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Abstract

Practical optimization problems often comprise several incomparable and conflicting
objectives. When booking a trip using several means of transport, for instance, it
should be fast and at the same time not too expensive. The first part of this thesis is
concerned with the algorithmic solvability of such multiobjective optimization problems.
Several solution notions are discussed and compared with respect to their difficulty.
Interestingly, these solution notions are always equally difficulty for a single-objective
problem and they differ considerably already for two objectives (unless P = NP). In
this context, the difference between search and decision problems is also investigated in
general. Furthermore, new and improved approximation algorithms for several variants of
the traveling salesperson problem are presented. Using tools from discrepancy theory, a
general technique is developed that helps to avoid an obstacle that is often hindering in
multiobjective approximation: The problem of combining two solutions such that the new
solution is balanced in all objectives and also mostly retains the structure of the original
solutions.

The second part of this thesis is dedicated to several aspects of systems of equations
for (formal) languages. Firstly, conjunctive and Boolean grammars are studied, which
are extensions of context-free grammars by explicit intersection and complementation
operations, respectively. Among other results, it is shown that one can considerably
restrict the union operation on conjunctive grammars without changing the generated
language. Secondly, certain circuits are investigated whose gates do not compute Boolean
values but sets of natural numbers. For these circuits, the equivalence problem is studied,
i. e. the problem of deciding whether two given circuits compute the same set or not. It is
shown that, depending on the allowed types of gates, this problem is complete for several
different complexity classes and can thus be seen as a (parametrized) representative for
all those classes.



6



7

Contents

1 Introduction 17

2 Basics, Notations and Terminology 25
2.1 Sets, Numbers, Vectors and Functions . . . . . . . . . . . . . . . . . . . . 25
2.2 Formal Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Computability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Complexity of Search and Decision Problems 41
3.1 Definitions and First Results . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Search Problems Inequivalent to Any Decision Problem . . . . . . . . . . 49
3.4 Decision Problems Inequivalent to Search Problems . . . . . . . . . . . . . 51

I Multiobjective Optimization 55

4 Definitions 59
4.1 Basic Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Examples of Multiobjective Problems . . . . . . . . . . . . . . . . . . . . 64

5 Structural Properties of Solution Notions 67
5.1 Reducibilities and Evidence Against Them . . . . . . . . . . . . . . . . . 67
5.2 Complexities of Value Notions of a Single Problem . . . . . . . . . . . . . 73
5.3 Complexities of Value Notions Individually . . . . . . . . . . . . . . . . . 78
5.4 Complexities of Search Notions Individually . . . . . . . . . . . . . . . . . 81

6 Approximation 85
6.1 Notions of Multiobjective Approximation . . . . . . . . . . . . . . . . . . 85
6.2 Relations Between the Approximation Notions . . . . . . . . . . . . . . . 88
6.3 Pareto- versus Scalar Minimization . . . . . . . . . . . . . . . . . . . . . 90
6.4 Pareto- versus Scalar Maximization . . . . . . . . . . . . . . . . . . . . . 95

7 Approximation Algorithms for Traveling Salesperson Problems 97
7.1 Minimum Traveling Salesperson . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 Introduction, Related Problems and Known Results . . . . . . . . 98



8 CONTENTS

7.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1.3 Matching and Spanning Tree Algorithms on Multigraphs . . . . . 102
7.1.4 Deterministic Approximation . . . . . . . . . . . . . . . . . . . . 105
7.1.5 Randomized Approximation . . . . . . . . . . . . . . . . . . . . . 107
7.1.6 Lower Bound Arguments . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Maximum TSP and the Discrepancy Technique . . . . . . . . . . . . . . 112
7.2.1 Introduction, Related Problems and Known Results . . . . . . . . 112
7.2.2 Approximating Cycle Covers . . . . . . . . . . . . . . . . . . . . . 114
7.2.3 Multi-Color Discrepancy . . . . . . . . . . . . . . . . . . . . . . . 115
7.2.4 Approximating Multiobjective Maximum Traveling Salesperson . 118

8 Discrepancy Theory 121
8.1 A Multi-Dimensional Mean Value Theorem . . . . . . . . . . . . . . . . . 122
8.2 A Multi-Dimensional Intermediate Value Theorem . . . . . . . . . . . . . 124
8.3 Balancing Multiple Functions . . . . . . . . . . . . . . . . . . . . . . . . 129
8.4 Application to Discrepancy Theory . . . . . . . . . . . . . . . . . . . . . . 131

II Language Equations 135

9 Conjunctive and Boolean Grammars 139
9.1 Definitions and Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . 140

9.1.1 Examples of Conjunctive and Boolean Grammars . . . . . . . . . . 141
9.1.2 Single-Letter Alphabets . . . . . . . . . . . . . . . . . . . . . . . 143
9.1.3 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2 Restricted Conjunctive Grammars . . . . . . . . . . . . . . . . . . . . . . 145
9.2.1 Odd Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.2.2 Transformation to Restricted Form . . . . . . . . . . . . . . . . . . 151
9.2.3 Restricted Conjunctive Grammars Without ε-Rules . . . . . . . . 154

9.3 Parsing Boolean Languages Over a Single-Letter Alphabet . . . . . . . . 159
9.3.1 Recognition by Convolution . . . . . . . . . . . . . . . . . . . . . 160
9.3.2 Boolean Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.3.3 The Resulting Algorithm . . . . . . . . . . . . . . . . . . . . . . . 167

10 Circuits over Sets of Natural Numbers 169
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.3 Equivalence Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.3.1 Relations to Membership Problems . . . . . . . . . . . . . . . . . 176
10.3.2 Feasible Equivalence Problems . . . . . . . . . . . . . . . . . . . . 178
10.3.3 ΠP

2 -Complete Problems . . . . . . . . . . . . . . . . . . . . . . . . 182
10.3.4 More General Equivalence Problems . . . . . . . . . . . . . . . . 186

10.4 Satisfiability Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.4.1 Undecidable Problems . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.4.2 Circuits with both Arithmetic and Set Operations . . . . . . . . . . 191
10.4.3 Circuits with either Arithmetic or Set Operations . . . . . . . . . 197

10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



CONTENTS 9

Bibliography 201

Notations 211

Index 215



10 CONTENTS



11

List of Figures

3.1 Embeddings of Complexity Classes . . . . . . . . . . . . . . . . . . . . . 43

4.1 Illustration of Solution Notions . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Reductions Between Search and Value Notions for Fixed Problem . . . . 69
5.2 Illustration of f(S3x+2) (Proof of Theorem 5.13). . . . . . . . . . . . . . . 75
5.3 Embeddings of Complexity Classes and Classes Defined by Search and

Value Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Transfer of Approximation Ratios . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Disadvantage of Approximate Weighted Sum Notion for Maximization

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Approximation Ratios for 2-TSP . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Illustration of Reduction (Proof of Theorem 7.12) . . . . . . . . . . . . . . 111

8.1 Interval Construction (Proof of Lemma 8.9) . . . . . . . . . . . . . . . . 125
8.2 Illustration of p : I → S2 (Proof of Theorem 8.12) . . . . . . . . . . . . . 128

9.1 Convolution of Boolean Vectors . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2 Convolutions Computed by Algorithm 9.2 (Proof of Theorem 9.32) . . . 164

10.1 Three example circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



12 LIST OF FIGURES



13

List of Tables

5.1 Separation of NP-Hardness Notions . . . . . . . . . . . . . . . . . . . . . 72

7.1 Results for 2-TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.1 Upper and lower bounds for EC(O), SC(O) and MC(O) . . . . . . . . . 199



14 LIST OF TABLES



15

List of Algorithms

7.1 match(T, U [, n]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 2-TSP-ApproxDet(V,E, c) . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 2-TSP-ApproxRandε(V,E, c) . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4 k-MaxTSP-Approx(V,E,w) . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.1 parse_basic(G, an) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.2 oconv(x, y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.3 parse(G, an) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.4 parse_complete(G, an) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.1 NEC_reduction(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.2 isolate_zero(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.3 sc_times(b, e1, . . . , en) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



16 LIST OF ALGORITHMS



17

Chapter 1

Introduction

Computational tasks are usually characterized by specifying a set of valid inputs and,
for each of the inputs, a set of valid outputs. Examples of such specifications are the
following:

1. Input: A set of integers {x1, x2, . . . , xr}.
Output: “yes” if there is a subset of {x1, . . . , xr} that sums to 1

2(x1 +x2 + · · ·+xr),
“no” otherwise.

2. Input: A system of linear equations.
Output: A solution to the system or “no” if no solution exists.

3. Input: A finite set of places on a map.
Output: A shortest round-trip that visits all of the places.

4. Input: Distances and toll costs for a road map, two points on the map.
Output: A route between the two points such that no other route is both shorter

and cheaper.

5. Input: A finite set of relatives where some are at odds with each other.
Output: “yes” if they can be placed at a round table such that nobody is at odds

with a neighbor, “no” otherwise.

6. Input: Two arithmetical expressions built from natural numbers by applying the
operations +, · and ()2, e. g. (3 + 4)2 · (7 + 2) and (3 · (5 + 2))2.

Output: “yes” if the two expressions describe the same number, “no” otherwise.

7. Input: A text and a syntax specification given by a context-free grammar.
Output: “yes” if the text conforms to the specification, “no” otherwise.

Such a task is considered to be solvable by computers if one can provide an algorithm
for it, i. e. a list of precise instructions how to get from any possible input x to one valid
output for x. In complexity theory, one is interested in the amount of computational
resources (like, for instance, computing time, memory space or randomness) that are
needed when solving computational tasks. Since the size of the inputs can vary and an
algorithm generally needs more resources on larger inputs, one considers the resources
needed as a function of the input size. If for a task there is some k and an algorithm
that takes at most nk steps for inputs of size n bits, this task is said to be solvable in
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polynomial time. If a task (or problem) is solvable in polynomial time, it is considered to
be feasible in practice. From the list above, only the problems 2, 4 and 7 are known to be
solvable in polynomial time.

Many computational tasks ask for an object possessing a certain property specified by
the input. If for a given object, it is easy to check if it has the property, then there is a
general strategy to solve these tasks: Simply try all possible objects and check them one
after another. For problem 1, for example, we can try all subsets of {x1, . . . , xr}, compute
their sum and compare it to 1

2(x1 + · · ·+ xr). This method is called solving by brute force
or exhaustive search and it of course fails if the number of candidates is infinite and we
additionally do not know if any of the objects has the property at all. For many problems,
though, the number of candidates can be bounded. Furthermore, it is often the case that
each candidate can be described by at most nk bits for some k, where n is again the size
of the input. If additionally the check can be carried out in polynomial time, we arrive at
a problem in the class NP (NP stands for nondeterministic polynomial time, a term that
derives from another, equivalent way to define this class). Formally, only the problem
that asks whether such an object exists or not (i. e. a simple yes/no-question) lies in the
class NP. This distinction into search problems (actually output the object) and decision
problems (only determine if such an object exists or not) will be explored in detail later.
The problems 1 and 5 above are typical problems in NP. For problem 1, each possible
candidate, i. e. each subset of {x1, . . . , xr} can be described by a list of r bits, where the
ith bit specifies if xi is included in the set or not.

The most important open question in complexity theory is whether all problems in NP
can be solved in polynomial time or not, the so-called P-NP-problem. Intuitively, simply
checking if a given object has a certain property should be easier than actually finding
such an object, but until now, it is not clear how to prove this in general. Furthermore,
there is meta-mathematical evidence suggesting that the P-NP-problem cannot be solved
with current techniques. Problems 1 and 5 actually belong to the hardest problems in
NP, the so-called NP-complete problems. It can be shown that one of them is solvable in
polynomial time if and only if all of them are solvable in polynomial time. Many open
questions in complexity theory are connected to the P-NP-problem in the sense that an
answer would also solve the P-NP-problem. Hence, it is very unlikely that these open
questions can be solved directly. Instead, the relations between different assumptions are
usually investigated.

Optimization problems form a large class of problems that arise in real-world settings.
The task is to find a solution that maximizes or minimizes a given objective function.
An example of such a problem is problem 3 from the list above. Here, the objective
function is the length of the round-trip and the goal is to minimize this length. Typically,
optimization problems are formulated as search problems. However, one can always
associate a decision problem to each search problem. For problem 3, we can add a natural
number x to the input and ask if there is a solution to problem 3 that is better than x. For
many important optimization problems, the associated decision problem is NP-complete,
which is also the case here.

Apart from the differences between search and decision problems already mentioned,
this thesis will be concerned with optimization problems, and more specifically, optimiza-
tion problems with more than one objective. Furthermore, we will investigate problems
resembling problem 6 and 7 and see that arithmetical expressions and syntax specifications
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using context-free grammars are actually quite similar, which is not apparent at first sight.

Multiobjective Optimization
As already noted, problem 3 from the list above is an optimization problem where the
tours are the solutions and their length is to be minimized. The problem of shortest paths
is another minimization problem where the shortest route between two points in a road
network has to be found given a table of distances between any two junctions on a road.
This problem is often not useful in reality, since the distance (or even the time) is not
the only quantity that is to be optimized in practical route planning. Other quantities
are perhaps the probability of traffic jams, the quality of the road or the toll costs. The
optimization problem can of course be easily extended to include more than one objective
function and one then arrives at a problem similar to problem 4. The difficulties arise
when possible routes are compared: Since there can be routes that are faster and other
routes that are cheaper, it is not clear anymore what the best route is. The user of such
a planning system may have certain preferences about the solution based on additional
information or simply experience, but this information is not available to an algorithm that
solves the formal problem. One is often tempted to combine several objective functions
into a single one (yielding a quantity like money), for example using a weighted sum, but
without further information about the problem, it is not evident how to apply the weights,
i. e. the price of an hour of time is not clear. The only option is to consider all objectives
to be equally important and try to find all so-called Pareto-optimal solutions. A solution
is Pareto-optimal if there is no other solution that is at least as good in all objectives and
better in at least one objective.

Unfortunately, computing all Pareto-optimal solutions is often not feasible in practice.
The reasons are that there are often simply too many Pareto-optimal solutions and
furthermore, they are hard to compute. There are several other ways to at least give the
user an impression of this set and sometimes also the ability to navigate through it to
obtain a specific solution. The first part of this thesis will be concerned with a comparison
of these so-called solution notions and furthermore the presentation of several algorithms
that solve multiobjective extensions of problem 3, the so-called traveling salesperson
problem.

Language Equations
The second part of this thesis is concerned with the complexity of certain types of
expressions or equations. From the above list, the problems 6 and 7 fall into this category.
Problem 7 is called parsing and is quite well understood and feasible in practice. It is an
essential step when compiling source code to an executable program.

A context-free grammar more or less consists of a set of rules that specify how one
symbol can be replaced by a string of symbols. If one now applies these rules beginning
from a start symbol, one obtains more and more complicated strings. Consider the rules
S → aSa, S → bSb and S → c, i. e. every S can be either replaced by aSa, by bSb or by c.
When we start from S and apply the first rule, we obtain aSa. If we then use the second
rule, we get abSba. A further application of the first and then the third rule results in
abacaba. Here, none of the rules can be applied anymore. Symbols that can be replaced
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are called nonterminals (only S in the example), the other symbols are called terminals
(a, b and c here). Since we can choose from multiple rules in each step, several so-called
words can be generated by this grammar. If we disregard all words that still contain the
nonterminal S, we obtain the (formal) language generated by the grammar. Here, this
language is the set of all words over the alphabet {a, b, c} that equal their reversed word
and have a c in the center. So if a syntax specification is given by a context-free grammar,
then the parsing problem is the question whether a given word can be generated by the
grammar.

Since each nonterminal symbol can have multiple rules, there is an implicit logical
disjunction in the semantics of context-free grammars. Okhotin [Okh01, Okh04] extended
the context-free grammars by an explicit conjunction and negation in the rules and thus
obtained the so-called conjunctive and Boolean grammars, respectively. Here, the right-
hand sides of rules contain explicit intersection and complementation operators. They can
thus be regarded as expressions that use concatenation, intersection and complementation
(for Boolean grammars) over terminal and nonterminal symbols. These grammars are
more powerful than context-free grammars as they can generate languages that cannot be
generated by any context-free grammar. Nevertheless, the parsing problem is efficiently
solvable also for conjunctive and Boolean grammars.

If only one terminal symbol is allowed, the conjunctive and Boolean grammars turn out
to be still surprisingly powerful. It is well-known that context-free grammars with only one
terminal symbol can only generate regular languages. Regular languages can be defined
as the class of languages where the task of checking if a given word is in the language can
be solved by an algorithm whose memory requirement is constant, independent of the size
of the input. In the second part of this thesis, we will investigate Boolean grammars in
general and also study the parsing problem for Boolean grammars with only one terminal
symbol.

Observe that if the alphabet consists of only one symbol, then any word in a language
is completely determined by its length. This means that a language can be characterized
by a subset of the natural numbers. Furthermore, two words are concatenated by adding
their lengths and this can be generalized to concatenating whole languages. So there is a
natural correspondence between expressions over a single-letter alphabet containing the
operations of concatenation, union, intersection and complementation and the respective
expressions over sets of natural numbers.

These expressions are thus similar to the expressions considered in problem 6. Stock-
meyer and Meyer [SM73] studied the problem of testing whether two expressions over sets
of natural numbers characterize the same set, the so-called equivalence problem. They
obtained that the complexity of this problem heavily depends on the operations allowed.
We will study similar problems concerning expressions where repeated subexpressions are
encoded more succinctly.

We now explain the specific results obtained in the individual chapters in more detail.

Chapter Two
This chapter contains all relevant definitions in complexity theory and the theory of
formal languages. It is not meant as an introduction to the theory of formal languages
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or complexity theory but rather as a reference for the notions and notations used in this
thesis.

Chapter Three
We investigate the principal differences between search and decision problems in this
chapter: A decision problem is solved by answering a yes/no-question, whereas a search
problem is more complicated and generalizes this concept: Here, the task is to construct
an object possessing a certain property defined by the input or stating that it does not
exist. In contrast to decision problems, which are forced to exactly one answer for each
input, search problems have some kind of freedom: If there are several objects that
possess the property, the algorithm can choose between them. On the other hand, when
such algorithms are used as subroutines, we cannot pose any restriction on the object
we get. These two concepts are used to compare several classes of search and decision
problems with respect to polynomial-time Turing-equivalence. Roughly, two problems are
polynomial-time Turing-equivalent, if one problem can be solved in polynomial time when
it has access to a (hypothetical) routine that solves the other problem in polynomial time
and vice-versa. The main result in this chapter is that (under some assumption) there
are search problems that are inequivalent to any decision problem. The above mentioned
freedom for search problems is the main reason why this result is true. A conclusion of
this chapter is that the usual complexity of decision problems is not the right measure for
the complexity of search problems.

Chapter Four
In this chapter we give a complexity-theoretical foundation for multiobjective optimization
problems. Multiobjective optimization has been studied for quite some time, but there
has not been a thorough complexity-theoretic treatment of these problems so far. In
contrast to single-objective problems, it is initially not clear what it means to solve
such a problem. We formalize multiobjective optimization problems and define several
solution notions used in the literature. It turns out that most of these notions coincide
if there is only one objective, which is the reason why they are not differentiated in
single-objective optimization. Furthermore, we give several examples of multiobjective
optimization problems in this framework.

Chapter Five
Next, we compare the solution notions defined in chapter four with regard to their
complexity. Here, the preliminary work of the chapter on search and decision problems
will turn out to be helpful.

As a main result we obtain that for any three problems in NP, there is a single
multiobjective optimization problem where one solution notion is equivalent to the first
problem, another to the second and yet another one is equivalent to the third problem. This
means that the complexities for multiobjective optimization problems can differ drastically
depending on the solution notion considered. Hence it is important to distinguish between
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these notions to avoid simply speaking of the complexity of a multiobjective optimization
problem.

Furthermore, we show that some solution notions are inherently search problems,
while some are inherently decision problems. So the conclusion drawn in the preceding
chapter is also applicable here: The complexity of some solution notions of multiobjective
optimization problems cannot be described in terms of decision problems (under some
complexity-theoretical assumption).

Chapter Six
Many important single-objective optimization problems are NP-complete and this is even
more the case for multiobjective optimization problems. As already mentioned, it is widely
believed that NP-complete problems cannot be solved in polynomial time. Hence, one
turns to so-called approximate solutions: It is often not crucial to obtain the best possible
solution as long as one gets a solution together with the guarantee that this solution is
within a certain factor of being optimal. Like in the setting where one is interested in
exactly optimal solutions, the situation is more complicated for multiobjective optimization
than it is in the single-objective case. We extend the solution notions from the previous
chapter to approximate solution notions and again investigate the relations between them.
For many notions, we can show how to transfer approximability results from one notion to
the other. Furthermore, for some problems, approximations for single-objective variants
directly transfer to the multiobjective case and thus existing algorithms can be reused.

Chapter Seven
Having laid the foundations for approximating multiobjective problems, we turn to specific
problems. The traveling salesperson problem (problem 3 in the list above) is one of
the most important optimization problems in complexity theory. We investigate several
variants of the multiobjective traveling salesperson problem and improve the currently best
known approximations. We use one of the variants to exemplify how to use discrepancy
theory to design approximation algorithms for multiobjective problems: An idea that
appears in many single-objective approximation algorithms is that if a set of objects that
are assigned weights is divided into two parts, one of the two parts has at least half of
the total weight. As it is, this idea is not usable in multiobjective optimization, where
the weights are vectors, as one of the two parts can be heavier in the first and the other
heavier in the second component. Using results from discrepancy theory, a given set of
objects with assigned multidimensional weights can be divided into two parts of roughly
the same weight in each component. This means that one of the two parts must have at
least one half of the weight in each component minus some error. Thus the idea from
single-objective optimization can be transferred to multiobjective optimization if a small
error is acceptable.

Chapter Eight
We conclude the first part by improving the result from discrepancy theory used in the
previous chapter in a way: We show that one can always assume that the objects are



23

divided into two parts in a special way. Suppose we want to assign the objects to the two
parts sequentially according to a pre-specified order. This means we have to assign some
objects to the first part, then some two the second part, the again some to the first part
and so on. We show that there is a strategy such that the number of changes between the
parts is bounded by a number that is independent of the number of objects. The result
is shown by proving some kind of multidimensional intermediate value theorem. This
observation could help in finding approximation algorithms for multiobjective problems
that require the assignment to have this more convenient structure.

Chapter Nine
The first chapter of the second part is concerned with conjunctive and Boolean grammars.
As already mentioned, conjunctive and Boolean grammars are extensions of context-free
grammars by explicit set-theoretic intersection and complementation, respectively. We
show that by extending the context-free grammars by an explicit intersection operation,
multiple rules for one nonterminal (which represent some kind of union) are almost not
needed anymore: Conjunctive grammars where for each nonterminal there is at most one
rule that references other nonterminals generate the same languages as general conjunctive
grammars. This restriction imposed on context-free grammars has already been studied
by Greibach, Shi and Simonson [GSS92], who found out that in this case, a weaker class
of languages is obtained.

In the second part of this chapter, we investigate the complexity of deciding whether
a given word over a single-letter alphabet is generated by a given Boolean grammar or
not, i. e. the complexity of the parsing or membership problem. Valiant [Val75] showed
that the parsing problem for context-free grammars can be reduced to Boolean matrix
multiplication. We use a similar technique and reduce the parsing problem for Boolean
grammars over a single-letter alphabet first to online Boolean convolution and this problem
in turn to integer multiplication.

Chapter Ten
If we disallow circular references to nonterminals in Boolean grammars over a single-letter
alphabet, we arrive (by the already mentioned correspondence) at expressions or circuits
over sets of natural numbers. For each subset of allowed operations (union, intersection,
complementation, addition, multiplication), the complexity of the equivalence problem
of these circuits is explored. We show that these problems are complete for a vast range
of complexity classes from NL and P over ΠP

2 up to PSPACE. Furthermore, we obtain
similar results for the satisfiability problem for such circuits: In this problem, we introduce
variables and ask if for a certain number there is an assignment to the variables such that
the desired number is produced.

Publications
This thesis is based on the following publications in journals and refereed conference
proceedings together with the results from the technical reports [GRW09] and [OR11].
Chapter 8 contains unpublished joint work with C. Glaßer and M. Witek.



24 CHAPTER 1. INTRODUCTION

[GHR+10] C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, and M. Waldherr. Equiv-
alence problems for circuits over sets of natural numbers. Theory of
Computing Systems, 46(1):80–103, 2010.

[GRSW10] C. Glaßer, C. Reitwießner, H. Schmitz, and M. Witek. Approximability and
hardness in multi-objective optimization. In Proceedings Computability in
Europe (CiE), volume 6158 of Lecture Notes in Computer Science. Springer
Verlag, 2010.

[GRTW10] C. Glaßer, C. Reitwießner, S. D. Travers, and M. Waldherr. Satisfiabil-
ity of algebraic circuits over sets of natural numbers. Discrete Applied
Mathematics, 158(13):1394–1403, 2010.

[OR10] A. Okhotin and C. Reitwießner. Conjunctive grammars with restricted
disjunction. Theoretical Computer Science, 411(26-28):2559–2571, 2010.

[GRW11] C. Glaßer, C. Reitwießner, and M. Witek. Applications of discrepancy theory
in multiobjective approximation. In Proceedings Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), volume 13 of
LIPIcs, pages 55–65. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2011.

[FGL+12] F. Lipp, C. Reitwießner, K. Fleszar, C. Glaßer and M. Witek. Structural
complexity of multiobjective NP search problems. In Proceedings 10th Latin
American Theoretical Informatics Symposium (LATIN), 2012, to appear.



25

Chapter 2

Basics, Notations and Terminology

2.1 Sets, Numbers, Vectors and Functions

Sets and Numbers. The empty set is denoted by ∅. For a set A, let 2A = {X | X ⊆ A}
denote its power set and #A its cardinality if it is finite. Let N = {0, 1, 2, . . . } be the set of
natural numbers (including zero), Z the integers and N+ the positive integers. The rationals
and the reals are denoted by Q and R, respectively. Finally, B = {false, true} = {0, 1} is
the Boolean semiring. The difference of two sets A and B is denoted as A−B = {x ∈ A |
x /∈ B}. The complement of a set A with respect to a base set B (usually N) is written as
A. Operators on objects are extended to sets of these objects by applying the operator to
all combinations. For example for the addition, we get X + Y = {x+ y | x ∈ X, y ∈ Y }.

Intervals (of reals) are written as [a, b] or [a, b), where a square bracket denotes a
closed end and a rounded bracket an open end. The signum of a number x ∈ R is written
as sgn(x) and its absolute value by |x|. Though more often, the latter denotes the length
of the encoding of an object defined below. Finally, bxc and dxe denote the largest integer
that is not larger than x and the smallest integer that is not smaller than x, respectively.

As a convention, variables normally represent natural numbers and Greek variables are
often reals or rationals. Elements of Cartesian products are written as tuples (row-vectors)
or, if the vector character wants to be stressed as vectors (column-vectors).

Vector Spaces. We usually assume a standard basis for all vector spaces and access
the components of a vector x ∈ F k as x1, . . . , xk. Sometimes, we use different finite sets
as index sets for the components of vectors, for example {0, 1, . . . , k − 1} or just some
unspecified finite set Y , while we stress this by specifying the vector space as F Y . For
x = (x1, . . . , xk)T, we write x[a..b] for the subvector (xa, xa+1, . . . , xb)T of x. Let 1n be
the all-ones-vector of dimension n and diag(x1, . . . , xn) be the n× n diagonal matrix with
diagonal x1, . . . , xn. Finally, we define the usual preorder relations on an n-dimensional
vector space (over an ordered field) such that x ≤ y holds if and only if xi ≤ yi for all
1 ≤ i ≤ n.

On Rk, the p-norms are defined as ‖(x1, . . . , xk)T‖p = (∑k
i=1 |xi|p)1/p for real numbers

p ≥ 1 and the maximum norm is ‖(x1, . . . , xk)T‖∞ = maxi |xi|. The determinant of a
square matrix A is written as det(A).
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Functions. A function f : A→ B is often extended to subsets C of A by f(C) = {f(x) |
x ∈ C}. For D ⊆ B we then also write f−1(D) = {x ∈ A | f(x) ∈ D}.

Let log denote the logarithm to base two and log∗ the iterated logarithm defined as

log∗(x) = min{n ∈ N | (log ◦ log ◦ · · · ◦ log)︸ ︷︷ ︸
n

(x) ≤ 1}.

For n ∈ N, bin(n) denotes the binary representation of n and |n| = |bin(n)| is the
length of the binary representation of a number (see below for a formal definition of
the length of a word). We likewise apply | · | to other objects and assume that they are
appropriately encoded in binary. Note that | · | can also stand for the absolute value of a
number, though this meaning is less often used.

Definition 2.1. For f : N→ N define the sets O(f), o(f) and Θ(f) as follows.

O(f) = {g : N→ N | ∃k ∈ N : g(n) ≤ k · f(n)
for all but finitely many n}

Θ(f) = {g : N→ N | ∃k1, k2 ∈ N : 1
k1
·f(n) ≤ g(n) ≤ k2 ·f(n)

for all but finitely many n}
o(f) = {g : N→ N | ∀k ∈ N : g(n) ≤ 1

k
· f(n)

for all but finitely many n}

We will use these Landau-symbols also in an informal way, e. g. in 4n2 + 2n = 4O(n2) =
O(n2) ≤ O(2n), where we assume appropriately quantified representatives.

2.2 Formal Languages
Alphabets, Words and Languages. Throughout this thesis, the symbol Σ represents
a finite set, also called alphabet. A word (over Σ) is a finite sequence of symbols (from
Σ). The empty word is denoted by ε. The length of a word w is denoted by |w|. The
concatenation of two words u and v is written as u ·v or simply as uv. A (formal) language
is a set of words and we extend the concatenation to languages by K · L = KL = {uv |
u ∈ K, v ∈ L}. Let L0 = {ε} and Li+1 = Li · L for all i ∈ N and define the iteration of L
as L∗ = ⋃

i∈N L
i. For an alphabet Σ, the set of all words over Σ then equals Σ∗ and for

any n ∈ N the set of words of length exactly n is written as Σn and the set of words of
length at most n is defined as Σ≤n = ⋃

0≤i≤n Σi. As we will need these special languages
later, we define the set of words of odd length over an alphabet Σ as Odd = ⋃

i∈N Σ2i+1

and the set of words of even length as Even = ⋃
i∈N Σ2i.

Operations on Languages. For a language L over an implied alphabet Σ, we define
the complement of L with respect to Σ∗, i. e. L = Σ∗ − L.

The quotient of a language with a singleton is defined as follows: For all L ⊆ Σ∗ and
u ∈ Σ∗, the languages u−1L = {w | uw ∈ L} and Lu−1 := {w | wu ∈ L} are the left
and right quotients of L with u, respectively. This operation is extended to languages as
K−1L = {v | ∃u ∈ K : uv ∈ L} and LK−1 = {u | ∃v ∈ K : uv ∈ L} for K,L ⊆ Σ∗.
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Regular Expressions and Context-Free Grammars. A regular expression over the
alphabet Σ is a finite expression over ∅ and {a} for any a ∈ Σ that uses the operations of
concatenation, union and iteration. A language is regular if it can be represented by a
regular expression.

A context-free grammar is a tuple G = (Σ, N, S,R), where Σ is a finite alphabet (the
set of terminal symbols), N is a finite set (of nonterminal symbols), S ∈ N is the start
symbol and R ⊆ N × (Σ ∪N)∗ is the set of rules, where a rule (A,w) ∈ R is written as
A→ w. A word uvw ∈ (Σ ∪N)∗ can be derived from uAw ∈ (Σ ∪N)∗ in a single step
(via G), uAw G=⇒ uvw, if there is a rule A→ v ∈ R. If we have w0

G=⇒ w1
G=⇒ . . .

G=⇒ wk
for k ∈ N and wi ∈ (Σ ∪N)∗, then wk can be derived from w0 in exactly k steps (via G).
Furthermore, the relation of derivability (in zero or more steps via G) for u, v ∈ (Σ ∪N)∗
is defined as u G=⇒∗ v if and only if u G=⇒k v for some k ∈ N. For u ∈ (Σ ∪ N)∗, the
language generated by u is LG(u) = {w ∈ Σ∗ | u G=⇒∗w} and the language generated by G
is L(G) = LG(S). A language that can be generated by a context-free grammar is called
context-free.

2.3 Graph Theory
Graphs. A directed edge (from u to v) is a pair e = (u, v) and an undirected edge is a
set e = {u, v}, where u 6= v. In both cases, the edge e connects or is incident to the two
vertices (or nodes) u and v.

A directed (or undirected) (simple) graph is a pair G = (V,E), where V is a finite
set (the vertices or nodes of G) and E is a finite set (the edges of G) of directed (or
undirected) edges connecting vertices from V .

A directed (or undirected) multigraph is a pair G = (V,E), where V is a finite set (the
vertices or nodes of G) and E is a finite set containing elements (e, i) where e is a directed
(or undirected) edge connecting vertices from V and i ∈ N. In abuse of notation, (e, i)
and e are sometimes identified. The set of vertices incident to the edge (e, i) is denoted
by [(e, i)]. The edges of a multigraph are also called multi-edges.

If nothing else is specified, we assume that graphs and multigraphs are undirected.
For an arbitrary set X, an X-(edge-)labeled (multi)graph is a triple G = (V,E, l), where

(V,E) is a (multi)graph and l : E → X. Attributes of G like being directed or undirected
are inherited from (V,E). If addition is defined on X (usually, we have X = Nk), then l
is extended to sets of edges by summation. Similarly, an X-vertex-labeled (multi)graph is
a triple G = (V,E, l), where (V,E) is a (multi)graph and l : V → X.

Degree. The degree of a vertex v in an undirected (multi)graph G is the number of
edges that are incident to it, denoted by degG(v). In a directed (multi)graph G, an edge
(u, v) (or ((u, v), i) for multigraphs) is an incoming edge for v and an outgoing edge for
u. The number of incoming edges for a vertex is called its indegree and the number of
outgoing edges its outdegree.

Walks, Paths and Cycles. In a directed or undirected (multi)graph G = (V,E), a
walk (from v0 to vm) is an alternating sequence w = v0, e1, v1, . . . , em, vm, m ≥ 1 of
vertices and edges where ei connects vi−1 and vi (and ei is an edge from vi−1 to vi if it



28 CHAPTER 2. BASICS, NOTATIONS AND TERMINOLOGY

is directed). The vertices v0 and vm are called endpoints of the walk. For simplicity, a
walk will sometimes be identified by the set of its edges. The walk w is called closed if
v0 = vm. It visits the vertices in its sequence and if a vertex v occurs exactly k times in
v0, . . . , vm−1, vm (in v0, . . . , vm−1 if v0 = vm), the walk visits v exactly k times. The walk
is called spanning if it visits all vertices from V and a path if no vertex is visited more
than once. A closed path is called a cycle. Spanning paths (or cycles) are also called
Hamiltonian paths (or cycles). The walk vi−1, ei, . . . , ej, vj is a (contiguous) subwalk of w.

Properties of Graphs. A directed or undirected (multi)graph G′ = (V ′, E ′) is a
subgraph of the directed or undirected (multi)graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.
A directed or undirected graph is complete if it contains all possible edges. A directed
or undirected (multi)graph is strongly connected if for each pair of vertices u, v there
is a walk from u to v. It is connected if for each pair of vertices u, v there is a walk
from u to v or from v to u and it is called acyclic if it does not contain any cycle. An
acyclic connected undirected simple graph is called a tree. A subgraph G′ = (V ′, E ′) of an
undirected (multi)graph G = (V,E) is called a spanning tree if G′ is a tree and V ′ = V .
Often, G′ is identified with E ′.

Matchings and Cycle Covers. For a directed or undirected (multi)graph G = (V,E)
and a set of vertices V ′ ⊆ V , we call a set of edges M ⊆ E a matching of V ′ in G if for
each v ∈ V ′ there is exactly one edge in M that is incident to v. A matching of V ′ = V
is called a perfect matching. In the same setting, a set of paths P in G is called a path
matching of V ′ in G if each v ∈ V ′ is the endpoint of exactly one path in P and no path
is a cycle. A set of cycles C in a directed or undirected (multi)graph is called a cycle
cover if each vertex is visited by exactly one cycle in C.

2.4 Complexity Theory

2.4.1 Turing Machines
The informal notion of an algorithm is formalized by the concept of a Turing machine.
Exact definitions can be found in any textbook about computational complexity [Pap94,
AB09]. Roughly, a Turing machine consists of a control with a finite number of states and
a finite instruction table, furthermore, a finite number of tapes that are unbounded in
both directions and divided into cells and a read/write head for each tape. The instruction
table describes how the machine acts in each step depending on the current state and
the symbols read from the tapes. Actions include state changes, movements of the heads
to adjacent cells and writing single symbols to the tapes. The machine has special
accepting and rejecting states and it stops execution if one of these states is reached. The
machine is called deterministic if in each situation, exactly one instruction is applicable
and nondeterministic if multiple instructions can be used. A computation path describes a
possible sequence of successive situations and instructions for a nondeterministic machine.
If the machine is deterministic, it can have a special write-only output tape and is called
Turing transducer in this case.
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We identify a Turing transducer M with the function M : N→ N it computes defined
in the following way: For all x ∈ N, we run the machine where initially, the binary
representation of x is written on the first tape. If the machine eventually stops in an
accepting state and the output tape contains the binary representation of a number y ∈ N,
then M(x) = y. If it never stops, stops in a rejecting state or stops while the output tape
does not contain the binary representation of a number (for example the special symbol
⊥), then M(x) is undefined.

Note that we allow functions to be partial as above, meaning that the actual codomain
of a function f : N→ N is not necessarily the whole set N. Functions that are not partial
are called total. This is useful in computability theory since a Turing machine does not
need to halt on all inputs and it is difficult to determine the inputs where it does halt.
Furthermore, if Turing machines work with objects that are not natural numbers as input
or output, we assume a suitable encoding as natural numbers. We sometimes denote this
encoding explicitly as 〈·〉 and require that it is bijective in this case. In the section about
encodings on page 31, we will explicitly define this encoding for tuples of natural numbers.

A function that is computed by a Turing machine is called computable and recursive if
it is additionally total.

For a Turing machine M that is not a transducer, let L(M) be the set accepted (or set
decided) by M defined in the following way: For any x ∈ N, we again run the machine as
above. If the machine stops in an accepting state, then x ∈ L(M) (and we say that M
accepts the input x). If it does not stop at all or stops in a rejecting state, then x /∈ L(M)
(M rejects the input x). If the machine halts on all inputs, then we say that M decides
the set L(M), otherwise it accepts the set. For nondeterministic machines, we also use
the term accept even if the machine halts on all inputs.

A Turing transducer decides a set A by computing the characteristic function of A
defined as

cA : N→ N, x 7→
1, if x ∈ A

0, otherwise.
Depending on the context, we identify a set and its characteristic function. Operations
that can be carried out by Turing machines that halt on all inputs are called effective or
computable.

2.4.2 Complexity Measures
We define several classes of sets (so-called complexity classes) by bounding the resources
that are available to a Turing machine that decides the set. Formally, a complexity class
is an arbitrary subset of 2N with no relation to computability or complexity. The elements
of complexity classes are also called languages or problems. We already noted in the
introduction that the resource bound of a Machine is a function of the input size. Here,
the size of a natural number x, in symbols |x| is the length of this number in binary
representation. If objects other than natural numbers are used as input for a machine,
where an implicit encoding is assumed, we also use | · | to denote the length of this
encoding.

For a function r : N → N, a (deterministic or nondeterministic) Turing machine M
runs in time r if for every input x ∈ N, the machine halts after at most r(|x|) steps (on
every computation path), with at most finitely many exceptions. The machine M uses the



30 CHAPTER 2. BASICS, NOTATIONS AND TERMINOLOGY

space r if for every input x ∈ N, it uses at most r(|x|) tape cells (on every computation
path), with at most finitely many exceptions, where read-only or write-only tapes (like
the input tape or the oracle input tape defined later) are not taken into account. In these
situations, we say that the machine M decides or accepts the set L(M) (computes the
function M) in time r or in space r.

Definition 2.2. Let r : N→ N be some monotonically increasing function.

DTIME(r) = {A ⊆ N | there is a deterministic Turing machine M
that decides A in time r}

NTIME(r) = {A ⊆ N | there is a nondeterministic Turing machine M
that accepts A in time r}

FDTIME(r) = {f : N→ N | there is a deterministic Turing machine M
that computes f in time r}

DSPACE(r) = {A ⊆ N | there is a deterministic Turing machine M
that decides A in space r}

NSPACE(r) = {A ⊆ N | there is a nondeterministic Turing machine M
that accepts A in space r}

FDSPACE(r) = {f : N→ N | there is a deterministic Turing machine M
that computes f in space r}

Using these generic classes, we can define several important classes considered in
complexity theory.

Definition 2.3.

L = DSPACE(log) NL = NSPACE(log)
P =

⋃
k∈N

DTIME(n 7→ nk) NP =
⋃
k∈N

NTIME(n 7→ nk)

FL = FDSPACE(log) FP =
⋃
k∈N

FDTIME(n 7→ nk)

PSPACE =
⋃
k∈N

DSPACE(n 7→ nk)

E =
⋃
k∈N

DTIME(n 7→ 2k n) NE =
⋃
k∈N

NTIME(n 7→ 2k n)

EXP =
⋃
k∈N

DTIME(n 7→ 2nk) NEXP =
⋃
k∈N

NTIME(n 7→ 2nk)

The class P (and FP for functions) is usually considered to contain the problems that
are efficiently solvable. Consequently, we call a task that can be solved in polynomial
time efficient, although this notion is not used too strictly.

There are some super-exponential time classes that play a special role in computational
complexity. Using a padding argument, one can show that EXP 6= NEXP⇒ P 6= NP. So
if the assumption that P 6= NP is not strong enough to show an assertion, one can assume
the inequality of larger classes. We will use such assumptions to show that, for instance,
there are search problems that are inequivalent to any decision problem.
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Definition 2.4.

EE =
⋃
k∈N

DTIME(n 7→ 22k n) NEE =
⋃
k∈N

NTIME(n 7→ 22k n)

EEE =
⋃
k∈N

DTIME(n 7→ 222k n

) NEEE =
⋃
k∈N

NTIME(n 7→ 222k n

)

Note that some authors define these classes differently, for example the class EE is
sometimes defined as ⋃k∈N DTIME(n 7→ 2k 2n).

2.4.3 Encoding for Tuples
At least for tuples of natural numbers we now define an encoding function to be used by
Turing machines. This is done in two steps.

Let all tuples of natural numbers first be implicitly encoded in the following way, such
that Turing machines can compute functions Nk → N and Nk → N: For any a ∈ N let
ã = a1a1a2a2 . . . anan where a1a2 . . . an = bin(a). A tuple (x1, x2, . . . , xk) ∈ Nk is encoded
as the number bin−1(x̃101x̃201 . . . 01x̃k).

We replace this preliminary encoding by a family of bijective encodings codek : Nk → N,
k ≥ 1 that satisfy the following conditions, where the complexity (and computability) of
functions is defined using the preliminary encoding for input and output:

• codek is a bijection that is monotone in each argument.

• codek is computable and invertible in logarithmic space.

• ⋃k≥1 Nk → N, (x1, . . . , xk) 7→ code2(k, codek(x1, . . . , xk)) is computable and invert-
ible in polynomial time.

For the rest of this thesis, we will always denote codek(x1, . . . , xk) as 〈x1, . . . , xk〉 and
make sure that the number of arguments is either constant or additionally encoded. The
Cantor pairing function π can be used to obtain such an encoding:

π(x1, x2) = 1
2(x1 + x2)(x1 + x2 + 1) + x2

π(x1, x2, . . . , xk) = π(x1, π(x2, . . . , π(xk−1, xk) . . . ))

2.4.4 Operators
Some complexity classes are not defined directly via machines but via operators that
modify or combine other classes. Common operators are the complement operator co (not
to be confused with the complementation operator −) and the projection.

Definition 2.5. For a complexity class C, the class of its complements is defined as

coC = {N− A | A ∈ C}.
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Definition 2.6. For a set A ⊆ N and a total function f : N → N, the projection of A
with respect to f is defined as

∃f ·A = {x ∈ N | ∃y ∈ N : y < 2f(|x|) ∧ 〈x, y〉 ∈ A}

and generalized to all polynomial functions and to complexity classes C as

∃p·A = {∃f ·A | f is a polynomial}
∃p· C =

⋃
X∈C
∃p·X

Using the projection, we obtain a different characterization of the important class
NP as NP = ∃p·P. Actually the projection operator is just another way to look at
nondeterminism, though one has to be careful about the bound used in the projection.
For example, it holds that NL = ∃p·L, but ∃p·EXP = EXP. Using this formalism, we
can talk about witnesses and verification: For a set A ∈ ∃p·P, we can test if x ∈ A by
searching for a polynomially-sized witness y that can be verified in polynomial time.

If some class is not closed under complementation (or more likely, if this is unknown),
one can investigate the Boolean hierarchy or more precisely, the difference hierarchy over
that class:

Definition 2.7. Let C be a complexity class and k ≥ 1.

• C(1) = C

• C(k + 1) = {A−B | A ∈ C, B ∈ C(k)}

The class C(k) is the kth level of the Boolean hierarchy over C.

The following definition models the property of a set being not even close to lying in a
certain complexity class.

Definition 2.8 ([BS85]). For a complexity class C, an infinite and co-infinite set L ⊆ N
is called C-bi-immune if neither L nor L has an infinite subset in C.

2.4.5 The Number of Witnesses and Probabilistic Classes
As we have seen in the introduction of the operator ∃p·, an accepting computation path
of a nondeterministic machine and a witness capture the same concept. By counting the
number of witnesses, one can define several classes, among them classes that formalize
the computational resource of randomness. The idea behind these randomized classes is
that a potential witness (or a computation path) is chosen uniformly at random and the
ratio of actual witnesses (or accepting paths) is the probability of acceptance.

Definition 2.9. For some (witness) set X ⊆ N and a function f : N→ N, let

#X,f : N→ N, x 7→ #{y ∈ N | y < 2f(|x|), 〈x, y〉 ∈ X}

Using this notation, we can define several classes and again give an equivalent definition
of the class NP. Let Pol be the set of all polynomials.
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Definition 2.10.

NP = {A ⊆ N | ∃X ∈ P, p ∈ Pol∀x ∈ N :
(x ∈ A ⇐⇒ #X,p(x) > 0)}

UP = {A ⊆ N | ∃X ∈ P, p ∈ Pol∀x ∈ N :
(x ∈ A ⇐⇒ #X,p(x) > 0) ∧#X,p(x) ≤ 1}

PP = {A ⊆ N | ∃X ∈ P, p ∈ Pol∀x ∈ N :
(x ∈ A ⇐⇒ #X,p(x) > 1

22p(|x|))}
RP = {A ⊆ N | ∃X ∈ P, p ∈ Pol∀x ∈ N :

(x ∈ A⇒ #X,p(x) > 1
22p(|x|)) ∧

(x /∈ A⇒ #X,p(x) = 0)}
BPP = {A ⊆ N | ∃X ∈ P, p ∈ Pol∀x ∈ N :

(x ∈ A⇒ #X,p(x) > 2
32p(|x|)) ∧

(x /∈ A⇒ #X,p(x) < 1
32p(|x|))}

C=P = {A ⊆ N | ∃X ∈ P, p ∈ Pol∀x ∈ N :
(x ∈ A ⇐⇒ #X,p(x) = 1

22p(|x|))}
C=L = {A ⊆ N | ∃X ∈ L, p ∈ Pol∀x ∈ N :

(x ∈ A ⇐⇒ #X,p(x) = 1
22p(|x|))}

For the probabilistic classes PP, RP, and BPP, the ratio #X,p(x)
2p(|x|) is called the probability

of acceptance.

We also define one class that is not so common but is a straightforward generalization
of UP to super-exponential time and is needed later:

Definition 2.11.

UEEE = {A ⊆ N | ∃X ∈ P, k ∈ N ∀x ∈ N :
(x ∈ A ⇐⇒ #X,f (x) > 0) ∧#X,f (x) ≤ 1)
where f : n 7→ 222kn

}

2.4.6 Super-Exponential Time Classes and Sparse Sets
Next, we use standard padding techniques to construct several very sparse sets in NP
under the assumption that certain super-exponential time classes do not coincide. These
sets will be used in later chapters.

Proposition 2.12. Let X = {22x | x ∈ N}.
1. If EE 6= NEE then there is some B ⊆ X such that B ∈ NP− P.

2. If EE 6= NEE∩ coNEE then there is some B ⊆ X such that B ∈ (NP∩ coNP)−P.

3. If NEE 6= coNEE then there is some B ⊆ X such that B ∈ NP− coNP.

4. If UEEE ∩ coUEEE 6= NEEE ∩ coNEEE, then there exists a B ∈ (NP ∩ coNP) −
(UP ∩ coUP) such that B ⊆ {t(i) + k | i ∈ N, 0 ≤ k < 2i} for t(n) = 2222n

.
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Proof. For L ⊆ N and c ≥ 1 let B(L, c) = {22xc

| x ∈ L}. Note that B ⊆ X. We claim:

L ∈ DTIME(22c·n) ⇐⇒ B(L, c) ∈ P (2.1)
L ∈ NTIME(22c·n) ⇐⇒ B(L, c) ∈ NP (2.2)

L ∈ coNTIME(22c·n) ⇐⇒ B(L, c) ∈ coNP (2.3)

If L ∈ DTIME(22c·n) via the machine M , then B(L, c) ∈ P by the algorithm that on
input y = 22xc

simulates M(x). This simulation needs time 22c·|x| ≤ 22c·(1+log x) = 22c·xc =
(log y)2c ≤ |y|2c , which is polynomial in |y|.

If on the other hand B(L, c) ∈ P, then L ∈ DTIME(22c·n) by the algorithm that
on input x simulates the deterministic polynomial-time algorithm for B(L, c) on input
y = 22xc

. This simulation needs time |y|c′ ≤
(
1 + 2xc

)c′ ≤ 22c′xc ≤ 22c′(2|x|+1)c ≤ 22d|x| for
some constant d and sufficiently large x.

Analogously one shows (2.2) and (2.3). We now prove the four statements.
1. If EE 6= NEE, then let L ∈ NEE−EE. Choose c ≥ 1 such that L ∈ NTIME(22c·n). By
(2.1) and (2.2), B(L, c) ∈ NP− P.
2. If EE 6= NEE ∩ coNEE, then let L ∈ (NEE ∩ coNEE)− EE. Choose c ≥ 1 such that
L,L ∈ NTIME(22c·n). By (2.1)–(2.3), B(L, c) ∈ (NP ∩ coNP)− P.
3. If NEE 6= coNEE, then let L ∈ NEE − coNEE. Choose c ≥ 1 such that L ∈
NTIME(22c·n). By (2.2) and (2.3), B(L, c) ∈ NP− coNP.
4. Let L ∈ (NEEE ∩ coNEEE)− (UEEE ∩ coUEEE) and choose some c ≥ 1 such that L
(resp., L) is decidable by a nondeterministic machine N (resp, N) that works in time 222c·n

.
Let B = {t(c · |x|) + x | x ∈ L} and note that B ⊆ {t(c · i) + k | i ∈ N, 0 ≤ k < 2i} ⊆
{t(i) + k | i ∈ N, 0 ≤ k < 2i}. We show B ∈ (NP∩ coNP)− (UP∩ coUP): B ∈ NP by the
algorithm that on input y = t(c · |x|) +x simulates N on x in nondeterministic polynomial
time in |y| (N on x needs time 222c·|x|

= log t(c · |x|) ≤ log y ≤ |y|). Similarly, B ∈ NP
by the algorithm that on input y = t(c · |x|) + x simulates N ′ on x in nondeterministic
polynomial time in |y|. B /∈ (UP ∩ coUP), since otherwise L ∈ UEEE ∩ coUEEE by
the algorithm that on input x simulates the (UP ∩ coUP)-algorithm for B on input
y = t(c · |x|) + x (the simulation works in time |y|c′ ≤ (1 + log y)c′ ≤ (log y)c′+1 ≤
(log 2t(c · |x|))c′+1 = (222c·|x|

+ 1)c′+1 ≤ (222c·|x|
)c′+2 ≤ 222c′′·|x|

.

2.4.7 Relativization
Modular algorithms combine different subroutines to complete their task, and sometimes,
we would like to measure the performance of an algorithm while disregarding the resources
needed by the subroutines. This scenario is modeled in complexity theory by oracle Turing
machines and relativized complexity classes.

For the purpose of this thesis, oracles are always partial functions. The usually
considered case of sets as oracles is included as a special case, when a set is identified
by its characteristic function. An oracle Turing machine M equipped with the oracle g
contains a write-only oracle input tape, a separate read-only oracle output tape, and a
special oracle query state q. When M enters the state q with the string x currently on the
oracle input tape and g(x) is defined, then g(x) immediately appears on the oracle output
tape. If g(x) is not defined, then the special symbol ⊥ appears on the oracle output tape.
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If M is nondeterministic, it has to act deterministically as long as the oracle input tape is
not empty. If M is a transducer, then let M g denote the partial function computed by M
with oracle g. Otherwise, let L(M g) denote the language decided or accepted by M with
oracle g.

We obtain relativized complexity classes by imposing resource bounds on the machines.
Note that strictly, only complexity classes defined by machines can be relativized and
care has to be taken in how this relativization is obtained exactly. We define relativized
deterministic time classes as an example.

Definition 2.13. Let r : N→ N be some monotonically increasing function, g a partial
function and C an arbitrary complexity class.

(DTIME(r))g = {A ⊆ N | there is a deterministic Turing machine M that accepts
A in time r with oracle g}

(DTIME(r))C =
⋃
O∈C

(DTIME(r))O

Using relativization, one can define the so-called polynomial-time hierarchy.

Definition 2.14. Let k ∈ N.

ΣP
0 = ∆P

0 = ΠP
0 = P

ΣP
k+1 = NPΣP

k ∆P
k+1 = PΣP

k ΠP
k = coΣP

k

PH =
⋃
k∈N

ΣP
k

An equivalent definition of the ΣP
k - and ΠP

k -levels can be given using the projection
operator, since it holds that ΣP

k+1 = ∃p·ΠP
k for every k ∈ N.

It is an open question whether the polynomial-time hierarchy is infinite or not. If for
some k, it holds that ΣP

k = PH, one says that the polynomial-time hierarchy collapses
to the kth level. Note that if P = NP, then PH = P, so the assumption that the
polynomial-time hierarchy does not collapse is at least as strong as P 6= NP.

A hierarchy of a similar kind collapses for the class BPP:

Theorem 2.15 ([Ko82]). BPPBPP = BPP

Complexity classes C that are defined via machines and allow relativization and have
the property that CC = C are called self-low.

Relativization can also be used to show the limits of current proof techniques. Almost
all known proofs about complexity classes are relativizing, which means that they remain
valid in a setting where each machine is equipped with the same oracle. For example,
one can show that PA ⊆ NPA holds for all A ⊆ N with only minor changes to the proof
for P ⊆ NP. Baker, Gill and Solovay showed that no relativizing proof can be used
to establish P = NP or P 6= NP. Similar results are true for many open questions in
complexity theory.

Theorem 2.16 ([BGS75]). There are A,B ⊆ N such that PA = NPA and PB 6= NPB.
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2.4.8 Reducibilities
Different sets and functions are compared with respect to their computability or complexity
using reductions. The general concept is that A reduces to B if and only if A can be
solved with the help of a (perhaps hypothetical) subroutine that solves B. This means
that B is at least as hard to solve as A. The most general reduction considered is the
(unbounded) Turing reduction, which is defined using oracle Turing machines.

Definition 2.17. A partial function (or set represented by its characteristic functions)
f is unboundedly Turing reducible to a partial function (or set) g, in symbols f ≤T g if
f = M g for some Turing machine M .

This reduction is only useful for complexity theory, when the power of the reducing
machine is restricted, for example to polynomial time (again, the following definition also
applies to sets):

Definition 2.18. A partial function f is (polynomial-time) Turing reducible to a partial
function g, in symbols f ≤p

T g if f = M g for some polynomial-time Turing machine M .

Similarly, one defines logarithmic-space Turing reduction, ≤log
T using a Turing machine

with logarithmic space bound. The more restrictive many-one reductions and truth-table
reductions are not defined via oracles (although they can) and are only considered for sets,
here.

Definition 2.19. A set A ⊆ N (unboundedly) many-one reduces to a set B ⊆ N, A ≤m B,
if there is some recursive function f such that for all x ∈ N it holds that x ∈ A ⇐⇒
f(x) ∈ B.

Definition 2.20. A setA ⊆ N polynomial-time many-one reduces to a setB ⊆ N, A ≤p
m B,

if there is some f ∈ FP such that for all x ∈ N it holds that x ∈ A ⇐⇒ f(x) ∈ B.

Analogously, one defines the logarithmic-space many-one reduction, ≤log
m , which will

be the default reduction we use for comparing the complexity of sets. Less common
reductions are the following:

Definition 2.21. A set A ⊆ N conjunctively truth-table reduces in polynomial time to a
set B ⊆ N, A ≤p

ctt B, if there is a polynomial-time computable function f : N→ 2N such
that for all x ∈ N it holds that x ∈ A ⇐⇒ f(x) ⊆ B.

The polynomial-time disjunctive truth-table reduction, ≤p
dtt is defined analogously,

where the condition is that x ∈ A ⇐⇒ f(x) ∩B 6= ∅.
These two reductions can be combined to obtain the ≤p

dtt(ctt)-reduction: It holds that
A ≤p

dtt(ctt) B for two sets A,B ⊆ N if there is a polynomial-time computable function f
whose output is a set of sets of natural numbers such that for all x ∈ N it holds that
x ∈ A ⇐⇒ ∃Q ∈ f(x) : Q ⊆ B.

Observe that if only partial functions with polynomially bounded output length are
considered (this of course includes sets), then each reduction relation defined above is
reflexive and transitive (this is not always immediately clear). With each reduction ≤XY we
associate an equivalence relation ≡XY in the usual way. An equivalence class with respect
to this relation is called a degree.
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Definition 2.22. Let C be a complexity class. We say that C is closed under a reduction
≤XY (or also ≤XY -closed) if for all A ∈ C and all B ⊆ N such that B ≤XY A, we have B ∈ C.
A set A ⊆ N is ≤XY -hard for C if for all B ∈ C we have B ≤XY A. The set A is called
≤XY -complete for C if we additionally have A ∈ C.

If the reduction is not explicitly given in statements about hardness or completeness, we
assume the ≤log

m reduction for sets and for function classes, we instead use the ≤p
T-reduction.

Property 2.23. The classes NP and coNP are closed under ≤p
dtt-, ≤p

ctt- and ≤p
dtt(ctt)-

reductions.

Proof. For NP, assume that A ≤p
dtt B ∈ NP via f . On input x, compute f(x) and

simulate the nondeterministic polynomial-time machine for B on each element in f(x)
one after another and accept if any of the simulations accept. The proof is analogous for
the other cases.

2.4.9 NP-complete problems
One of the first non-artificial problems for which NP-completeness could be shown is the
problem of determining whether a Boolean formula is satisfiable or not. More formally,
this problem is defined as follows, where we restrict to formulas in conjunctive normal
form:

Definition 2.24. Let x1, x2, . . . be Boolean variables. A variable or a negated variable
¬xi is called a literal. A set of finitely many literals is called a clause. A set of clauses is
called a Boolean formula in conjunctive normal form (CNF). An assignment of Boolean
values to each of the variables can make the formula satisfied: A variable is satisfied if it
is assigned the value true, and a negated variable is satisfied if it is assigned the value
false. A clause is satisfied if any of its literals is satisfied and a Boolean formula in CNF
is satisfied if all of its clauses are satisfied. Furthermore, a Boolean formula in CNF is
satisfiable if there is an assignment to its variables such that the formula is satisfied.

Sat = {〈f〉 | f is a Boolean formula in CNF that is satisfiable}
If one restricts the number of literals per clause in a Boolean formula in CNF to exactly

three, one obtains a formula in 3-CNF and the respective satisfiability problem, 3Sat
is still NP-complete. This property makes this problem convenient to show that other
problems are NP-hard via reductions.

Another NP-complete problem is the Knapsack problem. Here, one is given a set of
objects with weights and values and has to decide if there is a subset that respects a given
restriction about the sum of the weights and the sum of the values.

Definition 2.25.

Knapsack = {〈w, v, k, 〈w0, . . . , wk〉, 〈v0, . . . , vk〉〉 | ∃I ⊆ {0, 1, . . . , k} :∑
i∈I

wi ≤ w ∧
∑
i∈I

vi ≥ v}

Interestingly, a natural view on the knapsack problem is that of a two-objective
optimization problem, where one has to maximize the values of the chosen objects and at
the same time minimize their weight.
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2.4.10 Approximability
Here, we give relevant definitions for the area of (single-objective) approximation algorithms.
These will all be extended to multiobjective optimization problems in the main part of
the thesis.

Definition 2.26. A (single-objective) optimization problem is a tuple O = (S, f, d), where

• S : N→ 2N is a total function that maps a problem instance to the set of feasible
solutions, there is a polynomial p such that for each s ∈ S(x) it holds that s < 2p(|x|)
and {〈x, s〉 | s ∈ S(x)} ∈ P.

• f ∈ FP is a total function that assigns a solution its value from N depending also
on the problem instance.

• d ∈ {min,max} specifies the direction of optimization.

Definition 2.27. Let O = (S, f, d) be an optimization problem. A function g : N→ N
solves the problem O if for each x ∈ N it holds that: If S(x) = ∅ then g(x) is undefined and
otherwise g(x) ∈ S(x) and f(〈x, g(x)〉) ≥ f(〈x, s〉) (if d = max) or f(〈x, g(x)〉) ≤ f(〈x, s〉)
(if d = min) for every s ∈ S(x). O is solvable in polynomial time if there is a function
g ∈ FP that solves O.

Definition 2.28. Let O = (S, f, d) be an optimization problem and α ∈ R, α > 1.
A function g : N → N approximately solves the problem O with approximation ratio α
(or is an α-approximation for O) if for each x ∈ N it holds that: If S(x) = ∅ then
g(x) is undefined and otherwise g(x) ∈ S(x) and αf(〈x, g(x)〉) ≥ f(〈x, s〉) (if d = max)
or f(〈x, g(x)〉) ≤ αf(〈x, s〉) (if d = min) for every s ∈ S(x). O is α-approximable
in polynomial time if there is a function g ∈ FP that approximately solves O with
approximation ratio α. It is α-approximable in randomized polynomial time if there is
a function g that can be computed in randomized polynomial time and approximately
solves O with approximation ratio α with probability at least 1/2 for each instance.

Definition 2.29. A function f is a PTAS (polynomial-time approximation scheme) for
an optimization problem O if for each k ≥ 1, the function x 7→ f(2k, x) ∈ FP is a (1 + 1

k
)-

approximation for O. It is an FPTAS (fully polynomial-time approximation scheme) if
additionally f ∈ PF. The notions PRAS (polynomial-time randomized approximation
scheme) and FPRAS (fully polynomial-time randomized approximation scheme) are defined
analogously.

Definition 2.30. Let APX be the class of optimization problems O where there exists
an α > 1 such that O has an α-approximation.

The problem 3Sat defined above asks if on input of a Boolean formula in 3-CNF there
is some assignment to the variables such that all clauses are satisfied. In the following
optimization problem, the task is to simply satisfy as much clauses as possible:

Definition 2.31. Let Max3Sat = (S, f,max), where we assume that instances are
bijectively encoded as Boolean formulas in 3-CNF and

• S(〈ϕ〉) = {〈a1, . . . , ak〉 | ϕ has k variables and a1, . . . , ak ∈ {0, 1}}
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• f(〈〈ϕ〉, 〈a1, . . . , ak〉〉) = number of clauses in ϕ satisfied by the assign-
ment xi = ai

We know that Max3Sat is in APX by a simple idea: On input of a Boolean formula
ϕ consider some arbitrary assignment I of the variables and its inverted assignment I∗.
Observe that any clause of ϕ is satisfied by I or by I∗. So at least one of I or I∗ satisfies
at least one half of all clauses. Thus, we arrive at a 2-approximation of Max3Sat. It can
be shown that Max3Sat does not have a PTAS unless P = NP [AL97].

2.5 Computability Theory
A set A ⊆ N is (computably) enumerable or (recursively) enumerable if it can be accepted
by a Turing machine. The class of these sets is abbreviated by RE. If the characteristic
function cA of a set A is computable, the set A is called decidable or recursive. The class
of these sets is abbreviated as REC.

These classes are relativized as follows: For O ⊆ N, the class RECO contains all sets
A ⊆ N such that cA is computable by a Turing machine with oracle access to O. The
class REO contains all sets A ⊆ N that can be accepted by a Turing machine with oracle
access to O.

Using these relativized classes, the arithmetical hierarchy can be defined similarly to
the already mentioned polynomial-time hierarchy (though its definition predates the one
for the polynomial-time hierarchy):

Definition 2.32. Let k ∈ N.

Σ0 = ∆0 = Π0 = REC
Σk+1 = REΣk ∆k+1 = RECΣk Πk = coΣk

AH =
⋃
k∈N

Σk

Again, an equivalent definition of the Σk- and Πk-levels can be given using a projection
operator, which needs to be unbounded now: For any A ∈ N define the unbounded
projection of A as ∃·A = {x ∈ N | ∃y : 〈x, y〉 ∈ A} and extend this operator to classes by
∃· C = ⋃

A∈C ∃·A. It holds that Σk+1 = ∃p·Πk.
For the arithmetical hierarchy, it is known that it is infinite and also that ∆k =

Σk+1 ∩ Πk+1, which is an open question for the polynomial-time hierarchy.

Definition 2.33. There are special so-called universal Turing machines M that can
simulate all other machines in the sense that for every Turing machine M ′ there is some
i ∈ N such that M(〈i, x〉) = M ′(x) for all x ∈ N. If we further require for M that there is
a recursive function s : N→ N such that for all i, x, y ∈ N it holds that M(〈s(〈i, x〉), y〉) =
M(〈i, 〈x, y〉〉) we can use M to obtain an enumeration of all Turing machines and thus of
all computable functions and enumerable sets by Mi : N→ N, x 7→M(〈i, x〉).

Note that because of the additional requirement it is not important which universal
Turing machine is used here as the indices i can be effectively transformed from one
enumeration to another one. To see this, assume that M1 provides one enumeration
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{M1,i} and M2 provides a second one {M2,i}. Let m2 ∈ N such that M2 = M1,m2 . For an
arbitrary Turing machine M = M2,i and any x ∈ N, we have

M(x) = M2(〈i, x〉) = M1(〈m2, 〈i, x〉〉) = M1(〈s(〈m2, i〉), x〉) = M1,s(〈m2,i〉)(x)

and thus s(〈m2, i〉) is the index number of M in the enumeration defined by M1.
Because of the above arguments, we can simply fix an arbitrary universal Turing

machine and its respective enumeration {Mi} for the rest of this thesis. Many basic
problems in computability theory are concerned with such enumerations. Perhaps the
most fundamental problem is the halting problem.

Definition 2.34. The halting problem is the set K = {〈i, x〉 |Mi(x) is defined}.

Proposition 2.35. K is ≤log
m -complete for RE.

Since no decidable set can be ≤log
m -hard for RE, we can deduce that it is in general

not possible to decide if a given Turing machine will halt on a given input or not.



41

Chapter 3

Complexity of Search and Decision
Problems

As a theoretical foundation for the systematic study of multiobjective optimization
problems, we first turn to the relation between search problems (sometimes called relation
problems) and decision problems in general. Decision problems are the problems that
are classically considered in complexity theory: A decision problem A is a subset of N
(sometimes, subsets of Σ∗ for a finite alphabet Σ are considered, but this does not make
any difference) and the associated computational task is to compute its characteristic
function cA, i. e. on input x ∈ N, determine if x ∈ A or not. Examples for decision
problems are the set of primes PRIMES = {x ∈ N | x is prime}, the set of satisfiable
Boolean formulas Sat = {〈ϕ〉 ∈ N | ϕ is a Boolean formula in k variables and there are
a1, . . . , ak ∈ {0, 1} such that ϕ(a1, . . . , ak) = 1}. Decision problems can be summarized as
problems where the question is asked if a given object has some property or not. Search
problems, in contrast, are more complicated. We refer to the next section for a formal
definition of the search problems considered here, but in general, the task is to decide
if a given object has a specific property and, if this is the case, compute some witness.
As an example, the search problem usually associated with the decision problem Sat is
the task of deciding whether some given Boolean formula ϕ is satisfiable and additionally
computing one of its satisfying assignments. The essential difference now is that there
is exactly one correct answer when solving a decision problem but there can be several
correct answers when solving a search problem. As a multiobjective problem can also
have multiple optimal solutions for each instance, search problems will turn out suitable
for formalizing multiobjective optimization problems.

We begin this chapter by formalizing search problems as multivalued functions and
defining important classes of multivalued functions. Furthermore, we define a suitable
reduction relation between multivalued functions that is a generalization of the usual
Turing-reduction between decision problems. As comparing decision and search problems
by equality is not very useful, we will compare them with respect to the reduction we
defined and also extend this to classes of decision and search problems. Note that previous
research mainly focused on comparing classes of search problems or classes of multivalued
functions with respect to equality and refinements. By comparing classes with respect to
Turing reductions, one obtains more robust results and is able to compare decision and
search problems.



42 CHAPTER 3. COMPLEXITY OF SEARCH AND DECISION PROBLEMS

We will study the relations between various classes of search and decision problems,
while we specifically focus on classes relevant for multiobjective optimization. In most cases
where we are not able to show that an inclusion (with respect to Turing-reduction) holds,
we show that such an inclusion would have implausible complexity-theoretic consequences.
Figure 3.1 summarizes the inclusions obtained in this chapter. In chapter 5, we will
add several classes relevant for multiobjective optimization to this diagram and obtain
Figure 5.3 on page 80.

The main result here is that the intuition that search problems are different from
decision problems because of the fact that they can have more than one correct solution
is right: We show that (under some assumption about super-exponential time classes)
there are (NP) search problems that are Turing-inequivalent to any decision problem of
arbitrary complexity (Corollary 3.22). In contrast, any search problem that has at most
one correct answer for each instance (so-called singlevalued functions) is equivalent to a
decision problem (Proposition 3.15). Beame et al. [BCE+98] have shown that the first
result also holds relative to a generic oracle, which further supports our claim that search
and decision problems are fundamentally different.

3.1 Definitions and First Results
We use (polynomially bounded) multivalued functions to model search problems. Book,
Long and Selman [BLS84] used nondeterministic polynomial-time machines that can
generate outputs on each computation path to define NPMV, an important class of
multivalued functions. Recently, an approach similar to the one used to define NP sets
as polynomially bounded projections of sets in P has become popular which can also be
used to define other interesting classes of multivalued functions in the same way.

Definition 3.1. A multivalued function is a total function N→ 2N. For a multivalued
function f , define its domain, graph and range as dom(f) = {x ∈ N | f(x) 6= ∅},
graph(f) = {(x, y) ∈ N2 | y ∈ f(x)}, and range(f) = ⋃

x∈N f(x). If f is viewed as
a multivalued function from A to B, it is called total if dom(f) = N. A multivalued
function g is a refinement of a multivalued function f , if dom(g) = dom(f) and for all
x, g(x) ⊆ f(x). For two classes of multivalued functions C and D we say that C has
refinements in D, C ⊆c D, if for every f ∈ C there is some g ∈ D such that g is a
refinement of f .

To get a unified view on multivalued functions, ordinary partial functions and sets,
we sometimes interpret a partial function g : N→ N as the multivalued function g′ : x 7→
{g(x) | g(x) defined} and a set A ⊆ N as its characteristic function cA. This enables us
to generalize the ordinary ≤p

T-reduction to multivalued functions.

Definition 3.2 ([FHOS97]).

1. Recall Definition 2.18: Let f and g be partial functions. f is polynomial-time Turing
reducible to g, f ≤p

T g, if there exists a deterministic, polynomial-time oracle Turing
machine M such that f = M g.

2. Let f and g be multivalued functions. f is polynomial-time Turing reducible to g,
f ≤p

T g, if there exists a deterministic, polynomial-time oracle Turing machine M
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Figure 3.1: Summary of embeddings of complexity classes. A (non-dashed) arrow from C to D denotes
that C can be embedded in D, i. e. ∀f ∈ C ∃g ∈ D : f ≡p

T g. Dashed arrows give evidence against such an
embedding (the embedding implies the arrow’s label).
Observe that the embedding relation is reflexive and transitive and that evidence against an embedding
propagates along non-dashed arrows (heads of dashed arrows can be moved downwards, tails can be
moved upwards). Thus, we provide evidence against all embeddings that are not explicitly shown to hold
except for NPMV ⊆≡p

T
coNPMV, NP(2)MV ⊆≡p

T
coNPMV, coNPMVt ⊆≡p

T
NPMV and the embedding

relations between P, NP ∩ coNP and NP (obviously).
Note that PMV = NPMVg, max·NP = OptP (Krentel [Kre88]) and AllSets is the class of all decision
problems. We will extend this diagram by classes of functions relevant in multiobjective optimization in
Figure 5.3 on page 80.
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such that for every partial function g′ that is a refinement of g it holds that the
partial function M g′ is a refinement of f .

It is important to note that the definition above is different from the one given in an
article by Selman [Sel94]. In Selman’s definition, if the oracle g is a multivalued function
and if some q with g(q) = ∅ is queried, then the oracle can give an arbitrary answer. Also
note that the oracle model described above ensures that ≤p

T is reflexive and transitive.
We also define the relation ≡p

T of polynomial-time Turing-equivalence as usual. By
interpreting a set A ⊆ N as its characteristic function cA, the definition above also applies
to sets and in fact coincides with the usual polynomial-time Turing reduction in that case.

A multivalued function g is called polynomial-time solvable, if there is a polynomial-
time computable, partial function f such that f is a refinement of g. A multivalued
function g is called NP-hard, if all problems in NP are polynomial-time Turing-reducible
to g.

We now introduce the operators wit· and max· similarly to ∃p·. They will help us to
define classes of problems and multivalued functions.

Definition 3.3. For a set A ⊆ N and a total function p : N→ N (usually a polynomial) we
define the multivalued function witp·A from N to N and the total function maxp·A : N→ N
as follows:

witp·A : x 7→ {y ∈ N | 〈x, y〉 ∈ A and y < 2p(|x|)}
maxp·A : x 7→ max({0} ∪ witp·A(x))

Moreover, for a set A ⊆ N and a complexity class C ⊆ 2N we define:

wit·A = {witp·A | p is a polynomial}
max·A = {maxp·A | p is a polynomial}
wit· C =

⋃
A∈C

wit·A

max· C =
⋃
A∈C

max·A

If p is a polynomial, then the task of the search problem witp·A is to compute
an arbitrary so-called witness from the witness set A relative to the decision problem
∃p·A = dom(witp·A). The task of maxp·A is to compute the largest witness. The
elements from wit·P are sometimes called NP search problems.

This unified approach in defining search problems was also undertaken by Große and
Hempel [GH03]. Their operator rel·, which was already defined by Wechsung [Wec00], is
identical to wit·. Classes like max·P and max·NP were systematically investigated by
Hempel and Wechsung [HW00]. Note that max·NP is identical to Krentel’s OptP [Kre88]
and is one way to formalize single-objective optimization problems. For special complexity
classes C, the functions in wit· C are well-known: The classes wit·P, wit·NP, and wit· coNP
were studied under the names NPMVg, NPMV, and coNPMV by Selman [Sel92, Sel94,
Sel96], Fenner et al. [FHOS97, FGH+99], and Hemaspaandra et al. [HNOS96].

Definition 3.4 ([BLS84, Sel92, HNOS96]). Let N be a nondeterministic Turing machine
that has an output tape. The machine N computes the multivalued function f from N to
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N where

f(x) = {y ∈ N | some accepting computation path of N on input x contains
the binary representation of y on the output tape}.

We now state the usual definitions of important classes of these functions which we
generalize later.

NPMV = {f | f is computed by some nondeterministic
polynomial-time Turing machine}

NPMVg = {f ∈ NPMV | graph(f) ∈ P}
coNPMV = {f | f is a multivalued function from N to N and there is a

polynomial p such that f(x) < 2p(|x|) and graph(f) ∈ coNP}

Proposition 3.5.

1. wit·P = NPMVg.

2. wit·NP = NPMV.

3. wit· coNP = coNPMV.

The name NPMV stands for nondeterministic polynomial-time multivalued. We will
adopt this general naming scheme for multivalued functions:

Definition 3.6. For any class of decision problems C ⊆ 2N, we define the related class
of multivalued functions CMV, total multivalued functions CMVt, singlevalued functions
CSV and total singlevalued functions CSVt as follows:

CMV = wit· C
CMVt = {f ∈ CMV | dom(f) = N}
CSV = {f ∈ CMV | ∀x : #(f(x)) ≤ 1}
CSVt = CSV ∩ CMVt

Note that a multivalued function f with polynomially bounded values is in CMV if
and only if graph(f) ∈ C. Furthermore, we have PMV = NPMVg and will generally prefer
the former name.

We will consider the following important example of a multivalued function or search
problem:

Definition 3.7. We define the multivalued function

f-Sat(ϕ) = {〈x1, . . . , xn〉 | ϕ is a Boolean formula with exactly n variables and
ϕ(x1, . . . , xn) = 1}.

Observe that f-Sat ∈ PMV and dom(f-Sat) = Sat. A multivalued function with
these properties is called an NP search problem for the decision problem Sat. The function
f-Sat is generally regarded as the canonical search problem for Sat but of course it is not
the only one. Furthermore, there are multivalued functions f of arbitrarily high complexity
such that dom(f) = Sat. It is obviously the case that Sat ≤p

T f-Sat, but we also know
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that f-Sat ≤p
T Sat holds, i. e., one can compute a satisfying assignment for a Boolean

formula if one has access to an oracle that decides if a Boolean formula is satisfiable or
not. We will get back to this property, called search reduces to decision [BD76, BBFG91]
again in sections 3.4 and 5.1.

From the following proposition, it can be seen that PMV is not closed under ≤p
T (unless

P = NP). In fact, the reduction closure of a fixed multivalued function f always contains
multivalued functions g with arbitrarily complex graphs since it suffices to compute a
simple refinement of g in the reduction. This means that none of the classes of multivalued
functions we consider here are closed under ≤p

T. This is of course not a problem, since we
are normally concerned with Turing-equivalence only.

Proposition 3.8. The multivalued function f-Sat is ≤p
T-hard for NPMV and thus ≤p

T-
hard for PMV.

Proof. Remember the proof for the NP-completeness of Sat. There, for an arbitrary
A ∈ NP, a nondeterministic polynomial-time Turing machine M accepting A and an input
x is transformed to a Boolean formula ϕ that is satisfiable if and only if x ∈ A. More
importantly, a satisfying assignments for ϕ can be obtained in polynomial time from an
accepting computation path of M on x and vice-versa. This means that with oracle access
to Sat we can obtain accepting computation paths of nondeterministic Turing machines.
In other words, we have g ≤p

T Sat for any g ∈ wit·P = PMV.
Let f ∈ NPMV. Then there is a polynomial p and a set B ∈ P such that f(x) =

{y | y < 2p(|x|) ∧ ∃z < 2p(|x|) : 〈x, y, z〉 ∈ B}. For the function g(x) = {〈y, z〉 | y, z <
2p(|x|), 〈x, y, z〉 ∈ B} ∈ PMV we obtain f ≤p

T g ≤p
T Sat ≤p

T f-Sat and thus the assertion.

We will see in Theorem 3.16 that f-Sat, and in fact any NPMV-function is not
≤p

T-hard for coNPMV unless PH = ∆P
2 .

3.2 Embeddings
Previous research on multivalued functions mainly focused on comparing classes of
multivalued functions with respect to equality and refinements. By comparing classes
with respect to Turing reductions, one obtains more robust results and is able to compare
decision and search problems. As our main subject of investigation, we use the inclusion
relation of ≤p

T-degrees:

Definition 3.9. For two classes C,D (of decision problems or multivalued functions), we
say that C can be embedded in D, denoted by C ⊆≡p

T
D, if and only if for each f ∈ C there

is some g ∈ D such that f ≡p
T g. Two classes are equivalent, denoted by C =≡p

T
D, if they

can be embedded in each other.

We now want to systematically analyze the embeddings between some classes defined
via the operators wit·, max· and ∃p· and begin with an easy observation. Later, in
Corollary 3.22 and Theorem 3.25, we will see that (under some assumption) the following
two chains of embeddings can in general not be incorporated into a single chain (for
example not for X = P).
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Proposition 3.10. For any class of decision problems X closed under ≤p
m it holds that

X ⊆≡p
T
max· X ⊆≡p

T
wit· X and max· X ⊆≡p

T
∃p· X

Proof. For any A ∈ X and a suitable polynomial p it holds that f = maxp·{〈x, 1〉 | x ∈
A} ∈ max· X and f ≡p

T A. For the second embedding let A ∈ X and p be a polynomial and
consider the function maxp·A. Define B = {〈〈x, c〉, y〉 | 〈x, y〉 ∈ A, 1 ≤ c ≤ y < 2p(|x|)}
and observe that B ≤p

m A and thus B ∈ X . For a large enough polynomial q we have
witq·B ≡p

T ∃q·B ≡p
T maxp·A and thus the assertion is proved.

Proposition 3.11. max·NP =≡p
T
NP

Proof. For max·NP ⊆≡p
T
NP, observe that for any f ∈ max·NP we have f ≡p

T {〈x, y〉 |
f(x) ≥ y} ∈ NP. The second part holds by Proposition 3.10.

Proposition 3.12. For all A ∈ NP, there is some f ∈ max·P such that A ≤p
T f .

Proof. Let A ∈ NP and let A = ∃p·R for some polynomial p and R ∈ P. We may assume
that 〈x, 0〉 /∈ R for any x. Observe that A ≤p

T maxp·R ∈ max·P.

Corollary 3.13. If NP 6= coNP then max·P 6⊆≡p
T
NP ∩ coNP.

Proof. We show that NP = coNP under the assumption that max·P ⊆≡p
T
NP ∩ coNP.

Let A ∈ NP. Using Proposition 3.12, we obtain some f ∈ max·P such that A ≤p
T f . By

the assumption, there is some B such that A ≤p
T f ≤p

T B ∈ NP∩ coNP. Since NP∩ coNP
is closed under ≤p

T, we get A ∈ NP ∩ coNP.

Proposition 3.14. If P 6= NP then max·P 6⊆≡p
T
P.

Proof. We assume that max·P ⊆≡p
T
P and show P = NP. So let A ∈ NP. Then there is

some B ∈ P and a polynomial p such that A = ∃p·B. We may assume that 〈x, 0〉 /∈ B for
any x. Define f = maxp·B and observe that A ≤p

T f . Since f is equivalent to some set in
P, we get A ∈ P.

Hemaspaandra et al. [HHN+95] show that NPSVt ⊆ FPNP∩coNP, i. e. every function in
NPSVt reduces to a set in NP ∩ coNP. We extend their proof and show that both classes
are equivalent. Furthermore, if we drop the requirement that the single-valued functions
are total, we exactly arrive at the class NP.

Proposition 3.15. It holds that

1. NP =≡p
T
NPSV and

2. NP ∩ coNP =≡p
T
NPSVt ⊆≡p

T
coNPMVt.

Proof. 1. Let f ∈ NPSV and define A = {〈x, y〉 | ∃z ∈ f(x) : y ≤ z}. We have A in
NP since on input 〈x, y〉 we can nondeterministically guess z and a witness for z ∈ f(x).
Furthermore, f ≡p

T A. For the other direction, let A ∈ NP and observe that f ∈ NPSV
defined via f(x) = {1 | x ∈ A} is equivalent to A.

2. Observe that it suffices to show that NP ∩ coNP ⊆≡p
T

(NP ∩ coNP)SVt and
NPSVt ⊆≡p

T
NP ∩ coNP. For the first inclusion, let A ∈ NP ∩ coNP and define f ∈
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(NP ∩ coNP)SVt via f(x) = {1 | x ∈ A} ∪ {0 | x /∈ A}. Since A ∈ NP ∩ coNP, we have
f ∈ (NP ∩ coNP)SV and f is obviously total. Furthermore, A and f are equivalent. In
order to show the second inclusion, let f ∈ NPSVt and define A = {〈x, y〉 | y ≤ z for
f(x) = {z}}. On input 〈x, y〉, we can guess the value of f together with a witness, verify
it and accept accordingly. Since f is total and the machine notices if the value or the
witness is wrong, we have A ∈ NP ∩ coNP. As in the first part, we get f ≡p

T A.

Before we turn to more complicated assertions and proofs, we give two results concerning
coNPMV. Fenner et al. [FHOS97, Theorem 5.9] showed the equivalence of the first two
statements in the following theorem. Their proof can be slightly adapted to also include
the third statement [FGH+99].
Theorem 3.16 ([FHOS97],[FGH+99]). The following statements are equivalent:

1. PH = ∆P
2

2. For any f ∈ NP(2)MV there is some g ∈ NPMV such that f ≤p
T g.

3. For any f ∈ coNPMV there is some g ∈ NPMV such that f ≤p
T g.

Proof. 1. ⇒ 2.: Assume PH = ∆P
2 and let f ∈ NP(2)MV such that (without loss of

generality) 0 /∈ range(f). Then there are A,B ∈ NP such that f = witp·(A − B) for
some polynomial p. Let h = maxp·(A − B) and observe that f ≤p

T h ≤p
T X for some

X ∈ PH = ∆P
2 = PNP. Hence, we have X ≤p

T Sat and thus f ≤p
T cSat ∈ NPMV.

2. ⇒ 3.: This holds since coNPMV ⊆ NP(2)MV.
3. ⇒ 1.: Assume that for any f ∈ coNPMV there is some g ∈ NPMV such that

f ≤p
T g and let A ∈ ΣP

2 . Then there is some polynomial p and some B ∈ coNP such that
A = ∃p·B. Define f = witp·B ∈ coNPMV. By assumption, there is some g ∈ NPMV
such that f ≤p

T g. We now have the reduction chain A ≤p
T f ≤p

T g ≤p
T f-Sat ≤p

T Sat and
thus A ∈ ∆P

2 .
Corollary 3.17. If PH 6= ∆P

2 then coNPMV 6⊆≡p
T
NPMV.

Proposition 3.18. If PH 6= ΣP
2 then coNPMV 6⊆≡p

T
coNPMVt.

Proof. We show that coNPMV ⊆≡p
T
coNPMVt implies ΣP

2 = ΠP
2 . For this, let A ∈ ΣP

2 .
Then there is some polynomial p and some B ∈ coNP such that A = ∃p·B. Define
f = witp·B ∈ coNPMV and observe that A ≤p

T f . By assumption, there is some
g ∈ coNPMVt such that f ≤p

T g and hence we have A ≤p
T g by some machine M with

runtime p. To see that A ∈ ΣP
2 , observe that the following is true for every x: It holds that

x ∈ A if and only if there is a set of oracle queries Q = {q1, . . . , qk} and corresponding
answers A = {a1, . . . , ak} such that for all i, we have (qi, ai) ∈ graph(g) and the simulation
of M on x only asks queries from Q and accepts when each qi is answered by ai. Note
that the length of the description of Q and of A can be bounded by a polynomial in the
length of x and graph(g) ∈ coNP. This means that A ∈ ΣP

2 and thus A ∈ ΠP
2 .

Fenner et al. [FGH+99] noted that the relation between NPMV and coNPMV is
somewhat different to the relation between NP and coNP and that coNPMV seems to
be more powerful than NPMV. Indeed, the previous corollary shows that coNPMV ⊆≡p

T
NPMV is unlikely. This might suggest that NPMV ⊆≡p

T
coNPMV could be true. We leave

as an open question whether NPMV ⊆≡p
T
coNPMV has unlikely complexity-theoretic

consequences or perhaps even holds.
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3.3 Search Problems Inequivalent to Any Decision
Problem

In this section we show that under reasonable assumptions about complexity classes,
there are multivalued functions in PMVt that cannot be equivalent to any set. In other
words, there are total NP search problems that are Turing-inequivalent to any decision
problem. Beame et al. [BCE+98] showed that this holds relative to a generic oracle. This
supports the conjecture that the complexity of functions in PMV (resp., the complexity of
multiobjective problems, as we will see later) is in general not expressible in terms of sets.

In order to prove this result, we investigate the consequences of a multivalued function
being equivalent to a set. We show that a PMV-function with sufficiently sparse domain
can only be equivalent to a set from UP∩coUP and a function in NPMVt that is equivalent
to a set always has a refinement in NPSVt.

Note that a multivalued function f is equivalent to a set if and only if the set of partial
functions that are refinements of f has a minimal element with respect to the partial
order ≤p

T. In other words, a multivalued function f is not equivalent to any set if and
only if no partial function that is a refinement of f is reducible (and thus equivalent) to
f . As functions in CSV for any class C cannot have more than one refinement, they are
always equivalent to a set.

Property 3.19. For any f ∈ CMV and any A ⊆ N the following is equivalent:

1. f ≡p
T A

2. There is a single-valued refinement g of f such that for any refinement h of f it
holds that g ≤p

T h.

Proof. “1. ⇒ 2.”: Assume f ≡p
T A, so it holds that f ≤p

T A ≤p
T f . The first reduction

always computes a certain single-valued refinement g of f . Since the reduction machine
for A ≤p

T f has to accept any refinement of f , we also have g ≤p
T h for any refinement h

of f by transitivity.
“2. ⇒ 1.”: Define the set A = {〈x, y〉 | y ≤ g(x)} and observe that g ≡p

T A. A
multivalued function is obviously reducible to any of its refinements and since g is
reducible to f , we get f ≡p

T g ≡p
T A.

Theorem 3.20. Let t,m : N → N such that t(i) = 2222i

and m(i) = 2i. Let f ∈ PMV
such that dom(f) = {t(i) + k | i ∈ N, 0 ≤ k < m(i)}. If f ≡p

T A for some A ⊆ N, then
A ∈ UP ∩ coUP.

Proof. We first give the proof idea: Since f ≤p
T A ≤p

T f , there is a partial function h that
is a refinement of f such that h ≤p

T f via machine M . To accept A in UP, we guess and
verify a value for f for each query reachable from the input. We further check that our
guess g in fact produces values for h by verifying that g(y) = M g(y) = h(y) holds for
every reachable y. Since these guesses are unique, we arrive at a UP-computation.

Now we get to the main proof. Since f ≤p
T A, there is some partial function g : N→ N

that is a refinement of f such that g ≤p
T A. Furthermore, since A ≤p

T f , we have g ≤p
T f

via some polynomial-time oracle Turing machineMg and A ≤p
T g via some polynomial-time

oracle Turing machine MA. For i ∈ N let Si = {t(j) + k | 0 ≤ j ≤ i, 0 ≤ k < m(j)}.
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We now show A ∈ UP ∩ coUP by appropriately guessing an oracle O and simulating the
computation of MA with oracle O.

On input x, let i ∈ N minimal, such that MA cannot query t(i+ 1). Start by guessing
and verifying a partial function O that maps each query q ∈ Si to an answer a ∈ f(q).
The length of the description of O is polynomial in |x|, since for some c,

|O| ≤ c
i∑

j=0
m(j)|t(j) +m(j)|c ≤ c

i∑
j=0
|2 t(j)|c+1 ≤ c

i∑
j=0

(2 + 222j

)c+1

≤ c
i∑

j=0
2(c+2)22j

≤ c
(c+2)22i∑
j=0

2j ≤ c · 21+(c+2)22i

,

which is polynomial in 222i

and thus in |x|.
Remember that g ≤p

T f via Mg. On input t(i) +m(i)− 1 (or smaller), there is some
c ∈ N such that the largest number Mg can query is at most

2|t(i)+m(i)−1|c ≤ 2|2 t(i)|c ≤ 2|t(i)|2c ≤ 2
(

222i)2c

≤ 222c 22i

.

For large enough i it holds that

222c 22i

< 22

(
22i
)2

= 2222i+1

= t(i+ 1).

By encoding oracle answers into the program, we can assume that Mg only queries the
oracle for inputs with i large enough for the above inequality to hold. Therefore, for all
q ∈ Si, MO

g (q) behaves as if O was a refinement of f and thus computes g(q). We check if
MO

g (q) = O(q) holds for all q ∈ Si and reject if this is not the case.
Observe that exactly one paths remains, namely the path where O = g on Si. Since

MA on input x cannot query t(i + 1), we can use O to simulate the reduction A ≤p
T g

in deterministic polynomial time. Since we can negate the return value of MA, we have
shown that A ∈ UP ∩ coUP.

Proposition 3.21. If f ∈ NPMVt such that f ≡p
T A for some A ⊆ N, then f has a

refinement in NPSVt.

Proof. Let N be a nondeterministic polynomial-time machine that computes f . The
following nondeterministic polynomial-time machineN ′ computes a singlevalued refinement
of f : On input x, the machine deterministically simulates the reduction f ≤p

T A ≤p
T f

such that queries q to the oracle f are replaced by the nondeterministic simulation of N
on q (the simulation stops at unsuccessful paths of N on q). The simulations of N on q
always have successful paths, since f is total. Hence N ′ computes a total function.

Note that for the reduction A ≤p
T f it does not matter which element from f(q) is

returned to a query q. So each query r to A is answered the same way on all computation
paths. Therefore, all successful paths of N ′ compute the same value from f(x).

Corollary 3.22. There exists a function f ∈ PMVt such that f 6≡p
T A for all A ⊆ N if

UEEE ∩ coUEEE 6= NEEE ∩ coNEEE or PMVt 6⊆c NPSVt.
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Proof. We first show the conclusion under UEEE ∩ coUEEE 6= NEEE ∩ coNEEE. Let
t(n) = 2222n

. Proposition 2.12.4 provides a B ∈ (NP ∩ coNP)− (UP ∩ coUP) such that
B ⊆ {t(i) + k | i ∈ N, 0 ≤ k < 2i}. Choose a polynomial p and R,R′ ∈ P such that
B = ∃p·R and B = ∃p·R′. Let S = {〈t(i) + k, y〉 ∈ R ∪R′ | i ∈ N, 0 ≤ k < 2i} and note
that S ∈ P. Let f ′ = witp·S. Observe that dom(f ′) = ∃p·S = {t(i) + k | i ∈ N, 0 ≤
k < 2i}. By Theorem 3.20, if f ′ ≡p

T A for some A ⊆ N, then A ∈ UP ∩ coUP and hence
B ∈ UP ∩ coUP (since B ≤p

T f ′ ≤p
T A). The latter is a contradiction, and therefore

f ′ 6≡p
T A for all A ⊆ N. Furthermore, since dom(f ′) ∈ P we can easily construct a total

function f ∈ PMV such that f ≡p
T f

′.
Now assume that there is a function f ∈ PMVt that does not have a refinement in

NPSVt. As the assumption that f ≡p
T A for some A ⊆ N contradicts Proposition 3.21,

we have shown the assertion.

3.4 Decision Problems Inequivalent to Search Prob-
lems

Beigel et al. [BBFG91] show that if DTIME(2O(2n)) 6= NTIME(2O(2n)), then NP contains
a language A for which search does not reduce to decision. This means that there is no
f ∈ PMV such that A = dom(f) and f ≤p

T A. Below we extend their construction and
show that if EE 6= NEE, then there exist sets in NP that are not polynomial-time Turing
equivalent to any function in PMV, i. e. to any NP search problem. Furthermore, with a
similar technique we show that if NEE 6= coNEE, then there are sets in NP that are not
polynomial-time Turing equivalent to any function in coNPMVt. Note that our formulation
uses the double exponential time classes EE = DTIME(22O(n)) and NEE = NTIME(22O(n)),
while Beigel et al. use the slightly different classes DTIME(22O(1)+n) and NTIME(22O(1)+n).

Lemma 3.23. Let f ∈ PMV and A ⊆ {22i | i ∈ N} such that A ≡p
T f . Then A ∈ P.

Proof. Assume there exists an f ∈ PMV such that A ≡p
T f . So f ≤p

T A via an oracle
Turing machine M whose running time is bounded by some polynomial q. We now show
that by a simulation of M we can show that f is polynomial-time solvable.

Assume the input x has length n. Then the machine M cannot ask queries longer
than q(n). In particular, it cannot query 22dlog q(n)e ≥ 2q(n). We simulate M for all possible
oracles A′ that satisfy A′ ⊆ {22i | i < dlog q(n)e}. Since there are at most 2dlog q(n)e ≤ 2q(n)
such sets, this can be done in polynomial time.

Because of the above considerations, MA′ must behave exactly as MA for one of these
oracles. Since graph(f) ∈ P, we can verify the correctness of all computed values and
filter out wrong values. Hence, we can compute a refinement of f in polynomial time and
thus obtain A ∈ P, which is a contradiction.

Lemma 3.24. Let f be a total multivalued function and A ⊆ {22i | i ∈ N} such that
A ≡p

T f . Then A ≤p
dtt(ctt) graph(f).

Proof. Let f be a total multivalued function and A ⊆ {22i | i ∈ N} such that A ≡p
T f . So

A ≤p
T f ≤p

T A via two polynomial-time oracle Turing machines M1 and M2 with running
times r and s. Let p(n) = s(r(n)). On input x the machine M1 can only ask queries with
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length at most r(|x|) and on inputs of length up to r(|x|), the machine M2 cannot query
values starting from 2s(r(|x|)) = 2p(|x|). In particular, it cannot query 22dlog p(|x|)e ≥ 2p(|x|). So
for each x and A′ = {22i ∈ A | i < dlog p(|x|)e} it holds that

M
MA′

2
1 (x) = M

MA
2

1 (x) = cA(x).

We now argue for the correctness of the following statement and then show that it
constitutes a ≤p

dtt(ctt)-reduction from A to G. Let Q(MO
1 )(x) be the queries that are asked

during the simulation of the machine M1 on input x with oracle O. Then the following
holds for each x:

x ∈ A ⇐⇒ ∃A′ ⊆ {22i | i ∈ N, i < dlog p(|x|)e} : MMA′
2

1 (x) = 1 and (3.1)

∀q ∈ Q(MMA′
2

1 )(x) : MA′

2 (q) ∈ f(q)

Let x ∈ A and let A′ = {22i ∈ A | i < dlog p(|x|)e} as above. Then we have MMA′
2

1 (x) = 1
and MA′

2 (q) ∈ f(q) for all q ∈ Q(MMA′
2

1 )(x) since |q| ≤ r(|x|). Now assume x /∈ A and let
A′ be arbitrary. If MA′

2 (q) ∈ f(q) for all q ∈ Q(MMA′
2

1 )(x), the machine MA′
2 behaves as a

refinement of f on all queries that are asked by M1. Since M1 computes the reduction
A ≤p

T f for every refinement of f , it must reject x with oracleMA′
2 and thus the right-hand

side is false.
It remains to show that statement (3.1) is a ≤p

dtt(ctt)-reduction from A to graph(f).
Since there are at most 2dlog p(|x|)e ≤ 2p(|x|) sets A′ ⊆ {22i | i ∈ N, i < dlog p(|x|)e},
the existential quantifier is polynomially bounded. Furthermore, for each such A′ the
simulation MMA′

2
1 (x) can be carried out in polynomial time. During this simulation, all

queries q ∈ Q(MMA′
2

1 )(x) and their answers MA′
2 (q) can be recorded. For the reduction,

we end up with a polynomially-sized disjunction of polynomially-sized conjunctions of
queries of the type MA′

2 (q) ∈ f(q) and thus have a ≤p
dtt(ctt)-reduction to graph(f).

The combination of these two lemmas with the construction of very sparse sets from
Proposition 2.12 yields the following arguments against embeddings.

Theorem 3.25. It holds that NP 6⊆≡p
T
PMV if EE 6= NEE or NP has P-bi-immune sets.

Proof. Both assumptions provide a set B ∈ NP − P such that B ⊆ {22i | i ∈ N} as
follows: For the first part, we can use Proposition 2.12. For the second part, we choose
a P-bi-immune L ∈ NP and let B = L ∩ {22i | i ∈ N}. From the P-bi-immunity of L it
follows that B /∈ P.

In both cases, we apply Lemma 3.23 and obtain that B cannot be equivalent to any
function in PMVt.

Theorem 3.26. It holds that NP ∩ coNP 6⊆≡p
T
PMV if EE 6= NEE or NP ∩ coNP has

P-bi-immune sets.

Proof. We apply Proposition 2.12 and Lemma 3.23 in the same way as in the proof for
Theorem 3.25.
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Theorem 3.27. It holds that NP 6⊆≡p
T
coNPMVt if NEE 6= coNEE.

Proof. Proposition 2.12 provides a B ∈ NP − coNP such that B ⊆ {22i | i ∈ N}. By
Lemma 3.24, this set cannot be polynomial-time Turing-equivalent to any function in
coNPMVt since coNP is closed under ≤p

dtt(ctt) by Property 2.23.
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Part I

Multiobjective Optimization

For many practical optimization problems, one objective function does not suffice. For
example, when a wireless network operator wants to place base stations, the number
of reachable customers is by far not the only objective function. At the same time,
the installation costs should be minimized, problems caused by interference should be
avoided and also maintenance plays a role. If not all of these objective functions can be
transformed into a single value like money, or the exact formula for this transformation is
not clear, this leads to so-called multiobjective optimization. This area has its origins in
the late 1980s and has become increasingly popular since then [EG02]. We want to give a
thorough structural and complexity-theoretic treatment of this subject, which has not
been done so far. For a general overview of multiobjective optimization we refer to the
survey by Ehrgott and Gandibleux [EG00] and the textbook by Ehrgott [Ehr05].

We extend the usual definition of single-objective (NP) optimization problems to
multiple objectives in a straightforward way: For every instance there is a set of feasible
solutions, each of which can be verified in polynomial time and furthermore, each of these
solutions is assigned a multidimensional value. Since there are often multiple solutions
for a single instance whose values are incomparable, there is in general no single optimal
solution. This leads to the notion of the Pareto set, the set of all solutions for which there
is no solution that is at least as good in all objectives and better in at least one objective
(the filled circles in Figure 4.1 on page 62). Note that without any further information
about the problem, each solution in the Pareto set must be considered to be equally good.
So an algorithm that wants to solve a multiobjective problem should not pick some of the
solutions from the Pareto set according to an internal heuristic, but rather give the user
an impression of the whole Pareto set and allow a decision maker to pick one solution
using further information or experience.

Unfortunately, the Pareto set is often exponentially large, so simply computing the
whole Pareto set is not an option. For specific problems, different strategies were developed
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to cope with this situation and most of the time, the problem is turned into an ordinary
single-objective problem that is solved multiple times to obtain an impression of the
Pareto set: One can restrict all but one objective to some (variable) minimal quality,
apply a weighted sum or simply require that some arbitrary optimal solution should be
generated. We will formalize these approaches as solution notions in chapter 5 and observe
that they can differ drastically with respect to their complexity (unless P = NP), even
for natural problems. In contrast, for single-objective problems, they are all equivalent
(with respect to polynomial-time Turing reductions). The multivalued functions from the
previous chapter will turn out helpful in formalizing the solution notions, as they capture
one phenomenon that is crucial in multiobjective optimization: Since there is no single
optimal solution, many algorithms solving a problem have some degree of freedom in the
sense that they can generate one out of many valid outputs. Furthermore, the reduction
we defined for multivalued functions (cf. Definition 3.2) is also suitable here: If we query
an algorithm that solves a multiobjective problem, we cannot make any assumptions
about the specific optimal or valid solution we get.

We will also investigate which complexities can appear for the different solution notions
for a fixed problem and it will turn out that almost any combination of degrees in NP is
possible. These observations exemplify the importance of clearly specifying the solution
notion when stating that a multiobjective problem is NP-hard. Finally, we determine
where the classes of multivalued functions defined by solution notions lie compared to
known classes like NPMV or coNPMV. When these classes are compared to each other,
for every combination we either show that the first class can be embedded in the second
class or give evidence against such an embedding (via the results from chapter 3).

We already noted that for typical multiobjective problems, the number of Pareto
optimal solutions is exponentially large. This is the case, for instance, for the traveling
salesperson problem. This means that no polynomial-time algorithm can generate all
optimal solutions. Papadimitriou and Yannakakis [PY00] have observed that there is
always a polynomially-sized approximation of the Pareto set of arbitrarily good quality.
The question remains if these approximations can be found by an algorithm in polynomial
time. For many of the solution notions from chapter 5, one can define a corresponding
approximate solution notion. We analyze these notions in chapter 6, compare them to
each other and show how to transfer approximate solutions between these notions. In this
section we will also see that some approximations for single-objective problems directly
infer approximations for their multiobjective variants.

After this foundational analysis, we will turn to the traveling salesperson problem as
one example of a multiobjective optimization problem and explicitly give approximation
algorithms for some of its variants in chapter 7: For 2-TSP, the two-objective traveling
salesperson problem (with triangle inequality), we give a deterministic 2-approximation,
a randomized (3/2 + ε, 2)-approximation and a randomized (3/2, 2 + ε)-approximation
for every ε > 0. We give evidence that, interestingly, there could be a trade-off in the
approximability of the two objectives, i. e. in the approximation factors themselves. We
also argue that it is difficult to substantially improve the given approximation ratios.

Another problem related to the usual traveling salesperson problem is its multiobjective
maximization variant: Here, we show a randomized approximation ratio of 1/2 and 2/3,
respectively. In contrast to earlier approximation algorithms for these problems, the
algorithms that achieve these ratios are rather simple and apply a general strategy that
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can be used to solve other multiobjective optimization problems. One key ingredient for
this strategy is the so-called Beck-Fiala theorem [BF81]. It enables us to find a subset of
a set of vectors such that the sum of this subset is roughly half of the sum of the whole
set in every component.

We conclude our analysis of multiobjective optimization by proving a variant of the
Beck-Fiala theorem in chapter 8. We show that we can find a subset of the vectors that
has the same deviation from the exact half as in the Beck-Fiala theorem, only that the
structure of the subset is more convenient: If we go through the list of vectors, the number
of switches between excluding and including vectors is constant in the number of vectors.
In other words, the set of indices that make up the chosen subset is a constant number of
unions of (integer) intervals. To achieve this combinatorial result we use analytical and
topological methods.
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Chapter 4

Definitions

Most of the literature on multiobjective optimization either tries to find approximation
algorithms for specific problems or investigates these problems from a purely mathematical
point of view, mostly disregarding computability and complexity aspects. The study of
the general complexity of multiobjective optimization (especially approximation) was
initiated by Papadimitriou and Yannakakis [PY00] and also Ehrgott [Ehr00] obtained
some general results. We continue their work, try to find precise and general definitions
for multiobjective optimization problems and their solution notions and, building upon
that, perform a structural and extensive study in this and the following chapters.

4.1 Basic Definitions and Properties
We start with basic definitions and terminology in the context of multiobjective opti-
mization. Examples of multiobjective optimization problems can be found in section 4.2.
We first formally define multiobjective problems and related notation. Then we define
different search and value notions. Search notions are multivalued functions that output
solutions while value notions output only the values of the solutions. We conclude this
section by observing that for a single-objective problem, all search notions are equivalent
and all value notions are equivalent and we give general upper bounds for the solution
notions.

Definition 4.1. Let k ≥ 1. A k-objective NP optimization problem (k-objective problem,
for short) is a triple (S, f,←) where S specifies the set of feasible solutions for an input, f
is the (multidimensional) objective function and ← defines the direction of optimization.
More specifically:

• S : N→ 2N maps an instance x ∈ N to the set of feasible solutions for this instance,
denoted as Sx = S(x) ⊆ N. There must be some polynomial p such that for every
x ∈ N and every s ∈ Sx it holds that s ≤ 2p(|x|) and the set {〈x, s〉 | x ∈ N, s ∈ Sx}
must be polynomial-time decidable. All these conditions on S can be equivalently
expressed by S ∈ PMV.

• f : {〈x, s〉 | x ∈ N, s ∈ Sx} → Nk maps an instance x ∈ N and a solution s ∈ Sx
to its value, denoted by fx(s) ∈ Nk. The function f must be polynomial-time
computable.
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• ← ⊆ Nk × Nk is a partial order on the values of solutions. It must hold that
(a1, . . . , ak)← (b1, . . . , bk) ⇐⇒ a1 ←1 b1∧ · · · ∧ ak ←k bk, where←i is ≤ if the i-th
objective is minimized, and ←i is ≥ if the i-th objective is maximized.

We also use ≤ as the partial order ← where ←i = ≤ for all i and ≥ is used analogously.
The projection of fx to the i-th component is denoted as fxi where fxi (s) = vi if fx(s) =
(v1, . . . , vk). Initially, the relation← is only used on values a, b ∈ Nk. If a← b we say that
a weakly dominates b (i. e., a is at least as good as b). If a← b and a 6= b we say that a
dominates b. Note that← always points in the direction of the better value. If f and x are
clear from the context, then we extend ← to combinations of values and solutions. So we
can talk about weak dominance between solutions, and we write s← t if fx(s)← fx(t),
s ← c if fx(s) ← c, and so on, where s, t ∈ Sx and c ∈ Nk. Furthermore, we define
opt← : 2Nk → 2Nk , opt←(M) = {y ∈ M | ∀z ∈ M [z ← y ⇒ z = y]} as a function that
maps sets of values to sets of optimal values. The operator opt← is also applied to sets of
solutions S ′ ⊆ Sx as opt←(S ′) = {s ∈ S ′ | fx(s) ∈ opt←(fx(S ′))}. If even ← is clear from
the context, we write Sxopt = opt←(Sx) and opti(S ′) = {s ∈ S ′ | fxi (s) ∈ opt←i

(fxi (S ′))}.
The set Sxopt is called the Pareto set (the set of (Pareto-)optimal solutions) for the instance
x and the set of values of these solutions, f(Sx)opt is called the Pareto curve, though we
do not always distinguish these two concepts clearly.

Definition 4.2. For every k-objective problem O = (S, f,←) and all 1 ≤ i ≤ k we
define the search notions arbitrary optimum (A-O), dominating solution (D-O), specific
optimum (S-O), constraint optimum (Ci-O), lexicographic optimum (L-O), and weighted
sum optimum (W-O) as multivalued functions from N to N, where

A-O(x) = Sxopt

D-O(〈x, 〈c〉〉) = {y ∈ Sx | y ← c}
S-O(〈x, 〈c〉〉) =

{
y ∈ Sxopt | y ← c

}
Ci-O(〈x, 〈c〉〉) = opti

({
s ∈ Sx | fxj (s)←j cj for all j 6= i

})
L-O(x) = optk(. . . (opt2(opt1(Sx))) . . . )

W-O(〈x, 〈ω〉〉) =
{
y ∈ Sx | ∀s ∈ Sx

[
ωTfx(y)←1 ω

Tfx(s)
]}

for all x ∈ N and c, ω ∈ Nk, where ωTfx(y) = ∑k
j=1 ωjf

x
j (y) is the inner product of the

vectors ω and fx(y). For the weighted sum optimum notion, we assume that all objectives
are to be maximized or all objectives are to be minimized.

Before discussing these notions, we note that each search notion maps to sets of
solutions, which, in turn, map to values in Nk via f . Hence, each search notion naturally
motivates a value notion for the problem that is defined as follows.

Definition 4.3. For every k-objective problem O = (S, f,←) we define the value notion
Val(X -O) (of the search notion X -O) as a multivalued function from N to Nk, where

Val(X -O)(ϕ) = fx(X -O(ϕ))

for all ϕ ∈ N and X ∈ {A,D, S,C1,C2, . . . ,Ck,L,W}, where x is the problem instance
encoded in ϕ, and X = W only if all objectives are to be maximized (resp., minimized).
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For a graphical illustration of the solution notions, please confer Figure 4.1. Note
that since A-O is defined as a multivalued function, the task is not to output all optimal
solutions, i. e. the whole set Sxopt, but rather to choose one arbitrary element from this
set and output it. Hence A-O is polynomial-time solvable if for all input instances x ∈ N
we can decide if Sx 6= ∅ and further find some arbitrary optimal solution s ∈ Sxopt in
polynomial time. Analogously, the specific optimum notion searches for optimal solutions
that are restricted to be at least as good as the constraint vector c ∈ Nk, whereas the
dominating solution notion does not require the solutions to be optimal. For a single-
objective problem, the dominating solution notion corresponds to a formulation of a
problem where the optimum can be found by binary search. The constraint optimum
notion for the i-th objective searches solutions that are at least as good as c for all
objectives j 6= i and optimal for objective i, while the lexicographical optimum notion
searches for solutions that are optimal according to some fixed order of objectives (here:
1, 2, . . . , k). Finally, the weighted sum optimum notion searches for solutions such that the
sum of all objectives weighted with the weight vector ω ∈ Nk is optimal, i. e. it aggregates
several objective functions into one. Note that ←1 is used in the definition, but can be
equivalently replaced by any ←i, since they are all equal. In the literature, C-O is also
known as bottleneck optimization and L-O as hierarchical optimization. Moreover, W-O
is a particular normalization approach, since a norm is used to aggregate several cost
functions into one. We will get to general normalized approaches in section 6.3.

From Figure 4.1, one can already deduce that W-O cannot be forced to output some
of the Pareto-optimal solutions, since the Pareto-curve is not convex. This suggests that
weighted sums, which are actually quite popular in practice, are not the right way to
attack multiobjective problems or at least will not give a complete impression of the
Pareto set. Nevertheless, since multiobjective problems are not modeled by arbitrary
functions but obey some complexity-theoretic restrictions, it is not a priori clear that
W-O is “weaker” (with respect to reductions) than for example S-O. It could well be that
information about the solutions that are not reachable via W-O is encoded in solutions
that are reachable. In fact, we will show that W-O and S-O are somewhat incomparable
with respect to their complexity (cf. Figure 5.1 on page 69 and Table 5.1 on page 72).

Note that for k = 1, the above definitions correspond to the notion of a (single-
objective) NP optimization problem as usually defined, for example in the book by
Ausiello et. al. [APMS+99]. Furthermore, for a single-objective NP optimization problem
O, one normally only considers the solution notion A-O. The following proposition
explains why the distinction into different solution notions is usually not made for a single
objective: All notions defined above are equivalent in this case. This mainly stems from
the fact that the (value of the) optimal solution is unique.
Proposition 4.4. For any single-objective problem O all search notions are equivalent
and all value notions are equivalent, i. e.

A-O = L-O ≡p
T W-O ≡p

T C1-O ≡p
T D-O ≡p

T S-O
and

Val(A-O) = Val(L-O) ≡p
T Val(W-O) ≡p

T Val(C1-O) ≡p
T Val(D-O) ≡p

T Val(S-O).

Proof. We begin with the search notions. The first equality is clear from the definition.
L-O ≤p

T W-O is achieved by a single query with weight 1. The reduction W-O ≤p
T C1-O
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fx1

fx2

c

L-O

A-O

C1-O

C2-O

S-O

D-O

W-O

=̂ ω

Figure 4.1: Illustration of the solution notions for a single instance x of a two-objective maximization
problem O = (S, f,≥). Circles denote the values of feasible solutions while filled circles represent Pareto-
optimal values (i. e. the Pareto curve). For each solution notion, (the value of) one possible correct output
is marked by an arrow, where the coordinates of the point c define the constraints for Ci-O, S-O and
D-O and the input ω for W-O is given indirectly by the inclination of the diagonal dashed line.
Note that in this situation, the second valid output for C1-O is the (solution represented by the) point
directly above the marked point, while for C2-O there is exactly one valid output (assuming that there
are no two solutions with the same value). The notions A-O, S-O and D-O can also output different
solutions while W-O and L-O have no other option. Observe that W-O cannot be forced to output the
solution labeled by A-O for any weight vector.
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holds by a single query with constraint vector (1) (it is ignored). Note that W-O is
allowed to output any solution if the weight is zero. The next reduction, C1-O ≤p

T D-O is
the only one that requires more than one query: We have to make a binary search for
the optimal value. D-O ≤p

T S-O is clear from the definition and S-O ≤p
T L-O is done by

a single query to L-O followed by a check if the value of the returned solution (if any)
satisfies the constraint.

Since the above reductions only used the values of the returned solutions, they are
equally valid for the respective value notions.

Here, the question for the circumstances under which even the value notions are
equivalent to the search notions arises. This will be covered at the end of section 5.1,
where we will see that this question is connected to the notion of search reduces to decision.

When we are only interested in exact solutions for multiobjective problems (in the
lens of Turing equivalence), we can concentrate on problems where all objectives are to
be maximized. In sections 6.3 and 6.4 we will see that this distinction is important for
approximate solution notions.

Proposition 4.5. For every k-objective problem O = (S, f,←) there is a k-objective
problem O′ = (S, f ′,≥) such that for all X ∈ {A,D, S,C1,C2, . . . ,Ck,L,W}

X -O = X -O′ and Val(X -O) ≡p
T Val(X -O′)

(where X = W is only considered for ← ∈ {≤,≥}).
Proof. Since f must be polynomial-time computable, there is a polynomial p such that
for every i ∈ {1, . . . , k}, fxi (s) ≤ 2p(|x|). For every i such that ←i = ≤, let f ′xi (s) =
2p(|x|) − fxi (s) and f ′xi (s) = fxi (s) for all other i. Observe that the assertions hold.

If we look close enough, we see that the three notions W-O, L-O and Ci-O are actually
single-objective problems in disguise. This can be roughly explained by the fact that the
solutions that they are allowed to output always have the same value (or at least they
can be forced to a unique value for Ci-O and W-O).
Proposition 4.6. For every k-objective problem O = (S, f,←) there exist single-objective
problems OW (if ← ∈ {≤,≥}), OC and OL such that for all 1 ≤ i ≤ k,

W-O = A-OW, Ci-O = A-OC and L-O = A-OL.

Proof. Because of Proposition 4.5, we can assume that ← = ≥.
For OW and OC this is immediate from the definition where the problems are defined

as OW = (SW, fW,≥) with S〈x,〈ω1,...,ωk〉〉
W = Sx and f 〈x,〈ω1,...,ωk〉〉

W (s) = ∑k
i=1 ωif

x
W,i(s), OC =

(SC, fC,≥) with S〈x,〈c〉〉C = {s ∈ Sx | fxj (s) ≥ cj for all j 6= i} and f 〈x,〈c〉〉C (s) = fi(s).
For OL it is more complicated, but also straightforward: The new objective function

is a weighted sum of the original objective functions. More specifically, assume that
there is a polynomial p such that for every i ∈ {1, . . . , k}, fxi (s) < 2p(|x|). Then define
OL = (S, fL,≥), where

fxL(s) =
k∑
i=1

2p(|x|)fi(s)

and observe that the assertion holds.
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As a last result of this section, we give upper bounds for the solution notions in terms
of classes of multivalued functions they lie in.

Proposition 4.7. Let O = (S, f,←) be a k-objective problem.

1. X -O ∈ coNPMV for all X ∈ {A, S,C1,C2, . . . ,Ck,L,W}

2. Val(X -O) ∈ NP(2)MV for all X ∈ {A, S,C1,C2, . . . ,Ck,L,W}

3. D-O ∈ PMV and Val(D-O) ∈ NPMV

Proof. 1. Let X ∈ {A, S,C1,C2, . . . ,Ck,L,W}. By the definition of multiobjective
problems and search notions, (x, y) ∈ graph(X -O) implies that |y| is polynomially bounded
in the length of x. Further observe that graph(X -O) ∈ coNP since the optimality (with
respect to X -O) of a solution can be decided by checking that there is no solution that is
“better” than the current solution. Hence we obtain X -O ∈ coNPMV.

2. Let X ∈ {A, S,C1,C2, . . . ,Ck,L,W}. Similarly as in the previous part, for (x, y) ∈
graph(Val(A-O)), the length of y is polynomially bounded in the length of x since f is
computable in polynomial time. Further observe that (x, y) ∈ graph(Val(A-O)) if and
only if

(∃s ∈ Sx : f(s) = y) ∧ ¬(∃s ∈ Sx : f(s) 6= y ∧ f(s)← y),
which is an NP(2)-condition. Since similar conditions can be formulated for the other
value notions, we obtain Val(X -O) ∈ NP(2)MV.

3. Again, solutions and values are polynomially bounded. Further observe that
graph(D-O) ∈ P and graph(Val(D-O)) ∈ NP, because (〈x, c〉, s) ∈ graph(D-O) ⇐⇒
s ∈ Sx and y ← c, which can be tested in polynomial time, whereas (〈x, c〉, y) ∈
graph(Val(D-O)) needs to further check if a solution s ∈ Sx with fx(s) = y exists.

4.2 Examples of Multiobjective Problems
To illustrate the formal definition in the previous section, we want to give some examples of
multiobjective problems. Furthermore, algorithms for some of these problems will be used
in chapter 7 to help solving multiobjective traveling salesperson problems. All of these
example problems except for the first two are so-called linear problems (cf. Definition 5.2).
The preference of linear problems in (the theory of) multiobjective optimization stems
from the fact that they are easy to describe and can be handled theoretically. In contrast,
practical problems are often non-linear but cannot be succinctly defined.

Definition 4.8 (Minimimum Lateness and Weighted Flowtime Scheduling).

2-LWF = (S, f,≤) where

• instances are triples 〈P,D,W 〉 such that
– P = (p1, . . . , pn) ∈ Nn are processing times
– D = (d1, . . . , dn) ∈ Nn are due dates
– W = (w1, . . . , wn) ∈ Nn are weights,

• S〈P,D,W 〉 = {π | π is a permutation of {1, . . . , n}} and
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• f 〈P,D,W 〉(π) = (Lmax,
∑n
j=1wjCj) where

– the completion time of job j is Cj = pπ(1) + pπ(2) + · · ·+ pπ(j).
– the maximum lateness is Lmax = max{Cj − dj | 1 ≤ j ≤ n}.
– the weighted flowtime is ∑n

j=1wjCj.

Furthermore, the problem 2-LF is the variant of 2-LWF where all weights
are 1, i. e., W = (1, . . . , 1).
Note that 2-LWF and 2-LF do not strictly conform to the definition of
multiobjective optimization problems because f can have negative values.
Nonetheless, since f is polynomial-time computable, one can easily construct
an equivalent problem where the solutions only have non-negative values by
adding an appropriate number depending only on the length of the input.

Definition 4.9 (Minimum Quadratic Diophantine Equation).

2-QDE = (S, f,≤) where

• instances are encoded triples 〈a, b, c〉 of natural numbers,
• S〈a,b,c〉 = {〈x, y〉 | ax2 + by2 − c ≥ 0}, and
• f 〈a,b,c〉(〈x, y〉) = (x2, y2).

Definition 4.10 (k-Objective Maximum Weighted Satisfiability).

k-WSAT = (S, f,≥) where

• instances are sets of clauses C = {C1, . . . , Cr} over m variables with
labels l : {C1, . . . , Cr} → Nk,
• S〈C,l〉 = {I | I : {x1, . . . , xm} → {0, 1}} and
• f 〈C,l〉(I) = ∑{l(Ci) | I(Ci) = 1}.

Definition 4.11 (k-Objective Maximum (Weight) Clique).

k-MaxClique = (S, f,≥) where

• instances are Nk-vertex-labeled undirected graphs G = (V,E, l),
• S〈G〉 = {C ⊆ V | ∀x, y ∈ C, x 6= y : {x, y} ⊆ E} and
• f 〈G〉(C) = ∑

v∈C l(v).

Definition 4.12 (k-Objective Shortest Path).

k-SP = (S, f,≤) where

• instances are Nk-edge-labeled directed graphs G = (V,E, l) and two
distinct vertices s, t ∈ V ,
• S〈G,s,t〉 = {P ⊆ E | P is a path from s to t in G} and
• f 〈G,s,t〉(P ) = ∑

e∈P l(e).
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Definition 4.13 (k-Objective Minimum (Weight) Perfect Matching).

k-MM = (S, f,≤) where

• instances are Nk-edge-labeled undirected graphs G = (V,E, l),
• S〈G〉 = {M ⊆ E |M is a perfect matching in G} and
• f 〈G〉(P ) = ∑

e∈M l(e).

Definition 4.14 (k-Objective Minimum (Weight) Spanning Tree).

k-MST = (S, f,≤) where

• instances are Nk-edge-labeled undirected graphs G = (V,E, l),
• S〈G〉 = {T ⊆ E | T is a spanning tree of G} and
• f 〈G〉(T ) = ∑

e∈T l(e).

Definition 4.15 (k-Objective Maximum Directed Cycle Cover).

k-MaxDCC = (S, f,≥) where

• instances are Nk-edge-labeled directed complete graphs G = (V,E, l),
• S〈G〉 = {C ⊆ E | C is a cycle cover of G} and
• f 〈G〉(C) = ∑

e∈C l(e).

The restriction of k-MaxDCC to undirected graphs is called k-MaxUCC (note that
cycles have length at least three in that case).

Definition 4.16 (k-Objective Traveling Salesperson).

k-TSP = (S, f,≤) where

• instances are Nk-edge-labeled directed multigraphs G = (V,E, l),
• S〈G〉 = {W ⊆ E | W is a closed spanning walk of G} and
• f 〈G〉(W ) = ∑

e∈W l(e).

We define the multiobjective traveling salesperson problem on multigraphs and with
multiple visits as this best generalizes the single-objective problem on metric graphs to
multiple objectives. For a discussion we refer to chapter 7.

Definition 4.17 (k-Objective Maximum Traveling Salesperson).

k-MaxATSP = (S, f,≥) where

• instances are Nk-edge-labeled directed complete graphs G = (V,E, l),
• S〈G〉 = {C ⊆ E | C is a Hamiltonian cycle of G} and
• f 〈G〉(C) = ∑

e∈C l(e).

The letter A in k-MaxATSP stands for “asymmetric”, although the labeling function is
not required to be asymmetric. The restriction of k-MaxATSP to undirected graphs (or
symmetric edge labels) is called k-MaxSTSP.
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Chapter 5

Structural Properties of Solution
Notions

Having formally defined the mathematical object of a multiobjective optimization problem
and its solution notions we now analyze their complexity-theoretic properties in general.
For this, we take two approaches: First, we analyze the reducibilities between solution
notions for the same fixed problem. Second, we analyze the general complexities that
can appear for each solution notion separately and relate these classes of multivalued
functions to other known classes, extending Figure 3.1 from page 43.

We show that there are natural problems where the complexity of the various solution
notions can differ drastically, unless P = NP (cf. Table 5.1). Furthermore, the diversity in
the complexities of the solution notions for a general single problem can be vast: We show
that for all sets A,B,C ∈ NP such that A ≤p

T B ≤p
T C there is a multiobjective problem

O such that A ≡p
T A-O, B ≡p

T L-O and C ≡p
T D-O. Furthermore, the notions W-O and

D-O always have to satisfy a certain restriction that gets stricter the easier D-O gets.
For linear problems, this is not possible, though: We show that the notions W-O, L-O

and A-O are all equivalent and furthermore, they are equivalent to the single-objective
variant of the problem.

Interestingly, it turns out that for general problems the solution notions A-O and
Val(A-O), that are the simplest notions for a fixed problem, cover the largest range of
complexities. With the exception of the arbitrary optimum notions, all search notions are
equivalent to some set in NP and vice-versa and all value notions are equivalent to some
function in PMV and vice-versa. In contrast, every function in NPMV is equivalent to
Val(A-O) for a suitable O and the class of A-O-functions lies between PMV and coNPMVt
with respect to the ⊆≡p

T
-relation.

The results obtained in this chapter are summarized in Figure 5.1 on page 69 and
Figure 5.3 on page 80.

5.1 Reducibilities and Evidence Against Them
For every fixed multiobjective problem O, we investigate the reducibility among search
and value notions for O. More specifically, for every possible combination we either
show that the reducibility holds for all multiobjective problems (Theorem 5.1) or we give
evidence for the existence of a counter example (Theorem 5.10, Corollary 5.12). We end
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up with a taxonomy (Figure 5.1 on page 69), which is complete in the sense that all
possible combinations are covered.

Theorem 5.1. Let O = (S, f,≥) be some k-objective problem.

1. Val(X -O) ≤p
T X -O for X ∈ {A,L, S,D,C1,C2, . . . ,Ck,W}

2. A-O ≤p
T L-O ≤p

T S-O and Val(A-O) ≤p
T Val(L-O) ≤p

T Val(S-O)

3. S-O ≡p
T D-O ≡p

T Ci-O and Val(S-O) ≡p
T Val(D-O) ≡p

T Val(Ci-O) for all
i ∈ {1, . . . , k}

4. L-O ≤p
T W-O and Val(L-O) ≤p

T Val(W-O)

5. D-O,W-O ≤p
T Sat

Proof. 1. Because of the definition of the value notions, it suffices to query X -O on
the input and return f(s) if the answer is s 6= ⊥. If the oracle answers ⊥, return ⊥.

2. Any solution of L-O is an optimal solution and thus solves A-O. To solve L-O we
use S-O to perform a binary search that respects the priority of objectives given
in L-O (i. e., we first optimize the objectives with the higher priority and proceed
by optimizing the lower prioritized objectives, while forcing the optimal values for
objectives with higher priority).
Since this proof did not exploit any properties of the solutions but only of their
values, it is also valid for the respective value notions.

3. First observe that D-O ≡p
T S-O, since a solution to S-O is also a solution to D-O,

whereas a binary search on D-O also solves S-O. Now, suppose we want to solve
Ci-O. A binary search over objective i that keeps the other objectives fixed to their
constrained values shows Ci-O ≤p

T D-O. On the other hand, optimizing objective i
with constraints bj = cj for all j 6= i where c = (c1, . . . , ck) is the input cost vector
for D-O shows D-O ≤p

T Ci-O.
Similar to the previous part, this again shows the assertions for the value notions.

4. Since f is polynomial-time computable, there is some polynomial p such that
fxi (s) < 2p(|x|) for all x, i and s ∈ Sx. Given some instance x and a fixed order of
objectives we use the weight (2p(|x|))k−1 for the objective with the highest priority,
(2p(|x|))k−2 for the objective with the second highest priority and so on. This shows
L-O ≤p

T W-O and also Val(L-O) ≤p
T Val(W-O).

5. Observe that by Proposition 4.7, D-O ∈ PMV and f-Sat and thus Sat is≤p
T-hard for

NPMV by Proposition 3.8. For W-O, define g(〈x, 〈ω〉, a〉) = {y ∈ Sx | ωTfx(y) ≥ a}
and observe that g ∈ NPMV. Furthermore, we have W-O ≤p

T g by binary search
and thus W-O ≤p

T Sat by the same argumentation as before.

We will see that Theorem 5.1 is complete in the sense that no other reductions between
solution notions hold assuming reasonable complexity-theoretic assumptions.

Furthermore, it is not uncommon that for a fixed problem, the hardness of the search
notions differ considerably. Below we give several examples of natural problems that
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Sat

W-O

Val(W-O)

D-O

Val(D-O)L-O

Val(L-O)A-O

Val(A-O)

EE = NEE ∧
P = NP ∩ coNP

EE = NEE ∧
P = NP ∩ coNP

P = NPP = NP

P = NP

Key:
X Y : ∀O : X ≤p

T Y

X Y :
α (∀O : X ≤p

T Y ) =⇒ α

Figure 5.1: Complete taxonomy of reductions between search and value notions. Non-dashed arrows
indicate reducibility for all problems O, whereas dashed arrows provide evidence against such a general
reducibility. Observe that such evidence propagates along non-dashed arrows (arrow heads backwards
and arrow tails forwards) and we hence have evidence against all remaining possible reductions. Further
note that D-O ≡p

T S-O ≡p
T Ci-O and Val(D-O) ≡p

T Val(S-O) ≡p
T Val(Ci-O) for i ∈ {1, . . . , k}.

are NP-hard with respect to one notion and that are polynomial-time solvable with
respect to another one. The results are summarized in Table 5.1 on page 72. This shows
the importance of an exact specification of the NP-hardness notion that is used when
discussing the complexity of multiobjective problems.

For so-called linear multiobjective problems O, it is often the case that D-O is NP-hard
because of a reduction from Knapsack and all other solution notions are solvable in
polynomial time. Below we show that for such problems, all search notions apart from
D-O must be equivalent and all value notions apart from Val(D-O) must be equivalent.
Papadimitriou and Yannakakis [PY00] gave a detailed analysis of linear multiobjective
problems, where they mostly studied their approximability.

Definition 5.2. A k-objective problem O = (S, f,←) is called linear if

• its instances are 〈x′,m, 〈A〉〉 for x′,m ∈ N and A ∈ Nk×m,

• the solutions are vectors S〈x′,m,〈A〉〉 ⊆ Nm where S〈x′,m,〈A〉〉 does not depend on A,
i. e. S〈x′,m,〈A〉〉 = S〈x

′,m,〈B〉〉 for all A,B ∈ Nk×m and

• f 〈x′,m,〈A〉〉(s) = A · s.

So for a linear problem, it is important that any linear function of the solution vector
is a valid objective function for some instance of the problem, i. e. an instance can be
equipped with any possible matrix A ∈ Nk×m.
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Proposition 5.3. If O = (S, f,←) for ← ∈ {≤,≥} is a linear multiobjective problem,
then

W-O ≡p
T L-O ≡p

T A-O ≡p
T A-(S, f1,←1)

and
Val(W-O) ≡p

T Val(L-O) ≡p
T Val(A-O) ≡p

T Val(A-(S, f1,←1)).

Proof. Let O = (S, f,←) be a linear k-objective problem and let O1 = (S, f1,←1) be its
single-objective variant. For the search notions, it suffices to show W-O ≤p

T A-O1 ≤p
T A-O

by Theorem 5.1. The proof is the same for the value notions.
For W-O, on input of 〈x, 〈ω〉〉, ω ∈ Nk, we have to optimize the function s 7→

ωTAs, where x = 〈x′,m, 〈A〉〉. A reduction to A-O1 can be accomplished by a query
to 〈x′,m, 〈ωTA〉〉. For the second reduction, on input 〈x′,m, 〈A〉〉, we query 〈x′,m,A′〉,
where A′ = (1, 0, . . . , 0)TA.

Proposition 5.4. For any k ≥ 1, the problems k-MM, k-MST and k-SP are linear
k-objective problems (under a suitable instance and solution encoding). Furthermore, for
any O ∈ {k-MM, k-SP, k-MST},

1. W-O is polynomial-time solvable.

2. D-O is polynomial-time solvable if k = 1 and
Val(D-O) (and thus D-O) is NP-hard if k ≥ 2.

Proof. The first statement is an immediate consequence of Proposition 5.3, because the
single-objective variants of all three problems are solvable in polynomial time.

For k = 1, we have D-O ≡p
T W-O by Proposition 4.4 and thus D-O is polynomial-time

solvable by the first statement. A straightforward reduction from Knapsack shows
the NP-hardness of Val(D-O) for k ≥ 2 for all three problems O = 2-MST [AAN82],
2-SP [HZ80], 2-MM.

Proposition 5.5. For any k ≥ 1, O = k-TSP is a linear k-objective problem (under a
suitable instance and solution encoding) and Val(A-O) is NP-hard (for any k ≥ 1).

Proof. The NP-hardness of the usual single-objective traveling salesperson problem carries
over to multiple objectives by Proposition 5.3.

Proposition 5.6. Let O = 2-QDE.

1. D-O is polynomial-time solvable.

2. Val(W-O) is NP-hard.

Proof.

1. C1-O is the single-objective problem that on input of a, b, c, b2 ∈ N searches for the
smallest x ∈ N such that ∃y ∈ N[y2 ≤ b2 ∧ ax2 + by2 − c ≥ 0]. Note that in the case
of b2 not being a square, replacing it by the greatest square smaller than b2 does not
change the problem. So we can assume b2 to be a square. If c ≤ bb2, we obviously
have x = 0, and if c > bb2 and a = 0, there is no solution. Otherwise, we have
c > bb2 and a > 0, which directly implies x =

⌈√
c−bb2
a

⌉
. Since all computations can

be carried out and all cases can be distinguished efficiently, C1-O is polynomial-time
solvable. The assertion follows by Theorem 5.1.
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2. The set QDE = {(a, b, c) ∈ N | ∃x, y ∈ N(ax2 + by2 − c = 0)} is NP-complete
[MA78]. We reduce QDE to Val(W-O). For given (a, b, c) we solve Val(W-O) for
the weight vector w = (a, b). If no solution is found, then S〈a,b,c〉 = ∅ and hence
(a, b, c) /∈ QDE. Otherwise, let (x2, y2) be the solution of Val(W-O), i. e., x, y ∈ N
such that ax2 + by2− c ≥ 0 and ax2 + by2 is minimal. It follows that (a, b, c) ∈ QDE
if and only if ax2 + by2 − c = 0. This shows the NP-hardness of Val(W-O).

Proposition 5.7 ([HvdV90]). For O = 2-LF, W-O and D-O are polynomial-time
solvable.

Proof. Hoogeveen and van de Velde [HvdV90] show that for (S, f,←) = 2-LF the number
of Pareto-optimal points is polynomially bounded and that there exists a polynomial-time
algorithm that on input x computes some S ⊆ Sxopt such that fx(S) = fx(Sxopt) [HvdV90,
Theorem 8], [Hoo92, page 15].

Proposition 5.8 ([Bak74, Hoo92]). Let O = 2-LWF, let L1-O be the solution notion
that first minimizes the maximum lateness, and L2-O the notion that first minimizes the
weighted flowtime.

1. Val(L1-O) is NP-hard.

2. L2-O is polynomial-time solvable.

Proof.

1. Scheduling problems are often denoted by the three-field notation scheme α|β|γ
introduced by Graham et al. [GLLK79], where α describes the machine environment,
β the job constraints, and γ the objective function. In this notation, the problem
L1-O is written as 1| |Fh(Lmax,

∑
wjCj), where the Fh indicates that the optimization

is hierarchical such that Lmax is the primary and ∑wjCj the secondary objective.
Hoogeveen [Hoo92, Theorem 11] shows the NP-hardness of the decision variant of
1| |Fh(Lmax,

∑
wjCj).

2. The problem 1| |Fh(
∑
wjCj, Lmax) is solved in time O(n log n) by sequencing the

jobs in non-decreasing order of the ratios pi/wi (which minimizes the weighted
flowtime) such that ties are broken by sequencing the jobs in non-decreasing order
of their due dates (which minimizes the maximum lateness) [Bak74], [Hoo92, page
17]. Hence L2-O is polynomial-time solvable.

As a consequence of the analysis of these problems, under the assumption P 6= NP
we can prove the strictness of all Turing-reducibilities between search notions shown in
Theorem 5.1 and depicted in Figure 5.1 on page 69 and some reducibilities between value
and search notions.

Corollary 5.9. If P 6= NP then there exist 2-objective problems O1,O2,O3,O4,O5 where
all objectives have to be minimized such that the following holds.

1. L-O1 6≤p
T A-O1

2. W-O2 6≤p
T L-O2



72 CHAPTER 5. STRUCTURAL PROPERTIES OF SOLUTION NOTIONS

Problem O A-O L1-O L2-O W-O S-O,D-O,Ci-O Ref.
2-LF P P P P P Prop. 5.7
2-MM P P P P NP-hard Prop. 5.4
2-SP P P P P NP-hard Prop. 5.4
2-MST P P P P NP-hard Prop. 5.4
2-QDE P P P NP-hard P Prop. 5.6
2-LWF P NP-hard P NP-hard NP-hard Prop. 5.8
2-TSP NP-hard NP-hard NP-hard NP-hard NP-hard Prop. 5.5

Table 5.1: Separation of NP-hardness notions for multiobjective problems. For these examples, the
value notions are always equivalent to their search counterparts. “P” indicates that this solution notion
for the problem is polynomial-time solvable. Li-O denotes the lexicographical problem where the i-th
objective is the primary one.

3. D-O3 6≤p
T L-O3

4. D-O4 6≤p
T W-O4

5. W-O5 6≤p
T D-O5

Theorem 5.10. If P 6= NP, then there exist two-objective NP optimization problems
O1,O2,O3 such that:

1. Val(L-O1) 6≤p
T A-O1

2. Val(W-O2) 6≤p
T D-O2

3. Val(D-O3) 6≤p
T W-O3

What remains is to find evidence against a possible reduction from a search notion
to a value notion, for instance from A-O to Val(W-O). This question is related to the
study of search versus decision [BD76, Bal89, BBFG91], more precisely to the notion
of functional self-reducibility, which was introduced by Borodin and Demers [BD76]. A
problem is functionally self-reducible if it belongs to the following set.

SRD∀ = {A ∈ NP | for all g ∈ PMV such that A = dom(g) it holds that g ≤p
T A}

The name of this class indicates that functional self-reducibility is a universal variant of the
notion of search reduces to decision: We say that search reduces to decision for a problem
A ∈ NP if there is some g ∈ PMV such that A = dom(g) and g ≤p

T A. Statement 1 in the
following theorem is equivalent to the statement NP 6= SRD∀. Moreover, if there exists an
L ∈ NP for which search does not reduce to decision (as shown by Beigel et al. [BBFG91]
under the assumption EE 6= NEE), then statement 1 holds.

Theorem 5.11. The following statements are equivalent:

1. There is some g ∈ PMV such that g 6≤p
T dom(g).

2. There is a multiobjective problem O = (S, f,≥) such that A-O 6≤p
T Val(W-O) ≡p

T
Val(D-O) and f is constant.
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Proof. “1 ⇒ 2”: Define O = (S, f,≥) by Sx = g(x) and f(〈x, y〉) = 1 for y ∈ Sx.
So (x ∈ dom(g) ⇐⇒ Sx 6= ∅) and hence dom(g) ≡p

T Val(W-O) ≡p
T Val(D-O). The

implication follows, since A-O = g 6≤p
T dom(g).

“2⇒ 1”: From f being constant it follows that each y ∈ Sx is optimal and A-O(x) = Sx.
Hence, for g := A-O it holds that g ∈ PMV (by the definition of multiobjective problems).
Moreover, x ∈ dom(g) ⇐⇒ Val(W-O)(〈x, 〈1, . . . , 1〉〉) 6= ∅ and hence dom(g) ≤p

T
Val(W-O). Therefore, g 6≤p

T dom(g), since otherwise A-O ≤p
T dom(g) ≤p

T Val(W-O).

Corollary 5.12. If P 6= NP ∩ coNP or EE 6= NEE, then there exists a multiobjective
problem O = (S, f,≥) such that A-O 6≤p

T Val(W-O) ≡p
T Val(D-O).

Proof. Valiant [Val76, Proposition 5] shows that P 6= NP ∩ coNP implies statement 1 in
Theorem 5.11. Beigel et al. [BBFG91] show that EE 6= NEE implies the same statement
(cf. Theorem 3.25).

5.2 Complexities of Value Notions of a Single Prob-
lem

In the previous section we have seen that for any two search notions X-O, Y-O such that
X-O ≤p

T Y-O, there indeed is a problem O where Y-O is NP-hard and X-O is polynomial
time solvable. For the value notions, we show an even stronger result. We will see that
almost any combination of complexities can occur:

For all sets A,L,D,W ∈ NP that satisfy the following moderate requirements there
exist a multiobjective problem O whose value notions Val(A-O), Val(L-O), Val(D-O),
Val(W-O) are equivalent to A,L,D,W , respectively.

• Requirement 1: A ≤p
T L ≤p

T D and L ≤p
T W

• Requirement 2: W ≡p
T g for some g ∈ max·D

The first requirement is necessary, since by Theorem 5.1 these reducibilities hold for all
multiobjective problems. The necessity of the second requirement is shown by Proposi-
tion 5.15 and discussed at the end of this section. Interestingly, Requirement 2 does not
impose an upper bound on the complexity of W but rather a restriction on the possible
Turing-degrees it can lie in.

Note that here, we are only concerned with complexities that can be expressed in
terms of sets. The complexities that can occur in terms of multivalued functions will be
addressed in the next section for each notion individually.

Theorem 5.13. Let A, L, D, W ∈ NP such that A ≤p
T L ≤p

T D and L ≤p
T W ≡p

T g for
some g ∈ max·D. Then there exists a two-objective problem O = (S, f,≥) such that

1. Val(A-O) ≡p
T A

2. Val(L-O) ≡p
T L

3. Val(D-O) ≡p
T D

4. Val(W-O) ≡p
T W
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Proof. Let A, L, D, W ∈ NP, g ∈ max·D with reduction relations as required in the
statement of the theorem and let Aw, Lw, Dw ∈ P be corresponding witness sets. For
the order of objectives with regard to Val(L-O) we choose to give priority to the first
objective.

The idea of the proof is to construct a two-objective problem where the solutions are
arranged in three stages: In the stage for Val(A-O) and A the witnesses for x ∈ A are
encoded as solutions with a constant value. The second stage handles Val(L-O) and L:
Here, we also encode the witnesses into solutions but ignore them when computing the
value. We also add a trivial optimal solution (though not lexicographically optimal) such
that Val(A-O) can solve this stage. The third stage is the most complicated stage: We
again add trivial solutions for Val(A-O) and Val(L-O) and encode the witnesses for D
into the solutions. Furthermore, the value of all solutions corresponding to 〈x, i〉 ∈ D
lies on a diagonal at position i. This way we achieve that Val(W-O) can compute the
maximal i such that 〈x, i〉 ∈ D and nothing more and we still have Val(D-O) ≡p

T D.
We first show that we can demand the following without loss of generality:

Claim 5.14. By replacing all sets and functions in the theorem with equivalent sets and
functions, it can be assumed that p is a polynomial such that for any x the following
holds:

1. For any Xw ∈ {Aw, Lw, Dw} and any y such that 〈x, y〉 ∈ Xw it holds that y < 2p(|x|).

2. For all y where 〈x, y〉 ∈ D it holds that 0 < y < 2p(|x|) − 1 and g = maxp·D.

3. There is at least one y such that 〈x, y〉 ∈ D.

4. For all y it holds that 〈x, y〉 ∈ D ⇐⇒ 〈x, 2p(|x|) − 1− y〉 ∈ D.

Proof of the claim. Statement 1 can be fulfilled by using a large enough polynomial and
removing witnesses from the witness set that are too large. Note that 1 remains fulfilled
for larger polynomials.

For an arbitrary D0 ∈ NP and g0 = maxp0·D0 (with p0 > 0), we now construct
D ≡p

T D0 and g = maxp·D ≡p
T g0 for some polynomial p that fulfill the assertions.

Consider the set

D′ :={〈〈x, 0〉, y〉 | 〈x, y〉 ∈ D0 and y < 2p0(|x|)} ∪
{〈〈x, 1 + y〉, a〉 | a = 1 ∨ (a = 0 ∧ 〈x, y〉 ∈ D0)}.

Observe that D0 ≡p
T D′, g0 ≡p

T g′ := maxp0·D′ and for all 〈x, y〉 ∈ D′ it holds that
y < 2p0(|x|). Choose some polynomial p such that p > p0 + 3 and p is large enough for
assertion 1. Observe that for

D := {〈x, 2p(|x|)−1 + y〉 | 〈x, y〉 ∈ D′} ∪
{〈x, 2p(|x|)−1 − 1〉 | x ∈ N} ∪
{〈x, 2p(|x|)−1〉 | x ∈ N} ∪
{〈x, 2p(|x|)−1 − 1− y〉 | 〈x, y〉 ∈ D′}

it holds that D ≡p
T D

′ and g := maxp·D ≡p
T g0. Moreover, D and g fulfill the remaining

assertions. �
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Figure 5.2: Illustration of f(S3x+2) (Proof of Theorem 5.13).

We define the 2-objective maximization problem O = (S, f,≥) by (cf. Figure 5.2)

S3x = {〈0, 0, y〉 | 〈x, y〉 ∈ Aw} (stage for A)
S3x+1 = {〈0, 0, 0〉} ∪ {〈0, 1, y〉 | 〈x, y〉 ∈ Lw} (stage for L)
S3x+2 = {〈0, i, 0〉 | i ≤ 2p(|x|)} ∪ (stage for W and D)

{〈1, y, z〉 | y < 2p(|x|) and 〈〈x, y〉, z〉 ∈ Dw}
f 3x+r(〈a, i, z〉) = (i+ a, j) such that i+ j = 2p(|x|)

The lengths of valid solutions are obviously polynomially bounded and S ∈ P, because
〈a, i, z〉 ∈ S3x+r can always be checked by simple arithmetic and optionally some query to
a witness set in P. The objective function f is computable in polynomial time. We now
verify the stated equivalences.

1. Val(A-O) ≤p
T A: Note that the value (0, 2p(|x|)) is always optimal for instances of the

form 3x+ 1 or 3x+ 2, so the reduction algorithm can output it without querying A.
For instances of the form 3x it queries A for x and outputs (0, 2p(|x|)) if the answer
is yes and ⊥ otherwise.
A ≤p

T Val(A-O): Here, on input x the reduction is done by a query for Val(A-O)(3x)
with output “no” if and only if the answer is ⊥.

2. Val(L-O) ≤p
T L: Note that for instances of the form 3x + 2, the values (0, 2p(|x|))

and (2p(|x|), 0) are always optimal, so the reduction algorithm can output a lexico-
graphically optimal solution without querying L. Instances of the form 3x can be
solved by a query to Val(A-O) ≤p

T A ≤p
T L. Let now the instance be 3x+ 1. Note

that Val(L-O) has to output (0, 2p(|x|)) if x /∈ L and (1, 2p(|x|) − 1) otherwise, which
can be checked by a simple query to L.
L ≤p

T Val(L-O): Similar to the case for A, the reduction is a simple query to
Val(L-O)(3x+ 1).
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3. Val(D-O) ≤p
T D: Instances not of the form 3x + 2 can be handled by queries to

Val(A-O) or Val(L-O) since Val(A-O) ≤p
T A ≤p

T D and Val(L-O) ≤p
T L ≤p

T D. Let
now 〈3x+ 2, 〈i, j〉〉 be the input.

If i+ j ≤ 2p(|x|), output f 3x+2(〈0, i, 0〉) = (i, 2p(|x|) − i), which is always the value of
some solution. If i+ j > 2p(|x|) + 1, there is no solution that (weakly) dominates this
value, so output ⊥. For the last case, i+ j = 2p(|x|) + 1, note that the only solutions
that can possibly (weakly) dominate the value (i, j) are those of type 〈1, y, z〉 for
y < 2p(|x|) and 〈〈x, y〉, z〉 ∈ Dw which also have the value (i, j). This means that
y = i− 1, so we can return (i, j) if 〈x, i− 1〉 ∈ D and ⊥ otherwise.

D ≤p
T Val(D-O): On input 〈x, y〉, Val(D-O)(〈3x+ 2, 〈i, j〉〉) with i = y + 1 and

j = 2p(|x|) − y is queried. As shown in the previous paragraph, the result of this
query tells whether or not 〈x, y〉 ∈ D.

4. Val(W-O) ≤p
T W : As in the case of Val(D-O), instances not of the form 3x + 2

can be handled by indirect reductions. For instances of the form 3x + 2 we show
Val(W-O) ≤p

T g:

It obviously suffices to return values from the border of the convex hull of all solution
values. It even suffices to consider only corner points of the convex hull. These corner
points are (0, 2p(|x|)), (2p(|x|), 0), (1 + ymin, 2p(|x|) − ymin) and (1 + ymax, 2p(|x|) − ymax)
where ymin and ymax are the minimal and maximal values for y such that 〈x, y〉 ∈ D.
Since we required that 〈x, y〉 ∈ D ⇐⇒ 〈x, 2p(|x|) − 1− y〉 ∈ D, we only need to
determine ymax and this can obviously be done by a query to g(x) (note that we
also required that there is at least one y such that 〈x, y〉 ∈ D).

W ≤p
T Val(W-O): The reduction g ≤p

T Val(W-O) holds as follows: On input x,
Val(W-O)(〈3x+ 2, 〈w,w − 1〉〉) for w = 2p(|x|) + 1 is queried. The weighted sum of
the value of a solution s = 〈a, i, z〉 is

wf 3x+2
1 (〈a, i, z〉) + (w − 1)f 3x+2

2 (〈a, i, z〉) = w(i+ a) + (w − 1)(2p(|x|) − i)
= i+ wa+ (w − 1)2p(|x|).

Since every possible value for i is at most 2p(|x|) < w and we required that there is
at least one y such that 〈x, y〉 ∈ D, the function Val(W-O) returns the value of a
solution of type 〈1, y, z〉 with maximal y, which is exactly g(x).

We now show that in Theorem 5.13 it is necessary to restrict the relationship between
D and W such that W ≡p

T g for some g ∈ max·D. As a consequence, the complexities
for Val(A-O), Val(L-O), Val(D-O), and Val(W-O) provided by Theorem 5.13 are indeed
all possible complexities for the value notions that can be described in terms of sets (cf.
Corollary 5.16).

Proposition 5.15. For every multiobjective problem O = (S, f,≥) there is some A ∈ NP
and g ∈ max·A such that

Val(D-O) ≡p
T A and Val(W-O) ≡p

T g.
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Proof. For the k-objective problem O = (S, f,≥) let

A := {〈〈x, 〈w〉〉, 〈z, yk, . . . , y1〉′〉 | w ∈ Nk, yi < 2p(|x|), z =
k∑
i=1

wiyi, and

there is some s ∈ Sx such that fx(s) ≥ (y1, . . . , yk)}

where p is a polynomial upper bound for all polynomials in the definition of O and
〈z, yk, . . . , y1〉′ := 1 + z · 2k·p(|x|) +∑k

i=1 yi · 2(i−1)·p(|x|) for z ∈ N and 0 ≤ yi < 2p(|x|). This
means that 〈·〉′ is a bijection between N× {0, . . . , 2p(|x|) − 1}k and N+ that transfers the
lexicographical order on N×{0, . . . , 2p(|x|)− 1}k to the natural order on N+. Furthermore,
for all 〈〈x, 〈w〉〉, 〈z, yk, . . . , y1〉′〉 ∈ A it holds that 〈z, yk, . . . , y1〉′ < 2q(|〈x,〈w〉〉|) for some
polynomial q. Since {〈x, s〉 | x ∈ N, s ∈ Sx} ∈ P and f ∈ FP we have A ∈ NP. Let
g = maxq·A. We will show Val(D-O) ≡p

T A and Val(W-O) ≡p
T g.

1. Val(D-O) ≤p
T A: On input 〈x, 〈c〉〉, we query x′ := 〈〈x, 〈0, . . . , 0〉〉, 〈0, ck, . . . , c1〉′〉 ∈

A. If x′ /∈ A, then there is no s ∈ Sx with fx(s) ≥ (c1, . . . , ck), and we return ⊥.
Otherwise there is some s ∈ Sxopt with fx(s) = (c′1, . . . , c′k) ≥ (c1, . . . , ck). We find
(c′1, . . . , c′k) by a binary search using queries similar to x′ and return (c′1, . . . , c′k).

2. A ≤p
T Val(D-O): On input 〈〈x, 〈w〉〉, 〈z, yk, . . . , y1〉′〉, we reject if z 6= ∑k

i=1wiyi.
Otherwise we accept if and only if there is some s ∈ Sx with fx(s) ≥ (y1, . . . , yk),
which can be determined by a query to Val(D-O) on 〈x, 〈y1, . . . , yk〉〉.

3. Val(W-O) ≤p
T g: On input 〈x, 〈w1, . . . , wk〉〉, we obtain r := g(〈x, 〈w1, . . . , wk〉〉) by

a query to the oracle. If r = 0, there are no z, y1, . . . , yk ∈ N with 〈〈x, 〈w1, . . . , wk〉〉,
〈z, yk, . . . , y1〉′〉 ∈ A, and thus Sx = ∅ and we return ⊥. Otherwise, let z, y1, . . . , yk ∈
N with 〈z, yk, . . . , y1〉′ = r. Hence we have z = ∑k

i=1wiyi and fx(s) ≥ (y1, . . . , yk)
for some s ∈ Sx.
Assume there is some s′ ∈ Sxopt such that z′ := ∑k

i=1wif
x
i (s′) > ∑k

i=1wif
x
i (s) ≥∑k

i=1wiyi. Then 〈z′, fxk (s′), . . . , fx1 (s′)〉′ > 〈z, yk, . . . , y1〉′ = r because of the lexico-
graphic ordering induced by 〈·〉′ and thus r is not maximal, which is a contradiction.

It remains to show that (y1, . . . , yk) is the value of some solution. Let s be
the previously mentioned solution and assume that fxi (s) > yi for some i. Let
z′ := ∑k

i=1wif
x
i (s). If z′ > z, then 〈z′, fxk (s), . . . , fx1 (s)〉′ > r, which is impossible.

Otherwise z′ = z (and wi = 0) and hence 〈z′, fxk (s), . . . , fx1 (s)〉′ > r, which is im-
possible again. Thus we have fx(s) = (y1, . . . , yk), which is a valid answer for the
input.

4. g ≤p
T Val(W-O): On input 〈x, 〈w1, . . . , wk〉〉, let w̃i := wi · 2k·p(|x|) + 2(i−1)·p(|x|) for all

i and query Val(W-O) on 〈x, 〈w̃1, . . . , w̃k〉〉. On answer ⊥ we have Sx = ∅ and return
0, which is obviously the correct value. Otherwise, if (y1, . . . , yk) is the obtained
answer, let the reduction function return 1 + ∑k

i=1 w̃iyi = 1 + ∑k
i=1wiyi2k·p(|x|) +∑k

i=1 yi2(i−1)·p(|x|) = 〈z, yk, . . . , y1〉′ for z = ∑k
i=1 wiyi. Because we got (y1, . . . , yk)

from a query to Val(W-O), there is some s ∈ Sx such that fx(s) ≥ (y1, . . . , yk) and
thus, the returned value is in witq·A(〈x, 〈w1, . . . , wk〉〉). To see that it is indeed
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maximal, assume there is some 〈z′, y′1, . . . , y′k〉′ ∈ witq·A(〈x, 〈w1, . . . , wk〉〉) that is
strictly larger. Here we get

k∑
i=1

w̃iy
′
i =

k∑
i=1

wiy
′
i2k·p(|x|) +

k∑
i=1

y′i2(i−1)·p(|x|)

= 〈z′, y′k, . . . , y′1〉′ − 1 > 〈z, yk, . . . , y1〉′ − 1 =
k∑
i=1

w̃iyi,

which contradicts the fact that Val(W-O) returns a value that is optimal with
respect to the sum weighted by (w̃1, . . . , w̃k).

Corollary 5.16. Let A,L,D,W ∈ NP. The following statements are equivalent:

1. There exists a multiobjective problem O = (Sx, f,≥) such that

A ≡p
T Val(A-O),

L ≡p
T Val(L-O),

D ≡p
T Val(D-O),

W ≡p
T Val(W-O).

2. A ≤p
T L ≤p

T D,W and there is some D′ ∈ NP and some g ∈ max·D′ such that
W ≡p

T g and D′ ≡p
T D.

Proof. “2 ⇒ 1” follows from Theorem 5.13 applied to A,L,D′,W and “1 ⇒ 2” follows
from Proposition 5.15 and Theorem 5.1.

Concerning the requirement “W ≡p
T g for some g ∈ max·D′” in Corollary 5.16, observe

that every set X ∈ NP is equivalent to some function g ∈ max·Y for some Y ≡p
T Sat

(define Y = {〈x, 3 + cX(x)〉 | x ∈ N} ∪ {〈x, 1 + cSat(x)〉 | x ∈ N}). So for a problem
O where Val(D-O) is NP-hard, the complexity of Val(W-O) can be arbitrary. The
easier Val(D-O) gets, the more restrictions are imposed on the complexity for Val(W-O).
However, this does not mean that Val(W-O) needs to have lower complexity, since
Val(W-O) can be NP-hard while Val(D-O) is polynomial-time solvable (take, for example,
D as a witness set for Sat).

Corollary 5.17. If A,L,W ∈ NP such that A ≤p
T L ≤p

T W , then there exists a multiob-
jective problem O such that A ≡p

T Val(A-O), L ≡p
T Val(L-O), and W ≡p

T Val(W-O) ≡p
T

Val(D-O).

Proof. Let D = D′ = {〈x, 1〉 | x ∈ W} and p(n) = 1. Note that D,D′ ∈ NP, D′ ≡p
T D ≡p

T
W , and maxp·D′ ≡p

T W . So we can apply Corollary 5.16, which finishes the proof.

5.3 Complexities of Value Notions Individually
Having completely characterized the possible combinations of sets the value notions of
a fixed multiobjective problem can be equivalent to, we now want to concentrate on
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each value notion on its own. We will show that Val(L-O), Val(D-O), and Val(W-O) are
always equivalent to sets in NP. The converse was already shown in Corollary 5.16.

For Val(A-O), the situation is different: We show that each function in NPMV is
equivalent to some Val(A-O). Together with Corollary 3.22 this implies that (under some
assumption) there are problems O such that Val(A-O) is inequivalent to any set and
with Theorem 3.27, we get (under NEE 6= coNEE) that there are problems O such that
Val(A-O) is inequivalent to any function in coNPMVt.

It is likely that the class {Val(A-O) | O is a multiobjective problem} is inequivalent
to any known class of multivalued functions. Please see Figure 5.3 for an overview.

Corollary 5.18. For every multiobjective problem O the following holds.

1. Val(L-O) ≡p
T B for some B ∈ NP.

2. Val(D-O) ≡p
T B for some B ∈ NP.

3. Val(W-O) ≡p
T B for some B ∈ NP.

Proof. By Proposition 4.5, we may assume that O is a k-objective problem O = (S, f,≥).

1. Let 1, 2, . . . , k be the order of objectives for Val(L-O) and p be a polynomial upper
bound for all values of f . Let

B = {〈x, 〈y1, . . . , yk〉〉 | x, y1, . . . , yk ∈ N and there is some s ∈ Sx such that
f1(s) ≥ y1

∧ (f1(s) = y1 =⇒ (f2(s) ≥ y2

∧ (f2(s) = y2 =⇒ (f3(s) ≥ y3

. . .

∧ (fk−1(s) = yk−1 =⇒ fk(s) ≥ yk) . . . ))))}

and observe that B ∈ NP. We have Val(L-O) ≤p
T B by a binary search over k

stages: suppose (y∗1, . . . , y∗k) ∈ Val(L-O)(x). In the i-th stage of the binary search,
we ask queries of the form 〈x, 〈y∗1, . . . , y∗i−1, yi, 0, . . . , 0〉〉 ∈ B. This way we find y∗i
in polynomial time. On the other hand, given the value of Val(L-O)(x), it is easy to
determine whether or not 〈x, 〈y1, . . . , yk〉〉 ∈ B, hence we also have B ≤p

T Val(L-O).

2. Follows from Proposition 5.15.

3. By Proposition 5.15, there exists a g ∈ max·NP such that Val(W-O) ≡p
T g. By

Proposition 3.11, g ≡p
T B for some B ∈ NP.

Proposition 5.19. For any g ∈ NPMV there is some two-objective problem O such that
g ≡p

T Val(A-O).

Proof. Let g = witp· ∃q·B for some polynomials p, q and some B ∈ P. By appropriately
modifying B, we can assume that p = q and for any 〈〈x, y〉, z〉 ∈ B it holds that y < 2p(|x|)
and z < 2p(|〈x,y〉|). Define O = (S, f,≥) where Sx = {〈y, z〉 | 〈〈x, y〉, z〉 ∈ B} and
fx(〈y, z〉) = (y, 2p(|x|) − y). Observe that O is a two-objective problem and that any value
of fx is optimal. Furthermore, for any x, y ∈ N it holds that y ∈ g(x) ⇐⇒ ∃s fx(s) =
(y, 2p(|x|) − y). This means that g ≡p

T Val(A-O).
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Figure 5.3: Extension of Figure 3.1 from page 43 by classes of search and value notions, where {X-O} is
shorthand for {X-O | O is a multiobjective problem} and similar for {Val(X-O)}. A (non-dashed) arrow
from C to D denotes that C can be embedded in D, i. e. ∀f ∈ C ∃g ∈ D : f ≡p

T g. Dashed arrows give
evidence against such an embedding (the embedding implies the arrow’s label).
Observe that the embedding relation is reflexive and transitive and that evidence against an embedding
propagates along non-dashed arrows (heads of dashed arrows can be moved downwards, tails can be
moved upwards). This means that for any two classes of functions defined via multiobjective problems,
we can either show that the first class can be embedded in the second class or we provide evidence against
such an embedding.
Note that PMV = NPMVg, max·NP = OptP (Krentel [Kre88]) and AllSets is the class of all decision
problems.



5.4. COMPLEXITIES OF SEARCH NOTIONS INDIVIDUALLY 81

Proposition 5.20. If PH 6= ∆P
2 , then there is some multiobjective problem O such that

Val(A-O) 6≡p
T g for any g ∈ coNPMV.

Proof. We show the converse, i. e. if coNPMV ⊆≡p
T
{Val(A-O) | O is a multiobjective

problem} then PH = ∆P
2 . By Theorem 5.1, we have Val(A-O) ≤p

T Sat ≤p
T f-Sat for

any multiobjective problem O. Together with the assumption coNPMV ⊆≡p
T
{Val(A-O) |

O is a multiobjective problem}, we obtain that any g ∈ coNPMV reduces to f-Sat.
Theorem 3.16 then shows that PH = ∆P

2 .

5.4 Complexities of Search Notions Individually
We show that the search notions L-O, D-O, and W-O are equivalent to the functions in
PMV, the class of NP search problems. This means that, opposed to the value notions from
the previous section, the complexities of these search notions do not cover all problems in
NP, unless EE = NEE (Theorem 3.25).

Similar to Val(A-O), the search notion A-O again provides a greater range: With
respect to embeddings, we show that the classes PMV and NP ∩ coNP provide lower
bounds for A-O and the classes Val(A-O) and coNPMVt are upper bounds.

Again, the class {A-O | O is a multiobjective problem} seems to be inequivalent to
known classes of multivalued functions. Please see Figure 5.3 on page 80 for an overview
of the results obtained in this and the preceding section.

Theorem 5.21. Let k ≥ 1 and h = wit·X for some X ⊆ N. The following statements
are equivalent:

1. There is some g ∈ PMV such that h ≡p
T g.

2. There is some k-objective problem O = (S, f,≥) such that h ≡p
T L-O.

3. There is some k-objective problem O = (S, f,≥) such that h ≡p
T D-O.

4. There is some k-objective problem O = (S, f,≥) such that h ≡p
T W-O.

Proof. “1 ⇒ 2, 3, 4”: Define the k-objective problem O = (S, f,≥) with Sx = g(x) and
fx(s) = (0, 0, . . . , 0) for all s ∈ Sx. It holds that D-O ≡p

T W-O ≡p
T L-O = g ≡p

T h.
“3 ⇒ 1”: By Proposition 4.7, we know that D-O ∈ PMV, so we can set g = D-O.
“4⇒ 1”: Note that by Proposition 4.6, W-O = A-O′ for some single-objective problem

O′ and A-O′ ≡p
T D-O′ by Proposition 4.4 and we have just shown that in this case, there

is some g ∈ PMV such that g ≡p
T D-O′.

“2 ⇒ 1”: This is analogous to the proof for “4 ⇒ 1”.

Proposition 5.22. For every k ≥ 1 and every function g ∈ PMV there is some k-objective
problem O such that g = A-O.

Proof. Define the k-objective problem O = (S, f,≥) with Sx = g(x) and fx(s) =
(0, 0, . . . , 0) for all s ∈ Sx and observe that g(x) = A-O.

Theorem 5.23. For every L ∈ NP ∩ coNP there is a two-objective problem O such that
A-O ≡p

T L.
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Proof. Let L ∈ NP ∩ coNP. Hence there are witness sets L1, L2 ∈ P and a polynomial p
such that L = ∃p·L1 and L = ∃p·L2, which means that

x ∈ L ⇐⇒ ∃y such that y < 2p(|x|) and 〈x, y〉 ∈ L1

x /∈ L ⇐⇒ ∃y such that y < 2p(|x|) and 〈x, y〉 ∈ L2

for all x ∈ N. Note that L1 and L2 are disjoint. Let O = (S, f,≤), where Sx =
(witp·L1)(x) ∪ (witp·L2)(x) ∪ {2p(|x|), 2p(|x|) + 1} and

fx(y) =


(1, 0) if y < 2p(|x|) and 〈x, y〉 ∈ L1

(2, 0) if y = 2p(|x|)

(0, 1) if y < 2p(|x|) and 〈x, y〉 ∈ L2

(0, 2) if y = 2p(|x|) + 1

for all x ∈ N and y ∈ Sx. Observe that O is a 2-objective problem. We have the following
reductions.

1. L ≤p
T A-O: For all x ∈ N we have

x ∈ L ⇐⇒ ∃y such that y < 2p(|x|) and 〈x, y〉 ∈ L1 and
∀y′ with y′ < 2p(|x|) we have 〈x, y′〉 /∈ L2

⇐⇒ A-O(x) = (witp·L2)(x) ∪ {2p(|x|) + 1}

and x /∈ L ⇐⇒ A-O(x) = (witp·L2)(x) ∪ {2p(|x|)} analogously. If we get an
arbitrary element from A-O(x) we can distinguish the two cases in polynomial time
and thus L ≤p

T A-O.

2. A-O ≤p
T L: For x ∈ N, observe that {2p(|x|), 2p(|x|) + 1} ⊆ Sx. We will argue that one

of those solutions is optimal and, furthermore, this solution can be determined by a
single query to L. For that purpose, observe that if x ∈ L, then for all y < 2p(|x|)
we have 〈x, y〉 /∈ L2, hence there is no y whose value dominates (0, 2), and we can
return y = 2p(|x|) + 1 as solution for A-O(x). On the other hand, if x /∈ L, then
for all y < 2p(|x|) we have 〈x, y〉 /∈ L1, hence there is no y whose value dominates
(2, 0), and we can return y = 2p(|x|) as solution for A-O(x). In all cases we compute
a refinement of A-O and thus have A-O ≤p

T L as claimed.

Proposition 5.24. For every k-objective problem O there is some f ∈ coNPMVt such
that A-O ≡p

T f .

Proof. Define the problem O′ similar to O but for each instance x add a solution xbad
that is always present and is worse than all other solutions that can possibly exist. We
thus have A-O ≡p

T A-O′. The assertion follows since A-O′ is total and lies in coNPMV
by Proposition 4.7.

Proposition 5.25. For every multiobjective problem O = (S, f,≥) there is a multiobjec-
tive problem O′ = (S, g,≥) such that A-O = A-O′ ≡p

T Val(A-O′).
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Proof. Let O = (S, f,≥) be a k-objective problem and assume k ≥ 2 (use the same
objective function twice for k = 1). Let p be a polynomial such that for all x and all
s ∈ Sx it holds that s < 2p(|x|) and fxi (s) < 2p(|x|) for all 1 ≤ i ≤ k. Define the k-objective
problem O′ = (S, g,≥) where

gxi (s) = fxi (s) k 23 p(|x|) +
k∑
j=1

fxj (s) 2p(|x|) +
2p(|x|) − 1− s for i = 1
s for i ≥ 2.

Claim 5.26. The following statements are equivalent for all x ∈ N and s1, s2 ∈ Sx:

1. fx(s1) 6= fx(s2) and fx(s1) ≤ fx(s2)

2. gx(s1) 6= gx(s2) and gx(s1) ≤ gx(s2)

Proof of the claim. “1 ⇒ 2”: Assume fx(s1) 6= fx(s2) and fx(s1) ≤ fx(s2) and let
1 ≤ j ≤ k such that fxj (s1) < fxj (s2). Since fj occurs in each gi with a factor of at least
2p(|x|) and s1, s2, 2p(|x|) − 1− s1, 2p(|x|) − 1− s2 < 2p(|x|), we have gxi (s1) < gxi (s2) for each i.

“2 ⇒ 1”: Assume gx(s1) 6= gx(s2) and gx(s1) ≤ gx(s2). It is not possible that
fx(s1) = fx(s2), since in this case, 0 6= s1 − s2 = gx1 (s2) − gx1 (s1) = −(gx2 (s2) − gx2 (s1)),
which contradicts the fact that gx(s1) ≤ gx(s2). Hence we have fx(s1) 6= fx(s2). Finally,
assume that there is some 1 ≤ j ≤ k such that fxj (s1) > fxj (s2). Then we would also have
gxj (s1) > gxj (s2) because of the large factor k 23 p(|x|). �

From the claim it follows that a solution is not optimal in O if and only if it is not
optimal inO′ and thus the set of optimal solutions coincide, i. e. A-O = A-O′. Furthermore,
since the solution is encoded into the value for O′, we obtain A-O′ ≡p

T Val(A-O′).
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Chapter 6

Approximation

If computing the exact solution for a problem is not possible in reasonable time, one often
turns to computing approximate solutions. For many single-objective problems, there are
algorithms that can generate solutions that are always guaranteed to be within a certain
factor of the optimal solution. This concept of approximation algorithms can of course
be extended to multiple objectives. Papadimitriou and Yannakakis [PY00] showed that
every set of optimal solutions has a (1 + ε)-approximation of size polynomial in the size of
the instance and 1/ε. Of course, it is not always clear that this set can also be obtained in
polynomial time.

We continue our systematic study and define approximability notions for many of the
solution notions from section 4.1 and investigate their relations. Figure 6.1 shows for
arbitrary multiobjective problems in which cases polynomial time solvability of one such
notions transfers to polynomial time solvability of another notion, and what quality of
approximation can be preserved at least.

We reveal a significant dichotomy between the approximability of maximization and
minimization problems. We show that if all objectives have to be minimized, then some
approximability results translate from single-objective to multiobjective optimization. In
contrast, such translations are not possible for problems where all objectives have to be
maximized, unless P = NP.

6.1 Notions of Multiobjective Approximation
We discuss reasonable concepts of “approximately solving O” for a k-objective problem
O = (S, f,←) where← is obtained from←1, . . . ,←k. Again, we use multivalued functions
as models.
Definition 6.1. For approximations we need to relax the relation ← by a factor of α
(later called the approximation ratio). For any real a ≥ 1 define u

a
≤ v ⇐⇒ u ≤ a · v

and u
a
≥ v ⇐⇒ a · u ≥ v. Let p = (p1, . . . , pk), q = (q1, . . . , qk) ∈ Nk, and let

α = (a1, . . . , ak) ∈ Rk where a1, . . . , ak ≥ 1. We say that p weakly α-dominates q, p α← q
for short, if pi

ai←i qi for all 1 ≤ i ≤ k. Again we extend α← to combinations of values and
solutions, if f and x are clear from the context.

In order to examine minimization, maximization and mixed problems at the same time,
we always regard approximation ratios to be larger than one. Sometimes, approximation
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Wδ-O

Eα-O Dβ-O

Sγ-O

Aσ-O

δ := max{α1, . . . , αk}

β := (kδ, . . . , kδ)
[← = ≤]

β := α

α := β(1 + ε)

β := γ2

σ := (β2
1 , β2)

[k = 2]

σ := γ

Figure 6.1: Implications between polynomial time solvability of approximate solution notions for any
k-objective problem O = (S, f,←) where ε > 0 can be chosen arbitrarily close to zero. For instance, it
holds that if Dβ-O is polynomial-time solvable then for each ε > 0, also Eβ(1+ε)-O is polynomial-time
solvable. Dashed lines indicate a conditional implication where the condition is shown in brackets. Note
that α, β, γ, σ ∈ Rk, δ ∈ R and Wδ-O is only defined if all objectives are minimized or all are maximized.

ratios for maximization problems are considered to be between zero and one, and indeed
we will do this in section 7.2. One can obtain this view by simply inverting the ratios here.

Note that for all p, q, r ∈ Nk it holds that p α← p, and p α← q
β← r =⇒ p

α·β← r, where
α · β is the component-wise multiplication. In particular, from p

α← q and q ← r it follows
that p α← r and thus p weakly α-dominates all solutions that are dominated by q.

We already noted that computing the complete set of optimal solutions is not an
appropriate solution notion since this set is typically exponentially large. In contrast,
approximations of the complete set of Pareto-optimal points are very useful and feasible.
Papadimitriou and Yannakakis [PY00] show that each set of Pareto-optimal solutions of a
multiobjective problem O = (S, f,←) has a polynomially-sized approximation. To clarify
what this means, note that an ε-approximation of a set of single-objective solutions Sx
can be seen as a single solution s′ ∈ Sx such that for all s ∈ Sx it holds that s′ ε← s. The
obvious extension of this to multiple objectives is the following: A set S ′ ⊆ Sx is called an
α-approximation of Sx if for all s ∈ Sx there is some s′ ∈ S ′ such that s′ α← s. The result
by Papadimitriou and Yannakakis now states that for all α there exists a polynomial p
such that for all x there exists an α-approximation S ′ of Sx with #S ′ ≤ p(|x|). Hence
there are small and quite precise approximations for Sxopt, but in many cases it is hard to
compute these approximations.

Since the approximate solution notion Eα-O exactly captures the task of computing
such approximations, we will consider this solution notion when giving approximation
algorithms for specific problems in chapter 7. Furthermore, we will call a problem O
α-approximable if Eα-O is polynomial-time solvable. The other approximate solution
notions are extensions of the solution notions from section 4.1 to approximation. Observe
that each of these notions coincides with its exact version if α = (1, . . . , 1) or δ = 1,
respectively.

Definition 6.2. Let O = (S, f,←) be a k-objective problem and α = (α1, . . . , αk) ∈ Rk

such that αi ≥ 1 for all i and let δ ∈ R such that δ ≥ 1.
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Eα-O α-Approximate Every-Solution Notion
Compute a set of solutions that α-dominates every solution.
Input: instance x
Function: Eα-O(x) = {S ′ ⊆ Sx | ∀s ∈ Sx ∃s′ ∈ S ′ : s′ α← s}

Aα-O α-Approximate Arbitrary-Optimum Notion
Compute a solution that weakly α-dominates an arbitrary optimal solution.
Input: instance x
Function: Aα-O(x) = {s ∈ Sx | ∃t ∈ Sxopt : s α← t}

Sα-O α-Approximate Specific-Optimum Notion
Compute a solution that weakly α-dominates an optimal solution specified by a
given cost vector.
Input: instance x, cost vector c ∈ Nk

Function: Sα-O(〈x, 〈c〉〉) = {s ∈ Sx | ∃t ∈ Sxopt : s α← t
α← c} ∪

{⊥ | ∀s ∈ Sx : s 6← c}
Dα-O α-Approximate Dominating-Solution Notion

Compute a solution that weakly α-dominates a given cost vector.
Input: instance x, cost vector c ∈ Nk

Function: Dα-O(〈x, 〈c〉〉) = {s ∈ Sx | s α← c} ∪ {⊥ | ∀s ∈ Sx : s 6← c}

Wδ-O δ-Approximate Weighted-Sum Notion (if all objectives are minimized or all
maximized)
Single-objective problem that weights the objectives in a given way.
Input: instance x, weight vector ω ∈ Nk

Function: Wδ-O(〈x, 〈ω〉〉) = {s ∈ Sx | ωT · fx(s) δ←1 ω
T · fx(s′) for all s′ ∈ Sx}

Cδ
i -O δ-Approximate Constraint Notion for the i-th Objective

Single-objective problem that approximates the i-th objective while respecting
constraints on the remaining objectives.
Input: instance x, constraint vector b ∈ Nk (the i-th component is ignored)
Function: Cδ

i -O(x) = {x ∈ Sx | x ∈ Sxcon and s δ←i opti(Sxcon) for
Sxcon := {s ∈ Sx | ∀j 6= i : fxj (s)←j bj}}

The vector α is called approximation ratio.

Note that we use the special symbol ⊥ in the definition of Sα-O and Dα-O and assume
that it is encoded as a natural number different from all elements in Sx. This symbol
also occurs in the definition of the polynomial-time Turing-reduction between multivalued
functions to represent the value “undefined”. Since the functions Sα-O and Dα-O are
always total, a confusion with this meaning cannot occur. Furthermore, note that the
unions in the definitions are not necessarily disjoint. The approximate solution notion
Dα-O corresponds to the gap problem used by Papadimitriou and Yannakakis [PY00].
We will get back to this in Theorem 6.3.

The performance of approximations where the optimized value is a single number like
W-O is specified by a real number δ instead of a vector of real numbers α. Similar to
W-O, we consider Wδ-O only for multiobjective problems where all objectives have to be
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minimized (resp., maximized). Note that in this case, ←1 above can be replaced by any
of the ←i.

We disregard approximations for the lexicographical problem L-O, since here it is
not clear how to measure the performance of the approximation. Note that if O is a
single-objective problem, then Aδ-O, Sδ-O, Dδ-O, Wδ-O, and Cδ

1-O are polynomial-time
Turing equivalent to computing a δ-approximation for the single-objective problem.

Further research. Although D-O and Ci-O are polynomial-time Turing equivalent,
they can differ considerably with respect to their approximability. For example, for
O = 2-EDC (2-objective exact disk cover, [GRS08]) and for every δ > 1 it holds that
E(δ,δ)-O and D(δ,δ)-O are polynomial-time solvable. In contrast, for every δ > 1 it holds
that C(δ,δ)

1 -O and C(δ,δ)
2 -O are not polynomial-time solvable, unless P = NP [GRS08].

Vassilvitskii and Yannakakis [VY05] investigate the problem of computing a good
approximation for Sxopt using as few solutions as possible. Here for a given instance x and
a maximum number of solutions l, one has to find some S ⊆ Sx with #S ≤ l such that
(1) there is some α ≥ 1 such that S is a solution to Eα-O on input x, and (2) there are no
α′ < α and S ′ ⊆ Sx with #S ′ ≤ l such that S ′ is a solution to Eα′-O on input x.

For k-objective problems the performance of an approximation is given by a vector
α ∈ Rk. Two such vectors can be incomparable and hence trade-offs are possible at the level
of approximability. A typical 2-objective problem does not have a single best approximation
ratio α, but there may exist a trade-off curve of incomparable best approximation ratios.
In section 7.1, we discuss evidence suggesting that the traveling salesperson problem has
such approximation trade-offs.

6.2 Relations Between the Approximation Notions
We study relationships among the approximate solution notions defined above. Papadim-
itriou and Yannakakis [PY00] demonstrate a close connection between E-O and D-O in
the sense that up to a factor of 1 + ε both notions have the same approximability. We
restate this result in a slightly extended version.

Theorem 6.3. Let O = (S, f,←) be a k-objective problem, α = (a1, . . . , ak) where
ai ≥ 1, and ε = (ε1, . . . , εk) where εi > 0.

1. Eα-O polynomial-time solvable =⇒ Dα-O polynomial-time solvable

2. Eα(1+ε)-O ≤p
T Dα-O, where the running time of the reduction machine is polynomially

bounded even in |x|+∑
i

1/εi

Proof. Let O = (S, f,←) be some k-objective problem.

1. Suppose we obtain S ′ as a solution to Eα-O in polynomial time. To solve Dα-O for
some c ∈ Nk in polynomial time, we check whether there is some s′ ∈ S ′ with s′ α← c.
If there is such s′ ∈ S ′, we are done. On the other hand, if there is no s′ ∈ S ′ with
s′

α← c, there cannot be any s ∈ Sx with s← c (otherwise S ′ is not a valid solution
to Eα-O, because there is no solution s′ ∈ S ′ that α-dominates s), so we can return
⊥.
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2. We will construct some polynomial-sized lattice that covers the entire solution value
space and then show how to find approximations of arbitrary solutions.
By the definition of k-objective problems, there is some polynomial p such that
fxi (s) ≤ 2p(|x|) for every instance x, every solution s ∈ Sx, and 1 ≤ i ≤ k.
Fix some problem instance x, and let δ = min

1≤i≤k
εi, r = d1

δ
e, and t = r · p(|x|) + 1.

We show that (1 + δ)t bounds the value of every objective. From

(1 + δ)r =
r∑
j=0

(
r

j

)
δj ≥

(
r

0

)
δ0 +

(
r

1

)
δ1 ≥ 1 + r · δ ≥ 1 + 1

δ
· δ = 2

we obtain

fxi (s) ≤ 2p(|x|) < 2p(|x|)(1 + δ) ≤ ((1 + δ)r)p(|x|)(1 + δ) = (1 + δ)r·p(|x|)+1 = (1 + δ)t.

Next, consider the sets I = {(1 + δ)j | 0 ≤ j ≤ t} and L = (I ∪ {0})k. The elements
of L cover the entire solution value space in the sense that for every solution s ∈ Sx
there is some l ∈ L such that l (1+δ)← s ← l. It even holds that ble (1+δ)← s ← ble,
where ble denotes the vector obtained from l by rounding each component towards
its direction of optimization. By s← ble, given x and ble as input, any solution for
Dα-O must consist of some s′ ∈ Sx with s′ α← ble, thus s′ α(1+δ)← s.
To solve Eα(1+ε)-O, it hence suffices to solve Dα-O for every ble where l ∈ L (note
that δ ≤ εi for all i). This is possible in time polynomial in |x| + ∑k

i=1
1
εi

using
queries to Dα-O, since #L = (d1

δ
e · p(|x|) + 3)k.

Note that the algorithm for Eα(1+ε)-O calls Dα-O at every point of some polynomial-
sized lattice built over ε. If, however, O = (S, f,←) is polynomially bounded (i. e. the
values of f are polynomially bounded), we can instead call Dα-O for every possible solution
value and thereby obtain a solution to Eα-O. Hence, for multiobjective problems that are
polynomially bounded, Eα-O and Dα-O are equivalent.

Theorem 6.4. Let O = (S, f,←) be a k-objective problem and α = (α1, . . . , αk) with
ai ≥ 1.

1. Dα2-O ≤p
T Sα-O and Aα-O ≤p

T Sα-O

2. A(α2
1,α2)-O ≤p

T Dα-O if k = 2

3. If all objectives have to be minimized (resp., maximized) and Eα-O is polynomial-
time solvable, then Wmaxi(αi)-O is polynomial-time solvable.

Proof. Let O = (S, f,←) be a k-objective problem with ← = (←1, . . . ,←k), instance x
and α = (a1, . . . , ak) with ai ≥ 1.

1. We call Sα-O for instance x and cost vector c as they are given in the input for
Dα-O. If Sα-O returns ⊥ (i. e. there is no s ∈ Sx such that s ← c), we return ⊥.
Otherwise, Sα-O returns some s ∈ Sx, hence there is some t ∈ Sxopt with s

α← t
α← c,

which implies s α2← c, hence s is a solution to Dα2-O.



90 CHAPTER 6. APPROXIMATION

For the second part, we call Sα-O with some cost vector c such that c is dominated by
the entire solution value space. If Sx 6= ∅, we get some s ∈ Sx such that s α← t

α← c
for some t ∈ Sxopt, which solves Aα-O.

2. Suppose k = 2, Sx 6= ∅, and let s ∈ opt2(opt1(Sx)). Clearly, s is optimal. Given an
oracle for Dα-O, we perform a binary search over Sx that optimizes fx1 and obtain
a solution s′ ∈ Sx with fx1 (s′) α1←1 f

x
1 (s). However, s′ might have an inappropriate

value in fx2 . For that reason, we minimize fx2 through a second binary search
where we call Dα-O again and keep the first component of the cost vector fixed to
fx1 (s′). Since fx(s)← (fx1 (s′), fx2 (s)), this binary search finds a solution ŝ ∈ Sx with
ŝ

α← (fx1 (s′), fx2 (s)), and together with fx1 (s′) α1←1 f
x
1 (s) we get fx1 (ŝ) α2

1←1 f
x
1 (s) and

fx2 (ŝ) α2←2 f
x
2 (s).

3. Suppose all objectives have to be minimized (the theorem can be shown analogously
if all objectives have to be maximized). For any instance x and weight vector
ω = (ω1, ω2, . . . , ωk), if Sx 6= ∅ then there is some ŝ ∈ Sx that minimizes ∑k

i=1 ωif
x
i .

Let S ′ be a solution of Eα-O. Then there must be a solution s ∈ S ′ such that s α← ŝ,
hence fxi (s) ≤ αif

x
i (ŝ) for all i, which implies

k∑
i=1

ωif
x
i (s) ≤

k∑
i=1

ωiαif
x
i (ŝ) ≤ max

i
(αi)

k∑
i=1

ωif
x
i (ŝ) ≤ max

i
(αi)

k∑
i=1

ωif
x
i (s′)

for all s′ ∈ Sx. It hence suffices to return a solution s∗ ∈ S ′ that minimizes∑k
i=1 ωif

x
i ,

which can be extracted from S ′ in polynomial time, because S ′ has polynomial
cardinality.

Further research. Even though for a fixed problem O, the search notion A-O can be
reduced to all other exact search notions for O, it is not clear whether similar implications
hold for Aα-O. For k > 2, the reducibility of Aα-O to approximate problem notions other
than Sα-O remains open. Moreover, we are interested in improvements or lower bounds
for the implications in Figure 6.1 on page 86.

6.3 Pareto- versus Scalar Minimization
We show that for multiobjective problems O where all objectives have to be minimized,
approximability results translate from single-objective to multiobjective optimization,
especially when the problems are linear. In particular, if Wδ-O is polynomial-time solvable
(which coincides with the single-objective problem for linear problems), then there exists
some c ≥ 1 such that Dcδ-O and Ecδ-O are polynomial-time solvable. Note that we show
in the next section that surprisingly, this result does not hold for maximization problems
(unless P = NP).

We will also generalize Wδ-O from weighted sums to general weighted norms and
observe that Dδ-O corresponds to the notion for weighted maximum norms, whereas the
ordinary Wδ-O is the weighted 1-norm.

Let us first review some properties of norms as they are important in this section.
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Definition 6.5. A norm ‖ · ‖ on Rk is monotone, if for all vectors x = (x1, . . . , xk)T , y =
(y1, . . . , yk)T ∈ Rk it holds that

|x1| ≤ |y1| ∧ · · · ∧ |xk| ≤ |yk| ⇒ ‖x‖ ≤ ‖v‖.
Two norms ‖ · ‖a and ‖ · ‖b on the same space are equivalent, if there exist constants
c1, c2 > 0 such that for all x,

c1‖x‖b ≤ ‖x‖a ≤ c2‖x‖b.
It is well known that all norms on Rk are equivalent. Important examples of norms on
Rk are the p-norms ‖(x1, . . . , xk)T‖p = (∑k

i=1 |xi|p)1/p defined for real numbers p ≥ 1 and
the maximum norm ‖(x1, . . . , xk)T‖∞ = maxi |xi|, which are all monotone, even if the
components of the vectors are weighted by fixed non-negative numbers. Furthermore, for
any p ≥ 1 and any x ∈ Rk it holds that ‖x‖∞ ≤ ‖x‖p ≤ k1/p‖x‖∞.

The next two lemmas tell us how to translate approximations for weighted norms of
vectors to the weak approximate dominance relation and vice-versa.

Lemma 6.6. Let k ≥ 1 and let ← = (≤, . . . ,≤) be the k-dimensional ≤. For any norm
‖ · ‖ on Rk there is some ĉ ≥ 1 such that for any δ ≥ 1 and x, v ∈ Nk

x
(δ,...,δ)← v =⇒ ‖x‖

ĉδ
≤ ‖v‖.

In particular, if ‖ · ‖ is monotone then ĉ = 1, which is the case for any (weighted)
p-norm and the (weighted) maximum norm.

Proof. First, suppose ‖ · ‖ is monotone. We get

x
(δ,...,δ)← v =⇒ (x1 ≤ δv1 ∧ · · · ∧ xk ≤ δvk)

=⇒ ‖x‖ ≤ ‖(δv1, . . . , δvk)T‖
=⇒ ‖x‖ ≤ δ‖v‖,

which shows the lemma for the monotone case. Next, suppose ‖ · ‖ is not monotone. By
the equivalence of norms on Rk there are constants c1, c2 > 0 such that x (δ,...,δ)← v implies

c1‖x‖ ≤ ‖x‖∞ ≤ δ‖v‖∞ ≤ c2δ‖v‖,
which yields the desired result for the general case with ĉ = c2

c1
. Furthermore, observe that

c1‖x‖ ≤ ‖x‖∞ ≤ c2‖x‖ immediately implies c2
c1
≥ 1.

Lemma 6.7. Let k ≥ 1 and let ← = (≤, . . . ,≤) be the k-dimensional ≤. For any norm
‖ · ‖ on Rk there is some c̃ ≥ 1 such that for all δ ≥ 1 and x, v ∈ Nk

‖Wx‖ ≤ δ‖Wv‖ =⇒ x
(c̃δ,...,c̃δ)← v

where W = diag(ω1, . . . , ωk) and

ωi =
dδc̃e+ 1 if vi = 0

1/vi if vi 6= 0.

In particular, if ‖ · ‖ is a p-norm then c̃ = k1/p and c̃ = 1 for the maximum norm.
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Proof. By the equivalence of norms on Rk, there is some C > 0 such that ‖x‖∞ ≤ C‖x‖
for all x ∈ Rk. Set c̃ = C maxb∈{0,1}k ‖b‖ (b = (1, . . . , 1)T if the norm is monotone) and
observe that the following inequality holds for any i, any x ∈ Nk and any v ∈ Nk.

ωixi = (Wx)i ≤ ‖Wx‖∞ ≤ C‖Wx‖ ≤ Cδ‖Wv‖
(∗)
≤ Cδ max

b∈{0,1}k
‖b‖ = δc̃

Note that for the inequality (∗), we used that Wv ∈ {0, 1}k.
If vi 6= 0, this means that xi ≤ c̃δvi and for vi = 0, we get xi ≤ δc̃

dδc̃e+1 < 1 and thus
xi = 0 (since xi ∈ N), which again yields 0 = xi ≤ c̃δvi = 0. Thus, we get xi ≤ c̃δvi for
any i and the main part of the lemma is proved.

The second part is obtained by observing that C = 1 for any p-norm and for the
maximum norm and that ‖(1, . . . , 1)T‖p = k1/p for any p-norm and ‖(1, . . . , 1)T‖∞ = 1.

In order to apply these results to multiobjective optimization, we need to generalize
the definition of the weighted-sum notion to a weighted-norm notion.

Definition 6.8. For some k-objective problem O = (S, f,≤), some norm ‖ · ‖ on Rk, and
some δ ≥ 1 we define the following.

Wδ
‖·‖-O δ-Approximate Weighted-Norm Notion

Single-objective problem that first weights the objectives and then applies a norm.
Input: instance x, weight vector ω ∈ Nk

Function: Wδ
‖·‖-O(〈x, 〈ω〉〉) = {s ∈ Sx | ‖Wfx(s)‖ ≤ δ‖Wfx(s′)‖ for all s′ ∈ Sx

where W = diag(ω1, . . . , ωk)}

This notion generalizes Wδ-O, since Wδ-O = Wδ
‖·‖1

-O, the δ-approximate weighted-1-
norm notion. Note that the above definition can easily be extended for problems where
all objectives have to be maximized.

Proposition 6.9. For any norm ‖ · ‖ on Rk there is some c ≥ 1 such that for any
k-objective problem O = (S, f,≤) and any δ ≥ 1 it holds that

D(cδ,...,cδ)-O ≤p
T Wδ

‖·‖-O.

In particular, if ‖ · ‖ is a p-norm then c = k1/p and c = 1 for the maximum norm.

Proof. We show how D(cδ,...,cδ)-O can be solved in polynomial time relative to Wδ
‖·‖-O.

Let the instance x ∈ N and the cost vector v ∈ Nk be the input. For the sake of clarity,
we use ← instead of ≤ in a multidimensional context. Let ĉ, c̃ ≥ 1 be the constants
from Lemmas 6.6 and 6.7 corresponding to ‖ · ‖ and let c = ĉc̃. Furthermore, let (as in
Lemma 6.7) ωi = dδc̃e+ 1 if vi = 0 and ωi = 1/vi if vi 6= 0 and let V be the product of all
nonzero entries in v (V = 1 if v = (0, . . . , 0)) and ω′i = V ωi. Note that the weights ω′i are
natural numbers, so we can call the algorithm for Wδ

‖·‖-O with weights ω′i. If we get a
solution s from this call, we return s if fx(s) (cδ,...,cδ)← v. In all other cases, we report that
there is no s ∈ Sx such that s← v.

For the correctness of this algorithm, we show that if there is some p ∈ Sx with
p ← v, then the algorithm returns some solution s ∈ Sx such that s (cδ,...,cδ)← v. Let
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W = diag(ω1, . . . , ωk) and W ′ = diag(ω′1, . . . , ω′k). Observe that any algorithm for Wδ
‖·‖-O

must return a solution if Sx 6= ∅, which is the case here. So the algorithm must return
a solution s ∈ Sx with ‖W ′fx(s)T‖ ≤ δ‖W ′fx(s′)T‖ for all s′ ∈ Sx. In particular, from
Lemma 6.6 we obtain

‖W ′fx(s)T‖ ≤ δ‖W ′fx(p)T‖ ≤ ĉδ‖W ′vT‖.

Together with W ′ = VW this yields

V ‖Wfx(s)T‖ ≤ V ĉδ‖WvT‖.

Now Lemma 6.7 tells us that fx(s) (cδ,...,cδ)← v and so s is returned correctly. For the runtime
of the algorithm note that the size of the weights is polynomial in the size of v and the
test if fx(s) (cδ,...,cδ)← v is also possible in polynomial time. Furthermore, the particular
values for c result from the particular values for ĉ and c̃.

Corollary 6.10. For any k-objective problem O = (S, f,≤) and any δ ≥ 1 it holds that

Dk(δ,...,δ)-O ≤p
T Wδ-O.

We want to stress the importance of this result for linear minimization problems
like traveling salesperson, minimum spanning tree, minimum perfect matching and the
like. Remember that for linear problems, the weighted sum notion is equivalent to the
single-objective problem (Proposition 5.3). This result can obviously be extended to the
approximate solution notions. Together with the above corollary, this means that for
linear single-objective minimization problems that have a PTAS, the k-objective extension
is always k(1 + ε)-approximable for every ε > 0, i. e. Ek(1+ε)-O is polynomial-time solvable.
In the next section we will see that, surprisingly, this does not hold for maximization
problems (unless P = NP).

Corollary 6.11. For any linear k-objective problem O = (S, f,≤), any δ ≥ 1 and any
ε > 0 it holds that

Ek(1+ε)(δ,...,δ)-O ≤p
T Dk(δ,...,δ)-O ≤p

T Wδ-(S, f1,≤).

Proof. Combine Proposition 5.3, Corollary 6.10 and Theorem 6.3.

We now show that the reduction from Proposition 6.9 also holds in the other direction
(with different factors, though).

Proposition 6.12. For any norm ‖ · ‖ on Rk there is some c′ ≥ 1 such that for any
k-objective problem O = (S, f,≤) and any δ ≥ 1 it holds that

Wc′δ
‖·‖-O ≤p

T D(δ,...,δ)-O.

In particular, if ‖ · ‖ is a p-norm then c′ = k1/p and c′ = 1 for the maximum norm.
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Proof. Let the instance x and the weights ω1, . . . , ωk ∈ N be inputs for Wδ
‖·‖-O. For

the sake of clarity, we use ← instead of ≤ in multidimensional contexts. Let ω′i = 1/ωi

if ωi 6= 0 and otherwise, let ω′i be some number larger than any possible output of
fx. Using binary search with queries to D(δ,...,δ)-O we determine some solution s ∈
Sx and some r ∈ N such that s (δ,...,δ)← (rω′1, . . . , rω′k) ∈ Nk and there is no s′ ∈ Sx

such that s′ ← (rω′1 − 1, . . . , rω′k − 1). This means that for any s′ ∈ Sx, there is
some i such that fxi (s′) ≥ rω′i. This can only happen if ωi 6= 0 and thus we get
‖(ω1f

x
1 (s′), . . . , ωkfxk (s′))T‖∞ ≥ r for all s′ ∈ Sx. Regarding s, we get ωifxi (s) ≤ δr for all

i, which means that ‖(ω1f
x
1 (s), . . . , ωkfxk (s))T‖∞ ≤ δr ≤ δ‖(ω1f

x
1 (s′), . . . , ωkfxk (s′))T‖∞

for all s′ ∈ Sx and thus s is a correct output for the problem if the norm is the maximum
norm. Otherwise, there are constants c1, c2 > 0 by the equivalence of norms such
that ‖(ω1f

x
1 (s), . . . , ωkfxk (s))T‖ ≤ c2

c1
δ‖(ω1f

x
1 (s′), . . . , ωkfxk (s′))T‖ for all s′ ∈ Sx, which

completes the first part of the assertion with c′ = c2
c1
.

The second part is obtained by observing that c2
c1

= k1/p for a p-norm.

Corollary 6.13. For any k-objective problem O = (S, f,≤) and any δ ≥ 1 it holds that

D(δ,...,δ)-O ≡p
T Wδ

‖·‖∞
-O.

Note that the factor c′ provided by Proposition 6.12 is quite large, especially for the
1-norm. By Theorems 6.4.3 and 6.3.2 we know that (for α1 = · · · = αk) the much better
factor (1 + ε) is possible by first solving Eα(1+ε)-O for some ε > 1. This result can be
extended to general monotone norms.

Proposition 6.14. Let O = (S, f,←) be a k-objective problem where← = ≤ or← = ≥,
let ‖ · ‖ be some monotone norm on Rk and α = (a1, . . . , ak) with ai ≥ 1.

If Eα-O is polynomial-time solvable, then Wmaxi(αi)
‖·‖ -O is polynomial-time solvable.

Proof. We show this similarly to Theorem 6.4.3. Suppose all objectives have to be mini-
mized (the proposition can be shown analogously if all objectives have to be maximized).
For any instance x and weight vector ω = (ω1, ω2, . . . , ωk) ∈ Nk, if Sx 6= ∅ then there is
some ŝ ∈ Sx that minimizes ‖Wfxi

T‖ for W = diag(ω1, . . . , ωk). Let S ′ be a solution of
Eα-O. Then there must be some s ∈ S ′ such that s α← ŝ, hence

fxi (s) ≤ αif
x
i (ŝ) ≤ max

i
(αi)fxi (ŝ)

for all i, which implies

‖Wfx(s)T‖ ≤ ‖W max
i

(αi)fx(ŝ)T‖ ≤ max
i

(αi)‖Wfx(ŝ)T‖ ≤ max
i

(αi)‖Wfx(s′)T‖

for all s′ ∈ Sx. It hence suffices to return a solution s∗ ∈ S ′ that minimizes ‖WfxT‖, which
can be extracted from S ′ in polynomial time, because S ′ has polynomial cardinality.

Corollary 6.15. The following statements are equivalent for any k-objective problem
O = (S, f,≤):

• Dα-O is polynomial-time solvable for some α = (α1, . . . , αk) with αi ≥ 1.

• Wδ-O is polynomial-time solvable for some δ ≥ 1.

• Wδ
‖·‖-O is polynomial-time solvable for some norm ‖ · ‖ on Rk and some δ ≥ 1.
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Further research. By adjusting the individual weights in the reductions, one can
change the approximation for Dα-O in the sense that one can improve the factor for some
criteria at the expense of others. It can be further investigated if there are problems
where this yields new approximation results, especially for problems where approximation
trade-offs are assumed to exist.

6.4 Pareto- versus Scalar Maximization
The previous section showed that for problems where all objectives have to be minimized,
approximability results translate from single-objective to multiobjective optimization
(Corollary 6.11). We now show the limits of such translations and prove that they are
impossible for maximization problems, unless P = NP.

More precisely, we consider 2-MaxClique restricted to instances that consist of an
arbitrary graph G = (V,E, l) with labels (1, 1) and two additional nodes x, y that have no
connections to other nodes and that have labels (2n+ 1, 0) and (0, 2n+ 1), where n = #V .

Definition 6.16. Let (S ′, f,≥) = 2-MaxClique and restrict the instances to the set

R = {(V ∪ {x, y}, E, l) | (V ∪ {x, y}, E, l) is an undirected, N2-vertex-labeled graph,
l(x) = (2#V + 1, 0), l(y) = (0, 2#V + 1), and l(v) = (1, 1)
for v ∈ V }.

such that we obtain the problem

2-MaxCliquerestr = (S, f,≥) where S〈G〉 =
S ′〈G〉 if G ∈ R and
∅ otherwise.

Proposition 6.17. For O = 2-MaxCliquerestr the following holds.

1. W-O is polynomial-time solvable.

2. There is no α ∈ R2 such that Eα-O is polynomial-time solvable, unless P = NP.

3. There is no α ∈ R2 such that Dα-O is polynomial-time solvable, unless P = NP.

Proof. 1.: On input (V ∪{x, y}, E, l) ∈ R and (w1, w2) ∈ Nk, the algorithm outputs {x} if
w1 ≥ w2, and {y} otherwise. Note that the special vertices x and y can be easily detected
by analyzing l.

2.: Assume that Eα-O is polynomial-time solvable for some α ∈ R2. We may assume
α = (c, c) for some c ≥ 1. We show that Clique is c-approximable which implies
P = NP [ALM+92].

Let G = (V,E) be a (nonempty) graph. Define the 2-MaxCliquerestr instance
G′ = (V ∪ {x, y}, E, l) according to the definition of R. Now consider the solution
algorithm for Eα-O on input G′. Let m ≥ 1 be the size of the maximal clique in G. Then
S
〈G′〉
opt contains a solution with value (m,m) and the output of the algorithm must contain

some S ⊆ V ∪ {x, y} such that c · f 〈G′〉(S) ≥ (m,m) ≥ (1, 1). From f
〈G′〉
1 ({y}) = 0 and

f
〈G′〉
2 ({x}) = 0 it follows that S 6= {y} and S 6= {x}. Therefore, S ⊆ V , since x and y
have no edges with other nodes. Hence c ·#S ≥ m, i. e., S is a clique of size m/c in G.

3.: Follows from the second part and Theorem 6.3.
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Figure 6.2: The right-hand side shows the values of all solutions to the 2-objective maximum weight
perfect matching instance that is shown on the left. There are exactly the three optimal values (0, 6),
(6, 0), and (2, 2), but the weighted-sum notion W-O finds only solutions with values (0, 6) and (6, 0).
There is no α ∈ R2 such that (0, 6) or (6, 0) weakly α-dominates (2, 2).

The example 2-MaxCliquerestr shows the disadvantage of the weighted-sum notion
for maximization problems. This effect does not only appear at artificially constructed
multiobjective problems. For instance, consider O to be the 2-objective maximum
weight perfect matching problem, which is defined analogously to 2-MM. Here W-O is
polynomial-time solvable. Nevertheless, the instance depicted in Figure 6.2 shows that the
solutions for W-O are not good approximations for the set of Pareto-optimal solutions.
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Chapter 7

Approximation Algorithms for
Traveling Salesperson Problems

Following the analysis of the structural properties of general multiobjective problems, we
now want to focus on a specific problem, the traveling salesperson problem. We take
it as an example and want to demonstrate several techniques concerning multiobjective
approximation:

Our Results. We show upper bounds for the approximability in section 7.1 by applying
approximation algorithms for subproblems and by guessing partial solutions to remove
the error introduced by the approximation or move the error from one objective to the
other. We thus obtain a deterministic (2, 2)-approximation, a randomized (3/2, 2 + ε)- and
a randomized (3/2 + ε, 2)-approximation for 2-TSP for every ε > 0.

Using approximation preserving reductions from single-objective problems to multi-
objective problems we show the limits of multiobjective approximability in section 7.1.6:
An improvement of the approximation of the multiobjective problem would immediately
improve the single-objective problem, which seems out of reach or at least requires much
more complicated tools that are not yet available for multiobjective optimization. Hereby,
the second objective is used to enforce a constraint on the structure of the solution.

The positive and negative results for 2-TSP obtained in section 7.1 are summarized
in Table 7.1 on page 100.

Finally, in section 7.2 we show how a result from discrepancy theory can be used
as a general tool to transfer ideas from single-objective optimization to multiobjective
optimization. We show this for the example of the maximum traveling salesperson problem
on directed and undirected graphs, where we obtain a randomized 1/2-approximation for
k-MaxATSP and a randomized 2/3-approximation for k-MaxSTSP. Note that for
maximization problems, we use approximation factors smaller than one. The more
unified view on the factors can be obtained by inverting them, i. e. we obtain 2- and
3/2-approximations, respectively.

For all considered variants of the traveling salesperson problem (minimum with triangle
inequality, maximum on undirected and directed graphs), we improve the best known
approximation ratios and at the same time give simpler algorithms.
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Definitions. We extend the definitions of single-objective approximation to multiobjec-
tive approximation in a straightforward way. Note that for multiobjective optimization,
the approximation ratio can differ in each objective and thus has to be specified as a
vector. Furthermore, it is possible that a single approximation algorithm has several
(incomparable) approximation ratios. Some of these definitions have already been given
in the previous chapter.

Definition 7.1. Let O = (S, f,←) be a k-objective problem and α = (α1, . . . , αk) ∈ Rk,
such that αi ≥ 1 for all 1 ≤ i ≤ k.

Some set of solutions S ′ ⊆ Sx is called an α-approximation of Sx if for every s ∈ Sx
there is some s′ ∈ S ′ such that s′ α← s. Remember that we have s′ α← s if for all 1 ≤ i ≤ k,
fi(s′) ≤ αifi(s) (if ←i = ≤) or αifi(s′) ≥ fi(s) (if ←i = ≥).

We say that some deterministic or randomized polynomial-time algorithm is an α-
approximation algorithm for O if on input x, it computes an α-approximation of Sx
and fails with probability at most 1/2 on each input if it is randomized. Note that it is
equivalent to say that such an algorithm solves Eα-O in (deterministic or randomized)
polynomial time.

The vector α above is called an approximation ratio of the algorithm or the set S ′.
An algorithm is an FPTAS (fully polynomial-time approximation scheme) for O, if

on input x and ε > 0 it computes a (1 + ε)-approximation of Sx in time polynomial in
|x| + 1/ε. It is called PTAS (polynomial-time approximation scheme) if its runtime is
polynomial in |x|.

The analogs of FPTAS and PTAS for randomized algorithms, which are allowed to
fail with probability at most 1/2 on each input, are called FPRAS (fully polynomial-time
randomized approximation scheme) or PRAS (polynomial-time randomized approximation
scheme), respectively.

For maximization problems, it is often more intuitive to consider approximation ratios
smaller than 1. If we speak of an approximation ratio α where 0 < α < 1 (we will
especially do this in section 7.2), the above definitions apply to the (componentwise)
inverse of α.

7.1 Minimum Traveling Salesperson

7.1.1 Introduction, Related Problems and Known Results
The traveling salesperson problem is one of the oldest combinatorial optimization problems.
For a given set of cities, one has to find a shortest round trip that visits each city exactly
once. This problem was first mentioned in 1831 as a problem of a traveling salesperson
who wants to cover as many locations as possible without visiting locations twice [Voi31].
In the 1950s and 1960s the traveling salesperson problem became increasingly popular in
mathematics and computer science.

In the original formulation, the salesperson is not allowed to visit a city more than
once. There are two arguments against this restriction: First, it does not make sense
for the substantial majority of real-world traveling salesperson problems, including all
geometric versions [JP85]. Second, it considerably degrades the approximability of the
problem. Therefore, with a minimum loss of generality, one often studies the traveling
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salesperson problem where multiple visits of cities are allowed. This is equivalent to the
metric traveling salesperson problem or the traveling salesperson problem with triangle
inequality (TSP), where one demands that the triangle inequality holds for each triple of
cities. A special case of TSP is the Euclidean variant, where each city is located at some
point in the plane, and the distance function is defined as the Euclidean distance of two
cities.

In 1972, a breakthrough was achieved by Karp [Kar72] who proved the NP-hardness of
TSP. This shows that the search for a polynomial-time algorithm for TSP is an extremely
challenging endeavor and raises the question for good approximation algorithms. For a
long time, the best known approximation for TSP and Euclidean TSP was the simple
tree-doubling method. In 1976, Christofides [Chr76] improved these results significantly
by showing that a combination of a minimum spanning tree with a minimum matching
yields a Hamiltonian cycle with approximation ratio 3/2. After 30 years of research, this
basic algorithm is still the best known approximation for TSP.

Let us give a short overview of this algorithm: First it computes a minimum spanning
tree of the graph and then a minimum perfect matching of all vertices of odd degree in
the tree (this is an even number). Finally, by taking shortcuts if necessary, the minimum
spanning tree and the perfect matching are combined to a Hamiltonian cycle. To see that
the cycle is a 3/2-approximation, observe the following: A minimum spanning tree is at
most as long as the optimal tour minus some edge. Furthermore, the tour consists of two
perfect matchings of all vertices (the edges with odd index and the edges with even index)
and thus the length of the minimum perfect matching obtained in the algorithm is at
most one half of the length of the tour.

Concerning more restricted variants of the problem, a polynomial-time approxima-
tion scheme (PTAS) has been found for the Euclidean TSP by Arora [Aro98] and for
{0, 1}-weighted graphs, an approximation ratio better than 3/2 has been achieved re-
cently by Mömke and Svensson [MS11] and independently by Oveis Gharan, Saberi and
Singh [OGSS11].

Regarding lower bounds, Papadimitriou and Vempala [PV06] showed that TSP cannot
be approximated with a ratio better than 220/219, unless P = NP. Another variant of TSP
is studied by Papadimitriou and Yannakakis [PY93] who construct a 7/6-approximation
algorithm for TSP(1,2), which is the restriction of TSP where all distances are either 1
or 2.

Two-Objective TSP. The multiobjective traveling salesperson problem was first stud-
ied by Gupta and Warburton [GW86]. Angel, Bampis, and Gourvès [ABG04] gave a
3/2-approximation for the two-objective variant of TSP(1,2). Furthermore, Angel et al.
[ABGM05] investigated the non-approximability of this problem. Ehrgott [Ehr00] also
studied the multiobjective traveling salesperson problem but the approximation ratio ob-
tained there cannot be compared to the ratios considered here. Manthey and Ram [MR09]
gave a (2 + ε)-approximation algorithm for multiobjective TSP with componentwise
metric cost functions.

Our Results. We extend the usual definition of the multiobjective traveling salesperson
problem from Hamiltonian cycles in undirected graphs with componentwise metric cost
functions [MR09, Ehr00] to closed walks (that allow vertex repetitions) on edge-labeled
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New results: deterministic (2, 2) Theorem 7.8

randomized (3/2, 2 + ε) Theorem 7.10

(3/2 + ε, 2) Theorem 7.10

Improvement to (3/2− α, β) yields 3/2− α for TSP trivial

( 1+
√

5
2 − α, 2− ε) yields 1+

√
5

2 − α for TSPPst Theorem 7.12

Table 7.1: Summary of the approximation ratios and connections to single-objective problems obtained
for 2-TSP. The variables α, β and ε represent universally quantified positive reals.

hypergraphs. This definition contains the usual definition as a special case and the
complication is also worthwhile since, for instance, there are usually no real trade-offs for
componentwise-metric cost functions, as we will see later.

Even though we generalize the definition, we can provide more accurate approxima-
tions. For 2-TSP we obtain a deterministic 2-approximation, a randomized (3/2 + ε, 2)-
approximation, and a randomized (3/2, 2 + ε)-approximation, where we build on the follow-
ing known approximation schemes: An FPTAS for multiobjective minimum spanning tree,
an FPTAS for multiobjective shortest path, and an FPRAS for multiobjective minimum
perfect matching. These were shown by Ravi and Goemans [RG96], Hansen [Han79] and
Papadimitriou and Yannakakis [PY00], respectively, while Papadimitriou and Yannakakis
gave a generic framework to show all three results. In order to apply these algorithms,
we have to extend them to multigraphs. So as a byproduct we provide approximation
schemes for the multigraph variants of the mentioned problems.

We present arguments that indicate the hardness of improving our approximation
algorithms. Obviously, an improvement to a ratio better than 3/2 would immediately
improve the approximability of the single-objective traveling salesperson problem. This
seems very difficult, since there has not been any improvement in the last 35 years. We
further give approximation preserving reductions that allow us to translate the well-studied
single-objective problem TSPPst to 2-TSP. For TSPPst, the traveling salesperson path
problem, on input of an edge-labeled undirected complete graph whose weights satisfy
the triangle inequality, the task is to find a path connecting two specified vertices and
visiting each other vertex exactly once. For a long time, the approximation algorithm by
Hoogeveen [Hoo91] for this problem with a ratio of 5/3 could not be improved. Recently, An,
Kleinberg and Shmoys [AKS11] gave an algorithm with approximation ratio 1+

√
5

2 ≈ 1.618.
We obtain that certain improvements of the approximation algorithms for 2-TSP force us
to still improve this approximation ratio for TSPPst. Table 7.1 on page 100 summarizes
the obtained approximation ratios and these arguments.

As a consequence of our results, we obtain a particular interesting situation for 2-
TSP (cf. Figure 7.1): We know that 2-TSP is randomized (3/2, 2 + ε)-approximable and
randomized (3/2 + ε, 2)-approximable. It is difficult to improve these approximations with
respect to any component, and it is also difficult to obtain a (1+

√
5

2 −ε, 2−ε)-approximation.
However, we have no evidence in favor of or against an (α, β)-approximation where
1+
√

5
2 ≤ α, β < 2. The search for such an algorithm remains a challenging open problem.



7.1. MINIMUM TRAVELING SALESPERSON 101

1 3
2

1+
√

5
2

2

3/2

1+
√

5
2

2

A

B

C

Dr1

r2

Figure 7.1: Approximation ratios for 2-TSP. An approximation ratio inside A would improve
Christofides’ approximation and a ratio inside B would improve the approximation by An, Klein-
berg and Shmoys [AKS11]. We prove approximation ratios r1 and r2, hence area D is of no further
interest. However, evidence against approximation algorithms within C is not known.

7.1.2 Definitions
We repeat the definition of k-TSP from section 4.2 and also define the single-objective
problem TSPPst.

Definition 7.2 (k-Objective Traveling Salesperson).

k-TSP = (S, f,≤) where

• instances are Nk-edge-labeled undirected multigraphs G = (V,E, l),
• S〈G〉 = {W ⊆ E | W is a closed spanning walk of G} and
• f 〈G〉(W ) = ∑

e∈W l(e).

Definition 7.3 (Traveling Salesperson Path Problem).

TSPPst = (S, f,≤) where

• instances are N-edge-labeled undirected complete graphs G = (V,E, l)
where the labels satisfy the triangle inequality and two distinct vertices
s, t ∈ V ,
• S〈G,s,t〉 = {P ⊆ E | P is a closed spanning path in G from s to t} and
• f 〈G,s,t〉(P ) = ∑

e∈P l(e).

We now justify why this definition of k-TSP is a suitable generalization of the usual
(metric) traveling salesperson problem by first showing that the latter is equivalent to
1-TSP with respect to approximation preserving reductions. For a single objective,
parallel edges do not make sense as they can be replaced by the edges with minimal weight.
Therefore, 1-TSP is equivalent to the single-objective TSP where multiple visits of cities
are allowed. This variant in turn can be reduced to the metric variant by computing the
shortest paths between any two vertices in polynomial time. Since the metric traveling
salesperson problem is a restriction of 1-TSP, they are equivalent.

The situation changes when we consider TSP with multiple objectives. Here there
exist at least three natural variants of different strengths. k-TSP is the most general



102 CHAPTER 7. APPROXIMATION ALGORITHMS FOR TRAVELING SALESPERSON PROBLEMS

variant, which handles arbitrary multigraphs and which allows multiple visits of cities.
Metric k-TSP is the restriction of k-TSP where we require that if there is a path between
two points in the multigraph, then there is also a direct edge that is at least as short in all
components (i. e., a direct connection is always a shortest path between two points). Note
that in this variant one can easily avoid multiple visits by taking a shortcut if a node was
visited before. Componentwise metric k-TSP is the restriction of metric k-TSP where
we require a simple graph that is componentwise metric, i. e., the triangle inequality holds
for every component. This variant was studied by Manthey and Ram [MR09], and here
again it is easy to avoid multiple visits. Against the background of several variants of
different strengths we use the notion k-TSP for the most general variant of the problem.
Note that for componentwise metric k-TSP, no real trade-offs are possible: Consider a
graph containing two nodes A and B and two cost functions representing road length and
toll costs. Since the road length is metric, the single edge between A and B must be the
shortest route. At the same time, though, this edge must also be the cheapest connection
between A and B for the same reason.

7.1.3 Matching and Spanning Tree Algorithms on Multigraphs
For k ≥ 1, let multigraph k-MST, multigraph k-MM and multigraph k-SP denote
the minimum spanning tree, minimum perfect matching and shortest path problems on
Nk-labeled multigraphs defined as the straightforward extensions to multigraphs of the
problems defined in section 4.2. Further, define multigraph k-MPM as the problem of
finding a minimum cost path matching for the input graph and some given subset of
vertices with even cardinality.

It is known that the multiobjective variants of minimum spanning tree (k-MST),
shortest path (k-SP), and minimum perfect matching (k-MM) are NP-hard (cf. Propo-
sition 5.4), more specifically, D-O is NP-hard for all O ∈ {k-MST, k-SP, k-MM} and
k ≥ 2. Usually, it is only shown that it is NP-hard to decide whether a solution satisfying
a specified quality exists. Because of Proposition 3.8 and Theorem 5.21 this is equivalent
to actually finding the solution.

Because of this NP-hardness, we need approximation algorithms for the multigraph
variants of these problems. We extend known approximation schemes on simple graphs
such that they work for multigraphs. In a second step we extend the approximation
scheme for multiobjective minimum perfect matching on multigraphs such that it works
for multiobjective minimum path matching on multigraphs.

Theorem 7.4 ([RG96, PY00]). For any k ≥ 1 there is an FPTAS for k-MST, an FPRAS
for k-MM, and an FPTAS for k-SP.

Corollary 7.5. For any k ≥ 1 there is an FPTAS for multigraph k-MST, an FPRAS for
multigraph k-MM, and an FPTAS for multigraph k-SP.

Proof. We argue for all three problems separately. Remember that the set of vertices
incident to a multi-edge e is denoted by [e].

multigraph k-MST: We reduce the problem for Nk-labeled multigraphs to the case of
Nk-labeled simple graphs, where the existence of an FPTAS is known by Theorem 7.4.
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Let G = (V,E, c) be an Nk-labeled multigraph. We transform G to a simple graph
G′ by splitting each edge into three parts. More precisely, if an edge e ∈ E connects
the vertices u and v, then we add two new vertices ue and ve to the graph and
replace e by the three edges f(e) = {{u, ue}, {ue, ve}, {ve, v}}. Furthermore, the
edge in the middle {ue, ve} is labeled with c(e), while the remaining two edges are
labeled with (0, . . . , 0).
Formally, G′ = (V ∪ U,E ′, c′) where U = {ve | e ∈ E, v ∈ [e]}, E ′ = ⋃

e∈E f(e), and
c′ : E ′ → Nk such that

c′(e′) =
c(e) if [e′] = {ue, ve} for some u, v ∈ V, e ∈ E and

(0, . . . , 0) if [e′] * U.

We extend f to subsets E1 ⊆ E by f(E1) = ⋃
e∈E1 f(e). So f translates subsets

E1 ⊆ E into subsets E ′1 ⊆ E ′. For the converse translation, let

g(E ′1) = {e ∈ E | {ue, ve} ∈ E ′1 for some u, v ∈ V }
for E ′1 ⊆ E ′. Observe that f and g respect the sum of the labels, i. e.,

c(E1) = c′(f(E1)) and c′(E ′1) = c(g(E ′1)). (7.1)

Each path in some E ′1 ⊆ E ′ that starts and ends in nodes from V induces a path in
g(E ′1) with the same start and end nodes. Therefore,

E ′1 is connected and covers V ⇒ g(E ′1) is connected and covers V . (7.2)

We describe the FPTAS for multigraph k-MST on input G = (V,E, c) and ε > 0:
Transform G into G′ as described above and run the FPTAS for k-MST [PY00] on
input G′ and ε. We obtain a (1 + ε)-approximation A of all minimal spanning trees
of G′. For each T ′ ∈ A, compute g(T ′), prune this graph as long as it contains any
cycles, and output the resulting tree.
The running time of the algorithm is polynomial in |G| and 1/ε.
Let T be a minimal spanning tree of G = (V,E, c). We argue that the algorithm
above outputs a (1+ε)-approximation of T . Observe that f(T )∪{e′ ∈ E ′ | [e′] * U}
is a spanning tree of G′ with costs c′(f(T )) = c(T ). So A contains a spanning tree
T ′ of G′ such that c′(T ′) ≤ (1 + ε) · c(T ). By (7.2), g(T ′) is connected and by (7.1),
c(g(T ′)) = c′(T ′) ≤ (1 + ε) · c(T ). Hence the algorithm outputs a spanning tree of
G with costs at most (1 + ε) · c(T ).

multigraph k-MM: We again reduce this problem to the case of minimal perfect matchings
in an Nk-labeled simple graph, where the existence of an FPTAS is known by
Theorem 7.4. For this, let G = (V,E, c) be an Nk-labeled multigraph. We transform
G to exactly the same Nk-labeled simple graph G′ = (V ∪ U,E ′, c′′) as in the proof
for multigraph k-MST, only the cost function c′′ is defined differently. So recall U
and E ′ from the first part. The label of the original edge c(e) is put on both outer
edges, while the edge in the middle is labeled with zero. More formally:

c′′(e′) =
c(e) if [e′] = {v, ve} for some v ∈ V, e ∈ E and

(0, . . . , 0) if [e′] ⊆ U
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We also define a different converse translation h (which is not inverse to f):

h(E ′1) = {e ∈ E | {ue, ve} /∈ E ′1 for u, v ∈ V with {u, v} = [e]}

for E ′1 ⊆ E ′.
The FPRAS for multigraph k-MM on input G = (V,E, c) and ε > 0 works as follows:
Transform G into G′ as described above and run the FPRAS for k-MM [PY00]
on input G′ and ε. We obtain a (1 + ε)-approximation A of all minimal perfect
matchings G′. For each M ′ ∈ A, output h(M ′).
The running time of the algorithm is polynomial in |G| and 1/ε. It remains to show
that the returned edge sets are in fact perfect matchings and that they approximate
the minimal perfect matchings of G with probability at least 1/2.
For the first part, consider some perfect matching M ′ ⊆ E ′ of G′. Observe that for
any e ∈ E with [e] = {u, v}, we have {u, ue}, {ve, v} ∈M ′ ⇐⇒ {ue, ve} /∈M ′. So
since any vertex v ∈ V must be matched exactly once in M ′, there is exactly one
e ∈ E such that {v, ve} ∈ M ′. Since u is uniquely determined by {u, v} = [e], we
get that there is exactly one u ∈ V such that {u, v} ∈ h(M ′) and thus h(M ′) is a
perfect matching of G′.
For the second part, first note that for any perfect matching M ′ of G′ we have

c′′(M ′) = 2c(h(M ′)). (7.3)

Now letM be a perfect matching of G and considerM ′ = {{v, ve} | v ∈ [e], e ∈M}∪
{{ue, ve} | {u, v} = [e], e ∈ E −M}. Obviously, M ′ is a perfect matching of G′
and h(M ′) = M . So we have c′′(M ′) = 2c(M), and the output of the FPRAS
must contain some perfect matching M̃ ′ of G′ such that c′′(M̃ ′) ≤ (1 + ε)c′′(M ′) =
2(1 + ε)c(M) with probability at least 1/2. From M̃ ′, we obtain a perfect matching
M̃ = h(M̃ ′) of G such that c(M̃) = 1

2c
′′(M̃ ′) ≤ (1 + ε)c(M) and thus the assertion

is proved.

multigraph k-SP: For multigraph shortest path, we use exactly the same construction
as in the proof for multigraph k-MM. So recall the notions from the part about
multigraph k-MST. The algorithm works as follows:
On input of a multigraph (V,E, c), s, t ∈ V and ε > 0, construct G′ = (V ∪U,E ′, c′)
as in the first part, run the FPTAS for k-SP [PY00] on G′, s, t and ε, apply g to
the paths found by the FPTAS and return the results.
The algorithm obviously runs in polynomial time and solves the problem because of
the properties of f , g and c already noted in the first part.

The FPRAS for multigraph k-MPM that is stated in the following theorem is based
on the approximation schemes for multigraph k-SP and multigraph k-MM.

Theorem 7.6. For any k ≥ 1 there is an FPRAS for multigraph k-MPM.

Proof. Let G = (V,E, c) be an Nk-labeled multigraph, U ⊆ V be a set of even cardinality
and ε > 0.
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We start by constructing an Nk-labeled multigraph G′ = (U,E ′, c′) by approximately
computing shortest paths between vertices of U and letting each path be an edge in G′
between its endpoints. More formally: For every two-element subset {s, t} of U , run the
FPTAS for multigraph k-SP (cf. Corollary 7.5) on G, s, t and ε to obtain the approximate
Pareto set {p{s,t}1 , . . . , p{s,t}m{s,t}

} of shortest paths between s and t in G. Add each of these
paths as a single edge to the graph to obtain the set of edges E ′ = {({s, t}, i) | s, t ∈
U, s 6= t and 1 ≤ i ≤ m{s,t}} and set c′({s, t}, i) = c(p{s,t}i ) for ({s, t}, i) ∈ E ′.

Now run the FPRAS for multigraph k-MM (cf. Corollary 7.5) on G′ and ε and obtain
an approximate Pareto set of matchingsM. Finally, for each perfect matching M ∈M,
return {p{s,t}i | ({s, t}, i) ∈M}.

The running time of the algorithm is polynomial in |G| and 1/ε, and the returned
sets are path matchings since every vertex s ∈ U is matched by exactly one edge in M
and thus by exactly one path. Concerning the approximation ratio, let P be a path
matching of U in G. Every path p ∈ P with endpoints s, t ∈ U is approximated by the
FPTAS for multigraph k-SP, which means that there is some 1 ≤ i ≤ m{s,t} such that
c(p{s,t}i ) ≤ (1 + ε)c(p). For P̃ being the set of these (approximately) shortest paths p{s,t}i

for all paths p ∈ P , we obtain c(P̃ ) ≤ (1 + ε)c(P ). Furthermore, P̃ is a path matching
and thus corresponds to a perfect matching M of G′ with the same costs. This perfect
matching is approximated by a perfect matching M̃ using the FPRAS for multigraph
k-MM. For the path matching P̃ ′ finally obtained from M̃ , we have the inequality

c(P̃ ′) = c′(M̃)
≤ (1 + ε)c′(M) = (1 + ε)c(P̃ )
≤ (1 + ε)(1 + ε)c(P ) = (1 + 2ε+ ε2)c(P )
≤ (1 + 3ε)c(P )

which means that the algorithm described above is an FPRAS for k-MPM.

In the algorithms that will follow, we will explicitly call the approximation schemes for
multigraph 2-MST and multigraph 2-MPM and denote them by 2-MST-Approx(V,E, c, ε)
and 2-MPM-ApproxRand(V,E, c, U, ε), where (V,E, c) is an Nk-labeled multigraph, U ⊆ V
are the vertices to match (even cardinality), and ε is the approximation factor. On a single
input, the randomized approximation 2-MPM-ApproxRand will be called multiple times.
Thus we assume that this approximation is amplified in a way such that the probability
that all calls succeed is at least 1/2.

7.1.4 Deterministic Approximation
Our deterministic 2-approximation for 2-TSP is inspired by Christofides’ approximation
for TSP. In contrast to the single-objective problem, we cannot assume that the instances
of 2-TSP are metric and thus have to replace the perfect matching for the odd degree
vertices in the tree by a path matching. Furthermore, we do not compute the minimal path
matching but only show that a suitable path matching can be extracted deterministically
from an approximate two-objective minimum spanning tree. More precisely, we transform
a spanning tree into a path matching of at most the same costs. Thus we avoid the
randomness of the approximation algorithm for two-objective minimum path matching
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(2-MPM). Although this extracted path matching is by far not optimal, it suffices to
improve the approximation, since at present, the bottleneck of approximations for 2-TSP
is not the method of finding a good path matching, but rather the argument that it exists.
Lemma 7.7 shows that Algorithm 7.1 computes a suitable path matching in polynomial
time which is in turn used by Algorithm 7.2 to compute the (2, 2)-approximation for
2-TSP.

Algorithm 7.1: match(T, U [, n])
Input : tree T , set of nodes U , node n (default: root of T )
Output : path matching on U in T (if possible)

1 X := ({n} ∩ U) ∪⋃c child of n match(T, c, U);
2 while #X ≥ 2 do
3 remove two nodes s, t from X and output the unique path from s to t

4 return X

Lemma 7.7. Let G = (V,E, c) be some Nk-labeled multigraph for k ≥ 1, T ⊆ E a
spanning tree of G and r ∈ V . Then, for any U ⊆ V of even cardinality, match(T, U)
finds in polynomial time a path matching M of U in T such that c(M) ≤ c(T ).

Proof. We show that each edge of the path matching is an edge of the tree and is used
exactly once, which suffices to show c(M) ≤ c(T ).

We can assume an arbitrary node r to be the root of T and then define a suitable
parent and child relation. Note that outputting a path (i. e. inserting it into the final set
of paths returned by the algorithm) is different from returning a set of nodes to the caller.
Because of the condition on the loop, it always holds #X ≤ 1 when X is returned. Since
each recursive call handles its own subtree, it can be shown by induction that when {v} is
returned by a recursive call, no edge on the path from v to the root r has been output yet.
This means that when the path between two nodes s, t in the recursive call match(T, n, U)
is output, none of its edges has been output yet (n is the common ancestor of s and t)
and none of them will be output again. This shows that c(M) ≤ c(T ).

Observe that all nodes are matched if #U is even. Furthermore, the algorithm runs in
polynomial time since we have at most one recursive call for each node in the tree.

Algorithm 7.2: 2-TSP-ApproxDet(V,E, c)
Input :N2-labeled multigraph (V,E, c)
Output : set of closed spanning walks of (V,E, c)

1 ε := 1
2#V ;

2 T := 2-MST-Approx(V,E, c, ε);
3 foreach (T1, T2) ∈ T × T do
4 U := {v ∈ V | degT1(v) is odd};
5 M := match(T2, U);
6 output closed spanning walk of (V,E) using T1 and M;

Theorem 7.8. 2-TSP is (2, 2)-approximable.
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Proof. Let G = (V,E, c) be a N2-labeled multigraph and W an arbitrary closed spanning
walk of (V,E). We show that 2-TSP-ApproxDet(V,E, c) outputs a closed spanning walk
Wapprox such that c(Wapprox) ≤ 2c(W ).

As in Algorithm 7.2, let m := #V and ε := 1
2m . We split W into contiguous subwalks

W1, . . . ,Wm such that every vertex is at one end of at least one of the subwalks. This can
be achieved by letting every subwalk start at the first occurrence of some vertex in W .
For every i ∈ {1, 2} there is some 1 ≤ pi ≤ m such that ci(Wpi

) ≥ 1
m
ci(W ). By removing

Wpi
from W , the multiset of edges Ei thus obtained is connected and covers every vertex

of V . Thus (V,E) has spanning trees T ′i with no higher costs than Ei, which means
that c(T ′1) ≤ ((1− 1/m)c1(W ), c2(W )) and c(T ′2) ≤ (c1(W ), (1− 1/m)c2(W )). The FPTAS
for the minimum spanning tree, 2-MST-Approx(V, c, ε), provides an ε-approximation of
every spanning tree of G. So T ′1 and T ′2 are approximated by say T1 and T2 such that
c(T1) ≤ (1 + 1/2m)c(T ′1) and c(T2) ≤ (1 + 1/2m)c(T ′2). Consider the respective loop iteration
for the rest of the proof.

The number of vertices of odd degree in an undirected graph is even, so c(M) ≤ c(T2)
by Lemma 7.7. The closed spanning walk Wapprox can be easily constructed since all
vertices of odd degree in T1 are matched by edges in M and thus every vertex has even
degree when the edges of T1 and M are used. Concerning the costs we obtain

c (Wapprox) ≤ c (T1) + c (M) ≤ c (T1) + c (T2) ≤
(

1 + 1
2m

)
(c (T ′1) + c (T ′2))

≤
(

1 + 1
2m

)(
1− 1

m
+ 1

)
c (W ) =

(
2− 1

2m2

)
c (W ) < 2c (W ) .

It remains to show that Algorithm 7.2 runs in polynomial time. The runtime of the
FPTAS 2-MST-Approx is polynomially bounded in m + 1

ε
= 3m. Thus, the cardinality

of T itself is bounded by a polynomial in m, say p. For each of the p2 combinations of
spanning trees, the steps 4–6 can be carried out in polynomial time (cf. Lemma 7.7).
Hence Algorithm 7.2 is a polynomial-time algorithm.

7.1.5 Randomized Approximation
The randomized algorithm 2-TSP-ApproxRandε that is given below provides both a
(3/2 + ε, 2)-approximation and a (3/2, 2 + ε)-approximation for 2-TSP. This algorithm is
an enhanced variant of a randomized approximation for the componentwise metric 2-TSP
that was studied by Manthey and Ram [MR09]. First, it computes approximations of the
minimum spanning trees, then considers the vertices that have odd degree in a single tree,
computes approximations of the minimum path matchings of these vertices, and finally
pairwise combines all trees with all suitable matchings which results in a set of closed
spanning walks. A precise analysis provides approximation ratios that are better than
the ones stated by Manthey and Ram [MR09], even though the new algorithm manages a
more general variant of the problem.

The use of the FPTAS for the two-objective minimum spanning tree problem is
essential, as it allows us to reduce the error far enough such that it is dominated by the
costs of a contiguous subwalk of an optimal walk. This makes it possible to remove an
ε-error in one of the two objectives.

Lemma 7.9. For every ε > 0, Algorithm 7.3 runs in polynomial time.
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Algorithm 7.3: 2-TSP-ApproxRandε(V,E, c)
Input :N2-labeled multigraph (V,E, c)
Output : set of closed spanning walks of (V,E, c)

1 m := #V ; ε1 := ε
m2 ; ε2 := ε

2m;
2 P := 2-MST-Approx(V,E, c, ε1);
3 foreach T ∈ P do
4 U := {v ∈ V | degT (v) is odd};
5 A := 2-MPM-ApproxRand(V,E, c, U, ε2);
6 foreach M ∈ A do
7 output closed spanning walk using the edges of T and M;

Proof. Since 2-MST-Approx is an FPTAS, its running time is polynomial in n+ 1
ε1

= n+m2

ε

where n is the size of the input (V,E, c). So we can obtain P in polynomial time and
P contains only polynomially many elements. This means that the first loop is iterated
polynomially often. 2-MPM-ApproxRand runs in polynomial time in 1

ε2
plus the length of

(V,E, c, U) and thus also in n. This in turn means that A contains only polynomially
many matchings, so the second loop is iterated only polynomially often. The operation in
line 7 can obviously be carried out in polynomial time and thus the whole algorithm runs
in polynomial time.

Theorem 7.10. For every ε > 0, 2-TSP is randomized (3/2 + ε, 2)-approximable and
randomized (3/2, 2 + ε)-approximable.

Proof. We first show that Algorithm 7.3 computes a (3/2 + ε, 2)-approximation for 2-
TSP. By Lemma 7.9 the algorithm runs in polynomial time, so it remains to show the
approximation ratio and the success probability.

Let ε > 0 and assume ε ≤ 1 (otherwise, just call the algorithm with ε = 1). Let (V,E, c)
be some N2-labeled multigraph and W be an arbitrary closed walk of (V,E). We can
assume that #V ≥ 2. We show that Algorithm 7.3 computes a (3/2 + ε, 2)-approximation
for W with probability at least 1/2. Define m, ε1 and ε2 as in the algorithm. As in the
proof of Theorem 7.8, we can again argue that (V,E, c) has a spanning tree T ′ with
c(T ′) ≤ (c1(W ), m−1

m
c2(W )). Hence, the algorithm 2-MST-Approx finds a spanning tree T

with costs

c(T ) ≤
(

1 + ε

m2

)(
c1(W ),

(
1− 1

m

)
c2(W )

)
.

Consider the iteration that handles T and let U ⊆ V be the vertices of odd degree in T
(U has even cardinality). From W we can easily find two path matchings M1 and M2 of
U in (V,E, c) such that c(M1) + c(M2) ≤ c(W ): For each u ∈ U , fix the first occurrence
in W , and cut W at each of those #U positions to obtain #U subwalks S1, . . . , S#U . For
each i, we remove any cycles from Si and obtain a path Pi with c(Pi) ≤ c(Si). Then, both
M1 = {Pi | i even} and M2 = {Pj | j odd} are path matchings of U in (V,E, c). Hence,
there is some path matching M ′ of U in (V,E, c) such that c(M ′) ≤ (1

2c1(W ), c2(W )).
There must be some approximate minimum path matching M in A (with probability

at least 1/2) such that c(M) ≤ (1 + ε
2m)(1

2c1(W ), c2(W )). The iteration that considers
M now outputs a spanning walk Wapprox with the following costs (note that m ≥ 2 and
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ε ≤ 1):

c1 (Wapprox) ≤ c1 (T ) + c1 (M)

≤
(

1 + ε

m2

)
c1 (W ) +

(
1 + ε

2m

) 1
2c1 (W ) ≤

(3
2 + ε

)
c1 (W )

c2 (Wapprox) ≤ c2 (T ) + c2 (M)

≤
((

1 + ε

m2

)(
1− 1

m

)
+
(

1 + ε

2m

))
c2 (W )

≤
((

1 + 1
m2

)(
1− 1

m

)
+
(

1 + 1
2m

))
c2 (W )

≤
(

1− 1
m

+ 1
m2 + 1 + 1

2m

)
c2 (W )

≤
(

2− 1
2m + 1

m2

)
c2 (W )

≤ 2 c2 (W )

Using symmetric arguments, the algorithm also finds a spanning tree T and a path
matching M of the odd-degree vertices of T such that c(T ) ≤ (1 + ε

m2 )(m−1
m
c1(W ), c2(W ))

and c(M) ≤ (1 + ε
2m)(1

2c1(W ), c2(W )). By combining these, we obtain a spanning walk
Wapprox such that

c1 (Wapprox) ≤ c1 (T ) + c1 (M)

≤
((

1 + ε

m2

)(
1− 1

m

)
+
(

1 + ε

2m

) 1
2

)
c1 (W )

≤
((

1 + 1
m2

)(
1− 1

m

)
+
(

1 + 1
2m

) 1
2

)
c1 (W )

≤
(

1− 1
m

+ 1
m2 + 1

2 + 1
4m

)
c1 (W )

≤
(3

2 −
3

4m + 1
m2

)
c1 (W )

≤ 3
2 c1 (W )

and

c2 (Wapprox) ≤ c2 (T ) + c2 (M)

≤
((

1 + ε

m2

)
+
(

1 + ε

2m

))
c2 (W )

≤
((

1 + ε

4

)
+
(

1 + ε

4

))
c2 (W )

≤ (2 + ε) c2 (W ) .

Note that the probability that all Pareto-optimal points are appropriately approximated
can be smaller than 1

2 . This can be compensated easily by appropriately amplifying the
success probability of 2-MPM-ApproxRand.
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7.1.6 Lower Bound Arguments
As explained in section 7.1.1 (cf. also Figure 7.1 on page 101), we discuss implications of
improvements of the approximation ratio of 2-TSP obtained in Theorem 7.10. We show
that

• an improvement of the second component, i. e. to (1+
√

5
2 − ε, 2 − ε) would im-

prove the currently best known approximation for TSPPst by An, Kleinberg and
Shmoys [AKS11].

• an improvement of the first component, i. e. to (3/2− ε, 2 + ε) would improve the
currently best known approximation for TSP by Christofides [Chr76].

On the other hand, we have no evidence in favor of or against an (α, β)-approximation
where 1+

√
5

2 ≤ α, β < 2. Note that this approximation ratio is incomparable to our results.
The second result is obtained by an easy observation, while the first result follows

from an approximation preserving reduction from a single-objective to a two-objective
problem where the second objective is used to restrict the set of possible solution.

Note that since we show this lower bound argument for componentwise metric 2-TSP
it is equally true for the less restrictive variants of TSP.

Proposition 7.11. Let α > 1 and ε > 0. The following holds for deterministic and
randomized approximations: If componentwise metric 2-TSP is (3/2− ε, α)-approximable,
then TSP is (3/2− ε)-approximable.

Proof. This is immediate by adding a dummy objective.

Theorem 7.12. Let α > 1 and ε > 0. The following holds for deterministic and
randomized approximations: If componentwise metric 2-TSP is (α, 2− ε)-approximable,
then TSPPst is α-approximable.

Proof. Let A be an algorithm that on input of a complete N2-labeled simple graph (V,E, c)
with componentwise metric distance function c returns an (α, 2− ε)-approximation for
componentwise metric 2-TSP for some α ≥ 1 and some ε > 0. Let ((V,E, c′), s, t) be
an arbitrary TSPPst-instance where V = {s, t, v1, . . . , vk}. Since TSPPst is a single-
objective problem, we can assume that the graph is simple and complete and c′ is
metric. We will construct an instance I of componentwise metric 2-TSP for A that
depends on some natural number r > 1/ε (cf. Figure 7.2). We start by creating a copy
V ′ = {s′, t′, v′1, . . . , v′k} of V and denote by v′ ∈ V ′ the copy of v ∈ V . Furthermore, we
create “bridges” from s to s′ and from t to t′ using r − 1 additional vertices each, which
will be called Bs = {s = bs0, b

s
1, . . . , b

s
r−1, s

′ = bsr} and Bt = {t = bt0, b
t
1, . . . , b

t
r−1, t = btr}.

So the vertices of our componentwise metric 2-TSP instance are V ∪ V ′ ∪Bs ∪Bt and
we have all possible edges since the graph must be complete. The labeling function will
be defined as follows. First, we define it directly for some of the edges:

• for e ⊆ V or e ⊆ V ′, we set c(e) := (c′(e), 0)

• for e = {bsi , bsi+1} or e = {bti, bti+1}, we set c(e) := (0, 1)
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V V ′

. . .(c′(u, v), 0)
u

v

. . .

. . .
s = bs0

t = bt0

bsr = s′

btr = t′

bs1 bs2 bsr−1

bt1 bt2 btr−1

. . .

. . .

(0, 1) (0, 1) (0, 1)

(0, 1) (0, 1) (0, 1)

Figure 7.2: Creating an instance of componentwise metric 2-TSP from an instance ((V,E, c′), s, t)
of TSPPst. We first make a copy V ′ of V and, for each u, v ∈ V , we set c(u, v) = (c′(u, v), 0) and
c(u′, v′) = (c′(u, v), 0). We further connect s with s′ and t with t′ by r − 1 bridge vertices bsi , bti for
1 ≤ i ≤ r − 1, and distribute the distance of c(s, s′) = c(t, t′) = (0, r) equally among the bridge edges.

For all other vertex pairs and for each component, we indirectly define the distance as the
length of the shortest path between these vertices using only edges from the above two
categories.

In order to show that the functions c1 and c2 are metric, we have to show that the
directly defined distance between any two vertices is not longer than any path between
them that uses edges with directly defined distances. For c2, this is obviously the case.

We now argue for c1. Let u, v ∈ V and consider a path between u and v. If the path
does not use the bridges and V ′, then it cannot be shorter than c′(u, v) = c1(u, v), since
c′ is metric on V . So let us assume that the path uses the bridges and V ′; w.l.o.g. the
s-bridge is used first. Observe that the length of the path is at least c′(u, v) = c1(u, v).
The case where u, v ∈ V ′ is of course symmetric and this property obviously holds for
bridge edges, since they have distance 0. Hence c1 is metric.

Let P be the c′-shortest Hamiltonian path between s and t in V and P ′ its (reversed)
copy in V ′. P ∪ {{t, bt1}, . . . , {btr−1, t

′}} ∪ P ′ ∪ {{s′, bsr−1}, . . . , {bs1, s}} is obviously a
Hamiltonian cycle in the new graph with costs (2c′(P ), 2r). Since it is a valid solution, A
must return an (α, 2− ε)-approximation of it. So A must return a solution S such that
c2(S) ≤ 4r − 2εr. We will now show that from S we can extract a Hamiltonian s-t-Path
(in V ) with length of at most α · c′(P ).

Let EBt := {{bti−1, b
t
i} | 1 ≤ i ≤ r} ∪ {{bti, bti−1} | 1 ≤ i ≤ r} be the “simple” edges of

the t-bridge and EBs be the analogously defined “simple” edges of the s-bridge. We can
modify S such that edges crossing the set boundaries of V , V ′, Bt and Bs are replaced by
a detour via the corresponding “portal” s, t, s′, or t′, possibly using a bridge. In other
words, we only allow edges from the set {{u, v} | either u, v ∈ V or u, v ∈ V ′}∪EBs ∪EBt .
This modification does not raise any costs, as the costs for edges crossing these boundaries
are in fact defined by taking detours via the portals. Hence, from now on we may assume
that S only uses edges from {{u, v} | either u, v ∈ V or u, v ∈ V ′} ∪ EBs ∪ EBt .

We will now argue that S uses each bridge exactly once. We denote by u(x, y) the
number of times the edge {x, y} is used in S and by d(v) the degree of a vertex v in
S considered as a multigraph. Furthermore, d(V ) = u(s, bs1) + u(t, bt1) and d(V ′) =
u(bsr−1, s

′) + u(btr−1, t
′) are the “degrees” of the subgraphs V and V ′.

Observe the following facts.

1. The degrees d(v) for every vertex v and d(V ) and d(V ′) are all even.
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2. The parity of u(e) is the same for all edges e ∈ EBs ∪ EBt .

3. There can be at most one edge e ∈ EBs ∪ EBt such that u(e) = 0.

4. All bridge edges e ∈ EBs ∪ EBt have odd usage count u(e).

If u(e) > 1 for some bridge edge e, we can always remove two uses of this edge from S
without destroying the property of S being a closed spanning walk. So we may assume S
to be of the form such that every bridge edge is used exactly once. This means that S
starts at s, visits every vertex in V , goes to t, uses the bridge to t′, visits every vertex in
V ′, goes to s′ and uses the bridge back to s. So S restricted to V is a Hamiltonian path
from s to t and another one can be obtained by restricting S to V ′. We can thus extract
a Hamiltonian path with length at most 1

2c1(S) ≤ 1
2 · 2 · c′(P ) · α = c′(P ) · α. This is an

α-approximation for the TSPPst-instance ((V,E, c′), s, t).

Corollary 7.13. Let ε > 0. The following holds for deterministic and randomized
approximations: If componentwise metric 2-TSP is (1+

√
5

2 − ε, 2− ε)-approximable, then
TSPPst is (1+

√
5

2 − ε)-approximable.

7.2 Maximum TSP and the Discrepancy Technique

7.2.1 Introduction, Related Problems and Known Results
A common strategy for (single-objective) approximation algorithms is a variation of the
pigeonhole principle: One first shows that there is a fixed number (say r) of alternatives
whose weights sum to x. Then, the heaviest of these alternatives has at least the
weight 1/r · x. This strategy is for example used by a straightforward 1/2-approximation
algorithm for the (single-objective) maximum weighted satisfiability problem 1-SAT (cf.
Definition 4.10). There, the input is a set of clauses with weights and the goal is to find an
assignment of the variables that maximizes the sum of the weights of the satisfied clauses.
The two alternatives are an arbitrary assignment and its complementary assignment. Note
that the sets of satisfied clauses need not be disjoint for the strategy to work.

Another application of this idea appears in the algorithm of Christofides, which provides
a 3/2-approximation for TSP. It combines a minimum spanning tree with a minimum
matching to obtain a Hamiltonian cycle of the graph. The length of the spanning tree
is at most the same as the length of the optimal cycle and the length of the minimum
matching can be bounded by one half of the length of the optimal cycle as follows: A
perfect matching can be extracted from a Hamiltonian cycle (in a graph with an even
number of vertices) by taking every other edge. Of course, there are two such matchings
and their costs sum up to exactly the costs of the cycle. This means that there is one
matching with at most half of the costs.

This strategy cannot be directly applied to multiobjective optimization, since there, it
is not clear what “take the best of some alternatives” means. We show that discrepancy
theory provides a tool such that this idea can still be transferred to multiobjective
optimization. The Beck-Fiala theorem [BF81] shows how to divide a set of objects with
multi-dimensional costs into two alternatives such that the costs are roughly the same
in every component. This way, we can always find a solution with about half the total
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costs (cf. section 7.2.3). As an example, we apply this result to the maximum traveling
salesperson problem. Glaßer et al. [GRW11] also use this technique for the multiobjective
maximum satisfiability problem.

We start with an introductory part, then show how to approximate multiobjective
maximum cycle covers in graphs, which will be a subroutine in the approximation algorithm
for the traveling salesperson problem. Next, we show how Doerr and Srivastav [DS03]
extended the Beck-Fiala theorem to more than two alternatives. Finally, we put all parts
together and show that for any number of objectives, the maximum traveling salesperson
problem is 2/3-approximable on undirected graphs and 1/2-approximable on directed graphs.

The Beck-Fiala theorem and also the multi-color extension of Doerr and Srivastav
has one drawback: We do not know how the objects are divided into the two (or more)
alternatives. Suppose we have a tour in an Nk-labeled graph and want to divide this tour
into two sets of edges with roughly the same weight such that each set is well connected.
Using the Beck-Fiala theorem, it can happen that we end up with two sets that only
contain isolated edges. In the next chapter, we give a result that shows how to obtain such
a division that guarantees the same error bound as the Beck-Fiala theorem and at the
same time, each of the two sets contains not more than a constant number of connected
components. Furthermore, this result can be generalized to more than two alternatives.
This result could turn out to be applicable to an even wider range of multiobjective
optimization problems.

It should be noted that the 1/2-approximation for k-MaxSTSP was first obtained
without the results from discrepancy theory. An older algorithm used maximum perfect
matchings and the result from the next chapter. For that algorithm, it was essential that
the number of changes between the two alternatives is bounded by a constant, because
the maximum matching needs a certain structure. This problem does not occur when one
uses maximum cycle covers, as we will do now.

Definitions. If the traveling salesperson problem is turned into a maximization problem,
the goal is to find a Hamiltonian cycle of maximum weight given some complete N-labeled
graph as input. In contrast to the minimization problem, we do not require the costs
to be metric and thus the generalization to multiple objectives is straightforward. For
directed graphs this problem is called k-objective maximum (asymmetric) traveling
salesperson (k-MaxATSP), while for undirected graphs it is called k-objective maximum
symmetric traveling salesperson (k-MaxSTSP). Since k-MaxATSP allows general
directed labeled graphs as input, which includes non-asymmetric labelings, we will drop
the word “asymmetric”.

Below we repeat the formal definition of k-MaxATSP from section 4.2, the problem
k-MaxSTSP is defined analogously.

Definition 7.14 (k-Objective Maximum Traveling Salesperson).

k-MaxATSP = (S, f,≤) where

• instances are Nk-edge-labeled directed complete graphs G = (V,E, l),
• S〈G〉 = {C ⊆ E | C is a Hamiltonian cycle of G} and
• f 〈G〉(C) = ∑

e∈C l(e).
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Previous Work. In 1979, Fisher, Nemhauser and Wolsey [FNW79] gave a 1/2-ap-
proximation algorithm for the single-objective maximum traveling salesperson problem
(1-MaxATSP) by removing the lightest edge from each cycle of a maximum cycle cover
and connecting the remaining paths to a Hamiltonian cycle. Since undirected cycles
always contain at least three edges, this also showed that the single-objective maximum
symmetric traveling salesperson problem (1-MaxSTSP) is 2/3-approximable. We will
use this idea and extend it to multiple objectives. Since then, many improvements were
achieved, and currently, the best known approximation ratios of 2/3 for 1-MaxATSP
and 7/9 for 1-MaxSTSP are due to Kaplan et al. [KLSS05] and Paluch, Mucha and
Madry [PMM09].

For k-MaxATSP and k-MaxSTSP, where k ≥ 2, the currently best known approxi-
mation algorithms are due to Manthey, who showed a randomized (1/2− ε)-approximation
of k-MaxATSP and a randomized (2/3 − ε)-approximation of k-MaxSTSP [Man09].
Recently, Manthey also showed a deterministic (1/2k − ε)-approximation of k-MaxSTSP
and a deterministic (1/(4k−2)− ε)-approximation of k-MaxATSP [Man11].

7.2.2 Approximating Cycle Covers
We will consider approximation algorithms for the multiobjective traveling salesperson
problem that use approximation algorithms for multiobjective version of the maximum
cycle cover problem as subroutines. For directed input graphs we have the following
problem definition.

Definition 7.15 (k-Objective Maximum Directed Edge-Fixed c-Cycle Cover).

k-c-MaxDCCF = (S, f,≥) where

• instances consist of a Nk-labeled complete directed graph G = (V,E,w)
and a set of edges F ⊆ E,
• S〈G,F 〉 = {C ⊆ E | C is a cycle cover of G with at least c edges per

cycle and F ⊆ C}
,

• f 〈G,F 〉(C) = ∑
e∈C w(c).

For undirected input graphs we analogously define the k-objective maximum undirected
edge-fixed c-cycle cover problem (k-c-MaxUCCF, for short). Let k-c-MaxUCC (k-c-
MaxDCC) denote the problems we obtain from k-c-MaxDCCF (k-c-MaxUCCF) if we
require F = ∅. Using this notation we obtain the usual cycle cover problems k-MaxDCC
as k-0-MaxDCC and k-MaxUCC as k-0-MaxUCC (cf. Definition 4.15).

Manthey and Ram [MR09] show by a reduction to matching that there is an FPRAS
for k-objective minimum cycle cover problems. The same technique can be used to show
that there are FPRAS for k-MaxDCC and k-MaxUCC [Man09]. We show that there
are FPRAS for k-2-MaxDCCF and k-3-MaxUCCF by a reduction to k-MaxDCC and
k-MaxUCC.

Theorem 7.16. For every k ≥ 1, k-2-MaxDCCF and k-3-MaxUCCF admit an FPRAS.

Proof. For every l ≥ 1, let l-MaxDCC-Approx (l-MaxUCC-Approx) denote the FPRAS for
l-MaxDCC (l-MaxUCC). We begin with the directed case.



7.2. MAXIMUM TSP AND THE DISCREPANCY TECHNIQUE 115

Let k ≥ 1. On input of the Nk-labeled complete directed graph G = (V,E,w) and
F ⊆ E, let G′ = (V,E,w′), where w′ : E → Nk+1 such that for all e ∈ E,

w′i(e) = wi(e) for 1 ≤ i ≤ k

w′k+1(e) =
1 if e ∈ F

0 otherwise.

For ε > 0, apply the algorithm (k+ 1)-MaxDCC-Approx to G′ with an approximation ratio
of ε′ = min{ε, 1/(r+1)}, where r := #F and return the obtained set of cycle covers that
contain all edges from F .

Let C be some (arbitrary) cycle cover with F ⊆ C. If no such cycle cover exists, we
are done. Otherwise, we have w′k+1(C) = r, and with probability at least 1/2 the FPRAS
must have returned some cycle cover C ′ that ε′-approximates C. By ε′ ≤ 1/(r+1) we have
w′k+1(C ′) ≥ (1− ε′) · w′k+1(C) ≥ (1− 1/(r+1)) · r > r − 1 and hence F ⊆ C ′. Moreover, by
ε′ ≤ ε we have wi(C ′) = w′i(C ′) ≥ (1− ε′) · w′i(C) ≥ (1− ε) · w′i(C) = (1− ε) · wi(C) for
all 1 ≤ i ≤ k. Since an arbitrary cycle in a complete directed graph has length at least
two, the assertion is proved.

The proof for the undirected case is similar: We call (k + 1)-MaxUCC-Approx instead
and since in a complete undirected graph every cycle has length at least three, the assertion
follows.

7.2.3 Multi-Color Discrepancy
Suppose we have a list of items with (single-objective) weights and want to find a subset
of these items with about half of the total weight. The exact version of this problem is
of course the NP-complete problem Partition [GJ79], and hence it is unlikely that an
exact solution can be found in polynomial time. If we allow a deviation in the order of the
largest weight, this problem can be solved in polynomial time, though. Surprisingly, this
is still true if the weights are not single numbers but vectors of numbers, which follows
from a classical result in discrepancy theory known as the Beck-Fiala theorem [BF81]. It
is important to note that the allowed deviation is independent of the number of vectors
since this enables us to use this result in multiobjective approximation for balancing out
multiple objectives at the same time with an error that does not depend on the input size.

In the Beck-Fiala theorem and the task discussed above, we have to decide for each
item to either include it or not. In some situations in multiobjective optimization, though,
a more general problem needs to be solved: There is a constant number of weight vectors
for each item, out of which we have to choose exactly one.

Doerr and Srivastav [DS03] showed that the Beck-Fiala theorem generalizes to this
so-called multi-color setting with almost the same deviation. Their proof implicitly shows
that this choice can be computed in polynomial time. For completeness we restate the
proof and argue for polynomial-time computability.

Remember that for a vector x ∈ Qm, the maximum norm is defined as ‖x‖∞ = maxi |xi|,
and for a matrix A ∈ Qm×n let ‖A‖1 = maxj

∑
i |aij|. A coloring of n elements with c colors

per element can be interpreted as a vector x ∈ {0, 1}cn such that for all b ∈ {1, . . . , n}
there is at most one kb ∈ {0, . . . , c − 1} such that xcb−kb

= 1. So the object with index
b is colored with kb. The advantage of this view is that we can also consider partial
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colorings: A partial coloring is a vector x ∈ Qcn such that for all b ∈ {1, . . . , n} it holds
that ∑c−1

k=0 xcb−k = 1. So for each object we can assign weights to the colors that have to
sum up to one.

For c ≥ 2, n ≥ 1 we define the set of all partial colorings of n elements with c colors as
Mc,n = {x ∈ (Q ∩ [0, 1])cn | ∑c−1

k=0 xcb−k = 1 for all b ∈ {1, . . . , n}} and the set of all real
colorings as Mc,n = Mc,n ∩ {0, 1}cn.

Theorem 7.17 (Doerr, Srivastav [DS03]). There is a polynomial-time algorithm that on
input of some A ∈ Qm×cn, m,n ∈ N, c ≥ 2 and p ∈ Mc,n finds a coloring χ ∈ Mc,n such
that ‖A(p− χ)‖∞ ≤ 2‖A‖1.

Proof. Let ∆ := ‖A‖1. We start with the partial coloring χ = χ(0) = p ∈ Mc,n and will
successively change it to a vector in Mc,n. We will first describe the algorithm and then
argue about its runtime.

Let J := J(χ) := {j ∈ {1, . . . , cn} | χj /∈ {0, 1}} and call the columns from J floating.
Let I := I(χ) := {i ∈ {1, . . . ,m} | ∑j∈J(χ) |aij| > 2∆}. We will ensure that during the
rounding process the following conditions are fulfilled (this is clear from the start, because
χ(0) = p):

(A(p− χ))|I = 0 (C1) χ ∈Mc,n (C2)

Let us assume that the rounding process is at step t where the current coloring is
χ = χ(t) and the conditions (C1) and (C2) hold. If there is no floating column, i.e., J = ∅,
then χ ∈Mc,n and thus χ has the desired form.

Otherwise, assume that there are still floating columns. Let B = {b ∈ {1, . . . , n} |
∃k ∈ {0, . . . , c − 1} : cb − k ∈ J} be the c-blocks that contain floating columns. Since
χ ∈ Mc,n, a c-block of χ contains either none or at least two floating columns, thus
#B ≤ 1

2#J .
Since

#J ·∆ =
∑
j∈J

∆ ≥
∑
j∈J

m∑
i=1
|aij| ≥

∑
j∈J

∑
i∈I
|aij| =

∑
i∈I

∑
j∈J
|aij| >

∑
i∈I

2∆ = #I · 2∆

it holds that #I < 1
2#J . Consider the inhomogeneous system of linear equations

(A(p− χ))|I = 0
c−1∑
k=0

χcb−k = 1 for b ∈ B

where each χj is considered as a variable if j ∈ J and as a constant if j /∈ J . This system
consists of at most #I + #B < 1

2#J + 1
2#J = #J equations and #J variables and hence

is under-determined. Note that the system has the solution χ|J because χ fulfills the
conditions (C1) and (C2). Since it is under-determined, it also has a second solution
x ∈ QJ . We extend x to xE ∈ Qcn by

(xE)j =
xj if j ∈ J
χj otherwise.
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Consider the line {(1 − λ)χ + λxE | λ ∈ Q}. Each point on this line (or rather its
restriction to the components in J) fulfills the system of equations and thus condition
(C1). By condition (C2) and the definition of J it holds that 0 < χj < 1 for all j ∈ J
and thus there is some λ ∈ Q such that χ(t+1) := (1 − λ)χ + λxE ∈ Mc,n and at least
one component becomes 0 or 1, i.e., J(χ(t+1)) ( J(χ(t)). Note that χ(t+1) fulfills (C1)
and (C2) even for the larger sets J(χ(t)) and I(χ(t)). Continue the rounding process with
χ := χ(t+1).

Since at least one column is removed from J in each iteration, the rounding process
will eventually stop. Let χ be the final value of the coloring. We show ‖A(p− χ)‖∞ ≤ 2∆.
Let 1 ≤ i ≤ m. Since at the end, J = ∅ we also have I = ∅. Let χ(t) be the first coloring
such that i /∈ I. Since χ(t) fulfills (C1) also for I(χ(t−1)) (or I(χ(0)) if t = 0) we have
(A(p−χ(t)))i = 0. Furthermore it holds that χ(t)

j = χj for all j /∈ J(χ(t)) and |χ(t)
j −χj| < 1

for all j ∈ J(χ(t)). Finally note that ∑j∈J(χ(t)) |aij| ≤ 2∆ since i /∈ I(χ(t)). Combining
these facts, we obtain

|(A(p− χ))i| = |(A(p− χ(t)))i + (A(χ(t) − χ))i| = |0 +
∑

j∈J(χ(t))
aij(χ(t)

j − χj)| ≤ 2∆.

We now analyze the runtime. Note that we have at most cn iterations, which is
polynomial in the input length. In each iteration, we have to solve an inhomogeneous
system of linear equations and we have to find a certain λ ∈ Q. The system, whose size is
polynomial in the input length, can be solved in polynomial time (see for instance [GLS88,
Theorem 1.4.8]). By adding an equation of the form χj = 2 for some suitable j ∈ J , we
can find a solution different to χ. The value for λ can be obtained in polynomial time by
successively trying to fix each floating column to 0 or 1, solving for λ and checking if the
resulting vector is still in Mc,n.

Corollary 7.18. There is a polynomial-time algorithm that on input of the vectors
vj,r ∈ Qm for 1 ≤ j ≤ n, 1 ≤ r ≤ c computes a coloring χ : {1, . . . , n} → {1, . . . , c} such
that for each 1 ≤ i ≤ m it holds that∣∣∣∣∣∣1c

n∑
j=1

c∑
r=1

vj,ri −
n∑
j=1

v
j,χ(j)
i

∣∣∣∣∣∣ ≤ 2mmax
j,r
|vj,ri |.

Proof. The result is obvious for c = 1. For c ≥ 2, we use Theorem 7.17. Because the
error bound is different for each row, we need to scale the rows of the vectors. Let
δi = maxj,r |vj,ri | for 1 ≤ i ≤ m. Let A = (ai,j′) ∈ Qm×cn where ai,(c(j−1)+r) = 1

δi
vj,ri (if

δi = 0, set it to 0) and p ∈ Qcn such that pi = 1
c
for all 1 ≤ i ≤ cn. We obtain a coloring

χ ∈ {0, 1}cn such that for each 1 ≤ j ≤ n there is exactly one 1 ≤ r ≤ c such that
χc(j−1)+r = 1 and it holds that ‖A(p− χ)‖∞ ≤ 2‖A‖1. Note that because of the scaling,
the largest entry in A is 1 and thus we have ‖A‖1 ≤ m. Define χ′ : {1, . . . , n} → {1, . . . , c}
by χ′(j) = r ⇐⇒ χc(j−1)+r = 1. We obtain for each 1 ≤ i ≤ m:

2mδi ≥ 2‖δiA‖1 ≥ |(δiA(p− χ))i| =
∣∣∣∣∣∣
cn∑
j′=1

δiaij′(pj′ − χj′)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

c∑
r=1

1
c
vj,ri −

n∑
j=1

v
j,χ′(j)
i

∣∣∣∣∣∣
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7.2.4 Approximating Multiobjective Maximum Traveling Sales-
person

We show that k-MaxATSP is randomized 1/2-approximable and k-MaxSTSP is random-
ized 2/3-approximable using the following idea. We choose a suitable number l depending
only on k and try all sets of at most l edges F using brute force. For each such F we
apply the FPRAS for k-2-MaxDCCF (k-3-MaxUCCF), which exists by Theorem 7.16,
fixing the edges in F . For all cycle covers thus obtained, we select two (three) edges from
each cycle and compute a 2-coloring (3-coloring) of the cycles with low discrepancy with
regard to the weight vectors of the selected edges. Using this coloring, we remove exactly
one edge from each cycle and connect the remaining paths to a single cycle in an arbitrary
way. Since the coloring has low discrepancy, we only remove about one half (one third) of
the weight in each objective. The introduced error is absorbed by choosing suitable heavy
edges F at the beginning. The described procedure generally works for arbitrary c-cycle
covers.

Algorithm 7.4: k-MaxTSP-Approx(V,E,w) with parameter c ≥ 2
Input :Nk-labeled directed/undirected complete graph G = (V,E,w)
Output : set of Hamiltonian cycles of G

1 foreach FH , FL ⊆ E with #FH ≤ 3 c k2, #FL ≤ c#FH : do
2 let δ ∈ Nk with δi = max{n ∈ N | there are 3 c k edges e ∈ FH with wi(e) ≥ n};
3 foreach e ∈ E − FH do
4 if w(e) 6≤ δ then set w(e) = 0 for the current iteration of the loop in line 1;
5 compute a (1− 1/#V )-approximation S of k-c-MaxDCCF / k-c-MaxUCCF on input of

(G,FH ∪ FL) ;
6 foreach cycle cover S ∈ S do
7 let C1, . . . , Cr denote the cycles in S;
8 if for each i ∈ {1, . . . , r}, Ci − FH contains a path of length c then
9 foreach i ∈ {1, . . . , r} do choose path ei,1, . . . , ei,c ∈ Ci − FH arbitrarily;

10 compute some coloring χ : {1, . . . , r} → {1, . . . , c} such that

r∑
i=1

w(ei,χ(i)) ≤ 2k · δ + 1
c

r∑
i=1

c∑
j=1

w(ei,j)

and remove the edges {ei,χ(i) | i = 1, . . . , r} from S;
11 output the remaining edges, arbitrarily connected to a Hamiltonian cycle;

Lemma 7.19. Let c ≥ 2 and k ≥ 1. If there exists an FPRAS for k-c-MaxDCCF (k-c-
MaxUCCF, resp.), then Algorithm 7.4 computes a randomized (1− 1/c)-approximation
for k-MaxATSP (k-MaxSTSP, resp.).

Proof. Let k ≥ 1, c ≥ 2, and G = (V,E,w) be some Nk-labeled (directed or undirected)
input graph with m = #V sufficiently large.

We will first argue that the algorithm terminates in time polynomial in the length of
G. Since there are only polynomially many subsets FH , FL ⊆ E with cardinality bounded
by a constant, the loop in line 1 is executed polynomially often. In each iteration the
FPRAS on G = (V,E,w) and FH ∪ FL ⊆ E terminates in time polynomial in the length
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of G and FH ∪ FE, which means that the set S contains only polynomially many cycle
covers. Hence, for each iteration of the loop in line 1, the loop in line 6 is also executed at
most polynomially many times, and overall we have polynomially many nested iterations.
In each nested iteration where each cycle of the cycle cover contains a path as required,
we compute a coloring of {1, . . . , r} with low discrepancy. By Corollary 7.18 this can be
done in polynomial time. Observe that all further steps require at most polynomial time,
and hence the algorithm terminates after polynomially many steps.

Next we argue that the algorithm will succeed with probability at least 1/2. Observe
that the only randomized parts of the algorithm are the calls to the randomized cycle
cover approximation algorithm in line 5. Using amplification we can assume that the
probability that all the calls to this algorithm succeed is at least 1/2.

It remains to show that if Algorithm 7.4 succeeds, it outputs some (1−1/c)-approximate
set of Hamiltonian cycles. Hence, for the remainder of the proof, let us assume that the
algorithm and hence all calls to the internal FPRAS succeed. Furthermore, let R ⊆ E
be some Hamiltonian cycle of G. We will argue that there is some iteration where the
algorithm outputs an (1− 1/c)-approximation of R.

For each 1 ≤ i ≤ k, let FH,i ⊆ R be some set of 3 c k heaviest edges of R in the i-th
component, breaking ties arbitrarily. Let FH = ⋃k

i=1 FH,i. We define FL ⊆ R such that
FL ∩ FH = ∅ and each edge in FH is part of a path in FL ∪ FH that contains c edges from
FL. This is always possible as long as R is large enough. We now have #FH ≤ 3 c k2 and
#FL ≤ c#FH . Hence in line 1 there will be some iteration that chooses FH and FL. We
fix this iteration for the remainder of the proof.

Let δ ∈ Nk as defined in line 2 and observe that δi = min{wi(e) | e ∈ FH,i} for all i,
which means that for all edges e ∈ R−FH we have w(e) ≤ δ. Hence the loop in line 3 sets
the weights of all edges e ∈ E −R that do not fulfill w(e) ≤ δ to zero, and these are the
only weights that are modified. In particular, this does not affect edges in R, hence w(R)
remains unchanged. Note that since we do not increase the weight of any edge and do not
change the weight of the edges in R, it suffices to show that the algorithm computes an
approximation with respect to the changed weights.

Next we obtain a (1 − 1/#V )-approximate set S of c-cycle covers of G that contain
FH ∪ FL. Since R is a c-cycle cover of G with FH ∪ FL ⊆ R, there must be some c-cycle
cover S ∈ S with FH ∪FL ⊆ S that (1− 1/#V )-approximates R. Hence in line 6 there will
be some iteration that chooses this S. Again we fix this iteration for the remainder of the
proof.

As in line 7, let C1, . . . , Cr denote the cycles in S. Note that each cycle contains at
least c edges. Since each edge in FH is part of a path in FH ∪ FL with at least c edges
from FL, we even know that each cycle contains at least c edges not from FH and thus
the condition in line 8 is fulfilled. Let these edges ei,j be defined as in the algorithm.
Note that since ei,j /∈ FH we have w(ei,j) ≤ δ for all i, j, because the weight function was
changed accordingly.

In line 10 we compute some χ : {1, . . . , r} → {1, . . . , c} such that

r∑
i=1

w(ei,χ(i)) ≤ 2 k · δ + 1
c

r∑
i=1

c∑
j=1

w(ei,j)

≤ 2 k · δ + 1
c
· w(S − FH).
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Recall that by Corollary 7.18 such a coloring exists and can be computed in polynomial
time. Removing the chosen edges breaks the cycles into paths, which can be arbitrarily
connected to a Hamiltonian cycle R′. For the following estimation note that δ ≤ w(FH)

3 c k
and w(FH) ≥ 3 c k

m
w(R) and recall that m = #V = #R.

w(R′) ≥ w(S)−
r∑
i=1

w(ei,χ(i))

≥ w(S)− 2 k · δ − 1
c
· w(S − FH)

=
(

1− 1
c

)
w(S) + 1

c
w(FH)− 2 k · δ

≥
(

1− 1
c

)
w(S) + 1

3 cw(FH)

≥
(

1− 1
c

)(
1− 1

m

)
w(R) + k

m
w(R)

=
(

1− 1
c

)
w(R) +

(
−
(

1− 1
c

)
+ k

) 1
m
w(R)

≥
(

1− 1
c

)
w(R)

This proves the assertion.

It is known that 1-c-MaxDCC is APX-hard for all c ≥ 3 [BM05] and that 1-c-
MaxUCC is APX-hard for c ≥ 5 [Man08]. This means that, unless P = NP, there
is no PTAS for these problems (and especially not for the variants with fixed edges).
Furthermore, the existence of an FPRAS or PRAS for these problems implies NP = RP
and thus a collapse of the polynomial-time hierarchy, which is seen as follows.

If an APX-hard problem has a PRAS, then all problems in APX have a PRAS and
hence Max3Sat has one. There exists an ε > 0 and a polynomial-time computable f
mapping CNF formulas to 3-CNF formulas such that if x ∈ Sat, then f(x) ∈ 3Sat; and
if x /∈ Sat, then there is no assignment satisfying more than a fraction of 1 − ε of the
clauses in f(x) [AL97, Theorem 10.1]. The PRAS for Max3Sat allows us to compute
probabilistically a (1− ε/2)-approximation for f(x) which in turn tells us whether or not
x ∈ Sat. Since this procedure has no false negatives we get RP = NP, which implies a
collapse of the polynomial-time hierarchy [Lau83, Sip83].

So it seems unlikely that there is a PRAS for 1-c-MaxDCC where c ≥ 3 and 1-c-
MaxUCC where c ≥ 5. However, this does not necessarily mean that the above algorithm
is useless for parameters c ≥ 3 in the directed and c ≥ 5 in the undirected case: The
algorithm could still benefit from a constant-factor approximation for k-c-MaxUCCF or
k-c-MaxDCCF. A simple change in the estimation shows that if the cycle cover algorithm
has an approximation ratio of α, the above algorithm provides an approximation with
ratio α(1− 1/c).
Theorem 7.20. Let k ≥ 1.

1. k-MaxATSP is randomized 1/2-approximable.

2. k-MaxSTSP is randomized 2/3-approximable.
Proof. We combine Theorem 7.16 and Lemma 7.19.
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Chapter 8

Discrepancy Theory

Discrepancy theory tries to approximate continuous distributions by discrete ones and
the error that occurs therein is generally called discrepancy. For example, one problem in
geometric discrepancy theory is to place n points in the unit square such that for each
rectangle R in the unit square, the ratio of points that lie in R is as close as possible to
the area of R. Another topic in discrepancy theory are rounding problems. Here, one for
example has a list of real numbers and tries to round them to integers while trying to
change their sum as little as possible. The classical theorem of Beck and Fiala [BF81]
belongs to this area of discrepancy theory. It provides an upper bound for certain weighted
roundings.

Theorem 8.1 (Beck, Fiala [BF81]). For any y ∈ Rn and any weighting matrix A ∈ Rm×n

there is a rounding x ∈ Zn of y such that

‖Ay − Ax‖∞ ≤ ‖A‖1.

Furthermore, if all inputs are rational, this rounding can be found in polynomial time.

It must be noted that the original formulation of this theorem was less general, but the
proof can also be applied to this setting. We call x ∈ Zn a rounding of y ∈ Rn if |xi−yi| < 1
for all i, i. e. ‖x− y‖∞ < 1. Remember that ‖x‖∞ = maxi |xi| and ‖A‖1 = maxj

∑
i |aij|,

so the upper bound does not depend on n, the number of components of x.
The main contribution of this chapter is to show that these roundings can have a

certain structure (Theorem 8.18): We show that if all components of y ∈ Rn are equal,
there is a rounding x of y such that the number of changes in the direction of the rounding
does not depend on n, while the error bound remains the same as in the theorem by Beck
and Fiala. Doerr and Srivastav extended the Beck-Fiala theorem to multiple colors. We
note that such an extension is also possible here but will not be covered.

The methods to achieve this result will be analytic. Using topological degree theory
we show a multi-dimensional intermediate value theorem for integrals. One can formulate
the usual intermediate value theorem for integrals as follows: For any integrable function
f : [0, 1]→ R and any 0 ≤ α ≤ 1, there is an interval [0, x] ⊆ [0, 1] such that

∫
[0,x] f(x) dx =

α
∫

[0,1] f(x) dx. We extend this to multiple dimensions as follows: For any componentwise
integrable function f : [0, 1]→ Rn and any 0 ≤ α ≤ 1, we can find some X ⊆ [0, 1] such
that for each i,

∫
X fi(x) dx = α

∫
[0,1] fi(x) dx and furthermore, X is the union of at most

2n intervals. We get this result by first showing a multi-dimensional mean value theorem.
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We can of course apply the mean value theorem again on the set of intervals obtained and
thus reach a ratio of 1/4. The main difficulty here lies in keeping the number of needed
intervals small enough. By iteratively applying this idea, we can reach every ratio of the
form r/2k and thus get the final result by a compactness argument. We also show that the
number of needed intervals for the intermediate value theorem is tight.

Preliminaries. Let X ⊆ Rm be bounded. We call a function f : X → R integrable, if
it is Lebesgue-integrable on X. This is especially the case if f is bounded and has only
finitely many points of discontinuity. A function g : X → Rn is componentwise integrable,
if all projections gi are integrable and in this case we write

∫
X g(x) dx as abbreviation for

the vector (
∫
X g1(x) dx, . . . ,

∫
X gn(x) dx)T.

For a set A ⊆ Rn, we write ∂A for its boundary and, contrary to the notation used in
other chapters, A denotes the (topological) closure of A.

8.1 A Multi-Dimensional Mean Value Theorem
One can use the mean value theorem to show that for any integrable f : [0, 1]→ R there
is some x ∈ [0, 1] such that ∫ x

0
f(x) dx = 1

2

∫ 1

0
f(x) dx.

This is no longer true in general if f maps to Rn for n ≥ 2. Take, for example, f(x) = (1, 0)T

for x ≤ 1
2 and f(x) = (0, 1)T for x > 1

2 . We can still get a similar result if we allow
more degrees of freedom in the domain of integration. In Theorem 8.8 we show that
for any integrable f : [0, 1] → R2n there are n intervals I1, . . . , In ⊆ [0, 1] such that for
I = I1 ∪ I2 ∪ · · · ∪ In, ∫

I
f(x) dx = 1

2

∫ 1

0
f(x) dx.

The number of needed intervals can be explained by the following argumentation: For a
function f : [0, 1]→ R, it suffices to vary one end of the interval, which corresponds to
one degree of freedom. For a function f : [0, 1]→ R2, we have seen above that one degree
of freedom is not enough. So if we have a function f : [0, 1]→ R2n, it suffices to have n
intervals, which have 2n end points and thus 2n degrees of freedom. We will see later
in Proposition 8.13 that if we change the factor from 1/2 to an arbitrary ratio between 0
and 1 (and thus arrive at a multi-dimensional intermediate value theorem), we need more
intervals.

We use a result from topological degree theory to show this multi-dimensional mean
value theorem. More specifically, we want to show that a certain function f : D → Rn has
a zero where D ⊆ Rn is open and bounded. For this, it suffices to show that its Brouwer
degree at the point (0, . . . , 0)T is nonzero. Intuitively, the Brouwer degree of a mapping at
a point p of its codomain counts the number of preimages of p, where preimages whose
orientation is “reversed” by the mapping are counted negatively. Thus, if a point has
nonzero Brouwer degree, than it occurs as a value of the mapping (note that the converse
does not hold in general). For n = 2, the Brouwer degree is similar to the winding number
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in complex analysis. We will only give the definition for a special case and refer to the
monograph by Lloyd [Llo78] for more details.

Definition 8.2. Let D ⊆ Rn be open and bounded, f : D → Rn be continuous and
p ∈ Rn − f(∂D). Then deg(f,D, p) denotes the Brouwer degree of f at p. If for every
x ∈ D such that f(x) = p it holds that f is (totally) differentiable at x and Df(x) is
non-singular, then we have

deg(f,D, p) =
∑
x∈D
f(x)=p

sgn(det(Df(x))).

Remember the definition of the total differential or the Jacobian as

Df(x) =
(
∂fi
∂xj

(x)
)
i,j

.

The determinant of the total differential reflects the degree of expansion or compression at
the point x, depending on its absolute value. Furthermore, its sign shows if the function
reverses the “direction” of x and thus the above definition captures the intuitive meaning.
We now cite the main results we will use from the book by Lloyd [Llo78].

Theorem 8.3 ([Llo78, Theorem 2.1.1]). If D ⊆ Rn is bounded and open, f : D → Rn is
continuous, p /∈ f(∂D), and deg(f,D, p) 6= 0, then p ∈ f(D).

A set A ⊆ Rn is called symmetric if x ∈ A ⇐⇒ −x ∈ A for all x ∈ Rn.

Theorem 8.4 (Odd Mapping Theorem, [Llo78, Theorem 3.2.6]). Let D be a bounded,
open, symmetric subset of Rn containing the origin. If f : D → Rn is continuous,
0 /∈ f(∂D), and for all x ∈ ∂D it holds that f(x)

|f(x)| 6=
f(−x)
|f(−x)| , then deg(f,D, 0) is an odd

number (and in particular not zero).

Corollary 8.5. Let D be a bounded, open, symmetric subset of Rn containing the origin.
If f : D → Rn is continuous and for all x ∈ ∂D it holds that f(−x) = −f(x), then
0 ∈ f(D).

Proof. Assume that 0 /∈ f(D). From f(−x) = −f(x) for x ∈ ∂D it follows that
the inequality condition of Theorem 8.4 is fulfilled (note that 0 /∈ f(∂D)) and thus
deg(f,D, 0) 6= 0 and by Theorem 8.3, 0 ∈ f(D). This is a contradiction.

In the following, we introduce some notation that is helpful when talking about unions
of intervals. The usefulness of some parts of the definition will become clear in the next
section, when we extend the multi-dimensional mean value theorem to a multi-dimensional
intermediate value theorem.

Definition 8.6. Define the set of all left closed and right open intervals in [0, 1) and their
complements as

I = {[l, r) | 0 ≤ l < r ≤ 1}∪
{[0, r) ∪ [l, 1) | 0 < r < l < 1}∪
{∅}.
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For I ∈ I with I 6= ∅ and I 6= [0, 1), the points l and r in the definition above are called
left endpoint and right endpoint of I, respectively. For n ≥ 1, let

In = {I1 ∪ I2 ∪ · · · ∪ In | I1, . . . , In ∈ I}

be the set of all unions of (at most) n sets from I.

We include “intervals” of the type [0, r) ∪ [l, 1) in I, because we would like I to be
closed under complementation. In general, the intuition is that zero and one are identified
and sets from I are thus intervals on a circle.

Property 8.7. Let n ≥ 1. For any I ∈ In, it holds that [0, 1)− I ∈ In.

We now have enough terminology to state and prove the main result of this section.

Theorem 8.8. Let n ≥ 1 and h : [0, 1) → R2n be componentwise integrable. There is
some I ∈ In such that ∫

I

h(x) dx =
∫

[0,1)−I

h(x) dx = 1
2

∫
[0,1)

h(x) dx.

Proof. Define T = {t ∈ R2n | ‖t‖1 ≤ 1} and for every t = (t1, . . . , t2n) ∈ T , let

It =
⋃

1≤k≤2n,
tk>0

[
k−1∑
i=1
|ti|,

k∑
i=1
|ti|
)

and
f : T → R2n, f(t) =

∫
It

h(x) dx−
∫

[0,1)−It

h(x) dx.

By the formal definition, It is a union of (at most) 2n intervals from I. However, it can
always be written as a union of at most n intervals by merging adjacent intervals and
hence, It ∈ In for all t ∈ T .

We now want to show that 0 ∈ f(T ) by applying Corollary 8.5 to f and D being
the interior of T . The set D is obviously a bounded, open, and symmetric subset of R2n

containing the origin. The function f is continuous because of the fundamental theorem
of calculus for the Lebesgue integral and the fact that the endpoints of the intervals
in It depend continuously on t. Note that for any t ∈ ∂D, I−t = [0, 1) − It and thus
f(−t) = −f(t). Since all preconditions of the corollary are fulfilled, we get 0 ∈ f(T ) and
thus there exists some t ∈ T such that

∫
It
h(x) dx =

∫
[0,1)−It

h(x) dx.

8.2 A Multi-Dimensional Intermediate Value Theo-
rem

In Theorem 8.8 it was shown that the integral of a multi-dimensional function can be
balanced to exactly half of its total value. In this section, we want to generalize this
to arbitrary ratios, i. e. extend this multi-dimensional mean value theorem to a multi-
dimensional intermediate value theorem. Note that this does not directly follow from the



8.2. A MULTI-DIMENSIONAL INTERMEDIATE VALUE THEOREM 125
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I ∩ J . . .
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[0, 1)− I . . .
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f(rm) f(r1) f(r2)

Figure 8.1: Illustration for the construction in the proof of Lemma 8.9. The sets I and J are unions of
m resp. n nonempty and pairwise disjoint sets in I. Given all endpoints of I and J , there is a set Z of at
most 2m+ 2n nonempty and pairwise disjoint sets from I that contains a partition Z1 of I ∩ J and a
partition Z2 of I − J . Moreover, all ri map to disjoint sets f(ri) ⊆ [0, 1)− I, hence their removal from Z
preserves the partitions Z1 and Z2.

continuity of the Lebesgue integral and the (ordinary) intermediate value theorem since
we are dealing with multi-dimensional functions. At the end of this section we also show
that the number of intervals needed is tight.

We begin by showing that when iteratively intersecting certain sets of intervals, the
number of intervals needed to represent the intersection or its complement is bounded.

Lemma 8.9. For n ≥ 1, let I ∈ I2n−1, J ∈ In. Then I ∩ J ∈ I2n−1 or I − J ∈ I2n−1.

Proof. If I or J is empty or I or J is the full interval [0, 1), then the lemma is obvious.
In all other cases, J contains infinitely many points (i. e. at least one nonempty interval),
so we may assume that J is a union of exactly n nonempty and pairwise disjoint elements
of I (if not, just split some proper interval in an arbitrary way).

Let I1, . . . , Im ∈ I, m ≤ 2n − 1 such that I = I1 ∪ I2 ∪ · · · ∪ Im, all Ii are pairwise
disjoint and nonempty and no two sets Ii are directly adjacent (not even when identifying
0 and 1). Let l1, . . . , lm and r1, . . . , rm be the left resp. right endpoints of these sets.
Because of the above properties, these points are all distinct. Let t1, . . . , t2n be the
endpoints of the n sets whose union is J (those need not be all distinct). Let X =
{l1, . . . , lm, r1, . . . , rm, t1, . . . , t2n} and sort X in increasing order to obtain the sequence
(x1, . . . , x#X). Next we define the function f : X → I by

f(xi) =
[xi, xi+1) if i 6= #X, and

[0, 1)− [x1, x#X) otherwise.

Clearly, Z := {f(x) | x ∈ X} partitions [0, 1) into nonempty sets from I. Furthermore,
there are sets Z1, Z2 ⊆ Z such that ⋃K∈Z1 K = I ∩ J and ⋃K∈Z2 K = I − J (see Figure
8.1 for an example). Next, we show that #Z1 or #Z2 is also small enough.

Due to the fact that no two sets defining I are directly adjacent, we have f(ri)∩ I = ∅
for all 1 ≤ i ≤ m. Hence, the set Z − {f(ri) | 1 ≤ i ≤ m} still contains Z1 and Z2. Since
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all ri are pairwise distinct and f is injective, we have

#(Z − {f(ri) | 1 ≤ i ≤ m}) = #X −#{ri | 1 ≤ i ≤ m}
≤ 2m+ 2n−m
= 4n− 1.

Observe that Z1 and Z2 are disjoint. Hence, one of them must have a cardinality of at
most b1

2(4n− 1)c ≤ 2n− 1, which proves the assertion.

We now restate Theorem 8.8 so that it can be applied to split arbitrary unions of
intervals as opposed to only the interval [0, 1).

Corollary 8.10. Let m,n ≥ 1 and f : [0, 1) → R2n be componentwise integrable. For
any I ∈ Im, there is some J ∈ In such that∫

I∩J

f(x) dx =
∫
I−J

f(x) dx = 1
2

∫
I

f(x) dx.

Proof. Let h : [0, 1)→ R2n with

h(x) =
f(x) if x ∈ I

0 otherwise.

Clearly, h is componentwise integrable. Hence, by Theorem 8.8 there is some J ∈ In such
that ∫

J

h(x) dx =
∫

[0,1)−J

h(x) dx = 1
2

∫
[0,1)

h(x) dx.

By the definition of h, this value is the same as∫
I∩J

f(x) dx =
∫
I−J

f(x) dx = 1
2

∫
I

f(x) dx.

Lemma 8.11. Let n ≥ 1 and f : [0, 1) → R2n be componentwise integrable. For every
k ∈ N and every p ∈ {0, 1, . . . , 2k} there is some I ∈ I2n−1 such that∫

I

f(x) dx = p

2k
∫

[0,1)

f(x) dx.

Proof. We show this by induction over k.

Induction Basis (k = 0): The assertion is obvious for k = 0.

Induction Step (k → k + 1): Assuming the validity of the assertion for some k, we first
show it for k + 1 and p ∈ {0, 1, . . . , 2k} and subsequently for k + 1 and p ∈
{2k + 1, . . . , 2k+1}.
Let p ∈ {0, 1, . . . , 2k}. By the induction hypothesis, there is some I ∈ I2n−1 such
that ∫

I

f(x) dx = p

2k
∫

[0,1)

f(x) dx.
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Applying Corollary 8.10 to f and I yields some J ∈ In such that∫
I∩J

f(x) dx =
∫
I−J

f(x) dx = 1
2

∫
I

f(x) dx = p

2k+1

∫
[0,1)

f(x) dx.

Furthermore, by Lemma 8.9, at least one of I ∩ J or I − J can be expressed as a
union of 2n− 1 sets in I.
Let now p ∈ {2k + 1, . . . , 2k+1} and K ∈ I2n−1 such that

∫
K

f(x) dx = 2k+1 − p
2k+1

∫
[0,1)

f(x) dx,

which exists by the first part of the induction step. By Property 8.7, [0, 1)−K ∈ I2n−1
and thus because of∫

[0,1)−K

f(x) dx =
∫

[0,1)

f(x) dx−
∫
K

f(x) dx

=
(

1− 2k+1 − p
2k+1

) ∫
[0,1)

f(x) dx = p

2k+1

∫
[0,1)

f(x) dx

also the second part of the induction step is proved.

Because of continuity and the fact that { p2k | k ∈ N and 0 ≤ p ≤ 2k} is dense in
[0, 1], the previous result can be generalized to arbitrary real factors and thus we obtain a
multi-dimensional intermediate value theorem. The main obstacle here is that we need to
find a suitable topology on I.

Theorem 8.12. Let n ≥ 1 and f : [0, 1)→ R2n be componentwise integrable. For every
real number α ∈ [0, 1] there is some I ∈ I2n−1 such that∫

I

f(x) dx = α
∫

[0,1)

f(x) dx.

Proof. Let α ∈ [0, 1]. There is some sequence α1, α2, . . . ∈ { p2k | k ∈ N and 0 ≤ p ≤ 2k}
converging to α. From Lemma 8.11 we get a sequence I1, I2, . . . ∈ I2n−1, such that for all
i we have ∫

Ii

f(x) dx = αi

∫
[0,1)

f(x) dx. (8.1)

We now want to show that the sequence I1, I2, . . . has a limit point Ĩ ∈ I2n−1 such that∫
Ĩ f(x) dx = α

∫
[0,1) f(x) dx. For this, we need a topology on I2n−1, which we get by

indirectly embedding it in Euclidean space. First, note that we may assume that for
each i, Ii is a tuple of sets from I, i. e. Ii ∈ I2n−1. Denote by S2 = {x ∈ R3 | ‖x‖2 = 1}
the 2-sphere embedded in R3. We define a mapping p : I → S2 (cf. Figure 8.2): Let
p(∅) := (0, 0,−1)T, p([0, 1)) := (0, 0, 1)T and for any I ∈ I with left and right endpoints
l, r and length y = λ(I) =

∫
I 1 dx = r − l mod 1 let p(I) := (cos θ cosϕ, cos θ sinϕ, sin θ)T
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x1

x2

x3

p([0, 1))

p(∅)

p([ ϕ2π ,
ϕ+θ
2π + 1

2))

θ

ϕ

Figure 8.2: Illustration of the bijection p : I → S2 that is used to transfer the topology of the 2-sphere
S2 to I in the proof of Theorem 8.12.

where θ = 2π(y − 1
2) and ϕ = 2πl. Note that this mapping is a bijection. We extend it in

the obvious way to p : I2n−1 → (S2)2n−1.
Observe that the function

g : (S2)2n−1 → R2n,


a1
a2
...

a2n−1

 7→
∫

2n−1⋃
k=1

p−1(ak)

f(x) dx

is continuous (with respect to the relative topology of (S2)2n−1 ⊆ R6n−3) and that for any
i, it holds that ∫

Ii

f(x) dx = g(p(Ii)). (8.2)

Since (S2)2n−1 is a compact subset of R6n−3, the sequence p(I1), p(I2), · · · ∈ (S2)2n−1 has
a convergent subsequence p(I ′1), p(I ′2), . . . such that limj→∞ p(I ′j) =: ã ∈ (S2)2n−1. Let
Ĩ = ⋃2n−1

k=1 p−1(ãk) ∈ I2n−1. We finally have

α
∫

[0,1)

f(x) dx = lim
i→∞

αi

∫
[0,1)

f(x) dx (8.1)= lim
i→∞

∫
Ii

f(x) dx (8.2)= lim
i→∞

g(p(Ii))

= lim
j→∞

g(p(I ′j)) = g( lim
j→∞

p(I ′j)) = g(ã) =
∫
Ĩ

f(x) dx.

We now show that the number of intervals 2n− 1 in the preceding theorem is tight.
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Proposition 8.13. Let n ≥ 2. There is some α ∈ [0, 1] and some f : [0, 1)→ R2n such
that for any I ∈ I2n−2 ∫

I

f(x) dx 6= α
∫

[0,1)

f(x) dx.

Proof. Let n ≥ 2. Define p = 1
2n−1 and choose any 0 < α < p. For k ∈ {0, 1, . . . , 2n− 2}

let Pk = [kp, kp+ p
2) ∈ I. Now define the function f(x) = (f1(x), . . . , f2n(x))T where

f1(x) = 1 and

fk+2(x) =
1 if x ∈ Pk

0 otherwise

for k = 0, . . . , 2n− 2. Let I ∈ Ir for some r ∈ N such that∫
I

f(x) dx = α
∫

[0,1)

f(x) dx.

We will show that r ≥ 2n − 1. Observe that there is no set J ⊆ I, J ∈ I such
that J intersects with two different Pk1 , Pk2 where k1, k2 ∈ {0, 1, . . . , 2n − 2}, since
otherwise,

∫
I f1(x) dx ≥ p > α = α

∫
[0,1) f1(x) dx. On the other hand, since for each

k ∈ {0, 1, . . . , 2n− 2} there must be at least one set J ⊆ I, J ∈ I that intersects with Pk,
we must have r ≥ 2n− 1.

8.3 Balancing Multiple Functions
When we invest even more intervals, we can partition [0, 1) into parts such that each part
Ii ⊆ [0, 1) attains a pre-specified ratio of the value of the whole interval (Lemma 8.14).
This result is then used to show that for a number of functions f1, . . . , fm : [0, 1)→ R2n

and a set of ratios α1, . . . , αm that sum up to 1, we can partition [0, 1) into m sets Ii
(made up of a bounded number of intervals) such that for each i,∫

Ii

fi(x) dx = αi

∫
[0,1)

fi(x) dx.

Lemma 8.14. Let n ≥ 1 and f : [0, 1) → R2n be componentwise integrable. For every
m ≥ 2 and α ∈ [0, 1]m with ‖α‖1 = 1, the set [0, 1) can be partitioned into sets
I1, I2, . . . , Im ∈ I(m−1)(2n−1) such that∫

Ii

f(x) dx = αi

∫
[0,1)

f(x) dx

for all i.

Proof. We inductively construct sets I ′i ∈ I2n−1, define Ij := I ′j − (I ′1 ∪ · · · ∪ I ′j−1), and
show that Ij ∈ I(m−1)(2n−1).
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Induction Basis (i = 1): We apply Theorem 8.12 with factor α1 to f and obtain some
I1 = I ′1 ∈ I2n−1 such that ∫

I′1

f(x) dx = α1

∫
[0,1)

f(x) dx.

Induction Step (i→ i+ 1 for i+ 1 < m): For 1 ≤ j ≤ i we have already defined the sets
I ′j and Ij = I ′j − (I ′1 ∪ · · · ∪ I ′j−1) such that

∫
Ij

f(x) dx = αj

∫
[0,1)

f(x) dx.

Let g : [0, 1)→ R2n such that

g(x) =
f(x) if x /∈ I1 ∪ I2 ∪ · · · ∪ Ii

0 otherwise.

Note that the Ij are pairwise disjoint by definition and thus we get

∫
[0,1)

g(x) dx =
∫

[0,1)−(I1∪···∪Ii)

f(x) dx = (1−
i∑

j=1
αj)

∫
[0,1)

f(x) dx.

We assume that ∑i
j=1 αj < 1 (otherwise, αi+1 = 0, hence I ′i+1 = ∅) and apply

Theorem 8.12 with factor αi+1

1−
∑i

j=1 αj
to g. We obtain some I ′i+1 ∈ I2n−1 such that

∫
I′i+1

g(x) dx = αi+1

1−∑i
j=1 αj

∫
[0,1)

g(x) dx = αi+1

∫
[0,1)

f(x) dx.

Furthermore, by the definition of g, for Ii+1 := I ′i+1 − (I ′1 ∪ · · · ∪ I ′i) it holds that
∫
Ii+1

g(x) dx =
∫
I′i+1

g(x) dx = αi+1

∫
[0,1)

f(x) dx.

Last Step (i = m): Let Im := [0, 1) − (I ′1 ∪ · · · ∪ I ′m−1). Observe that I1 ∪ · · · ∪ Im−1 =
I ′1 ∪ · · · ∪ I ′m−1 and

∫
I1∪···∪Im−1

f(x) dx =
m−1∑
j=1

αj

∫
[0,1)

f(x) dx = (1− αm)
∫

[0,1)

f(x) dx.

This shows ∫
Im

f(x) dx = αm

∫
[0,1)

f(x) dx.
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By construction, the sets Ii partition [0, 1). So it remains to argue that each of them
can be expressed as a union of (m− 1)(2n− 1) sets from I. Obviously, if I is an arbitrary
union of k sets from I, the set I −X for any X ∈ I can be expressed as a union of at
most k + 1 sets from I.

If i ≤ m−1, then Ii = I ′i−(I ′1∪· · ·∪I ′i−1) is obtained from I ′i by removing at mostm−2
unions of 2n− 1 sets from I. So at most (m− 2)(2n− 1) sets from I are removed from I ′i.
Thus Ii can be expressed as a union of at most (2n−1)+(m−2)(2n−1) = (m−1)(2n−1)
sets from I.

Finally, observe that since I ′1 ∪ · · · ∪ I ′m−1 ∈ I(m−1)(2n−1), by Property 8.7, also Im =
[0, 1)− (I ′1 ∪ · · · ∪ I ′m−1) ∈ I(m−1)(2n−1).
Theorem 8.15. Let n ≥ 1, f1, . . . , fm : [0, 1)→ R2n componentwise integrable, and α ∈
[0, 1]m with ‖α‖1 = 1. The set [0, 1) can be partitioned into sets I1, . . . , Im ∈ I(m−1)(2mn−1),
such that for all i ∈ {1, . . . ,m},∫

Ii

fi(x) dx = αi

∫
[0,1)

fi(x) dx.

Proof. Let g : [0, 1) → R2mn, x 7→ f1(x) ◦ f2(x) ◦ · · · ◦ fm(x), where ◦ denotes the con-
catenation of vectors, i. e., (x1, . . . , xs)T ◦ (y1, . . . , yt)T = (x1, . . . , xs, y1, . . . , yt)T. Clearly,
g is componentwise integrable. By Lemma 8.14, there is a partition of [0, 1) into sets
I1, I2, . . . , Im ∈ I(m−1)(2mn−1) such that

∫
Ii
g(x) dx = αi

∫
[0,1) g(x) dx for all i. In particular

this holds for the components of g corresponding to fi.

8.4 Application to Discrepancy Theory
We now want to transfer the exact analytical results from the previous sections to results
about functions f : {1, . . . , n} → Rm. We can consider f to be a function on [0, 1) that is
constant on [ i

n
, (i+1)

n
) for each i = 0, . . . , n− 1. Then most parts of the integrals degrade

into simple sums. Since we cannot force the interval boundaries to be in { i
n
| i ∈ N, i < n},

we have to admit small errors when we really want to have sums everywhere. Fortunately,
since we have rather few intervals, the number of interval boundaries that have to be
moved to points of the form i

n
are also rather small.

More formally, we will show a result concerning weighted discrepancy. We will follow
the notation used by Doerr [Doe05] to define several discrepancy notions. Remember that
1n is the all-ones-vector of dimension n.
Definition 8.16. For a matrix A ∈ Rm×n, we define the weighted discrepancy, the linear
discrepancy and the hereditary linear discrepancy as follows:

wdisc(A) = max
α∈[0,1]

min
x∈{0,1}n

‖A(α1n − x)‖∞
lindisc(A) = max

y∈[0,1]n
min

x∈{0,1}n
‖A(y − x)‖∞

herlindisc(A) = max
A0≤A

lindisc(A0) = max
A0≤A

max
y∈[0,1]n

min
x∈{0,1}n

‖A(y − x)‖∞,

where A0 ≤ A means that A0 is a submatrix of A, i. e. one obtains A0 from A by deleting
some rows and columns. Observe that it suffices to delete columns here. Further note
that for all A ∈ Rn×m, we have wdisc(A) ≤ lindisc(A) ≤ herlindisc(A).
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We did not require x to be a rounding of y in the definition of the linear discrepancy.
Doerr [Doe05] remarks that the hereditary linear discrepancy is the correct notion for the
minimal error introduced by rounding, as it holds that

herlindisc(A) = max
y∈[0,1]n

min
x∈rd(y)

‖A(y − x)‖∞,

where rd(y) = {x ∈ {0, 1}n | ∀i : |yi − xi| < 1} is the set of roundings of y. The theorem
by Beck and Fiala can now be formulated as follows (cf. Theorem 8.1):

Theorem 8.17 (Beck, Fiala [BF81]). For all A ∈ Rm×n it holds that

herlindisc(A) ≤ ‖A‖1.

We already remarked that the weighted discrepancy of a matrix A ∈ Rm×n can be
bounded by the hereditary linear discrepancy. We use the results from the previous
sections to show that this bound can always be achieved by a vector x ∈ {0, 1}n that has
a very special structure: The number of changes in the components of x is at most 2m
and thus independent of n.

Note that the presence of this special structure has an important implication for
rounding algorithms: If m is at most logarithmic in the input length and n at most
polynomial, a vector x ∈ {0, 1}n such that ‖A(α · 1n − x)‖ ≤ herlindisc(A) can always
be found in polynomial time by simple exhaustive search. This also means that non-
constructive proofs for upper bounds for the hereditary linear discrepancy are sufficient
to improve such algorithms that use the weighted discrepancy.

Theorem 8.18. For all A ∈ Rm×n and α ∈ [0, 1] there is some x ∈ {0, 1}n such that
xk 6= xk+1 (mod n) holds for at most 2m of the k ∈ {1, . . . , n} and

‖A(α · 1n − x)‖∞ ≤ herlindisc(A).

Proof. Let A = (ai,j) and define f : [0, 1)→ Rm such that for 1 ≤ j ≤ n and x ∈ [ j−1
n
, j
n
),

f(x) = (a1,j, . . . , am,j)T. Note that f is componentwise integrable. We apply Theorem 8.12
and obtain a set I ∈ Im such that∫

I

f(x) dx = α
∫

[0,1)

f(x) dx.

Note that since m can be odd here, we have to add a zero component to f in that case
and only obtain I ∈ Im and not I ∈ Im−1.

We now define p ∈ [0, 1]n as pj = n · λ(I ∩ [j − 1, j)) for 1 ≤ j ≤ n where λ is the
Lebesgue measure, i. e. λ(X) :=

∫
X 1 dx. We obtain

Ap =
n∑
j=1

f( j−1
n

) · n · λ(I ∩ [j − 1, j)) = n
∫
I

f(x) dx

= n · α
∫

[0,1)

f(x) dx = α
n∑
j=1

f( j−1
n

) = Aα 1n. (8.3)
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Next, we round the non-integral components of p. Observe that pj is non-integral only if
there is an endpoint of some interval of I in [j − 1, j). There are at most 2m endpoints of
intervals, so p can have at most 2m non-integral components. Furthermore, if there is no
endpoint of an interval in [j − 1, j + 1), then pj = pj+1. This holds similarly for pm and
p1. This means that p contains at most 2m pairs of adjacent components such that one of
the components is non-integral or the two components differ (as the special case where
the endpoint of an interval is some j−1

n
). We will get back to this observation later.

We extract the columns from A that correspond to non-integral components of p. Let
Afr ∈ Rm×n such that column j of Afr is equal to column j of A if pj is non-integral
and all zeros otherwise. Let now x ∈ {0, 1}n such that ‖Afr(p− x)‖∞ = lindisc(Afr) ≤
herlindisc(A). The inequality holds since Afr corresponds to a submatrix of A. We can
assume that xj = pj if pj is integral. It now holds that

A(α1n − x) (8.3)= A(p− x) = Afr(p− x)

and thus we get

‖A(α1n − x)‖∞ ≤ herlindisc(A).

It remains to show that xk 6= xk+1 (mod n) holds for at most 2m of the k ∈ {1, . . . , n}.
We have already noted that p contains at most 2m pairs of adjacent components such
that one of the components is non-integral or the two components differ. Since x differs
from p only in non-integral components of p, we get that there are at most 2m pairs of
adjacent components in x that are not equal (including xm and x1), which proves the
assertion.

We note that the above theorem can be extended to multi-color discrepancy by
exchanging the application of Theorem 8.12 by Theorem 8.15. Since the number of
intervals increases in Theorem 8.15, we also have to admit more color changes, but they
are still independent of n.
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Part II

Language Equations

Any (non-empty) regular language can be represented by an expression that combines
singleton constants using the operations of union, concatenation and iteration. Of course,
for each regular language there can be several such regular expressions, and thus, it is
natural to ask whether two given regular expressions represent the same language (the
so-called equivalence problem). Furthermore, one can ask the same question for regular
expressions extended by the operations of intersection, complementation or squaring.
Meyer and Stockmeyer [MS72, SM73] investigated these problems and showed that their
complexity heavily depends on the allowed operations. They also studied membership
problems, where an expression and a word is given as input and the question is whether
the word belongs to the language represented by the expression. If the considered alphabet
consists of only one letter, these expressions can also be interpreted as expressions over sets
of natural numbers (sometimes also called integer expressions): Since a word over a single-
letter alphabet is completely characterized by its length, languages correspond to sets of
natural numbers and the concatenation corresponds to addition. For natural numbers,
multiplication can of course also be considered as an operation for these expressions. Some
problems concerning expressions over sets of natural numbers were also studied by Meyer
and Stockmeyer [SM73].

When we allow expressions to reference subexpressions of themselves, we arrive at a
more succinct representation of the same languages. These “expressions” can be modeled
by acyclic graphs (circuits) where each node represents one application of an operator
to its predecessors and input gates represent singletons. These circuits were mostly
studied over sets of natural numbers by Wagner [Wag84], Yang [Yan00] and McKenzie and
Wagner [MW07]. In chapter 10, we investigate the complexity of equivalence problems
for circuits over sets of natural numbers and show that they are complete for various
complexity classes ranging from NL over C=L, P and ΠP

2 up to PSPACE. We obtain
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similar results for satisfiability problems, where the question is whether some assignment
to the constants generates a specific number in the set represented by the circuit.

The circuit framework can be further extended by dropping the condition that the
graph must be acyclic, which can be seen as follows. For each gate i in the circuit, we
introduce one variable Ai and one expression ϕi = Ai1 ⊗ Ai2 representing the operation
applied on the predecessor gates (we assume a binary operation for simplicity) or one
expression ϕi = {a} for input gates with assignment a ∈ Σ. These expressions can then
be assembled into a system of (language) equations:

A1 = ϕ1

A2 = ϕ2
...

Ar = ϕr

Ginsburg and Rice [GR62] showed that if the allowed operations are union and concate-
nation, one obtains exactly the context-free languages as (least) solutions. By adding
intersection and complementation to the set of operations, one arrives at conjunctive and
Boolean languages defined by Okhotin [Okh01, Okh04] (the semantics are a bit delicate
when complementation is allowed, we refer to section 9.1 for details). Although the classes
of conjunctive and Boolean languages are strictly larger than the context-free languages,
they share some convenient properties with the context-free languages, among these the
existence of efficient parsing algorithms (i. e. algorithms solving the membership problems).

In section 9.2 we show that systems of language equations defining conjunctive lan-
guages do not need the full power of the union: In order to represent them, it suffices to
allow arbitrary intersection and concatenation, and union only with singletons. In contrast,
when the same restriction on the union is imposed on systems of equations as studied
by Ginsburg and Rice (i. e. without intersection), one arrives at a proper subclass of the
context-free languages. This class was studied by Greibach, Shi and Simonson [GSS92]
under the name of single tree grammars.

Quite surprisingly, it was shown by Jeż [Jeż08] that even over a single-letter alphabet,
the conjunctive languages are a strict superclass of the context-free languages (which
coincide with the regular languages in this case). This initiated the study of the expressive
power of such languages and also the study of the membership problem for systems
of language equations over a single-letter alphabet (also including complementation),
or, by the correspondence mentioned above, systems of equations over sets of natural
numbers [JO11a, JO08]. It was shown that this problem is complete for E.

We investigate this problem in more detail in section 9.3 and give a sharper upper
bound. More specifically, we present a parsing algorithm for Boolean languages over a
single-letter alphabet. Similar to Valiant’s reduction to matrix multiplication for parsing
context-free languages, we give a sequence of reductions to arithmetic problems. This
algorithm uses Boolean convolution to show that on input of a word an and a system of
language equations S, the question whether the system generates a language including an
can be solved in time O(|S| ·M(n log n) · log n). Here M(n) denotes the bit-complexity of
multiplying two integers of length n. The currently best known value for M(n) [Für09]
yields the complexity |S| ·n log3 n · 2O(log∗ n) ≤ |S| ·n log4 n. Note that for the membership
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problem considered by Jeż and Okhotin, the input an is encoded as bin(n) and thus we
show that their problem lies in DTIME(2n n4).
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Chapter 9

Conjunctive and Boolean Grammars

Context-free grammars are widely used for defining formal languages, or in other words,
syntactic requirements as they for instance occur in programming or markup languages.
In addition to the availability of efficient parsing algorithms for context-free languages,
they are understandable by non-specialists: The set of rules S → aSb, S → ε models the
inductive requirement that a word w has property S if it is the empty word or can be
written as avb, where the word v also has property S.

Multiple rules for one nonterminal are of course connected disjunctively, which can
be seen by the word “or” in the informal description. As the conjunction of syntacti-
cal conditions is not expressible in context-free grammars, this model can be extended
by allowing an explicit conjunction in the formalism of rules. The resulting exten-
sion, introduced by Okhotin [Okh01], is known as conjunctive grammar . It maintains
the principle of defining a language inductively and still allows efficient parsing algo-
rithms [Okh07, Okh08]. At the same time, using conjunction in addition to disjunction
considerably increases the expressive power of the model. Besides being able to represent
many standard examples of non-context-free languages, such as {anbncn | n ∈ N}, and
even languages outside of the intersection-closure of the context-free languages, such
as {wcw | w ∈ {a, b}∗} [Okh01, Wot73], conjunctive grammars are notable for their
non-trivial expressive power over a single-letter alphabet, studied by Jeż [Jeż08] and by
Jeż and Okhotin [JO08, JO10, JO11a].

Similar to the extension by conjunction, it is worthwhile to consider grammars that
include an explicit negation. These so-called Boolean grammars were also defined and
studied by Okhotin [Okh04]. Regardless of their expressive power, both conjunctive and
Boolean grammars preserve the efficient parsing techniques of the context-free languages.
In particular, the membership of a word of length n in the language generated by a
grammar G can be tested in time Θ(|G| ·n3) by a straightforward adaptation of the Cocke–
Kasami–Younger algorithm [Okh01, Okh04], and a more careful examination showed that
Valiant’s [Val75] reduction of context-free recognition to Boolean matrix multiplication
is still applicable to Boolean grammars [Okh10], leading to a parsing algorithm working
in time O(|G| · BMM(n) log n), where BMM(n) is the number of bit operations needed
to multiply two n× n Boolean matrices [Okh10]. Using the best known upper bound on
matrix multiplication [CW90] yields O(|G| · n2.376) time complexity of parsing.

We begin this chapter with an introduction on conjunctive and Boolean grammars in
section 9.1 that contains all needed definitions and also explains the interesting case of
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single-letter alphabets. Then we show two main results in the subsequent sections.

9.1 Definitions and Normal Forms
We define conjunctive and Boolean languages as an extension of context-free languages
through their grammatical characterizations. The semantics for conjunctive languages can
be defined via derivations and this will turn out useful for proofs, as we can use induction
over the number of derivation steps. Though there is some intuition for derivations with
negation, we will define the semantics for Boolean grammars only via solutions to systems
of language equations, as mentioned in the introduction to this part. For an overview
of conjunctive and Boolean grammars and languages we refer to the recent survey by
Okhotin [Okh11].

Definition 9.1 (Okhotin [Okh01],[Okh04]). A Boolean grammar is a quadruple G =
(Σ, N, S,R), in which Σ andN are disjoint finite nonempty sets of terminal and nonterminal
symbols, respectively, S ∈ N is the start symbol and R is a finite set of rules, each of the
form

A→ α1& . . .&αn&¬β1& . . .&¬βm where A ∈ N , n,m ∈ N, n+m ≥ 1 and (9.1)
α1, . . . , αn, β1, . . . , βm ∈ (Σ ∪N)∗.

Here, “→”, “&” and “¬” are special symbols not in Σ∪N . If the symbol ¬ does not occur
in any rule, G is called a conjunctive grammar. In such a rule given above, αi and ¬βi
are called conjuncts. Multiple rules A→ ϕ, A→ ψ can be denoted as A→ ϕ | ψ. A rule
(9.1) is called terminating if it is of the form A→ w with w ∈ Σ∗, and non-terminating
otherwise.

Informally, a rule (9.1) states that if a word is generated by each αi and none of the
βi, then it is generated by A. Because of rules of the type A → ¬A and other reasons,
the formalization of this concept is a bit more complicated for Boolean grammars. For
conjunctive grammars, the semantics can be defined similar to context-free grammars
by stepwise derivations or, more generally, term rewriting, which generalizes Chomsky’s
string rewriting [BKV03].

Definition 9.2 ([Okh01]). Given a conjunctive grammar G = (Σ, N, S,R), consider
terms over concatenation (not explicitly denoted) and conjunction (denoted by “&”) with
symbols from Σ ∪ N as atomic terms. Assume that the symbols “(” and “)” used for
grouping are not in Σ∪N . The relation G=⇒ of derivability in one step on the set of terms
is defined as follows:

• Some rule A→ α1& . . .&αn ∈ R can be applied to a term t1 that contains A: If the
term t2 is obtained from t1 by replacing one occurrence of A in t1 by (α1& . . .&αn)
then we can write t1 G=⇒ t2.

• A conjunction of several identical terminal words can be rewritten by one such word:
If the term t1 contains (w& . . .&w) for some w ∈ Σ∗ and t2 is obtained from t1 by
replacing (w& . . .&w) by the single word w then we can write t1 G=⇒ t2.
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If the grammar G is clear from the context, we also write =⇒ for G=⇒. As usual, the
relations of derivability (in zero or more steps) and in exactly ` steps, are denoted by

G=⇒∗ and G=⇒`, respectively. The language generated by a term ϕ is LG(ϕ) = {w ∈
Σ∗ | ϕ G=⇒∗w}. The language generated by the grammar is L(G) = LG(S) = {w ∈ Σ∗ |
S

G=⇒∗w}. A language L that is generated by some conjunctive grammar is called a
conjunctive language.

The semantics of Boolean grammars are usually defined using language equations.
This definition generalizes the well-known characterization of the context-free grammars
by equations, due to Ginsburg and Rice [GR62] and for conjunctive grammars, it is
equivalent to the one given above.

Definition 9.3 ([Okh04]). For every Boolean grammar G = (Σ, N, S,R) the associated
system of language equations contains the equation

A =
⋃

A→α1&...&αn&
¬β1&...&¬βm∈R

 n⋂
i=1

αi ∩
m⋂
j=1

βj

 (9.2)

for each A ∈ N where each symbol in N is interpreted as a variable, each symbol a ∈ Σ is
interpreted as the constant language {a} and each empty word as the constant language
{ε}. A solution to such a system is a vector of languages (LA)A∈N , LA ⊆ Σ∗, such that
the substitution of LA for A, for each A ∈ N , turns each equation (9.2) into an equality,
where the complement is interpreted relative to Σ∗. A solution (LA)A∈N is called strongly
unique if it is the only solution and furthermore for each n ∈ N, the vector (LA∩Σ≤n)A∈N
is a solution to the system that is obtained by intersecting each right-hand side with Σ≤n.
If (LA)A∈N is a strongly unique solution, then we can speak of the language generated by
A ∈ N as LG(A) = LA and the language generated by G as L(G) = LG(S). A language L
that is generated by some Boolean grammar is called a Boolean language.

Note that by the definition, only the Boolean grammars that have strongly unique
solutions generate languages. The idea behind the concept of strongly unique solutions is
that we want to retain the inductive character of grammars: The question whether a word
w is generated by a grammar does not depend on words longer than w. Observe that
for a general Boolean grammar G, the associated system of language equations does not
need to have a unique solution (a simple example is the grammar that contains only the
rule S → S) and sometimes does not even have any solution (for instance the grammar
with the rule S → ¬S). For a detailed discussion of both of these aspects, we refer to
the article by Okhotin [Okh04]. Note that there is also another way to define languages
generated by Boolean grammars that uses three-valued logics [KNR09].

9.1.1 Examples of Conjunctive and Boolean Grammars
Let us now give some examples of conjunctive and Boolean grammars. Every language
representable as an intersection of finitely many context-free languages such as {anbncn |
n ∈ N}, can be straightforwardly specified using conjunction for the start symbol, as
demonstrated in the following grammar.
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Example 9.4 (Okhotin [Okh01]). The conjunctive grammar defined by the following
rules generates the language {anbncn | n ∈ N}:

S → AB&DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

Here L(AB) = {aibmcm | i,m ∈ N} and L(DC) = {akbkcj | k, j ∈ N}, while the
intersection of these two languages represented in the rule for S is exactly {anbncn | n ∈ N}.

As the conjunction in the above example is not applied recursively, the grammar can
only generate a language in the intersection closure of the context-free languages. It is
more interesting to construct a grammar for languages outside of this intersection closure,
such as the following one.
Example 9.5 (Okhotin [Okh01]). The conjunctive grammar defined by the rules

S → C&D
C → aCa | aCb | bCa | bCb | c
D → aA&aD | bB&bD | cE
A → aAa | aAb | bAa | bAb | cEa
B → aBa | aBb | bBa | bBb | cEb
E → aE | bE | ε

generates the language {wcw | w ∈ {a, b}∗}. In particular, L(D) = {uczu | u, z ∈ {a, b}∗}.
The rules for D match a single symbol in the left part to the corresponding symbol
in the right part using A or B, and the recursive reference to aD or bD makes the
remaining symbols be compared in the same way. The intersection with the language
{ucv | u, v ∈ {a, b}∗, |u| = |v|} generated by C completes the grammar.

Note that {wcw | w ∈ {a, b}∗} cannot be written as a (finite) intersection of context-free
languages [Wot73].

It is not known whether the language {ww | w ∈ {a, b}∗} can be generated by a
conjunctive grammar, but a Boolean grammar for this language is known [Okh04, Okh11].
Example 9.6 (Okhotin [Okh04]). The Boolean grammar defined by the rules

S → ¬AB&¬BA&C
A → XAX | a
B → XBX | b
C → XXC | ε
X → a | b

generates the language {ww | w ∈ {a, b}∗}. Note that L(AB) = {uavxby | u, v, x, y ∈
{a, b}∗, |u| = |v|, |x| = |y|} = {uavxby | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|}.

It should be noted that the greatest open problem for conjunctive and Boolean
grammars is the search for a (nontrivial) technique to show that some language can
not be generated by such a grammar. In particular, it is unknown if there is a Boolean
language that is not conjunctive. For more details, we refer to the recent survey by
Okhotin [Okh11].
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9.1.2 Single-Letter Alphabets
It is well-known that over a single-letter alphabet the regular and the context-free languages
coincide [GR62]. Thus, the expressive power of context-free languages over a single-letter
alphabet is very limited. Surprisingly, this is not true for conjunctive grammars, as will
be seen in the following example.

Example 9.7 (Jeż [Jeż08]). The following conjunctive grammar with the start symbol
A1 generates the (non-regular) language {a4n | n ∈ N}:

A1 → A1A3&A2A2 | a
A2 → A1A1&A2A6 | aa
A3 → A1A2&A6A6 | aaa
A6 → A1A2&A3A3

In particular, each nonterminal Ai generates the language {ai·4n | n ∈ N}.

To get a feeling how this grammar works, one can consider the set of lengths of the
words generated by a nonterminal in base 4 notation. Ignoring the problem of leading
zeros for the moment, we can consider a language L ⊆ {a}∗ equivalent to the set of the
word lengths in base 4 notation, i. e. L =̂ {w ∈ {0, 1, 2, 3}∗ | an ∈ L where w is the base
4 notation of n ∈ N}. Then L(A1) =̂ 10∗, L(A2) =̂ 20∗, L(A3) =̂ 30∗ and L(A6) =̂ 120∗
(note that 6 is 12 in base 4). This is useful since the concatenation of languages over a
single-letter alphabet corresponds to the (element-wise) addition of the sets of word lengths
(we already explained this correspondence in the introduction to this part while clarifying
the connections between circuits and equations over languages and over sets of natural
numbers). We now show that the stated languages are a solution to the first equation.
Substituting the solutions, we obtain L(A1A3) = 10∗30∗∪30∗10∗∪100∗, where the last part
is the intended set and the rest will be removed. Similarly, we get L(A2A2) = 20∗20∗∪100∗.
The intersection of languages over {a}∗ directly corresponds to the intersection of the
base 4 notation of the word lengths and thus we get L(A1A3&A2A2) = 100∗, which is
exactly the stated language generated by A1 when {a} is additionally included in the set.

This technique of manipulating the base k notation has subsequently been extended
by Jeż and Okhotin. In particular, they showed that a language L ⊆ {a}∗ is conjunctive
if there is some k ≥ 2 such that {w ∈ {0, 1, . . . , k − 1} | an ∈ L where w is the base
k notation of n ∈ N} is linear conjunctive [JO10]. Linear conjunctive languages are a
certain subclass of the conjunctive languages that include the regular languages [Okh11].
Furthermore, for any recursive function there is a strictly greater function f : N→ N such
that the language {af(n) | n ∈ N} is conjunctive [JO10]. That means that the conjunctive
languages over single-letter alphabets can grow as fast as any recursive function. Note
that since conjunctive languages are decidable, their growth functions are all recursive.
This result has to be compared to the fact that context-free languages over a single-letter
alphabet can only grow linearly.

Finally, several complexity aspects concerning conjunctive grammars over single-letter
alphabets have been studied. Among other results, it was established that testing whether
two given conjunctive grammars over a single-letter alphabet generate the same language
(i. e. the equivalence problem for the respective systems of equations over sets of natural
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numbers) is coRE-complete [JO10]. Notably, this problem stays coRE-complete even
when only a single nonterminal is allowed [JO11b]. Furthermore, the membership problem
for systems of equations over sets of natural numbers with union, intersection and addition
is E-complete [JO11a]. In section 9.3 we will give a sharper explicit upper bound on this
membership problem (though note that we use a different input encoding) and we will
study the complexity of equivalence problems for systems of equations over sets of natural
numbers without cyclic dependencies between the variables in section 10.3.

9.1.3 Normal Forms
The Chomsky normal form for context-free grammars can be generalized to conjunctive
and Boolean grammars as follows.

Definition 9.8 (Binary normal form [Okh01, Okh04]). A Boolean or conjunctive grammar
G = (Σ, N, S,R) is in binary normal form if every rule in R has one of the following three
forms:

A→ B1C1& . . .&BnCn& for n ≥ 1,m ≥ 0, Bi, Ci, Di, Ei ∈ N,
¬D1E1& . . .&¬DmEm&¬ε where “&¬ε” can be omitted if m = 0

A→ a for some a ∈ Σ

S → ε only if S does not appear in
right-hand sides of rules

Every Boolean grammar that generates a language (i. e. the associated system of
language equations has a strongly unique solution) and every conjunctive grammar can
be effectively transformed to a grammar in binary normal form generating the same
language [Okh01, Okh04] (while conjunctive grammars are transformed to conjunctive
grammars). The technique to achieve this is essentially the same as for the context-free
grammars. Observe that every grammar in binary normal form generates a language.
In particular, for both conjunctive and Boolean grammars G, the set L(G) ∩ Σ≤n+1 is
obtained from L(G) ∩ Σ≤n by one application of the rules.

In the following, we will assume that Boolean grammars that are used as inputs for
algorithms are given in binary normal form. This is reasonable, since it is undecidable if a
given system of language equations has a strongly unique solution [Okh04].

The binary normal form can be used to obtain a simple generalization of the Cocke–
Kasami–Younger parsing algorithm to conjunctive and Boolean grammars, which still
works in time O(|G| · n3) [Okh01, Okh04]. Note that the more efficient algorithm for
parsing context-free grammars due to Valiant [Val75] can also be generalized to Boolean
grammars and yields an O(|G| · BMM(n) log n)-time algorithm, where BMM(n) is the
complexity of multiplying two n× n Boolean matrices.

For context-free grammars, there is another important normal form: the Greibach
normal form [Gre65], in which every rule is either A→ aα with a ∈ Σ and α ∈ (Σ ∪N)∗,
or A → ε. This definition naturally carries on to conjunctive grammars. Furthermore,
one can also consider a more restrictive deterministic variant.
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Definition 9.9. A conjunctive grammar G = (Σ, N, S,R) is in Greibach normal form if
every rule in R is of the form

A→ aα1& . . .&aαn (n ≥ 1, a ∈ Σ, αi ∈ N∗) or
A→ ε.

The grammar G is in deterministic Greibach normal form, if for every A ∈ N and a ∈ Σ,
there is at most one rule of the form A→ aα1& . . .&aαn.

It is not known whether every conjunctive grammar can be transformed to this
form [Okh11]. The only progress in this direction is the result that every conjunctive
grammar over a single-letter alphabet can be transformed to Greibach normal form (cf.
Corollary 9.16).

9.2 Restricted Conjunctive Grammars
This section continues the investigation of the power of Boolean operations in formal
grammars with a subclass of conjunctive grammars in which the disjunction can be used
only in the form of disjunction with a terminal word. In other words, each nonterminal A
may have only one rule referring to nonterminals, while the rest of its rules must be of
the form A→ w, where w is a terminal word. The same restriction on the context-free
grammars has been studied by Greibach et al. [GSS92] under the name of single tree
grammars because all parse trees in such a grammar can be obtained from a single infinite
parse tree by stopping derivations at different subsets of its nodes.

These grammars have quite a limited expressive power; in particular, they cannot
generate the language of all palindromes and not even some regular languages but at
the same time, some of their basic decision problems, such as intersection emptiness and
ambiguity, are undecidable [GSS92].

Similarly to single tree grammars, one can expect conjunctive grammars restricted to
use disjunction only with terminal words to be much weaker than conjunctive grammars
of the general form. However, the results of this section contrast this intuition, and it
is shown that in fact every conjunctive grammar can be effectively transformed to an
equivalent grammar with restricted disjunction. Unrestricted disjunction is thus redundant
in conjunctive grammars, as opposed to context-free grammars. The form with restricted
disjunction may be regarded as a normal form for conjunctive grammars.

After formally defining the restriction we want to consider, we will show the basic
idea for the general transformation by giving a restricted grammar for all palindromes
of odd length. This idea is applicable to any grammar in which no nonterminal symbols
generate any words of even length. As an intermediate step, we show that any conjunctive
grammar can be transformed into another normal form, the odd normal form, in which
every nonterminal other than the start symbol generates only words of odd length. By
combining both constructions, the main result of this section is obtained.

Finally, the question of eliminating ε-rules in conjunctive grammars with restricted
disjunction is addressed. Though it is not determined whether this is always possible,
a construction of restricted conjunctive grammars without ε-rules for a subfamily of
conjunctive languages including all regular languages is given. Furthermore, it is shown
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how the two important languages {wcw | w ∈ {a, b}∗} and the (nonempty) palindromes
can be generated by such grammars.
Definition 9.10. A restricted conjunctive grammar G = (Σ, N, S,R) is a conjunctive
grammar in which the set of rules for every nonterminal A is of the form

A→ α1& . . .&αn | w1 | . . . | wm for some n ≥ 1,m ≥ 0, αi ∈ (Σ ∪N)∗, wj ∈ Σ∗.

In other words, every nonterminal may have at most one non-terminating rule, that is,
a rule not of the form A→ w, with w ∈ Σ∗. For instance, the grammar in Example 9.4 is
restricted conjunctive, while the grammar in Example 9.5 is not. Since multiple rules for
one nonterminal can be regarded as disjunction, this definition effectively requires every
disjunction to have a terminal word (that is, a singleton constant language) as one of its
(two) arguments.

The language of all palindromes of odd length over {a, b} is generated by the context-
free grammar defined by the rules

S → aSa | bSb | a | b.
Because of the disjunction aSa | bSb, this grammar is not a single tree grammar. Indeed,
this language cannot be generated by a single tree grammar. One can further prove that it
is not representable as a finite union of languages defined by single tree grammars [Rei07]
(the existing proof applies to the language of all palindromes, but it can be easily modified
for the stated language). On the other hand, the next example shows that restricted
conjunctive grammars can generate this language.
Example 9.11. The following restricted conjunctive grammar generates the set of palin-
dromes of odd length over {a, b}:

S → AB&O | a | b
A→ aSa | ε
B → bSb | ε
O → OOO | a | b

Here the nonterminal O generates the language Odd := {w ∈ {a, b}∗ | |w| is odd}, and
hence S may generate only words of odd length. Then the rule S → AB&O generates

(aSa ∪ {ε})(bSb ∪ {ε}) ∩Odd = (aSabSb ∪ aSa ∪ bSb ∪ {ε}) ∩Odd = aSa ∪ bSb,
that is, it is equivalent to two rules S → aSa and S → bSb. Thus the set of odd-length
palindromes is generated inductively, starting from a and b.

This representation of the union of two languages actually works in the general context,
as long as both languages consist of words of odd length. As in the above example, it is
sufficient to add the empty word to both languages, concatenate them and then filter out
the words of even length:

(K ∪ {ε})(L ∪ {ε}) ∩Odd = K ∪ L (for all K,L ⊆ Odd) (9.3)

This identity gives a way to simulate every conjunctive grammar, in which every nonter-
minal generates a subset of Odd, and the next task is to ensure that the latter condition
holds.
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9.2.1 Odd Normal Form
The new normal form for conjunctive grammars proposed in this section has the following
main property: Every nonterminal (possibly except the start symbol) may only generate
words of odd length. As the parity of the length of words is going to play an important role
in all constructions below, let us introduce the notation Even := (Σ2)∗ and Odd := Σ(Σ2)∗
(where Σ is the implicitly assumed alphabet) for the sets of all words of even and odd
length, respectively.

Definition 9.12 (Odd normal form). A conjunctive grammar G = (Σ, N, S,R) is said to
be in odd normal form if all rules in R are of the form

A→ a with A ∈ N , a ∈ Σ, or
A→ B1a1C1 & . . . &BnanCn with n ≥ 1, A,Bi, Ci ∈ N , ai ∈ Σ.

If S does not occur in the right-hand sides of the rules, then the following two types of
rules, called even rules, are also allowed:

S → aA with a ∈ Σ, A ∈ N
S → ε

Note that if there are no even rules in a grammar in odd normal form, then it generates
a subset of Odd. Thus even rules are needed for some languages, but regardless of whether
they are used, the main part of the grammar operates on words of odd length only. The
main step towards the transformation to the odd normal form is taking an arbitrary
conjunctive grammar and representing its operation on arbitrary words using only words
of odd length. The resulting grammar does not necessarily generate exactly the same
language, but it preserves all the information in the grammar.

Lemma 9.13. For every conjunctive grammar G = (Σ, N, S,R) there exists and can be
effectively constructed a conjunctive grammar G1 = (Σ, N ′, S ′, R1) in odd normal form
without even rules, in which the set of nonterminals is N ′ = (Σ ∪ {ε})×N × (Σ ∪ {ε})
where each nonterminal (x,A, y) ∈ N ′ is denoted by xAy and generates the language

LG1(xAy) = x−1LG(A)y−1 ∩Odd.

The start symbol is S ′ = εSε, and hence L(G1) = L(G) ∩Odd.

Proof. It can be assumed that G is in binary normal form, which can be obtained
effectively [Okh01]. Furthermore, we may assume that G does not contain the rule S → ε,
since the languages x−1LG(S)y−1∩Odd consist of words of length at least one, and hence
the membership of ε in L(G) does not affect them.

The transformation of G to G1 is done in two steps. The main step yields a grammar
G′ that is almost in odd normal form, with occasional so-called unit conjuncts, that is,
rules of the form A→ . . .&B& . . .. After that, G1 is obtained from G′ by a simple known
procedure.

The intermediate grammar is defined as G′ = (Σ, N ′, S ′, R′), with the set of nontermi-
nals and the start symbol as in the statement of the lemma. For every rule

A→ B(1)C(1)& . . .&B(n)C(n) ∈ R,
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each nonterminal xAy with x, y ∈ Σ ∪ {ε} in the new grammar G′ has all possible rules of
the form

xAy → xα
(1)
y & . . .&xα

(n)
y

that satisfy the following condition for each i:

xα
(i)
y ∈{xB(i)

a · a · εC(i)
y | a ∈ Σ} ∪ (9.4a)

{xB(i)
ε · a · aC(i)

y | a ∈ Σ} ∪ (9.4b)
{xB(i)

ε | y ∈ LG(C(i))} ∪ (9.4c)
{εC(i)

y | x ∈ LG(B(i))}. (9.4d)

Additionally, for every xAy ∈ N ′ and a ∈ Σ with xay ∈ LG(A), the new grammar contains
the rule

xAy → a. (9.5)
Since every conjunct in G′ is of length 1 or 3, all words generated by nonterminals in N ′
must be of odd length, and in particular no nonterminal in N ′ generates the empty word.
Claim 9.14. For each xAy ∈ N ′ and for every w ∈ Σ∗,

w ∈ LG′(xAy) if and only if xwy ∈ LG(A) and w ∈ Odd.

Proof of the claim. The proof in each direction is by induction on the length of xwy.
“⇒”: Let w ∈ LG′(xAy); it has to be proved that xwy ∈ LG(A).

Induction basis |xwy| = 1: Assume w ∈ LG′(xAy) for |xwy| = 1. Since no nonterminals
in G′ generate the empty word, w 6= ε and thus x = y = ε. If w is generated directly
by a rule of type (9.5), then w = a and xwy ∈ LG(A) by the construction. At the
same time, w cannot be generated by any rule xAy → xα

(1)
y & . . .& xα

(n)
y : indeed, the

conjuncts xα
(i)
y cannot be of type (9.4a) or (9.4b), since these only generate longer

words, and the types (9.4c) and (9.4d) are also not applicable, because x = y = ε
and no nonterminal in G generates the empty word. This means that w can only be
generated by a rule of type (9.5), and the induction basis is complete.

Induction step: Let ` ≥ 1 and assume that the assertion holds for all A, x, w and y with
|xwy| ≤ `. Let w ∈ LG′(xAy) for some xAy ∈ N ′ and |xwy| = `+1. If w is generated
directly by a rule (9.5), then xwy ∈ LG(A) by the construction of this rule. Assume
that w is generated by a rule xAy → xα

(1)
y & . . .& xα

(n)
y , that is, w ∈ LG′(xα(i)

y ) for
all i = 1, . . . , n. Fix an ith conjunct xα

(i)
y and consider its form.

Assume this conjunct is of the form (9.4a), that is, xα
(i)
y = xB

(i)
a · a · εC(i)

y for
some a ∈ Σ. Then w can be factorized into w = uav, where u ∈ LG′(xB(i)

a ) and
v ∈ LG′(εC(i)

y ). Now the induction hypothesis is applicable to both u and v, because
1 ≤ |u|, |v| ≤ |w| − 2 and accordingly |xua| ≤ |xw| − 1 ≤ |xwy| − 1 = ` and |vy| ≤
|wy| − 2 ≤ |xwy| − 2 = `− 1. From this we get xua ∈ LG(B(i)) and vy ∈ LG(C(i)),
and therefore xwy ∈ LG(B(i)C(i)). The second case, xα(i)

y = xB
(i)
ε · a · aC(i)

y (9.4b),
is symmetric.
For the case (9.4d), assume xα

(i)
y = εC

(i)
y . This means that x ∈ LG(B(i)), which

can only be the case for x 6= ε. Furthermore, we know that w ∈ LG′(εC(i)
y ), and
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since |wy| = |xwy| − 1 ≤ `, we can conclude from the induction hypothesis that
wy ∈ LG(C(i)). Altogether, this yields xwy ∈ LG(B(i)C(i)). The last case (9.4c) is
again symmetric.
In all four cases, we got xwy ∈ LG(B(i)C(i)). Since this holds for all i ∈ {1, . . . , n},
it follows that xwy ∈ LG(A), which was asserted.

“⇐”: Let now xwy ∈ LG(A), w ∈ Odd, and we have to prove that w ∈ LG′(xAy).

Induction basis |xwy| = 1: Since w ∈ Odd, the word xwy has xy = ε and w = a ∈ Σ.
Now if xwy = a ∈ LG(A), then the grammar G′ has a corresponding rule (9.5), and
w = a is generated from xAy by this rule.

Induction step: Let ` ≥ 1 and assume that the claim holds for all A, x, w and y, where
|xwy| ≤ `. Let now xwy ∈ LG(A) with |xwy| = `+1 and w ∈ Odd. If |w| = 1, then
the assertion holds because of some rule of type (9.5). Otherwise, |w| ≥ 3 and there
must be a rule A → B(1)C(1)& . . .&B(n)C(n) ∈ R, such that xwy ∈ LG(B(i)C(i))
for all i = 1, . . . , n. By the construction, there can be multiple rules in R′ that
correspond to this rule. We now argue that for every i = 1, . . . , n, there is a suitable
conjunct xα

(i)
y among (9.4a)–(9.4d) that generates w.

For this, fix i again. Then there must be a partition w = uv, where u, v ∈ Σ∗, xu ∈
LG(B(i)) and vy ∈ LG(C(i)). Note that since w has odd length, either u or v has odd
length. Without loss of generality, assume that |v| is odd. Since no nonterminal in G
generates the empty word, |xu| ≥ 1 and thus |εvy| ≤ |xu|+ |vy| − 1 = |xwy| − 1 = `
and we can use the induction hypothesis to obtain v ∈ LG′(εC(i)

y ). For u there are
two cases:

• If u = ε, then x = xu ∈ LG(B(i)). In this case, the ith conjunct xα
(i)
y can be

defined as εC
(i)
y , as in (9.4d), and w = v ∈ LG′(εC(i)

y ) = LG′(xα(i)
y ).

• If u 6= ε, then u = u′a for some a ∈ Σ and xu′a ∈ LG(B(i)) and thus u′ ∈
LG′(xB(i)

a ) by the induction hypothesis (|xu′a| = |xu| ≤ |xw|−1 ≤ |xwy|−1 = `
and |u′| is odd). This means that w = u′av ∈ LG′(xB(i)

a · a · εC(i)
y ), so this is a

possible conjunct xα
(i)
y that generates w.

Now we showed that for every i = 1, . . . , n, there is a legal conjunct xα
(i)
y in the

respective rule for xAy in R′ that generates w, which implies that w ∈ LG′(xAy). �

The grammar G′ constructed above is not yet in odd normal form, because it may
contain unit conjuncts given by (9.4c) and (9.4d). The known procedure for eliminating
such conjuncts [Okh01] is a sequence of substitutions of the bodies of all rules for B inside
a rule A → . . .&B& . . .. Accordingly, once these substitutions are done, the resulting
grammar G1 will contain conjuncts of the form (9.4a) and (9.4b), while all conjuncts of
the form (9.4c) and (9.4d) will be eliminated. Then G1 will be in odd normal form.

The grammar constructed in Lemma 9.13 generates the words of odd length of the
given language. However, it actually encodes the entire information defined in the original
grammar, and using the “even rules” allowed in the odd normal form one can generate
the original language as it is.
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Theorem 9.15. For every conjunctive grammar there exists and can be effectively
constructed a conjunctive grammar in odd normal form generating the same language.

Proof. Let L ⊆ Σ∗ be conjunctive. By Lemma 9.13, there is a conjunctive grammar
G = (Σ, N, S,R) in odd normal form without even rules, such that for all a ∈ Σ,

LG(S) = L ∩Odd and LG(aSε) = a−1L ∩Odd.

Then the grammar G′ := (Σ, N ∪ {S ′}, S, R′) with a new nonterminal S ′ and

R′ := R ∪ {S ′ → ϕ | S → ϕ ∈ R} ∪ {S ′ → a aSε | a ∈ Σ} ∪ {S ′ → ε | if ε ∈ L}

is in odd normal form (with even rules) and generates L:

LG′(S ′) = LG(S) ∪
⋃
a∈Σ

aLG(aSε) ∪ (L ∩ {ε})

= (L ∩Odd) ∪
⋃
a∈Σ

a(a−1L ∩Odd) ∪ (L ∩ {ε})

= (L ∩Odd) ∪
⋃
a∈Σ

(
a(a−1L) ∩ aOdd

)
∪ (L ∩ {ε})

= (L ∩Odd) ∪
(
L ∩ (Even− {ε})

)
∪ (L ∩ {ε})

= L.

If L ∩ Even = ∅, that is, if L does not contain any words of even length, then
LG′(aSε) = ∅ for every a ∈ Σ. Unfortunately, checking this property is undecidable in
the general case, but if this property holds, then the even rules can be removed without
changing the generated language.

Some corollaries can be inferred from the above theorem. The first one concerns
the Greibach normal form for conjunctive grammars. As already mentioned, it is un-
known whether every conjunctive grammar can be transformed to that form. However,
Theorem 9.15 straightforwardly implies a transformation to Greibach normal form for
grammars over a single-letter alphabet.

Corollary 9.16. For every conjunctive grammar over a single-letter alphabet there exists
and can be effectively constructed a conjunctive grammar in Greibach normal form
generating the same language.

Indeed, since concatenation of languages over {a} is commutative, each term BaC in an
odd normal form grammar can be equivalently replaced by aBC. The second consequence
of Theorem 9.15 is a rather expected closure property of conjunctive languages, which
apparently has not yet appeared in the literature:

Theorem 9.17. Conjunctive languages are effectively closed under quotient with letters,
and hence under quotient with finite languages.

Proof. Let L ⊆ Σ∗ be conjunctive and fix a ∈ Σ. By Lemma 9.13, there is a conjunctive
grammar G = (Σ, N, S,R), which contains nonterminal symbols Sa and bSa for all b ∈ Σ
that generate the languages

LG(Sa) = La−1 ∩Odd and LG(bSa) = b−1La−1 ∩Odd.
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Construct the grammar G′ = (Σ, N ∪ {S ′}, S ′, R ∪R′) with the following additional
rules:

S ′ → Sa

S ′ → b bSa for all b ∈ Σ
S ′ → ε if a ∈ L(G)

Then L(G′) = L(G)a−1. The construction for a−1L is symmetric. The quotient of a
conjunctive language with a word w ∈ Σ+ is expressed by applying the above construction
|w| times. The quotient with a finite language F ⊂ Σ+ is obtained as ⋃w∈F w−1L.

9.2.2 Transformation to Restricted Form
The goal of this section is to convert an arbitrary conjunctive grammar to a restricted
one generating the same language. The main tool is the identity (9.3) illustrated in
Example 9.11, which allows representing a disjunction of two nonterminals, A and B,
by a restricted grammar, as long as A and B generate only words of odd length. The
latter condition is met for grammars in the odd normal form, which leads to the following
general transformation.

Lemma 9.18. For every conjunctive grammar generating a subset of Odd there exists a
restricted conjunctive grammar generating the same language.

Proof. By Theorem 9.15, any given grammar can be converted to the odd normal form,
and since it generates only words of odd length by assumption, even rules may be removed
without changing the language. So assume that the conjunctive grammar G is in odd
normal form without even rules. The first goal is to transform it so that for every
nonterminal A there is either a unique rule of an arbitrary form A→ α1& . . .&αn, or two
rules A→ B | C. During this transformation, the property that L(A) ⊆ Odd for every
nonterminal A should be retained.

Let A→ r1 | r2 | . . . | rn be the rules for the nonterminal A. Of course, L(ri) ⊆ Odd
for all i. If n ≥ 2, then the rules for A are replaced with A→ B | C, where B and C are
two new nonterminals with the rules B → r1 | r2 | . . . | rn−1 and C → rn. Observe that
iterative application of this transformation results in a grammar G′ = (Σ, N, S,R) that
generates the same language as G, still has L(A) ⊆ Odd for all A ∈ N , and furthermore,
for every nonterminal A ∈ N there is either a unique rule of an arbitrary form, or two
rules A→ B | C.

Next, construct a restricted conjunctive grammar G′′ = (Σ, N ∪N ′ ∪ {O}, S, R′), in
which N ′ = {A′ | A ∈ N} is a disjoint copy of N , O is a new nonterminal, and R′ contains
the following rules:

A′ → A | ε for all A ∈ N
A→ α1& . . .&αn&O if A→ α1& . . .&αn is the unique rule for A in R
A→ B′C ′&O if A→ B | C are the rules for A in R
O → OOO

O → a for all a ∈ Σ
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By these rules, LG′′(O) = Odd, LG′′(A) ⊆ Odd and LG′′(A′) = LG′′(A) ∪ {ε} for every
A ∈ N . Assume now that the nonterminal A has the rule A→ B′C ′&O in R′. Then

LG′′(A) =
(
LG′′(B) ∪ {ε}

)(
LG′′(C) ∪ {ε}

)
∩Odd

=
(
LG′′(B)LG′′(C) ∪ LG′′(B) ∪ LG′′(C) ∪ {ε}

)
∩Odd

= LG′′(B) ∪ LG′′(C).

This means that the rule A→ B′C ′&O can be equivalently replaced by the rules A→ B |C.
If this replacement is done for all nonterminals A ∈ N , we again arrive at the grammar
G′ with some additional nonterminals and rules only for these nonterminals. Therefore,
L(G) = L(G′) = L(G′′), and the grammar G′′ generates the desired language, which
proves the lemma.

Now consider an arbitrary conjunctive language L, which may contain words of both
even and odd length. Lemma 9.18 can be used to construct a restricted conjunctive
grammar for L ∩Odd. In order to get the whole language L later, it is useful to generate
all words of even length: this will be a superset of L, which could be intersected with
some other languages to obtain L. The inclusion of all words of even length is performed
in the following lemma.

Lemma 9.19. For every conjunctive language L, the language (L ∩ Odd) ∪ Even is
generated by a restricted conjunctive grammar.

Proof. Let G = (Σ, N, S,R) be a restricted conjunctive grammar generating the language
L∩Odd, which is given by Lemma 9.18. Construct a new grammar G′ with the following
rules, where S ′, A,B,C and O are new nonterminals:

S ′ → AB&C | ε C → CC

A→ S C → w for all w ∈ (Σ ∩ L) ∪ Σ2 ∪ Σ3

A→ a for all a ∈ Σ O → OOO

B → O | ε O → a for all a ∈ Σ

The concatenation AB generates the following language:(
(L ∩Odd) ∪ Σ

)
· (Odd ∪ {ε}) = (Even− {ε}) ∪ (L ∩Odd) ∪ Σ

Its intersection with LG′(C) = (Σ+−{a ∈ Σ | a /∈ L}) produces (Even−{ε})∪(L∩Odd),
and taking the rule S ′ → ε into account, the grammar generates Even ∪ (L ∩Odd).

The above construction cannot be used symmetrically to obtain the language (L ∩
Even)∪Odd directly. However, the method of Lemma 9.19 can be elaborated to generate
the following superset of L:

Lemma 9.20. For every conjunctive language L ⊆ Σ∗ and for every symbol a ∈ Σ, the
language (L ∩ aOdd) ∪ aOdd is generated by some restricted conjunctive grammar.
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Proof. Let L be a conjunctive language over Σ and let a ∈ Σ. Define La := a(a−1L∩Odd):
these are all words of even length in L that start with a, that is, La = L ∩ aOdd. Define
the following three languages:

L1 = (Σ− {a})Σ∗ ∪ {ε},
L2 = La ∪ {ε},
L3 = Odd ∪ {ε}.

Each of these languages has a restricted conjunctive grammar:
• L1 = (Σ − {a})Σ∗ ∪ {ε}: Observe the restricted conjunctive grammar G :=

(Σ, {S,A,X}, S, R) with R containing the rules S → AX, S → ε, A → b (for all
b ∈ Σ−{a}), X → XX, X → v (for all v ∈ Σ∪{ε}). The nonterminals produce the
following languages: LG(X) = Σ∗, LG(A) = Σ−{a} and LG(S) = (Σ−{a})Σ∗∪{ε}.
So the grammar produces the desired language.

• L2 = La ∪ {ε}: Since L is conjunctive, the language a−1L ∩ Odd is conjunctive
by Theorem 9.17, and therefore, by Lemma 9.18, there is a restricted conjunctive
grammar generating this language. This grammar can be easily modified to generate
L2.

• L3 = Odd ∪ {ε}: This language is obviously generated by a restricted conjunctive
grammar with the rules S → O | ε, O → OOO, O → a for every a ∈ Σ.

Now consider the concatenation of these three languages:
L1L2L3 =

(
{ε} ∪ La ∪ (Σ− {a})Σ∗La ∪ (Σ− {a})Σ∗

)
· (Odd ∪ {ε})

=
(
{ε} ∪ La ∪ (Σ− {a})Σ∗

)
· (Odd ∪ {ε})

= {ε} ∪ La ∪ (Σ− {a})Σ∗ ∪Odd ∪ LaOdd︸ ︷︷ ︸
⊆Odd

∪ (Σ− {a})Σ∗Odd︸ ︷︷ ︸
⊆(Σ−{a})Σ∗

= La ∪Odd ∪ (Even− aΣ∗) = La ∪ aOdd = (L ∩ aOdd) ∪ aOdd.

From this, using the grammars for L1, L2 and L3, it is easy to construct a restricted
conjunctive grammar for the desired language.

It remains to intersect the |Σ|+ 1 languages constructed in Lemmas 9.19 and 9.20 to
obtain a grammar for any conjunctive language L containing ε, and an extra intersection
with Σ+ settles the case of ε /∈ L. This gives the main result of this section:
Theorem 9.21. Every conjunctive language is generated by a restricted conjunctive
grammar.
Proof. Let L ⊆ Σ∗ be any conjunctive language. Then, by Lemmas 9.19 and 9.20,
there are restricted conjunctive grammars for the languages (L ∩ Odd) ∪ Even and
(L ∩ aOdd) ∪ aOdd for each a ∈ Σ. The intersection of these languages is(

(L ∩Odd) ∪Even
)
∩
⋂
a∈Σ

(
(L ∩ aOdd) ∪ aOdd

)
= L ∪ {ε}.

If ε ∈ L, this immediately gives a restricted conjunctive grammar for L. Otherwise, if
ε /∈ L, then a subsequent conjunction with a nonterminal representing Σ+ yields the
required grammar.
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9.2.3 Restricted Conjunctive Grammars Without ε-Rules
The above simulation of an arbitrary conjunctive grammar by a conjunctive grammar
with restricted disjunction essentially uses rules of the form A→ ε, known as ε-rules. On
the other hand, as long as only languages not containing the empty word are concerned,
it is known that conjunctive grammars of the general form do not need ε-rules, and a
transformation to the binary normal form leads to their elimination [Okh01]. This raises
the question of whether restricted conjunctive grammars without ε-rules are as powerful
as conjunctive grammars of the general form. Throughout this section, all languages are
subsets of Σ+.

First of all, this stronger restriction on conjunctive grammars still gives a non-trivial
family. For instance, the important grammar over a single-letter alphabet given in
Example 9.7 is of this form. Grammars for interesting languages over larger alphabets
can be constructed as well.

Example 9.22. The following restricted conjunctive grammar generates the set of all
(nonempty) palindromes:

S → XSX&T | a | b | aa | bb
T → AB&CD&XXE
E → XE | a | b
X → a | b

A → bE | a | b
B → Ea | a | b
C → aE | a | b
D → Eb | a | b

In particular, L(E) = Σ+, L(A) = bΣ∗ ∪ {a}, L(B) = Σ∗a ∪ {b}, L(C) = aΣ∗ ∪ {b},
L(D) = Σ∗b ∪ {a}, and L(T ) = aΣ+a ∪ bΣ+b.

Consider the intersection L(AB) ∩ L(CD) used in the rule for T :

(bΣ∗ ∪ {a})(Σ∗a ∪ {b}) ∩ (aΣ∗ ∪ {b})(Σ∗b ∪ {a}) =
=
(
bΣ∗a ∪ bΣ∗b ∪ aΣ∗a ∪ {ab}

)
∩
(
aΣ∗b ∪ aΣ∗a ∪ bΣ∗b ∪ {ba}

)
= aΣ∗a ∪ bΣ∗b ∪ {ab, ba},

and the subsequent intersection with the set of all words of length at least 3 produces the
intended language aΣ+a ∪ bΣ+b. Finally, the rule S → XSX&T generates the language

{a, b}S{a, b} ∩ (aΣ+a ∪ bΣ+b) = aSa ∪ bSb,

and hence operates as if two rules S → aSa and S → bSb. This is enough to generate all
palindromes inductively, starting from the base set {a, b, aa, bb}.

Further investigating this yet more restricted subclass of conjunctive grammars, one
can note the following basic properties:

Lemma 9.23. The family of languages generated by restricted conjunctive grammars
without ε-rules is closed under union with finite sets, concatenation and intersection.

Proof. The closure under concatenation and under intersection is immediate. For the union
with finite sets, let F ⊆ Σ+ be finite and let G = (Σ, N, S,R) be a restricted conjunctive
grammar without ε-rules. The grammar (Σ, N ∪ {S ′}, S ′, R ∪ {S ′ → S} ∪ {S ′ → w | w ∈
F}) with the new nonterminal S ′ is restricted, does not contain ε-rules and generates
L(G) ∪ F .
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The next lemma will be subsumed by the result that all regular languages can be
generated (Corollary 9.29), but it will serve as a useful tool.
Lemma 9.24. Any finite or co-finite language can be generated by a restricted conjunctive
grammar without ε-rules.
Proof. A finite language F = {w1, . . . , wn} is generated by a grammar S → w1 | . . . | wn.

Let now L ⊆ Σ+ be co-finite. Then there is some k ≥ 1, such that L ∩ ΣkΣ+ = ΣkΣ+,
and there exists a finite set F with L = ΣkΣ+ ∪ F . Obviously, ΣkΣ+ can be generated
by a restricted conjunctive grammar without ε-rules. Since L is the union of ΣkΣ+ with
the finite set F , there is also a restricted conjunctive grammar without ε-rules for L after
Lemma 9.23.

Another language of interest that can be generated by a restricted conjunctive grammar
without ε-rules is the earlier mentioned language {wcw | w ∈ {a, b}∗}. The grammar,
which will be given in Example 9.28 at the end of this section, can actually be obtained
by formally transforming the slightly modified grammar from Example 9.5. This trans-
formation is done in the following theorem, which is applicable to a fairly substantial
subfamily of conjunctive grammars including the conjunctive grammars in deterministic
Greibach normal form.
Theorem 9.25. Let G = (Σ, N, S,R) be a conjunctive grammar without ε-rules, in which
there is a disjoint partition of its nonterminals N = NL ∪ NR ∪ NS into left, right and
simple nonterminals, respectively, such that the rules satisfy the following conditions:
• Every A ∈ NS has at most one non-terminating rule.

• Each non-terminating rule for A ∈ NL ∪ NR has the form A → aα1& . . .&aαn
(if A ∈ NL) or A → α1a& . . .&αna (if A ∈ NR) for some a ∈ Σ, n ≥ 1 and
α1, . . . , αn ∈ (Σ ∪N)+.

• For each pair (A, a) ∈ (NL ∪ NR) × Σ, there is at most one rule of the form
A→ aα1& . . .&aαn (if A ∈ NL) or A→ α1a& . . .&αna (if A ∈ NR).

Then there exists (and can be effectively constructed) a restricted conjunctive grammar
without ε-rules that generates the same language.

Before we come to the proof of this theorem, let us see how the grammar in Example 9.5
can be easily transformed to fulfill the requirements:
Example 9.26 (cf. Example 9.5). The conjunctive grammar for the language {wcw |
w ∈ {a, b}∗} that is specified by the following rules

S → C&D
C → FCF | c
D → aA&aD | bB&bD | cE | c
A → aAF | bAF | cEa | ca
B → aBF | bBF | cEb | cb
E → FE | a | b
F → a | b

satisfies the statement of Theorem 9.25 with NL = {D,A,B}, NR = ∅ and NS =
{S,C,E, F}.
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Proof of Theorem 9.25. Let G = (Σ, N, S,R) be a conjunctive grammar of the stated
form. Construct a grammar G′ := (Σ, N ′, S, R′) such that

N ′ := N ∪ {Aa | A ∈ NR ∪NL, a ∈ Σ} ∪ {Xa | a ∈ Σ} ∪ {aX | a ∈ Σ} ∪ {T} ∪N2

(where N2 is a set of auxiliary nonterminals that will not be explicitly described) and the
set R′ contains the following rules. Simple nonterminals have the same rules as in R:

A→ α1& . . .&αn for A ∈ NS, A→ α1& . . .&αn ∈ R (9.6a)
A→ w for A→ w ∈ R, w ∈ Σ+ (9.6b)

Left and right nonterminals have the following rules:

A→ T& &
a∈Σ

(Xa · Aa) for A ∈ NL (9.7a)

A→ T& &
a∈Σ

(Aa · aX) for A ∈ NR (9.7b)

A→ w for A→ w ∈ R, w ∈ Σ+ (9.7c)

A→ w for w ∈ LG(A), |w| = 2, (9.7d)

that is, all terminating rules from R are retained, all words of length two are explicitly
generated, and the unique non-terminating rule is simulated by the nonterminals Aa using
the following rules:

Aa → b for A ∈ NL ∪NR, a, b ∈ Σ (9.8a)
Aa → α1& . . .&αn for A ∈ NL ∪NR, a ∈ Σ; (9.8b)

if A→ aα1& . . .&aαn ∈ R
or A→ α1a& . . .&αna ∈ R

Additionally, the rules for the nonterminals Xa and aX (for every a ∈ Σ) and T
are constructed so that LG′(Xa) = {a} ∪ (Σ − {a})Σ∗, LG′(aX) = {a} ∪ Σ∗(Σ − {a})
and LG′(T ) = Σ3Σ∗. This can be done by Lemmas 9.23 and 9.24 using the additional
nonterminals from the set N2.

Note that because of the restrictions on G, there is at most one non-terminating rule
for every nonterminal A ∈ N ′, and thus G′ is of the restricted form without ε-rules. The
nonterminals of the constructed grammar generate the following languages (which will be
proved later):
Claim 9.27. For every A ∈ N and a ∈ Σ it holds that

1. LG′(Aa) =


Σ ∪

n⋂
i=1

LG(αi)
if R contains a rule A→ aα1& . . .&aαn or
A→ α1a& . . .&αna with n ≥ 1, αi ∈ (Σ ∪N)+

Σ otherwise,
provided that A /∈ NS.

2. LG′(A) = LG(A).
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Proof of the claim. The main idea of the construction is that of a single rule (9.7a) in
G′ simulating multiple rules A→ aαa,1& . . .&aαa,na in G, for all a ∈ ΣA ⊆ Σ, where ΣA

is a set of starting symbols of left rules for A ∈ NL. The simulation can be illustrated
by substituting the intended languages LG′(T ), LG′(Xa) and LG′(Aa) into the expression
T ∩ ⋂a∈Σ Xa · Aa. First, under the substitution Xa = {a} ∪ (Σ− {a})Σ∗ and Aa = LA,a
for any LA,a with Σ ⊆ LA,a ⊆ Σ+, the subexpression ⋂a∈Σ Xa · Aa evaluates to

⋂
a∈Σ

[
{a} ∪ (Σ− {a})Σ∗

]
LA,a =

⋂
a∈Σ

[
aLA,a ∪ (Σ− {a})Σ∗LA,a

]
=
⋂
a∈Σ

[
aLA,a ∪ (Σ− {a})Σ+

]
=
⋃
a∈Σ

aLA,a.

Then the whole expression T ∩ ⋂a∈Σ Xa · Aa, under the substitution T = Σ3Σ∗, Xa =
{a} ∪ (Σ − {a})Σ∗ for all a ∈ Σ, Aa = Σ ∪ ⋂na

i=1 LG(αa,i) for a ∈ ΣA and Aa = Σ for
a ∈ Σ− ΣA evaluates to

Σ3Σ∗ ∩
(

(Σ− ΣA)Σ ∪
⋃

a∈ΣA

a
(
Σ ∪

na⋂
i=1

LG(αa,i)
))

=
( ⋃
a∈ΣA

na⋂
i=1

aLG(αa,i)
)
− Σ2.

Words of length two are lost in the process and have to be specially generated by the
rules (9.7d).

However, proving that the given languages LG′(Z), for all Z ∈ N ′, form a solution of
the system of language equations corresponding to G′, is not sufficient, as the assumptions
of the theorem do not guarantee the uniqueness of a solution of that system. Note that
the first part of the claim follows from the second. Hence, it suffices to prove the second
part of the claim which is done by showing both inclusions using an induction on the
number of derivation steps in the respective grammars.

“LG′(A) ⊆ LG(A)”: It is claimed that for every A ∈ N and w ∈ Σ∗, if A G′

=⇒`w for
some ` ≥ 1, then A G=⇒∗w.

Induction basis ` ≤ 2: The case ` = 1 holds trivially since there is no one-step derivation
A

G′

=⇒ w, because every application of a rule generates a pair of parentheses. A
two-step derivation must be of the form A

G′

=⇒ (w& . . .&w) G′

=⇒ w. So only a rule
that directly generates a terminal word (or a conjunction thereof) can be used for
the first derivation. For A, such rules are either directly copied from R, as (9.6b)
and (9.7c), or are constructed for some w ∈ LG(A), as (9.7d), and in both cases
A

G=⇒∗w.

Induction step: Let ` ≥ 3 and assume that the assertion holds for derivations in G′ of
less than ` steps. Let A G′

=⇒`w. Since terminating rules always produce two-step
derivations, the first rule that is applied in A G′

=⇒`w must be of type (9.6a), (9.7a)
or (9.7b).
If A ∈ NS, then all rules for A have been copied from G (9.6a), 9.6b and the first
step of the derivation is an application of some rule A→ α1& . . .&αn ∈ R∩R′, that
is, A G′

=⇒ (α1& . . .&αn) G′

=⇒`−1w. Let αi = si1 . . . siki
with ki ≥ 0 and sij ∈ Σ ∪N .

Then there must be a factorization w = wi1 . . . wiki
with sij

G′

=⇒`ij wij for some
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`ij < `− 1. If sij ∈ Σ, then sij G=⇒0 sij = wij , and if sij ∈ N , then, by the induction
hypothesis, sij G=⇒∗wij. These derivations can be assembled together to form a
derivation A G=⇒ (α1& . . .&αn) G=⇒ . . .

G=⇒ w.
If A ∈ NL, then the derivation of w must begin with a rule A→ T&&a∈Σ(Xa ·Aa)
(9.7a). Then T G′

=⇒∗w, and thus |w| ≥ 3. Let w = bw′ for some w′ ∈ Σ∗ and b ∈ Σ.
Because of the conjunct Xb · Ab for this particular symbol b, there is some `1 < `,
such that Xb · Ab G′

=⇒`1 w. Since LG′(Xb) = {b} ∪ (Σ − {b})Σ∗, the only prefix of
w generated by Xb is b, and hence Xb

G′

=⇒ b and Ab G′

=⇒`1−1w′. Consider the latter
derivation; since |w′| ≥ 2, some rule Ab → α1& . . .&αn (9.8b) must be used first, and
we get the derivation Ab G′

=⇒ (α1& . . .&αn) G′

=⇒l1−2w′, where αi ∈ (Σ ∪N)+. Then,
as in the previous case (of A ∈ NS), it can be proved using the induction hypothesis
that (α1& . . .&αn) G=⇒∗w′. Since there must be a rule A→ bα1& . . .&bαn ∈ R, we
get A G=⇒∗ bw′ = w, and the assertion is proved.
The case of A ∈ NR is symmetric.

“LG′(A) ⊇ LG(A)”: We now show that for every A ∈ N and w ∈ Σ∗, if A G=⇒`w for
some ` ≥ 1 then A G′

=⇒∗w.

Induction basis ` ≤ 2: Similarly to the induction basis for the first inclusion, the assertion
is true since all rules for A in R that directly generate terminal words are also
present in G′.

Induction step: Assume A G=⇒`w and assume that the assertion holds for less than `
derivation steps. If A ∈ NS, all rules for A are copied from R to R′, and thus the
assertion holds with the same argumentation as in the proof for the other inclusion
and by the induction hypothesis. Consider the case of A ∈ NL. Since ` ≥ 3, the first
rule in the derivation must be A→ aα1& . . .&aαn for some a ∈ Σ, and thus w = aw′

for some w′ ∈ Σ+. If |w| = 2, then A G′

=⇒ w by a direct rule (9.7d). Now assume
|w| ≥ 3. Because of (aα1& . . .&aαn) G=⇒`−1w we also get (α1& . . .&αn) G=⇒`−1w′

and from this, as we have already argued, (α1& . . .&αn) G′

=⇒∗w′. There must be a
rule Aa → α1& . . .&αn ∈ R′ (9.8b) and thus Aa G=⇒ (α1& . . .&αn) G′

=⇒∗w′. Since
a ∈ LG′(Xa), the word w = aw′ is in LG′(XaAa).
To see that w is also in LG′(XbAb) for every b ∈ Σ − {a}, let w = aw′′c for some
c ∈ Σ. Then aw′′ ∈ LG′(Xb) as a word of length at least 2 starting not from b, and
c ∈ LG′(Ab) by the rule (9.8a). This gives w ∈ LG′(XbAb).
Finally, w ∈ LG′(T ) = Σ3Σ∗, because |w| ≥ 3. Putting together all of the above,
w ∈ LG′(A) by the rule A → T& &

a∈Σ
(Xa · Aa), and the assertion is proved. The

proof for A ∈ LR is done symmetrically. �

It follows, in particular, that LG′(S) = LG(S), and thus the two grammars generate
the same language.

The application of the construction in the proof of Theorem 9.25 to the grammar in
Example 9.26 leads to the following grammar:
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Example 9.28. The grammar in Example 9.26, generating the language {wcw | w ∈
{a, b}∗}, is transformed to the following restricted conjunctive grammar without ε-rules:

S → C&D
C → FCF | c
E → FE | a | b
F → a | b
T → ZZT ′

T ′ → ZT ′ | a | b | c
Z → a | b | c
Xa → Ya | a
Xb → Yb | b
Xc → Yc | c
Ya → YaZ | b | c
Yb → YbZ | a | c
Yc → YcZ | a | b

D → T&XaDa&XbDb&XcDc | c | ca | cb
Da → A&D | a | b | c
Db → B&D | a | b | c
Dc → E | a | b | c
A → T&XaAa&XbAb&XcAc | ca
Aa → AF | a | b | c
Ab → AF | a | b | c
Ac → Ea | a | b | c
B → T&XaBa&XbBb&XcBc | cb
Ba → BF | a | b | c
Bb → BF | a | b | c
Bc → Eb | a | b | c

Theorem 9.25 is applicable, in particular, to all LL(1) context-free grammars in
Greibach normal form, which are the “simple grammars” studied by Korenjak and
Hopcroft [KH66]. As a consequence, all regular languages can be represented:

Corollary 9.29. Every language generated by an LL(1) context-free grammar in Greibach
normal form, and in particular every regular language L ⊆ Σ+, is restricted conjunctive
without ε-rules.

Further Research. The exact expressive power of conjunctive grammars with restricted
disjunction and without ε-rules is left as an open question to study. In particular, it
would be interesting to investigate it in the case of a single-letter alphabet: perhaps these
grammars can generate all conjunctive languages over single-letter alphabets. For larger
alphabets, these grammars likely generate a proper subfamily of conjunctive languages.

9.3 Parsing Boolean Languages Over a Single-Letter
Alphabet

Having shown some results that may be of interest to the theory of formal languages
only, we now turn to complexity questions again. We will give an upper bound on the
time needed to determine if a string an is generated by a given Boolean grammar G over
the alphabet {a}. Such problems are generally called membership problems and in the
special case of grammars, this process is also known as parsing. For Boolean grammars
over arbitrary alphabets, one can adapt the Cocke–Kasami–Younger parsing algorithm for
context-free grammars and this adaptation will work in time O(|G| · n3) [Okh01, Okh04].
Given a Boolean/context-free grammar G = (Σ, N, S,R) in binary/Chomsky normal
form and an input word w = a1 . . . an ∈ Σ∗, this algorithm inductively computes the
sets Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A)}, for all 0 ≤ i < j ≤ n. The bottleneck
here is the need to compute n2 unions of the form ⋃

i<k<j Ti,k × Tk,j, which represent
the set of all concatenations BC that generate the corresponding subword ai+1 . . . aj.
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A more efficient way of calculating these sets via Boolean matrix multiplication was
invented by Valiant [Val75], and it can be used to obtain an O(|G| · BMM(n))-time
parsing algorithm for context-free and an O(|G| · BMM(n) log n)-time parsing algorithm
for Boolean grammars [Okh10], where BMM(n) is the complexity of multiplying two n×n
Boolean matrices.

We will show that for Boolean grammars over a single-letter alphabet, similar results
can be obtained. A simple implementation of the Cocke–Kasami–Younger algorithm yields
an O(|G| ·n2) algorithm. A careful examination shows that the algorithm can be improved
by replacing certain operations by Boolean convolution and more specifically, online
Boolean convolution. We further show how integer multiplication can be used to obtain
fast online Boolean convolution algorithms and thus fast parsing algorithms for Boolean
grammars. In particular, we obtain a parsing algorithm for Boolean grammars G in binary
normal form over a single-letter alphabet that works in time O(|G| · M(n log n) log n)
or O(BC(n) log n) where M(n) and BC(n) are (upper bounds for) the bit-complexity of
multiplying two n-bit integers and of computing the convolution of two n-dimensional
Boolean vectors, respectively. We also require some moderate conditions on the growth of
M(n) and BC(n). For the currently best-known integer multiplication algorithm [Für09],
this yields an algorithm with running time |G|n log3 n 2O(log∗ n) ≤ O(|G|n log4 n).

As circuits over the natural numbers with addition as the only arithmetical operation
can also be considered as Boolean grammars over single-letter alphabets, this result
transfers to the membership problem for such circuits. McKenzie and Wagner showed that
this problem is PSPACE-complete [MW07], though it should be noted that they use a
different input encoding: They use the binary encoding for the number whose membership
is queried whereas here, it is encoded in unary. This means that our result implies that
the membership problem for {∪,∩, −,+}-circuits is in DTIME(2n n4). The same remark
applies to the membership problem for systems of equations over sets of natural numbers
with union, intersection and addition as considered by Jeż and Okhotin, which is known
to be E-complete [JO11a].

9.3.1 Recognition by Convolution
In the case of a single-letter alphabet, a word of length n has only n distinct nonempty
subwords, and the basic cubic-time parsing algorithm can be simplified as seen in Algo-
rithm 9.1. The computation that is done in lines 8 to 10 of Algorithm 9.1, essentially
determines one output bit of the Boolean convolution of the Boolean vectors VB and VC .
As we will see later, this computation is done quite inefficiently.

Definition 9.30. The Boolean convolution maps two Boolean vectors x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Bn to another Boolean vector z = x ◦ y = (z2, . . . , z2n) ∈ B2n−1, where

zi =
∨
{xj ∧ yk | 1 ≤ j, k ≤ n, j + k = n}.

The convolution of two Boolean vectors x and y is unambiguous, if for every k with
2 ≤ k ≤ 2n, there is at most one pair (i, j), such that i+ j = k and xi = yj = 1.

The special case of unambiguous convolution in the above definition will become
important in Section 9.3.2.



9.3. PARSING BOOLEAN LANGUAGES OVER A SINGLE-LETTER ALPHABET 161

Algorithm 9.1: parse_basic(G, an)
Input : Boolean grammar G = ({a}, N, S,R) in binary normal form, word an for n ≥ 1
Output : Boolean value indicating an ∈ L(G)

1 for each A ∈ N create a Boolean vector VA[1..n] initialized to false;
2 let P ⊆ N ×N be the set of all pairs of nonterminals occurring (positively or

negatively) in right-hand sides of rules;
3 for each (B,C) ∈ P create a Boolean variable WBC;
4 foreach A ∈ N with A→ a ∈ R do
5 VA[1] = true;
6 for i := 2 to n do
7 foreach (B,C) ∈ P do
8 WBC := false;
9 for j := 1 to i− 1 do

10 WBC := WBC ∨ (VB [j] ∧ VC [i− j]);

11 foreach A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr&¬ε ∈ R do
12 VA[i] := VA[i] ∨ (WB1C1 ∧ . . . ∧WBkCk

∧ ¬WD1E1 ∧ . . . ∧ ¬WDrEr
);

13 return VS [n];

Figure 9.1: Convolution of the Boolean vectors x = (1, 0, 0, 0, 1, 0, 0, 0) and y = (0, 1, 0, 0, 1, 1, 0, 0).
Boxes represent conjunctions of bits and they are filled if the conjunction is true. The disjunctions are
built along the diagonals.
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This definition is illustrated in Figure 9.1, where the axes correspond to the two Boolean
vectors, filled and empty boxes represent true and false conjunctions, respectively, and the
disjunction of each diagonal of conjunctions produces one component of the convolution.
A naïve approach to computing the convolution, as the one implemented in Algorithm 9.1,
involves evaluating all Θ(n2) Boolean operations, as per the definition. Much more efficient
n logO(1) n-time methods based on Fast Fourier Transform were developed in connection
with the problem of fast multiplication of integers.

Using these algorithms, one can, for instance, determine the membership of a word
an in the language defined by a regular expression e over a single-letter alphabet, by
calculating the language generated by each subexpression intersected with {a}≤n. This
works in time |e| · n logO(1) n, where |e| is the number of symbols in the regular expression.
Furthermore, the same approach works for determining the membership of a number n in
a circuit over sets of natural numbers with operations {∪,∩, −,+}.

However, this method of evaluating subexpressions one by one is not directly applicable
to Boolean grammars, which usually include circularities in the definition. In general,
the membership of a word an in a language LG(A) depends upon the membership of
all words a1, . . . , an−1 in the languages generated by all nonterminals of the grammar
G = ({a}, N, S,R), and there is no known way to compute the membership of an in LG(A)
without first computing the membership of all shorter words in all languages. To be
precise, the membership of an in LG(A) is a function of the membership of an in LG(BC),
for all B,C ∈ N , and the latter is one component of the convolution computed in the
lines 8–10 of Algorithm 9.1. Since the Boolean vectors being convolved depend on the
previously calculated components of the convolution, one must use the online variant of
Boolean convolution, defined as follows.

Definition 9.31. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Bn be two Boolean vectors. An
online convolution algorithm, which computes their convolution z = x ◦ y = (z2, . . . , z2n),
receives x and y component by component, and writes each zi before reading any input
xj, yj for j ≥ i.

Fischer and Stockmeyer [FS74] showed how to transform ordinary convolution algo-
rithms into their online variants with not much overhead in the computation. Though
they are mainly concerned with integer multiplication, it is also shown [FS74, Sect. 4.1]
how this result can be extended to so-called generalized linear products defined by Fischer
and Paterson [FP74]. Since Boolean convolution is such a generalized linear product, the
following holds.

Theorem 9.32 (Fischer, Stockmeyer [FS74]). Consider any algorithm computing the
Boolean convolution of two Boolean vectors of length n in time C(n), and assume that C
is monotone and satisfies 2C(n) ≤ C(2n) ≤ c · C(n) for some c. Then there is an online
convolution algorithm that runs in time O(C(n) · log n).

Since Fischer and Stockmeyer do not explicitly consider the case of Boolean convolution,
we now give a simplified version of their multiplication algorithm, hereby applied to Boolean
convolution.

Proof. Algorithm 9.2 solves the stated problem, where conv() is a subroutine that computes
(the standard offline) convolution of two Boolean vectors of length n in time C(n).
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Algorithm 9.2: oconv(x, y)
Input : Boolean vectors (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Bn, access to higher indices yields false
Output : Boolean vector (z2, z3, . . . , z2n) ∈ B2n−1

1 t2 := t3 := · · · := t2n := false;
2 for i := 2 to 2n do
3 foreach k ∈ {2r | 1 ≤ 2r < i, 2r divides i} do
4 (u2, u3, . . . , u2k) := conv((xk, . . . , x2k−1), (yi−k, . . . , yi−1));
5 (u′2, u′3, . . . , u′2k) := conv((yk, . . . , y2k−1), (xi−k, . . . , xi−1));
6 (ti, . . . , ti+2k−2) := (ti, . . . , ti+2k−2) ∨ (u2, . . . , u2k) ∨ (u′2, . . . , u′2k)
7 output zi := ti;

Figure 9.2 illustrates how the convolution of the given vectors is decomposed into convo-
lutions of subvectors of size 1× 1, 2× 2, 4× 4, . . . , 2j × 2j, each represented as a box.
The loop in line 3 iterates over all powers of 2 strictly less than i that are divisors of i,
and calculates two convolutions of each size. The filled squares in the figure illustrate the
convolutions calculated for i = 20, when the loop is executed for k = 1, 2, 4.

Correctness. We first verify the online condition. Because of line 7, we only have to
check that in each iteration of the main loop, the variables xi, . . . , xn and yi, . . . , yn are
not accessed. Choose any iteration of the main loop and of the inner loop with k = 2r
and observe line 4. Note that since 2r < i and 2r|i it holds that k = 2r ≤ i

2 and thus
2k − 1 ≤ i− 1. This means that both arguments of the function conv() only access the
input up to bit i− 1. Because of symmetry, this is also true for line 5 and thus the online
condition is fulfilled.

In order to show that the algorithm indeed computes the convolution we consider two
directions. For the first, we prove that for every j ∈ {2, 3, . . . , 2n} such that the output
bit j of the convolution of (x1, . . . , xn) and (y1, . . . , yn) is true, the algorithm sets zj to
true. In this case, there must be some 1 ≤ s, ` ≤ n such that s+ ` = j and xs = y` = true.
Because of the symmetry of the algorithm with respect to x and y we can assume that
s ≤ `. Let r ≥ 0 such that 2r ≤ s < 2r+1 and m ≥ 2 such that (m− 1) · 2r ≤ ` < m · 2r.
Let i := m · 2r and k := 2r and consider the respective iterations of the algorithm. Of
course, we need to show that these iterations exist. Since r ≥ 0 and m ≥ 2, we have
i ≥ 2. Furthermore, it holds that i = m · 2r = 2r + (m− 1) · 2r ≤ s+ ` = j ≤ 2n. This
shows that such an iteration of the main loop exists and that its value for i is at most j,
which means that the change in the variable tj is still taken into account. The conditions
1 ≤ 2r < i and 2r|i are obviously fulfilled since i = m · 2r with m ≥ 2, so the iteration
with our chosen value for k also exists. Observe line 4 and note that the bits xs and y` are
mentioned in the vectors (xk, . . . , x2k−1) and (yi−k, . . . , yi−1) since k = 2r ≤ s < 2r+1 = 2k
and i − k = m · 2r − 2r = (m − 1) · 2r ≤ ` < m · 2r = i. Because xs = y` = true, the
output bit s− k+ 1 + `− (i− k) + 1 = s+ `− i+ 2 = j− i+ 2 of the internal convolution
routine is set to true, stored in uj−i+2 and finally t(j−i+2)−2+i = tj is set to true in line 6.
As already mentioned, this value is finally assigned to zj in the iteration with i = j.

For the other direction, we show that for every j ∈ {2, 3, . . . , 2n} such that zj assumes
the value true in the algorithm, the output bit j of the convolution of (x1, . . . , xn) and
(y1, . . . , yn) is true. So let j ∈ {2, . . . , 2n} and zj = true. Let i and k = 2r be the
values of the loop variables where tj is set to true for the first time. Without loss
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Figure 9.2: Scheme of convolutions computed by Algorithm 9.2 at iteration i = 20 (Proof of Theo-
rem 9.32). The axes represent the input Boolean vectors and the squares stand for convolutions while
filled squares are convolutions that are computed in iteration i = 20. The diagonal crosses all pairs of
input bits that contribute to the output bit i = 20.

of generality, assume that this truth value originates in (u2, u3, . . . , u2k) and thus is
computed by the convolution routine in line 4. In order for tj to be true, there must
be 1 ≤ s′, `′ ≤ k with s′ + `′ = j − i + 2 such that xk+s′−1 = yi−k+`′−1 = true. Since
k + s′ − 1 + i− k + `′ − 1 = i+ j − i+ 2− 1− 1 = j, this means that the output bit j of
the convolution of (x1, . . . , xn) and (y1, . . . , yn) is true.

Time Complexity. Note that the time needed for any operation apart from computing
the convolutions in lines 4 and 5 can be neglected. We start by counting how often these
convolutions are computed. For each r ≥ 0, there are at most 2n

2r − 1 values for i such that
2r < i ≤ 2n and 2r|i. Thus, for each fixed value for k = 2r, the lines 4 and 5 are each
reached at most 2n

k
times. This means that there are at most 4n 2−r calls to a convolution

procedure of size 2r and the possible values for r range from 0 to blog 2nc, which means
that the overall time taken for the convolutions is at most

blog 2nc∑
r=0

4n 2−rC(2r) ≤
blog 2nc∑
r=0

4n 2−r 2r−blog 2ncC(2blog 2nc)

≤
blog 2nc∑
r=0

4C(2n)

≤ 4(2 + log n)c · C(n)

for some constant c. Here, the first inequality holds by using 2C(n) ≤ C(2n) multiple
times, the second inequality is due to C being monotone and the third inequality is true
because C(2n) ≤ c · C(n) for some c.

This shows that the algorithm runs in time O(C(n) · log n).
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Using this result, we can change Algorithm 9.1 from page 161 to directly use online
convolution and can concentrate on finding a good algorithm for ordinary convolution.

Algorithm 9.3: parse(G, an)
Input : Boolean grammar G = ({a}, N, S,R) in binary normal form, word an for n ≥ 1
Output : Boolean value indicating an ∈ L(G)

1 for each A ∈ N create a Boolean vector VA[1..n] initialized to false;
2 let P ⊆ N ×N be the set of all pairs of nonterminals occurring (positively or

negatively) in right-hand sides of rules;
3 for each (B,C) ∈ P create a Boolean variable WBC;
4 for each (B,C) ∈ P run a parallel instance of an online convolution algorithm

oconvBC(VB [1..n], VC [1..n]) whose output is accessed as an array oconvBC [2..2n];
5 foreach A ∈ N with A→ a ∈ R do
6 VA[1] := true
7 for i := 2 to n do
8 feed all VA[i− 1], A ∈ N to the convolution algorithms;
9 foreach (B,C) ∈ P do

10 WBC := oconvBC [i];
11 foreach A→ B1C1& . . .&BkCk&¬D1E1& . . .&¬DrEr&¬ε ∈ R do
12 VA[i] := VA[i] ∨ (WB1C1 ∧ . . . ∧WBkCk

∧ ¬WD1E1 ∧ . . . ∧ ¬WDrEr
;

13 return VS [n];

Lemma 9.33. Let BCo(n) ≥ n be the complexity of computing an n-bit online Boolean
convolution. The problem whether a given word an is generated by a given Boolean
grammar G in binary normal form can be solved in time O(|G| · BCo(n)).

Proof. We show that Algorithm 9.3 solves the stated problem.

Correctness. We first show that the algorithms oconvBC are used in a way such that
they always have enough bits of the input available to produce the requested output bits.

Let 2 ≤ i ≤ n and (B,C) ∈ P . Because of line 8, the bit oconvBC [i] is requested after
the bits VB[1..(i − 1)] and VC [1..(i − 1)] have been fed to the algorithm and thus, the
online convolution algorithm can correctly produce the requested output bit.

It remains to show that this algorithm does the same as Algorithm 9.1 from page 161.
Note that after the initialization, the replacement of lines 7 to 10 by the lines 8 to 10 is
the only difference in the algorithms. Since oconvBC computes the convolution, i.e.

WBC = oconvBC [i] =
i−1∨
j=1

VB[j] ∧ VC [i− j],

both algorithms obviously compute the same result.

Time Complexity. Because we run one online convolution algorithm for each pair
(B,C) ∈ P , we get O(|G| ·BCo(n)) for the online convolutions alone. All other operations
need O(|G| · n) time, and since BCo(n) ≥ n, we get the stated complexity.
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9.3.2 Boolean Convolution
We have seen how parsing Boolean grammars over single-letter alphabets can been reduced
to online Boolean convolution, which in turn was reduced to ordinary Boolean convolution.
We now apply the final reduction, and show how to use an arbitrary integer multiplication
algorithm to compute Boolean convolutions. As a consequence, progress in algorithms or
implementations for integer multiplication will also improve the complexity of parsing
Boolean grammars over single-letter alphabets.
Lemma 9.34. Let M(n) be the time complexity of multiplying two n-bit integers.
The Boolean convolution of two Boolean vectors of length n can be computed in time
O(M(n log n)) and in time O(M(n)) if the convolution is unambiguous.
Proof. In the following, we interpret B = {0, 1} as a subset of the integers. Let x =
(x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Bn. We begin with the unambiguous case.
Define the n-bit numbers

a =
n−1∑
i=0

xi2i and b =
n−1∑
j=0

yj2j.

The product of these numbers is

a · b =
n−1∑
i=0

n−1∑
j=0

xiyj2i+j =
2n−2∑
k=0

2k
∑
i+j=k

xiyj =
2n−2∑
k=0

2k
k∑
i=0

xiyk−i

and since the convolution is unambiguous, the coefficient of each 2k is either zero or one.
Thus the Boolean vector of the convolution coincides with the binary representation of
the product.

This is not the case anymore if the convolution is not unambiguous, but there, carries
can be avoided by padding in the following way: For

a =
n−1∑
i=0

xi2idlogne and b =
n−1∑
j=0

yj2jdlogne

we get

a · b =
n−1∑
i=0

n−1∑
j=0

xiyj2(i+j)dlogne =
2n−2∑
k=0

2kdlogne ∑
i+j=k

xiyj. =
2n−2∑
k=0

2kdlogne
k∑
i=0

xiyk−i.

Since for any k, it holds that ∑i+j=k xiyj ≤ n ≤ 2dlogne, there will be no carry between
blocks of dlog ne bits, and thus the Boolean vector of the convolution can be extracted
from the binary representation of the product. As the multiplication is done on integers
with binary length ndlog ne, the assertion follows.

Applying the currently best known upper bound for integer multiplication due to
Fürer [Für09] leads to the following result.
Proposition 9.35. The Boolean convolution of two Boolean vectors of length n can be
computed in time n log2 n · 2O(log∗ n), and in time n log n · 2O(log∗ n) if the convolution is
unambiguous.
Proof. We apply Fürer’s algorithm for multiplication with time complexity n log n·2O(log∗ n).
The unambiguous case is obvious and in the general case we get a time complexity of
O((n log n) log(n log n)2O(log∗(n logn))) = n log2 n2O(log∗ n).
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9.3.3 The Resulting Algorithm
Combining the algorithms presented above we arrive at the following upper bound on
the complexity of the membership problem for Boolean grammars over a single-letter
alphabet. Let us first define a class of Boolean grammars where the resulting algorithm is
faster.

Definition 9.36 ([Okh08]). The concatenation of two languages, K and L, is said to be
unambiguous, if every string w ∈ K · L has a unique factorization w = uv with u ∈ K
and v ∈ L.

A Boolean grammar G = (Σ, N, S,R) that generates a language has unambiguous
concatenation, if all concatenations in the corresponding system of language equations
(9.2) are unambiguous under the substitution A = LG(A) for A ∈ N .

Finally, G is unambiguous if it has unambiguous concatenation and furthermore, every
union in the system (9.2) is disjoint under the substitution A = LG(A) for A ∈ N .

Note that if a Boolean grammar G has unambiguous concatenation, then the grammar
that is obtained by the transformation to the binary normal form is unambiguous [Okh08].

Theorem 9.37. Consider any algorithm for multiplying two n-bit integers in time at
most M(n), and assume that M is monotone and satisfies 2M(n) ≤ M(2n) ≤ c ·M(n)
for some c.

Then there is an algorithm for testing whether a given word an is generated by a given
Boolean grammar G in binary normal form, which works in time O(|G| ·M(n log n) · log n).
If the grammar is known to be unambiguous, a variant of the algorithm works in time
O(|G| ·M(n) · log n).

The currently best known value for M(n) yields the complexity |G| · n log3 n · 2O(log∗ n)

and |G| · n log2 n · 2O(log∗ n), respectively.

Proof. Note that if the grammar is known to be unambiguous, then all convolutions will
be unambiguous. By Lemma 9.34, there is a constant c′ such that Boolean convolution
can be computed in time c′M(n log n) and unambiguous Boolean convolution in time
c′M(n). Note that both c′M(n log n) and c′M(n) fulfill the preconditions of Theorem 9.32.
Thus, these algorithms can be converted to online variants with complexity Co(n) =
O(M(n log n) log n) and O(M(n) log n), respectively. Finally, from Lemma 9.33, we obtain
the assertions. Using Fürer’s result M(n) = n log n · 2O(log∗ n) [Für09], the explicit bounds
follow (note that this function fulfills the requirements of the theorem).

Finally, consider Algorithm 9.4, which solves the parsing problem and is a combination
of Algorithm 9.3 from page 165, and Algorithm 9.2 from page 163, and can be directly
implemented given a procedure conv for offline Boolean convolution.
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Algorithm 9.4: parse_complete(G, an)
Input : Boolean grammar G = ({a}, N, S,R) in binary normal form, word an for n ≥ 1
Output : Boolean value indicating an ∈ L(G)

1 for each A ∈ N create a Boolean vector VA[1..n] initialized to false;
2 let P ⊆ N ×N be the set of all pairs of nonterminals occurring (positively or

negatively) in right-hand sides of rules;
3 for each (B,C) ∈ P create a Boolean vector WBC [1..n] initialized to false;
4 foreach A ∈ N with A→ a ∈ R do
5 VA[1] := true
6 for i := 2 to n do
7 foreach k ∈ {2j | 1 ≤ 2j < i, 2j divides i} do
8 foreach (B,C) ∈ P do
9 U := conv(VB [k..2k − 1], VC [i− k..i− 1]);

10 U ′ := conv(VB [i− k..i− 1], VC [k..2k − 1]);
11 WBC [i..i+ 2k − 1] := WBC [i..i+ 2k − 1] ∨ U ∨ U ′;

12 foreach A→ B1C1& . . .&BkCk&¬D1E1& . . .&¬DrEr&¬ε ∈ R do
13 VA[i] := VA[i] ∨ (WB1C1 [i] ∧ . . . ∧WBkCk

[i] ∧ ¬WD1E1 [i] ∧ . . . ∧ ¬WDrEr
[i]);

14 return VS [n];
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Chapter 10

Circuits over Sets of Natural
Numbers

10.1 Introduction
In 1973, Stockmeyer and Meyer [SM73] defined and investigated equivalence problems for
expressions over sets of natural numbers (they called them integer expressions). They
considered expressions that can be built up from single natural numbers by using Boolean
operations (−, ∪, ∩), addition (+), and multiplication (×). The equivalence problem
for expressions over sets of natural numbers is the question of whether two given such
expressions describe the same set of natural numbers. Restricting the set of allowed
operations results in equivalence problems of different complexities. Stockmeyer and
Meyer [SM73] showed that the equivalence test for expressions with the operations
{−,∪,∩,+} is PSPACE-complete, and that this problem becomes ΠP

2 -complete if one
restricts to operations from {∪,+}.

We continue these investigations and study variations of the equivalence problems for
expressions and related satisfiability problems in a systematic way. Despite their basic
definition, expressions over sets of natural numbers are powerful enough to describe highly
non-trivial sets. For instance, the set of primes can be described as

Primes = 0 ∪ 1× 0 ∪ 1 ∩ 0 ∪ 1.

This can be easily verified: The complement of {0, 1} multiplied with itself yields all
composite numbers. Taking its complement gives the set consisting of 0, 1, and all primes.
The intersection with 0 ∪ 1 yields the set of primes. Using equivalence problems for
these expressions, one can express some of the most prominent, unsolved problems in
mathematics.

In 1742, Christian Goldbach stated his famous conjecture as a footnote in a letter to
Leonhard Euler. This conjecture is nowadays specified as follows:
Conjecture 10.1 (Goldbach’s Conjecture). Every even integer greater than two is the
sum of two primes.

The following integer expression describes exactly the set of integers that are coun-
terexamples for Goldbach’s conjecture.

Counterexamples = (2 × 0 ∪ 1) ∩ Primes + Primes
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The left set of the intersection is the set of even integers greater than two, while the right
set consists of those integers that are not a sum of two primes. Goldbach’s conjecture is
true if and only if the set of counterexamples is empty. Therefore,

Goldbach’s conjecture holds ⇐⇒ Counterexamples is equivalent to 0 ∩ 0.

Hence, a terminating algorithm for the equivalence problem would immediately solve
Goldbach’s conjecture and thus, this problem is likely undecidable. Indeed, the decidability
of the general equivalence problem will be one of our open questions.

Circuits Over Sets of Natural Numbers. Stockmeyer and Meyer’s [SM73] motiva-
tion for the study of equivalence problems for expressions over sets of natural numbers
originated from equivalence problems for Kleene’s regular expressions [MS72]. Since then,
several variants and generalizations of expressions over sets of natural numbers have been
studied. Researchers were also interested in circuits over sets of natural numbers which
were introduced by Wagner [Wag84]. The latter represent expressions in a succinct way
and so yield problems of higher complexity.

Wagner [Wag84], Yang [Yan00], and McKenzie and Wagner [MW07] studied the
complexity of membership problems for formulas and circuits over natural numbers: Here,
for a given circuit C and a number n, one has to decide whether n belongs to the set that
is described by C. It was shown that the complexity of the membership problem heavily
depends on the operations allowed. It turned out that these problems are complete for
various classes between L and NEXP. Breunig [Bre07] studied membership problems for
formulas and circuits over Z+, the positive integers, while Travers [Tra06] studied the
variant for Z, the integers. Furthermore, Düntsch and Pratt-Hartmann investigated which
kind of sets are representable as such expressions [PD09] and also addressed questions
regarding the structure of general complex algebras over the natural numbers [DP09].

The extension from expressions to circuits can be continued to allow cycles in the
circuits. This can be modeled by systems of equations over sets of natural numbers, which
were investigated by Jeż and Okhotin [JO08, JO10, JO11a, JO11b]. The motivation for
these systems stems from the correspondence to formal languages over a single-letter
alphabet: Every word over a single-letter alphabet can be completely characterized by
its length and concatenation is nothing else that addition of word lengths. Systems
of equations over sets of natural numbers with operations {∪,+} then coincide with
context-free grammars over a single-letter alphabet [GR62] and the extension by the
operations ∩ and − correspond to conjunctive and Boolean grammars [Okh01, Okh04].
We refer to chapter 9 for details about these grammars in general and the special case of
a single-letter alphabet.

Equivalence and Satisfiability Problems. In this chapter, we study equivalence and
satisfiability problems for circuits over sets of natural numbers and for most of these
problems we can precisely characterize their complexity. The satisfiability problems are
generalizations of the membership problems studied by McKenzie and Wagner [MW07].
In contrast to membership problems, here a circuit can contain variable but also constant
input gates. Hence, solving a satisfiability problem is at least as hard as solving the
corresponding membership problem.
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Notice that the domain of the input variables is unbounded, hence it is not a priori
clear that our satisfiability problems are decidable. Indeed, we can prove that some
satisfiability problems are undecidable: We show that the problem of solving Diophantine
equations, which was proven to be undecidable by Matiyasevich [DPR61, Mat70], can be
reduced to SC(∩,+,×), the problem of testing satisfiability for {∩,+,×}-circuits.

It turns out that our results for equivalence problems also have consequences for the
known results about membership problems. In fact, our upper bound for the equivalence
problem for {−,∪,∩,+,×}-circuits yields an improved upper bound for the member-
ship problem for {−,∪,∩,+,×}-circuits. This is the first nontrivial upper bound for
MC(−,∪,∩,+,×), the most general membership problem.

Our main open question for equivalence problems is whether the unrestricted version
of the equivalence problem, EC(−,∪,∩,+,×), is decidable or not. While we can show
that this problem is equivalent to the corresponding membership problem, the upper
bound we provide is not a decidable upper bound. So if one proves that EC(−,∪,∩,+,×)
is undecidable, then it follows that MC(−,∪,∩,+,×) also is undecidable.

Similar questions remain open for satisfiability problems. It is unclear whether
SC(−,∪,∩,×), the satisfiability problem for {−,∪,∩,×}-circuits, is decidable. A further
open question is to find a better lower bound for the satisfiability problem for {×}-circuits.
We prove this problem to be in UP ∩ coUP.

The results obtained in this chapter are summarized (together with known results) in
Table 10.1 on page 199.

10.2 Definitions
We define the circuit model and related decision problems followed by some examples
of circuits. At the end of this section, we will show a lemma providing some general
constructions related to circuits.

Definition 10.2. A circuit C = (V,E, gC) is a finite, non-empty, directed, acyclic
multigraph (V,E) with a specified node gC ∈ V . The graph does not have to be connected,
and V = {1, 2, . . . , n} for some n ∈ N. Moreover, the nodes in the graph (V,E) are
topologically ordered, i. e., for all v1, v2 ∈ V , if v1 < v2, then there is no path from v2 to
v1. The nodes in V are also called gates. Nodes with indegree 0 are called input gates and
gC is called the output gate. If in a circuit there is an edge from gate u to gate v, then we
say that u is a direct predecessor of v and v is the direct successor of u. If there is a path
from u to v but u is not a direct predecessor of v, then u is an indirect predecessor of v
and v is an indirect successor of u.

Definition 10.3. Let O ⊆ {−,∪,∩,+,×}. An O-circuit C = (V,E, gC , α) is a circuit
(V,E, gC) whose gates are labeled by the labeling function α : V → O ∪ N such that the
following holds: Each gate has an indegree in {0, 1, 2}, gates with indegree 0 have labels
from N, gates with indegree 1 have label −, and gates with indegree 2 have labels from
{∪,∩,+,×}. If each gate that is not an input gate has outdegree at most one, O is called
a O-formula or O-expression. Each gate in C computes a subset of N defined by the
mapping IC : V → 2N. This mapping is inductively defined for each gate g ∈ V with direct
predecessors g1 and g2 (if any) as follows:
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• If g is an input gate, then I(g) := {α(g)}.

• If g has label −, then I(g) := N− I(g1).

• If g has label ◦ ∈ {∪,∩,+,×}, then we define I(g) := I(g1) ◦ I(g2).

If the circuit C is clear from the context, we set I := IC . We define I(C) := IC(gC),
the set computed by the circuit C.

For the satisfiability problems studied in section 10.4, we define circuits that, apart
from inputs that are assigned numbers, also have unassigned inputs.

Definition 10.4. For O ⊆ {−,∪,∩,+,×} an O-circuit C = (V,E, gC , α) with n unas-
signed inputs, n ≥ 0 is a circuit (V,E, gC) whose gates are labeled by the labeling function
α : V → O ∪ N ∪ {?} such that the following holds: If u1 < u2 < · · · < un are the
nodes that are labeled by ? and x1, . . . , xn ∈ N then C(x1, . . . , xn) := (V,E, gC , α′) is an
O-circuit where α′(ui) = xi for all 1 ≤ i ≤ n and α′(v) = α(v) for all other gates. This
means that C becomes an O-circuit by assigning its inputs. The input gates with label
? are called unassigned (or variable) input gates (by the definition only input gates can
have the label ?), the other input gates are called assigned (or constant) inputs. Each
O-circuit C is also an O-circuit with 0 unassigned inputs (all inputs are assigned) and it
holds that C = C(). If the context is clear, we will sometimes simply speak of circuits
when we actually mean circuits with n unassigned inputs for some n ≥ 1.

Definition 10.5. Let O ⊆ {−,∪,∩,+,×}. We define membership problems, equiva-
lence and satisfiability problems for circuits and equivalence problems for formulas (or
expressions).

MC(O) := {(C, b) | C is an O-circuit and b ∈ I(C)}
EC(O) := {(C1, C2) | C1, C2 are O-circuits such that I(C1) = I(C2)}
SC(O) := {(C, b) | C is an O-circuit with n unassigned inputs u1 < · · · < un,

n ≥ 0 and b ∈ I
(
C(x1, . . . , xn)

)
for some x1, . . . , xn ∈ N}

EF(O) := {(C1, C2) | C1, C2 are O-expressions (formulas) such that I(C1) = I(C2)}

Note that EF(O) is the problem of testing equivalence for expressions studied by
Stockmeyer and Meyer [SM73]. Furthermore, the problem MC(O) was studied extensively
by McKenzie and Wagner [MW07]. Their results are summarized together with our new
results in Table 10.1 on page 199.

When an O-circuit C = (V,E, gc, α) (with or without unassigned inputs) is used as
input for an algorithm, all numbers are encoded in binary and furthermore, we use a
suitable encoding such that it is possible to verify in deterministic logarithmic space
whether a given string encodes a valid circuit. In the following, we will therefore assume
that all algorithms start with such a validation of their input strings.

We will notate circuits in two ways: Either graphically as in Figure 10.1 or as
expressions over variables, natural numbers and predefined circuits and connect them
using the allowed operations. Let us consider the circuits in Figure 10.1 as examples.
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Figure 10.1: Three example circuits.
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Example 10.6 ([MW07]). Let Ca be the the circuit in Figure 10.1(a). It is a more
succinct representation of the expression that computes Primes. The first −-gate in Ca
computes the set {2, 3, . . . }. The following ×-gate computes the set of all composite
numbers and the last gate computes the set of all primes.

Example 10.7 ([MW07]). The circuit Ca appears as a subcircuit in the circuit Cb shown in
Figure 10.1(b). The last ∩-gate of Cb computes the set {p+q | p, q prime}−{x ∈ N | x > 2
and x even}. Goldbach’s conjecture states that every even integer greater than two is the
sum of two primes. Note that I(Cb) is non-empty if and only if Goldbach’s conjecture
holds true. In the introduction we already gave two expressions that are equivalent if
and only if Goldbach’s conjecture holds. The fact that question can also be expressed as
a membership problem is not a coincidence here. We will show that MC(−,∪,∩,+,×)
and EC(−,∪,∩,+,×) are ≤log

m -equivalent (Propositions 10.15 and 10.17.1). If these two
problems were decidable, there would be an algorithm that could check if Goldbach’s
conjecture is true or not. The question whether these two problems are decidable is one
of the most intriguing open questions concerning circuits over sets of natural numbers.

Example 10.8. As we will see, undecidability results can be shown for the satisfiability
problems for circuits with unassigned inputs. Consider the circuit Cc in Figure 10.1(c)
and let a, b, c ∈ N. If we assign the values a, b, c to the unassigned inputs x, y, z of Cc, we
obtain the circuit Cc(a, b, c). The ∩-gate of this circuit computes a non-empty set if and
only if (a + 1)4 + (b + 1)4 = (c + 1)4. Hence, the circuit computes {0} if the equation
x4 + y4 = z4 has a solution in the positive integers and ∅ otherwise. Fermat’s last theorem
thus shows that (Cc, 0) /∈ SC(∩,+,×). This circuit exemplifies how Diophantine equation
can be modeled using circuits over sets of natural numbers. We will use this technique to
show that SC(∩,+,×) is undecidable in Theorem 10.47.

We first note the possibility of some basic constructions that will be used in later
proofs.

Lemma 10.9. The following three tasks are solvable in deterministic logarithmic space.

1. On input of a number a output a {+}-circuit C with inputs from {0, 1} such that
I(C) = {a}.

2. On input of a number a output a {+}-circuit C with one unassigned input such
that for all x ∈ N, I(C(x)) = {a · x}.

3. On input of a multivariate polynomial p(x1, . . . , xn) with coefficients from N output
a {+,×}-circuit C with n unassigned inputs and all other inputs from {0, 1} such
that I(C(a1, . . . , an)) = {p(a1, . . . , an)} for all a1, . . . , an ∈ N.

A fourth task is computable in exponential time for O ⊆ {−,∪,∩,+,×}.
4. Unfold an O-circuit C into an O-expression C ′ (note that the size of C ′ can be

exponential in the size of C).
More formally: On input of an O-circuit C (with n ≥ 0 unassigned inputs) compute
an O-circuit C ′ with n unassigned inputs such that each gate that is not an
unassigned input has outdegree at most one and for all x1, . . . , xn ∈ N it holds that
I(C(x1, . . . , xn)) = I(C ′(x1, . . . , xn)).
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Proof. 1. Note that the case a = 0 is realized by a single-gate circuit with input 0. Assume
now that a ≥ 1 and let bin(a) = an · · · a0. We construct a circuit that contains the gates
v0, . . . , vn such that v0 is an input gate with input 1 and all other gates have label +.
Moreover, for 0 ≤ i < n, there are two edges from gate vi to gate vi+1. Observe that
I(vi) = {2i} and therefore, ∑

i∈{0,...,n}
ai=1

I(vi) = {a}.

This sum can be produced by adding at most n − 1 additional gates with label + to
our circuit and by suitably connecting these new gates to the gates vi where ai = 1.
This construction is possible in logarithmic space and results in a circuit C such that
I(C) = {a}.

2. Observe that the circuit is obtained simply by changing the input gate v0 of part 1
to an unassigned input gate. In this case, the gate vi computes {2i · x} and therefore, the
modified circuit computes {a · x}.

3. We use the first statement to construct all coefficients of the polynomial and then
use +- and ×-gates to suitably connect these constants and the variable inputs.

4. This task is carried out by creating k copies of each gate g and all its direct and
indirect predecessors, but not including the variable input gates where g has outdegree
k + 1.

10.3 Equivalence Problems
We now want to investigate the complexity of the equivalence problem for various sets
of allowed operations. We start by summarizing known results about the complexity of
equivalence problems.

Theorem 10.10.

1. [MW07] EC(+) is ≤log
m -complete for C=L.

2. [SM73] EF(∪,+) is ≤log
m -complete for ΠP

2 .

3. [SM73] EF(−,∪,∩,+) is ≤log
m -complete for PSPACE.

4. [Sch79] EC(+,×) is in coRP.

As demonstrated in the introduction, we can generate interesting sets like the set of
all primes using only multiplication and the set operations. Contrary to that, circuits
whose only arithmetic operation is addition can only compute finite or cofinite sets. The
essential difference between the sum and the product in this context is that the sum
A+B of two cofinite sets A and B is cofinite whereas A×B is generally not cofinite; in
particular, A×B excludes all the primes if 1 /∈ A ∪B.

Proposition 10.11. If C is a given circuit over O ⊆ {−,∪,∩,+}, then there exists an
n ≤ 2|C| + 1 such that for all z ≥ n,

z ∈ I(C) ⇐⇒ n ∈ I(C).
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Proof. This can be shown by an induction over the size of C.

Note that by Proposition 10.11, we gain knowledge about the generated set of a
{−,∪,∩,+}-circuit C once we know the membership for all numbers of length at most
|C| + 1. Clearly, multiplication gates break this property: For instance, the set of all
primes is neither finite nor cofinite, but can be generated by a {−,∪,∩,×}-circuit.

It is obvious that {∪,∩,+,×}-circuits can only compute finite sets. However, because
of the multiplication gates, we obtain only a double exponential upper bound on the
computed numbers.

Proposition 10.12. If C is a {∪,∩,+,×}-circuit, then I(C) ⊆ {0, 1, . . . , 222|C|}.

Proof. This can be shown by an induction over the size of C.

10.3.1 Relations to Membership Problems
In this subsection we discuss that in some cases (i. e., for several O ⊆ {−,∪,∩,+,×}),
the complexity of the equivalence problem EC(O) is related to the complexity of MC(O)
in a straightforward way. As a consequence, we obtain several general upper and lower
bounds for EC(O) which we summarize below. In contrast, in the following sections more
complicated arguments are needed to establish optimal bounds.

Lemma 10.13. If O ⊆ {−,∪,∩,+}, then EC(O) ∈ coNPMC(O).

Proof. Fix O ⊆ {−,∪,∩,+}. By Proposition 10.11, in order to gain complete knowledge
about the set generated by an O-circuit C, we only have to look at the first 2|C| + 1
elements in the set. Thus when comparing the outputs of two circuits C1 and C2 over O, it
suffices to compare all numbers below and including max(2|C1| + 1, 2|C2| + 1). The circuits
generate different sets if and only if one of these comparisons fails. Hence if I(C1) 6= I(C2)
we can guess a witness in polynomial time and query the MC(O)-oracle twice to verify
our guess.

Applying Lemma 10.13 to the results by McKenzie and Wagner [MW07], we obtain:

Corollary 10.14. It holds that

1. EC(∪,+) ∈ ΠP
2 .

2. EC(∪,∩,+), EC(−,∪,∩,+) ∈ PSPACE.

The following proposition shows that in many cases, the intuition that equivalence
problems are a generalization of membership problems is correct.

Proposition 10.15. If {∩} ⊆ O or {∪} ⊆ O or O ⊆ {+,×}, then MC(O) ≤log
m EC(O).

Proof. Observe that b ∈ C ⇐⇒ C ∪ {b} = C ⇐⇒ C ∩ {b} = {b}. Moreover, circuits
over {+,×} only compute singletons.

In combination with the results by McKenzie and Wagner [MW07] we obtain the
following lower bounds.
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Corollary 10.16. It holds that

1. EC(−,∪,∩,+,×) and EC(∪,∩,+,×) are ≤log
m -hard for NEXP.

2. EC(−,∪,∩,+), EC(−,∪,∩,×), EC(∪,∩,+), EC(∪,∩,×) and EC(∪,+,×) are
≤log

m -hard for PSPACE.

3. EC(∪,+) and EC(∪,×) are ≤log
m -hard for NP.

4. EC(−,∪,∩), EC(∪,∩), EC(∩,+,×) and EC(+,×) are ≤log
m -hard for P.

5. EC(∩,+), EC(∩,×) and EC(+) are ≤log
m -hard for C=L.

6. EC(∪), EC(∩) and EC(×) are ≤log
m -hard for NL.

It turns out that in some cases, the equivalence problem is not harder than the
membership problem.

Proposition 10.17. It holds that

1. If {−,∩,×} ⊆ O or {−,∪,×} ⊆ O, then EC(O) ≤log
m MC(O).

2. If O ⊆ {−,∪,∩}, then EC(O) ≤log
T MC(O).

3. If O ⊆ {+,×}, then EC(O) ≤log
m MC(O ∪ {∩,×}).

4. If O ⊆ {∩,+,×}, then EC(O) ≤log
T MC(O ∪ {∩,×}).

Proof. For statement 1, consider the function f(C1, C2) := (C, 0) where C denotes the
following circuit.

C1 C2

− −

∩ ∩

∪

×

0

Since ∪ can be easily simulated by ∩ and − (and similarly for ∩), we can assume that
C is an O-circuit if C1 and C2 are O-circuits for {−,∩,×} ⊆ O or {−,∪,×} ⊆ O.

We now show that f witnesses the reduction EC(O) ≤log
m MC(O). Note that f is

computable in deterministic logarithmic space.
If (C1, C2) ∈ EC(O), then I(C1) ∩ I(C2) = ∅ and I(C1) ∩ I(C2) = ∅. Hence I(C) = ∅.

This shows (C, 0) ∈ MC(O). Otherwise, if (C1, C2) /∈ EC(O), then I(C1) 6= I(C2)
and hence, I(C1) ∩ I(C2) 6= ∅ or I(C1) ∩ I(C2) 6= ∅. It follows that (I(C1) ∩ I(C2)) ∩
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(I(C1) ∩ I(C2)) 6= N and so I(C) = {0}. Therefore, (C, 0) /∈ MC(O). This shows
EC(O) ≤log

m MC(O) via reduction function f .
For statement 2, observe that for a {−,∪,∩}-circuit C with inputs I ⊆ N and for

x, y ∈ N− I it holds that
x ∈ C ⇐⇒ y ∈ C.

Thus for testing the equivalence of two circuits C1 and C2, it suffices to verify that the
output sets coincide on all inputs and on one additional number.

For statement 3, observe that two {+,×}-circuits C1 and C2 are equivalent if and only
if the circuit (C1 ∩ C2)× 0 computes {0}.

For the last statement, let C1, C2 be two O-circuits. Now consider the circuits
C ′1 := C1 × 0, C ′2 = C2 × 0 and C := (C1 ∩ C2)× 0. These are circuits over O ∪ {∩,×}.
Since O contains at most ∩ as set operation, C1 and C2 produce a single number or the
empty set as output.

If C1 and C2 are equivalent, then either both circuits produce the empty set or both
circuits produce the same value. In the first case, (C ′1, 0) 6∈ MC(O ∪ {∩,×}), (C ′2, 0) 6∈
MC(O ∪ {∩,×}), (C, 0) 6∈ MC(O ∪ {∩,×}) and in the second case, (C ′1, 0) ∈ MC(O ∪
{∩,×}), (C ′2, 0) ∈MC(O ∪ {∩,×}) and (C, 0) ∈MC(O ∪ {∩,×}).

If C1 and C2 are not equivalent, then either one of them produces the empty set
(without loss of generality let C1 be that circuit) while the other one produces a number
or both produce numbers but different ones. In the first case, (C ′1, 0) 6∈ MC(O ∪
{∩,×}), (C ′2, 0) ∈ MC(O ∪ {∩,×}), (C, 0) 6∈ MC(O ∪ {∩,×}) and in the second case,
(C ′1, 0) ∈MC(O ∪ {∩,×}), (C ′2, 0) ∈MC(O ∪ {∩,×}), (C, 0) 6∈MC(O ∪ {∩,×}).
So we can test for equivalence just by verifying that the tests (C ′1, 0) ∈MC(O ∪ {∩,×}),
(C ′2, 0) ∈MC(O ∪ {∩,×}), and (C, 0) ∈MC(O ∪ {∩,×}) yield the same result.
Corollary 10.18. EC(∪,∩), EC(−,∪,∩), EC(∩,×) and EC(×) ∈ P,
EC(∪) and EC(∩) ∈ NL.
Proof. This follows from Proposition 10.17 together with the results by McKenzie and
Wagner [MW07]: For EC(∪,∩) and EC(−,∪,∩) we use Proposition 10.17.2 and the result
that MC(−,∪,∩) ∈ P. For EC(∩,×) and EC(×), Proposition 10.17.4 together with
MC(∩,×) ∈ P yields the assertion. The second part follows from Proposition 10.17.2 and
MC(∪), MC(∩) ∈ NL since NL is closed under ≤log

T by the theorem of Immerman and
Szelepcsényi [Imm88, Sze88].

10.3.2 Feasible Equivalence Problems
In this section, we present several equivalence problems for which we can show that
efficient algorithms exist. While most of the algorithms require deterministic polynomial
time or less, randomness is needed for EC(∩,+,×).

We show that EC(∩,+) is complete for the class coC=L(2), the complement of the
second level of the Boolean hierarchy over C=L (cf. Definitions 2.7 and 2.10). As a useful
tool, we introduce non-emptiness problems for circuits.
Definition 10.19. Let O ⊆ {−,∪,∩,+,×}. The non-emptiness problem for O-circuits
is defined as follows:

NEC(O) := {C | C is an O-circuit such that I(C) 6= ∅}
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Lemma 10.20. NEC(∩,+) is ≤log
m -complete for C=L.

Proof. Locally in this proof, we use an additional gate type, the id-gate. Such a gate
has indegree one and computes the identity. Observe that an {id,+}-circuit C can be
translated in logarithmic space into a {+}-circuit C ′ such that I(C) = I(C ′). For this
we only have to replace all id-gates by +-gates whose second input is connected to a
new input gate with label 0. Hence EC(id,+) ≤log

m EC(+). So by Theorem 10.10.1,
EC(id,+) ∈ C=L.

We define the function f : For a given {∩,+}-circuit C and a given gate number k it
outputs a new {id,+}-circuit by deleting the second input edge of each ∩-gate and turning
it into an id-gate and changing the output gate to the gate with number k. Observe that
f is computable in logarithmic space.

Claim 10.21. Let C be an {∩,+}-circuit. If g is a gate in C such that X := IC(g) is
non-empty, then If(C,k)(g) = X for any gate number k.

Proof of the claim. Assume the claim does not hold. Choose the first (smallest) gate g in
C and some k such that X := IC(g) is non-empty and If(C,k)(g) 6= X. It is obvious that
g cannot be an input gate. From the choice of g it follows that any direct predecessor
of g in C computes the same set in C and in f(C, k). Since an {∩,+}-circuit can only
compute sets with cardinality at most 1 and X 6= ∅, all direct predecessors of g must
compute singletons. If g has label +, then it is not modified by f and thus must compute
the same set in f(C, k). If g has label ∩, then all direct predecessors of g compute the
same singleton and thus, g still computes this singleton if g’s second input edge is deleted
by f . This contradicts our assumption and proves Claim 10.21. �

Consider the function h given by Algorithm 10.1 that on input of an {∩,+}-circuit C
generates a list of pairs of {id,+}-circuits (C1,1, C1,2), (C2,1, C2,2), . . ., (Cr,1, Cr,2). Later
we will show that h is a conjunctive truth-table reduction from NEC(∩,+) to EC(id,+).

Algorithm 10.1: NEC_reduction(C), h(C)
Input : {∩,+}-circuit C = (V,E, gC , α) with n gates
Output : List of pairs of {id,+}-circuits

1 for i := 1 to n do
2 if gate i has label ∩ and is a direct or indirect predecessor of gC or i = gC

then
3 let g1 and g2 be the direct predecessors of gate i;
4 let C1 = f(C, g1) and C2 = f(C, g2);
5 output (C1, C2);

Observe that for circuits, the test whether gate i is connected to gC (line 2) can
be carried out by one query to an NL-oracle. Hence h is computable in deterministic
logarithmic space with the help of an NL-oracle. Thus we have h ∈ FNL, where FNL =
FLNL denotes the class of functions computable in deterministic logarithmic space with
access to an NL-oracle [ÀBJ95]. Note that FNL = NLSVt (cf. Definition 3.6).
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Claim 10.22. NEC(∩,+) conjunctively truth-table reduces to EC(id,+) via the function
h. Formally, for every {∩,+}-circuit C, if h(C) = (C1,1, C1,2), (C2,1, C2,2),. . ., (Cr,1, Cr,2),
then

C ∈ NEC(∩,+) ⇐⇒
r∧
j=1

(Cj,1, Cj,2) ∈ EC(id,+). (10.1)

Proof of the claim. “⇐”: Assume C /∈ NEC(∩,+), i. e., I(C) = ∅. Let g be the smallest
gate that is connected to the output gate and computes the empty set. For the direct
predecessors g1 and g2 of g it holds that ∅ 6= I(g1) 6= I(g2) 6= ∅. By Claim 10.21, for
all k, it holds that IC(g1) = If(C,k)(g1) and IC(g2) = If(C,k)(g2). So for all k, the gates
If(C,k)(g1) 6= If(C,k)(g2). Therefore, C1 := f(C, g1) and C2 := f(C, g2) compute different
sets and hence (C1, C2) /∈ EC(id,+). The pair (C1, C2) appears on the list h(C), since
g is connected to the output gate gC and has label ∩. Therefore, the right-hand side of
(10.1) is false.

“⇒”: Assume C ∈ NEC(∩,+), i. e., I(C) 6= ∅. Fix any 1 ≤ j ≤ r. The pair (Cj,1, Cj,2)
appears on the list h(C), because at a certain time, the algorithm made the output
(Cj,1, Cj,2) in line 5. Assume that at this time the variable i had the value k. So the
gate with number k is connected to the output gate gC and has the label ∩. Let g1
and g2 be the direct predecessors of the gate with number k. So Cj,1 = f(C, g1) and
Cj,2 = f(C, g2). The gates k, g1, and g2 are connected to gC and therefore none of
them computes the empty set. It follows that all three gates must compute the same
singleton. So by Claim 10.21, f(C, g1) and f(C, g2) compute the same singleton. Therefore,
(Cj,1, Cj,2) = (f(C, g1), f(C, g2)) ∈ EC(id,+). This shows that the right-hand side of
(10.1) is true. �

By Claim 10.22, NEC(∩,+) conjunctively truth-table reduces to EC(id,+) via a
function from FNL, i. e., NEC(∩,+) ≤FNL

ctt EC(id,+). We have seen that EC(id,+) ∈
C=L. Allender and Ogihara [AO96] show that C=L is closed under ≤FNL

ctt . Therefore,
NEC(∩,+) ∈ C=L.

McKenzie and Wagner [MW07] show that MC(+) is ≤log
m -complete for C=L. Observe

that for an arbitrary {+}-circuit C and a number k it holds that (C, k) ∈MC(+) if and
only if the circuit C ∩ k ∈ NEC(∩,+). So MC(+) ≤log

m NEC(∩,+). This shows that
NEC(∩,+) is ≤log

m -complete for C=L.

The next proposition shows that in some cases, equivalence problems with addition
can very easily be reduced to equivalence problems with multiplication.

Proposition 10.23. EC(∩,+) ≤log
m EC(∩,×) and EC(+) ≤log

m EC(×).

Proof. Because of Lemma 10.9.1, we can assume that a given {∩,+}- or {+}-circuit C
only has inputs from {0, 1} by replacing the inputs greater than 1 by {+}-circuits with
inputs from {0, 1}.

Let g be the function that translates a given {∩,+}-circuit C with inputs from {0, 1}
into the following {∩,×}-circuit g(C): All +-gates become ×-gates, all inputs 0 become 1,
and all inputs 1 become 2. Note that g is computable in deterministic logarithmic space
and this is why we first transformed all constants into circuits with {0, 1}-inputs. Observe
that I(C) = {x} if and only if I(g(C)) = {2x}. Moreover, if C is a {+}-circuit, then g(C)
is a {+}-circuit.
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Now it is easy to see that the function (C1, C2) 7→ (g(f(C1)), g(f(C2))) performs both
reductions, EC(+) ≤log

m EC(×) and EC(∩,+) ≤log
m EC(∩,×).

Theorem 10.24. EC(∩,+) is ≤log
m -complete for coC=L(2).

Proof. Recall that C=L(2) = {A ∩B | A,B ∈ C=L} and thus

coC=L(2) = {A ∩B | A,B ∈ C=L}
= {A ∪B | A,B ∈ C=L}
= C=L ∨ coC=L.

We start the proof by showing that EC(∩,+) belongs to C=L ∨ coC=L.

A1 := {(C1, C2) | C1, C2 are {∩,+}-circuits and C1 ∩ C2 ∈ NEC(∩,+)}
A2 := {(C1, C2) | C1, C2 are {∩,+}-circuits and C1, C2 /∈ NEC(∩,+)}

By Lemma 10.20, A1 ∈ C=L. From Lemma 10.20 and the fact that C=L is closed under
union [AO96] it follows that A2 ∈ coC=L. Observe that EC(∩,+) = A1 ∪ A2. Therefore,
EC(∩,+) ∈ C=L∨coC=L.

Now we show that EC(∩,+) is ≤log
m -hard for C=L∨coC=L. Let

B := {(C1, k1, C2, k2) |C1, C2 are {+}-circuits and
((C1, k1) ∈MC(+) or (C2, k2) /∈MC(+))}

The set B is ≤log
m -complete for C=L ∨ coC=L, since MC(+) is ≤log

m -complete for C=L
[MW07]. We show B ≤log

m EC(∩,+) via the following reduction function f .

f(C1, k1, C2, k2) := (C,C ′), where C = (C2 ∩ k2) + k1 and C ′ = (C2 ∩ k2) + C1.

Assume (C1, k1, C2, k2) ∈ B. If (C2, k2) /∈ MC(+), then I(C) = I(C ′) = ∅ and
hence (C,C ′) ∈ EC(∩,+). So assume now (C1, k1) ∈ MC(+). If I(C) 6= ∅, then
(C,C ′) ∈ EC(∩,+). Otherwise, I(C) = ∅ and hence, I(C ′) = ∅ and (C,C ′) ∈ EC(∩,+).

Assume (C1, k1, C2, k2) /∈ B. So (C1, k1) /∈ MC(+) and (C2, k2) ∈ MC(+). It
follows that I(C) = {k2 + k1} and I(C ′) = {k2} + I(C1) where k1 /∈ I(C1). Therefore,
(C,C ′) /∈ EC(∩,+). This shows B ≤log

m EC(∩,+) via f .

Corollary 10.25. EC(∩,×) is ≤log
m -hard for coC=L(2), EC(×) is ≤log

m -hard for C=L.

Proof. Follows from Proposition 10.23, Theorem 10.24, and the fact that EC(+) is
≤log

m -complete for C=L [MW07].

By Theorem 10.10.4 EC(+,×) ∈ coRP, and McKenzie and Wagner showed [MW07]
that MC(∩,+,×) ≡log

m EC(+,×). So MC(∩,+,×) ∈ coRP. By Proposition 10.17.4,
EC(∩,+,×) ∈ PcoRP ⊆ BPPBPP = BPP due to the self-lowness of BPP (Theorem 2.15,
[Ko82]).

Corollary 10.26. EC(∩,+,×) ∈ BPP.
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10.3.3 ΠP
2 -Complete Problems

We prove ΠP
2 -completeness for EC(∪,+) and EC(∪,×). Note that Stockmeyer and

Meyer [SM73] showed ΠP
2 -completeness for equivalence of expressions over {∪,+}. It was

shown by Glaßer et al. [GHR+10] that this problem is still ΠP
2 -complete for expressions over

{∪,∩,+,×} (note that this section is based on that article but does not include the results
about expressions). As we will see in section 10.3.4, the problem for {∪,∩,+,×}-circuits
gets substantially harder.

We first concentrate on EC(∪,+). Here, Corollary 10.14 already shows that EC(∪,+)
is in ΠP

2 , hence it suffices to prove ΠP
2 -hardness for EC(∪,+). Useful problems here are

quantified Boolean formulas and quantified products of subsets (similar to the sum of
subsets problem).

Definition 10.27. We define the following problems.

QBF := {H | H is a Boolean formula in 3-CNF with variables x1, . . . , x2n
such that ∀x1∃x2 · · · ∃x2n︸ ︷︷ ︸

strict alternation

: H(x1, . . . , x2n) = 1}

QBF2 :=
{
H | H is a Boolean formula in 3-CNF with variables x1, . . . , x2n

such that ∀x1∀x2 . . . ∀xn∃xn+1∃xn+2 . . . ∃x2n : H(x1, . . . , x2n) = 1)}
QPOS2 :=

{
(x1, . . . , x2n, b) | x1, . . . , x2n, b ≥ 1 and ∀I ⊆ {1, . . . , n}

∃J ⊆ {n+ 1, . . . , 2n} : ∏i∈I xi
∏
j∈J xj = b

}
Stockmeyer and Meyer [SM73] showed that QBF is PSPACE-complete and there

are restrictions of this problem that are complete for each level in the polynomial-time
hierarchy. For instance, the problem QBF2 is complete for ΠP

2 [SM73]. We want to show
that its translation to quantified products of subsets, QPOS2 is also ΠP

2 -complete.

Lemma 10.28. QBF2 ≤log
m QPOS2.

Proof. We define a logspace computable function f such that H ∈ QBF2 ⇔ f(H) ∈
QPOS2. Let H = ∧m

i=1(zi1 ∨ zi2 ∨ zi3) with zij ∈ {x1, . . . , x2n, x1, . . . , x2n} be a Boolean
formula. We then define f as

f(H) :=
(
v1, . . . , vn, 1, . . . , 1︸ ︷︷ ︸

2n+2m

, vn+1, . . . , v2n, v
′
1, . . . , v

′
2n, p1, . . . , pm, p

2
1, . . . , p

2
m, b

)
,

where pi is the i-th prime and v1, . . . , v2n, v
′
1, . . . , v

′
2n and b are the following natural

numbers:

vi := pm+i

m∏
r=1

pkr,i
r , where

kr,i is the number of occurrences of the literal xi in the r-th clause of H,

v′i := pm+i

m∏
r=1

p
k′r,i
r , where

k′r,i is the number of occurrences of the literal xi in the r-th clause of H,

b :=
2n∏
i=1

pm+i

m∏
r=1

p4
r.
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By defining f in this way, we achieve that the numbers can actually be interpreted
as vectors consisting of the exponents in their prime number decomposition and all
numbers are appropriately quantified in the QPOS2-instance: v1, . . . , vn are all quantified
universally and all other numbers (except for b, of course) are quantified existentially.

In the following, let Ia1,...,a2n be the interpretation that, for 1 ≤ i ≤ 2n, assigns the
truth-value ai ∈ {0, 1} to the variable xi in H. Also, let I for I ⊆ {1, . . . , n} denote
{1, . . . , n} − I and J := {n+ 1, . . . , 2n} − J for J ⊆ {n+ 1, . . . , 2n}.

The following equivalences now hold:
H ∈ QBF2 ⇔ ∀a1 · · · ∀an∃an+1 · · · ∃a2n(Ia1,...,a2n satisfies H)

⇔ ∀a1 · · · ∀an∃an+1 · · · ∃a2n(Ia1,...,a2n satisfies each clause of H)
(?)⇔ ∀I⊆{1,...,n}∃J⊆{n+1,...,2n}∃k1,...,km∈{1,2,3} such that∏

i∈I
vi
∏
i∈I

v′i
∏
j∈J

vj
∏
j∈J

v′j =
2n∏
i=1

pm+i

m∏
r=1

pkr
r

⇔ ∀I⊆{1,...,n}∃J⊆{n+1,...,2n}∃R1⊆{1,...,m}∃R2⊆{1,...,m} such that∏
i∈I
vi
∏
i∈I

v′i
∏
j∈J

vj
∏
j∈J

v′j
∏
r∈R1

pr
∏
r∈R2

p2
r =

2n∏
i=1

pm+i

m∏
r=1

p4
r = b

⇔ ∀I⊆{1,...,n}∃J⊆{n+1,...,2n}∃I′⊆{1,...,2n}∃R1⊆{1,...,m}∃R2⊆{1,...,m} such that∏
i∈I
vi
∏
j∈J

vj
∏
i∈I′

v′i
∏
r∈R1

pr
∏
r∈R2

p2
r = b

⇔ f(H) ∈ QPOS2.

To see (?), observe that the first product on the right hand side enforces that for each
variable exactly one value out of {0, 1} is chosen (this is actually only needed later on),
and the second product makes sure that in each clause at least one literal is true (the
exponents kj are not zero).

To see that f is computable in logarithmic space it remains to show that the primes
p1, . . . , pm can be generated in space logarithmic in m. One can show that pm ≤ O(m2)
using the prime number theorem. Since the length of O(m2) is logarithmic in m, we can
obtain p1, . . . , pm by brute force primality tests of 1, . . . , O(m2) in space logarithmic in m.
This completes the reduction.
Corollary 10.29. QPOS2 is ≤log

m -complete for ΠP
2 .

Theorem 10.30. EC(∪,×) is ≤log
m -hard for ΠP

2 .
Proof. We describe a reduction from QPOS2 to EC(∪,×). To model the products in the
definition of QPOS2 we define the circuits Ci,j for a QPOS2-instance (x1, . . . , x2n, b) and
1 ≤ i ≤ j ≤ 2n as shown in the following diagram.

xi 1 xi+1 1 · · · xj 1

∪ ∪ ∪

×
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Note that the final product gate has to be expanded appropriately. We obviously have
I(Ci,j) = {∏k∈I xk | I ⊆ {i, i+ 1, . . . , j}}. Additionally, let Cy := ∏2n

j=n+1 xj.
Our reduction function f is now defined as follows: If the input to the function is not

a tuple, has an even number of elements, or one of the elements is zero, then the function
returns (0, 1). Otherwise we define:

f((x1, . . . , x2n, b)) := ((C1,n × Cy) ∪ (b× Cn+1,2n) , (b× Cn+1,2n))

The correctness is observed as follows.

(x1, . . . , xn, xn+1, . . . , x2n, b) ∈ QPOS2

⇐⇒ ∀I⊆{1,...,n}∃J⊆{n+1,...,2n} such that
∏
i∈I
xi
∏
j∈J

xj = b

⇐⇒ ∀I⊆{1,...,n}∃J⊆{n+1,...,2n} such that
∏
i∈I
xi

2n∏
j=n+1

xj = b
∏
j /∈J

xj

⇐⇒ ∀I⊆{1,...,n}∃J⊆{n+1,...,2n} such that
∏
i∈I
xi

2n∏
j=n+1

xj = b
∏
j∈J

xj

⇐⇒ ∀l ∈ I(C1,n × Cy)∃r ∈ I(b× Cn+1,2n) such that l = r

⇐⇒ I(C1,n × Cy) ⊆ I(b× Cn+1,2n)
⇐⇒ I((C1,n × Cy) ∪ (b× Cn+1,2n)) = I(b× Cn+1,2n)
⇐⇒ ((C1,n × Cy) ∪ (b× Cn+1,2n), (b× Cn+1,2n)) ∈ EC(∪,×)

Again, f can be computed in logarithmic space. Thus, by Corollary 10.29, EC(∪,×) is
≤log

m -hard for ΠP
2 .

In order to show that EC(∪,×) belongs to ΠP
2 we reduce EC(∪,×) to EC(∪,+).

The idea is as follows: We represent input numbers of the {∪,×}-circuits as products of
the form qe11 q

e2
2 · · · qem

m and we build corresponding {∪,+}-circuits that generate exactly
the vectors (e1, e2, . . . , em) which we will appropriately encode as numbers. Note that a
factorization into prime factors qi would be welcome, but it is unknown if this is possible
in polynomial time. However, as demonstrated by McKenzie and Wagner, for our purpose,
a factorization into factors that are relatively prime suffices. To this end we need the
following problem.

Definition 10.31 ([BS96]). The computation of a gcd-free basis is the problem that can
be formalized as the following multivalued function:

GFB(〈n, 〈a1, . . . , an〉〉) = {〈Q,E〉 | n ≥ 1, and (Q,E) is a gcd-free basis
for a1, . . . , an ≥ 1}

Where (Q,E) is called a gcd-free basis for the numbers a1, . . . , an if Q = 〈{q1, . . . , qm}〉,
m ≥ 1, qi ≥ 2, qi and qj are relatively prime for i 6= j, E = (eij) ∈ Nn×m and ai =

m∏
j=1

q
eij

j

for all 1 ≤ i ≤ n.
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So on input of some target numbers a1, . . . , an the task is to compute a basis of
relatively prime numbers q1, . . . , qn and exponents eij for each combination of basis and
target number such that ai =

m∏
j=1

q
eij

j for all 1 ≤ i ≤ n.

Proposition 10.32 ([BS96]). A gcd-free basis can be computed in polynomial time in
the sense that the multivalued function GFB is polynomial-time solvable.

We start by establishing the reduction for {∪,×}-circuits with positive inputs.

Lemma 10.33. There exists a polynomial-time computable function f that maps pairs
of {∪,×}-circuits to pairs of {∪,+}-circuits such that for any two {∪,×}-circuits C1 and
C2 with positive inputs,

(C1, C2) ∈ EC(∪,×) ⇐⇒ f(C1, C2) ∈ EC(∪,+).

Proof. We transform the {∪,×}-circuit into a {∪,+}-circuit with the same structure such
that the transformed circuit operates on the exponents of a gcd-free basis of the inputs.
To this end, we replace each ×-node by a +-node and each input by a number whose
binary representation consists of blocks of fixed length. Each such block contains the
exponent of one component of the base. Also, the blocks are long enough to ensure that
they do not interfere with each other via carries.

Let C1 and C2 be two {∪,×}-circuits. If their numbers of input gates do not match,
introduce additional input gates with assignment one that are multiplied to the output gate.
We denote the inputs of C1 and C2 by x1, . . . , xn and x̃1, . . . , x̃n, respectively. Now compute
a gcd-free basis q1, . . . , qm for x1, . . . , xn, x̃1, . . . , x̃n. By Proposition 10.32, this is possible
in polynomial time (note that all inputs are positive). Let Q := {∏m

j=1 q
ej

j | ej ∈ N} be
the multiplicative monoid generated by q1, . . . , qm. For x = ∏m

j=1 q
ej

j ∈ Q, let ε(x, j) = ej
be the unique j-th exponent in the representation of x.

For N := 22|C1|+2|C2| we now define a monoid homomorphism σ : (Q,×)→ (N,+) by
x 7→ ∑m

j=1 ε(x, j)N j−1. Note that σ is injective on X := {x ∈ Q | ε(x, j) < N for all
1 ≤ j ≤ m}.

Since all sets generated by gates of C1 and C2 are subsets of Q, we can define the
function f by f(C1, C2) = (C ′1, C ′2) where C ′1 results from C1 by replacing all ×-gates by
+-gates and replacing the inputs xi by σ(xi); C ′2 is obtained analogously. Since σ is a
homomorphism, we obtain σ(I(C1)) = I(C ′1) and σ(I(C2)) = I(C ′2).

By Proposition 10.12, for all numbers x produced by gates of the circuits C1 and C2 it
holds that x < 222|C1|+2|C2| , and thus ε(x, j) < 22|C1|+2|C2| = N . Therefore, σ is injective in
I(C1) and I(C2) and we obtain I(C1) = I(C2) ⇐⇒ σ(I(C1)) = σ(I(C2)) ⇐⇒ I(C ′1) =
I(C ′2). This shows (C1, C2) ∈ EC(∪,×) if and only if f(C1, C2) ∈ EC(∪,+).

Proposition 10.34. EC(∪,×) ≤p
m EC(∪,+)

Proof. By Lemma 10.33, it suffices to construct a polynomial-time computable function
that transforms a pair of {∪,×}-circuits (C1, C2) into a pair of {∪,×}-circuits (C ′1, C ′2)
such that all inputs of C ′1 and C ′2 are positive and (I(C1) = I(C2) ⇐⇒ I(C ′1) = I(C ′2)).

Let C1 and C2 be two {∪,×}-circuits and assume without loss of generality that each
of these circuits is connected. If neither C1 nor C2 has zero as input, then we are done by
returning (C1, C2). If exactly one of the circuits has zero as input, then we know that this
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circuit has zero in its output, but the other circuits has not. So we are done by returning
two fixed non-equivalent circuits. From now on assume that both circuits have inputs
that are zero and hence they have zero in their output.
Claim 10.35. There exists a polynomial-time computable function that on input of a
{∪,×}-circuit C returns the following: If I(C) = {0} then the algorithm outputs “C
computes the singleton {0}”. Otherwise, the output is a {∪,×}-circuit C ′ such that
I(C ′) = I(C)− {0}.
Proof of the claim. Observe that with an easy recursive algorithm, we can determine in
polynomial time whether the set generated by a gate in C contains 0 and whether this set
contains a positive number. If the output gate of C does not contain a positive number,
then I(C) = {0} and we are done by returning “C computes the singleton {0}”. Otherwise,
the output gate of C contains at least one positive number. Let C̃ be the circuit that is
obtained from C if each gate that does not generate a positive number is replaced by a
new input gate with label 0. Clearly, I(C̃) = I(C). So in C̃, each gate that is not an input
gate and that is connected with the output gate generates a set that contains positive
numbers. Therefore, in C̃, the direct successors of input gates that are zero and that are
connected to the output gate must be ∪-gates. Let C ′ be the circuit that is obtained from
C̃ by deleting all gates not connected to the output gate and all input gates that are zero
(by doing the latter, the adjacent ∪-gates become edges). Observe that apart from 0, the
gates in C ′ generate the same sets as the gates in C̃. This proves Claim 10.35. �

Applying Claim 10.35 to C1 and C2. If both, C1 and C2, compute the singleton {0},
then we are done by returning two fixed equivalent circuits. If exactly one of the circuits
computes the singleton {0}, then we are done by returning two fixed non-equivalent
circuits. Otherwise, the algorithm in Claim 10.35 returns two circuits C ′1 and C ′2 such that
I(C ′1) = I(C1)− {0} and I(C ′2) = I(C2)− {0}. So we are done by returning (C ′1, C ′2).

Theorem 10.36. The problems EC(∪,+) and EC(∪,×) are ≤log
m -complete for ΠP

2 .

Proof. EC(∪,×) is ΠP
2 -hard by Theorem 10.30 and EC(∪,+) is ΠP

2 -hard since the equiv-
alence problem for expressions over {∪,+} is ≤log

m -complete for ΠP
2 by Theorem 10.10.2.

Both problems are in ΠP
2 because of Proposition 10.34 and Corollary 10.14.

10.3.4 More General Equivalence Problems
In this section we analyze equivalence problems which are more difficult to decide than
the problems presented in the former section. For most of the problems here, we can-
not give exact bounds but they are all PSPACE- or NEXP-hard. For the most general
problem, EC(−,∪,∩,+,×), the best upper bound we can give is ∆2, the sets (unbound-
edly) Turing-reducible to the halting problem. From the Propositions 10.15 and 10.17.1
it follows that this problem is equivalent to the respective membership problem, i. e.
EC(−,∪,∩,+,×) ≡log

m MC(−,∪,∩,+,×).
Every decision algorithm for EC(−,∪,∩,+,×) would enable us to automatically verify

Goldbach’s conjecture. This means that we run the algorithm on input of the circuit
that formulates Goldbach’s conjecture (this circuits is shown in the introduction) and
the algorithm definitely tells us whether or not the conjecture is true. It is possible that
EC(−,∪,∩,+,×) is undecidable, but at the moment, we cannot prove this.
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Circuits over positive natural numbers will turn out useful to analyze the most general
equivalence problem. These circuits can only have positive inputs and − is interpreted
with respect to N+. Breunig [Bre07] showed that for such circuits the general membership
problem, which we call MCN+(−,∪,∩,+,×) is decidable in PSPACE. We will utilize this
result to show that we can solve EC(−,∪,∩,+,×) if the evaluation algorithm has oracle
access to the halting problem.

Theorem 10.37 ([Bre07]). MCN+(−,∪,∩,+,×) is ≤log
m -complete for PSPACE.

Lemma 10.38. There exists an oracle Turing machine M with oracle K (the halting
problem) that on input of a {−,∪,∩,+,×}-circuit C over N outputs a {−,∪,∩,+,×}-
circuit D over N+ and a set Z ⊆ {0} such that I(C) = I(D) ∪ Z.
Proof. Algorithm 10.2 defines M . Variables denoted by C represent circuits over N,
variables denoted by D represent circuits over N+, and variables denoted by Z represent
subsets of {0}. On input of a circuit C over N, the algorithm simulates C by a circuit
D over N+ where a possible element 0 is stored in the separate set Z. More precisely,
with help of recursive calls, the algorithm first determines N+-circuits D and sets Z that
correspond to all direct predecessors of C’s output gate, and then it joins the obtained
circuits and sets in an appropriate way.

Algorithm 10.2: isolate_zero(C)
Input : {−,∪,∩,+,×}-circuit C = (V,E, gC , α) over N
Output : {−,∪,∩,+,×}-circuit D over N+ and set Z ⊆ {0}

1 if gC is an input gate then
2 if gC has label l > 0 then return ({l}, ∅) else return (∅, {0});

// here gC is not an input gate
3 if gC has label − then
4 let C ′ be the circuit obtained from C by defining gC’s direct predecessor to

be the output gate of C ′ and deleting gC;
5 let (D,Z) := M(C ′);
6 return (D, {0} − Z);

// here gC has a label from {∪,∩,+,×}
7 let C1 (C2) be the circuit obtained from C by defining gC’s left (right) direct

predecessor to be the new output gate and deleting gC;
8 let (D1, Z1) := M(C1) and (D2, Z2) := M(C2);
9 if gC has label ∩ then return (D1 ∩D2, Z1 ∩ Z2);

10 if gC has label ∪ then return (D1 ∪D2, Z1 ∪ Z2);
11 if gC has label + then
12 if Z1 = {0} then D′2 := D2 else D′2 := ∅;
13 if Z2 = {0} then D′1 := D1 else D′1 := ∅;
14 return ((D1 +D2) ∪D′1 ∪D′2, Z1 ∩ Z2);
15 if gC has label × then
16 if Z1 = {0} and I(D2) 6= ∅ (oracle access) then Z ′1 := {0} else Z ′1 := ∅;
17 if Z2 = {0} and I(D1) 6= ∅ (oracle access) then Z ′2 := {0} else Z ′2 := ∅;
18 return (D1 ×D2, Z

′
1 ∪ Z ′2 ∪ (Z1 ∩ Z2));

First observe that whenever the algorithm makes a recursive call (lines 5 and 8), then
it calls an instance smaller than C. So the algorithm terminates. Also, it is easy to
observe that the algorithm outputs a {−,∪,∩,+,×}-circuit over N+ and a subset of {0}.
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A straightforward induction over the circuit size shows that if the algorithm outputs
(D,Z) then I(C) = I(D)∪Z. For treating the ×-gates the algorithm needs oracle access at
lines 16 and 17. By Theorem 10.37, the membership problem for {−,∪,∩,+,×}-circuits
over N+ is decidable. Therefore, the non-emptiness problem is computably enumerable
and hence can be answered with one query to our oracle, the halting problem.

Theorem 10.39. MC(−,∪,∩,+,×), EC(−,∪,∩,+,×) ∈ ∆2, the class of sets (unbound-
edly) Turing-reducible to the halting problem.

Proof. We describe a Turing reduction from MC(−,∪,∩,+,×) to the halting problem. Let
(C, n) be the input. With help of Lemma 10.38 we transform the {−,∪,∩,+,×}-circuit C
over N into a {−,∪,∩,+,×}-circuitD over N+and a set Z ⊆ {0} such that I(C) = I(D)∪Z.
By doing so we make queries to the halting problem. If n = 0, then we accept if and
only if Z = {0}. Otherwise, we accept if and only if (D,n) ∈ MCN+(−,∪,∩,+,×). By
Theorem 10.37, the latter is decidable in polynomial space. By the Propositions 10.15
and 10.17, EC(−,∪,∩,+,×) ≡log

m MC(−,∪,∩,+,×).

Proposition 10.40. The problem EC(−,∪,∩,+,×) is computably enumerable if and
only if EC(−,∪,∩,+,×) is decidable. Furthermore, if EC(−,∪,∩,+,×) ∈ NEXP then
NEXP = coNEXP.

Proof. We have EC(−,∪,∩,+,×) ≡log
m MC(−,∪,∩,+,×) by Propositions 10.15 and

10.17. Furthermore, MC(−,∪,∩,+,×) ≤log
m MC(−,∪,∩,+,×), because of the −-gates.

The second assertion follows from the fact that EC(−,∪,∩,+,×) is NEXP-hard by
Corollary 10.16.

We note that the equivalence problems become decidable if we forbid the combination
of −-, +- and ×-gates.
Proposition 10.41.

1. EC(∪,∩,+,×),EC(∪,+,×) ∈ coNEXPNP.

2. EC(−,∪,∩,×),EC(∪,∩,×) ∈ PSPACE

Proof. For the first statement it suffices to consider EC(∪,∩,+,×). We show that
EC(∪,∩,+,×) ∈ NEXPMF(∪,∩,+,×), where MF(∪,∩,+,×) ∈ NP [MW07] is the restric-
tion of the membership problem for circuits to circuits where each gate has outdegree at
most one and thus is an expression.

For given circuits C1 and C2, the nondeterministic exponential time oracle Turing
machine chooses nondeterministically a number n between 0 and max{222|C1| , 222|C2|}.
Then it unfolds the circuits C1 and C2 to expressions F1 and F2 (cf. Lemma 10.9.4). Both
F1 and F2 are at most exponentially large. The machine accepts if and only if the oracle
gives different answers to the queries (F1, n) and (F2, n).

By Proposition 10.12, the maximal value in the output of a {∪,∩,+,×}-circuit C
is bounded by 222|C| . Hence, the circuits are not equivalent if and only if there is some
number n between 0 and max{222|C1| , 222|C2|} such that n ∈ I(C1)⇐⇒ n /∈ I(C2). Thus the
machine accepts the language EC(∪,∩,+,×) and therefore EC(∪,∩,+,×) ∈ coNEXPNP.

For the second statement, note that EC(−,∪,∩,×) ∈ PSPACE follows from Proposi-
tion 10.17.1 and [MW07].
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Testing equivalence for {∪,+,×}-circuits is likely to be more difficult than testing
membership: While the membership problem is PSPACE-complete [MW07], we can show
that the equivalence problem is NEXP-hard. For the membership problem, it suffices
to compute numbers in the length of the target number, as numbers can only become
smaller when multiplied by 0. Intuitively, the difficulty when testing equivalence for
{∪,+,×}-circuits is that we have to deal with very large (up to exponential in length)
numbers.

Travers observed that a similar effect occurs when testing membership for {∪,+,×}-
circuits over the integers: By describing a generic reduction, it was shown that the problem
MCZ(∪,+,×) is NEXP-complete [Tra06]. With minor modifications this proof also shows
that EC(∪,+,×) is ≤log

m -hard for NEXP.

Corollary 10.42. The problem EC(∪,+,×) is ≤log
m -hard for NEXP.

10.4 Satisfiability Problems
In contrast to the equivalence problems, satisfiability problems are always a direct general-
ization of the respective membership problems and thus the lower bounds are immediately
applicable here. Concerning upper bounds, it is obvious that SC(O) is always an un-
bounded projection of MC(O). For some sets of operations (namely O ⊆ {−,∪,∩,+}
and O ⊆ {∪,+,×}), we can show that the projection is actually polynomially bounded.

Proposition 10.43. The following results are immediate consequences of the known
results about membership problems.

1. SC(−,∪,∩,+,×), SC(−,∪,∩,×), SC(∪,∩,+,×), SC(∩,+,×) ∈ Σ2.

2. SC(−,∪,∩,+), SC(∪,∩,+), SC(∪,∩,×), SC(−,∪,∩,×) and SC(∪,+,×) are ≤log
m -

hard for PSPACE.

3. SC(∪,×) is ≤log
m -hard for NP.

4. SC(∩) and SC(∪) are ≤log
m -complete for NL.

5. SC(×) is ≤log
m -hard for NL.

6. SC(∪,∩) is ≤log
m -complete for P.

Proof. All hardness results directly follow from results by McKenzie and Wagner [MW07].
For the first statement, we know that MC(−,∪,∩,+,×) ∈ ∆2 by Theorem 10.39. Since
SC(−,∪,∩,+,×) is an unrestricted projection of MC(−,∪,∩,+,×), it lies in ∃·∆2 = Σ2.
For the upper bounds where O ⊆ {∪,∩}, note that on input (C, b), it suffices to run the
algorithm for the respective MC(O)-problem by setting all variable inputs to b.

Lemma 10.44. Let C be a circuit over the operations O ⊆ {−,∪,∩,+,×} with exactly
n unassigned inputs. For b ∈ N, x1, . . . , xn ∈ N and c ≤ b it holds that

1. if O ⊆ {−,∪,∩,+}, then
c ∈ I(C(x1, . . . , xn)) ⇐⇒ c ∈ I(C(min(x1, b+ 1), . . . ,min(xn, b+ 1))).
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2. if O ⊆ {∪,+,×}, then
c ∈ I(C(x1, . . . , xn)) =⇒ c ∈ I(C(min(x1, b+ 1), . . . ,min(xn, b+ 1))).

Proof. We show both parts by induction over the number of direct and indirect predecessors
of the output gate and, for the sake of brevity, use the notations x̃ := (x1, x2, . . . , xn) and
min(x̃, b+ 1) := (min(x1, b+ 1),min(x2, b+ 1), . . . ,min(xn, b+ 1)).

1. For the induction base consider C to be a circuit where the output gate is the first
input gate and let c ≤ b. If this input gate is assigned, the assertion is obviously true.
Otherwise, the following equivalence holds:

c ∈ I(C(x̃)) ⇐⇒ c = x1 ⇐⇒ c = min(x1, b+ 1)
⇐⇒ c ∈ I(C(min(x̃, b+ 1)))

For the induction step, let C be a circuit whose output gate g has at least one
direct predecessor, let b ∈ N and c ≤ b. The cases where g has the label −, ∪ or ∩ are
straightforward. So let g have the label + and the direct predecessors u and v. Let C1
(resp., C2) be the circuit that has u (resp., v) as output gate and is otherwise equal to C.

Note that c ∈ I(C(x̃)) if and only if there exist s ∈ I(C1(x̃)) and t ∈ I(C2(x̃)) such
that s, t ≤ c ≤ b and s + t = c. Thus, by the induction hypothesis, for all these s, t
it holds that s ∈ I(C1(x̃)) and t ∈ I(C2(x̃)) if and only if s ∈ I(C1(min(x̃, b + 1))) and
t ∈ I(C2(min(x̃, b + 1))). We obtain c ∈ I(C(x̃)) if and only if c ∈ I(C1(min(x̃, b + 1)) +
C2(min(x̃, b+ 1))) = I(C(min(x̃, b+ 1))).

2. We argue as above, noting that here we merely have to show one implication.
The only new consideration occurs in the induction step where g has label × and c =
0 (c > 0 is treated similarly to the + case). Then there must be, without loss of
generality, some t ∈ I(C2(x̃)) and 0 ∈ I(C1(x̃)). By the induction hypothesis, we have
0 ∈ I(C1(min(x̃, b+ 1))). Since no gate in a circuit over {∪,+,×} computes the empty
set, we clearly have I(C2(min(x̃, b+ 1))) 6= ∅ and thus c = 0 ∈ I(C(min(x̃, b+ 1))).

Proposition 10.45. For any set of operations O ⊆ {−,∪,∩,+} or O ⊆ {∪,+,×} and
any complexity class C closed under ≤log

m it holds that

MC(O) ∈ C =⇒ SC(O) ∈ ∃p· C.

Proof. Let C be a circuit over O with exactly n unassigned inputs and let b ∈ N.
Lemma 10.44 shows that if there is an input assignment that generates b, there is also
an input assignment bounded by b + 1 that generates b. Hence it suffices to check if
b ∈ I(C(x1, . . . , xn)) for x1, . . . , xn ∈ {0, 1, . . . , b+ 1}. Since the length of (x1, . . . , xn) is
polynomial in the input length as long as xi ≤ b + 1 for all 1 ≤ i ≤ n, the assertion
follows.

Corollary 10.46. It holds that

1. SC(−,∪,∩,+), SC(∪,∩,+) and SC(∪,+,×) are in PSPACE.

2. SC(−,∪,∩), SC(∩,+), SC(∪,×), SC(∪,+), SC(+) and SC(+,×) are in NP.

Proof. Since ∃p·PSPACE = PSPACE and ∃p·NP = NP, the statement follows from
Proposition 10.45 and the results by McKenzie and Wagner [MW07].
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10.4.1 Undecidable Problems
We have seen in Lemma 10.9.3 that circuits with gates + and × can be used to represent
multivariate polynomials. The presence of ∩ then allows us to translate the solvability of
Diophantine equations into the satisfiability of circuits. Hence these satisfiability problems
are undecidable. In particular, SC(∩,+,×) is not a polynomially bounded projection of
its corresponding membership problem.
Theorem 10.47. SC(∩,+,×) is ≤log

m -hard for Σ1 and thus undecidable.
The same is true for SC(∪,∩,+,×) and SC(−,∪,∩,+,×).
Proof. Let A ∈ Σ1, i. e. A is computably enumerable. By the Davis-Putnam-Robinson-
Matiyasevich theorem [DPR61, Mat70], there is a multivariate polynomial p(x0, x1, . . . , xn)
with integer coefficients such that for all x0 ∈ N

x0 ∈ A ⇐⇒ ∃x1, . . . , xn ∈ N : p(x0, x1, . . . , xn) = 0.
By moving monomials with negative coefficients to the right-hand side, we equivalently
transform the equation p(x0, x1, . . . , xn) = 0 to l(x0, x1, . . . , xn) = r(x0, x1, . . . , xn) such
that all coefficients in l and r are positive. According to Lemma 10.9.3, there are
{+,×}-circuits Cl and Cr with n+ 1 unassigned inputs such that I(Cl(x0, x1, . . . , xn)) =
{l(x0, x1, . . . , xn)} and I(Cr(x0, x1, . . . , xn)) = {r(x0, x1, . . . , xn)}.

We now define a function f that maps natural numbers to circuits in the following way:
On input x0 it constructs a circuit C ′ with n unassigned inputs such that C ′(x1, . . . , xn) :=
0×(Cl(x0, x1, . . . , xn)∩Cr(x0, x1, . . . , xn)). Note that f is easily computable in logarithmic
space since it only has to assign the label x0 to a fixed circuit.

We then get
x0 ∈ A ⇐⇒ ∃x1, . . . , xn ∈ N : p(x0, x1, . . . , xn) = 0

⇐⇒ ∃x1, . . . , xn ∈ N : 0 ∈ I(C ′(x1, . . . , xn))
⇐⇒ (C ′, 0) ∈ SC(∩,+,×).

This completes the reduction.

10.4.2 Circuits with both Arithmetic and Set Operations
In this section, we will show upper and lower bounds for decidable satisfiability problems
for circuits that may use arithmetic and set operations at the same time. Among these,
the problem SC(∩,×) has an interesting property. In contrast to most other NP-complete
problems, here proving the membership in NP is more difficult than proving the hardness
for NP. We will use the (nontrivial) result that integer programming belongs to NP to
show that certain systems of monomial equations can be solved in NP. This result is then
used to finally establish SC(∩,×) ∈ NP. We start by defining the mentioned problem
concerning systems of monomial equations.
Definition 10.48. Informally, the problem MonEq asks if systems of equations of the
form

x6z7 = 59y3z2

yz2 = 23x4

x2y4z3 = 311
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are solvable over the natural numbers. Formally, we have the following definition (where
we set 00 := 1):

MonEq :=
{

(A,B,C,D) |n,m ≥ 1, A = (ai,j) ∈ Nm×n, B = (bi,j) ∈ Nm×n,

C = (c1, . . . , cm) ∈ Nm, D = (d1, . . . , dm) ∈ Nm,

and there exist x1, . . . , xn ∈ N such that

for all 1 ≤ i ≤ m :
n∏
j=1

x
ai,j

j = cdi
i ·

n∏
j=1

x
bi,j

j

}

Note that this definition neither allows constant factors on the left-hand side of
equations nor allows products of constant factors like 291 · 393 · 597. However, such
factors can be easily expressed by using additional variables. For example, the equation
73 · 1570 · x5y7 = 37z3 can be equivalently transformed into the following system.

a = 73

b = 1570

abx5y7 = 37z3

We show that systems of monomial equations can be solved in nondeterministic
polynomial time. Our proof transforms the original problem MonEq to a more restricted
version. Then we show the latter to be in NP where we use the fact that integer
programming belongs to NP.

Lemma 10.49. MonEq ∈ NP.

Proof. We start with the definition of a variant of MonEq that restricts to positive
constant factors and positive solutions.

MonEq+ :=
{

(A,B,C,D) |n,m ≥ 1, A = (ai,j) ∈ Nm×n, B = (bi,j) ∈ Nm×n,

C = (c1, . . . , cm) ∈ (N+)m, D = (d1, . . . , dm) ∈ Nm,

and there exist x1, . . . , xn ∈ N+ such that

for all 1 ≤ i ≤ m :
n∏
j=1

x
ai,j

j = cdi
i ·

n∏
j=1

x
bi,j

j

}

Assume for the moment that we have shown MonEq+ ∈ NP. Under this assumption
we can describe a nondeterministic polynomial-time algorithm that accepts MonEq.
The input is a MonEq instance (A,B,C,D). First, we nondeterministically guess the
variables that will be equal to 0, i. e., we guess a set I ⊆ {1, . . . , n} and demand that
xi = 0 for all i ∈ I and that xj > 0 for all j /∈ I. This allows us to determine whether or
not a certain side of an equation is 0. If we detect an inconsistency (one side is equal to
zero, the other greater than zero), we reject. Otherwise, we remove all equations where
both sides equal zero and arrive at a MonEq+ instance which by assumption can be
solved in NP. This shows MonEq ∈ NP. So it remains to prove MonEq+ ∈ NP.



10.4. SATISFIABILITY PROBLEMS 193

We define a variant of MonEq+ that restricts to the case where all constant factors
and all components of the solution are powers of the same prime p.

MonEqp :=
{

(A,B, p,D) |n,m ≥ 1, A = (ai,j) ∈ Nm×n, B = (bi,j) ∈ Nm×n,

D = (d1, . . . , dm) ∈ Nm, p is a prime,
and there exist x1, . . . , xn ∈ {pr | r ∈ N}
such that for all 1 ≤ i ≤ m
n∏
j=1

x
ai,j

j = pdi ·
n∏
j=1

x
bi,j

j

}

Assume for the moment that we have shown MonEqp ∈ NP. Under this assumption
we show that MonEq+ ∈ NP. Let the MonEq+ instance (A,B,C,D) be our input
and let p1, . . . , pl be the primes that appear in the prime factorization of the numbers
c1, . . . , cm and let ek,i be the exponents such that ci = ∏l

k=1 p
ek,i

k for 1 ≤ i ≤ m. Let us
consider the following equivalence.

(A,B,C,D) ∈MonEq+ ⇐⇒ ∀1 ≤ k ≤ l ∃xk,1, . . . , xk,n ∈ {prk | r ∈ N} (10.2)

∀1 ≤ i ≤ m :
n∏
j=1

x
ai,j

k,j = p
ek,i·di

k ·
n∏
j=1

x
bi,j

k,j

The implication from right to left is easy to see, since with xj := ∏l
k=1 xk,j we obtain

a solution x1, . . . , xn for the MonEq+ instance (A,B,C,D). So let us consider the
implication from left to right and let x1, . . . , xn be a solution for (A,B,C,D). This means
that all prime factors of x1, . . . , xn are from {p1, . . . , pl}. Let xk,j be the number that is
obtained from xj by removing all prime factors different from pk. Because of the unique
prime decomposition of positive integers, xk,1, . . . , xk,n is a solution for the system on the
right-hand side of (10.2). This proves the equivalence (10.2).

This shows that MonEq+ is conjunctively truth-table reducible to MonEqp in
polynomial time. By our assumption, the latter is in NP and therefore, we obtain
MonEq+ ∈ NP. So it remains to prove MonEqp ∈ NP.

The definition of MonEqp demands that each element xj of the solution can be
written as xj = pej for a suitable ej ∈ N. We obtain

(A,B, p,D) ∈MonEqp ⇐⇒ p is prime and there exist e1, . . . , en ∈ N
such that for all 1 ≤ i ≤ m
n∏
j=1

pejai,j = pdi ·
n∏
j=1

pejbi,j

⇐⇒ p is prime and there exist e1, . . . , en ∈ N
such that for all 1 ≤ i ≤ m
n∑
j=1

ejai,j = di +
n∑
j=1

ejbi,j.

The last statement can be expressed by the following integer program in the variables
e1, . . . , en.
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n∑
j=1

ejai,j ≤ di +
n∑
j=1

ejbi,j for 1 ≤ i ≤ m

n∑
j=1

ejai,j ≥ di +
n∑
j=1

ejbi,j for 1 ≤ i ≤ m

ej ≥ 0 for 1 ≤ j ≤ n

For such systems of inequalities, the existence of integer solutions can be verified in
NP [Kar72]. This shows MonEqp ∈ NP and finishes the proof of the lemma.

Utilizing the fact that systems of monomial equations can be solved in nondeterministic
polynomial time we now show that SC(∩,×) belongs to NP. Observe that this is nontrivial,
since the smallest satisfying assignment of an {∩,×}-circuit can be exponentially long
because of repeated squaring.

Theorem 10.50. SC(∩,×) ∈ NP

Proof. We describe a nondeterministic polynomial-time algorithm for SC(∩,×) on input
(C, d). Without loss of generality we may assume that each gate in C is connected
to the output gate, the nodes 1, . . . ,m are the unassigned input gates and the nodes
m+ 1, . . . ,m+ n are the assigned input gates with labels b1, . . . , bn. To each gate g of C
with direct predecessors g1 and g2 (if any) we recursively attach a monomial β(g) over
x1, . . . , xm+n in the following way:

β(g) =


xi if g = i ≤ m+ n,
β(g1) · β(g2) if g is a ×-gate,
β(g1) if g is an ∩-gate.

During the attachment process, we simplify all products by combining multiple occurrences
of the same variable. Using β, we generate a system of monomial equations:

β(g1) = β(g2) for each ∩-gate with direct predecessors g1 and g2,
xm+i = bi for 1 ≤ i ≤ n,
β(gC) = d.

Where gC is the output gate of C and bi ∈ N is the label of the unassigned input gate
m+ i. Our algorithm accepts if and only if the obtained system of monomial equations
has a solution within the natural numbers. By Lemma 10.49, the described algorithm is a
nondeterministic polynomial-time algorithm. So it remains to argue for the correctness of
this algorithm.

For a gate g, let β(g)(a1, . . . , am, b1, . . . , bn) denote the number that is obtained when
the monomial β(g) is evaluated at x1 = a1, . . ., xm = am, xm+1 = b1, . . ., xm+n = bn. A
straightforward induction on the structure of C yields the following.

Claim 10.51. For all a1, . . . , am ∈ N and all gates g of the circuit C(a1, . . . , am) the gate
g either computes ∅ or the set {β(g)(a1, . . . , am, b1, . . . , bn)}.
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We show that the algorithm accepts (C, d) if and only if (C, d) ∈ SC(∩,×). Assume our
algorithm accepts on input (C, d). So there exist a1, . . . , am such that a1, . . . , am, b1, . . . , bn
is a solution for the constructed system of monomial equations. Let C ′ := C(a1, . . . , am).
We first show that I(C ′) 6= ∅. Suppose to the contrary that I(C ′) = ∅. Then there exists
an ∩-gate g with direct predecessors g1 and g2 such that g1 and g2 compute different but
non-empty sets in C ′. By Claim 10.51, g1 computes {β(g1)(a1, . . . , am, b1, . . . , bn)} and
g2 computes {β(g2)(a1, . . . , am, b1, . . . , bn)} in C ′. The equation β(g1) = β(g2) appears
in our system of monomial equations. Hence it holds that β(g1)(a1, . . . , am, b1, . . . , bn) =
β(g2)(a1, . . . , am, b1, . . . , bn) and hence g1 and g2 compute the same set in C ′. This
contradicts our assumption and thus I(C ′) 6= ∅.

This means that by Claim 10.51, I(C ′) = {β(gC)(a1, . . . , am, b1, . . . , bn)} where gC is
the output gate. The equation β(gC) = d appears in the system of monomial equations,
so I(C ′) = {d} and hence (C, d) ∈ SC(∩,×).

Conversely, assume now that (C, d) ∈ SC(∩,×), i. e., there exist a1, . . . , am ∈ N such
that I(C(a1, . . . , am)) = {d}. We show that x1 = a1, . . ., xm = am, xm+1 = b1, . . .,
xm+n = bn is a solution for the system of monomial equations that is constructed by
the algorithm, which implies that the algorithm accepts on input (C, d). In the circuit
C ′ := C(a1, . . . , am), each ∩-gate g computes a non-empty set. So if g1 and g2 are the
direct predecessors of g, then g, g1 and g2 all compute the same set in C ′. From Claim 10.51
it follows that β(g1)(a1, . . . , am, b1, . . . , bn) = β(g2)(a1, . . . , am, b1, . . . , bn). So all equations
of the form β(g1) = β(g2) are satisfied. Moreover, the additional equations of the form
xm+i = bi are trivially satisfied by our solution. From I(C ′) = {d} and from the claim
it follows that β(gC)(a1, . . . , am, b1, . . . , bn) = d where gC is the output gate of C. This
shows that all equations of our system are satisfied by the solution (a1, . . . , am, b1, . . . , bn)
and the algorithm accepts.

Finally, we establish the lower bound for SC(∩,×).

Theorem 10.52. SC(∩,×) is ≤log
m -hard for NP.

Proof. We describe a ≤log
m -reduction from 3Sat to SC(∩,×). Let the input for the

reduction be a Boolean formula in 3-CNF over the variables x1, . . . , xn consisting of m
clauses. Each clause is a disjunction of three literals li,1, li,2, li,3 ∈ {x1, . . . , xn, x1, . . . , xn}
for 1 ≤ i ≤ m.

The reduction function constructs a circuit C with 2n+ 4m unassigned inputs xi, xi,
yj, yj , zj, zj for 1 ≤ i ≤ n and 1 ≤ j ≤ m. This circuit computes the intersection of several
subcircuits. Each of these subcircuits computes one of the following expressions over the
unassigned inputs.

1. (xi × xi)× (xi × xi)× (xi × xi) for 1 ≤ i ≤ n

2. (yj × yj)× (yj × yj)× (yj × yj) for 1 ≤ j ≤ m

3. (zj × zj)× (zj × zj)× (zj × zj) for 1 ≤ j ≤ m

4. lj,1 × lj,2 × lj,3 × yj × zj for 1 ≤ j ≤ m

Note that lj,k ∈ {x1, . . . , xn, x1, . . . , xn} are the literals of the clauses. Finally, the reduction
function outputs (C, 8).

Observe that the reduction can be computed in logarithmic space. We now argue that
it shows 3Sat ≤log

m SC(∩,×). First, assume that the Boolean formula belongs to 3Sat.
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So there exist assignments a1, . . . , an ∈ {0, 1} for the n variables that satisfy all clauses.
We assign the numbers 2ai to the input gates xi and 21−ai to the input gates xi. By doing
this, we make sure that all subcircuits of type 1 compute {8}. Moreover, we assign the
following numbers to the input gates yj, yj, zj, and zj:

Assume that the jth clause contains exactly k (1 ≤ k ≤ 3) literals that evaluate to true
with respect to the assignment a1, . . . , an. Let b, c ∈ {0, 1} such that b+ c+ k = 3. Assign
the value 2a to yi, 21−a to yi, 2b to zi, 21−b to zi. Observe that this assignment makes sure
that all of the subcircuits evaluate to {8}. Hence, the output gate of C evaluates to {8}
which shows (C, 8) ∈ SC(∩,×).

Now assume that (C, 8) ∈ SC(∩,×); we will show that the corresponding Boolean
formula is satisfiable. By assumption, all of the subcircuits evaluate to {8}. For the
subcircuits of type 1, this implies that for each 1 ≤ i ≤ n, one of xi and xi is assigned 2
while the other one is assigned 1. Similarly for the subcircuits of type 2 and 3, it holds
that for each 1 ≤ j ≤ m, one of yj and yj (resp., zj and zj) is assigned 2 while the other
one is assigned 1. For 1 ≤ i ≤ n, if xi is assigned 2, then let ai = 1, otherwise let ai = 0.
The fact that each subcircuit of type 3 evaluates to {8} shows that for each 1 ≤ j ≤ m,
lj,1 × lj,2 × lj,3 × yj × zj evaluates to {8}. Since yj and zj are both at most 2, at least one
of lj,1, lj,2 or lj,3 must be assigned 2. Hence, the ith clause contains at least one literal that
evaluates to true with respect to the assignment a1, . . . , an. This shows that the Boolean
formula is satisfiable. Therefore, 3Sat ≤log

m SC(∩,×) and hence SC(∩,×) is ≤log
m -hard

for NP.

The next corollary shows that we can utilize the algorithm presented in Theorem 10.50
which solves the satisfiability problem for {∩,×}-circuits in NP also to solve the problem
for {∪,∩,×}-circuits: However, to cope with the ∪-gates we first have to unfold the circuit
into an expression. This can cause an exponential blow up in the size of the circuit.
Corollary 10.53. SC(∪,∩,×) ∈ NEXP.
Proof. We describe a nondeterministic exponential time algorithm that accepts the problem
SC(∪,∩,×). Let C be a {∪,∩,×}-circuit and b ∈ N. We can assume that each gate in
C is connected to the output gate. In exponential time, we can unfold the circuit into
a (possibly exponentially larger) circuit C ′ where all gates except for the variable input
gates have outdegree at most 1 and it holds for all x1, . . . , xn ∈ N that

I(C(x1, . . . , xn)) = I(C ′(x1, . . . , xn))

by Lemma 10.9.4. Let g∪ be the set of ∪-gates in C ′. We now nondeterministically choose
a total function f : g∪ → {1, 2} (#g∪ is at most exponential in the input length). Using
this function we construct a circuit Cf in the following way: For each ∪-gate g with direct
predecessors g1 and g2 we delete g and its incident edges. Furthermore, if g has a direct
successor s, we add an edge from gf(g) to s. Finally, if g is the output gate of C ′, then gf(g)
is the new output gate of Cf . Observe that Cf is an {∩,×}-circuit. By a straightforward
induction it can be shown that

(C ′, b) ∈ SC(∪,∩,×) ⇐⇒ ∃f : g∩ → {1, 2} : (Cf , b) ∈ SC(∩,×)

Hence it remains to call a suitable algorithm for SC(∩,×) on (Cf , b). Since by Theo-
rem 10.50, SC(∩,×) ∈ NP, the whole procedure described above can be performed in
nondeterministic exponential time and thus SC(∪,∩,×) ∈ NEXP.
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10.4.3 Circuits with either Arithmetic or Set Operations
We now discuss that, perhaps somewhat surprisingly, SC(×) is likely to be easier than
SC(+). More precisely, we show that SC(×) ∈ UP ∩ coUP and prove SC(+) to be
NP-complete. For the lower bound of SC(+) we need the following variant of the
Knapsack-problem which is known to be NP-complete [GJ79, MP10].

Knapsack′ := {(v1, . . . , vn, b) |n ≥ 1, v1, . . . vn, b ≥ 1 and there exist

u1, . . . , un ∈ N such that
n∑
i=1

uivi = b}

Theorem 10.54. SC(+) and SC(+,×) are ≤log
m -complete for NP.

Proof. We describe a reduction from Knapsack′ to SC(+). On input (v1, . . . , vn, b),
we use Lemma 10.9.2 to construct {+}-circuits that compute {vi · xi} with variable
input gate xi for 1 ≤ i ≤ n. We combine them to a single {+}-circuit C such that
I(C(x1, . . . , xn)) = {v1x1 + · · · + vnxn} for all x1, . . . , xn ∈ N. The reduction outputs
(C, b). Observe that (v1, . . . , vn, b) ∈ Knapsack′ if and only if (C, b) ∈ SC(+). So SC(+)
and SC(+,×) are NP-hard. The membership in NP follows from Corollary 10.46.

By MC(×) ∈ NL [MW07] and Proposition 10.45, it is immediately clear that SC(×) ∈
NP. We now prove the better upper bound UP ∩ coUP by using ideas similar to those
used for the proof of the upper bound for SC(∩,×) (Theorem 10.50). Using prime
decomposition, the problem reduces to an additive problem with respect to the exponents
and since the prime decomposition is unique, we arrive at a UP ∩ coUP-problem.

Proposition 10.55. Let C be a {×}-circuit with n ≥ 0 unassigned inputs where all
gates are connected to the output gate. There are numbers a, e1, . . . , en ∈ N that can be
computed in polynomial time such that for all x1, . . . , xn ∈ N,

I(C(x1, . . . , xn)) = a ·
n∏
i=1

xei
i .

Proof. Observe that the statement is true for circuits where the output gate is an (assigned
or unassigned) input gate. Furthermore, if the output gate is a ×-gate, the assertion holds
by a straightforward induction argument. For the runtime, note that to obtain a, we have
to compute a number of multiplications linear in the size of C.

Theorem 10.56. SC(×) ∈ UP ∩ coUP.

Proof. Let C be a {×}-circuit with unassigned inputs u1, . . . , un and let b ≥ 0. We
describe how to decide whether (C, b) ∈ SC(×). We can assume that all gates in C are
connected to the output gate. By Proposition 10.55, we can compute a, e1, . . . , en ∈ N
such that for all x1, . . . , xn ∈ N,

I(C(x1, . . . , xn)) = a ·
n∏
i=1

xei
i .

Hence, it suffices to find x1, . . . , xn ∈ N such that a · xe11 · · ·xen
n = b. The special cases

b = 0 and b not being a multiple of a can be handled in polynomial time. Furthermore,
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by replacing b by b
a
, we can assume that b ≥ 1 and a = 1. Suppose we know that

b = pd1
1 · · · pdm

m is the prime decomposition of b. Then the following statements are
equivalent:

1. There are x1, . . . , xn ∈ N such that b =
n∏
i=1

xei
i .

2. For all 1 ≤ j ≤ m there are yj,1, . . . , yj,n ∈ N such that dj =
n∑
i=1

yj,i · ei.

Algorithm 10.3 first guesses the prime decomposition of b nondeterministically and then
decides whether the latter of the above statements is true and thus solves SC(×).

Algorithm 10.3: sc_times(b, e1, . . . , en)
Input : Numbers b, e1, . . . , en

1 guess numbers 1 ≤ m ≤ log b, 2 ≤ p1 < · · · < pm ≤ b and 1 ≤ d1, . . . , dm ≤ log b;
2 if at least one of the pj is not prime then reject;
3 if b 6= pd1

1 · · · pdm
m then reject;

4 if for all j ∈ {1, . . . ,m} there are yj,1, . . . , yj,n ∈ N such that
∑n
i=1 eiyj,i = dj then

accept else reject

Step 2 is possible in polynomial time by the algorithm by Agrawal, Kayal, and Saxena
[AKS04]. Step 4 can also be carried out in polynomial time since the lengths of all dj are
logarithmic in the input length and so are the lengths of the yj,i (if they exist). Hence the
yj,i can be found in nondeterministic logarithmic space and thus in polynomial time.

Since every number has a unique prime factorization, there exists exactly one path on
which the algorithm reaches step 4. This shows SC(×) ∈ UP. If we exchange accept and
reject in step 4, then we arrive at an algorithm witnessing SC(×) ∈ UP. This completes
the proof.

We now show the NP-hardness of SC(−,∪,∩) by reducing 3Sat to SC(−,∪,∩). Here
we utilize the natural correspondence between {−,∪,∩} and {¬,∨,∧}.

Theorem 10.57. SC(−,∪,∩) is ≤log
m -complete for NP.

Proof. By Corollary 10.46, SC(−,∪,∩) ∈ NP. Moreover, 3Sat ≤log
m SC(−,∪,∩) by

translating the Boolean operations ¬,∨,∧ into the set operations −,∪,∩ and by asking
whether the resulting circuit can produce 1 (i. e., A ⊆ N is interpreted as true if and only
if 1 ∈ A).

10.5 Conclusions
The results of this chapter are summarized in Table 10.1, which also contains the MC(O)-
problem for comparison. For the equivalence problems, we do not have matching lower
and upper bound for any set of operations O where {∪,+,×} ⊆ O. Note that due to
the connections to Goldbach’s conjecture, it is likely that the most general problem is
undecidable. For the problems EC(∩,+,×) and EC(+,×) it is unclear if randomization
is needed or not (of course this also depends on whether randomization is helpful in
general). So the open problems for MC(−,∪,∩,+,×) and MC(∩,+,×) from the article
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O EC(O) SC(O) MC(O)
Lower/Upper Bound Lower/Upper Bound Lower/Upper Bound

− ∪∩+× NEXP ∆2 Σ1 Σ2 NEXP ∆2
10.16 10.39 10.47 10.43 10.39

− ∪∩+ PSPACE PSPACE PSPACE
10.16 10.14 10.43 10.46

− ∪∩ × PSPACE Σ2 PSPACE PSPACE
10.16 10.41 10.43 10.43

− ∪∩ P NP P
10.16 10.18 10.57 10.46

∪∩+× NEXP coNEXPNP Σ1 Σ2 NEXP
10.16 10.41 10.47 10.43

∪∩+ PSPACE PSPACE PSPACE
10.16 10.14 10.43 10.46

∪∩ × PSPACE PSPACE NEXP PSPACE
10.16 10.41 10.43 10.53

∪∩ P P P
10.16 10.18 10.43 10.43

∪ +× NEXP coNEXPNP PSPACE PSPACE
10.42 10.41 10.43 10.46

∪ + ΠP
2 NP NP

10.36 10.14 10.54 10.46

∪ × ΠP
2 NP NP

10.30 10.36 10.43 10.46

∪ NL NL NL
10.16 10.18 10.43 10.43

∩+× P BPP Σ1 Σ2 P coRP
10.16 10.26 10.47 10.43

∩+ coC=L(2) NP C=L
10.24 10.24 10.54 10.46

∩ × coC=L(2) P NP C=L P
10.25 10.18 10.52 10.50

∩ NL NL NL
10.16 10.18 10.43 10.43

+× P coRP NP P
10.16 10.10 10.54 10.46

+ C=L NP C=L
10.10 10.10 10.54 10.46

× C=L P NL UP ∩ coUP NL
10.25 10.18 10.43 10.56

Table 10.1: Upper and lower bounds for EC(O), SC(O) and MC(O). All lower bounds are with respect
to ≤log

m -reductions and the numbers refer to where the result was obtained. If the upper and lower bounds
coincide, only one is shown. The PSPACE-completeness of MC(∪,+,×) was shown by Yang [Yan00].
All other unnumbered results on MC(O) are due to McKenzie and Wagner [MW07] who also showed the
C=L-completeness of EC(+). EC(+,×) ∈ coRP was shown by Schönhage [Sch79]. Note that the results
from section 9.3 imply that MC(−,∪,∩,+) ∈ DTIME(2n n4) ⊆ E.



200 CHAPTER 10. CIRCUITS OVER SETS OF NATURAL NUMBERS

by McKenzie and Wagner [MW07] transfer to the respective equivalence problems. For
satisfiability problems, the main open question is whether SC(−,∪,∩,×) is decidable. In
the absence of +-gates, we cannot express general Diophantine equations, which indicates
the difficulty of proving undecidability. On the other hand, we do not know any decidable
upper bound for this problem, since here the complementation-gates make it difficult to
find a bound for the input gates. As the example in Figure 10.1(a) on page 173 shows, the
set of all primes can be expressed by such circuits. A further open question is to find a
better lower bound for the satisfiability problem for {×}-circuits. We prove this problem
to be in UP ∩ coUP. Membership in P seems to be difficult, since SC(×) comprises the
following factoring-like problem: Is the factorization of a given number n of a certain
form, for instance n = x3 · y5 · z2? However, proving SC(×) to be hard for factorization is
still open.
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