
yellow precipitate appeared. Addition of THF (3-4 mL) resulted in a clear 
solution and cooling in a - 20 oc freezer for 10 h gave the product 2 as orange­
red crystals. Yield 0.37 g, 36%; m.p. 140oC (dec. slow). 11 8 NMR: o = 74.9. 
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Synthesis and NMR Spectra 
of 2,3-Dihydro-1,3-methanoindene Derivatives 
and 1,2,3,5-Tetrahydro-1,3-methanopentalene ** 
By Manfred Christ/* and Horst Reuchlein 

1,3-Bridged cyclobutanes are interesting models for theo­
retical llJ and spectroscopicllb, c, 21 studies as weil as for com­
parisons of reactivity. [lc, JJ Nonetheless, little is known 
about bicyclo[2.1.1]hexene and its derivatives, since they are 
accessible only with difficulty. The benzo derivative 1 (2,3-

[•] Prof. Dr. M. Christi, Dr. H. Reuchlein 
Institut für Organische Chemie der Universität 
Am Hubland, D-8700 Würzburg (FRG) 

( .. ] This work was supported by the Deutsche Forschungsgemeinschaft and 
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dihydro-1,3-methanoindene) is formedas minor product in 
the reaction of bicyclo[1.1.0]butane with dehydrobenzene 14•1 

and has also been synthesized in seven steps from benzonor­
bornadiene.l4bl Its 13C NMR data arestill unknown; howev­
er, they were recently calculated.l51 

2 

Here we report a route to this system and to 1 ,2,3,5-te­
trahydro-1 ,3-methanopentalene (2). The relatively readily 
accessible bicyclo[2.1.1 )hexan-2-one (J)l61 can be converted, 
via 2-vinylbicyclo[2.1.1]hexene (6), into the dimethyl dicar­
boxylate 1 a, as shown in Scheme 1. The key intermediate is 
2-lithiobicyclo[2.1.1]hexene (4), formed by reaction of the 
2,4,6-triisopropylbenzenesuJfonyl hydrazone of 3 with n­
butyllithium. l 7l 

c5(1~C)"' 

41., 66.4 po ~ ~li~ ~OH~ 
3 5 

41.8 (39.3) 

64v.6 f
11 

4~2.0 R 62.5 
6 7 R 8 

1 2 f) --..;;:: g) 
J - -

5 4 ~ ~ 

R 

R 

6 7 1a 

Scheme 1.[8] a) 2,4,6-(iPrhC6H2S02NHNH1 , MeOH, HCI (cat.), 20°C, 54%. 
b) 2 equiv. nBuLi, hexanejtetramethylethylenediamine (1: 1), -55 to 20°C. 
c) 1 equiv. ethylene oxide, 0-20°C, 49% based on the hydrazone. d) TosCI, 
pyridine, 90%. e) KOtBu, DMSO, 75°C, 20Torr, 82%. f) R-C:C-R 
(R = CO~CH3), CHCI 3 , 20°C, 75%. g) 1 equiv. 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone, C6 H 6 , 80°C, 89%. 

To synthesize 2, we first added dibromocarbene to 6 
(CHBr3 , KOtBu, pentane, -30°C, 90%; endocyclic: exo­
cyclic addition 1: 3) and obtained the rearranged product 8 
together with unrearranged 9_rs1 As expected,l9•1 reaction of 
9 (containing 8) with methyllithium in ether resulted in a 
Skattebel rearrangement to give 2 rs1 ( 4% yield, isolation by 
preparative gas chromatography). 

o("C)•lB- 66.3 
37.5 ~ ··v' ~ ~ Br + /. Br 

Meli 
6 2 

KOtBu 

Br 

8 

If the behavior of isodicyclopentadiene and related com­
pounds l9 bl can be extrapolated to 2, then 1,4 additions to the 
1,3-cyclopentadiene system of 2 should lead to polycyclic 
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olefins with a strongly pyramidalized double bond between 
two bridgehead C atoms. An interplanar angle of 145°, in­
stead of 180° as found for normal olefin geometry, was cal­
culated for the parent hydrocarbon of 10.[101 The hope that, 
owing to steric hindrance of [2 + 11 cycloaddition by the 
CH 2 groups ofthe bicyclohexane system, 2 and dibromocar­
bene (CBr4 , MeLi, -78 °C) might undergo rare, but 
known,llll [4 + 1] cycoladdition to 10 was not fulfilled. In­
stead, we isolated the bromo derivative 1 b 181 in 23% yield. 
Compound Ibis presumably formed by [2 + 11 cycloaddi­
tion and ring expansion of the resulting dibromocyclo~ 
propane derivative followed by elimination of HBr. Com~ 
pound 2 also undergoes 1,2 addition with 4~methyl-1 ,2,4~tri~ 
azole-3,5(41l)-dione (MTAD) (2--. 11)[81 as weil as with te­
tracyanoethylene. However, (E)-1 ,2-bisphenylsulfonylethy­
lene undergoes slow Diels-Alder reaction with 2 to give 13, 
which, because of its lability, could not be isolated and was 
only characterized by an 1H NMR spectrum. 

42.2 

Br ~b'.;c)- 44.1 (44.4) 

10 

Br 

·~ 
1b 

Ha 
Br 

7w.Ja 4 

-11-- ;:_ 5 
MTAO 

' lla 6 
CBr4 

2 

"" 

Hß 

(E)-Ph-S02-CH•CH-SOz-Ph 

"' 66.4 a 3 • e 

~u<ll ~so2Ph 
2 

S02Ph 

12 13 

Of particular interest is the 13C NMR spectrum of the 
cycopentadienyl anion 12, which we generated by treatment 
of 2 with n-butyllithium. C-2, 7 (<5 = 66.4) absorb at Iower 
field than C-2, 7 of 2 (.&c5 = 16.1) and than C-2, C-11 of 11 
(L\c5 = 22.3 and 24.2). The Iatter effect resembles that ob­
served for the C-2, C-8 signals when 7 is converted into I a. 
Remarkably, the methylene C atoms of the tropylium ion 14 
(c5 = 69.0l1 21) are only slightly more deshielded than those of 
12 despite the difference in two units of charge. 

.s('3c)•69.o 

)::0 SbF,e 14 [12] 

The annelation of arenes to bicyclo[2.1.1]hexane (C-5: 
c5 = 39.412bl) thus causes the methylene C atoms to be 
strongly deshielded by an amount similar to the difference 
between the chemical shifts of C-5 in bicyclo[2.1.1]hexane 
and -hexene (Ac5 = 28.7).l2b1 This effect is correctly repro­
duced by calculations using the IGLO method.l 131 The result 

Table 1. Selected physical data for la, 2, 6, and 11-13; 200- or 400-MHz 1 H 
NMR spectra and 50- or 100-MHz °C NMR spectra (c5 values, coupling 
constants in Hz). Ha= Hanti, Hs = Hsyn, He= Hcis, Ht = Htrans. 

Ia: oil. 1H NMR (CDCI3): 2.32 (AA' part of an AA'XX' spectrum, 
J(2syn,8syn) = -10.0, 1(2,2) = -6.1. J(2syn,8antl) = +0.6; 2,8-Hs) 2.73 (m; 
2,8-Ha), 3.17 (dt, J(1,3)"" 7.2, J(2anti,3) = 2.5; 3-H). 3.33 (br.dt, 
(J1,2anti) = 2.5; 1-H). 3. 78,3.82 (seach; 2 CH 3), 7.19(br.d, J(6,7) = 7.3; 7-H). 
7.46 (d; 6-H). 13C NMR (CDCI3): 44.9, 45.7 (d each; C-1. 3), 52.2, 52.3 (q each; 
2 CH 3}, 62.5 (t; C-2,8), 119.8, 127.0 (d each; C-6, 7), 124.9, 125.5 (s each; C-4, 
5}, 152.8,158.1 (seach;C-3a. 7a),167.5, 168.6(seach;2C=O) 
2:oi1. MS(70eV):m/.r(%) 118(35, Me), 117(100),116(11), 115(48),103(14), 
91 (32}, 77 (1 0}, 65 (1 1), 51 (1 I), 39 (18). 1 H NMR (CDCI3): 1.80 (AA' part of 
an AA'XX' spectrum, J(2syn,7syn) = -9.8, J(2,2)"" - 5.9, J(2syn,1anti) = 
+0.4; 2-Hs), 2.54 (m; 2-Ha), 3.18 (br.t, J(1,2antl) = 2.7; 1-H), 3.32 (pseudo­
qui, line separation 1.7 Hz; 5-H); 5.65 (br. pseudo-t, line separation 1.7 Hz: 
4-H)[a]. 13C NMR (CDCI 3): 42.2 (d;C-1,3), 46.1 (t; C-5), 50.3 (t; C-2.7}, 111.5 
(d; C-4,6), 155.6 (s; C-3a, 6a) 
6: oil. MS (70 eV): m{z (%) 106 (30, MfB), 105 (36), 91 (100), 79 (41), 78 (43), 
77 (34), 65 (22), 51 (24), 39 (35), 27 (23). 1H NMR (CDC13): 2.28 (m; 5,6-Hs), 
2.62 (m; 5,6-Ha, 4-H), 2.97 (m; 1-H), 4.99 (ddd, J(7,8ci.~) = 10.6, 1(8,8) ". f .5, 
J(3,8cis) = 0.6; 8-Hc), 5.18 (ddd, J(7,8trans) = 17.4, J(3,8trans) = 0.9; 8-Ht). 
6.54 (dd; 7-H), 6.69 (br.s; 3-H)fa]. 13C NMR (CDCI3): 42.2 (d; C-l), 43.2 (d; 
C-4}, 64.6 (t; C-5,6), 1 f 1.1 (t; C-8}, 131.8 (d; C-7), 139.3 (d; C-3), 156.2 (s; C-2): 
assignrnent based on a 13C- 1 H correlation 
11: m.p. 74-76°C. 1H NMR (CDCI3): 0.95 (dd, J(2syn,11syn) = 10.3. 
J(l1,1 I)= 6.7; I 1-Hs), 2.25 (br.dt, J(1,11anti) = J(3,1lanu) = 3.2; 11-Ha), 
2.30 (dt,J(2,2) = 1.4,J(1,2antt) = J(2anti,3) = 2.7; 2-Ha), 2.63 (dd; 2-Hs), 2.90 
(dddd, J(5,5) = 19.1. J(5a.,5a) = 7.9, J(4,5a.) = 3.4; J(3,5a. or 2tanti,5a.) = 

0.9;5-H.). 3.00 (m; 3-H). 3.03 (s: CH 3), 3.12 (dt, J(1,3) = 5.9; 1-H). 3.32 (br.dt, 
J(4,5ß) ~ 2; 5-Hp). 4.86 (dd;J(5ß.Sa) = 1.9; Sa-H), 5.64 (br.d; 4-H). 13C NMR 
(CDCI 3): 25.9 (q; CH 3), 42.2, 44.1, 44.4 (t each; C-2,5,11). 43.1, 44.1 (d each; 
C-1,3). 66.8 (d; C-5a), 94.0 (s; C-10a). 121.9 (s: C-4), 152.7 (s: C-3a), 161.2. 
161.9 (s each; C-7,9) 
12: 13C NMR ((0 10]-1.2-dimethoxyethane): 43.5 (d; C-1.3), 66.4 (t; C-2.7), 94.9 
(d; C-5), 96.1 (d; C-4,6), 133.9 (s; C-3a, 6a) 
13: 1H NMR (CDCI 3): 1.65 (dq, J(9,9) = 9.0, J(4,9syn) ~ J(7,9syn) ~ 1.7; 9· 
Hs), 2.18 (br.d; 9-Ha). 2.31 (dd, J(2syn,8syn) = 10.0, J(2,2 or 8.8) = 5.1), 3.19 
(dd, J(8,8 or 2,2) = 6.1) (2, 8-Hs), 2.68, 2.87 (dt, each J(1,3)"" 7.1. 
J(l ,2anti) = J(l ,8anu) = J(2anti,3) = J(3,8antt) = 2.3; 1, 3-H). 2.82 (dt, J(2,2 
or 8,8) == 5.1), 3.05 (br.dt, J(8,8 or 2,2) = 6.1) (2, 8-Ha), 3.64 (br.s; 4-H), 3.66 
(m; 7-H), 3.72 (dd. J(5,6) = 5.6, J(5,9syn) = 2.0; 5-H), 4.35 (dd, 1(6,7) = 3.1; 
6-H). 7.50-7.90 (m; 2 C"H 5) 

[a] Assignment on the basis of NOE measurements. 

of the above-mentioned calculation for the value of C-2 in 
1 l51 is 30% too small if I a, b are accepted as models. 
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(3,3-Diphenylallenylidene )trimethylphosphane­
titanocene: The First Titanocene Carbene Complex 
with Three Cumulative Double Bonds 

By Pau/ Binger, * Patrik Müller, Regine Wenz, 
and Richard Mynott 

Titanocene carbene complexes are of interest in organic 
synthesis, especially for carbonyl olefination. Their use is 
limited, however, by a lack of suitable syntheses for substi­
tuted titanocene carbene complexes.llJ We recently reported 
a novel method for preparing the titanocene vinylcarbene 
complexes 1 a-c from 3,3-disubstituted cyclopropenes and 
bis(trimethylphosphane)titanocene. 121 

On attempting to carry out a one-pot synthesis of 1 a by 
treating [Cp2 TiC12] with two equivalents of n-butyllithium at 
- 78 oc and then allowing the solution to warm up in the 
presence of PMe3 and 3,3-diphenylcyclopropene, we found 
that, in addition to the vinylcarbene complex 1 a, (3,3-
diphenylallenylidene)trimethylphosphanetitanocene (2) is 
also formedPI 

./PMc3 

CP2Ti"\. 

YR' 
R 

l 

a:R=R'=Ph, b:R=Ph,R'=Me, c:R==R'=CH3 

Closer examination ofthis result showed that n-butyllithi­
um lithiates 3,3-diphenylcyclopropene under the conditions 
chosen. f4 J Reaction of the two starting materials in a molar 
ratio of 2: 1 at 0 oc for 1 h gives a mixture of the two dilithi­
ated compounds 3 and 4 in a ratio of 14:86. At 25°C, only 
the immediate formation of 4 (90% purity) is observed; 4 
slowly decomposes at room temperature to unidentified 
products. Apparently, the dilithiocyclopropene derivative 3 
rapidly rearranges to the dilithioallene derivative 4. The lith-

[*] Prof. Dr. P. Binger, Dr. P. Müller, Dipi.-Chem. R. Wenz, Dr. R. Mynott 
Max-Pianck-lnstitut für Kohlenforschung 
Kaiser-Wilhclm-Platz 1, D-4330 Mülheim-Ruhr (FRG) 

ium derivatives 3 and 4 have not yet been isolated as pure 
substances; they were trapped by reaction with trimethyl­
chlorosilane to give the corresponding trimethylsilyl deriva­
tives 5 and 6, which were then characterized. 

Pht:-~-~-;-:-~-·-· __. )( -~c=:....__.,.,.. 
D 

3 
Li 

-uc11 + Mc,s;a 

Ph Ph 

Mo,s;Äs;Me, 
s 

Li Ph 
'\ / 
/C=C=C\ 

Li Ph 
4 

-uaj + Me,s;a 

Me3Si Ph 
\1 2 3/ 
/C=C=C\ 

Me3Si Ph 

6 

1,1-Dilithio-3,3-diphenylallene (4), prepared at 0°C, re­
acts at this temperature with titanocene dichloride and 
trimethylphosphane to give the (3,3-diphenylallenylidene)­
titanocene complex 2 in 71 % yield. The raute of formation 
of complex 2 is thereby elucidated. At the sarne time, these 
resu1ts open up a way of synthesizing as yet unknown al­
Jenylidenetitanocene cornplexes. 

Ph 

CI>2 TiCI2 + Li20=C=C( 

Ph 
4 

-2LiC! 

Also new is the selective rearrangement of a 1 ,2-dilithio­
cyclopropene to the corresponding 1,1-dilithiopropadiene. 
Previously, it was known only that both acidic olefinic hy­
drogen atoms undergo ready Jithiation, although almost aU 
preparative applications have used the monornetalated cy­
clopropene. r4 • SJ Dilithiated 3,3-dimethylcyclopropene, pre­
pared from 3,3-dimethylcyclopropene and Iithium diiso­
propylamideftetramethylethylenediamine (LDA/TMEDA) 
at - 60 oc to + 20 °C, can be trapped as 3,3-dimethyl-1 ,2-
bis(trimethylsilyl)cyclopropene by reaction with trimethyl­
chlorosilane, l61 even though calculations show that, for the 
parent compound, structure B is 51.3 kcal mol- 1 more sta­
ble than 1 ,2-dilithiocyclopropene (A). l7 • 81 

A 

~Li 
If''··.Li/ 

B 

Rearrangements of tetrasubstituted cyclopropenes to al­
lenes occur upon irradiation 191 or upon heating at about 
150 °C.[S) 

The structures of allenylidene derivatives 2 and 6 were 
established unambiguously by spectroscopy. The IR spectra 
show strong bands characteristic of both organic 1101 
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