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1 Introduction

In the fundamental and vital papers [39] by Qi and Sun, and [38] by Qi semismooth New-
ton methods where introduced for the solution of nonlinear systems of equations that are
defined by a nonsmooth mapping. Related material can also be found in Kummer [29, 30].
Similar to the classical Newton method these methods can be shown to be locally quadrati-
cally convergent under moderate assumptions that are somewhat similar to the assumptions
that the classical method requires. Since the introductory publications from Qi and Sun,
semismooth Newton methods have been used to solve many classes of mathematical prob-
lems that can be formulated in a suitable way as a nonsmooth system of equations, among
them are complementary problems, variational inequalities and nonsmooth equation sys-
tems themselves, cf. [12a, 12b, 34]. In these days they are widely accepted, used and
studied.

In this thesis we consider a particular class of applications from the field of compu-
tational geosciences, namely a reactive transport model in the subsurface including min-
eral precipitation-dissolution reactions. This model involves partial differential equations
(PDEs), ordinary differential equations (ODEs), and algebraic equations, together with
some complementarity conditions arising from the equilibrium conditions of the minerals.
After discretization this results in a mixed complementary problem that can be equivalently
written as a nonlinear and nonsmooth system of equations via so-called NCP-functions.
This seems to be a new and promising approach in literature for problems of this kind.

In general, the modeling of reactive transport problems in porous media leads to systems
involving PDEs and ODEs; the PDEs for the concentration of chemical species which are
dissolved in the water (called mobile species), and the ODEs for the concentrations of
species which are attached to the soil matrix and which are not subject to transport (called
immobile species). In the following we assume that all of the immobile species, from a
chemist’s point of view, are minerals. Hence, the reactions with minerals are so-called
precipitation-dissolution reactions.

In principle, it is possible to model reactions among the mobile and between mobile and
immobile species by kinetic rate laws, i.e., the reactive source/sink terms in the PDEs and
ODEs are given functions of the concentrations, coupling the PDEs and ODEs. If the re-
actions are sufficiently fast, then the assumption of local equilibrium instead is reasonable.
This equilibrium assumption means that the concentrations of the involved species tend to a
certain reaction dependent ratio between reactants and products. For reactions among mo-
bile species, local equilibrium conditions can be described by (nonlinear) algebraic equa-
tions (AEs). However for reactions involving minerals, complementary conditions (CCs)
are necessary to describe local equilibrium. Because in this case another state of equilib-
rium is possible: complete dissolution of the mineral. Then the precipitation-dissolution
reaction for a particular mineral can only go in the forward direction forcing a different
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ratio between the reactants and the products (see Sec. 3.1). The resulting system consists
of PDEs, ODEs, AEs, and CCs.

For the numerical solution, many publications on reactive transport in porous media
suggest to enforce a decoupling between transport and reaction by applying an operator
splitting technique. By this, the reaction subproblem is fully local, i.e., it consists only of
AEs and CCs, while only the transport subproblem contains the PDEs and ODEs. However,
operator splitting either introduces splitting errors or requires a fixed-point type iteration
between transport and reaction within each time step. In the first case, accuracy considera-
tions, and in the second case, convergence issues often lead to severe time step restrictions
for splitting methods [45].

In the computational geoscience community there is a very popular way to solve the
PDE-ODE-AE-CC system [3, 6]: In the current time step, for each mineral and each dis-
cretization point, an assumption is made (usually based on the previous time step) whether
saturation or complete dissolution will hold. Through this assumptions the complementary
conditions are replaced by AEs. Then a Newton iteration is performed. If the result has
no physical meaning then the assumptions are modified in some way resulting in new AEs.
Then the Newton iteration is repeated, until (hopefully) a physically meaningful solution is
obtained. Besides its heuristic motivation, another drawback of this procedure is its lack of
efficiency since several Newton iterations have to be executed in one time step. Also this
approach needs constant human supervision and intervention.

Other authors from the geosciences community propose to use a formulation as a free
boundary problem for front tracking approaches [32]. However, this approach lacks sim-
plicity as soon as more than one space dimension is involved and topology changes of the
precipitation-dissolution fronts appear. Another approach is to approximate the equilib-
rium, i.e., very fast reactions, by a kinetic description with large rate coefficients. Besides
the approximative nature of this approach, large rate coefficients may increase the stiffness
of the problem to solve.

Modern techniques from the optimization theory for the reactive transport problem are
considered in [43, 46] and in [25]. In [43, 46], an operator splitting is performed, and
the now fully local reaction problem is replaced by an equivalent constrained minimiza-
tion problem for the so-called Gibbs free energy. Its KKT conditions are solved with an
interior-point algorithm. Numerical test runs are performed without any deeper theoret-
ical investigation. Note that this procedure leads to additional unknowns, the Lagrange
multipliers for the equality and inequality constraints.

In [25, Sec. 4], to our knowledge for the first time, the application of a semismooth
Newton method to the reactive transport mineral precipitation-dissolution problem is car-
ried out. There the reactive transport problem is tackled fully implicitly, avoiding any
operator splitting. The author considers a rather general situation of reactive problems in-
cluding equilibrium and kinetic reactions, where the equilibrium reactions may be of the
aqueous, the sorption, or the mineral precipitation-dissolution type. The implementation
of the solution strategy is described and some results on the nonsingularity of the Jacobian
of the system are given.

The present thesis propagates and investigates similar solution strategies as in [25, 26],
but it focuses on those reactive systems without kinetic reactions, and where all the (equi-
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librium) reactions are of aquatic and of mineral type, i.e., no so-called sorption reactions
are involved. This restriction allows a less technical presentation, to prove stronger the-
oretical results, and to exploit the overall structure in a better way so that the resulting
algorithm can take full advantage of this structure. In contrast to these two publications the
subject at hand is tackled more from the viewpoint of modern optimization.

The organization of this thesis is the following: In Chapter 2 theoretical foundations are
laid concerning the semismooth Newton method, complementary conditions and related
topics. In Chapter 3 background information is given, the problem is formulated and its
mathematical model is given. Afterwards an equivalence transformation is applied to the
PDE-ODE-AE-CC system (going back to [27, 28, 25]). The motivation for this reformula-
tion is a decoupling of some (linear) PDEs, leading to a smaller nonlinear system. Finally
the remaining system is discretized in space and time. The resulting system is a mixed
complementarity problem that can be reformulated as a nonlinear (but nonsmooth) system
of equations. In Chapter 4 the reformulation of the incorporated complementary problem is
done with the minimum function as NCP-function. Then the semismooth Newton method
is applied to solve the resulting nonlinear nonsmooth equation system. Afterwards a con-
vergence analysis is performed and some topics related to this algorithm are investigated.
Also local existence and uniqueness of a solution of this equation system is tackled. Fi-
nally a numerical example is presented. In Chapter 5 the mixed complementary problem
is reformulated with the Fischer-Burmeister function resulting in a nonlinear nonsmooth
equation system. Again the semismooth Newton method is applied to this equation system
and a short convergence analysis is performed along with an investigation of related topics.
Then a globalization strategy for this formulation is proposed. Finally a numerical example
for the globalized semismooth Newton method is presented. In Chapter 6 we investigate a
subproblem that appears in Chapter 4. Its solution plays a crucial role for very many results
in both previous chapters (and really for the whole thesis). The matter is the boundedness
of a special matrix valued function. In Chapter 7 we introduce a method to estimate the
extremal singular values of a class of matrices that come from finite difference discretiza-
tion of many convection diffusion PDEs. Also this method can determine very accurately
whether such a matrix is positive definite. Finally in Chapter 8 we give some concluding
remarks concerning this thesis.
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2 Preliminaries

In this chapter we want to introduce all necessary theory and tools that we need in the
subsequent chapters. The coverage and depth of the topics will be sufficient so that even
undergraduate readers will be able to understand the text.

2.1 Notation

The n-dimensional real vector space is denoted by Rn. Every vector x ∈ Rn is a column
vector unless it is transposed. The components of a vector x ∈ Rn we denote with xi. For
a real valued function f : Rn −→ R we denote with the column vector ∇ f (x) the gradient
of this function in point x where this function is differentiable. Whereas the differential
i.e. the Jacobian, which we denote with f ′(x), is a row vector and it holds f ′(x) = ∇ f (x)T .
Similarly , if G : Rn −→ Rm, we write Gi for the i-th component function. The symbol
G′(x) is used for the Jacobian matrix of G at a differentiable point x ∈ Rn and ∇Gi(x) is the
gradient of Gi at x. Also ∇Gi(x)T is the i-th row of the Jacobian G′(x).

For a vector x ∈ Rn the symbol ‖x‖ denotes the Euclidean vector norm which we also
denote with ‖x‖2. Furthermore with ‖x‖∞ we denote the maximum norm of x and with ‖x‖1
we denote the 1-norm of x. With Rm×n we denote the set of all real m × n matrices. For a
matrix M ∈ Rm×n we denote with ‖M‖ and ‖M‖sp the spectral norm of a matrix. And with
‖M‖R we denote the row-sum norm, which is induced by the maximum vector norm, and
‖M‖C denotes the column-sum norm, which is induced by the 1-norm. With In we denote
the n×n identity matrix. If the size of the matrix is not important we leave out the subscript.
We use [] to compose a matrix or vector out of scalar or block components, e.g. [x1, x2, x3]
would be a 3-dimensional row vector. If the components are not scalar we sometimes use
’|’ as seperator instead of ’,’, e.g. [A | B | C]. And finally for column vectors vi ∈ R

ni

(i = 1, . . . ,m) the vector [v1, v2, . . . , vm] shall be the column vector [vT
1 , v

T
2 , . . . , v

T
m]T . For

a n × m matrix M = (mi, j) the notation MA,B denotes the submatrix (mi, j)i∈A, j∈B. Whereas
MA is the row selection (mi, j)i∈A, j=1,...,m.

A function f : Rn −→ R is called a Ck-function if it is k times continually differentiable.
In fact Ck is the set of all k-times continually differentiable functions.

With A ⊂ B we denote the subset A of the set B where equality A = B is included.
The product A · B = AB of these two sets is simply the set {a · b | a ∈ A ∧ b ∈ B}. Sim-
ilarly the product of a matrix M with a set of matching vectors B is defined by M · B =

{M · b | b ∈ B}. Likewise the sum of two sets is defined byA+B = {a + b | a ∈ A ∧ b ∈ B}.
If A or B reduces to a singleton the set braces for this set are conveniently omitted, e.g.
{1, 4} + 3 = {4, 7}. For sets we often use calligraphical letter, e.g. A.

The set Br(x) denotes the open ball with radius r and center x and Br(x) is its closure.



2 Preliminaries 6

For real vectors x, y ∈ Rn the notation x ≥ y means that xi ≥ yi holds for every compo-
nent. And x > y is also meant component-wise.

2.2 Subdifferentials

In this section we want to introduce the concept of three subdifferentials which are inter-
connected.

Let U ⊂ Rn be an open set and G : U −→ Rm be a locally Lipschitz continuous function,
i.e. for any x ∈ U there is an ε > 0 so that G reduced on Bε(x) is Lipschitz continuous. Let
DG ⊂ U be the set of differential points of G. From Rademacher’s theorem [40] we know
that the set of nondifferentiable points U \ DG has zero measure, i.e. G is differentiable
almost everywhere.

Then the B-subdifferential of G in a point x ∈ U is defined as

∂BG(x) :=
{
H ∈ Rm×n | ∃

(
xk

)
k∈N
⊂ DG :

(
xk

)
−→ x and

(
G′

(
xk

))
−→ H

}
,

as it was defined in Qi [38]. And the generalized Jacobian by Clarke [7] is defined as

∂G(x) := co (∂BG(x))

the convex hull of the B-subdifferential. In the special case where m = 1, we also call
∂G(x) the generalized gradient of G. Hence the generalized gradient is a set of row vectors.
Whereas the gradient of a differentiable real function is a column vector. And finally we
define the C-subdifferential as

∂CG(x) := [∂G1(x) × ∂G2(x) × . . . × ∂Gm(x)]T .

In the first result we learn an important class of locally Lipschitz continuous functions.

Lemma 2.2.1. Let U ⊂ Rnbe open and G : U −→ Rm be a continuously differentiable
function. Then G is locally Lipschitz continuous.

Proof. Let x ∈ U be arbitrary. Since U is open there is r > 0 such that Br(x) ⊂ U holds.
Thanks to Theorem in [24, Sec. 3.2] with K = Br(x) we can conclude that G is locally
Lipschitz-continuous. �

Next we deal with the inclusion relation of these three subdifferentials and with the case
of C1-functions.

Proposition 2.2.2. Let G : Rn −→ Rm be locally Lipschitz continuous. Then:

(a) ∂BG(x) ⊆ ∂G(x) ⊆ ∂CG(x) for all x ∈ Rn.

(b) G is continuously differentiable on an open set D ⊂ Rn if and only if ∂G(x) = {G′(x)}
for all x ∈ D.

Proof. See Clarke [7, Proposition 2.6.2(e)] together with the definitions above for (a) and
Clarke [7, Corollary to Proposition 2.2.4] for (b). �



7 2.2 Subdifferentials

We give an easy example to illustrate the just defined subdifferentials. We consider the
function G : R −→ R2 given by G(x) = (|x| , min {0, x})T . This function is obviously
Lipschitz-continuous. In every point x , 0 it is differentiable and therefore

∂BG(x) = ∂G(x) = ∂CG(x) = {G′(x)}

holds. But for x = 0 the B-subdifferential for the component functions is

∂BG1(0) = {−1,+1} , ∂BG2(0) = {0,+1}

and for the whole function

∂BG(0) =

{(
−1

1

)
,

(
1
0

)}
.

Therefore the generalized Jacobian is the line segment

∂G(0) =

{
λ

(
−1

1

)
+ (1 − λ)

(
1
0

)
| 0 ≤ λ ≤ 1

}
while the C-subdifferential is

∂CG(0) = [−1, +1] × [0, +1] ,

which is a rectangle.
A second and more complicated example is the Euclidean norm function G : Rn −→

R, G(x) := ‖x‖2 =

√
x2

1 + . . . + x2
n. We list the generalized Jacobian and the B-subdifferential

in the next result.

Lemma 2.2.3. Let G be the Euclidean norm function as defined above. Then

∂BG(0) = {x ∈ Rn | ‖x‖2 = 1} = ∂B1(0) = S n−1 (2.1)
∂G(0) = {x ∈ Rn | ‖x‖2 ≤ 1} = B1(0) (2.2)

and

∂BG (x) = ∂G (x) =

{
1
‖x‖2

· xT

}
for every vector x ∈ Rn \ {0}.

Proof. The well known inequality∣∣∣‖x‖2 − ‖y‖2∣∣∣ ≤ ‖x − y‖2

shows that the norm function is Lipschitz continuous on Rn. If x ∈ Rn is nonzero, then
both sets only contain the Jacobian, which is 1

‖x‖2
· xT . So we now consider the case x = 0.

It suffices to prove equation (2.1) because by taking the convex hull on both sides of this
equation, we obtain equation (2.2).
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First we show that ∂BG(0) is subset of the sphere S n−1 = {x ∈ Rn | ‖x‖2 = 1}. Since
‖G′(x)‖ = 1 holds for every x , 0 we can conclude that

∥∥∥∥G′
(
xk

)∥∥∥∥ −→ 1 for every sequence(
xk

)
⊂ Rn \ {0}. From the definition of the B-subdifferential it follows that ∂BG(0) ⊂ S n−1

is true.
In order to verify the other inclusion let x ∈ Rn be an arbitrary vector with ‖x‖ = 1. Then

the sequence xk := 1
k x obviously converges to the zero vector. Whereas the corresponding

sequence of the Jacobians G′
(
xk

)
= 1

k x/
∥∥∥1

k x
∥∥∥ = x obviously converges to x. That means

that S n−1 ⊂ ∂BG(0) holds. Thus everything is proved. �

Now we are ready to calculate the subdifferentials for two important examples.

Example 2.2.4. The first example is the minimum function

ϕM : R2 −→ R, ϕM(a, b) = min {a, b} .

It is obviously globally Lipschitz continuous and continuously differentiable for a , b.
With Proposition 2.2.2 we have

∂BϕM(a, b) = ∂ϕM(a, b) = ∂CϕM(a, b) =

{(1, 0)} for a < b
{(0, 1)} for a > b

.

Now we study a point (a, b) with a = b. Let
(
xk

)
⊂ R2 be a sequence that converges to

(a, b) with xk
1 > xk

2 for almost all k. Then

lim
k→∞
∇ϕM(xk

1, x
k
2)T = (0, 1) .

Similarly
lim
k→∞
∇ϕM(xk

1, x
k
2)T = (1, 0) ,

holds if xk
1 < xk

2 for almost all k. For all other sequences
(
xk

)
⊂ DϕM that converge to (a, b)

the associated sequence ∇ϕM(xk
1, x

k
2)T does not converge. So we get as B-subdifferential

∂BϕM(a, a) = {(1, 0), (0, 1)}

and consequently

∂ϕM(a, a) = ∂CϕM(a, a) = {(λ, 1 − λ) | 0 ≤ λ ≤ 1} .

The second example is the Fischer-Burmeister (FB) function

ϕF : R2 −→ R, ϕF(a, b) :=
√

a2 + b2 − a − b .

This function is continuously differentiable for (a, b) , (0, 0). And it is globally Lipschitz
continuous, because it is the sum of a norm and a linear term.
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For the differentiable points [a, b] , [0, 0] we get the subdifferentials

∂BϕF(a, b) = ∂ϕF(a, b) = ∂CϕF(a, b) =

{[
a

√
a2 + b2

− 1,
b

√
a2 + b2

− 1
]}

.

The nondifferentiable point [a, b] = [0, 0] is more difficult. First we notice that the Eu-
clidean norm function x 7→ ‖x‖2 is differentiable in R2 \ {0}, too. From Lemma 2.2.3 we
know that its B-subdifferential in [0, 0] is the unit sphere S 1. With the definition of the
B-subdifferential we can see that the B-subdifferential of the Fischer-Burmeister function
is the unit sphere translated by the vector [−1,−1]T , i.e.

∂BϕF(0, 0) = S 1 +

[
−1
−1

]
= ∂B1(−1,−1) .

Then the generalized Jacobian is the convex hull

∂ϕF(0, 0) = B1(−1,−1) .

Since ϕF is a scalar function the C-subdifferential coincides with the generalized Jacobian.

These examples were not too complex. Here we could calculate the B-subdifferential
directly by using its definition. In order to calculate the B-subdifferential and generalized
Jacobian of more complex combined functions there are some handy rules to divide this
task to simpler calculations. Hereby often equality is lost and the result is a superset of the
desired set (see Clarke [7]). Here we introduce just one of these rules, for later use.

Proposition 2.2.5. Let f = g ◦G, where G : Rn −→ Rm is locally Lipschitz continuous and
g : Rm −→ R is continuous differentiable. Then

∂ f (x) = g′ (G(x)) ∂G(x) .

Proof. This assertion is contained in Theorem 2.6.6 of Clarke [7]. �

Finally we cite two properties which we don’t need explicitly. But they are useful for
understanding the generalized Jacobian.

Proposition 2.2.6. Let G : Rn −→ Rm be locally Lipschitz continuous. Then:

(a) ∂G(x) is a nonempty, convex and compact subset of Rm×n for every vector x ∈ Rn.

(b) the mapping x 7→ ∂G(x) is upper semicontinuous at any x ∈ Rn, i.e. for every ε > 0
there is a δ > 0 such that for every y with ‖y − y‖ ≤ δ , it holds

∂G(y) ⊂ ∂G(x) + εBm×n

where Bm×n denotes the unit ball in Rm×n.

Proof. see Clarke [7, Theorem 2.6.2] �

The reader might be familiar with the notion of the convex subdifferential for a convex
function G : Rn −→ R which is usually also denoted with ∂G(x) (see e.g. Rockafellar
[41]). If G is additionally locally Lipschitz continuous then the generalized Jacobian ∂G(x)
is also defined. In [7] Clarke showed that in this case the generalized Jacobian coincides
with the subdifferential in the sense of convex analysis.
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2.3 Semismooth Functions

For the problem we study in this thesis we need the notion of semismooth functions. The
set of these functions is a subset of the set of locally Lipschitz continuous functions and a
superset of the set of continuously differentiable functions.

At first we remind the reader that a function G : Rn −→ Rm is called directionally
differentiable in a point x ∈ Rn if the limit

G′ (x; d) := lim
t↓0

G (x + td) −G (x)
t

exists for all directions d ∈ Rn. And G is called directionally differentiable on a open set
U ⊂ Rn if it is directionally differentiable for all x ∈ U.

Definition 2.3.1. Let U ⊂ Rn be open and G : U −→ Rm be a locally Lipschitz continuous
and directional differentiable function. Then G is called

1. semismooth in x ∈ U, if

lim
d→0

H∈∂G(x+d)

Hd −G′ (x; d)
‖d‖

= 0

holds.

2. strongly semismooth in x ∈ U, if

lim sup
d→0

H∈∂G(x+d)

Hd −G′ (x; d)
‖d‖2

< ∞

holds.

3. semismooth or strongly semismooth on U, if it is semismooth or strongly semis-
mooth for all x ∈ U.

With the Landau symbols we can write the first and second definitions as

‖Hd −G′ (x; d)‖ = o (‖d‖) and ‖Hd −G′ (x; d)‖ = O(‖d‖2) (2.3)

for d → 0 and all H ∈ ∂G (x + d). A vector valued function is C1 if and only if all
component functions are C1. The first Lemma gives an analogous result for semismooth
functions.

Lemma 2.3.2. Let U ⊂ Rn be open and G : U −→ Rm. Then G is (strongly) semismooth in
x ∈ U if and only if every component function Gi is (strongly) semismooth in x.

Proof. ” ⇐= ”. The definition of the C-subdifferential and the infinity norm give us this
implication.
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” =⇒ ”. With the chain rule from Theorem 2.3.7 applied to the function g := f ◦G with
the C1 function f : Rm −→ R, f (x) := xi we get the generalized gradient

∂g(x) = ∂ f (G(x)) ∂G(x)
= eT

i · ∂G(x)

=
{
hT

i | h
T
i is the i − th row for some H ∈ ∂G(x)

}
,

where ei is the i-th canonical unit vector. Let d ∈ Rn be an arbitrary direction and i ∈
{1, . . . ,m} an arbitrary index. For hT

i ∈ ∂Gi(x) there is a H ∈ ∂G(x) so that its i-th row eT
i H

equals hT
i . Then we have ∣∣∣hT

i d −G
′

i(x; d)
∣∣∣ =

∣∣∣(Hd −G′(x; d)
)

i

∣∣∣
≤ ‖Hd −G′(x; d)‖∞

and with (2.3) for G it follows that Gi is (strongly) semismooth. �

The following Lemma introduces an important class of semismooth functions.

Lemma 2.3.3. Let U ⊂ Rnbe open, x ∈ U and G : U −→ Rm be a function. Then

1. If G is continuously differentiable around x, then G is semismooth in x.

2. If G is differentiable around x and G′ is Lipschitz continuous around x, then G is
strongly semismooth in x.

Proof. With [7, Propositon 2.2.4 and next Corollary ] we have that ∂G(x) = {G′(x)} and
since G is continuously differentiable around x (i.e. in an open ball Bε(x)) it holds G′(x)·d =

G′(x; d) for all d ∈ Rn. Then we have

lim
d→0

H∈∂G(x+d)

Hd −G′ (x; d)
‖d‖

= lim
d→0

G′(x + d) · d −G′(x) · d
‖d‖

= lim
d→0

(
G′(x + d) −G′(x)

) d
‖d‖

= 0

since G′ is continuous around x. This proves the first assertion. To see the second assertion
we mention that there is a Lipschitz constant K and ε > 0 so that

‖G′(y) −G′(z)‖ ≤ K · ‖y − z‖

for all y, z ∈ Bε(x). For d ∈ Rn with x + d ∈ Bε(x) and H ∈ ∂G(x + d) we can conclude

‖Hd −G′ (x; d)‖
‖d‖2

=
‖G′(x + d) −G′(x)‖ · ‖d‖

‖d‖2

≤ K

and therefore
lim sup

d→0
H∈∂G(x+d)

Hd −G′ (x; d)
‖d‖2

< ∞

and G is strongly semismooth. �
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For the sake of convenience we derive a Corollary from this result.

Corollary 2.3.4. Let U ⊂ Rn be open and G : U −→ Rm be a C2-function. Then G is
strongly semismooth.

Proof. The differential x 7→ G′(x) is continuously differentiable. Let x ∈ U be arbitrary.
Since U is open there is r > 0 such that Br(x) ⊂ U holds. Thanks to the Theorem in [24,
Sec. 3.2] applied with K = Br(x) we can conclude that the differential is locally Lipschitz-
continuous. Now the previous Lemma gives the assertion. �

Another important class of semismooth functions are convex functions.

Lemma 2.3.5. Let U ⊂ Rn be open and convex and let f : U −→ R be a convex function.
Then f is semismooth on U.

Proof. see Mifflin [35, Proposition 3] �

Now it is time to study two examples. We continue with the functions from Example
2.2.4.

Example 2.3.6. The first example is the minimum function ϕM. We show that it is strongly
semismooth. It is obvious that ϕM is even globally Lipschitz continuous. In every point
[a, b] with a , b the minimum function is continuously differentiable with a locally Lip-
schitz continuous derivative and therefore strongly semismooth. In the following we only
consider points [a, b] with a = b. Let d = [d1, d2]T ∈ R2 be a direction vector. By means of
a simple calculation one can see that

ϕ′M ([a, b]; [d1, d2]) = min {d1, d2}

holds. Now we have to make a distinction of cases.
Firstly we consider the case d1 < d2. Then ϕM is differentiable in [a + d1, b + d2] and
therefore the generalized Jacobian is ∂ϕM (a + d1, b + d2) = {[1, 0]}. Hence for H ∈

∂ϕM (a + d1, b + d2) we have

ϕ′M ([a, b]; [d1, d2]) − H · d = min {d1, d2} − [1, 0] ·
[

d1

d2

]
= d1 − d1 = 0 .

Secondly we study the case d1 > d2 which goes very similar to the previous one. So for
H ∈ ∂ϕM (a + d1, b + d2) = {[1, 0]} we have

ϕ′M ([a, b]; [d1, d2]) − H · d = min {d1, d2} − [1, 0] ·
[

d1

d2

]
= d2 − d2 = 0 .

Thirdly we study the more difficult case of d1 = d2. From Example 2.2.4 we know that
∂BϕM (a + d1, b + d2) equals {[1, 0] , [0, 1]} and therefore

∂G (a + d1, b + d2) = {[λ, 1 − λ] | λ ∈ [0, 1]}
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holds. For an arbitrary H ∈ ∂ϕM (a + d1, b + d2) there is a unique λ ∈ [0, 1] with H =

[λ, 1 − λ] and we get

∂ϕM (a + d1, b + d2) = min {d1, d2} − [λ, 1] − λ ·
[

d1

d2

]
= d1 − λd1 − d2 + λd2 = 0 .

In all three cases it holds

lim sup
d→0

H∈∂ϕM (x+d)

Hd − ϕ′M (x; d)

‖d‖2
= 0

and we have shown directly with the definition that G is strongly semismooth.
The second example is the Fischer-Burmeister function ϕF : R2 −→ R, ϕF(a, b) =√

a2 + b2 − a − b .We show that this function is strongly semismooth, too. By means of
a simple calculation one can directly verify that ϕF is a convex function (it is also a well
known fact in the optimization community). Then ϕF is semismooth according to Lemma
2.3.5.
We show now that it is even strongly semismooth. In every point [a, b] , [0, 0] is ϕF differ-
entiable and ϕ′F is locally Lipschitz continuous. Let d = [d1, d2]T be a nonzero real vector.
Then the directional derivative is

ϕ′F ([0, 0]; [d1, d2]) = lim
t↓0

ϕF (td1, td2) − ϕF (0, 0)
t

= ϕF (d1, d1)

and the generalized Jacobian is

∂ϕF (0 + d) =
{
ϕ′F(d)

}
=


 d1√

d2
1 + d2

2

− 1,
d2√

d2
1 + d2

2

− 1


 .

With H ∈ ∂ϕF(d) we have

H · d =

 d1√
d2

1 + d2
2

− 1,
d2√

d2
1 + d2

2

− 1

 ·
[

d1

d2

]

=

√
d2

1 + d2
2 − d1 − d2

= ϕF (d1, d2)

and therefore it holds for d , 0

Hd − ϕ′F ([0, 0]; [d1, d2]) = ϕF (d1, d2) − ϕF (d1, d2) = 0 .

With this we calculate the limit

lim sup
d → 0

H ∈ ∂ϕF (x + d)

Hd − ϕ′F (x; d)

‖d‖2
= 0
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lim sup
d→0

H∈∂ϕF (x+d)

Hd − ϕ′F (x; d)

‖d‖2
= 0

and ϕF is strongly semismooth.

If a function is more complex it might be quite difficult to show directly with the defini-
tion that a function is semismooth. Therefore we will introduce a chain rule property for
semismooth functions.

Theorem 2.3.7. Let G : Rm −→ Rp and F : Rn −→ Rm be directional differentiable and
locally Lipschitz continuous functions and H := G ◦ F : Rn −→ Rp. Then

(a) If F is semismooth in x ∈ Rn and G is semismooth in F(x) ∈ Rm then H is semismooth
in x.

(a) If F is strongly semismooth in x ∈ Rn and G is strongly semismooth in F(x) ∈ Rm

then H is strongly semismooth in x.

Proof. see Fischer [11, Theorem 19] �

From this theorem we can immediately derive the following Corollary. It shows that the
sum, product and quotient of (strongly) semismooth functions is again (strongly) semis-
mooth if it is defined.

Corollary 2.3.8. Let G1,G2 : Rn −→ R be (strongly) semismooth in x ∈ Rn. Then

(a) The linear combination α1G1 + α2G2 is (strongly) semismooth in x for arbitrary
numbers α1, α2 ∈ R.

(b) The product G1 ·G2 is (strongly) semismooth in x.

(c) The quotient G1
G2

is (strongly) semismooth in x if G2(x) , 0 holds.

Proof. The functions (x, y) 7→ α1 · x + α2 · y, (x, y) 7→ x · y and (x, y) 7→ x
y , y , 0 are all

C2 functions and therefore strongly semismooth (see Corollary 2.3.4). Thanks to Lemma
2.3.2 is the vector valued function x 7→ [G1(x),G2(x)]T (strongly) semismooth. Therefore
Theorem 2.3.7 yields that the concatenations are (strongly) semismooth. �

With this result we have some simple but powerful tools to show that a function is
(strongly) semismooth. Of course statement (a) holds even for vector valued functions
G1,G2 : Rn −→ Rm because of Corollary 2.3.2. The other statements are in the first in-
stance only defined for scalar valued functions.
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2.4 Complementary Problems and NCP-Functions

In this section we introduce the complementary problem, which plays an important part in
this thesis. Then we will show how to reformulate this problem via NCP-functions. We
start with the definition.

Definition 2.4.1. Let F : Rn −→ Rn be a function. A (nonlinear) complementary problem
is the task to find a vector x∗ ∈ Rn that it is a solution of the following system of inequalities
and equalities

x ≥ 0, F(x) ≥ 0, xT F(x) = 0 .

We denote this problem with the abbreviation NCP or NCP(F).

This problem formulation can be written equivalently as

xi ≥ 0, Fi(x) ≥ 0, xi · Fi(x) = 0 , i = 1, . . . , n .

If F is a affine function we speak of a linear complementary problem.
It is important to discriminate two types of solutions for NCPs. In the degenerate solution

x∗ is a component i0 such that x∗i0 = Fi0(x∗) = 0 holds. For the nondegenerate solution x∗

no such component exists, i.e. for i = 1, . . . , n it holds x∗i + Fi(x∗) > 0. The degenerate case
is numerically more difficult.

Examples which lead to complementary problems are the Nash equilibrium problem, the
barrier problem and KKT conditions. We show a simple case of the last one.

Example 2.4.2. Let f : Rn −→ R be a convex and continuously differentiable function.
Then the simple optimization problem

min f (x) s.t. x ≥ 0

is equivalent to the KKT-conditions

x ≥ 0, ∇ f (x) ≥ 0, xT∇ f (x) = 0

which obviously form a complementary problem.

We do not solve the NCP directly. Instead we reformulate it equivalently into a well
known problem. One way to do this is with NCP-functions.

Definition 2.4.3. A function ϕ : R2 −→ R with the property

ϕ (a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, a · b = 0

is called NCP-function.

The already mentioned Fischer-Burmeister function ϕF and the minimum function ϕM

are NCP-functions. This is obvious for the minimum function. We verify this for ϕF . From
squaring ϕF(a, b) = 0 it follows that

a2 + b2 = (a + b)2
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and from this we conclude that
a · b = 0 .

And ϕF(a, b) = 0 is equivalent with

a + b =
√

a2 + b2 ≥ 0

together with a · b = 0 this means that either a = 0, b ≥ 0 or a ≥ 0, b = 0 holds. This
is the first implication. The other implication can be directly verified with the same case
distinction a = 0, b ≥ 0 and a ≥ 0, b = 0. Both functions ϕF and ϕM are not differentiable
but strongly semismooth (see example 2.3.6).

We give a few examples of differentiable NCP-functions which are not important for this
thesis. We leave the verification to the reader.

Example 2.4.4.

(a) ϕ(a, b) := −ab + 1
2 min2

{0, a + b}

(b) ϕ(a, b) := −ab + 1
2 min2

{0, a} + 1
2 min2

{0, b}

Let F : Rn −→ Rn be a function and ϕ : R2 −→ R be a NCP-function. Then we define
the vector-valued function Φ : Rn −→ Rn as

Φ(x) :=


ϕ (x1, F1(x))
ϕ (x2, F2(x))

...
ϕ (xn, Fn(x))

 . (2.4)

The following result describes the connection of Φ to the complementary problem.

Theorem 2.4.5. A vector x∗ ∈ Rn is solution of the complementary problem NCP(F) if and
only if x∗is a solution of the nonlinear equation system Φ(x) = 0.

Proof. From the definition of Φ and the property of NCP-functions it follows immediately

Φ(x) = 0 ⇐⇒ ϕ (xi, Fi(x)) ∀i = 1, . . . , n
⇐⇒ xi ≥ 0, Fi(x) ≥ 0, xi · Fi(x) = 0 ∀i = 1, . . . , n

which is the assertion of this theorem.
With this theorem we have reduced the complementary problem to the well known prob-

lem of solving a nonlinear system of equations. If F and the NCP-function ϕ are continu-
ously differentiable then Φ is also continuously differentiable and we can solve the equation
system Φ(x) = 0 e.g. with Newton’s method. A further requirement for Newton’s method
is that the Jacobian Φ′ (x∗) in the solution x∗ has to be nonsingular. The next result shows
that this might not be fulfilled in the given context. �

Theorem 2.4.6. Let F : Rn −→ Rn and ϕ : R2 −→ R be differentiable and x∗ be a
degenerate solution of NCP(F). Then the Jacobian Φ

′ (x∗) contains a zero row i, where
x∗i = Fi(x∗) = 0 holds, and is therefore singular.
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Proof. Since ϕ and F are differentiable the composed function ϕ (xi, Fi(x)) if differentiable
and we calculate the Jacobian of x 7→ ϕ (xi, Fi(x)) with the chain rule. This clearly gives

∂ϕ (xi, Fi(x))
∂x

=
∂ϕ (xi, Fi(x))

∂a
·
∂Fi(x)
∂x

+
∂ϕ (xi, Fi(x))

∂b
· eT

i

where ei is the i-th unit vector. Since x∗ is degenerate, there is an index i with Fi (x∗) =

x∗i = 0. Now let i be such an index. Since ϕ (xi, Fi(x)) is the i-th component function of Φ

the row vector ∂ϕ(xi,Fi(x))
∂x is the i-th row of the Jacobian Φ′ (x∗). The proof is complete if we

show that ∇ϕ(0, 0) = (0, 0)T holds. For the first partial derivative we have

∂ϕ (0, 0)
∂a

= lim
t↓0

ϕ(t, 0) − ϕ(0, 0)
t

= lim
t↓0

0 − 0
t

= 0

which follows from the NCP-function definition. In the same way we have

∂ϕ (0, 0)
∂b

= 0 .

�

If one deals with large complementary problems, i.e. n is a large number, then it is quite
likely that a solution contains a component that is at least numerically degenerate. With
numerically degenerate we mean that there is a component i so that the absolute value of
Fi (x∗) and x∗i is very small.

Remark 2.4.7. We want to show here that the assertion in Theorem 2.4.6 holds for a certain
more general problem class than NCP(F), which will be important later. Let n1, n2 be
integers with n := n1 + n2. Furthermore let F : Rn1 −→ Rn2 and G : Rn −→ Rn1 be
continuously differentiable functions. For the variables x ∈ Rn1 and y ∈ Rn2 we seek
solutions of the problem

G(x, y) = 0
x · F(y) = 0

x ≥ 0 , F(y) ≥ 0 .

We reformulate this problem equivalently as the nonlinear equation Ψ(x, y) = 0 by defin-
ing the component functions of Ψ : Rn −→ Rn as

Ψi(x, y) := Gi(x, y) i = 1, . . . , n1

Ψi(x, y) := ϕ
(
xi−n1 , Fi−n1(y)

)
i = n1 + 1, . . . , n1 + n2 .

In a degenerate solution (x∗, y∗) there is an index j with x∗j = F j(y)∗ = 0. We have seen in
the last proof that ϕ′(0, 0) = (0, 0) holds for every NCP-function. Via the chain rule one can
see immediately that the Jacobian of (x, y) 7→ ϕ

(
x j, F j(y)

)
vanishes in (x∗, y∗). Therefor

the j + n1 row of the Jacobian Ψ′(x∗, y∗) is zero and the whole matrix singular.
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This problem can be avoided if we take a non-differentiable function as NCP-function in
the definition of Φ. Then we need an algorithm that can solve Φ(x) = 0 even for a certain
class of non-smooth functions. Such an algorithm exists for semismooth functions. For the
rest of this section let ϕ be either the minimum or the Fischer-Burmeister function and let
Φ be defined accordingly.

Theorem 2.4.8. Let ϕ ∈ {ϕM, ϕF} and let F be two times continuously differentiable in the
definition of Φ in (2.4). Then Φ is strongly semismooth.

Proof. For all i = 1, . . . , n the function x 7→ (xi, Fi(x)) is obviously a C2-function and
therefore strongly semismooth (see Corollary 2.3.4). Example 2.3.6 shows that the Fischer-
Burmeister and the minimum functions are strongly semismooth. With the chain rule Theo-
rem 2.3.7 we conclude that the i-th component Φi (x) = ϕ (xi, Fi(x)) is strongly semismooth
for all i = 1, . . . , n. Then Lemma 2.3.2 gives the assertion. �

In the next section we answer the question how nonlinear equation systems with a semis-
mooth left hand side can be solved efficiently.

2.5 Newton Method for Semismooth Functions

In this section we will introduce the semismooth Newton method, which is a version of
Newton’s method, for solving nonlinear equation systems under weaker requirements. The
theory of the semismooth Newton method was developed by Qi [38], see also [12a, 12b,
39, 36] for related material.

Let G : Rn −→ R be a given function and consider the problem of finding a solution
x∗ ∈ Rn for

G(x) = 0 .

If G is differentiable we can try to solve this with the classical Newton method. It produces
a sequence

(
xi
)
⊂ Rn according to the rule

xi+1 = xi −G′
(
xi
)−1
·G

(
xi
)

i = 0, 1, 2, . . .

for a starting vector x0 ∈ Rn. If G is not differentiable then the Jacobian G′
(
xi
)

might not
exist and the next iterate xi is not defined. With the theory of subdifferentials from subsec-
tion 2.2 it presents itself to generalize Newton’s method for locally Lipschitz continuous
functions G as follows

xi+1 = xi − H−1
i ·G

(
xi
)

i = 0, 1, 2, . . .

where Hi ∈ ∂G
(
xi
)
. In the following algorithm we restrain ourselves to the B-subdifferential

but the generalized Jacobian would be equally possible.

Algorithm 2.5.1 (Semismooth Newton method).
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(S.0) (Initialization)
Choose x0 ∈ Rn, ε ≥ 0 and set k := 0.

(S.1) (Termination Criterion)
If

∥∥∥∥G
(
xk

)∥∥∥∥ ≤ ε, stop.

(S.2) (Newton Direction Calculation)
Choose a matrix Hk ∈ ∂BG

(
xk

)
and find a solution dk of the linear system

Hkd = −G
(
xk

)
.

(S.3) (Update)
Set xk+1 := xk + dk , k ← k + 1, and go to (S.1).

In the termination criterion one can use any norm. But it is sometimes useful to choose
a certain norm. For differentiable functions G this algorithm reduces to the classical one
since ∂BG

(
xi
)

=
{
G′

(
xi
)}

holds for such functions.
In the rest of this section we will show that this algorithm has the same local convergence

properties like the classical Newton method if certain requirements are met. Note that the
use of the generalized Jacobian would not alter the convergence properties but a little the
requirements thereof. We introduce this algorithm in the form in which it is applied in the
following chapters. One requirement for convergence is the following regularity condition.

Definition 2.5.2. Let G : Rn −→ Rn be Lipschitz continuous in x ∈ Rn. Then x is called
BD-regular if all matrices H ∈ ∂BG (x) are nonsingular.

Again this is a not a surprising generalization of the classical Newton’s method. For
differentiable functions it reduces to the well known condition that G′ (x) is nonsingular.
This regularity condition is of course necessary to ensure the solvability of the linear system
in the algorithm. We regularity condition in a simple example. We consider the scalar
function G(x) = |x|. In the solution x∗ = 0 we have ∂BG(0) = {−1, 1}. Therefore x = 0
is BD-regular for this function. On the other hand does ∂G (0) = [−1, 1] contain zero. So
the generalized Jacobian does not fulfill a similar regularity condition and therefore does
not meet an important requirement for convergence. This is an important advantage of the
formulation of the semismooth Newton method with the B-subdifferential.

The next step toward a convergence result is the following Lemma.

Lemma 2.5.3. Let G : Rn −→ Rn be locally Lipschitz continuous and let x∗ ∈ Rn be a
BD-regular point of G. Then there are numbers ε > 0 and c > 0 so that all matrices
H ∈ ∂BG(x) for all points x ∈ Bε (x∗) are nonsingular and∥∥∥H−1

∥∥∥
sp
≤ c ∀H ∈ ∂BG(x) ∀x ∈ Bε (x∗) .

Proof. see [39, Proposition 3.1] �

Again this result reduces to a well known Lemma for differentiable functions. Finally
we can state the main theorem.
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Theorem 2.5.4. Let G : Rn −→ Rn be semismooth and let x∗ be a BD-regular solution for
G(x) = 0. Then there is a ε > 0 so that for every starting vector x0 ∈ Bε (x∗) the following
holds:

(a) Algorithm 2.5.1 is well defined and produces a sequence
(
xi
)

i∈N0
which converges to

x∗.

(b) The convergence rate is superlinear, i.e.
∥∥∥xi+1 − x∗

∥∥∥ = o
(∥∥∥xi − x∗

∥∥∥)
(c) If G is strongly semismooth then the convergence rate is quadratic, i.e.

∥∥∥xi+1 − x∗
∥∥∥ =

O
(∥∥∥xi − x∗

∥∥∥2
)

Proof. see [39, Theorem 3.2] �

With this amazing result, we can solve nonlinear systems with nondifferentiable func-
tions if they are semismooth. In particular we can solve nonlinear systems that stem
from complementary problems. If these problems were reformulated with the Fischer-
Burmeister or the minimum function then the resulting left hand side is even strongly
semismooth (provided that F is sufficiently smooth).



3 Problem Formulation and
Transformation

In this chapter we introduce the problem class that we investigate in this thesis. We start
with background information and from this derive a mathematical model consisting of
PDEs, ODEs, AEs (algebraic equations) and CCs (complementary conditions). Then we
will apply some transformations to this system and discretize the resulting system. Then
we have finally arrived to the finite dimensional model which we will study in the following
chapters. For the sake of readers who are not familiar with the geological background we
will be quite comprehensive and descriptive.

Please note that neither is the author an expert in hydrology resp. hydrogeology nor
are you the reader expected to be one. Therefore the use of special terminology will be
simplified, generalized and more descriptive but not always scientifically exact. Note also
that the further chapters deal only with the equation system that is derived in this chapter.
Therefore it is not necessary to understand all the hydrogeological background fully in
order to understand the following chapters. In fact the results in the further chapters are
true even if they are derived from a totally different background.

3.1 Background

3.1.1 Overall Scenario

A porous medium (typically an aquifer) consists of pores which are fully or partially filled
with water and a solid (in which the pores are embedded) that is called the soil matrix. The
pores are sufficiently interconnected so that water can flow through the porous medium. In
the water are many chemical substances (ions or molecules) present which interact with
each other in chemical reactions. Also they are transported with the water flow and they
are also subject to dispersion and diffusion (which we will neglect in this thesis). We refer
to them as mobile species. We assume that the occurring reactions are “sufficiently” fast.
To the soil matrix attached are minerals (solids). They engage in precipitation-dissolution
reactions, i.e. they are dissolved in the water by decomposing into ions. In their unsolved
solid state they are not transported with the water and are therefore called immobile species.
The unknowns are the concentrations of the dissolved species in the water (in moles per
water volume) and the concentrations of the minerals (pure solids) attached to the soil
matrix (in moles per surface area of the soil matrix). This microscopic view helps to un-
derstand what processes are taking place. But for investigating large areas in the realm of
tens through hundreds of meters is this view not suitable. Through volume averaging and
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homogenization is this model upscaled to a macroscopic view. Homogenization means to
treat the porous medium as if every part of it would have the same composition. The qual-
ities of the homogenized medium are the averaged qualities of the actual porous medium.
For example we will postulate that a chemical equilibrium equation holds on every point
of the domain although it refers to a chemical process which only takes place in the water
in a pore.

The macroscopic model will be the basis of this thesis.

3.1.2 Index of Technical Terms

In this subsection we explain some technical terms. The reader who is only interested
in mathematics can skip this part and can later look them up as he needs them. This
subsection will provide more insight for the reader who is interested to understand the
processes involved.

advection As fluids flow through porous media some contaminants in the fluid are trans-
ported with it. This transport of these contaminants (mobile species) is called ad-
vection (at least in our context). While other chemicals are somehow attached to
the solid medium and are therefore not transported with the fluid flow (immobile
species). The speed of the transportation is the same as that of the fluid flow (Darcy
velocity).

aquifer phases in the subsurface which are porous. The pores are interconnected and are
therefore permeable for liquids especially water. Groundwater flows in aquifers. The
scope of our model is not limited to aquifers but inspired from them. Aquifers can
be permeable rocks, sediments or soil.

bulk density is a constant and property % of the porous medium. It is defined as

% = mp/V

where mp is the mass of the solid part (soil matrix) of a porous medium without water
in a unit volume V .

Darcy velocity On a microscopical level there are many different velocity vectors of
water-flow in a porous medium. Even the velocity in one pore is not homogeneous.
Therefore the Darcy velocity (named after Darcy who invented it) is an averaged
velocity. It is defined as the volume discharge of the fluid per time (dimension is
volume/time) divided through a cross-sectional flat area (dimension is area). It is
not a true velocity because the area is partially blocked with solid material (from
the porous medium). But the dimension of the Darcy velocity is that of a velocity
namely length/time.

diffusion a physical process which takes place in aqueous solutions. On a macroscopical
level it describes movement of molecules or ions of one kind to achieve the same
concentration in the whole solution. Therefore the movement is from areas of high
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concentration to areas of low concentration. In the hydrogeological context that we
study diffusion is almost always negligible compared to dispersion which takes place
too. We therefore omit this process for the sake of simplicity (diffusion is quite
complex; its rate is species dependent).

dispersion a physical process which takes place in porous media. As a contaminated
fluid (a chemical in solution) flows through a porous medium, it will mix with not
contaminated water (water with a smaller concentration of that chemical). The result
will be a dilution of the contaminant by a process known as dispersion. The mix-
ing that occurs along the streamline of fluid flow is called longitudinal dispersion.
Dispersion that occurs normal to the pathway of fluid flow is transversal dispersion.
Dispersion is a mechanical phenomenon. Longitudinal dispersion is caused by fluid
flow through pores. Some of the fluid will take longer pathways than other. The flow
velocity in the center of a pore is faster than on the edges. Fluid flow is faster in
larger pores than in smaller pores. Transversal dispersion is caused by the fact that
the flow paths of contaminated fluid will split and branch out to the side. Longitu-
dinal dispersion is usually 10 to 100 times greater than transversal dispersion. Both
types of dispersion are proportional to the velocity of the fluid flow.

minerals are naturally occurring solids with a defined chemical composition and a certain
physical crystal structure. Examples are calcite and saltpeter. In our work they are
only involved in precipitation-dissolution reactions in water, which are reversible re-
actions. An example of a precipitation-dissolution reaction would be the dissolution
of salt in water. In general a mineral, which is a pure solid, dissolves in water by
decomposing in ions. If there are more ions in the water than the water can hold the
solution is supersaturated and the ions will precipitate as minerals through crystal-
lization. But if there are less ions present in the water than the water can hold, more
minerals will dissolve as ions. The special thing about these mineral precipitation-
dissolution reactions is that the direction of the reaction (dissolution or precipitation)
is only determined by the concentration of the ions in the water and not by the amount
of unsolved solid. At least as long as there is still solid mineral present. This fact
leads to complementary conditions in the mathematical model.

mole is a unit of measurement for the amount of chemical substance. It specifies the
amount of pure substance that contains as many elementary particles (atoms, molecules
or ions) as there are atoms in 12 g of the isotope carbon-12 (12C). One mole of a
chemical substance equates about 6.022 · 1023 particles of this substance.

pore the void space in a porous medium. It is usually fully or partially filled with a fluid,
usually water.

porosity is a constant n = Vv/V , where Vv is the void space in a unit volume V of a porous
medium. It is the fraction of void volume through total volume.

water content is a constant that we denote with θ. It is a property of a porous medium.
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It is defined as
θ =

Vw

V
where Vw is the volume of water in a unit volume V of the porous medium.

reversible reaction is a chemical reaction with can go in both directions. It aims to
reach an equilibrium state concerning the concentrations of the participants. Usually
the reaction goes in both directions at the same time even if equilibrium is reached.
But the rates of the forward and backward reactions may differ (in equilibrium these
rates are the same) depending on the concentrations of the participants in proportion
to their concentrations in equilibrium. So the overall direction of the reaction is de-
termined by the difference of forward and backward reaction rate. A simple example
is the dissolution of salt in water:

NaCl
 Na+ + Cl−

If the solution is under-saturated more salt will dissolve. If the solution is super-
saturated salt will crystallize. The antidote is an irreversible reaction. We will only
consider reversible reactions, which most reactions are.

soil matrix the solid part of a porous medium.

species is a technical term for chemical compounds (like Calcite or Carbondioxid CO2)
or ions in a solution like H+ or HCO−3 . In a porous medium we distinguish be-
tween mobile species which are dissolved in the fluid (usually water) which is in the
medium. They are transported in the fluid-flow and with its Darcy velocity. Whereas
immobile species are attached to the solid part of the medium (soil matrix) through
some chemical, electrical or mechanical process e.g. crystallization. They are not
transported with the water flow. In this work the only immobile species we consider
are minerals.

3.1.3 Physical Background

In this subsection we want to develop very briefly the physical laws and equations, which
describe the reactive transport of chemical substances in solution in a porous medium. The
interested reader can find more details in [23, sec. 0.3], from which this section is inspired
too. There are three basic physical principles, which are important in this context. The
basic equation comes from the law of conservation of mass

∂t (θc(t, x)) + ∇ · (q(t, x) · c(t, x)) + ∇ · J(1)(t, x) + ∇ · J(2)(t, x) = θ f (t, x) (3.1)

where c(t, x) [mol/m3] is the concentration of a mobile species in solution, q(t, x) [m/s] is
the mass averaged velocity, the so called Darcy-velocity and f (t, x) is a source or sink term.
Before we continue with the physics we have to explain some symbols of vector analysis.
The operator ∇· applied to a vector field a : R3 −→ R3, a(x) = [a1(x), a2(x), a3(x)]T yields

∇ · a(x) =
∂

∂x1
a1(x) +

∂

∂x2
a2(x) +

∂

∂x3
a3(x)
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where x is the spatial variable and the gradient ∇ of a scalar valued function b : R3 −→ R
is the vector

∇b(x) =

[
∂

∂x1
b(x),

∂

∂x2
b(x),

∂

∂x2
b(x)

]T

and combining this two operators yields

∇ · (∇b(x)) =
∂

∂x2
1

b(x) +
∂

∂x2
2

b(x) +
∂

∂x2
3

b(x) .

This law basically says that the mass of species in solution in a desired domain Ω and time
frame t ∈ [0,T ] consists of the mass which flows out or in over the border of the domain ∂Ω

and of the mass which is produced from a source or absorbed from a sink (this is the term
f (t, x) on the right hand side). Such an equation is also called mass balance equation. The
term f (t, x) [mol/m2/s] is called volumetric production rate. In our context this will be the
reaction rate function of a chemical reaction (see next section). That means that the source
is a chemical reaction where the considered species is produced (sign of f (t, x) is positive)
and the sink is a reaction where the species is the reactant (sign of f (t, x) is negative).
The water content constant θ ∈ (0, 1) takes into account that the water volume is only part
of the total volume. The function J(1)(t, x) [mol/m2/s] is called diffusive mass flow and
J(2)(t, x) [mol/m2/s] is called dispersive mass flow. The second term ∇ (q(t, x) · c(t, x)) on
the left hand side describes the forced mass transport through the water flow. This is usually
called convection or advection. The third term ∇J(1)(t, x) describes the molecular diffusion
between the mobile species and the water. And the fourth term ∇J(2)(t, x) on the left hand
side describes mass flow through mechanical dispersion. Dispersion is in its effects (not its
cause) very similar to diffusion. That is why dispersion and diffusion are both summarized
as diffusion. Since diffusion is species dependent and in our context notedly smaller than
dispersion, we will leave it out.

The second principle is Fick’s law, which describes diffusion. Based on this law the
dispersion mass flow J(2)(t, x) [mol/m2/s] can be written as

J(2)(t, x) = −θD̃mech(q)∇c(t, x) = −Dmech(q)∇c(t, x) (3.2)

with a symmetric positive definite matrix of mechanical dispersion D̃mech which depends
on the Darcy velocity q. In Dmech is the water content θ already incorporated, which is
the only difference to D̃mech. According to the Bear-Scheidegger dispersion model (cf. [2,
Chapter 10]) we can write the dispersion matrix as

Dmech(q) = θ ‖q‖2 (βtI +
(βl − βt)
‖q‖22

qqT )

where βl is the longitudinal dispersion length and βt is the transversal dispersion length.
Inserting (3.2) in (3.1) yields the final diffusion-convection PDE for mobile species

∂t (θc(t, x)) + ∇ · (q(t, x) · c(t, x) − Dmech(q) · ∇c(t, x)) = θ f (t, x) . (3.3)

Species that are attached to the solid part of the porous medium (soil matrix) are not
subject to convection, diffusion and dispersion. They are called immobile species. The
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only immobile species we consider are minerals. They are forming crystals and adhere to
the soil matrix. For this species, equation (3.3) simplifies to

∂t (%c̄(t, x)) = θ f (t, x) , (3.4)

where c̄(t, x) [mol/m2] is the surface concentration of a mineral species and the constant %
is called (volumetric) bulk density of the porous medium. It takes into account that the soil
matrix is only part of a unit volume (see Subsection 3.1.2).

With additional assumptions, (3.3) can be simplified. If we assume that the water-flow
is constant in time and space and parallel to the x−axis, i.e. q(t, x) =

[
q0, 0

]T then (3.3)
simplifies to

∂t (θc(t, x)) + q0 ·
∂

∂x1
c(t, x) − βlqo

∂2

∂x2
1

c(t, x) − βtq0
∂2

∂x2
2

c(t, x) = θ f (t, x) , (3.5)

because the dispersion tensor becomes

Dmech(q) =

[
βlq0 0

0 βtq0

]
where βl is the longitudinal dispersion constant and βt is the transversal dispersion constant.

The third physical principle involved is Darcy’s law. It gives a formula for calculating
the already mentioned Darcy velocity q. The velocity of the water in a porous medium is
not even the same in one pore. And there are many different velocity vectors due to the
structure of the solid part of the porous medium (soil matrix). The Darcy velocity models
the effects of pore-scale fluctuations of the flow field in our macro-scale flow model. So
the Darcy velocity is not a true velocity but is an averaged velocity. It is really defined as
the water discharge [m3/s] through a cross-sectional area [m2], which then has the unit of
a velocity. This velocity is calculated by Darcy’s law

q(t, x) = −K(x) (∇p(t, x) + ρ(t, x)gez)

where p [N/m2] is the averaged water pressure, the matrix K describes the permeability of
the porous medium and the viscosity of water, ρ [kg/m3] is the density of water, g [m/s2]
is the gravity constant and ez is the unity vector of the z−axis. We do not use Darcy’s law
directly but we consider the Darcy velocity as given. It can be calculated in advance with
Darcy’s law.

3.1.4 Chemical Background

As mentioned before we will only consider reversible reactions. And as simplifying as-
sumption we will assume that all reactions are in local equilibrium. And we will not con-
sider sorption reactions. This is quite a restriction but will make the basic structure of the
mathematical model clearer.

The stoichiometric matrix
(
si, j

)
= S ∈ R(I+Ī)×J is the matrix of stoichiometric coefficients

of I non-mineral and Ī mineral species in J chemical reactions. We always assume that
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there are more species than reactions, i.e. I ≥ J. If we have for example, an equilibrium
reaction

2X2 + 1X7 ←→ 1X4 + 3X6

we shift as a convention all species to the right side

0←→ 0X1 − 2X2 + 0X3 + 1X4 + 0X5 + 3X6 − 1X7

and get a column of matrix S with entries 0,−2, 0, 1, 0, 3,−1 in the rows that correspond
to the species. Entries in this column are zero for species which do not participate in this
reaction. The stoichiometric coefficient of a reactant is always negative and of a product
always positive. The stoichiometric coefficients are mostly (but not always) integers. It is
well known that any linear dependence of the chemical reactions (i.e. the columns of S )
indicates a redundancy of chemical reactions [1]. Therefore it is permissible to assume that
the columns of S are linear independent.

The law of mass action is a mathematical model that explains and predicts the behavior
of solutions. It states that reversible reactions in solutions always strive to reach an equilib-
rium state, i.e. a certain proportion of the concentrations of reactant and product. It predicts
the reaction rate (speed). This law comes in a kinetic and an equilibrium version. For more
information on the law of mass action see [33].

The kinetic version describes the total reaction rate (speed) and the overall direction of
the reaction. It reads

R j(a) = k f
j

∏
si, j<0

i=1,...,I+Ī

a−si, j

i − kb
j

∏
si, j>0

i=1,...,I+Ī

asi, j

i , j = 1, . . . , J

with forward and backward rate constant k f
j > 0, kb

j > 0 and a = [a1, . . . , aI+Ī] an activity
vector with ai the activity of the i-th species. The activity of a chemical species is closely
related to its concentration and is sometimes called effective concentration of a species.
For the example above, here denoted as reaction j, this equation reads

R j(a) = k f
j a

2
2a7 − kb

j a4a3
6 .

If R j(a) is positive, the reaction will go (mainly) in forward direction, i.e.

2X2 + 1X7 −→ 1X4 + 3X6,

and if R j(a) is negative the reaction will go (mainly) in backward direction. Dynamic
equilibrium is reached if R j(a) = 0 (forward and backward reactions are still going on but
at equal rate). For non-minerals, usually the concentration is a good approximation, i.e.
ai ≈ ci, where ci is the concentration of non-mineral species i. But for minerals usually
constant activity is assumed, i.e. ai = 1 (the actual constant is incorporated into the rate
constant). If X7 was a mineral and X2, X4, X6 were non-minerals the rate function would
read

R j(c, c̄) = k f
j c

2
2 − kb

j c4c3
6
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with c = [c1, . . . , cI] and c̄ = [c̄I+1, . . . , c̄I+Ī] the vectors of the concentrations of the non-
mineral and mineral species (with a possibly changed forward rate constant k f

j ). This rate
function will later in the mathematical model appear as source/sink term depending on its
sign. The equilibrium version of the mass action law reads∏

si, j<0

i=1,...,I+Ī

asi, j

i ·
∏
si, j>0

i=1,...,I+Ī

asi, j

i = k j , j=1,...,J (3.6)

where ai here denotes the activity of species i when the reaction is in dynamic equilibrium
and k j = k f

j /k
b
j > 0 is called equilibrium constant. Like before the activities in equilibrium

can be replaced by the concentrations in equilibrium for non-minerals or by 1 for minerals.
For our example reaction this equation reads

c4 · c3
6

c2
2

= k j .

In this thesis minerals shall only be involved in precipitation-dissolution reactions where
exactly one mineral dissolves into ions. We call these mineral reactions. That means that
we have exactly Ī minerals and mineral reactions. For such reactions is the equilibrium
equation or the corresponding kinetic formulation not sufficient to describe all states of
equilibrium. Lets consider the above example again, where X7 is a mineral. Then R j(c) = 0

and
c4·c3

6
c2

2
= k j respectively is only true, if there is still solid mineral present i.e. c̄7 > 0.

Since minerals are solids attached to the soil matrix they can completely diminish in a part
of the porous medium. In this case, i.e. c̄7 = 0, a reasonable model would be to demand
R j (c) = k f

j c
2
2 − kb

j c4c3
6 ≥ 0. Since mineral X7 is not present any more the forward reaction

2X2 + 1X7 −→ 1X4 + 3X6 can not go on anymore (the backward reaction is still possible).
Therefore the concentrations c4 and c6 are (possibly) smaller than in dynamic equilibrium.
Conversely the concentration c2 of the reactant X2 is (possibly) greater than in dynamic
equilibrium. So the case c̄7 = 0 yields another (forced) equilibrium state. The complete
model of equilibrium for mineral reactions would be(

c̄7 = 0 ∧ k f
j c

2
2 − kb

j c4c3
6 ≥ 0

)
∨

(
c̄7 ≥ 0 ∧ k f

j c
2
2 − kb

j c4c3
6 = 0

)
.

This can be written as the complementary condition

c̄7 ·
(
k f

j c
2
2 − kb

j c4c3
6

)
= 0 , c̄7 ≥ 0, k f

j c
2
2 − kb

j c4c3
6 ≥ 0,

which can not be expressed well with a smooth function (see Section 2.4). This is the
particular difficulty when minerals are involved. For mineral precipitation-dissolution re-
actions the equilibrium constant k j = k f

j /k
b
j is also called solubility product.

In real-word problems, the timescales for the different reactions can vary over many
powers of ten. Hence it is frequently assumed that some of the reactions are so fast that
a state of dynamic equilibrium can be assumed always and everywhere. Even if this equi-
librium is distorted by water flow and dispersion these reactions are so fast that they can
balance this distortion almost immediately (compared to the speed of the water flow). In
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our model we will only consider such fast reactions, because this allows us to focus on the
main structure of the problem.

There are several equivalent formulations of the equilibrium equation (3.6), which may
affect the structure of our problem. For a reaction j where no minerals are involved
(non-mineral reaction) a favorable reformulation (assuming all concentrations are positive)
would be

Q j (c) :=
I∑

i=1

si, j · ln ci − ln k j = 0, (3.7)

with k j = k f
j /k

b
j . Now let us consider the mineral example above. The condition k f

j c
2
2 −

kb
j c4c3

6 ≥ 0 can be equivalently (provided all mobile concentrations are positive) written as

ln k j − ln
(
c4c3

6

c2
2

)
≥ 0,

since the logarithm is monotone. Using the calculation rules for the logarithm we can write
the equilibrium complementary condition for mineral reaction j as

c̄I+ j · E j(c) = 0, c̄I+ j ≥ 0, E j(c) ≥ 0 (3.8)

with

E j(c) = ln k j −
[
s1, j, . . . , sI, j

]
· ln c and (ln c)T = [ln(c1), . . . , ln(cI)]T . (3.9)

The case E j(c) = 0, c̄ j ≥ 0 corresponds to a saturation of the water with respect to this
mineral reaction, and the case E j(c) ≥ 0, c̄ j = 0 corresponds to the total dissolution of the
mineral and an under-saturation of the water.

3.2 Mathematical Modeling

This section gives a precise formulation of the mathematical model for the application that
was outlined in the introduction. This formulation will be the basis for our subsequent the-
oretical and numerical investigations. The reader who is less interested in the derivation of
the model may skip most of this section and continue to read at formulas (3.14)–(3.19). In
fact, sketching at least some of the notation introduced in this section and Section 3.3, the
reader may alternatively continue reading with formulas (3.31)–(3.33) if he wants to skip
also the model reduction and wants to concentrate on the mathematical convergence anal-
ysis. The notation introduced in this and the next section will be valid and used throughout
the whole thesis.

To this end, let us consider the vector c = [c1, c2, . . . , cI]T of concentrations of I species
dissolved in the groundwater (mobile species). These concentrations are time- and space-
dependent. The transport of a species consists of forced advection by the given flow field q
of the groundwater (Darcy velocity) and dispersion. The advection-dispersion operator for
these species is given by

Lici = −∇ · (D∇ci − qci) , i = 1, . . . , I,
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with dispersion tensor D = D(q) which depends on the flow field q, and which acts similar
to a diffusion operator. Clearly, the operator L = [L1, . . . , LI]T is linear and acts in the same
way on all mobile species, i.e. L1 = · · · = LI .

With c̄ = [c̄I+1, . . . , c̄I+Ī]T we denote the concentrations of the Ī mineral species. These
concentrations are also variable in time and space. They are attached to the soil matrix and
therefore neither subject to advection nor dispersion. But they are involved in precipitation-
dissolution reactions, where they dissolve into mobile species (ions). In this paper we
restrict ourselves to equilibrium reactions, i.e. reactions that are actually in the condition of
equilibrium or equations which are sufficiently fast to be approximately considered to be
in equilibrium. R = [R1, . . . ,RJ] denotes the vector of reaction rates that are necessary to
keep the chemical system in equilibrium, because the chemical equilibrium is constantly
distorted through the advection. Together with c and c̄ they form the unknowns of the
system to be considered here.

The I + Ī mass balance equations are

∂

∂t
θc + Lc = θS 1R , (3.10)

∂

∂t
c̄ = θS 2R , (3.11)

given on the domain [0,T ] × Ω ⊂ Rn with n = 2 or n = 3 together with given initial and
boundary and equilibrium conditions. The constant θ ∈ (0, 1) denotes water content and

the matrix
(
si j

)
= S =

[
S 1

S 2

]
∈ R(I+Ī)×J is the matrix of stoichiometric coefficients, where

J is the number of chemical reactions. Without loss of generality (see Subsection 3.1.4),
we can assume that S has full column rank,

rank (S ) = J . (3.12)

Remember here that we have at least as many species I + Ī as we have reactions J. Addi-
tionally, we demand that the columns of S 1 are linearly independent

rank (S 1) = J . (3.13)

Because we are only considering precipitation-dissolution reactions for minerals, we as-
sume that each mineral is participating in one and only one mineral reaction (in these
reactions are usually two or more mobile ions involved). With mobile reactions we indi-
cate reactions in which only mobile species participate. By Jmob we denote the number of
mobile reactions and with Jmin the number of mineral reactions. It follows that Jmin = Ī.
Since in our model we have only mineral or mobile reactions, it holds J = Jmob + Jmin. The
stoichiometric matrix then reads

S =

[
S 1

S 2

]
=

[
S 1

mob S 1
min

0 −I

]
, with S 1

mob ∈ R
I×Jmob , S 1

min ∈ R
I×Jmin ,

where, for simplicity of notation, we have replaced the diagonal matrix representing the
mineral participation in the mineral reactions by −I, the negative identity matrix. The
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submatrix S 1
min is adjusted accordingly. Therefore reactions 1, . . . , Jmob are mobile and

reactions Jmob + 1, . . . , J are mineral, because the columns of S refer to chemical reactions.
In the following we assume that all mobile concentrations ci (i = 1, . . . , I) are positive.

Negative concentrations make no sense but it is a priori not guaranteed that they stay posi-
tive in numerical computations.

Building on (3.7) we can write the equilibrium equations for the mobile species in matrix
notation as

Qmob (c) =
(
S 1

mob

)T
ln c − K1 ,

where K1 =
(
ln k1, . . . , ln kJmob

)T is the vector of equilibrium constants in logarithmic form
and

ln c = [ln c1, . . . , ln cI]T

is a vector of the logarithmic concentrations. These equations hold in every point of space
and time (after homogenization).

Building on (3.8-3.9) we write the mineral equilibrium complementary conditions as

E j (c) · c̄ j = 0 ∧ c̄ j ≥ 0 ∧ E j (c) ≥ 0 ( j = Jmob + 1, . . . , J) ,

where
E (c) = K2 −

(
S 1

min

)T
ln c , E =

[
EJmob+1, . . . , EJ

]T .

Hereby
K2 =

[
ln kJmob+1, . . . , ln kJ

]T

is the vector of solubility products in logarithmic notation.
We decompose the reaction vector R into

R =

[
Rmob

Rmin

]
with Rmob and Rmin being of size Jmob and Jmin, respectively. The reaction rate R j for reaction
j in dynamic equilibrium should be zero. But in our model water flow is involved, which
changes the concentrations of reactants and/or products in a fixed point. With this the
reaction rate R j is changed, too. Therefore we treat these reaction rates as unknowns. They
reflect the reaction rates that are necessary to maintain the chemical equilibrium.

Utilizing the structure of S , the full system reads
∂

∂t
θc + Lc = θS 1

mobRmob + θS 1
minRmin = θS 1R , (3.14)

∂

∂t
c̄ = −θRmin , (3.15)

E j (c) · c̄ j = 0 ( j = Jmob + 1, . . . , J) , (3.16)
c̄ j ≥ 0 ( j = Jmob + 1, . . . , J) , (3.17)

E j (c) ≥ 0 ( j = Jmob + 1, . . . , J) , (3.18)
Qmob (c) = 0 , (3.19)

for the I + Ī + J unknowns c, c̄ and R. Note that this is a differential-algebraic system of
ordinary and partial differential equations coupled with complementarity conditions arising
from the mineral equilibrium reactions.
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3.3 Transformation of the Dynamic System

The aim of this section is to reduce the size of the overall system (3.14)–(3.19) by using
suitable decouplings and reformulations. Since these techniques are already known from
[27, 28] (but strictly needed for our subsequent analysis), we will keep this section as short
as possible.

First, we apply the decoupling technique proposed in [27, 28] to the PDE-ODE system
(3.14)–(3.15). This will lead to a decoupling of some linear PDEs. The remaining PDE-
system will then be significantly smaller than the original PDE-system. To this end, we
define S ⊥1 as a matrix consisting of a maximum set of linearly independent columns that
are orthogonal to each column of S 1, i.e. (S 1)T S ⊥1 = 0. Recall that the columns of S 1 were
assumed to be linearly independent, cf. (3.13). Hence the pseudo-inverses of S 1 and S ⊥1 are

given by
(
S T

1 S 1

)−1
S T

1 and
( (

S ⊥1
)T

S ⊥1
)−1

(
S ⊥1

)T
, respectively. Multiplying (3.14) with these

two pseudo-inverses, we obtain

((
S ⊥1

)T S ⊥1
)−1 (

S ⊥1
)T

(
∂

∂t
θc + Lc

)
= 0 , (3.20)(

S T
1 S 1

)−1
S T

1

(
∂

∂t
θc + Lc

)
= θR , (3.21)

∂

∂t
c̄ = −θRmin . (3.22)

We now substitute

η :=
((

S ⊥1
)T

S ⊥1
)−1 (

S ⊥1
)T

c, ξ :=
(
S T

1 S 1

)−1
S T

1 c, (3.23)

and partition the vector ξ into
ξ =

[
ξmob, ξmin

]
of size Jmob, Jmin. Then splitting equation (3.21) into two parts and adding the third block
to the second part, we get

∂

∂t
θη + Lη = 0 ,

∂

∂t
θξmob + Lξmob = θRmob ,

∂

∂t
(θξmin + c̄) + Lξmin = 0 ,

∂

∂t
c̄ = −θRmin .

We have obtained a decoupling of the computation of the concentrations and of the rates,
i.e., we may drop now the second and the fourth block of equations and solve the system
consisting of the first and the third block and the equilibrium conditions (3.16)–(3.19) for
the concentrations. The rates can be computed a posteriori, if desired.
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Now we reformulate the complementary conditions with the NCP-function ϕ. For now
ϕ stands for an arbitrary function of this class. In Chapter 4 we will use the minimum
function ϕM and in Chapter 5 the Fischer-Burmeister function ϕF .

Using this NCP-function, we can write the complementarity conditions (3.16)–(3.18) as

ϕ
(
E j (c) , c̄ j

)
= 0 ( j = 1, . . . , Jmin) .

In vector notation, this becomes
ϕ (E (c) , c̄) = 0 , (3.24)

where ϕ is applied to each component of E (c) and c̄.
The resulting system now reads

∂

∂t
θη + Lη = 0 , (3.25)

∂

∂t
(θξmin + c̄) + Lξmin = 0 , (3.26)

−ϕ (E (c) , c̄) = 0 , (3.27)
Qmob (c) = 0 , (3.28)

where c can be represented as

c = c (ξmin, ξmob, η) = S 1
min · ξmin + S 1

mob · ξmob + S ⊥1 η, (3.29)

cf. (3.23). Note that (3.25) is now linear with respect to η and it is decoupled from the other
equations (ξmin, ξmob, c̄ are not contained in (3.25)). The remaining non-linearly coupled
system (3.26)–(3.28) is reduced in size from I + J + Jmin rows to I + Jmin rows compared
to the original system (3.14)–(3.19). Together with the size reduction of J rows, the J
unknowns R could be dropped. They can be computed a posteriori.

3.4 Discretization of the Dynamic System

In this section we perform the discretization of (3.25)–(3.28) in space and time. To keep
the notation simple, we suppress subscripts indicating the discretization (except we denote
Lh as the discretization of L). For the sake of simplicity, we assume the implicit Euler time
stepping scheme.

We start with the discretization of the decoupled equation (3.25), which reads

(θI + τLh) · η = θηold , (3.30)

where ηold denotes the solution vector of the previous time step. This linear system can be
solved for η directly (say, by a linear system solver like GMRES). Hence η is not viewed as
a variable any longer, because it can be computed a priori in every time step. We therefore
write c = c (ξmin, ξmob) for the discretized function c.
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The remaining discrete system in the variables (ξmin, ξmob, c̄) then reads

G1 (ξmin, ξmob, c̄) := θξmin + c̄ + τLhξmin − θξ
old
min − c̄old = 0 , (3.31)

G2 (ξmin, ξmob, c̄) := −ϕ (E (c (ξmin, ξmob)) , c̄) = 0 , (3.32)
G3 (ξmin, ξmob, c̄) := Qmob (c (ξmin, ξmob)) = 0 . (3.33)

The superscript ’old’ indicates the previous time-step. The time-step size is τ. We assume
the domain Ω has been discretized into the grid set Ωh with p = |Ωh| grid points. Then
ξmin, ξmob, c̄ are vectors with Jmin · p, Jmob · p, Jmin · p components. These vectors are con-
catenations of the function values in every node of the grid. Lh is a linear mapping which is
the discretization of the PDE operator L. In (3.32) and (3.33), the functions Qmob, ϕ, E, c are
to be applied to (the discretizations of) ξmin, ξmob, c̄ in every node separately. For example,
a more detailed way to represent c (ξmin, ξmob) is

c (ξmin, ξmob) =
[
c
(
ξmin(x1), ξmob(x1)

)T
, . . . , c

(
ξmin(xp), ξmob(xp)

)T
]T
, (3.34)

where ξmin(xi), ξmob(xi) are our variables in one grid point xi ∈ Ωh. And for example for
Qmob(c) this means

Qmob (c(ξmin, ξmob, c̄)) =

[
Qmob

(
c(ξ1

min, ξ
1
mob)

)T
, . . . ,Qmob

(
c(ξp

min, ξ
p
mob)

)T
]

and for the other functions E and ϕ likewise. Often we will also use the following notation:
We enumerate the set of grid points as Ωh = {x1, x2, . . .} and then we write ξmin (xi) = ξi

min
etc.

For the sake of simplicity, we define the abbreviations

Ẽ (ξmin, ξmob) := E (c (ξmin, ξmob)) ,
Q̃mob (ξmin, ξmob) := Qmob (c (ξmin, ξmob)) .

And we define the open and convex set (c in (3.34) is linear)

D :=
{[
ξmin, ξmob, c̄

]
∈ RJmin p × RJmob p × RJmin p | c (ξmin, ξmob) > 0

}
(3.35)

on which

G (ξmin, ξmob, c̄) =

 G1 (ξmin, ξmob, c̄)
G2 (ξmin, ξmob, c̄)
G3 (ξmin, ξmob, c̄)

 (3.36)

is defined, i.e.
G : D −→ R(2Jmin+Jmob)p .

Then we have to find a solution inD of the nonlinear system of equations

G (ξmin, ξmob, c̄) = 0 . (3.37)

From now on we will only deal with the discretized system. All variables and functions
shall from now on be the discretized versions, i.e. long column vectors.
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In this chapter we apply the minimum function as NCP-function to the system (3.31)–
(3.33), i.e.

G2 (ξmin, ξmob, c̄) := −ϕM

(
Ẽ (ξmin, ξmob) , c̄

)
. (4.1)

Unless mentioned otherwise G2 shall be defined with the minimum function in this chapter.
The resulting total function is then denoted as

GM : D −→ R(2Jmin+Jmob)p .

We continue to use the notation from the last chapter with the same meaning, in particular
D,Ωh, p = |Ωh| , ϕF , ϕM, Jmin, Jmob, J and I . Our aim is to prove local convergence for the
semismooth Newton method applied to GM and to show the local existence and uniqueness
of a solution of

GM(w) = 0 , w ∈ D . (4.2)

In the first section we study the B-subdifferential and generalized Jacobian of GM, espe-
cially the structure of ∂BGM. In Section 4.2 we apply the semismooth Newton method to
solve the nonlinear equation system (4.2). We show how the resulting linear systems can
be simplified and solved efficiently. In the following Section 4.3 we introduce problem spe-
cific generalizations of ∂BGM and ∂GM. And we show some properties of their elements.
The next section deals with the nonsingularity of the B-subdifferential of GM, which is es-
sential for the execution of the semismooth Newton method. Also the local convergence
result for this algorithm is stated. In Section 4.5 we present a new and improved proof for
the nonsingularity of the elements of ∂BGM. This proof contains a couple of advantages,
in particular it enables further results. Section 4.6 introduces a method to solve the linear
equation systems arising from the semismooth Newton method in a more efficient way. In
the next section we show local existence and uniqueness of a solution of (5.2). And finally
in the last section we bring a numerical example.

4.1 Study of Subdifferentials of GM

In this section we study the properties of GM related to subdifferentials and the subdiffer-
entials themselves.

We start by showing that GM is a strongly semismooth function on its domain D. The
first block component function G1 of GM defined in (3.31) is a linear function. It is therefore
a C2-function and thanks to Corollary 2.3.4 it is strongly semismooth. The last block
component function G3 equals

Q̃mob (ξmin, ξmob) =
(
S 1

mob

)T
ln c (ξmin, ξmob) − K1
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where c is a linear transformation of ξmin and ξmob (and of η which is a constant in this con-
text). Clearly G3 is a C2-function on its domain {(ξmin, ξmob) ∈ R(Jmin+Jmob)p | c (ξmin, ξmob) >
0}. Again with Corollary 2.3.4 we get that G3 is strongly semismooth on its domain. Now
we deal with the second block component function G2 of GM defined in (4.1). The inner
function Ẽ in G2 is

Ẽ (ξmin, ξmob) = K2 −
(
S 1

min

)T
ln c (ξmin, ξmob)

and because its obvious similarity to Q̃mob it, too, is strongly semismooth. Thanks to
Lemma 2.3.2 the whole inner function

(ξmin, ξmob, c̄) 7→
[
Ẽ (ξmin, ξmob) , c̄

]
of G2 is strongly semismooth. From Example 2.3.6 we know that ϕM is strongly semis-
mooth. With the chain rule Theorem 2.3.7 we conclude that G2 is strongly semismooth.

Together with Lemma 2.3.2 we have proven

Lemma 4.1.1. The function GM : D −→ R(2Jmin+Jmob)p is strongly semismooth.

By definition (at least as we defined it) every semismooth function is also locally Lip-
schitz continuous. So our function GM is locally Lipschitz continuous. This justifies the
use of the terms B-subdifferential, generalized Jacobian and C-subdifferential as we have
defined them in Chapter 2 with respect to GM. The next result gives important information
about the structure of ∂BGM(w).

Lemma 4.1.2. Let Ωh =
{
x1, x2, . . . , xp

}
. Furthermore let w =

[
ξmin, ξmob, c̄

]
∈ D be arbi-

trary. Then the following statements hold:

(1) The B-subdifferential of GM can be written as the cross product

∂BGM (w) = ∂BG1 (w) × ∂BG2 (w) × ∂BG3 (w)

with ∂BG1 (w) =
{
G′1(w)

}
and ∂BG3 (w) =

{
G′3(w)

}
.

(2) The B-subdifferential of G2 can be broken down into

∂BG2 (w) = ∂BG2 (w1) × ∂BG2 (w2) × . . . × ∂BG2

(
wp

)
,

where wi =
[
ξmin (xi) , ξmob (xi) , c̄ (xi)

]
.

(3) Let a =
[
ξmin (xi) , ξmob (xi)

]
and b = c̄ (xi). Then we have

∂BG2(wi) = −∂BϕM(Ẽ1(a), b1) × −∂BϕM(Ẽ2(a), b2) × . . . × −∂BϕM(Ẽ Ī(a), bĪ) .

(4) Let a and b be as before. Then for j = 1, . . . , Ī we have

∂BϕM

(
Ẽ j(a), b j

)
=


{[∂Ẽ j(a)

∂ξmin
|
∂Ẽ j(a)
∂ξmob

| 0
]
, [0 | 0 | eT

l ]
}
, if Ẽ j(a) = b j,{

[0 | 0 | eT
l ]

}
, if Ẽ j(a) > b j,{[∂Ẽ j(a)

∂ξmin
|
∂Ẽ j(a)
∂ξmob

| 0
]}
, if Ẽ j(a) < b j,

where [0 | 0 | eT
l ] =

∂c̄ j(xi)
∂w and el is a unit vector, with all components vanishing and

component l = i · Jmin + j being one.
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Proof. We have already seen in Lemma 4.1.1 that GM is strongly semismooth. It is there-
fore locally Lipschitz continuous.

(1) This statement follows directly from the observation that the two block components G1

and G3 are continuously differentiable, so that ∂BG1(w) = {G′1(w)} and ∂BG3(w) = {G′3(w)}.

(2+3) These two statements are direct consequences of the definition of the correspond-
ing B-subdifferentials, taking into account that the second argument c̄ of the NCP-function
ϕM can vary independently in every component. Note that statement (2) expresses the B-
subdifferential ∂BG2(w) as a Cartesian product of the B-subdifferentials at each of the p
vectors wi (which itself is still a vector in RJmin for all i = 1, . . . , p), whereas statement (3)
gives the structure of the B-subdifferentials for each of these block components.

(4) The two cases Ẽ j(a) > b j and Ẽ j(a) < b j are obvious since ϕM is continuously differ-
entiable in these cases, so that the B-subdifferential reduces to the existing gradient which
can be calculated directly from (3.32). The remaining case Ẽ j(a) = b j can be verified by
choosing suitable sequences {bk} converging to b. �

Note the fact that G1 and G3 are continuously differentiable means that their B-subdifferential
equals the cross product of the B-subdifferentials of their components. Therefore we can
immediately deduce the following Corollary.

Corollary 4.1.3. The B-subdifferential of GM is a cross product of the B-subdifferentials of
its scalar components, i.e. with w = [ξmin, ξmob, c̄] ∈ D we have

∂BGM (w) = ∂BG1 (w) × ∂BG2 (w) × . . . × ∂BGn (w)

where n = (2Jmin + Jmob) · p and Gi is a scalar component function of GM spanning over all
functions G1,G2 and G3.

This result is very useful because it simplifies the calculation of ∂BGM very much. This
is especially significant since GM comes from discretization and can therefore have a large
number of components. The interesting components of course are those where ϕM is in-
volved. The B-subdifferential of these scalar component functions can have two elements
if evaluated in a non-differentiable point (see (4) in the Lemma above).

We will now show, how to construct subsets A of {1, . . . , Jmin} × Ωh that can be used
to identify an element of ∂BGM in a unique way. This construction is based on Lemma
4.1.2(4). Let w =

[
ξmin, ξmob, c̄

]
∈ D be arbitrary and let H be an arbitrary element of

∂BGM(w). Then a pair (i, x) ∈ {1, . . . , Jmin} × Ωh shall be an element of A if the row of H
corresponding to the component function −ϕM

(
Ẽi(ξmin(x), ξmob(x)), c̄i(x)

)
in G2(w) equals

−
∂c̄i(x)
∂w . This is mandatory if Ẽi(ξmin(x), ξmob(x)) > c̄i(x) and possible if Ẽi(ξmin(x), ξmob(x)) =

c̄i(x). Using the index sets

P =
{
(i, x) ∈ {1, . . . , Jmin} ×Ωh | Ẽi(ξmin(x), ξmob(x)) > c̄i(x)

}
(4.3)
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and
Q =

{
(i, x) ∈ {1, . . . , Jmin} ×Ωh | Ẽi(ξmin(x), ξmob(x)) = c̄i(x)

}
(4.4)

we always have
P ⊆ A ⊆ (P ∪ Q) . (4.5)

And conversely every set A with P ⊆ A ⊆ (P ∪ Q) determines one and only one element
H ∈ ∂BGM(w). We call this set A active set (or set of active indices) for a reason which
will become clear later. It is dependent on the point of evaluation w and we denote its
complement with I = ({1, . . . , Jmin} × Ωh) \ A and call it inactive set (or set of inactive
indices). Finally we denote with HA the element of ∂BGM(w) that is determined byA.

Before we can continue we need a small technical Lemma.

Lemma 4.1.4. Let V be a real vector space and let M = M1 × M2 × . . . × Mn ⊂ V . Then

co (M) = co (M1) × co (M2) × . . . × co (Mn)

where ”co” denotes the convex hull.

Proof. The inclusion co (M) ⊂ co (M1)×co (M2)× . . .×co (Mn) is clear. We show the other
inclusion for n = 2. Then the general case follows with a simple induction.

Let v = [v1, v2] ∈ co (M1) × co (M2). For i = 1, 2 there are integers ni and real numbers
αi, j ≥ 0 ( j = 1, . . . , ni) such that

∑ni
j=1 αi, j = 1 and there are ni elements mi, j ∈ Mi ( j =

1, . . . , ni) such that
ni∑
j=1

αi, jmi, j = vi

holds. Then we have

[v1, v2] =

 n1∑
j=1

α1, jm1, j,

n2∑
k=1

α2,km2,k


=

 n1∑
j=1

( n2∑
k=1

α2,kα1, jm1, j
)
,

n2∑
k=1

( n1∑
j=1

α1, jα2,km2,k
)

=

 n1∑
j=1

n2∑
k=1

α1, jα2,km1, j,

n1∑
j=1

n2∑
k=1

α1, jα2,km2,k


=

n1∑
j=1

n2∑
k=1

α1, jα2,k ·
[
m1, j, m2,k

]
.

The vectors
[
m1, j, m2,k

]
are elements of M1 × M2. It holds

∑n1
j=1

∑n2
k=1 α1, jα2,k = 1 and

α1, jα2,k ≥ 0 for all j, k. So [v1, v2] can be written as convex combination of elements in
M1 × M2, i.e. [v1, v2] ∈ co (M1 × M2). �

As an immediate consequence of this Lemma and of Corollary 4.1.3 we get the last result
in this section, which greatly simplifies the calculation of the generalized Jacobian of GM.

Corollary 4.1.5. Let w = (ξmin, ξmob, c̄) ∈ D be arbitrary. Then

∂GM(w) = ∂CGM(w) .
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4.2 Newton’s Method and Active Set Strategy

In this section we apply the semismooth Newton method defined in Section 2.5 to solve the
equation

GM(w) = 0 (4.6)

for w ∈ D. This equation is of course equivalent to (3.31)–(3.33). We will also see the
relation of this method to an active-set strategy and the justification of the name. Some
parts of this section are inspired from the Habilitation Thesis [25], whereas the relationship
between our semismooth Newton method and an active set strategy is, in principle, known
[21, 16], although it has not been discussed within our context. The formulas to be derived
in this section will, in particular, be needed in the subsequent sections.

The linearization of (4.6) via Newton’s method leads to the linear system

HA

 ∆ξmin

∆ξmob

∆c̄

 = −

 G1(w)
G2(w)
G3(w)

 , (4.7)

with HA ∈ ∂BGM(w), P ⊆ A ⊆ (P ∪ Q) and w =
[
ξmin, ξmob, c̄

]
∈ D as defined in Section

4.1. Such linear systems must be solved in every iteration step of Newton’s method. Note
that the choice of HA is arbitrary in every step. And note that P and Q can (and probably
will) change in every step and A must then be chosen accordingly. We note the resulting
algorithm.

Algorithm 4.2.1 (Semismooth Newton Method).

(S.0) (Initialization)
Choose w0 = [ξ0

min, ξ
0
mob, c̄

0] ∈ D, ε ≥ 0 and set k := 0.

(S.1) (Termination Criterion)
If

∥∥∥∥GM

(
wk

)∥∥∥∥
∞
≤ ε or wk 6< D, stop.

(S.2) (Newton Direction Calculation)
Choose HA ∈ ∂BGM(wk). Find a solution dk of the linear system

HAd = −GM(wk) .

(S.3) (Update)
Set wk+1 := wk + dk , k ← k + 1, and go to (S.1).

Note that this algorithm is applied to a restricted problem, because GM is only defined
on D. So if an iterate wk is not in D the algorithm can’t proceed and terminates without
a solution. But if we start sufficiently close to a solution in D then we have no problems
with infeasible points. Anyhow Newton’s method is only convergent locally. Also it is
important to take the infinity norm in the termination criterion of this algorithm. The 1-
norm or Euclidean norm take sums which involve all components of a vector. So the larger
the vector the more restrictive is a termination criterion with these norms.
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For the following analysis we choose an arbitrary but fixed element HA ∈ ∂BGM(w)
which we denote with J. We now want to exploit the special structure of J in order to
decompose the linear system (4.7). To this end, we reorder the entries of ξmin and c̄ in the
following way

ξmin =

[
ξAmin
ξImin

]
, c̄ =

[
c̄A

c̄I

]
.

We apply the same reordering to our component functions G1 and G2. Altogether, this
corresponds to reordering the rows and columns of J. We perform the following decompo-
sitions:

G1 =

[
GA1
GI1

]
, Lh =

[
LAh
LIh

]
, Ẽ =

[
ẼA
ẼI

]
, S 1

min =
[
S 1

min,A | S
1
min,I

]
,

etc. Similar to the partition of ξmin, we split the discrete differential operator Lh in

LAh ξmin := LA,Ah ξAmin + LA,Ih ξImin ,

LIh ξmin := LI,Ah ξAmin + LI,Ih ξImin .

With this restructuring, the linear system (4.7) reads

J


∆ξAmin
∆ξImin
∆ξmob

∆c̄A

∆c̄I


= −


GA1
GI1
− c̄A

−ẼI
G3


, (4.8)

with

J =



(
θI|A| + τLA,Ah

)
τLA,Ih 0 I|A| 0

τLI,Ah

(
θI|I| + τLI,Ih

)
0 0 I|I|

0 0 0 −I|A| 0
−

∂ẼI
∂ξAmin

−
∂ẼI
∂ξImin

−
∂ẼI
∂ξmob

0 0
∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob
∂ξmob

0 0


. (4.9)

From the third set of equations, we immediately obtain

−∆c̄A = c̄A . (4.10)

There is no need to compute ∆c̄A, because of (4.10) we can simply set the new Newton
iterate as

c̄A,new := 0 .

This explains why A is called the active set. Furthermore, the unknowns ∆c̄I only appear
in the second set of equations. These equations can be solved for ∆c̄I:

∆c̄I = −GI1 − τLI,Ah · ∆ξAmin −
(
θI|I| + τLI,Ih

)
· ∆ξImin .
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By these equations, ∆c̄I can be computed a posteriori. After these two reductions, the
resulting system reads

J̃

 ∆ξAmin
∆ξImin
∆ξmob

 = −


GA1 − c̄A

− ẼI
G3

 (4.11)

with

J̃ :=


(
θI|A| + τLA,Ah

)
τLA,Ih 0

−
∂ẼI
∂ξAmin

−
∂ẼI
∂ξImin

−
∂ẼI
∂ξmob

∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob
∂ξmob

 . (4.12)

This linear system is smaller than the original linear system (4.8), and it is solvable if and
only if (4.8) is solvable. More precisely, the absolute values of the determinants of J and J̃
coincide. We will verify this statement in the next section.

4.3 More Subdifferentials and their Transformations

For the semismooth Newton method it is important that all elements in ∂BGM are nonsin-
gular, especially around and in a solution point. In this section we will actually study the
matrices in a superset of ∂BGM, which will bring great advantages later.

Let w =
[
ξmin, ξmob, c̄

]
∈ D be an arbitrary point. In Section 4.1 we began with an element

H ∈ ∂BGM(w) and constructed the corresponding active set A ⊂ ({1, . . . , Jmin} ×Ωh). And
we have seen in (4.3)–(4.5) that these sets fulfill the inclusions P ⊆ A ⊆ (P ∪ Q).

Now we start from a an arbitrary set

B ⊂ {1, . . . , Jmin} ×Ωh

and its complement
J := ({1, . . . , Jmin} ×Ωh) \ B

and construct a ((2 · Jmin + Jmob) · p) × ((2 · Jmin + Jmob) · p) matrix HB. To this end let
ω : {1, . . . , Jmin · p} −→ ({1, . . . , Jmin} ×Ωh) be a bijective function, which enumerates the
elements of {1, . . . , Jmin} ×Ωh according to the lexicographical ordering

[1, x1] , [2, x1] , . . . , [Jmin, x1] , [1, x2] , [2, x2] , . . . , [Jmin, x2] , . . . ,
[
Jmin, xp

]
.

For example it is ω(2) = [2, x1]. We construct the Jmin p × (2 · Jmin + Jmob)p matrix QB by
defining its k-th row QB (k) as

QB (k) :=


[

0
∣∣∣ 0

∣∣∣ −∂c̄i(x)
∂c̄

]
if ω(k) ∈ B[

−
∂Ẽi(x)
∂ξmin

∣∣∣ −∂Ẽi(x)
∂ξmob

∣∣∣ 0
]

if ω(k) ∈ J .
(4.13)

It holds −∂c̄i(x)
∂c̄ = [0, . . . , 0,−1, 0 . . . , 0] with −1 at the k-th position. We also write

QB :=
[
QB1 | QB2 | QB3

]
where this breaking down corresponds to the definition of QB (k).
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Now we can finally define the matrix

HB :=


θI + τLh 0 I

QB1 QB2 QB3
∂Qmob
∂ξmin

∂Qmob
∂ξmob

0


and the matrix class

∂DG(w) =
{
HB | B ⊂ ({1, . . . , Jmin} ×Ωh)

}
.

Note that ∂DG(w) is not a set that occurs in literature like the B-subdifferential or the gen-
eralized Jacobian. It is just useful for our purposes. For a subset B ⊂ ({1, . . . , Jmin} ×Ωh)
with P ⊂ B ⊂ (P ∪ Q) the corresponding matrix HB coincides with the one defined in the
previous section. So ∂DG(w) is a superset of ∂BGM(w) but it has no inclusion relation to
∂GM(w) or ∂CGM(w).

Now we define an extension set of ∂DG(w). Let a, b ∈ RJmin p. We construct the Jmin p ×
(2 · Jmin + Jmob)p matrix Qa,b = [Qa,b

1 | Q
a,b
2 | Q

a,b
3 ] by defining its k-th row Qa,b (k) as

Qa,b (k) :=
[
−ak

∂Ẽi(x)
∂ξmin

∣∣∣ −ak
∂Ẽi(x)
∂ξmob

∣∣∣ −bk
∂c̄i(x)
∂c̄

]
(4.14)

=
[

Qa,b
1 (k)

∣∣∣ Qa,b
2 (k)

∣∣∣ Qa,b
3 (k)

]
.

That means we take linear combinations of both choices in (4.13). Building on this we
define the matrix

Ha,b :=


θI + τLh 0 I

Qa,b
1 Qa,b

2 Qa,b
3

∂Qmob
∂ξmin

∂Qmob
∂ξmob

0


and finally the matrix set

∂EG(w) :=
{
Ha,b | a, b ∈ RJmin p, a ≥ 0, b ≥ 0, (ai > 0 ∨ bi > 0) ∀i

}
. (4.15)

Please note that we take only nonnegative linear combinations in ∂EG(w). This set is an
extension and generalization of ∂CGM(w) similarly like the generalized Jacobian is an ex-
tension and generalization of the B-subdifferential. The inclusion relation to the known
subdifferentials is

∂BG(w) ⊆ ∂GM(w) = ∂CGM(w) ⊂ ∂EG(w) .

With these sets ∂DG(w) and ∂EG(w) we are able to unify and simplify our theory. Note
while these sets depend on w ∈ D it makes no sense to apply ∂E or ∂D to other functions.
Rather ∂DG(w) and ∂EG(w) are defined as is.

Now we will study the determinant of an arbitrary element HB ∈ ∂DG(w), with w ∈ D.
We will do this by transforming H1 := HB in several steps. After each step we will record
the effect of the transformation on the determinant.

We start with reordering the columns and rows of the first block row and block column in
the same way according to the setsB andJ . That means we do exactly the same reordering
in the columns and in the rows. Then we do the same reordering in the second block row
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and in the third block column of H1. This is the same restructuring that we did in the
previous section with J. This yields the matrix

H2 :=



θI|B| + τLB,Bh τLB,Jh 0 I|B| 0
τLJ ,Bh θI|J| + τLJ ,Jh 0 0 I|J|

0 0 0 −I|B| 0
−
∂ẼJ
∂ξBmin

−
∂ẼJ
∂ξJmin

−
∂ẼJ
∂ξmob

0 0
∂Qmob

∂ξBmin

∂Qmob

∂ξJmin

∂Qmob
∂ξmob

0 0


.

We did two times the same number of column and row swaps, so we have

det (H2) = det (H1) .

Now we do some column and row additions to zero the entries τLJ ,Bh , θI|J| + τLJ ,Jh and
I|B|. We do this by adding linear combinations of the fifth block column of H2 to the first
and second block columns and by adding the third block row to the first block row. This
yields the matrix

H3 :=



θI|B| + τLB,Bh τLB,Jh 0 0 0
0 0 0 0 I|J|
0 0 0 −I|B| 0
−
∂ẼJ
∂ξBmin

−
∂ẼJ
∂ξJmin

−
∂ẼJ
∂ξmob

0 0
∂Qmob

∂ξBmin

∂Qmob

∂ξJmin

∂Qmob
∂ξmob

0 0


.

These changes do not affect the determinant, because adding multiples of a row or column
to another row or column does not change the determinant. So we have

det (H3) = det (H2) .

We swap the second and fourth block row of H3, which have the same number of rows.
This yields the matrix

H4 :=



θI|B| + τLB,Bh τLB,Jh 0 0 0
−
∂ẼJ
∂ξBmin

−
∂ẼJ
∂ξJmin

−
∂ẼJ
∂ξmob

0 0

0 0 0 −I|B| 0
0 0 0 0 I|J|

∂Qmob

∂ξBmin

∂Qmob

∂ξJmin

∂Qmob
∂ξmob

0 0


.

This change can be done by |J| row swaps. So we have

det (H4) = (−1)|J| det (H3) .
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Now we multiply the third block row of H4 with −1. That means we multiply |B| rows
with −1. This yields the matrix

H5 :=



θI|B| + τLB,Bh τLB,Jh 0 0 0
−
∂ẼJ
∂ξBmin

−
∂ẼJ
∂ξJmin

−
∂ẼJ
∂ξmob

0 0

0 0 0 I|B| 0
0 0 0 0 I|J|

∂Qmob

∂ξBmin

∂Qmob

∂ξJmin

∂Qmob
∂ξmob

0 0


.

This of course changes the determinant to

det (H5) = (−1)|B| det (H4) .

Now we switch the third and fourth block row with the fifth block row. This yields the
matrix

H6 :=



θI|B| + τLB,Bh τLB,Jh 0 0 0
−
∂ẼJ
∂ξBmin

−
∂ẼJ
∂ξJmin

−
∂ẼJ
∂ξmob

0 0
∂Qmob

∂ξBmin

∂Qmob

∂ξJmin

∂Qmob
∂ξmob

0 0

0 0 0 I|B| 0
0 0 0 0 I|J|


.

The effects of this operation on the determinant are according to Theorem A.2.3 in the
appendix. So we have

det (H6) = (−1)(|B|+|J|)(Jmob·p)
· det (H5) .

In the last step we just drop the lower right corner and yield the matrix

H7 :=


θI|B| + τLB,Bh τLB,Jh 0
−
∂ẼJ
∂ξBmin

−
∂ẼJ
∂ξJmin

−
∂ẼJ
∂ξmob

∂Qmob

∂ξBmin

∂Qmob

∂ξJmin

∂Qmob
∂ξmob

 .
Since the block we left out was the identity matrix we have

det (H7) = det (H6) .

Now we put all the changes of the determinant together in one formula

det (H7) = (−1)(|B|+|J|)(Jmob·p+1) det (H1) (4.16)
= (−1)(Jmin·p)(Jmob·p+1) det

(
HB

)
. (4.17)

If B = A with A from the previous section, then H1 = J and H7 = J̃, again with J and
J̃ from the previous section. Therefore the absolute value of the determinant of J and J̃
coincide as was claimed at the end of that section. The factor (Jmin · p) (Jmob · p + 1) will
be in many cases an even number. However it does not depend on the choice of B.
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Now let us examine a submatrix of H7, namely

B :=

 −
∂ẼJ (ξmin,ξmob)

∂ξJmin
−
∂ẼJ (ξmin,ξmob)

∂ξmob

∂Q̃mob(ξmin,ξmob)
∂ξJmin

∂Q̃mob(ξmin,ξmob)
∂ξmob

 .
The nonsingularity of this matrix is shown even more generally in [25, Section 4.4.5].
Every block of B is itself a block diagonal matrix. For example,

∂Q̃mob (ξmin, ξmob)
∂ξImin

= diag

∂Q̃mob (ξmin (x1) , ξmob (x1))
∂ξImin (x1)

, . . . ,
∂Q̃mob

(
ξmin

(
xp

)
, ξmob

(
xp

))
∂ξImin

(
xp

)  ,
with xi ∈ Ωh. By column and row interchanges, we can transform B into a block diagonal
matrix

B̃ = diag
(
B̃(x1), B̃(x2), . . . , B̃(xp)

)
where a Block B̃(xi) has the form

B̃(xi) =

 −
∂ẼJ (ξmin(xi),ξmob(xi))

∂ξImin(xi)
−
∂ẼJ (ξmin(xi),ξmob(xi))

∂ξmob(xi)
∂Q̃mob(ξmin(xi),ξmob(xi))

∂ξImin(xi)
∂Q̃mob(ξmin(xi),ξmob(xi))

∂ξmob(xi)

 .
Since every block of −∂ẼJ (ξmin,ξmob)

∂ξJmin
and ∂Q̃mob(ξmin,ξmob)

∂ξmob
is square this transformation requires

exactly the same row and column exchanges. This means that there is an orthogonal matrix
O (a permutation matrix) such that

B = OT B̃O (4.18)

holds. This implies that B is positive definite if and only if B̃ is positive definite. But B̃ is
positive definite if and only if every block B̃(xi) is positive definite.

With the definitions of Q̃mob and Ẽ from Chapter 3 and the representation (3.29) of c, we
can easily see that

B̃(xi) =
[
S 1

min,J(xi) | S
1
mob

]T
Λc(xi)

[
S 1

min,J(xi) | S
1
mob

]
(4.19)

holds, where Λc(xi) = diag
(

1
c1(xi)

, . . . , 1
cI (xi)

)
, J(xi) := { j | ( j, xi) ∈ J} ⊂ {1, . . . , Jmin} is the

projection of J on xi ∈ Ωh and S 1
min,J(xi)

is the submatrix of S 1
min consisting of the columns

of J(xi). Our matrix HB is an element of ∂DG(w) with w ∈ D. It follows that c(xi) > 0
for all xi ∈ Ωh from the definition of D in (3.35). Therefore the blocks B̃(xi) are always
symmetric positive definite in view of our rank condition (3.13) for all xi ∈ Ωh. So B̃ and
B are symmetric positive definite. In particular they are nonsingular. Note that B̃ and B
depend on the index sets B and J . But regardless of the choice of these index sets they are
always symmetric positive definite.

Since B is nonsingular, the columns of B form a basis of its column space. Consequently,
there are unique matrices D1 and D2 such that
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B ·
[

D1

D2

]
= −

 −
∂ẼJ (ξmin,ξmob)

∂ξBmin
∂Q̃mob(ξmin,ξmob)

∂ξBmin

 (4.20)

or, more detailed −
∂ẼJ (ξmin,ξmob)

∂ξJmin
∂Q̃mob(ξmin,ξmob)

∂ξJmin

 D1 +

 −∂ẼJ (ξmin,ξmob)
∂ξmob

∂Q̃mob(ξmin,ξmob)
∂ξmob

 D2 = −

 −
∂ẼJ (ξmin,ξmob)

∂ξBmin
∂Q̃mob(ξmin,ξmob)

∂ξBmin

 .
Note that D1 and D2 also depend upon B and J . Next we multiply H7 in (4.12) with the
block matrix

X :=

 I 0 0
D1 I 0
D2 0 I


from the right hand side and obtain

H8 := H7 · X =


θI|J| + τLB,Bh + τLB,Jh · D1 τLB,Jh 0

0 ∂ξJmin −
∂ẼJ (ξmin,ξmob)

∂ξmob

0 ∂Q̃mob(ξmin,ξmob)
∂ξJmin

∂Q̃mob(ξmin,ξmob)
∂ξmob

 .
Since the determinant of X is obviously 1, it follows that

det H8 = det H7 .

On the other hand, the determinant of H8 is given by

det H8 = det
(
θI|B| + τLB,Bh + τLB,Jh · D1

)
· det B.

Therefore H7 is nonsingular if and only if θI|B|+τLB,Bh +τLB,Jh ·D1 is nonsingular. Together
with the representation for the determinant of H7 in (4.16) we have proven the following
result.

Lemma 4.3.1. Let HB∈∂DG(w) be arbitrary and w ∈ D.Then it holds

det
(
HB

)
= (−1)(Jmin·p)(Jmob·p+1) · det

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
· det B .

In particular HB is nonsingular if and only if θI|B| + τLB,Bh + τLB,Jh · D1 is nonsingular.

The next theorem is one of the reasons why we introduced ∂EG(w). If we know some-
thing about the sign of the determinant of the elements of ∂DG(w) we can transfer this to
the elements of ∂EG(w). This will turn out useful later.

Theorem 4.3.2. Let w ∈ D. Then

det H > 0 ∀H ∈ ∂DG(w) ⇐⇒ det H > 0 ∀H ∈ ∂EG(w)
det H < 0 ∀H ∈ ∂DG(w) ⇐⇒ det H < 0 ∀H ∈ ∂EG(w)
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Proof. We only show the first equivalence, because the second one can be proved in the
same way.

The implication

det (H) > 0 ∀H ∈ ∂EG(w) =⇒ det (H) > 0 ∀H ∈ ∂DG(w)

is trivial since ∂DG(w) ⊂ ∂EG(w) holds. So we will only show the other implication

det (H) > 0 ∀H ∈ ∂DG(w) =⇒ det (H) > 0 ∀H ∈ ∂EG(w) .

Before we can do this we need some additional notation building on the notation we intro-
duced in the beginning of this section.

Let Ha,b ∈ ∂EG(w) be arbitrary and fixed for the whole proof, with a, b ∈ RJmin p. It is a
q× q matrix with q := (2 · Jmin + Jmob) · p and p = |Ωh|. The vectors a, b have the properties
as defined in ∂EG(w), see (4.15). Let Φk := {ω(1), ω(2), . . . , ω(k)} ⊂ {1, . . . , Jmin} ×Ωh. Let
m := Jmin · p. For B ⊂ Φk and k ∈ {1, . . . ,m} we define

cBk :=
k∏

i=1

ci with ci :=

ai for ω(i) ∈ B
bi for ω(i) < B

.

From the properties of a, b it follows that

cBk ≥ 0

holds for all B ⊂ Φk .
For abbreviation and for (i, x) := ω(k) we define the row vectors

gk :=
[
−
∂Ẽi(x)
∂ξmin

| −
∂Ẽi(x)
∂ξmob

| 0
]

hk :=
[

0 | 0 | −
∂c̄i(x)
∂c̄

]
both with q components. We define the (m− k)× q matrix Qa,b

k as the m− k last rows of the
m × q submatrix Qa,b of Ha,b defined in (4.14). Then the i-th row Qa,b

k (i) of Qa,b
k looks like

Qa,b
k (i) = ai+kgi+k + bi+khi+k .

Similarly for B ⊂ Φk we define the k × q matrix QBk as the first k rows of the matrix QB

defined in (4.13). Then the i-th row QBk (i) of QBk looks like

QBk (i) =

gi forω(i) ∈ B
hi forω(i) < B

.

Finally we define the (m + k) × q matrix

S Bk :=
[

[θI + τLh | 0 | I]
QBk

]
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and the (m − k + Jmob p) × q matrix

T k :=
 Qa,b

k[
∂Qmob
∂ξmin

|
∂Qmob
∂ξmob

| 0
]  .

With this notation it holds

Ha,b =

[
S ∅0
T 0

]
.

And for B ⊂ Φm = {1, . . . , Jmin} ×Ωh the matrix[
S Bm
T m

]

is an element of ∂DG(w). Now we can start the rather simple induction proof. The induction
assertion for i ∈ {1, . . . ,m} is

det Ha,b =
∑
B⊂Φi

cBi det
[

S Bi
T i

]
,

and there is (at least) one set J ⊂ Φi with cJi > 0.
Induction start for i = 1 : We can write Ha,b as

Ha,b =

[
S ∅

T 0

]
=

 S ∅0
a1g1 + b1h1

T 1

 .
With the linearity of the determinant in every row it follows

det Ha,b = a1 det

 S ∅0
g1

T 1

 + b1 det

 S ∅0
h1

T 1


=

∑
B⊂Φ1

cB1 det
[

S B1
T 1

]
.

From the definition of a, b either a1 > 0 or b1 > 0 holds.
Induction step i { i + 1 for i < m: We assume that our induction assertion is true for i,

i.e.

det Ha,b =
∑
B⊂Φi

cBi det
[

S Bi
T i

]
,



49 4.3 More Subdifferentials and their Transformations

and there is a set J ⊂ Φi with cJi > 0. Then

det Ha,b =
∑
B⊂Φi

cBi det
[

S Bi
T i

]

=
∑
B⊂Φi

cBi det

 S Bi
ai+1gi+1 + bi+1hi+1

T i+1


=

∑
B⊂Φi

cBi

ai+1 det

 S Bi
gi+1

T i+1

 + bi+1 det

 S Bi
hi+1

T i+1




=
∑
B⊂Φi

cB̂i+1 det

 S Bi
gi+1

T i+1

 + cBi+1 det

 S Bi
hi+1

T i+1




with B̂ ⊂ Φi+1 defined as B̂ := B∪{ω(i + 1)} . Now letJ ⊂ Φi with cJi > 0. Either ai+1 > 0
or bi+1 > 0 holds. Therefore we have either cĴi+1 > 0 or cJi+1 > 0, where Ĵ := J∪{ω(i + 1)}.
For every set B ⊂ Φi+1 it holds either B ⊂ Φi or B \ {ω(i + 1)} ⊂ Φi. Therefore we can
resume our equation chain with

=
∑
B⊂Φi

(
cB̂i+1 det

[
S B̂i+1
T i+1

]
+ cBi+1 det

[
S Bi+1
T i+1

])
=

∑
B⊂Φi+1

cBi+1 det
[

S Bi+1
T i+1

]
.

This ends the induction proof. For k = m we have

det Ha,b =
∑
B⊂Φm

cBm det
[

S Bm
T m

]
, (4.21)

where
[

S Bm
T m

]
is an element of ∂DG(w). It is

det
[

S Bm
T m

]
> 0

the assumption of the implication we are proving. Together with cBm ≥ 0 we have

cBm det
[

S Bm
T m

]
≥ 0

for all B ⊂ Φm. And there is at least one subset J ⊂ Φm with

cJm det
[

S Jm
T m

]
> 0 .

So we have
det Ha,b > 0 .

�
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4.4 First Proof of Nonsingularity

In this section we continue to study J̃ from Section 4.2. The aim is to prove the nonsin-
gularity of J and J̃, which were defined in (4.9) and (4.12) respectively. We have already
seen in the previous section that

det J̃ = (−1)(Jmin·p)(Jmob·p+1) det J (4.22)

holds and therefore the absolute values of the determinants of J and J̃ coincide. There we
have also verified the identity

det J̃ = det K · det B (4.23)

with
K := θI|A| + τLA,Ah + τLA,Ih · D1

and

B =

 −
∂ẼI(ξmin,ξmob)

∂ξImin
−
∂ẼI(ξmin,ξmob)

∂ξmob

∂Q̃mob(ξmin,ξmob)
∂ξImin

∂Q̃mob(ξmin,ξmob)
∂ξmob

 .
We already know that B is symmetric positive definite and therefore det B > 0 holds. So J̃
is nonsingular if and only if K is nonsingular.

The matrix K can be written as a sum of the diagonal matrix θI|A| and the square matrix
τLA,Ah + τLA,Ih · D1. Therefore Theorem A.1.1 is applicable for K and its determinant can
be calculated with the formula

det K =
∑
α⊂L

det θIα,α · det
(
τLA,Ah + τLA,Ih · D1

)ᾱ,ᾱ
,

where L = {1, . . . , |A|} and ᾱ := L \ α. Since the determinant of a 0 × 0 matrix is defined
as 1, we get

det K =
∑
α⊂L

θ|α| · det
(
τLA,Ah + τLA,Ih · D1

)ᾱ,ᾱ
= θ|A| +

∑
α⊂L
|α|<|A|

θ|α| · τ|ᾱ| det
(
LA,Ah + LA,Ih · D1

)ᾱ,ᾱ
. (4.24)

For the next theorem, we assume that our PDE matrix Lh depends on h but not on τ. This
should be always the case, because Lh comes from the discretization of derivatives for
spatial variables. Furthermore, we assume that the spatial step size h is given and fixed.
Then our theorem states the dependence of the nonsingularity of J on the time step size τ.

Theorem 4.4.1. Let h be an arbitrarily given spatial step size. Then, for all sufficiently
small time steps τ, the system matrices J and J̃ are nonsingular. Furthermore, there are at
most Jmin · p time steps τ such that J and J̃ are singular.
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Proof. Equation (4.24) shows that the determinant of K is a polynomial in τ. The degree
of this polynomial is |A|, where |A| ≤ Jmin · p always holds by definition of the active set
A. So this polynomial has a maximum degree of Jmin · p. It is not the zero polynomial since
it has θ|A| as constant term. So Jmin · p is also the maximum number of its roots. Hence
either all roots are complex, or there exists a smallest positive root which is our smallest
time step. Since det B , 0 always holds, and since we have det K · det B = det J̃ = ± det J
according to (4.23) and (4.22), the assertion follows. �

Additionally, we now assume that our discretized PDE operator Lh emerged from a differ-
ence scheme of first or second order. In fact, the subsequent discussion would hold for any
PDE operator that contains 1

h in every non-vanishing entry. The variable h is the spatial
grid width of our discretization. Hence every entry of Lh that does not vanish contains the
factor 1

h . We therefore conclude that every non-vanishing entry of LA,Ah + LA,Ih ·D1 contains
the factor 1

h (some entries may contain 1
h2 ). Hence, for every index subset δ ⊂ {1, . . . , |A|},

there exists a matrix Lδ such that(
LA,Ah + LA,Ih · D1

)δ,δ
=

1
h
· Lδ

holds.
In contrast to the previous theorem, we study in our next result the correlation of the

nonsingularity of J for variable space step size h, while we assume that the time step size
τ is given and fixed.

Theorem 4.4.2. Let the PDE operator Lh result from a difference scheme of first or second
order. Then the system matrices J and J̃ are nonsingular for all sufficiently small space
steps h. Furthermore, there are at most 2 · Jmin · p space steps h such that J and J̃ are
singular.

Proof. Every non-vanishing entry of Lh is a polynomial in 1
h of first or second order. The

same holds for LA,Ah + LA,Ih · D1 and all its submatrices. Thanks to the Leibniz formula it
holds that the factors det(LA,Ah + LA,Ih · D1)ᾱ,ᾱ in (4.24) are polynomials in 1

h of maximal
degree 2 |ᾱ| ≤ 2 · |A| with a zero constant term. Since |A| ≤ Jmin p holds, we can conclude
with (4.24) that det K is always a polynomial in 1

h of degree at most 2Jmin p. Again, θ|A| is
the constant term of this polynomial, hence it is not the zero polynomial. Therefore it has
at most 2Jmin p roots.

Let z∞ be the largest real root of this polynomial (if it has no real roots, we are finished).
Then there exists a corresponding smallest positive space step h0 with h0 = 1

z∞
. So det K , 0

holds for all h ∈ (0, h0). Since det B , 0 always holds, and because det K · det B = det J̃ =

± det J according to (4.23) and (4.22), we have proven everything. �

We now generalize the previous two theorems slightly to all elements of the B-subdifferential
of GM.

Corollary 4.4.3. Let w := [ξmin, ξmob, c̄] ∈ D. Then the following statements hold:
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(1) Let h be given. Then all H ∈ ∂BGM (w) are nonsingular for all sufficiently small time
steps τ. Furthermore, there is only a finite number of time steps τ such that at least
one element in ∂BGM (w) is singular.

(2) Let τ be given and let Lh be as in Theorem 4.4.2. Then all H ∈ ∂BGM (w) are
nonsingular for all sufficiently small space steps h. Furthermore, there are only a
finite number of space steps h such that at least one element in ∂BGM (w) is singular.

Proof. We have already shown the two statements for an arbitrary element J from the
B-subdifferential. Hence the desired statements follow from Theorems 4.4.1 and 4.4.2, re-
spectively, taking into account that the number of matrices in ∂BGM (w) is finite, cf. Lemma
4.1.2. �

Note that all the previous nonsingularity results hold at an arbitrary point w ∈ D. Hence
all iterations of our Newton-type method are (not only locally) well-defined as long as they
stay in D. But it should be mentioned that the minimal time step size τ in two different
grid points w ∈ D and w′ ∈ D may differ. So this value could decrease constantly during
a Newton iteration. This is unsatisfactory. In the next section we will improve this result
with a different approach.

After we have ensured that the semismooth Newton method in Algorithm 4.2.1 is well
defined almost everywhere, we formulate its main local convergence result.

Theorem 4.4.4. Let w∗ ∈ D be a BD-regular point of GM. Then there exists an ε > 0 such
that for every starting point w0 ∈ Bε (w∗), the following assertions hold:

(1) The Newton-type iteration defined in Algorithm 4.2.1 is well-defined and produces a
sequence

{
wk

}
that converges to w∗.

(2) The rate of convergence is quadratic.

Proof. From the definition ofD in (3.35) it is easy to see thatD is an open and convex set.
So we can choose ε > 0 so that Bε (w∗) ⊂ D holds. In Lemma 4.1.1 we have seen that GM

is strongly semismooth. With Theorem 2.5.4 the assertion follows. �

Unfortunately, we do not know before whether the requirement of Theorem 4.4.4 regarding
the nonsingularity of all elements from the B-subdifferential of GM is fulfilled. However,
Corollary 4.4.3 guarantees that it is at least very unlikely to hit a solution point w∗ where
this requirement is not satisfied. Moreover, it shows that we can change this situation by
changing the time step size τ or the spatial step size h (for practical reasons, it is easier to
change τ). But after changing the time step size τ, the Newton iteration has to be restarted.
In our computational test runs, we never had problems with singular matrices from ∂BGM.

4.5 New Proof of Nonsingularity

The result from the previous section is somewhat unsatisfactory. For a given step size h, we
know that there is only a finite number of τ so that there is a singular matrix in ∂BGM (w).
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So if τ > 0 is small enough ∂BGM (w) has maximal rank, i.e. all elements are nonsingular.
But we do not know how small τ has to be chosen. And it could decrease from time
step to time step or even during the Newton iteration. In this section we will develop a
threshold τmax > 0 such that even ∂DG (w) has maximal rank, if τ is chosen in the interval
0 ≤ τ < τmax. Remember that ∂DG(w) is a superset of ∂BGM(w). Working with ∂DG(w)
instead of ∂BGM(w) will not complicate the matter, but will prove very useful later.

We start with the result from Lemma 4.3.1. Let HB∈∂DG(w) be arbitrary, then

det
(
HB

)
= (−1)(Jmin·p)(Jmob·p+1) · det

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
· det B

holds. We already know that B is always symmetric positive definite for all w ∈ D and
for all index set B and that det B > 0 always holds. Our aim is now to find τmax such that
det

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
is positive for τ < τmax. First we have

K := θI|B| + τLB,Bh + τLB,Jh · D1 = θI|B| + τ
[
LB,Bh | LB,Jh

]
·

[
I

D1

]
.

It is well known that the determinant of a square matrix is equal to the product of its
eigenvalues. Our matrix K is a real matrix and its characteristic polynomial has therefore
only real coefficients. Hence if the smallest real eigenvalue is positive, then the determinant
of this matrix will be positive. The eigenvalues in C \ R do not matter, because they only
occur in complex conjugate pairs, i.e. numbers a+bi, a−bi. The product of these conjugate
pairs is a2 + b2 > 0. This product a2 + b2 can’t be zero, because that would mean that
a + bi = 0, which is a real number. If there is no real eigenvalue the determinant must be
positive.

If we can show that the smallest real eigenvalue of K is positive then we know that its
determinant is positive, too. With [17, Corollary 6.3.4] we obtain a crude estimate for its
smallest real eigenvalue

λ1

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
≥ λ1

(
θI|B|

)
−

∥∥∥∥∥∥τ [
LB,Bh | LB,Jh

]
·

[
I

D1

]∥∥∥∥∥∥
sp

≥ θ − τ ·
∥∥∥∥[LB,Bh | LB,Jh

]∥∥∥∥
sp

∥∥∥∥∥∥
[

I
D1

]∥∥∥∥∥∥
sp

.

Interchanging the columns of a matrix does not change its spectral norm, because this can
be done by multiplication with an orthogonal matrix. Therefore we have

∥∥∥∥[LB,Bh | LB,Jh

]∥∥∥∥
sp

=∥∥∥LBh
∥∥∥

sp
. Adding rows to a matrix can only increase its spectral norm, which can be seen by

its definition as lub-norm. So we have
∥∥∥LBh

∥∥∥
sp
≤ ‖Lh‖sp. For an arbitrary vector a ∈ R|B|

with ‖a‖2 = 1 we have ∥∥∥∥∥∥
[

I
D1

]
· a

∥∥∥∥∥∥2

2

= 1 + ‖D1a‖22

and can therefore conclude that∥∥∥∥∥∥
[

I
D1

]∥∥∥∥∥∥
sp

=

√
1 + ‖D1‖

2
sp .
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With this we can resume our estimation chain with

θ − τ ·
∥∥∥∥[LB,Bh | LB,Jh

]∥∥∥∥
sp

∥∥∥∥∥∥
[

I
D1

]∥∥∥∥∥∥
sp

≥ θ − τ · ‖Lh‖sp ·

√
1 + ‖D1‖

2
sp .

Now we take a closer look at D1. Remember that D1 and D2 were defined in (4.20) as
the unique matrices that fulfille −

∂ẼJ (ξmin,ξmob)

∂ξJmin
∂Q̃mob(ξmin,ξmob)

∂ξJmin

 D1 +

 −∂ẼJ (ξmin,ξmob)
∂ξmob

∂Q̃mob(ξmin,ξmob)
∂ξmob

 D2 = −

 −
∂ẼJ (ξmin,ξmob)

∂ξBmin
∂Q̃mob(ξmin,ξmob)

∂ξBmin

 .
This means that D1 depends on the variables [ξmin, ξmob] and on the index sets B and J in
every evaluation point w = [ξmin, ξmob, c̄]. Lemma 6.4.1 gives a constant s > 0 such that
‖D1‖sp < s holds in all points w ∈ D and for all index sets B and J . This result is not so
easy to prove. It requires a small theory in itself. It is done in Chapter 6. So together we
have shown that

λ1

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
≥ θ − τ · ‖Lh‖sp ·

√
1 + s2

holds. The right hand side is positive if and only if

τ <
θ

‖Lh‖sp ·
√

1 + s2
=: τmax . (4.25)

Note that this constant τmax depends on the step size h.

Lemma 4.5.1. Let w = [ξmin, ξmob, c̄] ∈ D. Furthermore let 0 ≤ τ < τmax. Then

λ1

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
> 0

and
det

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
> 0 .

For a given step size h one can actually calculate the maximal time step size τmax. Note
that the estimations in this section are on the one hand very crude but on the other hand
do not require any additional knowledge about the PDE matrix Lh. If we calculate τmax

for an actual numerical example it would probably be much smaller then what is actually
possible. That means that one could choose τ a lot bigger without having to worry about
the nonsingularity of θI|B| + τLB,Bh + τLB,Jh · D1.

With this Lemma and Lemma 4.3.1 we have proven the following

Theorem 4.5.2. Let w = [ξmin, ξmob, c̄] ∈ D and let HB ∈ ∂DG(w) be arbitrary. Further-
more let 0 ≤ τ < τmax. Then HB is nonsingular, more precisely,

(−1)(Jmin·p)(Jmob·p+1) det HB > 0 .

With Theorem 4.3.2 we can immediately extend this assertion to the set ∂EG(w).
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Theorem 4.5.3. Let w = [ξmin, ξmob, c̄] ∈ D and let Ha,b ∈ ∂EG(w) be arbitrary. Further-
more let 0 ≤ τ < τmax. Then Ha,b is nonsingular, more precisely,

(−1)(Jmin·p)(Jmob·p+1) det Ha,b > 0 .

Since ∂BGM(w) ⊂ ∂DG(w) and ∂GM(w) ⊂ ∂EG(w) hold, we can immediately note the
following corollary.

Corollary 4.5.4. Let w = [ξmin, ξmob, c̄] ∈ D and let J ∈ ∂BGM(w) or J ∈ ∂GM(w) be
arbitrary. Furthermore let 0 ≤ τ < τmax. Then J is nonsingular, more precisely,

(−1)(Jmin·p)(Jmob·p+1) det J > 0 .

Finally we bring two results which are not directly linked with the nonsingularity of J
but come as a byproduct of the arguments we have brought in this section. First we consider
the matrix θI + τLh. This matrix appears in the decoupled linear equation system (3.30).
With the same argument as above we first estimate its smallest eigenvalue λ1 as

λ1 (θI + τLh) ≥ θ − τ ‖Lh‖sp

then we can conclude that det (θI + τLh) is positive if 0 < τ < θ
‖Lh‖sp

holds. We have proven

Lemma 4.5.5. Let 0 ≤ τ < θ
‖Lh‖sp

. Then θI + τLh is nonsingular, more precisely

det (θI + τLh) > 0 .

Note that τmax ≤
θ

‖Lh‖sp
holds. So for τ in 0 ≤ τ < τmax both θI + τLh and K are

nonsingular. In fact if the discretization for Lh is done with finite differences then one can
easily see with Gersgorin’s Theorem that θI +τLh must be always nonsingular (the absolute
value of the center element in each row is bigger then the sum of the absolute values of the
other elements). With similar arguments we are now able to give upper bounds for the
condition number of K.

Theorem 4.5.6. Let 0 ≤ τ < τmax. Then the condition number κ2 of θI|B|+τLB,Bh +τLB,Jh ·D1

with respect to the spectral norm is bounded by

κ2

(
θI|B| + τLB,Bh + τLB,Jh · D1

)
≤
θ + τ · ρ

θ − τ · ρ

with ρ = ‖Lh‖sp ·
√

1 + s2 and s is the upper bound for D1 from Lemma 6.4.1.

Proof. Let z ∈ R|B| with ‖z‖2 = 1. Then we have with similar arguments as above

‖K · z‖2 =
∥∥∥∥(θI|B| + τLB,Bh

)
· z + τ · LB,Jh · D1 · z

∥∥∥∥
2

≤ ‖θz‖2 +
∥∥∥τLB,Bh · z + τ · LB,Jh · D1 · z

∥∥∥
2

= θ +

∥∥∥∥∥∥[τLB,Bh | τLB,Jh

]
·

[
I

D1

]
z

∥∥∥∥∥∥
2

≤ θ +
∥∥∥∥[τ · LB,Bh | τ · LB,Jh

]∥∥∥∥
sp
·

∥∥∥∥∥∥
[

I
D1

]∥∥∥∥∥∥
sp

≤ θ + τ · ‖Lh‖sp ·
√

1 + s2 .
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The estimation chain in the other direction goes like above

‖K · z‖2 =
∥∥∥∥(θI|B| + τLB,Bh

)
· z + τ · LB,Jh · D1 · z

∥∥∥∥
2

=
∥∥∥∥θz − τ (

−LB,Bh · z − LB,Jh · D1 · z
)∥∥∥∥

2

≥
∣∣∣‖θz‖2 − τ ∥∥∥LB,Bh · z + LB,Jh · D1 · z

∥∥∥
2

∣∣∣
≥ θ − τ

∥∥∥LB,Bh · z + LB,Jh · D1 · z
∥∥∥

2

= θ − τ
∥∥∥∥[LB,Bh | LB,Jh

]∥∥∥∥
sp
·

∥∥∥∥∥∥
[

I
D1

]∥∥∥∥∥∥
sp

≥ θ − τ · ‖Lh‖sp ·
√

1 + s2 .

For τ < τmax is θ−τ · ‖Lh‖sp ·
√

1 + s2 positive as we have already seen above. The condition
number with respect to the spectral norm for a nonsingular square matrix A is defined as
κ2(A) = ‖A‖sp ‖A−1‖sp, see [17, p. 336]. With an easy transformation one can see that
‖A−1‖sp = 1/(min‖x‖2=1 ‖Ax‖2) holds. Then we can estimate the condition number of K with
respect to the spectral norm as

κ2 (K) =
max‖z‖2=1 ‖K · z‖2
min‖z‖2=1 ‖K · z‖2

≤
θ + τρ

θ − τρ
.

�

Remark 4.5.7. We will shortly discuss a globalization strategy for the minimum formula-
tion. Let 0 ≤ τ < τmax. We define the function FM : D −→ R, FM(w) := 1

2 ‖GM(w)‖2. This
is the merit function that is to be minimized in this approach. Obviously a global minimizer
w∗ with FM(w∗) = 0 is also a solution of GM(w) = 0.

The function x 7→ 1
2 ‖x‖

2
2 is continuously differentiable. With Lemma 2.2.5 we can

conclude
∂FM(w) = GM(w)T · ∂GM(w) .

A point w∗ ∈ D is called Clarke-stationary point of FM if and only if 0 ∈ ∂FM(w∗). Then the
following statement holds: If w∗ is a Clarke-stationary of FM then w∗ is a global minimizer
of FM with

FM(w∗) = 0 and GM(w∗) = 0 .

We verify this statement. If there is 0 ∈ ∂FM(w∗) then there exists a matrix H ∈ ∂GM(w∗)
such that HTGM(w∗) = 0. But H is nonsingular according to Corollary 4.5.4. Therefore
GM(w∗) = 0 holds. And from the definition of FM also FM(w∗) = 0 holds.

4.6 Schur Complement Approach

In this section, we want to discuss how the linear system (4.11) can be transformed in such
a way that it can be solved even more efficiently. We continue the transformation that was
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started in Section 4.2. To this end we utilize a Schur complement approach. We begin by
introducing some abbreviations to keep the formulas clear:

E :=
(
θI|A| + τLA,Ah

)
, A := [A1 | 0] :=

[
τLA,Ih | 0

]
,

C :=
[

C1

C2

]
:=

 −
∂ẼI
∂ξAmin

∂Q̃mob

∂ξAmin

 , B :=
[

B11 B12

B21 B22

]
:=

 −
∂ẼI
∂ξImin

−
∂ẼI
∂ξmob

∂Q̃mob

∂ξImin

∂Q̃mob
∂ξmob

 .
With these abbreviations (4.11) reads

J̃ ·


∆ξAmin

∆ξImin

∆ξmob

 = −


GA1 − c̄A

−ẼI
G3

 , (4.26)

where [
E A
C B

]
= J̃ (4.27)

from Section 4.2. We begin by writing this linear system in detail

E · ∆ξAmin + A1 · ∆ξ
I
min = −GA1 + c̄A , (4.28)

C1 · ∆ξ
A
min + B11 · ∆ξ

I
min + B12 · ∆ξmob = ẼI , (4.29)

C2 · ∆ξ
A
min + B21 · ∆ξ

I
min + B22 · ∆ξmob = −G3 . (4.30)

Similar to the previous section B11 is a block diagonal matrix, where each block has the
form

(
S 1

min,I

)T
Λc

(
S 1

min,I

)
. Likewise B22 is a block diagonal matrix, where each block has

the form
(
S 1

mob

)T
Λc

(
S 1

mob

)
. Recall that S 1

min,I and S 1
mob have full column rank and that

Λc = diag
(

1
c1
, 1

c2
, . . . , 1

cI

)
. All ci are positive, because J, from which J̃ was derived, is

in ∂BGM(w) with w ∈ D (cf. Section 4.2). Hence B11 and B22 are positive definite and
therefore nonsingular.

We now rewrite (4.29) to obtain

B11 · ∆ξ
I
min = ẼI − B12 · ∆ξmob −C1 · ∆ξ

A
min . (4.31)

Furthermore, we transform (4.30) into

∆ξmob = − (B22)−1
·G3 − (B22)−1

·C2 · ∆ξ
A
min − (B22)−1

· B21 · ∆ξ
I
min . (4.32)

Now we insert ∆ξmob into (4.31) and get

∆ξImin = B−1
s ẼI + D̃−1B12B−1

22 ·G3 − B−1
s

(
C1 − B12 · B−1

22 ·C2

)
· ∆ξAmin (4.33)

with Bs :=
(
B11 − B12B−1

22 B21

)
. The matrix Bs can be obtained from B through a block

Gauss elimination step. It is a Schur complement of B. Since B is positive definite, Bs is
also positive definite, cf. [49]. In particular Bs is nonsingular.
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Finally, we insert ∆ξImin in (4.28) and obtain

(E − A1 · B−1
s Cs) · ∆ξAmin = −GA1 + c̄A − A1B−1

s ẼI − A1B−1
s B12 · B−1

22 ·G3, (4.34)

with Cs :=
(
C1 − D12D−1

22 C2

)
. Please note that B−1

s Cs equals D1 introduced in (4.20).
To obtain the solution of the initial linear system (4.28)–(4.30), we first solve (4.34)

for ∆ξAmin. Subsequently, we compute ∆ξImin from (4.33) which essentially requires some
matrix-vector multiplications. Finally, we get ∆ξmob from (4.32) again by matrix-vector
multiplications and additions.

The main computational cost is, on the one hand, in solving the linear system (4.34) and,
on the other hand, in the computation of the inverses needed in (4.32)–(4.34).

We now want to take a closer look at the computation of the required inverses. To
be more precise, we do not really need the inverses themselves, but we need their effect
on several matrices resp. vectors. For the purpose of clarifying the computational cost,
we introduce the variables X1, X2, x3,Y1, y2, y3, z3, which we define subsequently. Now we
recapitulate the transformation.

First we solve the linear system

B22 · [X1 | X2 | x3] = [B21 | C2 | G3] . (4.35)

The matrices B22, B21 as well as C2 are block diagonal matrices. The dimensions of the
blocks of all three matrices match up in a way that this linear system can be broken down in
p totally independent linear systems of size Jmob × Jmob. We already mentioned that all the
blocks of B22 are positive definite. So we can solve these small systems with the Cholesky
decomposition. Note that all of these have multiple right hand sides. However, this does
not increase the computational cost significantly, since we need only one decomposition
for each block linear system. The resulting matrices X1 and X2 are again block diagonal
matrices.

Now we compute

Bs = B11 − B12 · X1, Cs = C1 − D12 · X2, z3 := B12 · x3.

Again this can be done block-wise. Therefore Bs and Cs have block diagonal form, too.
Next we solve the linear system

Bs ·
[
Y1 | y2 | y3

]
=

[
Cs | z3 | ẼI

]
. (4.36)

For this system the same applies as for the previous one. Here Cs and Bs have a matching
block diagonal form. Therefore Y1 is a block diagonal matrix, whereas z3 and ẼI are
just vectors. Again the block linear systems have multiple right-hand sides. This time,
however, the square blocks of Bs have variable sizes from 0× 0 to Jmin × Jmin. Since Bs and
its blocks are positive definite one can solve this linear systems efficiently with Cholesky
decompositions.

Using this notation, our transformed system reads

(E − A1 · Y1) · ∆ξAmin = −GA1 + c̄A − A1 ·
[
y2 + y3

]
(4.37)

∆ξImin = y2 + y3 − Y1 · ∆ξ
A
min (4.38)

∆ξmob = −x3 − X1 · ∆ξ
I
min − X2 · ∆ξ

A
min . (4.39)
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Through this transformation of the original system (4.26)–(4.27), we could exploit espe-
cially the structure of B and its submatrices, which would have been unused otherwise.

Since A1 is sparse and Y1 is block diagonal, the product A1 · Y1 again is sparse. Its
structure is similar to the structure of E. Therefore, the matrix E − A1 · Y1 in the linear
system (4.37) is sparse, too. It can be solved by a linear solver like GMRES.

One advantage of this Schur complement approach is size reduction. While the cost of
computing the Schur complement is not big. In some real world applications the concen-
trations of species can differ over many powers of ten. So the blocks (S 1

mob)T Λc(S 1
mob)

of B22 and B22 itself can be very ill conditioned. In Section 4.3 we have seen that B
can be orthogonally transformed into a block diagonal matrix where the blocks look like
[S 1

min,I | S 1
mob]T Λc[S 1

min,I | S 1
mob]. That means that B and its Schur complement Bs are

potentially (very) ill conditioned, too. For a non-iterative solver the condition number cer-
tainly does not affect the computational cost (but it affects the accuracy of the result). If
B is ill conditioned then the whole matrix J̃ in (4.27) is likely ill conditioned, too. And
its condition number depends on the vector of concentrations c. So solving (4.26) with an
iterative linear solver like GMRES can be very costly. According to Theorem 4.5.6 the
condition number of E − A1 · Y1 = θI|A| + τLA,Ah + τLA,Ih · D1 is bounded independently
of c if τ is chosen appropriately. Numerical tests even suggest that the condition number
of θI|A| + τLA,Ah + τLA,Ih · D1 is nearly as good as the condition number of θI + τLh. This
is the other advantage of this Schur complement approach for solving the emerging linear
equation systems. This effect can be seen in the numerical example in Section 4.8.

It should be mentioned that we really have only one semismooth Newton algorithm and
that is the one which was introduced in Algorithm 4.2.1. The Schur complement approach
and the simplifications in (4.11) and (4.12) are only different ways to solve the resulting
linear systems efficiently.

4.7 Existence and Uniqueness of a Local Solution

In this section we want to show that the nonlinear equation system (3.31)-(3.33) together
with the decoupled η-system (3.30) has locally a unique solution. Here it is necessary
to comprise the decoupled η linear system into the whole equation system, because the
nonlinear equation system depends upon η through the function c = (ξmin, ξmob, η). We
want to show existence with Clarke’s Implicit Function Theorem. To this end we first have
to extend the function GM, in order to write the whole equation system with one function.
Therefore we define

F (τ, η, ξmin, ξmob, c̄) :=


θη + τLhη − θη

old

θξmin + c̄ + τLhξmin − θξ
old
min − c̄old

−ϕM (E (c (ξmin, ξmob, η)) , c̄)
Qmob (c (ξmin, ξmob, η))


=:


F1(τ, η)
F2(τ, ξmin, c̄)
F3(η, ξmin, ξmob, c̄)
F4(η, ξmin, ξmob)

 .
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As domain of F we setDF := R × P × RJmin p with

P : =
{[
η, ξmin, ξmob

]
∈ R(I−J)p × RJmin p × RJmob p |

c (ξmin(x), ξmob(x), η(x)) > 0 ∀x ∈ Ωh

}
and its values are in S := R(I−J)p×RJmin p×RJmin p×RJmob p (reminder: p = |Ωh|). Then solving
the equation system (3.30)-(3.33) is equivalent to finding solutions of

F (τ, η, ξmin, ξmob, c̄) = 0 (4.40)

in DF . We assume in this section that (ηold, ξold
min, ξ

old
mob) ∈ P holds according to our general

assumption that c > 0 holds. Then we already know the trivial solution

F
(
0, ηold, ξold

min, ξ
old
mob, c̄

old
)

= 0 .

In our semismooth Newton iteration applied to GM this solution ξold
min, ξ

old
mob, c̄

old would be
the solution from the previous time step. And ηold would be the solution of the decoupled
linear system in the previous time step.

The component functions F1 and F2 are linear in all variables and therefore they are
C2-functions. So they are strongly semismooth (cf. Corollary 2.3.4). The functions E and
Qmob are C2-functions on P. So they are strongly semismooth too. In Example 2.3.6 it was
shown that ϕM is strongly semismooth. Thanks to the chain rule Theorem 2.3.7 we can
conclude that F3 is strongly semismooth. And finally with Lemma 2.3.2 one can conclude
that F is strongly semismooth onDF . This implies that F is locally Lipschitz continuous.

The component function F3 is the same function as G2 from GM (except that we excluded
the fact that G2 also depends on η). The other functions F1, F2 and F4 are continuously
differentiable. With the same arguments as for GM in Section 4.1 we can conclude that
the B-subdifferential of F is a cross product of the B-subdifferentials of all its components.
With Lemma 4.1.4 this implies that

∂F(τ, η, ξmin, ξmob, c̄) = ∂CF(τ, η, ξmin, ξmob, c̄) .

The elements of the generalized Jacobian of F look like
Lhη

old θI + τLh 0 0 0
Lhξ

old
min 0 θI + τLh 0 I

0 −T1 −T2 −T3 −T4

0 ∂Qmob
∂η

∂Qmob
∂ξmin

∂Qmob
∂ξmob

0

 , (4.41)

where −[T1 | T2 | T3 | T4] is an element of the generalized Jacobian of the function
(η, ξmin, ξmob, c̄) 7→ ϕM (E (c (ξmin, ξmob, η)) , c̄). Then the block matrix − [T2 | T3 | T4] is an
element of ∂G2(ξmin, ξmob, c̄). And the submatrix

θI + τLh 0 I
−T2 −T3 −T4
∂Qmob
∂ξmin

∂Qmob
∂ξmob

0


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is an element of ∂GM(ξmin, ξmob, c̄).
With

F̃τ : P × RJmin p −→ S, F̃τ (η, ξmin, ξmob, c̄) := F(τ, η, ξmin, ξmob, c̄)

we denote the restriction of F for a fixed τ. Since F is continuously differentiable in
τ, erasing the first column in (4.41) gives an element of ∂F̃τ (η, ξmin, ξmob, c̄). Then the
projection

πz∂F(τ, z), z = (η, ξmin, ξmob, c̄)

that Clarke defines in [7, Section 7.1] coincides with ∂F̃τ (η, ξmin, ξmob, c̄), because the first
column of the elements of ∂F(τ, z) is always the same. For local uniqueness we must verify
that all elements in πz∂F(0, z) are nonsingular. An element

P :=


θI + τLh 0 0 0

0 θI + τLh 0 I
−T1 −T2 −T3 −T4
∂Qmob
∂η

∂Qmob
∂ξmin

∂Qmob
∂ξmob

0


of ∂F̃τ (η, ξmin, ξmob, c̄) is nonsingular if

θI + τLh

and

J :=


θI + τLh 0 I
−T2 −T3 −T4
∂Qmob
∂ξmin

∂Qmob
∂ξmob

0


are nonsingular. We have already seen that J is an element of ∂GM(ξmin, ξmob, c̄). Thanks
to Corollary 4.5.4 and Lemma 4.5.5 are θI + τLh and J nonsingular for 0 ≤ τ < τmax

(remember τmax > 0 was defined in (4.25)). We have proven the following Lemma.

Lemma 4.7.1. Let τ ∈ [0, τmax) and z = (η, ξmin, ξmob, c̄) ∈ P × RJmin p. Then every element
in

∂F̃τ (z) = πz∂F(τ, z)

is nonsingular.

Let ẑ := (ηold, ξold
min, ξ

old
mob, c̄

old) ∈ P × RJmin p. This implies that c
(
ηold, ξold

min, ξ
old
mob

)
> 0 holds.

Then all elements in πz∂F(0, ẑ) are nonsingular and Clarke’s Implicit Function Theorem [7,
Corollary in Section 7.1] gives a neighborhood U of 0 and a locally Lipschitz continuous
function g : U −→ P × RJmin p such that

F(τ, g(τ)) = 0

holds for all τ ∈ U and g(0) = (ηold, ξold
min, ξ

old
mob, c̄

old). Strictly speaking Clarke’s theorem
needs F to be defined on the whole spaceR(I+Jmin)p and not only on the open subsetP×RJmin p.
But the matter is a local property and by reducing U we can ensure that g(τ) stays in
P × RJmin p. We are only interested in positive time steps. Therefore let τs > 0 be chosen
maximal such that [0, τs) ⊂ U holds and g(τ) is in P × RJmin p. We have proven the local
existence of a solution.
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Theorem 4.7.2. Let
(
ηold, ξold

min, ξ
old
mob

)
∈ P and c̄old ∈ R. Then there is a τs > 0 and a function

g : [0, τs) −→ P × RJmin p such that

F (τ, g(τ)) = 0 , ∀τ ∈ [0, τs)

and
g(0) = (ηold, ξold

min, ξ
old
mob, c̄

old)

hold.

And finally we consider uniqueness of a solution g(τ). Let τ ≥ 0 and τ < max {τs, τmax}

be arbitrary and fixed. From the previous theorem we know that F̃τ (g(τ)) = 0 holds and
from Lemma 4.7.1 we know that all elements in ∂F̃τ (g(τ)) are nonsingular. Application of
Clarke’s Inverse Functions Theorem [7, Theorem 7.1.1] yields a neighborhood V of g(τ)
such that

F̃τ(z) = 0, z ∈ V

is only fulfilled for z = g(τ). We note this in the next theorem.

Theorem 4.7.3. Let
(
ηold, ξold

min, ξ
old
mob

)
∈ P and c̄old ∈ R and let τ ∈ [0,max {τs, τmax}). Then

there is a neighborhood V of g(τ) such that

F (τ, z) = 0 , z ∈ V

holds only for z = g(τ).

4.8 Numerical Example

The reactive transport problem introduced in Chapter 3 and formulated with the minimum
function was implemented in two versions using MATLAB R©. One version uses the Schur-
complement approach from Section 4.6, whereas the other version utilizes the whole sys-
tem (4.7). We will refer to the first version as MinSchur algorithm and to the second version
as MinFull algorithm.

For both versions, the discretization of the PDE-operator was done with the standard
finite difference scheme of second order on a regular Cartesian mesh. Both versions have
to solve the same a priori linear decoupled system, the discretization of (3.25). This is
done through a GMRES iteration in both implementations, since it is a sparse system. In
practice, this seems to work very well for this particular linear system. Usually only 2 or
3 steps are needed to calculate a sufficiently accurate solution. Thus we will focus on the
Newton iteration.

In our test example (taken from [25]), the interaction of CO2 with minerals is considered.
In these days, we are facing the global warming of the earth which is at least partly due to
the CO2-concentration in the atmosphere. Therefore, techniques have been investigated to
inject CO2 into the subsurface. The long term storage of CO2 beneath the surface of our
planet is the desired goal. This might be more likely if the carbon precipitates would form
minerals than the carbon being dissolved in the ground water.
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We use the following generic simplified set of chemical reactions to model the desired
mechanism:

CO(aq)
2 + H2O

R1
←→ HCO−3 + H+

Calcite + H+ R2
←→ Ca2+ + HCO−3

Min A + 3H+ R3
←→ Me3+ + SiO(aq)

2

Min B + 2H+ R4
←→ Me3+ + HCO−3

It consists of 3 minerals (calcite and mineral B are carbonates, mineral A is a silicate) and
6 species which are dissolved in the ground water and one aqueous tracer. More details
and insights for this example, especially its internal functionality, can be found in [25,
Subsection 4.5.2].

The technical details for this example are: domain Ω = (0, 10) × (0, 6), Darcy velocity
q = (0.015, 0)T , water content θ = 0.3, (i.e. pore velocity ‖q‖ /θ = 0.05), longitudinal/-
transversal dispersion length (βl, βt)T = (0.3, 0.03)T , time step size τ = 0.1. The equi-
librium constant of the first reaction is K1 = 0.1, where the activity of H2O is already
incorporated; i.e. cH+cHCO−e /cCO2 = 0.1. The solubility products of the three mineral reac-
tions are K2 = 100, K3 = 10, K4 = 1.25; i.e. cCa2+cHCO−3

/cH+ = 100 (if cCalcite > 0), etc. The
initial values are cCO2 = cHCO−3

= cS iCO2 = 1, cH+ = 0.1, cMe3+ = 0.01, cCa2+ = 10 (constant
within Ω), and cA = 0.2 for x ≥ 6, cCalcite = 0.2 for 1 < x < 6, and zero else. The Dirichlet
boundary values for the mobile species are cCO2 = 3.787, cH+ = 0.3124 , cHCO−3

= 1.212,
cMe3+ = 0.01, cS iO2 = 1, cCa2+ = 10 on {0} × [1.5, 4.5], whereas we use the initial values
on (0, y) with y < 1.5, y > 4.5. For the other three borders, the homogeneous Neumann
boundary condition is given.

In the following calculation, we set the spatial and the time step size to h = τ = 0.1. With
this setting, we get 6100 grid nodes for an equidistant quadratic grid. The discretization
was done via a second-order finite difference method. With the MinSchur algorithm we
calculate the resulting concentrations for the 10 species for 3600 time steps, i.e. a time
span of 360 seconds. The results have been checked to match the results from [25].

In Table 4.1 we compare the linear systems which arise in these two algorithms from
Newton’s method. Both of these sparse systems are solved with the GMRES(50) method.
The numbers in the last two columns show the total number of inner GMRES iterations
which are needed in both algorithms. The fifth and sixth columns display the condition
numbers of the linear systems of both algorithms. Finally, we present in the third and
fourth columns the dimensions of these linear systems. Of course, the linear system of the
MinFull algorithm has always the same size, since the arising Jacobians always stem from
the same function. While the linear system of the MinSchur approach is not the Jacobian
of GM itself but only a reordered submatrix, whose size depends on the size of the active
set.

In this table, we have only listed three time steps since the displayed tendencies always
remain unchanged. The linear system in the MinSchur algorithm is almost always four
times smaller than the linear system in the MinFull algorithm (in the number of rows and
in the number of columns). Furthermore, its condition number is usually smaller than 3,
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time
step

iter-
ation

size
Min-
Schur

size
Min-
Full

cond.
Min-
Schur

cond.
MinFull

MinSchur
GMRes
itera-
tions

MinFull
GMRes
itera-
tions

1 0 9760 42700 2.3899 3981.27 14 271
1 10175 42700 2.3813 3981.27 15 134
2 10213 42700 2.3906 3981.27 15 90
3 10219 42700 2.3906 3981.27 15 75
4 10219 42700 2.3906 3981.27 15
5 10219 2.3906

2 0 9817 42700 2.4212 3981.27 14 217
1 10223 42700 2.3906 3981.27 15 139
2 10226 42700 2.3906 3981.27 13 64
3 10226 42700 2.3906 3981.27 15 109
4 10226 42700 2.3906 3981.27

3 0 9840 42700 2.3906 3981.27 14 185
1 10231 42700 2.3902 3981.27 15 142
2 10233 42700 2.3902 3981.27 14 89
3 10233 42700 2.3902 3981.26 15 138
4 10233 42700 2.3902 3981.27

Table 4.1: comparison of the arising linear systems

while the condition number of the full Jacobian in the MinFull implementation is typically
more than 1000 times greater. This is a numerical confirmation for the boundedness of the
condition number of the Schur-complement matrix in the MinSchur algorithm predicted in
Theorem 4.5.6. The last two columns show that the MinFull algorithm needs much more
total GMRES iterations than the MinSchur algorithm especially in the starting iterations
for the first linear system in each time step. Overall, it is therefore not surprising that the
running time for the MinSchur algorithm is much faster (by a factor of about 8 for the
current discretization) than for the MinFull algorithm.

Table 4.2 shows the quadratic convergence for both algorithms of our Newton-type meth-
ods as predicted in the previous theory. Deviations in the last Newton step are probably due
to the machine accuracy of about 2.2 · 10−16. The third column contains the errors of the
MinSchur algorithm, whereas the fourth column gives the errors of the MinFull algorithm.
The good consistency of these errors shows that these two algorithms realize the same
Newton method where only the linear systems are solved differently. Usually these two
algorithms need the same number of Newton iterations to get below the termination condi-
tion of 10−11 with reference to the maximum norm. With time step size τ = 0.1, they both
need almost always only three Newton iterations after about 10 time iterations.

Figures 4.1–4.3 visualize the numerical results (the graphics are compressed by a factor
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time step iteration method Schur:‖G (z)‖∞ method full:‖G (z)‖∞
1 0 4.323041 · 10−1 4.323041 · 10−1

1 4.907447 · 10−1 2.509660 · 10−2

2 3.061458 · 10−3 1.122566 · 10−3

3 5.328815 · 10−4 4.223114 · 10−7

4 9.517796 · 10−8 6.039613 · 10−14

5 3.108624 · 10−15

2 0 3.004508 · 10−1 3.004508 · 10−1

1 5.582860 · 10−3 5.582860 · 10−3

2 1.247748 · 10−4 1.247748 · 10−4

3 5.335036 · 10−9 5.335037 · 10−9

4 2.664535 · 10−15 2.664535 · 10−15

3 0 2.215680 · 10−1 2.215680 · 10−1

1 3.743785 · 10−3 3.743785 · 10−3

2 1.759327 · 10−5 1.759327 · 10−5

3 1.069300 · 10−10 1.069295 · 10−10

4 1.776357 · 10−15 2.664535 · 10−15

8 0 9.540300 · 10−2 9.540299 · 10−2

1 7.372864 · 10−4 7.372864 · 10−4

2 1.771312 · 10−7 1.771312 · 10−7

3 1.065814 · 10−14 1.065814 · 10−14

18 0 4.920261 · 10−2 4.920261 · 10−2

1 2.126615 · 10−4 2.126614 · 10−4

2 1.462897 · 10−8 1.462897 · 10−8

3 2.220446 · 10−15 2.664535 · 10−15

Table 4.2: Comparison of errors

1.5 in vertical direction). Note that the differences to the results given in [25] are only due
to a different color scaling. There is a slow water flow in horizontal direction from the left
to the right. With it enters dissolved CO2 into the computational domain. This decreases
the pH value (the negative common logarithm of the concentration of H+ ions in the wa-
ter). The water stream of low pH value dissolves Mineral A and Calcite, when it reaches
those areas. Moreover, the dissolution of Mineral A leads to an immediate precipitation of
Mineral B.

We also made some tests with refined discretizations and, therefore, different dimensions
of the discretized problem. The numerical behavior of our (two) method(s) remains almost
unchanged; the number of Newton steps is essentially fixed. This is not surprising since a
mesh independence result is known for the min-function approach, cf. [15].



4 The Minimum Function Approach 66

t = 0.4sCO2 Mineral A

H+ Calcite

HCO−3 Mineral B

t = 40s
CO2 Mineral A

H+ Calcite

HCO−3 Mineral B

Figure 4.1: Results obtained after t = 0.4 seconds.
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t = 120sCO2 Mineral A

H+ Calcite

HCO−3 Mineral B

t = 200s
CO2 Mineral A

H+ Calcite

HCO−3 Mineral B

Figure 4.2: Results obtained after t = 120 seconds.
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t = 280sCO2 Mineral A

H+ Calcite

HCO−3 Mineral B

t = 360s
CO2 Mineral A

H+ Calcite

HCO−3 Mineral B

Figure 4.3: Results obtained after t = 280 seconds.



5 The Fischer-Burmeister Function
Approach

In this chapter we apply the Fischer-Burmeister function as NCP-function to the system
(3.31)–(3.33), i.e. we set

G2 (ξmin, ξmob, c̄) := −ϕF

(
Ẽ (ξmin, ξmob) , c̄

)
. (5.1)

This definition shall be valid throughout this chapter unless mentioned otherwise. The
resulting total function is then denoted as

GF : D −→ R(2Jmin+Jmob)p .

Like in the previous chapter, we continue to use the notation introduced in Chapter 3, in
particularD,Ωh, p = |Ωh| , ϕF , ϕM, Jmin, Jmob, J and I. Our aim is to prove local convergence
of the semismooth Newton method for solving

GF(w) = 0 , w ∈ D , (5.2)

and convergence for a globalized version of this algorithm. The Fischer-Burmeister func-
tion is a strongly semismooth NCP-function just like the minimum function. So many
results and proofs in this chapter are similar to the results and proofs in Chapter 4. We can
profit here very much from the (additional) work we did in that chapter. The reason why
we consider this slightly different formulation with the Fischer-Burmeister function is that
it is possible to globalize the resulting semismooth Newton method for GF . This is not
possible with the minimum function formulation.

The local existence and uniqueness results from Section 4.7 are also valid for the Fischer-
Burmeister formulation GF . This holds, because these two formulations are equivalent, i.e.
for w ∈ D it holds

GM(w) = 0 ⇐⇒ GF(w) = 0 .

So we don’t state a similar result in this chapter.
The structuring in this chapter is as follows: In Section 5.1 we study the structure of the

subdifferentials of GF and show that it is strongly semismooth. In Section 5.2 we formulate
the semismooth Newton method for this function, analyze the elements of the generalized
Jacobian of GF for nonsingularity and prove local convergence of this algorithm. In Section
5.3 we introduce a globalization of the semismooth Newton method for GF and study
related topics. And in the last Section 5.4 we present a numerical example.
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5.1 Study of Subdifferentials of GF

In this section we show that GF is strongly semismooth and study its subdifferentials.
We have already seen in Section 4.1 that GM is strongly semismooth. The proof that

GF has the same property can be copied, just replace ’minimum function’ with ’Fischer-
Burmeister function’ and ϕM with ϕF .

Lemma 5.1.1. The function GF : D −→ R(2Jmin+Jmob)p is strongly semismooth.

This Lemma justifies the use of the terms B-subdifferential, generalized Jacobian and
C-subdifferential for our function GF as we have defined them in Section 2.2, because they
are only defined for locally Lipschitz continuous functions. And semismooth functions are
locally Lipschitz continuous.

The following Lemma gives information about the structure of ∂BGF .

Lemma 5.1.2. Let Ωh =
{
x1, x2, . . . , xp

}
. Furthermore let w =

[
ξmin, ξmob, c̄

]
∈ D be arbi-

trary. Then the following statements hold:

(1) The B-subdifferential of G can be written as the cross product

∂BG (w) = ∂BG1 (w) × ∂BG2 (w) × ∂BG3 (w)

with ∂BG1 (w) =
{
G′1(w)

}
and ∂BG3 (w) =

{
G′3(w)

}
, where G′1 and G′3 are the Jaco-

bians of G1 and G3, respectively.

(2) The B-subdifferential of G2 can be broken down into

∂BG2 (w) = ∂BG2 (w1) × ∂BG2 (w2) × . . . × ∂BG2

(
wp

)
,

where wi = (ξmin (xi) , ξmob (xi) , c̄ (xi)).

(3) Let xi ∈ Ωh, a = (ξmin (xi) , ξmob (xi)) and b = c̄ (xi). Then we have

∂BG2 (wi) = −∂BϕF

(
Ẽ1(a), b1

)
× −∂BϕF

(
Ẽ2(a), b2

)
× . . . × −∂BϕF

(
Ẽ Ī(a), bĪ

)
.

(4) Let xi, a and b be j ∈
{
1, . . . , Ī

}
. Then with

c =
Ẽ j(a)√

Ẽ j(a)2 + b2
j

− 1, d =
b j√

Ẽ j(a)2 + b2
j

− 1

we have

∂BϕF

(
Ẽ j(a), b j

)

=



{[
c · ∂Ẽ j(a)

∂ξmin
| c · ∂Ẽ j(a)

∂ξmob
| d · eT

l

]}
, if (Ẽ j(a), b j) , (0, 0),{[

α ·
∂Ẽ j(a)
∂ξmin

| α ·
∂Ẽ j(a)
∂ξmob

| β · eT
l

]
: (α, β) ∈ ∂B1(−1,−1)

}
, if (Ẽ j(a), b j) = (0, 0) ,

where eT
l =

∂c̄ j(xi)
∂c̄ is a unit vector with all components vanishing except for the com-

ponent l = i · Jmin + j, which is one.
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Proof. This proof goes like the proof of Lemma 4.1.2 except for (4). The B-subdifferential
in (4) can be calculated using Example 2.2.4 and Proposition 2.2.5. �

Please note that the elements of ∂BϕF

(
Ẽ j(a), b j

)
can always be written as linear combi-

nations

λ1 ·

[
∂Ẽ j (a)
∂ξmin

|
∂Ẽ j (a)
∂ξmob

| 0
]

+ λ2 ·
[
0 | 0 | eT

l

]
in the differentiable and the nondifferentiable case, where the scalar factors λ1 and λ2 are
nonpositive with [λ1, λ2] , [0, 0]. Note also the similarity to the elements of ∂EG that
were also defined with linear combinations in the corresponding rows, see (4.14) and the
following equation.
Due to the fact that G1 and G3 are continuously differentiable we can conclude the follow-
ing result.

Corollary 5.1.3. The B-subdifferential of GF is a cross product of the B-subdifferentials of
its scalar components, i.e. with w = [ξmin, ξmob, c̄] ∈ D we have

∂BGF (w) = ∂BG1 (w) × ∂BG2 (w) × . . . × ∂BGn (w)

where n = (2Jmin + Jmob) · p and Gi is a scalar component function of GF spanning over all
functions G1,G2 and G3.

This result simplifies the calculation of ∂BGF very much. The generalized Jacobian of
GF is defined as convex hull of ∂BGF . And the convex hull of a cross product equals the
cross product of the convex hulls of its components, see Lemma 4.1.4. As an immediate
consequence of these facts we get the following result.

Corollary 5.1.4. Let w = [ξmin, ξmob, c̄] ∈ D be arbitrary. Then it holds

∂GF(w) = ∂CGF(w) .

Finally we would like to see how an element of ∂BGF(w) looks like. To this end let
ω : {1, . . . , Jmin · p} −→ ({1, . . . , Jmin} ×Ωh) be the bijective enumeration function from
Section 4.3. With this function we construct the matrix Q by defining its k-th row Q (k).
Let (i, x) := ω(k) then

Q(k) :=
[

Q1(k)
∣∣∣ Q2(k)

∣∣∣ Q3(k)
][

−α∂Ẽi(x)
∂ξmin

∣∣∣ −α∂Ẽi(x)
∂ξmob

∣∣∣ −β∂c̄i(x)
∂c̄

]
where for differentiable points [Ẽi(x), c̄i(x)] , [0, 0] we set

α :=
Ẽi(x)√

Ẽi(x)2 + c̄i(x)2
− 1, β :=

c̄i(x)√
Ẽi(x)2 + c̄i(x)2

− 1

and for nondifferentiable points [Ẽi(x), c̄i(x)] = [0, 0] we have

[α, β] ∈ ∂B1(−1,−1) = ∂BϕF(0, 0) . (5.3)
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Then an element of H ∈ ∂BG(w) looks like

H :=


θI + τLh 0 I

Q1 Q2 Q3
∂Qmob
∂ξmin

∂Qmob
∂ξmob

0

 . (5.4)

An element J ∈ ∂G(w) is structured in exactly the same way only that (5.3) must be re-
placed with

[α, β] ∈ B1(−1,−1) = ∂ϕF(0, 0) .

5.2 Local Convergence and Nonsingularity

In this section we formulate the semismooth Newton method for GF . Afterwards we study
local convergence of this algorithm and nonsingularity of the elements of ∂GF(w).

The semismooth Newton algorithm for GF formulated with the Fischer-Burmeister func-
tion differs in nothing from the algorithm for GM formulated with the minimum function.
The linear equation system in this algorithm is

H

 ∆ξmin

∆ξmob

∆c̄

 = −

 G1(w)
G2(w)
G3(w)

 , (5.5)

with H ∈ ∂BGF(w) and w = [ξmin, ξmob, c̄] ∈ D. This semismooth Newton method is only
well defined if all elements from ∂BGF(w) are nonsingular, especially around a solution
point. We proceed by stating the whole algorithm. Hereby we ignore the restriction w =

[ξmin, ξmob, c̄] ∈ D, which is equivalent with c(ξmin, ξmob) > 0. If we start sufficiently close
to a solution inD, the iterates will stay inD.

Algorithm 5.2.1 (Semismooth Newton Method).

(S.0) (Initialization)
Choose w0 = [ξ0

min, ξ
0
mob, c̄

0] ∈ D, ε ≥ 0 and set k := 0.

(S.1) (Termination Criterion)
If

∥∥∥∥GF

(
wk

)∥∥∥∥
∞
≤ ε or wk < D, stop.

(S.2) (Newton Direction Calculation)
Choose H ∈ ∂BGF

(
wk

)
. Find a solution dk of the linear system

Hd = −GF(wk) .

(S.3) (Update)
Set wk+1 := wk + dk , k ← k + 1, and go to (S.1).
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Now we deal with the nonsingularity of the elements of ∂GF . For Algorithm 5.2.1 we
need only the nonsingularity of the elements of ∂BGF . But it doesn’t require more effort
to study the generalized Jacobian instead. Here we can benefit from results in Chapter 4,
which were too general or seemingly unnecessary at that time. Particularly the result about
the nonsingularity of the elements of ∂EG(w) will be useful here. We remind the reader
that τmax > 0 was defined in (4.25) as

τmax =
θ

‖Lh‖sp ·
√

1 + s2

where s > 0 is a constant that depends only on the stoichiometric matrices S 1
min and S 1

mob.

Theorem 5.2.2. Let w =
[
ξmin, ξmob, c̄

]
∈ D and J ∈ ∂GF(w) be arbitrary. Furthermore let

0 ≤ τ < τmax. Then J is nonsingular, more precisely

(−1)(Jmin·p)(Jmob·p+2) det J > 0 .

Proof. Let J ∈ ∂GF(w) be arbitrary. According to (5.4) we have

J :=


θI + τLh 0 I

Q1 Q2 Q3
∂Qmob
∂ξmin

∂Qmob
∂ξmob

0


where the k-th row Q(k) of Q = [Q1 | Q2 | Q3] looks like

Q (k) :=
[
−α∂Ẽi(x)

∂ξmin

∣∣∣ −α∂Ẽi(x)
∂ξmob

∣∣∣ −β∂c̄i(x)
∂c̄

]
with coefficients α ≤ 0, β ≤ 0 that can’t vanish at the same time. In Section 4.3 we defined
the elements of ∂EG(w) in a very similar way. Only the coefficients ak, bk were nonnegative
there. The matrix Q has Jmin p rows. By multiplying every row of Q in J with (−1) we get
an element J̃ from ∂EG(w) and it holds

det J̃ = (−1)Jmin p det J .

Thanks to Theorem 4.5.3 we know that

(−1)(Jmin·p)(Jmob·p+1) det J̃ > 0

holds and therefore
(−1)(Jmin·p)(Jmob·p+1)(−1)Jmin p det J > 0 .

�

If we choose τ ∈ [0, τmax) then Algorithm 5.2.1 is well-defined and we have no problems
with nonsingularity even far away from a solution point. This guarantees that every point
inD is BD-regular.
Now we state the main local convergence result for this Newton-type method.
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Theorem 5.2.3. Let w∗ := [ξ∗min, ξ
∗
mob, c̄

∗] ∈ D be a BD-regular solution of the nonlinear
system GF (w) = 0. Then there exists an ε > 0 such that for every starting point w0 ∈

Bε (w∗) the following assertions hold:

(1) The Newton-type iteration defined in Algorithm 5.2.1 is well-defined and produces a
sequence

{
wk

}
that converges to w∗.

(2) The rate of convergence is quadratic.

Proof. We have to choose ε > 0 such that Bε (w∗) ⊂ D holds, because GF is only defined on
D. This is possible becauseD is a convex and open set. Thanks to Lemma 5.1.1 we know
that GF is strongly semismooth. Then the assertion follows from [38, Theorem 3.1]. �

5.3 Globalization

It is well known that Newton’s method is only locally convergent. In this section we discuss
a minimizing approach to make it globally convergent. The idea is to minimize

F : D → R, F(w) :=
1
2
‖GF(w)‖22

with w = [ξmin, ξmob, c̄]. If w∗ ∈ D is a global minimum of F with F(w∗) = 0 then GF(w∗) =

0 holds, too. Conversely if w∗ ∈ D solves GF(w) = 0 it is also a global minimizer of F
with F(w∗) = 0. Any method of unrestricted optimization could be used to minimize F,
where the fact that D is only a subset of R(2Jmin+Jmob)p is simply ignored, i.e. the algorithm
terminates for an unfeasible point. We will use a line search method with the Newton
direction as descent direction and the Armijo rule as step size control.

First we examine F more closely. Explicitly we have

F(w) =
1
2

∥∥∥θξmin + c̄ + τLhξmin − θξ
old
min − c̄old

∥∥∥2

2

+
∑

(i,x)∈{1,...,Jmin}×Ωh

ψ
(
Ẽi (ξmin(x), ξmob(x)) , c̄i(x)

)
+

1
2

∑
(i,x)∈{1,...,Jmob}×Ωh

Q̃mob,i (ξmin(x), ξmob(x))2

where ψ is just the squared Fischer-Burmeister function, i.e.

ψ : R2 −→ R, ψ(a, b) :=
1
2
ϕF(a, b)2 . (5.6)

For our globalization approach it is very important that ψ is continuously differentiable,
because then F is also continuously differentiable on D. This was first mentioned by
Kanzow [22]. We bring the more sophisticated proof proposed by Facchinei and Soares
[13].
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Theorem 5.3.1. The squared Fischer-Burmeister function ψ defined in (5.6) is continuously
differentiable on the whole space R2. It’s differential in the origin is

∇ψ(0, 0)T = [0, 0] .

Proof. With Proposition 2.2.5 it holds that ∂ψ(0, 0) = ϕF(0, 0)∂ϕF(0, 0) = {[0, 0]}. The
Fischer-Burmeister function ϕF is continuously differentiable for [a, b] , [0, 0] and so is the
squared Fischer-Burmeister function ψ. With Proposition 2.2.2(b) we have that ∂ψ(a, b) =

{ψ′(a, b)} in [a, b] , [0, 0]. Then the generalized gradient ∂ψ(a, b) is everywhere single
valued. Again thanks to Proposition 2.2.2(b) is ψ continuously differentiable on R2 and the
only element of ∂ψ(0, 0) is the transposed gradient of ψ. �

The function g(x) := 1
2 ‖x‖

2
2 is continuously differentiable and its differential is g′(x) =

xT . Therefore we can apply Proposition 2.2.5 to F = g ◦ G and we get as generalized
gradient

∂F(w) = GF(w)T∂GF(w), w ∈ D.

Since F is continuously differentiable we can conclude that

∂F(w) = {F′(w)} = GF(w)T∂GF(w) (5.7)

holds for w ∈ D. Now we are ready for our next result.

Theorem 5.3.2. Let w ∈ D and τ ∈ [0, τmax). Every stationary point w ∈ D of F is a global
minimizer with

F(w) = 0 and GF(w) = 0 .

Proof. In Theorem 5.2.2 we have seen that all elements of ∂GF(w) are nonsingular if τ ∈
[0, τmax). With (5.7) we can conclude for a stationary point w ∈ D that

0 = ∇F(w) = HTGF(w)

holds for all H ∈ ∂GF(w). Since H is nonsingular if follows that GF(w) = 0. With the
definition of F we can deduce F(w) = 0. �

Usually optimization methods only give local minima or stationary points. With this
theorem we know that every such point is already a global minimizer and a solution of our
primary problem. So we don’t have to worry about local minima.

Now we formulate the globalized Newton’s method.

Algorithm 5.3.3 (Globalized Semismooth Newton Method).

(S.0) (Initialisation)
Choose w0 =

(
ξ0

min, ξ
0
mob, c̄

0
)
∈ D, ρ > 0, p > 2, β ∈ (0, 1), σ ∈ (0, 1

2 ), ε ≥ 0 and set
k := 0.

(S.1) (Termination Criterion)
If

∥∥∥∥F
(
wk

)∥∥∥∥
∞
≤ ε or wk < D, stop.
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(S.2) (Search Direction Calculation)
Choose Jk ∈ ∂BGF

(
wk

)
without restriction. Find a solution dk of the linear system

Jkd = −GF
(
wk) . (5.8)

If this linear system is not solvable or if the descent condition

∇F(wk)T dk ≤ −ρ
∥∥∥dk

∥∥∥p
(5.9)

is not satisfied, set dk := −∇F(wk) .

(S.3) (Line Search with Armijo rule)
Compute tk := max

{
βl | l = 0, 1, 2, . . .

}
such that

F(wk + tkdk) ≤ F(wk) + σtk∇F(wk)T dk .

(S.4) (Update)
Set wk+1 := wk + tkdk , k ← k + 1, and go to (S.1).

For numerical calculations one would set ε as a small positive number, e.g. a multiple
of the machine constant. For our theoretical analysis we assume ε = 0. If this algorithm
terminates with wk then it is either a solution or an infeasible point. If it does not terminate,
it produces an infinite sequence

{
wk

}
. The following theorem covers this case. It is based

on a paper by De Luca, Facchinei and Kanzow [10].

Theorem 5.3.4. Let τ ∈ [0, τmax) and let
{
wk

}
be a infinite sequence generated by Algorithm

5.3.3 with ε = 0.
Then a feasible accumulation point w∗ ∈ D of this sequence is a global minimizer of F with
F(w∗) = 0 and a solution of GF(w) = 0. And it is the only limit of

{
wk

}
, i.e. limk→∞ wk = w∗.

Furthermore

(a) Eventually dk is always given by the solution of (5.8), i.e. there is an index k1 such
that for k > k1 always dk , −∇F(wk) holds.

(b) Eventually the step size of one is always accepted in the line search, i.e. there is an
index k2 such that for k > k2 always tk = 1 and consequently wk+1 = wk + dk holds.

(c) The convergence rate is quadratic.

Proof. From Theorem 5.3.2 we know that every stationary point is a global minimizer
of F. Thanks to Theorem 5.2.2 and the assumption τ ∈ [0, τmax) we can conclude that
the accumulation point w∗ ∈ D is a BD-regular point. The inner function Ẽ in G2 is
a C∞-function on D. Now all assertions follow with [10, Theorem 11]. The fact that
our function GF constitutes a mixed complementary problem and not a complementary
problem as required in the paper is not important for the theorem. This can be seen in the
proof of that theorem. Anyhow the block component functions G1 and G3 which do not
relate to a complementary problem are C∞-functions onD. �

Remark 5.3.5. Without the condition τ ∈ [0, τmax) the statements of this theorem still hold
if w∗ is a BD-regular point.
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5.4 Numerical Example

The reactive transport problem from Chapter 3 formulated with the Fischer-Burmeister
function was implemented in two versions using MATLAB R©. Both Versions tackle the
arising linear equation systems directly without any reformulation or transformation. The
first version applies a line seach along the Newton direction while the second version just
takes the Newton direction itself to calculate the next iterate. We will refer to the first ver-
sion as FBglob algorithm and to the second version as FBloc algorithm. Both versions use
the same discretization of the PDE-operator as the numerical algorithms from Section 4.8.
Also they solve the decoupled linear system (for the η variables) in exactly the same way
as the algorithms from Chapter 4. In the following we ignore this decoupled linear systems
and focus on the Newton iteration for the remaining nonlinear system (5.2) formulated with
the Fischer-Burmeister function as NCP-function.

In order to compare the results of the algorithms MinSchur and MinFull from Chapter 4
with these algorithms we consider the same example with the same constants and with the
same step sizes h = τ = 0.1. The algorithms FBglob and FBloc produce the same solution
as the algorithms MinSchur and MinFull. The maximal difference of the solution vectors
of these new algorithms and the previous algorithms is 10−8 per time step measured in the
maximum norm. Visualizing the results from the new algorithms would produce the same
pictures as in Section 4.8.

In Table 5.1 we list the Newton iterates of some typical time steps of the FBloc and
FBglob algorithms. As termination criterion we chose ‖G (z)‖∞ < 10−11. The second and
third columns show the errors of both algorithms. The last column shows the step size that
is accepted with the Armijo rule along the Newton direction in the FBglob algorithm. First
of all we see that the Armijo step is almost always 1. After about 50 time steps deviations
from the line search step 1 are very rare. This is probably due to good start values for
the Newton iteration, which are listed as iteration 0 in the table. As start values we take
the solution from the previous time step. This behavior is consistent with the theory, cf.
Theorem 5.3.4. Since the FBglob algorithm differs from the FBloc algorithm only in the
additional line search it is therefore no surprise that the iterates of both algorithms coincide
almost always. Differences occur only in the first 50 time steps. This is displayed in the
good consistency of the errors of both algorithms. The convergence rate for both methods
is superlinear and sometimes quadratic. They need about the same number of iterations,
which is usually 5 or 6 and rarely 4 or 8. It is quite clear that they are not as efficient as
the algorithms MinSchur and MinFull, which clearly display quadratic convergence. Why
the FBloc and FBglob algorithms only seldom show the theoretical predicted quadratic
convergence is not clear. We suspect that the evaluation of the derivative of the Fischer-
Burmeister function near [0, 0] introduces very small errors.

Table 5.2 shows information about the linear systems that arise during the Newton iter-
ation as subproblems in the FBloc algorithm. These numbers are of course valid for the
FBglob algorithm, too. These linear systems are solved with the GMRES(50) method. The
last column in this table shows the total number of inner iterations and the third column
shows the condition numbers of the corresponding Jacobians. We see that the condition
numbers have the same order of magnitude as for the MinFull algorithm. For the start-
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time step iteration algo. FBloc:‖G (z)‖∞ algo. FBglob:‖G (z)‖∞ Armijo
step

1 0 6.264927 · 10−1 6.264927 · 10−1 1
1 2.223732 · 10−2 2.223732 · 10−2 1
2 6.133391 · 10−4 6.133391 · 10−4 1
3 6.688679 · 10−5 6.688679 · 10−5 1
4 4.190574 · 10−8 4.190574 · 10−8 1
5 1.654763 · 10−8 1.654763 · 10−8 1
6 6.615356 · 10−10 6.615356 · 10−10 1
7 1.398322 · 10−12 1.398322 · 10−12

18 0 4.920261 · 10−2 4.920261 · 10−2 1
1 2.126614 · 10−4 2.126615 · 10−4 1
2 1.071023 · 10−6 1.071021 · 10−6 0.3
3 8.610043 · 10−7 9.508448 · 10−7 1
4 1.024707 · 10−7 4.519288 · 10−7 1
5 2.515772 · 10−11 1.410458 · 10−9 1
6 1.096902 · 10−13 1.021403 · 10−13

102 0 1.375459 · 10−2 1.375459 · 10−2 1
1 9.300983 · 10−4 9.300983 · 10−4 1
2 4.465934 · 10−6 4.465934 · 10−6 1
3 3.136712 · 10−10 3.136712 · 10−10 1
4 1.861855 · 10−12 1.861855 · 10−12

133 0 1.271447 · 10−2 1.271447 · 10−2 1
1 6.183039 · 10−3 6.183039 · 10−3 1
2 8.608736 · 10−4 8.608736 · 10−4 1
3 3.980050 · 10−5 3.980050 · 10−5 1
4 1.016641 · 10−7 1.016641 · 10−7 1
5 6.812328 · 10−13 6.812328 · 10−13

1230 0 1.371732 · 10−2 1.371732 · 10−2 1
1 9.092115 · 10−3 9.092115 · 10−3 1
2 1.096420 · 10−3 1.096420 · 10−3 1
3 1.950766 · 10−4 1.950766 · 10−4 1
4 3.207753 · 10−6 3.207753 · 10−6 1
5 1.325427 · 10−9 1.325427 · 10−9 1
6 1.296740 · 10−13 1.296740 · 10−13

Table 5.1: Comparison of errors
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ing iterations they are even worse. Therefore it is not surprising that the number of inner
GMRES iterations is even greater than for the MinFull algorithm. The size of these linear
systems (both columns and rows) is of course constant since the matrix from the linear
systems is always the Jacobian of GF .

time step iteration Condition FBloc size full FBloc
GMRes
iterations

1 0 7003.7459 42700 382
1 5332.8800 42700 438
2 4201.0067 42700 296
3 3988.4142 42700 192
4 3981.2698 42700 240
5 3996.4149 42700 194
6 3981.2660 42700 175

2 0 7003.7213 42700 343
1 5328.7233 42700 484
2 4199.4568 42700 321
3 3988.3245 42700 180
4 3981.2726 42700 190
5 3981.2731 42700 235
6 3981.2696 42700 199

3 0 7003.6752 42700 322
1 5324.8248 42700 512
2 4198.2968 42700 323
3 3988.0174 42700 183
4 3981.2704 42700 175
5 3981.2733 42700 175
6 3981.2703 42700 169
7 3981.2703 42700 188

Table 5.2: Linear systems from the FBloc algorithm

Finally we used the FBloc algorithm to calculate a long term simulation for this example
with some altered constants. In contrast to the previous calculations and Section 4.8 we
chose q = 0.03, θ = 0.45, βl = 0.3 and βt = 0.4. The step sizes remained unchanged,
namely τ = h = 0.1. The numerical results are displayed in Figures 5.1–5.3. The water
flow from the left is twice times as fast as the water flow in the simulation from Section 4.8.
But there are no substantial differences. The whole process just develops faster. In Figure
4.3 we see that Mineral B is dissolving again. The numerical results from the previous
chapter only indicate this.
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t = 0.4sCO2 Mineral A

H+ Calcite

HCO−3 Mineral B

t = 40s
CO2 Mineral A

H+ Calcite

HCO−3 Mineral B

Figure 5.1: Results obtained after t = 0.4 seconds.
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t = 120sCO2 Mineral A

H+ Calcite

HCO−3 Mineral B

t = 200s
CO2 Mineral A

H+ Calcite

HCO−3 Mineral B

Figure 5.2: Results obtained after t = 120 seconds.
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t = 280sCO2 Mineral A

H+ Calcite

HCO−3 Mineral B

t = 360s
CO2 Mineral A

H+ Calcite

HCO−3 Mineral B

Figure 5.3: Results obtained after t = 280 seconds.



6 The Determinant Theory

In this chapter we will develop a small theory which is applied in Section 4.5. The theory is
more general than we need for our problem. So it might be significant for other problems,
too. First we introduce the problem of interest.

Let n,m ∈ N with m < n. Furthermore let S ∈ Rn×m, S = (si, j) be a matrix with
full column rank, i.e. rankS = m. Let V ∈ Rn×d be an arbitrary matrix with d ≤ n and
rankV = d. Finally let y ∈ Rn be an arbitrary vector and D(y) := diag (y1, y2, . . . , yn). With
this we define the matrix valued function

F : Rn
+ −→ R

m×d, y 7→
(
S T D(y)S

)−1
·
(
S T D(y)V

)
(6.1)

where Rn
+ denotes the set of real vectors with only positive entries. Our goal is to show that

the spectral norm of F(y) is bound for all y ∈ Rn
+. Since all norms in a finite dimensional

space are equivalent this holds for all other matrix norms, too. For our analysis of F(y)
during this chapter we will make intense use of the determinant and its properties. Thus
the name of this chapter.

In the first section we will introduce some special notation for this chapter. And we cite
some basic theorems upon which the rest of this chapter is build. In the second section we
will develop a formula for the entries of F(y) in Lemma-size steps. In Section 6.3 upper
bounds for the entries of F(y) and for some matrix norms of F(y) are developed. And
finally in the fourth section we will see how this theory applies to our main problem.

6.1 Preliminaries

This chapter is technically difficult. To make it as simple as possible, we use in this chapter
special notation.

Let M be an arbitrary p×q matrix with p, q ∈ N. With p̄ we denote the set {1, 2, 3, . . . , p}.
Furthermore for I ⊂ p̄ the matrix MI is the submatrix of M that contains only the rows in
the index set I. The ordering of these rows is preserved. For j ∈ q̄ let M/ j be the submatrix
of M that emerges from M by canceling its j-th column. For i ∈ p̄ we denote with M/i
the matrix M without its i-th row. This notation can be combined e.g. M/ j

/i . Generally
superscripts apply to columns and subscripts apply to rows. As a short form for I \ { j} we
often write I\ j, but only if we leave out just one element. Let us consider a short example.
Let I ⊂ p̄, i ∈ I and j ∈ q̄. Then M/ j

I\i denotes the submatrix of M, where the j-th column
is left out and the row indices are in I \ {i}. With |I| we denote the cardinal number of I.

We state some results from linear algebra which will be important for our further inves-
tigation. The following theorem will play a crucial role. It is given here in a simplified
form.
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Theorem 6.1.1 (Binet-Cauchy). Let p > q be positive integers. Let A, B ∈ Rp×q be arbi-
trary matrices. Then

det
(
AT · B

)
=

∑
I⊂p̄
|I|=q

det (AI) · det (BI) . (6.2)

Proof. see [17, p. 22]. �

The next result is a well known result about calculating the inverse of a square matrix.

Theorem 6.1.2. Let A be a nonsingular p × p matrix. Then

A−1 =
1

det A
· Ã ,

where Ã =
(
ãi, j

) j=1,...,p

i=1,...,p
is the adjoint of A with ãi, j = (−1)i+ j

· det
(
A/i/ j

)
.

Proof. see [17, p.20-21]. �

Finally we state the Laplace determinant expansion theorem.

Theorem 6.1.3 (Laplace expansion of the determinant). Let A =
(
ai, j

)
be a real p × p

matrix. For i ∈ p̄ it holds

det (A) = (−1)i
p∑

k=1

(−1)k
· ai,k · det

(
A/k/i

)
(expansion for row i)

and for j ∈ p̄ it holds

det (A) = (−1) j
p∑

k=1

(−1)k
· ak, j · det

(
A/ j
/k

)
(expansion for column j) .

Proof. see [17, p. 7]. �

6.2 Formulas for the Entries of F(y)

The function y 7→ F(y) is a matrix valued function. In this section we will develop direct
formulas for the individual entries of F(y). We do this in several Lemma-size steps.

For preparation we start by applying the Theorem of Binet-Cauchy from Section 6.1 to
a matrix product. This yields a couple of very simple but useful results that will help to
understand the technical proofs to come. In this section we do not need y ∈ Rn to have only
positive components. But later on we have to restrict the domain of y somewhat.

Lemma 6.2.1. Let T and R be real p × q matrices with p > q. Furthermore let D(y) =

diag(y1, y2, . . . , yp) be a diagonal p × p matrix with y ∈ Rp. Then

det
(
RT D(y)T

)
=

∑
I⊂ p̄
|I|=q

((∏
i∈I

yi
)
· det (RI) · det (TI)

)
.
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Proof. Let

T =


t1

t2
...
tp


with ti =

(
ti,1, ti,2, . . . , ti,q

)
the i-th row of T =

(
ti, j

) j=1,...,q

i=1,...,p
. With Theorem 6.1.1 we obtain

det
(
RT (D(y)T )

)
=

∑
I⊂p̄, |I|=q

det (RI) · det
(
(D(y) · T )I

)
.

Since

D(y) · T =


y1 · t1

y2 · t2
...

yp · tp

 ,
it follows from the linearity of the determinant in every row that

det
(
(D(y) · T )I

)
=

(∏
i∈I

yi

)
· det (TI)

holds. Together with the second equation in this proof the assertion follows. �

From this Lemma we can easily deduce two Corollaries that we really need later.

Corollary 6.2.2. Let S and D(y) be as in (6.1). Then

det
(
S T D(y)S

)
=

∑
I⊂n̄
|I|=m

((∏
i∈I

yi
)
· det (S I)2

)
.

Proof. We just apply Lemma 6.2.1 with R := S , T := S , q := m and p := n. �

Corollary 6.2.3. Let S and D(y) be as in (6.1). Then for all i, j = 1, . . . ,m

det
( (

S T D(y)S
)/ j

/i

)
=

∑
I⊂n̄
|I|=m−1

((∏
k∈I

yk
)
· det

(
S /i
I

)
· det

(
S / j
I

))
.

Proof. It is not difficult to see that
(
S T D(y)S

)/ j

/i
=

(
S /i

)T
D(y)S / j holds. Now we can apply

Lemma 6.2.1 with R := S /i, T := S / j, q := m − 1 and p := n. �

The first Corollary shows that S T D(y)S is singular if y = 0 holds. And the y-values
where S T D(y)S is singular are roots of a polynomial. We define the complement set as

M :=
{
y ∈ Rn | S T D(y)S nonsingular

}
. (6.3)

If y > 0 or y < 0 then y is an element ofM.
In the next Lemma we calculate the inverse matrix of S T D(y)S using its adjoint matrix,

cf. Theorem 6.1.2.
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Lemma 6.2.4. Let S and D(y) be as in (6.1) and let y ∈ M. Then(
S T D(y)S

)−1
=

1
det (S T D(y)S )

· H ,

with H =
(
hi, j

) j=1,...,m

i=1,...,m
the adjoint of S T D(y)S i.e.

hi, j = (−1)i+ j
· det

((
S T D(y)S

)/ j

/i

)
= (−1)i+ j

· det
((

S /i
)T

D(y)
(
S / j

))
. (6.4)

Proof. Since S T D(y)S is symmetric it holds
(
S T D(y)S

)/ j

/i
=

((
S T D(y)S

)T
)/ j

/i
=

(
S T D(y)S

)/i
/ j
.

It is easy to see that
(
S T D(y)S

)/ j

/i
=

(
S /i

)T
D(y)

(
S / j

)
. Now we can apply Theorem 6.1.2

and the assertion follows immediately. �

In the following we need another special notation. Let T be a p × q matrix and I ⊂ q̄ a
set of row indices. For i ∈ I the i-th row in T is still present in TI but its index changes.
We denote the new index with σ(i). If there are two rows i, j ∈ I with equal entries and
i < j then σ(i) < σ( j) shall also hold, i.e. the order of these rows in TI is preserved. With
this we have defined an obviously bijective function

σ : I −→ {1, . . . , |I|} , i 7→ σ(i) (6.5)

in a non-ambiguous way.
In the following Lemma we expand the determinant of TI for its σ(i)-th row according

to Theorem 6.1.3. Though this result is trivial, it is an important component for the further
investigation.

Lemma 6.2.5. Let T = (ti, j) be a real p × q matrix with p > q. Furthermore let I ⊂ p̄ ,
|I| = q and i ∈ I. Then it holds

(−1)σ(i)
q∑

j=1

(−1) j det
(
T / j
I\i

)
· ti, j = det TI ,

where σ is the function defined above.

Proof. We apply Theorem 6.1.3 to expand TI for the σ(i)-th row and obtain

det TI = (−1)σ(i)
p∑

j=1

(−1) j
· t̃σ(i), j · det (TI)/ j

/σ(i) .

Here t̃ is just the variable denoting the entries of TI, i.e. TI =
(
t̃i. j

)
. Since the σ(i)-th row

in TI is the same as the i-th row in T , canceling the σ(i)-th row from TI is the same as
canceling the i-th row from T . Thus it holds (TI)/σ(i) = TI\i. For the same reason we have
t̃σ(i), j = ti, j. This is the assertion. �
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The next Lemma is very similar. The difference is that this time the determinant of a
matrix is expanded which has two identical rows. It is the square matrix[

r̃
RJ

]
where r̃ is a row in RJ . It is expanded for the first row r̃.

Lemma 6.2.6. Let R = (ri, j) be a real p × q matrix with p > q. Furthermore let J ⊂ p̄,
|J| = q − 1 and i ∈ J . Then

q∑
j=1

(−1) j det
(
R/ j
J

)
· ri, j = 0 .

Proof. Let r̃ :=
(
ri,1, ri,2, . . . , ri,q

)
be the i-th row of R and T :=

[
r̃

RJ

]
. Clearly T is a q × q

matrix and det T = 0. Now we expand T for the first row with Theorem 6.1.3 and get

0 = det T = (−1)1
q∑

j=1

(−1) j
· t1, j · det

(
T / j
/1

)
= (−1)

q∑
j=1

(−1) j
· ri, j · det

(
R/ j
J

)
.

Multiplying this equation by (−1) yields the result. �

For convenience we introduce an abbreviation. Let H =
(
hi, j

) j=1,...,m

i=1,...,m
be the matrix from

Lemma 6.2.4. For y ∈ M we define

B := H · S T · D(y) , B =
(
bi, j

) j=1,...,n

i=1,...,m
. (6.6)

According to the definition of H, it holds

B = det
(
S T D(y)S

)
·
(
S T D(y)S

)−1
· S T D(y) .

By finding formulas for the entries bi, j we take a big step toward finding formulas for the
entries of F(y). This is done in the next Lemma.

Lemma 6.2.7. Let i ∈ m̄ and j ∈ n̄ be arbitrary indices. Furthermore let y ∈ M. Then it
holds

bi, j = (−1)i
·

∑
I⊂n̄
|I|=m , j∈I

(−1)σ( j)
·
(∏

l∈I

yl
)
· det

(
S /i
I\ j

)
· det

(
S I

)
,

where σ is the function defined in (6.5).

Proof. Entry (k, j) of S T D(y) is (
S T D(y)

) j

k
= y j · s j,k .
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We start by formulating the matrix multiplication H ·
(
S T D(y)

)
element-wise

bi, j =

m∑
k=1

hi,k · y j · s j,k

Def. of hi,k
=

m∑
k=1

(−1)i+k det
((

S T D(y)S
)/k
/i

)
· y j · s j,k

Cor. 6.2.3
=

m∑
k=1

(−1)i+k
· y j · s j,k ·

∑
I⊂n̄, |I|=m−1

((∏
l∈I

yl

)
· det

(
S /i
I

)
· det

(
S /k
I

))
=

∑
I⊂n̄
|I|=m−1

(−1)i
·
(∏

l∈I

yl

)
· y j · det

(
S /i
I

)
·

 m∑
k=1

s j,k · (−1)k
· det

(
S /k
I

) ,
where we just reordered the finite sums in the last equation. According to Lemma 6.2.6, the
last term in square brackets vanishes for j ∈ I. We consider this and continue the equation
chain

=
∑
I⊂n̄
|I|=m−1 , j<I

(−1)i
·
(∏

l∈I

yl

)
· y j · det

(
S /i
I

)
·
( m∑

k=1

s j,k · (−1)k
· det

(
S /k
I

))
=

∑
I⊂n̄
|I|=m , j∈I

(−1)i
·
(∏

l∈I

yl

)
· det

(
S /i
I\ j

)
·
( m∑

k=1

s j,k · (−1)k
· det

(
S /k
I\ j

))
Lemma 6.2.5

=
∑
I⊂n̄
|I|=m , j∈I

(−1)i
·
(∏

l∈I

yl

)
· det

(
S /i
I\ j

)
·
(

(−1)σ( j)
· det (S I)

)
,

where σ is the function defined in (6.5) and applied to S . Now the assertion follows imme-
diately. �

In the next lemma we go one step further.

Lemma 6.2.8. Let v ∈ Rn and y ∈ M. Then for i ∈ n̄ we have

[B · v]i =
∑
I⊂n̄
|I|=m

(∏
l∈I

yl

)
· det (S I) · det

(
S ∗i
I

)
= det

(
S T D(y)S ∗i

)
,

where S ∗i emerges from S by replacing the i-th column of S with v.
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Proof. With the preceding Lemma (and its notation) we have

[B · v]i =

n∑
j=1

bi, j · v j

= (−1)i
·

n∑
j=1

∑
I⊂n̄
|I|=m , j∈I

(−1)σ( j)
·
(∏

l∈I

yl

)
· det

(
S /i
I\ j

)
· det (S I) · v j

(∗)
=

∑
I⊂n̄
|I|=m

(∏
l∈I

yl

)
· det (S I)

(∑
j∈I

(−1)i
· (−1)σ( j)

· det
(

(S I)/i/σ( j)
)
· v j

)
(∗∗)
=

∑
I⊂n̄
|I|=m

(∏
l∈I

yl

)
· det (S I)

( m∑
k=1

(−1)i
· (−1)k

· det
(

(S I)/i/k
)
· (vI)k

)
.

In (∗) we change the order of summation. We cancel the summation condition j ∈ I in
the first sum and compensated for that by adding up in the second sum only indices which
are in I. The σ-index function used here applies to S . In (∗∗) we use the fact that σ( j)
denotes the index of row j of S in S I. Then we replace σ( j) with k using the fact that σ is
a bijective map. Note that for j ∈ I we have v j = (vI)σ( j).

Considering the definition of S ∗i it is not difficult to see that

( m∑
k=1

(−1)i
· (−1)k

· det
(

(S I)/i/k
)
· (vI)k

)
is the expansion of S ∗i

I
for the i-th column (cf. Theorem 6.1.3). So we can resume our

equation chain by

[B · v]i =
∑

I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I) ·

( m∑
k=1

(−1)i
· (−1)k

· det
(
(S I)/i/k

)
· (vI)k

)
=

∑
I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I) · det

(
S ∗i
I

)
= det

(
S T D(y)S ∗i

)
,

where the last equation follows from Lemma 6.2.1. �

Building on the previous Lemma we can formulate the main result of this section. Re-
member that

F(y) =
(
S T D(y)S

)−1 (
S T D(y)V

)
.

We simplify the notation of the next Theorem by replacing V with one of its columns v.
Then (

S T D(y)S
)−1 (

S T D(y)v
)

is a vector. By giving formulas for each component of this vector, we have formulas for
each entry of F(y).
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Theorem 6.2.9. Let v ∈ Rn and y ∈ M. For i ∈ n̄ the matrix S ∗i is defined as in Lemma
6.2.8. Then

[(
S T D(y)S

)−1 (
S T D(y)v

)]
i
=

∑
I⊂n̄, |I|=m

(∏
l∈I yl

)
· det (S I) · det

(
S ∗i
I

)
∑
I⊂n̄, |I|=m

(∏
l∈I yl

)
· det (S I)2 .

If additionally v is in the image of S then there exists a vector a ∈ Rm, which is independent
of y, so that (

S T D(y)S
)−1 (

S T D(y)v
)

= a .

Proof. The first statement is just Corollary 6.2.2, Lemma 6.2.8 along with the definition of
matrix B in (6.6). The second statement should be quite obvious. If v ∈ Im (S ) (image of
S ) then there exists a vector a ∈ Rm with v = S · a. The rest is trivial. �

Remark 6.2.10. Each component of
(
S T D(y)S

)−1 (
S T D(y)v

)
is a rational function in the

variables y1, . . . , yn and in each product
∏

l∈I yl the involved variables are of first power.
Note that the products

∏
l∈I yl which show up in the enumerator surely show up in the de-

nominator as well. This is due to the common factor det (S I). But the denominator might
have more products since the factor det

(
S ∗i
I

)
in the enumerator can vanish, too. The coef-

ficients of the polynomial in the denominator are always non-negative. The denominator
can’t be zero, since y ∈ M and rank (S ) = m have been our prerequisites.

6.3 Bounds for F(y)

In this section we want to present estimates for the magnitude and the absolute magnitude
of the components of F (y) and for several norms of F(y). In this section we really need
all components of y to be positive (although some results may hold even if this is not the
case), i.e. y ∈ Rn

+. This implies that y ∈ M holds, whereM is the set defined in (6.3). Our
first estimate is quite straightforward.

Theorem 6.3.1. Let v ∈ Rn and y ∈ Rn
+ be arbitrary. For i ∈ m̄ it holds

∣∣∣∣∣[(S T D(y)S
)−1 (

S T D(y)v
)]

i

∣∣∣∣∣ ≤ ∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣∣
det

(
S ∗i
I

)
det (S I)

∣∣∣∣∣∣∣∣ ,
where the matrix S ∗i emerges from S by replacing the i-th column of S with v.

Proof. We use the formula from Theorem 6.2.9. Since yi > 0 for all i, we get using the
triangle inequality∣∣∣∣∣∣∣ ∑

I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I) · det

(
S ∗i
I

)∣∣∣∣∣∣∣ ≤ ∑
I⊂n̄, |I|=m

(∏
l∈I

yl

)
· |det (S I)| ·

∣∣∣∣det
(
S ∗i
I

)∣∣∣∣ .
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For the denominator we even have the equation∣∣∣∣∣∣∣ ∑
I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I)2

∣∣∣∣∣∣∣ =
∑

I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I)2 ,

because det (S I)2
≥ 0. Then we have∣∣∣∣∑I⊂n̄, |I|=m

(∏
l∈I yl

)
· det (S I) · det

(
S ∗i
I

)∣∣∣∣∣∣∣∑I⊂n̄, |I|=m
(∏

l∈I yl
)
· det (S I)2

∣∣∣
≤

∑
I⊂n̄, |I|=m

(∏
l∈I yl

)
· |det (S I)| ·

∣∣∣∣det
(
S ∗i
I

)∣∣∣∣∑
I⊂n̄, |I|=m

(∏
l∈I yl

)
· det (S I)2

≤
∑

I⊂n̄
|I|=m ,det(S I),0

(∏
l∈I yl

)
· |det (S I)| ·

∣∣∣∣det
(
S ∗i
I

)∣∣∣∣(∏
l∈I yl

)
· det (S I)2

=
∑

I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣∣
det

(
S ∗i
I

)
det (S I)

∣∣∣∣∣∣∣∣ .
�

With this result we know that every entry of F(y) is bounded for all y > 0. Therefore
every norm of F(y) must be bounded, too, for y > 0. From the proof of this theorem it is
also clear that this result cannot hold for all y ∈ Rn. Because there can be y values where
the denominator vanishes but the numerator does not.

Note that Theorem 6.3.1 holds even if some of the yi equal zero as long as∑
I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I)2

is positive. The bound in this theorem might be quite crude. In the next result we are
refining it.

Theorem 6.3.2. Let v ∈ Rn and y ∈ Rn
+ be arbitrary. For i ∈ m̄ it holds[(

S T D(y)S
)−1 (

S T D(y)v
)]

i
∈ [li, ui] ,

with

li =
∑

I⊂n̄
|I|=m ,det(S I)·det(S ∗i

I)<0

−

∣∣∣∣∣∣∣∣
det

(
S ∗i
I

)
det (S I)

∣∣∣∣∣∣∣∣
ui =

∑
I⊂n̄
|I|=m ,det(S I)·det(S ∗i

I)>0

∣∣∣∣∣∣∣∣
det

(
S ∗i
I

)
det (S I)

∣∣∣∣∣∣∣∣
and S ∗i is as in Theorem 6.3.1.
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Proof. This proof is very similar to the previous one. We just use different estimates for∑
I⊂n̄, |I|=m

(∏
l∈I yl

)
· det (S I) · det

(
S ∗i
I

)
. By omitting the negative terms we get the simple

estimate ∑
I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I) · det

(
S ∗i
I

)
≤

∑
I⊂n̄
|I|=m ,det(S I)·det(S ∗i

I)>0

(∏
l∈I

yl

)
· det (S I) · det

(
S ∗i
I

)
=

∑
I⊂n̄
|I|=m ,det(S I)·det(S ∗i

I)>0

(∏
l∈I

yl

)
·

∣∣∣∣det (S I) · det
(
S ∗i
I

)∣∣∣∣ .
With the same technique we get the lower estimate∑

I⊂n̄, |I|=m

(∏
l∈I

yl

)
· det (S I) · det

(
S ∗i
I

)
≥

∑
I⊂n̄
|I|=m ,det(S I)·det(S ∗i

I)<0

(∏
l∈I

yl

)
· det (S I) · det

(
S ∗i
I

)
=

∑
I⊂n̄
|I|=m ,det(S I)·det(S ∗i

I)<0

(∏
l∈I

yl

)
· (−1) ·

∣∣∣∣det (S I) · det
(
S ∗i
I

)∣∣∣∣ .
Since the denominator

∑
I⊂n̄, |I|=m

(∏
l∈I yl

)
· det (S I)2 is always positive we obtain our as-

sertion by using the triangle inequality. �

For the rest of this section we will develop bounds for the column-sum norm and the
row-sum norm of F(y) for all y > 0. To this end we need additional notation. Remember
that S is a n×m and V a n×d matrix, cf. (6.1). We write these matrices with their columns
as S =

[
s1 | s2 | . . . | sm

]
and V =

[
v1 | . . . | vd

]
. For i ∈ m̄ and j ∈ d̄ we define S ∗i∗ j as the

matrix that emerges from S by replacing its i-th column with the j-th column of V , i.e.

S ∗i∗ j = [s1 | . . . | si−1 | v j | si+1 | . . . | sm] .

With this notation we can formulate the next theorem.

Theorem 6.3.3. Let y ∈ Rn
+ be arbitrary. Then for the column-sum norm of F(y) it holds

‖F(y)‖C ≤ max
j=1,...,d

( m∑
i=1

∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣det
(
S ∗i∗ j
I

)
det (S I)

∣∣∣∣∣∣∣
)

and for its row-sum norm it holds

‖F(y)‖R ≤ max
i=1,...,m

( d∑
j=1

∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣det
(
S ∗i∗ j
I

)
det (S I)

∣∣∣∣∣∣∣
)
.
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Proof. First we remember that F(y) is a m × d matrix. From Theorem 6.3.1 we know that
for entry (i, j) of F(y) it holds∣∣∣F(y) j

i

∣∣∣ ≤ ∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣det
(
S ∗i∗ j
I

)
det (S I)

∣∣∣∣∣∣∣ .
With this we can immediately estimate the absolute sum of the i-th row of F(y) by

d∑
j=1

∣∣∣F(y) j
i

∣∣∣ ≤ d∑
j=1

∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣det
(
S ∗i∗ j
I

)
det (S I)

∣∣∣∣∣∣∣
and the absolute sum of the j-th column is bounded by

m∑
i=1

∣∣∣F(y) j
i

∣∣∣ ≤ m∑
i=1

∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣det
(
S ∗i∗ j
I

)
det (S I)

∣∣∣∣∣∣∣ .
Applying the maximum over all rows or columns, respectively, yields the assertion. �

It is not possible to deduce a formula for the upper bound of the spectral norm of F(y)
directly from the upper bounds of its entries. But one can estimate the spectral norm of
every p × q matrix A by

‖A‖sp ≤
√
‖A‖C · ‖A‖R ,

cf. Theorem A.3.1 in the appendix. Together with the previous theorem we have shown
the following corollary.

Corollary 6.3.4. Let y ∈ Rn
+ be arbitrary. Then the spectral norm of F(y) can be estimated

by
‖F(y)‖sp ≤

√
c · r

with

c = max
j=1,...,d

( m∑
i=1

∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣det
(
S ∗i∗ j
I

)
det (S I)

∣∣∣∣∣∣∣
)

and

r = max
i=1,...,m

( d∑
j=1

∑
I⊂n̄
|I|=m ,det(S I),0

∣∣∣∣∣∣∣det
(
S ∗i∗ j
I

)
det (S I)

∣∣∣∣∣∣∣
)
.

We stress that all these bounds are independant of the particular value y > 0. For arbitrary
y ∈ Rn this is not possible.
Remark 6.3.5. The bounds for several matrix norms of F(y) we have given here were ob-
tained in the same way. First we replaced each entry of F(y) by an upper bound of its
absolute value. Then we gave upper bounds for several norms of the resulting matrix.
Sharper bounds could be achieved, if one would optimize these matrix norms of F(y) di-
rectly using the representation of its entries from Theorem 6.2.9. This formidable restricted
optimization problem could probably be solved only numerically.
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6.4 Application to the Main Problem

In this section we want to see how all this theory applies to our main problem from chapter
3. To this end we use notation from Chapters 3 and 4. This means to apply this theory to
matrix D1, which was introduced in Section 4.3. We want to show that the spectral norm
of this matrix is bounded independently of the concentration vector c > 0. The defining
equation for D1 and D2 is −

∂ẼJ (ξmin,ξmob)

∂ξJmin
−
∂ẼJ (ξmin,ξmob)

∂ξmob

∂Q̃mob(ξmin,ξmob)
∂ξJmin

∂Q̃mob(ξmin,ξmob)
∂ξmob

 ·
[

D1

D2

]
= −

 −
∂ẼJ (ξmin,ξmob)

∂ξBmin
∂Q̃mob(ξmin,ξmob)

∂ξBmin

 (6.7)

or with the notation from Section 4.6[
B11 B12

B21 B22

]
·

[
D1

D2

]
= −

[
C1

C2

]
. (6.8)

We denote the whole matrices as B,D and C respectively. Like already mentioned in
Section 4.3 there is an orthogonal permutation matrix O such that B̃ := OBOT is a block
diagonal matrix. Since the blocks in B11, B12, C1 and in B21, B22,C2 always have the same
number of rows, multiplying C with O from the left hand side yields the matrix

C̃ := O ·C ,

with the block diagonal structure

C̃ = diag
(
C̃(x1), C̃(x2), . . . , C̃(xp)

)
, xi ∈ Ωh

and the blocks
C̃(xi) = [S 1

min,J(xi) | S
1
mob]T · Λc(xi) · S

1
min,B(xi) .

Remember that the blocks of B̃ look like

B̃(xi) = [S 1
min,J(xi) | S

1
mob]T Λc(xi)[S

1
min,J(xi) | S

1
mob] .

Now we multiply (6.8) from the left hand side with O and we insert OT O = I between B
and D and get

B̃ · OD = C̃ . (6.9)

The spectral norm of D and OD coincide since O is orthogonal. Therefore it is sufficient
to estimate the spectral norm of D̃ := OD. We already know (cf. Section 4.3) that B̃ is
nonsingular. Therefore we can transform (6.9) equivalently into

D̃ = B̃−1 · C̃ .

Now D̃ inherits the block structure of B̃ and C̃ and is therefore a block diagonal matrix
D̃ = diag

(
D̃(x1), . . . , D̃(xp)

)
. Each block D̃(xi) of this matrix looks like

D̃(xi) = B̃(xi)−1 · C̃(xi)

=
(
[S 1

min,J(xi) | S
1
mob]T Λc(xi)[S

1
min,J(xi) | S

1
mob]

)−1

·
(
[S 1

min,J(xi) | S
1
mob]T · Λc(xi) · S

1
min,B(xi)

)
.
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Utilizing the block structure of D̃ we can write its spectral norm with Theorem A.3.2 as∥∥∥D̃
∥∥∥

sp
= max

i=1,...,p

∥∥∥D̃(xi)
∥∥∥

sp
.

In summary the spectral norm of D1 can be estimated with

‖D1‖sp ≤ ‖D‖sp = ‖D̃‖sp = max
i=1,...,p

‖D̃(xi)‖sp .

For Ĵ ⊂ {1, . . . , Jmin} and B̂ := {1, . . . , Jmin} \ Ĵ we define the matrix valued function

FĴ : RI
+ −→ R

(|Ĵ |+Jmob)×|B̂|, FĴ (y) :=
(
S T D̂(y)S

)−1(S T D̂(y)V
)

with S := [S 1
min,Ĵ

| S 1
mob], V := S 1

min,B̂
and D̂(y) := diag (1/y1, 1/y2, . . . , 1/yI). Then FĴ (y)

is well-defined for y > 0 and has the same structure as F(y) defined in (6.1) although the
diagonal matrix D̂(y) is defined differently. For Ĵ = J(xi) it holds

FĴ (c(xi)) = D̃(xi) .

Remember J(xi) is the projection of J ⊂ {1, . . . , Jmin} ×Ωh on xi, i.e.

J(xi) = {k ∈ {1, . . . , Jmin} | (k, xi) ∈ J} .

Applying Corollary 6.3.4 to FĴ (y) for Ĵ ⊂ {1, . . . , Jmin} yields an upper bound s
Ĵ
> 0 such

that ∥∥∥FĴ (y)
∥∥∥

sp
≤ s

Ĵ

holds for all y > 0. Since every block matrix D̃(xi) can be written as FJ(xi)(c(xi)) with
J(xi) ⊂ {1, . . . , Jmin} it holds

max
i=1,...,p

‖D̃(xi)‖sp ≤ max
Ĵ⊂{1,...,Jmin}

sĴ .

We have proven the following Lemma.

Lemma 6.4.1. Let c > 0. Then the spectral norm of D1 is bound by

‖D1‖sp ≤ max
Ĵ⊂{1,...,Jmin}

s
Ĵ

=: s

where s
Ĵ

is the upper bound for FĴ (y) from Corollary 6.3.4.

Example 6.4.2. We demonstrate the calculation of the bound for the spectral norm of FĴ (y)
for only one subset Ĵ ⊂ {1, . . . , Jmin}. For this we use the data from the numerical example
in Section 4.8. Then we get I = 7, Jmin = 3, Jmob = 1. We choose the subset Ĵ = {1, 2}.
Remember that the rows of the stoichiometric matrix correspond to species and the columns
correspond to chemical reactions, cf. Subsection 3.1.4. For the assembling of S 1

min and S 1
mob
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we use the following order of the species involved: CO(aq)
2 , HCO−3 , H+, Ca2+, Me3+, SiO2,

Tracer. The order of the chemical reactions shall be as in Section 4.8. Then we get

S 1
min =



0 0 0
1 0 1
−1 −3 −2
1 0 0
0 1 1
0 1 0
0 0 0


, S 1

mob =



−1
1
1
0
0
0
0


.

From the definition of F{1,2}(y), which is a 3 × 1 matrix, we get

S =



0 0 −1
1 0 1
−1 −3 1
1 0 0
0 1 0
0 1 0
0 0 0


, V =



0
1
−2
0
1
0
0


.

Since V has only one column there are 3 matrices S ∗i∗ j, namely S ∗1∗1, S ∗2∗1, S ∗3∗1, where
S ∗3∗1 coincides with S 1

min. For this three matrices and for S we have to calculate the deter-
minants of all 3×3 submatrices. For each of these 4 matrices there are

(
7
3

)
= 35 submatrices

and the same number of determinants. Since the Tracer is not involved in chemical reac-
tions we can reduce this to

(
6
3

)
= 20 submatrices (the last row of S 1

min and S 1
mob vanishes).

Summarizing all calculations we get

∑
I⊂7̄
|I|=3 ,det(S I),0

∣∣∣∣∣∣det
(
S ∗1∗1
I

)
det (S I)

∣∣∣∣∣∣ = 7.5

∑
I⊂7̄
|I|=3 ,det(S I),0

∣∣∣∣∣∣det
(
S ∗2∗1
I

)
det (S I)

∣∣∣∣∣∣ = 8

∑
I⊂7̄
|I|=3 ,det(S I),0

∣∣∣∣∣∣det
(
S ∗3∗1
I

)
det (S I)

∣∣∣∣∣∣ = 7.5 .

Then we get in Corollary 6.3.4
c = 23, r = 8

and finally ∥∥∥F{1,2}(y)
∥∥∥

sp
≤
√

c · r = s{1,2} = 13.56 .

The same work has to be done for all other subsets Ĵ ⊂ {1, . . . , Jmin} and the corresponding
functions FĴ (y).
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From this example we see that it is in principle easy and straightforward to calculate the
bound s from Lemma 6.4.1. But we also see that it is quite some work to do this task by
hand, although none of the steps involved is difficult. In Section A.4 in the appendix we
have listed two MATLAB functions, which perform this task much faster.
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7 The Singular Value Theory

In this chapter we introduce a theory that gives very sharp bounds to estimate the smallest
and greatest eigenvalues of certain symmetric tridiagonal matrices. With this theory one
can give sharp bounds for the smallest and greatest singular value of θI + τLh from the de-
coupled linear equation system (3.30) if the discretization was done with finite differences.
This matrix also appears in the nonlinear equation system (3.36) and in the elements of the
general Jacobians ∂GM(w) and ∂GF(w). With this theory one can also tell whether θI + τLh

is positive definite, which depends on the choice of the step sizes h and τ. This information
is important for the application of GMRES to the equation system (3.30).

In Section 7.1 we introduce the already mentioned class of symmetric tridiagonal ma-
trices, which we study for the rest of the chapter, and some additional notation. To obtain
our results, we take a closer look at these matrices and exploit heavily the particular struc-
ture using a careful analysis of the corresponding characteristic polynomial. To this end,
we begin with some preliminary results in Section 7.2. The main results are contained in
Section 7.3, where we give suitable bounds for the two extremal eigenvalues. We apply
our results to the discretization of a partial differential equation in Section 7.4 where ma-
trices arise that can be decomposed as a Kronecker product of tridiagonal matrices of the
matrix class under investigation. The PDE we consider in this section is the same that we
introduced in Section 3.2 but without a coupled ODE and without algebraic and comple-
mentary conditions. This application was, in fact, the original motivation for the theory of
this chapter.

7.1 Introduction

Consider a tridiagonal matrix of the form

J =



α β
β α γ

γ α
. . .

. . .
. . . γ
γ α δ

δ α


∈ Rm×m (7.1)

with given entries α, β, γ, δ ∈ R. Matrices of this form arise quite frequently in many
contexts, and the eigenvalues of such matrices can often be used to compute eigenvalues of
more complicated matrices which arise, e.g. from the discretization of partial differential
equations.
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Our aim is to give sharp bounds for the smallest and largest eigenvalues of such a matrix.
There is no previous treatment of this problem in literature. There exist many results for
more general matrices like Gershgorin’s, Ostrowski’s or Brauer’s Theorem (see, e.g., [14,
17, 47]) that estimate the area to which the eigenvalues belong to, however, the bounds one
obtains from these results for the particular class of matrices considered here are by far too
weak. The lower bound on the smallest eigenvalue for the matrix J may also be used to
obtain a lower bound for the smallest singular value of a possibly nonsymmetric matrix.
This lower bound seems to be much stronger than existing ones, see, e.g.,[19, 20, 37].

Notation: Given an arbitrary matrix A ∈ Rm×m, we denote by As := 1
2

(
A + AT ) the

symmetric part of A. The singular values of A are denoted by σi(A) (i = 1, . . . ,m) and
ordered in such a way that σ1(A) ≤ σ2(A) ≤ . . . ≤ σm(A), in particular, σ1(A) and σm(A)
denote the smallest and the largest singular value of A, respectively. Similarly, given a
symmetric matrix A ∈ Rm×m, the corresponding (real) eigenvalues are denoted by λi(A) (i =

1, . . . ,m) and ordered in such a way that λ1(A) ≤ λ2(A) ≤ . . . ≤ λm(A) so that the symbol
λ1(A) (λm(A)) always stands for the smallest (largest) eigenvalue of A. We sometimes also
write λmin(A) (λmax(A)) for the smallest (largest) eigenvalue of A.

7.2 Preliminaries

Let us begin by recalling some known facts about symmetric tridiagonal matrices of the
form

T :=



α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βm

βm αm


∈ Rm×m

satisfying (without loss of generality) βk , 0 for all k = 2, . . . ,m. Furthermore, let

Tk :=



α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βk

βk αk


∈ Rk×k

be the leading k × k principal submatrix of T , and let

qk(x) := det
(
Tk − xI

)
∀k = 1, . . . ,m

be the corresponding characteristic polynomial. Then the following recursion holds, cf.
[14, p. 437]:

q0(x) := 1,
q1(x) = α1 − x, (7.2)

qk+1(x) = (αk+1 − x)qk(x) − β2
k+1qk−1(x) ∀k = 1, 2, . . . ,m − 1.
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Furthermore, the next result is also well-known, see [14, Thm. 8.4.1] or [47, Section 5.6].

Theorem 7.2.1 (Sturm Sequence Property).
Assume that βk , 0 for all k = 2, . . . ,m. Then the following statements hold:

(a) The eigenvalues of all principal submatrices Tk are real and simple.

(b) The eigenvalues of Tk−1 strictly separate the eigenvalues of Tk in the sense that

λ1(Tk) < λ1(Tk−1) < λ2(Tk) < . . . < λk−1(Tk) < λk−1(Tk−1) < λk(Tk).

(c) In the Sturm sequence {q0(λ), q1(λ), . . . , qm(λ)} let w(λ) denote the number of sign
changes (where we use the convention that vanishing entries qk(x) = 0 are removed
from this sequence before counting the sign changes). Then w(λ) equals the number
of eigenvalues of the matrix T that are strictly less than λ.

An immediate consequence of the previous result is the following one which can be used
to develop the well-known bisection method to compute single eigenvalues of symmetric
tridiagonal matrices.

Corollary 7.2.2. Let a, b ∈ R be given with a < b. Then w(b) − w(a) is the number of
eigenvalues of the symmetric tridiagonal matrix T lying in the interval [a, b).

We next want to give a lower bound for the smallest singular value of a given positive
(semi-) definite (but asymmetric) matrix A in terms of the smallest eigenvalue of the corre-
sponding symmtric part As. This result is a special case of [18, Cor. 3.1.5] but we give a
proof anyway.

Lemma 7.2.3. Let A ∈ Rm×m be positive semidefinite (not necessarily symmetric). Then
σ1(A) ≥ λ1(As) ≥ 0.

Proof. For an arbitrary (not necessarily symmetric or positive definite) matrix A, we have

min
‖x‖=1

xT Ax = min
‖x‖=1

xT Asx = λ1(As).

In particular, the assumed positive semidefiniteness of A implies the inequality λ1(As) ≥ 0.
In order to verify the first inequality, let us define the matrix B := A − λ1(As)I. This

definition implies

BT + B = AT + A − 2λ1(As)I = 2 ·
(
As − λ1(As)I

)
.

Since λ1(As) ≥ 0 is the smallest eigenvalue of As, it follows that 0 is the smallest eigenvalue
of Bs. The symmetry of BT + B therefore gives

min
‖x‖=1

xT (BT + B
)
x = 0.
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Using the fact that the smallest eigenvalue of the symmetric matrix AT A is given by (σ1(A))2,
cf. [9, Thm. 3.3], and taking into account the definition of the matrix B, we therefore obtain

(σ1(A))2 = min
‖x‖=1

xT AT Ax

= min
‖x‖=1

[
λ1(As)2xT x + λ1(As) · xT

(
BT + B

)
x + xT BT Bx

]
= λ1(As)2 + min

‖x‖=1

[
λ1(As) · xT

(
BT + B

)
x + xT BT Bx

]
≥ λ1(As)2 + λ1(As) · min

‖x‖=1

[
xT

(
BT + B

)
x
]

+ min
‖x‖=1

[
xT BT Bx

]
= λ1(As)2 + min

‖x‖=1

[
xT BT Bx

]
= λ1(As)2 + (σ1 (B))2

≥ λ1(As)2.

Taking the square root and using the fact that σ1(A) ≥ 0 and (as already noted) λ1(As) ≥ 0,
we obtain the desired statement. �

Applying Gershgorin’s Theorem to λ1(As) and using Lemma 7.2.3 gives the lower bound

σ1(A) ≥ min
i=1,...,n

{
aii −

1
2

m∑
j=1
j,i

(
|ai j| + |a ji|

)}

for the smallest singular value of a possibly nonsymmetric matrix A which is precisely the
bound given in [19, Theorem 1].

Assume, for the moment that A ∈ Rm×m is symmetric positive definite. Then σ1(A) =

λ1(A) = λ1(As), so that the inequality from Lemma 7.2.3 is actually an equality. Now, since
both the singular values and the eigenvalues of A and As, respectively, depend continuously
on the entries of the corresponding matrices (c.f. [48]), it follows that we still have σ1(A) ≈
λ1(As) for matrices A which are close to being symmetric, hence the estimates from Lemma
7.2.3 are likely to provide very sharp bounds in this case. Of course, this is not true for
highly asymmetric matrices. However, later, in our applications, we have to deal with
matrices which are close to being symmetric.

We next investigate some properties of the one-dimensional mapping

f : (0,∞) −→ R, y 7→ (α − x) −
γ2

y
(7.3)

that will play an essential role in Section 7.3. Here α, γ, and x are given, whereas y is the
variable. We are particularly interested in the properties of the corresponding fixed point
iteration yk+1 := f (yk) for k ∈ N. The following result gives all the necessary information.

Lemma 7.2.4. Let z := α − x. Choose an initial element y1 > 0 and define yk+1 := f (yk)
recursively for k ∈ N. Then the following statements hold:
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Case z ≥ 2 |γ|: Here f has a repelling fixed point f1 := z−
√

z2−4γ2

2 and an attracting fixed

point f2 := z+
√

z2−4γ2

2 which coincide for z = ±2 |γ|.

– For y1 ∈ ( f1, f2) we have

f1 < y1 < y2 < y3 < . . . < yk < yk+1 < · · · < f2

for all k ∈ N. Furthermore, it holds that limk→∞ yk = f2.
– For y1 > f2 we have

f2 < . . . < yk+1 < yk < . . . < y3 < y2 < y1

for all k ∈ N. Furthermore, it holds that limk→∞ yk = f2.
– For y1 = f2 we have yk = f2 for all k ∈ N.
– For y1 = f1 we have yk = f1 for all k ∈ N.
– For y1 ∈ (0, f1) we have

f1 > y1 > y2 > y3 > . . .

and there exists a smallest k0 ∈ N with yk0 ≤ 0. From that on, the sequence is
no longer well-defined.

Case z < 2 |γ|: Here f has no fixed points. We have y > f (y) for all y > 0, and for every
starting point y1 > 0, we obtain

y1 > y2 > y3 > . . . ,

and there is a smallest k0 ∈ N with yk0 ≤ 0. From that on, the sequence is no longer
well-defined.

Instead of giving the simple proof, we illustrate this result in Figure 7.1. The left picture
shows the first case where we have two (possibly identical) fixed points f1 and f2. When
f1 < f2 (so the two fixed points do not coincide), then the derivative f ′ at the first fixed point
is larger than one, hence this fixed point is repelling, whereas the derivative at the second
fixed point is smaller than one, hence this fixed point is attracting. The right picture, on the
other hand, illustrates the second case where y > f (y) holds for all y > 0, so that no fixed
points exist.
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f (y)

id(y)

1 2 3 4 5 6

-1

0

1

2

3

4

5

f (y)

id(y)

1 2 3 4 5 6

-1

0

1

2

3

4

5

Figure 7.1: Illustration of Lemma 7.2.4, left: case 1, right: case 2

7.3 Estimates for the Extremal Eigenvalues

Here we investigate the symmetric tridiagonal matrix J from (7.1) and assume, without loss
of generality that β · γ · δ , 0 and that m ≥ 4, since otherwise J is not defined properly. Our
aim in this section is to develop accurate estimates for the smallest and largest eigenvalue
of J. For the special case where β = γ = δ, the matrix J becomes a tridiagonal Toeplitz
matrix whose eigenvalues are known explicitly and given by

λ j = α + 2 |γ| cos
( j
m + 1

π
)

∀ j = 1, . . . ,m, (7.4)

cf. [5, Thm 2.4].

Remark 7.3.1. Consider, for the moment, once again the special case β = γ = δ and
let us denote the corresponding Toeplitz matrix by T . Then it follows from (7.4) that
λmin(T ) = α+2|γ| cos

(
m

m+1π
)

and λmax(T ) = α+2|γ| cos
(

1
m+1π

)
. In particular, for increasing

dimension m → ∞, we therefore get λmin(T ) → α − 2|γ| and λmax(T ) → α + 2|γ|. For
the general case, where β, γ, and δ are not necessarily equal, this still implies that for any
bound of the form λmin(J) ≥ α − K and λmax(J) ≤ α + K for some suitable constant K > 0,
we must have K ≥ 2|λ| if this bound should hold for all (sufficiently large) dimensions
m ∈ N. This observation follows from the previous fact by noting that we can reorder the
entries of J by a symmetric permutation such the first m − 2 principal submatrices of J are
Toeplitz matrices T of different dimensions, hence the claim follows from the interlacing
property from Theorem 7.2.1 (b).

For the matrix J, which may be viewed as a (small) perturbation of the Toeplitz case, an
analytic representation of the eigenvalues is not known. Our aim is therefore to obtain
suitable lower and upper bounds for the extremal eigenvalues of J. Simple estimates can
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be obtained using Gershgorin’s Theorem, see [14, Thm. 7.2.1], which implies that

λmin(J) ≥ α −max
{
2|γ|, |β| + |γ|, |δ| + |γ|

}
and

λmax(J) ≤ α + max
{
2|γ|, |β| + |γ|, |δ| + |γ|

}
.

These estimates can be improved using suitable scalings of J, but it seems that the corre-
sponding estimates are still worse than those that we develop in our subsequent theory.

To this end, let Jk be the principal k × k submatrix of J, and let

pk(x) := det(Jk − xI) ∀k = 1, 2, . . . ,m

be the corresponding characteristic polynomial. From (7.2), we obtain that these polyno-
mials satisfy the following recursion:

p0(x) := 1,
p1(x) = α − x,
p2 (x) = (α − x) · p1 (x) − β2 · p0 (x) , (7.5)
pk (x) = (α − x) · pk−1 (x) − γ2 · pk−2 (x) ∀k = 3, . . . ,m − 1,
pm (x) = (α − x) · pm−1 (x) − δ2 · pm−2 (x) .

Here, pm (x) is the characteristic polynomial of J.
In view of Theorem 7.2.1, the characteristic polynomials pk (x) have real and single

roots. Furthermore, given an arbitrary α ∈ R, the number w(α), denoting the number of
sign changes in the Sturm sequence p0(α), p1(α), . . . , pm(α), is equal to the number of roots
of pm(x) which are smaller than α.

Based on the above recursion and a simple induction argument, we can easily deduce
that the polynomials pk are symmetric in the following sense:

pk(α − y) =

{
pk(α + y), if k is even,
−pk(α + y), if k is odd. (7.6)

In particular, for k = m, this implies that α− y is an eigenvalue of J if and only if α+ y is an
eigenvalue of J, hence the eigenvalues of J are distributed symmetrically around the point
α. Consequently, α − K is a lower bound for the smallest eigenvalue (for some K > 0) if
and only if α + K is an upper bound for the largest eigenvalue. Hence we only have to find
suitable lower bounds for the smallest eigenvalue of J.

The basic idea to find suitable estimates of K is the following: We will find conditions
(on K and, sometimes, also on the dimension m) which guarantee that all the numbers
pk (α − K) have the same sign which is equivalent to saying that all these numbers are
positive since K > 0 is equivalent to p1 (α − K) > 0. Then it follows from our previous
considerations that w (α − K) = 0, hence all zeros of pm must be greater or equal to α − K.
However, since pm (α − K) > 0, all zeros must actually be greater than α − K.

Instead of studying the Sturm sequence {p1(x), p2(x), . . . , pm(x)} directly, we consider
the quotients

rk (x) :=
pk+1 (x)
pk (x)

∀k = 1, 2, . . . ,m − 1. (7.7)
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Using the recursion of the polynomials pk (x) in (7.5), we obtain the corresponding recur-
sion

r1(x) =
(α − x)2

− β2

(α − x)
, (7.8)

rk+1 (x) = (α − x) − γ2 pk (x)
pk−1 (x)

= (α − x) −
γ2

rk (x)
for k = 1, 2, . . . ,m − 3, (7.9)

rm−1 (x) = (α − x) −
δ2

rm−2 (x)
for k = m − 2.

Based on these quotients, we have the following criterion.

Proposition 7.3.2. Let x < α. Then every member of the Sturm sequence p1 (x) , . . . , pm (x)
is positive if and only if rk (x) is positive for all k = 1, . . . ,m − 2 and rm−2 (x) > h (x) holds,
where

h (x) :=
δ2

α − x
. (7.10)

Proof. First suppose that all numbers p1(x), . . . , pm(x) are positive. Then (7.7) immediately
implies rk(x) > 0 for all k = 1, . . . ,m− 2 (and also for k = m− 1, but this part is not needed
for our assertion). Furthermore, since pm−2(x) > 0, we have the following equivalences that
will also be used in order to verify the converse direction:

pm (x) > 0 ⇐⇒ (α − x) pm−1 (x) − δ2 pm−2 (x) > 0
⇐⇒ (α − x) pm−1 (x) > δ2 pm−2 (x)

pm−2(x)>0
⇐⇒ (α − x) pm−1(x)

pm−2(x) > δ
2

⇐⇒
pm−1(x)
pm−2(x) >

δ2

α−x
⇐⇒ rm−2(x) > h(x).

(7.11)

Since, in the proof of this direction, we have pm(x) > 0, the above chain of equivalences
therefore gives rm−2(x) > h(x).

Conversely, assume that r1(x), . . . , rm−2(x) are all positive, and that, in addition, we have
rm−2(x) > h(x). Since the recursion (7.7) implies

pk+1(x) = rk(x)pk(x) ∀k = 1, . . . ,m − 1,

and since we have p1(x) = α− x > 0 by assumption, we immediately obtain pk+1(x) > 0 for
all k = 1, . . . ,m−2. In particular, we therefore have pm−2(x) > 0. The chain of equivalences
(7.11) then shows that we also have pm(x) > 0. �

Note that, in the statement of Proposition 7.3.2, we could alternatively require the positivity
of rk(x) only for all k = 1, . . . ,m − 3 since rm−2(x) > 0 follows directly from the additional
condition rm−2(x) > h(x) due to the fact that h(x) is positive in view of the assumption that
x < α. We further note that it is indeed enough to consider the positivity of the Sturm
sequence {p1(x), . . . , pm(x)} instead of {p0(x), p1(x), . . . , pm(x)} since p0(x) ≡ 1 is positive
by definition and therefore does not imply additional sign changes.
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r1(x) < f1(x) r1(x) ∈
(
f1(x), f2(x)

)
r1(x) > f2(x)

h(x) < f1(x) ∀m ≤ m0 ∀m ∈ N ∀m ∈ N
h(x) ∈

(
f1(x), f2(x)

)
never ∀m ≥ m0 ∀m ∈ N

h(x) > f2(x) never never ∀m ≤ m0

Table 7.1: Lower bounds x for λmin(J) depending on the sizes of r1(x) and h(x)

The interesting part of Proposition 7.3.2 is the fact that we can characterize the posi-
tivity of all members from the Sturm sequence p1(x), . . . , pm(x) in terms of the quotients
r1(x), . . . , rm−2(x) (together with the function h(x) from (7.10)). Hence the quotient rm−1(x)
is not needed in this characterization which is important since the recursion for rm−1 is
different from the recursion of all the other quotients rk(x).

This observation is also useful from the following point of view: We will sometimes
consider the dimension m of the given matrix J to be variable, i.e., we consider matrices
of the form J with different dimensions. Now, the polynomials pk and, therefore, also the
quotients rk obviously depend on the dimension of J. However, taking into account the
particular structure of J, it follows immediately that, for two different dimensions m and m̃
with m < m̃, the quotients rk(x) (k = 1, 2, . . . ,m − 2) are the same for both matrices.

We now take a closer look at the recursion (7.9). The initial element r1(x) is given by
(7.8), whereas the recursion itself can be written as

rk+1(x) = f
(
rk(x)

)
∀k = 1, 2, . . . ,m − 3

by using the function f from (7.3). The (fixed point) properties of the mapping f were
already discussed in Lemma 7.2.4. In particular, it follows from this result that, in the only
interesting case x ≤ α − 2|γ|, there are two fixed points f1 and f2, with f1 being a repelling
fixed point and f2 being an attracting fixed point. Since these fixed points depend on the
given x, we denote them by f1(x) and f2(x) from now on. In view of Proposition 7.3.2 we
want the sequence r1 (x) , . . . , rm−3 (x) (note that rk(x) plays the role of yk in Lemma 7.2.4)
to be positive and, in addition, rm−2 (x) > h (x). Obviously, whether these relations hold
depends on how the starting point y1 = r1(x) and the number h(x) > 0 are related to the
fixed points of f .

In fact, using Proposition 7.3.2 and Lemma 7.2.4, we have the situation from Table 7.3
whose entries will be explained immediately.

This table assumes (implicitly) that x ≤ α − 2|γ| and shows in which situation and under
which conditions the given x provides a lower bound for the smallest eigenvalue of the
matrix J.

More precisely, the table has the following meaning: There are nine cases depending on
whether h(x) is smaller than the fixed point f1(x) or strictly between the two fixed points
f1(x) and f2(x) or larger than f2(x), and whether the quotient r1(x) is smaller than f1(x),
between f1(x) and f2(x) or larger than f2(x). For simplicity of presentation, we do not
consider the (often trivial) cases where h(x) or r1(x) are equal to one of the two fixed
points. Then the entry “never” indicates that the given x does not provide a lower bound on
the smallest eigenvalue of J regardless of the dimension m of J. The entry “for all m ∈ N”
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indicates that the given x is a lower bound of the smallest eigenvalue of J for all dimensions
m ∈ N, whereas the entries “∀m ≤ m0” and “∀m ≥ m0” indicate that the given x provides
a lower bound on the smallest eigenvalue of J for all sufficiently small and all sufficiently
large m, respectively.

We still have to explain how these entries were obtained. We do not consider all nine
cases since the argument is often the same, but let us take a closer view at some of these
cases. First, consider the case h(x) < f1(x) and r1(x) < f1(x). Lemma 7.2.4 then implies that
the sequence rk(x) is monotonically decreasing and eventually becomes negative. Hence,
only the first few elements of this sequence are positive, and the additional requirement
rm−2(x) > h(x) can therefore also hold only for sufficiently small (possibly no) dimensions
m. In view of Proposition 7.3.2, it therefore follows that the given x is a lower bound for
the smallest eigenvalue of J only for all sufficiently small m, i.e., for all m ≤ m0 with some
m0 ∈ N. This explains the corresponding entry in the upper left corner of Table 7.3.

Next, consider the case h(x) < f1(x) and r1(x) ∈
(
f1(x), f2(x)

)
. Then Lemma 7.2.4 shows

that the sequence rk(x) is monotonically increasing and converges to the fixed point f2(x).
In particular, rk(x) is positive for all k, and rk(x) > h(x) holds for all k ∈ N, especially, this
holds for k = m−2 for any given dimension m ∈ N. Hence it follows from Proposition 7.3.2
that the given x provides a lower bound on the smallest eigenvalue of J for all dimensions
m ∈ N which again explains the corresponding entry in this case.

Now consider the case h(x) ∈
(
f1(x), f2(x)

)
and r1(x) < f1(x). Then Lemma 7.2.4 shows,

in particular that all quotients rk(x) stay less than f1(x), so that the condition rm−2(x) > h(x)
never holds in this case regardless of the dimension m ∈ N. Hence Proposition 7.3.2
implies that the given x does not provide a lower bound for the smallest eigenvalue for any
dimension m ∈ N.

Finally, consider the case h(x) ∈
(
f1(x), f2(x)

)
and r1(x) ∈

(
f1(x), f2(x)

)
. Lemma 7.2.4

then implies that the sequence r1(x), r2(x), r3(x), . . . is monotonically increasing and con-
verges to the fixed point f2(x). Hence, all these quotients are positive, and eventually they
are larger than the number h(x). In particular, for sufficiently large dimensions m ∈ N, we
have rm−2(x) > h(x). Hence Proposition 7.3.2 shows that x is a lower bound for J’s smallest
eigenvalue for all sufficiently large dimensions m. In addition, the following note holds for
this case (which is of particular interest in our further development).

Remark 7.3.3. Consider once again the case h(x) ∈
(
f1(x), f2(x)

)
and r1(x) ∈

(
f1(x), f2(x)

)
.

Then it is possible that we already have r1(x) > h(x). Using a similar reasoning as before,
this implies rm−2(x) > h(x) for all dimensions m ∈ N. Consequently, and in addition to the
corresponding entry in Table 7.3, it follows from Proposition 7.3.2 that x is a lower bound
for the smallest eigenvalue of J for all dimensions m ∈ N. — We further note that the
condition r1(x) > h(x) is equivalent to x < α −

√
β2 + δ2 (provided that x < α).

All the other entries in the Table 7.3 follow by a similar reasoning. Now, it is clear how
to proceed. The previous table gives clear statements on how to get lower bounds for the
smallest eigenvalue of J in terms of r1(x) and h(x) compared to the two fixed points f1(x)
and f2(x). Our aim is therefore to re-interpret these conditions in terms of the original data
of the matrix J. The following technical result investigates these data and shows how r1(x)
is related to the fixed points f1(x) and f2(x) depending on the relation between the data β
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and γ of the matrix J whose dimension m is fixed in this lemma.

Lemma 7.3.4. Let x ≤ α − 2 |γ|, f1 (x) and f2 (x) be the fixed points of the function f , and
let r1 (x) be the first quotient from (7.8). Then the following statements hold:

Case |β| >
√

2 |γ|: Then r1 (x) > f1 (x) ⇐⇒ x < α − β2
√
β2−γ2

, whereas the inequality

r1 (x) < f2 (x) always holds (i.e. this inequality holds for all x ≤ α − 2|γ|).
Case |β| =

√
2 |γ|: Then f1 (x) < r1 (x) < f2 (x) holds for all x < α − 2 |γ| (whereas at the

boundary point x = α − 2 |γ|, we have r1 (x) = f1 (x) = f2 (x).)
Case |γ| < |β| <

√
2 |γ|: Then r1 (x) > f1 (x) always holds (i.e. for all x ≤ α − 2|γ|), and

r1 (x) < f2 (x) ⇐⇒ x < α − β2
√
β2−γ2

.

Case |β| ≤ |γ|: Then we always have r1 (x) > f2 (x) ≥ f1 (x).

Proof. To simplify the notation, we set z := α − x, so that x ≤ α − 2 |γ| is equivalent to
z ≥ 2 |γ|. We divide the (technical, but completely elementary) proof into three steps: Part
(A) contains some facts that will be used in the subsequent parts. In part (B), we study how
r1 (x) and f1 (x) relate to each other, and in part (C) we study the relation between r1 (x)
and f2 (x).

(A) We start by finding candidates x ≤ α− 2 |γ| for which r1 (x) = f1 (x) or r1 (x) = f2 (x) is
possible. We do this simultaneously for both fixed points. To this end, note that

r1 (x) = f1/2 (x) ⇐⇒
z2 − β2

z
=

1
2

(
z ∓

√
z2 − 4γ2

)
z>0
⇐⇒ 2z2 − 2β2 = z2 ∓ z

√
z2 − 4γ2

⇐⇒ z2 − 2β2 = ∓z
√

z2 − 4γ2 (7.12)
=⇒ z4 − 4β2z2 + 4β4 = z2

(
z2 − 4γ2

)
⇐⇒ β4 = z2

(
β2 − γ2

)
.

Hence, for both equations, we have the same necessary condition. It is satisfied for z1 =

−
β2
√
β2−γ2

and z2 = +
β2
√
β2−γ2

. Therefore, the possible candidates are x1 = α +
β2
√
β2−γ2

and

x2 = α− β2
√
β2−γ2

. We call them the roots of the above equation. Using (7.12), it is also clear

that there are no (real) roots if |β| = |γ| or |β| < |γ|.

(B) Here we discuss the relation between r1(x) and the fixed point f1(x) in terms of the
orginal data of the matrix J. To this end, first note that, since α − x ≥ 2|γ| > 0, we have

r1(x) > f1(x) ⇐⇒
(α − x)2

− β2

(α − x)
>

1
2

(
(α − x) −

√
(α − x)2

− 4γ2

)
⇐⇒ 2β2 < (α − x)2 + (α − x)

√
(α − x)2

− 4γ2,

and the last inequality obviously holds for all sufficiently small x. We call this observation
(O1).
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At this point, we have to discuss several cases:
Let |β| >

√
2 |γ|. In this case, it turns out, by inserting the two candidate points x1 and

x2 that x2 is the only root in the interval (−∞, α − 2|γ|). Together with observation (O1), it
therefore follows that r1 (x) > f1 (x) if x < x2, whereas we have r1 (x) < f1 (x) if x > x2.

Let |β| =
√

2 |γ|. Here we can write x1/2 = α ± 2 |γ|. A simple calculation shows that
both candidates are indeed roots. Since x2 < x1, we obtain from observation (O1) that
r1 (x) > f1 (x) for x < x2 (note that x ≤ α− 2 |γ| = x2 was the prerequisite of this lemma, so
the case x > x2 does not occur), whereas we have r1(x) = f1(x) at x = x2 since x2 is a root
of our equation.

Let |γ| < |β| <
√

2 |γ|. Here it is easy to see that x1 is the only root among the two
candidates. Together with observation (O1), we therefore get r1 (x) > f1 (x) for x < x1.
However, in this case, we have x1 > α − 2 |γ|. Hence, we obtain r1 (x) > f1 (x) for all
x ≤ α − 2 |γ|.

Let |β| ≤ |γ|. In this case, there are no roots in view of part (A). It therefore follows from
observation (O1) that r1 (x) > f1 (x) holds for all x ≤ α − 2|γ|.
(C) Here we discuss the relation between r1(x) and the fixed point f2(x), again in terms of
the orginal data of the matrix J. The considerations are similar to those from part (B). To
this end, we first note that r1 (x) > f2 (x) is equivalent to 2β2 < z2

(
1 −

√
1 − 4γ2/z2

)
=:

g (z). Using l’Hospital’s rule, we obtain

lim
z→∞

g (z) = lim
z→∞

(
1 −

√
1 − 4γ2/z2

)
z−2 = lim

z→∞

2γ2√
1 − 4γ2/z2

= 2γ2 .

Taking into account that z = α − x, it follows that r1(x) > f2(x) for all x sufficiently
small if |β| < |γ|. Similarly, one can show that r1(x) < f2(x) for all x sufficiently small if
|β| > |γ| (whereas the case |β| = |γ| has to be treated separately). We call these statements
observation (O2).

Like before, we proceed by considering several cases:
Let |β| >

√
2 |γ|. Through simple calculation, we get that x1 is the only root. Observation

(O2) therefore implies r1 (x) < f2 (x) for all x < x1. But since x1 > α − 2 |γ| we even have
r1 (x) < f2 (x) for all x ≤ α − 2 |γ|.

Let |β| =
√

2 |γ|. Here x1/2 = α ± 2 |γ| are the two roots, but x1 is greater than α − 2 |γ|
and hence irrelevant for our case. Using observation (O2) once again, we get r1 (x) < f2 (x)
for all x < α − 2 |γ| as in the previous case, whereas we have r1(x) = f2(x) at the boundary
point x = x2 = α − 2|γ|.

Let |γ| < |β| <
√

2 |γ|. Then x2 is the only root, and observation (O2) gives r1 (x) < f2 (x)
if and only if x < x2.

Let |β| = |γ|. We know from part (A) that there are no roots in this case, hence either
r1(x) < f2(x) or r1(x) > f2(x) holds for all x ≤ α − 2|γ|. To decide which of these two
inequalities holds, observation (O2) cannot be applied directly. However, direct calculation
shows that 2β2 = 2γ2 < 4γ2 = g (2 |γ|) , so that observation (O2) now gives r1 (α − 2 |γ|) >
f2 (α − 2 |γ|). Hence r1 (x) > f2 (x) holds for all x ≤ α − 2 |γ|.

Let |β| < |γ|. According to part (A), there are no roots in this case. Together with
observation (O2), it follows that r1 (x) > f2 (x) holds for all x ≤ α − 2 |γ|.
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The statement now follows by summarizing all subcases considered in parts (B) and
(C). �

The following result is similar to the previous one (so we skip its proof) and shows how
the number h(x) is related to the two fixed points f1(x) and f2(x) depending on the original
data δ and γ of our matrix J whose dimension m is again assumed to be fixed.

Lemma 7.3.5. Let x ≤ α − 2 |γ|, f1 (x) and f2 (x) be the fixed points of the function f , and
let h (x) be defined by (7.10). Then the following statements hold:

Case |δ| >
√

2 |γ|: Then h (x) < f2 (x) ⇐⇒ x < α − δ2
√
δ2−γ2

, whereas the inequality

h (x) > f1 (x) always holds (i.e. for all x ≤ α − 2|γ|).
Case |δ| =

√
2 |γ|: Then f1 (x) < h (x) < f2 (x) for all x < α − 2 |γ| (and h (x) = f1 (x) =

f2 (x) for the boundary point x = α − 2 |γ|).
Case |γ| < |δ| <

√
2 |γ|: Then h (x) > f1 (x) ⇐⇒ x < α− δ2

√
δ2−γ2

, whereas the inequality

h (x) < f2 (x) always holds (i.e. for all x ≤ α − 2|γ|).
Case |δ| ≤ |γ|: Then we always have h (x) < f1 (x) ≤ f2 (x).

Now we are going to combine the previous results in order to get estimates for the extremal
eigenvalues of the matrix J. We stress, however that it cannot be avoided that these bounds
(in addition to the data of the matrix) sometimes also depend on the dimension m of this
matrix, cf. Table 7.3 and the discussion to derive the entries of this table.

Unfortunately, we have to distinguish several cases in the presentation of our main result.
In view of Lemmas 7.3.4 and 7.3.5, there are actually 16 different cases to consider, namely
those that occur by combining the four possibilities

|β| >
√

2|γ|, |β| =
√

2|γ|, |β| ∈
(
|γ|,
√

2|γ|
)
, and |β| ≤ |γ|

from Lemma 7.3.4 with the corresponding four possibilities

|δ| >
√

2|γ|, |δ| =
√

2|γ|, |δ| ∈
(
|γ|,
√

2|γ|
)
, and |δ| ≤ |γ|

from Lemma 7.3.5.

Theorem 7.3.6. Define β̄ := β2
√
β2−γ2

and δ̄ := δ2
√
δ2−γ2

. Then the inequalities

λmin(J) ≥ α − K and λmax(J) ≤ α + K

holds

(a) for all dimensions m ∈ N with K being the constant from the following table:
|δ| >

√
2|γ| |δ| =

√
2|γ| |δ| ∈

(
|γ|,
√

2|γ|
)
|δ| ≤ |γ|

|β| >
√

2|γ|
√
β2 + δ2

√
β2 + δ2 max

{
β̄,

√
β2 + δ2} β̄

|β| =
√

2|γ|
√
β2 + δ2 2|γ| 2|γ| 2|γ|

|β| ∈
(
|γ|,
√

2|γ|
)

max
{
δ̄,

√
β2 + δ2} 2|γ| 2|γ| 2|γ|

|β| ≤ |γ| δ̄ 2|γ| 2|γ| 2|γ|
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(b) for all sufficiently large dimensions m ∈ N with the (usually sharper) constant K
from the following table:

|δ| >
√

2|γ| |δ| =
√

2|γ| |δ| ∈
(
|γ|,
√

2|γ|
)
|δ| ≤ |γ|

|β| >
√

2|γ| max{β̄, δ̄} β̄ β̄ β̄

|β| =
√

2|γ| δ̄ 2|γ| 2|γ| 2|γ|
|β| ∈

(
|γ|,
√

2|γ|
)

δ̄ 2|γ| 2|γ| 2|γ|
|β| ≤ |γ| δ̄ 2|γ| 2|γ| 2|γ|

Proof. In view of our previous observation, α − K is a lower bound for λmin(J) if and only
if α + K is an upper bound for λmax(J) for some K > 0. Hence it is enough to verify the
lower bounds for the minimum eigenvalue of J. We further note that, in view of Remark
7.3.1, we (have to) assume throughout this proof that x ≤ α − 2 |γ| since there cannot be a
lower bound greater than α − 2 |γ| that fits for all (sufficiently large) matrix sizes m.

We begin by stating some elementary inequalities (without proof) that are useful for the
subsequent considerations:

(I) If |β| > |γ|, then β̄ ≥ 2|γ| and β̄ = 2|γ| holds if and only if |β| =
√

2|γ|.

(II) If |δ| > |γ|, then δ̄ ≥ 2|γ| and δ̄ = 2|γ| holds if and only if |δ| =
√

2|γ|.

(II) If |β| ≥
√

2|γ| and |δ| ≥
√

2|γ|, then
√
β2 + δ2 ≥ max{2|γ|, β̄, δ̄}.

(IV) If |β| =
√

2|γ| and |δ| ∈
(
|γ|,
√

2|γ|
)
, then δ̄ ≥

√
β2 + δ2.

(V) If |β| ∈
(
|γ|,
√

2|γ|
)

and |δ| =
√

2|γ|, then β̄ ≥
√
β2 + δ2.

We now verify statements (a) and (b) simultaneously. In principle, we have to consider
each of the possible 16 cases separately. However, it will be enough to consider only one
of these cases (in fact, one of the more interesting ones), since the remaining cases can be
treated in essentially the same way by referring to the corresponding cases from Lemmas
7.3.4 and 7.3.5 as well as to the corresponding entries of Table 7.3.

The case that we consider in more detail is the one where |β| >
√

2|γ| and |δ| >
√

2|γ|
holds. Then Lemma 7.3.4 shows that r1(x) < f2(x) holds for all x ≤ α − 2|γ|, whereas
r1(x) > f1(x) is equivalent to x < α − β̄. Moreover, Lemma 7.3.5 shows that h(x) > f1(x)
holds for all x ≤ α − 2|γ|, whereas we have h(x) < f2(x) if and only if x < α − δ̄. Table 7.3
therefore shows that, for all x < min{α − β̄, α − δ̄} and all x ≤ α − 2|γ|, this x provides a
lower bound for λmin(J) provided that the dimension m is sufficiently large. By continuity,
we therefore get the lower bound

λmin(J) ≥ min{α − 2|γ|, α − β̄, α − δ̄} = α −max{2|γ|, β̄, δ̄}

for all m ∈ N sufficiently large. Using observations (I) and (II), this lower bound reduces to

λmin(J) ≥ α −max{β̄, δ̄}.



113 7.3 Estimates for the Extremal Eigenvalues

This is precisely the lower bound given for the case considered here in statement (b).
However, in this particular case, we can also apply Remark 7.3.3 and obtain a lower

bound for λmin(J) for all dimensions m ∈ N if, in addition, x is chosen in such a way that
r1(x) > h(x). Since this condition is equivalent to x < α −

√
β2 + δ2 according to Remark

7.3.3, it follows, together with our previous considerations that the lower bound

λmin(J) ≥ α −max
{
2|γ|, β̄, δ̄,

√
β2 + δ2}

holds for all dimensions m ∈ N. In view of observation (III), this lower bound boils down
to

λmin(J) ≥ α −
√
β2 + δ2

and therefore justifies the corresponding bound given in statement (a). �

We close this section with some remarks about the previous result.

Remark 7.3.7. (a) Except for the trivial case |β|, |δ| ≤ |γ|, our bounds on the extremal eigen-
values of the matrix J are better than those that come from Gershgorin’s Theorem.

(b) The case |β| = |δ| =
√

2|γ| gives α − 2|γ| and α + 2|γ| as lower and upper bounds
for λmin(J) and λmax(J), respectively. However, in this case these bounds are exact, i.e.
λmin(J) = α − 2|γ| and λmax(J) = α + 2|γ|. This follows from the recursion (7.5) which, in
this case, gives p0(x) = 1, p1(x) = 2|γ|, p2(x) = 2|γ|2, pk(x) = 2|γ|k for all k = 3, . . . ,m − 1
and pm(x) = 0 for x := α − 2|γ|.

(c) Consider a matrix of the form

A =



α β̄

β̂ α γ̄3

γ̂3 α
. . .

. . .
. . . γ̄m−1

γ̂m−1 α δ̄

δ̂ α


.

Define β, γ ∈ R in such a way that β̂ · β̄ = β2 and δ̂ · δ̄ = δ2. Suppose that there is an
element γ ∈ R with γ̂i · γ̄i = γ2 for all i = 3, . . . ,m − 1. Then the characteristic poly-
nomials of all principal submatrices of A coincide with the polynomials pk(x) from (7.5).
Consequently, all the previous considerations for the matrix J also hold for the nonsym-
metric matrix A. In particular, the same bounds for the extremal eigenvalues are valid for A.

(d) Statement (b) of Theorem 7.3.6 holds only for all sufficiently large dimensions m, say,
for all m ≥ m0. Here, the smallest dimension m0 can be computed in the following way: We
are in the situation where r1(x) > f1(x) and h(x) < f2(x) for x = α − K, K the bound given
in the tables of Theorem 7.3.6. Then the sequence r1(x), r2(x), r3(x), . . . is monotonically
increasing and converges to f2(x). So there exists a smallest integer s such that rs(x) > h(x).
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Then m0 = s + 2 is the required dimension since rs(x) determines the behaviour of ps+2(x).
Hence we need to compute r1(x) and h(x) as well as (if still necessary) the other quotients
rk(x) for k ≥ 2 via the corresponding recursion (7.9) until, for the first time, rs(x) is greater
than h(x).

(e) Theorem 7.3.6 (b) shows that λmin(J) ≥ α − K holds for all dimensions m ≥ m0 with
the constant K given in the corresponding table and a sufficiently large dimension m0 ∈ N
that can be computed via the previous remark. However, in some cases it might be enough
to satisfy a weaker bound of the form λmin(J) ≥ α − K̃ for some K̃ ≥ K. This bound is
certainly satisfied for all dimensions m ≥ m0, but it might already be satisfied for smaller
dimensions, say, for all m ≥ m̃0 with some m̃0 ≤ m0. The practical computation of m̃0 can
be done as in (d) with x = α − K replaced by x = α − K̃.

7.4 Application

In this section we want to discuss how the previous theory can be applied to an example. As
example we choose the PDE from our mathematical model without source or sink term on
the right hand side, cf. Chapter 3. Hereby we assume the water flow field q to be constant
in time and space, i.e. q(t, x) = [q0, 0]T . The result is the homogeneous PDE of second
order (3.5) that was mentioned in Subsection 3.5 with the right hand side set to zero. This
equation has the typical form of a convection-diffusion equation. It looks like

θ ·
∂c (t, x, y)

∂t
− βl · q0 ·

∂2c (t, x, y)
∂x2 − βt · q0 ·

∂2c (t, x, y)
∂y2 + q0 ·

∂c (t, x, y)
∂x

= 0

defined on [0,T ] × Ω, where [0,T ] for some T > 0 denotes the time interval and Ω =

[0, ωx] ×
[
0, ωy

]
⊆ R2 for some constants ωx, ωy denotes the spatial domain. In addition,

we assume that we have boundary conditions described by a Dirichlet condition on the
left border and by Neumann conditions on the other boundaries of the domain. The scalar
constants θ, q0, βl, βt > 0 are used to specify some further properties of the given problem;
their meaning is described in Subsection 3.1.3. For some additional background material
regarding this particular application, we refer the interested reader to [26]. The following
strategy is valid for many convection-diffusion PDEs.

Since we have a rectangular domain, the simplest discretization is by finite differences.
To this end, we denote by h the step size in the spatial directions x and y, and by τ the
step size for the discretization in time. Then we have n = ωx

h unknown points in each
grid row (for x = 0 the values are known by the Dirichlet boundary condition) and m + 1
unknown points in each grid column, with m := ωy

h . With ci, j := c (tl, i · h, j · h) and cold
i, j :=

c (tl−1, i · h, j · h) we denote the concentrations of the species at the discretized point (ih, jh)
in the current time step tl = l · τ and the previous time step, respectively.

To obtain a suitable finite difference approximation of the original PDE, we use forward
differences for the first term ∂c(t,x,y)

∂t (which is the only part that includes a derivate with
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respect to time), resulting in the first-order Euler approximation

ci, j − cold
i, j

τ

in every grid point (xi, yi) := (ih, jh). On the other hand, for the second-order derivative
−βlq0

∂2c(t,x,y)
∂x2 we use the standard central difference approximation. We also apply a second-

order central difference approximation to the first-order derivative q0
∂c(t,x,y)
∂x . The resulting

approximation in each grid row j = 0, . . . ,m for the inner grid points i = 2, . . . , n − 1 is(
−
βlq0

h2 −
q0

2h

)
ci−1, j +

2βlq0

h2 ci, j +

(
−
βlq0

h2 +
q0

2h

)
ci+1, j,

while for i = 1 the value of c0, j is known from the Dirichlet boundary condition, so we
obtain the approximation

2βlq0

h2 c1, j +

(
−
βlq0

h2 +
q0

2h

)
c2, j,

whereas for i = n we get, taking into account the Neumann boundary condition on the right
side of the domain, the discretization(

−
2βlq0

h2

)
cn−1, j +

2βlq0

h2 cn, j = 0 .

To write these expressions in matrix notation, we define the vectors

c j :=
(
c1, j, c2, j, . . . , cn, j

)T
∀ j = 1, . . . ,m − 1

and the n × n matrix

Lx := ax · Mx with Mx :=



2 −1 + b
−1 − b 2 −1 + b

−1 − b . . .
. . .

. . . 2 −1 + b
−1 − b 2 −1 + b

−2 2


and

ax := ax (h) :=
βl · q0

h2 and b := b (h) :=
h

2βl
.

Now the resulting equations for each grid row j = 0, . . . ,m read

Lx · c j .

Similarly, applying the standard central difference approximation to the second-order deriva-
tive −βtq0

∂2c(t,x,y)
∂y2 , we obtain in each grid column i = 1, . . . , n for the inner points j =
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1, . . . ,m − 1 (each boundary point in y direction has a Neumann condition) the discretized
equation

−
βtq0

h2 ci, j−1 +
2βtq0

h2 ci, j −
βtq0

h2 ci, j+1 ,

whereas on the lower bound j = 0 and the upper bound j = m, we have

2βtq0

h2 ci,0 −
2βtq0

h2 ci,1 and −
2βtq0

h2 ci,m−1 +
2βtq0

h2 ci,m,

respectively. Like before we define for every grid column i = 1, . . . , n the vectors

ci :=
(
ci,0, ci,1, . . . , ci,m

)T

and the (m + 1) × (m + 1) matrix

Ly := ay · My with My :=


2 −2
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−2 2


, ay := ay (h) :=

βt · q0

h2 .

Using this notation, we can write these expressions in every grid column i = 1, . . . , n in
matrix-vector form as

Ly · ci .

We now want to write all these n · (m + 1) equations in one linear system. To this end,
we order our unknowns ci, j in time step l lexicographically into one big vector by stacking
together the grid rows c j into

ch =
(
c1,0, c2,0, . . . , cn,0, c1,1, . . . , cn,1, . . . c1,m−1, c2,m−1, . . . , cn,m−1

)T .

We do the same for the previous time step and call the resulting vector cold
h , whose entries

are no longer unknowns in the current time step tl. We now formulate the matrix of the full
linear system with the help of Lx and Ly. Writing ly

i, j for the elements of Ly and defining the
n(m + 1) × n(m + 1) matrix

Lh =



Lx + ly
1,1In ly

1,2In

ly
2,1In Lx + ly

2,2In ly
2,3In

ly
3,2In Lx + ly

3,3In
. . .

. . .
. . . ly

m,m+1In

ly
m+1,mIn Lx + ly

(m+1),(m+1)In


,

the resulting linear system in one time step becomes(
θIn(m+1) + τLh

)
· ch = θ · cold

h . (7.13)
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In order to solve this sparse linear system efficiently by an iterative solver, we study the
properties of the system matrix

(
θIn(m+1) + τLh

)
. In particular, we are interested in the

smallest singular value to know whether the matrix is nonsingular and to compute the
condition number. Moreover, we would like to show that this matrix is positive definite
(although nonsymmetric), because this guarantees that, e.g., the restarted GMRES solver
used in our numerical test is known to converge in this case, cf. [44].

To this end we shortly review the notions of the Kronecker product and the Kronecker
sum together with some basic properties. The following results can be found in [18, Section
4.2 and 4.4]. Let A =

(
ai, j

)
be a real k × k matrix and let B =

(
bi, j

)
be a real l × l matrix.

Then the Kronecker product is defined as the kl × kl matrix

A ⊗ B =


a1,1B a1,2B · · · a1,kB
a2,1B a2,2B · · · a2,kB
...

...
ak,1B ak,2B · · · ak,kB

 .
Given another l × l matrix C, it holds that

A ⊗ B + A ⊗C = A ⊗ (B + C) .

Similarly, we also have
(A + B) ⊗C = A ⊗C + B ×C

for all matrices A, B,C of appropriate dimension. For any real scalar r, we obviously have

r · (A ⊗ B) = (rA) ⊗ B = A ⊗ (rB) .

In addition, it is known that (
A ⊗ B

)T
= AT ⊗ BT

holds for all suitable matrices A, B. Finally, the Kronecker sum of A ∈ Rk×k and B ∈ Rl×l is
defined as the kl × kl matrix

Il ⊗ A + B ⊗ Ik .

The eigenvalues µi, j of the Kronecker sum are given by λi(A) + λ j(B) for all i = 1, . . . , k
and all j = 1, . . . , l.

Now let us go back to our example. Using the notion of the Kronecker sum, the matrix
Lh can be written as Lh = Im+1 ⊗ Lx + Ly ⊗ In, so that the matrix of the linear system (7.13)
becomes

L (τ, h) := θI(m+1)n + τ
(
Im+1 ⊗ Lx + Ly ⊗ In

)
.

We want to compute a lower bound for the smallest singular value of this matrix. To this
end, we first give a lower bound for the smallest eigenvalue of the corresponding symmetric
part which is given by

Ls (τ, h) = θI(m+1)n + τ
(
Im+1 ⊗ Ls

x + Ls
y ⊗ In

)
.
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The previous considerations show that the smallest eigenvalue of this symmetric part is
given by

λ1 (Ls (τ, h)) = θ + τλ1
(
Ls

x
)

+ τλ1

(
Ls

y

)
. (7.14)

Hence we obtain a lower bound for the smallest eigenvalue λ1 (Ls (τ, h)) by calculating
lower bounds for λ1

(
Ls

x
)

and λ1

(
Ls

y

)
. Since both matrices Ls

x and Ls
y have the structure of

the matrix J from (7.1), we can apply the theory from the previous section. Note, however
that these bounds depend on our step size h. We will show that, for suitable choices of these
step sizes, the matrix Ls(τ, h) has only positive eigenvalues. This implies that the (nonsym-
metric) system matrix L(τ, h) itself is positive definite (recall that a nonsymmetric matrix
A is positive definite if and only if its symmetric part As is positive definite). Furthermore,
Lemma 7.2.3 then also gives a lower bound for the smallest singular value of L(τ, h).

Before we proceed, we note that it would alternatively be possible to consider the non-
symmetric matrix L(τ, h) directly since Remark 7.3.7 (c) can be applied in our particular
application. The subsequent analysis, however, deals with the symmetric part Ls(τ, h) and
calculates a lower bound for the smallest eigenvalue using the representation from (7.14).

In this example it is possible according to Remark 7.3.7(c) to find two symmetric tridi-
agonal matrices which have the same eigenvalues as Lx and Ly. With the theory in the
previous section it is then possible to give accurate bounds for the extremal eigenvalues of
these two matrices.

Let us first consider the matrix Ls
x = ax (h) · Ms

x. We now give a lower bound for the
smallest eigenvalue of the n × n matrix

Ms
x =



2 −1
−1 2 −1

−1 . . .
. . .

. . . 2 −1
−1 2 −1.5 + 0.5 · b

−1.5 + 0.5 · b 2


.

We adapt the results from the previous section and get the following corollary.

Corollary 7.4.1. If b ∈
[
3 − 2

√
2, 3 + 2

√
2
]

then λ1
(
Ms

x
)
≥ 0 holds for all n ≥ 4.

If b < 3 − 2
√

2 or b > 3 + 2
√

2 then λ1
(
Ms

x
)
≥ 2 − d2

√
d2−1

holds for all n ≥ 4, where
d = −1.5 + 0.5b is the perturbed entry of Ms

x.

Proof. We first consider the simple case b ∈
[
3 − 2

√
2, 3 + 2

√
2
]

which is equivalent with

|−1.5 + 0.5b| ≤
√

2. With Theorem 3.6 (a) applied in the case “|β| ≤ |γ| and |δ| ≤
√

2|γ|”, we
get the first estimate. The case b < 3−2

√
2 or b > 3 + 2

√
2 is equivalent to |−1.5 + 0.5b| >√

2. Using Theorem 7.3.6 (a) once again, but applied in the case “|β| ≤ |γ| and |δ| >
√

2|γ|”,
we obtain 2 − d2

√
d2−1

as a lower bound. The restriction regarding the dimension is simply
due to the fact that all considerations in the previous section implicitly assumed that the
matrices are at least 4 × 4-dimensional. �
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Note that 2 − d2
√

d2−1
in the previous Corollary is always negative in the case where it is

applied. Hence the corresponding matrix Ms
x is not necessarily positive definite in this

case.
Similarly, we now study the (m + 1)× (m + 1) matrix Ls

y = ay (h) ·Ms
y . We therefore give

a lower bound for the smallest eigenvalue of

Ms
y =



2 −1.5

−1.5 2 . . .

−1 . . . −1
. . . 2 −1.5
−1.5 2


.

To achieve the most accurate bounds, we distinguish different matrix sizes.

Corollary 7.4.2. If m ≥ 65 then λ1

(
Ms

y

)
≥ −0.0125.

If m ≥ 26 then λ1

(
Ms

y

)
≥ −0.015.

If m ≥ 16 then λ1

(
Ms

y

)
≥ −0.02.

If m ≥ 12 then λ1

(
Ms

y

)
≥ −0.025.

Proof. Theorem 7.3.6 (b) applied in the case “|β| >
√

2|γ| and |δ| >
√

2|γ|” shows that
λ1

(
Ms

y

)
≥ 2 − 2.25

√
1.25
≈ −0.01246 holds for all sufficiently large m. Replacing this lower

bound by the less restrictive numbers −0.0125,−0.015,−0.02 and −0.025, respectively, we
obtain the desired statements in a way described in Remark 7.3.7 (e). �

Using (7.14), we therefore obtain

λmin (Ls (τ, h)) = θ + τax (h) λmin
(
Ms

x
)

+ τay (h) λmin

(
Ms

y

)
= θ + τ

βl · q0

h2 λmin
(
Ms

x
)

+ τ
βt · q0

h2 λmin

(
Ms

y

)
.

From Lemma 7.2.3 we know that σmin (L (τ, h)) ≥ λmin (Ls (τ, h)) if Ls (τ, h) is positive
definite, which is equivalent to λmin (Ls (τ, h)) > 0. Recall that b = b (h) = h

2βl
and therefore

b (h) > 0 for all h > 0. Taking into account the two different cases considered in Corollary
7.4.1, we obtain the lower bound

λmin (Ls (τ, h)) ≥ θ + τ
βt · q0

h2 λmin

(
Ms

y

)
for h ∈

[
(1.5 −

√
2)4βl, (1.5 +

√
2)4βl

]
,

whereas we have

λmin (Ls (τ, h)) ≥ θ + τ
βt · q0

h2 λmin

(
Ms

y

)
+ τ

βl · q0

h2 ·
(
2 −

d2

√
d2 − 1

)
for h <

[
(1.5 −

√
2)4βl, (1.5 +

√
2)4βl

]
, where d = −1.5 + 0.5b. The possibly negative

eigenvalues λmin
(
Ms

x
)

and λmin

(
Ms

y

)
get amplified by the numbers βl·q0

h2 > 0 and βt ·q0
h2 > 0,
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respectively. These factors increase for h → 0. Suppose a time step size τ > 0 is given.
Then we need to calculate a minimal step size h0 such that

θ + τ
βl · q0

h2
0

λmin
(
Ms

x
)

+ τ
βt · q0

h2
0

· λmin

(
Ms

y

)
> 0

holds and therefore our matrix L (τ, h) is positive definite and nonsingular. Then we can
solve our linear system with all step sizes h ≥ h0. Here it is important to have an accurate
lower bound for λmin

(
Ms

x
)

and λmin
(
Ms

y
)

so that we can use step sizes h as small as possible.

Example 7.4.3. We set ωx = 10 and ωy = 6 and therefore use the domain Ω = [0, 10] ×
[0, 6]. We further use the scalars τ = 0.1, βl = 0.3, βt = 0.03, q0 = 0.18 and θ =

0.3. Depending on the choice of h, we now get different matrix sizes and eigenvalues. In
the following table we compare the lower bound of λmin (Ls(τ, h)) according to our theory
(column ’λmin lower bound’) with the exact eigenvalue calculated from the corresponding
system matrix with the MATLAB function eigs (column ’λmin exact’).

h n m size λmin exact λmin lower bound
0.5 20 12 260 0.300412963667855 0.2999550000
0.2 50 30 1550 0.300213215599023 0.2997975000
0.1 100 60 6100 0.299416896200867 0.2991835345

0.05 200 120 24200 0.289617314238473 0.2896089457
0.02 500 300 150500 0.170625390123707 0.1705729827
0.01 1000 600 600600 −0.324076096559832 −0.3242857259

We see that the lower bounds obtained from our theory are very sharp. In fact, a rounding
process after the first three digits gives identical values for all different matrix sizes.

From Lemma 7.2.3 we know that our estimate for λmin (Ls(τ, h)) is also a lower bound
for σmin (L(τ, h)) as long as Ls(τ, h) is positive semidefinite, i.e., for all step sizes except
h = 0.01. However, it is clear from Lemma 7.2.3 that this lower bound will be much
less accurate, especially when the matrix L(τ, h) is far away from being symmetric (this
will be the case for smaller values of h). Nevertheless, we will give a comparison of our
lower bound for σmin with prior results in this area. To this end, let us define the values
rk(A) :=

∑n
j=1, j,k |ak j| and cl(A) :=

∑n
i=1,i,l |ail| for an arbitrary matrix A = [ai j] ∈ Rn×n.

Then, Johnson [19, Theorem 3] showed that

σmin(A) ≥ min
i=1,...,n

{
|aii| −

ri(A) + ci(A)
2

}
. (7.15)

whereas Johnson and Szulc [20, Theorem 2] proved the lower bound

σmin(A) ≥ min
i=1,...,n


√
|aii|

2 +

(
rk(A) − ck(A)

2

)2

−
rk(A) + ck(A)

2

 . (7.16)
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Another interesting lower bound was given by Qi [37, Theorem 3]:

σmin(A) ≥ max
{
0,min{l1, . . . , ln}

}
with

li := min


√

a2
ii + aiiri(A) +

ci(A)2

4
−

ci(A)
2

,

√
a2

ii + aiici(A) +
ri(A)2

4
−

ri(A)
2

 . (7.17)

Finally Li [31, Theorem 2] introduced the following lower bound for a matrix A which
has no isolated vertex:

σmin(A) ≥ min
(i, j)∈E(A)

{gi j}, (7.18)

where

gi j =
|aii| + |a j j|

2
−

1
2
·
[
(|aii| − |a j j|)2 + (ri(A) + ci(A))(r j(A) + c j(A))

]1/2

and (i, j) ∈ E(A) if and only if ai j , 0 or a ji , 0 . This bound is an improvement of a
corresponding result in [20]. Further lower bounds for the smallest singular value may be
found in [42], but they are based on the determinant of A which is expensive to compute in
our case.

In the following table, we compare these estimates with our estimate for L(τ, h) for dif-
ferent step sizes h.

h σ1 exact σ1 l.b. (7.15) (7.16) (7.17) (7.18)

0.5 0.30046 0.29996 0.29712 0.29713 0.29689 0.28831
0.2 0.30031 0.29980 0.24825 0.25049 0.22481 0.05821
0.1 0.30005 0.29918 0.048 0.06919 0.00000 − 0.89218
0.05 0.29978 0.28960 −0.798 −0.68005 0.08769 − 4.91874
0.02 0.30006 0.17057 −6.9 −6.04810 0.20315 −35.69999

The column entitled “σ1 l.b.” is our lower bound. We see that the estimates from (7.15)–
(7.18) all become zero or negative at a certain stage (and, hence, are useless as a lower
bound for the smallest singular value). Furthermore, our lower bound is (much) better in
almost all situations.
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8 Final Remarks

In the previous chapters we have presented a special application from the field of hydro-
geology and its modeling as a PDE-ODE-AE-CC system. After some transformations and
discretization we finally obtained a nonlinear nonsmooth equation system formulated either
with the minimum function or the Fischer-Burmeister function. Both nonlinear nonsmooth
equation systems were solved with the semismooth Newton method. The minimum func-
tion approach enabled the full exploitation of the structure of the linear equation systems
arising from Newton’s method. This resulted in a very specialized and efficient algorithm
and in strong theoretical results. The Fischer-Burmeister approach did not allow the ex-
ploitation of the arising linear equation systems. But this formulation enabled the global-
ization of the semismooth Newton method. Also good theoretical results could be shown
for this globalized Newton method. The numerical behavior of the MinSchur algorithm
corresponding to the Schur complement approach for the minimum function formulation
proved to be stable and much more efficient then the globalized algorithm FBglob stem-
ming from the Fischer-Burmeister formulation. In our numerical test runs there was never
a need for the use of a globalization technique, because the starting vectors from the previ-
ous time step were always good enough. But this algorithm could very well be useful for
problems with bad starting vectors.

In [25] the author studied a more general model then we did. There he also considered
kinetic reactions and so-called sorption reactions. One interesting question would be: can
the strategy presented in this thesis be adapted to that more general case? For the answer
one must distinguish if only kinetic reactions or only sorption reactions or both are added
to our model. The strategy from Section 4.4 for τ could always be adapted. Much of what
we did in Chapter 4 and 5 was subject to the special structure of our problem especially to
the structure of the elements of ∂BGM, ∂BGF . Adding both kinetic and sorption reactions to
our model would completely alter the structure of these matrices. In that case I reckon that
it is hardly possible to give considerably stronger results then the ones that Kräutle brought
in [25]. If we add only sorption reactions (and species) to our model, still the structure
of the problem would be altered so much, that the strategies in this thesis could not be
applied. This problem could be a subject of a different research project, where the results
of this thesis might be helpful. The third and last scenario would be to add only kinetic
reactions to our model. Hereby the structure of our problem is alerted in such a way that
the strategies presented in the previous chapters could be adapted. Some results would still
be valid unchanged and some results would be weaker. For example Theorem 4.5.2, saying
that all HB ∈ ∂DG(w) are nonsingular for 0 ≤ τ < τmax in every time step (note τmax can
be calculated), would not be valid any more. This statement would have to be replaced by:
In every time step there is a constant τmax such that all HB ∈ ∂DG(w) are nonsingular for
0 ≤ τ < τmax (and τmax could not be calculated). And of course any result that depends on
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this theorem would have do be adapted as well.
Finally we want to discuss briefly two open questions. Much effort was put in the solu-

tion of the first open question, yet without result. Assume that we have found a solution[
η, ξmin, ξmob, c̄

]
so that G(ξmin, ξmob, c̄) = 0 holds and η solves the decoupled equation sys-

tem (θI + τLh) · η = θηold. Then it is important to know: Are all components of

c = c (ξmin, ξmob, η) = S 1
min · ξmin + S 1

mob · ξmob + S ⊥1 η

positive? The opposite would make no physical sense. Our numerical test runs would
suggest c > 0 always holds. But can it be proved mathematically? Also it would be
desirable to have a more powerful local existence result then that provided in Section 5.2.
In Theorem 4.7.2 it was shown that there is an τs > 0 and a function g : [0, τs) −→ P×RJmin p

such that
F (τ, g(τ)) = 0 , ∀τ ∈ [0, τs)

and
g(0) =

[
ηold, ξold

min, ξ
old
mob, c̄

old
]
∈ P × RJmin p

hold (with the notation of that section). Remember that
[
ηold, ξold

min, ξ
old
mob, c̄

old
]

is the solution
of the previous time step andP is the set of all vectors η, ξmin, ξmob such that c (ξmin, ξmob, η) >
0 holds. But this theorem says nothing about the magnitude of τs. It would be desirable to
have a minimal constant τmin > 0 such that τs ≥ τmin always holds so that τs can’t tend to
zero. This matter is connected to the previous question because τs > 0 must be chosen in
such a way, that g(τ) stays in P × RJmin p for all τ ∈ [0, τs).



A Appendix

A.1 Determinant Sum Expansion Formula

The following result was used in Section 4.4. The result itself can be found in [8, p. 60]
but without proof. Since we are not aware of an explicit reference containing the proof, we
give the details here.

Theorem A.1.1. Let B,D ∈ Rn×n with D being a diagonal matrix, and let M = D+ B. Then

det M =
∑
α⊂I

det Dα,α · det Bᾱ,ᾱ ,

where I := {1, . . . , n}, ᾱ := I \ α denotes the complement of α ⊂ I, and where the determi-
nant of a 0 × 0 matrix is 1.

Proof. The proof is by induction on n. Let n = 1. Then M, B,D are real numbers and the
determinant is a linear mapping. Therefore it holds

det M = det D + det B = det D{1},{1} · det B∅,∅ + det D∅,∅ · det B{1},{1} .

Now assume the statement holds for all matrices of dimension n × n and let B,D ∈

R(n+1)×(n+1) with D diagonal and M := D + B. Here we need some specific notation. Let
Bi := BJ,J with J = {1, . . . , n + 1} \ {i}. This is the matrix that emerges from B by canceling
the i-th column and row. Let Mi be defined in an analogous way. Furthermore let Dī :=
diag(0, . . . , 0︸  ︷︷  ︸

i−1

, di+1, . . . , dn+1) be the matrix that evolves from D = diag(d1, d2, . . . , dn+1) by

discarding the i-th row and column and setting the first i − 1 diagonal entries to zero. With
di and bi we denote the i-th column of D and B, respectively. Because of the linearity of
the determinant in the first column, we then get

det M = det
[
d1 + b1, d2 + b2, . . . , dn+1 + bn+1

]
= det

[
d1, d2 + b2, . . . , dn+1 + bn+1

]
+ det

[
b1, d2 + b2, . . . , dn+1 + bn+1

]
= d1 · det M1 + det

[
b1, d2 + b2, . . . , dn+1 + bn+1

]
,

where the last equation follows by expanding the determinant in the first column. We repeat
this procedure and get

det M = d1 · det M1 + det
[
b1, d2 + b2, . . . , dn+1 + bn+1

]
= d1 · det (D1̄ + B1) + d2 · det (D2̄ + B2)

+ det
[
b1, b2, d3 + b3, . . . , dn+1 + bn+1

]
.
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Now we iterate this and eventually get

det M =

n+1∑
i=1

di · det (Dī + Bi) + det B. (A.1)

Note that Dī and Bi are n × n matrices. Hence we can apply the induction hypothesis to
obtain

di · det (Dī + Bi) = di ·
∑

α⊂{1,...,n}

det (Dī)
α,α
· det (Bi)ᾱ,ᾱ

= di ·
∑

α⊂{i,...,n}

det (Dī)
α,α
· det (Bi)ᾱ,ᾱ ,

where the last equation holds because of the definition of Dī (the subscript under the sum
sign has changed). Now it is not difficult to see that, given any i ∈ {1, . . . , n + 1}, we have

di · det (Dī + Bi) =
∑
α∩{i},∅

α⊂{i,i+1,...,n+1}

det Dα,α · det Bᾱ,ᾱ ,

since α∩ {i} , ∅ guarantees, on the one hand that di is always on the diagonal of Dα,α, and,
on the other hand that the index i does not belong to ᾱ so that we can replace Bi by B. Now
we can insert this result in (A.1) and get

det M =

n+1∑
i=1

 ∑
α∩{i},∅

α⊂{i,i+1,...,n+1}

det Dα,α · det Bᾱ,ᾱ

 + det B .

Now it holds that ∪n+1
i=1 {α | α ⊂ {i, i + 1, . . . , n + 1} , α ∩ {i} , ∅} equals the power set of

{1, 2, . . . , n + 1} off the empty set. Furthermore, for different i, two sets

{α | α ⊂ {i, i + 1, . . . , n + 1} , α ∩ {i} , ∅}

do not have an intersection. Therefore α runs through every subset of {1, 2, . . . , n + 1} once
except for the empty set. But for the empty set, we have

det D∅,∅ · det B∅̄,∅̄ = det B .

Hence we obtain

det M =
∑

α⊂{1,...,n+1}

det Dα,α · det Bᾱ,ᾱ ,

with ᾱ := {1, . . . , n + 1} \ α. That is exactly our assertion for n + 1. �
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A.2 The Determinant and Block Permutations

In this section we will show some simple results about the effects on the determinant of a
matrix under special permutations of its rows or columns. The aim is to get an easy formula
for swapping block rows or block columns of a matrix.

Let v1, v2, . . . , vn ∈ R
n and let σ ∈ Sn be an arbitrary permutation. Then we define the

real n × n matrix
Vσ :=

[
vσ(1), vσ(2), . . . , vσ(n)

]
.

As abbreviation we set V := Vid. With sign we denote the signum function, which assigns
each permutation σ ∈ Sn one of the numbers −1, +1. Our first Lemma is based on the fact
that each permutation in Sn can be written as a product of transpositions (swapping of two
numbers). We leave the proof to the reader.

Lemma A.2.1. For all permutations σ ∈ Sn it holds

det (Vσ) = sign (σ) · det (V) .

Proof. trivial. �

Let w1, . . . ,wn ∈ R
n and σ ∈ Sn. Then we define the n × n matrix

Wσ :=


wT
σ(1)

wT
σ(2)
...

wT
σ(n)


and with W := W id we again denote the unpermuted matrix. Since the determinant of a
matrix and and its transposed version is the same we can directly deduce

Corollary A.2.2. det (Wσ) = sign (σ) · det (W).

Now let mi ∈ N0 so that
∑4

i=1 mi = n. And let Vi ∈ R
n×mi and Wi ∈ R

mi×n for i = 1, . . . , 4.
We consider the matrices composed out of this matrix blocks. In the next result we study
what happens if two neighboring blocks are switched.

Theorem A.2.3. It holds

det ([V1 | V2 | V3 | V4]) = (−1)m2·m3 · det ([V1 | V3 | V2 | V4])

det




W1

W2

W3

W4


 = (−1)m2·m3 · det




W1

W3

W2

W4




Proof. It is sufficient to prove the first equation, since the second one is just the transposed
version of the first one.
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This proof is in two steps. First we find the permutation which causes this switch of
blocks. Then we have to calculate the signum value of this permutation. We proceed with
step one.

We write V := [V1 | V2 | V3 | V4] with column vectors

V =
[
v1, . . . , vm1 | vm1+1, . . . , vm1+m2 | vm1+m2+1, . . . , vm1+m2+m3 | vms+1, . . . , vms+m4

]
with ms = m1 + m2 + m3.

Consider the permutations in cycle notation σi = (m1 + i,m1 + i + 1, . . . ,m1 + m2 + i).
Then σ1 applied to V switches the column vm1+m2+1 with the block V2

Vσ1 =
[
V1 | vm1+m2+1 | V2 | vm1+m2+2, . . . , vm1+m2+m3 | V4

]
.

Applying σ2 to Vσ1 switches V2 with the column vm1+m2+2 and results in

Vσ2◦σ1 =
[
V1 | vm1+m2+1, vm1+m2+2 | V2 | vm1+m2+3, . . . , vm1+m2+m3 | V4

]
.

We repeat this until we get

Vσm3◦σ(m3−1)◦...◦σ1 = [V1 | V3 | V2 | V4] .

Now σi can be written with m2 transpositions

σi = (m1 + i, m1 + i + 1) (m1 + i + 1, m1 + i + 2)
(m1 + i + 2, m1 + i + 3) . . . (m1 + m2 − 1 + i, m1 + m2 + i)

this means that sign(σi) = (−1)m2 . Using the homomorphism property of sign-function we
can conclude

sign
(
σm3 ◦ σm3−1 ◦ . . . ◦ σ1

)
=

m3∏
i=1

sign (σi)

=

m3∏
i=1

(−1)m2 = ((−1)m2)m3

= (−1)m2·m3

and we have proved our formula. �

Remark A.2.4. We want to consider shortly the special case m2 = m3, i.e. the block ma-
trices V2 and V3 have the exact same size. Now this two blocks can be switched just by
exchanging column after column. That is we swap the i-th column of V2 with the i-th col-
umn of V3. This procedure yields the same result as the construction in the proof above.
Here we need exactly m2 column changes and therefore we get

det ([V1 | V2 | V3 | V4]) = (−1)m2 · det ([V1 | V3 | V2 | V4]) .

But since m2 ≡ (m2)2 mod 2 this result does not contradict the Theorem above.

In Theorem A.2.3 we were swapping neighboring blocks of a matrix. But this result may
not hold if the blocks are not neighboring.
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A.3 Results for the Spectral Norm

Here we bring the proof of a fairly known result. It can be found in [17, Sec. 5.6] but
without proof. We have used it in Section 6.3.

Theorem A.3.1. Let A ∈ Rm×n. Then

‖A‖sp ≤
√
‖A‖C · ‖A‖R .

Proof. Let M ∈ Rs×r be arbitrary. Let λ ∈ C be an eigenvalue of M such that |λ| = ρ(M),
where ρ(M) is the spectral radius of M. Let x ∈ Rr be an eigenvector corresponding to λ
with ‖x‖∞ = 1. Then it holds

|λ| = |λ| · ‖x‖∞ = ‖λx‖∞ = ‖Mx‖∞ ≤ ‖M‖R ‖x‖∞ = ‖M‖R .

That means, that
ρ(M) ≤ ‖M‖R

holds. Now we can conclude

‖A‖2sp = ρ
(
AT A

)
≤

∥∥∥AT A
∥∥∥

R
≤

∥∥∥AT
∥∥∥

R
· ‖A‖R = ‖A‖C · ‖A‖R

where we used the fact that ‖·‖R is sub-multiplicative. Applying the square root on both
sides of this equation yields the assertion. �

The next result helps to calculate the spectral norm of a block diagonal matrix. To this
end we need some definitions.

Let m, n, r ∈ N be arbitrary numbers. Furthermore let ni,mi ∈ N(i = 1, . . . , r) be numbers
such that

∑r
i=1 ni = n and

∑r
i=1 mi = m holds. For i = 1, . . . , r let Mi ∈ R

mi×ni . Then we
define the block diagonal matrix M as

M = diag (M1,M2, . . . ,Mr) .

Theorem A.3.2. For the spectral norm of M is holds

‖M‖sp = max
i=1,...,r

‖Mi‖sp .

Proof. Let x ∈ Rn with ‖x‖2 = 1. We partition the column vector x as

x =
[
x1, x2, . . . , xr

]
such that xi ∈ Rni . With this notation we mean that the column vectors xi are parts of x.
Then it holds

‖x‖22 =

r∑
i=1

‖xi‖
2
2

and

‖Mx‖22 =

r∑
i=1

‖Mixi‖
2
2 .
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Since the functions x 7→ x2 and x 7→
√

x are strictly increasing for positive arguments, we
can swap the composition of ’max’ with these functions. In the following equation chain x
shall always be partitioned this way. Then

max
‖x‖22=1

‖Mx‖22 = max
‖x1‖

2
2+...+‖xr‖

2
2=1

r∑
i=1

‖Mixi‖
2
2

= max
α1+...+αr=1

αi≥0

r∑
i=1

max
‖xi‖

2
2=αi

‖Mixi‖
2
2

= max
α1+...+αr=1

αi≥0

r∑
i=1

(
max
‖xi‖2=

√
αi

‖Mixi‖2

)2

= max
α1+...+αr=1

αi≥0

r∑
i=1

(√
αi max
‖xi‖2=1

‖Mixi‖2

)2

= max
α1+...+αr=1

αi≥0

r∑
i=1

(√
αi ‖Mi‖sp

)2

= max
α1+...+αr=1

αi≥0

r∑
i=1

αi ‖Mi‖
2
sp

= max
i=1,...,r

‖Mi‖
2
sp

=
(

max
i=1,...,r

‖Mi‖sp

)2
.

Then it holds
max
‖x‖22=1

‖Mx‖22 =
(

max
‖x‖2=1

‖Mx‖2
)2

= ‖M‖2sp .

And in summary we have

‖M‖2sp =
(

max
i=1,...,r

‖Mi‖sp

)2
.

Applying the square root on both sides of the equation yields the assertion. �

A.4 Calculating the Bound for F(y) with MATLAB R©

In this section we briefly list two MATLAB functions. Both functions implements the
theory from Chapter 6 in a straightforward way. The first function calculates norm bounds
of the matrix-valued function F(y) for y > 0 according to Theorem 6.3.3 and the following
corollary. The input arguments are the matrices S ,V that define the function F(y), cf. (6.1).
The three return values are bounds for F(y) corresponding to the spectral, column sum and
row sum norm. Here is the listing of this function:

sbound.m
1 f u n c t i o n [ sp , C , R] = sbound ( S ,V)
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%% T h i s f u n c t i o n c a l c u l a t e s t h e bound o f t h e f u n c t i o n f ( y ) ,
%% y>0 from c h a p t e r 6 " The D e t e r m i n a n t Theory " . The bound
%% i s c a l c u l a t e d a c c o r d i n g t o t h e s p e c t r a l , row−sum and

5 %% column−sum norm .
%% S , V must have t h e same number o f rows and t h e y bo th must
%% have a t l e a s t so many rows as columns

10 [ n1 , m1] = s i z e ( S ) ;
[ n2 , m2] = s i z e (V ) ;

i f ( n1 ~= n2 )
error ( ’S� and �V�do� n o t � have � t h e � same�number� of � rows ! ’ ) ;

15 e l s e
n = n1 ;

end

i f ( n < m1 | | n < m2 )
20 error ( [ ’ The� m a t r i c e s �S� and �V� must � have � a t � l e a s t ’ . . .

’ a s �many� rows � as � columns ! ’ ] ) ;
end

25 nsub = nchoosek ( n , m1 ) ;
Ssub = nchoosek ( 1 : n , m1 ) ;

Serg = z e r o s ( 1 , nsub ) ;

30 f o r ( i =1: nsub )
Serg ( i ) = det ( S ( Ssub ( i , : ) , : ) ) ;

end

Werg = z e r o s (m1 , m2 ) ;
35

f o r ( i =1:m1 )
f o r ( j =1:m2 )

T = S ;
T ( : , i ) = V ( : , j ) ;

40 f o r ( k =1: nsub )
i f ( Serg ( k ) ~= 0 )

Werg ( i , j ) = Werg ( i , j ) . . .
+ abs ( det ( T ( Ssub ( k , : ) , : ) ) / Serg ( k ) ) ;

end
45 end
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end
end

C = norm ( Werg , 1 ) ;
50 R = norm ( Werg , i n f ) ;

sp = s q r t (C∗R ) ;

The second function computes the bound s from Lemma 6.4.1 for matrix D1 corre-
sponding to not only the spectral norm but also to the row-sum and column-sum norms.
This function is specially fitted for the main problem of this thesis, cf. Chapter 3. The
input arguments are the stoichiometric matrices S min and S mob. This is done by calling the
previous function with different arguments. Here is the listing of this function.

exabound.m

1 f u n c t i o n [ spmax , Cmax , Rmax ] = exabound ( Smin , Smob )
%% T h i s f u n c t i o n c a l c u l a t e s f o r s e v e r a l norms t h e bounds f o r
%% D_1 Smin s h o u l d be a I X J_min m a t r i x and Smob s h o u l d be
%% a I X J_mob m a t r i x

5

%% Here n1 s h o u l d be e q u a l t o n2 . Then n1 = I
%% Fur thermore m1=J_min and m2=J_mob
[ n1 , m1] = s i z e ( Smin ) ;

10 [ n2 , m2] = s i z e ( Smob ) ;

%% some s a n i t y c h e c k s
i f ( n1 ~= n2 )

error ( ’ Smin� and �Smob�do� n o t � have � t h e � same�number� of � rows ’ ) ;
15 e l s e

n = n1 ;
end

i f ( n < m1 | | n < m2 )
20 error ( [ ’ The� m a t r i c e s �Smin� and �Smob� must � have ’ . . .

’ � a t � l e a s t � so �many� rows � as � columns ’ ] ) ;
end

25 %% \ h a t { J } i s t h e e m p t y s e t
[ spmax , Cmax , Rmax ] = sbound ( Smob , Smin ) ;

%% t h e n e x t l oop c a l c u l a t e s a l l p o s s i b l e s e t s \ h a t { J } and
30 %% \ h a t {B } . The case \ h a t { J } = { 1 , . . . , J_min } i s e x c l u d e d
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%% because t h i s r e s u l t s i n \ h a t {B}= e m p t y s e t and t h e r e f o r e
%% V would be a I x 0 m a t r i x .

f o r ( k =1:m1−1)
35 %% now we t r e a t s u b s e t s \ h a t { J } w i t h k e l e m e n t ( s )

%% t h e n \ h a t {B} has m1−k e l e m e n t ( s )

nsub = nchoosek (m1 , k ) ;
Ssub = nchoosek ( 1 : m1 , k ) ;

40

f o r i =1: nsub
h a t _ J = Ssub ( i , : ) ;
hat_B = s e t d i f f ( 1 : m1 , h a t _ J ) ;
S = [ Smin ( : , h a t _ J ) , Smob ] ;

45 V = Smin ( : , hat_B ) ;
[ sp , C , R] = sbound ( S , V ) ;
spmax = max ( spmax , sp ) ;
Cmax = max ( Cmax , C ) ;
Rmax = max ( Rmax , R ) ;

50 end
end
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