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1. Summary (Zusammenfassung) 
1.1. English 
 

The mammalian Vasodilator Stimulated Phosphoprotein (VASP) is a founding 

member of the Ena/VASP family of proteins that includes Drosophila Enabled (ena), the 

mammalian Ena homologue (Mena) and the Ena-VASP-like protein (Evl). VASP was initially 

discovered and characterized as a substrate for cGMP- and cAMP-dependent protein 

kinases (cGKs and cAKs). Ena/VASP proteins are involved in Actin-filament formation, 

plasma membrane protrusion, acceleration of Actin-based motility of Listeria and the 

establishment of cell-cell adhesion. Moreover, Ena/VASP proteins have been implicated as 

inhibitory factors in repulsive axon guidance and inhibition of plasma membrane activity and 

random motility in fibroblast. 

In order to study the physiological function of VASP, VASP-deficient mice had been 

generated in the laboratory by homologous recombination. VASP-/- mice showed hyperplasia 

of megakaryocytes in the bone marrow and spleen and a two-fold increase in thrombin- and 

collagen-induced platelet activation.  

To further investigate the cellular function of VASP, I established cardiac fibroblast 

cell lines derived from both wild type and VASP-/- mice. Both cell lines presented similar 

growth rates and normal contact dependent-growth inhibition but showed differences in 

morphology, migration and adhesion. Adherent VASP-/- cells, despite normal Mena and Evl 

expression levels, were highly spread. VASP-/- cells covered about twice the substrate 

surface area as wild type cells, while the cell volumes were unchanged. This shape 

difference suggests that VASP is involved in the regulation of spreading. Since the small 

GTPases Rac and Cdc 42 and their effector p21-activated kinase (Pak) are key regulators of 

lamellipodia formation and cell spreading, I analyzed this signalling pathway in VASP-/- cells 

stimulated with Platelet Derived Growth Factor-BB (PDGF-BB) or fetal calf serum. In wild 

type cells Rac and Pak were rapidly and transiently activated by PDGF or serum; however, in 

the absence of VASP both Rac and Pak activation was dramatically prolonged. The Rac/Pak 

pathway is known to play an essential role in cell motility. VASP deficient cells showed 

compromised migration and reorientation in a wound healing assay, probably due to 

enhanced Rac activity. The spreading phenotype, compromised migration and the effect 

observed on the Rac and Pak activities were reverted in VASP-/- cells stably transfected with 

full lenght human VASP, indicating a VASP dependent modulation of the Rac/Pak pathway 

and Rac/Pak regulated processes. Moreover, adhesion and detachment of VASP-deficient 

cells were significantly slower when compared to wild type cells. Preincubation of VASP+/+ 

cells with a cGMP analog accelerated adhesion. This acceleration did not take place in the 

VASP-/- cells, suggesting a VASP dependent effect.    
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The second part of this work focused on VASP function in platelets. On the one hand 

I investigated the possibility of VASP-dependent Rac regulation in mouse platelets. Murine 

platelets are a good model for studying Rac regulation since they express high levels of 

VASP but not Mena/Evl and since VASP-deficient platelets show an increased platelet 

activation. Rac was activated by platelet agonists which was inhibited by preincubation with 

cGMP and cAMP analogs. Initial results which need to be extended showed that the cGMP-

caused inhibition of Rac activation was VASP-dependent.  Finally, in vivo platelet adhesion 

(platelet-vessel wall interactions) was studied using VASP-deficient mice. These studies 

demonstrated in-vivo that VASP down regulates platelet adhesion to the vascular wall under 

both physiological and pathophysiological conditions.  
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1.2. Deutsch 
 
Das Säugerprotein Vasodilator Stimulated Phosphoprotein (VASP) ist ein Gründungsmitglied 

der Ena/VASP Proteinfamilie, die das Drosophila Enabled (ena), das homologe 

Säugerprotein ena (Mena) und das Ena-VASP-like Protein (Evl) einschließt. VASP wurde 

ursprünglich als ein Substrat von cGMP- und cAMP abhängigen Proteinkinasen (cGKs und 

cAKs) entdeckt und charakterisiert. Ena/VASP Proteine sind bei der Polymerisation von 

Aktinfilamenten, bei der Protrusion von Plasmamembranen, der Beschleunigung von Aktin-

basierter Beweglichkeit von Listerien und bei der Ausbildung von Zell-Zell-Adhäsionen 

beteiligt. Außerdem wurde gezeigt, dass Ena/VASP-Proteine hemmende Faktoren bei der 

repulsiven Axonführung sind und sowohl die Plasmamembranaktivität als auch die 

ungerichtete Fibroblastenbeweglichkeit hemmen. 

Um die physiologische Funktion von VASP zu untersuchen, wurden VASP-defiziente Mäuse 

im Labor durch homologe Rekombination generiert. VASP-/- Mäuse zeigten eine Hyperplasie 

der Megakaryozyten im Knochenmark und in der Milz sowie eine zweifache Erhöhung der 

durch Thrombin und Kollagen induzierten Plättchen-Aktivierung.  

Um die zelluläre Funktion von VASP weiter aufzuklären, etablierte ich kardiale Fibroblasten-

Zelllinien sowohl von Wildtyp als auch von VASP-/- Mäusen. Beide Zelllinien zeigten gleiche 

Wachstumsraten und eine normale, kontaktabhängige Wachstumshemmung, hatten aber 

Unterschiede in ihrer Morphologie, Wanderung und Adhäsion. Adhärente VASP-/- Zellen 

waren trotz normaler Mena und Evl Expression stark ausgebreitet. VASP-/- Zellen bedeckten 

eine ungefähr zweimal so große Substratoberfläche wie Wildtyp-Zellen, während das 

Zellvolumen unverändert war. Diese Formunterschiede lassen vermuten, dass VASP bei der 

Regulation der Ausbreitung involviert ist. Da die kleinen GTPasen Rac und Cdc 42 und ihr 

Effektorsystem p21-aktivierte Kinase (Pak) Schlüsselregulatoren der 

Lamellipodienformierung und der Zellausdehnung sind, untersuchte ich diesen Signalweg in 

VASP-/- Zellen, die mit Platelet Derived Growth Factor-BB (PDGF-BB) oder fetalem 

Kälberserum stimuliert wurden. In Wildtypzellen wurden Rac und Pak schnell und transient 

durch PDGF oder Serum aktiviert, in der Abwesenheit von VASP war die Aktivierung von 

Rac und Pak jedoch dramatisch verlängert. Der Rac/Pak Signalweg ist dafür bekannt, dass 

er eine essentielle Rolle bei der Zellbeweglichkeit spielt. VASP defiziente Zellen zeigten, 

wahrscheinlich wegen der erhöhten Rac Aktivität, eine veränderte Wanderung und 

Reorientierung in einem Wundheilungs-Versuch. Der ausgebreitete Phänotyp, die veränderte 

Wanderung und die beobachteten Effekte bei den Rac und Pak Aktivitäten wurden in VASP-/- 

Zellen, die stabil mit humanem VASP transfiziert wurden, normalisiert, was eine VASP 

abhängige Steuerung des Rac/Pak Signalwegs und der Rac/Pak regulierten Prozesse 

vermuten läßt. Weiterhin waren die Adhäsion und die Ablösung von VASP-defizienten Zellen 

signifikant langsamer als in den Wildtyp-Zellen. Die Vorinkubation von VASP+/+ Zellen mit 
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einem cGMP-Analog beschleunigte die Adhäsion. Diese Beschleunigung fand in VASP-/- 

Zellen nicht statt, was einen VASP-abhängigen Effekt vermuten läßt. 

Der zweite Teil dieser Arbeit konzentrierte sich auf die VASP Funktion in Thrombozyten. 

Einerseits untersuchte ich die VASP-abhängige Regulation von Rac in murinen 

Thrombozyten. Diese sind dafür besonderes gut geeignet, da sie VASP aber nicht Mena/Evl 

exprimieren und da VASP-defiziente Thrombozyten verstärkt aktiviert werden. Rac wurde 

durch Thrombozyten-Agonisten aktiviert, was durch eine Präinkubation mit  cGMP- und 

cAMP-Analoga gehemmt wurde. Erste Ergebnisse, die noch einer weiteren Bestätigung 

bedürfen, zeigten, daß die cGMP-vermittelte Hemmung der Rac-Aktivierung VASP-abhängig 

war. Abschließend wurde auch die in-vivo Plättchen-Adhäsion (Thrombozyten-Gefäßwand-

Interaktion) unter Einsatz von VASP-defizienten Mäusen untersucht. Diese Ergebnisse 

zeigten für in-vivo-Bedingungen, daß VASP die Thrombozyten-Adhäsion an die Gefäßwand 

sowohl unter physiologischen als auch pathophysiologischen Bedingungen unterdrückt.  
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2. Introduction 

 

Cells have the capability among others to divide, move, attach or detach, secrete 

substances in response to specific external signals. These signals trigger a series of 

reactions within the cell in order to successfully complete the specific task. The process by 

which a cell converts an extracellular signal into a response is known as signal transduction. 

Some very important players in signal transduction are second messengers: small molecules 

that are formed (cAMP, cGMP, IP3) or released (Ca2+) into the cytosol in response to an 

extracellular signal and that help to relay it to the interior of the cells. Many of these second 

messengers transduce the signal by activating a protein kinase, that in turn transmits the 

signal by phosphorylating another protein changing its activity or localization. In platelets, 

some vasodilator substances elevate cAMP (e.g., Prostaglandin E1 (PGE1), Prostacyclin 

(PGI2), etc.) or cGMP levels (e.g., sodium nitroprusside (SNP), nitroglycerin, etc.) and inhibit 

platelet activation at an early step in the activatory cascade [1]. The inhibitory process is not 

yet completely understood, but it is known that both cyclic nucleotides activate cAMP- and 

cGMP- dependent protein kinases (cAK and cGK), respectively. In 1989, studying the protein 

phosphorylation pattern of platelets treated with cAMP- or cGMP- elevating agents, 

Halbrügge and Walter [2], identified a protein with and apparent molecular mass of 50kDa 

that was phosphorylated under both conditions. The new protein was named Vasodilator 

Stimulated Phosphoprotein (VASP) as phosphorylation was induced by vasodilating 

substances.  

 

2.1. The Vasodilator-Stimulated Phosphoprotein: VASP 
 
2.1.1. Structure 

VASP is a 39 kDa protein, running as 46 kDa in SDS-PAGE, that upon 

phosphorylation by cAMP elevating agents, shifts to an apparent molecular mass of 50kDa 

[3]. VASP has three phosphorylation sites: Ser 1571, Ser 2391 and Thr 2781 [4], which are 

phosphorylated in vitro and in intact cells by cAK and cGK [4]. Ser 157 is preferentially 

phosphorylated by cAK while Ser 239 is the preferred site for cGK (Figure 1).  

 

 

 

 

                                                
1 Amino acids are numbered according to the sequence of human VASP 
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igure 1: Schematic representation of human VASP structure and phosphorylation 
ites. EVH1 domains binds FP4 motifs, the proline rich region (PRR) binds SH3 domains 
nd profilin and the EVH2 domain binds to F-actin and is responsible for tetramerization 
nd hetero-oligomerization. VASP is a substrate for both cAK and cGK. cAK preferentially 
hosphorylates Ser157 and cGK preferentially Ser239. (Modified from [5,6]) 
 

 

VASP is the founding member of the Ena/VASP family [6-8] that includes Drosophila 

d (ena), the mammalian and the avian Ena orthologs (Mena and Avena, respectively 

 the Ena-VASP-like protein (Evl) (Figure 2). All the proteins of the Ena/VASP family 

he same domain organization that consists of highly conserved N-terminal and C-

l regions (Ena-VASP homology domain (EVH) 1 and 2, respectively), separated by 

ariable low complexity (LCR) and proline rich regions (PRR) (Figure 1 and 2).  

 

 

 

 

 

EVH1 PRR EVH2

S157 S239 T278

cAK cGK

FP4 Motifs

Vinculin
zyxin
Robo
Semaphorin 6-A
Fyb/SLAP130
Act A

SH3 domains
Profilin

Tetramerization

F-Actin binding

VASP
Vasodilator-Stimulated Phosphoprotein
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Figure 2: (A) The Ena/VASP family and (B) other EVH1 domain containing 
proteins such the Homer family (Homer1a and Homer 2a) and the WASP family 
(WASP and N-WASP). LCR: Low complexity region; PRR: Proline Rich Region; 
CC: Coiled coil region; GBD: GTPase binding domain; VPH: Verproline homology 
domain; CA: Cofilin homology and acidic regions. (Modified from [9].) 
 

 

 
2.1.1.1. The EVH 1 domain 

The EVH1 domain (of about 115 aa) recognizes FP4 motifs (E/DFPPPPXD/E) of the 

focal adhesion proteins Vinculin [6,10], Zyxin [10] and Lipoma-Preferred Partner (LPP) [11], 

the axon guidance proteins Roundabout (Robo) [12] and Semaphorine 6A-1 (Sema6A-1) 

[13], Fyb/SLAP 130 (Fyb/SLP 76 associated Protein)[14] and the Listeria monocytogenes 

surface protein ActA [15] (Table 1).  

The structures of the EVH1 domain of Mena, Evl and VASP in complex with their 

ligands have been recently resolved by X-ray crystallography or nuclear magnetic resonance 

[16-18] and they show a close structural relationship to the Pleckstrin Homology (PH) and 

phosphotyrosine-binding (PTB) domains, despite barely detectable sequence similarities. 

A

B
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 The EVH1 is also present in proteins of the more distantly related Wiskott-Aldrich 

syndrome proteins (WASP) and the postsynaptic proteins of the Homer/Vesl family (Figure 

2). 

 
2.1.1.2. The Proline Rich Region (PRR) 
 VASP and the other family members not only bind to proline rich domains but are also 

proline rich proteins themselves and are able to interact with polyproline binding proteins.   

 The PRR region binds to the Abl SH3 (Src Homology 3) domain and other SH3 

domains [7,19,20] and to the G-actin binding protein Profilin [7,19-22]. Mena PRR also binds 

to WW domains (such as those of FE65) [23].  

 
2.1.1.3. The EVH 2 domain 

EVH2 has been implicated in the tetramerization of VASP [24], in the hetero-

oligomerization with other Ena/VASP family members [19] and in the direct binding to F-actin 

[24].  

  

Ligand Ena/VASP protein Comments 
EVH1 Domain  
Zyxin VASP, Mena, Ena Responsible for Ena/VASP protein localization to focal 

adhesion[6,7,19,25,26] 
LPP VASP [11] 
Vinculin VASP, Mena The interaction with VASP is regulated by PIP2 [6,7,10] 

[26,27] 
ActA VASP, Mena, Evl Ena/VASP binding to ActA accelerates actin based motility 

of Listeria[10,28,29] 
Fyb/SLAP VASP, Mena [14,30] 
Robo Ena Ena strenghens repulsive Robo signaling[12] 
Semaphorin 6A-1 Evl [13] 
Proline rich region  
Profilin I and II VASP, Mena, Evl, Ena Profilin binding to Ena/VASP proteins is involved in 

facilitation of actin polymerization [7,20-22,26,31-33] 
Abl VASP, Mena, Evl, Ena Mutations in ena act as dose-dependent supressor of abl-

dependent phenotypes; Ena is a substrate for Abl.; Ena 
phosphorylation reduces Abl SH3 binding. [19-21,34,35] 

Src VASP, Mena, Ena Src binds to Ena/ VASP proteins via SH3 domain[7,21] 
Drk Ena Drk binds to Ena via SH3 domain [21] 
Lyn Evl Lyn binds to Evl via SH3 domain [20] 
FE65 Mena, Evl FE65 Binds to Mena and Evl via WW domains [20,23] 
Yap Mena Yap Binds to Mena via WW domain [23] 
EVH2 domain 
F-actin VASP VASP induces promotion of actin polymerization in vitro, 

actin filament bundling, stress fiber localization [6,24,26,36] 
VASP VASP Tetramerization, stabilization and F-actin binding [8,24] 
Mena VASP, Mena, Evl Homo and hetero oligomerization; stabilization of EVH1 

and PRR domains interactions. [37] 
Ena VASP, Ena Homo and hetero oligomerization; stabilization of EVH1 

and PRR domains interactions. [19] 
 

Table 1: Ena/VASP binding partners. Based on [9] 
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2.1.2. Subcellular localization 
 VASP is expressed in a wide variety of cell types and tissues, with highest levels in 

platelets [38]. Subcellularly, high concentrations of VASP are found at focal adhesion 

[6,7,19,20] and stress fibers, where it colocalizes specifically with α-actinin and Zyxin [6,7]. 

VASP also localizes at cell-cell contacts [6,39] and is associated with highly dynamic 

membrane structures such as the leading edge and membrane ruffles. Ena/VASP family 

proteins are also associated with unipolar actin filaments of some filopodia, especially at the 

filopodial tips. In focal adhesions, VASP appears to be a peripheral component. Neither the 

focal adhesion formation, nor the localization of focal adhesion proteins such as Vinculin, 

Zyxin and LPP, binding partners of VASP, are affected by the lack of Ena/VASP proteins 

[40]. 

 Listeria monocytogenes is a motile bacterial pathogen. Its virulence and cell-to-cell 

spreading is dependent on its ability to use the actin-based polymerisation and cytoskeleton 

of the host cell to support its own motility. A single surface bacterial protein is sufficient to 

recruit the host actin polymerisation machinery: ActA that binds to the EVH 1 domain of the 

Ena/VASP proteins. In cells infected with Listeria monocytogenes, VASP is found in the 

interface between the moving bacterium and its actin tail, at the site where actin 

polymerisation is thought to take place, colocalizing with ActA [15]. 

 

 

2.2 Platelets 
 

 Platelets are membrane-bound cellular fragments derived from megakaryocytes. 

They are circulating in the blood in an unstimulated form, with a discoid-shaped smoth 

membrane. Any break in the continuity of the vessel wall or a break in the atherosclerotic 

plaque is followed by an instant response from the platelets: they contact the zone of injury, 

spread and aggregate forming thrombi [1]. The regulation of the cellular process involved in 

the activation of platelets has been extensively studied as platelets and endothelial cell, 

which line the inner wall of blood vessels, also participate in the pathogenesis of 

atherosclerosis and cardiovascular diseases.  

 

2.2.1 Platelet Activation 
 Activation of platelets is a complex process that includes stimulation of activating and 

inhibitory biochemical pathways, reorganization of the cytoskeleton, which lead to shape 

change and relocation of intracellular secretory granules, secretion of substances and 

activation of receptors in the plasma membrane. Platelets can be activated by adhesion to 

proteins of the subendothelial matrix (e.g. collagen) and to von Willebrand factor (vWF) or by 



Introduction 

 

soluble agonists circulating in the blood, such as thrombin, thromboxane A2 (TxA2) and ADP 

[1]. Several of the soluble agonists of platelets act throught G-protein-coupled receptors that 

transduce signals to the interior of the platelet. Thrombin, TxA2 and ADP bind to receptors 

coupled to the Gαq protein. Gαq activates the phospholipase Cβ (PLCβ) that increases the 

levels of IP3 and Diacylglycerol (DAG) by hydrolysis of PIP2. IP3 enhances the concentration 

of intracellular Ca2+ by liberating it from the intracellular stocks [41]. Binding of Ca2+ to 

Calmodulin (CaM) activates (among others) the myosin light chain kinase (MLCK), which in 

turn phosphorylates myosin light chains (MLC) inducing changes in the actin cytoskeleton. 

Phosphorylation of MLC also occurs through the Rho/ROCK pathway after activation Gα12 

and Gα13 by thrombin and TxA2 [42,43]. On the other hand, DAG activates protein kinase C 

(PKC) that is involved in the secretion of substances from intracellular stores: PDGF, Ca2+, 

ADP, serotonin and Fibrinogen. The Gαi inhibits the adenylate cyclase (AC) and reduces the 

levels of cAMP. The βγ subunit of the G-protein coupled receptor activates both PLC and PI-

3-K. Activation of the PI-3-K leads to activation of the Fibrinogen receptor (Figure 3). (for a 

review on Heterotrimeric G-proteins in platelets see [41]) 
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Figure 3: Signalling pathways induced by platelet activation. Black arrows indicate 
activation, red lines indicate inhibition (Modified from [44] ) 
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2.2.2 Platelet Inhibition 
 Under physiological conditions, platelets are inactive and adhesion and aggregation 

are tightly regulated. Substances as prostaglandins (PG-E1, PG-I2) and other vasodilators 

prevent the activation of platelets. These platelet antagonists inhibit aggregation by elevating 

the intracellular concentration of cyclic nucleotides (cGMP and/or cAMP). PG-E1 and PG-I2 

bind to prostaglandin Gs-coupled receptors. The Gαs subunit activates the adenylate cyclase 

(AC) and increases the levels of cAMP in the platelet. Nitric oxide (NO) and other NO-donors 

stimulate directly the intracellular guanylate cyclase (GC) enhancing the intracellular 

concentration of cGMP. Cyclic nucleotides induce platelet inhibition via the activation of 

cAMP- and cGMP- dependent protein kinases (cAK and cGK respectively) [44-46]. It is not 

yet clear how the substrates of cAK and cGK (see Figure 4) regulate the inhibition of 

platelets, however several proteins phosphorylated by cAK are involved in the regulation of 

actin cytoskeleton. Phosphorylation of Caldesmon stabilizes the cytoskeleton of resting 

platelets [47], phospho-Glycoprotein 1B inhibits actin polymerization [48] and 

phosphorylation of actin binding protein (ABP) inhibits the reorganization of the cytoskeleton 

during platelet activation [49]. During platelet activation Rap1b rapidly interacts with the 

reorganized actin-based cytoskeleton [50]. Moreover, cGMP and cAMP also activate 

phosphodiesterases (PDE) that control and turn off the inhibitory signal by degradation of 

cyclic nucleotides (Figure 4). In human platelets three different PDE subtypes were identified: 

PDE2, which is stimulated by c-GMP and acts on both cGMP and cAMP; PDE3, hydrolyzes 

cAMP and is activated by cAK and inhibited by cGMP and PDE5, a cGMP stimulated and 

cGMP specific phosphodiesterase [51] (For a review see [44]).    
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igure 4: Signalling pathways involved in platelet inhibition. Black arrows indicate 
ctivation, red lines indicate inhibition (Based on [44]) 

ASP in Platelets 
VASP is strategically located at the intersection of the major platelet inhibitory 

ys described before.  In response to the cyclic nucleotide-regulating platelet 

nists NO and PGI2, VASP is phosphorylated by both cAK and cGK. VASP 

orylation closely correlates with platelet inhibition and is accompanied by inhibition of 

telet fibrinogen receptor GPIIb-IIIa (also known as αIIbβ3) activation. The exact role of 

in the inhibition of platelets is not yet fully understood but importance of the protein 

platelet inhibition has been shown in VASP deficient mice that present enhanced 

n and thrombin induced platelet activation and impaired cyclic nucleotide mediated 

n [52,53] (See ”The Knock-out approach” in this section).  The participation of VASP 

mic cytoskeletal processes (see chapter 2.3) and its phosphorylation induced by 

 antagonists are hints to consider it as an important player in the regulation of platelet 

n.  
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Figure 5: VASP phosphorylation induced by cyclic nucleotides in platelets.  
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2.3 Cytoskeletal Remodelling 
2.3.1 Actin Polymerization 
 Actin is the most abundant protein in many cell types (± 5% of total cellular proteins) 

and exist in two forms: monomeric (or G-actin) and filamentous (F-actin). Each actin 

molecule is a single polypeptide of 42 kDa that has a molecule of ATP tightly associated with 

it.  

 F-actin is a thin, flexible and helical homopolymer of actin. Such actin filaments are 

asymmetric: ATP-bound actin monomers polymerizes onto a fast growing barbed ends (or + 

ends) of F-actin, while the opposite end of the filament, the pointed end (or – end) is 

relatively inert and slow growing. Polymerization of actin in vitro requires ATP, K+ and Mg2+. 

There is initially a lag phase and then a rapid polymerization phase. The lag is due to 

nucleation of three monomers of actin that are required to initiate the process. Once the 

nuclei are formed one actin monomer is added at a time.  After polymerization ATP bound to 

actin is hydrolyzed to ADP. The critical concentration for actin polymerization (the free actin 

monomer concentration at which the proportion of actin as a polymer stops increasing) is 

about 0.2 µM. However, the concentration of G-actin in the cell is much higher than this, 

between 50 and 200 µM. To keep the proper amount of free available actin monomers the 

cell contains actin-binding proteins that sequester the actin monomers. Cofilin (or actin 

depolymerization factor, ADF) and Thymosinβ4 bind to actin monomers and inhibit the 

assembly into the filament. On the other hand, another actin-monomer-binding protein that 

regulates actin polymerization is Profilin, a binding partner for VASP, that accelerates the 

exchange of ADP for ATP when bound to actin monomers and is thought to stimulate 

polymerization [54]. 

 Other proteins regulating actin polymerization are the proteins of the Arp2/3 complex. 

Two of the proteins from this complex, Arp2 and Arp3, present a surface similar to the 

barbed end of the actin filament suggesting that the Arp2/3 complex serves as a surface 

were nucleation can be initiated. Indeed, Arp2/3 increases the rate of nucleation of new actin 

filaments both in vitro [55] and on the surface of Listeria monocytogenes [56]. In addition to 

nucleating new actin filaments, Arp2/3 complex links filaments at 70° angles forming the 

branching structures observed at the leading edge of motile cells. Branching of the filaments 

occurs by binding of Arp2/3 to the side of filaments.  

 In order to stop the extension of the filaments Capping protein binds to the barbed 

end and inhibits the incorporation of new monomers to the filament.   
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Figure 6: Actin Polymerization. (a) Actin polymerization curve. The lag phase 
represents the time required for actin nucleation. The rapid polymerization phase 
represents the time during which short filaments elongate. The steady state at the end of 
the curve represents an equilibrium between growth of the filaments due to monomer 
addition and shortening of the filaments due to depolymerization. (+): barbed end; (-) 
pointed end (b) Branching of filaments by Arp2/3 complex. Arp2/3 complex binds to the 
sides of filaments stimulating actin nucleation so that a new filament is initiated. Binding 
to WASP/Scar proteins is suggested to be important for activation of Arp2/3 complex. 
Cofilins are actin-associated proteins that have both actin severing and actin 
depolymerizing activities. (Modified from [54]). 

.2 The Actin Cytoskeleton 
Eucaryotic cells can adopt a variety of shapes and can carry out coordinated and 

cted movements. The cytoskeleton is the complex network that extends throughout the 

plasm and, despite the idea of rigidity contained in the word “cytoskeleton”, it is a highly 

amic structure that reorganizes continuously as the cell divides, changes its shape and 

ponds to extracellular signals. The cytoskeleton activities depend on three main protein 

ent structures: actin filaments, microtubules and intermediate filaments. I will 

centrate here on the actin filaments or Actin Cytoskeleton. 

Actin filaments occur as networks or bundles crosslinked by a variety of actin binding 

teins. The dynamics of the actin cytoskeleton is determined by new actin polymerisation, 

leation of F-actin at specific subcellular localizations or disassembling of existing 

ents. All these processes are tightly regulated by a number of proteins that include, 

ong others, actin binding proteins and also cytoplasmic kinases. In the last 10 years many 
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proteins have been found to be involved in the regulation of the actin cytoskeleton, however 

the subject remains complex and a lot of work is needed to fully understand the mechanism.  

Often, the remodelling of the actin cytoskeleton is induced by extracellular signals, 

and more precisely by changes in the extracellular matrix. The main linkers between the 

extracellular matrix environment and the actin cytoskeleton are the integrins. 

 

2.3.3 Integrins 
Integrins are members of the large family of transmembrane proteins involved in 

adhesion of cells to the extracellular matrix (ECM). They bind most of the ECM proteins 

including collagen, fibronectin and laminin [57]. Integrins bind their ligands with relatively low 

affinity and are usually present at high concentrations on the cell surface. This arrangement 

of integrins allows the cell to bind simultaneously but weakly to a large number of matrix 

molecules so that the cell can explore the environment without loosing completely the 

attachment to it. 

Integrins are composed of two non-covalently associated transmembrane subunits 

called α and β. Eight types of β subunits and 18 types of α subunits form more 24 different 

varieties of integrins in human [57]. They function as transmembrane linkers mediating the 

interactions between the cytoskeleton and the ECM that are required for cells to grip the 

matrix. Most integrins connect to bundles of actin filaments. After binding to its ligand, the 

cytoplasmic tail of the β subunit binds to talin, α-actinin, filamin and tensin and initiates the 

assembly of a complex of intracellular proteins that link the integrins to the actin cytoskeleton 

[57]. Mutations at the tail of the β chain inhibit the binding to the intracellular proteins but not 

the binding to their extracellular ligands. However, even though this mutant is able to interact 

with the ECM, these mutants cannot longer perform a robust cell adhesion and/or cluster of 

focal contact. But integrins do not only attach the cell to the matrix, they also generate 

intracellular signals at the attachment sites (focal contacts).  They function as signal 

transducers, activating various intracellular pathways when activated by ECM binding. Some 

of the pathways activated by integrins are those regulated by the small GTPases of the Rho 

family. 
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Figure 7: Scheme depicting the complexity of the main molecular domains of  cell–
matrix adhesions. [Taken from Geiger, Bershadsky, Pankov and Yamada; 
Transmembrane extracellular matrix-cytoskeleton crosstalk, Nat. Rev. Mol. Cell Biol., 2, 
793-805 (2001)]  The primary adhesion receptors are heterodimeric integrins, 
represented by orange cylinders. Additional membrane-associated molecules enriched in 
these adhesions (red) include syndecan-4 (Syn4), layilin (Lay), the phosphatase 
leukocyte common antigen-related receptor (LAR), SHP-2 substrate-1 (SHPS-1) and the 
urokinase plasminogen activator receptor (uPAR). Proteins that interact with both integrin 
and actin, and which function as structural scaffolds of focal adhesions, include α-actinin 
(α-Act), Talin (Tal), Tensin (Ten) and Filamin (Fil), shown as golden rods. Integrin-
associated molecules in blue include: focal adhesion kinase (FAK), paxillin (Pax), 
integrin-linked kinase (ILK), down-regulated in rhabdomyosarcoma LIM-protein (DRAL), 
14-3-3 and caveolin (Cav). actin-associated proteins (green) include vasodilator-
stimulated phosphoprotein (VASP), Fimbrin (Fim), Ezrin–Radixin–Moesin proteins (ERM), 
Abl kinase, Nexillin (Nex), Parvin/Actopaxin (Parv) and Vinculin (Vin). Other proteins, 
many of which might serve as adaptor proteins, are coloured purple and include Zyxin 
(Zyx), cysteine-rich protein (CRP), Palladin (Pall), PINCH, Paxillin kinase linker (PKL), 
Pak-interacting exchange factor (PIX), Vinexin (Vnx), Ponsin (Pon), Grb-7, ASAP1, 
Syntenin (Synt), and Syndesmos (Synd). Among these are several enzymes, such as 
SH2-containing phosphatase-2 (SHP-2), SH2-containing inositol 5-phosphotase-2 (SHIP-
2), p21-activated kinase (Pak), phosphatidyl inositol 3-kinase (PI3K), Src-family kinases 
(Src FK), carboxy-terminal src kinase (Csk), the protease Calpain II (Calp II) and protein 
kinase C (PKC). Enzymes are indicated by lighter shades. 
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2.3.4 The Rho GTPase family 
 

 Rho-GTPases are small (≈ 21 kDa) monomeric GTP binding proteins that belong to 

the Ras Superfamily of GTPases. Like every GTP binding protein, Rho GTPases exist in an 

inactive form, the GDP bound conformation, and in a GTP bound active form. Their 

interconversion is mediated by guanine nucleotide exchange factors (GEFs) that favours the 

binding to GTP, thus activates the protein, and by GTPases activating proteins (GAPs) that 

enhance the intrinsic GTPase activity. Moreover guanine nucleotide dissociation inhibitors 

(GDIs) have been identified for the Rho family. 

 The Rho GTPase family contains: Rho (A, B and C isoforms), Rac (1,2 and 3 

isoforms), Cdc42 (G25K, Cdc42Hs isoforms), Rho D, Rho G, TC10, Rnd (Rnd 1, RhoE/Rnd 

3 and Rnd6) and TTF. From them Rho, Rac and Cdc42 are the most studied and their 

function has been examined in great detail. They can be activated by stimulation of growth 

factor receptors, integrin activation and/or G-protein coupled receptors. Active Rho 

recognizes RBD domains (Rho binding domains) and Rac and Cdc42 recognize CRIB 

domains (Cdc42/Rac interacting binding domains) (See [58] for a Review). 

 
2.3.4.1 Rho 
 Three isoforms haven described: RhoA, RhoB, and RhoC [59,60]. RhoA is 

ubiquitously expressed and, as RhoC, it is usually present in the cytosol. RhoB is mainly 

associated with the plasma membrane. 

 The Major role of Rho is to regulate the assembly of stress fibers and integrin based 

focal adhesion complexes [61]. The assembly of stress fibers can be induced by transfection 

of cells with constitutively active mutants (RhoV14 and RhoL63) or by treatment of quiescent 

cells with several extracellular factors (e.g. serum), in particular lysophosphatidic acid (LPA). 

Rho activation by LPA is mediated by a G-protein coupled receptor via G12/13 and by tyrosine 

kinase receptor [58,62]. 

Rho is a substrate for a number of bacterial exoenzymes and toxins. C3 transferase 

from Clostridium botulinum ADP-ribosylates Rho at residue N41 and inhibits Rho activity. 

Even though Rac and Cdc42 also have the same residue at that position they are no 

substrates for C3, which therefore is a specific inhibitor for Rho [58]. 

Rho-GTP can activate a number of downstream protein kinases such us PKN, 

p160ROCK (also named ROCK or ROK) [63], Rhotekin and PIP5K. ROCK has been shown 

to induce the phosphorylation of myosin and seems to be in the pathway required for stress 

fibers formation and stabilization. 
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2.3.4.2 Cdc42 
 Cdc42 regulates assembly of adhesion complexes and actin fibers at the cell 

periphery to form filopodia [64]. Cdc42 is activated by bradikinin and cytokines. Microinjection 

of constitutively active Cdc42 induces rapid filopodia formation, usual accompanied by 

subsequent lamellipodia formation. Cdc42 is a potent activator of Rac and both together lead 

to coordinated filopodia/lamellipodia formation suggesting an important role of these 

GTPases in cell migration, spreading and growth cone protrusion [64]. 

 Cdc42 activates the Ser/Thr p21-activated kinase (Pak) and binds to WASP. 

 

2.3.4.3 Rac 
 Rac is activated by growth factors (PDGF; EGF) [62] and insulin in fibroblasts and in 

platelets by agonist such as thrombin [65], thromboxane [66] and Collagen [65]. The 

activation is mediated by a tyrosin kinase receptor in the case of PDGF and by a Gq-coupled 

receptor in the case of thromboxane [66]. Generation of PIP3 is also a potent Rac activator 

[62,67]. Moreover, Rac is activated upon adhesion [68,69]. 

Del Pozo and colleagues showed that growth factors and adhesion to the ECM both 

contribute independently and approximately equally to Rac activation. In non-adherent cells, 

activated Rac failed to stimulate its effector Pak. Moreover, V12 Rac or Rac activated by 

serum translocated to the membrane fraction of adherent cells but remained mainly 

cytoplasmic in suspended cells [68]. These results showed that ECM regulates the ability of 

Rac to couple with Pak [68]. 

 Rac regulates the formation of lamellipodia, membrane ruffles and associated integrin 

adhesion complexes.  

 GTP-Rac activates Pak and SCAR/WAVE proteins. 

 

2.3.4.3.1 The Rac/Pak pathway 
 
 When the GTP form of Rac binds to the CRIB domain of Pak, Pak undergoes a 

conformational change that liberates the kinase domain from the autoinhibitory domain [70]. 

Moreover, upon activation Pak is autophosphorylated at several ser/thr residues. Pak 

regulates myosin light chain phosphorylation via myosin light chain kinase [71] and direct 

phosphorylation [72]. In addition, Pak activates LIM kinase (LIMK) by phosphorylation of a 

threonine residue in the activation loop [73-75]. When activated by Pak or Rho-associated 

protein kinase [75], LIMK phosphorylates and inactivates ADF1/Cofilin, which results in actin 

filament stabilization (reviewed in Refs. [74,76]). 
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Figure 8: Regulation of the actin cytoskeleton by Rho GTPases (Based on 
http://cellularsignaling.com/cm2/actin.html) Symbols: " activatory pathways (direct or indirect 
interaction) ;   inhibitory pathways;  ! activation by phosphorylation;   ! inhibition by 
phosphorylation. 

 

2.3.5. VASP and the actin cytoskeleton. 
 
a.   The Listeria model 

The motility of the bacterium Listeria monocytogenes is an established model system to 

study actin polymerization processes. Even though the bacterial model is not exactly the 

same as the situation in an eukaryotic model, parallels have been observed between the 

mechanism acting at the Listeria surface and the leading edge of motile cells, supporting 

the use of this model. VASP directly binds to the Listeria surface molecule ActA [15]. 

ActA, similar to the WASP family proteins in eukaryotic cells, has the ability to activate 

the filament nucleation activity of the Arp2/3 complex, a complex comprising seven 

polypeptides. VASP and profilin are not essential for basal Listeria motility in a 

reconstituted system with purified proteins. However both proteins have been shown to 

""""

Rho

Rac

Cdc42

RhoGEF

RhoGAP

RacGEF

Cdc42 GEF

Cdc42 GAP

GDI GDI

Pak

LIM-K

ROCK

MLCK

Myosin

Cofilin

F-Actin
ATP

G-Actin
ADP

G-Actin
ATP

Profilin

Arp2/3VASP

SCAR/
WAVE

WASP

MLC-Ptase

F-Actin
ADP

Stress Fibers Lamellipodia Filopodia

""""

Rho

Rac

Cdc42

RhoGEF

RhoGAP

RacGEF

Cdc42 GEF

Cdc42 GAP

GDI GDI

Pak

LIM-K

ROCK

MLCK

Myosin

Cofilin

F-Actin
ATP

G-Actin
ADP

G-Actin
ATP

Profilin

Arp2/3VASP

SCAR/
WAVE

WASP

MLC-Ptase

F-Actin
ADP

Stress Fibers Lamellipodia Filopodia

 

http://cellularsignaling.com/cm2/actin.html


Introduction 

 25 

accelerate Listeria motility [28] while in infected cells they appear to be more essential 

[10,29]. In living cells Mena, Evl and VASP do not induce F-actin assembly or recruitment 

by themselves (with the exception of one splice variant of Mena: Mena+), indicating that 

another nucleating activity is required to accomplish F-actin formation. Current thinking 

favours the idea that Ena/VASP proteins efficiently elongate the actin filaments initiated 

by ActA or WASP activation of the actin-nucleating activity of Arp2/3 [77,78].  

It has also been suggested that Zyxin and ActA can generate new actin structures in a 

VASP dependent manner and independently of the Arp2/3 complex [79]. Fradelizi et al 

have shown that although the WA domain of WASP, which is necessary for the Arp2/3 

dependent nucleating activity, and the proline-rich domain of ActA (similar to the Zyxin 

proline-rich domain) were able to nucleate F-actin to coated beads, they use different 

mechanism. ActA proline rich domain recruits VASP but not Arp2/3 and the opposite has 

been seen for the WA domain. In a similar way, Zyxin can induce actin nucleation 

independently of Arp2/3. When the binding site for VASP is abrogated, Zyxin loses its 

capability to polymerise actin. However, this Zyxin mutant recruits F-actin, indicating that 

VASP is probably required for proper actin polymerisation. As both, VASP and Zyxin, are 

focal adhesion proteins, these results suggest a VASP dependent polymerisation activity 

in Focal Adhesions [79].    

 

b.  Axon Guidance 
During development, neurons extend axons and dendrites towards their appropriate 

targets. Extracellular cues indicate the growing axon or growth cone to advance, retract 

or turn. This process is called axon guidance. 

Ena/VASP proteins, notably Ena and Mena, appear to mediate axon guidance. Barshaw 

et al. [12] show that Ena interacts with the repulsive neuronal guidance receptor Robo via 

the EVH 1 domain and may mediate Robo signaling. Mutations of Ena and/or Robo lead 

to defective repulsion and consequently defects in neuronal networks. Ena was originally 

described as a protein having opposite effect of the Ableson tyrosin kinase (Abl). Abl 

antagonizes Robo signaling, coinciding with the idea that Ena and Abl have opposite 

effects in the same pathway. 

 

2.3.6 The small GTPases and the Ena/VASP family 
 Ena/VASP proteins and Rho-GTPases have been shown to be involved in similar 

processes, such as actin polymerisation, stress fiber structure, filopodia formation and axon 

guidance. However the relationship between them has not been extensively studied. 
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2.3.6.1  Ena and the Rho-GEF Trio 
 In Drosophila, genetic mutations of abl lead to central nervous system (CNS) defects 

that are alleviated by Ena deletion. On the other hand, deletion of Abl and Drosophila-trio (D-

trio), a GEF for Rac and Rho, lead to severe defects in CNS, while D-trio deletion alone 

shows just subtle defects, similar to the one observed in abl-/-. These observations suggest 

that Ena and Trio may play opposite roles in growth cone motility, providing a link between 

the abl tyrosine kinase, the Ena/VASP proteins and Rho GTPases regulators [80]. 

 
2.3.6.2  Mena-IRSp53-Cdc42 

IRSp53 (Insulin Receptor Substrate) is a target of Cdc42 and has been involved in 

filopodia formation. Mena has been identified as a binding partner for IRSp53 and the 

interaction between Mena and IRSp53 is regulated by Cdc42. GTP-Cdc42 binds to the 

CRIB domain located in the autoinhibitory region of IRSp53 and liberates the binding site 

for Mena. Overexpression of Mena or IRSp53 induces the formation of filopodia but when 

both proteins are overexpressed together the effect is dramatically enhanced. This 

synergistic action of Mena and IRSp53 is dependent on their interaction as shown in 

experiments using mutants of IRSp53 that cannot bind to Mena [81].  

 
2.3.6.3 WASP and Cdc42 

WASP is an EVH 1 domain-containing protein that also has a CRIB domain able to 

interact with Cdc42 but not with Rac. Overexpression of WASP induces ectopic actin 

polymerisation that can be inhibited by dominant negative Cdc42 (N17-Cdc42). In a 

similar way, SCAR, a relative to WASP, induces actin polymerisation in a Rac dependent 

manner.  

WASP and VASP have always been considered together due to their participation in the 

regulation of actin dynamics at the leading edge. However, the interaction between 

WASP and VASP has been demonstrated only recently. The proline rich domain of 

WASP binds VASP and this interaction enhances the propulsion of WASP coated beads, 

in a similar way as Listeria motility is accelerated by VASP. WASP is thus bringing 

together VASP and Cdc42, but the relation between them still needs to be studied 

[82,83]. 
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2.4 The “Knock-Out” approach 
 One approach to study the physiological significance of a protein is to create animal 

models deficient in the protein of interest by targeted gene deletion (gene knock out). That 

means that the gene encoding for the protein is replaced via homologous recombination with 

a portion of DNA (usually a short gene encoding for antibiotic resistance) that disrupts the 

expression of the gen. Here I will summarize the phenotypes of animals deficient in 

Ena/VASP proteins. 
Ena-deficient Drosophila melanogaster  

The first Ena/VASP gene to be knocked out was the one encoding for Ena. Ena deficient 

flies died during embryogenesis with defects in axonal architecture [19]. The lethal 

phenotype was rescued by wild type ena, partially by a mutant of ena encoding a protein 

that lacks the tyrosine phosphorylation sites [35] and by human VASP [19]. Note that 

despite the high similarities between both proteins, VASP is not phosphorylated by Abl 

[34]. 
VASP-/- mouse model 

Having the dramatic effect observed in the Ena deficient flies as a precedent, the VASP -/- 

mice were created one year later by two independent groups (Aszodi et al., Hauser et al.; 

the latter our group in Würzburg). However, mice deficient in VASP showed only a mild 

phenotype. Animals were viable and fertile with a mild platelet dysfunction. Both groups 

agree in that VASP-/- mice present enhanced collagen and thrombin induced platelet 

activation and impaired cyclic nucleotide mediated inhibition. Moreover, Hauser et al 

described megakaryocyte hyperplasia. It is important to note that VASP is the only 

Ena/VASP protein present in platelets [52,53]. 
Mena-/- mouse model 

Mena deficient mice are also viable and fertile with a mild neuronal dysfunction such as 

some axon misrouting, impaired corpus callosum and hipocampal comisure formation 

[31].  

Caenorhabditis elegans deficient in unc34 gene product 
In C. elegans ablation of the unc34 gene product leads to axonal migration defects [34]. 

 

The results obtained with the mouse model suggest that the remaining proteins of the 

Ena/VASP family compensate the deficiency, leading to mild phenotypes and making the 

study of the mammalian Ena/VASP proteins more complicated. The double knock out 

Mena/VASP has been reported to be lethal at early embryonic stage and another mouse 

model, the Mena-/- /VASP-/+ present commisure formation defects more severe than 

those in Mena-/- mice [34]. 
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2.5 Aim of the Work  
As VASP deficient mice did not show any obvious dramatic phenotype (probably due 

to compensation by the other members of the Ena/VASP family), VASP-deficient cell lines 

were established in order to study in more detail the cellular function of VASP. Considering 

the experience in the laboratory and the interest of the group in the area of cardiovascular 

and heart failure research, cardiac fibroblasts were chosen as cell type to be studied.  

 The first part of the work includes the establishment and characterization of VASP-

deficient cell lines.  Detailed analysis of these cells suggested defects in the reorganization of 

the actin cytoskeleton.  Therefore, in the second part of the work the signal transduction 

pathways that could be involved in actin cytoskeleton remodelling were investigated. The 

small GTPases of the Rho family have been shown to mediate several of the features that I 

found to be impaired in VASP-/- cells and therefore were good candidates to be studied in 

more detail. These studies were extended to mouse platelets. Finally, it was the aim of 

collaboration with Dr. Massberg (Deutsche Herzzentrum in Munich) to address possible 

effects of VASP on platelet adhesion in vivo.  
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3. Materials 
 

3.1.1 Primary Antibodies 
 

Dilution Name Antigen Epitope Type Origin 
WB IF 

Source Ref. 

M4 
 

VASP ---- Polyclonal Rabbit 1:3000 1:500  [84] 

16C2 
 

pVASP-Ser239 RKVpSKQE Monoclonal Mouse 1:100 --- Nanotools [5] 

Mena 
 

Mena NH2-terminal IgA Mouse 1:1000 --- Transduction Labs   

M5 
 

Zyxin ---- Polyclonal Rabbit 1:2000 --- InmunoGlobe  [38] 

hVin 
 

Vinculin ---- IgG1 Mouse 1:1000 --- Sigma  

LPP 
 

LPP ---- Polyclonal Rabbit 1:1000 1:200 InmunoGlobe  -- 

Rac 
 

Rac 1 and 2 Recombinant 
human Rac 

Monoclonal Mouse 1:1000 --- Upstate [66] 

Pak (N20) 
 

Pak 1 ---- Polyclonal Rabbit 1:1000 --- Santa Cruz Biotech [85] 

pPak 
(Thr402) 
 

pPak 1 and 2  Monoclonal Goat 1:200 --- Santa Cruz Biotech  

 

 

3.1.2 Secondary Antibodies 

Antibody 
 

Label Dilution Company 

Goat-anti-Rabbit Ig Horseradish Peroxidase 1:5000 Amersham- 
Pharmacia/ Dianova 

Goat-anti-Rabbit Ig 
 

IRDye800 1:5000 Biotrend 

Goat-anti-Rabbit Ig 
 

Alexa Fluor 680 1:5000 Molecular Probes 

Goat-anti-Mouse Ig Horseradish Peroxidase 1:5000 Amersham- 
Pharmacia/ Dianova 

Goat-anti-Mouse Ig 
 

IRDye800 1:5000 Biotrend 

Goat-anti-Mouse Ig 
 

Alexa Fluor 680 1:5000 Molecular Probes 

Goat-anti-Mouse IgA 
 

Horseradish Peroxidase 1:5000 Sigma 

anti-Rabbit Ig 
 

Cy3 1:300 Molecular Probes 

anti-Mouse Ig 
 

Cy2 1:300 Molecular Probes 

anti-Mouse Ig 
 

Cy3 1:300 Molecular Probes 
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3.1.3 Fluorescent Labels 
FITC Hamster anti Rat CD29 (β1 integrin)......................... Pharmingen 

FITC anti mouse CD61 (β3 integrin).................................. Pharmingen 

Oregon Green Phalloidine................................................. Molecular Probes 

Rodamine Phalloidine........................................................ Molecular Probes 

 

3.1.4 Bacteria 
Gold Supercompetent Cells Epicurian Coli  SoloPack , Stratagene. 

 

3.1.5 Plasmids 
 
FL-VASP + Hygromycin for stable transfection, 

based on pCDNA3 from Invitrogen containing 

human full length VASP……………………………… 

 

Dr. Martin Eigenthaler, Institute für 

Klinische Biochemie und 

Pathobiochemie 

GST-PBD……………………………………………… Dr. Offermanns (Pharmakologisches 

Institut, Heidelberg) with permission of 

Dr. Bokoch (The Scripps Institute, La 

Jolla-USA) 

 

 

3.1.6 Oligonucleotide 
 

Primers for EVL: 
5’ -GAG CAG CAG CAC CGC CAG GAG-3’ 

 5’-GGA CAG CAA CGA GGA CAC AGG-3’  

Product: 590 bp 
Primers for GAPDH: 
 5’-TTA GCA CCC CTG GCC AAG G-3’ 

 5’-CTT ACT CCT TGG AGG CCA TG-3’  

Product: 540 bp 
Primers for Genotyping: 
WT-PCR: 
GIK 296: 5’-TTA GCT TGG TTT GGG GAC TGA ACC AGC CTC CTT TC-3’ 

GIK 270: 5’-CAG CCA CTC CCT GGT ACT TCC TTA CCT TGC TCA C-3’ 

Product: aprox. 600-700 bp 
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KO-PCR: 
GIK 273: 5’-CGA ATA GCC TCT CCA CCC AAG CGG CCG GCG AAC-3’ 

GIK 274: 5’-GGC CAG CAG AAC AGT ATT GGA GAA CTA CCA GG-3’ 

Product: aprox. 450-500 bp 

See figures 5, 6 and 7 for details of the location of the primers for genotyping 

  

3.1.7 Antibiotics 
 

Antibiotic-Antimycotic solution 100x................ Invitrogen Inc. 

Hygromycin B 50 mg/ml.................................. Roche Diagnostics 

Ampicillin (Stock solution: 50mg/ml)................ Sigma 

 

 

3.1.8 Chemicals 
 
PDGF-BB ........................................................ Sigma 

PGI2................................................................. Sigma 

8p-CPT-cGMP................................................. BioLog 

cBIMPS-cAMP................................................. BioLog 

U46619 (thromboxane A2 analogue)............... Sigma 

Thrombin......................................................... Sigma 

Apyrase........................................................... Sigma 

Collagenase/Dispase....................................... Roche Diagnostics 

FuGENE ....................................................... Roche Diagnostics 

Calf Serum....................................................... BioHyb 

DMEM, High Glucose...................................... Invitrogen Inc. 

Fibronectin……………………………………… Sigma 

Collagen III……………………………………… Sigma 

Vitronectin  ……………………………………… Sigma 

 

3.1.9 Protein Markers 
Protein Molecular Weight Marker (SM0431)……… MBI Fermentas 
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3.1.10 DNA Markers 
All DNA markers were from MBI Fermentas 

1 Kb DNA Ladder………………………………. SMO241 

3 Kb DNA Ladder………………………………. SMO321 

10 Kb DNA Ladder……………………………... SMO311 

 

 

3.1.11 Materials for Microarrays 
Score Card (Standards)…………………………….. Amersham Pharmacia 

CyScribe First Strand Kit……………………………. Amersham Pharmacia 

 

3.2 Equipment and Software 
 
3.2.1 Equipment 
 
Centrifuges: 

 Eppendorf 5415C 

 Eppendorf 5804 R 

 Hermle Z160M 

 Sorvall RC5B 

 Sorvall RC5B Plus 

Thermocycler: Gen Amp PCR System 2400, Perkin Elmer 

Eppendorf Thermomixer 5436 

Rocking Platform, Biometra 

Spectrophotometer: Ultrospec 2000, Amersham Pharmacia Biotech 

Sonicator: Branson Sonifier 250 

Aggregometer: Platelet Aggregation Profiler Model PAP-4, BioData Corporation 

Fluorescence Scanner: Odyssey-Licor 

UV-Transilluminator: TFX-35M, Life Technologies (Now Invitrogen) 

CCD Video Camera Module XC-ST70 

Power Supplies: 

 Biometra Standard Power Pack P25 

 Gene Power Supply GPS 200/400, Amersham Pharmacia Biotech 

pH-Meter: PHM 92 LAB pH Meter, Radiometer 

Speed Vac: Speed Vac  Plus SC 110A, Savant 

Vortex: Vortex Genie 2, Scientific Industries 

Developer: X-OMAT M35, Kodak 

DNA Electrophoresis Chamber: Mini Sub DNA Cell, BioRad 
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Semi Dry Transfer Devise: Fast Blot B33, Biometra 

Microscopes: 

 Axiovert 25, Zeiss 

 Axiovert 200, Zeiss 

Microtiter Plates Counter: Wallac Victor2 1420 MultiLabel Counter, Wallac 

Cell Counter: Casy  Cell counter, Schäfer System 

Confocal Laser Scanner (for microarray): ScanArray 4000, Perkin Elmer 

Hybridization Station (for microarray): Amersham Pharmacia 

 

3.2.2 Software 
Imaging 
Fast Capture Version 2.2.0, Fast Multimedia  

Odyssey Version 1.0.58;   Li-Cor Bioscience  

MetaMorph Version 4.6 

NIH Scion Image 
Cell Counter 

Casy  1 and Casy  Stat Version 2.1;   Schärfe System GmbH 

Microtiterplate Reader 

Wallac 1420 Version 2.0;   Wallac Oy 

Microarrays 
Acquisition: ScanAlyze; Stanford University 

Analysis: GeneSpring; Silicon Genetics 
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4. Methods 
 
4.1 Cell Culture 
 
4.1.1 Isolation of mouse cardiac fibroblast. 
  Two 3-months-old mice of each phenotype (VASP+/+ and VASP-/-) were narcotized 

with ether. The hearts were excised, submerged in cold PBS and cut into pieces with a tissue 

chopper. The pieces were washed with Earl’s buffer and cells were dissociated with 1mg/ml 

Collagenase/Dispase for 30 min at 37°C.  After the incubation, the tissue pieces had settled 

down and the supernatant containing the isolated cells was spun at 800x g for 5 min. The 

pelleted cells were resuspended in DMEM, 10% calf serum and transferred to a 25 cm2 

culture flask. Every 3 days, the cells were trypsinized (0.1% trypsine), counted (CASY 1 cell 

counter) and transferred to a new flask at a density of 5x103 cells/cm2. After 3 to 4 weeks in 

culture, the isolated cells became spontaneously immortalized lines [86]. 

Phosphate-buffer saline (PBS) 
 140 mM NaCl  

2,7 mM KCl  

8,1 mM Na2HPO4  

1,5 mM KH2PO4 

pH 7,4 

Earl’s buffer  
 6,8 g/l NaCl 

 0,4 g/l KCl 

 0,125 g/l NaH2PO4 

 1 g/l Glucose 

 0,05 g/l Phenol Red 

 2,45 g/l Tris 

pH 7,5 
 

4.1.2 Cell Passage  
Every 3 days cells from a 6-cm dish were washed once with PBS, trypsinized by 

adding 0,1% trypsine in PBS for a few minutes until the cells adopt a rounded shape. Then 

the trypsine solution was sucked out and cells were incubated for 1 or 2 min at 37ºC to allow 

to detach. Cells were resuspended in DMEM, 10% calf serum and counted with a CASY 1 

cell counter.  2,5x103 cells were then replated on 6-cm dishes containing 5 ml of DMEM, 10% 

calf serum. 
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4.1.3 Cell Counting 
A volume of 100µl of the cell suspension was diluted in 10 ml PBS and counted with 

the CASY 1 cell counter as instructed by the manufacturer. 

 

4.1.4 Cell Cloning 
 Cells were seed on 96-well plates at a density of 0,5 cells/well. Plates were 

controlled regularly until groups of growing cells were seen in some wells. Then cells were 

trypsinized from each well and seeded into 6-cm dishes. When they reached 80% confluence 

cells were passaged as usual.  

 

4.1.5 Cell Freezing and Storage 
 Cells were trypsinized as described above, collected in DMEM with 10% calf serum, 

counted and pelleted. The pellet was resuspended in freezing medium to a final 

concentration of 106 cells/ml, and aliquoted into 1 ml cryotubes. The aliquots were stored 

over night at –80ºC and then in Liquid N2. 

 

Freezing Medium 
 10% DMSO in Fetal Calf Serum 

 

4.1.6 Immunofluorescence 
Cells were seeded at low density on coverslips washed with PBS containing 0.9 mM 

CaCl2, 0.5 mM MgCl2 and fixed with 3.7% formaldehyde in PBS for 20 min on ice. Cells were 

permeabilized for 5 min with 0.2% Triton X-100 in PBS at room temperature. After washing 

twice with PBS, cells were incubated with α-VASP antibody (M4 affinity purified, 1:500) 1 

hour at 37°C in a moist chamber. The coverslips were washed twice with PBS and incubated 

with Cy2 anti-rabbit IgG and/or OregonGreen phalloidine (Molecular Probes) or Rhodamine 

phalloidine (Molecular probes) for 1 hour at 37°C in a moist chamber. Then the coverslips 

were washed, rinsed in water and mounted in Mowiol 4/88 solution. Samples were analyzed 

by a Leitz Aristoplan microscope and photographed with a Wild MPS46 camera (Leitz) or by 

an Axiovert 200 microscope connected to a digital camera. 

 

4.1.7 Wound-Healing assay 
Cells were seeded on glass coverslips or in 25 cm2 culture flask and allow to grow 

until confluence with DMEM supplemented with 10% calf serum. Then, a scratch was made 

with a sterile pipette tip across the monolayer. Pictures of the migrating cells were taken at 

time 0 and 15 h after the scratch with a digital camera using MetaMorph 4.1 software 
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(Imaging System) connected to an Axiovert 25 microscope. Alternatively, cell migration was 

recorded by time-lapse video microscopy. 

 

4.1.8 Cell adhesion assay 
96-well plates were coated with Fibronectin, Collagen III or Vitronectin at different 

concentrations and incubated over night at 4°C. The wells were blocked with 1% BSA in PBS 

for 2 hours at room temperature, and washed twice with PBS. Prior the assay, cells were 

incubated for one hour with or without 100 µM 8-pCPT-cGMP. Cells were harvested with 

PBS/5 mM EDTA, counted, washed twice with serum-free DMEM containing 0.1% BSA, and 

resuspended at 105 cells/ml. 100 µl of the cell suspension was added to each well and 

allowed to attach for 30 min. Non-adherent cells were removed by washing twice with serum-

free DMEM/1% BSA, and attached cells were fixed and permeabilized with 3 mg/ml Sigma 

104 phosphatase substrat, 0,5% Triton X-100, 50 mM sodium acetate (pH 5,0) and 

incubated for one hour at 37°C. The reaction was completed by adding 50 µl of 1 N NaOH. 

Absorbance was measured at OD405 on a microtiter plate reader. A standard curve was set 

for each cell line. 

 

4.1.9 Detachment 
Detachment was followed under an Axiovert 25 microscope connected to a digital 

camera using MetaMorph 4.1 software (Imaging System). Cells seeded on dishes were 

carefully washed with PBS and treated for the time indicated with 0,1 % trypsine in PBS or 

PBS-EDTA solution. Pictures of the detaching cells were taken every minute after addition of 

the trypsine or EDTA solution. 

 

4.1.10 Flow Cytometry analysis of ββββ1 and ββββ3 integrins  
Cells were harvested with PBS/ 5 mM EDTA, counted and resuspended in PBS at 106 

cells/ml. 105 cells were incubated with 0.05 µg/µl final concentration of FITC-conjugated 

hamster anti-rat CD29 or FITC-conjugated hamster anti-mouse CD61 monoclonal antibodies 

(PharMingen) for 10 min in the dark. The staining for ß3 and ß1 integrins was measured and 

analyzed by flow cytometry using a Becton Dickinson FACSCalibur. 

 
 

4.2 DNA Manipulation 
 

4.2.1 DNA Isolation.  
Approximate 1 cm of the tail tip of an anesthetized mouse was cut and incubated with 

500 µl of Proteinase K buffer containing 0,2 mg/ml Proteinase K over night at 55ºC with 
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gently agitation. 75 µl of 8 M potassium acetate and 500 µl Chloroform were added and 

samples were incubated 30 to 45 min at –20ºC.  Then samples were centrifuged at full speed 

for 8 min, the aqueous phase was transferred to a new tube, and 2 volumes of ethanol p.a. 

were added and mixed 8 to 10 times by inversion. DNA was collected by centrifugation at 

1700 x g, washed with 70% ethanol, dried at 50ºC for 5 min or at room temperature for 10 to 

15 min. DNA was resuspended in 150 µl H2O, OD260/280 was measured and samples were 

diluted to 0,1 µl/µg and stored at 4ºC.  

 

Proteinase K buffer: 
0.5 % (w/v) SDS 

50 mM Tris-HCl pH 8.0 

3,75 mM EDTA 

0,1 M NaCl 

  

4.2.2 DNA precipitation 
 Two volumes of ethanol (96 %) and 3 M sodium acetate pH 5,2 were added to the 

DNA sample and centrifuged at full speed in a microcentrifuge for 20 to 30 min The 

supernatant was discarded and the pellet washed with 75% ethanol. After 10 min of 

centrifugation the supernatant was discarded and the tube was shortly centrifuged to collect 

the rest of ethanol. Samples were dried 2 to 3 min (Speed-vac) and the precipitated DNA 

was resuspended in an appropriate volume of water. 

 

4.2.3 Genotyping. 
Genotyping of VASP -/- and VASP +/+ mice was performed by PCR.  
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Figure 9: Scheme of VASP+/+ and VASP-/- alleles. In the VASP-/- allele exons 4 to 11 
are replaced by a Neomycin resistance cassette. 

 
 
 
 
For the VASP+/+ PCR the GIK 269 and the GIK 270 primers (GIK 296: 5’-TTA GCT TGG TTT 

GGG GAC TGA ACC AGC CTC CTT TC-3’; GIK 270: 5’-CAG CCA CTC CCT GGT ACT 

TCC TTA CCT TGC TCA C-3’) were used. These primers hybridize in the intron before exon 

5 and in exon 6 respectively. This region has been replaced by the Neo Cassette in the 

VASP-/- mice (see Figure 5).  

Figure 10: Detail of exons 5 and 6 where the primers for the wild type PCR 
hybridize. 
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The VASP-/- PCR was performed using the GIK 273 (sense) and GIK 274 (anti-sense) (GIK 

273: 5’-CGA ATA GCC TCT CCA CCC AAG CGG CCG GCG AAC-3’; GIK 274: 5’-GGC 

CAG CAG AAC AGT ATT GGA GAA CTA CCA GG-3’) primers that hybridize in the Neo 

Cassette and in the VASP intron between the Neo Cassette and exon 12 respectively (see 

Figure 7). 

 
Figure 11: Detail of Neo Cassette region where the primers for the knock out PCR 
hybridize. 

 
 
 
 
 
In both cases, 500 ng of genomic DNA were mixed with Taq PCR Master Mix (Qiagen) and 

250 ng of each primer as follows: 

 
 
 Volume Stock Solution 
Genomic DNA 5 µl (500 ng) 0,1 µg/µl 
Taq PCR Master Mix 15 µl  2x 
Primer Set (GIK273/GIK274 
or GIK269/GIK270) 

5 µl (250 ng of each 
primer) 0,1 µg/µl 

H2O 5 µl  
   
Final Volume 30 µl  
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The PCRs were run according to the following programs: 

 

VASP +/+ PCR  VASP-/- PCR 
Temperature Time  Temperature Time 
95 ºC 5 min  95 ºC 5 min 

95 ºC 1 min   95 ºC 1 min  

65 ºC 1 min 30 cycles  65 ºC 1 min 30 cycles 

72 ºC 1 min   72 ºC 2 min  

72 ºC 10 min  72 ºC 10 min 

4 ºC ∞  4 ºC ∞ 

 

The PCR products (20 to 30 µl of the sample) were analyzed on 1,2% agarose gels 

containing Etidium Bromide, and compared to size markers. 
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Figure 12: Example of genotyping
by PCR. Upper part of the gel shows
the result of a VASP+/+ PCR (Wild type
PCR) The lower part represents the
VASP-/- PCR. Het: Heterocygotes. First
line: control without template. 
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4.2.4 DNA Electrophoresis 
 For preparation of gels 1% w/v agarose was dissolved in TAE buffer by boiling for 3 

min in microwave oven (450 Watts setting). When the agarose solution had cooled down to 

approximately 60ºC, Etidium Bromide was added and the solution was poured into gel 

chambers (BioRad). Samples disolved in DNA Loading Buffer (MBI Fermentas) were load 

into the slots of the gels and subjected to a constant voltage of about 100 V. Bands were 

visualized by exposing the gel to UV light and pictures were taken with a CCD Video Camera 

using the Fast Capture software (Version 2.2.0). 

TAE Buffer 
 0,04 M Tris Acetate  

1 mM EDTA 

 

4.2.5 Stable transfection of mouse cardiac fibroblasts 
 The VASP deficient mice were generated by introducing in the VASP gene by 

homologous recombination the neomycin-resistance gene in the inverted position, between 

exons 3 and 12. Although the probability of having the neomycin resistance expressed in 

these cells is very low due to the inverted position in the genome, the vector used for stable 

transfection of a transgene in VASP-/- cells contains a hygromycin resistance gene, instead of 

the classic neomycin resistance gene, in order to avoid any interference with the neomycin 

resistance during the selection. VASP-/- cells were transfected with a vector containing the 

full-length human VASP cDNA and hygromycin resistance gene using FuGENE -6 

transfection reagent. One day after transfection cells were exposed to the selective medium 

(DMEM, 10% calf Serum, 50 µg/ml Hygromycin B). Transfected cells were maintained in 

selective medium routinely and transferred to DMEM 10% calf serum one day before 

experiments. 

 

4.3 RNA Manipulation 
 
4.3.1 RNA isolation from Mouse Cardiac Fibroblasts (MCFB) 

 Cells were seeded in 15 cm-dishes some days before the experiment in order to 

have a subconfluent culture when the RNA should be isolated. Cell plates were washed 

twice with PBS and 7,5 ml of Trizol was add to each plate. Cells were harvested with a 

rubber policeman in 10 ml tubes and incubated for 10 min at room temperature. Then 2 ml of 

Chloroform were added to each tube and immediately mixed vigorously. Samples were 

incubated 2,5 min at room temperature before they were centrifuged at 12000 x g (rotor 

SS34) for 15 min at 4ºC. The upper phase was transferred to a new tube, 3,75 ml 
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isopropanol was added and after 10 min of incubation RNA was collected at (12000 x g) 10 

min at 4ºC. The RNA pellet was washed with 7,5 ml of 75% cold Ethanol. For this purpose 

sample was mixed on a vortex , centrifuged for 5 min at 6000 x g (rotor SS34) at 4ºC and the 

pellet was resuspended in water. In order to eliminate any traces of DNA, samples were 

treated with 2 units DNase I in 0,1 volume DNase I buffer (Ambion) for 30 min at 37ºC. To 

stop the reaction 0,1 volume of DNase inactivation buffer (Ambion) was added and after 2 

min samples were centrifuged at full speed in a tabletop centrifuge for 1 min The 

supernatant, containing the RNA, was transferred to a new tube and stored at –80ºC. 

 

4.3.2 Northern Blotting. 
Northern blots (Formaldehyde-Based System Northern Max ; Ambion) were done 

according to the manufacturer’s instructions. After transfer, nylon membranes were 

crosslinked (Stratalink), prehybridized with DIG Easy Hybridization Buffer (Roche) at 50°C for 

30 min, and hybridized over night at 50°C with 5 µl of probe in 10 ml of DIG Easy 

Hybridization Buffer. Probes for Evl and GAPDH were obtained by RT-PCR using the 

following primers: 5’ -GAGCAGCAGCACCGCCAGGAG-3’; 5’- 

GGACAGCAACGAGGACACAGG-3’ for Evl (Product: 590 bp) and 5’- 

TTAGCACCCCTGGCCAAGG-3’; 5’CTTACTCCTTGGAGGCCATG-3’ for GAPDH (Product: 

540 bp). The RT-PCR product was used as a template for a PCR with DIGlabeled dNTPs 

(Roche) and the same primers.  

Membranes were washed twice with 2 x SSC (300 mM NaCl; 30 mM tris-Na-Citrate, 

pH 7) at room temperature for 5 min and twice with 0.1 x SSC, 0,1% SDS for 15 min at 68°C. 

The DIG Detection System (Roche) was used for detection. 

SSC Buffer (2x) 
 300 mM NaCl  

30 mM tris-Na-Citrate  

pH 7 
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4.3.3 RT-PCR 
 RNA was isolated as described above and RT-PCR was performed using the One 

Step RT-PCR kit from Qiagen according to manufacturer’s instructions. A touchdown 

program was used for the cycles: 

 Temperature 
(ºC) 

Time Cycles 

RT-PCR 50 30 min  
 95 15 min  

Amplification 94 2 min  
 94 30 sec  

 65 30 sec 5 cycles 

 72 1 min  

 94 30 sec  

 60 30 sec 5 cycles 

 72 1 min  

 94 30 sec  

 55 30 sec 20 cycles 

 72 1 min  

 72 2 min  

 4 ∞  

  

Results were analyzed in 1% agarose gels containing Etidium Bromide, as described for 

DNA electrophoresis (see section 4.2.4.). 

 
4.3.4 Microarrays 

Microarray analysis were performed by Dr. Susanne Kneitz at the Microarray Facility 

of the Interdisziplinäres Zentrum für Klinische Forschung (IZKF), University of Würzburg. 

Mouse cDNA arrays with 4000 randomly selected known genes and 500 ESTs were 

used. Furthermore the array contained GAPDH (spotted 64x) and 16 commercially available 

standards (Score Card, Amersham Pharmacia) for spot finding and scanning. 

RNA extraction was performed as described under 4.3.1 (RNA isolation from MCFB). 

CyDye-labeled first strand cDNAs were generated using either Cy3 or Cy5 labeled dCTP 

(see 4.3.4.1). The Cy3 and Cy5 labeled probes were mixed and hybridized to the array over 

night. After washing to remove the unhybridized probe, the fluorescent signals for both 

probes were read into two different image files with a confocal laser scanner (ScanArray 

4000).  
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Samples from VASP+/+, VASP-/- and reconstituted cells (RecVASP) were analyzed by 

this method. RecVASP and the VASP-/- cells were both compared to the VASP+/+ cells for the 

analysis of the data. 

Data were acquired using a freely available program from M. Eisen, Stanford University 

(ScanAlyze). Afterwards, the data sets were normalized by setting the average of the 

logarithmic intensity values for each probe to 0 and standard deviation to 1. Relative 

intensities (VASP-/-/VASP+/+ or RecVASP/VASP+/+) were calculated. 

For data analysis the program GeneSpring (Silicon Genetics) was used.  

Differences in expression were detected by the 'drawable gene' function. This tool allows to 

define an intensity profile. The program then finds genes, which match this profile with a 

certain, user defined correlation. In this case, expression patterns of VASP-/- cells were 

supposed to be up or down regulated as compared to those from VASP+/+ cells, whereas the 

reconstituted cells were not allowed to show any difference to VASP+/+ cells. A correlation 

factor of 0.975 was used. 

 
4.3.4.1 Labelling first-strand cDNA with Cy3- or Cy5-nucleotides: 

 This protocol for the preparation of labelled cDNA has been accomplished using the 

CyScribe First-Strand Kit supplied by Amersham Pharmacia Biotech. 

Total RNA isolated from MCFB was mixed with random nonamers and anchored 

oligo(dT) as follows:  

- total RNA, 10µg – 20 µg  X µl 

- random nonamers   1 µl 

- anchored oligo(dT)   1 µl 

- water (supplied or DEPC treated) ad 11 µl 

 

 

After mixing gently by pipetting up and down, samples were incubated for 5 min at 

70° C and then kept for 10 min at room temperature. Then samples were spun down for 

30 s and put on ice. For first strand cDNA synthesis, dCTP CyDye-labeled nucleotides 

and CyScript reverse transcriptase were added to the samples as follows: 

- 5 x CyScript buffer   4 µl 

- 0.1 M DTT    2 µl 

- dCTP nucleotide mix   1 µl 

- dCTP CyDye-labeled nucleotide 1 µl 

- CyScript reverse transcriptase 1 µl 

Total               20 µl 
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Samples were mixed vigorously, spun 30 s and incubated for 1,5 h at 42° C. 

 
4.3.4.2 Purification of labeled cDNA 

RNA was degradated by addition of 2 µl of 2,5 M NaOH and by incubating the samples 

for 15 min at 37° C in water bath. Then, 10 µl of 2 M HEPES free acid were added, 

samples were mixed and spun down 30 s. 

Nucleotides and short oligomers were removed by passage through AutoSeq G-50 

columns. 

4.3.4.2.1 Preparation of the AutoSeq G-50 columns 
The resin was resuspended in the column by vortexing gently. The cap was loosened a 

quarter of a turn and the bottom closure was snapped off. The column was placed in a 2 

ml tube as support and spun (exactly) for 1 min at 2000 x g. Columns were used 

immediately after preparation to avoid drying of the matrix. 

4.3.4.2.2 Purification of the labeled cDNA 
An AutoSeq G-50 column was placed in a new tube and the sample was slowly applied 

to the center of the angled surface of the compacted resin bed, being careful not to 

disturb the resin. After 1 min centrifugation at 2000 x g the flow through was collected 

and the column was discarded. 
4.3.4.3 Microarray hybridization 

For dual color hybridization Cy3- and Cy5-labeled cDNAs were combined into one tube 

and mixed with:  

 

labeled cDNA    121 µl   

PolyA  (0.5 mg/ml)    1.5 µl 

Formamide   62,5 µl 

5x SSC    62,5 µl 

10% SDS     2,5 µl 

H2O     ad 250 µl 

 

After 5 min incubation at 95° C samples were spun for 2 min to cool down and to collect the 

condensate. Samples should not be put on ice. If necessary, the probe can be kept at 70° C 

until the slide is ready. 

Slides should be prehybridized with Prehybridization Solution  

Prehybridization Solution 
25% formamide 

5X SSC 

0,1% (w/v) SDS 

1% (w/v) BSA (optional, to reduce background) 
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The prehybridization solution was warmed on a hot plate to 45-50° C with constant stirring. 

The slide was put into the prehybridization buffer for 45 min at 42° C, then rinsed with 

distilled water and centrifuged in a 50 ml tube until it dried not more than 800 rpm for 5 min. 

 
4.3.4.4 Hybridization 

For hybridization a hybridization station (Amersham Pharmacia Biotech) was used. 
4.3.4.5. Scanning 

For scanning a ScanArray4000 (Packard Biochip) was used. 

 
 

  
4.4 Protein Manipulation 
 
4.4.1 Determination Protein Concentration  
 Protein concentrations were determinated using the DC BioRad Protein Assay. This 

assay is based in the Bradford method for determination of protein concentration. BSA 

standard solutions and samples (0; 0,25 ; 0,5 ; 0,75 ; 1 µg/µl - 25 µl each) were mixed with 

the reagent as follows: 

 Standard or Sample:  25 µl  

 Reagent A‘:   125 µl 

 Reagent B:   1 ml 

 (Reagent A‘ = 20 µl Reagent S in 1 ml reagent A) 

Samples were mixed vigorously and after 15 min incubation at room temperature the OD750 

was measure. Absorbance obtained was correlated to the protein concentration according to 

the standard values. 

   

4.4.2 SDS-Polyacrylamide Gel Electrophoresis (PAGE) and Immunoblotting 
(Western Blot) 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed using 12% or 8% (w/v) polyacrylamide separating gels [87]. Proteins were loaded 

into the slots of the gel and separated with a current of 100 V. Then, proteins in the gel were 

transfer onto nitrocellulose membranes with a semi-dry blotter at 300 mA for 30 min 

according to manufacturer’s instructions.  

After the transfer, membranes containing the proteins were stained with Ponceau dye 

and subsequently blocked with 2% milk in PBS for 30 min. Membranes were incubated 2 

hours to overnight with the first antibody freshly diluted in TBS-T-2% milk. Then, membranes 

were washed 3 times with TBS-T-2% milk, and incubated with the secondary antibody 
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(diluted in TBS-T-2% milk). According to secondary antibody used, Western blots were either 

analyzed using the enhanced chemo luminicence (ECL, Amersham) detection kit, or by 

scanning with the Odyssey scanner (Licor). 

 

Separating Gels 
 

 Stock  12%  8% 
acrylamide/bisacrylamide 30% (w/v) 

(29:1) 

 3,2 ml  2,145 ml 

Tris-HCl (pH 8.6) 1 M  3 ml  3 ml 

SDS 10% (w/v)  0,08 ml  0,08 ml 

APS 10% (w/v)  0,075 ml  0,075 ml 

H2O   1,64 ml  2,7 ml 

TEMED 99%  0,005 ml  0,005 ml 

Total Volume   8 ml  8 ml 

 
 

 

 

Stacking gel 
  

 Stock  4% 
Acrylamide/Bisacrylamide 30% (w/v) 

(29:1) 

 0,65 ml 

Tris-HCl (pH 6,8) 1 M  0,65 ml 

SDS 10% (w/v)  0,05 ml 

APS 10% (w/v)  0,025 ml 

H2O   3,6 ml 

TEMED 99%  0,005 ml 

Total Volume   5 ml 

 
  

Sample Loading buffer (3x) 
 150 mM Tris HCl, pH 6,8  

300 mM DTT  

6% (w/v) SDS  

0,03% (w/v) Bromophenol Blue  

30% glycerol 
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Electrophoresis buffer 
 25 mM Tris, pH 8,6 

 192 mM glycin 

 0,1% (w/v) SDS 

 

Transfer buffer 
 25 mM Tris, pH 8,3  

192 mM glycin  

20% (v/v) methanol 

 

TBS-T 
 25 mM Tris , pH 7.5 

140 mM NaCl  

2,7 mM KCl  

0,01% Tween 20 

 

4.4.3 Two-Dimensional Gel Electrophoresis 
 Cells were harvested in Laemmli SDS sample buffer and proteins were precipitated 

and SDS was removed with chloroform/methanol extraction. Isoelectric focussing for two-

dimensional gel electrophoresis was performed using the Protean-IEF cell (BioRad) 

according to the manufacturer’s instructions. 100 µg of protein were solubilized in 350 µl of 

solubilization buffer. Cell extracts were loaded on a 17 cm ReadyStrip IPG strip (linear pH 

range 3-10) (BioRad) during 16 - 24 h active rehydration at 50 V. Focusing was for 30 min at 

250 V, 30 min at 500 V, followed by a linear increase to 4000 V within 5 h, and a final step at 

4000 V for 16 h. After equilibration in equilibration buffer, the strips were immediately applied 

to vertical SDS gels (10% acrylamide/bis-acrylamide). Gels were then transferred onto 

nitrocellulose membranes and Pak 1 was detected by immunoblotting with N20 antibody. 

 

 

Solubilization buffer 
 7 M urea  

2 M thiourea  

4% (w/v) CHAPS  

15 mM dithiothreitol  

0,5% (w/v) Bio-Lyte  

3/10 Ampholyte (pH range 3-10)  

10 nM Okadaic acid 
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Equilibration Buffer 
 50 mM Tris HCl pH 8.8  

6 M urea  

30% (w/v) glycerol  

2 % (w/v) SDS 

 

4.4.4 Preparation of GST-PBD Sepharose Beads for Rac Pull Down assay 
Bacteria containing the expression plasmid for GST fused to the Rac/Cdc42 binding 

domain of Pak (GST-PBD) were cultured over night in LB-Ampicillin medium at 37ºC with an 

agitation of 200 rpm until they reached an OD600= 1 (log phase). The expression of the fusion 

protein was induced by addition of 0,5 mM IPTG, 3 h incubation at 37ºC.  Bacteria were 

pelleted by centrifugation at 5000 x g for 15 min at 4ºC and resuspened in PBS. Lysozyme 

was added to a final concentration of 1 mg/ml and lysis was carried out for 30 min on ice. 

Then 10 ml of 0,2% (w/v) Triton X-100 in PBS and 5 µg/ml each of DNase and RNase were 

added per 100 ml of original culture medium. After 10 min incubation at 4ºC the suspension 

was centrifuged at 3000 x g for 30 min at 4ºC in order to pellet intact cells membranes rest 

and chromosomal DNA. The supernatant containing the expressed GST-PBD was collected 

and 1 mM DTT was added. A 50% (v/v) slurry of glutathion sepharose was added. The GST-

PBD was allowed to bind to the glutathion sepharose beads for 30 min at room temperature 

with gentle agitation.  The sample was then centrifuged at 500 x g, the supernatant was 

removed and the GST-PBD sepharose beads were washed three times with PBS. Finally the 

beads were resuspended in one volume of PBS and stored in 50 µl aliquots at –80ºC.   

 

LB-medium 
 1% (w/v) Bacto-tryptone  

0,5% (w/v) Bacto-yeast extract  

1% (w/v) NaCl  

50µg/ml Ampicillin 

  

 

4.4.5 Determination of Rac activation (Rac Pull Down Assay) 
 Activated Rac was determined as described [88]. Cells were starved for 24 h with 

serum free DMEM and stimulated with 5 ng/ml of PDGF-BB [89] for the times indicated. After 

stimulation, cells were washed twice with ice cold PBS and harvested in 2-fold lysis buffer. 

After lysis for 15 min at 4°C, the samples were centrifuged at full speed in a microcentrifuge 

at 4°C, and 50 µl of the supernatant was used to estimate the total amount of Rac. The rest 

of the supernatant was mixed with approximately 20 µg of the Rac-GTP binding domain of 

PAK as a GST fusion protein (GST-PBD for 45 min at 4°C. Then the samples were 
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centrifuged at 320 x g at 4°C and the beads were washed 3 times with washing buffer. 

Finally, the pelleted beads were resuspended in 15 µl of Laemmli sample buffer and 

analyzed by 12% SDS-PAGE using an anti-Rac antibody. As controls, unstimulated cells 

were lysed and clarified as described above. 0.1 volume of 150 mM EDTA was added to the 

samples, immediately followed by an addition of 200 µM GTPγS to the positive control or 1 

mM GDP to the negative control. The samples were incubated for 15 min at 30°C. Then 

reactions were stopped by addition of MgCl2 to a final concentration of 60 mM and transfer to 

4°C. The samples were then incubated with the GST-PBD construct coupled to GSH-

sepharose beads, washed and analyzed as described above. The pulled down material and 

aliquots of the supernatants were also analyzed by SDS-PAGE to check for the efficiency of 

the method. 

  

MCFB Lysis buffer (2x) 
50 mM Tris-HCl, pH 7,5 

10 mM MgCl2  

200 mM NaCl  

2% (v/v) Nonidet P-40  

10% (w/v) glycerol  

0,5% (w/v) sodium deoxicholate  

Proteases inhibitors (Complete Mini , Roche) 

 

Platelet Lysis buffer (2x) 
50 mM Tris-HCl, pH 7,2  

1% (v/v) Triton X-100  

0,5% (w/v) sodium deoxicholate 

0,1% (w/v) SDS  

500 mM NaCl  

10 mM MgCl2  

Proteases Inhibitors (Complete Mini , Roche) 

 

Washing buffer 
50 mM TrisCl, pH 7,5 

10 mM MgCl2  

150 mM NaCl  

1% (v/v) Triton X-100 

 5 mM EGTA  

Proteases inhibitors (Complete Mini , Roche) 
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4.4.6 Pak In-Gel Kinase Assay 
 MCFB samples, either unstimulated or stimulated 2 min with FCS, were loaded on an 

8% SDS-polyacrylamide gel containing 1 µg/ml Myelin basic protein (MBP) dissolved in the 

gel mixture. After electrophoresis the gel was soaked twice in Buffer 1 at room temperature 

for 40 min and 20 min, respectively. The gel was then transferred to Buffer 2 for 2 h, with a 

buffer change after one hour. Then, the gel was incubated in Buffer 3 for 2 h, changing it 

again after one hour. Thereafter, the gel was soaked overnight at 4ºC in Buffer 4. The next 

morning, the gel was soaked in new Buffer 4 for a total of 90 min, with buffer changes every 

30 min. After this, the gel was incubated, first 30 min at room temperature, and then 30 min 

at 30ºC in Buffer 5  (Kinase Buffer). In order to perform the in-gel kinase assay, 25 µM ATP 

and 10 µl [P32]ATP (Amersham, Stock: 4500 Ci/mmol) were added to the Kinase Buffer, and 

the gel was incubated for other 30 min at 30ºC, with gentle agitation. After the reaction, the 

gel was incubated 6 hours in Wash Buffer, changing the solution frequently, and finally 

washed overnight at room temperature. The next morning the gel was stained with Coomasie 

Blue, dried, and exposed to Kodak X-OMAT film overnight.    

Buffer 1 
 20% (v/v) propanol 

 50 mM Tris-HCl pH 7,5 
 

Buffer 2 
 50 mM Tris-HCl pH 7,5 

 5 mM 2-Mercaptoethanol 
 

Buffer 3 
 50 mM Tris-HCl pH 7,5 

 6 M Guanidinium 
 

Buffer 4 
 50 mM Tris-HCl pH 7,5 

 0,04% Tween 40 

5 mM 2-Mercaptoethanol 

 
Buffer 5 or Kinase Buffer 

 10 mM HEPES pH 8.0 

 1 mM DTT 

 0,1 M EGTA 

 1 mM EDTA 

 5 mM MgCl2 
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Wash Buffer 

 5% TCA 

 1% Na-Pyrophosphate 
 

Coomasie Blue Staining Solution 
 0,25 g Coomasie Brilliant Blue R250 

90 ml MeOH:H20 (1:1)  

10 ml glacial acetic acid 
 

Coomasie Destaining Solution 
20% MeOH 

30% glacial acetic acid 

 

 

4.5. Blood Manipulation 
 
4.5.1 Blood sampling (mice) 

 Adult mice were narcotized with ether, a midline abdominal incision was made and 

the organs were moved to one side to facilitate the location of the inferior Vena cava, which 

is then punctured using a 0.60 mm needle [90]. The Blood sample is withdrawn into a 2 ml 

plastic syringe containing 1/10 volume of CCD buffer as anticoagulant. 1 to 2 ml of blood can 

be obtained from one adult mouse.   

Alternatively, blood from the retroorbital veins was taken with a capillary from narcotized 

mice into a tube containing 1/10 volume of CCD buffer. With this method, only a maximum of 

700 µl of blood can be taken per mouse. However, the animal survives and blood can be 

taken again one week later (4 to 5 times from the same mouse). 

 

CCD Buffer 
 100 mM tri-Na-citrate, pH 6.5  

7 mM citric acid  

140 mM glucose  

0,5 mM acetylsalicylic acid  

1 mM EGTA 
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4.5.2 Preparation of Washed Mouse Platelets. 
 Blood from 3 to 4 mice was pooled for each experiment and diluted with ½ volume of 

Hepes Tyrode Buffer pH 6.3 [66]. Apyrase was added to a final concentration of 1 Unit/ml 

and centrifuged at 200 x g for 8 min at 37ºC. The upper layer (platelets rich plasma, PRP) 

was transferred to a second tube and centrifuged at 1000 x g for 5 min at 37ºC. The pelleted 

platelets were then washed by resuspension with Hepes-Tyrode buffer pH 6.3 and 

centrifuged again at 1000 x g for 5 min. Finally, the pelleted platelets were resuspended at a 

density of approximately 1x109 platelets/ml in Hepes-Tyrode Buffer containing 2 mM Ca2+, 

pH 7,3. Platelets were counted using a Neubauer chamber. 

 

Hepes-Tyrode Buffer (without Ca2+) pH 6,3 
137 mM NaCl  

2 mM KCl 

0,3 mM NaH2PO4  

12 mM NaHCO3  

1 mM MgCl2  

5,5 mM Glucose  

5 mM Hepes sodium salt 

0,35% (w/v) BSA 

 

Hepes-Tyrode Buffer (with Ca2+) pH 7,3 
137 mM NaCl  

2 mM KCl 

0,3 mM NaH2PO4  

12 mM NaHCO3  

1 mM MgCl2  

2 mM Ca2+ 

5,5 mM Glucose  

5 mM Hepes sodium salt 

0,35% BSA 

 

4.5.3 Preparation of Washed Human Platelets. 
 Venous blood from healthy volunteers was collected into a tube containing CCD 

Buffer (see 4.5.1) with 15 mM EGTA. Platelet rich plasma (PRP) was obtained after 

centrifugation of whole blood at 300 x g in a swinging bucket rotor for 20 min. PRP was 

incubated for 10 min at room temperature. Platelets were pelleted by centrifugation at 400 x 

g for 10 min, resuspended in resuspension buffer at a final concentration of 2x108 

platelets/ml and left for 20 min at room temperature prior to use. 
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Resuspension Buffer pH 7,4 
 145 mM NaCl 

 5 mM KCl 

 1 mM MgCl2 

 10 mM Hepes 

 10 mM Glucose 

  

4.5.4 Stimulation of Washed platelets 
 Platelets were preincubated for 20 min (unless otherwise indicated) with or without 

cGMP or cAMP analogs at 37ºC. Then 300 µl of the platelet suspension was transferred to a 

glass tube with constant stirring in an aggregometer to monitor aggregation of the sample. 3 

µl of U46619 (Thromboxan A2 (TxA2) analog) (final concentration 1 µM) was added for the 

indicated time and the stimulation was stopped by adding 300 µl of 2x cold platelet lyses 

buffer (see 4.4.5, Determination of Rac activation). Samples were immediately transferred to 

ice.  

 

 

4.5.5 In vivo fluorescence microscopy  
(By Dr. Massberg, Deutsches Herzzentrum und 1. Medizinische Klinik, Klinikum rechts der 
Isar, Technische Universität München ) 
 

Platelets isolated from VASP-/- or VASP+/+ mice as described [91], were labeled ex 

vivo with 5-carboxyfluorescein diacetat succinimidyl ester (DCF). Fluorescent platelets (2 x 

108/250µl) were infused intravenously via polyethylene catheters (Portex, Hythe, England) 

implanted into the right jugular vein of VASP-/- or VASP+/+ recipient mice and were visualized 

in situ by in vivo video microscopy of the right common carotid artery. Platelet endothelial cell 

interactions were monitored using a Zeiss Axiotech microscope (20 x water immersion 

objective, W 20x/0.5, Zeiss) with a 100 W HBO mercury lamp for epi-illumination. All 

videotaped images were evaluated using a computer-assisted image analysis program (Cap 

Image 7.1, Dr. Zeintl, Heidelberg). The number of adherent platelets was assessed by 

counting the cells that did not move or detach from the endothelial surface within 10 

seconds. 
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4.5.6 Assessment of platelet adhesion following vascular injury – inhibition of 
platelet adhesion by nitric oxide 
(By Dr. Massberg, Deutsches Herzzentrum und 1. Medizinische Klinik, Klinikum rechts der 
Isar, Technische Universität München ) 
  

Wild type mice were anesthetized by intraperitoneal injection of a solution of 

midazolame (5 mg/kg body weight, Ratiopharm, Ulm), medetomidine (0.5 mg/kg body 

weight, Pfizer, Karlsruhe) and fentanyl (0.05 mg/kg body weight, CuraMed Pharma GmbH, 

Munich). Polyethylene catheters (Portex, Hythe, England) were implanted into the right 

jugular vein. The right common carotid artery was dissected free and ligated vigorously near 

the carotid bifurcation for 5 min to induce vascular injury. Fluorescent wild type or VASP-/- 

platelets (2 x108/250 µl) were preincubated at room temperature for 5 min with either PBS 

(control) or the NO-donor spermine-NO (Alexis, Grünberg; 100 nM final concentration). After 

preincubation, the samples were prestimulated with 0.2 U/ml murine thrombin (Sigma) for 5 

min (at this concentration of thrombin, platelets were preactivated but do not aggregate). 

Subsequently, the fluorescent platelets were infused intravenously and platelet adhesion to 

the injured carotid artery was monitored in situ by in vivo video microscopy. Tethered 

platelets were defined as all platelets establishing initial contact with the injured vessel wall, 

followed by slow surface translocation (at a velocity significantly lower than the centerline 

velocity) or by firm adhesion; their numbers are given as cells per mm2 endothelial surface. 

The number of adherent platelets was assessed by counting the cells that did not move or 

detach from the endothelial surface within 10 seconds. 
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5. Results 
 

5.1 Mouse Cardiac Fibroblast (MCFB) 
 

5.1.1 Establishment of a mouse cardiac fibroblast cell line 
 

In order to study in more detail the role of VASP, mouse cardiac fibroblast cell linee 

were established from both VASP-wild type and VASP-deficient adult mouse hearts. 

When cells from normal mammalian tissues (that means not from tumors) are cultured in 

standard conditions in vitro they usually can be kept in culture for only a limited number of 

cell division cycles (about 50 for human fibroblasts and 5 - 10 for mouse fibroblast). 

Thereafter, they stop dividing and die. This process is called cellular or replicative 

senescence. However, during the propagation of some cell cultures, especially those derived 

from rodents, a few cells often arise that are able to escape senescence and divide 

indefinitely [92,93]. The immortal cells that overcome senescence are defined as a cell line. 

Although these immortal cells resemble normal cells in most aspects, the fact that they can 

divide indefinitely is reflecting one or more mutations that have altered their proliferative 

properties [93]. Nevertheless, cell lines are used widely for cell biology studies because they 

provide a source of standardized and genetically homogenous cells. 

This was the strategy used to establish a mouse cardiac fibroblast (MCFB) cell line 

from VASP+/+ and VASP-/- mice [86]. As described in the Materials and Methods section, cells 

isolated form the mouse heart were counted after splitting and were seeded in a new dish at 

a density of 5 x 103 cells/cm2. With this data the Cumulative Passage Doublings (CPD) was 

calculated as follows: 

∆n t= ln (Nt) – ln (No) 

ln (2) 
No= number of cells seeded on a dish 

Nt= number of cells counted at passage number t 

 

CPD= ∑∆n 
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A graphical representation of cell number at every passage vs. CPD allows visualizing how 

the primary cells go into a senescent period after 4 passages and then some of them can 

divide indefinitely as a cell line (compare the theoretical curve [93] with the one obtained for 

the VASP+/+ MCFB in figure 13) The cell line was considered established when ∆n  became 

constant. 
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Figure 13: A. Replicative Senescence, theoretical curve. The proliferative capacity of 
most somatic mammalian cells declines more or less exponentially with each doubling 
(finite life span). Cells from many rodent species may spontaneously escape senescence 
(infinite life span) [93] B. Curve showing the cell number vs. CPD for VASP+/+ cells. A 
similar curve was obtained for VASP-/- cells.  

 
DMEM and McCoy 5A medium as well as fetal calf serum versus supplemented calf 

serum were tested in order to find the best condition for the culture of this cell lines. As 
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shown in figure 14, DMEM (high glucose) combined with supplemented calf serum was the 

best combination tried and was used within the whole study unless stated otherwise. 
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Figure 14: Selection of the most convenient media for MCFB cells. Proliferation of 
cells during 3 days was investigated using different media. Assays were done on wild 
type cells. CS: calf serum; FCS: fetal calf serum. 

 
 
5.1.2 Mena and Evl expression are not up- or down- regulated in VASP-/- cells 
 

The mammalian Ena (Mena), the Ena/VASP like protein (Evl) and VASP share the 

same domain structure [6,9]. It has been shown that VASP can interact with the other 

members of the family by forming heterotetramers [9] [19]. It is possible that in the absence 

of VASP the expression levels of Mena and Evl change to compensate for the lack of VASP.  

Both Mena and Evl are expressed in MCFB (Figure 15). Mena was checked by Western 

blotting of total cell lysates with a specific antibody. The absence of VASP did not induce any 

changes in Mena expression (Figure 15 A). It was not possible to check the levels of Evl 

expression by Western blotting because the antibody available was not sensitive enough. 

Northern blotting using total RNA isolated from MCFB was used to answer this question. Evl 

expression was also not changed by the absence of VASP (Figure 15 B). These 

observations coincide with the published data on VASP-/- mouse organs [52]. It is worth to 

note that the expression level of Evl was very low in heart [52] and MCFB. (This result on Evl 

expression was later also confirmed by the microarray technique. Unfortunately Mena cDNA 
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is not present on the mouse chip used here and its expression levels could therefore not be 

checked by this method.) 
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Figure 16: Proliferation of VASP+/+ and VASP-/- MCFB cells. 2x103 cells were seeded 
in each well of a 12-well plate. Cells were counted at day 1; 3; 6 and 8 after seeding with 
the Casy  Cell counter. ---● --- VASP+/+; - - ■ - - VASP-/-. (*: p<0,05; **p<0,01; unpaired t-
test) n = 4. 
 
 

5.1.4 VASP-/- cells are more spread 
 

 Even if the growth rates were not significantly different, the maximum of VASP+/+ cells 

was about the double that of VASP deficient cells (see figures 16 and 17).  This difference 

could be due to a different response to the medium and the concentration of serum. The 

amount of cells counted on a confluent dish was independent of the serum concentration 

(between 5 and 20%), as it can be observed in figure 18. 
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Figure 17: Relative number of cells in a 6-well plate at confluence (3 days after 
splitting). Data are relative numbers with the number of VASP+/+ cells set as 100%. (**: 
p<0.05, unpaired t-test). RecVASP: VASP-/- cells stably transfected with full length human 
VASP DNA. 
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Figure 18: The lower relative number of VASP-/- cells at confluence is not 
dependent on the serum concentration. Cells were seeded at the same density on a 6-
well plate and were kept in culture with DMEM containing 20% (A); 10% (B) or 5% (C) 
calf serum. When they reached confluence, cells were counted with the Casy  cell 
counter. Cells were not dividing at serum concentration lower than 5%.  

 
 The lower number of VASP-/- cells at confluence suggested differences of the size of 

these cells; that would mean that VASP-/- cells, being bigger than VASP+/+ cells, reaches 

confluence with a lower number of cells. In order to check this hypothesis the estimated 

volume and diameter of the cells in suspension after trypsinization was measured with the 

Casy  cell counter. Surprisingly, the volume of both cells lines was similar: 4,96 ± 0,11 pl for 

VASP+/+ cells and 5,07 ± 0,12 pl for VASP-/- cells (figure 19). 
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Figure 19: Average volumes of cells in suspension. Volumes of the cells were 
measured with a Casy  cell counter (n= 40 cells for VASP+/+; 32 cells VASP-/- and 40 
cells RecVASP). 

 
 As the lower VASP-/- cell number at confluence was not a consequence of a 

difference in growth, neither a difference in volume, the only explanation for this observation 

would be a difference in the surface area occupied by the cells.  Cells were seeded at low 

density in order to have a sparse culture. Pictures of several fields were taken with a digital 

camera connected to the microscope and the cell area of at least 50 cells was measured with 

Scion Image software. Indeed, the area of VASP-/- cells was about twice the area (2,61 ± 

0,90 arbitrary units) of the wild type cells (1,00 ± 0,45) (Figure 20). As it can be seen in figure 

21 VASP deficient cells exhibit larger lamellipodia and are more spread than the VASP+/+ 

cells.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20: Average area covered by a single cell (relative units). The mean area of 
VASP+/+ cells (n=40) was set as 1; VASP-/- n=32; RecVASP n=40; *: p<0,001, unpaired t-
test. 
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Figure 21: VASP+/+ and VASP-/- mouse cardiac fibroblasts show different cell shape. 
VASP+/+ (A), VASP-/- (B), and RecVASP (C) mouse cardiac fibroblasts Bar = 10 µm. 

 

 The differences seen between VASP+/+ and VASP-/- cells could be due to an artifact, 

namely a consequence of the spontaneous cell transformation that is required for the 

establishment of the cell line. To confirm that the enhanced spreading of the VASP deficient 

cells was indeed VASP-dependent, the knock out cells were stably transfected with full 

length human VASP. After transfection with lipofectamine, cells were incubated in selective 

media containing 50 µg/ml Hygromycin. The level of VASP expression was checked by 

A B
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Western blotting of cells surviving in the presence of the antibiotic (Figure 15). Surviving cells 

were called Reconstituted VASP cells (RecVASP).  

The reintroduction of VASP into the VASP-/- cells reverted the enlarged spreading 

phenotype observed in the absence of VASP (figure 21) suggesting a VASP effect rather 

than a cloning artefact.  

 Isolated clones of RecVASP cells, expressing different levels of VASP show a 

gradually decrease in lamellipodium formation as the levels of VASP increase (figure 22), 

confirming once more that VASP expression down-regulates excessive cell spreading. 

 
Figure 22: Lamellipodia formation is dependent on VASP expression levels in 
RecVASP cells. Phase contrast images: Cell shapes of different RecVASP clones. 
Lower left: Immunoblot analysis of VASP expression (upper panel) in RecVASP cell 
clones. The lower panel shows an 80 kDa protein recognized by the M4 antiserum in 
rodent cells, which serves as a loading control. VASP expression levels increase 
gradually from VASP-/-, RecVASP-1E10, -1F2, -1G5 to VASP+/+ cells, while the tendency 
to form extended lamellipodia decreases in the same order. 

 

In order to rule out that enhanced spreading was a cell type dependent effect, another 

cell type was analyzed. The same phenotype difference was observed in Mesangial cells 

derived form the kidney of both wild type and VASP knock out mice (Figure 23). 
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Figure 23: Cell shape difference in mouse mesangial cells. Upper panel: Phase 
contrast micrographs of VASP+/+ (a) and VASP-/- (b) mesangial cells. Lower panel: 
Relative number of cells at confluence. Data are shown as percentage with the number of 
VASP+/+ cells set as 100%. (n= 28 confluent dishes for VASP+/+; n= 32 confluent dishes 
for VASP-/-). 

 

 

5.1.5 VASP-/- cells have thicker stress fibers 
 

VASP is a cytoskeletal protein that colocalizes with focal adhesions [8] and stress 

fibers and has binding domains for vinculin [10], zyxin [10], LPP [11] and F-acting [24] and 

other proteins linked to the cytoskeleton (reviewed in [6,9]). Therefore it was interesting to 

investigate if the absence of VASP alters the organization of the actin cytoskeleton.  Staining 

of MCFB with fluorescent phalloidine revealed that VASP-/- cells have thicker stress fibers in 

comparison to the wild type cells (figure 24). This phenotype was reverted by the 

reintroduction of VASP into VASP-/- cells (RecVASP cells; figure 24, C). At larger 

magnification it is apparent that filaments crossover between adjacent filament bundles (see 

inserts in figure 24). These results were unexpected, since similar actin filaments bundles 

result from overexpression of VASP in PtK2 and NIH3T3 cells [36,94]. Moreover, Ena/VASP 

proteins have been shown to bundle actin filaments in vitro [20,24]. As both overexpression 
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and ablation of VASP leads to a similar morphology of the stress fibers, it is likely that this 

phenotype involves other mechanisms than the actin filament bundling activity of VASP.  

Possible mechanisms explaining these results will be discussed later. 

 

 

 

 
Figure 24: VASP-/- cells have thicker stress fibers. VASP+/+ (A), VASP-/- (B) and 
RecVASP cells (C) were stained for F-actin with Oregon Green Phalloidine. Insets in 
panels A, B and C show a detailed view of the stress fibers. Bar = 15 µm. 
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5.1.6 VASP-/- stress fibers are also more stable  
 
 Serum deprivation is known to lead to stress fiber break down and disassembly [95]. 

Indeed after 24 h of serum starvation VASP+/+ cells lost most of their prominent stress fibers 

and showed only thin actin filament structures (Figure 24, A and A’). After addition of serum 

stress fibers reappeared in these cells (Figure 25, C and C’). In contrast, VASP-/- cells mostly 

maintained their stress fiber structures during starvation (Figure 25, B and B’) with a similar 

morphology as in the presence of serum (Figure 25, D and D’). 

 

 

 

 
Figure 25: Stress fiber persistence in VASP-/- cells during starvation. Cells were 
seeded on coverslips and kept in DMEM with 0,2% fetal calf serum for 24 hours. Stress 
fibers were stained with Rhodamine phalloidine. VASP+/+ cells (A and C) and VASP-/- cells 
(B and D) starved for 24 hours (A and B) and 5 minutes after stimulation with 10% fetal 
calf serum (C and D). The lower panels (A', B', C' and D') show a 63-fold magnification of 
A, B, C and D respectively.  

 
 
 In collaboration with Annette B. Galler, phosphorylation of myosin light chain (MLC) 

was checked in two-dimensional gel electrophoresis as a biochemical marker of stress fiber 

stabilization [96]. During starvation, MLC phosphorylation was reduced in the VASP+/+ cells 

while it remained at high levels in the VASP-/- cells [97]. 

The thicker stress fibers and their stabilization in the knockout cells, together with the results 

obtained with the overexpression of VASP, suggest that a balanced level of VASP is needed 

for regulation of stress fibers remodeling. 
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5.1.7 VASP-/- cells have prominent focal adhesion sites 
 

 Focal contacts or focal adhesion sites are located at the ends of the stress fibers, 

where cells attache to the substratum via integrins. Focal adhesion sites have a precise 

protein composition that includes VASP and some of its binding partners, such as Vinculin, 

[10] Zyxin [10] and LPP [11]. It has been shown that stimulation of cGK with concomitant 

phosphorylation of VASP depletes VASP from focal adhesion sites apparently without 

affecting their structure [98]. Therefore, it was of interest to investigate if the complete 

absence of VASP was influencing either the morphology or the function of the focal contacts. 

Immunofluorescent staining of wild type and VASP-deficient MCFB cells with the focal 

adhesion marker protein LPP revealed that VASP-/- cells have more prominent focal 

adhesion sites, both in the periphery of the cells and at central position within the cells 

(Figure 26). 
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 focal adhesion sites of VASP-/- cells. Focal adhesions of wild 
ficient (B) MCFB were labelled with an anti-LPP antibody. Note the 

 adhesion sites of VASP-/- cells. Bar = 20 µm. 

at the difference observed was a cytoskeletal disorder and not due 

levels of LPP, expression levels of Zyxin, LPP and Vinculin were 

tting (Figure 27). None of the three proteins were up- or down 

e of VASP, in accordance with the results of Hauser and 

 for different tissues of the VASP deficient mouse.  
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Figure 27: Expression level of focal adhesion binding partners of VASP. Total 
MCFB lysates (20 µg for the LPP and Zyxin blots and 10 µg for the Vinculin blot) were 
separated by SDS-PAGE and LPP, Zyxin and Vinculin expression were analyzed by 
immunoblotting with specific antibodies. 

 
 
5.1.8 Adhesion and detachment rates decrease in VASP-/- cells. 
 

Enhanced spreading, thicker and more stable stress fibers and the more prominent focal 

adhesion sites in VASP deficient cells suggested that the dynamic cellular processes leading 

to reorganization of the actin cytoskeleton are altered in these cells. Working routinely with 

the cells, I observed that the time needed for detachment of the VASP-/- cells by 

trypsinization or with PBS-EDTA was significantly longer than the time needed for VASP+/+ 

cells (figure 28). Considering the difference in the focal adhesion sites between the cells lines 

it is not surprising that in the absence of VASP cells adhere stronger to the substrate. 

 



Results 
 

 71 

 
 

Figure 28: Decreased detachment rates in VASP-/- cells. Phase contrast micrographs 
showing that wild type, but not VASP-/- cells, round off and begin to detach within 3 min of 
incubation in the presence of 0.1% trypsin. 

 

  On the other hand, adhesion requires a very precise rearrangement of the 

cytoskeleton to be properly achieved. That includes spreading, lamellipodia and filopodia 

formation, assembling of focal contacts and actin stress fibers. As most of these parameters 

were altered in VASP deficient cells, an in vitro adhesion assay was performed. A known 

number of cells were allowed to adhere to fibronectin coated 96-well plates for 30 min. A 

difference was only observed at low concentrations of fibronectin (1 µg/ml). Surprisingly, 

significantly less VASP-/- cells adhered to the fibronectin-coated surface within 30 min as 

compared with the wild type cells (Figure 29). No difference could be observed at the other 

fibronectin concentrations investigated (3 to 10 µg/ml). After 2-3 hours, both cells lines 

attached almost quantitatively also at 1µg/µl. This indicates that there is considerable delay 

in the cell attachment of the VASP-/- cells at low fibronectin concentration rather than a 

difference in the cell number due to the enhanced spreading of the VASP deficient cells.  
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Figure 29: Decreased cell adhesion in VASP-/- cells. Relative number of VASP+/+ cells 
and VASP-/- cells attaching within the first 30 min to 96-well plates coated with 1 µg/ml 
fibronectin (Average of 4 different experiments ± SEM; *: p<0,05) 
 

 

Taken together, these results suggest that the reorganization of the cellular structure 

required for the transition from a suspended to an adhesive cellular state and vice versa are 

compromised in the absence of VASP. 

 

 

5.1.9 The cGMP analog 8p-CPT-cGMP accelerates attachment of MCFB cells 
 

 During cell detachment cAMP-dependent protein kinase is activated and is thought to 

mediate detachment induced inactivation or disassembly of adhesion related protein 

complexes [69]. Lawrence et al have shown that VASP is phosphorylated upon neutrophil 

spreading, and have suggested that both events, VASP phosphorylation and spreading, are 

dependent on cGMP-stimulated protein kinase  [99]. As VASP is a substrate of both cAMP- 

and cGMP- dependent protein kinases, it was of interest to investigate whether VASP 

phosphorylation is involved in the cellular transition from a suspended to an adherent 

phenotype. Therefore, both VASP+/+ and VASP-/- cells were pre-incubated in the absence or 

presence of the cGMP analog 8-pCPT-cGMP under conditions for which cGK-mediated 

VASP phosphorylation had been established in NIH3T3 cells [98]. The adhesion on 

Fibronectin was tested as described before. When stimulated with the cGMP analogue, 

significantly more VASP+/+ cells attached to the substratum within 30 min as compared to 

non-treated cells (Figure 30, A).  If the effect of the 8-pCPT-cGMP was mediated by VASP it 
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should be abolished in VASP-/- cells. Indeed, adhesion of VASP-/- cells was essentially 

unaffected by the pre-treatment (Figure 30, B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30: Cell Adhesion as function of fibronectin concentration and the effect of 
stimulation with 8p-CPT-cGMP. Panels A and B represent the relative cell number of 
adherent cells of VASP+/+ and VASP-/- respectively preincubated with (—!!!!—) or without 
(– –#– –) 100µM of 8pCPT-cGMP for one hour. Adhesion was tested using 1, 3, 5 and 
10 µg/ml fibronectin as a substrate. The data are averages of 4 different experiments ± 
SEM. Due to the variability between different experiments in the cell numbers, adhesion 
of VASP+/+ cells at 1 µg/ml was considered 1 and all the other values were related to it.  
(*: p<0.05; **: p<0.005, unpaired t-test) 

 
  

5.1.10 Reorientation and motility of VASP-/- cells are impaired in a wound 
healing assay 
 

Remodeling of the cytoskeletal structure plays an important role in cell migration. In 

order to accomplish a proper movement, the reorganization of the cytoskeleton must be 

tightly regulated and coordinated at precise subcellular locations. A motile cell will first 

polarize. That requires a clear distinction of a „front“ and a „rear“ part of the cell not only in 

terms of morphology but also in terms of protein localization. At the front, actin polymerization 

and new focal adhesion formation take place, leading to the protrusion of the lamella in the 

direction of movement. At the rear side, however, focal adhesions will have to be released 

and the cell will retract the rear [100]. 

As VASP deficient cells showed anomalies in adhesion, detachment, stress 

fibermorphology and spreading, migration was investigated in these cell lines. To this end, 

cells were scratched off of a confluent cell layer to allow cells next to the scratched area to 

migrate into the empty space. Pictures of the cells were taken immediately after scratching 
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(Figure 31, A-C) and 15 hours later (Figure 31, D-F). Twelve to 15 h after scratching, VASP+/+ 

cells in the outermost cell row were mostly orientated parallel to the wound (Figure 31, D/D‘), 

whereas VASP-/- cells after 15 h were perpendicular to the wound (Figure 31 E/E’). This 

obvious difference in the orientation of the cells could be reverted by reintroducing VASP into 

VASP-/- cells (Figure 31 F/F’). The orientation of stress fibers coincided with that of the cells 

(Figure 32). Using time-lapse microscopy, the wound-healing assay was analysed in more 

detail over a period of 24 h. Whereas all three cell lines were able to close the scratch within 

about 20 to 22 hours, the motility of the cells was different. Twelve to 15 h after scratching, 

VASP+/+ cells started to detach from their neighbours in the monolayer and were migrating 

with highly active frontal lamellipodia and retraction of their rear ends, resulting in an 

orientation parallel to the scratch. In contrast, VASP-/- cells were protruding highly mobile 

lamellipodia into the direction of the wound without retracting at their rear ends from the 

adjacent cell monolayer. Overall this resulted in a more perpendicular orientation relative to 

the scratch. Ultimately, dividing cells considerably contributed to wound closure. RecVASP 

cells behaved as wild type cells, indicating that the reduced translocational speed of VASP-/- 

cells was indeed due to the lack of VASP. In conclusion, the capability of VASP-/- cells to 

reorient their stress fibers and cell axis and to detach their rear ends appears to be markedly 

compromised when compared to VASP expressing cells. Together, this results in decreased 

cell motility. 
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Figure 31: VASP-/- cells fail to reorient in a wound-healing assay. VASP+/+ cells (left 
column: A, D, D'); VASP-/- cells (middle column: B, E, E') and VASP-/- cells reconstituted 
with human VASP cDNA (right column: C, F, F') immediately after (A, B, C) and 15 h after 
(D, E, F) the confluent monolyer has been scratched. D', E', F' show a graphic 
visualization of cell orientation (c) and direction of movement (arrowhead; b), where the 
dashed line (a) indicates the position of the cell border at t=0. Note that only wild type 
cells and VASP-/- cells stably transfected with VASP are able to reorient their cell axis 
perpendicular to the direction of movement. VASP-/- cells are unable to reorient and 
detach their rear ends. 
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Figure 32: VASP-/- cells fails to reorient in a Wound-healing assay. Actin staining of 
motile cells during the wound healing assay. The assay was performed for 15 hours and 
then the cells were fixed, permeabilized and F-actin was stained with Oregon Green 
Phalloidine. (A) VASP+/+; (B) VASP-/- and (C) RecVASP.  

 
 

5.1.11 Prolonged Rac activation in the absence of VASP 
 

Since Rac, Cdc42, and Pak are key regulators of lamellipodia formation and cell 

spreading and the Rac/Pak pathway is known to play an essential role in cell motility, 

[101,102], this pathway was analyzed in VASP-/- cells. In order to investigate Rac activation a 

Rac pull-down assay has been used. A GST fusion of the Rac/Cdc42 binding (CRIB) motif of 

Pak was used to affinity precipitate the activated form of Rac (Rac-GTP) [66,88]. 

As shown in Figure 33, PDGF-BB (5 ng/ml) induced a rapid and transient activation of Rac in 

VASP+/+ cells with a maximal activity at around two minutes. After five minutes of stimulation 

Rac activity decreased again and reached background levels at about 10-15 min. 

Interestingly, Rac activation in VASP-/- cells was significantly faster as compared to VASP+/+ 

cells. The maximal degree of Rac activation was seen after one minute of stimulation, and 

was maintained at a high level for at least 15 minutes (Figure 33, upper panels). If prolonged 

Rac activation were specifically due to VASP deficiency, it should be possible to reverse this 

effect by reintroducing VASP into VASP-/- cells. Indeed, reconstituted cells were 

characterized by a transient PDGF-induced Rac activation, comparable to VASP+/+ cells 

(Figure 33). RecVASP cells showed a maximal Rac activation at around one minute after 

stimulation, which within one additional minute returned to levels of unstimulated controls or 

even below. All these cell lines expressed similar amounts of Rac, confirming that an 

enhanced activation of the small GTPase is observed here rather than increased expression 

levels of the protein. These data, together with the morphological differences described 

above, strongly suggest that VASP is involved in the regulation of Rac activity. 

 

A B C 
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Figure 33: Prolonged Rac activation in VASP-/- mouse cardiac fibroblasts. Upper 
panel: Cells were starved for 24 h in serum free medium and subsequently stimulated 
with 5 ng/ml of PDGF-BB for the time indicated. Activated Rac (GTP-Rac) was 
precipitated using a fusion protein of GST and the Pak CRIB motif. Precipitates (Rac-
GTP) and aliquots of total cell lysates (Total Rac) were analysed with a Rac specific 
antibody. Results are representative for a total of 5 independent experiments. Lower 
panel: As controls, unstimulated cells were loaded with GTPγS (positive control) or with 
GDP (negative control). Only the Rac-GTP form was pulled down, while Rac-GDP 
remains in the supernatant. In contrast to other tissues, Rac of cardiac fibroblasts or total 
heart lysates appears as a doublet band when analysed by SDS gel electrophoresis and 
immunoblotting. 

 
 

 

5.1.12 Pak is activated in VASP-/- cells 
 

The Pak family of proteins appears to be a central element in pathways that lead to 

cell spreading, since it functions both as a direct target of activated Rac and Cdc 42 and as 

an upstream activator of Rac [103]. Therefore, in order to assess activation of this signaling 

pathway in more detail in MCFB cells, I also analysed Pak activation. Upon interaction with 

their activators, Paks undergo autophosphorylation at multiple sites [70,104]. One of these 

sites, which is involved in substrate recognition [104], is conserved in Pak-1 to Pak-3 and is 

centred around Thr-423 (human Pak-1;α-Pak), Thr-402 (Pak-2;γ-Pak), and Thr-421 (Pak-3; 

β-Pak), respectively [70,104]. 

Analysis using an antibody directed against this phosphorylated autophosphorylation 

site showed that wild type cells displayed a transient Pak phosphorylation ceasing within 

about 5 min of FCS stimulation, whereas a profound and more sustained elevation of 
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phospho-Pak was observed with VASP-/- MCFB (Figure 34). In another approach, MCFB-/- 

and wild type cells were serum starved for 24 hours. Cell lysates were separated by two-

dimensional gel electrophoresis and were immunoblotted using an anti-Pak antibody that 

recognizes Pak-1 independent of its phosphorylation state. After serum stimulation for 2 h, 

Pak-1 from VASP deficient cells, as compared to VASP+/+ cells, showed a much more 

pronounced shift to a lower isoelectric point, indicating Pak-1 phosphorylation (Figure 35).  

 

 

 

 

 

 

 

 

 

 
Figure 34: Pak phosphorylation in VASP-/- cells. After stimulation with 10 % FCS for 
the times indicated, cells were harvested and lysates were separated by SDS-PAGE. Pak 
expression and Pak phosphorylation were analysed by immunoblotting with anti-Pak1 
antibody (N20) and anti-phospho Thr-423 Pak antibody, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 35: Pak phosphorylation in VASP-/- cells. Cells lysates were separated by 2-D 
gel electrophoresis and Pak-1 was detected by immunoblotting. The acidic region of the 
isoelectric focussing strip is oriented to left. Corresponding spots are marked with an 
arrow. This is a representative out of three independent experiments. 
 

 

An in-gel kinase assay was used as a third method to confirm this data (Figure 36). 

Total cell lysates were run on a 10% SDS gel containing myelin basic protein (MBP) as an in 

vitro Pak substrate. After electrophoretical separation, the proteins were renatured and the 
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kinase assay was performed in the gel. MBP contained in the gel is phosphorylated by its 

kinase(s) revealing their position after separation in the gel. The bands obtained by 

autoradiogrphy coincided with the size of the Pak kinase studied.  However, this assay is 

here only orientating as one cannot exclude that other kinases migrate at a similar position 

as Pak. For example, LIM kinase (LIMK), a substrate for Pak, can also phosphorylate MBP 

and has a similar molecular weight.  
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Figure 36: Pak activity in VASP-/- cells.  Cells were starved over night and subsequently 
stimulated with serum and harvested in loading sample buffer. Left panel: 
Autoradiography of the in-gel kinase assay. Right panel: Comassie staining of the same 
gel. Arrowhead indicates the molecular size of Pak.  

In conclusion, not only morphological data, but also two lines of biochemical evidence 

cate that the Rac/Pak pathway is activated in MCFB cells in the absence of VASP. 

.13 Differences in the expression pattern of VASP+/+ and VASP-deficient 
FB analyzed by Microarrays. 

In order to investigate if the absence of VASP has any influence on the RNA 

ression profile of MCFB cells we used mouse cDNA arrays with 4000 randomly selected 

wn genes and 500 ESTs. RNA from VASP+/+, VASP-/- and RecVASP were isolated and 

ye-labeled first strand cDNAs were generated using either Cy3 or Cy5 labeled dCTP. 

 cDNA derived from VASP-/-, VASP+/+ and RecVASP was labeled using different color to 

w ratio imaging.  The Cy3 and Cy5 labeled probes were mixed and hybridized over night 

116

65

45

!

Serum -- +
VASP+/+ VASP-/-

-- + -- + -- +
VASP+/+ VASP-/-



Results 
 

 

to the array. After washing away the unhybridized probe the fluorescent signals for both 

probes are read into two different image files with a confocal laser scanner (ScanArray 4000, 

Perkin Elmer). Figure 37 shows and example of the image obtained after hybridization. 
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igure 37: Example of an image of a mouse array obtained after hybridization with 
beled cDNA. The picture corresponds to the array hybridized with VASP+/+ Cy3-
belled cDNA. The gradation of colors correlates with expression level of the spotted 
enes (black or dark blue= not expressed; yellow= highly expressed). The same array 
as also hybridised with Cy5-cDNA from VASP-/- or RecVASP cells, and both fluorescent 
bels were read with a confocal laser scanner (ScanArray 4000, Perkin Elmer) and 
nalysed with the ScanAlyze software. 
 
 
 
To be able to compare all three probes, the RecVASP cells and the VASP-/- cells were 

mpared to the VASP+/+ cells. In order to avoid false positives and/or negatives due to 

ces in the incorporation of the CyDye-CTP, samples were alternatively labelled with 

d Cy5. Differences in gene expression should be independent of the dye used for the 

g of the probe.  
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Array Name Cy3 dCTP Cy5 dCTP 
6 M ng 28_R RecVASP VASP+/+ 
6 M ng 29_KO VASP-/- VASP+/+ 
6 M ng 30_R VASP+/+ RecVASP 
6 M ng 31_KO VASP+/+ VASP-/- 
6 M ng 32_R RecVASP VASP+/+ 
  

 
 
The ScanAlyze program was used for data a

normalized by setting the average of the logarithmi

standard deviation to 1. Relative intensities (VAS

calculated. The data were analysed with the progra

Differences in expression were detected b

allows defining an intensity profile. The program th

with a certain, user defined, correlation. In this case

to be up or down regulated as compared to the wi

were not allowed to show any difference to the V

used (Figure 38). Using this method, a total of 

identified: 15 were up-regulated and 6 were down-r

the genes obtained is presented in table 3.  As sta

differences between VASP-/- and VASP+/+ but no

considered. RecVASP have been generated by sta

in VASP deficient cells and the random insertion of 

cause variations in the expression pattern. For that 

sample that were not changed when compared to 

the screening, this fraction represented 62% of th

chip. That means the differences observed in VASP

of VASP.  

 

 

 

 

 

 

 

 

 

 

Table 2: Identification of the samples for 
the analysis of the mouse arrays. Each 
“array name” corresponds to a set of two 
competitively hybridized RNA probes, 
where one has always been hybridized 
with VASP+/+ CyDye labelled cDNA and the 
other was either RecVASP cDNA or VASP-

/- cDNA. 
81 

cquisition. Afterwards, the data sets were 

c intensity values for each probe to 0 and 

P-/-/VASP+/+ or RecVASP/VASP+/+) were 

m GeneSpring.  

y the 'drawable gene' function. This tool 

en finds genes, which match this profile 

 the VASP-/- set of genes were supposed 

ld type cells, whereas the RecVASP cells 

ASP+/+ cells. A correlation of 0.975 was 

21 genes differentially expressed were 

egulated in VASP deficient cells. A list of 

ted before, only genes that have shown 

t between RecVASP and VASP-/- were 

bly transfecting full-length human VASP 

the transfected gene into the genome can 

reason only those genes in the RecVASP 

the wild type cells were accepted during 

e 4500 genes spotted in the microarray 
-/- cells could be reverted by the addition 



Results 
 

 

 

82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 38: Graphic representing the analysis of the MicroArrays. Green lines 
correspond to a theoretical “user defined gene” that represent the expected intensity for 
each case or assay for an up regulated gene in the VASP-/- cells (upper panel) and a 
down-regulated gene in VASP-/- cells (lower panel). The theoretical “drawable” genes 
were set as follow: ratio of the normalized intensities was calculated (KO= VASP-/-

/VASP+/+ and R= RecVASP/VASP+/+); KO was defined as 2 for up-regulated genes and 
0,5 for down-regulated genes, R was defined as 1 for both cases. Genes that fit to the 
“drawable gene” with a correlation factor of 0,975 were taken as candidate genes 
(represented as blue or red lines). KO1 and KO2 and R1 to R3 are independent 
hybridization assays.  
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Arrays 

28_R 30_R 32_R 29_KO 31_KO 

Genes Description 

1,06 0,69 0,93 1,46 1,55  ESTs 

0,93 1,04 1,07 1,26 1,51 Mpg 
N-methylpurine-DNA 
glycosylase 

0,77 0,83 0,70 1,24 1,26 Numb 
numb gene homolog 
(Drosophila) 

1,07 0,93 1,11 1,41 1,56 Tgfb 
latent TGF beta binding 
protein 

1,00 0,93 0,98 1,37 1,14 Mafb 
v-maf musculoaponeurotic 
fibrosarcoma oncogene 
family, protein B (avian) 

0,92 0,70 0,78 1,63 1,36 Deb2 
differentially expressed 
in B16F10 2 

1,17 0,52 1,13 1,54 1,49  
ESTs, Moderately similar to 
DNA 
NUCLEOTIDYLEXOTRANSFERASE 
[Bos taurus] 

0,95 0,68 1,06 1,37 1,33 Man2a1 mannosidase 2, alpha 1 
0,95 1,27 1,11 1,70 2,49 Bcl7b B-cell CLL/lymphoma 7B 
1,02 0,71 1,04 1,25 1,23 Crygf crystallin, gamma F 
0,93 0,93 0,77 1,48 1,48 Capn5 calpain 5 

1,18 1,04 1,26 1,68 2,08 Mrg2 
myeloid ecotropic viral 
integration site-related 
gene 2 

0,90 1,12 1,03 1,31 1,39 Robo1 
roundabout homolog 1 
(Drosophila) 

0,81 1,00 0,97 1,13 1,35  ESTs 

G
en

es
 u

p-
re

gu
la

te
d 

in
 V

AS
P-/-

 c
el

ls
 

0,80 0,99 1,03 1,22 1,41 Zfp61 Zinc finger protein 61 

0,98 1,02 1,08 0,78 0,84 Smpd1 
sphingomyelin 
phosphodiesterase 1, acid 
lysosomal 

0,91 1,13 1,05 0,76 0,62 Apaf1 
Apoptotic protease 
activating factor 1 

1,02 1,04 1,08 0,78 0,84 Npr1 
natriuretic peptide 
receptor 1 

0,95 1,10 1,11 0,90 0,72 Tcfl4 
Transcription factor like 
4 

0,99 1,04 0,90 0,68 0,80 Nucb2 nucleobindin 2 

R
el

at
iv

e 
In

te
ns

ity
 

G
en

es
 d

ow
n-

re
gu

la
te

d 
in

 
VA

SP
-/-

 c
el

ls
 

0,97 1,02 1,10 0,79 0,83 Ltbp3 
latent transforming growth 
factor beta binding protein 
3 

 
Table 3: Differential gene expression in VASP deficient cells.  The same names used 
in Table 2 are used to identify the arrays. Relative intensities were calculated as the ratio 
of intensities for each set of arrays as for figure 38: VASP-/-/VASP+/+ (29_KO and 31_KO) 
and RecVASP/VASP+/+ (28_R, 30_R and 32_R) 

 

The genes obtained with this method give new possibilities to study VASP function. 

New experiments need to be done in order to confirm the changes in the expression profile 

of VASP deficient cells. Special attention will be given to the roundabout homolog 1 (Robo), 

as the protein product of this gene is able to interact with the EVH1 domain of Ena in 
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Drosophila, and is the only known binding partner of the Ena/VASP family which expression 

seems to be altered in the absence of VASP.    

 

5.2 Platelets 
 

5.2.1 Rac activity regulation by VASP 
 

 In platelets VASP is the most predominant member of the Ena/VASP family of 

proteins present. Moreover, they contain high levels of Rac. Therefore, it was of great 

interest to investigate the effect of VASP in this system. In collaboration with the group of Dr. 

Offermanns in the Institute of Pharmacology, University of Heidelberg, I studied the effect of 

the absence of VASP in murine platelets stimulated with thromboxane A2 (TxA2). Dr. 

Gratacap and colleagues showed that Rac is activated by the platelet agonist TxA2 [66]. 

Also, thrombin activation of platelets induced a more than 2-fold higher surface expression of 

P-selectin and fibrinogen binding in VASP-/- platelets in comparison to wild type platelets, 

indicating enhanced agonist induced activation [52]. Considering the prolonged Rac 

activation obtained on MCFB cells stimulated with PDGF-BB, a similar result was expected in 

platelets treated with TxA2. Unfortunately, I could not observe a prolonged activation of Rac 

in the VASP-/- platelets after the agonist stimulation (figure 39). In contrast to MCFB 

stimulated cells, Rac activation by TxA2 in platelets is very fast (maximum activation is 

reached after 10 sec of stimulation) and lasts for several minutes. As the activation of Rac 

coincides with the general activation of platelets by TxA2 and, moreover, upon stimulation 

platelets also secrete TxA2, it is probably not possible to observe a transient Rac regulation 

in this system. 
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Figure 39: Rac activation is not enhanced in VASP deficient platelets. Washed 
platelets were prepared from blood of both, VASP+/+ and VASP-/- mice. Platelets were 
stimulated with the TxA2 analogue U46619 (1 µM) for the indicated times. Reactions were 
stopped with lyses buffer and Rac activity was determined performing a pull down assay 
as described for MCFB cells. 

0 10 30 60 300U46619 (Sec.) 0 10 30 60 300

VASP-/-VASP+/+

GTP-Rac

Total Rac
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 The activation of Rac by TxA2 can be inhibited by preincubation of platelets with 

cGMP and cAMP analogues (8p-CPT-cGMP and cBIMPS-cAMP, respectively) [66]. This 

inhibition likely involves the cGMP and cAMP dependent kinases. Cyclic nucleotides are 

potent inhibitors of platelet activation and aggregation. VASP, as substrate of both kinases, is 

located at the intersection of two inhibitory pathways induced by cGMP and camp, 

respectively. Hence, it was worth to investigate if VASP was playing a role in the inhibition of 

Rac by cyclic nucleotides. The platelets from VASP-/- and VASP+/+ mice were preincubated 

with cBIMPS-cAMP (100 µM) or 8p-CPT-cGMP (1 mM) for 20 minutes and stimulated with 

TxA2 (1 µM). The Rac pull down was performed in the same way as it was done for the 

MCFB. The inhibition of Rac by the cGMP analog was abolished in VASP deficient platelets 

while there was no difference between VASP+/+ and VASP-/- when the platelets were 

preincubated with the cAMP analog (figure 40). However, note that the Rac pull down assay 

on mouse platelets is very variable. Mouse platelets are extremely sensitive to manipulation 

and basal levels of Rac are usually high, making it difficult to detect the activation by TxA2. 

The basic problem of this method is to obtain murine platelets on a good resting state. The 

results presented here show a trend, which needs to be confirmed by more experiments.   
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Figure 40: Rac inhibition by the cGMP analog is impaired in VASP-/- cells. Washed 
platelets were prepared from blood of both, VASP+/+ and VASP-/- mice. Platelets were 
pre-incubated 20 min with 100 µM cBIMPS-cAMP (cAMP) or with 1 mM 8pCPT-cGMP 
(cGMP) and stimulated with the TxA2 analogue U46619 (1 µM) for 1 min. Samples were 
stopped with lysis buffer and Rac activity was determined performing a pull down assay 
as described for MCFB cells. 

.2.2 Enhanced Platelet adhesion in VASP deficient mice: An in vivo approach.2 

2.2.1 VASP regulation of platelet adhesion in vivo 

To address the significance of VASP for the homeostasis of platelet-endothelium 

teractions in vivo, we assessed platelet adhesion in the carotid artery of VASP-/- mice in 

                                              
The experiments shown in this section were performed by the group of Dr.Steffen Massberg 
eutsches Herzzentrum 1.Medizinische Klinik, Technische Universität München) with VASP-/- and 

ASP +/+ mice provided from our group. 

-- --+ + + + + +
cAMP cAMPcGMP cGMP

TxA2 (1µM)
Pretreatment

VASP+/+ VASP-/-

GTP-Rac !!!!
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collaboration with Dr. Massberg. Fluorescent wild type or VASP-/- platelets were transfused 

into wild type or VASP-/- mice, respectively, and were visualized by intravital 

videofluorescence microscopy. Wild type platelets did not interact with wild type endothelium 

under physiological conditions. Interestingly, the loss of VASP significantly enhanced 

platelet-endothelial cell interactions in vivo (Figures 41a and 41b). Platelet tethering to the 

endothelial surface was increased approximately 11-fold, while the number of platelets firmly 

attached to the vascular wall was found to increase more than 4-fold in VASP-/- as compared 

with wild type mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 41 Role of VASP in the regulation of platelet adhesion in the common 
carotid artery in vivo. (a) Platelet-endothelial cell interactions were investigated in 
VASP-/- mice by in vivo fluorescence microscopy of the common carotid artery in situ. Wild 
type animals served as controls. The upper panels summarize platelet tethering (left) and 
firm platelet adhesion (right). Numbers of tethered and adherent platelets are given per 
mm2 of vessel surface. Mean ± SEM, n=10 each group, asterisk indicates significant 
difference compared to wild type mice, P < 0.05. (b) The microphotographs show 
representative in vivo fluorescence microscopy images. White arrows indicate adherent 
platelets. Monitor magnification 500-fold. (Dr. Steffen Massberg) 
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5.2.2.2 VASP deficient platelets show enhanced adhesion following endothelial 
denudation. 
 

 In advanced atherosclerosis, rupture of the atherosclerotic lesion leads to endothelial 

denudation and exposure of the thrombogenic subendothelial matrix to circulating platelets, 

initiating platelet recruitment to the injured vessel wall. In order to address whether VASP 

might be involved in regulation of platelet adhesion to the subendothelial matrix, platelet-

vessel wall interactions after vascular injury were investigated. Carotid Vascular injury was 

induced in wild type animals by vigorous ligation for 5 min, causing complete loss of 

endothelial cell layer. Then, adhesion of thrombin-preactivated (0.2 U/ml of murine thrombin) 

VASP+/+ or VASP-/- platelets to the injured carotid was determined by in vivo fluorescence 

microscopy. Within the first minutes after endothelial denudation a high number of VASP+/+ 

platelets were tethered to the vascular wall (2530 ± 82 platelets/mm2, Figure 42a). Basically 

all the platelets contacting the subendothelium showed irreversible stable adhesion (2089 ± 

58 platelets/mm2, Figure 42b and c). In contrast VASP-/- platelets significantly increased 

tethering and stable adhesion to the subendothelium after vascular injury (3191 ± 144 and 

2753 ± 128 platelets/mm2 for tethering and stable adhesion respectively; Figure 42).   
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Figure 42 Platelet adhesion following endothelial denudation. Endothelial denudation 
induces platelet adhesion. Fluorescent wild type or VASP-/- platelets were preincubated 
with either PBS (control) or the NO-donor spermine-NO. After preincubation, the samples 
were stimulated with 0.2 U/ml mouse thrombin. (a) Platelet tethering and (b) Firm platelet 
adhesion to the carotid artery was assessed by intravital videofluorescence microscopy. 
Mean ± SEM, n=5 each group, asterisk indicates significant difference compared to 
control, P < 0.05. (c) The microphotographs show representative in vivo fluorescence 
microscopy images in illustrating adhesion of wild type or VASP-/- platelets following 
endothelial denudation in the absence or presence of spermine-NO. Monitor 
magnification 500-fold.  
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5.2.2.3 VASP deficient platelets are unresponsive to nitric oxide 
 

 NO is known to be a very important endogenous platelet antagonist [105,106] that 

mediates platelet inhibition through cGMP/cGK I. To determine the role of VASP in 

NO/cGMP-dependent regulation of platelets adhesion, the effects of NO on adhesion of 

VASP+/+ and VASP-/- platelets to the injured vascular wall were investigated. Fluorescent 

platelets (VASP+/+ and VASP-/-) were preincubated with the NO donor spermine-No followed 

by stimulation with thrombin. Platelet adhesion to the carotid artery of wild type mice was 

monitored by intravital videofluorescence microscopy. In VASP+/+ platelets, pre-treatment 

with NO donors decreased platelet tethering and adhesion to the injured vessel wall by 

approximately 56 and 57% respectively. In contrast, VASP-/- platelets showed nearly no 

response to NO, tethering was only reduced by 8% and firm platelet adhesion by 9% (Figure 

42).       

 The data presented here show for the first time in vivo that VASP down regulates 

platelet adhesion to the vascular wall under physiological and pathophysiological (endothelial 

denudation) conditions. 
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6. Discussion 
 

The Vasodilator stimulated phosphoprotein, VASP, was originally discovered as 

substrate for both cAMP- and cGMP- dependent protein kinases in human platelets. Further 

investigations demonstrated that VASP binds to F-actin and colocalizes with stress fibers, 

focal contacts and highly dynamic membrane structures. Moreover, studies with the model 

system of  Listeria motility established that VASP,located at the head of the actin tail of 

Listeria, is an important stimulatory component for the actin-based motility of this intracellular 

pathogen. Although many of these data depict VASP and the Ena/VASP protein family as 

enhancers of actin filament formation, other data strongly suggest that these proteins also 

have inhibitory functions in integrin regulation, cell motility and axon guidance [9].  However, 

at the molecular level the precise biological function of VASP remains to be established. A 

major goal of this work was to acquire a better understanding of the biological VASP function 

using a VASP deficient cell model.  

    

 It has been suggested that the proteins of the Ena/VASP family can functionally 

replace each other and may therefore compensate the loss of one of them. This idea of 

redundancy within the Ena/VASP family is supported by several facts. Proteins of the 

Ena/VASP family have a similar structure, and the three domains (EVH1, EVH2 and PRR) 

are highly conserved in all members. Moreover Ena/VASP proteins are able to form 

multimeric complexes via their EVH2 domain in vitro and in cells [19]. In agreement with this 

and studied at a systemic level,  human VASP is able to rescue the lethal phenotype of Ena-/- 

Drosophila melanogaster, indicating that VASP may compensate for the loss of Ena in vivo. 

In mammals, three members of the family are expressed: VASP, Mena and Evl. In most 

tissues and cell types all three proteins are expressed with some exceptions. In brain,  Mena 

is predominant, and platelets appear to exclusively express VASP.  Mice deficient in one of 

the family proteins show a mild phenotype with a clear effect only in those tissues or cells 

where the lacking protein is more abundantly or exclusively expressed. (See chapter 2.4 for 

a description of the Ena/VASP deficient animal models). But if two family members are 

“knocked out” at the same time, the result is lethality  at an early embryonic stage. These 

observations support the idea of redundancy of the Ena/VASP proteins [9].   

 However, Ena/VASP proteins are biochemically and functionally not identical. A major 

result of my work presented here is that the  absence of VASP alone is sufficient to cause a 

clear phenotype at the cellular level. Mouse cardiac fibroblast (MCFB) cells isolated from 

VASP-/- mouse heart are more spread and present stronger and stable stress fibers as well 

as bigger focal adhesions. These morphological differences have important consequences 

on other cellular parameters such as adhesion and migration. 
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6.1 Function of VASP in the stabilization of stress fibers and its 
consequence in cell morphology and behavior 
 
6.1.1 Function of VASP in stabilization of stress fibers 
 

 VASP is not only highly concentrated in focal adhesions and stress fibers [107], but 

binds F-actin [36,107] via its EVH2 domain  [24,29,36] through a conserved region of this 

domain (Block B) and has also the property of cross-linking actin filaments via the coiled-coil 

domain [24]. In addition, tetramerization of VASP has been shown to enhance F-actin 

binding and bundling [24].  Moreover, VASP and Mena as well are involved in promoting 

actin polymerization [7,15]. Over-expression of VASP and certain mutants containing the 

EVH2 domain [24,94] leads to thicker stress fibers. This is in agreement with the bundling 

capacities of VASP reported by Bachmann et al. [24]. 

According to these observations VASP has been considered as a cytoskeletal protein with a 

structural and stimulatory role in F-actin polymerization and stress fiber formation. Cells 

deficient in VASP would be predicted to have either reduced bundling of actin filaments or to 

have no cytoskeletal effect if the possibility is considered that the other members of the 

Ena/VASP family present in the cells will compensate for its absence. However, as it has 

been shown here, VASP-/- cells present thicker and more prominent stress fibers when 

compared with wild type cells. This result shows that VASP is not merely a structural protein 

facilitating actin polymerization but may be involved in more complex processes leading to 

the regulation of the actin cytoskeleton turnover and/or remodeling.  More precisely, this 

result suggests a dual function of VASP: on the one hand the actin binding, bundling and 

polymerization activity performed directly by VASP; on the other hand a negative VASP 

effect on cell signaling pathways involved in actin cytoskeleton remodeling. In the case of 

VASP over-expression, the first function may be  predominant; in the case of the VASP 

deficient cells, the second functional role is observed. 

 It has been postulated that proteins with this characteristics (over-expression and 

reduced expression cause similar effects) are considered to be or act as scaffold proteins  

[108,109]. Scaffold proteins are proteins that bring together the components of an active 

complex. If the ratio of scaffold protein and binding partners is different than the 

stoichiometric one the active signaling complex fails to triggers the right signal. VASP may 

have a scaffold function during actin cytoskeleton remodeling.  
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6.1.2 VASP and the regulation of membrane tension 
   

Raucher and Sheetz showed that lamellipodial extension rates are inversely correlated with 

the apparent membrane tension [110]. They also showed that membrane tension could be 

reduced by the addition of detergents at sublytic concentrations, which leads to an enhanced 

spreading rate and acceleration of lamellipodia formation. In addition, stimulation of 

lamellipodia formation by PDGF induces a reduction in membrane tension [110]. These 

authors also showed that PIP2 regulates plasma membrane tension [110]. VASP-/- MCFB 

cells require more time to adhere (Figure 28) and start spreading when compared to control 

cells [97], however the final result is stronger adhesion and enhanced spreading of VASP -/- 

cells.  When cells adhere to the substratum, they start to spread,  assemble stress fibers and 

induce new actin polymerization. Membrane tension also has to be reduced in order to allow 

new actin polymerization at that place. For example, it is not possible to incorporate actin 

monomers to the growing fiber at the location were the membrane is extended  if the 

membrane tension is high. [110]. In collaboration with  Annette Galler from our group and the 

group of D. Drenckhahn (Dept. of Anatomy and Cell Biology),  the membrane tension of 

VASP-/- and VASP+/+ was therefore  measured using a laser tweezers. Interestingly and in 

support of the hypothesis discussed above, we observed an enhanced tension in VASP 

deficient cells [97]. The enhanced MLC phosphorylation and the cell surface stiffening 

observed in  VASP-/- cells appear to lead to an enhanced strength of the actin cytoskeleton. 

Moreover, this enhanced contractility may cause the promotion of focal adhesion assembly, 

integrin clustering and  strengthening of cell adhesion, as has been experimentally observed 

with VASP deficient cells. 

 

 6.2. VASP deficient cells show no differences in Mena and Evl 
expression levels 
 

In this work,  I  demonstrated that the absence of VASP alone  is sufficient to induce 

distinct differences at the cellular level  including cell shape, stress fibers and focal adhesion. 

However, since Bear et al. [40] described a reduction in lamellipodia protrusion and a 

reduced random motility in cells deficient in all three mammalian Ena/VASP family members, 

the results obtained here could have been a consequence of an altered regulation and 

expression of other Ena/VASP proteins.  For example, in the absence of VASP, Mena or Evl 

expression could be up-regulated and the cellular effects observed could have been due to 

the over-expression of Mena (or Evl) rather than due to the absence of VASP. However, 

neither Mena nor Evl expression levels were significantly changed in VASP deficient MCFB 

indicating that VASP (and probably every Ena/VASP family member) has a function per se, 
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independently of the other Ena/VASP proteins present in the cell. This suggests that 

Ena/VASP proteins, in addition to partially overlapping and therefore redundant functions, 

have clearly distinct functions which cannot be replaced  by other family members.  

 

 6.3. VASP may modulate the expression pattern of some binding 
partners 
 

 Differences between VASP+/+ and VASP-/- cells could not be explained by an altered 

expression of other Ena/VASP family members (as discussed above) but could perhaps be 

due to an altered expression and/or function of proteins which interact with Ena/VASP 

proteins. Interestingly, results from microarray analysis show that VASP deficiency affects 

the expression pattern of these cells. One of the genes up-regulated in VASP deficient 

MCFB was of particular interest: Robo. The Roundabout (robo) gene was originally identified 

in a large scale Drosophila mutant screen for genes related to the control of midline crossing 

of axons. The gene encodes for a transmembrane protein of the immunoglobuline 

superfamily [111]. Robo contains two FP4 motifs that bind to the EVH1 domain of Ena [112]. 

In Drosophila, it was shown that Ena strengthens the repulsive function of Robo during axon 

guidance [12].   

 Robo has been found in mammalian brain [113] and spinal cord [114]. An alternative 

splicing of the Robo messenger codes  for Dutt 1. Dutt1 and Robo are expressed in a 

number of tissues (Brain, muscle, lung, kidney, eye and liver) during embryogenesis. In 

general, the expression of these proteins diminishes in adult mice. In mouse heart, Dutt 1 is 

preferentially expressed during development and its expression is dramatically reduced in 

adult mice heart [115]. If VASP, in mammals, has a function similar to that of Ena in 

Drosophila (i.e. strengthening the function of Robo), then cells may compensate for the 

absence of VASP by up-regulating the expression level of Robo as has been observed 

experimentally. Clearly, the functional significance of this microarray finding has to be 

investigated in future experiments, i.e. analysis of the equivalent of repulsive forces.   

 

 6.4. Rac and other small GTPases are good candidates to be 
involved in VASP dependent regulation of actin cytoskeleton  
 
 Since the phenotype of VASP-/- cells could not be explained by a differential 

expression of other Ena/VASP family members, additional mechanisms of regulation of the 

actin cytoskeleton should be investigated. Small GTPases of the Rho family were good 

candidates, as they are known to mediate several of the cytoskeletal processes impaired in 

VASP-/- MCFB. Among the Rho-GTPases, Rac has been shown to regulate lamellipodia 
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formation and spreading, two features that were particularly altered in the absence of VASP. 

Indeed, Rac/Pak pathway activation was enhanced and prolonged in VASP-/- cells 

suggesting a VASP dependent regulation responsible for the phenotype observed. 

 

  I showed here using a wound healing assay that VASP deficient MCFB cells failed 

to align in parallel to the edges of the wound when compared to wild type MCFB. Using a 

similar approach, Nobes and colleagues had demonstrated that Rac activity was essential for 

primary rat embryo fibroblasts (REF1) to extend lamellipodia [116]. REF1 cells normally 

extend the lamellipodium toward the empty space, showing after two hours a position 

perpendicular to the wound. Cells injected with a dominant negative form of Rac (N17Rac) 

did not form lamellipodia and had their stress fibers oriented in parallel to the wound [116]. 

When compared to the results presented here, the Rac dominant negative injected cells 

resemble VASP+/+ cells (cells with low Rac activity) whereas VASP-deficient MCFB cells 

(cells with elevated Rac activity) are similar to control REF cells. Although these are different 

cell systems, direct (N17Rac injection) or indirect (VASP knock-out) manipulation of Rac 

activity in both experiments obviously led to changes in cell motility. Cell orientation and 

lamellipodia formation therefore may be explained as secondary effects due to Rac/Pak 

activation in VASP-/- cells. When cells were monitored by time lapse video microscopy we 

observed that the failure of VASP-deficient cells to reorient their cell axis coincides with 

compromised detachment of their rear ends. This is in agreement with the observation that 

stress fibers and cell adhesion are markedly increased in VASP-/- cardiac fibroblasts and may 

contribute to the overall decrease in cell motility, as revealed by the wound healing assay. 

Interestingly, Kiosses and colleagues [117] suggested a model according to which regulated 

Pak activity is required for induction of tail retraction. This would also be in line with the 

deregulation of Pak activity and the motility phenotype of VASP-/- cells. In contrast to our 

observations, a Mena/VASP double knockout cell line was reported to show increased 

random motility [40]. These data may be reconciled with our present data if the adhesive 

phenotype found in VASP-/- cells is less pronounced in these double null cells. Then, 

Rac/Pak pathway activation (de-suppression) is likely to result in an increased plasma 

membrane protrusive activity and an increase in random migration, indeed, this has been 

experimentally observed by Bear and colleagues [40]. 

The small GTPases are know to be involved in regulation of adhesion, another 

feature that is impaired in VASP-/- cells. Upon adhesion, small GTPases are activated, initially 

a transient Rac activation followed by a more prolonged Rho activation [68,118]. Rac can 

induce new actin polymerization [119], a process possibly accelerated by VASP as has been 

clearly observed with the Listeria model [77,120]. In the absence of VASP, actin 

polymerization is slower, and the negative regulation of Rac is missing (Figure 32) leading to 
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enhanced spreading due to prolonged Rac-induced lamellipodia formation. Rho causes 

reorganization of existing [118] stress fibers and focal adhesion assembly [121,122]. 

Raucher and Sheetz have shown that stimulation of lamellipodia formation with PDGF 

reduce membrane tension. This stimulus also activates Rac in different cell types including 

the MCFB studied here. However this is not in contradiction with the enhanced membrane 

tension measured with VASP-/- cells, in which Rac activation is also enhanced. Membrane 

tension was determined in cells that were firmly attached to the substrate, i.e. the spreading 

process was already completed and PDGF stimulation was absent. The membrane tension 

data obtained indicate stabilization of the cytoskeleton in VASP deficient cells (thicker stress 

fibers, prominent focal adhesion, enhanced MLC phosphorylation) and suggest that Rho 

activation is also enhanced in the absence of VASP. It would be interesting to investigate 

changes in membrane tension during dynamic processes such as spreading in the absence 

of VASP. 

 

6.4.1 How does  VASP regulate the Rac/Pak pathway? 
 

It is not clear, whether there is some mechanism regulating the Rac level or activity in 

response to the mobile capacity or actin organization in cells, as discussed for Gelsolin-/- cells 

[123]. Thus, it is conceivable that (as part of a compensatory reaction) VASP 

absence/deficiency indirectly leads to an enhanced Rac/Pak pathway activation. However, 

also several not mutually exclusive modes can be envisaged, how VASP might regulate 

Rac/Pak signaling in a more direct manner. One pathway resulting in Rac and Pak activation 

involves integrins which are candidates for VASP dependent regulation. Integrin dependent 

adhesion can be modified by VASP (Refs. [52,53] and additional unpublished observations 

from our group) and is a prerequisite for PAK activation by GTP-bound Rac [68,124]. 

Through an interaction with PIX1, a guanine nucleotide exchange factor for Rac, Pak can 

feed back to Rac activation [103,125]. Actually, there is increasing evidence suggesting that 

the ordered interaction between these mediators is important for the regulation of Rac-

dependent signaling: First, a PIX-Pak-Nck complex via PKL1 is linked to Paxillin [126] and 

Pak localization to integrin-based focal contacts is dependent on the Paxillin-PKL interaction 

[127]). A Paxillin mutant that is deficient in PKL binding leads to drastically prolonged Rac 

activity and highly protrusive lamellipodia [127]. Second, the scaffold protein SLP-76 

potentiates adhesion-dependent Pak activation [30]. Tyrosine phosphorylation of SLP-76 

stimulates its association with the Pak binding adapter protein Nck and the Rac exchange 

factor Vav1 [30]. In platelets, adhesion to fibrinogen stimulated the association of SLP-76 

with SLAP-130 and its binding partner VASP [30], thus placing VASP probably into the same 

molecular complex as Rac, its exchange factor Vav1, and its effector Pak.  
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Similarly, Zyxin harbors binding sites for the EVH1 domain of VASP [10,16] and the SH3 

domain of Vav [128] in proximity within its proline-rich domain. Functionally, VASP and Zyxin 

cooperate in the formation of actin-rich cell surface protrusions and during cell spreading in 

different experimental systems [25]. There is also evidence for a possible link between 

Ena/VASP proteins and yet another exchange factor, Trio (a protein with two separate GEF1 

domains acting on Rac/RhoG and Cdc42, respectively). Thus, genetic data indicate that Trio 

and the Drosophila Ena/VASP family protein Ena have opposing functions in the same 

pathway [80]. Also, Trio has been shown to interact genetically both with Rac and Pak in 

Drosophila. There, these proteins define a pathway that, similar to the role of Ena [12,80], 

links guidance receptors to the actin cytoskeleton [129]. Together these data suggest a 

possible mode of VASP-dependent inhibition of Rac/Pak signaling through modulation of 

Trio-mediated guanine nucleotide exchange of Rac and/or Cdc 42. Moreover, knock-out of 

the gene encoding the Trio interacting protein Tara causes cell spreading and stress fiber 

thickening [130]. This phenotype resembles VASP-/- cells,  and Trio is therefore a putative 

player in VASP deficient cells . (See Figure 43 for a summary). 
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Figure 43: Summary of Rac regulation and possible steps where Ena/VASP 
proteins could interact. Summary includes pathways and information from 
several cell types.  
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However, we cannot exclude that VASP may actually intersect with signaling 

pathways at an upstream level: VASP specifically interacts in vitro with a proline-rich peptide 

derived from the N-terminal segment of p120RasGAP3, a protein that is also involved in 

stress fiber turnover and reorientation during cell migration (see Ref. [131] for a review). 

 

 

6.5. Adhesion: observations in vitro and in vivo point to the 
importance of VASP in this cellular process 
 

In this work, I showed  that VASP deficient cells attach more slowly to fibronectin but , 

once attached, stronger. This indicates delayed primary adhesion but stronger stable 

adhesion. The membrane tension assays using laser tweezers discussed earlier also 

confirmed the strong adhesion of MCFB cells.  In the in vitro assays used in this work only 

the interaction to fibronectin is investigated without any other factor influencing the process. 

However, the situation in vivo is quite different. Usually there is more than one cell type 

involved and secretion of neighboring cells may regulate adhesion, by modification of the 

ECM composition or by acting directly on the attaching cell. This is particularly true for 

adhesion of platelets in vivo.  

Platelets normally circulate without binding to the vessel wall. Adhesion is prevented 

by endothelial cells, which secrete prostacyclin and nitric oxide, inhibitors of platelet 

activation and adhesion. Upon vascular injury, the subendothelium is exposed to the 

circulating platelets in the flowing blood. As the adhesion of platelets occurs under flow 

conditions, adhesion must be fast and resist the shear forces. This has led to the 

development of a particular set of ligands and receptors. Platelets come into contact with 

ECM constituents such as collagen and other molecules secreted/produced locally in 

response to the injury such as von Willebrand factor (vWf). After a superficial disruption of 

the endothelium, the main basement membrane components that are exposed to the blood 

are vWf, proteoglycans, collagen type IV laminin and fibulin. The first platelet contact takes 

place via its glycoprotein GPIb, able to interact with vWf. Collagen IV can elicit platelet 

response but is less effective than other types of collagen such as type I, III and VI that are 

exposed by deeper injury. Mainly the integrin α2β3 and the glycoprotein GPVI interact with 

collagen. Fibrinogen is normally not present in the subendothelial ECM but can be 

immobilized at the injury region and is involved in thrombus formation by mediating platelet-

platelet interactions via the αIIbβ3. The binding of platelet membrane receptor to the ECM 

and associated molecules elicits the activation of platelets and signaling cascades within 

them (outside-in signaling). The activation of signaling pathways in the platelets will modulate 

their adhesion and interaction with subendothelium and other cells. Upon activation, platelets 
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secrete P-selectin that can be recognized by leukocyte membrane receptors. During 

atherosclerosis, abnormal endothelial cells increasingly expose adhesive molecules such as 

P-selectin and vWf that contribute to the adhesion of platelets to the atherosclerotic plaque. 

(for a review see [132]). It is clear that adhesion under in vivo situations involves a higher 

number of parameters/molecules to be coordinated and controlled than adhesion studied by 

an in vitro model. 

 Therefore, it was of particular interest to study platelet adhesion using in-vivo 

conditions which was done in a collaborative project with Dr. Massberg (Herzzentrum, 

Munich). Platelet-endothelial cell interactions were significantly enhanced with VASP-/- 

platelets under normal (basal) conditions (probably due to enhanced activation of the integrin 

αIIbβ3 in VASP-/- platelets), during ischemia/reperfusion periods and after endothelial 

denudation. At first sight, these in-vivo results apparently disagree with the in vitro assays 

performed with MCFB reported here. Clearly, the difference between the in-vivo and in vitro 

model (cell types and different adhesive proteins involved; flow conditions; parameters to be 

controlled) may be  responsible for differences in the kinetics of adhesion. However, it should 

be stressed here that the final result, a stronger and more stable adhesion of VASP deficient 

cells,  was observed in both situations.   

 

6.5.1 Influence of cGMP analogs in cell adhesion  
Treatment of platelets with cGMP analogs (such as 8pCPT-cGMP) inhibits their 

activation, but the shape change prior aggregation still takes place. In vivo platelet adhesion 

experiments were also performed in the presence of NO donors that will activate the 

guanylate cyclase (GC), increase cGMP levels, activate the cGMP-dependent protein kinase 

(cGK) and cause VASP phosphorylation in platelets. Treatment with NO donors inhibited 

adhesion to the endothelium of wild type but not cGK-I-deficient platelets in vivo [133]. 

Similar data were obtained in vitro with rat mesangial cells, endothelial cells and leukocytes 

[134,135]. The inhibition of adhesion by NO/cGMP is apparently VASP dependent: adhesion 

of VASP deficient platelets was not effectively inhibited by NO-donor pretreatment (Massberg 

et al., submitted for publication). These in vivo results agree with in-vitro data obtained earlier 

[52,53] which demonstrated that platelet inhibition by cyclic nucleotides is impaired in the 

absence of VASP 

In apparent contrast to the inhibitory effect of cGMP in platelet adhesion, I showed 

here that treatment of wild type MCFB with the cGMP analog 8pCPT-cGMP induces an 

enhanced VASP dependent adhesion in vitro.  Considering that 8pCPT-cGMP selectively 

activates cGK it would be reasonable to suggest a phospho-VASP effect in cell adhesion. It 

cannot be excluded that the effect of cGMP observed in MCFB is cell-type specific and that 

8p-CPT-cGMP or cGMP induce or inhibit adhesion depending on the cell type. The adhesion 
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assay performed with MCFB is certainly complex. Although primary MCFB cells express both 

isoforms of cGK I ( Iα and Iβ) it has been observed that cells in culture express reduced or 

even undetectable cGK levels after 15 to 20 passages, depending on the preparation. This 

reduction of cGK expression in cell culture has also been observed in Jurkat cells [136], but 

not in rat mesangial cells (Dr. Stepan Gambaryan, personal comunication). The results 

presented here were obtained with cells in passage 25 (where cGK was not detectable) 

indicating that the VASP dependent effect of 8pCPT-cGMP in cell adhesion may be not due 

to cGK activation and consequent VASP phosphorylation. The 8pCPT-cGMP compound is 

also  poor activator of cAK. Therefore, (particularly at high concentrations or long-term 

incubation times) a cross activation of PKA leading to phosphorylation of VASP is difficult to 

rule out.  A very weak phosphorylation of the Ser239 has been seen in cells pretreated with 

the cGMP analog at passage 25. This phosphorylation is probably due to a residual cGK 

level (that is below the detection range of the anti-cGK antibody)  or, alternatively,  cross-

activation of the PKA. However, this  low amount of phospho-VASP obtained in 8p-CPT-

cGMP treated MCFB is most likely not enough to induce a 2-fold increase in adhesion. Very 

recently, it has been shown that the cGMP analog 8pCPT-cGMP (but not cGMP) activates a 

GEF (Guanosine Exchange Factor) for the small GTPase Rap: Epac (Exchange protein 

directly activated by cAMP) [137]. Epac is activated in vivo and in vitro by cAMP, which 

releases an autoinhibitory domain [138]. Rap1, on the other hand, has been involved in the 

control of integrin-mediated cell adhesion [139,140]. Over-expression of activated Rap1 

stimulates integrin-dependent adhesion in human T-cell and mouse pre-B cell leukemia lines, 

and a dominant negative form of Rap1 (RapN17) inhibits T-cell receptor (TCR) induced 

adhesion. The role of Rap 1 in platelets is still controversial. Activation of the integrin αIIbβ3, 

the inhibition of which is correlated with VASP phosphorylation, results in Rap 1 activation; 

however, integrin-mediated adhesion is also required for subsequent Rap 1 inactivation (See 

Bos et al (2001) [141] for a review). 

 

In conclusion, the data presented in this dissertation strongly suggest that VASP 

appears not only to regulate various aspects of actin filament formation and architecture [9], 

but also modifies Rac/Pak pathway signaling and, as  consequence, cell motility and 

polarization. On the basis of the results shown, VASP appears to be involved in processes 

related to the turnover / remodeling of the actin cytoskeleton by regulating actin 

polymerization both directly and indirectly, ie. via signaling pathways such as Rac/Rho-

GTPases. Finally, the absence of VASP strengthens cell adhesion, both in vitro and in vivo.  

In particular the platelet in vivo results demonstrate the participation of VASP in processes 

such as adhesion, which  may become an  important novel target for future anti-platelet/ anti-

thrombotic therapies. 
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6.6 Future perspectives 
 

The results presented here  open new ways for the study of VASP as a regulator of 

the actin cytoskeleton. The mechanism of the  regulation of the Rac/Pak pathway by VASP 

remains to be elucidated. As Rac is activated by different stimuli (Integrin activation, growth 

factor receptors, G protein coupled receptors) it is interesting to evaluate the involvement of 

VASP in the different mechanisms of Rac activation using different agonists. Further 

experiments are planned to investigate if the inhibitory, VASP-dependent effects of 8p-CPT-

cGMP on TxA2 (via Gq) stimulated Rac activation in platelets is valid also for other cell types.  

VASP would appear closer to the Rac activation cascade if the inhibitory effect of VASP is 

independent of the stimulus used to activate Rac.   

As also discussed earlier, the cellular phenotypes analyzed here suggest an 

enhanced Rho activity in VASP deficient cells. Efforts and experimental approaches to 

demonstrate this are on the way. Such experiments, combined with the use of novel and 

validated inhibitors of Rho and Rho pathways (e.g. Y-27632, C3), may help to understand 

the role of VASP in the regulation of small GTPases. 

Another topic to be clarified is the question if the enhanced adhesion observed in wild 

type MCFB pretreated with the cGMP analog 8p-CPT-cGMP is mediated by Epac, involving 

VASP in the regulation of Rap. More specific activators of cGK and Epac have been recently 

developed that could  be  useful to answer this question.  

Several genes have been found to be differentially expressed in the absence of 

VASP, as suggested by the results obtained using the microarray approach. Many of these 

data need to be confirmed and advanced by other techniques and approaches. Of particular 

interest is the functional significance of enhanced Robo1 expression in VASP deficient cells.  

Finally, the role of VASP phosphorylation in the cellular processes studied here 

remains to be investigated in detail. Phosphorylation sites are one aspect of the main 

difference between members of the Ena/VASP family members. They may be, at least 

partially, responsible for the exclusive functions of VASP. 

The ultimate goal is to understand the structural and functional in vivo role of VASP 

and its binding partners in regulating actin filament formation, signal transduction pathways 

and cellular processes such as adhesion, motility and gene expression profiles. 
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8. Abbreviations 
 
 

8pCPT-cGMP 8-(para-Chlorophenylthio)guanosine-3’,5’-cyclic monoposphate 
Abl Ableson tyrosine kinase 
AC Adenylate cyclase 
ADF Actin depolymerization factor  
APS Amonium persulfate 
Arp 2/3 Actin related protein 2/3 complex 
ATP Adenosine triphosphate 
BSA Bovine serum albumine  
cAK cAMP- dependent protein kinase 
cAMP Cyclic adenosine-3’,5’- monophosphate 
cBIMPS-cAMP 5,6-Dichloro-1-ββββ-D-ribofuranosylbenzimidazol-3’,5’-cyclic 

monophosphorothioate,Sp-isomer-cAMP 
CCD Citrate citric acid dextrose buffer 
cGK cGMP- dependent protein kinase 
cGMP Cyclic guanosine-3’,5’- monophosphate 
DIG Digoxigenin 
DMEM Dulbecco’s Modified Eagle Medium 
dNTP Deoxyribonucleotides 
DTT Dithiotreitol 
ECL Enhanced chemoluminiscence 
ECM Extracellular matrix 
EDTA Ethylendiamine tetraacetic acid 
EGF Epithelial growth factor 
EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid 
Epac Exchange protein directly activated by cAMP 
EtBr Ethidium bromide 
EtOH Ethanol 
F-actin Filamentous actin 
Fyb/SLAP Fyn binding protein/SLP76 associated protein 
G-actin Globular actin (monomeric actin) 
GAP GTPase activating protein 
GC Guanylate cyclase 
GDP Guanine 5’-diphosphate 
GEF GTP exchange factor 
GST-PBD Glutathione-S-transferase – Pak binding domain  
GTP-γγγγ-S Guanosine 5’-[γγγγ thio] triphosphate 
HEPES N-2-Hydroxyethylpiperazin-N’-ethansulfonacid 
IP3 Inositol-1,4,5-triphosphate 
IPTG Isopropyl-ββββ-D-Thiogalacto(pyrano)side 
IRSp53 Insulin receptor protein kinase substrate 
LB Luria Bertani medium 
LPA Lysophosphatidic acid 
LPP Lipoma preferred partner 
MCFB Mouse cardiac fibroblast 
MeOH Methanol 
MLC Myosin light chain 
MLCK Myosin light chain kinase 
Pak p21-activated kinase 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PDGF Platelet derived growth factor 
PGE1 Prostaglandin E1 
PGi2 Prostaglandin I2 (Prostacyclin) 
PIP2 Phosphatidylinositol-4,5-biphosphate 
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PIP5K Phosphatidylinositol-4-phosphate-5-kinase 
PIX Pak interacting exchange factor 
Robo Roundabout 
RT-PCR Reverse Transcriptase- polymerase chain reaction 
SCAR/WAVE Supressor of cAMP receptor/ WASP family verprolin 

homologous protein  
SDS Sodium dodecyl sulfate 
SH3 Src homology domain 3 
SLP 76 SH2 domain containing leukocyte protein of 76kDa 
TBS-T Tris buffered saline-with Tween-20 
TCA Trichloroacetic acid 
TEMED N,N,N’,N’-tetramethylendiamine 
TxA2 Thromboxane A2 
VASP Vasodilator Stimulated phosphoprotein 
WASP Wiskott Aldrich Syndrom protein 
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