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“Nature will bear the closest inspection. She invites us to lay our eye  

level with her smallest leaf, and take an insect view of its plain.”  

Henry David Thoreau 
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Summary 

Bees are subject to permanent threat from predators such as ants. Their nests with 

large quantities of brood, pollen and honey represent lucrative targets for attacks 

whereas foragers have to face rivalry at food sources. This thesis focused on the role 

of stingless bees as third party interactor on ant-aphid-associations as well as on the 

predatory potential represented by ants and defense mechanisms against this threat. 

Regular observations of an aphid infested Podocarpus for approaching stingless bees 

yielded no results. Another aim of this thesis was the observation of foraging habits 

of four native and one introduced ant species for assessment of their predatory 

potential to stingless bees. All species turned out to be dietary balanced generalists 

with one mostly carnivorous species and four species predominantly collecting nectar 

roughly according to optimal foraging theory. Two of the species monitored, 

Rhytidoponera metallica and Iridomyrmex rufoniger were considered potential nest 

robbers. 

As the name implies, stingless bees lack the powerful weapon of their distant 

relatives; hence they specialized on other defense strategies. Resin is an important, 

multipurpose resource for stingless bees that is used as material for nest construction, 

antibiotic and for defensive means. For the latter purpose highly viscous resin is 

either directly used to stick down aggressors or its terpenic compounds are included 

in the bees cuticular surface. In a feeding choice experiment, three ant species were 

confronted with the choice between two native bee species - Tetragonula carbonaria 

and Austroplebeia australis - with different cuticular profiles and resin collection 

habits. Two of the ant species, especially the introduced Tetramorium bicarinatum 

did not show any preferences. The carnivorous R. metallica predominantly took the 

less resinous A. australis as prey. The reluctance towards T. carbonaria disappeared 

when the resinous compounds on its cuticle had been washed off with hexane. To test 

whether the repulsive reactions were related to the stickiness of the resinous surface 

or to chemical substances, hexane extracts of bees’ cuticles, propolis and three 

natural tree resins were prepared. In the following assay responses of ants towards 

extract treated surfaces were observed. Except for one of the resin extracts, all tested 

substances had repellent effects to the ants. Efficacy varied with the type of extract 

and species. Especially to the introduced T. bicarinatum the cuticular extract had no 

effect. GCMS-analyses showed that some of the resinous compounds were also found 

in the cuticular profile of T. carbonaria which featured reasonable analogies to the 

resin of Corymbia torelliana that is highly attractive for stingless bees. The results 

showed that repellent effects were only partially related to the sticky quality of resin 

but were rather caused by chemical substances, presumably sesqui- and diterpenes. 

Despite its efficacy this defense strategy only provides short time repellent effects 

sufficient for escape and warning of nest mates to initiate further preventive 

measures. 
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Zusammenfassung 

Bienen sind permanent Gefahren ausgesetzt, ihre Nester voll Brut, Pollen und Honig 

bieten ein ertragreiches Ziel für Räuber und auch bei der Nahrungssuche droht 

Konkurrenz an den Futterquellen, beispielsweise durch Ameisen. Ziel dieser Arbeit 

war es zu untersuchen, welche Rolle stachellose Bienen in Australien als dritter 

Interaktionspartner an Ameisen-Blattlaus-Assoziationen einnehmen, welcher 

Bedrohung sie durch räuberische Ameisen ausgesetzt sind und wie sie sich gegen diese 

verteidigen. Regelmäßige Beobachtungen einer von Blattläusen befallenen Steineibe 

auf Besuche von stachellosen Bienen blieben erfolglos, es wurden keine Anflüge 

erfasst. Ein weiterer Fokus dieser Arbeit lag auf der Untersuchung des 

Nahrungseintrags von vier heimischen, sowie einer eingeschleppten Ameisenart zur 

Erfassung des räuberischen Potenzials gegenüber stachellosen Bienen. Alle 

Ameisenarten stellten sich als Generalisten mit ausgewogenem Nahrungseintrag 

heraus. Eine der Arten ernährte sich hauptsächlich räuberisch, während der Eintrag 

von Nektar für vier Arten die Hauptressource darstellte und annäherungsweise gemäß 

der „optimal foraging theory“ erfolgte. Zwei der untersuchten Arten, Rhytidoponera 

metallica und Iridomyrmex rufoniger, wurden als potenzielle Nesträuber eingestuft. 

Stachellose Bienen können sich nicht durch Stiche verteidigen, sie nutzen daher 

andere Strategien. Pflanzenharz stellt für Bienen eine vielseitige Ressource dar, 

welche als Baumaterial, Desinfiziens und auch zur Verteidigung eingesetzt wird. Das 

Harz wird entweder in zähflüssiger Form dazu verwendet, um Angreifer zu verkleben 

oder die darin enthaltenen Terpene gelangen in Bestandteilen auf die Oberfläche der 

Bienen. In einem Futterwahl-Experiment wurden Tetragonula carbonaria und 

Austroplebeia australis, zwei heimische Bienenarten mit unterschiedlichen 

Harzsammel-Gewohnheiten und Oberflächenprofilen, drei Ameisenarten als Beute 

vorgelegt. Während zwei der Ameisenarten, insbesondere die eingeführte 

Tetramorium bicarinatum, keinerlei Präferenzen zeigte, entschieden sich die 

karnivoren R. metallica vorrangig für A. australis, deren Oberflächenprofil weniger 

Harzkomponenten aufwies. Wurden die Oberflächenbestandteile von T. carbonaria 

durch Waschen mit Hexan entfernt, verschwand auch die Zurückhaltung der Räuber. 

Um zu untersuchen ob diese Abwehrreaktion durch die Klebrigkeit der Oberfläche 

oder durch chemische Substanzen verursacht wurde, wurden Hexan-Extrakte der 

Bienenoberflächen sowie von drei Baumharzen und Nestmaterial angefertigt. Die 

nachfolgenden Untersuchungen richteten sich daraufhin auf die Beobachtung der 

Reaktion von Ameisen bei Kontakt mit Extrakt-behandelten Oberflächen. Bis auf 

einen der Harzextrakte zeigten alle untersuchten Substanzen unterschiedlich stark 

abstoßende Effekte auf Ameisen. Die eingeführte T. bicarinatum wurde jedoch nicht 

durch Bienenextrakt in ihrem Verhalten beeinflusst. Eine GCMS-Analyse ergab, dass 

einige der Harzsubstanzen auch im Oberflächenprofil von T. carbonaria zu finden 

waren, welches vor allem Übereinstimmungen mit dem Harz von Corymbia torelliana 



 
VII 

aufwies, einer Pflanze deren Harz für Bienen besonders attraktiv ist. Es zeigte sich, 

dass nicht nur die Klebrigkeit, sondern auch chemische Substanzen, vermutlich 

Sesqui- und Diterpene, für abstoßende Effekte verantwortlich sind. Trotz der 

Effektivität dieses Mechanismus sorgt er nur für eine kurzzeitige Abwehrreaktion, 

ermöglicht jedoch die Gelegenheit zur Flucht und Warnung von Nestgenossen, sowie 

zur Einleitung weiterer Gegenwehr. 
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1 Introduction 

1.1 Social life – a successful strategy relying on cooperative interaction 

Social insects such as bees and ants are among the most successful creatures to have 

evolved on earth. Even though they only account for about 2% of all known insect 

species they contribute to roughly half of the insect biomass worldwide. Their 

effectiveness is based on several evolutionary adaptations related to cooperative 

living. Whereas (apart from a few exceptions) all ants are eusocial (Hölldobler et al. 

1990, 2009), a broad variety of life cycles from solitary to facultative or obligate social 

can be found in bees (Michener 1974; Roubik 1989). Eusocial associations in 

hymenopterans, often referred to as superorganisms, show a broad spectrum of 

complexity and are characterized by several traits which contribute to their success: 

The first point is a caste system based on the division of labor amongst adults such 

as reproductive (e.g. queens or drones) and worker castes with reduced or lacking 

fertility. Secondly, two or more generations share a nest and workers cooperate in 

nest building as well as in brood care and feeding (Hölldobler et al. 2009). These 

traits result in a high efficiency of social life due to a large number of workers that 

subordinate their own life to the well-being of the colony and the reproductive caste. 

Social life also allows more effective foraging and defense as well as the building of 

complex nest structures which provide food and shelter (Blüthgen et al. 2010). 

Overall these features contribute to the fact that social insects dominate almost all 

habitats on land. The variability and complexity of interactions of social insects with 

nest mates but also with other species has drawn the attention and fascination of 

scientists around the globe to these little but mighty creatures (Roubik 1989; 

Hölldobler et al. 2009).  

The cooperative way of life in a social colony puts high demands on communicational 

skills in order to coordinate adequate responses to environmental stimuli. Besides 

visual, tactile and auditory signals, olfactory or chemical cues form a crucial 

foundation for interactions in a social insect community. They play an important role 

in communication, division of labor, nest mate recognition, resource detection and 

defense (Roubik 1989; Hölldobler et al. 1990; Hölldobler 1995; Hölldobler et al. 2009). 

Studying the interface of two eusocial insect species with different foraging ecologies 

is subject of this thesis. It focuses on the interaction of Australian stingless bees and 

ants, with special attention to food related contacts and the use of resin as an 

olfactory defense mechanism in stingless bees. 
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1.2 Hustle and bustle - ecological aspects of ants  

GENERAL ECOLOGY 

Ants (Formicidae) represent one of the most prosperous groups of organisms that 

have colonized almost all terrestrial habitats on Earth. Worldwide 16 subfamilies, 

about 300 genera and about 15,000 described species and subspecies of ants are 

known to exist with numbers of new species discovered constantly rising (Bolton 

1995). Australia offers a quite diverse ant fauna with currently 10 subfamilies, 101 

genera and 1275 described species (Bolton 1995). 

Due to its size Australia provides a wide range of habitats which strongly influence 

the distribution patterns of ants (Figure 1.). The highest variety in genera can be 

found along the northern east coast with its warm, humid forest areas, whereas the 

dry central regions comprise comparatively fewer ant genera (Shattuck 1999). 

However, species numbers are distributed quite evenly and vary between 80 and 100 

due to the fact that rainforest genera only contain a few species whereas the number 

of species rises within the genera of more arid regions. The highest diversity is 

presumably found in the eastern semi-arid transition areas with several hundreds of 

species assumed (Shattuck 1999). 

Colonies can exist for several years and usually consist of at least three different 

castes: Diploid, female queens (fertile), workers (sterile, wingless) and haploid males. 

Colony sizes vary from less than 50 up to several hundreds or thousands of workers 

                                      
1 CSIRO, 2011. Ants Down Under, viewed 24 August 2011, http://anic.ento.csiro.au/ants 

 
Figure 1.  Habitat and ant genera distribution in Australia, arrow marks the study site: a) Major habitat types 

in Australia; b) Generic distribution of ant diversity
1
 



Introduction 

 
3 

(Hölldobler et al. 1990). A typical life cycle of a colony can be divided into three 

phases. In the founding stage a new queen mates with one or several males and starts 

constructing a first nest cell at a suitable nest site where she rears the first worker 

generation from her own body tissue. The workers then start foraging, enlarging the 

nest and caring for the brood. The queen confines herself to egg laying, and the 

population grows continually, sometimes with further caste differentiation. From this 

ergonomic stage, the colony passes into the reproductive stage where new queens and 

males are produced (Hölldobler et al. 1990). 

Task duties often depend on the age of workers (Hölldobler et al. 1990; Shattuck 

1999): Whereas younger workers tend to care for the brood, older ones engage in nest 

construction and excavation before finally becoming foragers that leave the nest in 

search for food. However, colonies where workers equally perform all tasks depending 

on the necessity of individual duties can also be found. A more distinct division of 

labor occurs in colonies with physical divergent sub-castes such as majors and minors 

where the size of the worker determines its activities (Hölldobler et al. 1990; Shattuck 

1999; Hölldobler et al. 2009). In contrast to monomorphic colonies where all workers 

show the same size, these sub-castes can reach from dimorphism (e.g. minors and 

majors) to a high variability of worker sizes (polymorphism) as can be observed in 

leaf cutting ants of the genus Atta, honeypot ants like Myrmecocystus, or the 

hyperdiverse Pheidole and several other genera (Hölldobler et al. 1990). This 

diversification is highly linked to allometry, the nonisometric, disproportional growth 

of body parts (Hölldobler et al. 1990, 2009). 

FOOD SOURCES, FORAGING AND NESTING 

Most ants are omnivores feeding on a broad spectrum of plant based resources, as 

well as predating and scavenging on dead animals and feces or sometimes also fungi 

(Shattuck 1999; Blüthgen et al. 2010). Whereas adult ants only feed on liquefied food 

that is rich in carbohydrates (especially sucrose), their larvae often need more protein 

and lipid rich food sources such as solid, dead animals or seeds (Shattuck 1999). 

Queens and workers that stay in the nest mostly receive their food from foragers by 

trophallaxis (Shattuck 1999). In many cases the larval secretions play an important 

role in predigesting and fragmenting food which is then redistributed among the 

workers (Hölldobler et al. 1990). Food can be stored internally, for example in the fat 

bodies and the crop, or in the nest as dried insects or seeds (reviewed by Blüthgen et 

al. 2010). Nutrient intake, especially the carbohydrate to protein ratio is generally 

well balanced. A lack of one component may affect mortality, worker size, colony 

growth, aggressiveness and the body composition of larvae; the latter will be retained 

to the adult stage (Kay et al. 2006; Blüthgen et al. 2010). Therefore omnivorous ants 



Introduction 

 
4 

actively control their food intake by altering their preferences for certain food sources, 

a process called compensatory foraging (Kay 2002; Christensen et al. 2010). 

The main carbohydrate source for many ants is nectar obtained from extrafloral 

nectaries or honeydew obtained from plant sucking hemipterans which usually 

contains a higher spectrum of nutrients such as valuable nitrogen than plain nectar 

(Davidson et al. 2003; Blüthgen et al. 2004a, b). This has led to the development of 

manifold, mostly mutualistic interactions where ants receive food from animals 

(trophobiosis) or plants in exchange for defense from predators or herbivores (Way 

1963; Hölldobler et al. 1990; Ness et al. 2010). However nectar bearing flowers are 

less frequently visited by ants due to the emission of repellent, terpenoid containing 

odors (Junker et al. 2008). Whereas the use of liquid food sources is mainly found in 

the subfamilies Dolichoderinae, Formicinae and Myrmicinae a primarily predatory 

lifestyle is found in the subfamilies Ponerinae, Leptanillinae and various Myrmicinae 

(Blüthgen et al. 2010). Typical food sources comprise invertebrates such as 

Collembolans, other ants and nitrogen rich feces. Food is either captured by single 

workers or by collaborative associations to the size of swarms in order to overwhelm 

and transport larger prey (Blüthgen et al. 2010). The sting (if existent) is often used 

to paralyze the prey (Hölldobler et al. 1990). Seeds often bear protein and fat rich 

elaiosomes that make them an attractive food source for many ant genera and 

contribute to the distribution of plants via myrmecochory (Ness et al. 2010). The 

seeds themselves are rarely consumed by only a few species in more arid regions. 

Fungi are either gardened or harvested from natural habitats (Blüthgen et al. 2010). 

Foraging strategies include solitary foraging, recruitment via (simulated) trophallaxis 

with subsequent tandem runs or carrying of workers, group recruitment by 

pheromones (e.g. trunk trails – a single path that splits into smaller ones like a tree 

trunk and covers a wide area) as well as swarm raids of army ants (Reviewed by 

Hölldobler et al. 1990; Dornhaus et al. 2010). Retrieval of prey is either accomplished 

by a single worker, team transport for larger items or ‘bucket brigades’ where items 

are only carried for a short distance before being turned over to the next ant 

(Dornhaus et al. 2010). A more detailed list can be found in Hölldobler et al. (1990, 

p. 280 f.) and Dornhaus et al. (2010, p.212 f.). Bigger ant colonies exploiting 

profitable and large resources like other nests benefit from the mass recruitment of 

workers (e.g. with pheromone trails) whereas smaller colonies hunting for single prey 

items are less likely to make use of a mass recruitment system (Hölldobler et al. 1990; 

Edelsteinkeshet et al. 1995; Beekman et al. 2001). 
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Ants mostly are central place foragers with a nest that limits foraging range but also 

offers lots of advantages like shelter for the queen and brood as well as room for the 

storage, cultivation and exchange of food (Blüthgen et al. 2010). Nest structures and 

sites can be found in a considerable variety of places: most frequently found are 

ground nests, nests in wooden cavities and carton or silk nests (Blüthgen et al. 2010).  

DEFENSE STRATEGIES 

Defense mechanisms in ants include a high variety of individual and group strategies 

(Reviewed by Hölldobler et al. 1990; Dornhaus et al. 2010). The most common 

individual defense mechanisms include morphological features such as mandibles, 

armor, spines, hair, warning or camouflaging coloration and chemicals. The latter 

comprise powerful venomous stings or if the sting is reduced, other poisonous, 

repellent, pungent or caustic secretions such as formic acid from various glands 

(Buschinger 1984; Dornhaus et al. 2010). Further behavioral methods like speed 

bursts, freezing in combination with camouflage or jumping and dropping from 

branches add to the repertory of defense mechanisms. Group defense strategies 

including more than one individual, are often used for the defense of the whole colony 

and attain higher effectiveness than the summed up individual performances. They 

comprise the use of specialized soldiers, blocking of the nest entrance, (temporary) 

nest evacuation, ritualized fights, cooperative use of chemicals such as alarm 

pheromones or chemical weapons and the establishment of guarded territorial 

borders. Structural and architectural means like redundant dummy chambers and 

barriers additionally help to block nest entrances, hide trails and generally enhance 

the defensibility of the nest (Reviewed by Dornhaus et al. 2010). 

1.3 Some fuss about the buzz - ecological aspects of stingless bees 

GENERAL ECOLOGY 

Stingless Bees (Meliponini: Apidae) are a widespread highly social group of insects 

found in all tropical and subtropical regions of the world being most abundant in 

South and Central America (Roubik 1989). Of the more than 600 described species in 

about 60 genera only two genera, Tetragonula and Austroplebeia, comprising about 

14 species (5 Tetragonula, 9 Austroplebeia) can be found mostly in the northern and 

eastern areas of Australia (Michener et al. 1990; Heard 1996; Rasmussen et al. 2010). 

All species are highly social and live in large, perennial colonies with usually hundreds 

or thousands of workers under a physogastric queen that is unable to fly when gravid 

(Roubik 1989, 2006). Another common trait of stingless bees is the reduction of the 

sting – hence the name (Wille 1983). 
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The Australian species are of a dark color, less than 4mm long and naturally live in 

crevices or cavities as offered by hollow trees, logs and rocks as well as human built 

structures (Heard 1996; Klumpp 2007). Yet, within the past 25 years keeping of 

native stingless bees by humans has become common in Australia and is evolving into 

a more and more important industry especially with regard to crop pollination, with 

macadamia and mango being the most common crops to profit from pollination by 

stingless bees in Australia (Heard 1999). The bees also play an important role as 

pollinators for at least 7 other agricultural plants and partially contribute to the 

pollination of about 60-90 more crop species around the globe (Heard 1999). 

Tetragonula carbonaria and Austroplebeia australis are the most common species 

held by beekeepers in Australia (Heard et al. 2000). 

NESTING ECOLOGY 

Nest structures vary considerably between species but are usually constructed with 

cerumen, a propolis mixture of glandular wax components, resin and various other 

compounds like mud or plant fibers, as main building material (Wille 1983; Roubik 

2006). The brood cells are separated from the rest of the nest by an involucrum (one 

or several layers of cerumen) that forms the brood chamber (Wille 1983). Storage 

pots for pollen, nectar and honey are located around the brood chamber and 

surrounded by a protective layer of batumen (hard cerumen) that forms the outline 

of the nest and also serves to seal hollows (Wille 1983). Nests of A. australis and 

T. carbonaria can be distinguished by the arrangement of their brood cells (Figure 

1.): Whereas larval cells of T. carbonaria are constructed in a horizontal spiral comb, 

they accumulate in an irregular, loose cluster in A. australis (Franck et al. 2004; 

Roubik 2006). 

Nest entrances are often extended by a characteristic entrance tube that can reach 

considerable sizes of 50 cm to one meter (Wille 1983; Roubik 2006). It channels 

entering and departing bees and reduces the entrance size making it easier to defend 

(Roubik 2006). Guard bees can often be seen keeping watch for potential predators 

(Figure 1.d, e) (Wille 1983; Roubik 2006). However in A. australis and T. carbonaria 

entrance tubes are quite small or completely absent (Franck et al. 2004). Typical for 

T. carbonaria is a dark, spread out mixture of resin surrounding the entrance hole 

which can pile up to a respectable size due to the collection of Corymbia torelliana 

resin and associated seed dispersal (Figure 1.d, f)(Wallace et al. 1995; Franck et al. 

2004; Leonhardt et al. 2011b). A small, but often also missing or cryptic entrance 

tube can be found in A. australis and is usually sealed at night with a loose netlike 

curtain of resin or propolis to provide an effective barrier against parasites and ants 

(own observation; Roubik 2006; Klumpp 2007). 
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Unlike several Apis species stingless bees do not migrate due to their queens’ 

disability to fly (Heard 1996; Roubik 2006). A new colony is founded by a virgin 

queen raised in special queen cells (Figure 1.c) that leaves the nest together with a 

swarm of workers who transport building material and food provisions for the new 

nesting site which is usually established within a few hundred meters from the 

mother’s nest (Wille 1983). After having built the new nest, the virgin queen leaves 

for a mating flight, followed by often hundreds of males (Reviewed by Roubik 2006). 

The dependence on material exchange between mother and daughter colony has been 

documented to last from several weeks up to six months (Wille 1983; Roubik 2006). 

 
Figure 1. Nesting characteristics of stingless bees: a) hive of T. carbonaria: B = brood cells, I = involucrum, P = pots 

for honey and pollen; b) hive of A. australis; c) queen cell in a T. carbonaria hive; d) guard bees 

protecting the entrance tube of an A. australis nest; e) entrance tube of a recently split T. carbonaria 

hive; f) entrance tube of an older T. carbonaria colony covered with resin and seeds (red) 
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FORAGING AND USE OF RESOURCES 

Stingless bees make use of a broad variety of materials. Among the most important 

resources collected are pollen, nectar and resin (Roubik 1989). Pollen is an important 

protein source and therefore also used for larval provisions in brood cells. The most 

important source of carbohydrates is nectar with sugar concentrations ranging from 

about 10% up to 72% (Roubik 1989). Both, nectar and pollen are stored in separate 

pots inside the nest (Figure 1.a, b) and therefore represent a potential target for 

predators, parasites and robbers (Wilson 1971; Roubik 1989). Another important 

resource used by stingless bees is resin (Roubik 1989). Resin plays a major role in 

nest construction, but also in defense (Roubik 2006). Further resources gathered by 

bees comprise oils, honeydew, sap, gums, wax, plant parts, mud, feces, fungi, spores, 

hairs, carrion, urine and water (Roubik 1989). 

Materials are transported using mandibles, legs, tarsi, other more or less hairy body 

parts, and by internal means – for example as a mix of pollen and nectar in the crop 

(Roubik 1989). The most important way of transportation for pollen and resin are the 

corbiculae, concave, mostly hairy areas on the hind tibiae (Roubik 1989). Depending 

on the stickiness of the collected material, bees can also add nectar to increase 

adhesive qualities (Leonhardt et al. 2007). 

To navigate stingless bees rely on various senses and use information like position of 

the sun, polarized light, landmarks and geomagnetic cues (Reviewed by Roubik 

1989). Chemical guidelines or trails from the nest to a resource have also been 

reported for some stingless bee species (Roubik 1989). Foraging radii range from 

about 100 m in small species up to about 2.5 km, depending on the size of the bee 

(Roubik 1989). Nectar in the crop of departing foragers were suggested to serve as 

fuel for the flights (Leonhardt et al. 2007). Recruitment of nest mates occurs via 

jostling, vibrations and auditory cues; outside the nest new recruits are guided by 

scent trails or guiding flights where they directly follow a recruiting forager to the 

resource (Lindauer et al. 1960; reviewed by Barth et al. 2008). 

Effectiveness in finding new supplies varies among different species (Hubbell et al. 

1978). The same holds true for the level of aggression which also depends on the 

attractiveness of the resource (Hubbell et al. 1978; Biesmeijer et al. 2004). Successful 

monopolization of attractive resources can be accomplished by high recruitment rates 

and aggressive behavior (Hubbell et al. 1978; Biesmeijer et al. 2004). Simultaneous 

exploitation of resources by various species using different strategies, such as 

scrambling, bustling, extirpation and opportunism can be observed in many cases 

(Biesmeijer et al. 2004). Other less aggressive species show a higher efficiency in 

finding new, widespread or isolated resources (Hubbell et al. 1978; Biesmeijer et al. 

2004; Leonhardt et al. 2009a). 
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DEFENSE MECHANISMS 

Given that bee nests host large quantities of food (brood, pollen, nectar and adult 

bees) compared to most natural resources, it is not surprising that a broad range of 

predators is attracted and that bees possess an elaborate repertory of defense 

strategies to protect their own lives and the well-being of their colonies (Roubik 1989; 

Breed et al. 2004). Australia lacks serious large mammal predators such as badgers, 

bears or apes (Roubik 2006). Natural enemies of individual stingless bees foraging on 

flowers comprise birds, lizards, geckoes, spiders, mantids, wasps, ants, assassin bugs 

and flies (Roubik 1989). Nests often fall prey to parasites such as wasps, flies, beetles, 

mites and ants that consume honey, bee larvae, eggs, pupae or living bees and – once 

they have entered the nest – often destroy its whole internal structure (Roubik 1989; 

Klumpp 2007). Sometimes other (even conspecific) bee colonies try to usurp or rob 

nests (Gloag et al. 2008). However, a well-established colony is generally able to 

defend itself against most predators and ant raids, but any disturbances can facilitate 

access to the colony (Roubik 1989; Klumpp 2007). 

Since the sting is depauperate, other strategies have evolved in stingless bees. 

Aggressive worker defense and biting with mandibles is the most common tactic 

(Roubik 2006). Retreat into the nest is also observed as a first response to hide in the 

camouflaged nest entrance, especially from larger predators that tend to look out for 

hovering bees in order to locate nests (Roubik 2006). Sometimes, defending or 

fighting swarms form when a conspecific threat has been detected by guard bees who 

assess the smell of entering individuals and either block the entrance, show aggressive 

behavior or recruit further defenders via alarm pheromones if chemical profiles do not 

match (Roubik 1989, 2006; Gloag et al. 2008; Lehmberg et al. 2008). Few species, for 

instance Teragonisca angustula, even have permanently hovering guards in front of 

their nests (Wittmann 1985). 

Chemical defenses include alarm pheromones (Johnson et al. 1985), repellent or 

pungent glandular secretions like citral or formic acid (Roubik 1989) and cuticular 

compounds occasionally comprising terpenoids of resinous origin with repellent effects 

(Debboun et al. 2007; Lehmberg et al. 2008; Leonhardt et al. 2009b). The most 

mentionable strategy is the use of external materials for nest defense with resin 

playing a key role: Sticky resin droplets are either sprinkled or evenly distributed 

around the nest entrance tube and surrounding branches to prevent access or are 

actively applied to intruders to immobilize them as has been reported for intruding 

parasites such as the small hive beetle (Roubik 2006; Greco et al. 2010b; Halcroft et 

al. 2011). 
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Fresh resin is reapplied regularly to keep the viscous barrier upright and resin 

foraging increases after ant attacks (Howard 1985; Khoo et al. 1987; Duangphakdee 

et al. 2009; Leonhardt et al. 2009a). Blocking of the nest entrance with spheres of 

hardened resin has also been reported (Roubik 2006)  

The nest structure itself provides further tactics. Hidden or small entrances prevent 

nests from being detected while long entrance tubes provide a good basis for 

stationing of many defenders and ample application of resin. Narrow tubes serve as 

bottleneck and can easily be blocked or closed off with resin. Most bees build resin 

deposits inside the nest near the entrance to allow easy access to resin stores in case 

of danger (Roubik 1989, 2006).  

1.4 Interactions and olfactory traits - the role of resin 

INTERACTIVE RELATIONSHIPS IN ANTS 

Interactions between social insects and other organisms are just as manifold as their 

individual lifestyles and offer a broad field for studies. The scale reaches from simple 

predator-prey relationships to nest associations with varying degrees of 

interconnection (Hölldobler et al. 1990, p.445-6) and other forms of temporary social 

parasitism. More complex forms such as slavery (dulosis) and permanent parasitism 

(inquilinism) are found in in mixed colonies among different ant species (Hölldobler et 

al. 1990). Mutualisms exist between ants and plants in multifarious relationships, 

such as offering food or protection for either partner, seed dispersal via 

myrmecochory and pollination. Very complex interactions between plants, ants, 

microorganisms and fungi are found in the leaf cutting Attini (Hölldobler et al. 1990, 

2009). Interactions with other arthropods comprise more or less parasitic 

myrmecophiles (ant guests that depend on ant societies), as well as mutualistic 

trophobionts (Hölldobler et al. 1990, p.471). The latter comprise mainly hemipterans, 

but also a few lycaenid larvae, whose honeydew or other nutritious secretions are 

used by ants. In return the ants offer protection and in some extreme forms even 

breed and herd aphids (Hölldobler et al. 1990). The high relevance of honeydew as 

food supply is demonstrated by the ants’ successful monopolization of most honeydew 

resources (Way 1963; Blüthgen et al. 2006).  

INTERACTIVE RELATIONSHIPS IN BEES 

Bees also interact with a variety of organisms in parasitic, commensal or even 

mutualistic relationships. Mites and microorganisms are among the most common 

parasites with the latter also being mutualists in many cases (Roubik 1989). 

Interactions with other insects besides some commensals mostly comprise parasitism, 

predominately by beetles, wasps and flies (e.g. Phoridae), but also social parasitism 
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by other bees (Roubik 1989, 2006; Klumpp 2007). Furthermore, scarcely obligate 

associations with termites and ants or even birds are common, mainly for protective 

means on either side, or for the use of existing cavities as nest locations (Wille 1983; 

Roubik 2006). 

Unlike ants, stingless bees are rarely found engaged in trophobioses with hemipterans, 

but few records found interactions between Coccidae or membracid treehoppers and 

Oxytrigona or Trigona species in South- and Central America (Salt 1929; Castro 

1975; Laroca et al. 1976; Schuster 1981; Figueiredo 1996) as well as between 

mealybugs (Pseudococcidae) and Liotrigona in Africa (Koch et al. 2011). One species 

of Schwarzula even hosts Coccidae as wax and honeydew producers inside their nests 

(Camargo et al. 2002). Interactions between honeydew collecting stingless bees and 

ants have been observed by Almeida-Neto (2003). Other bee species, predominantly 

apid bees are also known to collect honeydew, albeit most interactions (also for 

stingless bees) are of opportunistic character collecting excess droplets in the vicinity 

(Roubik 1989). However, these resources are limited due to competition with wasps 

and ants protecting hemipterans (Wagner et al. 1985; Roubik 1989). Although ants 

are generally able to outcompete bee rivals (Koch et al. 2011) and tend to monopolize 

their honeydew supply (Blüthgen et al. 2006), stingless bees occasionally seem to be 

capable of holding their ground or, at least, protecting or even defending hemipteran 

resources against ants, termites or other flying hymenopterans (Figueiredo 1996; 

Almeida-Neto et al. 2003). Presumably chemical means are used for this purpose 

(Wilson 1971; Castro 1975; Roubik 1989). Protection of nests against ants by 

chemical deterrents has been recorded by Lehmberg et al. (2008) and Duangphakdee 

et al (2009). However, it is not clear whether these mechanisms also apply for 

external resource protection. 

CHEMICAL COMMUNICATION - A BASIC PRINCIPLE FOR SOCIAL INTERACTION 

Social life requires a high efficacy of information processing and transmission among 

individuals. Reliable communication systems therefore play a crucial role in social 

insects. Typical signal channels comprise auditory, visual, vibrational, tactile and 

most important chemical cues (Lindauer et al. 1960; Roubik 1989; Hölldobler et al. 

1990). Due to their terrestrial habitat ants predominantly rely on a highly complex 

chemical communication system (Hölldobler et al. 1990, 2009). As “walking batteries 

of exocrine glands” (Hölldobler et al. 1990; p. 229) they produce pheromones that 

serve for attraction, alarm, aggressive behavior, recruitment, nest mate recognition, 

defense, sexual communication, caste determination, food exchange, territorial 

marking, grooming and further purposes (Hölldobler et al. 1990). The complexity of 

the communicational signal design is further modulated by different pheromones with 
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concentration depending differences in their meaning. The combination of 

pheromones with tactile and/or other signals generates a complex multicomponent 

message (Hölldobler et al. 1990; Hölldobler 1999). 

Stingless bees also make use of a broad variety of chemical, glandular compounds 

that serve similar purposes, i.e. recruitment (Barth et al. 2008), trail marking (Hrncir 

et al. 2004; Jarau 2009), defense or alarm (Johnson et al. 1985), nest mate 

recognition and sexual communication (Ayasse et al. 2001) as well as for various 

further types of interactions, for instance for feeding larvae or even for nest 

construction (Blum et al. 1972; Smith et al. 1983; Roubik 1989; Da Cruz-Landim et 

al. 2005). 

Olfactory cues particularly from cuticular profiles play a key role for kin, nest mate 

and species recognition in many insects, because they enable individuals to 

differentiate between friend and foe (Wilson 1971; Fletcher et al. 1987; Howard 1993). 

Cuticles mostly consist of waxy, long-chain hydrocarbon (20-35 C-atoms) compounds 

which are produced in epithelial gland cells and protect insects from physical 

damages, desiccation or infections (Lockey 1988; St. Leger 1995). The composition of 

cuticular compounds varies between species and colonies but is relatively uniform 

within one colony, which renders them ideal cues to be used for recognition 

(Blomquist et al. 1998; D'Ettorre et al. 2010). The major part of cuticular substance 

classes comprises non-polar long chain linear alkanes, alkenes, methyl-branched 

alkanes and compounds bearing further functional groups, such as carboxylic acids, 

esters, long-chain alcohols and aldehydes (Buckner 1993; Howard 1993). Whereas the 

cuticles of ants mainly consist of the aforementioned non-polar compounds (Martin et 

al. 2009), additional polar compounds with functional groups are common in cuticular 

profiles of bees (Ayasse et al. 1999; Abdalla et al. 2003; Jungnickel et al. 2004; Kerr 

et al. 2004; Nunes et al. 2008). 

In stingless bees, however, compounds with functional groups are less frequently 

found, while non-polar aliphatic hydrocarbons dominate their profiles (Abdalla et al. 

2003; Jungnickel et al. 2004; Kerr et al. 2004; Nunes et al. 2008). Leonhardt et al. 

(2009b; 2011a; 2011b) further showed that, in Southeast Asian stingless bees, resin 

derived compounds are actively filtered and included into cuticular profiles, with 

terpenoids (especially sesquiterpenes) being the most prominent components. 

Terpenoids are presumably responsible for interspecific recognition (Buchwald et al. 

2005), tolerance or aggression (Leonhardt et al. 2010a) as well as for defensive 

applications against predators (Duangphakdee et al. 2009) or microbes (Messer 1985). 
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STICKY THUS TRICKY – RESIN HANDLING AND USE IN ANTS AND BEES 

Resin is a viscous plant secretion that serves to seal wounds after injury as it polymerizes 

on exposure to oxygen (Langenheim 2003). Besides, it also protects plants from microbial 

infections and shows toxic or at least repellent effects to a broad spectrum of organisms 

such as bacteria, fungi (resin containing propolis: Ghisalberti 1979; Messer 1985; Lokvam 

et al. 1999), ants (Codella et al. 1995), termites (Bultman et al. 1998) or herbivorous 

insects (Langenheim et al. 1983; Langenheim 2003). Resin contains an extraordinary 

variety of chemical substances with its main constituents being isoprenoid polymers 

known as mono-, sesqui-, di- and triterpenes (Ghisalberti 1979; Langenheim 2003). 

Monoterpenes with ant repellent (Eisner et al. 1986) and antifungal properties 

(Langenheim 1994; Gershenzon et al. 2007) are believed to serve as solvents for transport 

of longer terpenoids that are responsible for polymerization and (just like some 

monoterpenes) for deterrence of herbivores (Langenheim 2003; Debboun et al. 2007; 

Gershenzon et al. 2007). 

Despite and particularly due to its toxicity for many organisms resin is utilized and 

taken advantage of by multiple insects. Sawfly larvae deter predators using terpenes of 

its host plant (Eisner et al. 1974) whereas ants mostly use it for self-medication (Christe 

et al. 2003; Castella et al. 2008a). Wood ants (Formica paralugubris) are known to carry 

solidified conifer resin into their nests to inhibit the growth of bacteria and fungi with 

the side effect of reducing their immune activity (Chapuisat et al. 2007; Castella et al. 

2008b). Resin is further used for nest construction in Vollenhovia ants (Brühl 2003) but 

also represents a common nest building material in stingless bees (Roubik 2006). Being a 

constituent of propolis (Ghisalberti 1979) resin serves as an important preservative for 

food stock and brood (Roubik 2006; Simone et al. 2009). Resin sources are located via 

terpenes emanating from resin wounds, acting as attractants (Leonhardt et al. 2010b). 

The importance of resin as a limiting resource for stingless bees is reflected in their high 

foraging density and aggressive behavior at resin wounds (Howard 1985). 

As mentioned above, resin is frequently used for defense, partly because of its volatile 

irritants but also because of its sticky properties which impair movement of arthropod 

predators and glue their mouthparts or sense organs (Pasteels et al. 1983). So far little is 

known about how stingless bees are able to handle this adhesive material without having 

to suffer the fate of their offenders. Recent research by Gastauer et al. (2011) proposes 

temporary resin repellent areas on the bees’ mandibles that are used for cleaning whereas 

removable cuticular microfilms (S.D. Leonhardt, personal communication) are also taken 

into consideration. Apart from the research of Duangphakdee et al. (2009), Lehmberg et 

al. (2008) it is not known to which extent resinous compounds on bee cuticles (see p.12) 

deter predators or whether deterrence is related to the stickiness of some bee species 
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1.5 Introducing the protagonists 

BEES 

Increasing popularity of stingless beekeeping in Australia has increased the 

availability of stingless bees for research purposes. The two most common species 

Tetragonula carbonaria and Austroplebeia australis belong to the two genera found in 

Australia (Heard et al. 2000; Klumpp 2007). 

Both species vary significantly in their cuticular profiles (Leonhardt et al. 2011b). 

Whereas A. australis bees only collect small amounts of resin and hardly show resin 

derived compounds in their cuticle, T. carbonaria acquires comparatively large 

amounts of resin in their cuticle, to the extent that the whole body is sticky (personal 

observation; Michener 2000; Klumpp 2007; Leonhardt et al. 2011b). Both species and 

particularly T. carbonaria are strongly attracted by resin from seed capsules of the 

eucalypt Corymbia torelliana. Resin from these capsules is completely soluble in 

hexane and contains a characteristic but hitherto unknown polar compound which 

can also be found in the cuticular profiles of T. carbonaria (Leonhardt et al. 2011b). 

Why stingless bees acquire C. torelliana resin or this particular compound is still 

unknown. 

ANTS 

Camponotus aeneopilosus, Iridomyrmex rufoniger gp., Polyrhachis australis, 

Rhytidoponera metallica, and Tetramorium bicarinatum were studied in this project. 

All these ant species are abundant in Queensland and commonly occur in gardens of 

settlements. An overview on the ant species this work focuses on is given in Figure 1. 

and Table 1..  

Polyrhachis australis is also known as “Rattle ant” because, if disturbed, it bangs its 

abdomen on the hard leaf surface, making a distinct rattling noise while swarming 

out. Its queens show a particular dimorphism with worker like microgyne queens in 

small nests and larger macrogyne queens being found in notably bigger nest 

aggregations (Heinze et al. 1993). Both types of nests have been found on the study 

site. 

Rhytidoponera Metallica has puzzled the myrmecologists’ understanding of kin 

recognition due to its frequent absence of functional queens and the low genetic 

relatedness of nest mates due to ergatoid workers (Ward 1986; Chapuisat et al. 2001). 

In this species, colony size affects the division of labor as well as decisions on foraging 

range and time (Thomas et al. 2003; Thomas et al. 2005). 
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1 http://www.flickr.com/photos/steve_shattuck (retrieved on 01.09.2011) 
2 http://www.brisbaneinsects.com/brisbane_ants/BicolouredPennantAnt.htm (retrieved on 01.09.2011) 

 
Figure 1.  Ant species found at the study site: a) Polyrhachis australis on a leaf nest; b) Camponotus aeneopilosus 

at its nest entrance that is heavily guarded by fellow workers; c) Iridomyrmex rufoniger on an aphid 

covered bud of Podocarpus elatus; d) I. rufoniger tending a lepidopteran larvae ©Steve Shattuck
1
; 

e) Rhytidoponera metallica carrying a small flower ©Steve Shattuck
1
; f) Tetramorium bicarinatum 

©Peter Chew
2
 



Introduction 

 
16 

Table 1.  Overview of the ant species addressed in this thesis and their characteristic traits (Burwell, personal communication; Burwell 2007 - unless stated otherwise) 

Species Subfamily Morphology Habitat and Nest Foraging Activity and Diet 

Rhytidoponera 

metallica 

‘Green Head Ant’ 

Ponerinae 4.5-6 mm – Ergatogyne 

Heavily armored - powerful sting 

Black with metallic green, blue 

and purple reflections 

Australia wide - Open and disturbed 

habitats, forest, wood- and grassland 

Nest in soil, under rocks and logs or open 

ground 

Mostly diurnal, foraging on ground or low vegetation 

Omnivorous, general scavengers and predators of 

invertebrates 

Also feed on honeydew and elaiosome bearing seeds 

Polyrhachis 

australis 

‘Dome-backed 

Spiny Ant’ 

Formicinae 4-6 mm – Monomorphic; Queen 

dimorphism 

Shiny, jet black color, two short 

spines on mesosoma 

Distinct smell and rattling noise 

while swarming out when nest is 

disturbed 

Coastal Queensland - Rainforest edges, open 

forest, woodland and gardens 

Nest among vegetation of trees and shrubs 

or in pre-existing cavities 

Nest is woven together with silk produced 

by larvae and fragments of vegetation. 

Entrance sealed at night 

Diurnal, foraging along tree branches 

Floral or extra floral nectaries, sugary saps of fruits 

and trees, food bodies, dead or living insect prey or 

electrolytes in form of vertebrate or bird excrement 

or urine (Liefke et al. 1998) 

Iridomyrmex 

rufoniger gp. 

‘Tufted Tyrant 

Ant’ 

Dolichoderinae 2-3.5 mm 

Dark, grey brown color 

Strong odor when crushed 

Very active 

South-east Queensland – Open forest, 

woodland and gardens 

Nest in soil, open or beneath rocks and logs, 

between bricks/pavers or in posts 

Citrus pest in south-eastern Australia 

(Stevens et al. 2002) 

Mostly diurnal, foraging in trails 

Generalists, scavengers, honeydew 

 

Tetramorium 

bicarinatum 

‘Bicolored Pennant 

Ant’ 

Myrmicinae 3.5-4.5 mm - Monomorphic 

Yellowish-brown head an thorax, 

dark brown to black abdomen, 

waist with two segments 

Introduced from South-east Asia 

Invasive, urban areas and disturbed 

environments – parks and gardens 

Does not seem to invade natural bushland 

Nest in soil, frequently introduced via 

potted plants 

Diurnal, usually in cooler morning or evening hours 

Generalists, scavengers 

Camponotus 

aeneopilosus 

‘Golden Tailed 

Sugar Ant’ 

Formicinae 5-9 mm - Polymorphic 

Black with a thick cover of golden 

hair on dorsal surface of the gaster 

Eastern Australia, North Qld.to northern 

Victoria - Open forest and woodland 

Nest in soil , beneath rocks or logs or at the 

bases of tree roots 

Diurnal, foraging on ground and vegetation 

Generalists, leaning towards nectar and honeydew 
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1.6 Thesis outline 

Central aim of this thesis was to assess the following aspects related to interaction 

and defense of Australian stingless bees with/ against ants: 

1. FORAGING HABITS OF DIFFERENT ANT SPECIES 

Five different ant species were monitored for intake of different food sources to 

evaluate their feeding preferences and hence potential as predators of stingless bees. 

Food items carried in by returning foragers were observed and categorized on 

different times of the day over several weeks. Nectar entries were also analyzed for 

their volume and sugar content. 

2. TROPHOBIOTIC INTERACTIONS 

An aphid infested tree, attended by honeydew harvesting ants was monitored for the 

occurrence of stingless bees as a third party in trophobiotic interactions. 

3. ANT REPELLENT EFFECTS OF STINGLESS BEES’ CUTICULAR PROFILES 

To investigate preferences of predatory ants for stingless bees, two bee species from 

different genera with different degrees of resin collection activity, were offered in a 

choice experiment. To further clarify the influence of resin-derived compounds in the 

bees’ cuticular profiles on the feeding choice by ants, the bee species with a resinous 

chemical profile was washed in hexane and offered to ants with unwashed individuals 

of the other species. Cuticular profiles of washed and untreated bees were analyzed 

and compared using GC-MS. 

4. EFFICACY OF RESINOUS COMPOUNDS AS ANT REPELLENTS 

To find out whether preferences in the feeding choice assay were related to the sticky 

appearance of T. carbonaria or to resin derived cuticular compounds, hexane extracts 

of the two bee species were prepared. Both extracts were then tested and compared 

for their effect on ant behavior. Further extracts of four different natural resin 

sources were additionally investigated for their repellent effects on ants and compared 

to the two extracts of bee cuticles. Chemical composition of all extracts was analyzed 

and compared via GCMS. 
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2 Methods 

2.1 Study site 

All studies were conducted from 16.02.2011-25.04.2011 at Forest Glen (26°41'S 

153°00'E), Queensland, Australia. The area has a subtropical climate with a mean 

annual temperature of 18-21°C and yearly rainfall from 1200-1600mm (Australian 

Bureau of Meteorology 2011). The study site covers about 0.5 ha of disturbed garden 

area surrounded by eucalypt forest which is interspersed by sporadic conifers. Due to 

human activities such as gardening and landscaping, several non-native plants such 

as various palm species, bamboo, and Pinus caribea were found in the closer vicinity 

of the study site. 

  

 
Figure 2.  Aerial view of the study site. Ant nest (N1-10) and bee hive (H1-7) locations marked by arrows. 

© Google Maps 
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2.2 Experimental animals 

BEES 

For the experiments two species of eusocial native Australian bees, were used: 

Austroplebeia australis and Tetragonula carbonaria. 

Both species were kept in standard wooden hive boxes (200mm wide x 280mm long), 

consisting of two halves with a height of about 95mm, made out of 45mm thick 

Cypress Pine wood. These boxes constitute the most common hive designs used for 

stingless beekeeping in Australia (Heard et al. 2000). Altogether six hives of 

T. carbonaria and one hive of A. australis (H4) were arranged around the house and 

garden area (Figure 2.). All hives had been established at least 4 weeks ago and were 

well accustomed to the area except for the A. australis colony which was put up at 

the study site in early March and given a week to adapt to the new environment. 

Bees for behavioral experiments and extracts were obtained by fixing a resealable, 

clear plastic bag in front of the entrance hole to catch the required number of bees 

(Figure 2.). Bees were then put in the freezer for at least three hours before using 

them for experiments. Depending on the weather and flight conditions which limited 

the catch quota of new bees, the dead bees were used as soon as possible, not 

exceeding one week. In order to avoid variations in the chemical composition of hive 

fragrances, due to colony specific differences in resource allocation and genetically 

determined waxy compounds, bees were collected from hive H3 (T. carbonaria) and 

H4 (A. australis) solely. Contamination of bees with pollen or resin was ruled out by 

only catching departing foragers. 

 
Figure 2.  Collection of A. australis from a hive-box using a clear plastic bag 
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ANTS 

All ants used for experiments or observations nested in different areas of the garden 

and house (Figure 2.). Altogether five different species were used in this study 

(number of monitored colonies / nests in brackets): 

Polyrhachis australis (2), Rhytidoponera metallica (3), Iridomyrmex rufoniger gp. (3), 

Camponotus aeneopilosus (1) and Tetramorium bicarinatum (1) - also see Table 2.. 

All species were identified by Dr. Chris Burwell, Curator (Entomology) at the 

Queensland Museum, Brisbane. 

Table 2. List of ant nests used in this study (see also Figure 2.). GPS data was recorded with a GARMIN-GPSmap 60Cx, 

accuracy ±3m. All ant species were native to Australia except for one introduced species (indicated by asterisk) 

Nest No. Ant species Subfamily Location Coordinates 

S 26°41' E 153°00' 

N1 P. australis Formicinae Tree 02.8" 52.6" 

N2 I. rufoniger gp. Dolichoderinae Wall 02.3" 51.0" 

N3 C. aeneopilosus Formicinae Soil 01.9" 51.0" 

N4 P. australis Formicinae Window frame 02.8" 52.6" 

N5 I. rufoniger gp. Dolichoderinae Wall 01.9" 50.8" 

N6 I. rufoniger gp. Dolichoderinae Soil 01.9" 52.5" 

N7 R. metallica Ponerinae Wall/pillar 02.0" 52.2" 

N8 R. metallica Ponerinae Soil 01.5" 52.3" 

N9 R. metallica Ponerinae Soil 01.7" 52.6" 

N10 T. bicarinatum* Myrmicinae Plant pot 01.9" 52.3" 

2.3 Food source monitoring 

FOOD INTAKE 

In order to get an overview of the resources collected by the different ant colonies, 

foragers returning to the nest were caught and the type and quality of food carried in 

their mandibles and crops analyzed. Overall about 90 returning foragers per colony 

were picked up with forceps, put into a drosophila-glass and kept in the freezer for 10 

minutes. The so immobilized ants were then studied for food items held in their 

mandibles or nectar in their crops which was collected by gently applying pressure to 

the ants’ gaster using forceps (Figure 2.). Ants were caught across several days and 

within different time blocks: morning 6:00-10:30 (30 ants), noon 10:30-14:30 (30 ants) 

and evening 14:30-18:00 (30 ants) to account for daytime related differences in 

resource intake. About ten ants were caught within each time period on a given day. 
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If less than 10 ants were collected within 40 minutes only the number of ants 

obtained by this time were studied. 

Ants were returned to their nests after having been screened for resources and their 

nests were not sampled for at least one day. 

Resources carried by returning foragers were classified according to 5 categories: 

nothing, nectar (fluid substances like honeydew, nectar and sap), protein/animal-

material (insects, insect parts, larvae, other animal meat), plant-parts (including 

seeds), and miscellaneous (comprising all non-identifiable objects as well as human 

food, like breadcrumbs etc.). 

To test whether the different ant species studied generally foraged on resources rich 

in protein or carbohydrates and whether they showed preferences for one or the 

other, colonies were provided with a honey/sugar-water solution and tuna bits in 

Eppendorf tube lids placed near the nest. All species, even the more carnivorous 

R. metallica consumed the honey-water solution. Hence, honey-water was used as 

bait in all following assays. R. metallica and I. rufoniger gp were assessed to have the 

highest predatory potential for stingless bees (c.f. 4.1 p. 45). For this reason focus was 

predominantly put on these two species in the subsequent feeding choice and extract 

experiments. 

NECTAR 

The following species were found collecting nectar in their crops and therefore used 

for nectar quality assessment: C. aeneopilosus, I. rufoniger gp., P. australis and 

T. bicarinatum. To analyze nectar quality and volume, randomly picked samples of 

7-19 forager crop loads per colony were collected with a 5 µL micro-capillary 

(Blaubrand IntraMark ± 0.1 µL) and their volumes measured (see Figure 2.). The 

sucrose content of crop loads was measured using a hand-held refractometer (Eclipse, 

 
Figure 2.  Sampling nectar from returning ant foragers: a) P. australis regurgitating nectar; 

b) collection of nectar with a micro-capillary 
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Bellingham & Stanley). The first samples were measured with a refractometer 

ranging only to a sucrose concentration of 50 % (°Brix), later higher concentrations 

were measured with a second refractometer (Eclipse, Bellingham & Stanley) featuring 

a wider ranged scale. 

APHID INTERACTION 

In order to check for potential trophobiotic aphid-bee interactions as well as the 

response of I. rufoniger ants tending these aphids one aphid affected tree of 

Podocarpus elatus (Podocarpaceae) was monitored for potential visits by stingless 

bees. Observations were carried out three times within the aforementioned time 

blocks for 10 minutes each. Additionally, the number of ants visiting the plant as well 

as the mean sucrose concentration of five randomly picked ants that had collected 

honeydew was determined. 

STATISTICAL ANALYSIS 

The collected data were tested for differences in nectar and protein entry between the 

five species as well as between colonies of the same species in different nest locations. 

Furthermore, daytime differences in resource collection were tested for each species 

separately. The data collected over time was therefore added up for each species and 

analyzed with Pearson's Chi-squared test in R using a post hoc Bonferroni correction 

factor of 5 for multiple testing. 

Species depending preferences for a certain food source (nectar or protein) and 

probabilities for finding the respective item were tested with the exact binomial test 

in R. 

In addition to that, general interspecific differences in nectar volume as well as in 

concentration were tested with a Kruskal-Wallis rank sum test. Further pairwise 

comparisons between species were done with the Wilcoxon rank sum test, including a 

post hoc significance correction. 

2.4 Feeding choice assay 

To test whether cuticular compounds on the bees’ surface affected the behavior of 

ants approaching a bee as potential prey, A. australis and T. carbonaria were offered 

to R. metallica, I. rufoniger and T. bicarinatum in a feeding choice experiment. 

Whereas T. carbonaria has a sticky cuticle with a high density of resin-derived 

compounds in addition to the cuticular hydrocarbons produced by the bees 

themselves, A. australis has only few or none resin-derived compounds on its body 

surface (Leonhardt et al. 2011b). Bees of both species leaving the nest were caught 

and put in the freezer for at least three hours. For every trial five bees of each species 
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were arranged in a circle shaped arena (Ø 10cm) which could be entered by the ants 

through a hole in its center (Figure 2.; also see Lehmberg et. al. (2008) for a similar 

setup). The arena consisted of a circular Styrofoam plate, surrounded by a 5 cm high 

paper strip preventing the bees from being blown off the platform. This platform was 

put on a 15 cm long stick to lift the arena off the ground and force the ants to enter 

through the hole. To rule out that the ants’ choices were influenced by chemical 

compounds from the bees’ cuticle or ant pheromones sticking to the bottom of the 

arena the bees were put on a circular filter paper (divided into ten segments) in 

alternating order. The filter paper was then pinned onto a cardboard support which 

could easily be put on the arena. After each trial filter paper and bees were discarded 

and the cardboard was kept on open air for at least two hours to allow evaporation of 

potential odorants before being reused. 

The arena was placed into or next to an established ant trail near the nest. Honey-

water solution (about 50% sugar content) was used as bait to generally attract ants 

to the arena. When a sufficient number of ants had found the food source and 

established a trail with at least one ant per minute entering the arena, the plate with 

sugar was exchanged by the one with bees. The order in which ants chose bees was 

recorded. A successful choice required that a bee had been dragged out of its segment 

or carried off the plate by an ant. Each ant that had picked up a bee was 

subsequently removed and put in a drosophila-cup to rule out double hits. Trials 

were stopped after five bees had been taken or after a time period of 40 minutes had 

passed. Each trial was repeated seven times. Combinations of 5 T. carbonaria and 5 

A. australis were fed to I. rufoniger, R. metallica and T. bicarinatum, the latter is an 

introduced species from Southeast Asia and used to test if foreign ant species are also 

affected by cuticular compounds of Australian bees. Finally, a fourth control 

combination was tested using A. australis and washed T. carbonaria with 

R. metallica to confirm that differences in choices were related to resinous compounds 

on the bees cuticle. 

In order to remove these cuticular compounds of T. carbonaria the bees were put 

into 5 ml hexane, shaken and left standing for 2 minutes. Each bee was then rinsed 

off again in 5 ml hexane and finally left to dry on a filter paper for 10 minutes before 

being put on the feeding plate. The effectiveness of the washing procedure was 

confirmed by analyzing the cuticular compounds of washed and untreated bees with 

coupled gas chromatography and mass spectrometry (as described on page 27). 
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STATISTICAL ANALYSIS 

To check whether the ants do prefer one of the bee species a Wilcoxon signed rank 

test with continuity correction was used. Therefore taken numbers of each bee species 

in a trial were pooled and tested against each other. 

2.5 Extract assay 

SETUP 

The influence of resinous compounds on ant behavior was tested by observing 

responses of ants approaching a surface treated with different extracts. The aim of 

these tests was to examine whether preferences for any bee species in the feeding 

choice assay were related to the stickiness of the bees’ body surface or to the smell of 

cuticular chemical substances. T. carbonaria, in contrast to A. australis has a high 

density of resin derived compounds on its cuticle and is therefore way stickier which 

might lead to the gumming up of predator’s mandibles. Further, extracts of pure 

resin were also tested to assess and compare their effect on ant’s behavior. 

Hexane extracts were prepared from the following components: 

− Tetragonula carbonaria cuticle 

− Austroplebeia australis cuticle 

− Pinus caribea resin from the trunk 

− Araucaria bidwillii resin from the trunk 

− Corymbia torelliana seed capsules 

− Propolis of a T. carbonaria hive (comprising mainly C. torelliana resin) 

  

 
Figure 2.  Feeding choice setup (A = A. australis; T = T. carbonaria): a) schematic of the arena; b) baiting the ants 

with a cup of honey-water solution; c) prepared feeding plate ready for the ants to attack 
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Resin from the trees was obtained by inflicting artificial wounds upon the trunk using 

a knife. The resin was collected with a glass rod, transferred to a 6 ml glass vial until 

it was filled up to about 0.7 cm (which is equivalent to approx. 1 ml resin) and filled 

up with 5 ml hexane to solve the nonpolar compounds. For the C. torelliana extracts, 

the resin of 5 seed capsules (approx. 0.15 ml resin) and about 1.5 ml of propolis from 

a T. carbonaria nest were solved in 5 ml hexane. Bee cuticular compounds were 

extracted using 50-60 bees that had been caught in a plastic bag and killed in the 

freezer overnight, and 5 ml hexane. All extracts (Figure 2.) were kept in the freezer 

while not being used. The different extracts were subsequently analyzed by gas 

chromatography and mass spectrometry to characterize differences in their chemical 

composition (see next subsection on page 27). 

The setup used here was inspired by the bioassay of Duangphakdee et. al. (2009) and 

modified to meet the requirements of this study. Behavioral responses of ants were 

tested on a Styrofoam feeding dish (Ø 10 cm) which was lifted about 10 cm off the 

ground by a stick anchored in another Styrofoam disk serving as base. A 5 mm wide 

trench was carved into the base disk and filled with water so that the ants could only 

enter the feeding dish via a stick used as bridge. Like in the feeding choice assay a 

cardboard circle with a filter paper pinned to it was put on the dish and used as 

platform to facilitate an exchange between the different trials as well as to remove 

pheromone trails and odorous resin leftovers after each trial. In addition, another, 

smaller filter paper (Ø 4.5 cm) was placed in the middle of the platform and equipped 

with an E-tube lid filled with honey-water solution used as bait to attract ants. Before 

putting it on the platform the smaller filter paper was soaked with either pure hexane 

as control or one of the hexane-extracts. Therefore about 10 drops of hexane or extract 

were applied to the filter until it was evenly soaked. It was left for 30 seconds to allow 

hexane to evaporate before being put on the dish and equipped with the honey pot. 

 
Figure 2.  Hexane extracts of (from left to right): C. torelliana (seed capsules), 

propolis from a T. carbonaria nest, A. bidwillii, P. caribea, T. carbonaria, 

A. australis. 
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To initiate a trial the arena was equipped with bait and put next to an ant trail until 

a sufficient number of ants had found the food source and established a new trail 

with at least two ants per minute crossing the bridge. After the trail had been 

established, the platform was exchanged for one equipped with a hexane or extract 

filter paper. Hexane and extract filter paper were provided in alternating order. Each 

platform was left for 5 minutes before being exchanged, to avoid that all highly 

volatile substances in extracts evaporated and that the ant pheromone trails 

(enhanced by each visiting ant) interfered with the extracts. Used filter papers were 

disposed. The cardboard dish was left lying on open air for at least two hours to 

allow evaporation of potential odorants before being reused. To further avoid 

chemical substances being carried over by the honey-pots that touched the filter 

paper, new pots were used for each extract. 

Ants entering the platform were then observed for their behavioral response when 

making first contact with the smaller filter paper. Three main types of behavior could 

be distinguished: 

− Touch and turn: The ant backed up fitfully or turned around immediately after 

touching the filter paper with the antennae. 

− Run for food: The filter paper was accessed without any obvious response to 

the applied chemicals, the ant headed straight for the food 

source. 

− Cross or explore: Indifferent behavior. The filter paper was accessed and crossed 

without approaching the food or responding to the chemicals, the 

ant continued to explore the platform. Further behavioral 

responses that could not exactly be classified were also sorted in 

this category. 

 
Figure 2.  Experimental setup for extract assays: a) schematic of the feeding platform: B = bridge, T = trench with 

water, F = small filter soaked with chemicals, H = honeypot, C = cardboard dish with large filter; 

b) ants feeding on the honeypot in a control trial, with one ant approaching the smaller filter which had 

previously been soaked in hexane 



Methods 

 
27 

Each trial was conducted in a paired approach by first monitoring reactions towards 

the hexane control filter paper, and then towards the extract filter paper for five 

minutes each.  

Extract - species combinations tested are provided in Table 2.: 

Table 2. Number of trials tested for each ant species – extract combination 

Extracts Number of trials for each species 

R. metallica I. rufoniger P. australis T. bicarinatum 

T. carbonaria 7 5 7 7 

C. torelliana (seed) 7 5 - - 

A. bidwillii 7 5 - - 

P. caribea 7 5 - - 

Propolis 7 - - - 

A. australis 7 - - - 

CHEMICAL ANALYSIS 

The extracts of bee surfaces, resin and nest samples were analyzed for their chemical 

compounds by their mass spectra and retention times as described in (Leonhardt 

2010). For characterization of the different compounds a Hewlett Packard HP 6890 

Series GC System coupled to a Hewlett Packard HP 5973 Mass Selective Detector 

(Agilent Technologies, Böblingen, Germany) was used. The GC was equipped with a 

J & W, DB-1 fused silica capillary column (30m x 0.25 mm ID; df = 0.25 μm; J & 

W, Folsom, CA, USA). Temperature was programmed from 60°C to 300°C with a 

5°C/min heating rate. It was held for 10 min at 300°C. Helium was used as carrier 

gas (constant flow of 1 ml/min). Injection was carried out at 250°C in the splitless 

mode for 1 min. Electron impact mass spectra (EI-MS) were recorded at an ionization 

voltage of 70 eV and a source temperature of 230°C. The Windows version of the 

ChemStation software package (Agilent Technologies, Böblingen, Germany) was used 

for data acquisition. 

STATISTICAL ANALYSIS 

Differences between behavioral responses of ants towards hexane extracts were 

analyzed in R, using Pearson's Chi-squared test and post hoc Bonferroni correction 

with factor 6. Expected results and residuals were also taken into consideration. 

First, differences in behavioral responses between control and extract were tested for 

each species. 
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Second, the ants’ responses towards different extracts tested were compared within 

R. metallica and I. rufoniger. Since only extracts of T. carbonaria, A. australis and 

C. torelliana-capsules had similar concentrations (c.f. ‘Chemical analysis’ p. 34), these 

were compared against each other as well. Further the hexane controls were also 

analyzed for behavioral variations within each species. 

Finally, responses to T. carbonaria extract were compared between the four species. 

Extracts of T. carbonaria, C. torelliana, P. caribea and A. bidwilii were further 

compared between Rhytidoponera metallica and Iridomyrmex rufoniger gp. 
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3 Results 

3.1 Food monitoring 

OVERVIEW 

Altogether 952 ants were monitored for this assay and 474 collected food items were 

found. A summary of food allocation is given in Table 3. and Figure 3., a more 

detailed table can be found in the appendix (App Table ) and original data are 

provided on the enclosed data CD (Ants-Monitoring.xlsx). Nectar was collected by at 

least 3 % of foragers in all species and so was protein (>6 %) with C. aeneopilosus 

collecting the most nectar (94 %) and least protein whereas R. metallica brought in 

comparatively little nectar and lots of protein (81 %; Table 3.). Unlike the other 

species, R. metallica workers did not carry nectar in their crop but between their 

mandibles. Intake of plant parts was observed in 3 out of 5 species whereas 2‑15 % of 

miscellaneous items were gathered by all of them (Table 3.). All significance levels 

given in the following figures and tables already include a Bonferroni correction by 

factor 5, except for the nectar quality assessment where different data were used. 

The most frequently found nectar portions (72 %) were clear in color but milky and 

brown or yellowish crop loads were also found (Table 3.). It could not be 

distinguished where the fluid came from (e.g. honeydew, sap or extrafloral nectaries). 

Plant parts mostly comprised seeds but also pollen and (dry) leaf/grass parts were 

found. The latter were probably used for nest construction since no leaf cutter ants 

are found in Australia (Shattuck 1999). Animal prey items comprised primarily 

insects or insect parts such as ants (Formicidae: Hymenoptera), various larvae and 

land hoppers (Talitridae: Amphipoda) but also caterpillars (Lepidoptera), crickets/ 

grasshoppers (Orthoptera), woodlice (Isopoda: Oniscidea), lacewings (Neuroptera), 

beetles (Coleoptera), flies (Diptera), aphids (Aphidoidea: Hemiptera), springtails 

(Collembola) and earwigs (Dermaptera). Further non-insect prey such as small 

spiders (Arachnida), snails (Pulmonata), an earthworm (Oligochaeta) and a leech 

(Hirudinea) were found. Sizes of prey items varied between 0.25 mm to 15 mm, with 

the most frequent objects being found in the range of 2-5 mm. 

Although no stingless bees were found as prey in the actual monitoring experiment, 

Rhytidoponera metallica ants were observed carrying T. carbonaria bees in two cases 

(independent from the feeding choice assay). 
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Table 3.  Summarized overview of food items collected by the different species. Depicted are the numbers of nests 

observed (N Nests), total number of foragers monitored (N Ants) and the number of food items brought in per 

category (Misc = Miscellaneous) 

Table 3. Color variation in collected nectar and the number of workers found with the according item, pooled for all 

species. A species specific list is given in App Table . 

Total Clear Opaque Milky Brown clear Brown milky Yellow milky Other 

281 212 26 8 14 9 6 6 

 

The five ant species collected different types of food items (Pearson’s chi-squared: 

χ2
 = 254.51; df = 4; p < 0.0001, significant after correction for multiple testing). 

However, when R. metallica was excluded from the analysis, no significant differences 

in food intake could be found between the other four species (Pearson’s chi-squared: 

χ2 = 6.71; df = 3; p = 0.08). 

Species NNests NAnts Nothing Nectar Protein Plants Misc 

Camponotus aeneopilosus 1 81 32 46 3 0 1 

Polyrhachis australis 2 180 72 94 9 3 6 

Tetramorium bicarinatum 1 90 49 35 7 0 3 

Iridomyrmex rufoniger gp. 3 296 165 102 22 2 7 

Rhytidoponera metallica 3 305 175 4 105 5 20 

Total for all species 10 952 493 281 146 10 37 

 
Figure 3.  Overview of the percentage of different food items collected by each species (ants without food are not 

depicted) 
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PREFERENCES FOR ONE FOOD SOURCE 

An exact binomial test for the ants’ preferences for certain food sources showed that 

all ant species highly preferred nectar, except for R. metallica that preferred protein 

(Table 3.). 

Table 3.  Overview over species specific preferences for a certain food source and probability for finding an ant carrying 

the preferred item (here and in the following tables, p-values significant after Bonferroni correction are 

indicated in bold) 

Species Preferred food p Probability for 

taking nectar 

C. aeneopilosus Nectar < 0.0001 93.9 % 

I. rufoniger gp. Nectar < 0.0001 82.3 % 

P. australis Nectar < 0.0001 91.3 % 

R. metallica Protein < 0.0001  3.7 % 

T. bicarinatum Nectar < 0.0001 83.3 % 

NEST AND DAYTIME RELATED DIFFERENCES: 

Table 3. shows that no significant variations in resource allocation could be found 

among the different nests of a given species. 

Table 3.  Variation in food item collection among different colonies of the three species where between 2 and 3 nests 

had been found 

Species χ2 df p 

I. rufoniger gp. 6.71 2 0.01 

P. australis 0.02 2 0.9 

R. metallica 0.68 2 0.7 

The time of the day did not affect variation in food item collection in any of the five 

species (Table 3.). 

Table 3. Differences in food item allocation between different times of the day 

Species χ2 df p 

C. aeneopilosus 0.39 2 0.82 

I. rufoniger gp. 1.66 2 0.44 

P. australis 0.83 2 0.66 

R. metallica 1.75 2 0.42 

T. bicarinatum 7.14 2 0.03 

All species pooled 0.11 2 0.94 
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NECTAR ASSESSMENT 

The five species differed significantly in the volume of nectar carried by returning 

foragers (Kruskal-Wallis rank sum: H = 25.31; df = 3; p < 0.0001). C. aeneopilosus 

carried the highest volume in its crop (0.1-4.0 µl) whereas T. bicarinatum collected 

the smallest amounts (0.1-0.2 µl). Nectar crop loads comprised similar volumes in 

C. aeneopilosus and I. rufoniger gp. or P. australis respectively. All other 

combinations of species carried in significantly different amounts of nectar  

(Figure 3.a). 

All five species also collected nectar with significantly varying sucrose concentrations 

(Kruskal-Wallis rank sum: H = 14.53; df = 3; p = 0.002). C. aeneopilosus carried in 

the highest (45 ±20 %) and T. bicarinatum the lowest (17 ±3 %) concentrations. 

These two species were the only ones whose sucrose concentrations differed 

significantly from each other (Figure 3.b). More detailed tables and results can be 

found in the appendix (App Table -6). 

Body sizes of the ants correlated positively with carried nectar volumes (Spearman's 

rank correlation: S = 7174.53, p = 0.04, r = 0.33; not significant after correction for 

multiple testing) but not with sucrose concentration (S = 8895.76, p = 0.31;  

r = 0.17). Nectar volume and sucrose concentration correlated moderately  

(S = 4883.32, p = 0.0003, r = 0.54). Hence bigger ants tended to carry more nectar 

in their crops and larger crop loads were prevalently higher concentrated in sucrose.  

 
Figure 3.  Overview over nectar quality and quantity found for the monitored species: a) Mean nectar volume; b) 

Mean sucrose concentration (°Brix). Numbers given in the bars indicate the number of ants surveyed; 

different letters indicate significantly different results; size range of each ant species is given below its 

species name 
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APHID INTERACTION 

A branch of Podocarpus elatus (Podocarpaceae) with 70-80 aphids was attended by 

about 5 I. rufoniger gp. ants per minute. A random sample of five workers leaving 

the tree gave a mean sucrose content of 19.8 ±4.4 % (ranging from 15-27 %). 

No stingless bees were found to attend the aphid infested tree within the observation 

period. Further, 18 other flying insects and one other ant species were observed on 

the tree but not monitored for their interactions with aphids or ants. A table of 

observation times and insect-visitors can be found in the appendix (App Table ). 

3.2 Feeding choice assay 

Altogether 35 bees were fed per test and ant species. Only R. metallica had a 

significant preference for A. australis over untreated T. carbonaria workers 

(Wilcoxon signed rank: V = 28; p = 0.02) whereas their preference for T. carbonaria 

workers disappeared when the bees had been washed prior to testing.  

(V = 25; p = 0.06). Neither T. bicarinatum (V = 25; p = 0.06) nor I. rufoniger gp. 

(V = 21; p = 0.24) favored any of the two bee species (Figure 3.). A detailed list of 

the choices made in each trial is provided on the enclosed data CD 

(Feeding‑Choice.xlsx) 

  

 
Figure 3. Overview of the choices made by different ant species; numbers in bars give 

the numbers of bee individuals taken. (significance levels as follows: * p < 0.05; 

ns = not significant) 
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GC-MS analyses of A. australis as well as unwashed and washed T. carbonaria 

workers showed that the washing procedure with hexane had successfully removed 

almost all cuticular compounds from T. carbonaria (Figure 3., p. 35 - as further 

indicated by the differing height relations of the standard peak). Figure 3. also shows 

that both bee species have quite different chemical profiles with A. australis 

possessing lower concentrations of chemicals. The most apparent differences are found 

in the missing peaks at 21.5 and 37 min in A. australis where large peaks are found 

at 33 and 36.5 min instead. The peak at 21.5 min in T. carbonaria marks a 

characteristic, but hitherto unknown compound that is derived from Corymbia 

torelliana resin which has so far not been found in cuticular profiles of A. australis 

(c.f. Section 1.5. and Leonhardt et al. 2011). Also terpenoids compounds, present in 

T. carbonaria were not found in A. australis. Further cuticular compounds comprise 

esters, alkanes and in the case of A. australis also alkenes. 

3.3 Extract assay 

CHEMICAL ANALYSIS 

Chemical profiles of the different extracts are shown in Figure 3. (p. 36). A 

comparison of the C 18 standard peak heights showed that P. caribea and A. bidwilii 

had roughly the same concentrations, whereas C. torelliana resin was less 

concentrated (also see description in Figure 3.). The standard for Propolis is not 

visible due to overlap, but this extract is most likely much more strongly 

concentrated than any of the other extracts. Further, extracts of T. carbonaria, 

A. australis bees (not shown, c.f. Figure 3.) and C. torelliana had similar 

concentrations. 

All four extracts contained mono-, sesqui-, and diterpenes in varying amounts. 

Additional alkanes and triterpenes were found in propolis which as a mixture of wax 

and resin showed the highest number of different compound classes. C. torelliana 

resin and propolis are reasonably similar in mono-, sesqui- and diterpene composition. 

In both extracts two large peaks of monoterpenes were found, whereas P. caribea and 

A. bidwilii comprised a third monoterpenic compound. Among sesquiterpenes the 

unknown C. torelliana compound was exclusively found in its seed capsules and in 

propolis of T. carbonaria. This particular compound was further found in 

T. carbonaria extract (not shown, c.f. Figure 3.). Generally, many compounds found 

in C. torelliana resin (except for monoterpenes) were also apparent on the cuticle of 

T. carbonaria (and in propolis) but not in A. australis extracts (Figure 3.). Whereas 

C. torelliana resin completely dissolved in hexane and propolis as well as P. caribea 

resin dissolved for the most part, resin of A. bidwilii remained mostly undissolved. 
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Figure 3. Chemical, cuticular profiles of three stingless bee workers: a) T. carbonaria worker – natural; 

b) T. carbonaria worker – washed in hexane; c) A. australis worker – natural; Retention time is given in 

minutes 
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Figure 3. Overview and comparison of different resinous extracts and their compounds: a) C. torelliana seed capsules, 5 capsules (≈ 0.15 ml) in 5 ml hexane; b) P. caribea resin, ≈ 1 ml in 5 ml 

hexane; c) Propolis from T. carbonaria hive, ≈ 1.5 ml in 5 ml hexane (C 18 standard is not visible); d) A. bidwilii resin, ≈ 1 ml in 5 ml hexane; Retention time is given in minutes 
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COMPARISON OF BEHAVIORAL RESPONSES TOWARDS EXTRACTS AND HEXANE 

The behavior of more than 4050 ants towards first contact with different extract 

treated surfaces was observed. In comparison with hexane, Rhytidoponera metallica 

ants showed highly significant differences in behavior when they made contact with 

extract treated surfaces except for the A. australis (less significant) and Araucaria 

bidwilii extract (not significant; Figure 3.; exact test results in appendix:  

App Table ). Workers turned away more often from filter papers treated with extract 

and thus did not enter the filter paper to explore it or get food as often as on hexane 

treated surfaces (Figure 3.). 

 
Figure 3. Comparison of R. metallica foragers’ responses towards hexane and different extracts; numbers in bars 

give the numbers of ant individuals showing a particular behavioral response (significance levels as 

follows * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant) 
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Workers of Iridomyrmex rufoniger gp. turned significantly more often away from 

filter papers treated with extracts of T. carbonaria and P. caribea. Hence these ants 

did not enter the treated filter for exploration or feeding as frequently as the control 

filter paper. Extracts of A. bidwilii and C. torelliana did not affect these ants’ 

behavior (Figure 3.; exact test results in appendix: App Table ). 

Workers of Polyrhachis australis were highly significantly influenced in their behavior 

by extract of T. carbonaria bees. They prevalently backed off from bee extract but 

also explored the filter paper more often than the control whereas the food was less 

frequently touched. On workers of Tetramorium bicarinatum the bee extract had no 

significant behavioral impact in comparison with the hexane control (Figure 3.; exact 

test results in appendix: App Table ).  

Although some ants did turn away after first contact with the filter paper, most ants 

were found to enter it and go for the honey after a while or after several contacts. 

Detailed data for each trial are provided on the enclosed data CD 

(Extract‑Assay.xlsx). 

 
Figure 3. Comparison of I. rufoniger gp. foragers’ responses towards hexane and different extracts; numbers in 

bars give the numbers of ant individuals showing a particular behavioral response (significance levels as 

follows * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant)  
1
not significant after correction for multiple testing 
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COMPARISON OF DIFFERENT EXTRACTS WITHIN EACH SPECIES 

For workers of R. metallica highly significant differences in behavior were found when 

all extracts were compared (Pearson’s Chi-squared: χ2 = 62.93; df = 10; p < 0.0001). 

The residuals in Table 3. show that workers primarily turned away from filter papers 

treated with propolis extract, followed by T. carbonaria and P. caribea extract, hence 

the filter was not entered for feeding or exploration very often. Less ants than 

expected backed off from Austroplebeia australis extract but prevalently went to 

explore the treated filter instead. Filter papers treated with extracts of C. torelliana 

capsules and A. bidwilii were entered for feeding more regularly than expected and 

workers drew back from the filter in fewer cases (also see Figure 3.). 

Extracts of T. carbonaria, A. australis and C. torelliana nearly had the same 

concentrations of chemical compounds (c.f. ‘Chemical analysis’ p.34). A comparison 

of behavior between these extract showed that R. metallica workers turned away 

significantly more often from T. carbonaria extract than they did from filter papers 

with A. australis extract (Pearson’s Chi-squared: χ2 = 18.68; df = 2; p < 0.0001). 

Behavioral differences were less pronounced between C. torelliana and A. australis  

(χ2 = 7.58; p = 0.02, not significant after correction for multiple testing) or 

C. torelliana and T. carbonaria (χ2 = 5.67; p = 0.06; Figure 3.). 

 
Figure 3. Comparison of responses of P. australis and T. bicarinatum towards hexane 

and T. carbonaria extract; numbers in bars give the numbers of ant 

individuals showing a particular behavioral response (significance levels as 

follows * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant) 
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Table 3. Overview of the number of R. metallica ants showing one of the three responses (R = Run for food; T = Touch 

and turn; C = Cross or Explore) towards different extracts; based on the total number of workers observed to 

perform a particular behavior residuals give the degree of deviation of the observed behavior from values 

expected for this behavior if extracts had no effect (calculated with Pearsons Chi-squared test). Considerable 

deviations (values > ±2.0 are thought to be extremely rare and contribute severely to the significance level) are 

marked in red (+) and blue (-) 

Extract Counted number 

of ants 

Expected number 

of ants 

Residuals 

R T C R T C R T C 

T. carbonaria  21 58 19 22 46 30 -0.26  1.76 -1.97 

A. australis 22 38 52 25 53 34 -0.67 -2.02  3.09 

Propolis from Nest  9 55 11 17 35 23 -1.94  3.33 -2.47 

C. torelliana capsules 25 33 22 18 38 24  1.61 -0.75 -0.46 

P. caribea 16 50 34 23 47 30 -1.40  0.44  0.66 

A. bidwilii 31 23 28 19 39 25  2.88 -2.50  0.62 

 

Workers of Iridomyrmex rufoniger gp. also showed highly significant behavioral 

differences between all extracts (Pearson’s Chi-squared: χ2 = 102.16; df = 6;  

p < 0.0001). The residuals (Table 3.) show that P. caribea extract caused the most 

ants to turn away from the filter paper, followed by T. carbonaria extract. In turn, 

more ants entered the filter papers for feeding when these were treated with 

C. torelliana and especially with A. bidwilii extract. 

 
Figure 3. Behavioral responses of R. metallica workers towards different extracts; numbers in bars 

give the numbers of ant individuals showing a particular behavioral response; degree of 

behavioral differences between three selected extracts is indicated by brackets 

(significance levels as follows * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant) 
1
 not significant after correction for multiple testing 
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The numbers of workers exploring the filter papers did not vary a lot but a high 

number of ants to run for food resulted in a low number to back away from the filter 

and vice versa (also see Figure 3.). A comparison between the similarly concentrated 

extracts of C. torelliana and T. carbonaria showed that ants backed off significantly 

more often from the bee extract whereas they were more ready to enter a filter paper 

treated with C. torelliana resin to feed (Pearson’s Chi-squared:  

χ2 = 30.53; df = 2; p < 0.0001; Figure 3.). 

Table 3. Overview of the number of I. rufoniger gp. ants showing one of the three responses (R = Run for food; T = Touch 

and turn; C = Cross or Explore) towards different extracts; based on the number of workers showing a particular 

behavior residuals give the degree of deviation of the observed behavior from values expected for this behavior 

if extracts had no effect (calculated with Pearsons Chi-squared test). Considerable deviations (values > ±2.0 are 

thought to be extremely rare and contribute severely to the significance level) are marked in red (+) and blue (-) 

Extract Counted number 

of ants 

Expected number 

of ants 

Residuals 

R T C R T C R T C 

T. carbonaria   76 241 49 118 201 48 -3.84  2.84  0.21 

C. torelliana capsules 120 142 42  98 167 40  2.26 -1.92  0.40 

P. caribea  51 189 34  88 150 36 -3.95  3.15 -0.27 

A. bidwilii 166 133 42 110 187 44  5.39 -3.95 -0.35 

 

  

 
Figure 3. Behavioral responses of I. rufoniger gp. workers towards different extracts; 

numbers in bars give the numbers of ant individuals showing a particular 

behavioral response; degree of behavioral differences between two selected 

extracts is indicated by brackets (significance levels as follows * p < 0.05,  

** p < 0.01, *** p < 0.001, ns = not significant) 
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A comparison of the behavioral responses towards the hexane controls within each 

species showed that R. metallica workers did not differ in their behavior towards 

different hexane filters (Pearson’s Chi-squared: χ2 = 15.89; df = 10; p = 0.10) 

whereas workers of I. rufoniger gp. showed a significant variability in their reactions 

to hexane treated filter papers (Pearson’s Chi-squared: χ2 = 27.16; df = 6;  

p = 0.0001). 

COMPARISON OF RESPONSES TOWARDS THE SAME EXTRACTS AMONG DIFFERENT 

SPECIES 

Responses to the T. carbonaria bee extract were compared between all four ant 

species, as well as separately between R. metallica and I. rufoniger gp. whereas the 

other resinous extracts were compared between the latter two ant species only 

(detailed test results in App Table ). 

All four species differed highly significantly in their reactions towards T. carbonaria 

extract. I. rufoniger gp. workers backed off the filter most frequently, followed by 

R. metallica and P. australis. T. bicarinatum did not turn away from the filter as 

often as the other species but also went to feed from the honey the least. Instead 

T. bicarinatum workers tended to prevalently explore the filter (Figure 3.). A 

comparison of the residuals showed that this deviant behavior of T. bicarinatum 

mostly accounted for the high significance level, whereas the other three species 

showed only marginal deviations from responses expected if the extracts had no effect. 

 
Figure 3. Behavioral responses of different ant species towards T. carbonaria 

extract; numbers in bars give the numbers of ant individuals showing 

a particular behavioral response; Significance level of behavioral 

differences between two selected species (small bracket) and over all 

species pooled (big brackets) as follows * p < 0.05, ** p < 0.01,  

*** p < 0.001, ns = not significant) 
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R. metallica and I. rufoniger gp. differed highly significantly in their behavioral 

responses towards P. caribea (Pearson’s Chi-squared: χ2 = 23.19; df = 2; p < 0.0001) 

and A. bidwilii (χ2 = 22.87; p < 0.0001). In both cases a greater number of 

I. rufoniger gp. workers turned away on first contact with the filter paper than did 

workers of R. metallica. Those ants of I. rufoniger gp. that entered the filter did not 

explore or cross it as often as R. metallica but went straight for the food more 

frequently (Figure 3.). No behavioral differences between both species were found for 

T. carbonaria (χ2 = 2.45; p = 0.29; Figure 3.) and C. torelliana extract  

(χ2 = 8.66; p = 0.01, not significant after correction for multiple testing; Figure 3.). 

 
Figure 3. Behavioral responses of R. metallica and I. rufoniger gp. workers towards three different resin extracts; 

numbers in bars give the numbers of ant individuals showing a particular behavioral response; 

(significance levels as follows * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant) 
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4 Discussion 

Considering the fact, that stingless bees host substantial amounts of food in their 

nest, it is likely that those nests are object to attacks from predators and parasites. 

All ant species observed in this survey consumed variable amounts of nectar and 

insects. When being offered two different bee species, all of the tested ants accepted 

them as prey but preferred bees with less resinous compounds on their cuticle. 

Aversive responses of ants were found towards one cuticular and three resinous 

extracts, with different ant species varying in response intensity. Interactions of 

stingless bees and ants on aphid honeydew sources could not be found. 

4.1 Foraging habits of different ant species 

Four of the five observed ant species notably preferred nectar as a food source but 

also collected a variety of other items. Only R. metallica had a substantially higher 

preference for insects and other protein sources. This reflects and quantifies in more 

detail the dietary habits found by Shattuck (1999) and Burwell (2007) who described 

all monitored ant species as generalists with disposition to either nectar or protein 

(c.f. Table 1.). It further matches with the fact that most ants are omnivorous and do 

not often solely rely on nectar as food (Stradling 1978). 

The proportions of food composition did not differ between species (with exception of 

R. metallica), daytimes or nests. This suggests that environmentally provided 

resources were quite stable and ant diets likely well balanced for each species. It 

seems to be plausible that a certain ideal nectar to protein ratio, supplemented by 

other items, was needed by colonies and kept up in all four species. Hence this ratio 

did only differ marginally among them. Such a balanced food allocation has also been 

described and reviewed by Blüthgen et al. (2010). 

NECTAR ANALYSIS 

A broad variety of nectar volume, colors and sucrose content was carried in by the 

different ant species. The significant difference in sucrose concentration between all 

four nectar collecting species indicates the use of different nectar sources. Since no 

significant differences have been found between C. aeneopilosus, P. australis and 

I. rufoniger gp., potentially at least partially overlapping nectar sources are used by 

these three species whereas the latter two might also share sources with 

T. bicarinatum. Larger ants tended to carry greater volumes of sucrose in their crops, 

suggesting that the crop volume also grows with body size. Although crop loads did 

correlate with both body size and with sucrose concentration, a correlation between 

the latter two could not be found. This suggests that various sucrose concentrations 
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were opportunistically collected in each species according to the availability of a 

nectar source. The small sample size of species and the fact that T. bicarinatum 

showed unusual collection trends though delimitate the validity of this idea. Still, 

higher concentrated nectar was readily collected in greater volumes and hence sucrose 

intake maximized. A similar correlation for sucrose concentration up to about 40 % 

has been found by Josens et al. (1998) and thus represents a good example for 

optimal foraging in ants. Josens et al. (1998) further found partial crop loads for low 

(< 15 %) and high sucrose concentrations (≈ 70 %) with a maximum crop filling at 

42.6 % for Camponotus mus. It is striking that the mean sucrose concentration of 

44.7 % found for C. aeneopilosus in this assay comes very close to this optimum. This 

finding may further support the optimal foraging suggestion although the sampled 

number of ants does not allow reliable conclusions. The high variability in volume for 

C. aeneopilosus was probably related to the fact that higher concentrated nectar 

sources yield smaller amounts of nectar, because sucrose concentration increases with 

evaporation of water. The lower sucrose concentrations found in smaller ants may 

have partially been caused by asymmetric competition that excluded less competitive 

species like T. bicarinatum from more lucrative food sources (Blüthgen et al. 2004a). 

PREDATORY POTENTIAL 

All species were found to be omnivorous and therefore represent a potential threat to 

stingless bees although no direct encounters or raids were observed during the 

experimental period. Of the species in this thesis, R. metallica may represent the 

most likely predator due to its high demand on insect prey. Ponerine ants have 

further been reported to attack and kill small bees approaching extrafloral nectaries 

(Roubik 1989) which matches with the observation of R. metallica carrying stingless 

bee workers. I. rufoniger gp. ants that forage in large numbers and use effective trails 

for recruitment may also have a high potential as predators for stingless bees. Their 

second highest demand for protein in the monitoring experiment supports this 

possibility. Most notable R. metallica and I. rufoniger but also T. bicarinatum did 

readily take both bee species in the feeding choice experiment. Roubik (1989 p. 222; 

233) lists the genera Iridomyrmex, Camponotus and Polyrhachis among those ant 

predators of bees that also invade nests. In this study the species of the latter two 

were found carrying mostly nectar and did not show aggressive behavior or high 

daytime foraging activity so that their potential cannot be precisely assessed. What is 

more, when single bee workers were presented near their nest entrances, they 

remained untouched or maybe unnoticed. The same unclear assessment holds true for 

T. bicarinatum where, despite their affinity to stingless bees in the feeding choice 

experiment, no trail recruitment was found and activity during warmer times of the 

day was quite low. 
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4.2 Trophobiotic interactions 

No stingless bees were seen to visit the aphid infested Podocarpus elatus within the 

monitoring period. Hence the role of Australian stingless bees in trophobiotic 

interaction remains unknown. Roubik et al. (1986) found sugar concentrations 

ranging from 10-65 % in nectar collected by bees. Hence the mean sucrose 

concentration of 19.8 ±4.4 % found in honeydew harvested from aphids by 

I. rufoniger gp. makes P. elatus a potential honeydew source for stingless bees 

although higher sucrose concentrations are preferred (Biesmeijer et al. 1999). Possible 

reasons for the fact that no bees did attend the aphids are quite numerous.  

It is not known whether stingless bees attend aphids for honeydew at all. Records of 

apid bees attending aphids have been given by Roubik (1989) but to date 

observations of stingless bees attending hemipteran insects are limited to Coccidae, 

Membracidae and Pseudococcidae (Salt 1929; Castro 1975; Laroca et al. 1976; 

Schuster 1981; Figueiredo 1996; Camargo et al. 2002; Koch et al. 2011). 

It is further unknown whether stingless bees do collect honeydew from this particular 

plant species at all. They are known to collect pollen from Podocarpus sp (Marques-

Souza 2010) but honeydew collection has not been recorded so far.  

Finally the ants present may dominate and monopolize this food source (Blüthgen et 

al. 2006). They may thus outcompete and displace other visitors. Such negative 

correlations between the presence of ants and stingless bees have been found by 

Almeida-Neto et al. (2003) and Koch et al. (2011). Aggressive behavior towards small 

bees approaching extrafloral nectaries has been described by Roubik (1989) and 

defense of honeydew sources by ants was also observed by Almeida-Neto et al. (2003) 

and Figueiredo (1996). Koch et al. (2011) suggest that honeydew may represent an 

important resource in times of floral scarcity. Thus, sufficient abundance of 

alternative resources such as floral nectaries may not have given reason for stingless 

bees to forage on the honeydew sources where they would unnecessarily put 

themselves at risk of attack by ant defenders. 

4.3 Ant repellent effects of stingless bees 

All three ant species tested in choice assays did accept both of the presented bee 

genera as prey. For I. rufoniger gp. and T. bicarinatum no significant preference for 

either one of the two bee species was found, whereas R. metallica clearly preferred 

Austroplebeia australis over Tetragonula carbonaria workers. This preference 

disappeared when T. carbonaria workers were washed in hexane prior to testing. 

GCMS-analyses showed that most cuticular compounds were successfully removed by 

the washing procedure.  
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The prevalent preference for A. australis suggests that R. metallica was repelled by 

T. carbonaria. These findings agree with the results found in a similar experiment by 

Lehmberg et al. (2008). In their feeding choice experiment bees washed with solvent 

were significantly preferred over untreated bees. Lehmberg et al. (2008) suggest 

chemical compounds on the cuticle of the bees as possible deterrent agents. Alkanes, 

alkenes and esters represent compounds commonly found in cuticles of bees (Abdalla 

et al. 2003; Jungnickel et al. 2004; Kerr et al. 2004; Nunes et al. 2008) and many 

other insects (Butts et al. 1991; Howard 1993; Blomquist et al. 1998; Kaib et al. 

2002; Martin et al. 2009). Terpenoid compounds in turn are exclusively found in 

chemical profiles of stingless bees (Leonhardt et al. 2009b) and were present as 

sesqui-, di- and triterpenes in case of T. carbonaria but not in A. australis. 

Austroplebeia australis showed a smaller diversity of chemical compounds on its 

cuticle and was less sticky than Tetragonula carbonaria. This indicates that 

A. australis either does not collect resin to the extent of T. carbonaria which is 

known to collect large amounts of resin (Wallace et al. 1995; Wallace et al. 2010) 

and/ or hardly (if at all) includes resinous compounds in its cuticle (Leonhardt et al. 

2011b). 

The repellent effect to ants is most likely related to these resinous compounds on 

bees’ surfaces, given that mono-, di- and sesquiterpenes are known to act as ant 

repellents (Pasteels et al. 1983; Cane 1986; Debboun et al. 2007). However, the setup 

of the choice experiment does not allow concluding whether the repellent effect was 

related to particular compounds (e.g., the prominent C. torelliana compound or other 

cuticular terpenes) or to the stickiness of bees which holds the danger of gluing ants’ 

mouth parts. 

Notably, even washed T. carbonaria workers were less likely to be taken than 

workers of A. australis and (although not significant) strong repulsive responses 

towards some T. carbonaria workers were observed for a few ants. It is possible that 

hexane - soaked in different body parts of T. carbonaria during the washing 

procedure - did evaporate more slowly thereby causing an unintentional long term 

repellent effect of the solvent. The preference of ants for A. australis could also have 

been caused by the presence of cuticular substances that attracted ants or triggered 

aggressive behavior. 

The lack of preferences for either one of the bee species in I. rufoniger gp. and 

T. bicarinatum indicates that these two species are either less sensitive towards resin 

derived substances (or cuticular compounds in general) than R. metallica or that the 

profiles of the two bee species were equally repellent/attractive to them. Since 

T. bicarinatum represents an introduced species, it is likely that its indifference is 

based on the fact that they are accustomed to different chemical repellents 
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potentially present in their native habitat. Hence chemicals used by Australian bees 

do not affect them. Taking this aspect into consideration it is striking that 

R. metallica – the ant species assumed to have the highest predatory potential for 

stingless bees – was most frequently repelled by T. carbonaria. This finding supports 

the assumption that R. metallica represent strong predators and that the bees may 

have evolved effective defensive means against them. 

4.4 Efficacy of resinous compounds as ant repellents 

EXTRACT COMPOSITION 

Three of the four species tested did turn away significantly more often from at least 

one of the tested extracts in comparison with the hexane control. The intensity of 

responses varied between different species and extracts. 

GCMS-analyses of the extracts showed that propolis from T. carbonaria nests was 

the highest concentrated and comprised the highest number of different substance 

classes (Figure 3.). The presence of longer chained alkanes which are commonly found 

in waxes of stingless bees (Blomquist et al. 1985; Francis et al. 1989; Roubik 1989; 

Dani et al. 2005) as well as the presence of different terpene classes which are main 

constituents of resin (Ghisalberti 1979; Langenheim 2003) shows that propolis 

comprises a mixture of wax and resin, also known as cerumen (Wille 1983; Roubik 

2006). Extracts of propolis and C. torelliana show striking similarities in composition 

of terpenoid compounds which emphasizes the fact that a high number of Australian 

stingless bees collect C. torelliana resin (Leonhardt et al. 2011b) and incorporate it 

into their nest structure (Roubik 2006). 

For T. carbonaria similarities in the profiles of their cuticle, propolis and 

C. torelliana resin were found (Figure 3. and Figure 3.; see also Leonhardt et al. 

(2011b)). An unknown, characteristic compound derived from C. torelliana was 

present in all three extracts but mono- and sesquiterpenes were not found on cuticles 

of T. carbonaria. This shows that bees include resinous compounds in their building 

material for the nest (Wille et al. 1973; Roubik 2006) and also supports the theory 

that bees do not passively accumulate chemicals on their body by contact with nest 

material but actively filter and include resinous compounds in their cuticles, hereby 

enriching their chemical profile (Leonhardt et al. 2011a; 2011b). Leonhardt et al. 

(2011b) further note that 32 cuticular compounds of Australian stingless bees were 

derived from C. torelliana resin. However, the great number of peaks/compounds in 

propolis, apart from the ones also found in C. torelliana resin, also indicate that 

T. carbonaria workers collect resin from other plants as well (Leonhardt et al. 

2011b).  
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REPELLENT EFFICIENCY OF CUTICULAR EXTRACTS 

Three of the four ant species tested, turned away from filter papers treated with 

T. carbonaria extract significantly more often than from filter papers with the hexane 

control (Figure 3.-8). The fact that the filter paper was less frequently approached or 

even accessed indicates that T. carbonaria extract had a repellent effect on all species 

except T. bicarinatum. These findings further suggest that the distaste for 

T. carbonaria workers in the feeding choice assay was not exclusively due to their 

sticky appearance but also to olfactory cues emitted by the bees’ cuticles. Lehmberg 

et al. (2008) and Duangphakdee et al. (2009) who tested the repellent effects of bee 

cuticles and resinous substances, suggested resin derived terpenes to be responsible 

for the repellent effects.  

T. bicarinatum ants did not show any significant differences in responses towards 

extract and hexane, thus confirming the indifferent behavior shown towards both bee 

species in the feeding choice assay. This result further supports the theory that the 

introduced species T. bicarinatum is not affected by cuticular chemicals of Australian 

bees. P. australis was also repelled by T. carbonaria extracts and showed similar 

responses as R. metallica and I. rufoniger gp. (Figure 3.). This response adds to the 

likelihood of P. australis being a predator of stingless bees but might rather just be 

the result of general ant repellent effects of terpenic compounds. However, a good 

reason against the last argument is that T. bicarinatum in turn was not repelled by 

T. carbonaria extract. This implies that bees may have selectively evolved a cuticular 

profile that is particularly effective against predators in their natural environment. A 

fact that needs to be further assessed by testing more extracts. 

The effect of cuticular extract of A. australis was only tested in R. metallica ants. 

A. australis extract was more repellent to ants than hexane (Figure 3.) but its 

repellent effect was significantly lower than the one of T. carbonaria (Figure 3..). 

This difference reflects the findings of the feeding choice assay. It is highly likely that 

resin derived compounds (e.g. the unknown C. torelliana compound and many mono-, 

sesqui-, di- or triterpenes) mainly present on T. carbonaria are responsible for the 

repellent effect. Further candidates that were present on T. carbonaria but not (or 

only scarce) in A. australis and could therefore be responsible for the repellent effects 

are other, probably mostly endogenously produced substances such as hexadecanoic 

acid, hexadecanoic acid methyl ester, hexadecyl acetate, and alcohols (Leonhardt et 

al. 2011b, supplemental data). 
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REPELLENT EFFICIENCY OF RESIN EXTRACTS 

Two of the three resinous extracts and propolis extract had significantly repellent 

effects on R. metallica in comparison with hexane (Figure 3.). The comparison of 

propolis with other resinous extracts (Figure 3.; Table 3.) demonstrated that it had 

the highest repelling effect on ants. Only a small number of ants even came close 

enough to the propolis filter paper to make contact and allow record of a response 

(personal observation). Instead most ants tended to explore the edge of the platform, 

staying as far away as possible from the treated filter paper. Although this extract 

was probably much higher concentrated which is most likely responsible for the very 

intense responses, the great dislike of ants indicates that the mixture of different 

resinous compounds with wax for nest building material has highly deterrent 

properties. P. caribea, and C. torelliana extracts also repelled ants (Figure 3.; Table 

3.), whereas the extract of A. bidwilii did not affect the ants’ responses towards the 

treated filter paper. Because A. bidwilii resin comprised monoterpenes which were not 

found in repellent bee extracts, it is likely that monoterpenes are not responsible for 

the repellent properties of resin. In turn the near absence of sesquiterpenes in 

A. bidwilii resin, which were present in all other repellent extracts, suggests that 

these components account for deterrent effects on Australian ants. It is striking that 

the repellent efficacy differed significantly between T. carbonaria and A. bidwilii but 

that no differences were found for C. torelliana in comparison with the two bee 

extracts. This implicates that the repellent effect of C. torelliana may range 

somewhere between the deterrent effects of the two cuticular extracts and that apart 

from compounds of C. torelliana, T. carbonaria probably includes further resinous 

substances in its cuticle to increase repulsive efficacy. Nevertheless it is also likely 

that endogenously produced substances of the bees added to the repellent effect or 

that dissimilar extract concentrations were responsible for the differences. 

Workers of I. rufoniger gp. were repelled by resin extract of P. caribea but only little 

by C. torelliana (not significant after correction), whereas A. bidwilii resin had no 

effect in comparison with hexane (Figure 3.). Repellency decreased from P. caribea 

which had the strongest effects (even exceeding T. carbonaria) over C. torelliana and 

A. bidwilii (Figure 3.; Table 3.). 

Compounds of resin from P. caribea and A. bidwilii repelled workers of 

I. rufoniger gp. significantly more than workers of R. metallica although the general 

repellent effect of A. bidwilii was only minuscule. Hence, I. rufoniger gp. may be 

more sensitive towards certain substances of resin. For extracts of T. carbonaria and 

C. torelliana however, no differences in the responses of the two ant species were 

found. When responses to hexane controls were compared, R. metallica showed no 

significant differences over the test period, whereas I. rufoniger gp. did. Workers of 
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I. rufoniger gp. were also more likely to turn around from the control filter paper. 

Although the greater number of individuals tested needs to be taken into 

consideration for I. rufoniger gp., the significant differences in behavior towards the 

control extract indicate that this species is generally more variable in its responses 

towards the filter paper itself. A probable reason for this fact may be the size 

difference between both ant species. Entering the filter paper may have been a 

greater barrier for the smaller I. rufoniger gp. Besides the possibility of higher 

sensitivity for extract, this size factor could be a further reason for the higher number 

of I. rufoniger gp. workers turning around for both hexane and extract compared to 

R. metallica. 

For all these observations, the fact that extracts were not equally concentrated needs 

to be kept in mind, rendering a definite ranking of the extracts by repellent efficacy 

impossible. Still, efficacy of about equally concentrated extracts was highest for 

T. carbonaria followed by C. torelliana and lowest for A. australis. Further 

P. caribea resin was more effective than extract of A. bidwilii which had no effect at 

all. The effect of P. caribea resin renders it likely that T. carbonaria includes further 

components of this resin in its cuticle, a hypothesis that needs to be confirmed by 

more detailed GCMS-analyses. 

A last fact that is striking is the comparatively low effect of C. torelliana resin on 

R. metallica (Figure 3.) and especially on I. rufoniger gp. for which it had no effect at 

all (Figure 3.). Although the varying concentrations do not allow a definite 

conclusion, the high abundance of C. torelliana compounds in the profile of 

T. carbonaria could be responsible for its highly deterrent efficacy. Stingless bees are 

further strongly attracted by resin of C. torelliana (Klumpp 2007). Leonhardt et al. 

(2011b) showed that 76 % of stingless bees collected resin of this plant and included 

up to 32 of its compounds in their cuticle. Why they collect this particular resin in 

considerable quantities is not known to day. Its soft consistency probably makes it an 

easy to handle nest building material, but also bears the danger of collapsing nest 

structures at higher temperatures (Klumpp 2007). Since resin is known to possess 

antibiotic properties (Messer 1985; Lokvam et al. 1999) it is further possible that 

C. torelliana resin is collected for antimicrobial purposes. Considering the moderate 

repulsive responses of ants towards C. torelliana extract its efficacy seems to be lower 

than expected. It is likely that this finding was caused by the lower concentration of 

the extract because in comparison with hexane repellent effects were found despite its 

low concentration. Especially the high abundance of the unknown C. torelliana 

compound in T. carbonaria extract would suggest that it plays a key role in the 

repellent properties of its cuticle. With the present results this role cannot be clarified 

properly and hence needs further assessment in an assay with the isolated compound. 
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If bees do filter specific resin derived terpenes (Leonhardt et al. 2011a; 2011b) it is 

not clear whether bees do systematically accumulate particularly repellent 

compounds. It is still highly likely that C. torelliana resin does play a role in the 

repellent properties of stingless bees’ cuticles but it is probably not the only resource 

providing repellent compounds. 

CONCLUSION 

Resins possess repellent properties against ants and do likely account for the repellent 

effects of the cuticles of stingless bees. These findings agree with the results found by 

Lehmberg et al. (2008) and Duangphakdee et al. (2005) and further indicate that 

volatile chemical compounds are more likely responsible for deterrence than 

stickiness. Sticky properties of resin may still play a tributary role on first contact 

with resin treated surfaces. However the stickiness of resin comes into use when 

predators need to be detained physically by gluing mouthparts or inhibiting 

movement at all (Pasteels et al. 1983; Roubik 2006; Klumpp 2007; Greco et al. 2010a; 

Halcroft et al. 2011). The findings of these authors further explain the increase in 

resin intake after ant attacks (Howard 1985; Khoo et al. 1987; Duangphakdee et al. 

2009; Leonhardt et al. 2009a). Resin does not only help to rebuilt damaged nest 

structures after such attacks but also increases the defensive power of the colony. 

Additionally, its chemical compounds may further provide repellent effects that 

exceed the period of immediate danger thereby providing some long lasting 

protection. From the experiments performed in this study, it cannot definitely be said 

which particular compounds are responsible for the repellent effect but it is likely 

that sesquiterpenes play a key role, whereas the role of mono- and diterpenes remains 

unclear, although they are known to act as ant or insect repellents as well (Pasteels 

et al. 1983; Cane 1986; Debboun et al. 2007). It must also be stated that all extracts 

tested only provided a short term repellent effect (pers. obs., 2011). Most ants 

repelled at first contact entered the filter paper after a while or after some more 

approaches. Possible reasons for the change in behavior could have been the 

increasing concentration of trail pheromone emitted by ants that had already found 

the food source, or (and probably coinciding with the first fact) the process of 

adaptation to the smell which made it easier to transcend the smelly barrier after a 

while. Consequently this chemosensory based defense mechanism only provides initial 

but effective protection against contact with an ant predator hence adding some 

bonus time for escape. That bonus may further be sufficient to early warn nest mates 

of predatory threats and may be especially crucial for an early detection and 

elimination of ant scouts which might recruit further nest mates for a raid 

(Duangphakdee et al. 2009). 
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However stingless bees are relatively unspecialized, opportunistic resin foragers 

(Leonhardt et al. 2011a). Cuticular profiles of terpenoid compounds depend on the 

environmental availability of resin sources and vary more than the genetically 

determined composition of hydrocarbons (Leonhardt et al. 2011b). Sesquiterpenes 

were found to vary most between different tropical bee species and are also lacking in 

some of them (Leonhardt et al. 2011a). 

Hence the repellent effects of sesquiterpenes are likely to be substituted or 

supplemented by a variety of other compounds. Moreover repellent efficacy may vary 

with profile composition among different habitats which leads to the conclusion that 

despite its important contribution to the large defensive repertory of stingless bees, 

resin is not solely collected to repel predators (Lehmberg et al. 2008; Duangphakdee 

et al. 2009). Resin has more likely evolved into a multipurpose substance for stingless 

bees. It serves as a sticky barrier to all kind of enemies (Duangphakdee et al. 2005; 

Roubik 2006; Duangphakdee et al. 2009), as building material (Roubik 2006), 

(especially with regard to its terpenic compounds) as antibiotic (Messer 1985) and 

possibly also as a source for compounds that tame aggressors (Leonhardt et al. 2010a) 

or may be used for nest mate recognition (Buchwald et al. 2005; Leonhardt et al. 

2009b) by adding to their chemical diversity (Leonhardt et al. 2011a). 

4.5 Prospect 

The different aspects of interactions between stingless bees and ants brought up in 

this thesis provide a reasonable basis for further research. Most aspects still need to 

be looked into a bit further to further validate some of the assumptions made. 

The food monitoring assay yielded useful and passably differentiated data about 

feeding habits of the five ant species observed. Next steps could comprise further 

analysis of prey items for size and affinities towards particular families of insect prey 

as well as origin of the prey items or foraging ground diversity. Sources of the nectar 

collected remained unknown so GCMS-analysis of nectar compounds and resources in 

the vicinity of the study site would help to distinguish between different nectar 

sources and also unfold further information about particular nectar consumption 

habits. A long term study throughout different times of the year could help to better 

understand variations in food allocation and adaptations towards seasonally varying 

availability of particular food sources, as well as the stability of dietary habits, for 

example the protein-nectar balance. Additional isotope analyses could reveal more 

detailed information about trophic position as well as nitrogen and carbon sources 

(reviewed by Blüthgen et al. 2010). 

A more detailed observation of the ants’ foraging strategies and activity would allow 

a clearer assessment of their predatory or nest robber potential for stingless bees. 
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Additionally, small, undefended dummy hives or nest parts equipped with dead bees, 

pollen, honey and cerumen or resin could be placed near an ant nest or trail. This 

could yield further information about which ant species are generally interested in 

raiding bees’ nests, which species are able to cross the smelly resin barrier and if 

different species prefer specific resources stored within the bees’ nest. 

Further investigation on the role of stingless bees in trophobiotic interactions should 

comprise a higher number and variety of aphid infested plants to be monitored. 

Although stingless bees have been reported on honeydew sources in Africa and South-

America, nothing is known about their role in Australia. If interactions are found it 

would be of interest to find out which species dominate the resource and which 

defense mechanisms are applied by bees and ants. Koch et al. (2011) found that the 

abundance of bees is negatively correlated with the abundance of ants on honeydew 

resources, and Almeida-Neto et al. (2003) recorded a reciprocal interference where 

bees were also able to displace ants. However nothing is known about the bees’ 

defense mechanisms so far. Koch et al. (2011) further suggested that honeydew may 

be collected by stingless bees when floral resources are scarce. Hence an observation 

in these periods may be more successful. 

Because I. rufoniger gp. and R. metallica (with washed bees) did show a nearly 

significant preference for A. australis in the feeding choice experiment, the findings 

should be validated by further trials and additional testing of washed T. carbonaria 

for the other two ant species. Future tests should also comprise further combinations 

of treated bees, such as tests with washed A. australis against untreated 

T. carbonaria or both species washed to learn more about the reasons on which the 

ants’ decisions are based. For better assessment of the predatory potential of 

P. australis and C. aeneopilosus the feeding choice assay should also be conducted 

with these two species. Other conceivable tests could be made with extra stingless bee 

species combinations, different washing solvents such as chloroform or more polar 

ethanol and finally also other ant species. Also, with regard to the extract assay, 

Oecophylla smaragdina would be a reasonable test candidate. They are known to be 

arboreal predators and also represent a threat to arboreal nesting stingless bees 

(Duangphakdee et al. 2005). Similar tests concerning repellent effects of resin have 

already been conducted by Duangphakdee et al. (2005) with Oecophylla and the 

experiments used in this thesis bear potential to refine or complement their results. 

Yet another option could be the investigation of further introduced species to check 

for similar insensitivities to the cuticular defense of Australian bees’ as found for 

T. bicarinatum. With regard to this fact a comparison of responses of T. bicarinatum 

between Australian and South-east Asian (its home country) stingless bees and their 
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cuticular profiles would provide further information and help to validate or discard 

the idea of region-based defensive coevolution of bee cuticles and predatory ants. 

It would further be interesting to perform the extract tests with all five ant species 

and all six extracts. For a systematic comparison of repellent efficacy, the extracts 

need to be equally concentrated. 

Tests with singular, isolated chemical compounds, especially the unknown chemical in 

C. torelliana resin, or compound classes would further help to determine the repellent 

potential of particular substances and assist in clarifying the role of C. torelliana in 

defensive applications. Finally, further resin sources could be taken into account and 

analyzed for their repellent potential. An additional GCMS analysis and comparison 

for abundance of compounds found to be effective in resin and bee cuticles would 

then help to find out whether bees do exploit more repellent resin sources and 

particularly filter repellent chemicals for their profile. It may further aid in 

determining, whether these compounds are accumulated to an extent exceeding the 

proportions found in resin and therefore help to better understand reasons for 

filtering of particular compounds or the role of defensive means in chemical diversity 

of stingless bees (Leonhardt et al. 2011a; 2011b). 
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Appendix 

Data given in the App Tables only represent excerpts of the most important facts. 

Fully detailed, original tables, lists, charts and statistical data for all experiments are 

provided on the enclosed CD. 

App Table  Detailed results of the food monitoring assay: Date (year 2011); Temp = Temperature, Weat = Weather (su = 

sunny; pa-cl = partly cloudy; sl-ovc = slightly overcast; ovc = overcast; oc-rs = occasional rain showers; rs = 

rain/ showers); Spec = Species (C. ae = Camponotus aeneopilosus; I. ru = Iridomyrmex rufoniger gp.; P au = 

Polyrhachis australis; R. me = Rhytidoponera metallica; T. bi = Tetramorium bicarinatum); Nr. = Nest number 

(c.f. Table 2.; Figure 2.); Dayt = Daytime (1 = morning; 2 = noon; 3 = evening); N = Number of Ants collected 

and monitored; Nec = Number of Ants carrying nectar; Pro = Number of Ants carrying protein; Pla = Number 

of Ants carrying plant parts; Misc = Number of Ants with miscellaneous items; Not = Number of Ants 

without a food item (Full table with detailed list of food items on CD: Ants-Monitoring.xlsx) 

Date Temp Weat Spec Nr. Dayt N Nec Pro Pla Misc Not 

07.03. 25°C oc-rs C. ae 3 1 4 1 0 0 0 3 
22.03. 34°C su C. ae 3 1 10 8 1 0 0 2 

06.04. 26°C pa-cl C. ae 3 1 10 6 0 0 0 4 

28.02. 30°C su C. ae 3 2 5 0 1 0 0 4 

03.03. 32°C su C. ae 3 2 7 3 0 0 0 4 

15.03. 30°C su C. ae 3 2 10 6 0 0 0 4 

08.03. 27°C sl ovc C. ae 3 3 5 4 0 0 0 1 

15.03. 30°C su C. ae 3 3 10 7 0 0 0 3 

22.03. 34°C su C. ae 3 3 10 6 1 0 1 2 

24.03. 28-34°C su C. ae 3 3 10 5 0 0 0 5 

Species total Camponotus aeneopilosus 81 46 3 0 1 32 
07.03. 25°C oc-rs I. ru 2 1 10 3 0 0 3 5 
15.03. 30°C su I. ru 2 1 10 3 0 0 0 7 

01.04. 26°C pa-cl I. ru 2 1 10 3 1 0 1 5 

07.03. 25°C oc-rs I. ru 2 2 11 4 0 1 0 6 

08.03. 27°C sl ovc I. ru 2 2 10 4 0 0 1 5 

10.03. 25°C sl ovc I. ru 2 2 10 6 1 0 0 3 

03.03. 32°C su I. ru 2 3 11 4 1 0 0 6 

09.03. 25-28°C sl ovc I. ru 2 3 11 6 2 0 0 3 

14.03. 30°C su I. ru 2 3 10 4 0 0 0 6 

24.03. 28-34°C su I. ru 2 3 11 4 4 0 0 3 

09.03. 25-28°C sl ovc I. ru 5 1 11 2 0 0 0 9 

16.03. 27°C ovc I. ru 5 1 9 6 0 0 0 3 

04.04. 27°C pa-cl I. ru 5 1 10 3 0 0 0 7 

03.03. 32°C su I. ru 5 2 11 4 0 0 0 7 

08.03. 27°C sl ovc I. ru 5 2 10 5 0 0 0 5 

10.03. 25°C sl ovc I. ru 5 2 10 4 1 0 0 5 

28.02. 30°C su I. ru 5 3 10 4 1 0 0 5 

14.03. 30°C su I. ru 5 3 10 8 0 0 0 2 
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Date Temp Weat Spec Nr. Dayt N Nec Pro Pla Misc Not 

28.03. 25°C oc-rs I. ru 5 3 10 1 0 1 0 7 
01.03. 30°C su I. ru 6 1 10 0 2 0 0 8 

24.03. 28-34°C su I. ru 6 1 10 0 0 0 0 10 

04.04. 27°C pa-cl I. ru 6 1 10 1 0 0 0 9 

03.03. 32°C su I. ru 6 2 10 1 1 0 0 8 

07.03. 25°C oc-rs I. ru 6 2 10 3 1 0 0 7 

10.03. 25°C sl ovc I. ru 6 2 11 5 2 0 0 5 

07.03. 25°C oc-rs I. ru 6 3 10 2 1 0 0 7 

09.03. 25-28°C sl ovc I. ru 6 3 10 4 0 0 1 5 

21.03. 30°C su I. ru 6 3 10 3 1 0 1 5 

28.03. 25°C oc-rs I. ru 6 3 10 5 3 0 0 2 

Species total Iridomyrmex rufoniger gp 296 102 22 2 7 165 
07.03. 25°C oc-rs P. au 1 1 10 5 0 0 1 4 
15.03. 30°C su P. au 1 1 10 6 0 0 0 4 

28.03. 25°C oc-rs P. au 1 1 10 2 0 0 2 6 

03.03. 32°C su P. au 1 2 10 5 0 0 1 4 

08.03. 27°C sl ovc P. au 1 2 10 4 2 0 0 5 

09.03. 25-28°C sl ovc P. au 1 2 10 4 1 0 0 5 

28.02. 30°C su P. au 1 3 10 2 0 0 0 8 

02.03. 30°C ovc P. au 1 3 10 5 1 1 0 3 

10.03. 25°C sl ovc P. au 1 3 10 5 0 0 0 5 

03.03. 32°C su P. au 4 1 10 3 3 0 0 4 

16.03. 27°C ovc P. au 4 1 10 6 0 1 0 3 

04.04. 27°C pa-cl P. au 4 1 10 5 0 0 0 5 

07.03. 25°C oc-rs P. au 4 2 10 7 0 1 0 2 

08.03. 27°C sl ovc P. au 4 2 10 4 0 0 0 6 

09.03. 25-28°C sl ovc P. au 4 2 10 8 1 0 1 2 

18.02. 30°C su P. au 4 3 10 8 1 0 0 1 

10.03. 25°C sl ovc P. au 4 3 10 10 0 0 1 0 

31.03. 25°C ovc P. au 4 3 10 5 0 0 0 5 

Species total Polyrhachis australis 180 94 9 3 6 72 
03.03. 32°C su R. me 7 1 10 0 2 2 2 3 
16.03. 27°C ovc R. me 7 1 10 0 4 1 0 5 

07.04. 24°C pa-cl R. me 7 1 10 0 6 0 0 5 

18.02. 30°C su R. me 7 2 20 0 5 0 0 15 

07.03. 25°C oc-rs R. me 7 2 10 0 3 0 5 2 

10.03. 25°C sl ovc R. me 7 2 10 1 5 0 0 4 

07.03. 25°C oc-rs R. me 7 3 10 0 3 0 3 3 

09.03. 25-28°C sl ovc R. me 7 3 10 0 4 0 2 4 

14.03. 30°C su R. me 7 3 10 0 3 1 2 3 

28.03. 25°C oc-rs R. me 7 3 10 0 3 0 2 4 
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Date Temp Weat Spec Nr. Dayt N Nec Pro Pla Misc Not 

01.03. 30°C su R. me 8 1 10 0 3 0 0 7 
24.03. 28-34°C su R. me 8 1 5 0 3 0 0 2 

12.04. 24°C pa-cl R. me 8 1 10 0 2 0 0 8 

07.03. 25°C oc-rs R. me 8 2 10 0 4 0 0 6 

08.03. 27°C sl ovc R. me 8 2 10 0 5 0 0 6 

10.03. 25°C sl ovc R. me 8 2 10 1 2 0 1 6 

03.03. 32°C su R. me 8 3 10 1 3 0 2 5 

15.03. 30°C su R. me 8 3 10 0 3 0 0 7 

21.03. 30°C su R. me 8 3 10 0 4 1 1 5 

31.03. 25°C ovc R. me 8 3 10 0 3 0 0 7 

10.03. 25°C sl ovc R. me 9 1 10 0 8 0 0 3 

21.03. 30°C su R. me 9 1 10 0 4 0 0 7 

13.04. 25°C su/rs R. me 9 1 10 0 0 0 0 10 

01.03. 30°C su R. me 9 2 10 0 3 0 0 7 

03.03. 32°C su R. me 9 2 10 0 3 0 0 7 

10.03. 25°C sl ovc R. me 9 2 10 0 4 0 0 6 

07.03. 25°C oc-rs R. me 9 3 10 1 1 0 0 8 

09.03. 25-28°C sl ovc R. me 9 3 10 0 4 0 0 7 

14.03. 30°C su R. me 9 3 10 0 5 0 0 6 

31.03. 25°C ovc R. me 9 3 10 0 3 0 0 7 

Species total Rhytidoponera metallica 305 4 105 5 20 175 
13.04. 25°C su/rs T. bi 10 1 10 5 2 0 2 3 
15.04. 24°C pa-cl T. bi 10 1 10 7 0 0 0 3 

18.04. 21°C rs T. bi 10 1 10 3 0 0 0 7 

13.04. 25°C su/rs T. bi 10 2 10 6 0 0 0 4 

14.04. 28°C su T. bi 10 2 10 4 0 0 0 6 

15.04. 24°C pa-cl T. bi 10 2 10 2 0 0 0 8 

13.04. 25°C su/rs T. bi 10 3 10 1 0 0 1 8 

15.04. 24°C pa-cl T. bi 10 3 10 5 2 0 0 3 

18.04. 21°C rs T. bi 10 3 10 2 3 0 0 7 

Species total Tetramorium bicarinatum 90 35 7 0 3 49 

Total for all species 952 281 146 10 37 493 
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App Table  Color variation in collected nectar and the number of workers found with the according item (Full table with 

detailed nectar items and colors on CD: Ants-Monitoring.xlsx) 

Species Total Clear Opaque Milky Brown Brown Yellow Other 

C. aeneopilosus 46 30 1 2 6 5 2 0 
P. australis 94 49 23 6 2 4 4 6 

T. bicarinatum 35 35 0 0 0 0 0 0 

I. rufoniger 102 96 1 0 5 0 0 0 

R. metallica 4 2 1 0 1 0 0 0 

Pooled 281 212 26 8 14 9 6 6 

 

App Table  Nectar collection data  for the nectar assay: Date (year 2011); Spec = Species (C. ae = Camponotus 

aeneopilosus; I. ru = Iridomyrmex rufoniger gp.; P au = Polyrhachis australis; T. bi = Tetramorium 

bicarinatum); Nr. = Nest number (c.f. Table 2.; Figure 2.); Dayt = Daytime (1 = morning; 2 = noon; 3 = 

evening); N = Number of Ants collected and monitored; Vol = Volume; Suc = Sucrose concentration; 

Concentrations marked red exceeded the refractometer scale which reached to 50% (Full table on CD: Ants-

Monitoring.xlsx) 

Date Spec Nr. Dayt Timeframe Color Vol [µl] Suc [%] 

22.03.2011 C. ae 3 1 9.50-10.10 clear 4.0 µl 49% 

22.03.2011 C. ae 3 1 9.50-10.10 clear 2.5 µl 50% 

22.03.2011 C. ae 3 1 9.50-10.10 clear 2.5 µl 50% 

22.03.2011 C. ae 3 1 9.50-10.10 milky 0.2 µl 16% 

22.03.2011 C. ae 3 1 9.50-10.10 brown-milky 0.2 µl 9% 

06.04.2011 C. ae 3 1 10.01-10.31 clear 2.2 µl 60% 

06.04.2011 C. ae 3 1 10.01-10.31 brown 0.5 µl 53% 

06.04.2011 C. ae 3 1 10.01-10.31 brown 0.3 µl 64% 

06.04.2011 C. ae 3 1 10.01-10.31 brown 1.8 µl 73% 

06.04.2011 C. ae 3 1 10.01-10.31 brown 0.8 µl 74% 

22.03.2011 C. ae 3 3 14.55-15.05 clear 1.3 µl 50% 

22.03.2011 C. ae 3 3 14.55-15.05 clear 0.7 µl 50% 

22.03.2011 C. ae 3 3 14.55-15.05 clear 0.4 µl 50% 

22.03.2011 C. ae 3 3 14.55-15.05 brown-milky 0.3 µl 15% 

22.03.2011 C. ae 3 3 14.55-15.05 brown-milky 1.0 µl 50% 

24.03.2011 C. ae 3 3 16.05-16.26 clear 0.1 µl 14% 

24.03.2011 C. ae 3 3 16.05-16.26 clear 1.4 µl 50% 

24.03.2011 C. ae 3 3 16.05-16.26 clear 2.0 µl 50% 

24.03.2011 C. ae 3 3 16.05-16.26 milky 0.2 µl 22% 
Total number of ants sampled; mean vol; mean suc  19 1.2 µl 45% 

Standard deviation   1.23 µl 26% 

16.03.2011 I. ru 5 1 8.55-9.07 clear 0,1µl 16% 

16.03.2011 I. ru 5 1 8.55-9.07 clear 0.1 µl 16% 

24.03.2011 I. ru 2 3 15.20-15.35 clear 0.4 µl 50% 

24.03.2011 I. ru 2 3 15.20-15.35 clear 0.6 µl 42% 

24.03.2011 I. ru 2 3 15.20-15.35 clear 0.4 µl 42% 
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Date Spec Nr. Dayt Timeframe Color Vol [µl] Suc [%] 

21.03.2011 I. ru 6 3 16.00-16.12 clear 1.0 µl 14% 

21.03.2011 I. ru 6 3 16.00-16.12 clear 0.5 µl 27% 

21.03.2011 I. ru 6 3 16.00-16.12 clear 0.1 µl 17% 

28.03.2011 I. ru 6 3 16.22-16.31 clear 0.4 µl 21% 

28.03.2011 I. ru 6 3 16.22-16.31 clear 0.3 µl 27% 

28.03.2011 I. ru 6 3 16.22-16.31 clear 0.3 µl 27% 
Total number of ants sampled; mean vol; mean suc  11 0.4 µl 27% 

Standard deviation  0.26 µl 12% 

28.03.2011 P. au 1 1 10.00-10.14 clear 1.0 µl 16% 

28.03.2011 P. au 1 1 10.00-10.14 brown 1.3 µl 13% 

16.03.2011 P. au 4 1 10.05-10.22 clear 1.1 µl 35% 

16.03.2011 P. au 4 1 10.05-10.22 clear 0.6 µl 20% 

04.04.2011 P. au 4 1 10.13-10.31 clear 1.5 µl 46% 

04.04.2011 P. au 4 1 10.13-10.31 clear 1.0 µl 42% 

04.04.2011 P. au 4 1 10.13-10.31 opaque 1.0 µl 52% 
Total number of ants sampled; mean vol; mean suc  7 1.1 µl 32% 

Standard deviation   0.28 µl 16% 

13.04.2011 T. bi 10 1 10.04-10.20 clear 0.1 µl 20% 

13.04.2011 T. bi 10 1 10.04-10.20 clear 0.1 µl 23% 

15.04.2011 T. bi 10 1 9.51-9.56 clear 0.1 µl 14% 

15.04.2011 T. bi 10 1 9.51-9.56 clear 0.1 µl 15% 

13.04.2011 T. bi 10 2 13.10-13.16 clear 0.1 µl 16% 

13.04.2011 T. bi 10 2 13.10-13.16 clear 0.1 µl 20% 

13.04.2011 T. bi 10 2 13.10-13.16 clear 0.1 µl 17% 

13.04.2011 T. bi 10 2 13.10-13.16 clear 0.2 µl 12% 

13.04.2011 T. bi 10 3 16.07-16.11 clear 0.2 µl 15% 

15.04.2011 T. bi 10 3 16.09-16.15 clear 0.1 µl 14% 

15.04.2011 T. bi 10 3 16.09-16.15 clear 0.1 µl 16% 
Total number of ants sampled; mean vol; mean suc  11 0.12 µl 17% 

Standard deviation   0.04 µl 3% 

App Table  Overview of the nectar sampling for different species, mean values (±SD) of volume and sucrose content are 

provided. N gives the number of nectar samples per species. Due to the limited refractometer scale, values 

above 50 % were counted as 50 % (Full table on CD: Ants-Monitoring.xlsx) 

Species Body size N Ø Volume Ø Sucrose [%] 

C. aeneopilosus 5-9 19 1.18 ±1.07 45 ±20 
P. australis 4-6  7 1.07 ±0.28 32 ±16 

I. rufoniger gp. 2-3.5 11 0.38 ±0.26 27 ±12 

T. bicarinatum 3.5-4.5 11 0.12 ±0.04 17 ± 3 
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App Table  Wilcoxon rank sum test for differences in nectar volume among the different species (significant p values 

are indicated in bold) 

Species C. aeneopilosus I. rufoniger gp. P. australis 

I. rufoniger gp. 0.08 - - 
P. australis 0.64 0.005 - 

T. bicarinatum 0.0002 0.01 0.001 

App Table  Wilcoxon rank sum test for differences in nectar concentration among the different species (significant p 

values are indicated in bold) 

Species C. aeneopilosus I. rufoniger gp. P. australis 

I. rufoniger gp. 0.087 - - 
P. australis 0.189 0.649 - 

T. bicarinatum 0.012 0.079 0.168 

App Table  Aphid tree monitoring on Podocarpus elatus (Coordinates: S 26°41'01.5'' E 153°00'52.3"" ); Observation 

period: 10 minutes; Dayt = Daytime (1 = morning; 2 = noon; 3 = evening); N = Number of bees approaching 

the tree (Full table on CD: Ants-Monitoring.xlsx) 

Date Start time Daytime N Other flying Insects (number and specification) 

12.04.2011 10:23 1 0 0 - 

13.04.2011 10:21 1 0 6 3x Syrphid fly, Wasp, Moth, Shield bug 

15.04.2011 10:00 1 0 4 Wasp, Syrphid fly, 2x Fly, (Polyrhachis daemeli) 

15.03.2011 13:20 2 0 0 - 

11.04.2011 11:50 2 0 2 Syrphid fly, Wasp 

13.04.2011 13:43 2 0 4 2x Ladybug, 2x Fly  

11.04.2011 15:12 3 0 0 - 

13.04.2011 16:15 3 0 1 Moth 

15.04.2011 16:18 3 0 1 Syrphid fly 

App Table  Pearson's Chi-squared test results for differences in behavioral responses towards extracts and hexane for 

R. metallica; NHex and NExt show the numbers of Ants monitored for hexane and extract treated filter paper. 

NTot gives the total number of ants observed (significant p values are indicated in bold). 

Extract NHex NExt NTot  χ2 df p 

Propolis from Nest 101 75 176 55.20 2 < 0.0001 

T. carbonaria 111 98 209 43.88 2 < 0.0001 

A. australis 104 112 216  9.83 2 0.007 

C. torelliana capsules 92 80 172 29.46 2 < 0.0001 

P. caribea 88 100 188 37.04 2 < 0.0001 

A. bidwilii 78 82 160  4.14 2 0.13 
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App Table  Pearson's Chi-squared test results for differences in behavioral responses towards extracts and hexane for 

I. rufoniger gp.; NHex and NExt show the numbers of Ants monitored for hexane and extract treated filter 

paper. NTot gives the total number of ants observed (significant p values are indicated in bold) 

Extract NHex NExt NTot   χ2 df p 

T. carbonaria 312 366 678  51.72 2 < 0.0001 

C. torelliana capsules 269 304 573   7.71 2 0.02 

A. bidwilii 296 341 637   3.65 2 0.16 

P. caribea 331 274 605 138.22 2 < 0.0001 

App Table  Pearson's Chi-squared test results for differences in behavioral responses towards hexane and T. carbonaria 

extract for two ant species (significant p values are indicated in bold) 

Species NHex NExt NTot  χ2 df p 

P. australis 121 130 251 29.23 2 < 0.0001 

T. bicarinatum 101 91 192  2.59 2 0.27 

App Table  Pearson's Chi-squared test results for differences between four different ant species in behavioral responses 

towards the same extract; N gives the number of species compared (p-values significant after correction for 

multiple testing are indicated in bold) 

Extract N  χ2 df p 

T. carbonaria 4 37.44 6 < 0.0001 

C. torelliana capsules 2  8.66 2 0.01 

P. caribea 2 23.19 2 < 0.0001 

A. bidwilii 2 22.87 2 < 0.0001 

 



Declaration / Erklärung 

 
69 

Declaration / Erklärung 

I hereby declare that my thesis in its entirety is the result of my own work. I did not 

use any other sources and / or materials than listed and specified in the thesis. All 

charts, diagrams and pictures were – unless marked otherwise – prepared by myself. 

Hiermit versichere ich, dass ich diese Arbeit in allen Teilen selbstständig gefertigt und 

keine anderen als die in der Arbeit angegebenen Hilfsmittel benutzt habe. Die 

Zeichnungen, Diagramme und bildlichen Darstellungen habe ich – soweit nicht anders 

vermerkt – selbst gefertigt. 

Würzburg, den 29.09.2011 


