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Abstract

Background: Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4+ T cell and NKT
cell responses.

Methodology/Principal Findings: Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semi-
mature DC that were generated from bone marrow (BM) cells of B7-H12/2 mice and applied to the model of Experimental
Autoimmune Encephalomyelitis (EAE). Injections of B7-H1-deficient DC showed increased EAE protection as compared to
wild type (WT)-DC. Injections of B7-H12/2 TNF-DC induced higher release of peptide-specific IL-10 and IL-13 after
restimulation in vitro together with elevated serum cytokines IL-4 and IL-13 produced by NKT cells, and reduced IL-17 and
IFN-c production in the CNS. Experiments in CD1d2/2 and Ja2812/2 mice as well as with type I and II NKT cell lines
indicated that only type II NKT cells but not type I NKT cells (invariant NKT cells) could be stimulated by an endogenous
CD1d-ligand on DC and were responsible for the increased serum cytokine production in the absence of B7-H1.

Conclusions/Significance: Together, our data indicate that BM-DC express an endogenous CD1d ligand and B7-H1 to ihibit
type II but not type I NKT cells. In the absence of B7-H1 on these DC their tolerogenic potential to stimulate tolerogenic
CD4+ and NKT cell responses is enhanced.
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Introduction

DC are not only potent inducers of adaptive immune responses

but also mediators of tolerance. Immature DC, which do not express

maturation markers and produce no cytokines are considered to be

tolerogenic. Fully mature DC upregulate maturation markers upon

stimulation and produce cytokines and are therefore termed

immunogenic. In addition another maturation stage has been

characterized as semi-mature DC [1]. These cells which upregulate

maturation markers but do not produce cytokines are tolerogenic

and can protect mice from EAE by inducing protective CD4+ T cell

and NKT cells responses [2,3].

For efficient T cell activation and the generation of functionally

competent effector cells, additional costimulatory signaling through

surface molecules on APC and T cells is needed [4]. Upregulation of

T cell activity by attenuation of coinhibitory signals provides an

attractive tool for the treatment of autoimmune and inflammatory

diseases [5]. Among the B7-CD28 family of costimulatory

molecules, B7-H1 on APC has been proposed to regulate immune

responses by interaction with PD-1 or CD80 (B7-1) and possibly

another yet unidentified receptor on activated T cells [6,7,8]. B7-H1

is widely expressed on different cell populations including T and B

cells, monocytes, DC, but also non-hematopoietic cells [9,10]. Its

receptor PD-1 is inducible on T and B cells upon activation [11].

Due to their broad tissue expression pattern, B7-H1/PD-1

interactions have been implicated in critically modulating paren-

chymal inflammation, limiting autoimmune responses and confin-

ing immune cell functions in the periphery [12,13,14,15].

Originally, interactions of B7-H1/PD-1 were postulated to

costimulate T cell activation and proliferation [16], but more

recent data point towards a negative regulatory role of the B7-H1/

PD-1 pathway in T cell activation, proliferation and CTL activity

[6,9,17,18]. Using the animal model of MS, EAE, this coinhibi-

tory effect mediated by B7-H1 has been extensively studied

[12,15,19,20,21,22]. It was demonstrated that systemic absence of

B7-H1 renders 129Sv mice susceptible to EAE and exacerbates

disease in C57BL/6 mice [6,15,21]. Additionally, blockade of B7-

H1 or PD-1 with specific antibodies resulted in increased

susceptibility and progression of EAE in various mouse strains

[20,23]. While B7-H1 expression in the CNS was shown to be very

limited under physiological conditions, it is rapidly upregulated

during inflammation [19]. Particularly microglial cells expressing

inhibitory B7-H1 were found to dampen encephalitogenic T cell

responses in later stages of EAE, suggesting a major contribution

of this molecule to confinement of parenchymal inflammation

[12,22]. Similar conclusions were drawn from experiments using
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an animal model of diabetes, where PD-1/B7-H1 interactions

were shown to regulate effector cell differentiation of autoreactive

CD8+ T cells during the presentation of tissue antigens [13].

However, little is known about the role of the B7-H1/PD-1

pathway in mediating tolerogenicity during protection against

neuroinflammation.

In this study, we investigated the role of B7-H1 on tolerogenic

DC in mediating tolerance induction in the context of autoimmune

inflammation. After intravenous injections of TNF- treated semi-

mature DC deficient in B7-H1 we found a stronger tolerogenic

capacity in EAE protection in comparison to WT DC. In the CNS,

we found no differences in total CD4 and CD8 T cell infiltration,

but lower numbers of neuroantigen-specific IFN-c and IL-17

producing cells. The ameliorated EAE phenotype was accompanied

by increased production of the protective cytokines IL-10 and IL-13

and reduced levels of proinflammatory IFN-c and IL-17 in the

periphery. Additionally, we observed higher serum cytokine levels of

IL-4 and IL-13 in B7-H12/2 DC injected mice, which contributed

to the tolerance induction. We found that type II cells but not type I

invariant NKT (iNKT) cells were the producers of these cytokines.

It has been described that the B7-H1/PD1 pathway is involved in

the activation of iNKT cells [24,25]. We found that the signaling via

B7-H1 on the DC does not influence the iNKT response but it has

an impact on other CD1d-restricted cells. It has been shown that in

mice lacking the MHC class II molecule there is still a population of

T cells other than iNKT cells, which recognize the CD1d molecule.

Now we show that these type II NKT cells are regulated by B7-H1

[26,27]. Our data describe the importance of B7-H1/type II NKT

cell interactions and its unexpected impact by modulation of

tolerogenic DC in EAE protection.

Results

DC from WT and B7-H12/2 mice show a similar
expression of surface markers and have the same
potential to stimulate CD4+ T cells

We compared TNF-matured DC from WT and B7-H12/2

mice regarding their surface markers and their stimulatory

capacity. FACS analysis of these DC showed a comparable

expression of CD80, CD86, CD40, MHC II and B7-DC (PD-L2)

on their cell surface and despite the loss of B7-H1 in the knock-out

mice (Figure 1A). We further investigated the potential of WT and

B7-H12/2 DC to stimulate T cells. Therefore enriched CD4+

T cells derived from 2D2 mice bearing a TCR specific for

MOG35–55 were co-cultured with MOG-loaded DC from WT and

B7-H12/2 mice. The CD4+ T cells show comparable proliferation

rates after incubation with WT or B7-H12/2 DC as indicated by

CFSE-dilution (Figure 1B).

Higher tolerogenic potential of B7-H12/2 DC in EAE
We previously demonstrated that repetitive i.v. injections of

semi-mature DC, which were stimulated with TNF and loaded

with MOG35–55 peptide, were able to protect mice from

developing EAE [3]. Mechanisms involved in the mediation of

tolerance revealed the induction of IL-10 producing CD4+ T cells

as well as the activation of NKT cells, which in turn rapidly

produced protective cytokines contributing to the tolerogenic

capacity of the semi-mature DC [2,3]. To investigate the role of

the coinhibitory molecule B7-H1 on tolerance induction we

injected WT mice 7, 5 and 3 days before EAE induction with

different numbers of MOG35–55 peptide loaded and TNF-matured

WT and B7-H12/2 DC. We found that PBS-injected control mice

developed severe EAE, whereas TNF-DC-injected mice were

partially or fully protected from disease depending on the number

and phenotype of applied TNF-DC (Figure 2A, Table 1). Mice

injected with a suboptimal dose of WT TNF-DC (26106)

displayed a slightly ameliorated EAE course compared to control

animals, increase in TNF-DC numbers resulted in a more

pronounced protective phenotype. In contrast, B7-H12/2 TNF-

DC injected mice were fully protected from clinical signs of EAE,

even at suboptimal doses of TNF-DC. To assess antigen specificity

requirements for EAE tolerance induction, mice were treated with

TNF-matured DC but without MOG35–55 before EAE induction.

Here, no protective effect of both WT and B7-H1-deficient DC

was observed, indicating that the induction of tolerance by

injection of DC is neuroantigen-specific and dependent on the

presentation of MOG35–55 peptide by DC (Figure 2B).

Injection of B7-H12/2 TNF-DC reduces the frequency of
neuroantigen-specific cytokine-secreting T cells in the
CNS

To address the amount of total T cell infiltration in the

target organ of EAE-affected mice, we performed flow cytometry

to quantify the abundance of CNS infiltrating T cells in the

inflamed brains and spinal cords. 15 days after EAE induction an

equal percentage of both CD4+ and CD8+ T cell populations

could be detected in all three investigated groups (Figure 3A). To

further characterize the cytokine production by CNS-infiltrating

T cells, ELISPOT analyses following MOG35–55 restimulation

revealed highest frequency of neuroantigen-specific IFN-c and

IL-17-producing cells in the CNS of PBS-injected mice (Figure 3B).

WT TNF-DC injection resulted in a noticeable and consistent

reduction of both IFN-c (92614 spots) and IL-17 (1565 spots)

producing CNS cells, although the differences were not statistically

significant in comparison to the control group (130611 spots

for IFN-c, 1866 for IL-17) in two performed experiments. In

contrast, using B7-H1-deficient TNF-DC injection prior to

EAE induction, a marked decline in IFN-c positive spots to

2868 spots could be observed in the CNS of disease-protected

animals. Again, the frequency of IL-17 secreting cells was reduced,

but differences did not yield statistical significance (361 spots).

CNS localized IL-10 production by MOG35–55 specific cells was

also assessed but found undetectable in either group of mice (data

not shown).

These data provide evidence that TNF-DC injection does not

considerably influence total CNS T cell infiltration, but rather

modulates the local cytokine milieu. Correlating to the EAE

disease course, proinflammatory cytokines are substantially

reduced upon B7-H12/2 TNF-DC administration.

Injection of B7-H12/2 TNF-DC modulates primary
neuroantigen-specific T cell responses in the periphery

To assess the mechanism of increased EAE suppression in the

absence of B7-H1 on tolerogenic DC, the spleens of PBS- or

TNF-DC-injected mice were removed 10 days after EAE

induction and peripheral T cell responses were investigated.

Splenocytes were challenged with MOG35–55 peptide and after

72 hours cell culture supernatants were analyzed for their cytokine

content by ELISA. In PBS-injected control mice the predominant

cytokines that could be detected after MOG35–55 peptide titration

were proinflammatory IFN-c and IL-17, whereas only little

protective IL-10 and IL-13 were present (Figure 4). By contrast,

splenocytes from WT TNF-DC-injected mice produced large

amounts of IL-10 and IL-13 even in the absence of or under low

concentrations of neuroantigen. Simultaneously, secreted levels of

IFN-c were similar to the control group and IL-17 was modestly

reduced compared to PBS-injected mice. Interestingly, this

Type II NKT Cells
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TNF-DC-mediated effect on cytokine profile modulation was even

more pronounced in the absence of B7-H1 on injected TNF-DC.

Here, we found a markedly reduced production of IFN-c that was

dependent on the MOG35–55 peptide concentration during spleen

cell culture. Similarly, only small amounts of IL-17 could be

detected in the supernatants. However, in B7-H12/2 TNF-DC-

injected mice peripheral levels of IL-13 were dramatically

increased compared to both PBS- and WT TNF-DC-injected

mice. This effect was found to be only partially neuroantigen-

restricted, as higher concentrations of MOG35–55 peptide further

enhanced IL-13 production. High peripheral IL-13 concentrations

were also accompanied by an increased basal amount of IL-10 in

B7-H12/2 DC injected animals.

Together, these data indicate that TNF-DC injections induce

the production of protective cytokines and downregulates

potentially pathogenic master cytokines. In correlation with the

reduced disease courses, this effect is more distinct in the absence

of B7-H1 on TNF-DC.

Injection of B7-H12/2 TNF-DC induces increased
production of protective serum cytokines, which are
predominantly produced by type II but not type I NKT
cells

We showed previously that TNF-DC induce a rapid production

of type 2 cytokines detectable in mouse sera early after the third

injection of TNF-DC and their contribution to EAE prevention by

constraining Th1 and Th17 effector cell development [2]. As a

prerequisite we tested the PD-1 expression on the cell surface by

type I and II NKT cells of WT mice and the type II NKT cells of

Ja2812/2 mice and could not find major differences (Figure 5A).

To determine the relevance of TNF-DC B7-H1 expression for

protective cytokine production, sera from WT or B7-H12/2 TNF-

DC-injected mice were collected and analyzed for cytokine profile

by ELISA. While IL-17 concentration was generally low and

remained unaffected by TNF-DC treatment (data not shown),

TNF-DC-injected mice displayed significantly elevated levels of

IFN-c in their sera (Figure 5B). This effect was even reinforced in

Figure 1. WT and B7-H12/2 DC show equal expression of surface markers and have the same potential to stimulate CD4+ T cells. A)
BM-derived DC from WT and B7-H12/2 mice were matured with TNF over night, stained for different surface markers and analyzed by flow
cytometry. The shaded histograms show the unstimulated control and the black lines show TNF-matured DC. Results are representative for 3
independent experiments. B) TNF-stimulated and MOG35–55-loaded DC from WT and B7-H12/2 mice were co-cultured with CFSE-stained CD4+ T cells
with MOG35–55 transgenic TCR. Proliferation of the T cells was analysed by the dilution of the CFSE-staining. The dottet line shows the control without
DC, the shaded histogram shows the co-culture with 16104 DC and the filled line shows the co-culture with 36104 DC. Results are representative for
3 indepentent experiments.
doi:10.1371/journal.pone.0010800.g001

Type II NKT Cells
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the absence of B7-H1 on TNF-DC. Simultaneously, IL-4 and IL-

13 concentrations were markedly increased in WT TNF-DC-

injected mice compared to control mice but significantly amplified

using B7-H1-deficient TNF-DC. These findings are in line with

the reduced disease course and support the notion of an increased

induction of IL-4 and IL-13 producing cells in the absence of

inhibitory B7-H1 on DC.

To identify the cell type responsible for increased IL-4 and

IL-13 production upon transfer of TNF-DC, CD1d2/2 mice as

well as Ja2812/2 were used as recipients of TNF-DC injections.

CD1d2/2 mice were described previously to lack type I and type

II NKT cells, whereas Ja2812/2 are deficient for the Vb14-Ja18

NKT (type I) cell population [28,29]. After three injections of WT

or B7-H12/2 TNF-DC in CD1d2/2 mice serum samples were

taken and subjected to cytokine quantification by ELISA.

Although Ja2812/2 mice have a bias towards high IFN-c and

lower IL-4 and IL-13 secretion as compared to the other mouse

strains, we observed comparable relative shifts for the production

of the cytokines IFN-c, IL-4 and IL-13 in both TNF-DC-treated

groups (Figure 5B). The absence of B7-H1 on TNF-DC did not

lead to an augmented protective cytokine production in CD1d2/2

mice. These data suggest an involvement of type I or II NKT cells

in cytokine release. To further dissect the implication of these two

cell subsets, we addressed selectively the role of type I NKT cells

by using Ja2812/2 mice. Serum ELISA revealed significantly

increased IFN-c, IL-4 and IL-13 concentrations in the B7-H12/2

TNF-DC injected mice compared to WT TNF-DC-injected

animals (Figure 5B). This indicates that type II NKT cells, but

not type I NKT cells were the main producers of type 2 cytokines

mediating protection from EAE.

Together, these data provide the first evidence of a direct

inhibitory function of B7-H1 on TNF-DC for the induction of type

Figure 2. B7-H12/2 DC have a higher tolerogenic potential than WT DC. A) 26106 or 36106 MOG35–55 loaded and TNF-matured WT or
B7-H12/2 DC were injected i.v. into WT mice 7, 5 and 3 days before EAE induction. Control mice were injected with PBS. On day 0, EAE was induced
and disease course was monitored daily. Results represent the average disease score of 4 mice per group and are representative for 4 independent
experiments. B) 2,56106 TNF-matured, but not MOG35–55 loaded WT or B7-H12/2 DC were injected i.v. into WT mice 7, 5 and 3 days before EAE
induction. Results represent the average disease score of 4 mice per group and are representative for 2 independent experiments.
doi:10.1371/journal.pone.0010800.g002

Table 1. Statistics of EAE.

Treatment Incidence
Mean Day of
Onset

Mean Maximal
Score

PBS 16/16 13.9 (+/22.1) 3.2 (+/20.9)

WT DC 17/21 15.4 (+/24.7) 1.7 (+/21.1)a

B7-H12/2 DC 10/20 15.0 (+/23.7) 0.9 (+/21.2)a,b

Mice were injected i.v. (days 27, 25, 23) with PBS, WT DC or B7-H12/2 DC and
on day 0 EAE was induced. The incidence, mean maximal score and mean day
of onset is shown.
aStatistically significant when compared with PBS group: p,0.001 by Student’s
t-test.

bStatistically significant when compared with WT DC group: p,0.05 by
Student’s t-test.

doi:10.1371/journal.pone.0010800.t001
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II NKT cells and the loss of this negative signal is correlated with

an amplified protective immune response.

NKT cell lines express PD-1 but only type II NKT cells are
stimulated by DC and are negatively regulated by B7-H1

To further investigate if especially type II NKT cells were

regulated by B7-H1 on DC we used different NKT cell lines,

which were either related to type I (KT12 and BW58 r/m CD28)

or type II NKT cells (XV19 and VIII24). All cell lines expressed

PD-1, the ligand for B7-H1, at comparable levels (Figure 6A). We

co-cultured DC from WT or B7-H12/2 mice with the different

cell lines and found that only the type II NKT cells responded to

the DC, which was indicated by the production of IL-2. Type I-

related cell lines did only respond to DC in the presence of the

CD1d-ligand aGC. The IL-2 response of the type II-related cells

was even higher in the absence of B7-H1 on the DC showing that

B7-H1 negatively regulates these cell lines (Figure 6B). It is of note

that also the type I NKT cell lines showed an increased IL-2

production in the presence of aGC by using DC that were

generated from B7-H12/2 mice (Figure 6B).

Taken together we could show that DC only activated type II

NKT cells by their endogenously expressed CD1d-ligands. This

interaction was regulated by B7-H1 on the surface of the DC and

independent of the PD-1 expression by the NKT cell lines.

Discussion

In this study we showed that absence of B7-H1 expression on semi-

mature DC improves active tolerance induction upon DC injection

into mice, which leads to the priming of protective peptide-restricted

CD4+ T cells and CD1d-restricted type I and II NKT cells as well as

the release of IL-10, IL-4 and IL-13. Injections of B7-H12/2 DC

induced higher amounts of protective cytokines, specifically from type

II NKT cells as indicated by the results from CD1d2/2 and Ja2812/2

mice. Thus, our data point to an inhibitory role of DC-expressed

B7-H1 for type II NKT cells and MHC II/peptide-restricted CD4+ T

cells but not type I NKT cells. The NKT cell line experiments may

indicate a lack of endogenous CD1d-ligands on the DC for

presentation to type I NKT cells but not type II NKT cells.

Tolerance induction by TNF-DC is predominantly dependent

on the presence of the MOG-peptide loading and thereby on

Figure 3. Injection of B7-H12/2 DC results in reduced frequency of neurantigen-specific IFN-c and IL-17 secreting cells in the CNS.
MOG35–55 loaded and TNF-matured WT or B7-H12/2 DC (2,56106) were injected i.v. into WT mice 7, 5 and 3 days before EAE induction. Control mice
were injected with PBS. After 15 days CNS mononuclear cells were harvested and CNS T cell infitration and cytokine production were investigated
using flow cytometry and ELISPOT assay. A) Dot blots are gated for live lymphocytes and inserted numbers represent the percentage of CD4+ and
CD8+ CNS infiltrating T cells of 3–5 pooled mice per group of one experiment. Results are representative for 2 independent experiments. B) ELISPOT
analysis of IFN-c (left) or IL-17 (right) production by infiltrating CNS cells after MOG35–55 peptide restimulation. Results are representative for 2
independent experiments with 3–5 pooled mice per group. * p,0.05, ** p,0.01, n.s. not significant.
doi:10.1371/journal.pone.0010800.g003

Type II NKT Cells
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MHC II/peptide-restricted CD4+ T cells, while CD1d-restricted

NKT cells also contribute to the protection, however, by

recognizing an endogenous CD1d-ligand from the DC that is

irrelevant for the EAE [2]. Immediately after the third DC

injection, CD4+ T cells and NKT cells released IL-4 and IL-13 to

create an immune-deviatory environment that counteracts the

Th1 and Th17 effector cells which mediate EAE. However, the

use of CD1d-deficient DC did not allow a distinction between

responses of type I or II NKT cells. Subsequently during the

response, IL-10-producing CD4+ T cells dominate among the

MOG-peptide specific populations in the spleens of mice that were

completely protected from EAE [3]. Intracerebral injections of

semi-mature DC were also able to delay or prevent EAE, as higher

numbers of IL-10-producing neuroantigen-specific lymphocytes

were generated in the periphery, thereby restricting IL-17

production in the CNS [30]. The surprising finding was that

obviously ‘‘matured’’ DC could still act tolerogenic, which did not

fit into the paradigm of DC maturation where immature DC were

postulated to be tolerogenic and mature DC to be immunogenic

[31]. This dilemma could be best circumvented by the proposal of

a third maturation stage that was termed semi-mature [1]. These

semi-mature DC expressed high levels of costimulatory molecules

such as CD80, CD86 and CD40, which were required for the

EAE-protection since immature DC were unable to protect. In

contrast to LPS-treated and thereby fully mature DC, semi-mature

DC did not release proinflammatory cytokines and were generally

described as low cytokine producers [3]. The question remained

whether the additional expression of coinhibitory molecules on

semi-mature DC could contribute to the tolerogenic functions.

We and others previously demonstrated that APC-derived B7-

H1 plays a critical negative regulatory role to T cell stimulation in

the context of autoimmune CNS inflammation [6,15,20,21,30].

Using B7-H12/2 mice in the MOG35–55 EAE model, earlier and

exacerbated primary neuroantigen-specific immune responses

were described ultimately leading to an aggravated disease course

accompanied by higher immune cell infiltration in the CNS of

Figure 4. B7-H12/2 DC induce more protective cytokines than WT DC. MOG35–55 loaded and TNF-matured WT or B7-H12/2 DC (2,56106)
were injected i.v. into WT mice 7, 5 and 3 days before EAE induction. Control mice were injected with PBS. 10 days after EAE induction spleen cells
were isolated and restimulated with different concentrations of MOG35–55. After 4 days of culture supernatants were tested by ELISA for IL-10, IL-13,
IL-17 and IFN-c. Results show the mean of 4 mice per group and are representative for 2 independent experiments with 4 mice per group.
doi:10.1371/journal.pone.0010800.g004

Type II NKT Cells
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B7-H1 deficient animals [21]. Thus, B7-H1 evolved as a crucial

immune-inhibitory molecule capable of downregulating neuroan-

tigen-specific T cell responses both in the periphery and the target

organ of autoimmune inflammation. Recently, this concept was

further corroborated by studies investigating the role of PD-1

ligands on different CNS APC applying a relapsing EAE model

[22]. Therefore, we speculated that mediation of T cell tolerance

induction might be altered in the absence of B7-H1 on APC

[4,11].

Surprisingly, we found here that in the absence of B7-H1 on the

semi-mature DC their tolerogenicity was further enhanced. The

enhanced release of protective cytokines could be attributed to

the rare population of CD1d-restricted CD4+ T cells, so-called

type II NKT cells. This is indicated by the use of specific type I

and II NKT cell lines and the fact that the increased serum

cytokine release of IL-4 and IL-13 after injection of B7-H1-

deficient DC returned to the levels of mice injected with WT-DC

when B7-H1-deficient DC were applied to CD1d2/2 mice which

lack both type I and II NKT cells. In contrast, Ja2812/2 mice

which lack only the Va14-Ja18+ type I NKT cells but not the type

II NKT cells [29], did show the serum cytokine increase. This is a

strong indication that type II NKT cells are the predominant cell

population that was affected by B7-H1 molecules on the DC. Type

II NKT cells are selected in the thymus but on CD1d molecules

instead of MHC II/peptide complexes. However, some authors

found that they may not express markers typical for type I NKT

cells such as NK1.1 [26,27,29] although this could not be

confirmed in a type II NKT cell TCR transgenic mouse [32]. This

may indicate the existence of NK1.1 negative and positive

subtypes of type II NKT cells. A role for B7-H1 (PD-L1)

interaction with PD-1 on type I NKT cells has recently been

indicated to be responsible for the induction of an anergic state of

type I NKT cells. This type I NKT cell anergy was defined as the

fact that type I NKT cells become refractory for further

stimulations by the ligand aGC after primary activation in vitro

[24,25]. The same anergic state is achieved after aGC injection in

vivo [33]. However, we could not observe this when using CD1d-

expressing DC for the type I and II NKT cell activation in vivo [2].

The discovery of sulfatide as an endogenous ligand for type II

NKT cells that has been shown to influence EAE [34] and this

may lead to anergy of type I NKT cells as shown in tumor and

liver disease models [35,36]. This opens the possibility that our

DC may present sulfatide or a similar endogenous ligand to

activate type II NKT cells leading to anergy or regulatory activity

of type I NKT cells as discussed elsewhere [37].

Additionally, the fact that aGC primed NKT cells also do not

polarize selectively into IL-4 or IFN-c releasing cytokines in vivo but

NKT cells do so when primed by differentially matured DC [2,38],

Figure 5. Strong increase of protective serum cytokines after injection of B7-H12/2 DC injection is mainly produced by type II NKT
cells. A) Splenocytes from WT and Ja2812/2 mice were stained for CD3 and NK1.1 and investigated by flow cytometry. Double positive cells (NKT
cells) were analyzed for PD-1 expression. B) MOG35–55 loaded and TNF-matured WT or B7-H12/2 DC (2,56106) were injected i.v. into WT, CD1d2/2 or
Ja2812/2 mice three times (on day 24, 22 and 0). Similarly, control mice were injected with PBS. Blood was collected 2 hours after the last DC
injection and serum cytokines were measured by ELISA for IFN-c, IL-17, IL-4 and IL-13. The results represent the average of 3 mice per group and are
representative for 4 independent experiments for the WT mice and for 2 independent experiments for CD1d2/2 and Ja2812/2 mice. * p,0.05,
** p,0.01, *** p,0.001, n.s. not significant.
doi:10.1371/journal.pone.0010800.g005
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indicates that the priming conditions by aGC or DC may

differentially affect type I and II NKT cell responses. This may be

explained by the fact that that in our previous experimental settings

[2], we did not distinguish between type I and II NKT cells.

However here, by using the specific NKT cell lines it became clear

that our in vitro generated DC do not carry an endogenous CD1d-

ligand recognized type I NKT cell lines. In contrast, the same DC

were readily detected by the type II NKT cell lines. However, type I

NKT cells responded readily when pulsed with exogenous aGC.

The differential capacities of our DC to stimulate type II but not

NKT cells by an endogenous ligand raises the question, whether this

presentation is due to the specific semi-mature stage of the DC. In

our previous work we found already that BM-derived DC present

an endogenous ligand on CD1d molecules [2]. Although we did not

distinguish between type I and II NKT cells, these data clearly

indicated that also LPS-maturation leads to the presentation of an

unknown endogenous ligand. Therefore we speculate that a

surrogate ligand, specific for type II NKT cells, is presented by

DC to polarize these cells in a similar pattern as observed for Th1

and Th2 of MHC II restricted T cells.

Selective ligands for type I and II NKT cells may also point to

differential interactions of CD1d-expressing APC populations in

vivo. Especially CD1dhigh-expressing marginal zone B cells are also

likely candidates to capture aGC after i.v. injection and to interact

with type I NKT cells [39,40]. Here we found that the CD1d-

restricted CD4+ T cells are negatively regulated by B7-H1 when

expressed by DC presenting an endogenous ligand but did not

observe an effect on type I NKT cells in vivo or in vitro on the

different NKT cell lines. In mice aGC injection leads to type I

NKT cell-mediated DC maturation [41,42]. All together, this

indicates that the application of the surrogate antigen aGC has

different antigenic and immunogenic properties as compared to

physiological endogenous ligands by DC.

Together out data point to a novel role of B7-H1 molecules

expressed by tolerogenic DC. Unexpectedly, B7-H1 inhibits

selectively type II NKT cells but not type I NKT cells. In the

absence of this coinhibitory molecule on tolerogenic DC even

more protective cytokines are produced. Understanding the

mechanisms of differential DC function and the impact of central

coinhibitory molecules like B7-H1 in the context of CNS

Figure 6. NKT cell hybridoma cells express PD-1 but only the type II NKT cells are stimulated by DC and are negatively regulated by
B7-H1. A) NKT cell hybridoma cells s were stained for PD-1 and analyzed by FACS. The shaded histogram shows the isotype control staining and the
black line shows PD-1 staining. B) DC from WT and B7-H12/2 mice were co-cultured with the indicated NKT hybridoma cells in the presence or
absence of aGC (10 ng/ml). After 24 hours, the supernatants were tested for IL-2 content by ELISA. Results show 1 out of 4 representative and
independent experiments. ** p,0.01.
doi:10.1371/journal.pone.0010800.g006
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autoimmunity should help applying tolerogenic DC in targeted

therapies. Selective induction of boosted tolerogenic properties

of DC by modulating PD-1/B7-H1 interactions and thereby

constraining induction and development of potentially pathogenic

T cells might depict an attractive approach in cell-based therapy.

Materials and Methods

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the

appropriate committee (Regierung von Unterfranken, approval

no. 55.2-2531.1-73/07).

Mice
Wild-type C57BL/6 mice were purchased from Harlan

Winkelmann (Borchen, Germany). B7-H12/2 mice were kindly

provided by L. Chen (Baltimore, USA), CD1d2/2 by L. van Kaer

(Vanderbilt University School of Medicine, Nashville, TN),

Ja2812/2 by M. Taniguchi (Institute of Physical and Chemical

Research, Kanagawa, Japan) and 2D2 Tg mice by V. K. Kuchroo

(Harvard Medical School, USA). Mice were bred and housed

under specific pathogen-free conditions in the animal facilities of

the Department of Neurology and the Department of Virology

and Immunobiology in Würzburg according to German guidelines

for animal care.

Generation and maturation BM-DC
DC were generated from BM cells derived from C57BL/6 or

B7-H12/2 mice as described [43]. Briefly, BM cell were flushed

from femur and tibia and cultured with 10% supernatant of a

GM-CSF producing cell line and used at day 6–10 of culture. For

DC maturation, cultures were pulsed for 4 h with TNF (500 U/ml;

PeproTech) together with MOG35–55 peptide before intravenous

injection into the tail vein of mice.

T-cell proliferation assay
BM-DC from WT and B7-H12/2 mice were stimulated with TNF

and loaded with MOG35–55 as described above. MOG35–55-specific

TCR transgenic CD4+ T-cells from 2D2 mice were enriched from

the spleen with Easy Step CD4+ T cell enrichment Kit (Stemcell) and

stained with CFSE (Invitrogen) according to the manufacturer’s

instructions. 46105 T cells were co-cultured with 36104, 16104 or

without DC in 96-well plates. After 4 days the cells were stained with

anti-CD4 and CFSE-dilution of the CD4+ cells was analysed by

FACS.

Induction of EAE and injections of DC
MOG35–55 peptide (EVGWYRSPFSRVVHLYRNGK; synthe-

sized and HPLC purified by R. Volkmer, Charite, Berlin,

Germany) was used for active induction of EAE. Age- and sex-

matched C57BL/6 or CD1d2/2 mice were immunized s.c. with

200 mg MOG35–55 emulsified in CFA (Sigma-Aldrich, Steinheim,

Germany) that was further enriched with Mycobacterium tuberculosis

H37RA (5 mg/mL) (Difco, Detroit, MI, USA). In addition, mice

were injected i.p. with 400 ng pertussis toxin (List Biological

Laboratories, Laboratories, Campbell, CA, USA) at the time of

immunization (day 0) and 48 h later. Using this standard

immunization protocol, we observed a typical chronic disease

course, for which clinical signs of disease were monitored daily and

scored based on the following scale (EAE score): 0, no disease; 1,

limp tail; 2, hind limp weakness; 3, hind limp paralysis; 4, hind and

fore limp paralysis; 5, moribund or death. 2–36106 stimulated and

MOG pulsed DC were injected intravenously repeatedly at days

27, 25 and 23 before EAE induction (day 0).

Isolation of spleen cells and preparation of CNS
mononuclear cells

For isolation of CNS mononuclear cells, mice were perfused

through the left cardiac ventricle with cold PBS, brains were

dissected and spinal cords were flushed out with cold PBS. CNS

material was cut into pieces and mononuclear cells were recovered

from the interface of a 30–50% percoll gradient centrifuged for

30 min at 5000 rpm. Cells were washed and resuspended in

culture medium for further analysis.

Single cell suspensions of splenocytes were obtained by mashing

the spleens of donor mice through a 70 mm strainer and

subsequent lysis of red blood cells with ACK buffer (150 mM

NH4Cl, 10 mM KHCO3, 0,1 mM EDTA). Splenocytes were

cultured in serum-free HL-1 medium (Lonza) supplemented with

Penicillin (100 U/ml, PAA), Streptomycin (100 mg/ml, PAA),

L-Glutamin (2 mM, PAA) and b-mercaptoethanol (50 mM,

Sigma).

Flow cytometry
BM-derived DC, NKT-cell cell lines, Splenocytes or CNS

derived cells were stained with surface antibodies (anti-B7-H1-PE,

anti-CD80-FITC, anti-CD86-FITC, anti-CD40-PE, anti-MHC

II-PE, anti-CD3-FITC, anti-NK1.1-PerCP-Cy5.5, purchased

from BD Pharmingen; anti-B7-DC-PE, anti-PD-1-PE, anti-CD4-

PerCp, anti-CD8-PE, purchased from eBioscience) in the presence

of FccRII/FccRIII-specific antibody (clone 2.4G2) to block

unspecific binding. FACS datawere collected on FACS Calibur

cytometer (BD Biosciences) and analyzed using FlowJo software

(TreeStar) version 7.2.1.

ELISA and ELISPOT
For the measurement of cytokine responses by ELISA, 46105

splenocytes depleted from erythrocytes were cultured in vitro in

the presence of different concentrations of MOG35–55 peptide

(0–20 mg/ml) and supernatants were collected after 3 days. Sera

were collected 2 h after the third immunization. Samples were

analyzed for cytokine content using ELISA kits for IL-4, IL-10,

IFN-c (BD Pharmingen), IL-13 and IL-17 (eBioscience).

For ELISPOT assays, 56104 CNS cells per well were

stimulated with 10 mg/mL MOG35–55 peptide and cultured for

24 h in 96-well-plates. ELISPOT assay was performed according

to the manufacturer’s instructions (for IFN-c: BD Pharmingen; for

IL-17: eBioscience). Spots were counted using a Wild Heerbrugg

M3Z dissecting microscope or evaluated by CTL Europe GmbH

(Aalen, Germany).

NKT cell line assay
The following NKT cell lines were used: KT12 [44], VIII24

and XV19 [26], BW58 r/m CD28 [45]. NKT cell lines were

cultured in RPMI with L-glutamin (GIBCO) containing 5% FCS,

100 U/ml Penicillin/Streptomycin, 0.1 mM non-essential ami-

noacids, 1 mM Na-pyruvate and 5 mM b-mercaptoethanol. For

the co-culture experiments the cell lines were cultured with TNF-

matured DC derived from WT or B7-H12/2 mice in medium

containing GM-CSF. 56104 cells from the cell lines KT12, BW58

r/m CD28 or VIII24 or 16104 cells from the XV19 cell line in an

96 well plate (round bottom) for 24 hours with the DC. As positive

control 10 ng/ml aGC (Alexis Biochemicals) was added to the

culture. The supernatant of this culture was testet by ELISA for

IL-2 production (BD Pharmingen).
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Statistical analysis
Two-tailed Student’s t-test was used to determine the statistical

significance of difference. A value of p,0.05 was considered

significant. Error bars in figures represent standard deviations.
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