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Abstract

In the initial phase of development of fish embryos, a prominent and critical event is the midblastula transition (MBT). Before
MBT cell cycle is rapid, highly synchronous and zygotic gene transcription is turned off. Only during MBT the cell cycle
desynchronizes and transcription is activated. Multiple mechanisms, primarily the nucleocytoplasmic ratio, are supposed to
control MBT activation. Unexpectedly, we find in the small teleost fish medaka (Oryzias latipes) that at very early stages, well
before midblastula, cell division becomes asynchronous and cell volumes diverge. Furthermore, zygotic transcription is
extensively activated already after the 64-cell stage. Thus, at least in medaka, the transition from maternal to zygotic
transcription is uncoupled from the midblastula stage and not solely controlled by the nucleocytoplasmic ratio.
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Introduction

The early development of many animals apparently follows a

common scheme: it is characterized by a rapid and synchronous

sequence of cell divisions [1][2]. During this period, the cleavage-

phase, the single cell of the fertilized egg is divided into a large

number of blastomers. This bulk of cells will finally form the

blastula. While the embryo reaches the blastula stage, the cells pass

through an important time point of early development, which is

called midblastula transition (MBT). This process changes both

characteristics and behavior of the cells. Before MBT, the cell

cycle is highly synchronous. It is rapid because the cells lack both

G1- and G2-phases [3] and there is no zygotic gene expression

[1][4][5][6]. The cell cycle elongates and desynchronizes only

after the cells have passed through the MBT. Cells gain motility

and start to express the zygotic genome while maternal mRNAs

are degraded [7].

The time points of activation of the midblastula transition vary

between different species. MBT starts early in Drosophila at stage 4

(embryonic division cycle 11) [8], in Xenopus at stage 8 (cycle 12)

[1][3][9][10] , in Zebrafish at stage 10 (cycle 10) [2] and earlier

work identified the beginning of MBT for medaka fish at around

stage 11 (cycle 11–12) [6].

At present, four models exist that try to explain MBT regulation:

the maternal clock [11][12], transcriptional abortion [5][13],

chromatin regulation [14][15], and the nucleo-cytoplasmic ratio.

Among these, the regulation by a nucleo-cytoplasmic ratio is the

oldest and best established model [1][2][9]. It proposes that

suppressor molecules are present in the cytoplasm of the

unfertilized egg and block several events like activation of zygotic

gene expression [1]. During the first cell divisions, these

hypothetical factors will be titrated out by the increasing number

of nuclei relative to the constant total volume of cytoplasm. As

soon as the concentration of repressing factors drops below a

certain threshold, they will lose their repressing potential and

MBT will start.

This hypothesis has been supported by functional studies using

nuclear transplantations and experimental manipulation of the

cytoplasmic volume. Such experiments resulted either in a delayed

or a premature beginning of the MBT [2][3]. Data from haploid [5]

or tetraploid [2][5] animals strengthened these observations.

Addition of extra DNA also led to an earlier start of the MBT

[16][17][18].

Molecular, cellular and embryonic processes at early stages

before MBT are neither well characterized nor fully understood

for teleosts in general and medaka (Oryzias latipes) in particular.

The medaka is a laboratory fish model of growing importance. It is

comparable to zebrafish and also holds many features that

legitimate it as a useful complementary model system [19]. For

developmental studies, both model systems are of great interest

since fertilization of eggs and embryonic development are external

and embryos are totally transparent throughout the complete

embryonic development.

However, medaka may be more expedient than zebrafish for a

couple of approaches that deal with the very early embryogenesis

because of its slower embryogenesis. Zebrafish hatch after 2–3

days post fertilization, whereas medaka embryos develop much

slower and do not hatch until day 7.

While a lot of research aiming at MBT in fish in general has

been performed using zebrafish [2] only one recent study
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concentrated on medaka [6]. The fact that the MBT of both

species starts at different time points gives a first hint that data on

zebrafish MBT might not be representative for all fish species and

that a closer look on medaka embryos is justified.

Unexpectedly, we find that a large number of medaka embryos

show highly asymmetric cell divisions as early as from the second

cell division onwards. This asymmetry is directly reflected in

different cell sizes and cytoplasmic volumes, but surprisingly

without negative effects on normal development. Medaka embryos

also lose cell-cycle synchrony already at cleavage 5, leading to

transition from synchronous to metasynchronous cell division.

Most surprisingly, we observed strong RNA polymerase II

phosphorylation down from the 64-cell stage and the subsequent

initiation of mRNA transcription. This might be connected to

regulatory processes that prepare embryos for the MBT or even

mark the beginning of MBT itself at a much earlier time point

than has been reported previously.

Results

Asynchronous cell divisions in early embryos
The cell cycle during cleavage stages is generally described as

being short and highly synchronous. Lengthening of the cell cycle

and upcoming asynchrony is taken as a sign for the beginning

MBT [1]. For Zebrafish, this event has been mapped to cycle 10

[2]. Time-lapse investigations in our laboratory on medaka fish

provided preliminary evidence that embryos from this species lose

cell division synchrony several stages before MBT occurs in

zebrafish, and establish a cell division behavior that is called

‘‘metasynchronous cell division’’ (Movie S1).

In order to investigate this phenomenon further, confocal

imaging was used to visualize differences in cell synchrony at

defined stages. We found that cell division is synchronous in

embryos until cell division 4, when embryos progress from 8 to 16

cells. First indications for an upcoming asynchrony appear at cell

division 5, 16 to 32 cells, when a temporal spacing of the cell cycle

between single cells can be detected (Fig. 1A).

During the following division cycles, cell division synchrony in

embryos is not lost completely. Rather, it is replaced by a specific

division pattern that is called ‘‘metasynchrony’’, which is defined

by cell division progressing in waves that start in the embryos’

center and spread out to their periphery. In early medaka

embryos, cells are usually arranged in an elongated or rectangular

manner until the 16-cell stage and in a roundish, disc-like manner

from the 32-cell stage on until gastrulation. Starting at cycle 6 (32

to 64 cells), when embryos have a sufficient number of cells to form

well-defined central and peripheral regions, more and more

embryos (5/13) are found in which a temporal spacing of mitosis

initiation between central and peripheral cells can be identified

(Fig. 1A, B).

This temporal spacing of mitosis initiation increases during the

following divisions. At the latest with division 8 (128 to 256 cells) it

reaches an extent at which all central cells have already re-entered

interphase while peripheral cells are still in late anaphase or

telophase (Fig.1B, Fig. S1).

These findings were confirmed by time-lapse observations of

embryos that were fluorescently tagged by injection of mRNA for

an eGFP labeled Histone2B protein (H2B-eGFP) and imaged

throughout the cleavage phase. These embryos showed highly

synchronous cell divisions until the 16-cell stage and an emerging

minor temporal spacing during the division from 16 cells to 32

cells (Fig. 2). During the following divisions, this temporal spacing

again increased until cell division initiation could be clearly

detected first in centrally located cells and later in peripheral cells.

For example, karyokinesis at division 7 (64 to 128 cells) has

finished in central cells while peripheral cells are still at late

anaphase or telophase (Fig. S2, Movie S2).

Tracking the size (as a determined area) of a single cell’s nucleus

and its daughter cells from a mid 8-cell stage to the late 64-cell

stage at constant time intervals for 45 consecutive measurement

points illustrates the relationship between the metasynchronous

cell cycle and the position of a cell within the embryo. Nuclei have

their largest area during interphase and this value decreases in

preparation for the next mitosis. The nuclear signal reaches its

smallest area at the metaphase when daughter chromosomes are

separated. Comparing the 4 displayed daughter cells at the passage

from 32 to 64 cells, the most central cell has condensed its

chromatin one measurement point earlier than the other 3 cells.

Later, the daughter cells of this early cell have entered cell division

two measurement points before the others (Fig. S3).

Furthermore, some of the embryos that were observed during

the time lapse experiments, divided asymmetrically from the 2-cell

to the 4-cell stage. In these embryos cell division also de-

synchronized at the cycle from 16 to 32 cells, but at the following

stages not each one of these embryos did develop the pattern

typical for the symmetrically dividing embryos described above,

where central cells cycled first and peripheral cells later (Fig. S4).

In the given example, cells first started division at one pole of the

embryo and cells on the opposite pole followed later (Fig. S5,

Movie S3).

Asymmetric cleavage at the 2-cell stage does not affect
embryo development

Time-lapse observations of injected medaka embryos showed

the occurrence of highly asymmetric cleavages from the 2-cell to

the 4-cell stage. For a detailed analysis the cleavage furrows and

the cell-arrangements of medaka embryos at the 4-cell stage were

investigated and consequently three distinct classes of embryos

were defined. They were designated type I, type II and type III

(Fig. 3). Embryos with almost perfect 90u cleavage furrows in the

center of the four cells and symmetry along the X and Y axes were

classified as type I embryos (Fig. 3Ai, Aii). Generally, these

embryos have four homomorphic cells, yet we occasionally

observed that two of the four cells were seemingly smaller than

the others. Type II embryos still feature 90u cleavage furrows but

have lost axial symmetry (Fig. 3Bi, Bii). The interception point of

the cleavage furrows is located at the center of the four cells, but

the furrows no longer build a cross-like structure. In a type I

embryo, cells only have contact to their directly neighboring cells,

but in a type II embryo two cells now also have contact to their

opposing cell, forming an hourglass-like structure. Type III

embryos include all the embryos that lack any symmetric cleavage

furrow or clear organization of the cells or both (Fig. 3Ci, Cii; Fig.

S6).

To investigate if asymmetric cleavages have a negative effect on

embryonic development, the survival rate of the three different

cleavage types was determined. Altogether, 774 embryos were

classified according to their cleavage furrows: 171 belonged to type

I (22%), 424 to type II (55%) and 179 to type III (23%) (Fig. 3D).

These embryos were raised under standard conditions and

monitored for early embryonic death. Surprisingly, among the

774 embryos, only one died before hatching and this one was

scored as type II. The remaining embryos developed normally and

hatched on time around day 7 post fertilization.

Time-lapse observations of developing embryos from the 4-cell

stage up to the 1024-cell stage were performed to investigate

possible effects of the cleavage type on development. Type I

embryos developed just like the idealized medaka embryo as

Asynchronous Cell Division in Medaka before MBT
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described by Iwamatsu [20]. They start with a typical clover leaf

shape and stay symmetric until stage 10, 1024 cells, when the

embryos reach the typical roundish disc of the early blastula stage

(Fig. S7). Type II embryos differ only at early stages from

Iwamatsus ideal embryo. At the 8-cell or 16-cell stage, embryos

sometimes showed slightly shifted shapes as cells were not

arranged in a symmetric manner. These shape differences were

usually compensated until the 32-cell or 64-cell stage, respectively.

Even type III embryos were able to establish the typical disc of the

early blastula stage. However, in these embryos this process

required more cell divisions and thus more time depending on the

grade of deviation from the type I development (Fig. S8). In the

given example, the embryo was not able to fully compensate

before 1024 cells (Fig. S9).

Unequal cell volumes at the 4-cell stage
In order to measure cellular volumes, embryos were stained

with CellMask DeepRed. However, this technique is not useful for

measuring embryos before the 4-cell stage because the cellular

boundaries to the cytoplasm are not apparent enough to clearly

define the shape of the cell. Only at the 4-cell stage the cellular

border has reached a level of clarity that allows the discrimination

of single cells (Fig. 4A). Fluorescent staining and confocal imaging

technique was chosen in order to monitor changes in all three

dimensions (Fig. S10).

A total of 33 embryos were scanned (11 type I, 11 type II and 11

type III) (Fig. 4B, Table S1). Of these embryos showed only very

few similar or equal cell volumes (5/33). Many consisted of three

cells of similar volume and a relatively large or small fourth cell

(20/33).

If cell volumes are examined with respect to the three embryo

types, it appears that the level of asymmetry is reflected by the level

of differing cell volumes. In particular, 9/11 of type I embryos

were found within the 16 embryos with the most similar volumes

between the largest and the smallest cell. In contrast to that, 11/11

of type III embryos were found within the 17 embryos with the

most different volumes between the largest and the smallest cell

(Fig.S11). However, there is no strict correlation since some type I

embryos were found that differed more in cell volumes than type II

embryos as well as some type II differed more than type III (Fig.

S12). The fold changes between the largest and the smallest cell of

each embryo were calculated (Fig. 4C, Table S1). The smallest

Figure 1. Desynchronization of cell cycle in early medaka embryos. Progression of cell cycle desynchronization in early medaka embryos
before MBT. (A) Image shows staining for DNA at 4 different cell divisions (4–8 cells, 8–16 cells, 16–32 cells, 32–64cells). (Ai–Aii) Synchronous cell
division at cycle 4 to 8 cells and at cycle 8 to 16 cells. (Aiii–Aiiii) Asynchronous cell division at cycle 16 to 32 cells and at cycle 32 to 64 cells. (Aiii)
Asynchronous cells at cleavage from 16 cells to 32 cells at random positions in the embryo; nuclei are at interphase (yellow arrows) or at late mitotic
phase (green arrows). (Aiiii) Asynchronous cleavage from 32 to 64 cells, cells in the center are in late mitotic phase (green arrows), most cells at the
rim are at interphase (yellow arrows). (B) Progression from synchronous to asynchronous and from asynchronous to metasynchronous cell division
between cycle 2 (2–4 cells) and cycle 9 (256–512 cells). Embryos that divided synchronously are represented by yellow bars, embryos that divided
asynchronously by green bars and metasynchronously dividing embryos by blue bars. Note that more synchronous dividing embryos are found
during the first three cell divisions (2–4 cells, 4–8 cells , 8–16 cells) than during the second three cell divisions (16–32 cells, 32–64 cells, 64–128 cells)
(Chi-test with p,0.001; for this, metasynchronous divisions were also counted as asynchronous divisions). Later, the number of embryos showing a
random asynchronous division pattern drops and more and more embryos show a clear metasynchronous cell division. By the division from 64–128
cells, the majority of the division pattern has changed from asynchronous to metasynchronous (p,0.001).
doi:10.1371/journal.pone.0021741.g001

Asynchronous Cell Division in Medaka before MBT
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observed fold change in an embryo was 1.05. Most embryos

ranged within a fold difference between 1.3 and 1.5 (15/33), but

values up to 2.69 were found as well. Type I embryos range from

1.05 to 1.47 times difference, type II from 1.24 to 1.74 and type III

from 1.49 to 2.69 (Table S1, Fig. S13).

RNA polymerase II phosphorylation and transcriptional
activity in early Medaka

To monitor the initiation of zygotic transcription, we started

with the investigation of RNA polymerase II (RNAPII) phosphor-

ylation. Unexpectedly, earliest phosphorylation was already

detected in nuclei of a fraction of cells in embryos at the 16-cell

stage (Fig. 5A). Positively stained nuclei remained rare during 16-

cell and 32-cell stages with 17% of all embryonic cells showing

positive staining at the 16-cell stage and 30% at the 32-cell stage

respectively. A specific spatial pattern for this time points could not

be identified (Fig. 5A, B).

By the 64-cell stage, the number of phospho-RNAPII positive

cells increased to 73% (Fig S15). Cells that were not stained

positive were exclusively located at the periphery and never at

central positions (Fig. 5C).

At the 128-cell stage, the phosphorylation level was still high

(68% of all cells). Peripheral cells were still negative for phospho-

RNAPII, but negative cells or cells with very low levels of

phosphorylation were now also found at more central positions of

the embryo (Fig. 5D). Positive and negative cells were intermingled

during the 256- and 512-cell stage (Fig. S14B) and peripheral cells

showed polymerase II phosphorylation only after the 1024-cell

stage (Fig. S14C).

Transcriptional activity at these early stages was verified by RT-

PCR. For this, a selection of target genes were investigated for

transcriptional up-regulation at stages 0–2 (0–2 cells), 8–10 (64–

1000 cells), 11 (early-late blastula), and stage 14 (pre-mid gastrula).

Ccnb1, a member of the AB subfamily of cycline proteins that

control the G2/M transition, showed strong up-regulation

between stages 8 to 10 and 11. RPS12, which encodes for a

member of the 40S ribosomal subunit, showed induction at stage

11 and robust induction at stage 14. PSMC1, a protease, (and four

other genes, data not shown), showed no upregulation during the

investigated stages (Fig. 6).

Discussion

Asynchronous and metasynchronous cell division starts
between the 16 and 64 cells stages

In the classical studies on cell cycle duration in early vertebrate

embryos data were obtained from time-lapse observations, which

were based on standard light microscopy. We used confocal

microscopy to detect earliest differences in cell cycle synchrony.

With this technique, it was possible to detect first alterations and

asynchrony at cycle 5 (from 16 to 32 cells) when the first cells

became apparent that divided prior to the remaining cells.

Asynchrony is a direct result of cell cycle lengthening at beginning

MBT in Drosophila, Xenopus and zebrafish [2][5][13]. However, the

loss of synchrony in medaka embryos at cycle 5 is not connected to

a beginning MBT, but marks the beginning of a metasynchronous

cell cycle.

The cell cycle in zebrafish embryos is rapid and synchronous

from 2 to 128 cells. Metasynchronous cell division emerges at cycle

8 (from 128 to 256 cells) [21] and is well established at the early

blastula stage at cycle 9 (from 256 to 512 cells) [2]. Although

medaka embryos lose overall synchrony already at cycle 5, and

start to develop a temporal spacing of mitosis initiation between

central and peripheral cells right away. However, embryos at the

16-cell or 32-cell stage do not possess sufficient cells to form a

distinct center and periphery or a distinct difference between both

areas. This is probably the reason why it takes up to two or three

additional cell divisions, until cycle 7 to 8, before embryos first

displayed a cell cycle that occurs in clear waves - a typical feature

of metasynchronous cell division.

Figure 2. Asynchronous cell division appears in living embryos
at cycle 5. Maximum intensity collapses of an embryo at 3 different
time points of cycle 5 (16 to 32 cells) during time laps observations. (A)
Nuclei of interphase cells are large due to the decondensed chromatin.
(B) The nuclei in some cells are shrinking when their chromatin starts to
condensate (green arrows), while the chromatin of other cells remains
decondensed (yellow arrows). (C) Some cells are at ana-/ or telophase
(green arrows), while remaining cells only have started to condensate
their chromatin (yellow arrows).
doi:10.1371/journal.pone.0021741.g002
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Interestingly, this metasynchronous division pattern is distorted

in embryos with asymmetric early cleavage furrows. Usually,

embryos during cleavage phase show several levels of axial

symmetry. At the 4-cell stage, cells are oriented in a clover leave

like configuration, followed by a double row of 264 cells at the 8-

cell stage, the 464 ‘‘chessboard’’ at the 16-cell stage and finally the

upcoming roundish, disk-like arrangement at 32 cells and later

stages. Embryos not showing this high level of symmetry are also

more likely to be unable to establish a clear metasynchronous cell

division, although they still establish a certain level of structured

and organized division pattern. However, the regulatory mecha-

nism behind this behavior remains unclear.

Asymmetric cell cleavages and unequal cell volumes at
the 4-cell stage

Asymmetric and unequal cell divisions occur in medaka already at

the 4-cell stage. These asymmetric divisions produce divergent shapes

of embryos instead of embryos consisting of cells that are even in

shape and volume like a symmetric cell division would produce, and

like it was described for medaka by Iwamatsu [20]. Our study

demonstrates that only about one quarter of embryos follow the

scheme of the idealized embryo with highly symmetric cell divisions.

More or less strong deviations of the symmetric divisions represent

the majority of possible cleavages and another quarter of embryos

show extremely asymmetric cleavages. However, the deviation from

symmetry has no influence on the further course of embryonic

development. Unequal cell cleavages have already been reported for

lower animals like leech [22], Caenorhabditis elegans [23] and sea urchin

[24], but to our knowledge never before for a vertebrate.

MBT in general is regarded to be regulated by the nucleo-

cytoplasmic ratio [1][2][9]. Consequently, unequal cell volumes, if

differences are big enough, should cause alterations in MBT onset

[3][5]. Unexpectedly, as our study shows, already cells at the 4-cell

stage in medaka embryos can differ in volumes over a large scale.

The inequality of cell volume directly reflects the grade of

asymmetric cell cleavage. In zebrafish it has been reported that the

cell cycle becomes asynchronous at cleavage 9, and it was

suggested that this asynchrony is due to volume differences that

may result from unequal early cell divisions [2]. However, this

study did not provide cell volume data prior to cycle 9. We

speculate that unequal cell volumes at cycle 9 in zebrafish are just

the consequence of early asymmetric cell divisions and early

unequal cell volumes like it is the case for early medaka.

Early RNA polymerase II transcriptional activity
Phosphorylation of the carboxy terminal domain (CTD) of

RNA polymerase II (RNAPII) is associated with active RNA

transcription [25][26][27][28]. In medaka, phosphorylation was

detected first during division from 8 to 16 cells, but phosphory-

lation stayed rare and sporadic until the 16-cell and 32-cell stages.

Consistent phosphorylation of RNAPII in a large fraction of cells is

established only by the 64-cell stage, even though cells at the

periphery of the embryo usually do not show any phosphorylation

until early blastula stage.

A lack of phosphorylation was noted in more centrally located

cells of some embryos at the 128-cell stage. RNAPII is hypopho-

sphorylated during mitosis [29] as transcription is repressed at this

process [30]. In consequence, this could indicate that the cell cycle

in embryos of this stage becomes metasynchronous as cells are at

different steps of the cell cycle. This pattern is blurred in later

stages, when phosphorylation-positive and negative cells are

strongly mixed together and the phosphorylation pattern develops

a more mosaic character. This change is caused by the increase in

cell asynchrony during the embryos transition towards early

blastula and the beginning MBT.

Importantly, until now only one study attempted to identify the

time point of MBT activation in medaka by investigating the first

appearances of paternal transcripts by RT-PCR. This study

determined the beginning of MBT in medaka at around stage 11

(2000 to 4000cells) [6]. In contrast, our study proves that RNA

polymerase II gets phosphorylated in a small fraction of cells

already at the 16-/32-cell stages and strongly in larger fractions by

the 64-cell stage. Furthermore, our findings also demonstrate that

transcription in medaka embryos is detectable at earlier time

points (between 64 to 1000 cells) than it was assumed so far.

Previous microarray analysis on mRNA levels of over 16.000

genes from zebrafish embryos have shown that mRNA levels of

125 genes are increasing at the 64-cell stage. Many of these genes

are involved in protein degradation, cell proliferation, cell growth,

cell adhesion and RNA synthesis and stability. It was supposed

that these genes need to commence their function during a pre-

MBT state to ensure full functionality during MBT and following

embryonic development.

The data reported here for early medaka embryo development

conflict with the general descriptions for fish embryos before the

midblastula transition, namely being synchronous, with equal cell

division and no transcription occurring before MBT, which was

set to stages beyond 512 cells.

Still, our results do not contradict the previously postulated

mechanisms for MBT onset. Chromatin regulation, maternal

clock, transcript abortion and nucleo-cytoplasmic ratio are all

mechanistically compatible with our observations.

The here reported unequal distribution of cytoplasm, the wave-

like cell cycle pattern together with very early RNAPII-activity and

the initiation of transcription before MBT do, however, demon-

strate that early development of medaka is more robust and less

strictly controlled than was expected. Furthermore, our measure-

ments imply that MBT is not an all-or-nothing, digitally-switched

process, but rather a progressive event that is independently

occurring in individual cells.

Materials and Methods

Ethic statement
This research did neither involve human participants nor any

human material. All experiments involving live animals were

conducted in accordance with the German Animal Protection

Law. Our laboratory and animal facilities are approved for such

work and are regularly inspected and supervised by the animal

protection officers of the University of Würzburg and the

Government of Lower Franconia. OLAW: A-5864-01.

Figure 3. Asymmetric cell divisions at cycle 2. (Ai, Bi, Ci) Characterization of three types of medaka embryos at the 4-cell stage with regard to
the grade of axial symmetry of the cell cleavages. (Ai) Type I embryo showing highly symmetric cleavages and right-angled cells. (Aii) Cell boundaries
were highlighted to help visualization. (Bi; Bii) Type II embryo showing slight but clearly detectable impairment of axial symmetry, while still having
right-angled cell shapes at the interception point. (Ci; Cii) Type III embryos lacking axial symmetry. (D) Frequency of the three embryo types at 4-cell
stage medaka embryos among 774 eggs. Type I occurred with a frequency of 22% (171/774) of total embryos (green bar), type III embryos with 23%
(179/ 774) (orange bar). Type II embryos represent the largest group of the three types with 55% (424/774) of all embryos (blue bar).
doi:10.1371/journal.pone.0021741.g003
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Figure 4. Cell volumes at the 4-cell stage. Variability of cell volumes at the 4-cell stage. (A) Maximum intensity z-projections of confocal stacks of
medaka embryos at the 1-cell, 2-cell and 4-cell stage. Diffuse cellular boundaries during the 1-cell and 2-cell stages cannot be detected by software
protocols. Cell membranes at the 4-cell stage are sharp and clearly separated between single cells and yolk. (B) Volumes from cells of different
embryos. Graph displays the divergence of cellular volumes within individual embryos at 4-cell stage. X-axis shows individual embryos with
increasing cell-volume differences to the right. (C) Relative factor differences between the largest and the smallest cell of individual embryos. (B and
C) Background colors within the graphs indicate the embryo-type: type I embryos are represented by green, type II embryos by blue and type III
embryos are represented by orange.
doi:10.1371/journal.pone.0021741.g004
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Fishes
Medaka fishes (Oryzias latipes) of the Carbio strain (Carolina

Biological Supplies, USA) were kept as a large random-mating

colony under standard conditions at a 14 h light-cycle and 24uC
room temperature. Embryos were collected 20minutes after

fertilization, extricated from the filament and raised in de-ionized

water. Embryos where staged according to Iwamatsu [20].

Light microscopy
Medaka embryos at the 4 cell stage were transferred into 2.5%

methylcellulose and imaged using a M205FA Leica Microscope.

Images were processed with ImageJ.

Fluorescent staining and confocal microscopy
Embryos were cooled down to 4uC to slow down the cell cycle

and then fixed in 4% PFA/16PBS over night (o/n) at room

temperature (RT). After fixation, embryos were rinsed in 16PBS

for 200 at RT and stored in PBS at 4uC for 48 h. The chorion was

physically removed using forceps and the embryos were detached

from the yolk.

For cell cycle measurements, DNA was stained with Hoechst

(Invitrogen (Hoechst 34580: H21486); Available: http://products.

invitrogen.com/ivgn/product/H21486?ICID = search-product. Ac-

cessed 20 Jun 2011.) in a 1:2000 dilution in PBS for 20 and washed 2

times in PBS for 100 and additionally in fresh PBS o/n at 4uC. The

Figure 5. Polymerase II phosphorylation in embryos before MBT. Phosphorylation of mRNA polymerase II in medaka embryos at 8 to 16 cells
(A), 32 cells (B), 64 cells (C) and 128 cells (D). (A) p-Pol II staining, first detected in cells during the late stages of mitosis between the 8-cell stage and
the 16-cell stage. (B) p-Pol II signal in isolated cells at 16-cell stage. (C) 64-cell stage showing high levels of p-Pol II signal. Almost no phosphorylation
is seen in peripheral cells, but ubiquitous signal in central cells. (D) 128-cell stage. Almost no p-Pol II positive nuclei were found in peripheral cells,
most central nuclei stain positively.
doi:10.1371/journal.pone.0021741.g005
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next day, embryos were transferred to 30 ml of fresh PBS on a

microscope slide, covered with a cover slip and scanned immediately

with a Nikon C1 confocal microscope.

For cell volume measurements, embryos were stained with the

membrane dye CellMask DeepRed (Invitrogen (Available: CellMask

DeepRed: C10046) http://products.invitrogen.com/ivgn/product/

C10046. Accessed 20 Jun 2011) in a 1:1000 dilution in PBS for 100

and washed in o/n in PBS at 4uC. Right before washing, DNA was

stained by adding Hoechst in a 1:2000 dilution for 20. After washing,

embryos were transferred into DABCO over night and were fixed in

Mowiol on a microscope slide on the next day. Confocal images were

taken using a Leica TCS SP5 confocal microscope.

For p-polymerase II detection, embryos were fixed in PFA,

stored in PBS at 4uC, removed from the yolk as described above.

Embryos were permeabilised with 0.1% TritonX in PBS for 100,

blocked in 5% BSA in PBS for 1–2 h and incubated with anti p-

RNAPII antibody (SantaCruz (p-Pol II (8A7): sc-13583); Avail-

able: http://www.scbt.com/datasheet-13583-p-pol-ii-8a7-antibody.

html. Accessed 20 Jun 2011) at 1:1000 for 48 h at 4uC. After first

antibody incubation, a 100 washing in PBS for 4 times at RT

followed. Detection was done with an Alexa568-coupled anti mouse

antibody at 1:1000 in 5%BSA for 24 h at 4uC. DNA was stained

with Hoechst. Confocal imaging was done with a Nikon C1 confocal

microscope.

Cell cycle analysis
Cell cycle synchrony was investigated in previously DNA

stained and confocal imaged embryos. For visualization, confocal

stacks were loaded into the Volocity V5.3.2 imaging software

(PerkinElmer) and filtered.

Embryos were classified as asynchronous if cells at different

stages of the cell cycle (Interphase/Mitotic phase) were found

within the embryo. Cells were considered as being in interphase as

long as only 1 nuclear signal within the same cell was detected.

Figure 6. Quantitative gene expression analysis of Ccnb1, Rsp12 and PSMC1 during early embryogenesis. Expression levels of 3
candidate genes during 4 different time periods (Stages 0–2, Stages 8–10, Stage 11, Stage 14). (A) Expression of Ccnb1 is strong during stages 8–10
(p,0,0268) and stage 11 (p,0,0452). (B) Expression of Rsp12 shows induction at stage 11 and robust upregulation at stage 14 (p,0,0042). (C)
Expression of PSMC1 is not upregulated. Expression levels at stages 0–2 were set as 1. (Significance was tested with the Student’s t-test, error bars are
standard deviations).
doi:10.1371/journal.pone.0021741.g006
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The splitting into two individual nuclear signals was considered as

breaking point for classifying the cell as being in mitotic phase.

This is accompanied by an elongated shape and symmetry along

an imaginary plane between both chromosome-sets. Loss of the

elongated shape and the clearly detectable symmetry of the

nuclear signal were considered to mark the end of the mitotic

phase and the re-entry into interphase.

Embryos were also classified as asynchronous if all cells indeed

showed mitotic character, but are at different time points or

progression levels of the metaphase. A close position between the

daughter chromosomes represents nuclei that have just entered

anaphase, whereas a large distance represents nuclei that are at late

ana- or telophase and have entered mitosis prior to the early

anaphase cells.

Cell volume determination
Confocal images were loaded into the Volocity software and

filtered. Single cells were isolated by manually performed optical

dissection on individual embryos. Only embryos that did not

change the shape and X-/Y-position of their cleavage furrow

along the Y-axis were used for this procedure. Cell volumes were

measured in Volocity with an object-identifying protocol that was

adjusted at the beginning and remained unchanged for all cell

volume measurements. The volumes of all 4 cell volumes of each

embryo were summed up and set as 100%, and the relative

volume of each cell was calculated relative to the total volume of

the particular embryo. These relative volumes were used for

comparisons of cell volumes within individual embryos and

between different embryos. Embryos were considered as ‘‘consist-

ing of cells with similar volumes‘‘ if the relative volumes’differences

between the smallest and the largest cell did not exceed 5%, which

is a volume difference between both cells close to or smaller than

the factor 1.2 from the smallest to the largest cell. Embryos were

considered as ‘‘consisting of three cells of similar volume and an

extremely large or small fourth cell’’ if the differences between the

relative volumes’differences of the smallest and the largest cells to

the embryos mean relative volume did not exceed the factor 2.

The embryos mean relative volume was calculated between the

2nd smallest and the 2nd largest cell: {[(B+C)/2]-A}/{D-[(B+C)/

2]} with A as the smallest and D as the biggest cell. Additional

information for the calculations can be found in Table S1.

In vitro mRNA transcription and mRNA injection and
confocal imaging

Histone2B-eGFP mRNA was transcribed with the mMES-

SAGE mMACHINE SP6-Kit (Ambion). The template for in-vitro

transcription was obtained via PCR from the pCS2P-plasmids

backbone in which the Histone2B-eGFP sequence was cloned.

Primers 59-ATTTAGGTGACACTATAG-39 and 39-CAGGAA-

ACAGCTATGACCATGATTACG-59 were used for template

amplification. Medaka eggs were injected at the late stage 0. For

imaging, embryos were mounted in 0.7% low melting point

agarose in H2O on a coverslip that was glued into the hole of a

microscope slide. The eggs were orientated with the animal pole

facing down and subsequently scanned with a Nikon C1 confocal

microscope with a 4.107 minute delay between each stack.

Nuclear size was determined as the area measured by the contrast

based ‘‘Find 2D Nuclei’’ measurement protocol in the Volocity

software on maximum intensity projections of confocal stacks.

Expression analysis and RT-PCR
Total RNA of medaka embryos at different stages was isolated

as previously described [31]. RNA amounts for reverse transcrip-

tion were measured with the Qubit-Kit (Invitrogen). Investigated

stages were stage 0–2 (1–4 cells), stage 8–10 (64–1000 cells), stage

11 and stage 24. Quantitative real-time PCR was performed with

SYBR Green reagents in a reaplex2 Mastercycler (Eppendorf).

Target genes were orthologs of zebrafish genes for which up-

regulation in zebrafish embryos after the 64-cell stage had been

reported [7]. Used primer pairs were intron-spanning and are

listed in Table S2. All results are averages of three independent

experiments. Error bars represent standard deviation of the mean.

Relative expression levels were calculated after correction to ef1a1

expression, which was used as housekeeping gene.

Statistical analysis
Significance values for cell division desynchronization and

upcoming metasynchronous cell division, for asymmetry compen-

sation, for symmetry/metasynchrony correlation and for asym-

metry/cell-volume correlation were calculated using the Chi-

square test. Significance values for RT-PCR were calculated with

the Student’ t-test. Significance values for polymerase II

phosphorylation was calculated with the Welch’ t-test.

A probability of p,0,05 was considered as statistically

significant; * and ** and *** represent statistical significances

below p,0.05, p,0.01 and p,0.001 respectively.

Supporting Information

Figure S1 Hoechst staining at cell division from 128 to
256 cells. (A–C) Different time points (early-late) during cell

division from 128 cells to 256 cells. (A) Interphase. All cells are in

interphase (yellow arrows). (B) Early phase. Cell division starts first

in central cells (green arrows), while peripheral cells do not yet

divide (yellow arrows). (C) Late phase. Central cells have finished

mitosis (yellow arrows) when peripheral cells undergo mitosis

(green arrows).

(TIF)

Figure S2 Cell divisions at mid-late cleavage phases of a
symmetric dividing embryo after H2B-eGFP-injection.
Cell division progression of an embryo that has divided

symmetrically from 2 to 4 cells at 4 successive cell cycles. (A)

Embryo at three different time points (interphase, early-, late-

phase) at cycle 6, 32 to 64 cells. Early cell division appears in

random positioned cells of the embryo at early phase (green

arrows). Other cells have not entered interphase (yellow arrows).

(B–D) Embryo at three different time points (interphase, early-,

late- phase) at cycle 7 (64 to 128 cells), cycle 8 (128 to 256 cells)

and cycle 9 (256–512 cells), respectively. Cell division starts first in

central positioned cells (green arrows) during early phase of the

embryos cycle. Peripheral cells have not yet entered cell division

(yellow arrows). Central positioned cells have started to enter

interphase (yellow arrows) and peripheral cells are still in ana-/

telophase of the cell cycle at later phase of the embryos cycle.

(TIF)

Figure S3 Nucleus size progression during cleavage
phase. Progression of nuclear sizes (as an area measurement) in

a mid-interphase cell at the 8 cell stage and in its derived daughter

cells until to the late 64 cell stage. The nuclear area was

determined every 4.107 min for each nucleus for 45 consecutive

time points. Nuclear areas are large at mid-interphase cells, small

before cell division and smallest after cell division. No detectable

desynchronization until measurement point 27 (red circles). Early

mitosis in cells at more central position (blue circle). Chromosomes

are condensed in late cells, but not separated (red arrows). Nuclear

size is shown on the Y-axis (in mm2), measuring points at the X-
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axis. Overall temporal progression is shown at the bottom. Arrows

lead from a single cell to the according daughter cells after each

cell cycle.

(TIF)

Figure S4 Potential for a clear metasynchronous divi-
sion pattern after dividing symmetrically or asymmet-
rically from 2 to 4 cells. H2B-eGFP mRNA injected embryos

are shown that divided symmetrically and asymmetrically from 2

to 4 cells. Embryos that divided symmetrically more often (37/40

with 92.5%) developed a clear metasynchronous division pattern

than asymmetrically divided embryos (18/39 with 46,2%) (values

are given in percentages; Chi-square test with p,0,001).

(TIF)

Figure S5 Cell divisions at mid-late cleavage phases of
an asymmetric dividing embryo after H2B-eGFP-injec-
tion. Cell division progression of two embryos that have divided

asymmetrically from 2 to 4 cells at 2 successive cell cycles. (A–B)

Embryo at three different time points (interphase, early-, late-

phase) at cycle 7 (64 to 128 cells) and 8 (128 to 256 cells) are

shown. Cell division is early in cells that are positioned on the left

side of the embryo during early phase of the embryos cycle (green

arrows). Cell cycle is late in cells that are located on the right side

of the embryo (yellow arrows). During the late phase of the cell

cycle division is finished in cells that are located on the left side

(yellow arrows) but is still undergo in cells on the right side of the

embryo (green arrows). (C–D) Embryo at three different time

points (interphase, early-, late-phase) at cycle 7 (64 to 128 cells)

and 8 (128 to 256 cells) are shown. Cell division is early in cells that

are positioned on the left side of the embryo during early phase of

the embryos cycle (green arrows). Cell cycle is late in cells that are

located on the right side of the embryo (yellow arrows). During the

late phase of the cycle cell division is finished in cells that are

located on the left side (yellow arrows) but is still undergo in cells

on the right side of the embryo (green arrows).

(TIF)

Figure S6 Examples for type III embryos from medaka
fish. (A–F) Different examples for type III embryos from medaka

fish. Cell borders are highlighted.

(TIF)

Figure S7 Individual interphase stages during cleavage
phase of a type I embryo. (A–I) Developmental stages of a

type I medaka embryo from the 4-cell stage to the 1024-cell stage

are shown.

(TIF)

Figure S8 Compensation disadvantages after asymmet-
ric cleavage from 2 to 4 cells. Figure illustrates the potential to

compensate the asymmetric cell divisions in type II and type III

embryos. Type I embryos (green bars) were used as positive

control as they usually develop like the ideal Iwamatsu embryo.

Type II (blue bars) or type III embryos (orange bars) that could no

longer be distinguished from type I embryos were counted as an

ideal embryo. At the 4-cell stage, 100% of the type I embryos were

counted as ideal and none of the type II or type III embryos. At

the 128-cell stage, the number of ideal type I embryos dropped as

5% of this embryo fraction no longer could be counted as ideal as

the remaining type I embryos. The number of ideal type II and

type III embryos rose to 86% (p,0.001) and 64% (p,0.001)

respectively. At the 1000-cell stage, all type I and all type II

embryos showed the ideal shape and the number of ideal type III

also increased to 91% (p,0.030). (Chi-square test).

(TIF)

Figure S9 Individual interphase stages during cleavage
phase of a type III embryo. (A–I) Developmental stages of a

type III medaka embryo from the 4-cell stage to the 1024-cell stage

are shown.

(TIF)

Figure S10 Cell shape changes in 3D. Confocal scans of

medaka embryos at the 4-cell stage stained with Orange CellMask.

(A–F; G–L) Images of 2 different embryos at 3 different positions

(near top, middle, near bottom) on the z-axis are shown. (D and F;

J and L) Cell borders of top and bottom position are highlighted.

(E; K) Overlay of top and bottom borders are merged.

(TIF)

Figure S11 Correlation between asymmetric cell divi-
sions and cell volume differences. Illustration of the dispersion

of the three embryo types among the investigated embryos regarding

the cell size differences between the largest and the smallest cell of

each embryo. Bars show the frequency of each embryo type among

the embryo-fraction representing the 50% embryos with the smallest

differences (embryos 1–16) and the 50% embryos with the largest

differences (embryos 17–33). Type I embryos are represented by

green bars, type II by blue bars and type III embryos by orange bars.

Type I embryos show a similar distribution between the fractions of

the 16 most similar and most dissimilar embryos like the type II

embryos (Chi-square test with p = 0.3382). Type III embryos instead

are more associated with the dissimilar fraction than type I embryos

(p,0.001) and type II embryos (p = 0.00135).

(TIF)

Figure S12 Cell volumes at the 4-cell stage regarding the
embryo types I-III. Cell volumes of medaka embryos at the 4-cell

stage are illustrated regarding the different embryo types I (A), type II

(B), type III (C). Embryos containing cells with small differences are

oriented to the left. Differences are increasing to the right.

(TIF)

Figure S13 Fold changes in cell volume at the 4-cell
stage regarding the embryo types I-III. Fold differences

between the cell volume of the largest and the smallest cell within

medaka embryos at the 4-cell stage are illustrated regarding the

different embryo types type I (A), type II (B) and type III (C).

Embryos containing cells with small fold change differences are

oriented to the left.

(TIF)

Figure S14 RNA Polymerase II phosphorylation in early
embryos. RNA Polymerase II phosphorylation in early medaka

embryos at the 8-cell stage (A), the 512-cell stage (B), 1024-cell

stage (C). No phosphorylation is detectable in cells at the 8-cell

stage (A). Phosphorylation is prevalent in embryos at 512 cells (B)

and at 1024 cells (C).

(TIF)

Figure S15 Increase of polymerase II phosphorylation
in early stages. Levels of RNA polymerase II phosphorylation

between the 8-cell and the 128-cell stage are shown. Values are

given as percentages of all cells at the embryo stage to allow

comparisons between each stage. No phosphorylated Pol II was

detected before the 16-cell stage. At the 16-cell stage, p-pol II levels

increase slightly to about 17% of to cells being positive (p = 0.002)

and again to the 32-cell stage with a further slight increase to 30.5%

positive cells (p = 0.0024). By reaching the 64-cell stage, p-pol II

levels show a major increase to about 73% (p,0.001) and remain

high at the 128-cell stage with 67.7% of all cells being positive

(p = 0.1186). (Welch’s t-test, error bars are standard deviations).

(TIF)
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Table S1 Cell volumes at the 4-cell stage and processed
volume calculations.

(XLSX)

Table S2 RT-PCR primer list.

(TIF)

Movie S1 Bright field time lapse of normal medaka
development. Movie shows a developing medaka embryo between

the 4-cell and 256-cell stage with a gap of 25 seconds between images.

(AVI)

Movie S2 Confocal time lapse of normal medaka
development after H2B-eGFP mRNA injection. Movie

shows a developing medaka embryo that has divided symmetri-

cally to the 4 cell stage. Movie ranges from 4 cells to 1000–2000

cells with a gap of 4.107 minutes between images. The embryo

develops a clear metasynchronous cell division.

(AVI)

Movie S3 Confocal time lapse of asymmetric medaka
development after H2B-eGFP mRNA injection. Movie

shows a developing medaka embryo that has divided asymmet-

rically to the 4 cell stage. Movie ranges from 4 cells to 1000–2000

cells with a gap of 4.107 minutes between images. The embryo is

unable to develop a metasynchronous cell division but divides in

waves that move from one pole of the embryo to the other pole.

(AVI)
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