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Radiation inactivation analysis of the binding of the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxan­
thine to rat brain membranes yielded a radiation inactivation size of 58 kDa. In the presence of GTPyS this was reduced 
to 33 kDa, in good agreement with the size of the Iigand-binding subunit detected after photoaffinity labelling. The data 
indicate that the structural association of A1 adenosine receptors with G-protein components is altered in situ in the 

presence of guanine nucleotides. 
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1. INTRODUCTION 

Adenosine is an important regulator of several 
biochemical and physiological processes in various 
tissues [1]. The effects of this nucleoside are 
mediated by extracellular receptors that have been 
classified into two groups, At and Az, according to 
their' pharmacological and biochemical charac­
teristics. In the central nervaus system, the modu­
Iatory actions of adenosine on nerve cell activity 
are mediated via receptors of the At type [2,3]. The 
ernerging importance of adenosine as a neuromo­
dulator has led to several investigations of its 
mechanisms of action and to molecular studies of 
the At receptor. The determination of the 
molecular size of the receptor has been approached 
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using several methods. In particular, photoaffinity 
labelling using several agonist and antagonist 
radioligands has shown that the Iigand-binding 
polypeptide has an apparent molecular mass of ap­
prox. 35 kDa [4-6]. 

A further · strategy · for determining apparent 
molecular size is by the radiation inactivation 
technique, otherwise known as target size analysis 
[7]. The loss of biological activity, e.g. ligand­
receptor binding, with increasing doses of ionising 
radiation allows determination of the radiation in­
activation size (RIS). In addition, if destruction of 
a polypeptide can be monitared directly, this 
method gives a second structural parameter, the 
target size, which may or may not be equal to the 
functionally determined RIS [8]. This method has 
provided important information on the molecular 
sizes of several honnone and neurotransmitter 
receptors [9]. 

Recently, the RIS of the A1 adenosine receptor 
was determined using the agonist Iigand, R­
[
3H]phenylisopropyladenosine [1 0]. The high­

affinity binding site for this Iigand was estimated 
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to be 63 kDa. Due to the apparent discrepancy be­
tween this result and that obtained using photoaf­
finity labelling techniques, together with recent 
observations indicating a different RIS for the 
agonist- and antagonist-binding sites for the Dt­
and D2-dopamine receptors [11,12], we have re­
examined the RIS of the At adenosine receptor in 
rat brain membranes using the recently developed, 
high-affinity antagonist Iigand, 8-[3H]cyclopentyl-
1,3-dipropylxanthine ([3H]DPCPX) [13,14]. The 
use of this antagonist has the advantage that bind­
ing appears to be largely independent of an interac­
tion with th~ guanine nucleotide binding protein, 
Gi, thus allowing determination of the size of the 
target corresponding to the receptor alone. 

2. MATERIALS AND METHODS 

Experiments were performed using a crude, post-nuclear 
pellet from rat cerebral cortex, prepared as in [2]. The mem­
branes were finally suspended in ice-cold SO mM Tris-HCI (pH 
7.4), at a concentration of 1 mg protein/ml. Where used, 
GTP."S was added S min before freezing to give a final coneen­
tration of 100 ,aM. Aliquots (S ml) were frozen in solid C02 in 
aluminium pots and irradiated for various times with 2.5 MeV 
electrons generated by a V an der Graaf generator at the GSF, 
Munich, at -70°C exactly as described [15]. After irradiation 
samples were kept in solid C02 until assaying for Iigand binding 
activity. Tbe dosimetry calibration of the irradiation. system 
used in this study has been described [ 1 5]. 

Binding of the antagonist, [3H]DPCPX, to irradiated mem­
branes was measured as in [14] at a protein concentration of 
0.1 mg/ml. Saturation curves were obtained at Iigand concen­
trations within the range 0.05-S nM. Data were analysed using 
the curve-fitting program, LIGAND [16], to yield the Kd and 
Bmu. values. In all cases the bestfit was observed with a one-site 
binding model. 

Photoaffmity labelling of membranes was performed accor­
ding to [6] using the photolabile agonist Iigand, [125I]AHPIA. 
Labelied membranes were irradiated at 0.2 mglml in the 
presence of 1 mg/ml bovine serum albumin. After irradiation, 
membranes were recovered by centrifugation at 100000 x g for 
1 h, dissolved in sample buffer and subjected to SDS­
polyacrylamide gel electrophoresis. The 1251-labelled A1 recep­
tor band was excised and ra"~oactivity determined in a gamma 
counter. The radioactivity in each band was expressed as a 
percentage of tbat in a frozen but unirradiated sample for con­
structing inactivation plots. 

Acetylcholinesterase was determined radiometrically [17] arid 
protein by the method of Lowry et al. [18]. 

The inactivation profiles obtained by plotting ln(O!o control) 
vs radiation dose were linear in all cases reported here. RIS was 
calculated using the empirical formula: 6.4 x 1011 I D31 where 
D31 is the dose (in rad) at which 37% of the control binding re­
mains [19]. Since this relationship was originally derived at 
room temperature, a further empirical factor of two was 
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employed to allow for the sensitivity of protein inactivation to 
temperature [20]. 

3. RESULTS 

Irradiation of membranes from rat brain led to 
a decrease in the Bmu values for [3H]DPCPX bin­
ding (fig.1A). No significant effect was observed 
on binding affinity, Kd values being in the range 
0.3-0.6 nM with no clear trend on increase in ir­
radiation dose. Incubation in the presence of 
GTP."s led to r~duction in the sensitivity of 
eH]DPCPX-binding sites to irradiation (fig.lA) 
and therefore a decrease in RIS. The RIS values 
calculated in the absence and presence of GTP."s 
were 58± 2.5 and 33 ± 3 kDa, respectively. Direct 
measurement of the loss of previously 
photoaffinity-labelled receptor gave a target size of 
35 ± 2 kDa (fig.lB). The endogenaus 
acetylcholinesterase of cerebral membranes bad an 
RIS of 62 ± 2.5 kDa, in good agreement with 
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Fig.1. Inactivation profiles of (A) [3H]DPCPX-binding sites in 
the absence (.t.) or presence (e) of 100 ,aM GTP')'S (Bmu values 
derived from saturation analysis) and (B) photoaffinity-labelled 
cerebral membranes. Membranes were irradiated for different 

times to give the total doses shown. 
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previously reported values of 61 kDa [15] and 
65 kDa [21]. 

4. DISCUSSION 

The RIS of -58 kDa for the antagonist-binding 
component of the cerebral At adenosine receptor 
found here is in good agreement with the value of 
63 kDa reported by Frame et al. [10] for the high­
affmity agonist-binding state as measured in the 
presence of Mg2+. 

Analysis of receptor structure using agonist 
radioligands has been complicated by two fa'ctors. 
Firstly, addition of GTP or its analogues to con­
vert the receptor into the low-affinity agonist­
binding state results in the loss of agonist binding 
and consequently greater errors in determining 
binding at higher irradiation doses. Secondly, at­
tempts to determine the low-affinity state after 
saturation analysis of agonist-binding curves [22] 
or RIS analysis of cerebral membranes in the 
absence of exogenous Mg2+ (23] result in non­
linear radiation inactivation profiles, with an in­
crease in agonist binding occurring at low. doses. 
These difficulties could be overcome in the present 
study by using a high-affmity antagonist 
radioligand, [3H]DPCPX, which does not 
distinguish between the agonist high- and low­
affinity states [14]. Thus, [3H]DPCPX binding 
could readily be measured in the presence of the 
GTP analogue, GTPyS. Under these conditions, 
the RIS estimated for the antagonist-binding com­
ponent was found to decrease from 58 kDa for 
control membranes to 33 kDa, which is in excellent 
agreement with the value of approx. 35 kDa for 
the Iigand-binding polypeptide .determined after 
SDS-polyacrylamide gel electrophoresis [ 4-6]. 

The reduction in RIS for [3H]DPCPX binding in 
the presence of GTPyS indicates the dissociation 
of a G-prot~in such as Gi from the Iigand-binding 
component and provides a structural analogy to 
the changes in agonist affinity observed in the 
presence of guanine nucleotides in binding studies 
[24]. The difference in RIS of about 25 kDa in the 
presence and absence of GTPyS is, however, insuf­
ficient to allow identification of the associated G­
protein subunit. Indeed, caution should be exercis­
ed when interpreting RIS data in terms of 
molecular structure. As discussed by Beauregard et 
al. [8] the original interpretation of target size was 

based upon the assumption that a single ionisation 
results in the physical breakdown of a protein with 
consequent loss of. its biological activity. In the 
case of oligomeric proteins, · however, examples 
have been found where a differential loss of 
specific functional domains occurs, resulting in 
RIS values less than the size of the polypeptide 
[25,26]. The 25 kDa difference in RIS observed in 
this study may therefore be an underestimate of 
the true molecular size of the associated compo­
nent. On this assumption, either the a- or ß­
subunit or the ß-r complex of the associated G­
protein could account for the 25 kDa difference in 
RIS after GTPyS treatment. 

A further complication in the interpretation of 
the RIS in terms of a radiatiort-induced breakdown 
of protein structure is revealed by the data obtain­
ed with the covalent agonist-receptor complex. Ir­
radiation of photoaffinity-labelled .membranes 
yielded a target size of 35 kDa based upon the 
destruction of a 35 kDa 1251-labelled band after 
polyacrylamide gel electrophoresis. This coin­
cidence between the target size and the elec­
trophoretically derived molecular size indicates 
that loss of the 35 kDa Iigand-binding component 
occurs independently of the transfer of destructive 
energy from the associated G-proteins which 
would Iead to a greater target size~ On the other 
band, measurement of the loss of [3H]DPCPX bin­
ding activity in the absence of GTP.,..s yielded an 
RIS of 53 kDa. Since the membranes were ir­
radiated in the absence of adenosine deaminase 
and the At receptors were therefore presumably 
occupied by endogenous adenosine, it seems 
reasonable to suppose that, as in the case of the 
covalent agonist-receptor complex, no destructive 
energy transfer occurred from G-protein to recep­
tor. This would seem to indicate, as suggested by 
Venter [9], that changes in tertiary structure of the 
receptor as a result of destruction of the G-protein 
might be sufficient to influence the RIS based 
upon measurement of biological activity. 

In conclusion, the reduction of the RIS for 
eH]DPCPX binding in the presence of GTPyS 
strongly suggests the structural association of A1 

adenosine receptors with G-protein components in 
brain membranes in situ. The nature of the G­
protein subunit cannot be inferred from the 
GTPyS-induced shift in RIS. On the basis of cur­
rent models of receptor-G protein interactions, the 
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association with an a-subunit seems most likely 
[27]. However, solely on consideration of the RIS 
values, the possibility of the ,8-subunit being in­
volved cannot be ruled out. Clearly, however, in­
cubation of brain membranes with guanine 
nucleotide Ieads to changes in the structure and 
function of the At-receptor/0-protein complex. 
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