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1. Introduction 

The world´s thirst for electrical power grows steadily. The United States Energy 

Information Administration (EIA) predicts an increase of energy consumption by 49% 

from 522·1018 J in 2007 to 780·1018 J in 2035 (see figure 1.1).1 New sources of 

energy have to be found and existing technologies must be improved to sustain this 

need of energy. Figure 1.2 contains the 2010 annual report of The Renewable 

Energy Policy Network for the 21st Century.2 2010 78% of the consumed energy was 

provided by fossil fuels, a limited resource. 2.8% was produced by nuclear energy 

and 19% by renewable energy sources. It is important to mention that 68% of the 

energy consumption counted as “renewable” was traditional biomass (plant and 

animal matter) for heat and cooking fire in developing regions.3 Only 0.7% of these 

19% renewable energy, a very small amount, was produced by wind, solar, biomass 

and geothermal power plants. Since fossil fuels are limited and rapidly decreasing 

mankind needs other sources. One possibility is the sun. In one year 3,850,000·1018 

J of energy is absorbed by our planet. Less than 1‰ is used in photosynthesis. 

Simply put, one year of solar radiation is more energy for the earth than twice 

 

 
 

Figure 1.1 Worldwide energy consumption for the last 20 years and future 

projections. Source: U.S. Energy Information Administration (EIA). 



2 
 

 

Figure 1.2 Renewable energy share of global energy consumption 2008.3  

than twice the amount provided by all the planet´s reserves of fossil fuels and 

uranium combined.4 The primary energy use in 2005 was “only” 487·1018 J. As a 

consequence, the complete need of energy could easily be provided by the sun, but 

the problem is, how can it be harvested?  

DESERTEC5 is one concept of using wind and solar power in deserts in Europe, 

the Middle East and North Africa. The idea is to use these areas with low population 

but high amounts of solar radiation to produce electricity and to use this energy for 

the global market. The power of the sun is harvested in two ways: as solar thermal 

power and by photovoltaics. The first silicon-based solar cells were built by Gerald 

Pearson, Calvin Fuller, and Daryl Chaplin in 1954. With an efficiency of 4.5% – 6% 

the costs were still 286 USD/Watt. A lot of research has been done, but, as figure 1.3 

shows, in 2010 photovoltaics are still very expensive in comparison to its alternatives 

according to the Trade Association for Wind Turbines (Wirtschaftsverband 

Windkraftwerke e. V.).6 For more data from different sources, see also Ref.6. To 

achieve competitiveness these costs have to be reduced by at least a factor of 5. 

One way to achieve this is the improvement of the efficiency of solar cells. The 

highest conversion is achieved by inorganic III-V semiconductor solar cells with up to 

41.1%. For these so called triple cells composed of GaInP/GaInAs/Ge the sunlight is 

focused 454-fold. This type is very expensive in the production and in general only 

used for space travel.7  
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Figure 1.3 Cost of electricity production in 2010 according to the Trade 

Association for Wind Turbines (Wirtschaftsverband Windkraftwerke e.V. 

– WVW). Blue and red give the minimal and maximal cost, 

respectively.6  

Another possibility to improve the energy/cost ratio is to use cheaper materials. 

This is the reason for research on organic solar cells.8-13 Composed of plastics this 

type has the lowest production cost, but on the other hand, the efficiencies are 

inferior to their inorganic counterparts. Improvements can be achieved, if we 

understand how the fundamental processes in solar cells work. The most important 

concepts are shown in figure 1.4 for an organic heterojunction solar cell: The cell is 

composed of a transparent indium-tin-oxide (ITO) and a silver (Ag) electrode. In 

between are the organic donor and acceptor layers, which are mixed 

heterogeneously, hence its name. Sunlight is absorbed in the donor layer forming an 

exciton (orange circle, definition see chapter 2). This has to be transferred to the 

donor-acceptor interface via exciton transport. There, the excited donor molecule 

transfers an electron to an acceptor molecule forming a polaron pair. After the 

charges are separated into electron (green circle, negatively charged) and hole 

(purple circle, positively charged) both have to be transported to their  
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Figure 1.4 Structure of an organic heterojunction solar cell.  

corresponding electrodes. There, the charges are transferred and electric current is 

achieved. Lots of problems reduce the efficiency, like charge recombination, thermal 

deexcitation, and the thickness of the layers for a perfect balance between 

absorption and diffusion lengths. The major bottlenecks of organic solar cells are 

exciton and charge transport. This thesis presents working principles (chapter 2 and 

3) and results (chapter 4 to 6) for these fundamental processes.  

Organic materials, especially π-conjugated molecules, are also used for 

applications as electronic devices, e.g. organic field-effect transistors (OFETs)14-18, 

radiofrequency identification tags19, 20 and organic light-emitting diodes (OLEDs).21-24 

The material properties of these devices are owing to their capability of electronic 

switching by electric fields,25, 26 electromechanical forces27 or 

photoactive/photochromic response.25, 28 Advances in the design of these materials, 

known as molecular nanotechnology,29 depend on an improved control of the 

interplay between the orientation of the molecules relative to another, the 

photophysics of the individual chromophores as well as energy and charge transport 

in the bulk.30 Typically thin films31, 32 of organic materials are used as device 
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Figure 1.5 Pseudo-ortho-dihydroxy[2.2]paracyclophane 

components. However, it is challenging to understand these amorphous materials in 

detail as the molecular subunits experience a range of environments and generally 

lack the periodic long range order of crystals. Thus, small, well defined model 

compounds are very well suited to understand fine details of the fundamental 

processes that give rise to material properties. Such models are e.g. 

[2.2]paracyclophanes and its hydroxyl-substituted derivatives (e.g. pseudo-ortho-

dihydroxy[2.2]paracyclophane, see figure 1.5). They are unique with respect to the 

strong “through-space” coupling of the π-systems of their benzene moieties and are 

thus promising candidates as materials due to their specific photophysical 

properties33-37 and their high electric conductivity.38-40 [2.2]Paracyclophane is known 

since 194941 and has been widely modified.42-48 These compounds can be regarded 

as models for closely packed π-systems bound together by organic bridges. The 

influences of the distance between the two benzene subunits on photo absorption 

properties can be investigated by varying the bridge length and/or the substitution 

pattern at the π-systems. 
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2. Model Concepts and Background 

2.1 Transport in Organic Materials 

Charge and exciton transport play very important roles in organic materials. While 

the first considers only one particle, namely a charge, which is either a positive hole 

or a negative electron to be transferred, exciton transport is described in a two 

particle picture: Simultaneously one electron is deexcited in one system while a 

second one is promoted in another system (in this thesis two organic molecules). 

Both transport processes follow the same fundamental concepts. The most important 

are Fermi´s Golden Rule, the Franck-Condon principle, and Marcus theory. These 

will be discussed in this chapter in detail and applied on both exciton and charge 

transport. 

2.1.1 Fermi´s Golden Rule 

The following chapter is based on the PhD work of P. Marquetand49 and the 

textbooks of G. Baym,50 F. Schwabl,51 and P. W. Atkins et al.52  

Fermi´s Golden Rule is one of the most important and widely used expression of 

quantum mechanics. Despite its name it is based on Gregor Wentzel´s work on the 

photoelectric effect53 and the radiationless Auger-Meitner-Effect.54 The term “Golden 

Rule” originates from Fermi, who called it “Golden Rule No.2”55 in his lecture notes to 

honor its conceptual and practical importance. Fermi references this equation to 

Dirac´s work56 about the quantum theory of absorption and emission of radiation. To 

derive Fermi´s Golden Rule time-dependent perturbation theory is applied: 

The interaction between matter and a time-dependent external electric field can 

be described by a time-dependent Hamiltonian 

 H�(t) = H�� + W� (t),              (2.1) 

where H�� is the Hamiltonian of the unperturbed system and W� (t) the time-dependent 

interaction. For a purely vibrational interaction, a permanent dipole moment μ is 

exhibited by the molecule. Then, the time-dependent interaction is 

 W� (t) = −μE��⃑ (t) cos θ.             (2.2) 
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where θ is the angle between the electric field vector and the dipole moment. The 

perturbation is furthermore defined to be 

W� (t) = 0 for t ≤ t� and 

W� (t) > 0 for t > t�.             (2.3) 

In the case of a transition between two electronic states, generally written as initial 

and final state | �i〉 and | �f〉, the Hamiltonian is written as 

 H�(t) = �
T� + V� −μ�⃑ ��E��⃑ (t)
−μ�⃑ ��E��⃑ (t) T� + V�

�           (2.4) 

or 

 H�(t) = | �i〉�T� + V��⟨i|+|i⟩ �−μ�⃑ ��E��⃑ (t)� ⟨f|+|f⟩ �−μ�⃑ ��E��⃑ (t)� ⟨i|+|f⟩�T� + V��〈f�|      (2.5) 

with T� as the kinetic operator, V� as the potential energy in state | �n〉 (n = i, f) and μ�⃑ �� 

as the transition dipole moment.  

Applying time-dependent perturbation theory, the interaction of a weak laser field 

with a molecule can be described.51 For t ≤ 0, when no perturbation is present, the 

system obeys 

 iħ �
��
Ψ�(t) = H��Ψ�(t).            (2.6) 

Due to the perturbation this changes for larger times to  

 iħ �
��
Ψ�(t) = �H�� + W� (t)�Ψ(t).           (2.7) 

It is convenient to separate the unperturbed system, normally presumed to be 

known, from the perturbed system. For that reason we change to the interaction 

representation index I), also known as Dirac-representation, where 

 Ψ(t) = e�
�
ħ�
���Ψ�(t)             (2.8) 

and 

 W��(t) = e
�
ħ�
���W� (t)e�

�
ħ�
���.            (2.9) 
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The Schrödinger equation for the perturbed system now is written 

 iħ �
��
Ψ�(t) = W��(t)Ψ�(t).                 (2.10) 

Time integration leads to 

 Ψ�(t) = Ψ�(t�) + �
�ħ ∫ dt´�

��
W��(t´)Ψ�(t´),                (2.11) 

where at a time t = t0, the wave function Ψ�(t�) = Ψ(t�). An approximate solution can 

be obtained by iteration into the following series expansion: 

 Ψ�(t) = Ψ�(t�) + �
�ħ ∫ dt´�

��
W��(t´) �Ψ�(t�) + �

�ħ ∫ dt´´�´
��

W��(t´´) �…��   

                    = Ψ�(t�) + �
�ħ ∫ dt´�

��
W��(t´)Ψ�(t�)            (2.12) 

              + ��
ħ
�
�
∫ dt´�
��

∫ dt´´�´
��

W��(t´)W��(t´´)Ψ�(t�) + . .. 

Truncation of the wavefunction after the first integral is termed Ψ�(�), because a first 

order correction is applied. The notation for higher orders proceeds analogously. The 

first-order wave function can be evaluated by using Eq. 2.9: 

 Ψ(�)(t) = e�
�
ħ�
���Ψ�

(�)(t) 

  = e�
�
ħ�
��� �Ψ�(t�) + �

�ħ ∫ dt´�
��

W��(t´)Ψ�(t�)�         (2.13) 

  = e�
�
ħ�
���Ψ�(t�) + �

�ħ ∫ dt´�
��

e�
�
ħ�
��(���´)W��(t´)e�

�
ħ�
���´Ψ(t�). 

Higher-order terms can be obtained analogously. 

An application of time-dependent perturbation theory is to describe transitions 

between two eigenstates of a quantum system. The eigenstates | �n〉 with their 

eigenvalues En form an orthonormal basis and obey the time-independent 

Schrödinger equation 

 H��| �n〉 = E�| �n〉.             (2.14) 
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First, the system, described by Ψ(t), is in the initial state | �i〉, which is not necessarily 

the ground state. The probability P��(t) that the transition to the final state | �f〉 has 

happened at time t is given by50 

 P��(t) = |⟨f|Ψ�(t)⟩|� = |⟨f|Ψ(t)⟩|�.              (2.15) 

Within first-order perturbation theory (see Eq. 2.13) the transition amplitude ⟨f|Ψ(t)⟩ 

is evaluated as: 

 �f�Ψ(�)(t)� = �f�e�
�
ħ�
����𝑖� + �

�ħ ∫ dt´�
��

�f�e�
�
ħ�
��(���´)W� (t´)e�

�
ħ�
���´�i�       (2.16) 

        = − �
ħ

e�
�
ħ��� ∫ dt´�

��
e
�
ħ

(�����)�´�f�W� (t´)�i� 

Therefore, the transition probability can be written as  

 P��(t) = ��
ħ ∫ dt´e

�
ħ

(�����)�´�
��

�f�W� (t´)�i��
�
.          (2.17) 

Setting W�  independent of time, i.e. adding a small constant term W to the 

Hamiltonian at t = 0, we get for  

 P��(t) = ��
ħ
�
�
ħ����������
�
ħ

(�����)
⟨f|W|i⟩�

�

           (2.18) 

           = �
���� ���

�����
ħ ��

�����
⟨f|W|i⟩�

�

, 

where e�� − e�� = 2sin �
�

(a − b) was applied.50 Describing an optical transition in this 

frame has to consider several final states | �k〉 representing the different vibrational 

levels, which are close in energy. These are accessible due to the spectral width of 

W. To calculate the total transition probability, one has to sum over all states. This is 

approximated by an integral over the energies Ek times the density of states ρ 

(number of states per unit energy). Then, the transition probability equals to 

 ∑ P��(t) ≈ |⟨k|W|i⟩|�� ∫dE�ρ(E�) �
�����

�����
�ħ ��

�����
�
�

.         (2.19) 
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When t is long enough, the density of states factor can be taken out of the integral 

and evaluated as 

 ∫dE� �
�����

�����
�ħ ��

�����
�
�

= ��
ħ

t.            (2.20) 

This leads to the transition rate Γ = �
��
∑ P��(t)� , which is the transition probability per 

time unit. It is approximated by 

 Γ = ��
ħ

|⟨k|W|i⟩|�ρ(E�).            (2.21) 

This equation is also called Fermi´s Golden Rule. ⟨k|W|i⟩ is also known as transfer 

integral or electronic coupling Vec. Many different forms of Fermi´s Golden Rule exist, 

e.g. 

 Γ = ��
ħ

|V��|�δ(E� − E�).            (2.22) 

2.1.2 Franck-Condon Principle 

This chapter is based on the text book of Atkins et al.52 Whenever an electronic 

transition takes place in a molecule the electronic structure, i.e. the distribution of the 

electrons, changes. As a result the nuclei move on a different energy potential and 

therefore, they respond by breaking into more vigorous vibration and the absorption 

spectrum shows a structure characteristic of the vibrational energy levels of the 

molecule. The combination of electronic and vibrational transitions is known as 

vibronic transitions. They can be explained and predicted with the help of the Franck-

Condon principle. 

A fundamental approximation used in the Franck-Condon principle is the Born-

Oppenheimer Approximation. There, it is assumed that due to the difference in 

masses between electrons and nuclei the electrons move much faster. As a 

consequence the total wavefunction Ψ can be separated into a product of the 

electronic wavefunction Ψel and the nuclear wavefunction Ψn: 

 Ψ�r���⃑ , R����⃑ � = Ψ���r���⃑ , R����⃑ � · Ψ��R����⃑ �           (2.23) 
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The Franck-Condon principle implements the Born-Oppenheimer approximation 

into vibronic transitions. During the electronic transition the cores are treated as 

stationary, but then adjust once the electrons have adopted their final distribution. 

Qualitatively the Franck-Condon principle can be illustrated in figure 2.1. For a 

diatomic molecule two potential energy curves for two electronic states are depicted.  

R is the bond distance between the nuclei. The upper curve is typically displaced to 

the right, as an excitation normally occurs from bonding to antibonding molecular 

orbitals 

 

Figure 2.1 Classical description of the Franck-Condon principle.  

and therefore R increases. For the same reason, the force constants describing the 

stretch vibration between the nuclei differ. In the classical picture the transition will 

occur from the minimum in the initial state (lower curve) vertically to the intersection 

between excitation and final state potential (upper curve).  At this point the excited 

molecule is at a turning point of a vibration and the positions of the nuclei are still the 

same as they were before the transition. Once the intersection is reached, the 

molecule starts to vibrate at an energy corresponding to the intersection. 
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The quantum mechanical description of this process is depicted in figure 2.2. The 

transition occurs from the vibrational ground state of the initial electronic state 

potential to the vibrational states in the final electronic state. This way the vibrational 

wavefunction undergoes the least change, which corresponds to the preservation of 

the dynamical state of the nuclei as required by the Franck-Condon principle (i.e. the 

position of the nuclei does not change). The vibrational state with a wavefunction 

that 

 

 

Figure 2.2 Quantum mechanical description of the Franck-Condon principle. The 

transition occurs from the electronic and vibrational ground state into 

the electronic and vibrational excited state. 

most resembles the original bell-shaped Gaussian of the vibrational ground state is 

one with a peak immediately above the ground state (i.e. maximal overlap between 

the vibrational levels of ground and excited electronic state). As depicted in figure 2.2 

this wavefunction corresponds to an energy level that lays in much the same position 

as in the vertical transition of the classical description. 

To justify the quantum mechanical description the transition dipole moment 

between the ground vibronic state | �ευ〉 and the upper vibronic state | �ε´υ´〉 has to be 

evaluated. In a molecule the electric dipole moment operator μ depends on the 
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position and charges of the electrons, r⃑� and –e, as well as the positions and charges 

of the nuclei, R��⃑ � and Zse: 

μ = −e∑ r⃑�� + e∑ Z�R��⃑ �� = μ� + μ�          (2.24) 

Within the Born-Oppenheimer approximation, the vibronic state | �ευ〉 is described 

by the wavefunction Ψ��r⃑, R��⃑ �Ψ��R��⃑ �, where r⃑ and R��⃑  denote the electronic and nuclear 

coordinates, respectively. The transition dipole moment is therefore 

 ⟨ε´υ´|μ|ευ⟩ = ∫Ψ�´
∗ �r⃑, R��⃑ �Ψ�´

∗ �R��⃑ �(μ�����⃑ + μ�����⃑ )Ψ� �r⃑, R��⃑ �Ψ� �R��⃑ �dτ�dτ�      (2.25) 

 = Ψ�´
∗ �R��⃑ ��∫Ψ�´

∗ �r⃑, R��⃑ �μ�����⃑ Ψ� �r⃑, R��⃑ �dτ��Ψ� �R��⃑ �dτ� 

          +Ψ�´
∗ �R��⃑ �μ�����⃑ �∫Ψ�´

∗ �r⃑, R��⃑ �Ψ� �r⃑, R��⃑ �dτ��Ψ� �R��⃑ �dτ� 

In the final term the integral over the electronic coordinates is zero because the 

electronic states are orthogonal to each other for each selected value of R��⃑ . The 

integral over the electron coordinates in the remaining integral is the electric 

transition dipole moment for the transition when the nuclei have the coordinates R��⃑ . 

Approximately, this transition dipole moment is independent from R��⃑  as long as the 

displacement of the nuclei from the equilibrium is sufficiently small. If this holds the 

integral can be approximated by a constant μ�´��������⃑  and the overall transition dipole 

moment can be approximated as 

⟨ε´υ´| �μ�⃑ |ευ⟩ ≈ μ�´��������⃑ ∫Ψ�´
∗ �R��⃑ �Ψ� �R��⃑ �dτ� = μ�´��������⃑ S(υ´, υ)         (2.26) 

where 

 S(υ´, υ) = ∫Ψ�´
∗ �R��⃑ �Ψ� �R��⃑ �dτ�              (2.27) 

is the overlap integral between two vibrational states in their respective electronic 

states. Therefore, the transition dipole moment has the largest absolute value 

between vibrational states with the largest overlap. Compared to the classical picture 

this is the quantitative version of the previous qualitative discussion, where the upper 

vibrational state had a local bell-shaped region above the Gaussian function of the 

ground vibrational state of the lower electronic state. 
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Generally, the S(υ´, υ) are non-zero. Normally, several vibrational states have 

significant absolute values of S(υ´, υ) and as a consequence transitions take place 

between all of them and the ground state. The result is a progression of transitions 

and a series of lines is observed in the electronic spectrum. The square of the 

transition dipole moments are called Franck-Condon factors, |S(υ´, υ)|�, which are 

directly proportional to the relative intensities of the lines found in the spectrum. 

2.1.2.1 Simulation of REMPI Spectra 

Simulation of the REMPI spectra are based on Franck-Condon factors as 

described in Ref.57: First, the normal-mode coordinates and force constants of the 

ground and excited states are determined. The standard orthogonal normal modes 

Q1(2) are obtained as a linear combination of Cartesian displacements58 

 Q�(�)� = ∑ L�(�)�� �q�(�) − q�(�)�
(�) �� .           (2.28) 

Here, the matrix L1(2) connects the 3n - 6 (n is the number of atoms in the (nonlinear) 

molecule) normal coordinates with the set of 3n mass-weighted Cartesian 

coordinates q1(2); the vectors q1
(0) and q2

(0) correspond to the stationary points on the 

adiabatic potential surfaces of states 1 and 2, respectively. Then, the normal modes 

displacements ΔQ1(2) are obtained by projecting the displacements Δq = q1
(0 )- q2

(0) 

onto the normal-mode vectors.59 Finally, substituting the calculated quantities into 

Eq. 2.30 and Eq. 2.29 results in the Huang-Rhys factors60 Si and the total relaxation 

energy λtot
59 

 λ��� = ∑λ� = ∑ħω�S�             (2.29) 

 λ� = ��
�
ΔQ�

�,               (2.30) 

 S� = λ�/ħω�.                (2.31) 

The normal modes of ground and excited state, Q1 and Q2, are in general different 

and related by multidimensional rotation and translation,61 

 Q� = 𝐉Q� + ΔQ.             (2.32) 

The mixing of the normal coordinates of the two states is described by J, the 

Duschinsky matrix. In this work this mixing is neglected (J = 1), which is referred to 
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as the parallel mode approximation.62 As a consequence the relative intensity of a 

multidimensional vibrational transition is obtained as a simple product of one-

dimensional Franck-Condon integrals,63 

 I�m�, n�, m�, n�, … m�, n�� = ∏ FCI(m�, n�)�exp ��ħ����
���

��
��� ,       (2.33) 

 FCI(m, n)� = exp(−S)S(���) �!
�!
�L�

(���)(S)�
�
,         (2.34) 

where mi and ni are the initial and final vibrational quantum numbers of the mode ωi, 

kB is the Boltzmann constant, T is the temperature, and L��(x) is a Laguerre 

polynomial. The square of the FCI is the Franck-Condon factor (FCF). As we 

consider only transitions from the vibrational ground state (m = 0) the temperature-

averaged FCFs turn into the standard Poisson distribution,57 

 I(m = 0, n) = ��

�!
e��.             (2.35) 

2.1.3 Marcus-Hush Theory 

Originally developed (Nobel prize64 in 1992) by R.A. Marcus in 1956 the Marcus 

theory64-72 describes electron transfer in the so called outer-sphere, i.e. both 

reactants do not share an atom or a group, or, more generally, reactions in which the 

interaction between the relevant orbitals of the two centers is weak. The extension to 

the description of inner-sphere electron reactions (reactions take place in covalently 

bound systems) was given by Hush.73  

Marcus theory can be applied not only for electron transfer, but for exciton transfer 

as well. To explain the principle we first consider two diabatic (non-interacting) states 

corresponding to the reactants (A* + B) and products (A + B*) relative to their 

reaction coordinate R(x), see figure 2.3 for an exergonic reaction. A and B are two 

different systems (atoms, molecules, …), while the asterix denotes either a charged 

(excited) species in case of charge (exciton) transport. Reactants and products 

represent initial state and final state, respectively. To reach the product state the 

systems have to overcome the barrier ΔG≠. The reaction free energy is ΔG0. The 

central idea in the Marcus treatment is that the activation energy ΔG≠ can be 

decomposed into two parts.74 The first one is characteristic of the reaction type, the 

 



16 
 

 

Figure 2.3 Diabatic description of an exciton or charge transfer reaction between 

two systems A and B. ΔG≠ represents the reaction barrier and ΔG0 is 

the reaction free energy. The x-axis is the general reaction coordinate 

represented by the position of the nuclei q, the y-axis represents the 

free energy. 

 

Figure 2.4 Decomposition of the activation energy ΔG� into the intrinsic part as 

well as the thermodynamic contribution. 

intrinsic activation energy ΔG0
≠, which is gained by a hypothetical thermo neutral 

reaction (ΔG0 = 0). The second part takes into account that reactants and products 

do not have the same energy and therefore introduces the thermodynamic 
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correction. This decomposition is depicted in figure 2.4. Similar reactions should 

have similar intrinsic activation energies, and the Marcus equation obeys both the 

Bell-Evans-Polanyi principle75, 76 as well as the Hammond postulate.77 The barrier 

can be calculated by 

 ΔG� = ΔG�
� + ���

�
+ (���)�

������
.               (2.36) 

Except for very exo- or endothermic reactions (or a very small ΔG�
�), the last term in  

Eq. 2.36 is small and roughly half the reaction energy enters the activation energy. 

As ΔG� is a parabolic function of the reaction energy, the activation energy will 

increase if the reaction energy is too exergonic. The turnover occurs at ΔG� =

−4ΔG�
�. Lower ΔG� values correspond to the so called “inverted” region. A 

comparison between normal and inverted region, as well as their border, where the 

activation energy is equal to 0 and the reaction rate k gets maximized, is shown in 

figure 2.5. The inverted region is difficult to access experimentally,78 but was proven 

to exist by Closs et al. in 1986.79 

 

 

Figure 2.5 Marcus “normal” region (left), the inverted region (right), and the limiting 

case (middle), where the barrier is 0 and the transfer rate is maximized. 
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Figure 2.6 Schematic description of the Marcus Theory. The x-axis describes the 

reaction coordinate represented by the positions R of the nuclei, and 

the y-axis the free enthalpy G. λ is the relaxation energy, ΔG0 the Gibbs 

free energy between reactants and products, and Vec the electronic 

coupling parameter. The curves represent the adiabatic states of 

products and reactants. 

Since the states have to interact in the case of transfer reactions the description 

changes from the diabatic to the adiabatic picture, see figure 2.6. This interaction is 

expressed by Vec, the so called electronic coupling parameter, which is also known 

as the transfer integral. Its calculation will be discussed in chapter 3. The lower 

parabola represents the initial reactant state A* + B at q(R) and the final product 

state A + B* at q(P). λ describes the reorganization energy which is gained by 

relaxation of the structure after vertical transition from the initial to the final state. 

Whether the diabatic or adiabatic representation is appropriate depends on the 

relative magnitude of Vec and λ. This will be explained in detail in section 2.3. In this 

thesis the semi-classical Marcus Theory rate expression is used which has the form 

 k = |���|�

ħ �
�

����
exp �− (����°)�

�����
�,           (2.37) 

with kB as the Boltzmann constant, and T as the absolute temperature. It can be 

derived from Fermi´s Golden Rule and will be explained in the next subsection. 
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2.1.3.1 Derivation of the Semi-Classical Marcus Rate Equation 

It is assumed that  

• all normal modes are classical (ħωi « kBT). 

• the potential energy surfaces of an initial reactant (R) state to a final product 

(P) state have a parabolic form and have the same vibrational frequencies: 

E�(q) = E�(0) + �
�
ω��q − q(R)�

�
 and E�(q) = E�(0) + �

�
ω��q − q(P)�

�
.       

(2.38) 

the thermal equilibrium is reached and the distribution of the initial states is 

given by:  

f(q) = �
�

exp �− ��(�)
���

�,      

 (2.39) 

with Z being a partition function. 

If these conditions apply, Fermi´s Golden Rule (Eq. 2.22) can be rewritten as an 

ensemble average: 

 k = ��
ħ ∫ dq f(q)|V��|�δ(E�(q) − E�(q)).          (2.40) 

Evaluation of Z in Eq. 2.40 gives 

 Z = ∫ dq exp �− �
�
ω�
�(q − q(R))����

�� .          (2.41) 

Substituting x = ���
�

���
(q − q(R)), Eq. 2.41 becomes 

 Z = ����
��
� ∫ dx exp �− ��

�
���

�� = ������
��
�           (2.42) 

The argument of the delta function in Eq. 2.40 can be rewritten as  

 E�(q)− E�(q) = ΔG� + ��
�

�
[q� − 2q(R)q + q�(R) − q� + 2q(P)q + q�(P)] (2.43) 

with ΔG� = E�(0) − E�(0)              (2.44) 

 E�(q)− E�(q) = ΔG� − ω�
�q(q(R) − q(P)) + ��

�

�
�q�(R) − q�(P)�      (2.45) 



20 
 

Eq. 2.45 is linear in the normal mode coordinate q. The coordinate q≠, where the 

diabatic surfaces of R and P cross (E�(q) = E�(q)), is expressed as 

 q� =
������

�

� ��
�(�)���(�)�

��
��(�(�)��(�)) .            (2.46) 

A delta function can be written in general as 

 δ�f(x)� = ∑ �(����)
|�´(��)|� .             (2.47) 

This property allows us to rewrite the delta function of Eq. 2.40 as 

 δ�E�(q) − E�(q)� = �(����)
��
�(�(�)��(�)).           (2.49) 

Combining Eq. 2.42 and Eq. 2.48, Eq. 2.40 becomes 

 k = ��
ħ
� ��

�

�����
|���|�

��
�(�(�)��(�))∫ dq exp �−��

�(���(�))�

����
� δ(q − q�)��

��        (2.49) 

 <=> k = ��
ħ

|���|�

��������
�(�(�)��(�))�

exp �−��
�(����(�))�

����
�.        (2.50) 

Inserting the reorganization energy λ and the activation barrier ΔG≠ to replace 

reactant and product coordinates as 

 λ = ��
�

�
�q(R) − q(P)�

�
            (2.51) 

 ΔG� = �
�
ω�
��q� − q(R)�

�
            (2.52) 

 ΔG� = �������
�

��
             (2.53) 

into Eq. 2.50 we finally obtain Eq. 2.37 

 k = |���|�

ħ �
�

����
exp �− (����°)�

�����
�. 
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2.1.3.2 Calculation of the Reorganization Energy 

The reorganization energy λ is the quantity to describe the system reorganizing 

during the charge or exciton transfer. λ can be decomposed into an internal (λint) and 

an external (λext) reorganization energy.  

The latter represents the surroundings of the interacting systems. If the transfer 

takes place in the condensed phase, λext is associated to the change of the nuclear 

polarization of the solvent. Marcus developed a model in the 1960´s for charge 

transfer, which is based on the hypothesis that the medium around molecules A and 

B is a dielectric continuum. There, the external reorganization energy can be 

written71 

 λ��� = (��)�

�
� �
����

− �
��
� � �

��
+ �

��
− �

���
�          (2.54) 

where Δe is the amount of charge transferred, εopt and εs are the optical and static 

dielectric constant of the medium, rA and rB are the radius of the molecules A and B, 

which are considered as two spherical ions, and RAB is the distance between them. 

In the solid state the external reorganization is related to the complete electronic 

and nuclear depolarization of the molecules in the surrounding of the molecular ion 

in the initial state and their polarization of the final state after charge transfer. A 

systematic way of evaluating λext has proven difficult due to the complexity of nuclear 

and electronic degrees of freedom. Therefore, in this work which focuses on 

crystalline systems, the external reorganization energy has been neglected. This is 

supported by the results of Norton et al.80 and McMahon et al.,81 who showed that 

λext is smaller by one order of magnitude than λint in oligoacenes. Furthermore, λint of 

a molecule is smaller in a cluster than in the gas phase.80 Thus, the neglect of the 

external reorganization energy is compensated by the overestimated internal 

relaxation energy calculated in the gas phase. 34 

The internal reorganization energy λint is decomposed into two parts,57 which are 

both shown in figure 2.7. λ1 corresponds to the relaxation of the molecule A*  after 

vertical transition from the neutral (ground) state A into the charged (excited) state A* 

and λ2 is the corresponding term for relaxation after the vertical transition back from 

A* to A. Thus, the internal reorganization energy is just the sum over both parts: 
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 λ��� = λ� + λ�.             (2.55) 

 

Figure 2.7 Internal relaxation energy λint decomposed into its two parts λ1 and λ2. A 

is the system in the ground (neutral) state and A* the system in the 

corresponding excited (charged) state in case of exciton (charge) 

transfer. 

2.2 Exciton Transport 

To describe exciton transport in organic materials, one of the major bottlenecks in 

the efficiency of organic solar cells, one has to understand first the concept of an 

exciton, which originates from solid state theory (section 2.2.1.1). The interaction 

between an exciton and its neighbored molecules is intimately related to the 

phenomenon of the Davydov splitting (section 2.2.2). The transport itself adopts the 

ideas of charge transport (chapter 2.3) as it uses the semi-classical Marcus theory 

for hopping transport (section 2.1.3.2) in a weak coupling regime (section 2.4). 

2.2.1 Exciton Theory 

The ideal exciton is a quantum of electronic excitation energy without any 

charge.82 It is created whenever a system (complex, cluster, nanoparticle, or crystal) 

absorbs light. Excitons travel through crystals transporting energy, but not charge.83 

Therefore, their movement is unaffected by external fields. Different types of excitons 
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exist and the present work will focus on those called after the description by 

Frenkel83 and Wannier,84 while also introducing the Davydov exciton, a special 

subclass of the Frenkel-type. 

Excitons are affected by lattice vibrations. If the thermal energy kT is comparable 

with the binding energy of the exciton, then it can be “ionized” to produce a 

negatively charged particle or a positively charged hole. These are charge carriers 

and therefore responsible for electric currents. If light is absorbed under these 

thermal conditions the conductivity of the crystal will increase. This effect is known 

as photoconductivity. There are also others ways to ionize an exciton: A real crystal 

shows a large number of imperfections like vacancies, interstitial defects, 

dislocations, foreign atoms and even the surfaces of the crystal. All of them perturb 

the perfect periodicity of the lattice. There, an exciton can ionize and 

photoconductivity is observed as a result. Another possibility is the collision of two 

excitons, but this is highly improbable without the use of laser beams. Excitons in 

solids can dissipate in three different ways: Conversion into heat through coupling 

with lattice vibrations, transformation into free charges (ionizations), and by emission 

of light (fluorescence, phosphorescence).  

Finally, it should be emphasized, that excitons can only be understood by 

quantum theory: An exciton is a quantum of excitation and hence a pseudoparticle. 

Many other forms of quantized excitations exist, among them lattice vibrations, which 

have the greatest influence on excitons. The coupling between both gives rise to the 

so called exciton-phonon complex. 

2.2.1.1 Frenkel Exciton 

First by Frenkel83 in 1931 and Peierls85 in 1932, the exciton was introduced as 

“excitation waves”, which are formed in solids by light absorption and subsequently 

transform into heat. In these simple solids the interaction between electrons from 

neighboring atoms or ions is small compared to the attraction between electrons and 

cores within the individual atoms. Examples for these kinds of solids are solid xenon 

and sodium chloride. Having a inert gas configuration, the shells within each atom 

are always full and the electrons do not interact a lot with other atoms or ions as long 

as they remain within the closed shells. As a consequence, the material does not 

conduct electric current, i.e. it is an insulator. If one atom absorbs enough energy 
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(e.g. a photon), then an electron is moved out of the closed shells, but is still bound 

to its parent atom/ion. This electron is now moving within the space influenced by the 

positive charge field created by its own absence from its original closed shell. The 

latter is called “hole” and is treated in solid state physics like an electron except for 

its positive charge. This electron-hole pair is not bound to any particular atom, but 

can pass from one atom to the next in the crystal, constituting what Frenkel called an 

“excitation wave” or simply exciton. Its movement does not result in a net flow of 

charge. The electron is still bound by Coulombic force to the hole and the distance 

between them is called the “exciton radius”. This radius is considered to be small in 

Frenkel excitons (therefore the alternative name zero-radius exciton), i.e. less than 

the interatomic distance. Electron and hole are tightly bound and localized, see 

figure 2.8. 

 

Figure 2.8 Localized Frenkel-type exciton (left) and delocalized Wannier-type 

exciton (right). 

2.2.1.2 Mott-Wannier Exciton 

A similar, yet slightly different approach was given by Wannier84 and Mott86 for 

excitons with large radius, resulting in the alternative name large-radius exciton, and 

for solids, where the valence atoms cannot be identified to their parent atoms 

anymore. This is the case for many semiconductors, in particular the so called 

covalent solids such as germanium, silicon, gallium arsenide and cuprous oxide etc. 

There, the interaction between neighboring atoms is increased and the valence 

electrons are normally shared by several atoms to form bonds. Although the 

electrons have gained a greater spatial volume in which they can move, they are still 

not contributing to electric current, even if an external field is applied.  In such solids 

the valence electrons occupy the valence band and a conduction band is found 
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energetically above. If the interaction between neighboring atoms is increased, so 

will the extent of the valence band. Additionally, the gap between both bands 

decreases. Ionic solids are therefore just the limiting case with a large gap and a 

narrow valence band. If one electron gets excited in such a semiconductor, it will 

leave a positive hole of the valence band. This hole will attract the electron to form 

an exciton, which binds much weaker than an electron in the valence band. The 

exciton radius is large and can cover up to tens or hundreds of atomic sites. 

2.2.1.3 Davydov Exciton 

 A formerly third type of exciton is known by the name “Davydov exciton”, which 

are found in organic substances with ring units such as benzene and anthracene.82 

The ring systems as a whole are excited by the absorption of light and the excitation 

energy is delocalized over the complete molecule. The excitation energy can also be 

passed on from one ring to another. The small interaction between neighboring rings 

is small compared with the interatomic forces within the ring. Therefore, Davydov 

excitons are localized and resemble Frenkel excitons. 

2.2.2 Davydov Splitting  

Based on the first investigations of excitons in molecular crystals87-89 Davydov 

was the first who developed the exciton theory for molecular crystals.90, 91 For this 

thesis it is sufficient to describe the simplest system for which exciton effects can be 

considered: the excitonically coupled dimer. The principles described here can be 

extrapolated to molecular aggregates. 

The excitonically coupled dimer consists of two monomer subunits. They don´t 

have to be within the van-der-Waals radius, or chemically linked via bonds. Both 

molecules are fixed in space for a given distance R�� and do not have any 

surroundings. Both are considered to have only two energy levels. For a given 

Hamiltonian H� their eigenstates ψ�  are determined by  

 H�ψ�
� = ε�� ψ�

� ,                 (2.56) 

where the subscript n defines the subsystem and the superscript i refers to ground 

and excited state. Since we assume both subunits to be identical we omit the 

subscript: ε� . Furthermore, the ground state energy is set to zero. 
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The total Hamiltonian for interacting molecules (Coulombic interaction) includes 

besides H�� and H�� also the interaction V between them. In this case ψ�  and ψ�  are 

no longer the correct eigenstates and also the eigenenergies will be different, i.e. 

interaction of the molecules will result in perturbations of the energy spectrum. Since 

this interaction is weak, the perturbation theory for degenerate states can be used 

with the Heitler-London approximation:91 Linear combinations of the product of the 

molecular eigenfunctions are equal to the eigenfunctions of the dimer. We describe 

the electronic ground state for the dimer as Ψ� = ψ��ψ�
�. The leads to the 

corresponding ground state energy of the dimer as 

 E� = �ψ��ψ�
��H�� + H�� + V�ψ��ψ�

�� = ε�� + ε�� + ⟨ψ��ψ�
�|V|ψ��ψ�

�⟩ = V��.      (2.57) 

The coupling between the molecules can already lead to a change in the ground 

state energy by V00. The excited states are written as 

 Ψ� = c��ψ��ψ�
� + c��ψ��ψ�

�.            (2.58) 

The coefficients c�� and c�� are normalized and orthogonal: 

 c��� + c��� = 1 

 c�� ∙ c�� + c�� ∙ c�� = 0,            (2.59) 

where f and g represent different eigenstates. Thus, the excited state of the dimer is 

a linear combination of two terms in which one or the other molecule is excited. The 

coefficients c��,� determine the relative contributions of these two terms. Also, the 

dimer eigenstates must fulfill the Schrödinger equation: 

 �H�� + H�� + V�Ψ� = E�Ψ�.            (2.60) 

By multiplication from the left with either ψ��ψ�
� or ψ��ψ�

� and integration over the entire 

space gives the two equations: 

 c��(ε�� + ⟨ψ��ψ�
�|V|ψ��ψ�

�⟩) + c��⟨ψ��ψ�
�|V|ψ��ψ�

�⟩ = c��E�,        (2.61) 

 c��⟨ψ��ψ�
�|V|ψ��ψ�

�⟩ + c��(ε��⟨ψ��ψ�
�|V|ψ��ψ�

�⟩) = c��E�,        (2.62) 

or abbreviated as 
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 c���ε�� + V�� − E�� + c��V�� = 0,           (2.63) 

 c��V�� + c���ε�� + V�� − E�� = 0.           (2.64) 

V12 and V21 are resonance interaction terms, also called the electronic coupling 

parameter (called Vec in this thesis) or transfer integral. Rewriting this into a 

determinant gives for non-trivial solutions (c�� and c�� should not both be equal to 0): 

 �ε�
� + V�� − E� V��

V�� ε�� + V�� − E�� = 0.           (2.65) 

Since both molecules are identical ε�
�,� = ε�

�,� = ε�,�, V�� = V�� and V�� = V��. Thus 

Eq. 2.65 can be written as 

 �ε� +  V�� − E��
�

= V���            (2.66) 

which gives the two eigenenergies 

 E� = ε� +  V�� − V��, 

 E� = ε� +  V�� + V��.             (2.68) 

The excitation energy has changed going from the monomer to the dimer. The 

energy levels are split by 2V12. This effect is known as Davydov splitting or exciton 

splitting. The average energy of these two levels has been shifted with respect to the 

monomer ground state by V11 – V00, which is also called displacement energy D. 

This D is comparable to the change a molecule experiences when it goes from the 

gas phase to its condensed phase surrounding, which usually leads to a red shift of 

the absorption bands. 

The value of the resonance interaction V12 can be evaluated by transition dipole 

moments (chapter 3.1.1), the Coulomb interaction between transition densities of two 

monomers (chapter 3.1.3) or by calculation of the complete dimer system (chapter 

3.1.4). 

The above molecule is of course oversimplified. In this description the energy 

levels of the two molecules do not have to be identical (non-equivalent site 

energies). Mixing with other excited states, the influence of internal and 
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environmental vibrations (e.g. phonons in crystals), and different broadening 

mechanisms are not considered. 

 

2.3 Charge Transport 

In charge transport (CT) either a positive hole or a negative electron is transferred 

from an initial electronic state (donor, reactant) to a final state (acceptor, product). 

Each of these states is characterized by its own vibronic states. The main focus of 

this thesis is CT in bimolecular systems. This is governed by a balance between the 

electronic and nuclear motion, which corresponds to the electronic and nuclear 

frequency νel and νnuc. Taking the inverse of these provides the vibrational and 

electronic characteristic times, tel and tn, respectively. The two limits t� ≫ t�� and 

t� ≪ t��are referred to as the strong coupling regime and the weak coupling 

regime.60  

• In the strong coupling regime, also termed adiabatic limit, the electronic states 

are delocalized over the whole donor-acceptor complex and V�� ≳ λ  

(or V�� > ħ𝜔). To be more specific: The initial state is partially delocalized over 

the final state. There, the use of the double-well delocalized adiabatic 

representation is advantageous, see figure 2.6. The adiabatic transfer is 

understood as the vibrational degrees of freedom when the system moves 

from one energy well to the other. Here, the rate constant can be obtained by 

a standard Arrhenius-type equation neglecting the electronic coupling. 

• In the weak coupling regime, also termed non-adiabatic charge transfer 

(V�� < 𝜆 by several orders of magnitude), the vibrational motion is much faster 

than the electronic motion (νnuc » νel). The electronic states are localized and a 

description based on diabatic initial and final states is appropriate. The 

crossing point between the initial and the final state can easily be reached, but 

the transmission is limited by the electronic frequency. This is the case for all 

investigated systems in this thesis. 

• In case of Vec > λ it is impossible to distinguish between reactant and product 

as the electronic states are fully delocalized over the systems. 
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2.4 Diffusion 

Diffusion is a process which leads to an equal distribution of particles in a given 

volume. The basis is the thermal motion of particles, which can be either atoms, 

molecules or charge carriers. Statistically, diffusion describes particles moving from 

areas of higher concentration into areas with lower concentration, but diffusion itself 

also happens if there is no concentration gradient. Therefore, diffusion occurs 

without a preferred direction. It normally applies on scales of nano- to millimeters. If 

the distances are greater, then convection dominates transport of matter in liquids 

and gas. In physics diffusion is divided into four different types:92 

• classical Fick diffusion 

A strong concentration gradient exists. Particles move from the area of high 

concentration into the area of low concentration. Diffusion is described 

mathematically by Fick´s First and Second law: 

 J =  −D ��
��

              (2.69) 

 ��
��

= D ���
���

              (2.70) 

with J as the flux, c as concentration, x is the considered direction, t the time, 

and D the diffusion constant. 

• counter-diffusion 

This type is in principal identical to the classical treatment by Fick. The 

difference arises as counter-diffusion also incorporates a second 

concentration gradient which leads to diffusion in opposing directions. 

• self-diffusion 

In the absence of any concentration gradients (e.g. pure water) particles move 

randomly without any preferred direction. This model is applicable to describe 

Brownian motion. In crystals, the self diffusion constant is given by 

D = lim�→�
�
���

∑ p�(t)(r� − r�)�� ,           (2.71) 

where pi denotes the probability that the lattice site i is occupied by a charge 

carrier or exciton and |r� − r�| is the distance between the lattice site i and the 

origin of the system. Diffusion lengths LD are obtained by 

 L� = √2Dτ              (2.72) 
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with τ as the lifetime. Since this thesis neglects the interaction with other 

particles self-diffusion is the best model to describe exciton and charge 

transport. Although the gradient is missing self diffusion in crystals is subject 

to anisotropy, which will be discussed in more detail in chapter 4. 

• tracer-diffusion 

This type is similar to self-diffusion, but this time the considered moving 

particle (called tracer) is found for low concentration solvated in another 

substance, e.g. small amounts of KCl in a solution of NaCl in water. The 

tracer is usually marked with a radioactive isotope or able to fluoresce.  

To calculate the diffusion constant D several models are possible. The easiest 

way is derived from the kinetic gas theory as93 

 D = �
�
〈x〉〈ν〉,              (2.73) 

where 〈x〉 is the average length a particle moves until it collides with another one and 

〈ν〉 its corresponding average velocity. The derivation of Eq. 2.73 assumes an ideal 

gas. Its particles move without interaction with their neighbors. Therefore, these 

particles do not change their direction and Eq. 2.73 represents only an upper 

boundary for diffusion.  

In the case of hopping transport in organic crystals (this thesis), Eq. 2.73 is not 

directly applicable as transport takes place between single systems carrying the 

exciton (or charge) and their neighbors. E.g. the pathway of a given exciton (or 

charge carriers) along a cell axis in crystals is composed of a straight direction along 

this axis and all other combinations (zig-zag motion or random motion), which will 

ultimately lead the exciton (or charge carrier) into the same direction, see figure 2.9. 

Taking these motions into account requires a more general approach for hopping 

transport. The following sections summarize the approach presented in more detail 

in Ref.94, which employs the master equation, which, in the case of low charge-

carrier densities, has the form 

���
��

= ∑ �ν��p� − ν��p���                  (2.74) 

where pi denotes the probability that the lattice site i is occupied by a charge carrier. 
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Figure 2.9 Different possibilities for an exciton or charge carrier (star) to travel 

along the cell axis b in the anthracene crystal: straight (pink), zig-zag 

(green) or random (orange). 

The index j represents a given neighbored system, where excitons (or charge 

carriers) can be transported to or from. Although it is possible to include repulsive 

interaction between charge carriers in the master equation, Eq. 2.74 gives good 

results in the case of low densities. 

Under steady state conditions, the occupation probabilities do not change 

anymore (dpi/dt = 0) as a dynamic equilibrium is reached. The result is a linear 

system of equations of the form 

 𝐍 ∙ p�⃑ = 0�⃑                  (2.75) 

with p�⃑  containing the unknown pi and N is a negative semidefinite sparse matrix 

which contains all hopping rates ν��. N is approximated by a finite matrix with cyclic 

boundary conditions, i.e. if a charge carrier (or exciton) leaves the crystal at one side 

then it reenters at the opposite site. Note that this approximation results in a 

constraint. The probability for this kind of jump must be very small to avoid wrong 

occupation numbers. Therefore, the matrix must be big enough. This is 

accomplished for our systems if we choose our crystal to be a cube of three unit cells 
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in each direction. Bigger matrices do not change the results for charge transport.94 

Hopping rates have been calculated from all monomers in one unit cell to all other 

monomers in the same and the adjacent cells. Since the semi-classical Marcus rate 

expression (Eq. 2.37) to obtain the jump rates k depends strongly on the distance via 

the coupling Vec, larger jump distances can be neglected. 

Taking into account the normalization condition ∑ p� = 1�  Eq. 2.75 results in the 

occupation probabilities for all sites (if we assume ΔG0 = 0 for all site combinations). 

With these probabilities the mobilities μ can be calculated in field direction from 

 μ = 〈�〉
�

               (2.76) 

with F as the electric field, 〈v〉 as the average velocity  

 〈v〉 = ∑ p�ν�� = ∑ p�
〈�||〉
��� ,            (2.77) 

where v� is the resulting average velocity at site i, 

 〈r||〉� =
∑ ������⃑ ��

���⃑
���

∑ ����
             (2.78) 

is the average displacement at site i in field direction, and 

 τ� = �∑ ν��� �              (2.79) 

is the dwell time of the charge carrier (or exciton) at site i. Combining Eqs. 2.76 to 

2.79 gives the mobility as 

 μ = �
�
∑ �p� ∑ ν��

∑ ������⃑ ��
���⃑
���

∑ ����
� � = �

�
∑ p�ν��r⃑��

���⃑

���� .         (2.80) 

A different and easier approach to the mobility is a calculation without an external 

field. Then, the occupation probabilities of the sites are equal and the master 

equation does not have to be solved. Eq. 2.80 is not resolvable (because F = 0) and 

the mobility is calculated via the diffusion constant D and the Einstein relation95 

 μ = �
���

D,              (2.81) 
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where kB is the Boltzmann constant and, T the absolute temperature, and q the 

charge. Apart from Eq. 2.73 different approaches exist to evaulate D.96-100 Following 

the concepts for the mobility above provides 

 D = �
��

�
��
〈r�〉 = �

��
∑ p�

〈��〉�
��� ,            (2.82) 

where n is the spatial dimensionality. If the diffusion is regarded in one dimension 

only, then n = 1 and 

 D = �
�
∑ p�

〈�||
�〉�
���              (2.83) 

where 

 〈r||
�〉� =

∑ ������⃑ ����⃑ ��

∑ ����
              (2.84) 

is the variance of the charge carrier position at site i in the direction of the unit vector 

e�⃑ . These equations lead to  

 D = �
�
∑ p�ν���r⃑��e�⃑ �

�
�� .             (2.85) 

Without an external field (F = 0) and identical site energies (ΔG0 = 0) Eq. 2.85 turns 

into 

 D = �
�
∑ ν��r⃑�e�⃑ �

�
�� .             (2.86) 

As shown in more detail in Ref.94 Eqs. 2.85 and 2.86 are not strictly correct. Only if 

the unit cell of the crystal contains a single molecule and only if the crystal structure 

has a perfect translation symmetry (i.e. G�
� = G�

� <=> 𝛥G��
� = 0), then those equations 

are correct. Less ordered or amorphous materials have different site energies G�
� and 

G�
� due to the surroundings of their lattice site. Consequently, the occupation 

numbers pi differ and the master equation has to be applied. If ΔG��
� is too big the 

charge carrier (or exciton) may be trapped between two lattice sides with similar 

energy and Eq. 2.85 becomes inapplicable. The charge carrier (or exciton) hops 

between those two sites until all the time. This does not contribute to the 

macroscopic spread of the occupation probability with the time. The true 

macroscopic diffusion constant is overestimated by the averaging in Eq. 2.85. This 
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problem does not occur in Eq. 2.80, because r⃑�� is not squared in contrast to Eq. 2.85 

and the contribution of the trapped charge carrier to the diffusion cancels when 

summed over all lattice sites. Another problem exists even in perfect crystals: If the 

coupling and consequently the transfer rate in a specific dimer is high in comparison 

to all its neighbors, then the charge carrier (or exciton) will also move back and forth. 

This also leads to an overestimation of D by application of Eqs. 2.85 and 2.86 and a 

combination of Eqs. 2.80 and 2.81 is necessary to get the correct values for the 

diffusion constant.94 

Another possibility to calculate the mobility and the diffusion constant is a Monte 

Carlo approach.101 Neglecting the interaction between charge carriers (or excitons) 

gives 

 μ = �
�
�
��
〈r⃑��

���⃑

�
〉              (2.87) 

and 

 D = �
�
�
��
〈�r⃑��e�⃑ − 〈r⃑��e�⃑ 〉�

�〉.            (2.88) 

To obtain smooth lines the time-dependent average position 〈r⃑��
���⃑

�
〉 and the variance 

〈�r⃑��e�⃑ − 〈r⃑��e�⃑ 〉�
�〉 are averaged over a sufficient number of simulations. This approach 

is an alternative to solve the master equation. It is a feasible way to log motions at 

the atomic scale underlying the transport properties as a function of time. However, 

many simulations are necessary for this statistical method to get an acceptably low 

statistical error. Additionally, it must be confirmed that the stationary state being 

reached within the simulation time. In case of strongly disordered systems this is a 

serious problem. In contrast to Monte Carlo the previous approach is numerically 

more efficient, because it provides the stationary state by means of an analytic 

numerical methods.102 

The validity of the Einstein relation has been called into question for disordered 

organic materials in general100, 103, 104 or at least if an external field is applied.105-107 It 

turned out that this is only true for rather high charge-carrier densities,108 low 

temperatures and high electric fields. This is not the case in the systems under 

consideration in this work. Extremely low temperature causes the charge carriers  
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(or excitons) to not being able to reach sites with higher energy. The thermal energy 

needed as activation is insufficient and only transfer to sites with lower energy is 

possible. Mobility and diffusion constant is then temperature independent.109 The 

transport coefficients are independent on the field,110, 111 for small fields, but for 

higher fields nonlinear effects become important and D/μ increases with the field.112 

 

2.5 Band Transport 

Although not a topic in this thesis, band theory is a common concept used to 

describe transport in metallic and inorganic semiconductors.113 Originally developed 

by Bloch114 in 1928 to calculate the electronic structure, band theory describes 

crystals as being constituted by atoms or molecules regularly positioned in space to 

form a periodic lattice. These sites are fixed in space and electrons moving within the 

crystal are hardly influenced by the nuclei. As a consequence, electrons scatter only 

weakly on their way through the crystal. In this case, the energies and wavefunctions 

are obtained by considering that the movement of the electrons is influenced by the 

potential V(r) of the fixed nuclei (Born-Oppenheimer). Another approximation is that 

each electron at position r is subject to a potential V(r) which takes into account the 

attraction of the nuclei and the repulsion of all the other electrons. Finally, the 

problem is reduced to a one-electron problem where electrons are considered 

independent moving in a potential with the periodicity of the crystal. The stationary 

states of these electrons are delocalized over the whole crystal. These states are the 

so-called called Bloch functions and the probability to find an electron is distributed 

over the whole crystal.  

Assuming an infinite linear atomic chain where only nearest neighbor interactions 

are considered, a tight-binding Hamiltonian describes the system: 

 H = E� + ∑ ��φ�〉�V��〈�φ������ + ∑ ��φ�〉�V��〈�φ������          (2.89) 

where E0 is the atomic site energy and Vec is the electronic coupling or transfer 

integral (see chapter 3). The energies of the Bloch functions are given by: 

  E(k) = E� − 2V��cos (kR�)            (2.90) 

with k as wave factor and Ra as the interatomic distance in the chain.  
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Eq. 2.90 describes the energy of the Bloch function as a periodic function of the 

wave factor with a period of 2π/Ra. The region between -π/Ra and π/Ra is called the 

Brillouin zone. The energy ranges from E0 – 2Vec to E0 + 2Vec for k = 0 and k = π/Ra, 

respectively and is distributed in a band resulting from the interaction of all the 

atomic localized energy levels. The bandwidth is proportional to the interaction given 

by Vec. If the bandwidth is large, then there is a high charge carrier delocalization 

and high mobilities are expected. In a band picture the charge carrier mobilities are 

expressed by 

 μ = ��
����

              (2.91) 

where τ is the scattering time, q the charge, and meff the effective mass of the 

electron or holes.  

The band theory is well established for inorganic covalently bound materials. 

However, it is not suited to describe transport in organic materials as organic 

molecular crystals are only weakly bound by van der Waals interactions. As a 

consequence, those crystals are very flexible and the prerequisite of fixed sites in 

band theory is not given. Due to the complex nodal structure of molecular orbitals in 

organic systems the coupling parameter becomes very sensitive to even small 

displacements of the nuclei. This leads to a charge carrier localization as lattice 

vibrations (called phonons) disrupt the long-range order in organic crystals.94 The 

existence of charge carriers or excitons forces nearby molecules to relax, which 

leads to additional perturbation of the order in the crystal and thus, emphasizes the 

localization by enlarging the relaxation energy. The electronic coupling Models have 

been developed to incorporate local115 (Holstein) or nonlocal116 (Peierls) coupling. 

Nonlocal coupling results in a polaron model describing the charge carrier as 

partially localized and dressed by phonons.117-120 The average coupling is of the 

same order of magnitude as the fluctuations of the coupling resulting in a strong 

localization.121 Other models treat the inter- and intramolecular vibrations classically 

while the charges are localized.122-124 
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3. Calculation of the Electronic Coupling Parameter – Concepts 

Transport of charges or exciton energy strongly depends on the electronic 

coupling matrix element also known as the transfer integral. This interaction is 

defined by V�� = �Ψ��H��Ψ��, where H� is the electronic Hamiltonian of the system and 

Ψ� and Ψ� are wavefunctions, which represent the electronic state, respectively, 

before and after the charge or energy transfer process. Both states are diabatic, i.e. 

there is no coupling between them.125 The diabatic states can be chosen as local 

charged or excited molecules as we will see in section 3.1.3 or as it has been shown 

by Fink et al. in Ref.126 for a local complete-active-space self-consisting-field 

(CASSCF)127-129 approach for exciton transfer. In many cases, the adiabatic picture 

turns out to be easier to apply96 (the adiabatic representation is diagonal with respect 

to the electronic Hamiltonian in contrast to the diabatic representation), but more 

expensive. Sections 3.1.4 and 3.2.1 describe an adiabatic ansatz for exciton and 

charge transport, respectively. 

 

3.1 Exciton Transport 

In organic solar cells exciton transport is a major bottleneck due to its low 

efficiency. Therefore, improvements can be achieved mostly at developing materials 

with better exciton transport properties. Apart from the rather easily accessible 

reorganization energy, the main focus in this section of the thesis is the calculation of 

the transfer integral. Starting from the Förster Theory the related Dexter Transport 

will be introduced. Then, the diabatic approximation called monomer transition 

density approach (MTD) will be introduced. Finally the more complete and easier 

supermolecular approach will be discussed, which uses the adiabatic picture. 

3.1.1 Förster Theory 

Exciton transport was observed experimentally and explained theoretically by 

Theodor Förster. He discovered an increase of fluorescence quenching of a given 

dye in solution, if the concentration of a second dye with a large transition dipole 

moment increases.130 The classical treatment was published in 1951,67 while the 

quantum mechanical description already appeared in 1948130 and was reviewed in 

1965.131 Before this, Eisenschitz et al. discussed in 1929 the interaction of two 
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ground state H-atoms and found the so called London dispersion.132 There, the 

interaction energy Edisp between a H-atom in the ground state to a H-atom in the 

excited state was found to be proportional to �
���
� . Named after its discoverer, exciton 

transport is also known as Förster Resonance Energy Transfer (FRET)133-136 or other 

names like e.g. excitation energy transfer (EET).137-140 FRET originally describes the 

process of transport of absorbed light between two chromophores. The transport 

process does not involve photons, but a dipole-dipole term stemming from the 

electrostatic interaction of the electrons. In the classical treatment the excited donor 

induces an oscillatory field at the acceptor.  Also important is the conservation of the 

spin in both acceptor and donor system; that´s why FRET is also called singlet-

singlet-transfer. Within Förster´s approximated description the coupling can be 

calculated by 

 V�� ≈
�

������
�D��⃑ � · D��⃑ � − 3 ����⃑ �·���⃑ �������⃑ ��∙���⃑ ��

����
� = ����

������
κ,        (3.2) 

where n is the refractive index of the medium, R��⃑ �� the distance between the 

chromophores, κ the orientation factor, and D��⃑ � (D��⃑ �) the transition dipole moment of 

system A (B). In most cases κ is assumed to be 2/3, which is the average value, if 

the chromophores are rotated in all possible orientations.141, 142 Exciton transfer is 

named homo-transfer, if both systems (molecules, complexes or nanoparticles) are 

  

 

Figure 3.1 Radiationless exciton transport between two identical, neighbored 

molecules A and B. 
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of the same type, see figure 3.1, and hetero-transfer, if the involved systems are 

different in their chemical structure. 

In this thesis we only consider homo-transfer between two identical molecules, A 

and B, see figure 3.1. The excitation energy is transferred from molecule Ax  

(x denotes the molecule to be excited) to B. In the one-electron picture the excited 

electron in the LUMO of molecule A is deexcited, while simultaneously one electron 

in the HOMO of B gets excited as shown schematically by the molecular orbital 

scheme in figure 3.2: 

 

Figure 3.2 Schematic description of the exciton transport for homo-transfer 

between two identical systems A and B in the one-electron picture. An 

electron in the excited state Ax is deexcited from its LUMO ϕ�
�  to its 

HOMO ϕ�  while simultaneously one electron in molecule B gets 

promoted from the HOMO ϕ�  to the LUMO ϕ�
� . 

Limitations of this ansatz are the requirement to have bright states, i.e. transition-

dipoles non-equal to zero, and the range limit, where the approximation is valid. 

Generally the dipole approximation is reasonable for distances greater than 10 Ǻ. 

For dimers closer than that higher moments and overlap effects become important.  

3.1.2 Dexter Transfer 

Closely related to the quantum mechanical description of Förster is Dexter´s 

variant published in 1953.143 Dexter pointed out that other energy transfer 

mechanisms besides the Förster type (dipole-dipole interaction) are possible. Higher 

multipole-multipole interactions also contribute to the exciton transport, but these are 

more range dependent than the dipole-dipole interaction. Thus, Dexter transfer 
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becomes important for closely spaced systems, and for forbidden excitations with no 

transition dipole moment. This may happen by interchanging the electron between 

the LUMO on A and the LUMO on B. At the same time the electron in the HOMO of 

B with the spin opposite to the electron in the HOMO of A is transferred to the 

HOMO of A. This is shown in Figure 3.3:  

 

Figure 3.3 Dexter Transfer between two systems A and B. Electrons are 

interchanged between the LUMOs (ϕ�
�  and ϕ�

�  ) and HOMOs (ϕ�  and 

ϕ� ) of the systems. 

Similar to the Förster transfer the spin is also conserved. But in contrast, the 

Dexter mechanism is possible for energy transfer of triplet states. The intermolecular 

exchange of electrons requires significant overlap between the MOs of the different 

systems. This is only possible for closely spaced molecules and decreases 

exponentially. Consequently, Dexter transfer rates decrease rapidly with increasing 

distance of the systems.  

3.1.3 Monomer Transition Density Approach 

Another possibility to quantify exciton transport is the Monomer Transition Density 

(MTD) approach.126 Using the same formulas as described in the previous chapters, 

the difference arises in the calculation of the electronic coupling parameter Vec. It can 

be calculated by 

 V�� = ��������
����

.             (3.3) 
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Eq. 3.3 is the exact solution of the supermolecular ansatz (see section 3.1.4), which 

refers to the Davydov splitting (see section 2.2.2). MTD approximates this coupling 

by assuming S → 0 for large intermolecular distances, resulting in  

 V�� ≈ H�� − H��S ≈ H��.            (3.4) 

Applying Slater-Condon rules as well as neglecting Dexter-Transfer,143 HAB is given 

in a one-electron picture by 

  H�� = 2∫d𝐫� d𝐫�ϕ�
� (1)ϕ�(1) �

���
ϕ�(2)ϕ�

� (2).         (3.5) 

This corresponds to Fig. 3.2 of the Förster-Transfer.130, 144, 145 Eq. 3.5 includes the 

product of the HOMO and LUMO orbital on molecule A or B. The result is the 

transition density (TD) of the HOMO-LUMO excitation on that molecule, which can 

be visualized. For the example of ethylene, this is depicted in figure 3.4: 

 

Figure 3.4 The product of the HOMO and LUMO orbital is the transition density. 

Leaving the one-electron picture MTD approximates the electronic coupling 

parameter by the Coulombic coupling integral 

 V����� = ∬��(𝐫�)��(𝐫�)
���

d𝐫�d𝐫�.           (3.6) 

Here, r12 is the distance between the electrons at r1 and r2 and ρD(r) (ρA(r)) is the TD 

resulting from the deexcitation (excitation) on the donor (acceptor) molecule. These 

may be evaluated from the excited and ground state wave functions Ψ� and Ψ� of the 

acceptor or donor146  

 ρ(𝐫�) = N∫∫Ψ�∗(𝐫�, 𝐫�, … , 𝐫�) · Ψ�(𝐫�, 𝐫�, … , 𝐫�)d𝐬d𝐫�d𝐫� … d𝐫�.       (3.7) 
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N is the number of electrons in the system and ds = ds1ds2…dsN indicates 

integration over all spin coordinates of these electrons. The TDs ρ are expanded in 

terms of the basis functions χi of the system, e.g. 

 ρ�(𝐫�) = ∑ ρ�,��χ�∗(𝐫�) ·�� χ�(𝐫�),           (3.8) 

and the integral in Eq. (3.6) is evaluated via the two-electron integrals 

 V����� = ∑ ∑ ρ�,��(ij|kl)ρ�,������ ,           (3.9) 

with 

 (ij|kl) = ∬χ�∗(𝐫�)χ�(𝐫�) �
���
χ�∗(𝐫�)χ�(𝐫�).          (3.10) 

Familiar to the MTD approach is the transition density cube method (TDC).147, 148 

It is based on the same assumptions as MTD and approximates Vec by the 

Coulombic interaction. The difference arises in the calculation: While MTD evaluates 

the coupling by the complete transition densities, TDC first subdivides these into 

small cubes (also called cells), which interact then. These interactions are finally 

integrated to give Vec. 

3.1.4 Supermolecular Approach 

More expensive than the application of Förster or Dexter theory and MTD is the 

calculation of the coupling by the supermolecular approach. There, the coupling Vec 

is determined in accordance to the Davydov splitting as 

 V�� = ��
����

�

�
.              (3.11) 

E�� and E�� represent the energies of the two excited states of the dimer (their 

eigenenergies are denoted E� and E� in section 2.2.2), which result from the 

coupling of the excited states in the monomer units. Compared to Förster theory the 

advantages of this approach are its general applicability to e.g. transfer between 

“dark states” with vanishing transition dipole moment. Furthermore, this approach is 

not restricted to large distances between the chromophores. Especially at close 

proximity between the monomers this approach excels as shown already by Fink et 

al.126 with a comparison of a broad range of methods: Depending on the system size 

higher level methods like CASSCF128, 149 or spin-component scaled approximate 
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coupled cluster singles-and-doubles model150-153 (SCS-CC2) should be chosen. If 

the system size is too big less expensive methods like time-dependent Hartree-Fock 

(TD-HF) or time-dependent Density Functional Theory (TD-DFT) should be applied. 

Fink et al. stated not to use TD-DFT due to the problematic charge-transfer intruder 

states.126 Thus states were predicted with unacceptable large errors of up to 4 eV 

which consequently lead to an erratic admixture with neutral states. This spoils the 

shape and the energy splitting of the states used to compute Vec. In contrast, TD-HF 

appeared as a better alternative: The excitation energies and the transition dipole 

moments are predicted reasonably at the same computational cost of TD-DFT with 

hybrid functionals. In more recent work, Sagvolden et al. concludes that Fink et al. 

are too pessimistic regarding the use of TD-DFT:154 According to their data the 

problems found by Fink et al. are present in their work as well, but only for the Ideal 

Dipole Approximation (IDA), B3LYP155 and the PBE156 functional. Global hybrid 

functionals with a larger fraction of exact exchange like BHLYP157 perform as well as 

CC2,153 while TD-HF overestimates the monomer transition dipole moment resulting 

in incorrect large couplings at long-range.  

A further disadvantage to the supermolecular approach is the computational cost. 

Only here it is necessary to calculate the dimer, while the other approaches only 

need calculations on the monomers. Another problem occurs for compounds with 

energetically nearly spaced excited states. Figure 3.5 depicts in (a) the case of  

 

 

Figure 3.5 Davydov splitting shown for the case of well separated excited states 

(a), and closely spaced excited states (b) in the monomers.  
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energetically well separated excited states in the monomer and dimer, while (b) 

shows closely spaced monomer excited states. There, E��� and E��� of the dimer 

states Ψ��� and Ψ���, referring to monomer excited state Ψ���, are difficult to 

determine in the dimer, since their order is not the first and second excited state of 

the dimer. Additional evaluations of the dimer excited states are required to 

determine their relation to the monomer states. This can be done with the help of 

TDs (see section 3.1.3) as their shapes of Ψ�� and Ψ�� resemble the plus and minus 

linear combinations of the corresponding monomer TDs. Ethylene is shown as an 

example in figure 3.6: 

 

Figure 3.6 Description of the dimer states Ψ�� and Ψ�� as linear combinations of 

the monomer excited states Ψ�� and their corresponding transition 

densities. 
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3.2 Charge Transport 

3.2.1 Energy Splitting in Dimer 

The simplest way of calculating the electronic coupling for charge transfer is 

referred to as the “energy splitting in dimer” (ESD) method.125, 158-160 The basis 

assumption is identical to section 3.1.4: At the transition point the excess charge is 

delocalized over both monomers. Calculating the adiabatic states Ψ� and Ψ� with 

their corresponding energies E1 and E2 results in the electronic coupling as V�� =

(E� − E�)/2. Although the structure of the charged dimer at the transition state (i.e. 

the crossing point for diabatic states) is required, it is a common approximation to 

consider the geometrical structure of the neutral dimer or the geometry obtained as 

the average over the ionic and neutral nuclear coordinates of the monomers.161-163 

To further simplify the calculation Koopmans´ theorem164 is applied, i.e. ESD relies 

on a one-electron approximation. Therefore, the transfer integral for charge transport 

can be calculated from the energy of the frontier molecular orbitals: 

V�� = �������
�

              (3.12) 

for electron transport and 

V�� = �������
�

              (3.13) 

for hole transport, where ε�(�) and ε���(���) are the energies of the LUMO and 

LUMO+1 (HOMO and HOMO-1) orbitals calculated by a closed-shell configuration of 

the dimer neutral state. ESD is the most frequently used method due to its easy 

application. The estimated transfer integrals agree well with results derived by 

second-order perturbation theory based on CASSCF (CASPT2) and CASSCF-State 

Interaction (CASSI) calculations.165, 166 However, ESD should be used cautiously, if 

the monomers are strongly coupled. Then the LUMO and HOMO orbital splitting can 

be significantly different from the actual electronic coupling matrix element due to 

large spatial overlap.167 The one-electron approximation in the dimer is no longer 

valid and the transfer integral must be evaluated by V�� = �Ψ��H��Ψ��, which is done 

in the next section. 
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3.2.2 Two-State Model 

The following section discusses only the LUMO and LUMO+1 orbitals, which 

determine the properties for electron transport. In the case of hole transport the 

HOMO and HOMO-1 orbitals have to be considered, respectively. This case works in 

the same way, but has been omitted for the sake of clarity.   

In the present work the transfer integrals of charge transport have been calculated 

by a combination of a diabatic and an adiabatic ansatz using the one-electron 

approximation. To evaluate the transfer integral in the dimer, the charge is 

considered to be initially localized on one monomer. In the final state, it has 

transferred and localizes on the other monomer. As in the previous chapter, the 

initial and final states of the dimer are described by the LUMO orbitals for hole 

transport of the isolated, neutral monomer. Again, this approximation is only valid for 

systems with well separated (several tenths of an eV) LUMO and LUMO+1 orbitals, 

which holds true for systems such as pentacene. There, a dimer composed of such 

monomers has a LUMO level with significant contributions stemming only from the 

LUMOs of the two monomers. The transfer integral can then be defined as  

V�� = �φ�,��H��φ�,��              (3.14) 

with �|φ�,�〉 and �|φ�,�〉 being the LUMO level of the monomers A and B responsible for 

electron transport. The transfer integral for both intra- and intermolecular transport is 

calculated with this approach, which is also known as the “two-state model”.125, 159, 

160, 162, 163, 168  

If the assumption of well separated LUMO and LUMO+1 orbitals is unjustified, 

then Eq. 3.14 is no longer valid. In e.g. phenanthroline-based bathocuproine (BCP),  

 

 

Figure 3.7  Chemical structure of phenanthroline-based bathocuproine (BCP). 
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see figure 3.7, the LUMO/LUMO+1 energy difference is merely 0.02 eV. For such 

cases a more general definition of the electronic coupling is necessary, which 

includes not only the LUMO but also the LUMO+1 orbitals of the monomers in both 

initial and final states of the coupled dimer system. Then, the LUMO level becomes  

| �Ψ�〉 = c�,�
�|φ�,�〉 + c���,�

�|φ���,�〉 + c�,�
�|φ�,�〉 + c���,�

�|φ���,�〉 = �|ψ�〉 + �|ψ�〉. (3.15) 

A and B represent monomer A and B, c�,�, c�,� and c���,�, c���,� are the coefficients 

of the dimer LUMO and LUMO+1 levels with the molecular orbitals �|φ�〉 and �|φ���〉 

taken from the isolated monomers as basis set. | �Ψ�〉 can be split into a combination 

of two components, 

| �ψ�〉 = c�,�
�|φ�,�〉 + c���,�

�|φ���,�〉,           (3.16) 

| �ψ�〉 = c�,�
�|φ�,�〉 + c���,�

�|φ���,�〉,           (3.17) 

which are mixed states of �|φ�〉 and �|φ���〉 localized on monomer A or B. | �ψ�〉 is the 

best description for the initial state and | �ψ�〉 for the final state in this context, if both 

states are orthogonalized.  The electronic coupling is now calculated by  

 V�� = �ψ��H��ψ��               (3.18) 

Compared to Eq. 3.14, Eq. 3.18 represents a linear combination of the monomer 

LUMO and LUMO+1 levels as the initial and final states where the electronic 

Hamiltonian is determined by the dimer system. | �ψ�〉 and | �ψ�〉 is the new basis set, 

which can be seen as an auxiliary basis set of �|φ�,�〉 and �|φ���,�〉. If c���,� and c���,� 

are both zero, then Eq. 3.18 is equivalent to Eq. 3.14.169  

To obtain the correct values for transfer integrals Valeev et al. emphasized the 

necessity of a proper orthogonalization of the initial and final states, i.e. | �ψ�〉 and 

| �ψ�〉.170 In matrix form, the eigenvalue equation is represented by 

�H�� H��
H�� H��

� �
c�
c�� = E �S�� S��

S�� S��
� �

c�
c��,             (3.19) 

where H�� = �ψ��H��ψ��, H�� = �ψ��H��ψ��, H�� = H�� = �ψ��H��ψ��, S�� = ⟨ψ�|ψ�⟩, 

S�� = ⟨ψ�|ψ�⟩, and S�� = S�� = ⟨ψ�|ψ�⟩. Note that the overlap S�� and S�� are not 

normalized and therefore different from 1. To obtain correct values for Vec a 



48 
 

symmetric orthogonalization should be applied to the basis set (| �ψ�〉,| �ψ�〉), and the 

Hamiltonian matrix H, as pointed out in Ref.125 and Ref.170. This can be done by 

using standard procedures as given in e.g. Ref.91. As a result  

𝐇´ = 𝐗�𝐇𝐗,              (3.20) 

and  

| �ψ�
� 〉 = 𝐗��| �ψ�〉 + 𝐗���|ψ�〉,  

| �ψ�
� 〉 = 𝐗��| �ψ�〉 + 𝐗���|ψ�〉,             (3.21) 

where X is the transformation matrix. (| �ψ�
� 〉, | �ψ�

� 〉) is the new orthogonal basis set. 

The off-diagonal elements of 𝐇´ are defined as the “effective transfer integrals”,  

V��,��� = �ψ�
� �H��ψ�

� �.             (3.22) 
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4. Exciton and Charge Transport Properties in Weakly Interacting Systems 

4.1 Exciton Transport in Anthracene 

Anthracene C14H10 (depicted in figure 4.1) was chosen as a test system for our 

programs and concepts, because its exciton and charge transport properties are 

experimentally well investigated.171-174 For a theoretical simulation of these problems 

the knowledge of the molecular, crystal and electronic structure is necessary. This  

 

 

Figure 4.1 Chemical structure of anthracene. 

thesis uses the crystal structure published in Ref.175, which is depicted for its unit 

cell in figure 4.2: The crystal is composed of two monoclinic substructures with 

translation symmetric molecules at the corners resulting in a herringbone structure. 

 

Figure 4.2 Crystal structure of anthracene: monoclinic polymorph, α = 90°, β = 

125°, γ = 90°, a = 8.5 Å (red), b = 6.0 Å (green), and c = 11.1 Å 

(blue).175 
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Table 4.1: Reorganization energies λ for anthracene calculated with three different 

approaches. Energies are given in eV relative to their corresponding 

optimized ground state structure in the electronic ground state. 

 SCS-CC2 / TZV(2df,p) B3LYP / TZV(2df,2pd) RI-BLYP / TZV(2df,2pd) 

structure / 

state 
ground 

state 

excited 

state 

ground 

state 

excited 

state 

ground 

state 

excited 

state 

ground 

state 
0.00 0.25 0.00 0.22 0.00 0.17 

excited 

state 
3.84 3.56 3.20 2.98 2.86 2.69 

λ 0.54 0.44 0.34 

 

To obtain the reorganization energy the description given in section 2.1.2.3 was 

followed. The external reorganization energy was neglected. The total reorganization 

energy approximated by the internal relaxation energy is given in table 4.1. 

Depending on the approach it is either 0.54 eV for the spin-component scaled 

approximate coupled cluster second order method,150-153 or 0.34 eV for the resolution 

of identity176, 177 (RI) approximated BLYP functional.178-180 B3LYP155 as a hybrid 

functional performs in between those producing a relaxation energy of 0.44 eV.  

SCS-CC2 has been proven to be the better choice for the description of  

π-conjugated181-183 systems and therefore, its results are used for anthracene in the 

following calculations. Since B3LYP has a lower computational cost and performs 

better than BLYP it is a good compromise for bigger systems.  

The calculation of the free reaction energy ΔG0 was neglected due to two reasons: 

First, it is assumed to be 0, because the surroundings of each molecule in this crystal 

morphology are identical to the other molecules. Second, the computational costs to 

calculate an excited molecule with a reasonable amount of surrounding molecules 

exceed the scope of this work, if no approximations are applied. This task is currently 

addressed by other coworkers.  

For the description of exciton transport we chose the 1�B��
�  state. Kawashima et 

al.184 used a complete-active-space self-consisting-field127-129 (CASSCF) approach 

which describes this state as a combination between the HOMO-LUMO (coefficient 
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0.8753) and HOMO-1-LUMO+1 (coefficient 0.1613) transition. It has a weak 

transition dipole moment and lies 0.02 eV below in excitation energy (exp. 3.43 

eV185) than the 1�B��
�  state (exp. 3.45 eV186). The latter transition has no transition 

dipole moment and is composed of the HOMO-1-LUMO and HOMO-LUMO+1 

configurations with coefficients of 0.6003 and -0.5886, respectively.  

The transition densities of both states are shown in figure 4.3. Note that the 

contour values were chosen differently for a better visualization (±0.0060 in 1�B��
�  

and ±0.0025 in 1�B��
� ). Figure 4.3 explains visually, why the 1�B��

�  has a net 

transition dipole and 1�B��
�  does not: the plus and minus phases rule themselves out 

in the 1�B��
�  transition density resulting in no transition dipole moment (experimental 

oscillator strength f = 0)184. In contrast, the plus and minus phases on the top and 

bottom atoms in figure 4.3 for the 1�B��
�  have opposing sign towards each other. The 

do not cancel each other completely. Hence, the transition dipole moment has an 

experimental oscillator strength of f = 0.1.184  

Using the MTD approach described in section 3.1.3 all dimer combinations in the 

unit cell have been evaluated regarding their electronic coupling parameter Vec for 

both the 1�B��
�  and 1�B��

�  transitions. Applying the WAVELS program package with a 

(4/4) complete-active-space to produce the transition densities results in the 

electronic couplings summarized in table 4.2, which is read as follows: m0 denotes a 

monomer sitting on an edge of the unit cell and m1 is the translation variant 

monomer closer to m0. The three numbers in front describe the translation of the 
 

 

Figure 4.3 Transition densities of the 1�B��
�  and 1�B��

�  states in anthracene. The 

red arrow represents the transition dipole moment, which is only found 

for the 1�B��
�  transition. 
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Table 4.2 Vec in meV for the 1�B��
�  and 1�B��

�  transition in the anthracene crystal 

calculated by the MTD approach. See text for the nomenclature. 

dimer Vec (𝟏𝟏𝐁𝟐𝐮� ) Vec (𝟏𝟏𝐁𝟑𝐮� ) 

01:00:00_m0:m0 6.69 -0.03 

01:01:00_m0:m0 3.73 -0.02 

-1:01:00_m0:m0 3.73 -0.02 

01:01:-1_m0:m0 3.35 0.00 

01:00:01_m1:m1 3.07 -0.40 

00:-1:01_m0:m0 1,77 0.15 

-1:00:01_m0:m0 0.91 0.01 

01:00:01_m0:m0 0.91 0.01 

00:01:01_m0:m0 0.86 0.08 

-1:00:01_m1:m0 0.77 0.03 

01:01:01_m0:m0 0.67 0.01 

-1:01:01_m0:m0 0.67 0.01 

01:-1:01_m0:m0 0.58 0.01 

-1: -1: -1_m1:m0 -0.29 0.01 

-1:00:-1_m1:m0 -0.29 0.00 

00:-1:-1_m1:m0 -0.76 0.03 

00:00:-1_m0:m1 -0.76 0.02 

-1:-1:00_m0:m1 -1.57 -0.01 

00:00:00_m0:m1 -1.67 -0.35 

00:-1:01_m0:m1 -1.79 0.91 

00:00:01_m0:m1 -2.21 0.38 

00:00:01_m0:m0 -3.07 0.40 

-1:-1:01_m0:m1 -3.66 -0.02 

00:-1:00_m0:m1 -5.16 -0.98 

-1:00:00_m0:m1 -5.17 -0.98 

00:01:00_m0:m0 -42.92 -0.11 
 

second monomer along the cell axes. E.g. 00:00:-1_m0:m1 is a dimer formed by two 

translational variant molecules, where m1 is translated once in opposite direction of 

the c axis.  
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The results show that exciton transport is faster for the 1�B��
�  than 1�B��

�  

transition. The values differ by up to two orders of magnitude. As the transfer rate is 

dependent on the coupling quadratically (see Eq. 2.37), it is justified to approximate 

exciton transport in anthracene only with the 1�B��
� transition. Furthermore, the 

biggest coupling is found along the b-axis (-42.9 meV) and surpasses the second 

biggest by a factor of ~ 6 (a-axis, Vec = 6.7 meV). This already indicates a strong 

preferred direction and exciton diffusion lengths are expected to be big along the b-

direction, if only one dimensional transport is assumed. 

A comparison between differently sized complete-active-spaces has been done by 

applying a 2/2 CAS. A selection of dimer structures and their respective Vec between 

this 2/2 CAS and the former used 4/4 CAS is shown in table 4.3. the results show 

that a proper choice of the size of the CAS is essential. Although the HOMO-LUMO 

transition configuration has a coefficient of 0.8753 in a CAS(12/12) and therefore is 

the main contribution, the neglect of the HOMO-1-LUMO+1 transition configuration 

(which is included in a (4/4)CAS) leads to errors greater than a factor of 10. 

Therefore, the correct choice of a proper complete-active-space is compulsory. 

Table 4.3 Influence of the size of the complete-active-space on |Vec| in 

anthracene for the 1�B��
� transition. The couplings are given in meV. 

dimer CAS(4/4) CAS(2/2) 

00:01:00_m0:m0 42.9 80.6 

01:00:00_m0:m0 6.69 16.5 

00:00:01_m0:m0 3.07 8.8 

00:00:00_m0:m1 1.67 8.0 

01:01:01_m0:m0 0.67 10.8 

 

An evaluation of the self diffusion coefficient and the exciton diffusion length was 

done in cooperation with Jan Schoeneboom and Yuki Nagata from BASF SE, 

Ludwigshafen. The results are summarized in table 4.4. Overall our combined efforts 

produce values in very good agreement to the experiment. The deviation of the 

calculated LD in b-direction from the experiment can be explained with the  
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Table 4.4 Simulated and experimental diffusion constants and exciton diffusion 

lengths for isotropic and anisotropic exciton transport in anthracene. 

 simulation / experiment 

dimension Vec (meV) k (1012 s-1) D (10-7 m2s-1) LD (nm) 

isotropic - - 28 230 

380174 

200171 

130172 

60173 

a 6.7 / - 0.5 / - 4.4 93 / 60 (±10)173  

b 42.9 / - 21 / - 87 420 / 100173 

c 3.1 / - 0.1 / - 2.4 70 / 40173 

 

approximations in the MTD approach: MTD approximates Vec by neglecting overlap 

effects. Since the b-axis is the shortest one, the biggest errors are expected to be 

found there. Nevertheless, the MTD approach with a correct CAS-size proves to be 

well-performing.  

 

4.2 Charge Transport in Perylene 

Perylene C20H12 (chemical structure in figure 4.4) exist in two known crystal 

morphologies. The α form was first reported by Donaldson et al. in 1953.187 Tanaka 

et al. published the β form in 1963188 and reported, that β is transformed into α at 

about 140°C. At and below room temperature, both forms are stable.189 Both 

polymorphs are monoclinic; their space group is P21/c. The α form has 4 monomers 

in the unit cell, which cannot be projected onto another by applying n (n ∈ ℤ) times a 

translation along any combinations of unit cell axis vectors. The interplanar spacing  

 

 

Figure 4.4  Chemical structure of perylene. 
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Figure 4.5 Crystal structure of α- and β-perylene (CCDC 198723 and 

CCDC198724). Nomenclature: m0 (green), m1 (yellow), m2 (blue), and 

m3 (red). Cell axes: a red, b green, and c blue. 

between dimeric pairs is 3.415 Å in α, and 3.46 Å in β. The latter has two 

translational invariant monomers in the unit cell (identical to anthracene). Both 

crystal structures are shown in figure 4.5. The cell axis are longer in the α form (a = 

10.24 Å, b = 10.79 Å, c = 11.13 Å) than in β (a =  9.76 Å, b= 5.84 Å, c = 10.61 Å). 

Shorter distances should result generally in stronger coupled dimers. The transfer 

integrals have been calculated based on the two-state model described in section 

3.2.2. All calculations were done on the B3LYP/cc-pVDZ level, which was proven to 

perform well enough by Sancho-Garcia et al.190 The reorganization energies are 

shown in table 4.5. If only these are considered, then perylene preferably transports 

positive charge carriers as λhole is smaller by 29 meV (16.8%) than λelectron. 

 

Table 4.5 Reorganization energies given in meV for electron and hole transport in 

perylene calculated on the B3LYP/cc-pVDZ level.  

 λneutral  λcharged  λ  

hole 70 72 142 

electron 84 86 171 
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4.2.1 Hole Transport 

The most important couplings for both polymorphs are shown in table 4.6 for α- and  

β-perylene. The full list is available in the appendix. The strongest coupled dimer in  

α-perylene is 00:00:00_m1:m3, in which the monomers can also be described as a 

very closely spaced π-stack with an intermolecular distance < 3.5 Å. Here, m1 and 

m3 have an electronic coupling of 49.0 meV. As a consequence, transfer will be 

slightly preferred in α-perylene along this direction. Because there are many other 

dimers with couplings ranging from 1 meV to 30 meV, the holes will diffuse 

isotropically, if one considers only the couplings. Transport between translation 

symmetric molecules (i.e. m0:m0) is less important, as the couplings are very weak 

(see table 4.6, bottom-left). Stronger coupled than the best dimer in α-perylene by a 

factor of 2.5 is the transport along the translation symmetric molecules in b-direction 

of β-perylene (Vec = 127.5 meV). No couplings of the same magnitude can be found 

in the remaining crystal, as the second strongest dimers (e.g. 01:01:01_m1:m0) have 

Vec-values of only 10.1 meV. Because the coupling enters the semi-classical Marcus 

 

Table 4.6 Dimers in α- and β-perylene with the most important couplings in meV 

regarding hole transport. The lower part represents the coupling 

between dimers along the cell axes.  

alpha beta 

dimer Vec dimer Vec 

00:00:00_m1:m3 49.0 00:01:00_m1:m1 127.5 

00:00:00_m1:m0 29.5 01:01:01_m1:m0 10.1 

00:00:00_m0:m3 19.8 01:01:00_m1:m1 2.1 

01:00:00_m0:m1 11.2 00:00:00_m0:m1 1.3 

01:00:00_m1:m2 8.9 01:01:00_m0:m0 0.1 

01:00:00_m1:m3 2.6   

01:-1:00_m0:m2 1.8   

01:00:00_m0:m0 1.0 01:00:00_m0:m0 2.1 

00:01:00_m0:m0 1·10-2 00:01:00_m0:m0 127.5 

00:00:01_m0:m0 6·10-6 00:00:01_m0:m0 3·10-4 
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transfer rate (Eq. 2.37) quadratically, mobilities and diffusion constants should be 

maximal along this direction. 

Taking these transfer integrals as input for the calculation of diffusion constants 

and mobilities following the protocol of Stehr et al.94 results in the values summarized 

in table 4.7. As expected from table 4.6 the diffusion constants are in the same order 

of magnitude for all separate directions in α-perylene. Transport along the b-direction 

is slightly favored to the other directions. However, the situation is totally different in 

the β-polymorph. Not only is the isotropic hole mobility in β-perylene greater by a 

factor of 6 than in α-perylene, but the transport is strongly favored along the b-

direction, as the coupling between monomers along the b-axis is very high (127.5 

meV) compared to the other dimers (≤ 10.1 meV), and due to the very short 

monomer distance of only 5.84 Å between monomers in b-direction. A three 

dimensional representation of the hole mobility in β-perylene is depicted in figure 4.6. 

To achieve the best performance in devices which need hole transport along a 

specific direction (e.g. field effect transistors or organic bilayer solar cells), the 

perylene β-polymorph should be taken and turned that the c-axis matches the 

transport direction given by the device. For applications where transport in all 

directions is more important, α-perylene presents itself as the more balanced choice. 

 

Table 4.7 Calculated diffusion coefficients D in 10-6 m2/s for hole transport in  

α- and β-perylene at T = 300 K and F = 107 V/m. D is given for isotropic 

diffusion as well as along the cell axes a, b and c. 

 α β 

Diso 3.5 21.9 

Da 2.2 2.0 

Db 4.8 63.0 

Dc 3.3 0.4 
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Figure 4.6 Three dimensional representation of the diffusion constants for hole 

transport in perylene. Whereas the α-polymorph shows rather isotropic 

mobility with only a slight preference towards the b-direction, the 

diffusion in β-perylene is strongly dominated in the b-direction with 

almost negligible diffusion along the c-axis. 

4.2.2 Electron Transport 

Table 4.8 contains the most important couplings for electron transport in perylene 

for both polymorphs. The highest values are found within the unit cell, where the 

dimers with the shortest intermolecular distances form π-stacks: 3.415 Å in α in 

00:00:00_m1:m3, and 3.46 Å in β in 00:00:00_m0:m1. Transport between dimers 

composed of translation symmetric monomers play a less important role in α-

perylene as the couplings are negligible small. The situation is different in β-

perylene, where strong couplings can be found between translational symmetric 

monomers along the a- and b-direction. However, the dimer representing the c-

direction (00:00:01_m0:m0) is very weakly coupled with a Vec of only 3·10-7 meV. A 

full list of couplings for electron transport in perylene is found in the appendix.  

Simulations of diffusion coefficients are given in table 4.9 for isotropic movement 

and along the cell axes. The 3D representation is depicted in figure 4.7. Interestingly, 

transport in c-direction with a diffusion constant of 12.4·10-6 m2/s is strongly favored 

in β-perylene, although the corresponding dimer 00:00:01_m0:m0 is the weakest 

coupled dimer in table 4.8. Contributions from zig-zag pathways provide the 

explanation, as the strongest coupling in table 4.8 for 00:00:00_m0:m1 is also found 

in the symmetry equivalent dimers 00:00:01_m1:m0, 00:01:01_m1:m0 and  
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Table 4.8 Dimers in α- and β-perylene with the most important couplings in meV 

regarding electron transport. The lower part represents the coupling 

between dimers along the cell axes. 

alpha beta 

dimer Vec dimer Vec 

00:00:00_m1:m3 74.2 00:00:00_m0:m1 52.5 

00:00:01_m2:m0 54.0 00:01:00_m0:m0 23.8 

00:00:00_m1:m3 43.3 01:00:00_m0:m0 15.4 

00:00:00_m1:m0 26.6 01:01:01_m1:m0 10.8 

01:00:00_m0:m3 10.4 01:-1:00_m0:m0 1.3 

01:00:00_m0:m1 5.2 01:01:00_m0:m0 0.2 

01:00:00_m0:m0 9.1 01:00:00_m0:m0 15.4 

00:01:00_m0:m0 5·10-2 00:01:00_m0:m0 23.8 

00:00:01_m0:m0 4·10-5 00:00:01_m0:m0 3·10-7 

 

00:01:00_m1:m0. However, these dimers do never include combinations between 

monomers outside the b-c-plane. Thus, diffusion is smallest along the a-axis in  

β-perylene. The α-polymorph also shows that the best transport occurs along the  

b-axis, although the coupling in 00:01:00_m0:m0 is very weak (Vec = 5·10-2 meV). 

Table 4.9 Calculated diffusion coefficients D in 10-6 m2/s for electron transport in  

α- and β-perylene at T = 300 K and F = 107 V/m. D is given for isotropic 

diffusion as well as along the cell axes a, b and c. 

 α β 

Diso 6.7 7.0 

Da 2.0 3.5 

Db 11.3 5.3 

Dc 6.8 12.4 
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Figure 4.7 Three dimensional representation of the diffusion constants for electron 

transport in perylene.  

To validate the results the mobilities μ were calculated for electron transport in  

α-perylene and compared to experimental values taken from Ref.191. These are 

displayed in table 4.10, which shows good agreement. Simulation of the mobilities 

have been done following the protocol given by Stehr et al.94 at T = 300 K and an 

electric field strength of 107 V/m (field direction along the corresponding cell axis). 

Table 4.10 Comparison between simulated (this work) and experimental191 

electron mobilities μ (given in cm2/Vs) in α-perylene at T 300 K and  

F = 107 V/m. 

direction μ (sim.) μ (exp.) error (%) 

a 0.71 0.78 8.9 

b 4.08 5.53 26.2 

c 2.36 2.37 0.4 
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5. [2.2]Paracyclophanes as Strongly Interacting π-Systems 

5.1 Structural Features of [2.2]Paracyclophanes and Derivates 

 The following chapter describes studies on [2.2]paracyclophane (PC) and its 

derivates mono-hydroxy[2.2]paracyclophane (MHPC, racemic-4-hydroxy[2.2]para-

cyclophane), pseudo-ortho-dihydroxy[2.2]paracyclo-phane (o-DHPC 4,12-dihydroxy-

[2.2]paracyclophane) and pseudo-para-dihydroxy[2.2]paracyclophane (p-DHPC 

4,16-dihydroxy-[2.2]-paracyclophane). The numbering of the atoms is shown 

exemplarily in figure 5.1, and their most stable structures in their ground and excited 

states in figure 5.2.  

 The specification of the irreducible representations of the D2 and D2h symmetric 

species is ambiguous as the three C2 axes in these point groups are equivalent such 

that the main axis is not defined. Following the idea of the proposal of Mulliken192 

and the recommendation of the IUPAC convention, 193 we define the C2 axis through 

the center of the -(CH2)2- bridge as z, the axis through the two benzene rings as y, 

and the remaining axis as x.  

 

Figure 5.1 Molecular structure and labels represented by the EZ-rotamer of  
o-DHPC 
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Figure 5.2 [2.2]Paracyclophane (PC), mono-hydroxy[2.2]paracyclophane (MHPC, 

E-rotamer), pseudo-ortho- (o-DHPC, EZ-rotamer) and pseudo-para-

dihydroxy[2.2]paracyclophane (p-DHPC, EE-rotamer) shown in 

different perspectives in their ground and excited state structures. 

The most important geometrical parameters for these compounds are the C1-C2 

bond length, the inter-ring distances R(C3-C14) and R(C4-C13), and the angles θtwist 

and θshift. The latter correspond to the twist and shift motions of the aromatic 

subsystems towards each other, i.e. twist around the y-axis, shift parallel to the x-

axis. These angles are represented by a linear combination of dihedral angles as  

θtwist =  ⅛ [θ(C1-C2-C3-C4) + θ(C1-C2-C3-C8) + θ(C2-C1-C14-C13) + θ(C2-C1-C14-C15) 

+ θ(C10-C9-C6-C5) + θ(C10-C9-C6-C7) + θ(C9-C10-C11-C12) + θ(C9-C10-C11-C16)], (1) 

and  

 



63 
 

θshift  =    ⅛ [θ(C1-C2-C3-C4) + θ(C1-C2-C3-C8) + θ(C2-C1-C14-C13) + θ(C2-C1-C14-C15) 

- θ(C10-C9-C6-C5) - θ(C10-C9-C6-C7) - θ(C9-C10-C11-C12) - θ(C9-C10-C11-C16)], (2) 

where θ(Ca-Cb-Cc-Cd) represents the dihedral angle between the respective atoms. 

This definition ensures that the twisting and shifting motions are performed in a 

symmetric fashion. 

 

5.2 Experiments 

5.2.1 Synthesis and Crystal Structure Determination 

Racemic MHPC was purchased from ABCR GmbH and used without further 

purification. The synthesis of p-DHPC via iron-catalyzed dibromination of 

[2.2]paracyclophane followed by dilithiation with butyllithium and oxidative quenching 

with nitrophenol has been carried out as described in the literature.194 To yield single 

crystals suitable for X-ray analysis the product has been recrystallized from ethanol. 

Racemic o-DHPC (97% purity) was acquired from ABCR GmbH. Single crystals 

suitable for X-ray analysis were obtained by recrystallization from methanol. For both 

p-DHPC and o-DHPC the crystal structure data were collected at a Bruker D8 

diffractometer with an Apex CCD area detector and graphite monochromated MoKα 

radiation. The structure was solved using direct methods, refined with the Shelx 

software package195 and expanded using Fourier techniques. All non-hydrogen 

atoms were refined anisotropically. Hydrogen atoms were assigned idealized 

positions and were included in structure factors calculations. 

Crystal data for p-DHPC∙(EtOH)2: C20H28O4, Mr = 332.42, colorless block, 

0.37×0.36×0.35 mm3, monoclinic space group P21/c, a = 8.2875(11) Å, 

b = 13.1716(18) Å, c = 8.3272(11) Å, β = 102.735(2)°, V = 886.6(2) Å3, Z = 2, 

ρcalcd = 1.245 g·cm–3, μ = 0.085 mm–1, F(000) = 360, T = 168(2) K, R1 = 0.0457, 

wR2 = 0.1248, 1758 independent reflections [2θ≤52.16°] and 112 parameters. 

Crystal data for o-DHPC∙0.5MeOH: C16.5H18O2.5,  Mr = 256.31, colorless block, 

0.43×0.26×0.185 mm3, monoclinic space group C2/c, a = 24.937(5)Å, 

b = 7.8461(14)Å, c = 13.183(2)Å, α = 90.00°, β = 95.655(3)°, γ = 90.00°, 
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V = 2566.8(8)Å3, Z = 8, ρcalcd = 1.326 g·cm–3, μ = 0.088 mm–1, F(000) = 1096, 

T = 172(2) K, R1 = 0.0644, wR2 = 0.1961, 3210 independent reflections [2θ≤56.68°] 

and 182 parameters. 

Crystallographic data have been deposited with the Cambridge Crystallographic 

Data Center as supplementary publication no. CCDC–809116  (p-DHPC) and 

CCDC-809117 (o-DHPC). These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

5.2.2 Experimental Setup of the [1+1]REMPI-Spectra 

The exact experimental conditions are described in Ref.181-183. In general, the 

substances were spread out on glass wool and placed in the sample compartment of 

a modified solenoid valve. The source was heated to approximately 150 °C to 

evaporate the test substance which was seeded in 1.1 bar of Ar. Control 

experiments with He were also carried out. The molecular beam was formed and 

cooled by expanding the mixture of cyclophane and carrier gas into vacuum through 

a 0.5 mm diameter nozzle. 

The vacuum apparatus consisted of a source chamber and a rotary pump and an 

ionization chamber equipped with a 0.4 m long Wiley-McLaren type time–of–flight 

(TOF) mass spectrometer perpendicular to the molecular and laser beam. The 

ionization chamber and the flight chamber were pumped by turbomolecular pumps 

backed by a rotary pump. The source and the ionization chamber were connected by 

a gate valve. In front of the gate a skimmer was fixed with an aperture of 1 mm. 

During the experiment the pressure in the ionization chamber was lower than 3×10-6 

mbar. The skimmed jet was crossed by a perpendicular laser beam. 

The experiments were performed with a nanosecond laser system consisting of a 

10 Hz Nd:YAG laser pumping a grazing incidence dye laser, operating with DCM in 

ethanol. The dye laser output was frequency-doubled in a potassium dihydrogen 

phosphate (KDP) crystal and the laser beam diameter was reduced to 3 mm by a 

pinhole. The energy of the laser was varied between 0.5 and 5 mJ/pulse, 

corresponding to fluences from 7 to approximately 75 mJ/cm². The overall 

appearance of the spectrum did not depend on the laser power.  

The molecules were excited and ionized by the [1+1] REMPI scheme. The 

wavelength was calibrated using a hollow cathode lamp filled with neon. In the 

http://www.ccdc.cam.ac.uk/data_request/cif
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Wiley-McLaren time–of–flight mass spectrometer the ions were accelerated by fields 

of 250 V/cm and 730 V/cm, respectively, and detected by a microchannel plate 

detector (chevron assembly). The signals were recorded by a digital–storage 

oscilloscope, typically averaged over 50 shots, and transferred to a computer. The 

experimental setup was synchronized using a digital delay generator. 

The experimental data was verified by [1+1’] REMPI experiments and by the 

additional method of spectral hole burning (SHB) to check for the presence of 

molecular isomers. A second laser system consisting of a Nd:YAG and dye laser 

was used for that purpose. The two laser beams were counterpropagating and 

adjusted temporally and spatially in the excitation region. 

 

5.3 Computational Details 

All calculations were perfomed with the TURBOMOLE program suite Version 

5.10.196 The structures of all molecules were optimized in the ground and first excited 

states. The theoretical investigations were done using a wide range of methods: 

(Time dependent) Hartree Fock and Density Functional Theory were applied using 

the TZV basis of Schäfer et al.197 augmented with the (2df,2pd) polarization 

functions. The functionals used include the General Gradient Approximation-type 

(GGA) BP86198 and PBE156 functionals as well as the hybrids B3LYP155 and 

BHLYP.157 The dispersion correction of Grimme199 has been applied for BP86 and 

PBE for both structure optimizations as well as adiabatic excitation energies denoted 

by BP86-d and PBE-d. Furthermore BP86 and PBE used the resolution of identity 

(RI) approximation176, 177 with the TZV auxiliary basis sets of Weigend et al.200 

augmented with (2df,2pd) polarization functions. Second order Møller-Plesset 

perturbation method201 (MP2), the approximate coupled cluster second order 

method153 (CC2) and its spin-component scaled variants SCS-MP2202, 203 and SCS-

CC2150-153 also applied the TZV basis sets of Schäfer et al.,197 but only (2df,p) 

polarization functions were used as augmentation. All MP2 and CC2 calculations 

applied the RI approximation176, 177 using the auxiliary basis sets of Weigend et al.204 

Zero point vibrational energies (ZPEs) were calculated on all levels of theory using a 

SV(P) basis set.205 Vibrational frequencies shown were scaled by a factor of 0.95, 

which is commonly applied on this level of theory to account for anharmonicity of the 
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potentials and errors of the method.206-208 Electrostatic potentials have been 

generated by the RICC2 module of the TURBOMOLE program suite.  

 

5.4 Ground State Structures 

5.4.1 Different Approaches in Comparison 

The first step in the investigations on [2.2]paracyclophane is a correct description 

of the geometric structure of the parent compound and its hydroxyl substituted 

derivates. The results for different methods are summarized in table 5.1 and 

compared to X-ray structures for PC and p-DHPC.  

While covalent bond lengths are well described in all methods the non-bonded 

inter-ring distances R(C3-C14) and R(C4-C13) deviate from the crystal structure. 

Generalized gradient approximation-type functionals (BP86 and PBE) reproduce the 

ground state structures of PC qualitatively correct. The inter-ring distances are 

overestimated by 4 - 5 pm. Improvements can be achieved by the use of Grimme´s 

dispersion correction,199 which introduces bonding van der Waals interactions which 

are not included in normal DFT. Although the distances are now underestimated, the 

errors narrow down to 1 - 2 pm. The dispersion correction does not affect the twist or 

shift angle as these functionals reproduce perfectly the experimental value of 9°. 

Adding exact exchange (Hartree Fock exchange) to the functional (20 % in B3LYP, 

50% in BHLYP, 100% in HF) increases the inter-ring distances slightly to the overall 

worst values (errors of 6 – 7 pm). Additionally, B3LYP is not able to provide even 

only qualitatively correct picture, as the D2h structure (θshift = θtwist = 0°) is predicted to 

be the global minimum. Recent studies of Bachrach209 show that medium- or long-

range exchange and dispersion corrected functionals like M06-2x,210 B97-D199 and 

ωB97X-D211 also perform very nicely for the ground state structure of PC. 

Optimizations with MP2 give shorter distances (error of -6 pm) which is to be 

expected, whereas this error is less pronounced (-3 pm) for the spin-component-

scaled variant SCS-MP2. θshift and θtwist are found to be slightly overestimated 

(underestimated) by (SCS-)MP2 (HF and BHLYP). In p-DHPC the situation is similar. 

Pure GGA functionals overestimate inter-ring distances, dispersion corrected  
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Table 5.1 Relevant structure parameters of the ground (gs) and first excited 

states (es) of PC and p-DHPC for different methods (TZV(2df,2pd) 

basis set for all methods but (SCS-)MP2/CC2, which uses a TZV(2df,p) 

basis set). Distances (R) are given in pm, angles (θ, definition see text) 

in degrees.  

molecule parameter BP86 BP86-d PBE PBE-d B3LYP 

PC 

gs / es 

R(C1-C2) 

R(C3-C14) 

R(C4-C13) 

R(C8-C15) 

θtwist 

θshift 

161 / 158 

282 / 264 

315 / 294 

315 / 294 

9 / 4 

0 / 0 

161 / 158 

279 / 262 

308 / 289 

308 / 289 

9 / 9 

0 / 0 

161 / 158 

282 / 263 

314 / 293 

314 / 293 

9 / 5 

0 / 0 

160 / 160 

279 / 262 

309 / 290 

309 / 290 

9 / 9 

0 / 0 

161 / 158 

283 / 253 

316 / 278 

316 / 278 

0 / 10 

0 / 0 

p-DHPC 

gs / es 

R(C1-C2) 

R(C3-C14) 

R(C4-C13) 

R(C8-C15) 

θtwist 

θshift 

161 / 159 

280 / 272 

312 / 305 

311 / 305 

1 / 16 

12 / -4 

160 / 159 

277 / 267 

304 / 292 

 303 / 294 

0 / 35 

18 / 13 

160 / 159 

280 / 271 

311 / 304 

310 / 303 

1 / 16 

12 / -5 

160 / 158 

277 / 267 

305 / 294 

304 /296 

0 / 16 

17 / -5 

160 / 158 

281 / 265 

313 / 293 

312 / 298 

0 / 11 

12 / -4 

molecule parameter BHLYP (TD)HF MP2/CC2 
SCS-MP2/ 
SCS-CC2 

experiment 

PC 

gs / es 

R(C1-C2) 

R(C3-C14) 

R(C4-C13) 

R(C8-C15) 

θtwist 

θshift 

159 / 157 

280 / 261 

316 / 291 

316 / 291 

6 / 6 

0 / 0 

160 / 157 

283 / 266 

317 / 298 

317 / 298 

6 / 6 

0 / 0 

159 / 157 

274 / 253 

304 / 278 

304 / 278 

14 / 10 

0 / 0 

159 / 159 

276 / 257 

307 / 283 

307 / 283 

13 / 7 

0 / 0 

159 / --- 

278 / --- 

310 / --- 

310 / --- 

9 / --- 

0 / --- 

p-DHPC 

gs / es 

R(C1-C2) 

R(C3-C14) 

R(C4-C13) 

R(C8-C15) 

θtwist 

θshift 

159 / 156 

279 / 261 

310 / 286 

310 / 299 

0 / 11 

12 / 4 

160 / 157 

282 / 268 

315 / 306 

314 / 315 

0 / 15 

11 / 0 

159 / 157 

271 / 252 

298 / 276 

297 / 280 

0 / 15 

21 / -4 

159 / 157 

274 / 256 

302 / 281 

301 / 286 

0 / 12 

20 / -2 

159 / --- 

276 / --- 

305 / --- 

305 / --- 

0 / --- 

13 / --- 
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variants reproduce the crystal structure to a very good agreement. Interestingly θshift 

and θtwist are better reproduced without dispersion in this compound. Exact exchange 

does not have a systematic effect, as BHLYP reproduces angles as well as 

distances in good agreement, while HF greatly overestimates distances and B3LYP 

lies in between. However, B3LYP performs unsatisfactorily again, as it predicts 

almost an eclipsed D2h structure. Finally MP2, and to a lesser degree SCS-MP2, 

underestimate the distances while overestimating the twist angle.  

The performance of the different methods can be summarized as follows: 

dispersion corrected GGA functionals give the best ground state structures, followed 

by SCS-MP2. MP2 is as good as BP86 and PBE, with MP2 underestimating and 

BP86 and PBE overestimating distances. BHLYP performs ok, but pure HF as well 

as B3LYP have the worst accuracy, since distances have the largest errors and 

B3LYP additionally results in qualitatively wrong structures compared to the crystal 

structures.  

In this work we will focus on SCS-MP2 as well as SCS-CC2 and not on dispersion 

corrected GGA functionals. The reason for this is described in section 6.7: The most  

Table 5.2 Ground state (gs) structures calculated with SCS-MP2 and excited 

state (es) structures calculated with SCS-CC2 for PC, MHPC, o-DHPC 

and p-DHPC. Both methods applied TZV(2df,p) basis sets. Distances 

(R) are given in pm, angles (θ, definition see text) in degree. 

parameter PC (gs/es) o-DHPC (gs/es) p-DHPC (gs/es) MHPC (gs/es) 

R(C1-C2) 159 / 159 159 / 157 159/ 157 159 / 157 

R(C3-C14) 276 / 257 274 / 258 274 / 256 274 / 257 

R(C4-C13) 307 / 283 296 / 280 302 / 281 301 / 281 

R(C8-C15) 307 / 283 311 / 286 301 / 286 306 / 288 

θtwist ±13 / 7 16 / 13 0 / 12 -10 / 11 

θshift 0 / 0 0 / 0 20 / -2 -11 / 3 
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accurate excitation energies can be reproduced with SCS-CC2 and to avoid 

inconsistencies this method was also chosen for the description of the structures. 

The calculated SCS-MP2/SCS-CC2 ground and excited state structures for all 

compounds are shown in figure 5.2 and the most relevant structures are collected in 

table 5.2. The experimental values for PC, o-DHPC and p-DHPC can be found in 

table 5.3. For MHPC no X-ray structure is available. 

Table 5.3 Experimental ground state structures taken from X-ray diffraction data 

for PC, o-DHPC and p-DHPC. Distances (R) are given in pm, angles 

(θ, definition see text) in degree. 

parameter PC o-DHPC p-DHPC 

R(C1-C2) 159 157 159 

R(C3-C14) 278 277 276 

R(C4-C13) 310 302 305 

R(C8-C15) 310 308 305 

θtwist 9 9 0 

θshift 0 -6 13 

 

5.4.2 Rotamers in Hydroxy-Sustituted [2.2]Paracyclophanes 

X-ray crystal structures are available for all compounds but MHPC. Nevertheless, 

the orientation of the hydrogen atoms within the hydroxyl groups was not addressed 

experimentally. This is due to the limitation of X-ray diffraction to determine the 

positions of hydrogens, especially when these are bound to atoms with high electron 

density. Hydrogen atoms depicted in X-ray structures are normally assigned 

idealized positions and are included in structure factors calculations.195 However, to 

address some questions for the interpretation we calculated the different rotamers as 

well. Depending on the orientation of the hydroxyl groups two rotamers are possible 

in MHPC and three in p-DHPC and o-DHPC. They are termed ZZ, EZ and EE 

isomers, where E (Z) designates a hydrogen atom pointing away (towards) the  

–(CH2)2– bridge. See figure 5.3 for a depiction and the relative energies of the 

rotamers. For p-DHPC the EE isomer was calculated to be 3.4 kJ/mol and 5.9 kJ/mol 
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Figure 5.3 Relative energies of the different rotamers for the hydroxyl-substituted 

derivatives. 

more stable than the EZ and ZZ isomers, respectively. Thus, the EE isomer 

represents the ground state minimum structure and will be the isomer we discuss 

throughout the rest of this work. For o-DHPC EZ is calculated to be the most stable 

conformation, being 0.4 kJ/mol and 4.8 kJ/mol lower in energy than the EE and ZZ 

isomers, respectively. Finally, the E isomer is 2.5 kJ/mol more stable than Z in 

MHPC. 

5.4.3 Two Dimensional Ground State Potential Energy Plots 

To quantify structural differences between the compounds, we calculated two 

dimensional potential energy surfaces as a function of the two internal coordinates 

θtwist and θshift that correspond to the twist and shift motion of the benzene rings. For 

the definition of the angles see section 5.1. Figure 5.4 shows the potential energy 

surfaces for all compounds obtained by optimizing the structure for fixed θshift and 

θtwist at the SCS-MP2/TZV(2df,p) level of theory. The global minima can also be  
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Table 5.4 Ground state (gs) structures calculated with SCS-MP2 and excited 

state (es) structures calculated with SCS-CC2 for PC, MHPC, o-DHPC 

and p-DHPC. Both methods applied TZV(2df,p) basis sets. Distances 

(R) are given in pm, angles (θ, definition see text) in degree. 

parameter PC (gs/es) o-DHPC (gs/es) p-DHPC (gs/es) MHPC (gs/es) 

R(C1-C2) 159 / 159 159 / 157 159/ 157 159 / 157 

R(C3-C14) 276 / 257 274 / 258 274 / 256 274 / 257 

R(C4-C13) 307 / 283 296 / 280 302 / 281 301 / 281 

R(C8-C15) 307 / 283 311 / 286 301 / 286 306 / 288 

θtwist ±13 / 7 16 / 13 0 / 12 -10 / 11 

θshift 0 / 0 0 / 0 20 / -2 -11 / 3 

taken from table 5.4. The distortion from the eclipsed structure (D2h, θtwist = 0° and 

θshift =0°) to the corresponding minimum results in an energy gain of 1.2 kJ/mol, 4.6 

kJ/mol, 5.3 kJ/mol and 7.2 kJ/mol for PC, MHPC, o-DHPC and p-DHPC, 

respectively. These numbers and figure 5.4 demonstrate that PC itself is very flexible 

with respect to the twist and shift motions. Although this has been pointed out in 

earlier investigations,202, 212-214 it should be noted, that substitution leads to 

significantly more rigid derivates. Additionally, table 5.5 summarizes the energies of 

the different compounds in the (next) global minimum ground state structure of the 

other derivates. 

Table 5.5 Stabilization energies of PC, MHPC, o-DHPC and p-DHPC relative to 

the eclipsed structure (D2h, θtwist = 0° and θshift = 0°) for the ground state 

minimum structures of the other compounds. Angles (θtwist and θshift) are 

given in degree, energy in kJ/mol. 

θtwist/θshift PC o-DHPC p-DHPC MHPC 

0 / 0 1.2 5.3 7.2 4.6 

±13 / 0 0.0 0.3 6.1 1.5 

-16 / 0 0.1 0.0 6.2 5.8 

0 / 20 2.4 7.4 0.0 10.6 

-10 / -11 0.9 7.5 2.4 0.0 
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Figure 5.4 Ground state potential energy surfaces with respect to the angles θtwist 

and θshift for the PC (top-left), MHPC (bottom-left), p-DHPC (top-right) 

and o-DHPC (bottom-right) molecules.  

 

5.5 Excited State Structures 

While the results of different approaches for the structure are also summarized in 

table 5.1, we will discuss in this paragraph only SCS--CC2/TZV(2df,p) results, as 

these are expected to be qualitatively the correct states (no charge transfer states) 

and quantitatively the correct values. In the first singlet excited states of all 

compounds the benzene subunits move towards each other. According to our  

SCS-CC2/TZV(2df,p) calculation the inter-ring distances decrease by 16-25 pm.183, 

202 While in PC and o-DHPC only the inter-ring distance and θshift decrease from 13° 
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to 7° and 16° to 13°, respectively. Nevertheless, both molecules maintain their 

ground state structure. In contrast to this, the equilibrium structure of p-DHPC 

changes dramatically upon excitation. On the one hand the shift is essentially 

removed, even inversed (θshift = +20° to θshift = -2°), on the other hand the excited 

state structure exhibits a former non-existing twist distortion (θtwist = +12°). In contrast 

to the ground state the excited state structure of p-DHPC has the same qualitative 

properties as the other compounds. The global minimum structure of MHPC in the 

excited state is found for θtwist = +11°. However, another local minimum is found for 

θtwist = -10°, which is only 34 cm-1 (59 cm-1 if ZPE corrections are taken into account) 

higher in energy. Their shift angles do not differ considerably (global minimum: θshift = 

+3°, local minimum θshift = 0°). The energy barrier at θtwist = 0° was calculated to be 

64 cm-1 (no ZPE correction). The local minimum resembles the qualitative structural 

properties of the ground state whereas the global minimum has an inverse twist 

angle. In preceding calculations on MHPC the excited state was optimized for fixed 

θtwist with a SV(P) basis set. There, the minima were found at θtwist = ±15°, their 

energy difference was 43 cm-1, and the barrier at θtwist = 0° was  

133 cm-1. Thus, it can be expected that the barrier in reality is even smaller and the 

absolute values of θtwist at the minima are also slightly smaller than the  

SCS-CC2/TZV(2df,p) values mentioned above. 

 

5.6 Analysis of Ground and Excited State Structures 

5.6.1 HOMO and LUMO Orbitals 

While covalent bond lengths are well described in all methods the non-bonded 

inter- ring distances deviate from the crystal structure due to their HOMO and LUMO 

orbitals, which are depicted in figure 5.5. The orbitals shown are plotted for the 

eclipsed D2h structure of PC for a better visualization and represent the HOMOs and 

LUMOs of all phanes. The HOMOs contribute to the explanation of the twisted 

ground state structures in PC, o-DHPC and MHPC as the plus and minus phases of 

the benzene subunits cause the rings to repel each other. The twist and shift 

displacement reduces this. The situation for the LUMO orbitals is the opposite. 

There, the phases have the same sign in both benzene subunits resulting in a 

bonding π-like character. In MP2 treatments double excitations depopulate 
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antibonding HOMO and populate LUMO orbitals. Thus, steric (Pauli) repulsion is 

reduced and inter-ring distances decrease. This effect is overestimated by standard 

MP2 and described more correctly by the SCS-MP2 approach. The HOMO and 

LUMO orbitals also explain the decreased inter-ring distances in the excited state 

relative to the ground state. Following the argumentation for the MP2 method, 

excitation promotes electrons from antibonding HOMOs to bonding LUMOs  which 

causes the benzene subunits to approach each other. Furthermore, the values of 

θtwist are lowered as the occupation of the twist-favoring HOMOs is reduced and that 

of the stack-favoring LUMOs increases. 

 

Figure 5.5 HOMO and LUMO orbitals of PC in the eclipsed D2h structure. 

5.6.2 Electrostatic Potential 

Structural differences between the compounds can be correlated to the 

electrostatic potential between the benzene rings as follows: In paracyclophanes the 

aryl carbon atoms bonded to the bridges (C3, C6, C11, C14) give rise to a significant 

positive excess charge. This is visible from the ground state electrostatic potential of 

the PC molecule in its D2h structure shown in figure 5.6 (a). The positive charge 

cloud in the plane between the two aromatic rings arises from the pyramidalization of 

these carbon atoms, the charge penetration of the π-orbitals and their exchange 
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repulsion. These effects cause that electron density is moved to the outer side of the 

molecule. For all compounds, both twist and shift motions of the molecule reduce the 

electrostatic interaction of the aromatic systems. Simultaneously, the Pitzer strain 

connected with the eclipsed conformation of the bridge C−H-bonds in the D2h-

structure is likewise lowered. The shifted structure of p-DHPC is caused by the 

electrostatic attraction between the negatively charged oxygen atoms and the 

positively charged aryl C-atoms bound to the bridge at the opposite benzene 

subunits. Additionally, the shift allows the positively charged hydrogen of the 

hydroxyl group to get closer to the negative potential caused by the π-system. A shift 

in the structure of o-DHPC does not lower its energy, as it does not result in a net 

attractive electrostatic interaction. Any attractive interaction is compensated on the 

corresponding other side of the molecule. Hence, we conclude that the small shift of 

-6° in the crystal structure is a packing effect. Due to the absence of a second 

hydroxyl group MHPC has the most asymmetric electrostatic potential. MHPC can 

maximize the attraction between its hydroxyl group and the positive charge cloud not 

only with a twist motion like PC, but additionally with a shift. This is unique, as the 

other compounds show either a twisted or shifted ground state structure. 

To explain structural changes due to excitation, the electrostatic potential for the 

excited state is shown in Fig. 5.6 (b), and the difference potential between ground 

and excited state in Fig. 5.6 (c). Due to the shift in the ground state structure of p-

DHPC, the negatively charged hydroxyl groups approach the positively charged 

region between the benzene rings. Upon excitation the regions between the non-

bridge aryl carbon atoms and the hydrogen atoms bonded to them acquire a larger 

amount of electron density. This repels the hydroxyl groups, and the p-DHPC 

molecule changes its structure drastically as the shift disappears (20° to -2°) and is 

replaced by a twist (0° to 12°) for further stabilization. Compared to the ground state 

structures o-DHPC and PC have less twisted structures in the excited state. MHPC 

is the only compound with two minimum structures in the excited state. The local 

minimum has the same qualitatively structural features as the ground state structure 

regarding its twist coordinate (excited state: θtwist = -10°, ground state: θtwist = -10°), 

but the shift vanishes. In contrast, the global minimum has opposite sign for the twist 

coordinate (θtwist = + 11). Since both excited state structures do only differ in energy 
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by 59 cm-1, an explanation of the excited state structures given by the electrostatic 

potential is not reasonable. 

 

  

Figure 5.6 Electrostatic potential in the plane between the two benzene subunits 

in the eclipsed D2h structure of PC for the (a) ground and (b) excited 

state. (c) shows the difference potential between both states. Values of 

the contours in 10-3 au are indicated. X indicates the position of the 

hydroxyl oxygen atom in p-DHPC. 
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5.7 Adiabatic Excitation Energies 

5.7.1 Finding the Appropriate Method 

For the present study the use of a certain method is not justified only by its ability to 

reproduce the correct ground state structure. The reproduction of the correct 

excitation energy is even more crucial. Our original goal was to explain the reversed 

order in experimental excitation energies between benzene, phenol and their 

corresponding covalently bound dimers PC and p-DHPC. Figure 5.7 shows that the 

S1←S0 transition in benzene is bigger by 0.19 eV than phenol. In comparison to the 

dimers this order is reversed, as PC has an excitation energy of 3.82 eV and  

p-DHPC 3.90 eV. Only SCS-CC2 was able to reproduce the correct energetical 

order. First, the reversed order was tried to be rationalized by the Davydov splitting 

concept (section 2.2). By identifying the E1 and E2 states, which are the plus and 

minus linear combinations of the corresponding monomers, the calculated coupling 

was found to be too similar (0.53 eV in PC, 0.47 eV in p-DHPC) to be used as the 

sole explanation.  

 

Figure 5.7 Davydov splitting in benzene, phenol and their corresponding 

covalently bound dimers PC and p-DHPC. Experimental (red) and 

calculated excitation energies (blue, SCS-CC2 / TZV(2df,p)) are given 

in eV. 
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Although the direction of our studies changed over time, it is still very important to 

evaluate carefully different approaches towards each other. Only a method which 

excels in all categories, i.e. structure and excitation energy, is appropriate. Therefore 

we tested the methods described in section 5.4.1 for their ability to predict correct 

excitation energies. As the [1+1]REMPI experiment provides adiabatic excitation 

energies, it is not sufficient to calculate the simpler vertical excitations, but to 

optimize the excited state first. A general scheme for excitation energies is shown in 

figure 5.8. Adiabatic excitation energies without ZPE corrections for benzene, 

phenol, PC and p-DHPC calculated with different approaches are shown in table 5.6. 

Benzene and phenol were calculated as these systems represent the aromatic 

subunits which are responsible for the Davydov splitting. A correct description of 

these seemed essential to analyze the reversed order in excitation energies. 

Although dispersion corrected GGA functionals (BP86-d and PBE-d) give nice 

results for phenol (error of +0.11 each) their deviation for benzene (+1.11 eV / +1.14 

eV) and the investigated phanes PC and p-DHPC (-0.29 eV / -0.27 eV and -0.50 eV / 

-0.50 eV) are too large. The performance of the hybrid functionals B3LYP and 

BHLYP as well as TDHF is even worse for the monomer subunits (errors up to  

 

 

Figure 5.8  The difference between a vertical excitation and an adiabatic excitation 

including zero-point vibrational energy. 
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+1.14 eV) and still not good enough for the phanes (errors up to +1.02 eV). CC2 and 

its spin-component scaled variant SCS-CC2 perform significantly better. The latter 

reduces the errors to less than +0.22 eV and is therefore the method of choice to 

describe these systems.  

Table 5.6 Adiabatic excitation energies without zero-point vibrational energy. All 

values are given in eV.  

method benzene phenol PC p-DHPC 

BP86-d 5.83 4.62 3.53 3.38 

PBE-d 5.86 4.62 3.55 3.38 

B3LYP 5.99 4.93 4.02 3.85 

BHLYP 6.11 5.30 4.41 4.30 

TDHF 5.86 5.58 4.84 4.71 

CC2 5.12 4.82 3.85 3.82 

SCS-CC2 4.94 4.71 3.89 3.88 

experiment 4.72 4.51 3.82 < 3.88 

 

5.7.2 Zero-Point Vibrational Energies 

Since our calculations are to be compared to experimental [1+1]REMPI spectra a 

calculation of zero-point vibrational energies (ZPEs) is obligatory. The result is the 

vibrational spectrum and additionally a correction to the adiabatic excitation 

energies. Table 5.7 contains the results for the most important methods applied to 

our systems. It is obvious that the best results in comparison to the experiment are 

obtained by the SCS-CC2 method. The errors for the monomer systems benzene 

and phenol decrease to less than 0.07 eV, for the phanes even to less than 0.04 eV. 

Note that the excitation energy of p-DHPC cannot be determined experimentally as 

this will be discussed later. Less accurate but still reasonable values are produced 

by the CC2 method. For comparison the results of TD-B3LYP are shown. Although 

they give nice energies for several systems, this method totally fails for benzene. In 

addition it was shown in section 5.4.1, that B3LYP produces the qualitatively wrong  

 



80 
 

Table 5.7 Adiabatic excitation energies including zero-point vibrational energy. All 
values are given in eV.  

method benzene phenol PC o-DHPC p-DHPC 

TD-B3LYP 5.70 4.61 3.89 3.94 3.73 

CC2 4.95 4.67 3.71 3.80 3.67 

SCS-CC2 4.79 4.56 3.78 3.87 3.71 

experiment 4.72 4.51 3.82 3.90 < 3.88 

 

structures for the  ground and excited state. Therefore, this method should not be 

used.  

Note, that in most applications ZPEs are calculated not on the demanding level of 

SCS-CC2. Instead the cheaper level of B3LYP is used and added to the adiabatic 

excitation energy of most of the more demanding methods. The results show that 

this is not an option for these π-systems. Whereas SCS-CC2 corrects the adiabatic 

excitation energies of benzene, phenol, PC and its dihydroxy derivates by 0.11 – 

0.18 eV, B3LYP corrections differ from SCS-CC2 by -0.06 eV to +0.17 eV for the 

same compounds. I.e. the zero point correction at the TD-B3LYP level actually 

introduces errors of a similar magnitude as the corrections themselves and should, 

thus, not be used for SCS-CC2 excitation energies of such compounds. 

 

 

Figure 5.9 REMPI spectrum of o-DHPC. The vertical marks indicate progressions 

of the most prominent modes, see text for details. 
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5.8 [1+1]REMPI Spectra 

[1+1]REMPI spectra have been recorded for [2.2]paracyclophane215, 216 and its 

hydroxy derivates.181-183 Figure 5.9 shows in the upper trace the spectrum of pure  

o-DHPC and in the lower trace its cluster with one water molecule. The low-

wavenumber part in more detail (31230 cm-1 to 31750 cm-1) is depicted in figure 

5.10. The absolute wavenumbers are correct to within ± 2 cm-1, the relative 

wavenumbers in figure 5.10 to within ± 1 cm-1. Both figures, the experimental results 

and the discussion of the spectra of o-DHPC, can be found in Ref.183. Theoretical 

simulations and experimental [1+1]REMPI spectra of o-DHPC and p-DHPC in 

comparison are depicted in figure 5.11. Figure 5.12 shows the experimental REMPI 

spectrum of MHPC. 

 

Figure 5.10 REMPI spectrum of o-DHPC (upper trace) and its water cluster  

o-DHPC·H2O (lower trace) for the low-wavenumber region. 
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Figure 5.11 Experimental REMPI spectra of o-DHPC (a) and p-DHPC (b) as well as 

the calculated spectrum of p-DHPC (c) and o-DHPC (d). The intensity 

is given in arbitrary units for the experimental spectra and based on  

Franck-Condon factors for the simulated spectrum of p-DHPC. † 

denotes peaks from a fragmentation of the water cluster. 
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Figure 5.12 [1+1]REMPI spectrum of MHPC. Numerous progressions are identified, 

corresponding to twist (T), shift (S) and breathing (B) motion. 

 

5.8.1 o-DHPC 

Neglecting the –(CH2)2- bridges o-DHPC can be regarded as two phenol units 

interacting like an H-aggregate, see section 2.2. Although the S1←S0 transition is 

usually forbidden for H-aggregates, here it is allowed due to lower symmetry and by 

vibronic coupling. Its origin is observed at 31483 cm-1.  

A progression is found of around 190 cm-1 with frequency vibration peaks at 

31673 cm-1 (B1, B = “breathing”), 31862 cm-1 (B2) and 32052 cm-1 (B3). Calculation of 

the vibrational spectrum results in a mode at +185 cm-1 in the S1 state of the o-

DHPC spectrum with significant breathing character. In PC a similar progression of 

up to eight quanta was observed in the excited state at 0,0+235 cm-1.215, 216 This fits 

nicely to the theory which predicts the breathing mode at +237 cm-1. 
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Figure 5.13 Experimental REMPI spectrum of o-DHPC (a) and simulation 

combining EE- and EZ-o-DHPC. The intensities in (b) are given as a 

sum over EZ and half of EE, whereas the latter was shifted by +55cm-1. 

See text for more details. 

The spectrum of o-DHPC also contains further progressions with lower 

frequencies at +55 cm-1, +113 cm-1 and +168 cm-1. However, an assignment is 

difficult. They might be the fundamental and the first two overtones of a mode X with 

an unusual anharmonicity. Alternatively, the +113 cm-1 mode can be assigned to a 

different low energy vibration Y and the band at +168 cm-1 to a combination band 

XY. Our experimental coworkers prefer the latter interpretation. Our calculations do 

not provide additional insight at this point. There are no modes which might explain 

the +55 cm-1 peak. A possible explanation might be given by another rotamer: EE-o-

DHPC (ZZ-o-DHPC), which is calculated to be only 0.4 kJ/mol (4.8 kJ/mol) higher in 

energy than EZ-o-DHPC. The calculated S0←S1 transition energy is 53 cm-1 larger 

(119 cm-1 smaller) relative to EE-o-DHPC. To rule this possibility out additional 

studies both experimentally and theoretically have been conducted: We tried to use 
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our simulated spectra of both the EE- and EZ-rotamer to construct a combined 

REMPI spectrum, which might resemble the experiments. Various attempts have 

been made and the result is depicted in figure 5.13. Since the S0←S1 transition of the 

more stable EZ-isomer is lower by 53 cm-1 EE and EZ have been integrated by 

summing over the intensities of EZ and half of the intensities of EE, whereas the 

frequencies of EE have been shifted by +53 cm-1. The contributions to the intensity 

by the EE-rotamer are halved to account for the statistical factor we get because 

there is only one EE-rotamer possible, but there are two combinations which result in 

an EZ-rotamer. The intensities (arbitrary units for the experiment, Franck-Condon-

based for the simulation) have been scaled, that the 0,0 transition has the same 

intensity in both spectra to facilitate comparison. Although not all peaks are 

reproduced, many peaks of the experiment are found in the simulation. The question 

arises, if we now really have two different rotamers in the [1+1]REMPI experiment. 

Therefore, the experimentalists conducted spectral hole burning experiments. The 

results proved, that all transitions with strong intensity at 31483 cm-1, +11 cm-1, +55 

cm-1, +113 cm-1 and +190 cm-1 originate from the same ground state isomer, for 

details see Ref.183. However, from the experimental data it is not possible to say 

which rotamer is the carrier for the spectrum. Several other weak transitions 

observed between 31500 and 31700 cm-1 in the REMPI spectrum most likely 

originate from a second rotamer. 

The origin of the +11 cm-1 band remains unsolved. Spectral hole burning excludes 

the possibility of a second rotamer as an explanation, nor is there any corresponding 

mode found in the simulations. Further hints to the assignment are obtained from the 

spectrum of the water cluster, see figure 5.10. The cluster itself is easily formed 

during the expansion of the molecular beam from residual water in the carrier gas.  

 

 

Figure 5.14 Most stable water cluster of o-DHPC. 
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Since the chromophores have two chromophores, and thus two binding sites, many 

cluster structures are possible making an unequivocal assignment difficult without 

further investigation. Therefore, the bands appearing in these spectra will not be 

discussed. SCS-MP2 calculations of the  EZ-o-DHPC·H2O cluster show that in the by 

far most stable structure the water molecule is inserted between both hydroxyl 

groups and interacts with both of them, see figure 5.14, resulting in a binding energy 

of 48.7 kJ/mol. For the ZZ rotamer a binding energy of 31.8 kJ/mol was computed, 

while for the EE isomer no stable structure was found with two hydrogen bonds. 

Although other structures with only one hydrogen bond have been found, their 

binding energies are significantly lower. Therefore, it can be assumed that only the 

cluster of the EZ rotamer will be present in a free jet. However, we do not see the 

+11 cm-1 band in the spectrum of the cluster. This vibration seems to be 

characteristic only for the monomer and indicates, that the associated motion is of 

little importance in the cluster. The water molecule seems to work like an anchor 

putting additional strain on modes associated with tilt or twist motion and might 

suppress excitation.  

5.8.2 p-DHPC 

The experimental spectrum of p-DHPC resembles the spectrum obtained for o-

DHPC (see figure 5.11) and therefore yields almost no new data. All observed major 

peaks are identical to those found in the spectrum of pure o-DHPC. For an 

explanation of these see section 5.8.1. The difference between the experimental 

spectra arises in the additional large number of closely spaced peaks with 

comparably small intensities. Therefore, we assume that the major peaks in the 

spectrum of p-DHPC originate from contaminations of o-DHPC, while p-DHPC is 

only responsible for the noisy background. To test this hypothesis we recorded a 

REMPI spectrum of a 5:1 mixture of p-DHPC and o-DHPC. The results can be seen 

in figure 5.15. The signal intensity of the major peaks increases by a factor of 25 

upon adding 16% of o-DHPC. This confirms the carrier of the intense bands is 

indeed o-DHPC. The only peaks that can be assigned to p-DHPC are lost in the 

magnified background noise of the mixture experiment. Note that impurities of the 

para-isomer do not affect the spectroscopy of the ortho-isomer. 
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Figure 5.15 Experimental REMPI spectra of (a) pure p-DHPC (intensity multiplied 

by a factor of 25 for a better comparability) and (b) a 6:1 mixture 

between p-DHPC and o-DHPC. Small amounts of o-DHPC dominate 

the p-DHPC spectrum. The daggers indicate signals that are due to 

water clusters. 

 

The first unambiguously assigned band of p-DHPC was found at 31272 cm-1 (3.88 

eV). However, the origin of the S1←S0 transition in p-DHPC lies most likely at lower 

excitation energies. This value constitutes an upper bound, while the true origin 

should be significantly lower at around 3.71 eV according to the calculations, which 

is also significantly lower than that of o-DHPC. Above 31700 cm-1 p-DHPC gives rise 

to closely spaced signals in the REMPI spectrum that form a continuous background 

such that no individual bands can be assigned. The background is an order of 

magnitude smaller in the spectrum of o-DHPC. 

A possible explanation for the appearance of o-DHPC in the p-DHPC spectrum 

could be a para-to-ortho-isomerization under the evaporation conditions in the 

REMPI experiment. Therefore, p-DHPC was sublimated, recondensated and then 
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Figure 5.16 Section of 1H-NMR-spectra (400 MHz, 295 K, 3000 scans, d6-DMSO) 

including the signals of two chemically equivalent aromatic protons of 

the o-DHPC enantiomers. Spectra are shown for diluted o-DHPC in two 

different concentrations (4.8 μg/ml and 1.2 μg/ml) and two samples of  

p-DHPC (each 1.5 mg/ml). The spectra are shifted for better 

comparability. 

investigated by NMR spectroscopy. The spectra prior and after this procedure are 

identical, which rules out that a significant amount of p-DHPC isomerizes to the ortho 

compound. The purity of the synthesized p-DHPC was determined by 1H-NMR 

experiments. Figure 5.16 shows two diluted samples of o-DHPC in comparison to 

two samples of concentrated p-DHPC. While o-DHPC shows two signals at around 

6.30 ppm no signal can be found in the spectra of p-DHPC. This shows that the 

contamination of o-DHPC in the spectra of p-DHPC is certainly less than 3 ‰. 

In conclusion, to determine properties of p-DHPC experiments are insufficient, 

since the p-DHPC spectrum is dominated by o-DHPC. For an understanding of the 

processes associated electronic excitation a theoretical approach is necessary. 

Figure 5.11 shows the simulations of the REMPI spectra of both o-DHPC (c) and  

p-DHPC (d). The most striking result is the difference in the intensities of both 

compounds. o-DHPC absorbs better by seven orders of magnitude. This confirms 
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that small impurities of o-DHPC will dominate the spectrum of p-DHPC. Furthermore, 

the simulation of p-DHPC results in many closely spaced peaks with increasing 

intensity, which are also found in the experimental REMPI spectrum. Note, that these 

peaks are missing in the experimental spectrum of o-DHPC. We conclude that the 

experimental spectrum of o-DHPC can mostly be explained by the simulation, while 

p-DHPC is a combination of both compounds, where all major peaks stem from the 

by far better absorbing o-DHPC and p-DHPC is responsible for the noisy 

background. 

5.8.3 MHPC 

Figure 5.12 shows the experimental [1+1]REMPI spectrum of MHPC. The 

absolute wavenumbers are correct to within ±2 cm-1. As visible, the first peak 

appears with small intensity at 30772 cm-1. A rich spectrum with a large number of 

transitions is observed. The band intensities grow continuously with increasing 

wavenumber, indicating a significant geometry change upon ionization. As the 

ionization energy was determined to be 7.63 eV,182
 i.e. very close to twice the 

excitation energy, additional [1+1´]REMPI experiments have been carried out. Since 

no further band was observed the transition at 30772 cm-1 (3.815 eV) was assigned 

the S1←S0 band origin of MHPC. This is in excellent agreement to the computed 

value of 3.79 eV. Spectral hole burning experiments excluded the possibility of two 

different rotamers.182 Since the E-rotamer was computed to be 2.5 kJ/mol more 

stable than the Z-rotamer we assume this isomer to dominate the spectrum. The Z-

rotamer is disfavored due to steric reasons and its population in the molecular beam 

is therefore assumed to be low. However, no experimental evidence such as a X-ray 

structure supports the stability of this isomer.  

Although a simulation of the REMPI spectrum fails for this compound due to the 

strong anharmonicity of the twist vibration (see below) and the neglect of Duschinsky 

Mixing in our simulation, significant activity in modes corresponding to the twist and 

shift motion is expected. The most obvious pattern in the low energy region of the 

spectrum is a number of bands with a spacing of roughly 30 cm-1. Upon closer 

inspection an inverse anharmonicity is observed: Bands are found at 30802 cm-1 

(+30 cm-1), 30832 cm-1 (+60 cm-1), 30868 cm-1 (+96 cm-1), 30906 cm-1 (+134 cm-1)  

 



90 
 

  

 

Figure 5.17 The potential energy curves of the excited sate of MHPC as a function 

of the twist coordinate at different levels of theory. The SV(P) 

[TZV(2df,p)] curve is the curve, obtained by optimizing the structure of 

the molecule for given θtwist values at the SCS-CC2/SV(P) 

[SCSCC2/TZV(2df,p)] level. The fitted curve is a fourth order 

polynomial that provides relative term energies and intensities fitting 

best to the corresponding experimental values. 

 

and 30948 cm-1 (+176 cm-1). Since the same pattern can be found at higher 

wavenumbers, it is assumed that these bands belong together and are denoted with 

the letter T in figure 5.12. A theoretical analysis along the twist coordinate in the 

excited state shows a double minimum potential with a small barrier between both 

minima. The θshift angle changes only slightly from 0° to 3° between both minima. 

Therefore, a strong coupling between twist and shift is not expected in the S1 state. 

This is in contrast to the ground state, where a strong coupling between both 

motions is found, see figure 5.4. However, the shape of this cut depends strongly on 

the basis set employed: Using the SV(P) basis set, the global minimum is found at 
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θtwist = +16° and the second at θtwist = -13°, 38 cm-1 higher in energy. A barrier 

between these local minima was found for θtwist = 0° which is 132 cm-1 above the 

global minimum. By improving the basis set to TZV(2df,p) θtwist is reduced from +16° 

to +11° (-13 to -10°) in the global minimum (local minimum). While the relative 

energy between both is essentially not affected (34 cm-1) the barrier drops to 64 cm-

1. Thus, the question arises, if the existence of two minima is just a basis set effect. 

Both potential energy curves are shown in Figure 5.17. As the calculated barrier is 

significantly smaller than the accuracy of the method, the present calculations do not 

allow to deduce unambiguously whether there is a barrier or not in the true potential.  

As an additional approach the shape of the excited state potential was fitted to the 

experimental spectrum, obtaining the potential shown in figure 5.18. The resulting 

term wavenumbers and intensities are collected in table 5.9 for all three potential 

energy curves, and their full representations as fourth-order polynomials are listed in 

table 5.9. The fitted potential does not provide a second minimum. However, it is 

significantly flattened towards negative θtwist–values. Thus, the trend of the basis set 

improvement as well as the fitted potential energy curve indicate, that the potential 

energy curve may have only a single minimum, but a very flat potential energy curve 

in the region -10° < θtwist < 10°. Even better results would be provided by a two-

dimensional analysis including the coupling of shift and twist motion in the excited 

state. However, due to the size of the molecule and the necessary basis set for a 

qualitatively reasonable description, a 2D-analysis was too demanding. 

For the shift mode a progression is easily identified: Assignment of the bands as 

30863 cm-1 (+91 cm-1, S) and 30952 (+180 cm-1, S2) results in a roughly spacing of 

90 cm-1, which fits to the calculated value of 85 cm-1. Combination bands of both shift 

and twist are also found in the experimental spectra labelled ST, ST2 etc. in figure 

5.12. Furthermore, combination bands of the first overtone of the shift mode, S2 with 

the twist mode are also observed. 

Finally, a breathing mode B associated with a decrease in the inter-ring distance 

is expected to be active in MHPC. [1+1]REMPI experiments of PC and o-DHPC 

show such a mode at +235 cm-1 and 190 cm-1, respectively. MHPC shows a 

progression with small peaks at 30975 cm-1 (B1, +203 cm-1), 31169 cm-1 (B2) and 
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Figure 5.18 The fitted potential energy curve corresponding to the twist motion of 

the excited state and the corresponding calculated curve of the ground 

state at the SCS-MP2/TZV(2df,p) level as a function of the twist angle. 

Calculated energy levels (dashed lines) and the lowest vibrational wave 

functions (solid colored lines) of these potentials are also shown. 
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Table 5.8 Term wavenumbers of the S1 state with respect to the v´ = 0 level, 

where v´ represents the quantum number of the twist vibration, and 

intensities of the transitions to these states from the ground state. 

Results from the SCS-CC2/SV(P) and SCS-CC2/TZV(2df,p) level are 

compared with those of the fitted potential energy curves and the 

corresponding experimental values. The standard deviation σ of the 

difference between calculated and experimental wavenumbers is also 

shown. 

 wavenumber (cm-1) intensity (%) 
v SV(P) TZV(2df,p) fit exp. SV(P) TZV(2df,p) fit exp. 

0 0 0 0.0 0 0 0 1.4 2 

1 36 28 29.8 30 88 80 16.4 20 

2 57 46 60.4 60 0 13 33.4 31 

3 86 73 95.5 96 10 5 29.1 23 

4 103 104 134.2 134 1 0 14.8 16 

5 126 141 176.0 176 1 0 4.8 8 

σ 26.8 23.9 0.3      

 

31369 cm-1 (B3) that can be assigned to the breathing mode. However, significant 

intensity can only be found in combination with the twist mode T. An unambiguous 

assignment of the Bn progression proves to be difficult. Numerous combination 

bands of B with shift mode S and shift with twist mode, ST, are observed. Since the 

mass of MHPC is between PC and o-DHPC, a breathing mode of MHPC at +203  

cm-1 is perfectly reasonable. Computations predict the breathing mode  in the S1 

state at 197 cm-1
. 
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Table 5.9 Parameters for the calculated and fitted one dimensional potential 

energy curves of the S1 state of MHPC as a function of θtwist. θ1 and θ2 

represent the minima, E0 is the energy for θtwist = 0°, E2 is the energy at 

θ2. The expansion coefficients a0 to a4 for the fit curves are also shown. 

 SV(P) TZV(2df,p) fit 

θ1 16 11 7.1 

θ2 -13 -10 - 

E0 (cm-1) 132 64 19.0 

E2 (cm-1) 38 34 - 

a0 132 64 19.0 

a1 2.0875 -1.5906 -3.3912 

a2 -0.9695 -0.8406 -0.0502 

a3 -0.0151 -0.0002 0.0023 

a4 0.0022 0.0038 0.0027 
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6. Summary 

The present work presents investigations on energy and charge transport 

properties in organic crystals. Chapter 4 treats exciton transport in anthracene, which 

is an example for weakly coupled π-systems. The electronic coupling parameter is 

evaluated by the monomer transition density approach. With these and the 

reorganization energy hopping rates are calculated in the framework of the Marcus 

theory. Together with the knowledge of the crystal structure, these allow us to 

calculate the experimental accessible exciton diffusion lengths, whose isotropic part 

fits nicely within the scattering of experimental values found in the literature. 

Furthermore, the anisotropy of the exciton diffusion lengths is reproduced 

qualitatively and quantitatively correct. 

This chapter also contains studies about electron and hole transport in both 

polymorphs (α and β) of perylene. Reorganization energies as well as diffusion 

coefficients for both crystal structures and types of charge transport were calculated. 

The best transport is hole transport in β-perylene, but it is strongly isotropic. The 

preferred transport direction is along the b-axis of the unit cell with couplings of 

greater than 100 meV. However, there is no transport along the c-axis. The diffusion 

constant in b-direction is bigger by two orders of magnitude than in c-direction 

(62.7·10-6 m2/s vs. 0.4·10-6 m2/s). Charge transport is calculated to be strongly 

anisotropic for holes as well as electrons in both modifications. To verify these 

results experimental electron mobilities have been compared to the simulations. 

Good agreement was found with errors of less than 27%. 

 As it was shown above, the calculation and measurement of transport properties 

between weakly coupled systems is possible. However, it is difficult to exactly 

determine the quality of the electronic coupling. For this reason a collaboration about 

strongly interacting π-systems was started between us and the research group of 

Prof. Ingo Fischer. There, [2.2]paracyclophanes and its derivates were investigated 

to show how hydroxyl substitution influences absorption properties. Overall, a 

combination of SCS-MP2 and SCS-CC2 performs best to address the description of 

geometric and electronic structures for both ground and excited states of these 

model systems as well as their parent compounds benzene and phenol. Only 

[2.2]paracyclophane shows a double minimum potential regarding a twist and shift 
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motion between the benzene/phenol subunits towards each other. All other systems 

are less flexible due to their substitution pattern. Almost all [2.2]paracyclophanes 

display minor changes in their geometric structure upon excitation to the S1 state: 

The inter-ring distance shortens, but qualitatively they keep their shift and twist 

characteristics, although the extent of these deformations diminishes. The exception 

is p-DHPC, which turns from a shifted ground state structure into a twisted excited 

state structure. Consequently, the intensity of the 0-0 transition cannot be observed 

experimentally due to small Franck-Condon factors and impurities of o-DHPC. In the 

present thesis, the structures and their changes due to excitation are explained by 

electrostatic potentials as well as antibonding (bonding) HOMO (LUMO) orbitals. 

Adiabatic excitation energies have been corrected by ZPEs and result in 

accuracies with errors smaller than 0.1 eV. Note that corrections on the B3LYP level 

worsen the results and one has to apply SCS-CC2 to achieve this accuracy. These 

calculations allow an interpretation of the experimental [1+1]REMPI spectra. Band 

progressions of the twist, shift and breathing of the [2.2]paracyclophane skeleton 

vibrations have been identified and show good agreement to the experiment. 

This work shows that the substitution pattern in [2.2]paracyclophanes can have a 

significant impact on spectroscopic properties. Because these properties are directly 

linked to the transport properties of these materials, the hereby gained insight can be 

used to design materials with customized transport properties. It was shown that the 

SCS-CC2 method is very appropriate to predict the interaction between the π-

systems 
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7. Zusammenfassung 

Die vorliegende Arbeit präsentiert theoretische Untersuchungen zu Energie- und 

Ladungs-Transporteigenschaften in organischen Kristallen. Kapitel 4 behandelt 

Exzitonentransport in Anthracen bei dem der Fall einer schwachen Kopplung 

zwischen den π-Systemen vorliegt. Die elektronische Kopplung wird mit dem 

„monomer transition density“ (MTD) Ansatz berechnet. Aus den Kopplungen und 

Reorganisationsenergien werden mit der Marcus-Theorie Hüpfraten berechnet. Mit 

Kenntnis der Kristallstrukturen werden daraus in die experimentell zugänglichen 

Exzitonendiffusionslängen berechnet, deren isotroper Anteil im Rahmen der 

Streuung der experimentell zugänglichen Daten reproduziert werden. Auch die 

Anisotropie der Exzitonendiffusionslängen wird qualitativ und quantitativ im Rahmen 

der zu erwartenden Messgenauigkeit richtig wiedergegeben. 

Weiterhin enthält Kapitel 4 Untersuchungen zum Elektronen- und Lochtransport in 

den zwei verschiedenen Modifikationen (α und β) von Perylen. 

Reorganisationsenergien sowie Diffusionskonstanten wurden für beide beide 

Kristallstrukturen und Typen des  Ladungstransports berechnet. Den besten 

Transport stellt dabei Lochtransport in β-Perylen dar, jedoch ist dieser stark isotrop. 

Die bevorzugte Transportrichtung is entlang der b-Achse der Einheitszelle mit 

elektronischen Kopplungen von größer als 100 meV. Allerdings gibt es hier keinerlei 

Lochtransport in Richtung der c-Achse. Die Diffusionskonstante in Richtung der  

b-Achse ist um zwei Größenordnungen größer als die in c-Richtung (62.7·10-6 m2/s 

vs. 0.4·10-6 m2/s). Der Ladungstransport wird sowohl für Löcher, als auch für 

Elektronen in beiden Perylenmodifikationen immer stark anisotrop berechnet. Um 

diese Resultate zu verifizieren wurden experimentelle Elektronenmobilitäten in α-

Perylen mit den Simulationen verglichen. Es stellte sich eine sehr gute 

Übereinstimmung heraus mit Fehlern von nur maximal 27%. 

Wie oben gezeigt, ist es möglich Transporteigenschaften in zwischen schwach 

wechselwirkenden Systemen zu berechnen und zu messen. Allerdings ist es hier 

schwierig, die Güte der zu Grunde liegenden Kopplungsparameter genau 

anzugeben. Aus diesem Gunde wurde eine Zusammenarbeit über stark 

wechselwirkede Systeme zwischen uns sowie den Arbeitskreis von Prof. Ingo 

Fischer begonnen. Dort wurden [2.2]Paracyclophane und dessen Derivate 
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untersucht um zu zeigen, wie Substitution mit Hydroxylgruppen deren 

Absorptionseigenschaften beeinflusst. Eine Kombination der  SCS-MP2 und SCS-

CC2-Methoden liefert hierbei insgesamt die besten Ergebnisse um die 

geometrischen und elektronischen Strukturen für Grund- und angeregte Zustände 

dieser Modellsysteme sowie deren Stammmolekülen Benzol und Phenol zu 

beschreiben. Strukturell weist nur [2.2]Paracyclophan im Grundzustand ein 

Doppelminimumspotenzial bzgl. Verschiebung und Verdrillung der Benzol/Phenol-

einheiten untereinander auf. Alle anderen Systeme sind aufgrund ihrer Substitution 

weniger flexibel. Fast alle untersuchten [2.2]Paracyclophane zeigen nur geringe 

Strukturänderungen bei der Anregung in den S1 Zustand: Der Abstand zwischen den 

Ringen wird kürzer, aber qualitativ behalten sie ihre Verdrillung und Verschiebung 

bei, wenn auch das Ausmaß dieser Verzerrungen reduziert wird. Die Ausnahme 

hierbei ist p-DHPC, welches von einer verschoben Struktur im Grundzustand in eine 

verdrillte Struktur im angeregten Zustand übergeht. Dies hat zur Konsequenz, dass 

die Intensität des 0-0-Übergangs aufgrund der Franck-Condon Faktoren für p-DHPC 

experimentell nicht mehr beobachtet werden kann und von Verunreinigungen durch 

o-DHPC überdeckt wird. Die Strukturen der Paracyclophane und deren Änderung 

durch elektronische Übergänge werden in dieser Arbeit durch elektrostatische 

Potenziale sowie den antibindenen (bindenden) HOMO (LUMO) Orbitalen erklärt.  

Adiabatische Anregungsenergien wurden mit Nullpunktsschwingungsenergien 

korrigiert und liefern Genauigkeiten deren Fehler weniger als 0,1 eV beträgt. Hierbei 

ist zu beachten, dass eine Korrektur auf B3LYP Niveau die Ergebnisse 

verschlechtert und man die Berechnung der Schwingungsfrequenzen auf SCS-CC2 

durchführen muss um diese Genauigkeit zu erhalten. Aufgrund dieser Rechnungen 

wurde eine Interpretation der experimentellen [1+1]REMPI Spektren möglich. 

Bandenprogressionen für die Schwingungen der Verschiebung, der Verdrillung und 

einer Atmung im [2.2]Paracyclophanskelett wurden identifiziert und zeigen gute 

Übereinstimmung zum Experiment.  

Diese Arbeiten zeigen, dass das Substitutionsschema von [2.2]Paracyclophanen 

eine erhebliche Auswirkung auf die spektroskopischen Eigenschaften haben kann. 

Da diese Eigenschaften direkt mit den Transporteigenschaften dieser Materialien 

verbunden ist, kann das hier gewonnene Verständnis der spektroskopischen 

Eigenschaften genutzt werden, um Materialien mit maßgeschneiderten 
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Transporteigenschaften zu designen. Es konnte gezeigt werden, dass die SCS-CC2-

Methode sehr gut geeignet ist, die zu Grunde liegende Wechselwirkung zwischen 

den π-Systemen vorherzusagen. 
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9. Appendix 

Table A.1 Vec in eV for hole transport in α-perylene. Dimers with Vec < 0.001 eV 
are not shown. 

1st monomer 2nd monomer a b c Vec/eV 
2 0 0 1 1 0.049 
3 1 0 0 0 0.049 
1 0 0 1 0 0.029 
2 3 0 1 0 0.029 
3 2 0 0 0 0.029 
1 0 0 0 0 0.029 
3 0 0 0 0 0.020 
3 0 0 0 1 0.020 
2 1 0 0 0 0.020 
2 1 0 0 1 0.020 
0 1 1 -1 0 0.011 
3 2 1 0 0 0.011 
0 1 1 0 0 0.011 
3 2 1 -1 0 0.011 
1 2 1 0 0 0.009 
2 1 1 0 1 0.009 
0 3 1 0 0 0.009 
3 0 1 0 1 0.009 
1 3 1 0 0 0.003 
2 0 1 1 1 0.003 
0 2 1 -1 0 0.002 
3 1 1 0 1 0.002 
1 1 1 0 0 0.001 
2 2 1 0 0 0.001 
3 3 1 0 0 0.001 
0 0 1 0 0 0.001 
3 1 1 0 0 0.001 
0 2 1 -1 -1 0.001 
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Table A.2 Vec in eV for electron transport in α-perylene. Dimers with Vec < 0.001 
eV are not shown. 

1st monomer 2nd monomer a b c Vec/eV 
2 0 0 1 1 0.074 
3 1 0 0 0 0.074 
1 3 0 1 0 0.054 
2 0 0 0 1 0.054 
2 1 0 0 0 0.043 
2 1 0 0 1 0.043 
3 0 0 0 0 0.043 
3 0 0 0 1 0.043 
2 3 0 1 0 0.027 
1 0 0 0 0 0.027 
3 2 0 0 0 0.027 
1 0 0 1 0 0.027 
0 3 1 0 0 0.010 
1 2 1 0 0 0.010 
2 1 1 0 1 0.010 
3 0 1 0 1 0.010 
2 2 1 0 0 0.009 
1 1 1 0 0 0.009 
3 3 1 0 0 0.009 
0 0 1 0 0 0.009 
3 2 1 0 0 0.005 
0 1 1 -1 0 0.005 
0 1 1 0 0 0.005 
3 2 1 -1 0 0.005 
1 3 1 0 0 0.003 
2 0 1 1 1 0.003 
2 0 0 1 0 0.001 
3 1 0 0 1 0.001 
3 1 1 0 0 0.001 
0 2 1 -1 -1 0.001 
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Table A.3 Vec in eV for hole transport in β-perylene. Dimers with Vec < 0.001 eV 
are  not shown. 

1st 
monomer 2nd monomer a b c Vec/eV 

0 0 0 1 0 0.128 
1 1 0 1 0 0.128 
0 1 1 0 0 0.010 
0 1 1 -1 0 0.010 
1 0 1 1 1 0.010 
1 0 1 0 1 0.010 
0 0 1 0 0 0.002 
1 1 1 0 0 0.002 
1 1 1 1 0 0.002 
0 0 1 -1 0 0.002 
1 0 0 0 1 0.001 
1 0 0 1 0 0.001 
1 0 0 0 0 0.001 
1 0 0 1 1 0.001 

 

Table A.4 Vec in eV for electron transport in β-perylene. Dimers with Vec < 0.001 
eV are not shown. 

1st monomer 2nd monomer a b c Vec/eV 
1 0 0 0 1 0.052 
1 0 0 0 0 0.052 
1 0 0 1 1 0.052 
1 0 0 1 0 0.052 
0 0 0 1 0 0.024 
1 1 0 1 0 0.024 
1 1 1 0 0 0.015 
0 0 1 0 0 0.015 
0 1 1 -1 0 0.011 
0 1 1 0 0 0.011 
1 0 1 0 1 0.011 
1 0 1 1 1 0.011 
0 0 1 -1 0 0.001 
1 1 1 1 0 0.001 
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