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Abstract

It is widely believed that the modular organization of cellular function is reflected in a modular structure of molecular
networks. A common view is that a ‘‘module’’ in a network is a cohesively linked group of nodes, densely connected
internally and sparsely interacting with the rest of the network. Many algorithms try to identify functional modules in
protein-interaction networks (PIN) by searching for such cohesive groups of proteins. Here, we present an alternative
approach independent of any prior definition of what actually constitutes a ‘‘module’’. In a self-consistent manner, proteins
are grouped into ‘‘functional roles’’ if they interact in similar ways with other proteins according to their functional roles.
Such grouping may well result in cohesive modules again, but only if the network structure actually supports this. We
applied our method to the PIN from the Human Protein Reference Database (HPRD) and found that a representation of the
network in terms of cohesive modules, at least on a global scale, does not optimally represent the network’s structure
because it focuses on finding independent groups of proteins. In contrast, a decomposition into functional roles is able to
depict the structure much better as it also takes into account the interdependencies between roles and even allows
groupings based on the absence of interactions between proteins in the same functional role. This, for example, is the case
for transmembrane proteins, which could never be recognized as a cohesive group of nodes in a PIN. When mapping
experimental methods onto the groups, we identified profound differences in the coverage suggesting that our method is
able to capture experimental bias in the data, too. For example yeast-two-hybrid data were highly overrepresented in one
particular group. Thus, there is more structure in protein-interaction networks than cohesive modules alone and we believe
this finding can significantly improve automated function prediction algorithms.
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Introduction

Biological function is believed to be organized in a modular

and hierarchical fashion [1]. Genes make proteins, proteins form

cells, cells form organs, organs form organisms, organisms form

populations and populations form ecosystems. While the higher

levels of this hierarchy are well understood, and the genetic code

has been deciphered, the unraveling of the inner workings of the

proteome poses one of the greatest challenges in the post-genomic

era [2]. The development of high-throughput experimental

techniques for the delineation of protein-protein interactions as

well as modern data warehousing technologies to make data

available and searchable are key steps towards understanding the

architecture and eventually function of the cellular network. These

data now allow for searching for functional modules within

these networks by computational approaches and for putatively

assigning protein function.

A recent review by Sharan et al. [2] surveys the current methods

of network based prediction methods for protein function. Proteins

must interact to function. Hence, we can expect protein func-

tion to be encoded in a protein interaction network. The basic

underlying assumption of all methods of automated functional

annotation is that pairwise interaction is a strong indication for

common function.

Sharan et al. differentiate two basic approaches of network

based function prediction: ‘‘direct methods’’, which can be seen as

local methods applying a ‘‘guilt-by-association’’ principle [3] to

immediate or second neighbors in the network, and ‘‘module

assisted’’ methods which first cluster the network into modules

according to some definition and then annotate proteins inside a

module based on known annotations of other proteins in the

module. So instead of ‘‘guilt-by-association’’, one could speak

of ‘‘kin-liability’’. The latter approach to function prediction

necessitates a concept of what is to be considered a module in a

network. Most researchers consider cohesive sets of proteins which

are highly connected internally, but only sparsely with the rest of

the network [4–14]. Such methods have yielded considerable

success at the level of very small scale modules and in particular

protein complexes.

Is the concept of a module as a group of cohesively interacting

proteins also useful on larger scales? Some researchers have

argued that modularity in this sense is a universal principle such

that small cohesive modules combine to form larger cohesive

entities in a nested hierarchy [15,16]. But is this view really

adequate to describe the architecture of protein interactions?

Recently, Wang and Zhang [17] questioned whether cohesive

clusters in protein interaction networks carry biological informa-

tion at all and suggested a simple network growth model based on
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gene duplication which would produce the observed structural

cohesiveness as ‘‘an evolutionary byproduct without biological

significance’’. We will not go as far as questioning the content of

biological information in the network structure but rather argue

against the model of a cohesively linked group of nodes in a

network as an adequate proxy for a functional module on all scales

of the network.

Consider, as first example, protein complexes. Indeed, they

consist of proteins working together and experimentally isolated

together. Only the large scale analysis of protein complexes

[18,19] revealed that they are more dynamic than previously

assumed. Many proteins can not only be found in a single, but in a

multitude of complexes. The information about proteins connect-

ing complexes will be lost when searching only for cohesively

interacting groups of proteins. As a second example, consider

transmembrane proteins, like receptors in signal transduction

cascades. They tend to interact with many different cytoplasmic

proteins as well as with their extra-cellular ligands. Still, only rarely

do different transmembrane receptors interact with each other.

Thus, the functional class of transmembrane receptors will not be

identified when looking for cohesive modules.

Here, we ask whether such features, which are not discovered

by algorithms searching for cohesive modules, are also present in

the overall structure of the cellular network. If this is the case,

methods searching only for cohesive modules would not be able to

identify them. We group proteins self-consistently into functional

roles if they interact in similar ways with other proteins according to

their functional roles. Such a role may well be a cohesive module,

meaning that proteins in this class predominantly interact with

other proteins of this class, but it does not have to. In other words,

we do not impose a structure of cohesive modules on the network

in our analysis but rather find the structural representation that is

best supported by the data. Using the abstraction of a functional

role, we generate an ‘‘image graph’’ of the original network which

depicts only the predominant interactions among classes of

proteins, thus allowing a bird’s-eye view of the network.

In the case of a protein interaction network studied here, we

found sound evidence that cohesive modules on a global scale do

not adequately represent the network’s global structure. We found

cohesive groups of proteins acting as intermediates and specifically

connecting other groups of proteins. Furthermore, we even

identified groups of proteins which are only sparsely connected

within themselves, but with similar patterns of interaction to other

proteins. Thus, approaches searching only for cohesive modules

which are sparsely connected to the rest of the network might not

be sufficient to represent all characteristics of cellular networks.

Our findings suggest that hierarchical modularity as nested,

cohesively interacting groups of proteins has to be reconsidered as

a universal organizing principle.

Functional role decomposition and image graphs. In

which cases does a clustering of a network into cohesive modules

not reflect its original architecture? Consider the toy network in

figure 1 A. There are four known types of proteins in this network.

Type a may represents some biological process involving five

proteins connected to four proteins of type b. These are linked to

another biological process c which involves five further proteins

which finally are linked to four proteins of type d . Not all nodes of

the same type necessarily share the same set of neighbors. Some

nodes of the same type do not have any neighbors in common with

nodes of their type or have more neighbors in common with nodes

of a different type. This shows that in this hypothetical example,

direct methods of functional annotations may be limited in their

accuracy.

Clustering the network into cohesive modules cannot capture

the full structure of the network. The nodes of type B will never be

recognized as a proper cluster, because they are not connected

internally at all.

The structure of the example network can, however, be

perfectly captured by a simple image graph with 4 nodes (Fig. 1

C). The nodes in an image graph correspond to the types of nodes

in the network. Nodes of type a are connected to other nodes of

type a and to nodes of type b. Nodes of type b have connections to

nodes of types a and c and so forth. The concept of defining types

of nodes by their relation to other types of nodes is known as

‘‘regular equivalence’’ in the social sciences [20,21]. Structure

recognition in networks can then be seen as finding the best fitting

image graph for a network. In this context, clustering into

functional modules means representing the network by an image

graph consisting of isolated, self-linking nodes. Once an assign-

ment of nodes into classes is obtained, the rows and columns of the

incidence matrix can be reordered such that rows and columns

corresponding to nodes in the same class are adjacent (Fig. 1 D

and E). The ordering of rows and columns representing nodes in

the same class is random. This leads to a characteristic structure

with dense blocks in the adjacency matrix corresponding to the

links in the image graph and sparse or zero blocks corresponding

to the links absent in the image graph. Structure recognition in

networks is therefore also called ‘‘block modeling’’ and together

with the concepts of structural and regular equivalence has a long

history in the social sciences [22,23]. In our further discussion, we

will denote image graphs that consist only of isolated, self-linked

nodes as in figure 1 B, ‘‘diagonal image graphs’’ due to the block

structure along the diagonal in the adjacency matrix that they

induce. Accordingly, we will call all other image graphs ‘‘non-

diagonal image graphs’’.

Calculation. But how do we find the best fitting image graph?

There are two aspects to this question. On one hand, there is the

topology of the image graph itself represented by its q|q
adjacency matrix Brs, and on the other hand, there is the

mapping t of the N nodes of the network to the q types of nodes

such that the mismatch between network and image graph is

minimal.

Author Summary

Cellular function is widely believed to be organized in
a modular fashion. On all scales and at all levels of
complexity, relatively independent sub-units perform
relatively independent sub-tasks. This functional modular-
ity must be reflected in the topology of molecular
networks. But how a functional module should be
represented in an interaction network is an open question.
On a small scale, one can identify a protein-complex as a
module in protein-interaction networks (PIN), i.e., modules
are understood as densely linked (interacting) groups of
proteins, that are only sparsely interacting with the rest of
the network. In this contribution, we show that extrapo-
lating this concept of cohesively linked clusters of proteins
as modules to the scale of the entire PIN inevitably misses
important and functionally relevant structure inherent in
the network. As an alternative, we introduce a novel way
of decomposing a network into functional roles and show
that this represents network structure and function more
efficiently. This finding should have a profound impact on
all module assisted methods of protein function prediction
and should shed new light on how functional modules
can be represented in molecular interaction networks in
general.

More Than Mere Modules
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Let us focus on the latter aspect and suppose we have already

the adjacency matrix Brs of our image graph together with the

N|N adjacency matrix Aij of our network. Let t be the mapping

of the N nodes to the q different types, such that ti [ f1,::,qg for all

i [ f1,::,Ng. To optimize the mapping t we minimize the following

error function:

E(t,B)~
1

M

XN

i=j

(Aij{Btitj
)(wij{pij) ð1Þ

~
1

M

XN

i=j

(wij{pij)Aij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q maxv1

{
1

M

XN

i=j

(wij{pij)Btitj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QB(t,B)ƒQ max

: ð2Þ

in which Aij is the f0,1g adjacency matrix of the network under

study. Wij denotes the weight given to an edge between nodes i

and j. If an edge is absent in the network, wij is naturally zero. As

before Btitj
is the image graph and pij is a penalty term discussed

below. The normalization constant M~
P

i=j wij is used to

bound the error by one. This error function gives a weight

proportional to (wij{pij) to errors made on fitting the edges in the

network and a weight of pij to errors made on fitting the absent

edges in the network. The penalty term pij is chosen such that the

total error weight on all edges in the network is equal to the total

error weight on all absent edges in the network:

XN

i=j

Aij(wij{pij)~
XN

i=j

(1{Aij)pij : ð3Þ

This can be easily achieved by setting pij~(
P

k=i wik

P
l=j wlj)=P

k=l wkl .

The first term of equation (2) neither depends on the mapping

of nodes to types t nor on the image graph Brs. It can be

interpreted as the maximum value Q max of a quality function QB

measuring the fit of the image graph to the network which would

be obtained for a perfect fit with zero error, i.e. Btitj
~Aij for all

(i, j). The second term in (2) then corresponds to the quality of the

actual fit for the given image graph and mapping. The error is

simply the difference between the best and any sub-optimal fit.

Minimizing E and maximizing QB are equivalent.

Note that perfect fit or zero error can also be achieved if Bsitj

represents the classes of structurally equivalent nodes in the

network. This simply means that all nodes of the network which

have exactly the same set of interaction partners are mapped

onto the same node of the image graph. When ordering the

rows and columns of the adjacency matrix according to this

partition of nodes into classes, only zero and full blocks are

present.

How do we interpret the values of Q max and QB,

respectively? For a sparse network in which the average number

of interaction partners per node is very small compared to the

total number of nodes in the network, the value of pij will be

very small in comparison to wij and, hence, Q max&1. Since

QB~Q max is only achieved if Brs exactly mimics the network,

we can interpret the ratio of the two values as an indication of

how closely the image graph resembles the network. QB

generally grows non-linearly with the number of classes, resp.

the size of Brs.

If we assume a diagonal image graph Brs~drs we recover in QB

of equation (2) a popular quality function for graph clustering

Figure 1. An example network and possible image graphs. A A
simple example network of nodes of 4 different types identified by their
structural position. Nodes of types a and c are densely connected
among themselves. The nodes of type b have connections to both
nodes of types a and c, but not among themselves, i.e. they mediate
between types a and c. The nodes of type d only have connections to
nodes of type c, but not among each other, i.e. they form a periphery to
type c nodes. B and C Two possible image graphs for the functional
understanding of this network show the connections among groups of
nodes. A typical network clustering will aggregate nodes into clusters
densely connected internally but only sparsely connected to the rest, as
depicted in the left image graph. This will result in grouping nodes of
types a and b together and nodes of type c and d together. Because of
aggregating nodes into cohesive groups, any such algorithm will never
recognize nodes of type c and d as different and hence miss essential
part of the network’s structure. On the opposite, the right image graph
correctly captures the network structure of the 4 different types as the 4
different nodes in the image graph. D and E The adjacency matrices of
our example network with rows and columns ordered according to the
two decompositions shown above. A black square in position (i, j)
indicates the existence of a link connecting node i with node j. Rows
and columns are ordered such that nodes in the same group are
adjacent. The internal order of the nodes in the groups is random. Each
block in the matrix corresponds to a possible edge in the image graph.
The left matrix shows the adjacency matrix for the output of a typical
clustering algorithm which groups nodes of type a and b, as well as c
and d together. Clearly, we see dense blocks along the diagonal and
sparse blocks on the off-diagonal of the matrix as expected. The right
matrix depicts the adjacency matrix with rows and columns according
to the actual types of the nodes. All empty blocks in this matrix
correspond to a missing edge in the image graph and all populated
blocks are represented by an edge in the image graph. We see that for
this network, the image graph perfectly captures the structure of the
network.
doi:10.1371/journal.pcbi.1000659.g001

More Than Mere Modules
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known as Newman modularity [17,24,25]:

QN~
1

M

XN

i=j

(wij{pij)dtitj
: ð4Þ

We can directly compare the fit of different given image graphs to

one network by the maximum score QB than can be obtained by

optimizing the mapping t of nodes in the network to the classes

represented as nodes in that image graph.

The overall optimal image graph with a given number of nodes

q and the optimal assignment t into the q classes can be found

directly by searching for the assignment t which maximizes

[26,27]

Q�(t)~
1

2M

Xq

r,s

abs
XN

i=j

(wij{pij)dti rdtj s

 !
: ð5Þ

The image graph which allows the highest value of QB among all

possible image graphs with this number of classes can be read off

from the assignment t that maximizes (5). It must be such that

Brs~1, if the argument in the absolute value in (5) is strictly

positive, and zero otherwise.

The parameter q in (5) only represents the maximum possible

number of classes. Any optimization routine is free to leave one or

more of the q allowed classes unused. Provided that the

optimization routine is not caught in local optima, Q� thus cannot

decrease with increasing q. We found it strictly increasing with q in

all cases as q%N in the this work as the additional degrees of

freedom always lead to an improved fit score.

Optimization of (5) is, just as optimization of (4) [28], NP-

complete. We used simulated annealing [29] with local updates for

the mapping of nodes into classes for the optimization. One such

local update takes O(kq2) operations for (5) and O(kq) operations

for (4) where k is the number of interaction partners of the node to

update. These local updates have to be performed for all nodes in

the network introducing a linear dependence on the size of the

network into these estimates. Very slow cooling, however, may be

required to escape local optima. Optimization by simulated

annealing is, in principle, guaranteed to reach a globally optimal

solution only for infinitely slow cooling schedules. In all our

analyses, we have used only the best scoring solutions we found

from multiple runs and are confident to have found solutions very

close to the global optimum.

Comparison to alternative methods and benchmarks.

One can view Brs as a lossy compression of the original network

with the goal to represent as many interactions as possible by edges in

the image graph and as many missing interactions as possible by

missing interactions in the image graph. The more pronounced a block

structure is the adjacency matrix of the network, the better the

compression will be. A number of recent publications deal with the

detection of block structures in networks. Among them are the mixture

model approach by Newman and Leicht [30] and a module detection

method based on a compression algorithm and the minimum

description length principle due to Rosvall and Bergstrom [31].

Additionally, we include a non-negative matrix factorization similar to

that proposed by Lee and Seung [32], but instead of factorizing into

two matrices, we use a symmetric tri-factorization as proposed by Ding

et al. [33] which allows for a direct assignment of nodes into classes from

the factorization. See the methods section for details.

Using a set of test networks with a known block structure, we

compare these methods by measuring their performance as we

increase the noise level. These networks have 128 nodes which

are members, by design, of 4 different classes. Two of these

classes are cohesive modules and two form a bi-partite structure

with links running mainly between nodes in different classes. This

setting was already used in Ref. [30] for benchmarking. The

average number of neighbors per node is kept fixed at SkT~16.

We can tune the difficulty of the structure detection task by the

percentage of edges that do not adhere to the designed block

structure, i.e. the noise level. For example, at a noise level of 0:25,

every node has, on average, 12 out of 16 connections conforming

to the designed block model, and 4 out of 16 connections not

conforming to the designed block model. This set of test-networks

is a particularly difficult one since all nodes have the same degree

and all nodes are in classes which have exactly one link in the

image graph. This leads to all dense (sparse) blocks being equally

dense (sparse) in the adjacency matrix and this symmetry makes

structure detection particularly hard. We measure the accuracy

of structure detection using the normalized mutual information

(NMI) [34] between the designed classification and the one

obtained by the different algorithms (see the methods section for

details).

This particular set of benchmarks also shows a situation where

the approach put forward by Guimera et al. in Ref. [25] fails.

There, the authors first cluster the network into cohesive modules

and then quantified the error in this approach as a ‘‘participation

coefficient’’, i.e. the fraction of links each node has connecting to

other members of its own cluster. This participation coefficient is

then used to differentiate proteins assigned to the same cohesive

module. Applying this methodology to the set of test networks

described above will fail to detect the bi-partite structure as the

two groups of proteins will be recognized as one large cohesive

cluster in which every node has the same high participation

coefficient.

Figure 2 shows the results of the benchmarks. Clearly, the the

method proposed here outperforms the alternatives and gives a

particularly large advantage for large noise levels.

All of the above approaches follow a top-down strategy,

assigning all nodes in the network to one of generally only a few

classes called modules or functional roles. This approach aims at

the macro and meso-scale structure of the network. It is worth

contrasting these approaches with those following a bottom-up

strategy, such as the Power Graph method by Royer et al. [35].

This approach presents a loss-less compression of the network by

collapsing cliques into ‘‘power nodes’’ and bi-cliques into

‘‘power edges’’. It attempts to reduce the visual complexity of

a network and as such, must then proceed in a hierarchical

manner, since the typical clique and hence power node cannot

contain more nodes than the the typical number of neighbors.

The same applies for bi-cliques. So in very large networks, the

clarity that is gained from collapsing parts of the network into

power nodes and power edges is partly lost in the hierarchy of

the recursive application. Also, since most of the currently

available data on protein interaction is noisy and incomplete and

contains false positive interactions, we find a lossy compression

more adequate for the analysis of the large scale structure of the

network.

Methodologically, a method similar to ours was also presented

by Qi et al. [36], though these authors focus on genetic

interaction in yeast. Qi et al. however, divide the set of all

interaction partners into a set of ‘‘query’’ and ‘‘library’’ genes and

restrict themselves to the analysis of putative functional similarity

among the query genes due to similarity in interaction with the

set of library genes. In contrast, our method aims at dividing the

entire corpus of interaction partners self-consistently into

functional classes.

More Than Mere Modules
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Results

Network analysis. Using the quality function introduced

above, we analyzed the HPRD protein interaction network

containing more than 8,500 nodes. We considered the entire

network and optimized Q� from (5) - thus finding optimal image

graphs and assignments of nodes into classes. With increasing

number of classes q, the fit between the actual network and the

image graphs becomes better (Fig. 3 A). The maximum fit score

was equal to Q max~0:98. Therefore, even with a very small

number of classes, already 2=3 of the maximum fit score to the

network was achieved. Restricting the image graphs to a diagonal

form Brs~drs also limited the fit score. The maximum of QN for a

diagonal image graph was reached at q~11 and further addition

of classes did not increase this value significantly any more. For

qv8 the fit scores for diagonal and non-diagonal image graphs

were equal because for less than 8 classes the best image graphs

were in fact diagonal. Only beyond this point did the additional

degrees of freedom of the non-diagonal image graphs allow better

scores.

We repeated the analysis on a set of networks generated by

randomly rewiring the original network (see methods for details),

but keeping the number of interactions and their respective type

constant at each node. The fit scores we found for these

randomized networks were much lower than what we found on

the original data, clearly showing the the structure we find is

genuine. See figure 3 A.

We now ask whether the additional degrees of freedom in the

non-diagonal image graph actually convey information or only led

to overfitting. We therefore divided the 32,331 links of the network

Figure 3. Fit scores and generalization error. A Comparison of
highest fit scores QN (4) and Q� (5) for the full HPRD dataset with
32,331 interactions. Aggregating nodes into cohesive groups (diagonal
image graphs) cannot improve the score beyond a certain limit, while
non-diagonal image graphs are able to capture more and more
structure as the image graph gets larger and larger. For comparison, the
analysis was repeated on a randomized (RND) version of the original
network. Standard deviation is smaller than symbol size. The fit scores
we obtain on the real data show that the structure we find is far from
random. B After removing a test-set of links from the network, we
optimized the assignment of nodes into classes according to (2) using
only the remaining links and keeping the image graphs fixed to those
found in the runs that lead to figure A. With the assignment of nodes
into classes for this training set of links, we computed the score on the
test set of links. The figure shows average and standard deviation over
10 repetitions of this experiment. C p-values of Student’s t-test for a
statistically significant difference in the means of the test scores of
panel B. For higher numbers of classes and thus larger differences in the
fit scores of diagonal and non-diagonal image graphs, all differences
become significant at the 5% level.
doi:10.1371/journal.pcbi.1000659.g003

Figure 2. Benchmark on networks with known role structure.
We compare our method with a mixture model approach by Newman
and Leicht (NL) which employs a maximum likelihood approach [30], a
non-negative matrix factorization (NMF) minimizing the Kullback-
Leibler-divergence between data and estimated factors [32], and an
approach based on minimum description length by Rosvall and
Bergstrom (InfoMod) [31]. The adjacency matrices show typical
realizations of the test networks with rows and columns ordered
according to the designed classes. Accuracy is measured in terms of
normalized mutual information (NMI) between the designed assign-
ment of nodes into classes and the classification inferred by the
algorithms. Clearly, our approach outperforms the alternatives, in
particular for high noise levels.
doi:10.1371/journal.pcbi.1000659.g002

More Than Mere Modules
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into a test- and a training-set. Using the optimal image graphs

obtained on the full data set and diagonal image graphs for

comparison, we optimized QB from (2) on the training-set of links

and with the resulting mapping of nodes into classes calculated the

fit score QB on the test-set. The fit score on the training-set of links

(data not shown) was close to the full data set. We fixed the non-

diagonal image graphs because the comparison is made to

diagonal image graphs which were unaltered, too.

Both diagonal and non-diagonal image graphs showed over-

fitting to some extent. The score on the test set is lower than on the

training set (Fig. 3 B). However, with increasing number of classes

and thus increasing difference in fit-score over diagonal image

graphs, the non-diagonal image graphs also scored better on the

test-set, i.e. the increased fit value also generalized! Panel C of

figure 3 shows the corresponding p-values of a Student’s t-test. The

non-diagonal image graphs do contain more information about

the network structure than the diagonal image graphs.

The choice of the size of the test-set is a compromise between

the need for a large test-set leading to a small variance in the

test-score and not disturbing the network structure too drastically.

For q~8 to 25 classes, we used a test-set of 1000 randomly chosen

links from the network. This corresponds to 3:2% and repre-

sents a non-negligible disturbance of the system. If we assigned

nodes into q~8 equal sized classes, we expect approximately

2=(q(qz1))&3% of all links in one block. So above this point, the

test set we removed was more than the typical number of links in a

block. Also, consider the average degree of SkT&8 interactions

per protein in the network. Removing a single link means

removing on average 1=8 of the neighborhood of the nodes

connected by this edge. For a test set of 1,000 edges, this could

happen to 2,000 different nodes and thus to almost one quarter of

all nodes which is similar to the typical 80/20 division used in tests

of supervised learning algorithms. For q~50 and q~100, we used

a test-set of 100 edges, as the test-set of 1000 edges proved to be

too large a disturbance to the system.

Comparison of annotation quality. Now that we have

shown that non-diagonal image graphs are better suited to

represent the global structure of the HPRD PIN, we ask whether

they also better represent biology? To answer this question we

performed a GeneOntology (GO) enrichment analysis for all

clusters using the ‘‘Ontologizer’’ software by Grossmann et al.

[37]. We chose this software because it features a statistical

control against the effects introduced by the structure of the

GeneOntology, i.e. the parent-child relations of its terms. We

tested each class of proteins found for enrichment of a particular

GO annotation with the rest of the network as control group.

The comparison of the annotation quality of the diagonal

models versus the non-diagonal models is difficult, as both

methods focus on different aspects of the network structure. While

the non-diagonal image graphs try to capture any link pattern, the

diagonal image graphs try to capture maximally cohesive groups

only. Both methods, however, can lead to a partition of the

network into groups which are significantly enriched in GO terms.

Another problem is that we cannot expect that the structure of the

PIN is just another representation of the GeneOntology which,

after all, was designed as a controlled vocabulary to describe gene

products and has a very particular structure of terms of its own.

Due to these considerations, we compare the two approaches in

a very simple manner by the number of classes of proteins they

detect which do not have significant enrichment of GO-terms. We

count a class of proteins as enriched, if at least one GO term is

enriched at the one percent significance level after Bonferroni-

correction for the number of GO terms we test. Panel A of 4 shows

the number of classes which lack enrichment in all three basic

categories of the GeneOntology (biological process, molecular

function and cellular component). Panel B of figure 4 shows the

number of classes which lack enrichment in at least one of the

basic GeneOntology categories. For both diagonal and non-

diagonal models, we find the number of classes without highly

significant annotation increasing with the total number of classes

allowed for. This has several reasons: First, not all proteins are

annotated or are annotated with only very generic terms. Second,

for higher numbers of classes, classes typically become smaller

which together with a nonspecific annotation renders them not

significant. The third effect is that as more classes are allowed for,

models, especially diagonal, tend to separate densely connected,

and most likely well researched and hence more specifically

annotated, cores from a rather sparse periphery which then does

not give statistically significant enrichment.

Nevertheless, one trend is consistently observed: the non-

diagonal models produce fewer classes of proteins without

annotation, both when looking at the number of classes without

any enrichment, and when looking at the classes with missing

enrichment in at least one of the basic GO categories. We take this

as a clear indication that the non-diagonal block models are not

Figure 4. Number of classes not enriched in GO-terms with high
significance. A Number of classes not significantly enriched below the
1% level after Bonferroni-correction in any of the GO categories
biological process, molecular function or cellular compartment. B
Number of classes not significantly enriched below the 1% level after
Bonferroni correction in at least one the GO categories biological
process (BP), molecular function (MF) or cellular compartment (CC).
Note the different scales. Clearly, the non-diagonal models consistently
produce a lower number of classes which are not enriched in functional
annotation. This can be seen as an indication that the non-diagonal
models not only represent the network better, but the inferred groups
also correspond better to known biology.
doi:10.1371/journal.pcbi.1000659.g004
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only able to better represent the network, but also the known

biological functional annotation. Notwithstanding, it may well be

that a particular GO-term is enriched in a class detected by the

diagonal model with a lower p-value. But the general trend is that

the non-diagonal models produce an assignment of all nodes in the

network into classes that is more consistent with the GeneOntol-

ogy, because there are fewer classes without enrichment.

The complete GO annotation of all clusters of classifications

into q~5 to q~11, 25, 50 and 100 classes is available at http://

domains.bioapps.biozentrum.uni-wuerzburg.de/ppi/. The careful

reader will observe that the size of the classes of proteins varies

widely when allowing for up to 50 or 100 classes. Especially for

diagonal models, some classes contain only a few proteins, while

others contain a few hundred. One might argue that mainly the

small classes are those without significant annotation and therefore

ask for a better partition with more balanced sizes. This is possible

simply by increasing the penalty term pij in equation (4) as

proposed in [38]. However, our goal here is to compare diagonal

and non-diagonal models for the organization of a PIN on equal

footing. Hence, we should keep the penalty term in the quality

function for the diagonal and non-diagonal models equal. Also,

having more balanced sizes would necessarily mean splitting some

of the larger groups which are now significantly enriched and

hence might lose this enrichment in the process. Furthermore,

when looking at the models with a smaller number of classes, we

find that it is by no means only the smallest classes that turn out to

be not enriched in any GO-term.

Examples of annotation and biological interpretation.

Figure 5 shows two representations of the adjacency matrix of the

PIN. In panel A, the rows and columns are ordered according to the

assignment of nodes into classes with the highest scoring non-

diagonal image graph. In panel B, rows and columns are ordered

according to the assignment of nodes in classes when fitting a

diagonal image graph, i.e. when searching for cohesive modules. In

both cases we allowed for 11 classes. The example allows us to

highlight again the differences between a partition into cohesive

modules and functional roles. Note the similarities and differences in

the matrix when ordered after fitting a diagonal image graph and

after fitting a non-diagonal image graph.

The non-diagonal models also allowed capturing groups of

proteins, such as group 2, that mediate between cohesive clusters

or that form a cohesive overlap between cohesive clusters, such as

groups 4 and 5 or 9 and 10.

When comparing the cohesive modules to the functional

roles (Fig. 5) the most distinguishing feature is the existence of

pronounced connections between sets of proteins in the latter.

Groups of proteins exist, which all performed the same ‘‘functional

role’’ of connecting two other groups of proteins. A separation of

the cellular network into cohesive modules must necessarily omit

these characteristics of the network. In the functional role model,

groups are connected to other groups by a distinct set of additional

proteins. These ‘‘connector groups’’ may themselves be cohesive,

but do not have to be. This is illustrated by class 2, where most of

the proteins are not interacting with other proteins in the class, but

with those of groups 1 and 3.

To evaluate the biological significance of this result, we return to

our GeneOntology enrichment analysis. Class 2 is significantly

(pv10{7) enriched in proteins annotated as belonging to the

membrane and plasma membrane compartment. Indeed, this class

contained many transmembrane proteins such as Cadherin. These

proteins typically do not interact with many other transmembrane

proteins, but rather with their extra-cellular binding partners and,

in the case of transmembrane receptors, with cytoplasmic signal

transmitters. Indeed, we found that group 1, highly interacting

with proteins of class 2, mainly consists of proteins localized in

the extracellular region (pv10{7). Furthermore, group 3, also

strongly interacting with proteins of class 2, was enriched in

proteins associated with the plasma membrane (pv10{7) and

involved in signal transduction (pv10{7). Thus, the transmem-

brane proteins of class 2 are the perfect biological implementation

of proteins not interacting with each other, but instead with

proteins of other classes (nodes of type b in figure 1 A). They could

Figure 5. Comparison of block assignment. For 11 classes, we show the adjacency matrix of the HPRD protein interaction network with rows
and column ordered to show non-diagonal (A) and diagonal (B) block structure plus the corresponding image graphs for diagonal block models and
non-diagonal block models. Note how the non-diagonal models allow to capture overlap between cohesive blocks but also to detect groups of
nodes which are non-cohesive but have similar connection patterns to other classes of proteins. The color of the links codes the experiment type:
Y2H: grey, in-vitro: blue, in-vitro+Y2H: turquoise, in-vivo: green, in-vivo+Y2H:orange, in-vivo+in-vitro: red, in-vivo+in-vitro+Y2H:black. The dots
representing the matrix entries have been enlarged for better visibility.
doi:10.1371/journal.pcbi.1000659.g005
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not be recognized by a method focusing on cohesive modules

alone.

Next, we consider a non-diagonal model with q~100 classes.

Figure 6 shows the adjacency matrix of the network with rows and

columns ordered according to the assignment found by the

algorithm. The entire 100 node image graph is connected but too

complex to be discussed within the scope of this paper. Instead,

we focus on two small subgraphs, as shown in figure 6, which

exemplify two typical substructures in the network that could not

be discerned by methods focusing on cohesive modules alone, and

discuss their biological interpretation in greater detail. Note that in

figure 6 we only show the classes and links between classes

discussed below and that the majority of classes shown have

additional connections with the rest of the image graph.

As a first example, consider the proteins of the clusters 24 and

25. They form two cohesive modules which are also frequently

interacting. Still, they are separated in two distinct groups.

Inspection of interaction patters outside the main diagonal reveals

that proteins in cluster 24 are frequently interacting with proteins

in cluster 9, whereas proteins in cluster 24 do so only rarely. What

could be the biological reason behind this pattern? Both clusters

24 and 25 are highly enriched in transcription factors. Their

interaction is a typical feature in the regulation of transcription.

Cluster 9, which distinguishes the two groups of transcription

factors, shows an enrichment in proteins associated with ubiquitin-

specific protease activity as well as polymerase activity. Indeed,

ubiquitination plays a significant role in the regulation of

transcription (for reviews see for example [39,40]). Thus, our

algorithm was able to detect structure even in highly connected

sets of proteins (24+25) and to subdivide a group of highly

interacting proteins by the presence and absence of interaction

with other proteins outside of these clusters. Biologically, the

transcription factors of cluster 25 are a good starting point for the

further analysis of the role of ubiquitination in transcription

regulation.

As a second example, consider the proteins in cluster 40. A

method focussing on cohesive modules would not group these

proteins together as they are hardly interacting with other proteins

of the same cluster, but rather proteins in the ‘‘surrounding’’

clusters (38,41,42) as well as 67 and 68. According to the

GeneOntology analysis, all of these clusters are enriched in

proteins with a serine/threonine kinase activity. No functional

enrichment, however, is found in cluster 40 itself. The only

significant signal revealed that 64 of the 90 proteins in this cluster

are localized in the cytoplasm. What kind of cytoplasmic proteins

could interact with serine/threonine kinases, but not with other

proteins of a similar interaction pattern? A manual inspection of

the annotation of the proteins in cluster 40 found 12 proteins

Figure 6. Block assignment in a functional role model with 100 classes. Adjacency matrix with rows and columns ordered according to
assignment of proteins into classes. Color code and size of dots representing matrix entries as in figure 5. Only classes containing more than 100
proteins are labeled for better readability. Two details from the corresponding image graph exemplifying the kinds of structures found by the
algorithm.
doi:10.1371/journal.pcbi.1000659.g006
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which are involved in the modification of non-protein sub-

strates. These include glucose-6-phosphatase (NP_000142), 6-

phosphofructo-2-kinase (NP_006203), but also adenylate cyclases

(NP_001105, NP_001106). Thus, this cluster may consist of

cytoplasmic proteins whose activity has to be tightly regulated by

protein kinases but perform actions on non-protein molecules.

This finding might help to elucidate the function of so far only

cursory analyzed proteins within this cluster such as the ‘‘unnamed

protein product’’ (BAC87492). Why were the regulating protein

kinases put into different groups? As the algorithm considers the

overall connective behavior of the proteins, the only difference

could come from differing further clusters interacting with these

proteins. Indeed, the clusters 67/68 are connected with cluster 32

but not with 35, whereas 41/42 are connected to 35 but not 32.

Whereas cluster 32 contained mainly proteins associated with the

plasma membrane, cluster 35 was enriched in nuclear proteins.

Together, this reveals that the proteins in cluster 40 may be

regulated by two types of protein kinases, which are localized in

the nucleus and the cytoplasm, respectively.

This example, again, shows how putative protein functions may

be inferred from the topology of the PIN. The consideration of

classes of proteins with more diverse connectivity profiles than

cohesive modules also allows for a more refined view of network

topology and thus holds the promise for better protein function

inference.

Complementary to the example with 11 classes, the 100 class

model showed how our approach can be used to zoom in a top-

down fashion into the architecture of a cell. Even at this finer-

grained level, the whole network is considered, as the given

examples illustrate. This can be seen as a major distinction from

a protein centric view, which would cluster by a ‘‘guilt of

association’’ approach. From the viewpoint of an experimentalist

working with a few proteins, our clusters might be useful to find

other proteins with a similar interaction behavior. Thereby, one

might experimentally characterize specific regions of a network

without losing the background of the cellular architecture.

Distribution of experiment-type in PIN. Visual inspection

of the adjacency matrices with the experiment type color coded as

in fig 5 or 6 seems to suggest that interactions are not found

uniformly distributed in blocks. In particular, Y2H-only backed

interactions seem to be distributed differently than any other

experiment type. To unravel a possible bias between different

experimental methods, we plotted the data for three different

experimental approaches separately. The ordering of rows and

columns, i.e. the assignment of proteins into functional roles, was

kept from figure 5. Instead of plotting all types of interactions on

top of each other, the adjacency matrices for interactions which

are backed by in-vivo, in-vitro and yeast-two-hybrid [41] (Y2H)

experiments were shown separately (Fig. 7). The in-vitro and in-vivo

data nicely resembled the overall picture while the Y2H data did

not follow this pattern. Rather, the data based on yeast two hybrid

showed a prevalence for class number 8 in figure 7. In this cluster

nuclear proteins were significantly over-represented (pv10{7). In

the Y2H [42] assay, the tested proteins are fused to parts of

a transcription factor. Their interaction is measured by the

transcription of a reporter gene. Therefore, the proteins have to be

within the nucleus. Thus, a bias towards interactions of proteins

which naturally reside in the nucleus can be expected in Y2H data.

We now ask, whether we can show a systematic bias in Y2H-

data in HPRD. So far, in the optimization of (5) and (4), we have

considered all pairwise interactions between proteins in a weighted

adjacency matrix. We assigned different weights for different

experiment types reflecting a ranking of belief we have in the

different data sources according to table 1. Interactions reported

Figure 7. Comparison of block assignment. The same assignment
of nodes into 11 classes as used in figure 5 but for 3 different types of
interactions, separately. A Interactions reported only for yeast-2-hybrid
experiments (grey). B Interactions reported only in in-vitro experiments
(blue). C Interactions reported only in in-vivo experiments (green). While
in-vitro and in-vivo data is highly correlated, the interactions found in
Y2H experiments are enriched in class 8.
doi:10.1371/journal.pcbi.1000659.g007

More Than Mere Modules

PLoS Computational Biology | www.ploscompbiol.org 9 January 2010 | Volume 6 | Issue 1 | e1000659



from in-vivo, in-vitro and Y2H-experiments were given the highest

weight of 7, interactions reported only from Y2H-experiments

only, were assigned the lowest weight of 1. Since the quality

functions (5) and (4) both normalize by the total sum of all weights,

only the relative difference in weight is important. Consequently,

when optimizing (5) and (4), interactions with a high weight will

naturally have greater impact on the fit score and hence the

optimization process will try to find assignments that give a

particular good fit to the interactions with a high weight. This is

desired as interactions backed by three experimental techniques

are more likely to be correct and hence biologically relevant.

Taking the assignment of proteins into cohesive clusters or

functional roles as a results of our optimization on the full,

weighted network and the resultant image graph, we can now

easily calculate the fit score QB(w) from (2) for each set of

interactions corresponding to only one particular kind of

experimental evidence. These scores are directly comparable

even if the proportions of links backed by different experimen-

tal techniques are not equal as the calculation of QB involves a

normalization by the sum of edge weights. From the above

discussion, we assume that the fit scores for each interaction

type are an increasing function of the edge weight. We have

already seen that the fit score is an increasing function for the

number of allowed classes. In order to remove this latter

dependency, we normalized the scores for the different edge

types by the fit score of the entire network. These ratios of

scores were then averaged over all values q we considered in

figure 3.

Figure 8 shows these averages for the actual data in panel A and

for the randomized data already used for figure 3 in panel B. Let

us first focus on the results for the randomized data. We clearly see

that links with a higher weight show higher fit scores. We further

note a large variance of the scores around the linear trend. This is

in fact a result of the kind of randomization chosen, which keeps

the number of interactions and their types constant at each node in

the network, because two links corresponding to different

experimental evidence are never cross-wired. If we also randomize

the types of interactions, which would correspond to rewiring all

links in the network and then redistributing the weights randomly

again, the curves smooth to a purely linear trend. Comparing the

data on the randomized network with the actual data in panel A of

figure 8, we first note that the slope of the increase in score with

weight is much smaller. This is a clear indication that links

corresponding to different experimental techniques are in fact

highly correlated with respect to the block structure in the

network. The randomization removes this very correlation and we

thus observe the higher slope on the randomized data. Further, we

note the small differences between diagonal and non-diagonal

image graphs. This is due to the fact that, when averaged over the

q values used in figure 3, the difference in scores between diagonal

and non-diagonal image graphs is relatively small. What is most

striking to see is that only the scores for links with weight one, i.e.

those interactions backed by Y2H evidence only, fall off drastically

from this trend. We take this as a clear indication that the

structural correlation between interactions found by Y2H exper-

iments and other experimental techniques is low, and in particular,

that we cannot expect Y2H data to cover the entire range of

possible protein-protein interactions.

Discussion

Using a suited algorithm, any network can be separated

into cohesive groups of nodes with more internal than external

Table 1. Experiment type to link weight transformation.

Experiment type Weight
# of
interactions

distinct proteins
involved

yeast 2-hybrid 1 6,580 3,727

in vitro 2 7,872 4,302

in vitro+yeast 2-hybrid 3 1,298 1,523

in vivo 4 6,721 3,826

in vivo+yeast 2-hybrid 5 824 1,119

in vitro+in vivo 6 6,877 3,781

in vitro+in vivo+yeast 2-hybrid 7 2,159 2,201

We valued the different experiments compiled in the HPRD database
differently, giving lowest weight to interactions found in yeast-2-hybrid
experiments only and highest to those interactions found in vivo, in vitro and
Y2H experiments. These weights are only to represent a ranking of a
practitioners belief in their validity.
doi:10.1371/journal.pcbi.1000659.t001

Figure 8. Fit-score as a function of link weight. Averaged over
q~5 to q~25, q~50 and q~100, we show the fit scores QB(w) and
QN (w) for each link type individually. Scores are normalized to the fit
score obtained on the full data set from which also the assignment of
nodes into classes and the image graphs are taken. A Actual HPRD data.
Standard deviations are smaller than symbol sizes. B Randomized
version of HPRD. As expected, we find the score increasing with weight.
In the real data, increase of score with weight is slower, indicating a
high correlation between the scores obtained for links representing
different experimental techniques. As an exception, interactions with
weight one, i.e. representing to Y2H-data only, show a significantly
lower score than expected. See text for details.
doi:10.1371/journal.pcbi.1000659.g008
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connections. Accordingly, protein-protein interaction networks

can also be divided into relatively independent units as putative

functional modules [4]. Do these modules really reflect a typical

characteristic of the cellular network? Here we used an alternative

approach for the clustering of protein interactions. We grouped

proteins of a similar functional role together. The functional role

was defined by the interactions with proteins of other groups. In

contrast to cohesive modules, which are more or less independent,

groups which specifically linked other groups of proteins could be

identified. Thus, an interconnectivity of biological units, as in

the case of shared components in protein complexes, can also be

observed at the cellular level. Using a GeneOntology based

classification of all proteins within the modules, we found that

these roles are mainly determined by cellular localization but also

by function. Although possibly not too surprising to the biologist,

this result underlines that the classes we identified by automatic

clustering do represent a biological signal.

Using HPRD as a data source, a large-scale set of interactions

with, on average, eight connections per protein could be analyzed.

As HPRD contains manually curated data, their quality should be

high enough to extend the results to higher coverage. The analysis

of interactions derived by different experimental methods revealed

a bias in the coverage, especially for yeast-two-hybrid data. The

great difference of the protein interactions verified only by Y2H to

the other methods reminds us to pay attention to the careful

weighting of quality and quantity. As large scale binary interaction

analyses were mainly based on Y2H, using high coverage data such

as that from Saccharomyces cerevisiae or Drosophila melanogaster might

even blur the signal. Another drawback was the small number of

interactions per protein, around three or four for the yeast, fly and

nematode sets analyzed in the study by Wang and Zhang [17].

Still, it would be interesting to compare networks between

different organisms to see whether there are changes in the

clusters correlated, for example, with the emergence of multicel-

lularity. Contrasting to previous approaches, which compared

networks either globally [43,44] or locally [45,46], comparing the

image graphs allows detection of changes in the overall layout of

the protein interaction network. But, reliable results can only be

obtained when analyzing data sets of comparable quality and size

[47].

In summary, our analysis showed that protein interaction

networks are more than sparsely interacting cohesive modules.

Rather, groups of proteins are connected by distinct sets of other

proteins. These may be highly connected internally, but do not

have to be. Therefore, functional roles and corresponding image

graphs provide better descriptors for the characteristics of a

protein interaction network than cohesive modules alone. They

can help to further improve protein function prediction based on

protein-interaction networks.

Materials and Methods

PIN network. We used the binary protein-protein interac-

tion data from the HPRD [48] (Version 6). HPRD protein

identifiers and experiment types used to support their

connection were extracted. The experiment types were trans-

formed to weights according to table 1. The analysis was

restricted to the largest connected component containing

32,331(out of 34,367) interactions of 8,756 proteins (out of

8,919). These interactions do not include data inferred from

protein complexes which may introduce errors and bias into the

network structure [17].

Benchmarks. All algorithms were run on the same set of

test networks. Each data point results from an average over 50

different realizations of the test network. For each test network, we

chose the best of 10 runs starting from different random initial

conditions according to the quality function associated with each

algorithm, i.e. the highest Q� for our method, the highest log-

likelihood for the Newman-Leicht method (NL) [30], the minimal

description length for the Rosvall-Bergstrom Algorithm (InfoMod)

[31], and the lowest Kullback-Leibler divergence for the non-

negative matrix factorization (NMF). The multiplicative update

rules for the NMF where derived as in [32], but for a symmetric

tri-factorization as proposed by Ding et al. [33] from the following

quality function:

D(AjjHBHT )~
X

i,j

Aij log
Aij

HBHT

� �
{Aijz(HBHT )ij

� �
: ð6Þ

Here H is an RN|q
z matrix and B is an Rq|q

z matrix. This

particular form allows a direct assignment of the nodes into the

class with the largest component in the corresponding row of H.

We found that 100 iterations of the update equations were enough

to obtain convergence. For the NL method, which assigns class

probabilities to each node, each node was assigned that class with

the highest probability. The number of classes to detect is an input

parameter for our method as well as for the NL and the NMF

methods and was assumed to be given as qf ~qd~4. The

InfoMod method explicitly infers the number of classes and thus is

not provided with this input parameter.

Accuracy is measured via the normalized mutual information

(NMI) introduced in Ref. [49]. It is based on the confusion matrix

Nab which measures how many nodes from designed class

a [ f1,::,qdg are found in class b [ f1,::,qf g by the algorithm:

NMI~

{2
Pqd

a~1

Pqf

b~1

Nab log
NabN

NaNb

� �
Pqd

a~1

Na log
Na

N

� �
z
Pqf

b~1

Nb log
Nb

N

� � : ð7Þ

where Na~
P

b Nab and Nb~
P

a Nab are the row and column

sums of the confusion matrix.

Clustering. We optimized (5) and (2) using Simulated

Annealing [29]. Details about the implementation can be

found in [26] and [38], respectively. To obtain panel A of

figure 3, for q~5 to q~25, q~50 and q~100 classes, we chose

the best of 10 runs each, for both the fit of a diagonal block model

as well as the detection of a non-diagonal block model. We

employed a geometric cooling schedule. For fewer than ten

classes we used a cooling factor of 0:99 and one of 0:999
otherwise. On standard PCs, this led to runtimes between

(minutes for the diagonal models with small numbers of classes) to

days (for the non-diagonal models with large numbers of classes)

due to the scaling of the runtime with the square of the number of

classes.

Network randomization. In order to compare the fit scores

for the real network with a randomized version of the HPRD

database in figure 3 A, we used the rewiring algorithm of Maslov

et al. [50]. This algorithm repeatedly and randomly selects two

edges which do not share a node from the network, e.g. i{j and

k{l, and rewires them as either i{k, j{l or as i{l, j{k,

provided that non of these edges already exist in the network. This

keeps the number of interactions constant for each node but

removes all further structure. Since the PIN consists of several

different types of links representing different experimental

conditions under which the interactions were observed, we only
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rewired links of the the same type, thus keeping the number of

interactions constant for each type at every node as well. The data

points of figure 3 then represent averages over ten different

realizations of a randomized network.

To obtain figure 3 B, we randomly divided the original set of

links into a test and a training set of links. For fewer than 50

classes, the test set contained 1000 links and 100 otherwise. We

used the image graphs, both diagonal and non-diagonal, found in

the earlier experiment on the full data-set to optimize the fit score

on the training-set. For less than 50 classes, the data shown are the

fit scores of the test set, averaged over ten different partitions of the

links into training- and test-set.
GO Term enrichment analysis. GO enrichment analysis

was done using the ‘‘Ontologizer’’ by Grossmann et al. [37,51]. It

uses a modified Fisher’s exact test and controls for the

dependencies between terms introduced by the structure of the

GeneOntology. The enrichment analysis for each class of proteins

detected was done for this class with respect to the rest of the

proteins in the network. The HPRD identifiers and their

corresponding GO identifiers were taken from the same HPRD

dataset as the protein-interaction network, re-formatted and saved

into a file readable by the Ontologizer. For the Ontologizer the

file gene_ontology.obo created by the GO project [52] was

downloaded.
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