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Abstract 

Hormones of the hematopoietin class mediate signal transduction by binding to specific transmembrane recep
tors. Structural data show that the human growth hormone (hGH) forms a complex with a homodimeric recep
tor and that hGH is a member of a class of hematopoietins possessing an antiparallel 4-a-helix bundle fold. 
Mutagenesis experiments suggest that electrostatic interactions may have an important influence on hormone
receptor recognition. In order to examine the specificity of hormone-receptor complexation, an analysis was made 
of the electrostatic potentials of hGH, interleukin-2 (IL-2), interleukin-4 (IL-4), granulocyte colony-stimulating 
factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and the hGH and IL-4 receptors. 

The binding surfaces of hGH and its receptor, and of IL-4 and its receptor, show complementary electrostatic 
potentials. The potentials of the hGH and its receptor display approximately 2-fold rotational symmetry because 
the receptor subunits are identical. In contrast, the potentials of GM-CSF and IL-2 Iack such symmetry, consis
tent with their known high affinity for hetero-oligomeric receptors. Analysis of the electrostatic potentials sup
ports a recently proposed hetero-oligomeric model for a high-affinity IL-4 receptor and suggests a possible new 
receptor binding mode for G-CSF; it also provides valuable information for guiding structural and mutagenesis 
studies of signal-transducing proteins and their receptors. 

Keywords: cytokines; electrostatic potential; hematopoietic receptors; human growth factor; interleukins; mo
lecular recognition 

Electrostatic forces play an important part in molecular recog
nition. By acting at much greater distances than other molecu
lar forces, they provide a driving force for the proper docking 
of ligands into their protein binding sites and for protein-protein 
association. Such electrostatic steering has been shown for the 
enzyme-substrate encounter of supermüde dismutase (Sines et al., 
1990), triosephosphate isomerase (Luty et al., 1993; Wade et al., 
1994), and acetylcholinesterase (Ripoll et al., 1993), and for the 
protein-protein encounter in the formation of the cytochrome 
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c/cytochrome c peroxidase complex (Northrup et al., 1988), the 
complex of plastocyanin with cytochrome c (Roberts et al., 
1991), and a lysozyme-antibody complex (Kozack & Subrama
niam, 1993). Electrostatic forces contribute to the specificity of 
protein complexation (Perry et al., 1989), which often involves 
complementary charge distributions on the binding faces, such 
as have been observed for the thrombin-hirudin complex (Kar
shikov et al., 1992). 

Indications that electrostatic properties influence both the dif
fusional association and the binding affinity of growth factors 
to their receptors are provided by mutagenesis studies (Cunning
ham & Wells, 1993). For example, the mutation of Glu 9 in 
IL-4 to Iysine results in a 1 ,400-fold drop in receptor binding 
affinity (Kruse et al., 1993). Formation of a specific high-affinity 
hormone-receptor complex is likely tobe dependent on forma
tion of complementary van der Waals and electrostatic interac
tions. In this paper, we investigate the electrostatic properties 
of these hormones and their receptors in order to examine their 
contribution to the specificity of these interactions. 



Binding properfies oj growth jactors 

A large group of hormones known as growth factors regulate 
the course ofcell growth and differentiation by binding to spe
cific receptors embedded in the cell membrane (Bazan, 1990; 
McOonald & Hendrickson, 1993). Thesehormones transmit cell 
signals by inducing· the o1igomerization of receptor molecules 
(Cunninghamet al., 199J; Boulay & Paul, 1992;deVos etaL, 
1992; Miyajima et al., l992; Foxweil & Barrett, 1993; McDonald 
& Hendrickson, 19'93). Depending on the binding properties·of 
the hormone; its receptor may consist of identical or different 
receptor molecules, hence forming homo- or hetero~receptor
subunit hormone:...receptor complexes. Most hormone-receptor 
complexes are thought toconsist of 3 polypeptide.chains: I of 
the hormone and 2 of the receptor (Miyaiima et al., 1992). 
However, a third horm:one binding receptor subunit of the JL,2 
receptor has been found and a quaternary model has been pro~ 
posed for the hormone....:receptor cornplex (Minam! et al., 1993). 

Here we focus on the 4-a-helix bundle class of growth fac
tors (McOonald & Hendrickson, 1993). This includes, among 
others, hGH and the hematopoietic cytokines (hematopoietins): 
M-CSF, G-CSF, GM-CSF, IL-2, IL-4, and IL-5. These hor
mones are relatively small (10'-30 kDa) glycoproteins stabilized 
by disulfide bonds. With the exception of M-CSF and IL-5, 
which are disulfide"linked homodimers, all other known hema
topoietic hormones are single subunit proteins. They display very 
little sequence.similarity. However, crystallographic and NMR 
studies show that most of these hor.mones share a well-preserved 
common 30 fold. This is characterized.as a left-twisted 4-a-helix 
bundle with the helices connected by an up-up-down-down to
pology (Fig. 1; Kinemage 1 ). The helices are less parallel than 

Fig. I. Ribbon diagram of an NMR structure of interleukin-4 (Müller 
et al., 1994). The helix bundle has up-up-down-down connectivity. The 
4 major a-helic~s are labeled A (residoes 4-20), B (39-58), C (69-95), 
and D (108:..125). The picture was prepared using the MOLSCRIPT pro
gram (Kraulis, 1991) accordihg to DSSP (Kabsch & Sander, 1983) sec
ondary str.ucture assignments. 
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those in classical4-helix bundles (Smith et al., 1992), having in
terhelix angles of more than 40°. This type of geometry and to
pology is unique among 4-helix bundle proteins and, hence, 
cytokines can be distinguished as a distinct structural class of 
proteins (Hili et al., 1993}. However, the individual cytokine 
structures differ in their details, particularly in the relative 
lengths of the bundle-forming helices. 

Functional hematopoietic receptors are transmembrane pro
tcins consisting of several components, including an extracellu
lar iigand binding part and transducer, effector, and regulatory 
subunits (Miyajima et al., 1992). ln contrast to the hematopoi
etins, the sequences of the extracellular segments ofthe recep
tors are related. They constitute the hematopoietin receptor 
superfamily (Cosman et al., 1990; Bazan, 1993), Only one 30 
structure of a rece.ptor has been published to date: the structure 
of the ternary complex of hGH and the extracellular segments 
of 2 identical receptor molecules, which has been solved by 
X-ray crystallography (de Vos et al., 1992). The structure of each 
receptor unit .is similar to that of the extracellular regions of rat 
C02 (Jones et al., 1992) and human CD4 (Wang et al., 1990), 
which belong to a class of immunoglobulin molecules known to 
be responsible for many cellular recognition processes. 

Most hormone-receptor interactions are specific. There is little 
cross-reactivity between hormones and receptors of different 
species or different types, unless (1) both are highly homologous 
(Fukunaga et al., 1991; Nicola & Metcalf,1991), or (2) the hor
mones share a common receptor component (Boulay & Paul, 
1992; Kondo et al., 1993; Russen et al., 1993), or (3) have dif
ferent hinding sites on the hormone (Fuh et al., 1993). An in
dication that a part of the specificity of hormone-receptor 
recognition may be dependent on electrostatic interactions is 
given by ObServations that mutations involving charged residues 
in IL-2 (Weigel et al., 1989; Zurawski et al., 1990; Zurawski & 
Zurawski, 1992), IL-4 (Kruse et al., 1992, 1993; Ramanathan 
et al., 1993; Wlodaweret al., 1993), GM-CSF(Kaushanskyetal., 
1989; Lopez et al., 1992), and hGH (Cunningham et al., 1991; 
Cunningham & Wells, 1993; Wells & de Vos, 1993) and its re
ceptor (Bass et al., 1991) often have a signi ficant effect on re
ceptor binding. We have therefore carried out a comparative 
study of the electrostatic properties of 5 growth factors, the ex
tracellular part of the hGH receptor, and a homology-modeled 
extracellular part of the 130-kDa chain (IL-4R) of the IL-4 re
ceptor in order to examine their binding modes. 

Electrostatic potentials were calculated by numerical solution 
of the linearized finite-difference Poisson-Boltzmann equation 
using a macroscopic continuum-dielectric model of the protein 
in ionic solvent (Oavis & McCammon, 1989). In this model, 
(I) partial charges are assigned toprotein atoms, (2) the protein 
is treated as a low dielectric cavity inserted in a high dielec
tric solvent medium with the dielectric boundary determined by 
the 3D structure of the protein, and (3) ions are assumed to 
be distributed around the protein according to the Boltzmann 
distribution. 

Cömparison of the electrostatic potentials of hGH, hG-CSF, 
bG-CSF, GM-CSF, IL-2 and IL-4, the hGH/hGH-receptor com
p1ex, and.a modeled complex of IL-4/IL-4R shows that the spec
ificity of hormone-receptor binding is related to the distribution 
of the electrostatic potential around the hormone. In particu
lar, the electrostatic potential indicates whether a hormone stim
ulates the formation of homodimeric or hetero-oligomeric 
receptor complexes. 
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Results 

Complementarity of electrostatic potentials 

An example of the complementarity of the electrostatic poten
tials is given by hGH, which forms a high-affinity complex with 
2 hGHR molecules despite the fact that both the hGH and the 
extracellular segment of the receptor are negatively charged. As
suming Standard amino acid residue protonation states at pH 7, 
the net charge on the hormone is -4e (measured pl = 5.0; 
Gellerfors et al., 1989) and the net charge on the extracellular 
part of the receptor dimer is -14e. The electrostatic potentials 
of the interacting proteins are, however, distributed so that there 
are regions of complementary positive and negative potential at 
the hormone-receptor interface (Fig. 2). Six regions of comple
mentarity in the electrostatic potentials of the receptor and the 
hormone are distinguishable at the interface region. Theseare 
indicated in Figure 2 by Ietters a-f in the hormone and by let
ters a' -f' in the receptor dimer (see also Fig. 9A for the 
hormone). 

We identified the charged residues responsible for the ob
served electrostatic potential pattern and compared them to 
those listed in Table 2 of de Vos et al. ( 1992). In addition to the 
residues making the 5 salt bridges listed in that table, other res
idues were found that make favorable intermolecular electro
static interactions although these do not necessarily contact each 
other. The positively charged region a', located at the bottom 
of the hormone-binding groove (Fig. 2A), is in the center of the 
hormone-receptor interface (Fig. 2B). It is formed by Arg 43 
and Arg 217 of the receptor A -chain and residues Arg 43, 
Lys 167, and Arg 217 of the receptor B-chain. In the hormone
receptor complex, these residues interact with Asp 11, Asp 26, 
Asp 171, and Glu 174 (negative region a) ofhOH. The a' region 
of the receptor potential is surrounded by negative potential. Re
gions b' and c', formed by residues Glu 42, Glu 44, and Asp 164 
of the receptor A- and B-chains, respectively, have negative po
tential. They interact with residues Arg 64, Arg 178, and Arg 183 
(region b) and Arg 16 and Arg 19 (region c) of hGH. Regions 
d' and e' (residues Asp 126 and Glu 127 of the receptor A- and 
B-chains, respectively) are 2 further regions of negative recep
tor potential adjacent to the center of the hormone binding in
terface. They interact with 2 corresponding regions of positive 
potential on hGH: region d (residues Lys 38, Lys 41, Arg 167, 
Lys 168, and Lys 172) and region e (residues Arg 8 and Arg 127). 
A peripheral a-helix located between the A and B helices of the 
hormone (residues Lys 38-Gln 46) contributes to the negative 
region f (residues Glu 39 and Asp 154) in the electrostatic po
tential of hOH, which contacts the positively charged region f' 
of the receptor (residues Lys 34, Lys 110, and Lys 121 of the A
chain).3 Thus, the electrostatic potentials around the binding 
faces of the hGH and its receptor seem to be balanced to pro
mote a complementary recognition. 

A quantitative estimate of electrostatic complementarity be
tween hormone and receptor molecules was made by calculat
ing the electrostatic interaction energy between the hormone and 
a receptor _subunit as a function of their mutual orientation using 

3 Binding of hGH to the receptor subunits takes place sequentially 
(Cunningham et al., 1991): first to regions a', b', d', and f' of the re
ceptor (binding site I) and then to regions a', c', and e' of the receptor 
(binding site 11). 
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the test charge approximation (see Equation 1). Figure 3 shows . 
an energy surface obtained for the receptor A-chain on rotat
ing and translating it in the electrostatic potential of the hor
mone. There are 2 favorable low-energy orientations for the 
receptor A-chain: one at about 160° and the other at about 350°. 
They correspond to the orientations of the A- and B-chains of 
the receptor in the ternary complex4 and indicate regions of 
complementary electrostatic potential. 

Another example of hormone-receptor electrostatic potential 
complementarity is given by the modeled IL-4/IL-4-receptor 
complex (Fig. 4). Bamborough et al. (1993) have modeled the 
complex by homology on the basis of the CD4 coordinate set 
assuming that the functional IL-4 receptor consists of 2 identi
cal IL-4R chains. However, we have experimentally identified 
only 1 binding site for the IL-4R on the IL-4 molecule (Kruse 
et al., 1993). It is formed by residues of the A and C helices and 
binds the receptor B-chain of the model (left in Fig. 4). Another 
binding site on IL-4 that affects IL-4 signaling involves residues 
in the D helix, but the identity of the receptor subunit that binds 
to this site is unknown. lt could be a second molecule of IL-4R, 
as in the rnodel (receptor A-chain); however, the IL-2 receptor 
-y-chain (IL-2R-y) has been shown to participate in at least 1 IL-
4 signaling pathway, suggesting that an IL-4/IL-4R/IL-2R'Y ter
nary complex is formed (Kondo et al., 1993; Russen et al., 1993). 

The net charge on the N-terminal IL-4R domain is -7e, as
suming standard amino acid residue protonation states at pH 7. 
Accordingly, the electrostatic potential of IL-4R is mainly neg
ative in the region of horrnone-receptor interface (Fig. 4). Lys 91 
is the only positively charged residue in this region. lt contrib
utes to the positive potential regions a' in the B-receptor sub
unit (and c' region in the A-receptor subunit). 

The IL-4 has a net charge of + 1e (measured pl > 9; Solari 
et al., 1989) and is mainly surrounded by positive potential, 
which complements the negative potential of IL-4R at the in
terface (Figs. 4, 9). The only negative region a in the A-C face 
of the IL-4 bundle (residues Asp 4 and Olu 9) matches the pos
itive region a' in the interface region of IL-4R. Mutation of 
Olu 9 to Lys Ieads to a 1 ,400-fold drop in receptor binding af
finity, showing the importance of this region (Kruse et al., 1993). 
Interestingly, another negative region on IL-4, the region c (res
idues Glu 19, Glu 26, Asp 31, Glu 110, and Olu 114) located in 
the A-D face of the bundle near the expected second receptor 
binding site of IL-4, could interact with the positive region c' 
of the receptor A -chain in the putative homodimeric receptor 
complex. However, the hormone-receptor electrostatic poten
tial complementarity in the region c-c' is not as precise as in the 
region a-a'. The negative region c on IL-4 is )arger than the re
gion a and not only complements the positive region c' of the 
receptor model but also clashes with its encircling negative po
tential. Considering this together with the negative region b, also 
located on the A-0 face of the IL-4 bundle, complementarity 
of the electrostatic potentials in this part of the model is dis
rupted, suggesting that another subunit, different from the IL-
4R, could bind to this site. 

This conclusion is supported by estimates of the interaction 
energy between IL-4 and IL-4R (Fig. 5). In cantrast to the case 

4 Note that the receptor subunit was modeled from Ca coordinates 
without taking electrostatic interactions into account (see Methods). Fa
vorable orientations may be more precisely defined for a full crystallo
graphic coordinate set. 
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F'ig. 3. Estimatc of thc clcctrostatic interaction cncrgy of hGH and the 
A-chain of its recepror as a funcrion of rheir mutual orientation. This 
is calculated from Equation I according to the test charge approxima
tion for the receptor partial atomic charges in the electrostatic poten
tial of thc hormone. The immersion of 1 he receptor charges in low 
dielectric is not taken into account. However, although this affccts the 
magnitude of ilGc1., .... it has littlc effcct on its observed dependencc on 
angle (data not shown). Thc rcceptor molecule was translatcd in I -A in
rervals out of irs crystallographic position in thc hGH/hGH-receptor 
complex in the direction of the rnembrarie surface and, at each separa
tion, it was rotated in steps of 10° araund the ceriter of geometry of the 
receptor dimer in a plane parallel to thc mernbrane surfacc. Al. small 
hormone-receptor separations, very high energies were obtained because 
of steric overlap between the molecules on rotation. Thus, the cnergy 
is displayed only in the range -0. I to +0.2 kcal/rnol and at thc sepa
ration distance of 20-40 A. The cnergy surface displays 2 low-energy 
regions- one isatabout 150-180° and the othcr isalabout 340-360°
rcvcaling 2 oriemations of the horrnone-receptor system that have fa
vorable elecl rostalle intcractions. 

for hOH and its receptor, the estimated electrostatic interaction 
energy for IL-4 and each of the modeled IL-4 receptor chains 
is favorable at only 1 orientation of the IL-4R. This corresponds 
to the binding site for the IL-4 receptor B-chain involving the 
A and C helices of IL-4 (left in Fig. 4). Thus, the electrostatic 
potential of lL-4 supports a hetero-oligomeric model for IL-4 
receptor. 

The IL-2Ry is likely to be a better substrate for the receptor 
binding site on the A-D face of the IL-4 bundle than the IL-4R 
because its N-terminal domain has a smaller negative charge. Ac
cording to the alignment of bot.h sequences (F~g. 6), there are 
10 acidic and 9 basic residues in the part of the IL-2R-y sequence 
homologous to the N-terminal domain of IL-4R, and it may be 
expected that the more balanced electrostatic potential of I L-
2R-y fits the heterogeneaus potential of the A-D face of the IL-
4 helix bundle better. 

Con'lparison of the electrostatic potentials of the hGH/hGH
receptor cotnplex and the model I L-4/IL-4-receptor complex 
shows that, although there are differences between the electro
static potentials of both hörmones and differences between 
the electrostatic potentials of the receptors, for each hormone
receptor pair, the potentials complement each other in the 
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interface region and, thus, can be used as descriptors of 
hormone-receptor recognition. 

Structural comparison of growth factors 

The considerable sequence similarity among the extracellular 
parts of hematopoietin receptors is thought to reflect the common 
ancestry not only of the receptors themselves but also of their 
liganqs and of other components constituting the hormone
receptor System (Bazan, 1990). lndeed, despite the very low 
sequence similarity between the signal-transducing proteins, 
which normally would not allow them to be assigned to the same 
phylogenetic group, all5 cytokines studied here share the same 
conserved 30 fold. The spatial conservation of both the cyt.o
kines and their receptors suggests that the 3D structure of their 
complexes may also be conserved. 

Immunochemical experiments and experiments on recombi
nant analogs of murine (Zurawski & Zurawski, 1989, 1992; 
Zurawski et al., 1990) and human IL-2 (Liang et al., 1986; 
Weige.J et aL, 1989; Landgraf et al., 1992), IL-4 (Kruse et al., 
1991, 1992, 1993; Ramanathan et al., 1993), and GM-CSF 
(Kaushansky et al. .• 1989; Lopez et al., 1992; Meropol et al., 
1992) suggest that all of them are likely to interact with their re
ceptors in an orientation similar to hGH (de Vos et al., 1992), 
i.e., with the surface involving the A, C, and D helices. Map
ping of functionally important residues onro the crystal struc
tures of IL~2 and lL-4 indicates that a region neat the C-terminus 
is one of the potential receptor binding shes. This region cor
responds to receptor binding site I of hGH in the crystal struc
ture of the hGH/hGH-receptor complex (de Vos et al., 1992). 
A region similar to receptor binding site II of hGH has been 
identified as a potential binding site on the GM-CSF (Diederichs 
et al., 1991) and the IL-4 5 (Kruse et al., 1993; Ramanathan et al., 
1993; Müller et al., 1994). Therefore, the 3D structures of 
GM-CSF, IL-2, and IL-4 were superimposed on the crystal 
structure of hGH by fiuing helices C, A, and 0 of the receptor 
binding surface (Table 1). As can be seen in Figure 7 and Ki
nemage 1, the superimposed helical fragments differ more in 
length than in mutual orientation. 

The G-CSF structures differ from those of other cytokines 
studied in that the 4-a-helix bundle has a more regular topol
ogy. The a-helices are Ionger and thus more regularly packed, 
but the most strikin,g feature is that the B helix (which is short 
or distorted in other cytokines) is equal in length to the other 
3 helices of the bundle. Thus, it is reasonable to consider an al
ternative location of the receptor binding site on G-CSF involv
ing the B helix. 

Experimental data concerning G-CSF do not allow an un
equivocal assignment of its receptor binding surface. Mutations 
resulting in significantly decreased activity have been found in 
all 4 helices ofhG-CSF (Kuga et al., 1989; Layton et al., 1991; 
Ishikawa et al., 1992). Thus, 2 possible superpositions of hG
CSF (Hili et al., 1993) and bG-CSF (Lovejoy et al., J 993) were 
considered. In one, the orientation of G-CSF is similar tothat 
of the other 3 cytokines. In the other, the G-CSF is rotated 90° 
around the axis of the helical bundle and 180° around an axis 

5 Note that the sequence of I L-4 receptor subuni t binding is opposite 
tothat of hGI-I, i.e., the A and D helices of hGH are part of binding 
site I, whereas in I L-4, the same helices constitute binding site 11 (Kruse 
et al., 1993). 
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Fig. 5. Estimate of .the electrostatic interaction energy between thelL-
4 NMR structureandthe modeled (A) lL-4R A- and (B) 8-chains. Cal
culations were done as described in the legend to Figure 3. Both energy 
surfaces display only l low-cnergy region occurring at about 0° for the 
B-chain and 180° förtheA-chain. The region of favorable hormone
receptor elecrrosratic imeractions corresponds to the orientaüon of the 
receptor ß-chain in the ternary model. 
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perpendicular to the bundle axis .• resulting in a Superposition that 
brings the B, C, and A helices of G-CSF into correspondence 
with the C, A, and D helices of hGH ("alternative" Superposi
tion in Table 1). 

Symmetry of electrostatic potential 

Human growth faclor binds 2 identical receptor molecules sequen
tiall.y (Cunningham et al., 1991). In the complex, the positions 
of the 2 receptor molecules are related by an approximately 
2-fold symmetry axis. One molecule can be super.imposed on an
othet with an RMSD in C~ atoms of 1.0 A by a rotation 
through .159° and by a transtati.on of 8 A (de Yos et aL, 1992). 
As a consequence, the electrostatic potential in the interface re
gion öf the receptor dimer has 2-fold rotational symmetry 
around an axis perpendicular to the cel1 membrane surface 
through the center of the hormone binding groove of the hGH 
ternary complex (region a' in Fig. 2B). Twofold rotational sym
metry should be a general property of homodimeric receptor 
complexes consisting of 2 lg-like receptor molecules (Fig. 8). 
Heterosubunit receptor complexes will not necessarily possess 
such symmetry. 

Although an lg-like receptor consisting of 2 identical subunits 
would be expected to possess 2-fold rotational symmetry, a 
hortnone that acts as a single-domain monomer is not required 
to have such symmetry. Both subunits of the hGH receptor use 
essentially the same residues to interact with the hGH, b\It there 
is no obvious structural similarity between the 2 binding sites 
on hOH. Nevertheless, the electrostatic potential of hGH has 
2-fold rotationalsymmetry about the same axis as the receptor 
dimer and is complementary to the eJectrostatic potential of the 
receptor (Figs. 2, 9A), i.e., atthough the molecular surfaces are 
different at the 2 receptor-binding sites on the hormone, the 
charge distributions are similar. Four regions of positive poten
tial (regions b-e) surrounding the negative center of symmetry 
of tbe teceptor-binding interface (region a)form a roughly sym
metrical potential in which region b is positioned approximately 
symmetrically to region c, and region d is positioned approxi
mately symmetricall.y to reglon e.6 

The symmetry ofthe hGH e.lectrostatic potential can also be 
discerned from tbe bimodality of the i.nteraction energy surface 
given in Figure 3. The Interaction energy for the receptor cha.in 
is n1ost favorabJe at 2 angle ranges that are approximately 2-fold 

6 Note that the symmetry is approximate because t.he complementary 
receptor subunits are superimposable by rotation through an angle less 
than 180° (159°). 

IL4R vlqEptcvsD ymsistcEwX mngptncstE 1Rllyqlvf1 -lsEahtcip 

IL2g plpEvqcfVf nvEymnctwn sssEpq-ptn ltlhywyKns DnD.KvqKcsh Fig. 6. Sequence. alignrncnt of the N-ter-
minal domains of human lL-4R and human 
IL·2R-y. Capitalletters dcnote charged res-
idues, and positively charged residues are 

IL4R -Ennggagcv chllmDDvvs aonytlDlwa gqqllwKgs- -fKpsEhvKp shown in iralics. 

IL2g ylfsEEitsg cqlqKKEihl yqtfvvqlqD pREpRRqatq mlKlqnlvip 
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scribes the similarity of the electrostatic potential at different 
orientations. The self-similarity indexes of hGH characterize its 
potential around the receptor binding face of the bundle as 
2-fold symmetrical {Fig. IOA). Such a symmetric electrostatic 
potential, resulting from a nonrandom distribution of charged 
residues on the receptor-binding surface of the hormone, is likely 
to be a necessary condition for specific cornpJexation with a ho
modimeric receptor. 

In contrast to the hGH {Fig. 9A), the electrostatic potentials 
surrounding the proposed receptor binding surfaces of both 
GM-CSF (Fig. 9B) and IL-2 (Fig. 9C) Iack 2-fold rotational sym
metry. The electrostatic potential of GM-CSF is mainly positive 
around the C helix and negative around the D helix. The asym
metry of the potential of IL-2 is largely due to a patch of apo
lar residues at the C-terminal end of the A helix and along the D 
helix (denoted by the regiona-b in Fig. 9B; and comprising res
idues Leu 25, Ile 28, Ala 50, Thr 51, Leu 53, Leu 70, Valll5, 
Thr 123, and Phe 124) and a region of negative potential around 
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the C-tenninus (region c in Fig. 9C). There are no equivalent re
gions in the electrostatic potential of IL-2 on the opposite side 
of the presumed 2-fold symmetry axis. The electrostatic poten
tial similarity indexes of GM-CSF and IL-2 given in Figure lOB 
and C confirm the graphical analysis showing that the electro
static potentials in the interface region of both hormones are 
most dissimiJar at opposite sides of the interface region (180° 
apart). Unlike hGH, both GM-CSF and IL-2 are thought to 
form complexes with hetero-oligomeric receptors composed of 
at least 2 different noncovalently bound polypeptide chains 
(Miyajimaetal., 1992; Kastelein&Shanafelt,l993; Minamietal., 
1993). The electrostatic potential distributions of GM-CSF and 
IL-2 are consistent with these experimentally based models. 

Electrostatic potentials calculated for both the crystal 
{Wlodawer et al., 1992) and the NMR (Müller et al., 1994) struc
tures of human IL-4 are very similar (not shown). The config
uration of the IL-4 electrostatic potential in the interface region 
of the hormonewas discussed earlier in connection with the IL-
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Fig. 10. Indexes of electrostatic potential self-similarity araund the receptor binding faces of (A) hGH, (8) GM-CSF, (C) IL-2, 
(D) IL-4, (E) hG-CSF, and (F) bG-CSF. For hGH, the electrostatic potential grids calculated for the orientation of Figure 28 
were rotated by 90°, 180°, and 270° araund the axis perpendicular to the page. Foreach angle, the self-similarity of the electro
static potential over the hormone-receptor interface region was calculated from Equation 2. The higher the index value, the 
more similar the electrostatic potentials. Calculations were repeated for each of the other hormones superimposed on hGH with 
Ca atoms as listed in Table 1. Black squares in E and F represent indexes for the "alternative" binding surface of G-CSF with 
helices B-C-A at the interface. 
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4R model. Three distinct regions of negative potential are 
present on the C-A-D helix surface of the hormone (denoted 
by letters a, b, and c in Fig. 90). Together they define an asym
metric electrostatic potential pattern: 2 of these 3 negativere
gions, a and c, are positioned symmetrically with respect to the 
presumed 2-fold symmetry axis, but the third, region b, has no 
counterpart negative potential on the other side of the symme
try axis (region d). This suggests that tbe binding site on the 
A-D face of the IL-4 helix bundJe is likely to interact with a re
ceptor subunit different from IL-4R, which binds to the C-A 
face of the hormone. 

Two crystal structures of G-CSF, human (Hill et al., 1993) and 
bovine (Lovejoy et al., 1993), were available. Despite having dif
ferent net charges (-4eon hG-CSF [experimental pl = 5.9-6.1; 
Clogston et al., 1992] and -le on bG-CSF), the electrostatic po
tential distributions are similar (Fig. 9E,F). Differences at 8 
charged residues in these 2 proteins have a fairly limited effect 
on the overall electrostatic potential around the hormones. Thus, 
similarity is consistent with the cross-reactivity observed in vivo 
between these 2 species of G-CSF (Cullor et al., 1990). 

Analysis of electrostatic potential similarity indexes shows that 
the electrostatic potential around the C-A-D surface of the bun
dle Iacks 2-fold symmetry (Fig. lOE,F). For both hG-CSF and 
bG-CSF, 2-fold symmetry is more apparent for the B-C-A sur
face, which was discussed as an alternative putative receptor 
binding surface earlier. High index numbers for all the calcu
Jated angles for this surface indicate the relative homogeneity 
of the electrostatic potential over the surface, making it a pos
sible binding surface for a homodimeric receptor. Indeed, when 
viewed in the same orientation as the 4 other cytokines studied, 
the electrostatic potentials of G-CSF lack the 2-fold rotational 
symmetry expected to be necessary for the formation of homo
dimeric high-affinity hormone-receptor complexes (Fig. 9E,F). 
The C heJix is surrounded by a large region of negative poten
tial stretching over the end of the A helix to the D helix and cov
ering the N-terminal part of it. The rest of this surface is covered 
by positive potential. From this point of view, the electrostatic 
potential indicates that G-CSF is likely to be a Iigand with higher 
affinity to a hetero-oligomeric than a homodimeric receptor. On 
the other band, the electrostatic potential over the "alternative" 
B-C-A surface of G-CSF (Jeft side of G-CSF in Fig. 9E,F) is 
negative and, thus, could bind to a positively charged region on 
a homodimeric receptor. 

Analysis of the electrostatic potentials of hGH, GM-CSF, 
IL-2, and IL-4 indicates that the distribution of the electrostatic 
potential around the binding surface of the hormones corre
Jates with the known modes of receptor binding. It indi
cates whether it is possible for a hormone to induce formation 
of a high-affinity homodimeric receptor complex rather than a 
hetero-oligomeric receptor complex. 

Discussion 

The complementarity of the hormone and receptor electrostatic 
potentials of hGH and IL-4 suggests that not only hydropho
bic (de Vos et al., 1992) but also electrostatic interactions are im
portant for the formation of a signal-transducing complex. In 
the absence of complete structural data, it is not possible to com
pare the actual contributions of different types of interactions 
to the binding energy of the complexes formed. Thus, we have 
examined the electrostatic potentials of the hormones and their 
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receptors, and also the hormone-receptor interactions under the 
test-charge approximation. These quantities are rather robust 
to possible errors in the modeling of atomic coordinates, in con
trast to the steric, hydrogen bond, and desolvation components 
of hormone-receptor interactions for which high-quality struc
tures are likely to be necessary. We have analyzed the electro
static properties of unbound hormones and their receptors.7 

Electrostatic interactions in the hormone-receptor complexes 
may differ from those for the unbound moJecuJes because new 
ion pairs may form in the complex, conformational changes may 
occur, and because the dielectric boundary is different. How
ever, electrostatic interactions affect not only binding energy but 
also the rate at which hormone-receptor complexes are formed. 
Diffusion of the hormone up to the receptor is guided by long
range electrostatic interactions (described by the electrostatic 
potentials of the unbound hormone and receptor). Recent mea
surements of hGH binding kinetics revealed the importance of 
charged residues in determining the kinetics of binding (Cun
ningham & Wells, 1993). Mutations of Arg 64, Glu 65, Arg 167, 
Glu 174, and Arg 178 to alanine reduce the hGH bindingrate 
more sharply than others suggesting "that electrostatic interac
tions are the most important side-chain determinants in guid
ing the hormone to the receptor" (Cunningham & Wells, 1993). 
Interaction energy estimates (Fig. 3) suggest that the hormone 
may be rotationally steered to dock correctly to the receptor 
by electrostatic interactions at considerable distances from the 
receptor. 

Electrostatic interactions may also play a roJe in determining 
the order of formation of hormone-receptor complexes. On ac
tivation, the hGH receptor assembles in 2 stages (Cunningham 
et al., 1991): (1) binding of the first receptor molecule (A-chain) 
to site I of the hGH (Fig. 2) and (2) binding of the second re
ceptor molecule (B-chain) to site II on hGH and dimerization 
of the receptor. The fifth peripheraJ a-helix of hGH, whose res
idues contribute to regions d and f in the electrostatic potential 
(Fig. 2), is probably one of the determinants of the sequential 
character of hormone-receptor binding. It is located near bind
ing site I of the hormone and disrupts the symmetry of the elec
trostatic potential. The binding of this peripheral helix is also 
the main reason for the difference in the surface areas of the re
ceptor subunits buried at the hormone-receptor interface (I ,300 
A2 for the A chain, 900 A2 for the B-chain; de Vos et al., 1992). 
The additional interactions of this part of the hormone proba
bly facilitate binding of the first receptor molecule during the 
first stage of hormone-receptor complex fonnation. The second 
stage of complexation is probably promoted by the stretch of 
negative potential along the A helix of hGH (region a). By in
teracting with the residues of the positive region a' of the recep
tor A -chain in the first stage of hormone-receptor complex 
formation, it changes the electrostatic potential around the A
chain of the receptor (not shown) and thereby reduces electro
static repulsion between the 2 identical receptor subunits. 

Similar events during formation of the functionaJ receptor are 
expected for IL-4, although the order of receptor subunit bind-

7 All hormone electrostatic potentials were calculated for unbound 
hormones except for hGH, for which the potential was calculated for 
the hormone taken from the ternary hormone-receptor complex. Elec
trostatic potentials calculated for receptor monomers from the hormone
receptor complexes analyzed (not shown) are similar to those of their 
dimers over the hormone binding surfaces. 
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ing to sites on the A-C and the A-D faces of the IL·4 bundle 
is the reverseofthat of hGH and its receptor (Kruse et al., 1993). 
The importance of charged residues in determining the sequen
tial binding is suggested by experiments with recombinant ana
logs of human IL-4 (Kruse et al., 1993; Ramanathan et al., 
1993). One of the major differences distinguishing IL-4 from 
other cytokines is a long patch of positive residues composed 
of Arg 75, Arg 77, Arg 81, Lys 84, Arg 85, and Arg 88 in the 
C heJix (Wiodawer et al., 1993). A single point mutation of 
Arg 85 to aspartic acid leads to a 500Jo reduction in hormone ac· 
tivity (Kruse et al., 1993; Ramanathan et al., 1993), and substi
tutions of Lys 84 (Ramanathan et al., 1993) and Arg 88 (Kruse 
et al., 1993; Ramanathan et al., 1993) by aspartic acid result in 
nearly complete loss of binding activity, indicating that the ba
sie character of this region is vital. On the other band, single 
point mutations of residues Ser 125, Cys 127, and Ser 128 to as
partate in the negative region b, which is symmetric to region 
d, do not significantly influence the binding properlies of IL-4 
(Kruse et al., 1993) even though this region is involved in recep
tor binding (Kruse et al., 1991, 1993; Ramanathan et al., 1993). 
This indicates that these 2 regions of IL-4 interact with the re
ceptor differently, providing further evidence for a heterodi
meric receptor complex. Site-directed mutagenesis of these 
regions, e.g., the introduction of positively charged residues in 
region b near the C-terminus, could provide additional valuable 
information about the receptor binding properlies of IL-4. 

Although several studies postulate that IL-4 binds to a homo
dimeric receptor (Bamborough et al., 1993; Wlodawer et al., 
1993), experimental evidence supports a hetero-oligomeric model 
for the functional IL-4 receptor: (1) IL-4 induced oligomeriza
tion of the 130-kDa high-affinity IL-4R assumed in the model 
of Bamborough et al. (1993) has not been detected in Scatch
ard analysis for either the complete molecule or its extracellu
Jar part (Kruse et al., l 993); and (2) recently, several groups have 
detected IL-4 interaction with other transmembrane molecule(s): 
a low.affinity IL-4 receptor with a molecular weight of 65-75 
kDa has been identified (Fanslow et al., 1993) and the 64-kDa 
IL-2R-y has been shown to affect IL-4 signal transduction and 
to promote IL-4/IL-4R complexation (Kondo et al., 1993; Rus
sell et al., 1993). 

From the present analysis, it is not possible to distinguish re
liably the actual binding mode of G-CSF from the 2 binding 
modes discussed. However, several pieces of experimental evi
dence favor the suggestion of a different binding surface for the 
G-CSF receptor on the G·CSF bundle compared to the other 
hormones considered. The importance of the D helix of G-CSF 
for receptor binding may be questioned because the mature hor· 
mone, deprived of 53 C-terminal residues constituting the 0 he· 
lix and the C-D interhelix Ioop, has been found to retain 
activity, albeit significantly reduced, and to have no detectable 
antagonistic activity (Layton et al., 1991). In cantrast to IL-4 
(Kruse et al., 1993), hGH (Cunningham & Wells, 1989), and 
GM-CSF (Aitmann et al., 1991), single point mutations in the 
B helix of hG-CSF have produced mutants with no detectable 
activity (Kuga et al., 1989), suggesting that the B helix of G-CSF 
may participate in receptor complex formation. 

A bomodimeric model for the G-CSF receptor has been in· 
troduced by Fukunaga and coworkers based on biochemical 
data (Fukunaga et al., 1991). They have identified 1ligand bind· 
ing component ofthe G-CSF receptor (Fukunaga et al., 1990a, 
1990b) and observed bilinear curves in Scatchard analysis indi· 
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cating G-CSF-induced oligomerization of this receptor binding 
component (Fukunaga et al., 1990a). Signal transduction exper· 
iments with chimeric molecules of hGH and murine G-CSF may 
also lend support to a homodimeric model of the functional 
G-CSF receptor (lshizaka-Ikeda et al., 1993). However, signal 
transduction after transformation of G-CSF-independent cells 
with the 0-CSF gene has been detected in IL-3-dependent cell 
lines and not in an IL-2-dependent line (Fukunaga et al., 1991). 
This suggests the possibility that a receptor subunit may be 
shared with IL-3, which is already known to have a receptor sub
unit in common with the GM-CSF and IL-5 receptors (Sakamaki 
et al., 1992; Goodall et aJ., 1993). 

The electrostatic potentiais suggest that a search for an un
usual organization of the G·CSF hormone-receptor complex 
may be productive. Furtherexperiments with mutants of 0-CSF 
with altered electrostatic properlies could help to clarify the stoi
chiometry of its hormone-receptor complex and to identify its 
binding surface. 

Advances in recombinant DNA technology and the use of 
monoclonai antibodies have facilitated the progress of func
tional studies of cytokines and growth factors. However, the de
tailed mechanism of hormone-receptor recognition is still 
unclear. The present study dernonstrates that the electrostatic 
analysis of growth factors based only on the known or predicted 
3D structure of the protein can suggest a generat scherne for 
hormone-receptor interactions and thus provide useful guide
lines for experimental research. 

Materials and methods 

Materials 

The 3D structures of 6 hormones and 2 receptor complexes were 
used. A full coordinate set for the hGH and Ca coordinates for 
the hormone-receptor complex (de Vos et al., 1992) were pro
vided by Dr. A. de Vos; structures of hO-CSF (Hili et al., 1993) 
and bG-CSF (Lovejoy et al., 1993) were provided by Dr. D. 
Eisenberg; the model of the IL-4/IL-4-receptor complex (Bam
borough et al., 1993) was provided by Dr. G. Richards. The hu
man IL-4 structure solved by NMR has been described by us 
(Müller et al., 1994). The crystallographic structures of human 
OM-CSF (Diederichs et al., 1991), human IL-2 (McKay, 1992), 
and human IL-4 (Wiodawer et al., 1992) used were prerelease 
entries or the Brookhaven Protein Data Bank (Bernstein et al., 
1977). 

All the calculations were carried out on a Silicon Graphics 
40/480VGX computer. 

Modefing and analysis oj the 3-dimensional structures 

Side-chain atoms were added to the hGH receptor complex co· 
ordinate set, which consisted of Ca atoms onJy, according to 
the simulated annealing protocol of Nilges and Brünger (1991) 
using the X-PLOR program (Brünger, 1990). The backhone and 
side-chain atoms were placed at the positions of the Ca atoms. 
This set of coordinateswas passed through a simulated anneal
ing procedure in which the positions of the Ca atoms were al
ways kept fixed. This consisted of 100 ps of molecular dynamics 
at 1,200 K followed by gradual cooling to 300 K in 6 ps and sub
sequent energy refinement with a modified CHARMM force 
field in which the electrostatic term was omitted and the 
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Lennard-Jones termwas replaced by a softer repulsion term. 
This procedure was repeated 10 times to yield 10 different co
ordinate sets. The average structure was computed and then 
minimized using the full force field except for the electrostatic 
term. 

Missing residues and side chains were added according to the 
sequences in the SwissProt or GenBank databases using the 
SYBYL molecular modeling software, version 6.0 (Tripos As
sociates, San Diego, California). SYBYL was also used to as
sign polar hydrogen atom positions. These were optimized with 
the AMBER united atom force field by energy minimization 
with all non-hydrogen atoms fixed. The protonation state of his
tidine residues was assigned by geometric analysis of potential 
hydrogen bonds. Other titratable residues were assigned their 
usual protonation state at pH 7. The formation of disulfide 
bonds was determined from experimental data and local geom
etries. N- and C-termini were assumed tobe ionized. 

Searches for 3D similarity and the superposition of 3D struc
tures was done using the WHAT IF program (Vriend, 1990; 
Vriend & Sander, 1991). Each of the complete IL-2, IL-4, hG
CSF, bG-CSF, and GM-CSF a-carbon setswas searched for the 
best superposition on the Ca atoms of hGH. The initial super
position search was carried out using "relaxed" structure-fitting 
parameters (the length for the shortest segments compared, min
len = 20; the maximal error for deviation of 2 equivalenced a
carbon atoms, maxerr = 7 A; the maximal RMSD between the 
compared fragments, rmserr = 3.5 Ä). The final superposition 
of 3D structures was done under "strict" conditions (minlen = 
10, maxerr = 2.5 A, rmserr = 3.1 Ä). 

Electrostatics calculations 

The electrostatic potentials were calculated by numerically solv
ing the finite difference linearized PB equation using an incom
plete Cholesky preconditioned conjugate gradient method as 
implemented in the University of Houston Brownian Dynam
ics (UHBD) program, version 4.0 (Davis et al., 1990). 

The OPLS parameter set (Jorgensen & Tirado-Rives, 1988), 
with the radii of hydrogen atoms set to 1.2 A, was used to as
sign atomic radii and partial charges. Dielectric constants of 78 
and 2 were assigned to the solvent and the solute, respectively. 
The solvent-sotute dielectric boundary was determined from the 
protein 3D structure by the method of Shrake and Rupley (1973) 
using a 1.4-Ä radius rolling probe. Dielectric boundary smooth
ing (Davis & McCammon, 1991) was implemented. The ionic 
strength of the solvent was assumed tobe 145 mM and to fol
low a Boltzmann distribution at 300 K. A 2-A ion exclusion layer 
was used. Electrostatic boundary conditions were set using the 
single Debye-Hückel sphere approximation for the hormones 
and the multiple Debye-Hückel sphere approximation for the 
receptor (Davis et al., 1990). A 1003 grid with a 1-A spacing 
was used for the hormone calculations and a 1403 grid of the 
same spacing was used for the receptor calculations. In order 
to ease the interpretation of the calculated electrostatic potential 
maps, the potential at grid points within the exclusion volume 
contained by spheres surrounding the protein atoms and hav
ing radii equal to 2 atomic radii was set to 0 before contouring 
and displaying the electrostatic potentials. 

The electrostatic interaction energy between a hormone and 
its receptor was estimated as a function of their mutual orien
tation (rotation 1/; and translation s) according to the test charge 
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approximation for the receptor partial atomic charges Q; in the 
electrostatic potential</>;('~/;, s) of the hormone: 

11Getec(l/l, s) = L Q;</>;(1/1, s), (1) 
VireN'ptor 

where the sum is over all atoms in the receptor. 
The symmetry of the electrostatic potential of each hormone 

was estimated by calculating an electrostatic potential similar
ity index (Carbo & Domingo, 1987). The electrostatic potentials 
of the hormone in initial and rotated orientations were calcu
lated and the normalized average of their grid point product was 
evaluated as 

I= 

~ rPo;rPv,1 
i 

(2) 

where I is an index of similarity, f/Jo; is the potential at point i of 
the initial grid, </>"'; is the potential at the same point in space of 
the rotated grid (1/1 = 90°, 180°, 270°). The product grid has pos
itive values at points where the initial and rotated potentials have 
the same sign and negative values where the potentials are of op
posite sign. This quantity was calculated over the hormone
receptor interface region for grid points further than 2 atomic 
radii from all atom centers. The "interface" region was defined 
as the part of the grid extending from the center of geometry 
of the hormone in the direction of the membrane surface. 
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