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 V Summary 

Summary 
In this study I investigate the role of Schwann cell and axon-derived trophic signals as 

modifiers of axonal integrity and sprouting in motoneuron disease and diabetic neuropathy 

(DNP). The first part of this thesis focuses on the role of the Schwann-cell-derived ciliary 

neurotrophic factor (CNTF) for compensatory sprouting in a mouse model for mild spinal 

muscular atrophy (SMA). In the second part, the role of the insulin-like growth factor 1 

(IGF-1) and its binding protein 5 (IGFBP-5) is examined in the peripheral nerves of patients 

with DNP and in two corresponding mouse models. 

Proximal SMA is caused by homozygous loss or mutation of the SMN1 gene on human 

chromosome 5. The different forms of SMA can be divided into four groups, depending on 

the levels of SMN protein produced from a second SMN gene (SMN2) and the severity of the 

disease. Patients with milder forms of the disease, type III and type IV SMA, normally reach 

adulthood and regularly show enlargement of motor units, signifying the reinnervation of 

denervated muscle fibers. However, the underlying mechanisms are not understood. Smn+/- 

mice, a model of type III/IV SMA, are phenotypically normal, but they reveal progressive loss 

of motor neurons and denervation of motor endplates starting at 4 weeks of age. The 

progressive loss of spinal motor neurons reaches 50% at 12 months but muscle strength is not 

reduced. The first evidence for axonal sprouting as a compensatory mechanism in these 

animals was the more than 2-fold increase in amplitude of single motor unit action potentials 

(SMUAP) in the gastrocnemius muscle. Confocal analysis confirmed pronounced sprouting of 

innervating motor axons. As CNTF is highly expressed in Schwann cells and known to be 

involved in sprouting, its role for this compensatory sprouting response and the maintenance 

of muscle strength in Smn+/- mice was investigated. Deletion of CNTF in this mouse model 

results in reduced sprouting and decline of muscle strength in Smn+/- Cntf-/- mice. These 

findings indicate that CNTF is necessary for a sprouting response and thus enhances the size 

of motor units in skeletal muscles of Smn+/- mice. 

DNP afflicting motor and sensory nerve fibers is a major complication in diabetes mellitus. 

The underlying cellular mechanisms of motor axon degeneration are poorly understood. 

IGFBP-5, an inhibitory binding protein for IGF-1, is highly upregulated in peripheral nerves 

in patients with DNP. The study investigates the pathogenic relevance of this finding in 

transgenic mice overexpressing IGFBP-5 in motor axons. These mice develop motor 

axonopathy similar to that seen in DNP. Motor axon degeneration is also observed in mice in 

which the IGF-1 receptor (IGF-1R) was conditionally depleted in motoneurons, indicating 

that reduced activity of IGF-1 on IGF-1R in motoneurons is responsible for the observed 
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effect. These data provide evidence that elevated expression of IGFBP-5 in diabetic nerves 

reduces the availability of IGF-1 for IGF-1R on motor axons leading to progressive 

neurodegeneration, and thus offers novel treatment strategies. 

 



 VII Zusammenfassung 

Zusammenfassung 
In dieser Arbeit habe ich die Rolle der neurotrophen Faktoren Ciliary neurotrophic factor 

(CNTF) und Insulin-like-growth factor 1 (IGF-1), die in Schwannzellen gebildet werden, als 

Modulatoren der axonalen Integrität bei einer degenerativen Motoneuronenerkrankung und 

bei diabetischer Neuropathie (DNP) untersucht. Im ersten Teil dieser Arbeit wird gezeigt, 

dass CNTF für ein kompensatorisches Sprouting von motorischen Axonen in einem 

Mausmodell für spinale Muskelatrophie (SMA) verantwortlich ist. Im zweiten Teil wird die 

Rolle von IGF-1 und dessen Bindeprotein, IGFBP-5, in Axonen motorischer Nerven bei 

Patienten mit DNP und zwei korrespondieren Mausmodellen gezeigt. 

Die proximale SMA wird durch einen homozygoten Verlust oder Mutation des SMN1 Gens 

auf dem Chromosom 5 verursacht. Bei der spinalen Muskelatrophie unterscheidet man 

verschiedene Schweregrade, abhängig von der Menge an SMN Protein, das vom zweiten 

SMN Gen (SMN2) produziert werden kann. Patienten mit einer milderen Form von SMA (Typ 

III und IV) erreichen das Erwachsenenalter und zeigen oft vergrößerte motorische Einheiten, 

im Gegensatz zu Patienten mit den schweren kindlichen Formen der Erkrankung. Smn+/- 

Mäuse, ein Modell für die leichten SMA Formen Typ II und IV, zeigen denervierte 

Endplatten bereits 4 Wochen nach der Geburt und einen fortschreitenden Verlust von 

Motoneuronen, der nach 12 Monaten mehr als 50% beträgt, ohne dass sich die Muskelkraft 

der Tiere verringert. Die Amplitude der Summenpotenziale von einzelnen motorischen 

Einheiten (Single motor unit action potential, SMUAP) im Wadenmuskel ist mehr als 2-fach 

erhöht. Konfokale Aufnahmen bestätigen ausgeprägtes Sprouting der noch innervierenden 

Axone. Smn+/- Mäuse ohne CNTF, das normalerweise stark in Schwann-Zellen exprimiert ist, 

zeigen reduziertes Sprouting und verringerte Muskelkraft. Diese Ergebnisse sprechen dafür, 

dass CNTF für das Sprouting und die vergrößerten motorischen Einheiten in Smn+/- Mäusen 

verantwortlich ist. Dieser kompensatorische Mechanismus könnte neue Behandlungs-

möglichkeiten für Motoneuronerkrankungen eröffnen. 

Die Diabetische Neuropathie (DNP), eine der Hauptkomplikationen bei Diabetes Mellitus, 

betrifft sowohl motorische als auch sensorische Nervenfasern. Die zugrunde liegenden 

zellulären Mechanismen, die zur Degeneration motorischer Axone in Spätstadien der 

Erkrankung führen, sind größtenteils noch ungeklärt. IGFBP-5, ein IGF-1 hemmendes 

Bindeprotein, ist in peripheren Nervbiopsien von DNP Patienten stark überexprimiert. Diese 

potenzielle pathogene Relevanz wurde bei IGFBP-5 überexprimierenden transgenen Mäusen 

untersucht. Diese Mäuse entwickeln ähnlich wie die DNP Patienten eine motorische 

Axonopathie. Diese Axondegeneration zeigen auch Mäuse, bei denen der IGF-1 Rezeptor
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(IGF-1R) neuronenspezifisch ausgeschaltet wurde. Das bedeutet, dass reduzierte Wirkung von 

IGF-1 am IGF-1R auf Axonen von Motoneuronen für die beobachtete Axonopathie 

verantwortlich ist. Zusammenfassend zeigen diese Daten, dass erhöhtes IGFBP-5 in 

diabetischen Nerven die Verfügbarkeit von IGF-1 für den IGF-1R reduziert und zu 

progressiver Neurodegeneration führt. Diese Erkenntnis könnte neue Behandlungsstrategien 

für Patienten mit DNP eröffnen. 



 1 1 Introduction 

1 Introduction 
One of the most important evolutionary steps during the formation of the nervous system was 

the development of the motor system. This allows interactions with other organisms and the 

peripheral environment by accomplishing voluntary, involuntary and complex locomotions 

(e.g. hunting). The current positions of objects as well as environmental changes are 

recognized by the sensory system. This includes sensory neurons whose cell bodies are 

located in ganglia outside of the brain and spinal cord and therefore count as part of the 

peripheral nervous system (PNS). Sensory neurons convey different external sensory inputs 

(e.g. pain, touch, vision) and recent posture information about the body via axons to the spinal 

cord or brain, i.e., the central nervous system (CNS). In this way sensory neurons convert 

external stimuli into internal stimuli. These internal stimuli are processed in the CNS and 

appropriate locomotion responses are planned and executed by the motor system 1.  
 

1.1 Motor system 
The motor system is part of the CNS and consists of the extrapyramidal and pyramidal 

system. Both systems work synergistically. The extrapyramidal system is responsible for 

rough locomotions and adaption of body posture. Several regions of the brain are involved, 

including the premotor cortex, basal ganglia, cerebellum, red nucleus and olivary nuclei. 

In contrast, the pyramidal system is responsible for fine motor skills and voluntary 

locomotion, and is most pronounced in primates. It originates from the somatotopically 

arranged primary motor cortex (precentral gyrus, Brodmann’s area 4). The pyramidal cells 

(also: upper motoneurons) lie within this primary motor cortex. Their axons descend through 

the corticospinal tract (pyramidal tracts) to the brain stem and spinal cord. In the spinal cord 

these axons innervate interneurons or spinal (also: lower) motoneurons to modulate their 

activity pattern 1. Spinal motoneurons are located in the grey matter of the ventral horn of the 

spinal cord. Their axons leave the spinal cord as bundles in the form of ventral roots as part of 

the PNS and innervate voluntary muscles by synapses. These synapses between motoneuron 

and muscle fibers are called neuromuscular junctions (NMJs) 1. Neurodegenerative diseases 

often lead to denervation of the NMJ which then could lead to atrophy of the denervated 

muscle fibers. Neurotrophic factors are essential to enable the axon to stay in contact with the 

postsynaptic part of the NMJ whether in a state of health or disease. 
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1.2 Neuromuscular junction 
The NMJ is a synapse formed between motoneurons and skeletal muscle fibers. NMJs have 

been investigated since the mid 19th century. The easy accessibility, simple postsynaptic 

geometry (i.e., lack of dendritic spines) and large size of NMJs has allowed fundamental 

studies of synaptic properties. With help of the neurotoxin curare and microscopic 

observations, Claude Bernard (1813-1878), Wilhelm Kühne (1837-1900) and Ramon y Cajal 

(1852-1934) proved the neuron doctrine and at the same time disproved Gerlach’s and Golgi’s 

reticular theory, which described the nervous system as a mesh of fused cells. The term 

“synapse,” established by Charles Sherrington (1857-1952), was based on the finding that a 

NMJ consists of a pre- (motoneurons) and postsynaptic (muscle fiber) part divided by a 

synaptic cleft 1. Otto Loewi (1873-1961) and Henry Dale (1875-1968) demonstrated in the 

1920s and 30s that the neurotransmitter acetylcholine (ACh), released from the presynaptic 

part of the NMJ in the synaptic cleft, is responsible for the transmission between neuron and 

muscle 2. In the 1950s Bernhard Katz and colleagues found that up to 10,000 molecules of 

ACh 3 are packed in vesicles (vesicular hypothesis) which enable a controlled release of ACh 

in specific quantities or quanta (quantal release hypothesis, 1 quanta = 1 vesicle) 4. These 

ACh-packed vesicles are located in a specialized, thickened portion of the presynaptic 

membrane. These sites are called active zones, the place where vesicles fuse with the 

membrane (exocytosis) to release the ACh into the synaptic cleft 5. With the discovery of the 

enzyme acetylcholinesterase (AChE) in the synaptic cleft and the nicotinic acetylcholine 

receptor (AChR) located in the postsynaptic membrane of muscle, two further components of 

the transmission machinery were identified. AChE is an enzyme that rapidly hydrolyzes and 

inactivates ACh and hence regulates the duration of chemical signaling. AChR is activated by 

ACh, which is released from motoneurons, and generates contraction in muscle fibers 6,7.  

Every NMJ is composed of four different elements: (1) A presynaptic motoneuron nerve 

terminal, capped by a cluster of (2) terminal Schwann cells, (3) an opposing postsynaptic 

muscle fiber apparatus and (4) the basal lamina (~50nm) in the synaptic cleft (~100nm) 

separating neuron from muscle fiber (Fig. 1-1) 7,8.  
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Figure 1-1: Structure and molecular architecture of the neuromuscular junction 
Four components of a NMJ: the nerve terminal of the motoneuron (blue), the terminal Schwann cell (orange), 
postsynaptic part of the muscle fiber (red) and the basal lamina (extrasynaptic = blue; synaptic = green). Active 
zones (brown), the sites of neurotransmitter release, in the nerve terminal are opposite the junctional folds in the 
postsynaptic membrane. Some of the important proteins at the NMJ and their subcellular locations are depicted 
(modified figure from Sanes and Lichtman, 1999 9). 
  

1.2.1 Motoneuron  

Motoneurons constitute an exceptional class of somatic cells. Their size and lifespan are two 

special features that distinguish them from other cells. Motoneurons are post-mitotic cells that 

last a lifetime. The cell bodies of this cell type reside in the central nervous system, i.e., the 

brain stem or the ventral spinal cord, from where they extend myelinated axons into the 

periphery to innervate skeletal muscles. The axons of the motoneurons that innervate parts of 

the foot can reach up to 1 meter in length. Several neurotrophic factors are essential for the 

proper development, repair mechanisms and maintainance of motoneurons (e.g., IGF-1, 

CNTF, 1.3 Neurotrophic Factors, Table 1-1) 10. 

In adult muscles, each muscle fiber is innervated by a single motoneuron. However, each 

motoneuron innervates a group of about 100 to 1,000 muscle fibers. This working connection 

is known as a motor unit 11. At the distal end of each motor axon branch a nerve terminal is 

formed—the so-called presynapse or bouton. This contains specialized machinery (active 

zones) for releasing ACh-packed 50 nm vesicles in response to an action potential (Fig. 1-1) 1.  

An action potential is generated by a sodium influx close to the cell body and moves towards 

the presynapses at 80 m/s. There it opens voltage-dependent calcium channels (P/Q-type) in 
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the active zones, the sites of neurotransmitter release, allowing the influx of calcium 12,13. The 

resulting elevated calcium concentration activates a Ca2+/calmodulin dependent protein kinase 

II (CaM kinases) which phosphorylates synapsin I, an anchor protein located in the synaptic 

vesicle membrane. In the resting state of neurons, unphosphorylated synapsin connects 

vesicles with components of the cytoskeleton which prevents them from migrating to the 

presynaptic membrane and releasing transmitters 1. Through phosphorylation of synapsin I, 

synaptic vesicles disconnect from the actin cytoskeleton. The vesicles can be navigated to the 

active zones by Rab3A and Rab3C (a member of the Rab GTPases) -binding and GTP 

hydrolysis 14-17. The exocytosis occurs when specific integral proteins in the vesicle 

membrane (vesicle-SNARE or v-SNARE) bind to certain receptor proteins in the target 

presynaptic membrane (target SNARE or t-SNARE). Syntaxin, a nerve terminal integral 

membrane protein and SNAP-25, a peripheral membrane protein, have been identified as t-

SNAREs. Further, VAMP (synaptobrevin) was discovered as a v-SNARE in the synaptic 

vesicle membrane 18-20. In addition to the CaM kinase mediated step there is a second 

calcium-sensitive step that is involved in vesicle release. The calcium sensor synaptotagmin is 

located in the vesicle membrane and is involved in early synaptic vesicle docking to the 

presynaptic membrane. Synaptotagmin interacts with presynaptic membrane proteins β-

neurexin 21 and SNAP-25 22 as well as mediating calcium-evoked synaptic vesicle fusion with 

the membrane. Synaptotagmin 1 also displaces the inhibitory complexin from the SNARE 

complex in the presence of calcium and consequently enforces the exocytosis (Fig. 1-1) 23,24. 

The amount of ACh quanta that are released by a single nerve impulse can vary from 20 to 

200 depending on the size of the NMJ and the number of active zones. The frog NMJ is 

bigger than the murine one which in turn is greater in size than the human NMJ 7. The ACh 

quanta release is about five times higher than the minimal number required to generate a 

postsynaptic action potential. This excessive vesicle release is called the “safety factor” and 

ensures that transmission does not fail during repetitive firing 7,25,26. The released 

acetylcholine molecules traverse the synaptic cleft (~100 nm in frog NMJ) to bind to their 

postsynaptic receptors in the skeletal muscle 8,9. 

 

1.2.2 Skeletal muscle 

A skeletal muscle is subdivided into bundles of string-like multinucleated cells called muscle 

fibers. In mammals, muscle fibers reach a length of 2-6 cm and a diameter of 50-100µm 1. 

Every muscle fiber contains a cluster of acetylcholine receptors located in a small part of 

recessed membrane with a subjacent specialized scaffold of proteins in the cytoplasm. This 
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structure is called the postsynaptic apparatus and lies exactly opposite the presynaptic 

terminal. The density of the AChR in this region is much greater (10,000/μm2) 27 than in 

extrasynaptic areas (10/μm2) 28. The recessed membrane of the NMJ contains numerous 

invaginations, termed postsynaptic folds, which are precisely aligned with the active zones of 

the motoneuron. The depth of synaptic folds is inversely proportional to the surface area of 

the NMJ between vertebrate species (i.e., human NMJs contain deeper folds than murine and 

frog ones) 26. While the AChR are mainly located in the unfolded, linear membrane and in the 

border area of the folds close to the presynaptic terminal 29, voltage-gated sodium channels 

are predominant in the depths of the folds to enhance the efficacy of transmission (Fig. 1-

1) 7,26,30,31.  

The AChR is also a channel for cations and consists of five subunits (α2βγδ). When two 

molecules of ACh bind to extracellular portions of the α-subunits, the receptor-channel 

undergoes a conformational change which results in the opening of an intrinsic pore for 

sodium and potassium. By following the electrochemical gradient the sodium inflow is higher 

than the potassium outflow and thus the muscle fiber membrane depolarizes, producing an 

endplate potential. A single stimulation of a motoneuron produces an endplate potential of 

about 50 mV (from -90 to -40 mV). As soon as an endplate potential reaches the threshold of 

-55 mV a sufficient number of sodium channels deep in the synaptic folds open and generate 

an action potential that propagates relatively slow in both directions along the muscle fiber 

(3-5 m/s) 1,9,32-35. This action potential leads to Ca2+ release from the cisternae of the 

sarcoplasmic reticulum into the myofibril. Increased Ca2+ concentration allows myosin heads 

to attach and form cross bridges between actin and myosin filaments. Attached myosin heads 

rotate and pull the filaments into greater overlaps that result in shortening the muscle fiber. 

The sum of many muscle fibers shortening leads to a muscle contraction 1,36-38.  

 

1.2.3 Schwann cells 

In the mid-nineteenth century the German physiologist Theodor Schwann (1810-1882) 

discovered that certain cells are wrapped around axons in the peripheral nervous system. 

These so-called Schwann cells have the capability to divide indefinitely throughout life. They 

are involved in the conduction of nerve impulses, and the development, maintenance and 

regeneration of axons. 

Schwann cells are originally derived from neural crest cells in an early phase of embryonic 

development 39. In mice, the neural crest cells first develop into precursors of Schwann cells 

at embryonic day 12 (E12). Subsequently, the transformation of precursors into immature 
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Schwann cells lasts from E15 until birth and is mediated by neuregulin 1-Type III 

(NRG1-III). This protein is secreted by axons which are essential for the survival of 

immature, but not for mature Schwann cells 40-42. Postnatal immature Schwann cells can adopt 

one of two alternative phenotypes distinguishable by their anatomic relationship to the axon. 

Postnatal immature Schwann cells can develop into myelinating Schwann cells after birth and 

sort themselves to larger axons (>1µm) in a 1:1 relationship. Myelination is a spiral sheath of 

axons with lipid-rich myelin that guarantees faster stimulus conduction. In rodents it starts at 

postnatal week one and peaks three or four weeks after birth 43. IGF-1 plays a major role for 

the induction of myelination (1.3.4 Insulin-like growth factor) 44-47. Demyelination is a 

hallmark of neurodegenerative diseases and can lead to conduction loss and nerve 

degeneration 1. 

Alternatively to the myelination pathway, immature Schwann cells could enter a non-

myelination pathway and ensheath multiple small unmyelinated axons, like the sensory C-

fibers, forming a Remak bundle 42,48. The fate of myelination is determined by the levels of 

secreted NRG1-III. Larger axons release higher levels of NRG1-III which leads to 

myelination of axons (e.g., motoneurons). In contrast, low levels of NRG1-III lead to 

ensheathment of unmyelinated axons (i.e., Remak bundle) 49 (Fig. 1-3).  
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Figure 1-2: Cell lineage of myelinating and non-myelinating Schwann cells 
Schematic illustration of Schwann cell development. Immature Schwann cells can differentiate into axon 
myelinating Schwann cells or into non-myelinating Schwann cells embedding unmyelinated axons. For the 
myelination process certain factors (i.e. IGF-1) are important (figure modified from Jessen, 2005 42). 
 
Axons of motoneurons are normally surrounded by myelinating Schwann cells (see above). 

However, close to NMJ there are a few non-myelinating Schwann cells, called terminal or 

perisynaptic Schwann cells, which associate intimately with the non-synaptic portions of 

motor nerve terminals. Three to five terminal Schwann cells are necessary for maturation and 

maintenance of the NMJ 50. These perisynaptic Schwann cells also play an important role for 

motoneuron survival by secreting trophic factors, e.g. IGF-1 and CNTF, to guide regenerating 

motor axons, modulation of synaptic function and removal of debris following injury 51-54.  

Schwann cells play a key role in wallerian-like degenerative processes. After axon 

degeneration, Schwann cells proliferate and initiate breakdown of the myelin sheath and 

clearance of its debris. Additionally, they release a wide variety of chemokines and cytokines, 

such as leukaemia inhibitory factor (LIF), after injury. Some of these factors recruit 

macrophages to the degenerating nerve, and these also clear the debris of the myelin. 

Schwann cells, macrophages, and fibroblasts in the distal stump of the lesioned nerve express 

a wide range of neurotrophic molecules that allow axon outgrowth and regeneration, 

including nerve growth factor (NGF), glial-derived neurotrophic factor (GDNF), brain-

derived neurotrophic factor (BDNF), CNTF, IGF-1, and LIF 55. Mature Schwann cells can 

inhibit their apoptosis by an autocrine release of growth factors including IGF-1, platelet 

derived growth factor-BB (PDGF-BB), and neurotrophin-3 (NT-3) 42. NT-3 reduction in 

Schwann cells leads to impaired nerve regeneration after a crush lesion in the sciatic nerve 

and increase in the abnormal neurofilament packing in axons 56. By release of neurotrophic 
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factors and production of the basal lamina by contact with axons, Schwann cells secure the 

survival of axons in the peripheral nervous system in healthy as well as in disease 

conditions 57. They also play a major role in axonal sprouting (see 1.3.2.1 Sprouting), a 

compensatory mechanism to reinnervate denervated targets 58. 

 

1.2.4 Basal lamina 

The basal lamina is a specialized extracellular matrix that surrounds muscle fibers, terminal 

Schwann cells and nerve fibers as they traverse into the synaptic cleft. The size of the synaptic 

cleft of the NMJ (up to 100 nm) is 5 times bigger than that of synapses from the central 

nervous system. For interaction between motoneuron and muscle fiber the basal lamina is 

essential to bridge the distance and forms a cleft for ACh diffusion. The lamina is composed 

of four kinds of proteins: collagen IV, nidogens, laminins and heparin sulfate proteoglycans 

(HSPGs) 7,35,59. The synaptic basal lamina of the synaptic cleft is adapted to its function of 

forming and maintaining the NMJ and therefore contains different isoforms of the four 

components (e.g., laminin β2 for clustering of voltage-gated calcium channels at actives zones 
60) compared to the extrasynaptic basal lamina. Collagen IV and laminins form their own 

networks within the basal lamina that are connected by special glycoproteins called nidogens. 

Including HSPG, all four components have structural and bioactive functions. All of them, but 

mainly HSPG (e.g., agrin), can be enriched in the extracellular matrix by binding of many 

other proteoglycan/glycoproteins, regulatory proteins (e.g. IGFBP-5), matrix molecules, 

neurotrophic factors (e.g., fibroblast growth factor), activating receptor molecules 

(neuregulin) and enzymes (AChE, terminates neurotransmission) that are essential for 

motoneuron muscle interaction. By mediating the communication for pre- and postsynaptic 

elements, the basal lamina is essential for development (e.g., agrin for AChR clustering), 

maintenance and modulation of the NMJ 61-65. 

Taken together, the motoneurons, Schwann cells, muscle fibers and basal lamina are essential 

for the proper development, maintenance and regeneration of the NMJ. The communication 

between these four components of the NMJ is mediated by membrane-bound 

proteins/receptors or secreted factors that guarantee a functional NMJ. One of the most 

important secreted factors is the group of neurotrophic factors which have an impact on all 

four components of the NMJ. 
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1.3 Neurotrophic factors 
Neurotrophic factors are small proteins that exert survival-promoting and trophic actions first 

identified in embryonic neuronal cells. The long journey of the discovery of neurotrophic 

factors started in the 1920s with a German neuroembryologist named Viktor Hamburger. 

Together with Rita Levi-Montalcini, and by using transplantation experiments in chicken and 

amphibian embryos, over 3 decades they established the neurotrophic factor hypothesis. The 

hypothesis implies that the target cells of developing embryonic neurons produce a limited 

amount of an essential trophic factor that is taken up by nerve terminals. Hamburger and 

colleagues isolated the first neurotrophic factor, named NGF, by co-culturing sarcoma cells 

with sensory neurons 66. 

The released amount of neurotrophic factor is not sufficient for all neurons, leading to death 

of about half of all embryonic motor and sensory neurons during embryonic development. By 

a 50% surplus of neurons and the specific induction of programmed cell death (apoptosis), the 

organism is adapted to fit the needs and ensure that every target is innervated 67-71. In neurons 

which receive a sufficient dose of neurotrophic factors during development, specific 

neurotrophic receptors are activated. These mediate an anti-apoptotic downstream program 

through different pathways including RAS/mitogen-activated protein kinase (MAPK), 

phosphoinositide 3-kinase (PI-3K)/AKT, and PKA, the latter inhibiting the anti-apoptotic 

factor BAD by phosphorylation 10,72-77. Unphosphorylated BAD translocates to the outer 

membrane of the mitochondria and inhibits pro-aptoptotic proteins Bcl-XL or Bcl-2 by 

forming heterodimers, and thus leads to apoptosis 78-80.  

Nowadays, it is confirmed that neurotrophic factors have a far broader function than only in 

survival of embryonic neurons. They are involved in development, survival and maintenance 

of neurons, differentiation of glia cells and regulation of synaptogenesis and synaptic 

plasticity in mature neurons 81-86. The neurotrophic factors can be divided into several genetic 

related families which are still growing 87. Table 1-1 shows a partial list of the most important 

neurotrophic factors and their receptor for motoneurons 88.  

Besides their in vivo functions, they have a direct impact on motoneuron survival and axon 

maintenance as shown in pure cultured embryonic motoneurons 89,90. These neurotrophic 

survival factors for motoneurons consist of several families including CNTF, IGF-1, CT-1, 

GDNF and BDNF 89. 
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Table 1-1: Neurotrophic factors and their receptors  
Overview of important neurotrophic factors and their receptors. These factors affect motoneurons and other cell 
types (e.g., glia cells). (Table from Sendtner, 2000 10). 
 

1.3.1 Brain-derived neurotrophic factor  

BDNF belongs to the family of neurotrophins (Table 1-1). It binds to a monomer of 

tropomyosin-related kinase B (TrkB) receptor that then dimerizes with another monomer of 

TrkB. This leads to autophosphorylation of the cytoplasmatic domains of the receptor 

complex. TrkB plays a role in maintenance and formation of the postsynaptic receptor clusters 

of the NMJ 91,92. 

BDNF supports other types of peripheral neurons than does NGF, another neurotrophin. For 

example, in contrast to NGF, BDNF does not support the survival of sympathetic neurons. 

Contrary to this BDNF has a supportive effect on the survival of placode-derived sensory 

neurons, whereas NGF does not 87,93. BDNF supports also motoneuron survival in culture 94. 

BDNF knockout mice show ataxia, loss of myelinated sensory neurons, vestibular neurons 

and die after a few days 87. In contrast to CNTF, BDNF mRNA is detectable in skeletal 

muscle. Muscle-derived BDNF could act as a retrograde signal for survival of innervating 

motor neurons throughout their lifespan via the TrkB receptor 94. However the level of 

skeletal BDNF decreases during maturation.95 

BDNF is undetectable in healthy rat sciatic nerves. However, BDNF mRNA rises slowly in 

Schwann cells, starting at 3 days after nerve lesion, and reaches maximal levels after 3-4 

weeks exclusively in distal nerve pieces 96. NGF also increases after lesion. It increases faster 

and almost reaches a plateau at day 7. However, BDNF concentration increases gradually 

after lesion, and after 4 weeks it is 10 times higher than NGF, indicating the long-lasting 
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regeneration potential of BDNF for sensory and motoneurons 96. Furthermore, BDNF 

treatment prevents facial motoneurons in new-born rats after lesion 97 . 

Taken together, muscle-derived BDNF plays an important role in maintenance of the 

postsynaptic receptor at the NMJ and also acts on motoneurons in development as seen in 

BDNF knockout mice. After nerve lesion, BDNF is expressed in Schwann cells in a period of 

4 weeks and could be responsible for later postinjury stages 87. Therefore it is unlikely that 

BDNF plays a major role in axonal maintenance due to its undetectable expression in 

Schwann cells under physiological healthy conditions. It is more likely that more abundant 

factors in Schwann cells, such as GDNF and CNTF, or IGF-1 support axonal regeneration and 

maintenance in the first place. 

 

1.3.2 Glial-derived neurotrophic factor 

GDNF, the first identified member of the GDNF family, is a transforming growth factor-β 

related survival factor (Table 1-1) 98. It was originally isolated from the rat glioma cell-line 

supernatant as trophic factor for dopamine neurons in primary cultures from the embryonic 

midbrain. Later it was found that GDNF has also supportive effects on other neuronal cells, 

including motoneurons. GDNF is expressed in Schwann cells and the skeletal muscle of 

developing and adult mammals 99. Homodimeric GDNF binds to the cognate GDNFa-receptor 

which then interacts with the extracellular domain of the RET receptor, a receptor tyrosin 

kinase. The RET receptor contains four intracellular tyrosine residues. The receptor beomes 

activated when the residues are phosphorylated 100. Homozygous GDNF-deficient mice die at 

birth and already show a 37% loss of lumbar spinal motoneurons on embryonic day 18.5, 

indicating the importance for motoneuronal development. Muscle-specific overexpression of 

GDNF starting embryonically leads to increased number of motoneurons compared to 

neonatal control mice 99. Another muscle-specific GDNF overexpressing mouse model 

showed the maintenance of hyperinnervation of NMJs beyond the normal developmental 

period after 6 weeks 101. By promoting terminal branching, this extra innervation could 

counteract synapse elimination, indicating that GDNF is important in the regulation of 

synaptic plasticity in the developing NMJs. Experiments directly focused on motoneurons 

revealed that GDNF is very potent in supporting the survival of purified cultured embryonic 

motoneurons, and after axotomy GDNF rescues and prevents atrophy of facial motoenurons 

in vivo 98. Additionally, GDNF slows the loss of motoneurons, but does not prevent axon loss 

or prolong survival in pmn mice, a mouse model for ALS 102. However, CNTF application via 

CNTF-secreting stem cells to the same pmn model not only slows motoneuron loss, like 



 12 1 Introduction 

GDNF, but even prolongs survival of the mice and leads to improved maintenance of motor 

axons in this model 103. This, and the fact that GDNF knockout mice die at birth, strengthens 

the idea that GDNF is important in motoneuron development and innervation of the NMJ, but 

CNTF may be more effective in axon maintenance or compensating in degenerative 

processes.  

 

1.3.3 Ciliary Neurotrophic Factor, Leukaemia inhibitory factor and Cardiotrophin-1 

CNTF is a member of a large family of neurotrophic cytokines which also includes LIF and 

CT-1. CNTF was first identified and partially purified in embryonic chick eye tissues in the 

1970s and supports the survival of embryonic chick ciliary neurons in culture 104. Besides this, 

CNTF supports the survival of a broad spectrum of neurons including sympathetic, sensory 

nodose, trigeminal, and particulary motoneurons 105. Additionally it plays a role in glial 

precursor cells of the oligodendrocytes lineage 81 and their survival in culture 106, and has a 

major role in motoneuron sprouting 107,108. CNTF is a neurocytokine which consists of 200 

amino acids (24 kDa). It differs from neurotrophins by lacking the hydrophobic leader 

sequence 109 which is necessary for the cellular release by the conventional secretory pathway. 

High amounts of CNTF are localized in the cytoplasm of myelinating Schwann cells as well 

as in astrocytes 110. Up to now it is not clear whether CNTF can be actively released by 

Schwann cells or only passively diffuses from damaged Schwann cells (e.g., due to a lesion) 

to maintain the survival of lesioned neighboring motor and sensory neurons. However, 

endogenous CNTF released from lesioned Schwann cells supports the survival of axotomized 

rapid-degenerating motoneurons 111.  

CNTF expression in the rat sciatic nerve becomes apparent by postnatal day 4 and reaches 

maximum levels in fully differentiated Schwann cells in the third postnatal week 78,112,113. 

CNTF knockout mice develop normally until 3 weeks after birth, but develop a progressive 

loss of 20% spinal motoneurons thereafter 114. This differs from other GDNF and BDNF 

knockout mouse that die shortly after birth with major defects of neuronal development. This 

emphasizes their role in axonal development. In contrast, CNTF knockout mice develop 

completely normally, which complies with the fact that CNTF is first highly expressed after 

the third postnatal week. The lack of CNTF leads in adult mice to progressive motoneuron 

loss. This and the fact that CNTF is not expressed in the muscle (unlike BDNF and GDNF), 

but is highly expressed in Schwann cells that supply motoneurons in direct contact, strengthen 

the role of CNTF in axonal integrity in the healthy and disease state.  
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A specific low-affinity receptor for CNTF was first found in neuronal tissue and skeletal 

muscle 115. LIF and CT-1 tranduce their signals through the same receptor components as 

CNTF. LIF can induce sprouting of postganglionic sympathetic fibers into the dorsal root 

ganglia in adult rats following peripheral nerve injury 116. Investigations of CNTF, LIF and 

CT-1 in double and triple knockout mice revealed that muscle-derived CT-1 is particularly 

important for developing motoneurons, but does not play a major role in adult axonal 

maintenance and regeneration 117. CNTF and LIF are essential for postnatal maintenance of 

motoneurons, whereas LIF seems to play a specific role in the control of NMJ size which 

cannot be compensated by CNTF and/or CT-1 118. 

CNTF receptor consists of the CNTF binding protein (CNTFR alpha) as well as the 

components of LIF receptor, LIFR beta (the LIF binding protein) and gp130 (the signal 

transducer of interleukin-6 [IL-6]). 

In contrast to other known cytokine receptors, CNTFR alpha does not have a cytoplasmic or 

transmembrane region. However, it is anchored to the cell surface membrane by a glycosyl-

phosphatidylinositol (GPI) anchor 119. Cleavage of this GPI linkage by phospholipase C can 

release CNTFRα to become a soluble receptor and enables CNTF signaling in cells without 

CNTFRα, but with gp130 and LIFRβ 120. CNTF binding to CNTFR alpha (α receptor subunit) 

in a 1:1 stoichiometry permits the recruitment of gp130, followed by LIFR beta (β receptor 

subunits) membrane signal transducing units 121 that are associated with Janus kinases (JAKs) 

in the cytosol. The heterodimerization of β-subunits triggers the activation of JAKs which in 

turn phosphorylate tyrosine residues of these subunits. This creates docking sites for SH2 

domain-containing signaling molecules such as Signal Transducer and Activator of 

Transcription (STAT-3) 122. Activated STAT-3 can form both homodimers with another 

STAT-3 and heterodimers with other STAT proteins. The dimer translocates into the nucleus 

to promote transcription of pro-apoptotic genes including cyclin D1, c-myc, Bcl-2 and Bcl-

XL 123. 

Furthermore, JAKs activate the PI3K/AKT and RAS/MAPK pathway, which could also 

support survival in crosstalk with the JAK-STAT pathway 124,125. Moreover, cytoplasmic 

STAT-3 binds to and inhibits stathmin, a destabilising protein of microtubules, and thus 

supports the stability of the cytoskeleton and outgrowth of neurons 126. This could be 

important for the function of CNTF in axonal sprouting. Daily CNTF injection for 1 week 

directly over the surface of the adult mouse gluteus muscle induces axonal sprouting near the 

NMJs 107. Furthermore, CNTF-deficient mice showed no sprouting response after sprouting-

inducing stimuli, such as injection of botulinum and transection of a nerve branch. However, 
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exogenous CNTF administration given in parallel to the stimuli induces sprouting in CNTF 

knockout mice 108. This positive effect complies with the finding that CNTF acts as a positive 

modifier in motoneuron diseases such as amyotrophic lateral sclerosis and prevents axon loss 

with prolongation of survival in pmn mice 103,127. Thus, CNTF plays a major role in axonal 

maintenance and motoneuron sprouting as a compensatory mechanism in neurodegenerative 

diseases. 

 

1.3.3.1 Sprouting  

Sprouting is a remarkable ability of neurons in the central and peripheral nervous system to 

form new neuritic processes (sprouts) to respond to denervated targets 58. It is part of the 

mechanisms contributing to synaptic plasticity, when remaining neurons form new sprouts to 

reinnervate recently denervated neurons or muscle fibers 128. They can appear from motor 

nerve terminals (terminal or ultra terminal sprouts) or from nearby nodes of Ranvier (nodal or 

axonal sprouts) (Fig. 1-4). 

 
Figure 1-3: Sprouting events at the NMJ and their inducing factors 
(a) A single motoneuron innervates many endplates (NMJ). Due to a neurodenerative event, muscle fibers can be 
denervated and then reinnervated by sprouting branches of neighbouring motoneurons. (b) Putative sprouting 
factors with their sources and signaling partners. (Figure adapted from (a) Zacchigna, 2008 129 and (b) English, 
2003 130) 
 

A number of studies with paralyzed muscles showed that sprouting can be induced by the lack 

of electrical and contractile activity in denervated muscle fibers 131-133. This lack of activity of 

the target cell leads to an upregulation of cell surface and basal lamina proteins that could 

guide new axon sprouts to the endplate 134. Furthermore, it has been shown that exogenously 

administered trophic factors, including CNTF, induce sprouting 107,135. The sprouted axon is 

guided by processes of Schwann cells that play a primary role in initiating sprouting and 

guidance 136,137. The exact mechanism is not completely known, but it is feasible that inactive 
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or denervated muscle fibers release sprouting factors (Fig. 1-4b, e.g. IGF-1 in response to an 

unknown trigger released from the Schwann cells or the inactive fiber itself. This leads to an 

extension of elaborated branches of terminal Schwann cells on a denervated muscle fiber to 

form bridges to intact synapses 137,138. These bridges could guide new sprouts from an intact 

motoneuron terminal to a denervated target 130,139,140, which could serve as a compensatory 

mechanism in motoneuron disease to counteract motoneuron loss.  

In Smn+/- mice, a model for mild SMA, a slow progressive loss starting in adulthood is 

observed, peaking in 50% loss of lumbar spinal motoneurons after 1 year. Despite this strong 

motoneuron loss, the mice show no signs of atrophy and remain clinically normal 141. 

Therefore there must exist a compensatory mechanism. It will be interesting to investigate 

whether CNTF-induced sprouting is involved in this compensatory mechanism. 

 

1.3.4 Insulin-like growth factor  

The insulin-like growth factor belongs to a complex system referred to as the IGF axis. It 

consists of two cell-surface receptors (types 1 and 2; IGF1-R and IGF2-R), two ligands 

(IGF-1 and IGF-2) and at least six insulin-like growth factor binding proteins (IGFBPs) 142,143.  

IGF-1 (7.6 kDa) and IGF-2 (7.4 kDa) display a sequence homology of approximately 62% 

with each other and 47% sequence similarity with insulin. They are generated by cleavage of 

longer precursor molecules at the amino- and carboxyterminal ends 144,145. IGFs are 

synthesized in a variety of tissues, including liver, pituitary and nervous system, and are found 

in the serum and cerebrospinal fluid (CSF) 87,146. IGF-1 and 2 bind to three receptors with 

different affinities. The IGF1-R is a disulfide-linked heterotetrameric transmembrane 

glycoprotein of 350 kDa. It consists of two extracellular alpha subunits (135kDa) with a high 

affinity ligand binding site for both IGFs and two transmembrane beta subunits (90 kDa) 

which possess intracellular tyrosine kinase domains 147,148. However, the affinity to IGF-1 is 

15- to 20-fold higher than to IGF-2 149. The second IGF receptor, IGF2-R, binds IGF-2 with 

high and IGF-1 with low affinity 150,151. It consists of a single-chain polypeptide and due to 

the absence of a tyrosine kinase domain it cannot transduce a signal. This receptor seems to be 

involved in clearance and degradation of IGF-2 152,153. The third receptor is the insulin 

receptor, which shows high similarity to the IGF-1 receptor 154,155. However, the IGF1 binding 

affinity is about 100-fold lower than the binding affinity to insulin 156. Binding of IGF-1 and 

insulin to their receptors leads to the autophosphorylation of the beta subunit and also to the 

phosphorylation of insulin receptor substrate (IRS) which in turn activates phosphoinositol 3-

kinase (PI 3-kinase). The IGF-1 receptor, activated by IGF-1, and the insulin receptor are 
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tyrosine kinases that mediate phosphorylation of IRS proteins including IRS-1, IRS-2, IRS-3, 

and IRS-4 157-159. Phosphorylated IRS proteins can activate multiple signaling pathways, 

including MEK/extracellular signal-regulated kinase (Erk), Ras-Raf-MAPK and PI-3K/AKT 

cascades 160-163. Although IGF-1 receptor and the insulin receptor both function via the AKT 

pathway, they lead to phosphorylation of different amino acids on a subgroup of forkhead 

proteins known as FKHR proteins. These data provide a potential explanation for the different 

effects of insulin and IGF-1 on gene expression 164.  

There is also evidence for heterotrimeric G-protein associated signaling 165. IGF-1 promotes 

neuronal survival and cytoskeleton rearrangement by activation of the IGF-1 receptor through 

the PI3K/AKT pathway by phospohorylation of BAD 79,80,166-168. In contrast the MAPK 

pathway is important for differentiation 169. IGF-1 promotes oligodendrocyte progenitor cell 

proliferation and survival in vitro 161,170 and is critical for myelination in vivo 44,45,171,172.  

In peripheral nerves, IGF-1 is mainly expressed in Schwann cells of postnatal rodents 173 and 

acts on motoneurons to support survival 89,174,175, myelination 46,176-179 and regenerative 

reactions—for example, IGF-1 administration to adult rat or mouse gluteus muscle led to 

intramuscular nerve sprouting 135. This complies with the idea that IGF-1 supports 

motoneuron axon outgrowth during development and in the adult nervous system 180. In the 

sciatic nerve, IGF-1 is detected in Schwann cells and axons after nerve crush and accumulates 

in damaged axons within 2 hours of injury. At the distal stump, IGF-1 expression peaks in 

Schwann cells at 2 weeks after transection 180.  

IGF-1 plays an important regulatory function during myelin membrane formation by 

stimulating de novo fatty acid biosynthesis through the PI3K/AKT pathway 47. 2-month-old 

IGF-1 knockout mice show reduced number of axons and myelination 44. Reduced or 

impaired myelination often results in reduced conduction velocity and nerve fiber diameter. 

Decreased NCV was found in mice with reduced or absent IGF-1. Exogenous IGF-1 restores 

the conduction velocities. Reduced nerve conduction and demyelination are features of 

several neuropathies, including DNP which also involves the IGF system. Therefore the role 

of IGF-1 is very interesting in neuropathies, especially in diabetic neuropathy 180. IGF-1 

mRNA is quickly reduced in Schwann cells upon induction of diabetes in adult rats. IGF-1 

replacement prevents neuropathy in these diabetic nerves. Thus, the profound loss of IGF-1 

activity could lead to a relatively rapid onset of DNP 181. 

The inhibition of IGF-1 could also lead to features of a neuropathy. 90% of circulating IGF-1 

in the blood is associated with high affinity 6 insulin-like growth factor binding proteins (1-6 
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IGFBP), which modulate IGF-1 availability for the receptors and prolong IGF-1 half-life by 

preventing its proteolysis 182. 

 

1.3.4.1 Insulin-like growth factor binding protein-5 (IGFBP-5) 

IGBFBs bind with high affinity and inhibit or promote the action of IGF-1 and IGF-2 183,184. 

IGFBP-5, a 29 kDa glycosylated protein 185 binds IGF-1 and IGF-2 in vitro and reduces 

autophosphorylation of the IGF-1 receptor 186. In postnatal peripheral nerves, IGFBP-5 

immunoreactivity is detectable in Schwann cells and in close association with or even within 

myelinated axons, suggestive of anterograde axonal transport and release from axons 178,187. In 

contrast to IGFBP-1, -3 and -4, which sequester IGF-1 in extracellular fluid reservoirs to 

inhibit IGF-1 188, IGFBP-5 binds with high affinity to the extracellular matrix (ECM) 189,190 

(e.g., by binding the extracellular glycoprotein vitronectin) and provides IGF-1 close to its 

receptor to potentate its effect in healthy conditions 62,189. 

Thus IGFBP-5 could regulate local functions of IGF-1 and IGF-2 at the interface between 

motoneurons and Schwann cells. 

 

1.3.4.2 A possible role of IGBFP-5 in neurodegenerative diseases 

Diabetes mellitus is a metabolic disease which results from either reduced insulin production 

or insulin uptake deficiency (see 1.4.2 Diabetic neuropathy). One consequence of this disease 

is an increased expression of inflammatory markers in the heart, which in turn decrease the 

activity of IGF-1, IRS-2 and AKT. Consequently the level of pro-apoptotic BAD protein 

increases and thus apoptosis is promoted 191. Additionally, a significant down-regulation in 

the expression of IGF-1 and IGF-1R was seen in the small DRG neurons of streptozotocin-

induced (STZ) rodents, a model for painful DNP 192. In addition, an upregulation of IGFBP-5 

in the rat eye was observed in this model 193. A possible reason for this might be that IGFBP-5 

is overexpressed and inhibits the IGF-1 pathway and thus could lead to apoptosis in neurons. 

For this reason, IGFBP-5 levels of patients with diabetes and the consequences of 

overexpressed IGFBP-5 in a mouse model were investigated. 

 

1.4 Motoneuron diseases 
Neurological disorders that selectively affect motoneurons are classified as motoneuron 

diseases (MND). They can be subdivided into three classes that affect either the upper or the 
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lower motoneurons or both. Hereditary spastic paraplegia (HSP, incidence of 7.4 per 100,000 

in Norway194) is an example of an MND affecting only the upper motoneurons (pyramidal 

cells in the primary motor cortex, see 1.1 Motor system). This degeneration of the upper 

motoneurons and their axons in the pyramidal tract leads to the lack of inhibition from the 

CNS which results in control loss of the lower motoneurons in the spinal cord. This leads to a 

progressive spasticity in the lower limbs 195. 

The amyotrophic lateral sclerosis (ALS, incidence of 5.2 per 100,000 in Western countries 
196) is a progressive neurodegenerative disease which affects both upper and lower 

motoneurons. Depending on which motoneurons are affected first or more severely, the 

symptoms can vary. If the upper motoneurons are more affected, spasticity is predominant 

and there is loss of fine motor skills. On the other hand, muscle denervation, atrophy and 

paralysis occur when the lower motoneurons degenerate first 197. 

A classical MND that affects only lower motoneurons is childhood SMA. In addition, there 

are several other neurodegenerative diseases that affect many parts of the nervous system, 

including the sensory, autonomic and motor system, e.g. DNP. Nevertheless, to understand 

these diseases, it is important to investigate single parts in more detail to obtain further 

insights into the pathology. 

 

1.4.1 Spinal muscular atrophy  

SMAs are a heterogeneous group of neuromuscular disorders that have different genetic 

causes, but all share the characteristics of the loss of lower motoneurons and a resulting 

atrophy of muscles 198. The most frequent form of SMA is the proximal spinal muscular 

atrophy that is normally referred to as SMA. It is an inherited autosomal neurodegenerative 

disease where mainly the proximal limbs of the patients are affected. With an incidence of 1 

in 10,000 live births and a carrier frequency of 1:35, it is the leading monogenetic cause of 

infantile mortality 199. Depending on the age of onset, the severity of disease and the achieved 

motor abilities, SMA can be subdivided into four forms 200-203 (Table 1-2).  

The most severe form of SMA (Type I) is known as the Werding-Hoffmann disease and has 

its onset during the first 6 months after birth. Diseased children can never sit or walk due to a 

loss of motoneurons in the entire spinal cord as well as in the motonuclei of the cranial nerves 

in the brainstem resulting in strong hypotony of the musculature. The degeneration of the 

phrenic nerve that innervates the diaphragm leads to lethal respiratory paralysis within the 

first two years 198,203. The intermediate form of SMA referred as Type II starts after 6 months 

and affected children are able to sit and can reach adolescence or even adulthood 200. 
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Table 1-2: Diagnostic features in the classification of spinal muscular atrophy 
Table shows different types of spinal muscular atrophy. They are defined by the time point of onset and the 
severity of the motor abilities. (Modified table from Briese, 2005 204.) 
 

Patients with the juvenile SMA form (Type III, Kugelberg-Welander disease) have a normal 

lifespan and are able to sit and walk, but not to run. Their disease pattern is very similar to 

Duchenne muscular dystrophy (DMD). Type IV SMA patients are comparatively mildly 

affected, with an onset later than 30 years and a normal lifespan 205. The SMA forms of Type 

I-III could be all mapped to a specific region in the genome 204,206. 

 

1.4.1.1 Genetic background of SMA 

In 1990 three different forms (I-III) of SMA were mapped to the long arm of the human 

chromosome 5 (region 5q11.2-q13.3) using linkage analysis 207-209. In the mid-nineties this 

500 kilobase (kb) region was characterized and four genes with their respective inverted copy 

were found. A telomeric (t) and an inverted centromeric (c) copy of each gene have been 

found (Fig. 1-5):  

1. survival of motoneuron gene (SMN) 1 (t) or 2 (c) 210 

2. neuronal apoptosis inhibitory protein (NAIP (t) or ψNAIP (c)) 211 

3. basal transcription factor subunit p44t (t) or p44c (c) 212,213  

4. H4F5t (t) or H4F5c (c) 214  

 
Figure 1-4: Scheme of the 500 kilobase SMA region on chromosome 5 
Showing the telomeric SMA region and its inverted and duplicated centromeric region (5q13), including the four 
genes: SMN, H4F5, NAIP and BTFp44. (Figure from Wirth, 2000 215.) 
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In 1995, the telomeric SMN1, but not the centromeric SMN2 copy, was identified in this 

region as the disease-determining gene 210, although these genes are almost identical. Both 

encompass 27 kilobases (kb) including nine exons (1, 2a, 2b, 3-8) 216,217. The 1.7 kb SMN 

full-length transcript encodes for a protein of 294 amino acids 210. These two SMN copies 

differ only in 5 base pairs at the 3´ end of the genes, while the cDNA only differs in 2 base 

pairs in exon 7 and 8 and still encodes for the same protein 210,216. However, the single point 

mutation which transforms the SMN1 copy to the disease-determining gene is a cytosine-

thymine (C-T) transition at position + 6 of exon 7 218. Although this mutation is localized 

within the coding region, it does not change the codon and hence does not affect the amino 

acid sequence of the encoded protein (silent mutation). Nevertheless, due to the presence of 

thymine in SMN2 only 10% of the full length (FL) transcripts, but 90% of alternatively 

spliced transcripts that lack exon 7, are produced and result in a truncated transcript 

(SMN2Δ7). However, since some full-length SMN is produced from the SMN2 locus, it can be 

considered as a gene with reduced function, but not a loss of function. The cytosine-

containing SMN1 gene expresses 100% of the FL transcript 210,219.  

The truncated transcripts arise from alternative splicing. Exon 7 spans 54 bp with a weak 3´ 

splice site 220 and needs additional auxiliary cis-regulatory splicing elements for recognition 

by the splicing machinery. These auxiliary cis-splicing elements are specific sequences of a 

precursor RNA which regulate correct splicing located on that same molecule of RNA. On the 

other hand, trans-regulatory elements are DNA or RNA sequences that encode for trans-acting 

splicing proteins/factors, including SR proteins (serine-argine-rich proteins), SR-like proteins 

and heterogenous ribonucleoproteins (hnRNP), that regulate splicing through binding to a cis-

regulatory element 206,215. Depending on their localization and function, cis-regulatory 

splicing elements comprise 1. exonic splicing enhancer (ESE) and 2. intronic splicing 

enhancer (ISE) that facilitate the inclusion of exon 7 in the FL transcript, as well as 3. exonic 

splicing silencer (ESS) and 4. intronic splicing silencer (ISS) that have a negative effect on 

the correct splicing of exon 7 and support a truncated Δ7 transcript 206. 

The key cis-regulatory splicing element for the inclusion of exon 7 in the SMN1-derived gene 

transcript is an ESE located within the 5´ end of exon 7 that is recognized by the trans-acting 

splicing factors SF2/ASF. This ESE is destroyed by the C-T transition in the SMN2 gene. 

Therefore SF2/ASF do not recognize this sequence anymore and consequently exon 7 is 

spliced out together with intron 6 and 7 leading to SMN2Δ7 206,221-223 (Fig. 1-6). Now the 

major question is why the SMN2 gene can still produce 10% of the FL transcript. There is 

another ESE in the mid-part of exon 7 that is recognized by a number of splicing factors 
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including Htra2-β1, which all promote the exon 7 inclusion and are responsible for the 10% 

FL transcript of the SMN2 gene 206,215,224-226.  

           
Figure 1-5: Differences between human SMN1 and SMN2 gene 
The two copies differ only in 5 base pairs. Only the C-to-T transition in exon 7 (arrow) is responsible for the 
predominant deletion (90%) of exon 7 in the SMN2 pre-mRNA. (Figure from Wirth, 2006 206.) 
 

1.4.1.2 The SMN protein 

The protein structure of SMN is highly conserved between species 227-229. SMN is a 

housekeeping gene that is essential for splicing. Therefore the SMN protein is expressed in all 

cell types and is found homogenously distributed in the cytoplasm and as dot-like clusters in 

the nucleus 230-232. 100% of the SMN1 and 10% of the SMN2 genes encode for the FL 

transcript with 9 exons, which is translated into SMN protein. The SMN protein is composed 

of 294 amino acids and has a molecular weight of 38 kiloDalton (kDa).  

Exon 2 encodes for a lysine rich (K-rich) protein domain close to the N-terminal end that is 

important to bind GEMIN2/SIP1 (SMN interacting protein 1) as well as for self-association 
233,234. Exon 5 and part of exon 6 encoded domains contain a proline-rich (P-rich) domain that 

may influence profilin binding 235. The conserved YG box is in the C-terminal domain 

encoded by exon 6 and is important for SMN self-association 234,236. Exon 7 encoded domains 

are essential for the oligomerization of SMN protein (Fig. 1-7). The amino acids that are 

normally encoded by exon 7 are lost in the truncated SMN2Δ7 protein and this results in 

instability of the SMN protein and leads to degradation of the monomers 237,238. The SMN1 

protein forms stable oligomers in vitro 239. 90% of the SMA patients with homozygous 

deletion of SMN1 reveal absence of both exons 7 and 8, whereas about 10% show only 

homozygous deletion of exon 7 but not of exon 8 206.  

Exon 3 codes for a Tudor domain, a conserved motif of 50 amino acids that is found in 

several RNA associated proteins (Fig. 1-7). This domain binds to seven human Sm core 

proteins (B, D1-3, E, F and G) which are essential for the assembly of spliceosomal uridine-

rich small nuclear ribonucleoproteins (U snRNP) complexes 233,240-242 (Figure 1-8). Six 
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different U snRNPs are crucial for splicing by accomplishing the recognition of splice sites 

and removal of introns from preRNA in the nucleus. Each particle is composed of one of 6 

different uridine-rich small nuclear RNAs (snRNA) (U1, U2, U4, U5, U11 and U12) and a 

heptameric ring of Sm proteins 243,244.  

     
Figure 1-6 Exons and domains of SMN  
Exon 2B encodes a domain that is important in GEMIN2 binding and for self-association [161]. The K domain is 
rich in lysine (K-rich), and exon 3 encodes for a Tudor domain that binds Sm proteins. Exon 5 and part of exon 6 
contain a proline-rich (P-rich) domain that may influence profilin binding. The domain of exon 6 contains the 
conserved YG box and is important for self-association. Exon 8 is not displayed. (Figure from Burghes, 2009 
231.) 
 

During snRNP assembly, Sm proteins are first bound and methylated in the cytoplasma by a 

complex consisting of the chloride conductance regulatory protein and the protein arginine 

methyltransferase 5 (pICln–PRMT5 complex) 245. This complex transfers the Sm proteins to 

the SMN complex that consists of multiple SMN molecules (oligomer), Gemin 2-8 and UNR-

interacting protein (UNRIP). Then the SMN complex facilitates the assembly of the Sm 

proteins onto the snRNA via its Tudor domain and 5´ cap hypermethylation of the snRNAs. 

Newly formed snRNPs which are still bound to the SMN complex are imported into the 

nucleus via snurportin and importin. In the nucleus snRNPs and the SMN complex localize to 

the Cajal body (CB) and the snRNPs undergo further maturation 206,215,231. CBs are dynamic 

structures in the nucleus that consists of p80 coilin, SMN, snRNPs and play a role in splicing, 

histone mRNA 3´ maturation and pre-rRNA processing 246-248. Other structures found in the 

nucleus that relate to the function of SMN and SMN complexes are the Gemini of coiled 

bodies (gems). They are indistinguishable in comparison to CB in size and shape, but they do 

not contain snRNPs and a high amount of SMN 230. The number of gems and the amount of 

SMN is significantly reduced in SMA patients 249. The loss of SMN protein correlates with 

the severity of the SMA disease. The most severe form of SMA (Type I) expresses less 

protein than the milder forms (Type II and III) in patients and mouse models 249-251. 
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Figure 1-7: snRNP assembly is mediated by the SMN complex  
(a) The Sm proteins are bound and methylated by pICln–PRMT5 complex. (b) This complex transfers the Sm 
proteins to the SMN complex. (c) The SMN complex facilitates the assembly of the Sm proteins onto the snRNA 
via its Tudor domain and 5´ cap hypermethylation of the snRNAs. (d) Newly formed snRNPs are transported to 
the nucleus, still bound to the SMN complex. Both localize to the Cajal body in the nucleus and snRNPs undergo 
further maturation (Figures from Burghes, 2009 231.) 
 
As mentioned above, SMN protein is needed for correct splicing in every cell. Surprisingly, 

only neurons are affected in SMA patients with lowered SMN protein levels. One hypothesis 

is that the decreased SMN level is still sufficient to assemble enough spliceosomes for correct 

splicing in non-neuronal cells. However, this level might not be sufficient in motoneurons 

because they belong to the largest cells in the body and have a higher rate of mRNA 

expression, processing and translation than other cell types. Therefore more spliceosomes 

may be needed 252. Another hypothesis that could go along with the first one is that the SMN 

protein has an additional function. SMN can form a complex with heterogenous nuclear 

ribonucleoprotein R (hnRNP R), that can bind to the 3´ untranslated region (UTR) of the 

β-actin mRNA and supports its transport into the axons and growth cones 253,254. A reduced 

number of β-actin mRNA and protein molecules was found in distal parts of the axon and in 

the growth cone in Smn-deficient motoneurons 253. The reduced level of β-actin could lead to 

shortened axon outgrowth, reduced movement of the growth cone and impairment of synaptic 

vesicle release 255-257. Reduced vesicle release results in distal-starting axonopathy including 

denervation of the NMJ that propagates proximally to the soma of the motoneurons in the 

spinal cord. Thus SMA is referred to as a dying-back motoneuron disease 258. 
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1.4.1.3 SMA mouse models 

There exist several mouse models for SMA. The major difference between the human and 

murine genome in regard to SMA is the number of the SMN genes. Due to an evolutionarily 

late duplication of the SMN gene, only primates including humans possess two copies of SMN 

gene, SMN1 and SMN2 259. In contrast, the mouse genome contains only one copy (Smn), that 

is 81% identical to the human SMN gene 227,260. A homozygous knockout of both murine Smn 

alleles (Smn-/-) leads to embryonic lethality in the blastocyst stage, due to the lack of function 

in splicing 227. In 2000, the human SMN2 gene was introduced into mice lacking the murine 

Smn to mimic the genetics of the human SMA in mice 261,262. These Smn-/- SMN2 mice 

resemble the human severe form of SMA (Type I). Two copies of SMN2 rescue the 

embryonic lethality, but they already show a 20% loss of motoneurons at postnatal day 1 (P1), 

that reaches a peak of 35% loss at P3-5 in the spinal cord and brainstem compared to controls, 

and death occurs within 5 days after birth 262. An increment to eight copies of the SMN2 in the 

Smn null background leads to complete amelioration of SMA disease symptoms 262. 

Overexpression of SMN only in neurons rescues the loss of motoneurons and extends the 

survival of SMA mice, suggesting that the SMN produced by SMN2 is sufficient for normal 

function in most tissues, but that motoneurons require higher levels 263. It was also shown that 

an introduction of SMNA2G (an Ala-Gly mutation at position 2) into the Type I Smn-/- SMN2 

mice prolongs the survival from 5 to 227 days 264. This mutation was found in SMA patients 
265 and its protein is unable to efficiently self-associate, which is required for forming a 

functional SMN complex. Anyway, SMN A2G could associate with full-length SMN protein 

that serves as a scaffold and so could increase the number of functional complexes in this 

mouse model 264. A similar mechanism might be possible in a mouse model that carries the 

SMN protein lacking exon 7 (SMNΔ7) also in a Type I Smn-/- SMN2 background. SMNΔ7 is 

unstable and lacks the ability of self-association, but it can be stabilized by remaining a full-

length protein and so increases the level of functional SMN complex and prolongs the 

survival from 5 to 14 days 266,267. Another mouse model for the mild form of SMA Type III, 

Smn+/-, was investigated in this thesis. While Smn-/- mice are embryonic lethal 227 and Smn-/- 

SMN2 mice already show a 20% motoneuron loss at birth compared to controls 262, Smn+/- 

mice develop a progressive motoneuron loss starting after birth 141. This resembles the disease 

progression of a mild form of human SMA. During development the Smn level clearly drops 

between P5 and P15 in wild type spinal cord and decreases even more during life span. 

Compared to control mice, the Smn level in Smn+/- mice is reduced by about 45% at 

embryonic stages and in adulthood. At birth, Smn+/- mice show no motoneuron loss in the 
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spinal cord. However, 40% of motoneurons degenerate during the first 6 months, and after 1 

year as much as 54% have been lost. Furthermore, these mice develop a 23% loss of facial 

motoneurons between the fifth month and 1 year. Surprisingly, the mice show no clinical 

phenotype 141. Therefore compensatory mechanisms must exist that prevent the muscle 

atrophy. Sprouting by neighbouring intact axons could be preventing the denervation of the 

NMJs. 

 

1.4.2 Peripheral neuropathy 

Neuropathy is a genus of peripheral nerve diseases. Neuropathies can be subdivided into 

several groups, whereas a certain disease can fit in more than one group. Peripheral 

neuropathies are classified according to the number of affected nerves or the affecting process 

(e.g., inflammation) or which types of nerve cell are affected (autonomic, sensory or motor 

nerves).  

First of all, neuropathies can be distinguished into mononeuropathy, where only a single nerve 

is affected, or polyneuropathy, where many different nerves are involved. An inflammation of 

a single nerve would be a mononeuropathy, albeit that it also counts as part of another group, 

the inflammatory neuropathies. If the inflammation is caused by the patient’s own 

immunsystem, the disease is termed autoimmune neuropathy (e.g., Chronic inflammatory 

demyelinating polyradiculoneuropathy (CIDP) or Guillain-Barré-Syndrome (GBS). If the 

primary cause is not identifiable, it is called idiopathic neuropathy. Depending which type of 

nerve cells are affected, the neuropathy can be classified as autonomic, motor or sensory 268.  

A subtype of sensory neuropathy is the small-fiber neuropathy. Small somatic or autonomic 

fibers, or both, may be involved. Small somatic fibers include unmyelinated C fibers 

(diameter of about 1-1.6 µm) and thin myelinated A-delta fibers (1-5 µm in diameter). The 

slower conductive C fibers (2 m/s) mediate warmth perception, pain fibers respond to 

pressure and some chemical stimuli. The faster conductive A-delta (20 m/s) fibers carry 

touch, fast pain, cold, pressure, and cutaneous nociception 269. Large fibers are myelinated and 

can include motor axons and the sensory axons responsible for vibration sense, proprioception 

and light touch 270. Diabetes patients with predominantly small-fiber involvement show sharp 

burning, or shooting pain sensations whereas those with large-fiber peripheral neuropathy 

tend to experience numbness and tingling in the feet 271. The most frequent neuropathy is the 

DNP caused by diabetes mellitus 272,273. 
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1.4.2.1 Diabetic neuropathy 

DNP is a class of neurodegenerative disorders caused by diabetes mellitus. It is a group of 

diseases with different causes leading to high blood glucose. Two main forms of diabetes are: 

Type I diabetes, which mainly affects children and is characterized by the loss of insulin-

producing beta cells in the pancreas. This leads to the lack of insulin which is normally 

essential for the uptake of glucose from the blood into the cells of liver, fat tissue and muscle 

where it is usually stored as glycogen. Type 2 diabetes, which results in an insulin resistance 

that could involve the insulin receptor, combined with relatively reduced insulin secretions. In 

2000 at least 171 million (2.8%) people suffered from diabetes mellitus, whereas about 90% 

of the affected patients in the US and German population suffered from the Type 2 form 274-

276. Several metabolic changes in diabetes mellitus, such as chronic high blood sugar levels, 

abnormal blood fat, and neurovascular factors, lead to damage of blood vessels that supply 

neurons with oxygen and nutrients. This lack of essential supplies predisposes neurons to 

other disease factors and causes neuronal death, named DNPs. 60-70% of patients with 

diabetes show different forms of neuropathies. The symptoms can vary and affect 

autonomous, sensory and motor nerve fibers. In the peripheral nervous system the loss of 

sensory neurons first becomes apparent by pain sensitation and numbness. Motor failures 

often remain undiscovered in the beginning, but occur and get more severe over time. The 

nerve defects are revealed by electromyography (EMG) and nerve conduction studies 272. 

Little is know about the cause of motor fiber degeneration in DNP. Because neurotrophic 

factors play a major role in regeneration and maintenance of motoneurons, it is feasible that 

their downregulation or inhibition could be a cause of large fiber degeneration in diabetic 

patients. 

Patients with DNP show altered levels of IGF-1. IGF-1 is downregulated and can participate 

in the process of nerve degeneration (see 1.3.4 Insulin-like Growth Factor) 181,277,278. In STZ 

rodent model for diabetes a downregulation of IGF-1 and an upregulation of its binding 

protein IGFBP-5 was observed 192,193,279. IGF-1 treatment improves peripheral nerve function 

in this diabetic animal model 181. It is important to determine whether IGFBP-5 is elevated in 

patients with DNP and whether increased IGFBP-5 could inhibit the motoneuron survival-

promoting effect of endogenous IGF-1. 
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1.5 Goals of the thesis 

1.5.1 Sprouting as a potential compensatory mechanism in a mouse model for SMA 

In a mouse model (Smn-/- SMN2) for the severe form of SMA (Type I), about 20% of 

motoneurons in the spinal cord are lost, which results in a strong muscular atrophy and death 

within 5 days of birth 262. In contrast, the mouse model Smn+/- for a mild form of SMA (Type 

III) is characterized by a slow progressive loss of motoneurons starting after birth, 

culminating in 54% loss in one-year-old mice 141. It is astonishing that this model shows no 

phenotype despite having a higher loss of motoneurons than the severe SMA model. 

This indicates that motor function does not correlate with the loss of spinal motoneurons, and 

that compensatory mechanisms are active in milder forms of SMA but not in the severe 

forms. It might be that the slower progression of spinal motoneuron degeneration provides 

sufficient time for compensatory mechanisms to be effective. To get insight into possible 

compensatory mechanisms, the morphological architecture of the neuromuscular junction 

(NMJ) and the axonal branches in the gastrocnemius muscle of Smn+/- and Smn+/+ mice were 

investigated. The gastrocnemius muscle, one of the biggest muscles in the body, is strongly 

affected in SMA and therefore a strong compensatory mechanism is needed. In patients with 

milder forms of the disease that normally reach adulthood, an enlargement of motor units is 

frequently observed. 

For this reason, Smn+/- mice were analyzed electrophysiologically and histopathologically to 

characterize single motor units, NMJ architecture, and the route of the axonal branches.  

A known compensatory mechanism is sprouting, a strategy to restore nerve–muscle 

connectivity, which can be induced by CNTF 107. In order to characterize the role of this 

neurotrophic factor in this context, Smn+/- mice were crossbred with Cntf-deficient (Cntf-/-) 

mice and the resulting double mutants were investigated to verify whether sprouting induced 

by CNTF could be a compensatory mechanism in a mouse model for mild SMA. 

 

1.5.2 The role of IGF-1 and IGFBP-5 in the pathogenesis of diabetic neuropathy 

Little is known about whether IGF-1 is necessary for motoneuron maintenance in adulthood, 

in particular under conditions when reduced IGF-1 signaling could play a role in the 

pathophysiology of motoneuron diseases and motor neuropathies. IGF-1 is a pluripotent 

growth and survival factor for a variety of cell types, including glial and neuronal cells. It 

supports the survival of motoneurons in vitro and in vivo 89,174,175. It is known that the IGF-1 

level and its receptor is downregulated in STZ rodents, a model for painful DNP 192,279. In the 
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same model, an upregulation of IGFBP-5 in the rat eye was observed 193. Our group found 

that IGFBP-5 levels are highly increased in nerve biopsies of patients with DNP. To confirm 

this result, more biopsies of patient were investigated by microarray and western blot analysis. 

To study the role of the IGF-1/IGFBP-5/IGF-1R system for maintenance of motor axons in 

adulthood our group established two transgenic mouse lines. In one of these models, IGFBP-5 

is overexpressed in motoneurons under control of the neurofilament-light chain (NF-L) 

promoter. Furthermore, to test whether reduced availability of IGF-1 is responsible for the 

degeneration of motoneurons, mice were generated which feature an IGF-1R inactivation 

exclusively in motoneurons. These two models were investigated in terms of motoneuron 

degeneration to get a clearer insight of the role of IGF-1. In addition to that, cultured 

motoneurons were used to determine whether IGF-1 promotes survival that could be blocked 

by application of IGFBP-5. These investigations might give a better insight into the role of 

IGFBP-5 in the pathogenesis of motor axonopathy in DNP. 



 29 2 Material and Methods 

2 Material and Methods  

2.1 Material 

2.2.1 Devices 

Device Manufacturer 
SDS polyacrylamide gel electrophoresis Mini Protean Tetra Cell 
  BioRad, Munich, Germany 
Semi-dry western blot chamber Trans-blot SD, Semi-dry transfer cell 
  BioRad, Munich, Germany 
Power supplies Standard Power Pack P25 
  Powerpac HC 250V 3A 300W 
  BioRad, Munich, Germany 
Centrifuges Centrifuge 5417R 
  Centrifuge 5804R 
  Centrifuge 5810R 
  Eppendorf, Hamburg, Germany 
Heat block Thermomixer 5437 
  Thermomixer comfort 
  Eppendorf, Hamburg, Germany 
Thermocycler  Thermocycler personal 
  Thermocycler gradient 
  Eppendorf, Hamburg, Germany 
Horizontal agarose gel  PEQLAB Biotech. GMBH 
electrophoresis chamber Erlangen, Germany 
Cryostat Modell CM 1950, Leica, Wetzlar, Germany 
Confocal microscope FluoView FV1000, Olympus, Hamburg 
  TCS SP2, Leica, Wetzlar, Germany 
X-ray developer  X-Omat 2000, Stuttgart, Germany 
Tissue homogenizer for RNA POLYTRON PT2100 
  Kinematica, Luzern, Switzerland 
Photometer BioPhotometer 
  Eppendorf, Hamburg, Germany 
Grip strength measurement Digital Force Gauge DFL 2  
  Chatillon, 
  Largo, Florida, USA 
Tissue sonication for protein lysates UP50H - Compact Lab Homogenizer 
  Hielscher Ultrasound Technology 
  Teltow, Germany 
Nanodrop-Spektrophotometer PEQLAB Biotech. GMBH 
   Erlangen, Germany 

Table 2-1: List of devices  
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2.2.2 Material for immunohistochemistry methods 

Item Manufacturer 
Heparin Heparin-Natrium 25000/5 ml 
  Ratiopharm 
Blocking buffer 10% BSA, 0.3% TritonX-100 in PBS 

Phosphate buffer for PFA Solution A: 0.2 M Na2HPO4 *2H2O 
  Solution B: 0.2 M NaH2PO4 *2H2O 

Fixative solution PFA 410 ml Solution A: 0.2 M Na2HPO4 * 2 H2O 
  90 ml Solution B: 0.2 M NaH2PO4 * 2 H2O 
  40 g PFA (Abcam) in 500 ml H2O 
  pH 7.4 
Dehydration solution 30% Sucrose 
  PBS 1x 
PBS 1x Dulbecco’s PBS 
  PAA Laboratories, A-Pasching 
  pH 7.4 
Postsynaptic marker α-bungarotoxin Alexa Fluor 488,594  
  Molecular Probes, Eugene OR 
Nucleus dye 4,6-diamidino-2-phenylindole 
  dihydrochloride (DAPI) 
  Stock 1 mg/ml 

Table 2-2: Solutions and dyes for immunohistochemistry  
 

Item Manufacturer 
Tissue mount DABCO 25 ml PBS, 0.625 ml DABCO  
  225 ml Glycerin 
Tissue mount Mowiol 10% w/v Mowiol 40-88 
   25% v/v Glycerin 

  
100 mM Tris(hydroxymethyl)aminomethane HCl pH 
8  

Tissue mount Aqua Aqua Poly/Mount 18606 
  Polysciences, Warrington, PA, USA 
Tissue mount frozen sections O.C.T Mount medium 
  Tissue Tek 
  Sakura 
Object slides 76 x 26 mm R. Langenbrinck 
  Emmendingen 
Coverslips No. 1, 10 mm Marienfeld GmbH & Co.KG 
  Lauda-Königshofen 
Wax pencil Liquid Blocker Super Pap-Pen-Mini 
  SCI Science Services, München 

Table 2-3: Tissue mounting items  
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2.2.3 Antibodies 

Antigen Species Dilution Application Reference 
anti-neurofilament  rabbit 1:500 IF (muscle, nerve) 150 kD AB1981, Millipore 
anti-neurofilament  mouse 1:500 IF (muscle, nerve) SMI31R, Covance 
anti-neurofilament  chicken 1:500 IF (muscle, nerve) AB5539, Millipore  
anti-CNTF (K10) rabbit 1:250 IF (muscle, nerve) made by Prof. Sendtner 114 
anti-S100B mouse 1:350 IF (nerve) S2532 beta-subunit, Sigma 
anti-actin mouse 1:5000 WB MAB1501R Clone C4, Millipore 
anti-IGFBP-5 rabbit 1:1000 WB H100 sc-13093, Santa Cruz 
anti-IGFBP-5 goat 1:5000 WB, IF (culture) GT15183, Neuromics 
anti-IGFBP-5 rabbit 1:200 IF ab4255, Abcam 
anti-tau  rabbit 1:1000 IF (cell culture) T6402, Sigma 
anti-laminin rat 1:500 IF (nerves) MAB1928, Millipore 
anti-p75 mouse 1:2000 Panning MLR2, monoclonal, Abcam 

Table 2-4: Overview of primary antibodies 
 

Antigen Species Dilution Application Reference 
anti-rabbit-HRP goat 1:10000 WB JacksonImmunoresearch #111-035-003 
anti-mouse-HRP goat 1:10000 WB JacksonImmunoresearch #115-035-003 
anti-goat-HRP donkey 1:10000 WB JacksonImmunoresearch #705-035-147 
anti-rabbit-FITC swine 1:40 IF F0205, Dako, Denmark 
anti-rabbit-Cy2 goat 1:400 IF JacksonImmunoresearch #111-225-003 
anti-rabbit-Cy3 goat 1:400 IF JacksonImmunoresearch #111-165-003 
anti-rabbit-Cy5 goat 1:400 IF JacksonImmunoresearch #111-175-003 
anti-rabbit-Cy3 donkey 1:400 IF JacksonImmunoresearch #711-165-152 
anti-goat-Cy2 donkey 1:400 IF JacksonImmunoresearch #705-225-003 
anti-goat-Cy3 donkey 1:400 IF JacksonImmunoresearch #705-165-003 
anti-goat-Cy5 donkey 1:400 IF JacksonImmunoresearch #705-175-003 
anti-mouse-
Alexa633 IgG1 goat 1:500 IF A21126, Invitrogen 
anti-mouse-Cy2 goat 1:400 IF JacksonImmunoresearch #115-225-003 
anti-mouse-Cy3 goat 1:400 IF JacksonImmunoresearch #115-165-003 
anti-mouse-Cy5 goat 1:400 IF JacksonImmunoresearch #115-175-003 
anti-chicken-Cy5 goat 1:400 IF ab6569-100, Abcam 
anti-chicken IgG 
DyLight 649  donkey 1:500 IF 

JacksonImmunoresearch #703-495-155 

Table 2-5: Overview of secondary antibodies 
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2.2.4 Histology 

Item Solution 
Haemalum solution (Mayer’s haematoxylin) 1 g Haematoxylin 
  0.2 g Sodium iodide 
  50 g Potassium alum 
  50 g Chloral hydrate 
  1 g Citric acid 
  ad 1 l H20 
ATPase solution A 19.4 g Sodium acetate 
  29.4 g Sodium barbital 
  ad 1 l H2O 
Acidic preincubation solution 200 ml Solution A 
  400 ml 0.1 M Hydrochloric acid 
  80 ml 8.5% NaCl 
  pH 4.3 

Main incubation solution 
200 ml 0.1 M Sodium barbital 
solution 

  100 ml 0.18 M Calciumchloride  
  ad 1 l H20 
  pH 9.4 
Main incubation solution with ATP 250 mg ATP 
  in 100 ml Main incub. Solution 
Cresyl violet 10 g Cresyl violet 
  100 ml Ethanol absolut 
  ad 1 l aqua dest. 
Vitro-Clud Langenbrinck 

Table 2-6: Histological solutions  
 

2.2.5 Chemicals 

Chemicals were supplied by Applichem (Darmstadt), Calbiochem (Darmstadt), Roth 

(Karlsruhe), Merck (Darmstadt), Serva (Heidelberg) and Sigma (München).  

 

 

 

 

 



 33 2 Material and Methods 

2.2.6 Material for proteinbiochemistry methods 

Item Composition 
Lysis buffer 150 mM NaCl 
  1% Triton 
  2 mM EDTA 
  50 mM Tris pH 7,4 
  H2O 
Electrophoresis buffer 10x 30.3 g Trisbase 
  144 g Glycin 
  10 g SDS 
Electrophoresis buffer 1x 100 ml Electrophoresis buffer 10x 
  900 ml H2O 

Transfer buffer 1x 700 ml H2O 
  100 ml Electrophoresis buffer 10x 
  200 ml Methanol 
Laemmli-SDS-PAGE-Loading buffer 100 mM Tris(hydroxymethyl)aminomethane HCl (pH6.8) 
  10% 2-β-Mercapto-Ethanol 
  4% SDS 
  20% Glycerin 
  0.2% Bromophenol blue 
TBS buffer 10x  100 mM Tris(hydroxymethyl)aminomethane HCl(12.1g/l)
  1.5 M NaCl (87.6 g/l) 
  pH 8 

TBST buffer 1x 900ml H2O 
  100 ml TBS buffer 10x 
  10 ml 20% TWEEN20 
Blocking buffer 5% milk powder in TBST 

Table 2-7: List of buffers for proteinbiochemistry 
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Item Manufacturer 
Acrylamide Rotiphorese Gel 30 (37.5:1) 
  Roth, Karlsruhe 
Protein Assay BioRad Protein Assay 
  BioRad, Munich 
Tris-glycine SDS-Polyacrylamide  30% Polyacrylamide 0.850 ml 
Stacking gel 5% 1 M Tris(hydroxymethyl)aminomethane HCl (pH 6.8) 0.625 ml
  10% Ammonium persulfate 0.05 ml 
  10% SDS 0.05 ml 
  TEMED 0.005 ml 
  H2O 3.4 ml 
Tris-glycine SDS-Polyacrylamide 30% Polyacrylamide 4 ml 
Separating gel 12% 1.5 M Tris(hydroxymethyl)aminomethane HCl (pH 8.8) 2.5 ml 
  10% Ammonium persulfate 0.1 ml 
  10% SDS 0.1 ml 
  TEMED 0.004 ml 
  H2O 3.3 ml 
Molecular protein ladder PageRulerTM #SM0671 
  Prestained Protein Ladder 
  Fermentas  
Protease inhibitor Complete Mini 
  Roche Diagnostics, Mannheim 
Phosphatase inhibitors Phosphatase Inhibitor Cocktail 1 
  Sigma 
Nitrocellulose transfer membrane Protran 
  Schleicher&Schüll 
PVDF transfer membrane Immun-Blot PVDF Membrane (0.2 µm) 
  26 cm x 3.3 m 
  BioRad 
  Hercules CA 94547 
Blot paper Extra Thick Blot Paper 
  Criterion size (8.6 x 13.5 cm) 
  BioRad 
  Hercules CA 94547 
Detection kit ECL (normal and Plus) 
  Western blotting  
  detection reagents 
  GE Healthcare UK Limited 
X-ray cassette Suprema 13 x 18 cm 
  Dr. Goos 
X-ray films Super RX 13 x 18 cm 
  Fuji Film 

Table 2-8: Items for proteinbiochemistry methods 
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2.2.7 Material for molecular methods 

Item Manufacturer 
Lysispuffer 10 ml 5 M NaCl 
  25 ml 10% Sarcosyl solution 
  25 g Chelex 
  ad 500 ml Aqua bidest 
dNTPs  dNTP Set 100 mM 
  Gene Craft Germany 
Enhancer 5 x TaqMaster PCR Enhancer 
  5′ Prime, Hamburg 
Taq polymerase 5′ Prime, Hamburg 
50 x TAE 2 M Tris(hydroxymethyl)aminomethane 
  25 mM Sodium acetate 
  50 mM Ethylenediaminetetraacetate 
6 x Loading buffer 30% Glycerin 
  0.15% Bromophenol blue 
  0.15% Xylene cyanol 
  1x TAE 
Ethidium bromide solution 10 µg/ml Merck, Darmstadt, Germany 
Tail lysis buffer 2 M Tris(hydroxymethyl)aminomethane HCl  

pH 7.5 
  100 mM Ethylenediaminetetraacetate 
  150 mM Sodium chloride 
  0.5% SDS 
  10 mg/ml Proteinase K 

TE buffer 
10 mM Tris(hydroxymethyl)aminomethane HCl 
pH 7.5 

  1mM Ethylenediaminetetraacetate 
Reverse Transcriptase Kit SuperScript III First-Strand Synthesis  
  Invitrogen, Carslbad, CA 92008 USA 
RNA purification solution TRIzol Reagent 
  Invitrogen, Carslbad, CA 92008 USA 
Betaine 5 M Betaine solution 5 M, PCR reagent 
  Sigma-Aldrich, Munich, Germany 
Bromophenol blue B0126 Sigma-Aldrich, Munich, Germany 
Aqua bidest, steril/ad iniectabilia DeltaSelect, Pfullingen, Germany 
DNA size standards  GeneRulerTM 100 bp DNA Ladder 
  GeneRulerTM 100 bp plus DNA Ladder 
  GeneRulerTM 1 kb DNA Ladder 
  MBI-Fermentas, St.Leon-Roth 

DEPC water 0.1 ml Diethylpyrocarbonate in 100 ml H2O 
Table 2-9: Items for molecular methods 
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PCR Line Primer name Primer sequence 
Smn    SMN GMS 11 GGC CTG GAA TTC AAT ATG CTA GAC TGG CC
genotyping 26 SMN MSMN 11 GTT TCA AGG GAG TTG TGG CAT TCT TC 
    SMN GNA 3ab CAA GGC GAT TAA GTT GGG TAA CG 
Cntf    CNTF E1S   GAG CAA TCA CCT CTG ACC CTT 
genotyping 33 CNTF/1A      CAG GCT GGA TGA AGA CAG TAA G 
    5′NEO   AGC CGA TTG TCT GTT GTG CCC 
IGFBP-5  61 NFL-SEQ    TCG CAG GCT GCG TCA GGA G 
genotyping   BP5PCR        CTT GCA GGT AGA GCA GGT GCT CTC 
Floxed IGF-1-R  64 Rec Seq CTA CTA GTT CAT GCC CAG AGC CCA 
genotyping   X3 Seq CAG  GAG TGT CCC TCA GGC TCC ATC 
NF-L-Cre  64 NFL-SEQ TCG CAG GCT GCG TCA GGA G 
genotyping   pMC-Cre  GGT ATG CTC AGA AAA CGC C  
RT-PCR IGF-R 64 Forwardpr4 GGATGCGGTGTCCAATAACT 
   Reversepr4 CTCCGTTGTTCCTGGTGTTT 
Real-time PCR  61 ForwardIGFBP CAAGAGAAAGCAGTGTAAGCC 
IGFBP-5   ReverseIGFBP CACTCAACGTT ACTGCTGTC 
β-actin    ForwardprAktin GCCAACCGTGAAAAGATGAC 
    ReverseprAktin GGCGTGAGGGAGAGCATAG 

Table 2-10: Primer sequences 
 

2.2.8 Material for motoneuron culture 
Item Manufacturer 

Hank’s balanced salt solution (HBSS) Invitrogen 
Trypsin Worthington 
Trypsin inhibitor Sigma 
Neurobasal  Invitrogen 
Falcon Greiner 

B27 Serum-Supplement Invitrogen 
Boric acid AppliChem 
Coverslips Ø 10 mm, Ø 22mm, Saur 
Falcon tubes 15 ml, 50 ml, Greiner 
Horse Serum  Linaris 
Laminin-221 Invitrogen 
L-Alanyl-L-Glutamin (Glutamax) Invitrogen 
poly-D, L-Ornithin Sigma-Aldrich 
Dishes 24-well dish, 6-well dish, Nunclon 

Table 2-11: Items for motoneuron culture 
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Solutions Composition 
Depolarization solution 30 mM KCl 
  0.8% NaCl 
  Aqua bidest 
Panning solution Anti-p75 antibody (1:2000) 
  10 mM TRIS buffer (pH 9.5) 
Boratpuffer (pH 8.3) 0.15 M Borsäure 
  Aqua bidest 
Laminin solution Laminin-221 2.5 µg/ml 
  HBSS 
Motoneuron medium Neurobasal  
  10% Horse serum 
  500 µM Glutamax 
  2% B27 Supplement 

Neurobasal medium (NB-Medium) 500 µM Glutamax 
  Neurobasal 
100x PORN 500 mg poly-D, L-Ornithin 
  10 ml 0.15M Boratpuffer (pH 8.3) 
1x PORN 500 µl 100x PORN 
  50 ml 0.15 M Boratpuffer (pH 8.3) 
1% Trypsin solution 1 g Trypsin in 100 ml HBSS: HEPES (40:1) 
  HEPES: 1M, pH 7.3; sterile filtration  
0.1% Trypsin inhibitor solution  500 mg TI in 49 ml HBSS + 1 ml HEPES (1M)

Sterile filtration 
Table 2-12: Solutions for motoneuron culture 
 

 
Neurotrophic factors / Inhibitors Concentration Reference 

BDNF  5 ng/ml Professor Sendtner, Würzburg
IGF-1  1/5 ng/ml human IGF-1, PeProTech 
CNTF  1 ng/ml Professor Sendtner, Würzburg
Recombinant mouse IGFBP-5 5 ng/ml FAC-BP5DU020, GroPep, 

Adelaide, Australia 
Table 2-13: Neurotrophic factors and IGFBP-5 in motoneuron culture 
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2.2 Methods 
 

2.2.1 Animal husbandry 
The mice used in this study had been backcrossed at least 5 times to C57Bl/6 mice, and 

subsequently every third generation in order to maintain them on a clean C57Bl/6 

background. They were housed in the central animal facilities of the University of Wuerzburg. 

The animal care and ethic committees of our institutions approved all described procedures 

and experiments. All laboratory animals were kept in an artificial 12 h / 12 h day-night-

rhythm with free access to forage and water at a temperature at 21 ± 1 °C and 50-60% 

humidity. 

 

2.2.2 Immunohistochemistry and microscopy  

2.2.2.1 Preparation of the gastrocnemius muscle for immunohistochemistry  

Mice were anesthetized by CO2 and killed by cervical dislocation. The skin of the hindlimbs 

and the connective tissue around the calf (gastrocnemius muscle) were removed. The native 

gastrocnemius muscle was dissected by cutting the tendon and detaching it from the bone. For 

wholemount stainings the native dissected gastrocnemius muscle was placed on a cover slip. 

It was immediately covered with 4% paraformaldehyde (PFA) in phosphate-buffered saline 

(Dulbecco’s PBS 1x from PAA) and mechanically squeezed by a second cover slip for 5 

minutes. 

 

2.2.2.2 Wholemount staining of the gastrocnemius muscle in thy1-YFP-Htg mice 

The flattened gastrocnemius muscles from adult Smn+/+ thy1-YFP-Htg and Smn+/- thy1-YFP-

Htg mice were fixed with 4% PFA for 2 hours. After fixation of the gastrocnemius muscles, 

they were washed in 1x PBS and 0.5% Triton X-100 (Sigma) two times for 30 minutes. YFP 

is expressed in less than 10% of the motoneurons and their axonal processes in thy1-YFP-Htg 

mice 280. The postsynaptic part of neuromuscular endplates was stained with α-bungarotoxin 

Alexa Fluor 594 (1:500, Molecular Probes) for 30 minutes. The tissue was then washed in 1x 

PBS for 2 hours. Finally the tissue was mounted with a DABCO-solution (9.97% PBS, 

89.77% Glycerin and 0.26% DABCO). Pictures were taken with the SP2 confocal microscope 

from Leica, and an Olympus FluoView™ FV1000 confocal microscope with 3 channel 

detectors. For quantification of the enhanced arborization in the upper medial branch of the 
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tibial nerve, we traced individual axons back from neuromuscular endplates to the trunk of the 

nerve and counted the number of branching points.  

 

2.2.2.3 Wholemount staining of the gastrocnemius muscle with neurofilament  

The flattened gastrocnemius muscles of Smn+/+, Smn+/-, Cntf -/-, and Smn+/- Cntf-/- mice were 

fixed in 4% PFA for 2 hours. After washing with 1x PBS and 1% Triton X-100 two times for 

30 minutes, the postsynaptic part of neuromuscular endplates was stained with α-

bungarotoxin Alexa Fluor 594 (1:500) in 1x PBS and 1% Triton X-100 for 30 minutes. 

Subsequently, the tissue was washed in 1x PBS and 1% Triton X-100 for 2 hours, and a 

blocking solution containing 3% bovine serum albumin (BSA, Sigma) and 5% Triton X-100 

to penetrate into the thick muscles was applied for 4 hours. Rabbit anti-neurofilament 

antibodies (150 kDa AB1981, Chemicon) were diluted 1:350 in the blocking solution and 

applied overnight at 4°C. Thereafter the muscles were washed three times for 30 minutes in 

1x PBS and 1% Triton X-100. As second antibody, swine anti-rabbit FITC (1:40, Dako) was 

diluted in the blocking solution and applied for 4 hours at room temperature. Finally, the 

tissue was washed three times in 1x PBS and 1% Triton X-100 for 30 minutes and mounted 

with DABCO. The pictures were taken with an Olympus FluoView™ FV1000 microscope. 

For 3D reconstruction, 2D confocal stacks were saved in an Olympus.oib format and opened 

in Bitplane Imaris 5.7.0 Software supplied by Olympus. An isosurface was generated with a 

Gaussian filter width of 0.3 µm. Sprouting events were defined as one axon innervating two 

neighboring endplates. 

 

2.2.2.4 Staining and teasing of single muscle fibers 

The native gastrocnemius muscles of Smn+/+, Smn+/-, Cntf -/-, and Smn+/- Cntf-/- mice were 

fixed in 4% PFA for 20 min. Subsequently the muscle was teased into single muscle fibers 

using forceps and washed for 30 min with PBS with 0.1 M glycine to block reactive aldehyde 

groups. α-bungarotoxin Alexa Fluor 594 (1:500) in 1x PBS for 20 minutes was applied to 

stain the postsynaptic part of neuromuscular endplates. After washing 20 min with PBS, the 

fibers were permeablized with icecold methanol for 2 min at –20 °C. The fibers were washed 

with PBS for 20 minutes and blocked for 1 hour with 10% BSA and 0.3% Triton-X100 in 

PBS. Rabbit anti-neurofilament antibodies (150 kDa AB1981, Chemicon) were diluted 1:350 

in the blocking solution and applied overnight at 4°C. Thereafter the muscle fibers were 

washed three times for 10 minutes in 1x PBS and the second antibody, swine anti-rabbit FITC 
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(1:40, Dako), was diluted in the blocking solution and applied for 1 hour at room temperature. 

Finally, the tissue was washed three times in 1x PBS for 10 minutes and mounted with 

DABCO/Aqua Poly/Mount and the pictures were taken with an Olympus FluoView™ 

FV1000 microscope. The area of the postsynaptic part of a NMJ was measured by 

surrounding α-bungarotoxin signal by using ImageJ. 

 

2.2.2.5 Preparation and staining of cryostat slices of muscle and nerve 

Mice were anesthetized with CO2 and the thoracic cavity was opened to expose the heart. The 

perfusions needle was inserted into the left ventricle and the right atrium was cut to allow the 

efflux of the perfusate. First the blood was washed out with 0.4% heparine in 1x PBS solution 

and then the mice were perfused with a 4% PFA solution. After perfusion the gastrocnemius 

muscles and sciatic nerves were prepared. The murine tissues and the human sural nerves 

were postfixed for 24 h in 4% PFA at 4°C. The nerves were then transferred into buffer with 

increasing (10%-30%) sucrose content. After the tissue was submerged in the 30% sucrose 

solution, it was embedded in Tissue Tek (Sakura) and frozen within 2-methylbutane cooled 

with liquid N2. Subsequently, the gastrocnemius muscles were cut in 100 μm-thick 

longitudinal sections and the nerves in 10 μm thick cross-sections with the cryostat and placed 

on gelatinized cover slides. For immunostaining, the sections were blocked with 10% BSA 

and 0.3% Triton X-100 in 1x PBS for 1 hour. The first and second antibodies were diluted in 

blocking solution. The gastrocnemius muscles were stained with α-bungarotoxin Alexa Fluor 

594 (1:500), mouse anti-neurofilament (1:350, SMI31R, Covance) and rabbit anti-CNTF 

(K10, 1:1000) 114 solution, whereas the sciatic nerves were stained with mouse anti-S100 

(1:350, beta-subunit, Sigma), rabbit anti-CNTF, rabbit anti-IGFBP-5 (ab4255, 1:200, Abcam) 

and rat anti-laminin B1 (MAB1928, 1:500, Millipore). The human nerves were stained with 

mouse anti-neurofilament (1:500, SMI31R, Covance) and rabbit anti-IGFBP-5 (ab4255, 

1:200, Abcam). After washing three times per 10 minutes, secondary antibodies were applied 

in blocking solution for 1 hour. Cy5 goat anti-mouse (1:200, Jackson Immuno) or Alexa Fluor 

633 goat anti-mouse IgG1 (A21126, 1:500, Invitrogen) and swine anti-rabbit FITC (1:350, 

Dako) were used for the muscles. Cy3 goat anti-mouse (1:200, Jackson Immuno), Alexa Fluor 

633 goat anti-mouse IgG1 (A21126, 1:500, Invitrogen), donkey Cy3 anti-rat (712-165-150, 

1:600, Jackson ImmunoResearch Laboratories, Inc) and swine anti-rabbit FITC were used for 

the nerves. Finally, the tissue was washed three times for 10 minutes and mounted in DABCO 

or Aqua Poly/Mount, and investigated with the Olympus FluoView™ FV1000 microscope. 

For a 3D reconstruction, 2D confocal stacks were saved in an Olympus.oib format and opened 
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in Bitplane Imaris 5.7.0 Software supplied by Olympus. An isosurface was generated with a 

Gaussian filter width of 0.3 µm. 

2.2.3 Muscle strength tests in mice 

Grip strength measurement on forelimbs was performed with a Digital Force Gauge DFL 2 

from Chatillon with every mouse tested at least 10 times, and the mean was taken 114. All tests 

were done blindly. In detail, the animals were placed on a platform and allowed to grasp a 

triangular formed wire with their forelimbs. Then they were pulled away by their tails until 

the grip was broken, while the hindlimbs were not in contact with the ground. The grip 

strength was measured in newtons with a computerized electronic pull strain gauge which was 

directly fitted to the grasping ring. 

 

2.2.4 Histology 

2.2.4.1 Myosin ATPase reaction and muscle fiber typing  

The gastrocnemius muscle was freshly prepared from mice after cervical dislocation and 

frozen immediately in nitrogen-cooled 2-methylbutane. ATPase staining was performed on 

10 µm-thick cryosections on a slide under acidic pH 4.3 conditions. First, slides were 

incubated in the preincubation solution pH 4.3 at room temperature for 5 minutes. Then they 

were washed with the main incubation solution 9.4 (without ATP) to balance the pH. After 

adding the main incubation solution 9.4 with ATP, the slides were placed in the incubator at 

37 °C for 45 minutes. Afterwards the samples were consecutively incubated with 1% calcium 

chloride solution for 10 minutes (changing the solution twice in the meantime), 2% cobalt 

chloride solution for 3 miuntes and 0.01 M sodium barbital solution for 10 minutes (changing 

the solution twice in the meantime) at room temperature. The slides were washed once with 

faucet water and treated with 1% ammonium sulphide in aqua dest for 45 seconds under the 

laboratory hood. Then they were rinsed with faucet water and dehydrated in an isopropyl 

alcohol series starting with 70%. Finally the slides were incubated with xylol twice for 5 

minutes and mounted with Vitro-Clud. Data presented in this study are from reactions at pH 

4.3. Type I (slow twitch) muscle fibers are resistant to acidic conditions and show ATPase 

activity and therefore stain dark. Type 2 (A and B) fibers are not resistant and do not stain. 

Type 2C fibers show intermediate (grey color) staining. 

 

 

 



 42 2 Material and Methods 

2.2.4.2 HE staining and quantification of muscle fiber size  

The muscle was prepared from mice immediately after cervical dislocation and freshly frozen 

in nitrogen-cooled 2-methylbutane. 10 µm-thick cryosections were prepared and stained with 

a standard HE protocol. To do so, the sections were dried for 30 minutes and stained with 

haemalum (Mayer’s haematoxylin) solution for 10 minutes. Afterwards the samples were 

rinsed under flaucet water, and 1% eosin with 3 drops of 100% acetic acid was added for 25 

seconds. Increasing ethanol series (70%, 96%, 100%) were added 3 times for 2 minutes each 

and xylol was applied twice for 10 minutes each. Finally the sections were mounted with 

Vitro-Clud. The caliber of 150 muscle fibers per muscle biopsy and animal were analyzed. 

The muscle fibers with a caliber higher than 150% of the mean were determined as 

hypertrophic fibers, whereas hypotrophic fibers have a caliber less than 50% of the mean 

caliber 281. 

 

2.2.4.3 Nissl staining and quantification of spinal cord sections 

Mice were deeply anaesthetized and transcardially perfused with 4% PFA. 12.5 µm paraffin 

serial sections of the spinal cord were prepared for Nissl staining as followed 282. First the 

sections were postfixed overnight, washed 3 times for 10 minutes with PBS afterwards and 

placed into molds. These were washed in water for 10 minutes and put into an embedding 

machine which first dehydrates the section with an increasing ethanol series and then coats 

them with paraffin (program C, 660 minutes). The next day, the sections were covered with 

hot paraffin in new molds. As soon as the paraffin blocks had cooled off, they were trimmed 

and cut by the microtome. Then the sections were dried at 37 °C overnight and incubated in 

xylol twice for 10 minutes. Subsequently the sections were treated with the following steps 

for 2 minutes each: 100% isopropyl alcohol, 100% ethanol, 100% ethanol, 96% ethanol, 96% 

ethanol, 90% ethanol, 80% ethanol, 70% ethanol, 70% ethanol. Cresyl violet (Nissl staining) 

was added to the sections for 10 minutes following another alcohol series (short: 96% ethanol 

with acetic acid (3.5 ml/200 ml ethanol), 96% ethanol, 100% ethanol, 100% isopropyl 

alcohol). Finally the sections were placed in xylol and mounted with Tissue Mount.  Cresyl 

violet stains acidic structures within cells intensively, and thus makes the nucleolus and the 

rough endoplasmatic reticulum visible. Motoneurons differ from other types of neurons in the 

spinal cord in having a distinct nucleolus and a prominent rough endoplasmatic reticulum, 

particularly the interneurons. Even atrophy motoneurons can be clearly distinguished by this 

technique, as previously shown in Cntf/Lif/Ct-1 triple deficient mice 118, bcl-2 deficient mice 
283 and Smn-/-SMN2tg mice, a mouse model of type I SMA262. Only motoneurons with a 
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clearly distinguishable nucleolus and a Nissl-stained rough endoplasmatic reticulum-like 

structure in the cell body were counted in every 10th section of the lumbar spinal cord (L1–

L7). Raw counts were corrected for double-counting of split nucleoli as described 114.  

 

2.2.4.4 Quantitative morphometry on cross-sections of the sciatic nerve  

The perfusion and sectioning was performed by Dr. Bettina Holtmann and Dr. Massimiliano 

Braga. Briefly, 0.1 M cacodylate buffers containing 4% PFA and 2% glutaraldehyde were 

used for perfusion. The proximal part of the sciatic was then dissected and postfixed in the 

same fixative overnight. After osmification and dehydration, all samples were embedded in 

Spurr’s medium. Semithin (1 µm) cross-sections for light microscopic examination were cut 

with a diamond knife on an ultramicrotome. Sections were stained with azur-methylenblue for 

histomorphological analysis and subsequent morphometric evaluation. Myelin thickness was 

divided by axon diameter for M-ratio calculations 284. At least 150 M-ratios and 

circumferences per nerve were measured in at least 3 individuals per group.  

 

2.2.5 Human sural biopsies  

Sural nerve biopsies were obtained by collaboration with Prof. Dr. Claudia Sommer. The 

biopsies were taken from the neuropathology archive of the Neuromuscular pathology labs at 

the Department of Neurology, Wuerzburg. All patients had sural nerve biopsies for diagnostic 

reasons and had given informed consent for their biopsy material to be included in upcoming 

research projects with their names kept anonymously. This procedure and the consent form 

had been approved by the Medical School Ethics Committee. 

A total of 27 biopsies were included in this study: 22 patients and 5 controls (see Table 3-2-1 

for demographic and clinical data). Diabetic neuropathy (DNP, n = 6, 1 type I, 5 type II) was 

diagnosed when diabetes mellitus was present according to established criteria 285. Chronic 

inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 9) was diagnosed by INCAT 

criteria 286 for CIDP. As disease controls, samples from three patients with a non-diabetic 

neuropathy were included (vitamin B12 deficiency, SMA and ALS with mild axonal 

neuropathy). Normal controls were obtained from the Pathology and Forensic Medicine 

departments (n = 3) and from two patients in whom chronic motor neuropathy had been 

suspected, but sensory nerve involvement was deemed unlikely due to the completely normal 

appearance of sural nerve biopsy (n = 2).  
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2.2.6 Protein biochemistry 

2.2.6.1 Preparation of tissue lysates  

The mice were anesthetized by CO2. After perfusion with 0.4% heparin in PBS solution, the 

tissues were dissected and transferred in a reaction tube into liquid nitrogen. Afterwards the 

frozen tissues were dispersed in a lysis buffer by sonication (intensity = 100%, 5 sec., 5 min. 

on ice, 3 times). 2 µl of the lysates were used for protein concentration measurement and the 

rest of the lysates were stored at –20 °C. 

 

2.2.6.2 Measurement of protein concentration 

The BioRad protein assay was performed to measure the protein concentration of the tissue 

lysates. This assay is based on the Bradford method, where Coomassie® Brilliant Blue G-250 

binds to proteins under acidic conditions 287. This leads to a color change from brown to blue 

in lysates and the optical density of blue color was measured by photometer (600 nm). 

 

Protein samples 
Tissue lysate [µl] 2
H2O [µl] 98
1x Bio-Rad Protein assay [µl] 900  
Table 2.14: Composition of protein samples for Bradford protein measurement 
 

A calibration curve was generated by measuring the optical density from known protein 

concentrations to determine the protein amount of the samples. 

  

Calculation curve 
Protein amount [µg] 0 2 4 6 8 10 12
BSA (100ng/µl) [µl] 0 20 40 60 80 100 120
Lysis buffer [µl] 2 2 2 2 2 2 2
H2O [µl] 98 78 58 38 18 0 0
1x Bio-Rad Protein assay [µl] 900 900 900 900 900 900 900  
Table 2.15: Calculation curve for Bradford protein measurement 
 

2.2.6.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

The proteins of each lysate were separated on a sodium dodecyl sulfate polyacrylamide gel 

electro-phoresis (SDS-PAGE) under denaturating conditions. First, a laemmli buffer was 

added to the lysates containing 30µg proteins and heated to 99 °C for 5 minutes. The laemmli 

buffer contains SDS and β-mercaptoethanol to denature, negatively charge the proteins and 
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reduce disulfide bonds. These samples were loaded on a 1 mm-thick SDS-PAGE gel which 

consists of a 5% stacking and a 12% separating gel. The negatively charged proteins move 

towards the positive pole and get separated by their molecular weight which determines the 

migration velocity in the gel of each protein. The SDS PAGE ran at 18 mA per gel for 2 

hours. 

 

2.2.6.4 Western Blot 

The transfer of the proteins from the gel to a PVDF transfer membrane was done by the semi-

dry blotting technique. First the PVDF transfer membrane was activated by a methanol bath 

and then transferred into TBST. A blot paper was placed on the anode of a semi-dry western 

blot chamber, followed by the activated PVDF transfer membrane and covered with another 

blot paper. After the cathode plate was connected, the semi-dry western blot chamber ran at 

0.32 A and 20 V for 40 min per gel. 

 

2.2.6.5 Protein immunodetection and quantification   

After blotting, the membrane was transferred into a blocking buffer consisting of Tris-

buffered saline (10 mM Tris, 0.15 M NaCl, pH 8) with 0.02% Tween20 and 5% skimmed 

milk. Overnight at 4 °C, the membrane was probed in a blocking buffer with a rabbit anti-

IGFBP-5 (H-100, 1:5000, Santa Cruz biotechnology, Inc.) for human lysates, goat anti-

IGFBP-5 antibody (GT15183, 1:5,000, Neuromics) for mouse lysates and mouse anti-actin 

antibody (Clone C4, 1:7,000, Millipore) as loading control. The blots were subsequently 

washed three times for 10 min in TBST buffer and incubated with a horseradish peroxidase 

(HRP)-coupled goat anti-rabbit, goat anti-mouse or donkey anti-goat antibody (1:10,000, 

Jackson ImmunoResearch Laboratories, Inc.) for 1 h. The blots were again washed three 

times and detection was performed with the ECL Plus Western Blotting Detection System 

(RPN2132, GE Healthcare, Lifesciences) according to the manufacturer’s protocol (5 min 

incubation). The chemiluminescent detection reagents are based on the oxidation of the 

luminal (1, 2) catalyzed by peroxide and horseradish peroxidase. After incubation the ECL 

Plus was removed and the blots were exposed to X-ray films for periods ranging from 10sec 

to 10min. The X-ray films were developed by X-Omat 2000. Film images were scanned and 

the intensity of the IGFBP-5 was measured with Raytest AIDA Software and standardized to 

mouse anti-actin. A minimum of n = 3 per group were tested in 3 independent experiments 
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and the mean of each group was normalized to the control group (if not stated differently) 

which was assigned as 1. 

 

2.2.7 Molecular biology 

2.2.7.1 Extraction of genomic DNA 

Mouse tail biopsies of three-week-old mice were dispersed in a 200μl lysis buffer plus 15 µl 

proteinase K at 55° C for 2 hours. Afterwards the samples were heated to 100° C for 8 

minutes and centrifuged for 5 minutes at 14,000 rpm. 100 μl of the supernatant was 

transferred to a new reaction tube. 

 

2.2.7.2 Polymerase chain reaction (PCR)  

The polymerase chain reaction (PCR) is a technique invented by Kary Mullis to multiply a 

particular DNA sequence into millions of copies. This technique is the basis of several 

applications in medicine and biology, such as diagnosis of hereditary diseases, DNA cloning, 

identification of genetic fingerprints and mice genotyping. The PCR consists of several steps. 

An initial denturation step separates the double-stranded DNA (~10-500 µg) into single-

stranded templates at a high temperature (94 °C) to allow the annealing of primers. Primers 

are specific short nucleotide sequences (18-30 nucleotides, final concentration = 200 nM), 

which bind complementarily to the 3′ ends of the target DNA fragment to be amplified. The 

optimal annealing temperature is adjusted to the melting temperature of the primers and 

depends mainly on the guanidine-cytosin content of the primer sequence ranging from 50 to 

65 °C. The elongation step at 72 °C follows next. Here a temperature-resistant DNA Tag 

polymerase (final concentration = 0.05-0.1 units) synthesizes a new DNA strand by adding a 

complementary deoxyribonucleotide (dNTP, final concentration = 200 µM) to the template 

strand in the 5′-3′ direction. DNA polymerase requires a magnesium chloride concentration of 

1.5 mM to work properly. Other substances can be added to optimize the PCR reation, such as 

an enhancer which impoves processivity and thermo stability of the Tag polymerase, or 

betaine which equalizes the contribution of GC- and AT-base pairing. These three steps are 

repeated for 20-40 cycles. During each cycle the amount of amplified sequence doubles and 

therefore shows exponential amplification 288,289. 
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2.2.7.3 Gel electrophoresis 

Gel electrophoresis uses an electric field to separate DNA fragments by their molecular 

weight within a gel consisting of 1%-2% agarose in 1x TAE. The negatively charged DNA 

fragments move towards the anode according to their size. The smallest fragments run the 

fastest, whereas the highest bands display the largest fragments in the gel. The DNA 

intercalating dye ethidium bromide (0.4 mg/ml) was added to the gels to detect the fragments 

under an ultraviolet light. 

 

2.2.7.4 Mice genotyping  

Genotyping is a procedure based on PCR and follows gel electrophoresis. It is used to 

determine the genotype of an individual mouse. By using specific primer pairs the genotype 

of a certain gene can be investigated. All gel electrophoreses were run with a 1.5% agarose 

gel in 1X TAE buffer at 120 V for 45 minutes.   

 

2.2.7.4.1 Smn genotyping 

A wild-type (primers: SMN GMS 11 and SMN MSMN 11) and a knockout PCR approach 

(primers: SMN GMS 11 and SMN GNA 3ab) were performed separately for Smn genotyping. 

The expected size of the wild-type product is 800 base pairs and the knockout band has 600 

base pairs.   

 

Components Volume in [µl] Final concentration 

DNA template 1 ~ 10-500 µg 

10X PCR-Puffer (15 mM MgCl2) 5 1.5 mM MgCl2 

dNTP-Mix [10 mM] 1 200 µM 

Taq DNA-Polymerase [5 U/µl] 0.4 0.04 units 

Forward-Primer [10 µM] 1 200 nM 

Reverse-Primer [10 µM] 1 200 nM 

ddH2O 40.6  

Total volume 50  
Table 2-16: PCR protocol for Smn genotpying 
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Steps Temperature [°C] Duration [minutes] 

Initial denaturation 94 3 

Denaturation 94 0.5 

Annealing 55 0.5 

Elongation 72 1.5 

Terminal elongation 72 5 

Hold 15 ∞ 

Table 2-17: PCR program for Smn genotyping.  
The double bars show the beginning and end of a cycle (34 cycles).  
 

2.2.7.4.2 Cntf genotyping 

A wild-type (primers: CNTF E1S and CNTF/1A) and a knockout PCR approach (primers: 

CNTF E1S and 5′NEO) were performed separately for Cntf genotyping. Expected size of the 

wild-type product is 321 base pairs and the knockout band has 450 base pairs.   
 

Components Volume in [µl] Final concentration 

DNA template 1 ~ 10-500 µg 

10X PCR-Puffer (15 mM MgCl2) 3 1.5 mM MgCl2 

dNTP-Mix [10 mM] 0.6 200 µM 

Taq DNA-Polymerase [5 U/µl] 0.3 0.05 units 

Forward-Primer [10 µM] 0.6 200 nM 

Reverse-Primer [10 µM] 0.6 200 nM 

Betaine [5 M] 6 1 M 

ddH2O 17.9  

Total volume 30  
Table 2-18: PCR protocol for Cntf genotpying 
 

Steps Temperature [°C] Duration [minutes] 

Initial denaturation 94 5 

Denaturation 94 0.5 

Annealing 64 0.5 

Elongation 72 1 

Terminal elongation 72 7 

Hold 15 ∞ 
Table 2-19: PCR program for Cntf genotyping  
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The double bars show the beginning and end of a cycle (34 cycles).  
 

2.2.7.4.3 NF-L-IGFBP-5 genotyping 

One PCR approach (primers: NFL-SEQ and BP5PCR) was performed for NF-L-IGFBP-5 

genotyping. Expected size for the product of a part of transgenic cDNA sequence of IGFBP-5 

under a NF-L-promoter is 400 base pairs.  

 

Components Volume in [µl] Final concentration 

DNA template 1 ~ 10-500 µg 

10X PCR-Puffer (15 mM MgCl2) 3 1.5 mM MgCl2 

dNTP-Mix [10 mM] 1 333 µM 

Taq DNA-Polymerase [5 U/µl] 0.3 0.05 units 

Forward-Primer [10 µM] 0.6 200 nM 

Reverse-Primer [10 µM] 0.6 200 nM 

Enhancer 6 0.5 M 

ddH2O 17.5  

Total volume 30  
Table 2-20: PCR protocol for NF-L-IGFBP-5 genotpying 
 

Steps Temperature [°C] Duration [minutes] 

Initial denaturation 94 5 

Denaturation 95 0.75 

Annealing 59 0.75 

Elongation 72 0.5 

Terminal elongation 72 7 

Hold 15 ∞ 
Table 2-21: PCR program for NF-L-IGFBP-5 genotyping  
The double bars show the beginning and end of a cycle (45 cycles).  

 

2.2.7.4.4 Floxed IGF-1 receptor (IGF-Rlox P) genotyping 

One PCR approach (primers: Rec Seq and X3 Seq) was performed for IGF-RloxP genotyping. 

Expected size for the wild-type product of IGF-Rwt is 500 base pairs and the IGF-RloxP is 600 

base pairs.  
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Components Volume in [µl] Final concentration 

DNA template 1 ~ 10-500 µg 

10X PCR-Puffer (15 mM MgCl2) 5 1.5 mM MgCl2 

dNTP-Mix [10 mM] 1 200 µM 

Taq DNA-Polymerase [5 U/µl] 0.4 0.04 units 

Forward-Primer [10 µM] 1 200 nM 

Reverse-Primer [10 µM] 1 200 nM 

Betaine [5 M] 10 1 M 

ddH2O 30.6  

Total volume 50  
Table 2-22: PCR protocol for IGF-RloxP genotpying 
 

Steps Temperature [°C] Duration [minutes] 

Initial denaturation 94 5 

Denaturation 94 0.75 

Annealing 65 0.5 

Elongation 72 0.75 

Terminal elongation 72 10 

Hold 22 ∞ 
Table 2-23: PCR program for IGF-RloxP genotyping  
The double bars show the beginning and end of a cycle (35 cycles).  

 

2.2.7.4.5 NF-L-Cre recombinase 

This PCR reaction detects the unique combination of the human neurofilament-light chain 

promoter (NF-L) with the Cre recombinase cDNA. Expected size of the product is 250 base 

pairs. 

Components Volume in [µl] Final concentration 

DNA template 1 ~ 10-500 µg 

10X PCR-Puffer (15 mM MgCl2) 3 1.5 mM MgCl2 

dNTP-Mix [10 mM] 0.6 200 µM 

Taq DNA-Polymerase [5 U/µl] 0.3 0.05 units 

Forward-Primer [10 µM] 0.6 200 nM 

Reverse-Primer [10 µM] 0.6 200 nM 
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Enhancer 3   

ddH2O 20.9   

Total volume 30   
Table 2-24: PCR protocol for NF-L-Cre genotpying 
 

Steps Temperature [°C] Duration [minutes] 

Initial denaturation 94 5 

Denaturation 94 1 

Annealing 59 0.5 

Elongation 72 1 

Terminal elongation 72 7 

Hold 15 ∞ 
Table 2-25: PCR program for NF-L-Cre genotyping  
The double bars show the beginning and end of a cycle (34 cycles).  

 

2.2.7.5 RNA purification and quantification 

RNA for microarray, real-time PCR and reverse transcriptase PCR was extracted by the 

standard TRIzol reagent protocol (Cat. No. 15595-026, Invitrogen, Life Technologies). First, 

the tissue was homogenized in 1 ml TRIzol with a tissue homogenizer (POLYTRON PT2100) 

and incubated for 5 minutes at room temperature. After the addition of 200 µl chloroform, the 

samples were shaken by hand two times for 15 seconds. Following this was a further 3 

minutes incubation at room temperature and shaking by hand for 15 seconds. To separate the 

solution in different phases, the samples were centrifuged at 12,000 g at 4 °C for 15 minutes. 

The water phase of each sample, containing the RNA, was transferred into a new reaction 

tube and 500 µl isopropyl alcohol was added. That was incubated for 10 minutes at room 

temperature and centrifuged at 12,000 g at 4 °C for 10 minutes. Subsequently the supernatant 

was discarded and the pellet was washed with 1 ml 75% ethanol. Again the samples were 

centrifuged at 7,500 g at 4 °C for 5 minutes. The supernatant was again discarded and the 

pellet was resuspended in 10 µl DEPC water. After incubation at 60 °C for 10 minutes, the 

RNA amount and purity was quantified by the NanoDrop. The purity of RNA is determined 

by two ratios of the optical densities of 260 nm / 280 nm and 260 nm / 230 nm. Nucleic acids 

have their maximum absorbance at 260 nm. Carbohydrates, peptides and aromatic compounds 

have their maximum absorbance at 230 nm, whereas proteins show their maximum at 280 nm. 

The ratio of OD260/OD280 should be 2 and OD260/OD230 should be 2.2 for good RNA purity. 
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2.2.7.6 Reverse transcriptase polymerase chain reaction (RT-PCR) 

Reverse transcriptase polymerase chain reaction (RT-PCR) is a variant of the PCR. Instead of 

a DNA strand template, an RNA strand is reverse-transcribed into its DNA complement 

(cDNA) using the enzyme reverse transcriptase. The RNA was transcribed into cDNA with 

the Superscript III First-Strand Kit (Cat no. 18080-05, Invitrogen). 1 µg of the purified RNA 

was inserted for the RT-PCR and 1 µl of 50µM oligo(dT)20 primer, 1µl of 10 mM dNTP mix 

and ad 10 µl DEPC-treated water. This RNA/primer mixture was incubated at 65 °C for 5 

minutes and then placed on ice for at least 1 minute. Meanwhile the cDNA Synthesis Mix was 

prepared as follows: 2 µl of 10X RT buffer, 4 µl of 25 mM MgCl2, 2µl of 0.1 M DTT, 1 µl of 

RNaseOUT (40 U / µl) and 1 µl of SuperScript III RT (200 U / µl). Afterwards the cDNA 

Synthesis Mix was added to the RNA/primer mixture and incubated for 50 minutes at 50 °C. 

Subsequently the reaction was terminated at 85 °C for 5 minutes and then chilled on ice. A 

brief centrifugation followed and 1 µl of RNase H was added and incubated for 20 minutes at 

37 °C. This cDNA synthesis reaction can be stored at -20 °C or used for PCR immediately.  

 

2.2.7.7 PCR for Igfr exon 3 deletion 

A PCR was performed to ascertain the level of deletion of exon 3 in NF-L-Cre, IgfrloxP/loxP 

mice in exclusively neuronal tissue, and the cDNA levels in brain, spinal cord and heart were 

determined accordingly. Heart was used as a non-neuronal negative control. PCRs with 

following exon 3 spanning primer set were performed, where the forward primer binds to 

exon 2 and the reverse primer binds to exon 6. The expected full-length product size with 

exon 3 is 971 base pairs and the product with exon 3 deletion is 658 base pairs. β-actin 

primers were used as a standard and the expected product size is 183 base pairs. Both PCR 

reactions have the same protocol (Table 2-25).  

 

Components Volume in [µl] Final concentration 

cDNA template 1 ~ 1 µg 

10X PCR-Puffer (15 mM MgCl2) 3 1.5 mM MgCl2 

dNTP-Mix [10 mM] 1 333 µM 

Taq DNA-Polymerase [5 U/µl] 0.3 0.03 units 

Forward-Primer [10 µM] 0.6 200 nM 

Reverse-Primer [10 µM] 0.6 200 nM 

Betaine [5 M] 3 0.5 M 
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ddH2O 20.5   

Total volume 30   
Table 2-26: PCR protocol for Igfr exon 3 deletion and β-actin in NF-L-Cre, IgfrloxP/loxP tissue. 
 

 

Steps Temperature [°C] Duration [minutes] 

Initial denaturation 95 5 

Denaturation 95 0.5 

Annealing 56 0.5 

Elongation 72 1 

Terminal elongation 72 5 

Hold 4   
Table 2-27: PCR program for Igfr exon 3 deletion and β-actin in NF-L-Cre, IgfrloxP/loxP tissue 
The double bars show the beginning and end of a cycle (β-actin PCR = 35 cycles, Igfr exon 3 deletion = 25 
cycles). 
 

DNA-gel electrophoresis was run on a 2% agarose gel in 1x TAE buffer at 80 V for 1 hour. 

 

2.2.7.8 Quantitative real-time polymerase chain reaction of NF-L-IGFBP-5 mice  

Quantitative real-time polymerase chain reaction (qRT-PCR) is another variety of the PCR 

which is used to amplify and simultaneously quantify a targeted DNA molecule. A 

fluorescence dye specifically intercalates into the double strand of the amplified PCR 

products during each PCR cycle. After each cycle the ongoing amplification is monitored by 

measuring the fluorescence increase. To measure the cDNA IGFBP-5 and β-actin levels of the 

spinal cord of NF-L-IGFBP-5 and control mice the LightCycler Fast start DNA Master SYBR 

Green I kit (Roche) was used. 

Components Volume in [µl] Final concentration 

cDNA template 1 ~ 1 µg 

10X PCR-Puffer (3 mM MgCl2) 1.6 0.24 mM MgCl2 

Forward-Primer [10 µM] 0.2 100 nM 

Reverse-Primer [10 µM] 0.2 100 nM 

Fast stat 2   

ddH2O 15   

Total volume 20   
Table 2-28: Real-time PCR protocol for NF-L-IGFBP-5 mice with primers for IGFBP-5 and β-actin. 
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Samples were centrifuged at 700 g for 5 seconds and quantification was made by LightCycler 

1.5 (Roche) using the comparative C
T 

method (also known as the ΔΔC
T 

method), which is 

similar to the Relative Standard Curve Method with the difference that it uses arithmetic 

formulas to achieve the result for relative quantitation. 

 

Steps Temperature [°C] Duration  

Initial denaturation 95 10 min 

Denaturation 95 10 sec 

Annealing 55 10 sec 

Elongation 72 5 sec 

Table 2-29: Real-time PCR program for NF-L-IGFBP-5 mice with primers for IGFBP-5 and β-actin.  
The double bars show the beginning and end of a cycle (45 cycles). 

 

2.2.7.9 Microarray 

The RNA was purified as stated above (2.2.7.5 RNA purification and quantification) and then 

the microarray was performed by Dr. Susanne Kneitz (Laboratory for Microarray 

Applications, Interdisciplinary Centre for Clinical Research (IZKF), University of Würzburg, 

Versbacher-Str. 7, 97078 Würzburg, Germany). Insulin-related genes were selected between a 

patient with diabetic mellitus and a healthy control. 

 

2.2.8 Cell culture 

2.2.8.1 Isolation of embryonic motoneurons 

After pregnant mice were killed at embryonic day 13.5 (E13.5), the abdominal wall was 

opened, the uterus was dissected and the embryos were abstracted. The embryonic heads were 

removed and placed into 200 µl lysis buffer for genotyping. Then the dorsal skin was 

removed and the lumbar spinal cord was dissected. The spinal cord was transferred into a dish 

containing Hank’s balanced salt solution (HBSS) buffer and the membrane of the spinal cord 

with the attached dorsal root ganglia was removed. The cleaned lumbar spinal cord was 

transferred into 180 µl HBSS with 20 µl 1% trypsin and incubated for 15 minutes at 37 °C. 

Afterwards the tissue was transferred in 20 µl into 180 µl Neurobasal medium (Invitrogen) 

with 20 µl 0.1% trypsin inhibitor and triturated until the tissue was separated into single cells. 

800 µl Neurobasal medium was added. The panning plates had been previously prepared as 

follows: Delta surface Nunclon plates (Nunc) were precoated with anti-p75 NGF receptor 
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antibody (1:2,000, MLR2, monoclonal, Abcam) in 5 ml TRIS-Puffer (10 mM, pH 9.5) for at 

least 20 minutes. After the panning plates were washed three times with 500 µl Neurobasal, 

the cells suspension was transferred to them and incubated for 30 minutes at room 

temperature. This panning step enriches motoneurons that uniquely express p75 NGF 

receptors, whereas other cell types do not express this receptor and were not bound by the 

panning antibody. These unbound cells were removed by three washing steps of 37 °C 

Neurobasal. By adding depolarization solution and smooth trituration, the bound motoneurons 

were detached from the dish and transferred into 1 ml warm motoneuron full medium (2% 

horse serum, 1x B27 in Neurobasal medium with 1x Glutamax) in 15 ml falcons. The cells 

were counted by a Neubauer counting chamber and were diluted to a concentration of 20 

cells/µl. 

 

2.2.8.2 Culturing and fixation of motoneurons 

Before plating the cells, the coverslips were placed into dishes and coated with 200 µl poly-

D,L-ornithine (0.5 mg/ml in 0.15 M Boratpuffer pH 8.35) and incubated overnight at 4° C. 

After washing the coverslips three times with aqua bidest, they were coated with laminin-

211/221 for 30 minutes. Laminin-211/221 is an extracellular matrix protein and mediates 

motoneuron cell growth and differentiation of the growth cone.  

Subsequently, 4000 cells in 200µl full medium per dish were plated on special coated 

coverslips for culturing and incubated for one hour at 37 °C.  After the cells were attached to 

the laminin-coated coverslips, the dish was flooded with full medium supplemented with the 

neurotrophic factors CNTF and BDNF.  

The motoneurons were cultured for 7 days at 37 °C and 5% CO2 in an incubator and full 

medium with CNTF and BDNF was exchanged every 48 hours. After fixation for 30 minutes 

with 4% PFA, cells were prepared for immunofluorescence.  

 

2.2.8.3 Staining of fixed motoneurons 

The PFA-fixed motoneurons were washed three times with 1x TBST. Then 200 µl of 

blocking solution containing 10% BSA in 1x TBST was applied for one hour at room 

temperature, before first antibody staining was performed with anti-Tau (1:1000, Sigma) and 

anti-IGFBP-5 (1:500, Neuromics) in blocking solution overnight at 4 °C. The next day the 

cells were washed three times with 1x TBST and subsequently incubated with second 

antibodies (donkey anti-goat Cy5 1:400 and swine anti-rabbit FITC 1:40) in blocking solution 
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for one hour. After the samples were washed again three times with 1x TBST, the coverslips 

were mounted upside-down on object slides with Mowiol. 

 

2.2.9 Software 

Following computer programs were used during the work for this thesis: Adobe Photoshop, 

Adobe Illustrator, Bitplane Imaris 5.7.0 Software, Graph PadPrism, ImageJ, Microsoft 

PowerPoint, Microsoft Word, Microsoft Excel, Olympus Confocal Software, Primer3Plus and 

Raytest AIDA. 

 

2.2.10 Statistical analysis 

All data are expressed as mean ± SD. The data were subjected to a statistical analysis with the 

two-tailed Student’s t-test when comparing two groups and one-way ANOVA with the Tukey 

post-hoc test for comparison of more than two groups. The frequency distribution of axon 

circumferences in sciatic nerves and the branching level in the gastrocnemius muscle were 

analyzed by two-way ANOVA with the Bonferroni post-hoc test. Significance level was set 

as P < 0.05. Statistical analysis was performed with Graph Pad Prism Software (San Diego, 

USA).  
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3 Results  
 

3.1 Ciliary neurotrophic factor-induced sprouting preserves motor function in 
a mouse model of mild spinal muscular atrophy 

[Most of these results have been published in the manuscript “Simon et al., Ciliary 

neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild 

spinal muscular atrophy, Hum. Mol. Genet., 19 (2010) 973-986”, referred to as 276 in the 

following sections.] 

 

3.1.1 Smn+/- mice show motoneuron loss, but no changes in NMJ architecture and muscle 
strength 

Despite a loss of at least 40% of spinal motoneurons (L1-L7) at an age of 12 months, Smn+/- 

mice show no clinical phenotype (all spinal motoneuron counts were performed by Dr. 

Sibylle Jablonka) 141. To further characterize the muscle strength of Smn+/- mice, grip strength 

measurements of the forelimbs were performed. Indeed, while a 40% loss of spinal 

motoneurons occurred (Fig. 3-1-1b) (P = 0.0003, two-tailed Student’s t-test), no loss of grip 

strength could be observed compared to control animals (Fig. 3-1-1a) (P = 0.6530, two-tailed 

Student’s t-test) 290. First of all the size of the neuromuscular junction (NMJ) of the calf 

(gastrocnemius muscle) was investigated (Fig. 3-1-1c) to get an insight into the underlying 

compensatory mechanisms. However, there were no differences in the NMJ size between 

Smn+/- and control mice (P = 0.4648, two-tailed Student’s t-test) (Fig. 3-1-1d, diploma thesis 

by Christian Simon, “Charakterisierung von präsynaptischen Veränderungen an 

neuromuskulären Endplatten bei einem Mausmodell für spinale Muskelatrophie”).  
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Figure 3-1-1: 12-month-old Smn+/- mice show no lack of muscle strength despite 40% loss of spinal 
motoneurons  
(a) No alteration in grip strength of 12-month-old Smn+/- mice (control = 0.86 ± 0.11 N, n = 5; Smn+/- = 0.83 ± 
0.10 N, n = 8; P = 0.6530, two-tailed Student’s t-test). (b) Counts of motoneuron cell body in the lumbar spinal 
cord reveal a 40% loss in Smn+/- mice (control = 2660 ± 289 motoneurons, n = 5; Smn+/- = 1553 ± 151 
motoneurons, n = 4; P = 0.0003, two-tailed Student’s t-test). (c, d) Morphology and size of the postsynaptic part 
of the NMJ appeared unchanged. Acetylcholine receptors are visualized by α-bungarotoxin (BTX) in single 
teased muscle fibers. 60 NMJs in 3 individuals per genotype were investigated (control = 394 ± 84 µm2, n = 3; 
Smn+/- = 381±69µm2, n = 3; P = 0.4648, two-tailed Student’s t-test). Scale bar = 5µm. 
 

3.1.2 Increased mean motor unit size in the gastrocnemius muscle of Smn+/- mice 

In collaboration with Prof. Dr. Lucia Tabares and Dr. Rocio Ruiz (Department of Medical 

Physiology and Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain), 

the motor function of the gastrocnemius muscle in 12-month-old Smn+/- and Smn+/+ littermate 

controls were investigated by EMG measurements 291. The gastrocnemius muscle was utilized 

because of its advantages compared to other muscles. It was convenient for our experiments 

that this muscle is one of the largest muscles and contains large motor units. Furthermore, the 

gastrocnemius muscle is more affected in SMA patients than small muscle groups, e.g. finger 

muscles. Moreover, the innervation pattern of this muscle has been studied in great detail and 

it is easily accessible for electrophysiological and immunohistochemical investigations of 

alterations of motor units such as sprouting 107. To define the size and total number of muscle 

fibers, the maximum compound motor action potential (CMAP) was recorded. For this reason 
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the sciatic nerve was stimulated by a single current pulse of supramaximal amplitude. Despite 

the loss of lumbar motoneurons in Smn+/- mice at this age (Fig. 3-1-1b), the mean amplitude 

of the maximum CMAP in the Smn+/- mice did not alter. This finding corresponds to the lack 

of weakness and normal gross morphology of the gastrocnemius muscle (Fig. 3-1-1a, Fig. 3-

1-2a) in 12-month-old Smn+/- mice 290. Although the mean fiber caliber is similiar in Smn+/- 

mice and controls (Fig. 3-1-2b) (P = 0.7876, two-tailed Student’s t-test), the Smn-deficient 

mice show higher quantities of both atrophic (P = 0.0099, two-tailed Student’s t-test) and 

hypertrophic fibers (P = 0.0011, two-tailed Student’s t-test) (Fig. 3-1-2c, d), indicating 

denervation and subsequent reinnervation by sprouting of remaining motoneurons, 

respectively 290.  

 
Figure 3-1-2: Fiber caliber in gastrocnemius muscles of control and Smn+/- mice  
(a) Gross morphology of the muscle appears normal in 12-month-old Smn+/- mice, but some of the muscle fibers 
showed increased caliber (white arrows in the right panel). At least 150 fibers per muscle per animal were 
investigated. (b) The average caliber of muscle fibers did not differ significantly between both groups (control = 
34 ± 8µm, n = 3; Smn+/- = 36 ± 6µm, n = 3; P = 0.7876, two-tailed Student’s t-test). (c) Number of fibers with a 
caliber higher than 150% of the mean increased in Smn+/- muscle (control = 2.8 ± 0.6%, n = 3; Smn+/- = 4.7 ± 
0.4%, n = 3; P = 0.0099, two-tailed Student’s t-test). (d) The same was true for fibers with a caliber less than 
50% of the mean caliber, indicating that both the number of hypertrophic and of atrophy muscle fibers increased 
in Smn+/- muscle (control = 5.9 ± 0.6%, n = 3; Smn+/- = 9.2 ± 0.4%, n = 3; P = 0.0011, two-tailed Student’s t-
test). 
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To investigate whether remaining motoneurons have formed new sprouts to reinnervate 

neighboring denervated muscle fibers and hence rescue them from functional loss and 

atrophy, the sizes of the motor units were measured. A motor unit consists of an α-

motoneuron and all associated muscle fibers which are innervated by this motorneuron. All 

muscle fibers which are innervated by a specific motorneuron belong to the same type (slow 

or fast twitch fibers) 1. When a motoneuron reinnervates denervated neighboring muscle 

fibers, the motor unit grows bigger, because the newly innervated muscle fibers are included 

in this motor unit. This can be quantified by measuring the single motor unit action potential 

(SMUAP) of each unit.  

To test this hypothesis, successive incremental stimuli were applied, starting from a 

subthreshold level until recruiting twelve individual responses. The size of the amplitude 

increments was larger in Smn+/- than in Smn+/+ control mice. The average amplitude of the 

responses, measured as the mean single motor unit action potential (SMUAP), was more than 

three times higher in Smn+/- mice compared to controls, indicating that this massive 

enlargement of the mean motor unit size is responsible for maintenance of muscle strength in 

Smn+/- mice (for data see 290). This suggests that despite the loss of motoneurons in the spinal 

cord, compensatory mechanisms allow muscle fibers to remain active in this mouse model of 

SMA type III (Fig. 3-1-1a, b) 141,290. One potential mechanism to compensate for the 

motoneuron loss is axonal sprouting. 

 

3.1.3 Enhanced arborization of nerve endings in 12-month-old Smn+/- mice 

12-month-old Smn+/- mice exhibit a reduced number of lumbar spinal motoneurons and at the 

same time increased amplitudes of SMUAPs in the gastrocnemius muscle. In order to study 

the underlying structural alterations in motor axons innervating the skeletal muscle and in 

neuromuscular junctions, we crossed Smn+/- mice with mice expressing the yellow fluorescent 

protein (YFP) gene under the Thy1 promoter (line YFP-H) in individual motoneurons 280. The 

Thy1 gene encodes for a 111 amino acid glycoprotein which belongs to the immunoglobulin 

superfamily. It is expressed in several neurons in the nervous system and in nonneuronal cell 

types (e.g. thymocytes). The Thy-1 protein is anchored to the surface of the cell membrane by 

a phospholipid tail and is likely to be involved in mediating cell–cell interaction 292-294. In 

Thy1-YFP (line YFP-H) mice the fluorescent tracer is expressed in less than 10% of the 

motoneurons 280. This allows for tracking all terminals of individual motoneurons within the 

gastrocnemius muscle. We isolated muscles from Smn+/- Thy1-YFP-Htg and Smn+/+ Thy1-

YFP-Htg mice. After counterstaining with Alexa594-conjugated α-bungarotoxin, a snake 
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venom that binds highly specifically to nicotinic acteylcholine receptors (nAChR) at the 

postsynaptic part of the NMJ, nerve fibers were visualized in wholemount gastrocnemius 

muscles by confocal microscopy. The gastrocnemius muscle is innervated by at least three 

major branches from the tibial nerve 295. The number of branching points of individual axons 

in the upper medial branch of the tibial nerve was quantified (Fig. 3-1-3) due to the fact that it 

could be reproducibly identified and analyzed in the isolated gastrocnemius muscles. This 

branch comes from the main trunk and enters into the medial gastrocnemius muscle (white 

arrow in Fig. 3-1-3a). Individual axons were traced back from neuromuscular endplates to the 

trunk of the nerve and the number of branching points was determined (Fig. 3-1-3b) (as 

established in the diploma thesis by Christian Simon, “Charakterisierung von präsynaptischen 

Veränderungen an neuromuskulären Endplatten bei einem Mausmodell für spinale 

Muskelatrophie”). The quantification of branching points is shown in Fig. 3-1-2c. In the 

gastrocnemius muscle of Smn+/- mice, enhanced branching and sprouting of nerve terminals 

could be observed (Fig. 3-1-2c, d). The number of axons with 4, 5, and 6 branches is 

increased in Smn heterozygous-deficient mice, whereas the number of axons with 1 to 3 

branches is decreased (P < 0.0001, two-way ANOVA), indicating that enhanced axonal 

sprouting of terminal motor fibers could be responsible for reinnervation of denervated 

muscle fibers, due to the loss of spinal motoneurons in the corresponding region of the lumbar 

spinal cord 290. 
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Figure 3-1-3: Enhanced arborization and terminal sprouting of motor fibers innervating the 
gastrocnemius muscle in Smn+/- mice 
(a) Overview of a mechanically squeezed gastrocnemius muscle and the arborization pattern of the innervating 
tibial nerve in muscle wholemount preparation. The arrow points to the investigated area. MGC = medial 
gastrocnemius muscle, LGC = lateral gastrocnemius muscle. (b) The upper medial branch of the tibial nerve in 
Smn+/+ thy1-YFP-Htg and Smn+/- Thy1-YFP-Htg mice. Scale bar = 250 µm, arrowheads point to sprouting events. 
(c) Quantification of the arborization level (white bars represent data from Smn+/+ Thy1-YFP-Htg mice and grey 
bars from Smn+/- Thy1-YFP-H tg mice). Individual axon terminals (at least n = 50) were traced back to the main 
medial branch innervating the MGC muscle as outlined in Fig 3-1-3a, and the number of branching points were 
counted. Levels of axon arborization reflect formation of additional branches distal from the main trunk. In 
Smn+/- gastrocnemius muscle, axons with additional branching points, in particular in the distal segments, are 
significantly more abundant compared to Smn+/+ muscle, indicative of enhanced axonal sprouting. In addition, in 
Smn+/- gastrocnemius muscle, more axons are present that show additional sprouts close to neuromuscular 
endplates (arrowheads). (n = 3 independent animals for each group, muscles from both sides were investigated 
from each animal), (1 branch: Smn+/- = 0.6 ± 1.1%, controls = 6.3 ± 2.6%; 2 branches: Smn+/- = 10.2 ± 5.9%, 
controls = 31.9 ± 6.0%; 3 branches: Smn+/- = 19.4 ± 2.6%, controls = 34.8 ± 4.4%; 4 branches: Smn+/- = 37.3 ± 
2.8%; controls = 26.1 ± 3.4%; 5 branches: Smn+/- = 26.4 ± 5.8%, controls = 0.9 ± 1.6%; 6 branches: Smn+/- = 6.1 
± 2.2%, controls = 0.0 ± 0.0%); P < 0.0001, two-way ANOVA). (d) High-power micrographs of sprouting 
axons. Arrowheads point to sprouting events. The panel in the middle shows terminal sprouting. Scale bar = 20 
µm. 
 

3.1.4 ATPase staining revealed fiber grouping in 12-month-old Smn+/- mice  

To prove the axonal sprouting seen in immunohistochemical analyses and to investigate the 

fiber types involved in this mechanism, the fiber composition in the gastrocnemius muscle 

was determined. The isoforms of the MHC define the contraction velocity of a fiber by their 

rate of hydrolyzing ATP. The myofibrillar ATPase activity is different in each isoform of 

MHC (e.g., MHC Type I slowly hydrolyzes ATP and determine the characteristics of a slow 

twitch fiber) 296,297. The isoforms of MHC have different ionic, fixation and pH sensitivities. 

These properties enable the determination of fiber composition of a muscle through 

histochemical staining. Slow Type I fibers are resistant to acidic conditions (pH 4.3) and show 

dark staining due to ATPase activity. In contrast, type 2 (A and B) fibers are susceptible to 

acidic conditions which leads to an inhibition of the ATPase activity and consequently the 

fibers do not stain. The fiber composition of each muscle is adapted to its main function. The 

muscle fibers of the diaphragm (which are innervated by the phrenic nerve and are 

responsible for respiratory paralysis, being the main cause of death in SMA patients 198,203,262) 

contain exclusively slow Type I fibers. In contrast, the gastrocnemius muscle contains mostly 

fast Type II fibers and only a small percentage of Type I fibers 298. The type of each 

individual fiber is determined by the innervating motoneuron. A tonic firing (slow) 

motoneuron causes a moderate but constant calcium influx into the innervating muscle fiber 

and differentiates it into a slow Type I fiber. In turn, phasic firing (fast fatiguable) 

motoneurons cause a short but high calcium influx and differentiate the innervated fibers into 
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fast Type II fibers 1,299,300. The actino-myosin ATPase activity of the heavy myosin chain 

resembles the fiber type. ATPase staining reveals the fiber composition of a muscle and the 

types of innervating motoneurons, showing physiological changes (e.g. sprouting). 

Enhanced fiber grouping of slow twitch fibers in 12-month-old Smn+/- mice was found (Fig. 

3-1-4), as visualized by ATPase staining of frozen gastrocnemius muscle sections at pH 4.3.  

This suggests that fast motoneurons are more affected in Smn+/- mice which leads to 

denervation of fast twitch fibers. These in turn can be reinnervated by sprouting of 

neighbouring slow motoneurons. After reinnervation the tonic firing (slow) motoneurons lead 

to calcineurin-dependent NFAT and MEF2 mediated expression of a slow MHC isoform that 

reprograms these fibers into slow twitch fibers 1,299,300. This corresponds to findings in a 

mouse model for familiar amyotrophic lateral sclerosis (FALS), where fast fatiguable 

motoneurons denervate first, followed by fast fatigue-resistant motoneuron axons which are 

affected at symptom-onset. Axons of slow motoneurons are resistant and compensate through 

sprouting and reinnervation 295. 

 
Figure 3-1-4: Fiber grouping in gastrocnemius muscle of 12-month-old Smn+/- mice  
The murine gastrocnemius muscle consists mostly of fast twitch fibers that are destained by the ATPase staining 
at pH 4.3. In contrast, slow twitch fibers stain dark, and the number of these fibers appears increased in Smn+/- 
muscle. Scale bar = 150 µm. 
 

3.1.5 Development of motoneuron loss, denervation of neuromuscular endplates and 
compensation by sprouting in Smn+/- mice  

In order to investigate the time point when denervation and sprouting begins, Smn+/+ and 

Smn+/- mice were analyzed at an age of 4 weeks, and 6 and 12 months. First signs of 

denervation of neuromuscular endplates were already observed in 4-week-old Smn+/- mice 
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(Fig. 3-1-5a). In those the postsynaptic staining with fluorescence-coupled BTX was not 

covered by immunofluorescence against the NF-L chain, a presynaptic marker of innervating 

motor axons (Fig. 3-1-6a). NF-L antibodies were applied in this experiment in order to avoid 

potential bias caused by the selective expression of YFP. In contrast to NF-L antibodies that 

label all neuromuscular endplates, YFP is expressed in less than 10% of the motoneurons in 

Thy1-YFP-H mice, a subgroup that is potentially not representative of all lumbar 

motoneurons. We counted denervated neuromuscular junctions and found 8 out of 334 (2.4%, 

in comparison to 1.7% (6/344) in Smn+/+ mice) in the gastrocnemius muscle of 4-week-old 

Smn+/- animals. Three or more animals were investigated, with at least 80 neuromuscular 

junctions screened per animal. Denervation of neuromuscular endplates was more prominent 

(15/293, corresponding to 5.1%) in 6-month-old Smn+/- mice (Fig. 3-1-5b), in comparison to 

age-matched Smn+/+ mice (7/280, corresponding to 2.5%).  
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Figure 3-1-5: Denervated neuromuscular endplates in Smn+/- mice 
The figure shows examples of denervated neuromuscular endplates in 4-week-old (a) (upper 2 panels) and 6-
month-old (b) (lower 4 panels) Smn+/- mice (wholemount preparation). Morphology of neuromuscular endplates 
in corresponding control animals (Smn+/+ mice from the same litters) is also shown. Denervation is shown by 
lack of covering of the postsynaptic side of neuromuscular endplates, stained with BTX by innervating axonal 
branches that are stained with antibodies against the neurofilament light chain. The corresponding 3D 
reconstructions generated from the original confocal stacks with Imaris software are shown on the right hand 
side. Individual denervated neuromuscular endplates are marked by arrows. Scale bar = 10 µm. 
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In order to find out when motoneuron cell bodies die and when reinnervation of individual 

neuromuscular endplates first occurs in Smn+/- mice, we counted motoneuron numbers in the 

lumbar spinal cord (L1-L7) in 4 week-, and 6- and 12-month-old Smn+/- and control mice 

(Fig. 3-1-6a). In 4-week-old mice, motoneuron numbers were not reduced (P = 0.2959, two-

tailed Student’s t-test), whereas a 23% loss of motoneurons was observed in 6-month- (P = 

0.0063, two-tailed Student’s t-test) and 42% in 12-month-old Smn+/- mice P = 0.0003, two-

tailed Student’s t-test), thus confirming previously published data 141. However, despite the 

loss of motoneurons, no loss of muscle strength was observed in 4-week- (P = 0.2162, two-

tailed Student’s t-test), 6-month- (P = 0.8673, two-tailed Student’s t-test) and 12-month-old 

mice (P = 0.6530, two-tailed Student’s t-test) (Fig. 3-1-6b). 

 
Figure 3-1-6: Development of motoneuron loss is compensated by axonal sprouting to maintain muscle 
strength in Smn+/- mice 
(a) Motoneurons were counted in the lumbar spinal cord (L1-L7) of 4-week-, 6-month- and 12-month-old Smn+/- 
and Smn+/+ mice (n = at least 3 for each group). Whereas motoneuron numbers appeared unaffected in 4-week- 
old Smn+/- mice, a significant loss was observed in 6- and 12-month-old Smn+/- mice. (4-week-old mice: control 
= 2880 ± 17, n = 3; Smn+/- = 2718 ± 172, n = 3; P = 0.2959, two-tailed Student’s t-test; 6-month-old mice: 
control = 3021 ± 272, n = 3; Smn+/- = 2342 ± 124, n = 4; P = 0.0063, two-tailed Student’s t-test; 12-month-old 
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mice: control = 2660 ± 289, n = 3; Smn+/- = 1553 ± 151, n = 5, P = 0.0003, two-tailed Student’s t-test). (b) Grip 
strength was unaffected in Smn+/- mice at any stage between 4 weeks and 12 months, indicating that the loss of 
motoneurons was functionally compensated in Smn+/- mice. (4-week-old mice: control = 0.51 ± 0.03 N, n = 3; 
Smn+/- = 0.47 ± 0.05 N, n = 4; P = 0.2162, two-tailed Student’s t-test; 6-month-old mice: control = 0.82 ± 0.11 
N, n = 5; Smn+/- = 0.81 ± 0.09 N, n = 8; P = 0.8673, two-tailed Student’s t-test; 12-month-old mice: control = 
0.86 ± 0.11 N, n = 5; Smn+/- = 0.83 ± 0.10 N, n = 8; P = 0.6530, two-tailed Student’s t-test). (c) A significant 
increase in the frequency of axon terminals innervating 2 neuromuscular endplates was observed in 6- and 12-
month-old Smn+/- mice. A first tendency of enhanced sprouting, although not significant, was also observed in 4-
week-old Smn+/- mice. At least 150 axon terminals were investigated per animal in the gastrocnemius muscles 
from both sides (n = at least 3 animals per group). (Sprouting events; 4-week-old mice: control = 1.9 ± 0.6%, n = 
3; Smn+/- = 2.4 ± 1.2%, n = 3; P = 0.5012, two-tailed Student’s t-test; 6-month-old mice: control = 4.1 ± 0.42%, 
n = 3; Smn+/- = 6.7 ± 1.1%; n = 3; P = 0.0185, two-tailed Student’s t-test; 12-month-old mice: control = 6.0 ± 
1.0%, n = 3; Smn+/- = 9.1 ± 0.5%, n = 3; P =0.0106, two-tailed Student’s t-test).  
 

For the analysis of sprouting, more than 150 endplates in different areas of the gastrocnemius 

muscle were investigated in order to quantify synapses innervated by axon terminals that had 

developed terminal branches by sprouting, thus innervating two or more nearby endplates 

(Fig. 3-1-7). Compensatory mechanisms by enhanced terminal arborization and sprouting 

already occurred in 4-week-old Smn+/- mice. In these mice, a tendency towards enhanced 

sprouting was observed (Fig. 3-1-6c) (P = 0.5012, two-tailed Student’s t-test), and the 

difference became significant in 6-month-old (P = 0.0185, two-tailed Student’s t-test) and 

even more pronounced in 12-month-old Smn+/- mice (P = 0.0106, two-tailed Student’s t-test). 

This is consistent with previously published data that the disease process in mouse models for 

SMA reflects a dying-back process 258. Our data indicate that denervation of neuromuscular 

endplates occurs early, starting in 4-week-old Smn+/- mice before loss of motoneuron cell 

bodies becomes apparent in the lumbar spinal cord (Fig 3-1-5a, Fig. 3-1-6a). No loss of 

muscle strength was observed in 4-week-, 6-month- or 12-month-old mice (Fig. 3-1-6b), 

indicating that the mechanism of sprouting compensation for denervation of individual 

neuromuscular endplates and motoneuron loss is robust in these mice (Fig. 3-1-6c)290.  
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Figure 3-1-7: Overview of the innervation pattern in the gastrocnemius muscle of a 12-month-old wild-
type mouse 
Staining of a wholemount gastrocnemius muscle of 12-month-old wild-type mouse with α-bungarotoxin and 
antibodies against neurofilament in order to trace all motor axons. Seven areas with neuromuscular synapses 
were magnified to demonstrate terminal sprouting. The upper panel shows examples of neuromuscular endplates 
with axon terminals innervating only one endplate (no sprouting, indicated by arrows). The right column shows 
rare examples of axon terminals innervating more than one endplate (sprouting, indicated by arrows). Scale bar 
overview = 100µm, scale bar magnified area = 30µm. In total, more than 150 endplates were investigated for 
each genotype to quantify the frequency of terminal sprouting. 
 

3.1.6 Ciliary neurotrophic factor is located in Schwann cells of innervating motor axons in 
the gastrocnemius muscle of Smn+/- mice 

In adult mammals, myelinating Schwann cells express high levels of the neurotrophic factor 

CNTF. CNTF has also been shown to protect against axonal destruction in pmn mice, a mouse 

model for ALS 103,301,302. Furthermore, CNTF application protects the maintenance of 

innervation of motor endplates in SOD G93A mice, a mouse model of familial ALS 295. 

Therefore we tested expression of CNTF in Schwann cells surrounding motor axons in the 

gastrocnemius muscle of Smn+/- mice. CNTF immunoreactivity is prominent in both 

myelinating Schwann cells and Schwann cells close to neuromuscular junctions (Fig. 3-1-8a). 
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To confirm the specificity of the CNTF staining and its localization in the Schwann cells, we 

stained frozen cross-sections of the sciatic nerve of Smn+/- and Cntf knockout mice. CNTF 

expression was also detected in the cytoplasm of myelinating Schwann cells in the sciatic 

nerve of Smn+/- mice, confirmed by S100 costaining, a Schwann cell marker (Fig. 3-1-8b), as 

previously observed in other models of motoneuron diseases such as pmn 111 and SOD1 G93A 

mutant mice 127. In the Cntf-/- sciatic nerve no CNTF staining was detectable, proving the 

specificity of the staining (Fig. 3-1-8b) 290.  

 
Figure 3-1-8: Localization of CNTF immunoreactivity in control and Smn+/- muscle and nerves  
(a) High magnification of an Smn+/- neuromuscular endplate in frozen sections to demonstrate CNTF expression 
in Schwann cells. Scale bar = 10 µm. A 3D reconstruction of the triple staining, generated by Imaris software 
from the complete confocal stack, is shown in the lower panel. CNTF immunoreactivity is detectable at high 
levels around the axons before they enter and branch into the pretzel-like structure of the neuromuscular 
endplate. (b) Double staining for CNTF and S100 in frozen sections of the sciatic nerve from Smn+/- and Cntf-/- 
mice. A S100 antibody was used as a Schwann cell marker in combination with the CNTF antibodies to confirm 
the localization of CNTF in the Schwann cells. CNTF colocalizes with S100 in the cytoplasm of Schwann cells 
and in Smn+/- nerves. No CNTF signal was detected in Cntf-/- nerve. Scale bar = 5µm. 
 

3.1.7 Reduced axonal sprouting in Smn+/- Cntf-/- skeletal muscle  

To investigate whether the loss of CNTF reduces compensatory sprouting which is detectable 

in Smn+/- muscle via morphological and electrophysiological techniques (Fig. 3-1-3c, and for 

electrophysiological data see 290), we crossbred Smn+/- with Cntf-/- mice in order to obtain 

Smn+/- Cntf-/- and corresponding Smn+/- and Cntf+/+ control mice. At first, the CNTF 

distribution in these mice was tested by analysis of neuromuscular endplates from Smn+/+, 

Smn+/-, Cntf-/- and Smn+/+ Cntf-/- mice (Fig. 3-1-9). In Smn+/- and Smn+/+ mice with the CNTF 

deletion the lack of CNTF was confirmed by no immunoreactivity in surrounding Schwann 

cells (Fig. 3-1-9, 3rd and 4th panel from top). 
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Figure 3-1-9: Localization of CNTF immunoreactivity in control and Smn+/- and CNTF-deficient 
neuromuscular junctions  
Localization of CNTF in 100 µm-thick longitudinal frozen sections of the gastrocnemius muscle from Smn+/+, 
Smn+/-, Smn+/- Cntf-/- double mutant and Cntf-/- mice. Triple staining against α-bungarotoxin (BTX, blue), 
neurofilament (NF, green) and CNTF (CNTF, red) was performed. Individual channels for CNTF, NF and BTX 
staining are shown, as well as an overlay (OV) on the right hand side. In Smn+/+ and Smn+/- muscle, CNTF is 
located in Schwann cells surrounding the axons. As a negative control, the CNTF signal was undetectable in 
Smn+/- Cntf-/- double mutant and Cntf-/- single mutant muscle tissues. Scale bar = 10 µm. 
 

Subsequently, we counted the numbers of motoneuron cell bodies in the spinal cord (L1-L7). 

Previous studies 114,118,303 have shown that Cntf-/- mice exhibit loss of motoneurons between 4 

weeks and 6 months. Similar results were observed for the Cntf-/- mice used in this study (Fig. 

3-1-10a). 4-week-old mice of all genotypes did not show motoneuron loss (Fig. 3-1-10a, 

Fig. 11) (P > 0.05, one-way ANOVA), or an impact on grip strength (Fig. 3-1-10b) (P > 0.05, 

one-way ANOVA). 
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Figure 3-1-10: Lack of CNTF abolishes the sprouting of motor nerves in the gastrocnemius muscle of 
Smn+/- mice 
 (a) Counts of motoneuron cell bodies in the lumbar spinal cord (L1-L7) of 4-week-, 6-month- and 12-month-old 
Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- double mutant mice. (Spinal motoneurons, 4 weeks: Smn+/+ mice = 
2880 ± 17; Smn+/- Cntf+/+ mice = 2718 ± 172; Cntf-/- mice = 2346 ± 246; Smn+/- Cntf-/- mice = 2606 ± 250; P > 
0.05, one-way ANOVA;  6 months: Smn+/+ mice = 3021 ± 272; Smn+/- Cntf+/+ mice = 2342 ± 124; Cntf-/- mice = 
2151 ± 106; Smn+/- Cntf-/- mice = 2381 ± 41; P < 0.001, one-way ANOVA; 12 months: Smn+/+ mice = 2660 ± 
289; Smn+/- Cntf+/+ mice = 1553 ± 151, Cntf-/- mice = 2148 ± 306; Smn+/- Cntf-/- mice = 1315 ± 266; at least n = 3 
for each genotype; P < 0.001, one-way ANOVA). (b) Grip strength in 4-week-, 6-month- and 12 month-old 
Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- mice. (Grip strength, 4 weeks: Smn+/+ mice = 0.51 ± 0.03; Smn+/- 
Cntf+/+ mice = 0.47 ± 0.05, Cntf-/- mice = 0.49 ± 0.06; Smn+/- Cntf-/- mice = 0.42 ± 0.01; P > 0.05, one-way 
ANOVA; 6 months: Smn+/+ mice = 0.78 ± 0.02; Smn+/- Cntf+/+ mice = 0.75 ± 0.06; Cntf-/- mice = 0.56 ± 0.05; 
Smn+/- Cntf-/- mice = 0.55 ± 0.02; P < 0.001, one-way ANOVA; 12 months: Smn+/+ mice = 0.86 ± 0.11; Smn+/- 
Cntf+/+ mice: 0.83 ± 0.10; Cntf-/- mice = 0.63 ± 0.08; Smn+/- Cntf-/- mice = 0.69 ± 0.05; at least n = 3 for each 
genotype; P < 0.001, one-way ANOVA). (c) Quantification of axonal sprouting, using the same technique as in 
Fig. 2C. In Smn+/- Cntf+/+ muscles, a significantly increased number of synapses innervated by collateral or 
terminal sprouts was observed in comparison to Smn+/+ muscle at 6 and 12 months. Increased sprouting in Smn+/- 

Cntf+/+ mice was abolished when CNTF was depleted in Smn+/- Cntf-/- double deficient mice. At least 150 
neuromuscular endplates were investigated per animal (n = at least 3 in each group). (Sprouting events, 4 weeks: 
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Smn+/+ mice = 1.9 ± 0.6, Smn+/- Cntf+/+ mice = 2.4 ± 1.2, Cntf-/- mice = 1.6 ± 0.4; Smn+/- Cntf-/- mice = 1.2 ± 0.5; 
at least n = 3 for each genotype; P > 0.05, one-way ANOVA; 6 months: Smn+/+ mice = 4.1 ± 0.4, Smn+/- Cntf+/+ 

mice = 6.7 ± 1.1, Cntf-/- mice = 1.7 ± 0.4, Smn+/- Cntf-/- mice = 1.9 ± 0.3; at least n = 3 for each genotype; 
P < 0.001, one-way ANOVA; 12 months: Smn+/+ mice = 6.0 ± 1.0, Smn+/- Cntf+/+ mice = 9.1 ± 0.5, Cntf-/- mice = 
2.7 ± 1.1, Smn+/- Cntf-/- mice = 2.7 ± 0.5; at least n = 3 for each genotype; P < 0.001, one-way ANOVA). 

 
Figure 3-1-11: Morphology of lumbar spinal motoneurons in 4-week-old-Smn+/+, Smn+/- Cntf+/+, Cntf-/- and 
Smn+/- Cntf-/- mice  
(a-d) Examples of lumbar spinal cord sections showing Nissl-stained lumbar spinal motoneurons from 4-week-
old Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- mice. Scale bar = 100 µm. 
 
A tendency for enhanced sprouting in Smn+/- was detectable (Fig. 3-1-10c) (P > 0.05, one-way 

ANOVA). Smn+/-, Smn+/- Cntf+/+ and Smn+/- Cntf-/- show a significant loss of motoneurons at 6 

and 12 months in comparison to controls (Fig. 3-1-10a, Fig. 3-1-12). However, there were no 

additive effects of CNTF and Smn deficiency. The difference between Smn+/- Cntf+/+ and 

Smn+/- Cntf-/- was not significant at any age studied (Fig. 3-1-10a) (6 months: P < 0.001, one-

way ANOVA; 12 months: P < 0.001, one-way ANOVA). Functional analysis by grip strength 

measurements 118 revealed a reduction in muscle strength of about 15% in Cntf-/- and Smn+/- 

Cntf-/- mice. However, although Smn+/- Cntf+/+ mice exhibit even higher losses of spinal 

motoneurons than Cntf-/- mice, there was no reduction in muscle strength at 6 and 12 months. 
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In contrast, 6- and 12-month-old Smn+/- mice that were CNTF-deficient showed reduced 

muscle strength (Fig. 3-1-10b) (6 months: P < 0.001, one-way ANOVA; 12 months: P < 

0.001, one-way ANOVA). 

To address the question of whether CNTF-induced sprouting provides a functional 

compensation for motoneuron loss in Smn+/- Cntf+/+ mice, we investigated the innervation 

pattern of endplates in the gastrocnemius muscle. Terminal axons were therefore stained with 

antibodies against neurofilament. Additionally, more than 150 endplates in different areas of 

the gastrocnemius muscle were investigated and quantified as in Fig. 3-1-7 (sprouting events 

= synapses innervated by axon terminals that had developed terminal branches by sprouting, 

thus innervating two or more nearby endplates). Figure 13 shows examples of axons 

innervating at least two endplates of Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- mice 

(sprouting). Applying these criteria, we investigated endplates with the nearby axon 

innervating more than one synapse in all four genotypes. In 6- and 12-month-old Smn+/- Cntf+/+ 

gastrocnemius muscles, the number of axon terminals innervating 2 endplates is significantly 

enhanced, about 2-fold (Fig. 3-1-10c) compared to control Smn+/+ mice. In CNTF-deficient 

mice, only few terminal sprouts were observed, both in Cntf-/- and Smn+/- Cntf-/- mice (Fig. 3-1-

10c) (6 months: P < 0.001, one-way ANOVA; 12 months: P < 0.001, one-way ANOVA).  
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Figure 3-1-12: Morphology of lumbar spinal motoneurons of 12-month-old Smn+/+, Smn+/- Cntf+/+, Cntf-/- 
and Smn+/- Cntf-/- mice 
 (a-d) Examples of lumbar spinal cord sections showing Nissl-stained lumbar spinal motoneurons from 12-
month-old Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- mice. Note the loss of motoneurons in Smn+/- (b),  
Cntf-/- (c) and Smn+/- Cntf-/- (d) mice. Scale bar = 100 µm. 
 
 

 
Figure 3-1-13: Sprouting events in the gastrocnemius muscle 
Examples of neuromuscular endplates in gastrocnemius muscle of 12-month-old Smn+/+, Smn+/- Cntf+/+, Cntf-/- 
and Smn+/- Cntf-/- mice. Arrows point to the position of terminal sprouts. Scale bar = 10 µm. 
 

To provide additional confirmation of the lack of sprouting in Cntf-deficient Smn+/- mice, the 

soma size of lumbar motoneurons in the spinal cord (L4-L5) of 4-week- and 12-month-old 

mice were measured (Fig. 3-1-14). When a motor unit increases by sprouting, the soma of the 

motoneuron becomes hypertrophic, because it grows bigger to maintain the proper 

connections to the muscle fibers. The soma size of motoneurons is related to the number of 

axonal sprouts each cell produces 304. A slightly increased number of motoneurons with a size 

over 1000 µm2 in 12-month-old Smn+/- Cntf+/+ mice was found compared to Smn+/- mice 

without Cntf (percentage of motoneuron soma > 1000 µm2: Smn+/+ mice = 12.3%, Smn+/- 

Cntf+/+ mice = 22.4%, Cntf-/- mice = 16.7%, Smn+/- Cntf-/- mice = 10.9%, at least n = 3 for 

each genotype). All these data indicate that CNTF induces sprouting and compensates for the 

loss of muscle strength in Smn+/- Cntf+/+ mice. 

 



 76 3 Results 

 
Figure 3-1-14: Frequency of motoneuron size in the ventral L4-L5 spinal cord region of 4-week and 12-
month-old Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- mice        
(a) Motoneuron size in 4-week-old Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- mice. (b) Motoneuron size in 
12-month-old Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- mice. Note the small proportion of enlarged 
motoneurons in 12-month-old Smn+/-  Cntf+/+ spinal cord (n = 500 motoneurons measured from 5 different 
animals for Smn+/+, Smn+/- Cntf+/+, and n = 350 from 3 different animals for Cntf-/- and Smn+/- Cntf-/-).  
 

3.1.8 Reduction of the mean single motor unit action potential size in Smn+/- Cntf-/- muscle 
to wild-type levels correlates with reduced muscle strength  

Reduced sprouting after deletion of the Cntf gene in Smn+/- mice results in reduction of 

muscle strength (Fig. 3-1-10b). To get insight into whether the size of individual motor units 

is also affected in these mice, electrophysiological analyses were performed in collaboration 

with Dr. Rocio Ruiz and Dr. Lucia Tabares (Department of Medical Physiology and 

Biophysics, School of Medicine, University of Seville, 41009 Seville, Spain). Using a ring 

electrode placed at mid-thigh, the mean single motor unit action potential (SMUAPs) sizes in 
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Smn+/+, Smn+/- Cntf+/+, Cntf-/- and Smn+/- Cntf-/- were estimated by applying successive 

incremental stimuli starting from a subthreshold level until recruiting ten individual responses 

(Fig. 3-1-15a). As shown previously by results obtained with the needle electrode placed into 

the gastrocnemius muscle, Smn+/- Cntf+/+ mice show about 2 times larger SMUAPs than 

Smn+/+ mice (for data see 290). Cntf-/- mice exhibit lower SMUAPs than Smn+/- mice. Smn+/- 

Cntf-/- exhibit almost 4-fold lower SMUAPs than Smn+/- mice (Fig. 3-1-15b) (P < 0.001, one-

way ANOVA). This result indicates that motor units are smaller in Smn+/- Cntf-/- double 

mutant mice. These data confirm the functional relevance of the morphological alterations 

shown in Fig. 3-1-10.  

 

 
Figure 3-1-15: Lack of CNTF abolishes the compensatory increase of motor unit size in Smn+/- mice 
(a) Representative examples of SMUAP amplitude increments recorded from 12-month-old Smn+/+, Smn+/- 
Cntf+/+, Cntf -/- and Smn+/- Cntf -/- mice in response to ten nerve stimuli of increasing amplitude. A circumferential 
surface electrode was placed around the flexor and extensor compartments of the distal hind-limb. (b) 
Quantification of normalized SMUAP in Smn+/+, Smn+/- Cntf+/+, Cntf -/- and Smn+/- Cntf -/- mice. The amplitude of 
SMUAPs was increased in Smn+/- mice, pointing to increased size of motor units due to increased sprouting. In 
Smn+/- Cntf-/- mice, SMUAP amplitudes were not increased (normalized SMUAPs: Smn+/+ mice = 100 ± 61.8, 
Smn+/- Cntf+/+  mice = 196.3 ± 152.6, Cntf-/- = 67.3 ± 26.2; Smn+/- Cntf-/- = 51.4 ± 20.8; at least n = 7 for each 
genotype P < 0.001, one-way ANOVA). (Electrophysiology was performed by Dr. Rocio Ruiz.) 
 

A summary of the progressive loss of motoneurons in Smn+/- Cntf+/+ mice from 4 weeks to 12 

months in Fig. 3-1-16 is shown. In 6-month-old mice the loss is about 20%, and reaches over 

40% in 12-month-old mice. To maintain the same grip strength, axonal sprouting and size of 

motor units increase correspondingly. Thus CNTF appears necessary for the compensatory 

sprouting response that maintains muscle strength in Smn+/- Cntf+/+ mice. 
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Figure 3-1-16: Overview of normalized motoneuron numbers, grip strength and sprouting events in all 
four genotypes 
Summary of motoneuron numbers (Motoneurons), muscle strength (Grip strength) and number of axons 
innervating at least 2 neighboring neuromuscular endplates (Sprouting) in 4-week, 6-month and 12-month-old 
mice of all four genotypes. Values are given as percentages relative to the highest value in each investigation.  
 

3.2 Dysregulated IGFBP-5 expression causes axonal degeneration and 
motoneuron cell death in diabetic neuropathy 

The majority of the results shown here are part of the manuscript: “Simon et al., Dysregulated 

IGFBP-5 Expression Causes Axonal Degeneration and Motoneuron Cell Death in Diabetic 

Neuropathy, Nature Neuroscience, under review). Suralis biopsies from all patients 

investigated in this study were provided by Prof. Dr. Claudia Sommer. Microarray analysis 

was performed by Dr. Susanne Kneitz. Survival assays of cultured motoneurons were 

performed by Dr. Carsten Drepper. Motoneuron cell body and axon counts of the mice were 

performed by Dr. Bettina Holtmann (IGF-R knockout) and Dr. Massimiliano Braga (NF-L-

IGFBP-5). 
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3.2.1 IGFBP-5 protein levels are elevated in nerve biopsies in DNP 

Previous studies have shown that IGF-1 levels are downregulated in peripheral nerves in 

diabetic 279 and non-diabetic 305 types of neuropathy. We therefore investigated expression of 

members of the IGF family, their receptors and IGFBPs by microarray analysis of a sural 

nerve biopsy from a patient with DNP and compared these data with a sural nerve from an 

age-matched control individual (Fig. 3-2-1). These results confirmed decreased IGF-1 level in 

DNP 279 and also showed a more than 7-fold upregulation of IGFBP-5 expression.  

 
Figure 3-2-1: Microarray expression analysis of sural nerves biopsies of control and DNP patients 
Among IGF related genes, IGFBP-5 mRNA levels are increased more than 7-fold in DNP. (Analysis of the 
amount of purified RNA was performed by microarray in collaboration with Dr. Susanne Kneitz.) 
 

In order to confirm this result, protein extracts from 21 patients and 5 control (Table 3-2-1) 

individuals were investigated by western blot analysis (Fig. 3-2-2). IGFBP-5 expression was 

low in healthy individuals and more than 60-fold upregulated in 6 patients with DNP (Fig. 2a, 

b) (P < 0.001, one-way ANOVA). More than 60-fold upregulation was also observed in 3 

patients with combined diabetic neuropathy and chronic inflammatory demyelinating 

polyradiculoneuropathy (DNP+CIDP) (P < 0.001, one-way ANOVA) (Fig. 3-2-2a, b). 

Upregulation in patients with pure CIDP was only observed in 2 out of 9 patients, and did not 

reach statistical significance when compared to controls (P > 0.05, one-way ANOVA). This 
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suggests an association of IGFBP-5 overexpression with the DNP rather than with the 

superimposed CIDP in this mixed group. IGFBP-5 expression was also low in patients with 

amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and neuropathy due to 

vitamin B12 deficiency (Fig. 3-2-2a, b). This reveals that the strong upregulation of IGFBP-5 

is specifically observed in patients with DNP. 

 
Table 3-2-1: Demographic data for all patients investigated in this study 
DNP: Diabetic neuropathy. CIDP: Chronic inflammatory demyelinating polyradiculoneuropathy. Others: One 
case of amyotrophic lateral sclerosis, spinal muscular atrophy, and vitamin B12 deficiency each. n.a.: not 
applicable. Type of neuropathy: M = pure or predominantly motor; SM = sensorimotor; A: predominantly 
axonal; D: predominantly demyelinating. (This overview of patients was generated by Prof. Dr. Claudia 
Sommer) 
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Figure 3-2-2: Western blot of IGFBP-5 protein levels in human sural nerve in control individuals and 
patients 
(a) Western blot of IGFBP-5 protein levels in human sural nerve from control individuals, patients (P) with 
DNP, CIDP, DNP+CIDP and other diseases (Other Dis.): amyotrophic lateral sclerosis (A), vitamin B12 
deficiency (B) and spinal muscular atrophy (S). (b) IGFBP-5 protein levels are specifically upregulated in 
patients with DNP. Biopsies of patients with DNP show a 64-fold upregulation compared to control individuals 
(DNP = 4.9 ± 2.2, n = 6; control = 0.1 ± 0.1, n = 5; P < 0.001, one-way ANOVA). Upregulation in DNP patients 
with additional CIDP is not significantly higher than patients with DNP alone (DNP+CIDP = 6.7 ± 0.6, n = 3; 
DNP = 4.9 ± 2.2, n = 6; P > 0.05, one-way ANOVA). Other disease controls with neuropathies and patients with 
CIDP show no significant upregulation to controls (control = 0.1 ± 0.1, n = 5; CIDP = 1 ± 1.8, n = 9; other 
disease control = 1.7 ± 1.4, n = 3; P > 0.05, one-way ANOVA). All values are normalized to CIDP biopsies.  
 

Enhanced levels of IGFBP-5 could also be detected by immunohistochemistry of peripheral 

nerve sections (Fig. 3-2-3), particularly in axons, as displayed by co-localization with 

neurofilament H immunoreactivity. Faint IGFBP-5 immunoreactivity was also observed in the 

extracellular matrix surrounding the axons (arrows in Fig. 3-2-3). 
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Figure 3-2-3: IGFBP-5 localization in control and diabetic suralis nerves  
IGFBP-5 (red) localization with neurofilament (green) costaining in human sural nerves from a control 
individual and a patient with DNP is shown. Note that IGFBP-5 levels are increased in large axons and in the 
extracellular matrix (ECM) (arrows) in DNP. Scale bar = 5 μm. 
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3.2.2 IGFBP-5 inhibits motoneuron survival and axon growth 

Based on the dramatic upregulation of IGFBP-5 expression in nerves of diabetic patients, and 

to study this effect in vivo, transgenic mice with neuron-specific overexpression of IGFBP-5 

under a neurofilament promoter were generated by Dr. Jennifer Gunnersen. Briefly 

summarized, an 8 kb fragment including the human NF-L promoter, mouse Igfbp5 cDNA, the 

polyA signal from pMC-Cre and exons 2-4 of the NF-L gene was injected into fertilized 

mouse eggs.  

First, the localization of wild-typic and overexpressed IGFBP-5 was investigated on isolated 

and cultured motoneurons from IGFBP-5 transgenic embryos and control litter mates 

(embryonic day (E) 13.5). The IGFBP-5-overexpressing motoneurons showed increased 

IGFBP-5 immunoreactivity in cell bodies and axons after 7 days in vitro (Fig. 3-2-4a). 

IGFBP-5 was predominantly localized on the surface of these neurons. This correlates with 

previous data showing that IGFBP-5 binds to the surface of producing cells and the 

surrounding extracellular matrix 306. 

From previous studies in our lab, it was known that at a concentration of 5ng / ml IGF-1 has a 

positive effect on survival of cultured motoneurons. Therefore with the help of Dr. Carsten 

Drepper, a possible negative effect of recombinant and endogenously overexpressed IGFBP-5 

on the survival of IGF-1 cultured motoneurons was investigated. Motoneurons were cultured 

7 days in a medium supplemented with brain-derived neurotrophic factor (BDNF) as positive 

control (and without any factor as negative control). BDNF supports 55% survival, whereas 

only 12% of initially plated motoneurons survive without neurotrophic factors after 7 days in 

culture. 

As expected, at a concentration of 5 ng / ml IGF-1 is a potent motoneuron survival factor and 

supports 46% (Fig. 3-2-4b). Addition of a 4-fold molar excess of IGFBP-5 (80 ng / ml) 

reduced survival to 20% (P < 0.001, one-way ANOVA) (Fig. 3-2-4b). When IGFBP-5 was 

added at a 20-fold molar excess, the survival effect of IGF-1 was completely blocked to the 

low control levels without survival factors (data not shown). IGFBP-5 has no effect on BDNF 

mediated survival (P > 0.05, one-way ANOVA) (Fig. 4b).  

IGFBP-5 transgenic motoneurons showed a different survival response to IGF-1 than wild-

type motoneurons (Fig. 3-2-4b) (P < 0.001, one-way ANOVA). While survival of IGFBP-5-

overexpressing motoneurons was unchanged in the presence of BDNF, survival in the 

presence of 5 ng / ml of IGF-1 was reduced in comparison to wild-type motoneurons derived 

from non-transgenic controls (P < 0.001, one-way ANOVA). Furthermore, a very low level of 
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IGF-1 (1 ng / ml), which supported 32% survival in wild-type motoneurons, was not able to 

support IGFBP-5 transgenic motoneurons (data not shown) (P < 0.001, one-way ANOVA).  

 
Figure 3-2-4: IGFBP-5 overexpression in cultured motoneurons reduces survival rate and axon length 
(a) IGFBP-5 expression in cultured motoneurons (7 DIV), stained by using antibodies to tau and IGFBP-5. 
IGFBP-5 is increased in the soma and neurites of NF-L-IGFBP-5-overexpressing motoneurons. IGFBP-5 
appears associated with the cell membrane. Scale bar = 5 μm. (b) The positive effect of IGF-1 on survival is 
reduced by 17% in IGFBP-5-overexpressing motoneurons (tg = 29.5 ±5.4%, n = 20 wells; control = 46.3 ± 5.7%, 
n = 16 wells; P < 0.001, one-way ANOVA). Motoneuron survival was unchanged in the presence of BDNF (tg 
motoneurons = 51.3 ± 10.8%, n = 16; wild-type motoneurons = 55.5 ± 3.5%, n = 20; P > 0.05, one-way 
ANOVA) (performed by Dr. Carsten Drepper). (c) IGFBP-5 (BP-5) inhibits IGF-1 induced axon outgrowth in 
wild-type motoneurons at a 4-fold molar excess (mean axon length with IGF-1 = 588.9 ± 249.6 μm; IGF-1 + BP-
5 = 472.3 ± 166.3 μm; n = 4 embryos, n > 90 axons; P < 0.01, one-way ANOVA). IGFBP-5-overexpressing 
motoneurons show shorter axons than wild-type axons while they were cultured with IGF-1 (tg = 367.6 ± 154.5 
μm; controls = 588.9 ± 249.6 μm; n = 4 embryos each, n > 85 axons; P < 0.01, one-way ANOVA). Axon growth 
stimulated by BDNF (5 ng / ml) was not affected in IGFBP-5-overexpressing motoneurons (tg = 652 ± 184.2 
μm; controls = 731 ± 210.2 μm, n = 4 embryos each, n > 85 axons, P > 0.05, one-way ANOVA). Data sets are 
expressed as mean ± SD (performed by Dr. Carsten Drepper). 
 
Motoneurons overexpressing IGFBP-5 also exhibited reduced axon growth (Fig. 3-2-4c) 

when cultured with IGF-1 at a concentration of 5 ng / ml (P < 0.001, one-way ANOVA). 

Axon growth was normal when these motoneurons were cultured with 5 ng / ml BDNF (P > 

0.05, one-way ANOVA), indicating that IGFBP-5 not only reduces survival but also 

specifically inhibits the effects of IGF-1 on axon growth. 
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3.2.3 Transgenic IGFBP-5 overexpression in motoneurons leads to impaired motor 
function, degeneration and loss of motor axons and cell bodies 

In order to quantify expression of IGFBP-5 in these transgenic (tg) mouse lines, Igfbp-5 

mRNA levels were determined by real-time PCR of spinal cord and found to be 1.8-fold 

upregulated (P = 0.0002, two-tailed Student’s t-test) (Fig 3-2-5a). Western blots were 

prepared with extracts from spinal cord, sciatic nerve and brain. Enhanced IGFBP-5 protein 

levels were detected in the sciatic nerves of 6-month-old transgenic mice (Fig. 5b). In 

IGFBP-5-overexpressing mice, elevated IGFBP-5 immunoreactivity was observed in axons 

and the extracellular matrix surrounding the axons in the sciatic nerve (Fig. 3-2-5c), closely 

resembling the distribution of IGFBP-5 in peripheral nerves from sural biopsies of patients 

with DNP (Fig. 3-2-3). 
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Figure 3-2-5: IGFBP-5 overexpression in adult mouse tissues 
(a) Real-time PCR revealed a 1.8 fold increase of the IGFBP-5 mRNA level in transgenic IGFBP-5 animals (tg). 
Scored values were obtained by normalizing to β-actin mRNA levels (normalized control = 1.0 ± 0.1, n = 3; tg = 
1.8 ± 0.5, n = 3; P = 0.0002, two-tailed Student’s t-test). (b) IGFBP-5 protein elevation was detected in sciatic 
nerve but not in spinal cord and brain compared to controls. Actin was used as loading control. (c) Localization 
of IGFBP-5 in frozen cross-section. IGFBP-5 is increased in axons and extracellular matrix in transgenic 
animals. Arrows depict extracellular matrix staining. Scale bar = 5µm. 
 

To investigate whether IGFBP-5 overexpression in vivo leads to impaired motor function, 

degeneration and loss of motor axons and cell bodies, Dr. Massimiliano Braga counted fibers 

of different nerves and motoneuron numbers in spinal cord of IGFBP-5 transgenic and control 

litter mates. If IGFBP-5 overexpression would inhibit IGF-1 in vivo, this could result in 

reduced motoneuron survival and myelination 44,174. 

6-month-old IGFBP-5 transgenic mice showed no overt phenotype variation however a 

significant reduction of forelimb grip strength was observed. The numbers of myelinated 
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nerve fibers of the sciatic and phrenic nerve were reduced by about 15% (Table 3-2-2). A 

progressive loss of facial and spinal motoneuron cell bodies was also detected in IGFBP-5 

transgenic animals and became apparent after 6 months (Table 3-2-2). 

 

 
Table 3-2-2: Morphometric analysis of NF-L-IGFBP-5 transgenic and control mice 
Overview of degeneration of axons and motoneurons in neuron-specific IGFBP-5-overexpressing mice. 
(Quantification was performed by Dr. Massimiliano Braga.) 
 

3.2.4 IGFBP-5 overexpression leads to reduction of myelination and a motor axonopathy 

In addition, myelin thinning was observed in sciatic nerve sections from 6-month-old 

IGFBP-5 transgenic mice (Fig. 3-2-6a), as also observed in IGF-1 knockout mice 44. The M-

ratio (myelin thickness/axon diameter) was significantly reduced by 20% in the transgenic 

animals (Fig. 3-2-6b) (P = 0.02, two-tailed Student’s t-test). In addition, a change in fiber size 

distribution in the sciatic nerve became apparent, with a significant reduction in larger fibers 

with a circumference between 20 µm and 25 µm in IGFBP-5-overexpressing mice (Fig. 3-2-

6c) (P < 0.01, two-way ANOVA). This suggests that local inhibition of IGF-1 not only affects 

larger axons but also the degree of myelination in Schwann cells. 
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Figure 3-2-6: Myelination of sciatic nerve is impaired in IGFBP-5-overexpressing mice 
(a) Examples of sciatic nerve sections showing representative myelinated axons. (b) Quantification of M-ratio 
for myelin thickness in sciatic nerve from IGFBP-5-overexpressing and control mice (control = 0.20 ± 0.01, n = 
3; tg = 0.16 ± 0.02, n = 3, n > 150 axons; P = 0.02, two-tailed Student’s t-test). Scale bar =10 µm. (c) Change in 
fiber size distribution in 6-month-old sciatic nerve by a 4.5% reduction of larger fibers with a circumference 
between 20 μm and 25 μm in IGFBP-5-overexpressing mice (tg = 15.8 ± 2.1%, n = 5, more than 2500 axons; 
control = 20.3 ± 2.0%, n = 3, more than 1400 axons; P < 0.01, two-way ANOVA). 
 

In order to functionally characterize whether elevated IGFBP-5 leads to a large-fiber 

neuropathy similar to that observed in patients with DNP, and to detect a potential functional 

contribution of reduced myelin thickness, the distal and proximal CMAP amplitudes and 

nerve conduction velocities (NCV) were measured by Dr. Jürgen Zielasek and Professor Dr. 

Klaus Toyka using electrophysiological techniques 307,308. The first pair of stimulating 

electrodes was placed in the left sciatic notch and 2 cm laterally (proximal stimulation for 

proximal CMAP). A second pair of stimulating electrodes was inserted subcutaneously along 

the tibia1 nerve just above the ankle (distal stimulation for distal CMAP). Recording 

electrodes were placed in the skin close to the hallux, and between digits 2 and 3 of the left 

foot of 5- to 6-month-old IGFBP-5-overexpressing mice 308. The electrophysiological signal 

travels a shorter distance when stimulated at the distal stimulation to the recording electrodes 

and therefore the distal CMAP is higher (Fig. 3-2-7a, b). The proximal CMAP is smaller, 

because it loses strength over distance. In control animals the loss of the signal between 
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promixal to distal CMAP is in the range of approximately 5 to 25% 308. Due to myelination 

defects this range can be increased in mutant mice. 

As expected, in control mice the mean of the proximally elicited CMAP was smaller than the 

distally elicited CMAP, but the difference was not statistically significant. In transgenic 

animals, the proximal CMAP showed a significant reduction of 32% compared to the distal 

CMAP, indicating a partial lack of signal transmission due to myelination abnormalities (Fig. 

3-2-7c, d). In addition, a significant 18% reduction in motor conduction velocity was 

observed in the sciatic nerve of IGFBP-5 transgenic animals compared to the wild-type 

controls, which could be explained by reduced myelination (Fig. 3-2-7e). 

 

 
Figure 3-2-7: IGFBP-5-overexpressing mice show reduced CMAP and nerve conduction velocity 
(a) NCV studies in the sciatic nerve of control animals and (b) 5- to 6-month-old IGFBP-5 transgenic mice. Note 
that for the distal CMAP of the IGFBP-5 tg animals a higher gain of 8 mV/division instead of 5 mV/division was 
used for better display. Control mice show only a slightly reduced proximal CMAP compared to the distal one. 
In NF-L-IGFBP-5 animals, the proximal and distal CMAPs are reduced. 
(c, d) Quantification of the proximal and distal CMAPs in control and IGFBP-5 transgenic animals. The 
proximal CMAP was 21% smaller than the distal CMAP in control mice (proximal CMAP: 16.3 ± 3.9 mV, n = 
8; distal CMAP: 20.5 ± 4.6 mV, n = 8; P > 0.05, one-way ANOVA). In IGFBP-5 transgenic animals, the 
proximal CMAP showed a significant reduction by 32% as compared to the distal CMAP (proximal CMAP: 14.8 
± 2.2 mV, n = 12; distal CMAP: 21.7 ± 3.0 mV, n = 12; P < 0.001, one-way ANOVA). 
(e) Motor NCV is reduced by 18% in sciatic nerve of NF-L-IGFBP-5 transgenic mice (controls: 48.4 ± 8.4 m/s, 
n = 8; tg: 39.8 ± 8.8 m/s, n = 12; P = 0.04, two-tailed Student’s t-test). Data sets are expressed as mean ± SD. 
(Electrophysiology was performed by Dr. Zielasek and Professor Dr. Toyka.) 
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3.2.5 Conditional depletion of IGF-1 receptor (Igfr) in motoneurons results in axonopathy 
and motoneuron loss similar to that seen with IGFBP-5 overexpression   

In order to investigate whether the axon and motoneuron loss occurring with IGFBP-5 

overexpression is due to reduced availability of IGF-1 for axons, we analyzed mice with 

neuron-specific inactivation of the type 1 IGF receptor (NF-L-Cre, IgfrloxP/loxP) and 

corresponding littermate controls (IgfrloxP/loxP). These mice were generated by Dr. Jennifer 

Gunnersen. For this purpose, mice carrying loxP sites flanking exon III of the mouse Igfr gene 

were generated. Exon III encodes most of the cysteine-rich ligand-binding domain of the α-

subunit of the receptor, and disruption of this exon generates an inactive receptor 309. The Cre 

recombinase is under the control of the NF-L gene promoter 310. A reverse transcription-PCR 

was used for detection of the neuron-specific disruption of exon 3 (Fig. 3-2-8). 

 
Figure 3-2-8: Deletion of the IGF-1 binding domain (exon 3) in Igfr neuron specific knockout mouse  
Reverse transcriptase PCR reveals exon 3 deletion in neuronal tissue of NF-L-Cre, IgfrloxP/loxP mice. 
 

Exon 3 spanning primers were used for this reverse trancription (forward primer exon 2, 

reverse primer exon 6, transcript size: PCR: 313bp). A partial deletion in neuronal tissue was 

found and can be explained by the composition of the brain and spinal cord which contain 

more glial cells than neurons, in which no neurofilament promoter is active and hence no 

deletion occurs. This result confirms a specific inactivation of the Igfr in neurons of these 

mice. Heart tissue as a non-neuronal tissue showed no deletion of exon 3.  

NF-L-Cre, IgfrloxP/loxP mice also did not show any overt phenotype. Histological analysis of 

the phrenic nerve of 6-month-old NF-L-Cre, IgfrloxP/loxP mice revealed a significant reduction 

in nerve fibers similar to that seen in NF-L-IGFBP-5 mice (Table 3-2-3, performed by Dr. 

Bettina Holtmann). Interestingly, the number of myelinated axons was significantly reduced 

in the sciatic nerve of the NF-L-Cre, IgfrloxP/loxP, as in IGFBP-5-overexpressing mice (Table 3-

2-3), but the M-ratio of myelin thickness to axon diameter was normal (Fig. 3-2-9a, b) (P = 

0.7859, two-tailed Student’s t-test), indicating no myelination defect in these mice. 

Furthermore, NF-L-Cre, IgfrloxP/loxP mice, like the IGFBP-5-overexpressing mice, also showed 



 91 3 Results 

a decrease of 6% in large fibers with a circumference between 20 and 25 µm (P < 0.05, two-

way ANOVA) (Fig. 3-2-9c). 

 

 
Table 3-2-3: Morphometric analysis of IGF-1 receptor knockout and control mice 
Overview of degeneration of axons and motoneurons in control and Igfr knockout mice. (Quantification was 
performed by Dr. Bettina Holtmann.) 
 
 

 
Figure 3-2-9: Igfr knockout mice show no abnormalities in myelination of the sciatic nerve  
Sciatic nerve sections (a) showing that the M-ratio of myelin thickness and axon diameter was normal (b) 
(control = 0.20 ± 0.03, n = 4; Igfr knockout: 0.20 ± 0.02, n = 4, n > 200 axons; P = 0.7859, two-tailed Student’s 
t-test). Scale bar = 10µm. (c) NF-L-Cre, IgfrloxP/loxP mice showed a decrease of 6% of larger fibers with a 
circumference between 20 μm and 25 μm (Igfr knockout = 13.6 ±2.9%, n = 4, more than 2200 axons; control: 
19.9 ± 2.9%, n=4, more than 1800 axons; P < 0.05 two-way ANOVA). 
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Determination of the number of facial and lumbar spinal motoneurons showed a progressive 

loss of cell bodies in NF-L-Cre, IgfrloxP/loxP compared to Cre-negative littermates. No 

reduction in cell number was apparent in newborn NF-L-Cre, IgfrloxP/loxP facial and lumbar 

spinal motoneurons (Table 3-2-3, performed by Dr. Bettina Holtmann). On the other hand, a 

significant reduction became apparent in 9-month-old Igfr conditional knockout mice in the 

facial nucleus (16%) as well as in the lumbar spinal cord (21%), resembling the IGFBP-5-

overexpressing phenotype (compare Table 3-2-3 with Table 3-2-2). Taken together, these 

results suggest that the loss of motoneurons and axons result from the lack of transduction of 

the IGF-1 pathway over its receptor. 
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4 Discussion  
Neurotrophic factors have a wide range of functions which include development, survival and 

maintenance of neurons, differentiation of glia cells and regulation of synaptogenesis and 

synaptic plasticity in mature neurons 81-86. Several neurotrophic factors have a direct impact 

on motoneuron survival and maintenance, as shown in pure cultured embryonic motoneurons 

or in vivo 89,311. These survival factors for motoneurons include CNTF, LIF, CT-1, IGF-1, 

GDNF and BDNF 89 (for details see Table 1-1). In this thesis I investigated the role of the 

neurotrophic factor CNTF as a compensatory sprouting mechanism in a mouse model for mild 

spinal muscular atrophy and the effects of IGF-1 on axon maintenance in a mouse model for 

DNP.  

CNTF is expressed as a soluble protein in Schwann cells in peripheral neurons, and in the 

central nervous system mostly in astrocytes 110. CNTF expression is very low during 

embryonic development, but becomes apparent in the rat sciatic nerve by day 4, reaching its 

maximum level in fully differentiated Schwann cells in the third postnatal week 78,112,113. This, 

and the fact that CNTF knockout mice develop completely normally, leads to the conclusion 

that CNTF has no central role in the development of the nervous system. After sciatic nerve 

lesion, CNTF is rapidly upregulated in Schwann cells for 1 week and increased in the 

extracellular matrix at the distal nerve segment to support the regeneration of the axon 113. 

CNTF knockout mice show a progressive motoneuron loss of 20% that correlates with a mild 

loss of muscle strength within the first 6 months (Fig. 3-1-10) 114,118. This indicates the 

importance of CNTF in motoneuron and axon maintenance in adulthood. 

Further studies reveal CNTF to be an inducer of axonal sprouting near the NMJ when injected 

over the surface of the adult mouse gluteus muscle 107. Furthermore, mice lacking CNTF 

showed no sprouting response after sprouting-inducing stimuli, such as injection of botulinum 

and transection of a nerve branch. However, exogenous CNTF administration given in 

parallel to the stimuli induces sprouting in CNTF knockout mice 127. The important role of the 

compensatory mechanism of CNTF in other diseases could also be shown. 2% of the Japanese 

and German populations have a G to A transition at position –6 in the first intron of the 

human CNTF gene. This transition creates a new splice acceptor site that leads to aberrant 

splicing of the mRNA and to a truncated, inactive CNTF protein. Patients with motoneuron 

diseases show a similar CNTF deletion frequency of 2%, indicating that CNTF deficiency is 

not directly related to neurological diseases 312,313. However, a study identified CNTF as a 

modifier gene in familial and sporadic amyotrophic lateral sclerosis ALS (FALS, SALS). 
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These ALS patients exhibit an earlier onset and a more severe progression of the disease when 

they also carried the homozygous CNTF gene defect. These findings were confirmed by a 

FALS mouse model (hSOD-1G93A) that was crossbred with CNTF null mutations. hSOD-

1G93A mice without CNTF show a significantly earlier onset of motor defects and shorter 

survival compared to the hSOD-1G93A mice with a functional CNTF gene 314. Other mouse 

models confirmed the finding of CNTF as a positive modifier gene in motoneuron diseases. 

Addition of CNTF by application via CNTF-secreting stem cells 103 or by local injection into 

skeletal muscle 302 leads to improved maintenance of motor axons in pmn mutant mice or 

neuromuscular endplates in hSOD-1 G93A mice 295. 

GDNF also supports motoneuron survival in vitro and in vivo (Table 1-1) 98. GDNF is very 

potent in supporting the survival of purified cultured embryonic motoneurons, and after 

axotomy GDNF rescues and prevents atrophy of facial motoenurons in vivo 98. Additionally, 

GDNF slows the loss of motoneurons in pmn mice. However, it does not prevent axon loss or 

prolong survival in pmn mice in the way that CNTF does 102. Furthermore, GDNF knockout 

mice that die at birth show the importance of GDNF for motoneuronal development as 

opposed to the compensatory mechanism in adult stages. Additionally, muscle-specific GDNF 

has a more important role in the maintenance of hyperinnervation of NMJs, rather than 

inducing axonal sprouting in adult animals. This strengthens the proposal that GDNF is 

important in motoneuron development and innervation of the NMJ, but that CNTF is more 

effective in axon maintenance or inducing sprouting in degenerative processes. 

Besides CNTF, Schwann cells are also the source of BDNF, another important neurotrophic 

factor. BDNF belongs to the family of neurotrophins (Table 1-1). BDNF knockout mice show 

ataxia, loss of myelinated sensory neurons and vestibular neurons, and die after a few days 87. 

In contrast to CNTF, BDNF mRNA is undetectable in healthy rat sciatic nerves. However, 

BDNF mRNA rises slowly, starting at 3 days after nerve lesion in Schwann cells, and reaches 

maximal levels after 3-4 weeks exclusively in distal nerve pieces 96, indicating the long-

lasting regeneration potential of BDNF for sensory- and motoneurons 96. Thus CNTF could 

support degenerating or lesioned axons within the first few days and BDNF could be 

responsible for later postinjury recovery stages 87. However, the high endogenous 

concentration of CNTF in the Schwann cells of adult healthy animals could lead to the 

conclusion that CNTF plays a more prominent role than BDNF in axon maintenance, and 

could trigger a possible mechanism, such as axonal sprouting, to compensate for 

neurodegenerative processes. All this is evidence that CNTF is the most promising 
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neurotrophic factor that can play a role as a positive modifier able to counteract motoneuron 

degeneration, among other mechanisms by sprouting. 

IGF-1 is a pluripotent hormone with several functions in the body: for example, growth 

during development and anabolic effects 315. IGF-1 also promotes neuronal survival and 

myelination by acting on neurons and Schwann cells respectively 89,44,45,171,172. It is also 

involved in regenerative reactions like nerve sprouting in denervated muscles, indicating its 

important role for axon maintenance 135. The impact of IGF-1 is modulated by 6 binding 

proteins. In this study it was shown that IGFBP-5 can inhibit the survival-promoting effect of 

IGF-1 on motoneuron maintenance, leading to murine axon and motoneuronal degeneration in 

vitro and in vivo. 

 

4.1 Ciliary neurotrophic factor-induced sprouting preserves motor function in 
a mouse model of mild spinal muscular atrophy 

Patients with severe forms of SMA (Type I) have its onset during the first 6 months after 

birth. The fast progression of axonal and motoneuron loss in the entire spinal cord results in 

strong hypotony of the musculature and leads to death within the first two years 198,203. These 

patients show no signs of axon regeneration during the course of their motoneuron disease, 

and experience a rapid decline of musculature because the axon degeneration and skeletal 

muscle denervation occurs too fast 198,203. Patients with the mild SMA form Type III develop 

an atrophy in juvenile age and have a normal lifespan 205. They can walk and sit and are 

diagnozed later. Their muscle strength then declines; however, this decline decelerates and 

muscle strength stabilizes at a low level. In parallel, signs of compensation by increased 

motor units are observed. This was also seen in some ALS patients with slow progression of 

the disease. In ALS patients with fast progression of neuronal loss and atrophy, no 

compensation was found 203. Taken together, this indicates that diseases with slow progressive 

denervation allow time for compensatory mechanisms, such as sprouting, at least in some 

degree to reinnervate newly denervated muscle fibers and prevent them from atrophy. In this 

study, I was able to show that Smn+/- mice, a mouse model of mild forms of SMA, can 

maintain muscle strength through the increase in amplitude of single motor action potentials 

in skeletal muscles. The loss of motoneurons is thus compensated by sprouting from 

remaining motor axon terminals so that neuromuscular endplates remain innervated. 

Electrophysiological analyses and muscle strength measurements indicated that a lack of 

CNTF reduces this sprouting response on both morphological and functional levels. 
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The most severe form of spinal muscular atrophy, SMA type I, or Werdnig-Hoffmann’s 

disease, differs from the milder forms SMA type II, type III and type IV by its fast 

progression and high mortality in early childhood 198,203. In accordance with this, Smn-/- 

SMN2tg mice expressing two copies of the human SMN2 gene on a mouse Smn null 

background die within few days after birth and do not survive beyond postnatal day 6 198,262. 

In these SMA type I mice a 20% motoneuron loss at postnatal day 1 (P1) could be observed, 

which reaches a peak of 35% loss at P3-P5 in the spinal cord and brainstem at the final stage 

of the disease 262. The fast progression of the disease suggests an absence of compensatory 

mechanisms in comparison to mouse models with a more moderate phenotype and a slower 

disease progression, as has been found in a model for SMA type III (Smn+/- mice) 141. This 

corresponds to observations that survival of isolated Smn-/- SMN2tg motoneurons in cell 

culture is not impaired, but that axon growth and presynaptic differentiation are disturbed due 

to the reduced amount of β-actin mRNA and protein in the distal axon and growth cone 253. 

Defective axon growth in motoneuron development has also been observed in Smn-deficient 

zebrafish, suggesting that these early defects lead to subsequent motoneuron loss 316. Also, the 

dysfunction of neuromuscular transmission plays a major role in these mouse models for 

severe SMA. Thus, most of the NMJs are innervated 1 day before death, but show reduced 

vesicle content, and this contributes to failed post-natal maturation of motor units and muscle 

weakness 249. Severe SMA mice show no defects in motor axon formation. However, 

denervation of the NMJ already occurs in embryogenesis 313. Similar defects were found in an 

SMA fly larvae, which shows disorganized motoneuron bouton clusters and reduced 

neurotransmitter receptor subunits in the muscle 317. 

Insufficient SMN protein arrests the postnatal development of the NMJ. Postsysnaptically, the 

mature clustering of ACh receptors is impaired. Presynaptically, poor terminal arborization 

and intermediate filament aggregates, resulting in disturbed neurotransmission 314. 

Taken together, axon finding and innervation occurs normally in mice models of severe SMA 

during embryonic development. However, a reduction in Smn protein of about 90% leads to 

the developmental stop of the axon growth cone and a functional NMJ cannot maturate. This 

means that despite the loss of motoneurons, almost all NMJs are innvervated; however, they 

lack proper function, and this leads to muscle atrophy. This declares SMA to be a growth-

cone maturation defect and NMJ synaptopathy that is at least partially caused by reduced β-

actin. The major task in mice models of severe SMA is maintaining function at the NMJ. 
In contrast, Smn+/- mice, which lack only 50% of functional Smn protein, survive and do not 

show any overt signs of motoneuron disease, despite progressive and significant loss of 
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motoneuron cell bodies at a level even higher than the SMA type I mice. Smn+/- mice have no 

motoneuron loss at birth, but then develop a progressive motoneuron loss that reaches 50% 

after 1 year 141. Apparently, these motoneurons could develop normally, and are more 

functional than the ones in the severe models. Obviously, 50% of Smn protein is not sufficient 

to maintain all motoneurons. However, the remaining motoneurons are able to sprout and 

reinnervate denervated motor endplates to maintain muscle strength (Fig. 3-1-1a, b).  

Most of endplates in the Smn+/- mice appear fully innervated and do not differ in size and 

shape to wild-type NMJs (Fig. 3-1-1c, d). However, first signs of increased denervation and 

fragmented endplates become apparent in 4-week-old mice (2.4%, in comparison to 1.7% in 

controls) and become more frequent after 6 months (5.1% Smn+/- mice to 2.5% in controls) 

(Fig. 3-1-5). Nevertheless, the number of denervated endplates remains small at any given 

time compared to what would be expected from a 50% motoneuron loss. This could be 

explained by slow progressive denervation that can be compensated by sprouting events of 

axons at neighbouring intact NMJs. This study was able to demonstrate this through 

electrophysiological investigations of motor units of the gastrocnemius muscle. The SMUAPs 

show a more than two-fold increase in Smn+/- mice. Similar electrophysiological findings, 

such as the lack of abnormal spontaneous activity and enlarged motor units, were reported for 

patients with milder forms of SMA 198. These increased motor units are abolished in Smn+/- 

mice lacking CNTF, which is normally expressed in Schwann cells (Fig. 3-1-15). Confocal 

analysis confirmed the hypothesis of CNTF-dependent sprouting in Smn+/- mice. In 6 month-

old Smn+/- mice, increased axonal sprouting close to the NMJs was detected, which was also 

CNTF-dependent (Fig. 3-1-10, 3-1-13). Histological investigations of muscle fibers reinforce 

the idea that sprouting is a compensatory mechanism. Smn+/- mice show more atrophic and 

hypertrophic muscle fibers (Fig. 3-1-2). Additionally, enhanced fiber grouping of slow twitch 

fibers in 12-month-old Smn+/- mice was found (Fig. 3-1-4), indicating denervation and 

subsequent reinnervation by sprouting of remaining motoneurons. This corresponds to 

findings in a FALS mouse model where slow motoneurons are more resistant to denervation 

events than fast fatiguable motoneurons. In this study axonal vulnerability was alleviated by 

peripheral application of CNTF 295. Slow motoneurons compensate through sprouting and 

reinnervation of denervated muscle fibers. 

These data indicate that CNTF is responsible for the sprouting response that leads to this 

enlargement of motor units and thus compensates for loss of motoneurons in the milder forms 

of the disease. 
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4.1.1 The physiological consequences of SMN deficiency in motoneurons 

For a better understanding of how CNTF-induced sprouting could rescue the Smn+/- mice, the 

consequences of SMN deficiency will be described in the following paragraph. Although the 

disease-determining gene SMN as well as one of its major functions have been identified, the 

pathomechanism of SMA is not fully understood. There are two hypotheses about the 

mechanism that leads to motoneuron degeneration in SMA; these hypotheses are not 

contradictory and could also be linked. It is very important to understand previous findings 

concerning the SMA pathomechanisms in motoneurons to get a better insight into how CNTF 

can counteract the muscle atrophy by sprouting. 

The first hypothesis suggests that reduced levels of SMN protein lead to lower assembly 

activity of certain UsnRNPs and affect splicing of pre-mRNAs in all cells 231. Consequently, 

this could lead to lower splicing rates, resulting in alternatively mRNAs 318. Obviously, the 

reduced amount of SMN protein in SMA patients is sufficient for development, survival and 

function of all cell types, with the exception of motoneurons. The specific vulnerability of 

motoneurons could be explained by their large cell size (with axons of the sciatic nerve, for 

example, reaching a length of up to 1 meter) and their higher need for proper mRNA 

processing and translation into proteins (e.g., axon growth and maintenance) 252. Furthermore, 

reduced snRNP assembly could negatively influence the splicing of mRNAs that are only 

essential for motoneurons. This might be a reason why motoneurons are more vulnerable than 

other cell types in SMA 231. 

The second hypothesis suggests that the SMN protein has an additional neuron-specific 

function besides UsnRNP assembly. It has been shown that the expression of neuronal Smn 

protein corrected SMA in mice while muscle-specific SMN protein failed to provoke such an 

effect 263. This finding suggests that deficiency of Smn in neurons rather than in muscle is 

relevant for this disease. This idea is also supported by observations made with isolated 

motoneurons from SMN-deficient mice 253,319 that show specific defects in axon growth when 

grown under conditions in which they do not have any contact with other types of cells. 

Similarly, morpholino-mediated knockdown of Smn in motoneurons results in reduced and 

misguided axon growth in zebrafish embryos 316,320-322. 

These data show that axons of motoneurons are the most vulnerable part in the SMA 

pathology. Endogenous or pharmacological factors for axon maintenance could have a 

positive effect on SMA motoneurons and could alleviate the atrophy. In this mild SMA mouse 

model under investigation, CNTF maintains muscle strength by supporting unaffected 

motoneurons to take over the function of degenerating axons. 
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The SMN protein is present in axons and growth cones of motoneurons in culture and as part 

of a multiprotein complex containing gemins and profilin but lacking Smn proteins 296,323. 

Furthermore, in axons Smn interacts with HuD and hnRNP-R proteins, which are involved in 

RNA transport 254,324. The finding of shorter axons and reduced β-actin protein and mRNA 

transport along axons to the growth cone in severe SMA cultured motoneurons led to the 

commonly accepted hypothesis that hnRNP-R interacts with the 3′-UTR of actin mRNA and 

translocates it with its binding partner Smn towards growth cones of motoneurons 253. 

Lentiviral knockdown of hnRNP-R in motoneurons reduces β-actin mRNA translocation to 

the axonal growth cone and axon elongation 325. These observations resemble the phenotype 

of Smn-deficient motoneurons. The interaction between hnRNP-R and Smn in motoneuron 

axons indicates that reduced Smn protein cannot bind sufficient hnRNP-R with β-actin 

mRNA. Therefore, the transport and supply of β-actin mRNA to the growth cone is disturbed 

and results in reduced β-actin protein levels and corresponding deficiencies in the actin 

cytoskeleton 254. The actin cytoskeleton is involved in axonal growth and sprouting (for 

details see 4.1.2). Therefore, CNTF could induce endogenous actin polymerisation in more 

resistant motoneurons of Smn+/- mice and counteract the actin cytoskeleton pathomechanism 

in SMA. 

In the vertebrate retina, it was demonstrated that the actin cytoskeleton regulates ion channel 

clustering, for example Cav2.2 calcium channels 326,327. Indeed, it was observed that cultured 

motoneurons derived from mice with severe SMA 319 were incapable of accumulating Cav2.2 

in axon growth cones. This reduction of Cav2.2 has two consequences. First, the local influx 

of calcium and the linked vesicle release is impaired in axon terminals 257,319. Second, the 

interaction of presynaptic located Cav2.2 with motor endplate-specific laminin-221 is reduced. 

Laminin-221 mediates the development of active zones and presynaptic differentiation 328,329. 

Consequently, NMJs of SMA mice appear immature with abnormal development, 

accumulation of neurofilament, altered intracellular Ca2+ homeostasis, reduced vesicle release 

and terminal arborisation 257,258,330-332. 

All these data suggest a second function of Smn protein in axonal transport. Smn interacts 

with mRNA binding proteins such as hnRNP-R and HuD, which facilitate the localization of 

associated poly(A) mRNAs in axons 324. Actin mRNA is one of the important targets and its 

reduced transport into the growth cone leads to disturbed axon growth and development. 

Another proof is that the overexpression of plastin 3 rescues axon length and outgrowth in 

Smn-deficient motoneurons of SMA mice 333. Plastin 3 is a filamentous actin-stabilizing 

protein, which is important for axonogenesis through increasing the F-actin level 334. 
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These results indicate that reduced actin protein levels are related to motoneuronal death and 

the SMA phenotype. The CNTF-induced sprouting mechanism also requires actin. Growth 

cones of newly sprouted axons contain a highly dynamic actin cytoskeleton to reinnervate 

denervated muscle fibers. Possible pathways for CNTF to induce sprouting and act on the 

actin cytoskeleton will be discussed in the following sections.  

 

4.1.2 How could CNTF or other neurotrophic factors act on maintenance of motor 
endplates and induction of sprouting in Smn+/- mice?  

Sprouting is the ability of neurons in the central and peripheral nervous system to form new 

neuritic processes (sprouts) to respond to denervated targets 58. As a response, remaining 

neurons form new sprouts to reinnervate recently denervated neurons or muscle fibers 128. 

Sprouting can be subdivided into terminal or ultra-terminal sprouts from motor nerve 

terminals, and nodal or axonal sprouts from nearby nodes of Ranvier (Fig. 1-4). Lack of 

activity in paralyzed muscles leads to an upregulation of cell surface and basal lamina 

proteins that could guide new axon sprouts to the endplate 131-134. Furthermore, it was shown 

that exogenously administered trophic factors, including CNTF, induce sprouting 107,135. The 

sprouted axon is guided by processes of Schwann cells that play a primary role in initiating 

sprouting and guidance 136,137. Furthermore, Schwann cells or denervated muscle fibers might 

be involved in releasing sprouting factors in response to an unknown trigger. These sprouting 

factors, which could include CNTF, IGF-1, BDNF or LIF-1, lead to extension of elaborated 

branches of terminal Schwann cells on a denervated muscle fiber to form bridges to intact 

synapses 137,138. These bridges could guide new sprouts from an intact motoneuron terminal to 

a denervated target 130,139,140. 

Injection of CNTF into rat muscles induced nodal and terminal sprouting, whereas Cntf 

knockout mice showed decreased sprouting 107,108. Our investigations of Smn+/- Cntf-/- and 

Cntf-/- animals confirmed these data and also showed reduced numbers of sprouts when 

compared to Smn+/- and control mice (Fig. 3-1-10c). However, it is still unknown how CNTF 

induces sprouting. Although CNTF is clearly detectable in myelinating Schwann cells, it is 

absent or only weakly expressed in non-myelinating terminal Schwann cells 130. In this study, 

this expression pattern was also observed at NMJs (Fig. 3-1-8a). It still remains uncertain 

whether CNTF is actively secreted or only released by damaged Schwann cells. However, it is 

generally thought that only CNTF-negative terminal Schwann cells are involved in sprouting. 

They do so by forming extensions of their elaborated branches on a denervated muscle fiber 

to form bridges with intact synapses 137,138. This contradiction could be explained by looking 
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at the CNTF binding receptor component CNTFRα. CNTFRα is found in Schwann cells, 

motoneurons and muscle fibers. Therefore, CNTF could induce sprouting directly by binding 

to CNTFRα in motoneurons or Schwann cells. Thus, CNTF released by myelinating Schwann 

cells could indirectly induce sprouting by activating CNTF receptors in muscle fibers. In 

response, muscle fibers could release muscle-derived sprouting factors such as IGF-1, which 

induces sprouting processes in motoneurons and Schwann cells 130. Alternatively, CNTF 

could be released by myelinating Schwann cells located near the NMJ, which directly induces 

sprouting in the intact axon, which in turn sprouts out to neighboring denervated postsynapses 

by nodal sprouting. In this thesis most of the sprouts were nodal, while terminal sprouts were 

rarely observed (Fig. 3-1-3d, 3-1-13).  

Among CNTF, other factors could play a role in the observed sprouting events. LIF also could 

play a role in Smn+/- mice. LIF transduces its signal through the same receptor components as 

CNTF and can induce sprouting of postganglionic sympathetic fibers into the dorsal root 

ganglia in adult rats following peripheral nerve injury 116. Furthermore, it is essential for 

postnatal maintenance of motoneurons and plays a specific role in the control of motor 

endplate size 118. 

Neurotrophins, especially BDNF, could also be involved in the CNTF-induced sprouting 

mechanism. TrkB, the receptor for BDNF, plays a role in the maintenance and formation of 

the NMJ 91,92. The BDNF level is increased in denervated muscle fibers both in lesioned mice 

and ALS patients 335,336. Additionally, it is also upregulated in axotomized motoneurons and 

plays an important role in their survival 337,113. In axotomized motoneurons, low doses of 

BDNF treatment enhance motor axon regeneration 338. 

BDNF could therefore be involved in anterograde signaling for sprouting, released by axons 

or Schwann cells and acting on muscle fibers, which in turn releases sprouting factors. 

Another possibility would be that BNDF is released as a sprouting factor by muscle fibers to 

act in a retrograde manner on motoneurons. Although there is no direct evidence that BDNF 

is involved in motoneuron sprouting, it could play a role in the CNTF-induced sprouting 

mechanism. 

 

4.1.3 Possible downstream targets of CNTF receptor complex and IGF-1 receptor that 
induce sprouting 

When the ligand binds the CNTF receptor complex, classical signaling pathways such as B-

Raf 77 and the phosphatidylinositol 3 kinase (PI-3K) pathways are activated, which not only 

maintain survival but also mediate effects on the cytoskeleton 339. In addition, activation of 
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the CNTF receptor complex leads to activation of Stat-3. Interestingly, activated Stat-3, 

phosphorylated at Ser 727, has been shown to affect mitochondrial potential in non-neuronal 

cells. One possibility is that a local effect of activated Stat-3 on mitochondria is responsible 

for the effects of CNTF on synapse maintenance and sprouting 340. In accordance with that, in 

a mouse model with conditional inactivation of the Stat3 gene in motoneurons, these cells are 

more vulnerable in adult stages after nerve lesion 310. 

For axon outgrowth, elongation and sprouting, a change of the axonal cytoskeleton – 

particularly microfilaments and microtubules – is necessary to form new sprouts 341. Stat3 can 

interact with the microtubule-destabilizing protein stathmin. Stathmin has the ability to bind 

α/β-tubulin heterodimers to facilitate the depolymerization of microtubules 342. By CNTF 

release from the Schwann cells, Stat-3 could be activated downstream through the CNTF 

receptor complex in motoneurons. Stat-3 then binds stathmin in the cytoplasm, which leads to 

more accessible α/β-tubulin heterodimers. Free α/β-tubulin heterodimers can be polymerized 

to prolong existing microtubules and form a cytoskeleton base for new sprouts. Furthermore, 

it was shown that Smn deficiency leads to severe structural and functional alterations in the 

organization of the cytoskeleton of motor nerve terminals within the first week of a mouse 

model of severe SMA, including limitation of microtubule maturation 343. CNTF is not 

expressed in the first week and so cannot be counteracted by inhibition of stathmin in this 

severe model. However, CNTF expression starts at the end of the first postnatal week and 

reaches a high concentraton in the third week 112,344, and so could counteract in the Smn+/- 

mice model. 

Cytoskeletal rearrangement needs axonal translation of anterograde transported mRNAs. It is 

also possible that CNTF mediates sprouting via local translation in motoneurons. The CNTF- 

Stat3 pathway includes the activation of the mammalian target of rapamycin (mTOR) 345. 

Recently, it was shown that depletion of Phosphatase and tensin homolog (PTEN), a negative 

regulator of mTOR, leads to increased growth cone size, promotion of axonal elongation and 

increased survival of SMA motoneurons, meaning that activation of mTOR leads to 

downstream signaling pathways for local synthesis to restore β-actin protein levels in growth 

cones of SMN-deficient motoneurons 346. This local translation of β-actin RNA could lead to 

more actin polymerization and trigger sprouting. 

RhoA, a small GTPase, can be also locally translated 347. RhoA activates over RhoA kinase 

(ROCK) profilin which promotes actin polymerization. At the same time, ROCK activates 

LIM kinase that inhibits cofilin’s ability to bind and depolymerizes actin by 

phosphorylation 348.  
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Thus, CNTF could support the actin cytoskeleton for sprouting either by local translation of 

β-actin mRNA or by modulating targets for actin. 

Neurofilament might play a minor role in the sprouting mechanism. The absence of 

Neurofilament light (NF-L) protein in mice resulted in a 20-fold decline of neurofilament 

medium and heavy protein levels in the sciatic nerve, while increases of other cytoskeletal 

proteins such as tubulin and growth associated protein 43 (GAP-43) were detected. Besides 

slightly hypotrophic axons, these NF-L knockout mice appear totally normal. In crush injury 

experiments it was shown that NF-L deficient axons of the sciatic nerves maintain the 

capacity to regrow and remyelinate, albeit at a slower rate. This indicates that neurofilament 

as a major axonal cytoskeleton component is not involved in axonal sprouting 349. 

CNTF could also act on muscles which respond with the release of sprouting factors such as 

IGF-1. It has been shown that IGF-1 is a muscle-derived factor and its injection into adult rat 

and mouse gluteus muscle resulted in terminal sprouting and elevated levels of nerve-specific 

GAP-43, which is associated with axon growth. High levels of GAP-43 are usually found 

only during development, where axon growth cones find their target, and in nerve lesions. 

Thus, after a denervation event, IGF-1 could be released by muscle or Schwann cells and bind 

to neuronal IGF-1 receptors. Through tyrosine phosphorylation the expression of GAP-43 is 

increased. GAP-43 is associated with F-actin and is linked to nerve-terminal 

sprouting 130,135,350.  

Injection of a recombinant adeno-associated virus (AAV) vector, encoding human IGF-1 

(AAV2/1-hIGF-1), into the deep cerebellar nucleus (DCN) of a type III SMA mouse model, 

cannot rescue the phenotype. After 8 months the spinal motoneuron showed changes in 

endogenous Bax and Bcl-xl levels that were consistent with IGF-1-mediated anti-apoptotic 

effects. Although the loss of motoneurons was reduced, the rescued motoneurons lacked 

functionality due to the loss of innervating axons 351. 

Thus IGF-1 has a positive effect on motoneuron survival, but obviously cannot rescue the 

“dying back” phenomenon of axons. One explanation could be that the induction of IGF-1 

also increases the IGFBP-5 expression in a negative feedback loop manner 352,353. IGFBP-5 in 

the extracellular matrix could prevent IGF-1 action. On the other hand, IGF-1 could be more 

important for the survival of the motoneuron soma than of the axon. Experiments on 

motoneurons in culture confirmed that axons of motoneurons grow shorter when cultured 

with IGF-1 compared to BDNF-cultured ones (Fig. 3-2-4c). 
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4.1.4 Why does CNTF not compensate in the severe forms of SMA in Smn-/- SMN2tg mice? 

CNTF expression is low during embryonic development 110,112. In the peripheral nervous 

system, high levels of expression are only reached when myelinating Schwann cells are fully 

mature. CNTF expression only becomes upregulated in Schwann cells starting at the end of 

the first postnatal week 112,344. In rodents, CNTF expression reaches the high levels found in 

the adult nervous system in the third postnatal week, which correlates with the myelination 

process of Schwann cells 43. Therefore CNTF is not present during the first days after birth, 

when these mice become severely paralyzed 262 and show pathologies such as depletion of 

synaptic vesicles at active zones and reduced synaptic transmission 257. 

Addition of CNTF by application via CNTF-secreting stem cells 103 or by local injection into 

skeletal muscle 302 leads to improved maintenance of motor axons in peripheral nerves of pmn 

mutant mice or neuromuscular endplates in SOD G93A mice 295. Interestingly, this effect 

appears to be relatively specific for CNTF, since other neurotrophic factors for motoneurons 

such as GDNF were without any effect in the same disease models 295,302.  

Schwann cells close to neuromuscular endplates play a major role in triggering terminal 

sprouting 137,354. As shown here, these cells express CNTF, and a lack of CNTF expression 

strongly reduces terminal sprouting and augmentation of motor unit size. Terminal Schwann 

cells have been found to express Semaphorin-3, and it has been suggested that the 

upregulation of Semaphorin-3 in terminal Schwann cells could suppress sprouting and 

contribute to loss of neuromuscular synapses in motoneuron disease 354. 

Other studies demonstrated that depletion of synaptic vesicles precedes the loss of synapses in 

a mouse model of ALS, and that CNTF could prevent the depletion of synaptic vesicles and 

thus maintain function of these synapses. This effect of CNTF correlates with reduced 

accumulation of neurofilaments 295, a hallmark of motoneuron disease in Smn deficient mice 
257,258 and in SOD G93A mice, and reduced expression of stress-related genes such as Bcl-

2a1-a that are normally upregulated in SOD G93A mice at a stage when synapse loss occurs.  

 

4.1.5 Why is the progression of the disease in CNTF-deficient Smn+/- mice not accelerated?  

CNTF is a member of a large family of neurotrophic cytokines that bind to receptor 

complexes involving gp130 and LIF-Rβ receptor subunits as signal-transducing subunits. This 

family further includes LIF, which is also expressed in Schwann cells, and cardiotrophin-1. 

Analysis of double and triple mutant mice for these factors revealed that atrophy of 

neuromuscular endplates and loss of muscle strength increases, if more than one of these 

ligands is missing 118. When LIF-Rβ is ablated, these mice die at birth, because they are 
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unable to breathe and feed 355. Despite these severe signs of paralysis, they exhibit a loss of 

only 40% of motoneurons, indicating that the loss of neuromuscular transmission rather than 

the loss of motoneuron cell bodies is responsible for the severe phenotype. Taken together, 

these data suggest that in this mouse model for mild forms of SMA, CNTF is not the only 

ligand responsible for maintenance of neuromuscular endplates, but plays a predominant role 

for the induction of sprouting. 

 

4.1.6 General therapeutic treatments and the possible role of CNTF in SMA patients 

Due to the fact that reduced SMN protein levels lead to development of SMA, the most 

reasonable therapeutic approaches deal with increasing the level of full-length SMN to oppose 

the cause of motoneuron loss. Sprouting as a compensatory mechanism induced by 

application of CNTF or other factors could counteract the muscle atrophy due to motoneuron 

loss, as muscle fibers remain innervated. As expected, then, the major strands of research 

focus on restoration of the SMN protein.  

 

4.1.6.1 Increasing endogenous SMN protein level 

Extra copies of the SMN2 gene fully rescued the phenotype in SMA mice due to an increase 

the SMN full-length level protein 262. Patients with homozygous absence of the SMN1 gene 

also appeared completely healthy, due to having more than two copies of the SMN2 gene 356.  

To detect factors which increase full-length SMN2 expression in SMA patients endogenously, 

drug screens were performed. Three members of the group of histone deacetylase (HDAC) 

inhibitors were identified to promote SMN transcription. Sodium butyrate, trichostatin A and 

valproic acid increase the transcription of 2% of all genes, including SMN. Unfortunately, all 

three drugs show very little beneficial effects in SMA mice and patients, and have several side 

effects due to their lack of specificity 357. 

Another strategy to increase the endogenous level of full-length SMN protein in humans is 

based on antisense oligonucleotide (AON) technology. Short DNA fragments can be used to 

bind and knockdown RNAs based on sequence specificity. AON can also be used to modulate 

pre-RNA splicing, for instance in SMN2 preRNA. It does so presumably by binding to regions 

of exon 7 that form RNA structures, or masking regions with a splicing silencer for exon 7 

and therefore promoting exon 7 inclusion 358. The disadvantage of AONs is that the 

application is restricted to the injection site, which makes the delivery to the target tissue, e.g. 
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motoneurons, more difficult 357. To overcome this delivery problem, viral vectors can be used 

to ensure a specific targeting and long-term expression. 

 

4.1.6.2 Viral gene therapy 

Lentiviruses or adeno-associated viruses (AAV) are two vector types used to deliver genetic 

material into organisms or cells. Lentivirus is a retrovirus and its genome is RNA coded. As 

soon as it infects a cell, the RNA will be reverse-transcribed into DNA and integrated into the 

genome of the host cell. In contrast to other retroviruses that can only integrate into dividing 

cells, the lentivirus can also integrate into non-dividing cells. The integration into the genome 

involves the danger of mutation of genes or activation of oncogenes in the host system. In 

comparison with lentiviruses, AAVs have higher gene-delivery efficiency in most cell types 

including dividing and non-dividing cells and do not integrate into the genome. 

In one study, a regular single-stranded AAV and a self-complementary AAV (scAAV) vector, 

characterized by a double-stranded DNA genome encoding hSMN, were injected into the 

CNS of a mouse SMA model. This self-complementary variant of AAV features earlier gene 

expression compared to the single-stranded one. It was shown that a subset of transduced cells 

were motoneurons in the spinal cord after CNS injection. The injection of a regular AAV 

increases the lifespan from 15 days to 50, whereas the self-complementary AAV caused a 

rescue of even up to 157 days 359. However, the immunological response might be a bigger 

issue in humans 357,360. To minimize the risk of viral vectors or drug injections, human 

induced pluripotent stem (hiPS) cells could be used in the near future. 

 

4.1.6.3 Human induced pluripotent stem (hiPS) cells 

Human induced pluripotent stem (hiPS) cells derive from reprogrammed patient fibroblasts. 

The generation of iPS cells is crucially dependent on the genes c-Myc, Oct3/4, Klf4 and 

SOX2 used for induction. These genes can be inducted into the cell by viral infection, or 

recombinant cell-penetrating reprogramming proteins can be induced to avoid using genetic 

material 361-363. The resulting iPS cells derived from SMA patients already exist and could be 

further differentiated into motoneurons 364 365. 

Once functional motoneurons derived from SMA patients and healthy persons exist in culture, 

all findings which have been made in cultured motoneurons over the years could be 

investigated in human motoneurons. Specific drug or virus application can be tested in a 

model system very close to human. With the help of electrophysiological methods these iPS 
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cell-derived motoneurons can be tested for whether they also show the similar pathologies of 

incapability of accumulating Cav2.2 in axon growth cones, abnormal development and 

reduced vesicle release as found in murine motoneurons 257,258,330-332. Even co-cultures of 

motoneurons and muscle cells derived from iPS cells could give rise to new therapeutic 

approaches.  

 

4.1.6.4 CNTF-induced sprouting as a compensatory mechanism in humans? 

CNTF induces sprouting in the mouse model for mild forms of SMA. Sprouting compensates 

the loss of motoneurons and maintains muscle strength. Unfortunately, when CNTF is given 

systemically to human patients with motoneuron disease, it elicits severe side-effects such as 

fever and cachexia 366, most probably due to effects on liver cells 367 and the cells of the 

immune system. These side-effects preclude its use for therapy in SMA patients. Recently, 

techniques have been developed for local application of growth factors such as VEGF to 

motoneurons and neuromuscular endplates 368. It is possible that such new strategies for 

growth factor delivery could reduce side-effects associated with systemic delivery. Local 

expression of CNTF appears attractive under circumstances when endogenous CNTF 

expression is low, at developmental stages when myelination of peripheral nerves is still 

incomplete. In summary, our observation that sprouting in milder forms of SMA prevents the 

decline of muscle strength despite massive loss of spinal motoneurons could guide the way 

for development of therapies for severe forms of SMA in which such sprouting reactions do 

not occur. In dying-back diseases such as ALS and SMA, synapses and axons collapse before 

the motoneuron cell bodies die. Patients only become clinically apparent once a large 

proportion of motor units are lost. Consequently, by that stage many motoneurons have 

already degenerated and a proper treatment for restoration of muscle strength is no longer 

possible. For that reason, one should focus on the maintenance of motor neuron terminals in 

order to prevent the progressive degradation. Besides all efforts to restore the decreased SMN 

level in patients and mice, an approach focusing on terminal/nodal sprouting to maintain the 

muscle strength could be of interest. It is clearly worthwhile to identify either the sprouting 

mechanism or a pathway that leads to endogenous upregulation of CNTF to induce sprouting 

first in SMA animals, then in patients. Once the sprouting mechanism is entirely revealed and 

inducible by drugs, it could delay or even prevent neuronal degeneration in several diseases.  
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4.2 Dysregulated IGFBP-5 expression causes axonal degeneration and 
motoneuron cell death in diabetic neuropathy 

In the second part of the thesis, the potential role in adult axon maintenance of IGF-1 and its 

binding protein IGFBP-5 was investigated with respect to DNP. 

Reduced IGF-1 leads to hypomyelination and reduced NCV which can be restored by IGF-1 

application. Demyelination is a feature of several neuropathies, including DNP which also 

involves the IGF system. The role of IGF-1 is therefore very interesting in diabetic 

neuropathy. 60-70% of patients with diabetes show some form of neuropathy 274-276. In 2000 

at least 171 million (2.8%) people suffered from diabetes mellitus 264, thus making DNP one 

of the most frequent axonal degenerative diseases in the world. 

Abnormal blood fat and neurovascular factors lead to damage of the blood vessels that supply 

neurons with oxygen and nutrients. This lack of essential supplies predisposes neurons to 

other factors and diseases, and causes neuronal death. The symptoms can vary, and affect 

autonomous, sensory and motor nerve fibers, starting by predominantly distal axon loss 264. 

Up to now, it remains unclear what causes the axon collapse. A shift in expression of 

neurotrophic factors or their modulating binding partner might play a role in the axon loss in 

DNP. 

Previous studies have reported reduced levels of circulating IGF-1 as a common feature in 

diabetes, with the magnitude of the reduction increasing with age and duration of disease 278. 

Similarly, reduced IGF-1 expression in peripheral nerves is observed at early stages of disease 

in the streptozotocin-induced rat model 279. 

To detect alterations in expression of insulin-related genes, a microarray analysis of patients 

with diabetic neuropathy and healthy persons was performed. IGFBP-5 showed the most 

prominent upregulation, being 7-fold compared to controls (Fig. 3-2-2). Western blot analysis 

revealed a more than 60-fold upregulation of IGFBP-5 on protein levels in DNP patients (Fig. 

3-2-2). Our results indicate that elevated IGFBP-5 protein levels and reduced IGF-1 signaling, 

found in peripheral nerves of patients with DNP, may be the crucial factors leading to 

progressive loss of motor fibers and subsequently to loss of motoneurons in corresponding 

mouse models. 

To address the question whether increased levels of IGFBP-5 could be responsible for 

motoneuron degeneration in these patients, we investigated a possible inhibitory effect of 

IGFBP-5 on the survival-supporting neurotrophic factor IGF-1. Neuronspecific IGFBP-5-

overexpressing mice also exhibit motoneuron and axonal degeneration in different nerves. 

Another generated mouse model, which lacks a functional IGF-1 receptor in neuronal tissue, 
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evinces similar levels of motoneuron degeneration and confirmed the negative effect of 

upregulated IGFBP-5 based on its inhibitory interaction with IGF-1. Collectively, our data 

indicate that additional components of IGF-1 signaling are dysregulated in the peripheral 

nervous system. 

 

4.2.1 DNP patients with motor fiber impairment show IGFBP-5 upregulation 

50% of patients who suffer from diabetes for 20 years show a neuropathy. DNP is often 

associated with loss of small caliber sensory nerve fibers. The general opinion that patients 

with diabetes only show sensory defects is based on medical examinations. Patients on 

suspicion of DNP are generally investigated by sensory non-invasive tests, because it is cost-

efficient and more pleasant. If a biopsy is required, a pure sensory nerve, like the sural nerve, 

is taken, thus ensuring that motor functions remain unaffected and only a small patch of the 

skin in the foot is numb after biopsy. However, large motor fibers are also affected and can be 

detected by needle EMG or the toe-spread test. If patients with DNP cannot spread their toes 

voluntarily, a motor component is involved. Another reason for overlooking motor 

involvement is muscular dystrophy: DNP patients who suffer from sensory ache in the limbs 

reduce their movement in order to reduce the pain. As a result they develop a muscular 

dystrophy which veils the degeneration of motor fiber. Two studies including over 300 

patients with diabetes show, besides sensory fiber loss, also a parallel or slightly delayed 

motor fiber impairment resulting in a reduced CMAP 369,370. 

In this study it was shown that IGF-1R, which mediates the trophic effects of IGF-1 on 

Schwann cells and neurons, is upregulated in nerve biopsies from DNP patients. The same is 

true for IGFBP-5, an IGF-1-binding protein that inhibits IGF-1-mediated survival and axon 

growth in motoneurons. On mRNA level IGFBP-5 is upregulated more than 7-fold and at 

protein level at least 60-fold in diabetic nerves compared to controls (Fig. 3-2-2, 3-2-1).  

 

4.2.2 NF-L-IGFBP-5 overexpressing and neurospecific IGF-1 receptor knockout mice:                          
Two complementary mouse models 

The elevated IGFBP-5 protein level found in DNP patients leads to the question whether 

upregulated IGFBP-5 could cause neuronal degeneration (Fig. 3-2-1, 3-2-2). In this study two 

different mouse models were generated to investigate the role of IGFBP-5 in inhibiting the 

IGF-1-mediated survival effect. In diabetic human nerves, IGFBP-5 is significantly 

upregulated in axons and the surrounding extracellular matrix (Fig. 3-2-3). In peripheral 
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nerves, IGF-1 is mainly expressed in Schwann cells in postnatal rodents 173 and acts on 

motoneurons and Schwann cells to support survival, myelination and regenerative 

reactions 46,89,178. IGF-1 promotes neuronal survival by activation of the IGF-1 receptor and 

cytoskeleton rearrangement over the PI3K/AKT pathway by phosphorylation of BAD in 

neurons 44-47,166,167. The reduction of IGF-1 can be also connected to neuronal degeneration in 

other diseases. For instance, it was shown that IGF-1 is reduced by 50% in early symptomatic 

age sciatic nerves of an ALS mouse model with reduced Schwann cell-expressed mutant 

SOD1 371. 

Therefore an increase of IGFBP-5 in the extracellular matrix could reduce these effects by 

binding IGF-1. To test this hypothesis we generated two mouse models. The first 

overexpresses IGFBP-5 under a neuronal promoter, the other is a conditional neuronspecific 

IGF-1 receptor knockout.  

The NF-L-IGFBP-5 transgenic mice show a progressive partial degeneration (about 20%) of 

several peripheral nerves and loss of motoneurons in the spinal cord over 6 months (Table 3-

2-2). Furthermore, a decrease of myelination of Schwann cells was apparent (Fig. 3-2-6) 

which affects nerve velocity conductance in these mice (Fig. 3-2-7). The loss of motoneurons 

and velocity conductance correlates with EMG observations made in diabetic patients with 

motor impairment. These defects progress slowly over time in these mice, as well as in DNP 

patients. 

To confirm that the phenotype of the IGFBP-5 transgenic mouse is based on the binding of 

IGF-1, a second mouse model was generated which lacks the IGF-1 binding site of IGF-1 

receptor in neuronal tissue. Interestingly, the axon and motoneuron loss of the IGF-R 

conditional knockout mice resembles the loss of IGFBP-5 transgenic mice (Table 3-2-3). In 

contrast to the IGFBP-5-overexpressing mouse model, the myelination was not affected in 

neuronspecific IGF-1R knockout mice (Fig. 3-2-9).  

 

4.2.3 Why do neuronspecific IGF-1R knockout mice show no loss of myelination? 

Interestingly, loss of myelination was not observed in mice lacking the ligand binding domain 

of the IGF-1R after Cre mediated recombination specifically in motoneurons, indicating that 

the observed defect in peripheral nerve myelination in IGFBP-5-overexpressing mice may be 

due to reduced IGF-1 function in Schwann cells. For the induction of myelination, insulin-like 

growth factor 1 (IGF-1) plays a major role 44. Igf1 knockout in mice leads to a broad range of 

defects in the brain, with hypomyelination as a major phenotype and loss of some neuronal 

populations in the CNS 44. These mice die by about 2 months. Postnatally, they do not exhibit 
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any significant loss of motoneuron cell bodies at early stages, indicating that motoneuron 

development during embryogenesis does not depend on IGF-1. Similarly, mice 

overexpressing IGFBP-5 appear normal at birth and at early stages thereafter. By 6 months, 

prominent loss of myelin occurs. The loss of motor fibers and motoneuron cell bodies was not 

detectable until 6 months of age, a stage that IGF-1-deficient mice do not reach 372. 

Overexpressed IGFBP-5 binds IGF-1 at the extracellular matrix, so that it cannot bind to IGF-

1 receptors both on the axon and the Schwann cells. Therefore the trophic support at the axon 

and the signal for proper myelination at the Schwann cells are missing. This explains the 

degenerating motoneurons and the reduced myelination in NF-L-IGFBP-5 transgenic mice. 

The NF-L-Cre IGF-1R conditional knockout mice also show this phenotype of degenerating 

motoneurons. However, the myelination appears normal. One explanation could be that the 

IGF-1R is specifically deleted in neurons due to the neurospecific promoter. This leads to 

reduced trophic support and neuronal degeneration. The Schwann cell IGF-1R is still intact 

and IGF-1 can induce proper myelination. To confirm this hypothesis the Igfr loxP/loxP mice 

should be crossbred with a NF-L-Cre under a Schwann-cell-specific promoter, e.g. S100. 

These mice should also show signs of reduced myelination.  

These mutant mice also revealed that axon maintenance is directly dependent on IGF-1R 

activation, since loss of large motor fibers in the phrenic, facial, and the mixed sciatic nerve 

was seen in the conditional Igfr knockout animals. Thus, the reduced availability of IGF-1 

coupled with elevated expression of IGFBP-5 in diabetic nerves would be predicted to have a 

major effect on myelination and to exert trophic support on axons. 

 

4.2.4 What could cause diabetic neuropathy and IGFBP-5 upregulation? 

In diabetes mellitus several metabolic changes – such as chronic high blood sugar levels, 

abnormal blood fat, and neurovascular factors – lead to damage of the blood vessels that 

supply neurons with oxygen and nutrients. This weakens neurons and predisposes them to 

other damaging factors and diseases, and could cause neuronal degeneration, called DNP. It is 

still unclear why high levels of glucose causes neuronal death. A combination of neuronal and 

microvascular deficits may cause DNP. Long-lasting hyperglycemia causes free radicals that 

damage lipids, proteins and nucleic acids. This in turn negatively influences signaling 

pathways and decreases cellular function, which ends in apoptosis or necrosis 181,277,278. 

Patients with DNP show an alteration of the IGF-1 axis; the soluble neurotrophic factor IGF-1 

is downregulated and could play a major role in this degenerative process 192,279. This was 

confirmed in STZ rodents, a model for painful DNP 353. The action of IGF-1 is regulated by 
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IGFBP-5. In our study, IGFBP-5 is at least 60-fold increased at the protein level in diabetic 

nerves when compared to nerves from healthy non-diabetic control individuals.  

What could cause the upregulation of IGFBP-5 in the DNP patients? It is feasible that IGF-1 

regulates the IGFBP-5 expression that in turn controls the IGF-1 action in a negative feedback 

loop. In mammary fibroblasts, IGF-1 treatment increases levels of IGFBP-5 mRNA 352. IGF-1 

leads to autophosphorylation of the IGF-1R which activates downstream the MAPK and PI3K 

pathways. Both pathways are required for an IGF-1-dependent increase of IGFBP-5 in 

mammary fibroblasts. Furthermore, in smooth vascular muscle cells the PI3K/AKT pathway 

but not the MAPK pathway is important for the IGF-1-mediated expression of IGFBP-5 373. 

However, the MAPK pathway inhibits IGFBP-5 expression in mammary epithelial cells after 

IGF-1 169. MAPK pathways are often activated during cell growth and differentiation is 

mediated by IGF-1 374. This IGF-1-mediated effect would be inhibited by high IGFBP-5 

levels. Therefore MAPK pathways could mediate cell growth and simultaneously ensure 

sufficient free IGF-1 by inhibiting IGFBP-5 expression. 

Taken together, IGF-1-mediated upregulation of IGFBP-5 expression is controlled differently 

by MAPK and PI3K/AKT pathways depending on the cell type. It is necessary to identify 

IGFBP-5-controlling pathways in motoneurons to get a closer insight into the pathology of 

DNP. It could be possible that MAPK pathways also have an inhibitory effect on IGFBP-5 

expression, as in mammary epithelial cells. Maybe this inhibitory effect is disturbed in DNP 

and this is what leads to the increase of IGFBP-5 observed in this study (Fig. 3-2-1, 3-2-2). It 

still remains unclear whether long-lasting hyperglycemia causes the upregulation of IGFBP-5, 

perhaps by oxidative stress that influences inhibitory elements – for example, MAPK or 

IGFBP-5 upregulation is a parallel event to hyperglycemia. 

 

4.2.5 Further steps to therapeutic approaches 

A study on IGF-1 treatment of patients with idiopathic small-fiber neuropathy, which is also a 

feature of diabetic neuropthy, showed no positive effect 375. One explanation for the 

diminished effect could be elevated IGFBP-5, which inhibits IGF-1 function. The observation 

that upregulated IGFBP-5 can cause progressive neuronal and myelination defects offers 

options for novel therapeutic strategies. Our data from mouse models suggest that inhibiting 

the upregulation of IGFBP-5 expression in peripheral nerves might prevent progression of the 

disease. Similarly, inhibitors of IGFBP-5 that block binding to IGF-1 could be of therapeutic 

benefit. As shown by X-ray crystallography, the domains of IGF-1 that bind to IGFBP-5 are 

different from those that bind to the receptor. Thus it should be feasible to discover inhibitors 
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that prevent the interaction of IGF-1 with IGFBP-5 but not with the IGF-1 receptor. A 

monoclonal antibody against IGFBP-5 or another inhibiting molecule could be injected in 

overexpressing IGFBP-5 mice to rescue the phenotype. Such molecules could not only 

prevent loss of motor axons and motor function but also loss of myelinated sensory axons and 

thus would open new therapeutic strategies that could be studied in prospective clinical trials 

for DNP.  

The neuronspecific IGFBP-5-overexpressing and IGF-1R knockout mice could be also 

valuable in obtaining a better insight into the CNTF-induced sprouting mechanism. One 

hypothesis regarding the sprouting mechanism could be further investigated. CNTF binds to 

its receptor in the muscle, which releases IGF-1 as a response. IGF-1 then binds to neuronal 

IGF-1 receptors. Through tyrosine phosphorylation the expression of GAP-43 is increased, 

which is associated with F-actin and is linked to nerve-terminal sprouting 130,135,350. The 

crossbreeding of Smn+/- with either the NF-L-IGFBP-5 or neuronspecific IGF-1R knockout 

mice could show whether muscle-released IGF-1 is downstream of the CNTF-induced 

sprouting mechanism. If that is true, the released IGF-1 would be either be bound by 

overexpressed IGFBP-5 at the extracellular matrix or would not be able to activate the deleted 

IGF-1R in motoneurons, and the sprouting should be decreased. 
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Besonders möchte ich mich bei meinen zwei besten Freunden Markus und Dikembe 

bedanken. Markus, deine Arbeitsmoral hat mich begeistert und es war immer motivierend zu 

wissen, dass auch zu später Stunde in der benachbarten Frauenklinik noch hart gearbeitet 

wurde. Du hast dir immer Zeit für zahlreiche wissenschaftliche Diskussionen genommen. 

Außerhalb der Arbeit konnten wir uns durch emotionsgeladene Tennismatches von der Arbeit 

ablenken. Desweiteren möchte ich mich bei Dikembe bedanken, der eine wirtschaftliche 

Dissertation bald abschließen wird. Die Telefonate und Besuche in München waren immer 

Wahnsinn und haben mir neue Kraft für das Labor gegeben. Danke, Jungs!!!  

 

Ausdrücklich möchte ich mich bei meinen Eltern, Inge und Jürgen Simon, bedanken, die mich 

immer unterstützt und motiviert haben. Egal wie groß die Zweifel und Sorgen auch waren, Ihr 

habt mir sie alle genommen. Tausend Dank! 

 

Zum Schluss möchte ich noch Dir, Jenny, danken. Du bist das Beste was mir je passiert ist. 

Obwohl wir seit zwei Jahren durch 6631 Kilometer getrennt sind, wird unsere Liebe immer 

stärker. Du hast mir immer Mut gemacht und an mich geglaubt. Die größte Motivation für 

diese Arbeit war, dass ich anschließend wieder bei dir sein werde.   


