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Abstract

Background: Patterns that arise from an ecological process can be driven as much from the landscape over which the
process is run as it is by some intrinsic properties of the process itself. The disentanglement of these effects is aided if it
possible to run models of the process over artificial landscapes with controllable spatial properties. A number of different
methods for the generation of so-called ‘neutral landscapes’ have been developed to provide just such a tool. Of these
methods, a particular class that simulate fractional Brownian motion have shown particular promise. The existing methods
of simulating fractional Brownian motion suffer from a number of problems however: they are often not easily generalisable
to an arbitrary number of dimensions and produce outputs that can exhibit some undesirable artefacts.

Methodology: We describe here an updated algorithm for the generation of neutral landscapes by fractional Brownian
motion that do not display such undesirable properties. Using Monte Carlo simulation we assess the anisotropic properties
of landscapes generated using the new algorithm described in this paper and compare it against a popular benchmark
algorithm.

Conclusion/Significance: The results show that the existing algorithm creates landscapes with values strongly correlated in
the diagonal direction and that the new algorithm presented here corrects this artefact. A number of extensions of the
algorithm described here are also highlighted: we describe how the algorithm can be employed to generate landscapes
that display different properties in different dimensions and how they can be combined with an environmental gradient to
produce landscapes that combine environmental variation at the local and macro scales.

Citation: Chipperfield JD, Dytham C, Hovestadt T (2011) An Updated Algorithm for the Generation of Neutral Landscapes by Spectral Synthesis. PLoS ONE 6(2):
e17040. doi:10.1371/journal.pone.0017040

Editor: Vladimir Uversky, University of South Florida College of Medicine, United States of America

Received November 6, 2010; Accepted January 19, 2011; Published February 15, 2011

Copyright: � 2011 Chipperfield et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a NERC/UKPopNet studentship (NER/S/R/2005/13941 - http://bioltfws1.york.ac.uk/UKPopNet/studentships/
jchipperfield) and by the DFG Priority Program 1374 ‘Infrastructure-Biodiversity-Exploratories’ (HO 2051/2-1 http://www.biodiversity-exploratories.de/Projects/
contributing-projects/modeling-remote-sensing/beam). The funders had no role in the study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j.chipperfield@biozentrum.uni-wuerzburg.de

Introduction

Landscape ecology researchers assert that the spatial structure

of the environment can play as much importance on key ecological

outcomes, such as the survival and coexistence of species, than the

biological characteristics of the species in question. It is not only

the individuals, populations, or communities that have key

ecological parameters of interest but also the landscape in which

these entities operate [1]. Indeed the very idea of landscape

‘connectivity’, as described in [2] and [3], incorporates the effect of

unequal distances between patches in the habitat matrix on

metapopulation persistence (see also [4]).

Whilst the life history characteristics of a species, such as

reproductive potential, mortality rate, and dispersal tendencies are

undoubtedly linked to the habitats in which they reside, there has

been some considerable effort amongst landscape ecologists to

isolate the effects of the spatial and temporal configuration of these

habitats on the long-term prospectus of phenomena of interest

such as species ranges and patch-occupancy dynamics [5–7]. This

desire has resulted in the development of so-called neutral

landscape models (see [8–11]), which provides a mechanism for

the generation of random landscapes with controllable spatial

properties. Neutral landscapes can be used in models of ecological

processes to allow for the assessment of the contribution of habitat

matrix structure on the outcome of the ecological process being

modelled. Such applications have borne critical results in the

theory of species conservation and management: for example, [12]

uses neutral landscapes models to identify a possible unimodal, but

heavily skewed, relationship between species richness and the

spatial heterogeneity of habitats. [13–16] all use neutral landscape

models to help elucidate the effects of landscape structure on the

evolution of dispersal and [17] uses a variation of the same neutral

landscape model to produce ‘disturbance landscapes’ to assess the

response of population dynamics to the autocorrelation of distur-

bance events.

Neutral landscape models were initially conceived to provide

simple binary grids of suitable and unsuitable habitat types. In

these models, a habitat abundance parameter, p, determines the

proportion of the landscape that is suitable. A simple algorithm to

simulate such landscapes would involve starting with an entirely

unsuitable landscape and iteratively selecting a random cell from

the pool of unsuitable habitat types and classifying it as suitable
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until the correct proportion of suitable cells is achieved. These

‘percolation models’ have been employed successfully in a number

of studies ([8,18,19] for example) but are limited in that it is not

possible for the users of these models to control explicitly the

spatial autocorrelation of the outputs. [20] and [21] develop these

models further, using fractal curdling to allow for a spatial

hierarchy in the assignment of suitable patches. Here, occupancy

is assigned at successively fine-scale spatial resolutions with each

hierarchical division. At the hth hierarchy, a ph proportion of cells

are assigned as habitable from each of the cells assigned as

habitable from the previous hierarchical allocation. The total

proportion of habitable cells at the end of the allocation is

therefore the product of the allocation probabilities at each spatial

resolution such that p~Ph ph.

It is not always adequate to represent landscapes as a simple

surface of binary habitat values however. Instead it may be

preferable in some situations to allow the species being modelled to

respond to a continuum of habitat values. Realisations of this,

more general, representation of habitat structure can be achieved

by using one of a number of algorithms that simulate fractional

Brownian motion (sensu [22]). These methods have the advantage

that they produce autocorrelated landscapes controllable by a

single parameter, the Hurst exponent, H (see [23]). Landscapes

created using this method can exhibit quite different spatial

characteristics than those generated using random or hierarchical

random methods, providing landscapes with a more natural-

looking aggregation of suitable habitat types (see figure 1). As H
tends towards zero, the landscapes become more heterogeneous,

whilst values close to one become more self-similar. Figure 2 shows

a series of landscapes generated using different Hurst exponents.

The two most commonly employed algorithms used in the

simulation of fractional Brownian motion are midpoint displacement

methods [23] and spectral synthesis methods [23,24]. Midpoint

displacement algorithms are easily implemented and, as such, have

seen wide popularity in the application of computer graphics. They do

suffer from a number of drawbacks however: firstly, midpoint

displacement algorithms do not produce realisations of true fractional

Brownian motion when the Hurst exponent is not set equal to 0.5 [25].

For many applications it is desirable that the fractal surface exhibits no

gradients in habitat values, either because the study requires that the

effects of spatial autocorrelation on ecological phenomena be tested in

isolation from the effects of a gradient, or because a gradient with

attributes under control of the investigator are to be added to the

random fractal surface. From [23] it is shown that the midpoint

displacement algorithm, as commonly implemented, produces non-

stationary landscapes. Moreover, whilst [23] describe a one and two

dimensional implementation of midpoint displacement, the algorithm

becomes unwieldy when extended to higher dimensions.

In contrast, spectral synthesis algorithms produce stationary

landscapes that better approximate true fractional Brownian

motion. One and two dimensional versions of the spectral

synthesis algorithm appears in [23] whilst [24] provides a more

general algorithm for an arbitrary number of dimensions.

However, the algorithm as proposed in the appendix of [24] can

produce landscapes that have values that are correlated with the

distance from the origin of the dimensional coordinates of the cell.

This clearly undesirable artefact of the algorithm produces a

distinct visual ‘smearing’ on two dimensional landscapes and a

tendency for similar values to occur in diagonal neighbourhoods.

Here we outline an updated version of the algorithm described by

[24], allowing the spectral synthesis methods to be employed in the

generation of landscapes of an arbitrary number of dimensions but

with the artifacts that have appeared in previous incarnations

removed. We show how this extension of the algorithm can be

useful in generating dynamic landscapes in spatio-temporal

studies, allowing not only investigator control of spatial autocor-

Figure 1. Realisation of three cellular lattice landscapes (512 6512) with the same proportion of suitable habitat (73728 cells ca
28%) but generated using different neutral models (after [33]). Black cells denote suitable habitat. Figure A depicts a landscape generated
by selecting the relevant proportion of cells at random and assigning suitability to these cells. Figure B is a landscape generated by hierarchical
curdling using three stages. In the first stage, the landscape is divided into 64|64 size tiles and then 75% of these tiles are selected as containing
suitable habitat. The second stage of the process involves dividing the selected tiles from the first stage and dividing them into 8|8 tiles. 75% of the
8|8 tiles are selected in each of the coarser resolution tiles selected in the previous stage. The final stage selects 50% of the cells contained in the
selected tiles of the previous stage and assigns them as suitable habitat. Figure C shows a landscape generated by fractional Brownian motion with a
Hurst exponent of 0.2 using the algorithm outlined in this manuscript. The continuous output from this process is divided into suitable and non-
suitable habitat by ranking the cell values and selecting the top 73728 as suitable.
doi:10.1371/journal.pone.0017040.g001
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relation but also the degree of habitat ephemerality: the

autocorrelation of habitat in time.

Methods

Spectral Synthesis Algorithms
Spectral synthesis methods involve the generation of random

Fourier coefficients with the restriction that the spectral density (S)

of the vector of frequencies in each dimension, f, must satisfy the

following condition:

S fð Þ!
Xn

j

f2
j

 !{2Hzn
2

ð1Þ

where H is the Hurst exponent and n is the number of dimensions.

Once the Fourier coefficients are generated, it is a simple case to

perform an inverse Fourier transform to convert the spectral

densities into landscape values with the appropriate spatial

properties. There are a number of algorithms that can perform

an inverse multidimensional Fourier transform such as the fft
routine implemented in the R statistical package, the fourn
algorithm of [26], or the FFTW numerical library of [27]. Where

the different spectral synthesis methods differ is in how they

generate these Fourier coefficients. The appendix of [24] describes

one such algorithm for the creation of these Fourier coefficients.

Here we include the multidimensional case in full to help illustrate

the difference between the algorithm of [24] and our own.

Algorithm 1

1. Initialise an n-dimensional array, q, with Mn complex elements

where M is the length of the landscape to be generated in each

dimension. M must be a power of two.

2. For each jth element of array q:

(a) Calculate the vector of dimensional coordinates, f, of cell qj .

(b) Generate an amplitude, aj~fj

Pn
j f2

j

� �{2Hzn
2

, where fj is

a number drawn from a standard normal distribution.

(c) Generate a random phase, wj , by drawing a value from a

uniform distribution defined between 0 and 2p.

(d) Set the element qj~aj coswjziajsinwj .

3. Take the multidimensional inverse Fourier transform of the

array q.

4. Use the real valued output from the Fourier transform as values

for the landscape output.

The output we desire is real valued. To generate real-valued

output from the inverse Fourier transform we must ensure that the

complex coefficients adhere to a conjugate symmetry condition

(see page 109 of [23]) whereby each element of the coefficients

vector at frequency coordinates f, qf , is the complex conjugate at

vector element with symmetric frequency coordinates g, namely

qf~qg ð2Þ

where each element of vector g is defined by

gj~
0 if f j~0

M{f j if f jw0

�
ð3Þ

The algorithm of [24] does not account for this conjugate

symmetry requirement and, as a result, the dropping of the

complex component in the last step creates landscapes with cell

values correlated with their dimensional coordinates. We suggest

here employing a multidimensional extension of the Spectral-

SynthesisFM2D algorithm described in [23]. This extension

provides an algorithm that satisfies the conjugate symmetry

requirement of [23] whilst also maintaining generality for the

creation of multidimensional landscapes:

Algorithm 2

1. Initialise a multidimensional array, q, with Mn complex

elements where M is the length of the landscape to be

generated in each dimension. M must be power of two.

Figure 2. Three realisations of landscapes (256 6 256 cells) created by the spectral synthesis algorithm for fractional Brownian
motion. Figure A is generated using a Hurst exponent of 0.1, figure B uses a Hurst exponent of 0.5, and finally, 0.9 is used as the Hurst exponent in
the generating mechanism for figure C.
doi:10.1371/journal.pone.0017040.g002
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2. For each jth element of array q:

(a) Calculate the vector of dimensional coordinates, f, of cell

qj .

(b) Calculate the vector of symmetric dimensional coordi-

nates, g, using equation 3.

(c) Generate an amplitude, aj~fj

Pn
j min f j ,gj

n o2
� �{2Hzn

2

,

where fj is a number drawn from a standard normal

distribution.

(d) Generate a random phase, wj , by drawing a value from a

uniform distribution defined between 0 and 2p.

(e) Set the element qf~ajcoswjziajsinwj .

(f) Set the element qg~ajcoswj{iajsinwj .

(g) If all coordinates of the vector, f, are equal to either zero

or
M

2
, then set the imaginary component of qj to zero.

(h) If all coordinates of the vector, f, are equal to zero, then

set the real component of qj to zero.

3. Take the multidimensional inverse Fourier transform of the

array q.

4. Use the real valued output from the Fourier transform as values

for the landscape output.

The extra calculation taken at step 2 of the above algorithm

ensures that the conjugate symmetry condition is met and that the

artifacts of the [24] algorithm are avoided. As a result the

imaginary component of the output vector after the Fourier

transform in algorithm 2 will be zero (or a very close value to it

owing to the approximate floating number arithmetic) and, unlike

the first algorithm, the dropping of the imaginary part will

therefore not represent a loss of information.

The inverse Fourier transform process scales the spectral

coefficients according to the length of the landscape in each

dimension. Unequal length in each dimension can therefore result

in differing levels of autocorrelation in each direction and, as a

result, we restrict the description of the algorithm to the case

where these lengths are equal. Lengths restricted to a power of two

also allow an efficient Fourier transform and so we have also

placed this extra restriction on the value of M. However,

landscapes of differing sizes can be easily created by generating

a landscapes with the smallest value of M that is equal to or larger

than the largest dimensional extent of the desired landscape and

then using the first set of elements in each dimension. This may

appear inefficient at first but, in most cases, it is quicker to do this

rather than to only generate the minimal number of spectral

coefficients required in the spectral synthesis phase of the

algorithm and employ a less efficient Fourier transform algorithm

to convert these coefficients to the real-valued output.

An implementation of this algorithm for the statistical computing

platform R, and instructions to use the supplied functions, can be

found in the ecomodtools package hosted on the R-Forge repository.

To install the package from the R console simply type the following

command whilst connected to the internet: install.package-
s(‘‘ecomodtools’’, repos=‘‘http://R-Forge.R-
project.org’’). This package is open source and released

under the General Public License (version 2 or later).

Monte Carlo Testing
The spatial artefacts induced by the algorithm of [24] can be

described in terms of the anisotropic patterns in the surfaces that

they produce. In this paper, we have employed Monte Carlo

simulation to test the isotropic properties of 300 landscapes

generated using the algorithm of [24] (algorithm 1) and 300

landscapes created using the updated algorithm of [23] described in

the methods section of this paper (algorithm 2). For each of the 300

landscapes generated using each synthesis algorithm, one of three

Hurst exponents was used to control the spatial self-similarity of the

landscape: 0.1, 0.5, or 0.9. This resulted in a total of 600 landscapes

generated with 100 landscapes once divided between each synthesis

algorithm and Hurst exponent combination. Each landscape is

generated with a total of 1024 cells occupying a 32|32 grid.

One method through which the anisotropy of a landscape can

be assessed is by the comparison of directional spatial auto-

correlograms [28]. Here, we define a neighbourhood of connec-

tivity restricted to groups of cells with centres that fall directly on

the line at an angle, h, measured clockwise from the y-axis. We use

four values for h: 0o, 45o, 90o, and 135o. This creates four

networks with cells connected only on the vertical, bottom-left to

upper-right diagonal, horizontal, and bottom-right to upper-left

diagonal adjacent cells respectively (see figure 3). Spectral synthesis

algorithms produce landscapes that are periodic, and we

incorporate this feature into the analysis by wrapping the links

at the boundaries of the connectivity network so that the network

is defined on a torus. Autocorrelation for each distance d is

assessed by calculating Moran’s I [29] over all pairs of cells with

centres exactly d units apart with distance measured along the

links of the network. For any distance class, Moran’s I takes values

greater than zero (usually less than one) when the data exhibit

positive autocorrelation and values less than zero (usually greater

than negative one) when the data exhibit negative autocorrelation.

If we define Id as the value of Moran’s I for distance class d then

Figure 3. Illustration of neighbourhood definitions used in
construction of the spatial autocorrelograms used in this
study. Figures A–D display networks of cells connected with links
running at angles of 0o, 45o, 90o, and 135o clockwise from the y-axis
respectively. The boundaries of the network in each spatial dimension
are wrapped around to form a torus. Red lines denote the network links
between the cell centres.
doi:10.1371/journal.pone.0017040.g003
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Id~
NP

i

P
j=i

wij dð Þ
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P
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wij dð Þ xi{�xxð Þ xj{�xx
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xi{�xxð Þ2
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where xi is the ith value of N data values. �xx is the mean data value

and wij dð Þ is a weighting function taking the distance between the

cell centroids as input. Here we use a simple identity function for

wij dð Þ which equals one when the centroids of the ith and jth cells

are exactly a distance, d, apart. wij dð Þ is equal to zero at all other

Figure 4. One realisation of landscapes generated using each of the two algorithms described in this paper with accompanying
directional autocorrelograms. Figures A and B are realisations of a 32|32 landscape generated by employing algorithms 1 [24] and 2 (adapted
from [23]) respectively. Both landscapes have been generated using a Hurst exponent of 0:5. Figures C and D are the accompanying directional
autocorrelograms to figures A and B respectively with Moran’s I calculated over each of the four networks shown in figure 3. Blue triangles represent
values of Moran’s I that are significantly larger (pv0:05) than what would be expected in a random landscape Red inverted triangles denote values
of Moran’s I significantly smaller (pv0:05) than what would be expected in a random landscape.
doi:10.1371/journal.pone.0017040.g004

New Methods for Neutral Landscape Modelling

PLoS ONE | www.plosone.org 5 February 2011 | Volume 6 | Issue 2 | e17040



Figure 5. Series of box plots showing the difference in autocorrelation measured using Moran’s I along lines parallel to the two
cardinal axes. Figure A displays the results for landscapes generated by employing both synthesis algorithms with a Hurst exponent of 0:1 (high
heterogeneity). Figure B displays similar results for landscapes generated with a Hurst exponent of 0:5 (intermediate heterogeneity) whilst figure C
shows results for landscapes generated using a Hurst exponent of 0:9 (low heterogeneity). The dashed red line shows the location of no difference
between the autocorrelation measured in each axis direction (where D0{90 Moran’s I is zero) and represents the expected median for a series of
isotropic landscapes. Lighter coloured boxes show the inter-quartile range of the results from a synthesis algorithm with a median of D0{90 Moran’s I
closer to zero at the respective distance class than the alternative algorithm. Conversely, darker coloured boxes indicate that the magnitude of the
median value of D0{90 for a given synthesis algorithm exceeds that exhibited by landscapes generated using the alternative. The notches of the box
plots extend from the median to 1:58 multiplied by the inter-quartile range divided by the square root of the sample size (in this case 100) representing a
rough 95% confidence interval for the median based on asymptotic normality [35]. The box whiskers extend to the full range of data values.
doi:10.1371/journal.pone.0017040.g005
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Figure 6. Series of box plots showing the difference in autocorrelation measured using Moran’s I along lines parallel to the two
intercardinal axes. Figure A displays the results for landscapes generated by employing both synthesis algorithms with a Hurst exponent of 0:1
(high heterogeneity). Figure B displays similar results for landscapes generated with a Hurst exponent of 0:5 (intermediate heterogeneity) whilst figure C
shows results for landscapes generated using a Hurst exponent of 0:9 (low heterogeneity). The dashed red line shows the location of no difference
between the autocorrelation measured in each axis direction (where D45{135 Moran’s I is zero) and represents the expected median for a series of
isotropic landscapes. Lighter coloured boxes show the inter-quartile range of the results from a synthesis algorithm with a median of D45{135 Moran’s I
closer to zero at the respective distance class than the alternative algorithm. Conversely, darker coloured boxes indicate that the magnitude of the
median value of D45{135 for a given synthesis algorithm exceeds that exhibited by landscapes generated using the alternative. The notches of the box
plots extend from the median to 1:58 multiplied by the inter-quartile range divided by the square root of the sample size (in this case 100) representing a
rough 95% confidence interval for the median based on asymptotic normality [35]. The box whiskers extend to the full range of data values.
doi:10.1371/journal.pone.0017040.g006
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times. Figure 4 shows one realisation from each of the algorithms

described in this paper with an accompanying autocorrelogram.

To aggregate the results of each of the 100 landscapes generated

in each factor combination, we calculate two difference statistics,

D0{90 and D45{135 of Moran’s I , which describe the difference

between the Moran’s I statistic calculated on the 0o and 90o

neighbourhoods and the difference between the Moran’s I statistic

calculated on the 45o and 135o neighbourhoods respectively.

These statistics describe the difference in autocorrelation of the

landscapes measured in perpendicular directions, which for D0{90

Moran’s I , runs parallel to the cardinal axes, whilst for D45{135

Moran’s I , runs parallel to the intercardinal axes. Positive values

for D0{90 Moran’s I occur in landscapes with higher autocorre-

lation in the north-south direction than in the east-west direction

whilst negative values for D0{90 Moran’s I denotes landscapes

with lower autocorrelation in a north-south direction then in an

east-west direction. Similarly, positive values for D45{135 Moran’s

I denote landscapes with higher autocorrelation measured along

the direction running from the south-west to the north-east than in

the perpendicular direction running from the south-east to the

north-west. The reverse is also true for negative values of D45{135

Moran’s I . Values close to zero for both statistics are represen-

tative of landscapes that exhibit isotropic behaviour in the

directions tested whilst values of large magnitude for either

Figure 7. Three samples, taken at times 0, 10, and 20, from two time series of landscapes (128 6128 6128) generated using the
spectral synthesis algorithm described in this paper. Both landscapes are generated using Hurst exponents of 0.9 in the spatial dimension but
figure A uses a temporal Hurst of 0.1 and figure B uses a temporal Hurst of 0.9.
doi:10.1371/journal.pone.0017040.g007
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statistic denote landscapes with very different levels of autocorre-

lation when measured parallel to the relevant perpendicular axes.

Results and Discussion

Anisotropy Analysis
Figure 5 shows a series of box plots for the D0{90 Moran’s I

statistic calculated for each set of landscapes generated using the

different Hurst exponents and synthesis algorithms. Figure 6 shows

similar plots for autocorrelation measured parallel to the

intercardinal axes (D45{135 Moran’s I ).

From figures 5 and 6 we can see that there is a marked tendency

for smaller magnitudes in the medians of D0{90 and D45{135 of

Moran’s I from the set of landscapes generated using the updated

algorithm of [23] described in this paper. This effect is present in

both the cardinal and intercardinal comparisons and is most

prevalent in landscapes generated using a lower Hurst exponent.

This suggests that, for mid-to-low range values of the Hurst

exponent, then, on average, algorithm 2 produces landscapes that

exhibit fewer anisotropic characteristics than those generated using

algorithm 1. For landscapes generated using the highest Hurst

exponent tested in this analysis (0.9) the relative performance of

the algorithms is less clear and no one algorithm produces a

consistently lower magnitude of directional autocorrelation

disparity across all distance classes.

For comparisons of autocorrelation in directions parallel to the

cardinal axes (figure 5), we see that both synthesis algorithms

produce a series of landscapes with values of D0{90 Moran’s I
centred around zero but the range of values taken from landscapes

generated using the first synthesis algorithm is much larger. These

results reveal no general differences between the autocorrelative

properties measured in either cardinal direction for either

algorithm but that individual landscapes generated using the first

algorithm can potentially exhibit a greater range of anisotropic

properties than those generated using the second algorithm.

The variance in the results that we have seen here, where values for

D0{90 Moran’s I lie around zero but with a fair degree of spread in

either direction, can arise from an algorithm that simulates an

isotropic process but for which the variance represents deviations from

isotropy for each individual realisation. Alternatively, the algorithm

may simulate a truly anisotropic process but with the anisotropy

exhibited in a non-cardinal direction. In this instance, each realisation

would produce an anisotropic landscape with the direction of

maximum autocorrelation being a random realisation of a direction

set around the mean anisotropy direction of the process being

simulated. These deviations, when large, may also be exhibited in the

directional autocorrelograms defined on networks with neighbour-

hoods that do not run parallel to the direction being tested. If the

directionality of the process being simulated by the algorithm falls

directly between the cardinal axes, then the variance of realisations of

this process can produce values of D0{90 Moran’s I of large

magnitude and therefore increase the variance of the autocorrelo-

grams measured parallel to the cardinal axes. This latter, anisotropic,

explanation is supported as the generating mechanism for the variance

of D0{90 Moran’s I in the landscapes of synthesis algorithm 1 is

supported by the visual ‘smearing’ present on these landscapes (see

figure 4) and by the indubitable non-zero central tendency of D45{135

Moran’s I exhibited in the proximal distance classes.

In contrast to the anisotropic properties of algorithm 1, the

distributions of both D0{90 and D45{135 Moran’s I of landscapes

generated using algorithm 2 are centred around zero. These

results, in addition to the relatively artefact free appearance of the

landscapes, such as the landscape realisation of 4, suggests that

algorithm 2 accurately simulates a process with isotropic

properties. Whilst it is feasible that algorithm 2 simulates an

anisotropic process with direction of maximum autocorrelation

that does not follow any of the directions tested here, it is unlikely

that such directionality would not be evident in the autocorrelo-

gram difference statistics in either the cardinal or ordinal

Figure 8. Combining an environmental gradient surface with local environmental heterogeneity to provide a composite landscape

(see [31]). Figure A illustrates a simple gradient landscape (256|256) with each cell value set to one minus
1

128
multiplied by the absolute distance

(in number of cells) of the y-coordinate of the cell centre from the middle of the landscape. This provides a piecewise linear gradient with values

bounded between zero and one symmetrically decreasing from the centre of the landscape. Figure B illustrates a fractal landscape (256|256),
generated using the spectral synthesis algorithm described in this paper with a Hurst exponent of 0.5, and normalised so that all values fall between
the range of zero and one. Figure C shows a simple combination of these landscapes, 0.5 multiplied by the values of gradient landscape plus 0.5
multiplied by the values of the fractal landscape, to produce another landscape with values still bounded between zero and one.
doi:10.1371/journal.pone.0017040.g008
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directions. Therefore, a reasonable interpretation of the results

presented in figures 5 and 6 is that the updated algorithm of [23]

described in this paper successfully corrects the artefact of

intercardinal anisotropy present in the algorithm of [24].

Further Extensions
Landscapes generated by spectral synthesis have the property

that they are periodic. For some applications this is not necessarily

an undesirable property. Many theoretical simulation studies, such

as that of [30] and [13], use periodic boundary conditions to avoid

some of the artifacts that other boundaries conditions can induce.

If the landscape over which the ecological simulation is also

periodic then it avoids individuals experiencing sharp discontinu-

ities as they cross the boundaries of the simulation arena. If

periodicity is not desired then this property is easily assuaged by

constructing landscapes larger than required and then using a

fraction of the total surface area. To avoid periodic effects, [24]

suggests generating surfaces two to four times larger than the

landscape to be employed and selecting only the first set of cells in

each dimension that comprises the desired volume.

Whilst we have viewed the anisotropy present in algorithm 1 as

an unwanted artefact, there are times when it is usual to specify

different levels of autocorrelation in each dimension. [24]

describes an extension of the standard spectral synthesis algorithm

to do just this. This is particularly useful in the generation of

dynamic landscapes in spatio-temporal studies as it allows separate

ascription of spatial and temporal autocorrelation. Figure 7 shows

two examples of landscapes generated with direction-dependent

scaling. This extension requires very little change to the algorithm

described above; the overall Hurst exponent, H , becomes a

function of the set of dimension-specific Hurst exponents

H~

Pn
j Hjminffj ,gjgPn

j minffj ,gjg
ð5Þ

where Hj is the Hurst exponent of the jth dimension. Effectively

the Hurst exponent used in the two algorithms is replaced by a

‘composite Hurst exponent’, equivalent to an average of the

dimension-specific Hurst exponents weighted according to the

frequency coordinates in each dimension. This composite Hurst

exponent must be recalculated for every spectral coefficient

generated. It is important to make clear that whilst this composite

Hurst exponent changes value for each element, the dimension-

specific Hurst exponents do not and, as such, the underlying

autocorrelative properties of the generated landscape do not

change with the dimensional coordinates.

Specifying direction-specific Hurst exponents to produce

anisotropic landscapes may usefully characterise some environ-

ments but there are times when it is also necessary to model non-

stationary landscapes. The documentation and testing of the effect

of environmental gradients on various ecological phenomena is an

area of active research. However, within any environmental

gradient there is likely to be many local sources of spatially

correlated environmental variability. To capture this process, [31]

suggest the use of linear combinations of gradient surfaces with a

neutral landscape model to jointly model the effect of gradients

with local variability. Figure 8 shows an example of these

composite landscapes.

Neutral Landscapes and Conservation Ecology
The spatial configuration of habitats is an important factor in

the survival and long-term viability of populations [1]. Given the

importance of habitat configuration in conservation biology, it is

imperative we continue the develop the theory that underlies

metapopulaton dynamics. One method to develop and test

theories of landscape ecology is to run field experiments. However,

assessing the effects of habitat configuration with field experiments

can be problematic. Robust statistical analysis of spatial structure

requires replicates of landscapes with similar spatial characteristics

and a wide variety of landscape configurations which can result in

experiments that are costly to perform. Given the relative ease of

performing simulation studies, we can supplement field studies

with models of population dynamics run over landscapes

generated using neutral landscape models [14]. This provides a

much simpler and cost-effective way to develop theory in the field

of landscape ecology.

Real landscapes are not ideal fractals [32], but they often exhibit

fractal-like properties that can make modelling them as such

sufficient for the purposes of theoretical investigation or hypothesis

generation [33,34]. Environmental gradients in nature are also

never smooth and the hybrid approach described by [31] provides

an elegant way to assess how local environmental variability can

interact with a macro-scale gradient to produce patterns observed

in nature. Given the ever-prevalent nature of gradients in

ecological and evolutionary research, the existence of tools such

as the one described in this paper can be critical in aiding the

exploration of ideas and forwarding our understanding.

We have presented here a potentially valuable tool for use in

simulation-based ecological investigations. By isolating the effects

of landscape structure, we are given a method by which to assess

how spatial and temporal autocorrelation affect ecological

processes. We have shown how landscapes generated using the

updated algorithm described in this paper do not exhibit many of

the artefacts displayed in the products in earlier algorithm

incarnations. This paper also describes a number of developments

of the standard neutral landscape model which greatly expands the

number of possible uses of these models.
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