by linear combinations of several configurations with different char-

acters. However, as a starting point it is justified to classify the states according

to their dominating character as NE or CT states. As this is also the common

terminology in the field, we will use this in the following. For qualitative and

quantitative decisions the computed transition dipole moments are used.

Fig. 4.3 compares TD-HF-D (left) and SCS-CC2 (right) for a torsional motion of

a perylene bisimide (PBI) dimer. As expected from this level of theory, TD-HF-D

overestimates the excitation energies. But besides this the shapes of the poten-

tial energy curves, in particular the minima and the crossing points, are very

similar to the SCS-CC2 results. This is pointed out in Fig. 4.4, which gives the

differences between excitation energies calculated with TD-HF-D and SCS-CC2

as a function of the torsion angle ϕ. TD-HF-D overestimates the excitation ener-

gies of the two lowest electronically excited states (11B1, 11B2) by about 0.2 eV.
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4.1. Valence excited states calculation of dye aggregates

Figure 4.3.: Comparison of TD-HF-D (left) and SCS-CC2 (right) results on a PBI
dimer. Upper part: Potential energy curves of the ground (black)
and NE excited (color, solid) and charge transfer (color, dot-dashed)
states as a function of the torsional angle ϕ. Lower part: Squared
transition dipole moment of the NE excited (solid) and charge trans-
fer (dot-dashed) states. The dashed lines are the sum of the squared
transition dipole moments of 1B1 (brown) and 1B2 (blue) states.

But the relative error is less than 0.1 eV. For the next higher states (21B1, 21B2),

which mainly have CT character, the absolute error is considerably larger (0.9 -

1.0 eV). However, the relative error is again very constant and varies by only

about 0.2 eV. This shows that the TD-HF-D data are shifted by 0.2 eV for mainly

NE and 0.9 eV for mainly CT states. It provides relative excitation energies with

error bars within the accuracy of the SCS-CC2 method. In Fig. 4.3 the squares

of the transition dipole moments are also plotted. For this property TD-HF-D

is in good agreement with SCS-CC2 as well. This underlines the good perfor-

mance of TD-HF-D and explains the success of this method in the work of Zhao
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4. Results and Discussion

Figure 4.4.: Difference between the excitation energies of TD-HF-D and
SCS-CC2

(
∆Eexc = Eexc(TD-HF-D)−Eexc(SCS-CC2)

)
.

et al..[91,94]

TD-DFT approaches are very useful for the description of optical properties of

dye monomers.[99,117,118] As mentioned before, they are problematic for dimers

or larger aggregates since they strongly underestimate the excitation energy

of CT states.[72] As shown in Fig. 4.5 and Fig. 4.6, this is the case for PBI

dimers as well. The figures summarize the adiabatic potential energy curves

computed with dispersion corrected TD-BLYP-D, TD-B3LYP-D, TD-BHLYP-D and

TD-CAM-B3LYP-D. Further DFT functionals like PBE and PBE0 behave very sim-

ilar. Hence, their results are listed in the appendix D. TD-B3LYP-D predicts

four excited states within the energetic range of 1.8 - 3.3 eV (Fig. 4.6 left). The

computed transition dipole moments reveal that the energy position of predomi-

nantly NE and CT states are reversed in comparison to SCS-CC2. While SCS-CC2

for example predicts stronger transition dipole moments for 11B1 and 11B2 and

considerably smaller ones for 21B1 and 21B2, TD-B3LYP-D predicts the opposite.

Interestingly, while the considered adiabatic states possess different characters

the shapes of the two lowest potential energy curves predicted by TD-B3LYP-D

strongly resemble the shapes of the two lowest excited SCS-CC2 curves. Both
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Figure 4.5.: Comparison of an LC and a hybrid DFT functional: CAM-B3LYP-D
(left), BHLYP-D (right). See Fig. 4.3 for further explanations of the
curves.

methods predict that the potential energy curve of 11B1 state has a global mini-

mum at ϕ ≈ 30◦. The minimum of 11B2 state is found at about ϕ = 15◦ with a

slight ascend to ϕ = 0◦. Both methods also predict crossings of 11B2 and 11B1

states at about 50◦ and 65◦. But they differ in the energy separation of both

states for 15◦ < ϕ < 45◦. However, this difference is astonishingly small, if one

takes into account that the TD-B3LYP-D states have predominantly CT character

while SCS-CC2 characterizes them as NE states.

Also the predicted shapes of the upper potential energy curves (21B1, 21B2) re-

semble the ones predicted by SCS-CC2 despite their different characters. In

comparison to SCS-CC2, TD-B3LYP-D underestimates their energy separation.

For ϕ = 0◦ both methods predict 21B2 to be higher in energy than 21B1. How-

ever, while the energy difference is about 0.7 eV for SCS-CC2, TD-B3LYP-D pro-

vides a separation of less than 0.5 eV. Since both methods predict very similar

shapes for 21B2, TD-B3LYP-D finds a crossing between both states already at

about 15◦ which is not found by SCS-CC2. It predicts 21B2 to be beneath 21B1
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Figure 4.6.: Comparison of DFT functionals with different amount of exact HF
exchange: B3LYP-D (left), BLYP-D (right). Upper part: Poten-
tial energy curves of the ground (black), charge transfer (color,
dot-dashed), neutral (color, solid) and character undefined (color,
dashed) excited states as a function of the torsion angle ϕ. Lower
part: Squared transition dipole moment of the excited states
(points). The dashed lines are the summation of the transition
dipole moments of the excited states with B1 symmetry (brown)
and B2 symmetry (turquoise) respectively.

for 15◦ < ϕ < 75◦. For ϕ > 75◦ both states are virtually degenerate. SCS-CC2

finds no crossing for smaller ψ values. Both states are virtually degenerate for

25◦<ϕ < 45◦. For 45◦<ϕ < 75◦ also SCS-CC2 finds 21B2 to be beneath 21B1. For

ϕ > 75◦ both states are predicted to be virtually degenerate again in agreement

with TD-B3LYP-D. Please note, that both methods predict a maximum of 21B1

potential energy curve at about 60◦. Summarizing, the shape of TD-B3LYP-D

and SCS-CC2 potential energy curves are similar, but the characters of the cor-

responding states are interchanged.
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4.1. Valence excited states calculation of dye aggregates

This is underlined by Fig. 4.7. On the left side the differences in the excitation

energies of the states (TD-B3LYP-D vs. SCS-CC2) not considering the character

of the states but only their energy order are depicted. The excitation energies

are slightly too low but the relative errors are below 0.5 eV, slightly larger than

found for TD-HF-D. The picture changes completely if we compare the excita-

tion energies to the states with NE and CT character (Fig. 4.7 right). In this case

the relative errors made by TD-B3LYP are in the order of 1.5 eV. Such an error

is unacceptable because it reflected in the calculated absorption spectra as the

strong transitions are correlated to excitations to NE states, while the weak ones

corresponds to excitation to CT states. All these findings for TD-B3LYP-D hold

for TD-PBE0-D as well (see appendix D).

TD-HF-D strongly overestimates the energetic position of the CT states. Hence,

one expects that an enhanced exact exchange contribution to the functional in-

creases the energy of CT states relative to the energy of NE states. A lowering

of the fraction of exact exchange should lead to the opposite behavior. This is

indeed found if the TD-BHLYP-D and TD-BLYP-D curves are compared to their

TD-B3LYP-D counterparts. The TD-BHLYP-D results are given in Fig. 4.5, while

the TD-BLYP-D curves are shown in Fig. 4.6. Like TD-B3LYP-D, TD-BHLYP-D pre-

dicts four low lying electronic states. As found for B3LYP 11B1 and 21B1 curves

resemble their SCS-CC2 counterparts but the energy order of NE and CT states

are reversed. The potential energy curves of 1B2 states are considerably different

to their SCS-CC2 counterparts. Both SCS-CC2 and TD-BHLYP-D predict a max-

imum of 11B2 curves at around 65◦. However, TD-BHLYP-D predicts a distinct

second maximum at about 30◦ which is neither found by SCS-CC2 nor TD-HF-

D. Considering the shapes of the potential energy curves of both 1B2 states this

second maximum results from avoided crossings between both states. Similar

avoided crossings are not observed in SCS-CC2. Since the shape of the potential

energy curves differ completely from the SCS-CC2 ones, we refrain from further

discussions.

As an example for LC DFT we used the TD-CAM-B3LYP-D method to test its

applicability for the PBI dimer. In Fig. 4.5 the potential energy curves of the

ground and the four lowest excited states are plotted. The shapes of the states

resemble closely the ones of TD-BHLYP-D. So 11B1 and 21B1 curves resemble

their SCS-CC2 counterparts, but again the energy order of the CT and NE states

is reversed as shown by the transition dipole moments. For angles smaller than

45◦ 21B1 state for example possesses a non-vanishing transition dipole moment,
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Figure 4.7.: (left) Difference between the excitation energies of TD-B3LYP-D
and SCS-CC2

(
∆Eexc = Eexc(TD-B3LYP-D)−Eexc(SCS-CC2)

)
only

considering the energy sequence of the states. (right) Differ-
ence between the excitation energies of TD-B3LYP-D and SCS-CC2
(
∆Eexc =Eexc(TD-B3LYP-D)−Eexc(SCS-CC2)

)
for the states of cor-

responding characters.

which is characteristic for NE states. A possible reason for the surprising failure

of TD-CAM-B3LYP-D is that for the PBI dimer the energetic positions of one di-

abatic CT and one NE states of the same symmetry are very close to each other.

Therefore already small deviations can result in a completely different energy

order of the calculated adiabatic states. This may result from the characters of

the involved orbitals. In the PBI dimer the highest two occupied and the low-

est two unoccupied orbitals, which mainly describe the investigated NE and CT

excited states, are completely delocalized over both monomers. Therefore r12

value for the transitions into both types of states should be comparable. Accord-

ing to T. Yanai et al.[59] such intermediate values for r12 should result in a more

or less equal mixture of exact and DFT exchange, which may explain the strong

similarity between TD-CAM-B3LYP-D and TD-BHLYP-D.

In contrast to all other methods considered up to now, TD-BLYP-D (see Fig. 4.6)

describes eight electronic states in the energy range of 1.5 to 3.0 eV, which pos-

sess non-zero transition dipole moments. The same holds for TD-PBE-D (see

appendix D). From the transition dipole moments it is obvious that two sets of

CT states lie below the NE states. As for the two other TD-DFT approaches 11B1

and 11B2 states are energetically separated from the next higher lying states but
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Figure 4.8.: Calculated ratio of CT character for the four lowest excited states
given by SCS-CC2, TD-HF-D, and TD-B3LYP-D (from left to right).

due to the high density of states a strong mixing of the characters is found. This

is corroborated by the transition dipole moments. In TD-BLYP-D as well as in

TD-PBE-D 21B1, 31B1, and 41B1 excited states have significant transition dipole

moments. Since both functionals deviate much more from the more reliable

SCS-CC2 results than the other approaches we refrain from further discussions

and present the corresponding data in the appendix D.

4.1.4. CHARACTERS OF THE ADIABATIC STATES

Within Förster theory the square of the transition moments of the two NE states

are proportional to cos2(ϕ/2) and sin2(ϕ/2) for 1B1
1B2 states respectively.[78]

Fig. 4.3 shows that this behavior is only found for the sum of the squares of the

transition dipole moments of both 1B1 or 1B2 states. Furthermore the transition

dipole moments of the so-called CT states which were expected to be zero be-

come astonishing large for some orientations. This indicates that the computed

adiabatic states represent linear combinations of NE and CT configurations. The

contributions of both types of diabatic configurations to the overall adiabatic

wave functions are plotted in Fig. 4.8. As discussed above they are estimated

from the transition dipole moments of the adiabatic states assuming that the

diabatic CT configurations do not contribute to this value. For B2 symmetry this

approach can only be used for structures at which the transition dipole moment

of the NE 1B2 configuration is significantly different from zero (ϕ > 30◦).

In the case of SCS-CC2 Fig. 4.8 reveals an almost pure NE character in 11B1

state for ϕ < 45◦. Some CT character is only found for ϕ < 10◦ but the contri-

bution remains below 15 %. For torsion angles between 45◦ and 75◦ 11B1 and
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4. Results and Discussion

21B1 states show a strong mixing of the NE and CT configurations. With about

60 % contribution 11B1 is still predicted to be predominantly neutral. However,

for this range it is no longer justified to classify it as a NE state. The same holds

for 21B1 state with respect to its CT character. Similar trends exist for the two

lowest 1B2 states as well. The strong mixture of NE and CT character in the

adiabatic excited states clearly confirms that the terms NE and CT states has to

be regarded with suspicion. They only designate the dominating character of

the states. For the regions around the minimum of the ground state (ϕ ≈ 30◦)

the classification in NE and CT is still appropriate since the admixtures are less

than 15 %. Hence, this differentiation still holds for the excitation spectrum of

PBI dimers.

The character analysis of the TD-HF-D curves reproduces the trends achieved

with SCS-CC2. As the CT configurations are predicted at too high energies, the

mixing of the characters of the excited states is too small. Please note, that the

conclusions drawn for 1B2 states are less clear cut as the transition dipole mo-

ments are quite small for ϕ < 45◦. Nevertheless, for 0◦ < ϕ < 40◦ TD-HF-D and

SCS-CC2 deliver very similar pictures. This explains the success of TD-HF-D in

the interpretation of the absorption and emission spectra of PBI aggregates[91,94]

which are mainly determined by the properties in this region. For wide ranges

of the potential energy curves, TD-B3LYP-D predicts the wrong energy order of

the predominantly NE and CT states. However, the admixture of CT character to

the predominantly NE state and vice versa agrees qualitatively with the SCS-CC2

results. Keeping this in mind, it is surprising that this agreement is not reflected

in the potential energy curves. In contrast our computations clearly show that

the TD-B3LYP-D potential curves of the predominantly NE states resemble the

SCS-CC2 potential curves of the states with predominantly CT character and

vice versa.

This behavior is explainable from the mixed characters of the states. The mix-

ing indicates strong interactions between the underlying diabatic configurations

which influence the shapes of the resulting adiabatic states. In such a case the

upper state is always shifted to higher energies while the lower one is moved in

the opposite direction.[61,119] The sizes of the shifts depend on the coupling ma-

trix element and the energy separation between the diabatic configurations. The

energy difference between NE and CT diabatic states is given by the interaction

between (i) a ground state and a HOMO-LUMO excited PBI molecule and (ii) a

PBI anion and a PBI cation. These energy differences are typically rather inde-
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4.1. Valence excited states calculation of dye aggregates

pendent of the mutual orientation of the PBI moieties. Hence, if the coupling

matrix element between the NE and the CT configurations is of the same or-

der of magnitude as their energy difference, the predominantly NE states which

are predicted to be lower with SCS-CC2 are shifted to even lower energies. Si-

multaneously, the energy of the states with predominating CT character lying

above are increased. For the two 1B1 states this situation is found for ϕ ≈ 60◦.

According to the transition dipole moments and the mixed character a strong

interaction between the diabatic states takes place. The interaction shifts the

adiabatic 21B1 state upwards so that a maximum is found. The corresponding

adiabatic 11B1 state is shifted downwards. Also for TD-B3LYP-D the upper state

is up shifted while the lower state is down shifted. As a consequence the poten-

tial energy curve of the upper TD-B3LYP-D states resembles the potential energy

curve of the upper SCS-CC2 state, i. e. the curve of the NE TD-B3LYP-D state

looks like the one found for the CT state with SCS CC2. The same is found for

both lower states. The comparable shapes indicate that TD-DFT even describes

the size of the interaction between both states qualitatively correct. However,

due to the different order, the resulting splittings go in the wrong direction.

For ϕ < 20◦, similar interactions seem to affect the shape of both adiabatic 1B2

states quite significantly. For SCS-CC2 the lower lying NE state 11B2 is moved

downwards while the corresponding higher lying CT state 21B2 moves upwards.

This behavior can be explained by an increasing interaction between the un-

derlying diabatic states. This explanation is supported by the fact that also the

TD-B3LYP-D curves behave similarly. However, due to the wrong energy or-

der now the lower lying CT states move downwards while the higher lying NE

states move upwards. For TD-BHLYP-D the influence of such interactions is even

stronger, since NE and CT configurations are even closer in energy. As a con-

sequence 1B2 states show several avoided crossings which are not found by the

other approaches.

These findings explain the failure of TD-B3LYP-D and TD-BHLYP-D in the work of

Zhao et al.[91] In this work they used vertical transition energies to the electronic

state which possesses the highest transition dipole moment. The calculations

compared differently substituted PBIs which have different geometrical orienta-

tion in the crystals. This means that the trends in these vertical excitation en-

ergies mainly reflect the shapes of the NE excited states. As TD-DFT incorrectly

predicts CT states to lie below these NE states, the NE states are shifted upwards

at regions of significant couplings between the CT and NE states. As the energy
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4. Results and Discussion

Figure 4.9.: Comparison of the electronic coupling parameter VEC predicted by
different methods.

difference between the diabatic NE and the CT configuration is almost constant,

the excited state potential energy curves are shifted in the wrong direction and a

severe disagreement with the correct values is found. For TD-HF-D on the other

side, the shapes of the NE states are correctly reproduced. The errors made in

the energy positions of the CT states do not influence the conclusion that can be

drawn out of the potential energy curves.

4.1.5. IMPLICATIONS TO THE EXCITON TRANSFER PROCESS

The question arises how the different approaches differ in the predictions of the

electronic coupling parameter VEC. The computed values are given in Fig. 4.9.

For all methods the parameter was computed as half of the energy differences

of the predominantly NE states. Fig. 4.9 clearly shows that both B3LYP-D de-

viates strongly from the SCS-CC2 values for 0◦ < ϕ < 20◦ and 50◦ < ϕ < 70◦,

while BHLYP-D deviates for 30◦ < ϕ < 90◦. The strong deviations in VEC result

from the interactions between the diabatic states in combination with the wrong

energy order which leads to an up shift of the NE 1B2 while a downshift is pre-
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4.1. Valence excited states calculation of dye aggregates

dicted for SCS-CC2. For 20◦ < ϕ < 50◦ the deviations are considerably smaller.

For the minimum of the ground state (30◦) TD-B3LYP-D and TD-BHLYP-D pre-

dict VEC ≈ 863 cm−1 (0.107 eV) and 1428 cm−1 (0.177 eV) respectively, while

SCS-CC2 and TD-HF-D compute VEC ≈ 1061 cm−1 (0.132 eV) and 1170 cm−1

(0.145 eV) respectively. These values agree quite nicely to the corresponding val-

ues given by Guthmuller et al.[93] (875 cm−1 for TD-B3LYP and 1260 cm−1 for

TD-HF). While TD-DFT-D approaches deviate quite strongly from the SCS-CC2

values, TD-HF-D is in nearly perfect agreement to it. Smaller deviations between

TD-HF-D and SCS-CC2 are only found for 50◦ < ϕ < 70◦ a region being less im-

portant for the optical properties of PBI aggregates.

Detailed models about exciton traps are very important since such traps are

responsible for the low efficiency of the excitation energy transfer in organic

materials. On the basis of TD-HF-D computations we recently suggested a new

model for exciton trapping in π-conjugated materials which in contrast to previ-

ous models by Forrest et al.[12,82] does not depend on relaxations to CT states.

Instead, the trapping results from a quenching of the photoabsorption to 11B2

state (Fig. 4.3) followed by a vibrational relaxation along the torsional coordi-

nate. This relaxation happens on a highly anharmonic potential energy curve

and leads to the minimum of 11B2 state at ϕ ≈ 0◦ to 10◦. In this geometrical

orientation the exciton is trapped since the fluorescence is reduced and even

becomes dipole forbidden at ϕ = 0◦. Furthermore, the emission is strongly red

shifted with respect to the absorption due to the different shapes of the potential

curves of the ground and excited states.

SCS-CC2 predicts the same model, as the energy order of the excited states

and the shapes of the potential energy curves do not differ considerably from

the data obtained with TD-HF-D. Note that all calculations introduced here are

done for the gas phase and therefore environmental effects are neglected. Most

importantly the CT states remain above the NE ones although they are strongly

shifted to lower energies. As a consequence the new, considerably more ac-

curate curves also do not predict the involvement of CT states in the trapping

processes. The present analysis, however, shows that the involved states are not

purely neutral in character but have admixtures of CT character. This is in line

with recent works of Scholz et al.[30,120] which, however, does not consider an-

harmonic potentials.

In the DFT picture, the trapping would result from relaxations to these CT states,

because the predominantly CT states are predicted to be below the NE ones. This
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would be in line with previous models,[12,64,86] but the more reliable SCS-CC2

approach proves that the energy order is wrong. Beside the wrongly shaped po-

tential energy curves this is the second reason why TD-DFT based models should

be handled with great care.

4.1.6. CONCLUSION

The present section investigates the reliability of different quantum mechani-

cal methods for the description of optoelectronic properties of PBI aggregates.

We concentrate on properties which are important for the use of PBI in opto-

electronic devices e. g. UV/VIS absorption and emission spectra and electronic

exciton transfer effects. Using PBI dimers as model systems, the accuracy of

TD-HF-D, TD-CAM-B3LYP-D, TD-BHLYP-D, TD-B3LYP-D, and TD-BLYP-D are de-

termined by a comparison with the SCS-CC2 method which is well known for its

accuracy of 0.1 to 0.2 eV. The reliabilities of the methods are demonstrated by

the predicted shapes of the potential energy curves, the characters and the en-

ergy order of the four lowest lying excited states. TD-HF-D agrees very well with

SCS-CC2 in matters of energy orders, characters and shapes of the computed

potential energy. This explains the success of this method for the description of

crystallochromic solid-state effects of PBI dyes. It also supports a recent model

for exciton traps which is based on TD-HF-D computations for the assignment of

absorption and emission spectra of PBI aggregates.

In almost all cases, TD-DFT approaches place the predominant CT states erro-

neously below the NE state. Due to the different order of NE and CT states the

electronic interactions lead to wrong shifts of the given states. As a consequence

the shapes of the potential energy curves are wrongly described. Surprisingly,

this holds also for the long-range corrected TD-CAM-B3LYP-D method. Due to

this failure the used TD-DFT-D methods are also not able to predict reliable

electronic exciton coupling elements. Accidentally, only small deviations from

SCS-CC2 are found for the region around the minimum of the ground state.

The SCS-CC2 computations support our recent model for exciton trapping in π-

conjugated materials, which is based on gas-phase calculations. In line with

previous suggestions the present analysis shows that the involved states are

not purely neutral in character but have admixtures of CT character. In the

next section, we will apply the better formulated character analysis method on

the SCS-CC2 calculation results of the PBI dimer system. A character analysis
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4.2. Character analysis for the PBI dimer

method based on the model Hamiltonian method will be discussed as well.

4.2. CHARACTER ANALYSIS FOR THE PBI DIMER

4.2.1. INTRODUCTION

According to Petelenz,[23] CT states of solid molecular species are defined by a

transfer of at least one electron between the constituting molecules of the sam-

ple. Such states appear upon aggregation and cannot be observed in spectra

that contain exclusively electronic transitions within individual molecules which

gives rise to NE states. A pictorial representation of CT and NE states is shown

in Fig. 2.1 for a dimer system of two molecules A and B. Here a one particle

transition between the highest occupied orbital (HOMO) to a lowest unoccu-

pied orbital (LUMO) is considered. In the left hand side of Fig. 2.1, an electron

is excited from the HOMO of monomer B to the LUMO of monomer B, which

corresponds to a NE state. Similarly, in the right hand side of the figure, an

electron is excited from the HOMO of monomer B to the LUMO of monomer A,

which gives rise to a CT state.

Due to the quantum mechanical nature of electronic wave functions the defini-

tions given above are an oversimplification of the reality. In fact, an unambigu-

ous assignment of a wavefunction of such a dimer system to one or the other

monomer is not possible, even if such an assignment is given by an ad hoc def-

inition, any electronic state of an aggregate system will contain admixtures of

both CT and NE configurations as we show in the last section. These are only

diabatic configurations that can be set up to define the actual wavefunction.

Thus, electronic states of two or more molecules will practically always contain

an admixture of both characters.

One could argue that a charge transfer state can, nevertheless, be recognized

by the fact that one electron is transferred from one monomer to the other one

which causes a significant change of the dipole moment of the system. How-

ever, in many systems of interest the two monomers are symmetric. Thus, the

properly symmetric CT states will contain equal contributions of charge transfer

from A to B as for a transfer from B to A and the total dipole moment of such

an electronic state is small or even zero. The same holds for NE states. For a

further discussion about this point see the works of Dreuw, Head-Gordon, Hi-

erlinger and Görling.[72,73,74,75] Nevertheless, it is often justified to designate
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d

Figure 4.10.: Translation mode for PBI dimer.

the electronic states as NE or CT according to its predominant character. In

typical quantum chemical calculations, e. g. those of configuration interaction

type and propagator methods such as time-dependent density functional theory

(TD-DFT), the excited states are represented in terms of delocalized orbitals. An

analysis of the CT and NE character actually requires localization and orthogo-

nalization of the orbitals. In the present section we propose such a method (3.4)

and apply it to a system of two 3,4,9,10-perylene tetracarboxylic acid bisimide

(PBI) monomers.

4.2.2. CALCULATION PROCEDURES

We consider the character analysis using the example of a system of two PBI

molecules.[91,94] A translation and a torsion motion are investigated for two PBI

molecules as shown in Fig. 4.10 and 4.2. For the translation motion the PBI

molecules are placed in a π-stacked, eclipsed (face to face) orientation and the

distance between the two monomers centers is varied from 3.0 Å to 10.0 Å. All
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Figure 4.11.: Translation motion: (left) potential energy curves of ground and
excited states; oscillator strengths of excited states; ratio of charge
transfer character of excited states.

the structures in the translation motion have D2h symmetry. The ground state

and the four lowest excited states were calculated (Fig. 4.11 left) at the spin

component scaled second order approximate coupled-cluster (SCS-CC2) com-

bined with resolution-of-the-identity (RI) approximation.[97,102,103] We took the

TZV basis set[62] for the H atoms and TZVP basis set[62] for all other atoms,

and the TZVP auxiliary basis[101] for all atoms. The four excited states consist

of two 1B1u states and two 1B2g states due to the HOMO-1, HOMO, LUMO and

LUMO+1 orbitals which belong to the irreducible symmetry representations B3g,

Au, B2u and B1g, respectively. The oscillator strengths of the excited states are

also calculated (Fig. 4.11 middle).

For the torsion motion the PBI molecules are placed in the same way as the

translation motion but the distance between the two monomers planes was fixed

to 3.4 Å. Then we counter-rotated the monomers with respect to the axis that

is orthogonal to the monomer planes from 0◦ to 90◦ (Fig. 4.2). These dimer

structures can have D2h (at 0◦), D2d(at 90◦) and D2(others) symmetries. To

be constant, we rotated the structures at 0◦ and 90◦ by a tiny angle (0.001◦)

and calculated all the structures with D2 symmetry. The oscillator strengths and

the character analysis of the excited states are shown in Fig. 4.11 middle and

Fig. 4.15 middle. All these calculations were conducted with the TURBOMOLE

6.0 program package.[100]

As a comparison, the character analysis based on the simplified two-state model

for SCS-CC2 results (section 4.1.4) is discussed. Furthermore, the torsion mo-

tion was calculated with the model Hamiltonian method. Necessary integrations

for model Hamiltonian method were calculated in the CISD(4,4)/SV(P)[121]
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Figure 4.12.: CI coefficients of the major configurations of excited states.

level of theory with the WAVELS program package.[122]

4.2.3. TRANSLATION MOTION

For the considered translation motion of the PBI dimer, the potential energy

curves (Fig. 4.11 left) of the two energetically lower excited states (11B1u and

11B2g) reach a limiting energy (of 4.8 eV) at long distance region. In the charac-

ter analysis figure (Fig. 4.11 right), these two states are also approaching pure

NE character at long distance region. On the other hand, at long distances the

potential energy curves of the two energetically higher excited states (21B1u and

21B2g) show a −1/r behavior of the Coulomb interaction that is characteristic for

CT states.[73] As expected the character analysis shows that these two states are

approaching pure CT character at long distances. To understand these curves,

it is important to look at the wavefunctions of the excited states. Therefore, we
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plotted the coefficients of the largest two diabatic excitation configurations of

each excited state (Fig. 4.12) as a function of the monomer distance. For each

excited state the two major configurations already contribute more than 95% to

the excited states. Thus, simplified but qualitatively correct wavefunctions are

given by these two configurations

Ψ11B2g
= a11ΦL

H +a12ΦL+1
H−1, (4.2.1)

Ψ21B2g
= a21ΦL

H +a22ΦL+1
H−1, (4.2.2)

Ψ11B1u
= a31ΦL

H−1+a32ΦL+1
H , (4.2.3)

Ψ21B1u
= a41ΦL

H−1+a42ΦL+1
H . (4.2.4)

These wavefunctions include only the HOMO-1, HOMO, LUMO and LUMO+1

orbitals of the PBI dimer. The character of these configurations can be analyzed

if the relation of the dimer orbitals and the monomer orbitals is known. For long

distances, where the overlap between the monomer orbitals becomes negligible,

the dimer orbitals can be written in terms of the monomer HOMOs and LUMOs

as

ψH−1 =
1√
2
(ϕH1 −ϕH2), (4.2.5)

ψH =
1√
2
(ϕH1 +ϕH2), (4.2.6)

ψL =
1√
2
(ϕL1 −ϕL2), (4.2.7)

ψL+1 =
1√
2
(ϕL1 +ϕL2). (4.2.8)

ϕH1 and ϕH2 are the HOMO of monomer I and II respectively. ϕL1 and ϕL2 are

the LUMO of monomer I and II respectively. These equations will be more valid

at long distances. However, even in the short distance region they are also

qualitatively correct. For instance, Fig. 4.13 shows these dimer orbitals at the

distance of 3.4 Å, and Fig. 4.14 shows the HOMO and LUMO of PBI monomer.

With these approximations, we can rewrite the configurations in terms of monomer
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Figure 4.13.: PBI dimer orbitals of distance 3.4 Å from left to right are HOMO-1,
HOMO, LUMO and LUMO+1 respectively.

Figure 4.14.: PBI monomer HOMO (left) and LUMO (right).

orbitals. As an example, ΦL
H which denotes the electron excited from the HOMO

to the LUMO is

ΦL
H =

1

2
√

2

( ∣
∣ψ1ψ̄1 · · ·ψHψ̄L

〉
+
∣
∣ψ1ψ̄1 · · ·ψLψ̄H

〉 )

=
1

2
√

2

( ∣
∣· · ·(ϕH1 +ϕH2)(ϕ̄L1 − ϕ̄L2)

〉
+
∣
∣· · ·(ϕL1 −ϕL2)(ϕ̄H1 + ϕ̄H2)

〉 )

=
1

2
√

2

( (
| · · ·ϕH1ϕ̄L1〉− | · · · ϕ̄H1ϕL1〉

)
−
(
| · · ·ϕH2ϕ̄L2〉− | · · · ϕ̄H2ϕL2〉

)

−
(
| · · ·ϕH1ϕ̄L2〉− | · · · ϕ̄H1ϕL2〉

)
+
(
| · · ·ϕH2ϕ̄L1〉− | · · · ϕ̄H2ϕL1〉

) )

.

(4.2.9)

It is obvious that the first two terms
(
| · · ·ϕH1ϕ̄L1〉−| · · · ϕ̄H1ϕL1〉 and | · · ·ϕH2ϕ̄L2〉−

| · · · ϕ̄H2ϕL2〉
)

of equation (4.2.9) denote the NE configurations, which show the

localized excitations from the HOMO of monomer 1 to the LUMO of monomer 1

and from the HOMO of monomer 2 to the LUMO of monomer 2, respectively. As

the remaining terms refer to CT configurations, each of the delocalized excited

configuration has 50% CT and 50% NE character.

By using equations (4.2.1) to (4.2.9), Ψ11B2g
state can be rewritten as

Ψ11B2g
=

1

2
√

2

(

a11

(∣
∣ψ1ψ̄1 · · ·ψHψ̄L

〉
+
∣
∣ψ1ψ̄1 · · ·ψLψ̄H

〉)

+a12

(∣
∣ψ1ψ̄1 · · ·ψH−1ψ̄L+1

〉
+
∣
∣ψ1ψ̄1 · · ·ψL+1ψ̄H−1

〉)
)

(4.2.10)

As shown in Fig. 4.12, at the short distances, Ψ1B2g
state is dominated by the

configuration ΦL
H . Therefore, the state has roughly 50% NE and 50% CT char-

acter mixing.
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In the long distance region, the state has equal contributions from the two major

configurations ΦL
H and ΦL+1

H−1, where a11 = a12, and turns out

Ψ11B2g
=

a11√
2

(
| · · ·ϕH1ϕ̄L1〉+ | · · · ϕ̄H1ϕL1〉+ | · · ·ϕH2ϕ̄L2〉+ | · · · ϕ̄H2ϕL2〉

)
. (4.2.11)

The diabatic CT configurations were compensated with each other. This results

the pure NE character dominating Ψ11B2g
state. Similarly, for Ψ11B1u

state it has

roughly 50% NE and 50% CT character mixing at short distances and pure NE

character at long distances. The Ψ21B2g
and Ψ21B1u

states have an equal admix-

ture of NE and CT character at short distances and pure CT characters at long

distances.

So far, this approximation explained well for all the character changes of all the

excited states in the translation motion. This is because the HOMO and LUMO

of the PBI monomer are separated in energy from the other orbitals. Therefore,

other configurations participate only merely in the four lowest excited states of

the PBI dimer.

So far the driving forces that change these curves in this way are not well un-

derstood. In our analysis method, the CIS wavefunctions are transformed into a

local MO basis making it possible to distinguish NE and CT configurations. It is

obvious that the NE configuration energy is independent of the changes of the

distance between two monomers, but the energy of CT configurations increases

with the monomer distance with an asymptotic behavior of -1/r. Therefore, the

NE and CT configurations may contribute both to the character of an excited

state at short distances where they are energetically close to each other. How-

ever, at long distances the NE configurations dominate the energetically lower

states, while CT configuration dominate the higher ones.

4.2.4. TORSION MOTION

In the works of Fink and Zhao et al.[91,94] about the EET trapping mechanism

of PBI aggregates, we calculated a torsion motion of the PBI dimer. As shown

in Fig. 4.15, the energy of the ground state and the four energy lowest excited

states were calculated as well as their oscillator strengths and character analysis.

The two energetically lower lying excited states are dominated by NE character,

and the two higher excited states are mainly of CT character. The two 1B1 states

show strong character mixing in the 45◦ to 60◦ region. At the same time, the
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Figure 4.15.: Torsion motion: (left) potential energy curves of ground and ex-
cited states; (middle) oscillator strengths of excited states; (right)
ratio of charge transfer character of the excited states.
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Figure 4.16.: Orbital energies of HOMO-1, HOMO, LUMO, LUMO+1 of the PBI
dimer as a function of the torsion angle ϕ.

corresponding two energy curves repel each other strongly and the oscillator

strength difference between the two states decreases. Similarly, for the two 1B2

states an increase of the character mixing of the excited states always goes along

with repulsion of the energy curves and a reduced oscillator strength difference.

To understand the behavior of these curves, we used a similar explanation as

we did for translation motion of PBI dimer. Since the torsion motion does not

change the distance between the PBI monomers, the NE and CT configuration

energies are roughly independent of this coordinate. However, the delocalized

dimer MO energies change a lot along the torsional angles (Fig. 4.16), because

the overlap of the monomer orbitals is a strong function of this coordinate.
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4.2. Character analysis for the PBI dimer

Figure 4.17.: Left: large ∆E results in unequal excitation contributions; Right:
small ∆E results in equal excitation contributions.

Therefore, the excitation energy of different configurations also changes dra-

matically along the torsional angles. Since the two-configuration picture is valid

for the excited state wavefunction of the PBI dimer (see appendix D), we intro-

duce a term ∆E which is given as the excitation energy difference of these two

configurations

∆E = E1−E2. (4.2.12)

As shown in Fig. 4.17 left, the excited state is expected to be dominated by one

configuration for large absolute values of ∆E, which also results in strong NE

and CT character mixing of the excited state (equation (4.2.9)). On the other

hand, an equal contribution of the two both configurations is also expected if

the excitation energies of the two configurations are identical (Fig. 4.17 right).

Fig. 4.18 shows the excitation energy differences ∆E as a function of the tor-

sional angles. For 1B2 states ∆E is defined as ∆E = EΦA
B2

−E
ΦB3

B1

. For 1B1 states ∆E

is defined as ∆E = E
ΦB3

B2

−EΦA
B1

. The ΦA
B2

represents a configuration in which an

electron is excited from the occupied MO with A symmetry to virtual MO with

B2 symmetry and similar definitions apply for ΦB3
B1

, ΦA
B1

and ΦB3
B2

. By comparing

Fig. 4.18 and the right hand side of Fig. 4.15, it’s obvious that large absolute ∆E

value results in large character mixing in the excited states and vice versa. This

corroborates our two-configuration approximation.

4.2.4.1. COMPARISON WITH THE SIMPLIFIED MODEL

Fig. 4.19 shows the CT ratio of these four excited states calculated with the sim-

plified character analysis method (left) and with the analysis method proposed

before. We found a good agreement between these two methods. For regions
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Figure 4.18.: ∆E for excited states of different symmetry representations as a
function of the torsion angle ϕ.
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Figure 4.19.: Left: charge transfer analysis based on the transition dipole mo-
ment; Right: charge transfer analysis based on the SCS-CC2
results.

with strong character mixing, e. g. 1B2 states at around 45◦ and 75◦ and 1B1

states at around 60◦, the two methods yield essentially the same CT ratios. At

those region, the corresponding state is always dominated by one configuration.

Since this approximation neglects the contributions from other configurations,

it underestimates the character mixing at other regions, where the two major

configurations contribute equally to the state.
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Figure 4.20.: Left: potential energy curves of ground and excited states calcu-
lated with the CISD method; Right: potential energy curves of
ground and excited states calculated with the SCS-CC2 method.

4.2.5. APPLICATION OF THE MODEL HAMILTONIAN METHOD

Since Petelenz introduced the model Hamiltonian (MH) method,[23] this method

has been widely used for considering exciton and charge transport properties in

organic crystals and aggregates.[25,28,29,30,31,64,65] The method has been care-

fully discussed in section 3.2. We applied this method on the PBI dimers for de-

scribing the torsion motion. Necessary integrals were calculated in the CISD(4,4)/SV(P)

level of theory. Fig. 4.20 left shows the potential energy curves for ground and

excited states calculated with the CISD approach. Compared with SCS-CC2

curves (Fig. 4.20 right), the ground state energy curve of the CISD approach

shows the largest difference in the large ϕ region. As discussed in the work of

Zhao et al.[91], in the large ϕ region the dispersion effect for the ground state

becomes more important than in the small ϕ region. Therefore, this difference is

expected and vanishes if a better correlation method or semiempirical dispersion

corrections are applied. Also, we found a absolute excitation energy difference

(≈ 1.2 eV) for all the excited states between the two methods. This is clearly

owing to the limited four configuration CI which provides a much less balanced

description of the different states than in the SCS-CC2 method. Even though,

the CI method still gives a much better description of excited states than TD-HF

and TD-DFT methods (see 4.1.3). It is also important to mention that the po-

tential energy curves of the CISD(4,4) method are identical to the ones of the

MH method. Because of the symmetry of the states the reference and the dou-

bly excited configurations have no coupling with singly excited configurations.
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Figure 4.21.: Left: ratio of CT character of excited states based on Model Hamil-
tonian method results; Right: ratio of CT character of excited
states based on SCS-CC2 results.

For the character analysis curves of the MH method (Fig. 4.21 left), we found

a character misplacement for 1B1 states in small ϕ region (0◦ to 30◦). This is

because the CISD approach provides a different ordering of these two excited

states which are very close in energy. As shown in the left side of Fig. 4.20, this

error is only in the order of 0.1 - 0.2 eV which vary still small compared to the

expected accuracy of this method. However, the CISD approach works well for
1B2 states as well for 1B1 states in large ϕ region. Similar to the transition dipole

moment approximation (4.19 left), the MH method predicts less admixture of

the mixing character of a state when more than two delocalized configurations

have significant contributions, e. g. 1B2 states at around 25◦ and 60◦ and 1B1

states at around 15◦ and 75◦. Nevertheless, it can describe the case when the

excited states possess no oscillator strength, and gives a qualitatively correct pic-

ture for excited states.

The character exchange of the two 1B1 states in small ϕ region can be under-

stood better in the MH method. As shown on the left hand side of Fig. 4.22,

the excitation energies of the two degenerate diabatic NE states are of about 0.3

eV constantly lower than the ones of the two degenerate diabatic CT states. Ac-

cording to equation (3.2.21), we introduce a block diagonalization for the MH

matrix based to the symmetry of the system. The two degenerate NE states split

into two symmetry adapted NE states as well as the two degenerate CT states

(Fig. 4.22 right). Due to these splittings, we find that the excitation energies of

the NE state with B1 symmetry is slightly higher than the ones of the CT states
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Figure 4.22.: Left: excitation energies of the diabatic NE and CT excited states,
where NE represents ΨA∗B and ΨAB∗ states and CT represents
ΨA+B− and ΨA−B+ states; Right: excitation energies of the symme-
try adapted NE and CT excited states, where 1NE(B1) represents
1√
2
(ΨA∗B −ΨAB∗) state, 1NE(B2) represents 1√

2
(ΨA∗B +ΨAB∗) state,

1CT(B1) represents 1√
2
(ΨA+B− −ΨA−B+) state and 1CT(B2) repre-

sents 1√
2
(ΨA+B− +ΨA−B+) state.

when ϕ < 35◦. Furthermore, the coupling between the symmetry adapted NE

and CT states [equation (3.2.24)] can not change the order them. Therefore, the

energetically lower 1B1 state in the small ϕ region possess majorly CT character.

4.2.5.1. COUPLING PARAMETERS

As shown in Fig. 4.23, VEC behaves as a cosine function

VEC =−Acosϕ, (4.2.13)

where A is chosen to be the value of VEC at 0◦.

It can be explained with the Förster theory[32]

VEC =
1

R3
AB

(

~µA ·~µB −3
(~µA ·~RAB)(~RAB ·~µB)

R2
AB

)

=
1

R3
AB

(

µAµB cosα −3
(µARAB cosβ )(RABµB cosγ)

R2
AB

)

=
µAµB

R3
AB

(cosα −3cosβ cosγ), (4.2.14)

where α is the angle between transition dipole vectors ~µA and ~µB. Since a PBI
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Figure 4.23.: Coupling parameters as functions of torsion angle ϕ.

monomer transition dipole vector is pointing along the monomer’s long axis,[91]

α equals the torsion angle ϕ. β (γ) is the angle between~µA (~µB) and the distance

vector ~RAB. As described before, ~RAB is perpendicular to the direction of the

transition dipole moments of the monomers, which means β and γ are both

equal to 90◦. Therefore, equation 4.2.14 is simplified to

VEC =
µAµB

R3
AB

cosϕ. (4.2.15)

Considering that the sign in front of VEC is arbitrary, it agrees with the results in

Fig. 4.23 perfectly.

As we discussed in the section 3.2.2, the two combined parameter 2(De +Dh)

and 2(De −Dh) denote the coupling between the symmetry adapted NE and CT

states. The larger values of 2(De+Dh) and 2(De−Dh) are, the stronger character

mixing for the corresponding excited states will be.

We show the excitation energy differences for the four lowest excited states

introduced in section 4.2.4 (Fig. 4.24 right), as well as the combined parameter

curves of 2(De +Dh) and 2(De −Dh) (Fig. 4.24 left). Both curves are almost
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Figure 4.24.: Left: combined coupling parameter curves of 2(De + Dh) and
2(De − Dh); Right: excitation energy differences between CI
configurations.

identical to each other, which means that






2(De +Dh)≈ EB2
A −EB1

B3

= (εB2 − εA)− (εB1 − εB3)

2(De −Dh)≈ EB2
B3

−EB1
A

= (εB2 − εB3)− (εB1 − εA)

→







De ≈ 1
2(εB2 − εB1)

Dh ≈ 1
2(εB3 − εA)

. (4.2.16)

Thus, the ’electron transfer parameter’ De is essentially given by the orbital en-

ergy difference between LUMO and LUMO+1 of the dimer and the ’hole transfer

parameter’ Dh is essentially given by the orbital energy difference between the

corresponding HOMO and HOMO-1 energy difference. This agrees with equa-

tions (3.2.17) and (3.2.18), and the small deviations are due to the two electron

integral terms in equations (3.2.7) and (3.2.6). It is worth to note that the dif-

ferences between Fig. 4.24 right and Fig. 4.18 are due to the different basis sets

being used for the calculations.

The last coupling parameter W is the coupling between the diabatic CT states.

As shown in Fig. 4.23 left, it is too small, compared to the other parameters, to

influence the character of the excited states. Therefore, we refrain to discuss it

in detail.
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4.2.6. CONCLUSIONS

We presented a general method for analyzing the character of excited states that

is based on CIS type wavefunctions for aggregates. In this method, the delocal-

ized MOs have been localized to each monomer, then the excited configurations

are transformed in the localized basis set. It has been used for analyzing the ex-

cited states of PBI aggregates for a translation motion and a torsion motion. This

method also helped in understanding the electronic structure of these excited

states in aggregate systems. The behaviors of the calculated potential energy

curves and the character curves were well explained under a two-configuration

approximation. For the translation motion, the CT and NE configurations are

energetically close to each other at short distances but well separated at long

distances. This leads to stronger character mixing of excited states at short dis-

tances and weaker mixing at long distances. For the torsion motion, the behav-

ior of character curves and potential curves are majorly affected by the overlap

between the MOs of the two monomers. By introducing an excitation energy

difference ∆E, one can qualitatively predict the behavior of these curves.

The character analysis results are also compared with the simplified two-state

approximation method. It shows that the simplified method described the char-

acter of excited states of the PBI dimer qualitatively correct. The simplified

method is essentially good enough to justify the major character of an excited

state.

Furthermore, we used the model Hamiltonian method to calculate the PBI dimer

system of the CISD(4,4)/SV(P) level of theory. This method shows a surprisingly

good agreement with SCS-CC2 results such as the shape of potential energy

curves, the excitation energy difference between the NE and CT states and the

character analysis. For such a closely contacted π conjugated dimer system,

the Förster theory which assumes no overlap between the monomer MOs is still

valid. The parameters De and Dh) can be approximated as the orbital energy

differences. Compared to all these coupling parameters, the coupling between

the diabatic CT states is negligible.
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4.3. Calculation of C atom K-shell excited states

4.3. METHOD AND BASIS SET VALIDATION FOR CARBON

ATOM K-SHELL EXCITED STATES

4.3.1. INTRODUCTION

A K-shell core orbital in a molecule is strongly localized on a specific atom, while

a valence orbital is generally delocalized and spread over the whole molecule.

A core excitation normally results in strong deformations of the corresponding

core and valance orbitals. Besides, electronic correlation is always an important

issue for an accurate description of the excited states. Different from a valence

excitation, the relativistic effect plays a role in considering the core excitation

energy. For the second row elements it is less pronounced than for heavier

atoms, and gives rise to energy corrections in the order of 0.1 eV. For a given

atom, these corrections are essentially independent of the molecular environ-

ment.[123]

4.3.2. COMPUTATIONAL PROCEDURE

We suggested two classes of methods considering these two major effects for the

core excited states. The first class of methods, which only consider the orbital

deformation effect, employs the Restricted Open-shell Hatree-Fock (ROHF) and

the Frozen core approximation (FCA). For the second class of methods, we chose

the Multi-Configuration Coupled Electron Pair Approximation[124] (MCCEPA) for

considering the electronic correlation effects. For each method, we tested sev-

eral basis sets. They are varying gradually from non-polarized and non-diffused

basis sets to those including polarization and diffuse basis functions.

Strongly decontracted basis sets are used for the core excited atom. They are

derived from standard basis sets of Schäfer et al. to those including additional

primitive Gaussian functions. The exponents of these basis functions in the fol-

lowing texts are given in a. u.:

• Core0 (8s5p2d/[8s5p2d]) is formed by decontracting the standard SV

basis set[121] and additionally adding an s function (with an exponent

0.1309), a p function (with an exponent 0.1527) and two d functions (with
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exponents 20.00 and 0.5500).

• Core1 (11s8p3d1f/[9s8p3d1f]) is formed by decontracting the standard

11s7p/[6s4p] basis set[125] and additionally adding a p function (with an

exponent 0.08663), three d functions (with exponents 20.00, 1.097 and

0.3180) and an f function (with an exponent 0.7610).

• Core2 (11s8p4d2f/[9s8p4d2f]) is formed by decontracting the standard

11s7p/[6s4p] basis set[125] and additionally adding a p function (with an

exponent 0.08663), four d functions (with exponents 20.00, 1.848, 0.6490

and 0.2280) and two f functions (with exponents 1.419 and 0.485).

In order to better describe Rydberg states, the extended version of those basis

sets are used. They include:

• Core0d (9s6p3d/[9s6p3d]) adds a diffuse s function (with an exponent

0.04529), a diffuse p function (with an exponent 0.04491) and a diffuse d

function (with an exponent 0.1650) upon the Core0 basis set.

• Core1d (12s9p4d2f/[10s9p4d2f]) adds a diffuse s function (with an expo-

nent 0.04444), a diffuse p function (with an exponent 0.03257), a diffuse

d function (with an exponent 0.09220) and a diffuse f function (with an

exponent 0.2540) upon the Core1 basis set.

• Core2d (12s9p5d3f/[10s9p5d3f]) adds a diffuse s function (with an expo-

nent 0.04444), a diffuse p function (with an exponent 0.03257), a diffuse

d function (with an exponent 0.08140) and a diffuse f function (with an

exponent 0.1670) upon the Core2 basis set.

For other atoms, the standard Aldrich basis sets are used which include SV(P),[121]

SVP,[121] TZVP[62] and TZVPP.[62] We tested these methods on CO, CO2, CH4,C2H2,

C2H4, HCHO, C4H6 and C6H5N molecules. Three different kinds of core-hole

states are considered: 1s → π∗ and 1s → Rydberg excited states as well as core-

ionized ones where the core ionization potential (IP) was calculated.

4.3.3. DISCUSSION

In the FCA, the ground state wavefunction is first calculated with the RHF

method. Then, a specific core hole, with a singly occupied core orbital, is opti-
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4.3. Calculation of C atom K-shell excited states

mized with a ROHF approach. Finally, core excited states are generated by opti-

mizing the virtual orbitals of the former calculation which the occupied orbitals

are kept frozen. Thus, the FCA can be taken as a method that partially includes

the orbital deformation effect. Compared to the FCA, the ROHF method allows

as much orbital relaxation as possible. It starts from the FCA wavefunction.

After the core hole is optimized, the ’excited’ electron is assigned to a specific

virtual orbital. The singly occupied orbital is optimized with the frozen core.

Here a special SCF technique is used to prevent the electron falling down to the

energetically lower virtual orbitals. Then the core hole and the doubly occu-

pied orbitals are again optimized with the now frozen singly occupied orbital.

This is repeated iteratively, until the orbitals are converged. Therefore, for IP

calculations, where only the core hole is optimized, FCA and ROHF make no

difference. The MCCEPA method considers a major part of the electronic cor-

relation by explicitly considering all correlation effects of the singly and doubly

excited configurations and approximate treatment of higher excited configura-

tions. It is by far the best of the three methods.

Table 4.1.: Calculated and experimental carbon K-shell vertical excitation en-

ergies and ionization potential (IP) of CO, CO2, CH4,C2H2, C2H4,

HCHO, C4H6 and C6H5N. For each theoretical method, the Core2d-

TZVPP basis set is used. All numbers are in eV.

FCA ROHF MCCEPA exp

CO 1s → 1π∗ 289.06 288.00 287.57 287.41[126]

1s → 3s 293.91 293.90 292.97 292.4[127]

1s → 3p(π) 294.70 294.69 293.87 293.3[127]

1s → 3p(σ) 294.83 294.82 294.08 293.5[127]

IP 297.06 296.38 296.1[127]

CO2 1s → 1π∗ 293.01 291.92 291.20 290.77[128]

1s → 3s 295.10 294.94 293.00 292.74[128]

1s → 3p(π) 296.99 296.98 295.54 294.96[128]

CH4 1s → 3s 287.38 287.39 287.00 287.03[129]

1s → 3p(π) 288.48 288.46 288.26 287.98[129]
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Table 4.1.: (continued)

FCA ROHF MCCEPA exp

C2H2 1s → π∗ 287.21 286.35 286.02 285.81[127]

1s → 3s 288.56 288.54 288.19 287.74[127]

1s → 3p(π) 288.77 288.74 288.32 288.76[127]

1s → 3p(σ) 289.37 289.36 289.10 288.8[130]

C2H4 1s → π∗ 284.44 285.28 284.34 284.7[128]

HCHO 1s → 1π∗ 286.01 285.02 284.57 285.590[131]

1s → 3a(A1) 291.30 291.44 290.62 290.178[131]

1s → 3p(B2) 292.13 292.39 291.56 291.253[131]

1s → 3p(B1) 292.40 292.42 291.71 291.729[131]

IP 294.80 294.49 294.352[131]

C4H6 Ct1s → 1π∗ 286.72 285.34 285.05 285.07[132]

IP(Ct) 290.65 290.73 290.87[132]

Cm1s → 1π∗ 286.01 285.02 284.57 284.41[132]

IP(Cm) 289.88 290.09 290.23[132]

C6H5N Corth1s → 1π∗ 287.31 286.55 285.97 285.2[133]

Corth1s → 2π∗ 288.65 288.01 286.90 286.1[133]

IP(Corth) 291.35 291.34 291.1[133]

Cmeta1s → 1π∗ 286.75 285.97 285.43 284.8[133]

Cmeta1s → 2π∗ 287.74 286.98 286.02 285.5[133]

IP(Cmeta) 290.43 290.63 290.5[133]

Cpara1s → 1π∗ 286.71 285.92 285.41 284.7[133]

Cpara1s → 2π∗ 288.54 287.93 286.80 286.0[133]

IP(Cpara) 290.98 290.98 290.8[133]

Mean absolute errors

1s → π∗ 1.91 1.03 0.44

Rydberg states 1.10 1.11 0.40
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Table 4.1.: (continued)

FCA ROHF MCCEPA exp

IP 0.35 0.18

All types 1.26 0.91 0.37

In table 4.1 the calculated excitation energies and the corresponding experi-

mental data listed, for all the methods with the largest basis sets used in this

work. Also the mean absolute errors of all methods for different types of tran-

sitions are listed bellow. The results show that all three methods give qualita-

tively correct excitation energies. For 1s → π∗ type transitions, the ROHF results

(mean absolute error of 1.03 eV) are significantly more accurate than those of

the FCA approach ones (mean absolute error of 1.91 eV) and MCCEPA (mean

absolute error of 0.44 eV) further improves the ROHF results. This shows that

for 1s → π∗ type transitions, the orbital relaxation and electronic correlation

are both important. For Rydberg states, the ROHF shows no better performance

than FCA that the mean absolute values of both methods are around 1.1 eV.

Since for Rydberg states the singly occupied orbital are rather far away from the

other orbitals, further optimization on the orbitals does not lead to significant

improvements of the wavefunction, because it is already well described within

the FCA approach. However, the electronic correlation effect (about 0.71 eV in

average) is still very important and should not be neglected for such transitions.

For IP calculations, the FCA and ROHF results are identical and both are very

close (mean absolute error of 0.35 eV) to the experimental data. With electronic

correlation effects, the mean error is reduced to 0.18 eV. All together, MCCEPA

is an excellent method for calculating C K-shell excited states and provides mean

absolute error of only 0.37 eV. It proves that electronic correlation is an impor-

tant factor for core excitation energies. The orbital relaxation is important for

1s → π∗ type transitions, however, less important for Rydberg states.

Similar to the methods, the basis set requirements vary for the different tran-

sition types. For 1s → π∗ transitions of the given molecules, Fig. 4.25 plotted

the basis set dependence for all the three methods. In the first box (Fig. 4.25)

where the Core0-SV(P) basis set was used, the 12 different 1s → π∗ transitions

have been calculated. The FCA results show a error range from 1.7 to 2.8 eV. As

discussed before, we find a clear improvement for the ROHF results (from 0.4
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Figure 4.25.: Basis set dependence of 1s → π∗ excitation energy errors between the experimental data and calculated results
of FCA, ROHF and MCCEPA methods. From the first box to the last one, the Core0-SV(P), Core0-SVP, Core1-
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with square points is calculated by FCA and each point is corresponding to a excited state which is listed in
the first box. The red curve with round points is the ROHF one and the blue curve with triangle points is
calculated with MCCEPA.
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4.3. Calculation of C atom K-shell excited states

to 2.2 eV). The MCCEPA results are generally a little bit better than the ROHF

ones. For the second π∗ states of pyridine, the improvements from the MCCEPA

are large which is because for these states the electronic correlation effects are

stronger than the lower ones. In the second box where the Core0-SVP basis set

was used, it only improves the description of H atoms compared to the Core0-

SV(P) basis set. Therefore, we found very similar trends for the curves but no

clear improvement. In the third box we used Core1-SVP basis set. Compared

to the Core0-SVP basis set, several polarization functions have been added for

describing the core excited carbon atom. We find that the error of the MCCEPA

method is much smaller than the one with the smaller basis set. However, for

the FCA and ROHF approaches, there are only small errors reductions. For the

latter three boxes, we found no big change of the error curves of FCA and ROHF.

The improvement for MCCEPA is not too much as well. Thus, we can conclude

that, for 1s → π∗ transitions, the performance of FCA and ROHF is much less de-

pendent on the basis set than MCCEPA. Also, the change of the basis set of the

core hole atom is more important than an improvement on the other atoms. For

Rydberg type transitions, 8 basis sets have been compared for the three methods

applied on five different excited states of HCHO and CO, respectively (Fig. 4.26).

In the first box, the Core1-SVP basis set was used. We found that the ROHF re-

sults are almost not improvement to the FCA ones. This behavior holds true for

all basis sets. As we discussed before, a Rydberg orbital has its largest density in

a region where the valence electron density is small. Thus, Rydberg states show

only a weak interaction between the valence and Rydberg orbitals. Therefore,

further relaxation for these orbitals will neither lower the orbital energy nor

change the core hole energy. In the second box, where the Core1-TZVP basis set

was used, the errors of all the three methods were reduced about 0.5 eV. This

can be understood as that Rydberg orbital was poorly described with Core1-SVP

basis set and with large percent of the oxygen components. Therefore, the en-

ergy of Rydberg orbital is lowered by the Core1-TZVP basis set, since it includes

several more polarized s and p functions at the oxygen atom. In the third and

forth boxes, the results didn’t change too much because the increased functions

have no big contribution on describing Rydberg orbitals. In the fifth box, we

used the Core0d-SV(P) basis set, which is one of the smallest basis sets through

all the calculations. However, the results are surprisingly good. The main reason

is that an s, a p and a d diffuse functions are included in the basis set. Thus, Ryd-

berg orbital was for the first time correctly described. The sixth box again further
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Figure 4.26.: Basis set dependence of Rydberg state excitation energy errors between the experimental data and calculated
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4.3. Calculation of C atom K-shell excited states

modified Rydberg orbital and the error is further reduced. Later basis sets have

no more significant improvement on the error curves which did not change too

much as well. For all excitation energy errors in Fig. 4.26, the MCCEPA curves

are always about 0.5 eV lower than the FCA and ROHF ones which means the

electronic correlation is a constant effect for Rydberg orbitals. The last type of

core excitation is the IP where the core electron is completely kicked out of the

molecule. The energy of the core hole is the energy of the corresponding ’ex-

cited states’. As mentioned before, FCA and ROHF provides the same results for

the core hole energy. Therefore, in Fig. 4.27 we only plotted the curves of the

FCA and MCCEPA. Different from the last two types of transitions, both methods

gave almost equally good IPs. As usual that the errors decrease if a large basis

set is used. Since the MCCEPA method includes electronic correlation effect, it

gives a little bit better results than the FCA approach.

4.3.4. CONCLUSION

We compared the method- and basis set dependence for a series of C K-shell

excitation energies. The results show that for C 1s → π∗ type transitions, the

relaxation for core hole and the virtual orbital is very important. This may

provide 0.9 eV excitation energy error in average. The electron correlation effect

(in MCCEPA) gave about 0.6 eV correction upon the ROHF results. Different

basis sets for this type of transition had no obvious influence on the FCA and the

ROHF, but for MCCEPA. A better basis set for the core hole improves the results.

For Rydberg type transitions, since the core hole and Rydberg orbital have very

weak coupling, the FCA and the ROHF approaches always give similar results.

The MCCEPA provided about 0.5 eV correction due to the electronic correction

effect. We also found that the diffuse functions are absolutely necessary for

a proper basis set. For some expensive calculations, one could reduce several

polarized functions but should always include diffuse functions.

Finally, for the IP calculations, the performance of the much cheaper FCA was

more or less equally good as the ones of the much more expensive MCCEPA. A

better basis set would improve the results but the improvement is limited.
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Figure 4.28.: Left: the planar naphthalene tetracarboxylic dianhydride (NTCDA)
moiety, and lables besides C atoms specify different types due to
the symmetry; Right: the crystal structure of NTCDA (view along
a-axis).

4.4. DAVYDOV SPLITTING EFFECTS IN THE CORE EXCITED

STATES OF NTCDA

4.4.1. INTRODUCTION

The splitting of electronic terms due to a crystalline surrounding is intimately

connected with the name of A. S. Davydov since his 1948 landmark paper on

this effect in naphthalene tetracarboxylic dianhydride (NTCDA) crystal.[134] The

effect has been thoroughly investigated.[37,135,136,137,138] It is now well estab-

lished, that the energy splitting of excited state levels is up to the order of mag-

nitude of 0.5 eV.[96] One characteristic feature of Davydov splittings is that they

have so far only be confirmed for excitations in the visible and near UV region

. Here the effect has been shown to be strongly connected to energy transfer,

where the Förster mechanism was shown to play a major role for the actual size

of the observed splitting.

Very recently Holch et al. managed to measure highly resolved NEXAFS spectra

of naphthalene tetracarboxylic dianhydride (NTCDA) crystals (Fig. 4.28) with a

resolution that allows to disentangle splittings in the order of 0.1 eV. Actually

the measured spectra also showed unexpected and unprecedented effects in this

order of magnitude. As further information was not available, a Davydov split-

ting effect was proposed as one possible explanations for the observed effect. On
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4. Results and Discussion

Table 4.2.: Calculated absolute transition dipole moments |µ|, vertical excitation
energies ∆E and oscillator strengths f of different C atoms in the
NTCDA monomer (Fig. 4.28 left) with FCA/cc-pVTZ (in parenthesis
cc-pVDZ) level of theory.

excitation |µ| (a. u.) ∆E (eV) f (a. u.)
C1 : 1s → 1π∗ 0.0687(0.0676) 290.7439(292.5815) 0.0337(0.0328)
C1 : 1s → 2π∗ 0.0456(0.0454) 292.9147(294.7869) 0.0150(0.0149)

C2 : 1s → 1π∗ 0.0583(0.0564) 286.2547(288.0030) 0.0238(0.0224)
C2 : 1s → 2π∗ 0.0251(0.0248) 288.6115(290.4266) 0.0044(0.0044)
C2 : 1s → 5π∗ 0.0357(0.0364) 292.1798(294.0684) 0.0091(0.0096)

C3 : 1s → 1π∗ 0.0609(0.0589) 286.1957(288.0160) 0.0260(0.0245)
C3 : 1s → 2π∗ 0.0453(0.0436) 288.1910(290.0549) 0.0145(0.0135)
C3 : 1s → 4π∗ 0.0193(0.0189) 290.6524(292.5571) 0.0026(0.0025)
C3 : 1s → 1σ∗ 0.0403(0.0447) 291.3615(293.7681) 0.0116(0.0144)

C4 : 1s → 2π∗ 0.0760(0.0739) 287.8124(289.5649) 0.0407(0.0387)
C4 : 1s → 5π∗ 0.0268(0.0253) 292.2924(294.1922) 0.0052(0.0046)

the other hand, the geometry deformation of the monomer and the interactions

with neighboring molecules may contribute to this effect.

4.4.2. NEXAFS SPECTRA OF NTCDA MONOMER

In the last section, we tested three different methods on calculating C K-shell

excited states. The best choice for calculating these kind of excited states would

be the most expensive MCCEPA. However, for the rather extended NTCDA these

calculations turns out to be too cumbersome. Even for the ROHF approach,

only the first excited state could be calculated. Thus, we chose the FCA method

because it is much more robust and provides qualitatively correct excitation en-

ergies for core excited states. Since, this method is less sensitive to the basis set,

we took the standard cc-pVTZ and cc-pVDZ basis sets for all the core excited

states calculations. All calculations were performed with the WAVELS program

package.[122]

Table 4.2 listed the FCA/cc-pVTZ and FCA/cc-pVDZ results of transition dipole

moments (|µ|), excitation energies (∆E) and oscillator strengths ( f ) for all the

core excited states with significant transition dipoles (|µ|> 0.01a. u.). We found
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4.4. Davydov splitting effects in the core excited states of NTCDA

Figure 4.29.: Calculated NEXAFS spectra for the planner monomer in gas phase.

a rather constant shift to lower excitation energies (1.6 - 1.9 eV) for 1s → π∗ type

transitions of the FCA/cc-pVTZ results compared to the FCA/cc-pVDZ ones. For

the only 1s → σ∗ transition, a shift of 2.4 eV was obtained. The transition dipole

moments and oscillator strengths of all excited states were quite similar at both

levels of theory. The spectra are generated as Gaussian convolutions of the stick

spectra resulting from the calculated oscillator strengths and excitation energies

(Fig. 4.29). They compare well with the experimental ones (Fig. 4.30 (1)), but

show a blue shift of about 1.9 eV. The calculations allow to assign the α peak in

Fig. 4.30 (1) to the two first excitations of C2 and C3. The β peak stems mostly

from the second excitation of C4 and partially from the second excitation of C3.

The γ peak is more complicated and it contains the first and second excitations

of C1, the forth and fifth (1s → 1σ∗) excitations of C3 and the fifth excitations of

C2 and C4.

In the gas phase the NTCDA monomer has a planer structure, but in the con-

densed phase the structure is distorted due to the crystal surrounding. The sym-

metry of the monomer decreases from D2h for the gas phase to Ci for the con-

densed phase. Furthermore, it is well known that the positions of H atoms are

uncertain in the X-ray structures. Therefore, we took the monomer structure out

of the condensed phase structure and partially optimized the geometry by fix-

ing all heavy atoms. The optimization is performed with the B3LYP[49,51,53,56,57]
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4. Results and Discussion

Figure 4.30.: NEXAFS spectra of NTCDA (1), in gas phase (2), in condensed cold
multilayer (3), after annealing.
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4.4. Davydov splitting effects in the core excited states of NTCDA

Figure 4.31.: Calculated NEXAFS spectra for the distorted monomer in the
NTCDA crystal.

functional and the TZVP basis sets[62] using the TURBOMOLE 6.0 program pack-

age.[100] Based on the optimized monomer structure, we calculated the core ex-

cited states for all C atoms and plotted the spectra in the same way as shown in

Fig. 4.31. Compared to the phase spectra, we found very small energy shifts in

the order of 5 - 30 meV. This effect is too small to explain the observed red shifts

of the experimental spectra.

4.4.3. DAVYDOV SPLITTING

The Davydov splitting effects are often found for excited states in the visual and

ultra-violet regions.[134,135] However in X-ray spectroscopy, this effect has never

been evaluated before. Therefore, we put through our method to calculate the

Davydov splitting effects for core excited spectra.

As shown in Fig. 4.32, the two degenerate localized excited states ΦA and ΦB,

which refer to excitations at the monomers A and B, respectively, split into two

delocalized excited states Φ+ and Φ−. Each core hole gives rise to a series

of excited states. These excited states share the same set of orthonormalized

MOs. On the other hand, different sets of MOs will be used for excited states

which do not share the same core hole. In general, different sets of MOs are not
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Figure 4.32.: Energy diagram of Davydov splitting.

orthogonal to each other. Hence, we give the explicit expression for the localized

excited states ΦA and ΦB as follows

ΦA =
1√
2

(
a†

i aa +a†
ī
aā
)
Φ0(A), (4.4.1)

ΦB =
1√
2

(
ã†

i ãa + ã†
ī
ãā
)
Φ0(B). (4.4.2)

ΦA and ΦB can also be denoted as Φi
a(A) and Φi

a(B) since both refer to excitations

from occupied orbital a to virtual orbital i. a†
i and a†

ī
are the creation operators

for monomer spatial orbital i with α and β spin, respectively. aa and aā are

the annihilation operators for monomer spatial orbital a with α and β spin,

respectively. The same definitions hold for ã†
a, ãi, ã†

ā and ãī, but they refer to

a different set of MOs. Φ0(A) and Φ0(B) are the ground state wavefunctions of

monomer A and B, respectively. For instance, Φ0(A) is given as

Φ0(A) =
n

∑
i=1

â†
i |0〉= |χ̂1χ̂2 · · · χ̂n〉. (4.4.3)

|χ̂1, χ̂2, · · · χ̂n| is another set of orthonormalized spin orbitals than the ones used

in excited states. â†
i is the corresponding creation operator for spin orbital χ̂i.

Then, the interaction effects can be written into a matrix equation

(

Haa Hab

Hba Hbb

)

, (4.4.4)

where

Haa = 〈Φi
a(A)|Ĥ|Φi

a(A)〉, (4.4.5)
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4.4. Davydov splitting effects in the core excited states of NTCDA

Hba = 〈Φi
a(B)|Ĥ|Φi

a(A)〉, (4.4.6)

Hab = 〈Φi
a(A)|Ĥ|Φi

a(B)〉, (4.4.7)

Hbb = 〈Φi
a(B)|Ĥ|Φi

a(B)〉. (4.4.8)

Since A and B are identical monomers, Haa is equal to Hbb as well as for Hba and

Hab. By diagonalizing the matrix in equation (4.4.4), we get the expressions and

energies of the two dimer excited states Φ+ and Φ−

Ψ± =
1

√

2(1±S)
(Φi

a(A)±Φi
a(B)), (4.4.9)

E± =
Haa ±Hab

1±S
. (4.4.10)

S is the overlap between Φi
a(A) and Φi

a(B)

S = 〈Φi
a(A)|Φi

a(B)〉. (4.4.11)

The commonly used parameter related to the Davydov splitting is the electronic

coupling parameter J which is half of the energy difference of E+ and E−

J =
E+−E−

2
=

Hab −HaaS
1−S2 . (4.4.12)

For 1s → π∗ type transitions, S is normally close to 0. Therefore, equation

(4.4.12) can be simplified as

J ≈ Hab −HaaS ≈ Hab. (4.4.13)

Since S is negligible, Hab can be written as the interaction of transition densities

P(r) of local excited states[66]

J ≈ Hab ≈
∫

dr1dr2PA(r1)
1

r12
PB(r2). (4.4.14)

r1 and r2 are the spatial coordinates of electron 1 and 2, respectively. 1
r12

is the

two-electron operator. PA and PB are the transition densities of local excitations

on monomer A and B, respectively. For instance, considering an excited state
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which has the form

Φex = |χ1χ2 · · ·χn〉, (4.4.15)

the corresponding transition density P, according to Löwdin’s definition,[69] is

given as

P = n
∫

dσ1 · · ·dσndr1 · · ·drnΦ∗
0Φex

=
n

∑
k,l

(−1)k+l
∫

χ̂∗
k χldσ1 · 〈χ̂1χ̂2 · · · χ̂n

︸ ︷︷ ︸

no χ̂k

|χ1χ2 · · ·χn
︸ ︷︷ ︸

no χl

〉

=
n

∑
k,l

(−1)k+l ·Tkl

∫

χ̂∗
k χldσ1. (4.4.16)

dσ1, · · ·dσn are the spin coordinates for each electron respectively. Φ0 is the

ground state wavefunction and we take the form in equation (3.3.1). |χ1,χ2, · · ·χn|
is a set of orthonormalized spin orbitals of the excited state Φex. Tkl is one ma-

trix element of the so called ’Transition density matrix’ T, and it equals the scalar

product of the bra and ket vectors

Tkl = 〈χ̂1χ̂2 · · · χ̂n
︸ ︷︷ ︸

no χ̂k

|χ1χ2 · · ·χn
︸ ︷︷ ︸

no χl

〉. (4.4.17)

Since the two sets of MOs which are used for ground and excited states are

not orthogonal to each other, Tkl equals the cofactor of the matrix element

〈χ̂k|χl〉 in the overlap matrix S between the ground and the excited states. The

matrix T is just the adjugate matrix of the matrix S. We used the modified

Gauss-Elimination algorithm (section 3.3.2) to calculate the adjugate matrix of

S. There are also many related works[139,140,141,142,143] on the evaluation of

matrix elements for non-orthogonal MOs.

As the Davydov splitting is a strong function of the distance (r) between two

exciton centers (J ∝ 1
r3), we calculated the Davydov splitting only for the two

nearest monomers in the NTCDA crystal (Fig. 4.33). As a comparison, we also

calculated J values by using the transition dipole-dipole approximation intro-

duced by Förster[66] [equation (4.2.14)].

The calculated J values with the largest absolute values are collected in table 4.3.

They are calculated in the FCA/cc-pVDZ level of theory. However, the calculated

Davydov splitting effects have only small absolute values (< 0.44 meV) which
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4.4. Davydov splitting effects in the core excited states of NTCDA

Figure 4.33.: Selected dimer structures of NTCDA for evaluating the Davydov
splitting effect. Left: a view along an axis which is perpendicular
to both monomer planes; Right: a view along an axis which is
parallel to both monomer planes.
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Figure 4.34.: Comparison between the results of Förster’ transition dipole-dipole
interaction equation and ones of the coupling equation.

is even much smaller than the geometry deformation effects. The comparison

between these results and the ones calculated by the Förster’s transition dipole-

dipole equation (Fig. 4.34) showed that the two methods gives practically iden-

tical results.

Based on the idea of the Förster’s transition dipole-dipole interaction equa-

tion, the exciton coupling parameter is proportional to the product of the two

monomer transition dipole moments. For our core excitations, the largest prod-

uct in our calculations is in the order of 0.005 a. u. Compared to the valance

excitations (see Fig. 4.3), these value are about 3000 times smaller for the core
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4. Results and Discussion

Table 4.3.: Calculated Davydov splitting effects for the NTCDA monomer exci-
ton pairs. Only a single number is given for symmetry equivalent
excitations.

exciton pair J(meV)
C2A

1 → 1π∗ / C2B
3 → 1π∗

-0.436
C2A

2 → 1π∗ / C2B
4 → 1π∗

C1A
1 → 1π∗ / C1B

3 → 1π∗
-0.420

C1A
2 → 1π∗ / C1B

4 → 1π∗

C1A
1 → 2π∗ / C1B

3 → 2π∗
-0.185

C1A
2 → 2π∗ / C1B

4 → 2π∗

C2A
1 → 3π∗ / C2B

3 → 3π∗
-0.170

C2A
2 → 3π∗ / C2B

4 → 3π∗

C3A
1 → 1π∗ / C3B

3 → 1π∗
-0.156

C3A
2 → 1π∗ / C3B

4 → 1π∗

C1A
2 → 1π∗ / C1B

3 → 1π∗ -0.141
C2A

2 → 1π∗ / C2B
3 → 1π∗ -0.139

C1A
1 → 1π∗ / C1B

4 → 1π∗ -0.124
C2A

1 → 1π∗ / C2B
4 → 1π∗ -0.121

C2A
1 → 2π∗ / C2B

3 → 2π∗
0.086

C2A
2 → 2π∗ / C2B

4 → 2π∗

C3A
1 → 2π∗ / C3B

3 → 2π∗
0.094

C3A
2 → 2π∗ / C3B

4 → 2π∗

C4A
1 → 1π∗ / C4B

2 → 1π∗ 0.256

excited states. Therefore, the Davydov splitting is generally not an important

effect for core excited states.

4.4.4. CONCLUSION

We calculated the NEXAFS spectra of the NTCDA monomer at the FCA/cc-pVTZ

and FCA/cc-pVDZ levels of theories. The calculated spectra reproduce the main

features of the experimental spectra correctly. However, as expected, the FCA

results overestimated the excitation energies for about 1.9 eV with cc-pVTZ basis

set and for about 3.8 eV if the cc-pVDZ basis sets are employed.

In the experiment, a red shift of about 0.1 eV was found for the NEXAFS spec-

tra of NTCDA in the condensed phase when compared with the ones in the gas

phase. One possible explanation may be the geometry deformation which is

caused by the surrounding molecules. Our calculations show that this effect in-

troduces energy splittings up to 30 meV as compared to the gas phase spectra,
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4.4. Davydov splitting effects in the core excited states of NTCDA

which does not explain the 0.1 eV red shift found in the experiments.

Another possible explanation is the Davydov splitting. We proposed an algo-

rithm for calculating this effect where non-orthogonal MOs are used for the

ground and excited states. The calculated Davydov splitting agreed perfectly

with the ones calculated with Förster theory. However, the largest absolute value

was still less than 0.5 meV. This showed that the Davydov splitting is generally

negligible for core excited states.
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CHAPTER 5

SUMMARY

We used theoretical approaches to investigate character and properties of va-

lence and core excited states for aggregates of large π-conjugated molecules.

The PBI dimer is chosen as an example for the valence excited states. We tested

several excited state methods such as SCS-CC2, TD-HF and TD-DFT with differ-

ent functionals for a torsion motion of the PBI dimer. The most accurate method

among them, SCS-CC2, is taken as reference. A simplified characters analysis

is proposed based on the transition dipole moments of the excited states. It

provides qualitatively correct descriptions of the characters for the lowest four

excited states of the PBI dimer and allows to judge the performance of TD-

HF and TD-DFT with different functionals. We found that the TD-HF method

gives correct energy order for the lowest four excited states. Furthermore, the

shapes of the potential energy curves are very similar to the ones obtained with

SCS-CC2. For pure GGA functionals, e. g. BLYP and PBE, the energetic order of

the lowest eight excited states are completely mixed. Additionally the potential

energy curves of these excited states are wrong. For the hybrid GGA function-

als, e. g. B3LYP, PBE and BHLYP, provide improved descriptions for the excited

states. The potential energy curves of the lowest four excited state have similar

shapes as the SCS-CC2 ones. However, the energetic order of the lowest NE and

CT states are exchanged, these potential energy curves lead to incorrect con-

clusions. We also used a long-range corrected (LC) functional, CAM-B3LYP, to

predict the excited states of PBI dimer, but it gives essentially identical results as

BHLYP.

We proposed a more general character analysis method for aggregated systems.

It is based on a CIS type wavefunction with orbitals that are localized on the
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5. Summary

single molecules of the aggregate. The CIS wavefunction is transformed into the

basis of the localized orbitals which allows to evaluate the amount of pure NE

or CT configurations, such that one can determine the character of the excited

state. This analysis is applied on a translation motion and the torsion motion

of the PBI dimer. It is explained in a two-state approximation and shown that

the character mixing of an excited state can be explained by the excitation en-

ergy difference ∆E of the two excited configurations which dominate the excited

state. In the model Hamiltonian (MH) approach, these energies can be under-

stood in terms of electron- and hole-transfer parameters. The MH method is

derived in a CI picture which allows us to evaluate the coupling parameters and

the energies of diabatic states. The method shows that the energy order of the

lowest four excited states are mostly determined by the excitation energy of the

diabatic states and the exciton coupling parameter. For the torsion motion in

small ϕ regions, the energetic order of the lowest two 1B1 states differs if cal-

culated at the CISD(4,4)/SV(P) or the SCS-CC2/TZV(P) level of theory. This

is caused by the large VEC value and the small excitation energy difference be-

tween the diabatic NE and CT states. The character analysis method is a very

useful tool for the interpretation of the excited state calculations. We are going

to apply this method to other CIS type methods such as TD-HF and TD-DFT. The

MH method is proved to be a useful and cheap method for understanding the

character of the excited states of aggregate systems. It can be easily applied to

trimer or even higher oligomer systems.

Similar to the valence excited states investigations, we used several theoretical

approaches, e. g. Frozen core approximation (FCA), ROHF and multi-configuration

coupled electron pair approximation (MCCEPA), to predict the core excited state

properties. Besides, the basis sets dependence is also studied. We have chosen

a series of small organic molecules as examples. Their C atom K-shell excited

states are calculated. These excited states are discussed separately for the dif-

ferent types of transitions: 1s → π∗, 1s → Rydberg state and IP. For the 1s → π∗

type transition, the orbital relaxation is as important as correlation effects. An

improved description of the core hole atom is more important than for the other

atoms of the molecule. For the 1s → Rydberg state type transition, the orbital re-

laxation is considerably less important than correlation effects. Appropriate de-

scriptions of Rydberg orbitals are of crucial importance. Therefore, one should

always include diffuse functions in the basis sets. For the IP calculations, all

methods give better results than for the other types of transitions. The inclusion
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of correlation effects further improves the results. The basis sets has only minor

effect on those results.

The C atom K-shell excited states of the NTCDA monomer is calculated at the

FCA/cc-pVTZ and FCA/cc-pVDZ levels of theories. The calculated NEXAFS spec-

tra are obtained by Gaussian convolutions. They reproduce the main features of

the experimental spectra correctly. In order to explain the 0.1 eV red shift which

is found in the experiment for the NTCDA in the condensed phase in compar-

ison to the gas phase, we investigated several possible explanations: geometry

deformation, Davydov splitting and correlation effects. For the geometry defor-

mations, we calculated the NEXAFS spectra for the distorted NTCDA monomer.

The results show an energy splitting up to 30 meV which can only partially ex-

plain the 0.1 eV red shift. For the Davydov splitting, we proposed an algorithm

for evaluating this effect when the non-orthogonal MOs are used for different

excitations. However, the results show that this effect is too small (< 0.5 meV).

Due to the size of the system, it is not easy to perform MCCEPA calculations for

the NTCDA dimer systems.
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APPENDIX A

ACRONYMS

B3LYP Becke 3-Parameter (20%exact exchange), Lee, Yang and Parr

(correlation)

BHLYP Becke 3-Parameter (half exact exchange), Lee, Yang and Parr

(correlation)

BLYP Becke (exchange), Lee, Yang and Parr (correlation)

CAM-B3LYP Coulomb-attenuating method based on the B3LYP functional

CASSCF complete active space self consistent field

CC coupled cluster

CC2 second-order approximate coupled-cluster

CI configuration interaction

CT charge transfer

DFT density functional theory

EET excitation energy transfer

FCA frozen core approximation

FET field-effect transistors

GGA generalised gradient approximation

HF Hatree-Fock

HOMO highest occupied molecular orbital

IP ionization potential

LC long range corrected

LUMO lowest unoccupied molecular orbital

MCCEPA multi-configuration coupled election pair approximation

MH model Hamiltonian
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A. Acronyms

MO molecular orbital

NE neutral excited

NEXAFS near edge X-ray absorption fine structure

NTCDA naphthalene tetracarboxylic dianhydride

OLED organic light-emitting diodes

PBE Perdew-Burke-Ernzerhof functional

PBE0 Perdew-Burke-Ernzerhof (25%exact exchange) hybrid functional

PBI perylene tetracarboxylic bisimide

PTCDA perylene tetracarboxylic dianhydride

RET resonance energy transfer

ROHF restricted open-shell Hatree-Fock

SCF self consistent field

SCS spin component scaled

TD-DFT time dependent density functional theory

TD-HF time dependent Hatree-Fock
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APPENDIX B

SIZE CONSISTENCY

As an obvious physical property, for any system, which is composed of many non-

interacting monomers, its total energy is equal to the sum of all the monomer

energies

E( A, B,C, · · ·
︸ ︷︷ ︸

no interaction
with each other

) = EA +EB +EC + · · · . (B.0.1)

B.1. HATREE-FOCK METHOD

A “size consistent” method fulfills this property exactly. Take a simple dimer

system as an example, where the two monomers A and B are separated by an in-

finite distance. In the HF approach, the ground state wavefunction of monomer

A (Φ0(A)) given by a Slater determinant

Φ0(A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(x1) ψ2(x1) · · · ψn(x1)

ψ1(x2) ψ2(x2) · · · ψn(x2)
...

... . . . ...

ψ1(xn) ψ2(xn) · · · ψn(xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (B.1.1)

where we assume the monomer A to be a system with n elections and x1, x2,

· · · , xn are their corresponding coordinates. {ψ1, ψn, · · · , ψm} is a set of MOs

describing the monomer A. Similarly, if the monomer B is a system of m elections,
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B. Size consistency

its HF ground state wavefunction is given by

Φ0(B) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ ′
1(x1) ψ ′

2(x1) · · · ψ ′
m(x1)

ψ ′
1(x2) ψ ′

2(x2) · · · ψ ′
m(x2)

...
... . . . ...

ψ ′
1(xm) ψ ′

2(xm) · · · ψ ′
m(xm)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (B.1.2)

where x1, x2, · · · , xm are the election coordinates. {ψ ′
1, ψ ′

2, · · · , ψ ′
m} are the MOs

of the monomer B. If A is far away from B, the electrons on A do not occupy the

orbitals of B and vice versa. Thus the HF ground state wavefunction of the AB

dimer Φ0(AB) is given by

Φ0(AB) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(x1) ψ2(x1) · · · ψn(x1) 0 0 · · · 0

ψ1(x2) ψ2(x2) · · · ψn(x2) 0 0 · · · 0
...

... . . . ...
...

... . . . ...

ψ1(xn) ψ2(xn) · · · ψn(xn) 0 0 · · · 0

0 0 · · · 0 ψ ′
1(xn+1) ψ ′

2(xn+1) · · · ψ ′
m(xn+1)

0 0 · · · 0 ψ ′
1(xn+2) ψ ′

2(xn+2) · · · ψ ′
m(xn+2)

...
... . . . ...

...
... . . . ...

0 0 · · · 0 ψ ′
1(xn+m) ψ ′

2(xn+m) · · · ψ ′
m(xn+m)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= Φ0(A) ·Φ0(B). (B.1.3)

According to the Schrödinger equation, we assume that ĤA and ĤB are the

monomer electronic Hamiltonians for evaluating the electronic energies of monomer

A and B (EA and EB), respectively. Their HF energies are given by

EA =
〈Φ0(A)|ĤA|Φ0(A)〉
〈Φ0(A)|Φ0(A)〉

= ∑
a in A

〈a|ĥ|a〉+ 1
2 ∑

a,b in A
〈ab||ab〉, (B.1.4)

and

EB =
〈Φ0(B)|ĤB|Φ0(B)〉
〈Φ0(B)|Φ0(B)〉

= ∑
c in B

〈c|ĥ|c〉+ 1
2 ∑

c,d in B
〈cd||cd〉, (B.1.5)
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B.2. Configuration Interaction Doubles method

Since there is no interaction between the two monomers, the total electronic

Hamiltonian ĤAB is given as the sum of the two monomer Hamiltonians

ĤAB = ĤA + ĤB. (B.1.6)

Thus the Schrödinger equation for the dimer system gives

EAB =
〈Φ0(AB)|ĤAB|Φ0(AB)〉

〈Φ0(AB)|Φ0(AB)〉

= ∑
e in AB

〈e|ĥ|e〉+ 1
2 ∑

e, f in AB
〈e f ||e f 〉

= ∑
a in A

〈a|ĥ|a〉+ ∑
c in B

〈c|ĥ|c〉

+
1
2 ∑

a,b in A
〈ab||ab〉+ 1

2 ∑
c,d in B

〈cd||cd〉

= EA +EB (B.1.7)

This shows that the HF is a “size consistent” method. It can be shown that, for

any “size consisten” method, its wavefunction Ψ0 of non-interacting systems is

equal to the product of the ground state wavefunctions of all the subsystems

(Φ0(A), Φ0(B), Φ0(C), · · ·)
Ψ0 = ∏

i=A,B,C ···
Φ0(i). (B.1.8)

B.2. CONFIGURATION INTERACTION DOUBLES METHOD

An intermediate normalized ground state wavefunction of Configuration Inter-

action Doubles (CID) method for the same dimer system AB (Ψ0(AB)) is given by

a linear combination of the HF ground state Φ0(AB) and doubly excited configu-

rations Φmn
e f (AB)

Ψ0(AB) = Φ0(AB)+ ∑
e< f ,
m<n

cmn
e f (AB)Φ

mn
e f (AB). (B.2.1)

Since the monomers A and B have no interaction with each other, only two parts

of the doubly excited configurations in equation (B.2.1) can survive

∑
e< f ,
m<n

cmn
e f (AB)Φ

mn
e f (AB) = ∑

a<b,
i< j

ci j
ab(A)Φ

i j
ab(A) ·Φ0(B)+ ∑

c<d,
k<l

ckl
cd(B)Φ

kl
cd(B) ·Φ0(A), (B.2.2)

103



B. Size consistency

where the Φi j
ab(A) and Φkl

cd(B) are the doubly excited configurations restricted to

monomer A and B respectively. Other terms such as the neutral separately single

excited configurations on A and B (Φi
a(A) ·Φ

j
b(B)) and charge transfer configura-

tions (Φi j(−)
a(A) ·Φ+

b(B) and Φi j(2−)
(A) ·Φ(2+)

ab(B) etc.) disappear due to the infinite distance

between the two monomers that cause that these configurations have no cou-

pling with the HF ground state.

Similarly, we get the CID ground state wavefunctions for monomers A and B

Ψ0(A) = Φ0(A)+ ∑
a<b,
i< j

ci j
ab(A)Φ

i j
ab(A), Ψ0(B) = Φ0(B)+ ∑

c<d,
k<l

ckl
cd(B)Φ

kl
cd(B). (B.2.3)

By inserting equations (B.2.1 and B.2.2), the product of monomer’s CID ground

state wavefunctions gives

Ψ0(A) ·Ψ0(B) =Φ0(A) ·Φ0(B)+ ∑
a<b,
i< j

ci j
ab(A)Φ

i j
ab(A) ·Φ0(B)+ ∑

c<d,
k<l

ckl
cd(B)Φ

kl
cd(B) ·Φ0(A)

+ ∑
a<b,
i< j

∑
c<d,
k<l

ci j
ab(A)c

kl
cd(B)Φ

i j
ab(A)Φ

kl
cd(B)

=Ψ0(AB)+ ∑
a<b,
i< j

∑
c<d,
k<l

ci j
ab(A)c

kl
cd(B)Φ

i j
ab(A)Φ

kl
cd(B). (B.2.4)

This shows immediately that the CID method is not “size consisten”.

B.3. COUPLED CLUSTER SINGLES AND DOUBLES METHOD

Considering the same dimer system composed of two non-interacting monomers

A and B, its Coupled Cluster Singles and Doubles (CCSD) ground state function

Ψ0(AB) is given as an excitation operator eTAB acting on the HF ground state of

the system Φ0(AB)

Ψ0(AB) = eTABΦ0(AB). (B.3.1)

For monomers A and B, their ground state wavefunctions are given in a similar

way

Ψ0(A) = eTAΦ0(A), Ψ0(B) = eTBΦ0(B). (B.3.2)

As discussed in section 3.1.2, TA, TB and TAB are the singly and doubly excitation

operators for the systems A, B and AB, respectively. For this non-interacting case,
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B.3. Coupled Cluster Singles and Doubles method

TAB is equal to the sum of TA and TB

TAB = TA +TB. (B.3.3)

By inserting equations (B.1.3, B.3.3 and B.3.2) into equation (B.3.1), we get

Ψ0(AB) = e(TA+TB)Φ0(AB)

= eTAeTBΦ0(AB)

= eTAeTBΦ0(A) ·Φ0(B)

= Ψ0(A) ·Ψ0(B). (B.3.4)

This shows that the CCSD ground state wavefunction satisfies equation (B.1.8).

Therefore, the CCSD method is “size consistent”.
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APPENDIX C

EXPLICIT FORMULATIONS

In this section, the explicit derivations for equations (3.2.7, 3.2.8 and 3.2.9) are

given.

VEC:

We start with the definition for VEC of equation (2.2.3). By inserting the equa-

tions (3.2.2 and 3.2.3), we get

VEC =
1
2

[
〈hA l̄AhBh̄B|Ĥ|hAh̄AhB l̄B〉+ 〈hA l̄AhBh̄B|Ĥ|hAh̄AlBh̄B〉

+〈lAh̄AhBh̄B|Ĥ|hAh̄AhB l̄B〉+ 〈lAh̄AhBh̄B|Ĥ|hAh̄AlBh̄B〉
]
. (C.0.1)

In order to simplify the above equation, we interchange several orbitals based

on the Pauli Principle. By using the Slater-Condon rules, we get

VEC =
1
2

[
〈hAhBl̄Ah̄B|Ĥ|hAhBh̄Al̄B〉+ 〈hAh̄Bl̄AhB|Ĥ|hAh̄Bh̄AlB〉

+〈h̄AhBlAh̄B|Ĥ|h̄AhBhA l̄B〉+ 〈h̄Ah̄BlAhB|Ĥ|h̄Ah̄BhAlB〉
]

=
1
2

[
〈l̄Ah̄B||h̄Al̄B〉+ 〈l̄AhB||h̄AlB〉

+〈lAh̄B||hAl̄B〉+ 〈lAhB||hAlB〉

=
1
2

[
(lAhA|hBlB)− (lAlB|hBhA)+(lAhA|hBlB)

+(lAhA|hBlB)+(lAhA|hBlB)− (lAlB|hBhA)
]

= 2(lAhA|hBlB)− (lAlB|hBhA). (C.0.2)
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C. Explicit formulations

W :

By inserting the equations (3.2.4 and 3.2.5) into equation (2.2.5), we get

W =
1
2

[
〈hAl̄BhBh̄B|Ĥ|hAh̄AhBl̄A〉+ 〈hA l̄BhBh̄B|Ĥ|hAh̄AlAh̄B〉

+〈lBh̄AhBh̄B|Ĥ|hAh̄AhBl̄A〉+ 〈lBh̄AhBh̄B|Ĥ|hAh̄AlAh̄B〉
]
. (C.0.3)

Similarly, we interchange several orbitals and get

W =
1
2

[
〈hAhB l̄Bh̄B|Ĥ|hAhBh̄Al̄A〉+ 〈hAh̄Bl̄BhB|Ĥ|hAh̄Bh̄AlA〉

+〈h̄AhBlBh̄B|Ĥ|h̄AhBhAl̄A〉+ 〈h̄Ah̄BlBhB|Ĥ|h̄Ah̄BhAlA〉
]

=
1
2

[
〈l̄Bh̄B||h̄Al̄A〉+ 〈l̄BhB||h̄AlA〉

+〈lBh̄B||hAl̄A〉+ 〈lBhB||hAlA〉

=
1
2

[
(lBhA|hBlA)− (lBlA|hBhA)+(lBhA|hBlA)

+(lBhA|hBlA)+(lBhA|hBlA)− (lBlA|hBhA)
]

= 2(lBhA|hBlA)− (lBlA|hBhA). (C.0.4)

It is worth to mention that in the chemists notation the two election integrals are

written as electron density interactions. Such that the integrals do not change

the value if the orbitals interchange in the following way

(lBhA|hBlA) = (hAlB|hBlA) = (lBhA|lAhB) = (hAlB|lAhB)

(hBlA|lBhA) = (lAhB|lBhA) = (hBlA|hAlB) = (lAhB|hAlB) (C.0.5)

De:

By inserting the equations (3.2.2 and 3.2.4) into equation (2.2.6), we get

De = 〈ΨA+B− |Ĥ|ΨA∗B〉

=
1
2

[
〈hA l̄BhBh̄B|Ĥ|hAl̄AhBh̄B〉+ 〈hA l̄BhBh̄B|Ĥ|lAh̄AhBh̄B〉

+〈lBh̄AhBh̄B|Ĥ|hAl̄AhBh̄B〉+ 〈lBh̄AhBh̄B|Ĥ|lAh̄AhBh̄B〉
]
. (C.0.6)
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Again, we interchange several orbitals and get

De =
1
2

[
〈hAhBh̄Bl̄B|Ĥ|hAhBh̄B l̄A〉+ 〈hBh̄BhA l̄B|Ĥ|hBh̄BlAh̄A〉

+〈hBh̄BlBh̄A|Ĥ|hBh̄BhAl̄A〉+ 〈h̄AhBh̄BlB|Ĥ|h̄AhBh̄BlA〉
]

=
1
2

[
〈l̄B|ĥ|l̄A〉+ 〈hA l̄B||hAl̄A〉+ 〈hB l̄B||hBl̄A〉+ 〈h̄B l̄B||h̄Bl̄A〉

+〈hAl̄B||lAh̄A〉
+〈lBh̄A||hAl̄A〉
+〈lB|ĥ|lA〉+ 〈h̄AlB||h̄AlA〉+ 〈hBlB||hBlA〉+ 〈h̄BlB||h̄BlA〉

]

=
1
2

[
(lB|ĥ|lA)+(hAhA|lBlA)+(hBhB|lBlA)

+(hBhB|lBlA)− (hBlA|lBhB)+(hAlB|lAhA)

+(lBhA|hAlA)+(lB|ĥ|lA)+(hAhA|lBlA)

+(hBhB|lBlA)− (hBlA|lBhB)+(hBhB|lBlA)
]
. (C.0.7)

Let us introduce the Fock operator F̂, that it satisfy

(a|F̂|b) = (a|ĥ|b)+
nocc

∑
i

[
2(ii|ab)− (ib|ai)

]
. (C.0.8)

For our system, we have

(lB|F̂|lA) =(lB|ĥ|lA)+2(hAhA|lBlA)− (hAlA|lBhA)

+2(hBhB|lBlA)− (hBlA|lBhB). (C.0.9)

By inserting equation (C.0.9) into equation (C.0.7), we get

De = (lB|F̂|lA)+2(hAlB|lAhA)− (hAhA|lBlA). (C.0.10)
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ADDITIONAL RESULTS

Table D.1.: Excitation energy differences between TD-DFT and SCS-CC2.
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D. Additional results

Table D.1.: continued
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Table D.2.: Excited state properties of TD-PBE-D and TD-PBE0-D.
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D. Additional results

Table D.3.: CT characters of TD-PBE0-D, TD-BHLYP-D and TD-CAM-B3LYP-D.
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Table D.4.: Contributions of the leading configurations in excited states.
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