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The role of host factors in measles virus persistence 
Sibylle Schneider-Schaulies, jens-Jörg Schnorr, Lee M. Dunster) Jürgen Schneider-Schaulies 
and Volker ter Meulen 

As critical steps in the life cycle oJ measles virus (Mfl), the 
e.fficiency of uptake into and replication in susceptible host 
cells are governed by cellular determinants. Measles virus 
infections of cells of the human CNS are characterized by 
particular constraints imposed on v1:ral transcription and 
translation attenuating viral gene Junctions and thus 
contributing to the pathogenesis oJ MV persistence in these 
cells. 
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COMPLICATIONS OF acute measles are frequent, 
most of them are linked to virus-mediated cytolysis 
of the primary target cells, the peripheral blood 
mononuclear cells (PBMCs), and indirect 
mechanisms based on the temporary virus-induced 
immunosuppression as weil as virus-induced 
autoimmune reactions. 1-3 Although not convincingly 
confirmed experimentally, persistent infection of 
lymphocytes or monocytes has been suggested for 
the pathogenesis of MV associated disease processcs 
including CNS complications. 4-,S Subacute sclerosing 
panencephalitis (SSPE) and, in immunocompromised 
hosts, measles inclusion body encephalitis (MIBE) 
develop on rare occasions months or years after 
primary infection based on persistence of virus in 
neuronal and glial cells. 6 Both lethal conditions are 
characterized by the absence of free infectious virus 
in brain tissue due to a defective intracellular 
replication cyde which allows the virus to survive 
in a cell associated form and inaccessible to the host 
immune surveillance. 1 This is generally achieved by 
maintaining the integrity of the viral protein 
functions associated with ongoing transcription and 
intracellular replication and attenuating or abolishing 
the expression of the viral envelope proteins. The 
restrictions of the latter have been linked to a 
generally low abundance of the corresponding 

From the Institute for Virology, University of Würzhurg, 
Versbacher Strasse 7, D-97078 Würzburg, Germany 

©1994 Academic Press Ltd 
1044-57731941040273 -t- 0888.0010 

mRN As in brain tissue and to the fact that many 
of the envelope gene sequences known today harbor 
mutations interfering with functional expression of 
the gene products6, 7 (Table 1 ). 

Although mutatio~s within the envelope gene 
sequences are undoubtedly important for controlling 
viral gene functions in persistent MV CNS infections, 
the presence of MV wild-type-like sequences in SSPE 
brain material provided a strong argument for a 
nondefective virus initially infecting the C NS. 8 

Thus, the primary virus-hast cell interaction probably 
is governed by host cell factors attenuating viral gene 
functions thereby abolishing a lytic, productive 
replication and enabling the establishment of a 
persistent infection. 

In this review we will focus on basically two 
distinct events in the viral replication cycle which 
are determined to a major extent on host cell 
dependent factors, namely the interaction of MV 
with its cellular receptors and intracellular regulatory 
events interfering with the synthesis and functionality 
of virus-specific transcripts. 

MV receptor interactions 

The first events determining the cell tropism of MV 
in vivo are receptor mediated entry of the virus, 
subdivided into specific attachment, close binding 
and subsequent fusion between viral and host 
cell membrane and ultimately, the release of 
the viral genetic material into the cytoplasm 
(shown schematically in Figure 1 ). lt was not until 
recently that two different cell surface molecules 
have been identified on tissue culture cells that 
are functionally associated with infectivity of the 
cell with MV. Antihoclies raised against CD46 
(membrane cofactor protein, expressed on the surlace 
of most human cells)9 were able to interfere with 
MV infection. 10•11 Upon stable transfection of 
CD46, certain mouse cell lines were capable of 
supporting productive MV replication, whereas 
others were not, 10 indicating that CD46 would be 
necessary but not sufficient to confer susceptibility 
to MV infection.IO,ll More recently, as a second 
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Table 1. Alterations of MV gene functions in persistent brain infections 

Replication step 

Transcri ption 

Function of viral 
mRNAs and 
proteins 

Alterations in persistent infections 

Highly polar expression gradients 
for monocistronic mRNAs 
Increased frequency of bicistronic 
mRNAs 

N, P, L proteins: 
few expressed point mutations over 
the entire genes 
M proteins: 
point mutations and hypermutations 
over the entire coding sequence 
F proteins: 
C-terminal point mutations 
H proteins: 
point and hypermutations 

Consequences 

Low abundance of the envelope and polymerase 
proteins 
lnefficient translation of the second reading frame 

Alterations of the poJymerase activity? 
Altered protein/protein interactions? 
Antigenie changes 
M proteins absent, truncated or instable 
Defective budding? 
Alterations of NC binding? 
Truncation, distortion of the C-terminal domain 

Loss of glycosylation sites 
lmpaired dimerization and membrane transport 
Reduced hemadsorption activity 
Antigenie changes 

Summarized are alterations of MV gene functions defined directly in brain material of patients with persistent CNS infections 
or by analyzing MVs isolated from brain tissue by cocultivation and propagatcd as 'SSPE isolates' in persistently infected tissue 
culture cells. Transcriptional attenuation has generally been observcd affecting both overall MV transcription Ievels (as determined 
as copy numbers/1 0 pg of total RN A) as weil as the formation of highly polar expression gradients for the downstream mRNAs. 19•20 

Functional impairments of these mRNAs, mainly due to point and hypermutations, alter, trunca~e, destabilize or completely abolish 
the corresponding translation products. 6 •7 While functional consequences for the alterations within the N, P and L proteins are 
anticipated, they have becn experimentaJiy addressed for the envelope proteins recently. 73· 7~ 
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Figure 1. Steps in measles virus-cell interactions. Binding of enveloped viruses to cells and 
subsequent fusion is a multistep mechanism not well understood. The model predicts that 
complexes of CD46 and moesin and MV-H and F are required for effic:ient uptake of MV 
by cells. While the interaction of MV-H protein with CD46 is strong;ly suggested, 10 the 
interaction of the F protein with one of these components has not been established. Note 
also, that CD46 is a classical transmembrane glycoprotein,9 whereas moesin is associated 
with both surfaces of the ce11ular mernbrane, however, has no typicaJ transmembrane 
domain. 12 Following release of the viral RNP, factors within the cytoplasmic compartment 
determine the susceptibility of the host cell. 
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molecule, moesin (membrane, 2rganizing ~xternal 
~pike protein, widely expressed on eucaryotic cells)12 
could be linked to MV susceptibility in a variety 
of tissue culture cells. 13 Monoclonal antihoclies 
against both constituents efficiendy blocked infection 
with MV, but not with viruses as closely related 
as CDV in tissue culture10•13 and recently, data 
accumulated suggesting that both molecules are 
part of the functional receptor complex for MV 
(J. Schneider-Schaulies, unpublished). Both 
molecules reveal a wide tissue distribution in vivo,9,l2 
but only certain isoforms of CD46 have been detected 
on the surface of brain cells. 14 

A role of the receptor in determining the outcome 
of a viral infection has also been suggested. For 
HPIV 3, removal of the receptor du ring infection 
has been linked to a persistent state by preventing 
cell-cell fusion. 15 The establishment of persistence 
upon Iimitation of the receptor has also been 
observed for HIV .16 In a cell line persistently 
infected with MV, cell-cell fusion did not occur 
unless fresh cells were added to the culture1 7 and 
recently it was shown that infection with MV or a 
recombinant vaccinia virus expressing the MV H 
protein led to a down-regulation of CD46 molecules 
at the cell surface10 and, in fact, significantly 
reduced amounts of CD46 and moesin were detected 
on the surface of persistently MV -infected human 
monocytes (ref 13; L.M. Dunster, unpublished). 
Functional consequences of removal of CD46 
proteins from the cell surface may include an 
increased vulnerability of the infected cells to 
complement Iysis (J .J. Schnorr, in preparation). 
On the other hand, their reduced fusability could 
favor the establishment of viral persistence. Since, 
however, a strict correlation was found between the 
degree of down-regulation of CD46 and the amount 
of the H protein, the latter hypothesis will probably 
not refer to brain cells where the expression of 
the envelope proteins is generally restricted ( see 
below). 

Further characterization of the MV /cell 
receptor-interactions and the establishment of stably 
transfected celllines or transgenic mouse lines will, 
however, contribute not only to the understanding 
of the pathogenesis of MV, but also to evaluate 
the role of intracellular factors controlling the 
permissiveness of the host cell. In fact, although 
extensive formation of syncytia was observed after 
infection with a vaccinia virus recombinant encoding 
both MV F and H, mouse L cells constitutively 
expressing CD46 were not permissive for MV 

Restrietions oj MV gene expression in brain tissue 

indicating a block of MV replication later than at 
the Ievel of entry .to 

Control of intracellular MV gene expression 
in brain cells 

Alterations of MV gene expression have mainly 
been characterized directly using autopsy brain 
material of SSPE and MIBE patients and celllines 
persistently infected with MV isolates obtained by 
cocultivation from brain tissue. 18 To investigate 
the particular virus-host interactions governing 
the primary infection as experimental systems, an 
animal model for experimentally induced MV ~CNS 
infections in rats and tissue culture systems with 
primary and permanent cell lines of neural origin 
have been used. 
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Regulation of MV transcription 

Transcription of viral subgenomic mRNAs is initiated 
by the transcriptase complex at a promoter site within 
the 3' noncoding region and subsequently the 
individual mRNAs are synthesized. The polymerase 
tends to detach from the template at the intergenic 
regions with increasing frequency to the 5' end of 
the genome leading to apolar accumulation of viral 
mRNA transcripts in vivo and in vitro.19~2l In SSPE 
brain material, this gradient appears to be 40-fold 
steeper19,20 leading to a considerable reduction in 
M, F and H protein expression which has been 
directly documented22 (Table 1 ). 

In analyzing potential host factors it became 
evident that in brain cells the overall MV specific 
transcription is substantially reduced as indicated by 
the steady-state levels of the N-specific transcripts 
per infected cell. In MV -infected human neural 
tissue culture cells and primary rat astroglial 
cells, these transcripts were up to tenfold less 
abundant compared to nonneural cells under 
identical conditions. 23,24- A further reduction of the 
overall MV transcription has been linked to the 
differentiation state of the infected cells in brain 
material of both experimentally infected animals 
and in tissue culture of human neuroblastoma 
cells treated with differentiating compounds.25,26 
Concomitant with the overall reduction observed, 
the progressive decrease of the mRN A frequency 
along the gene order, typical for SSPE, could also 
be detected in tissue culture systems using neural cells 
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and in brain tissue of experimentally infected 
animals. 24,27 

Antibody-induced anlegenie modulation 

Transcriptional attenuation of MV in brain 
cells may also be · supported by exogenaus factors 
such as virus-neutralizing antibodies. A significant 
down-regulation of MV transcription was observed 
in experimentally infected newborn animals compared 
to naive controls after passive transfer of neutralizing 
anti-H -antibodies. 25 In the presence of neutralizing 
antibodies, a pronounced reduction of the expression 
of all MV structural proteins within few days was 
observed in persistently MV -infected rodent neural 
cel1s, but not in Vero cells or human lung 
fibroblasts.28-JO RNA analyses revealed that 24 h after 
the application of antibodies, total MV transcriptional 
efficiency was reduced up to tenfold whereas the relative 
frequencies of the 5' mRNAs were substantially 
unaffected. 30 Although 'antibody induced antigenic 
modulation (AIAM)' has recently been shown to 
account also for restrictions of other viruses, 31 

the signal transduction pathways involved have 
not been investigated. An immediate, temporary 
increase in phosphoinositol breakdown and stimulation 
of the protein kinase C has been described following 
addition of an anti-H antibody to persistently 
MV -infected rat glioma cells, 32 whereas other 
investigators observed a down-regulation of protein 
kinase C activity upon treatment of a persistently 
infected mouse neuroblastoma cell line with MV 
hyperirnmuneserum. 33 Protein kinase C mediated 
alterations of MV gene expression in neural cells 
have not been investigated so far. In PBMCs, 
stimulation of protein kinase C by TP A (phorbol 
myristate acetate) or the Ca ionophore 23187 led to 
the activation of MV replication. 34 

Role oj the human IFN-t'nducible MxA -protein in regulating 
MV gene expression 

Cytokines released from MV -infected brain cells 
may interfere additionally with viral as weil as 
ceUular gene exprcssion. 35 Amongst those, the 
antiviral potential of type I IFN and the weil 
characterized IFN -inducible proteins has been a 
matter of more detailed investigations. 36-39 One of 
the latter, the type I IFN-inducible MxA protein, 
has recently been linked to transcriptional attenuation 
of MV brain cells, but not in nonneural cells. 39 
MxA-dependent downregulation of MV transcription 

affected both overall efficiency and the relative 
frequencies of the 5' mRNAs, whereas the same 
protein expressed in the human monocytic cell line 
U-937 specifically inhibited the synthesis of the MV 
glycoproteins in the absence of any detectable 
transcriptional control. 40 It is quite remarkable that 
the antiviral activity of the MxA protcin seems to 
be quite complex, as previous studies revealed a host 
cell independent MxA-mediated inhibition of VSV 
RNA synthesis.40,41 Since, however, high levels of 
MxA are detected in monocytes and brain cells during 
primary or persistent MV infection respectively, this 
protein apparently bears a high potential to act as 
a host cell specific factor attenuating MV gene 
express1on. 

Potential mechanisms and lllrgets oj MV transcriptional 
regulation 

As appropriate experimental systems are not at 
hand, mechanisms contrihuting to MV transcriptional 
regulation are still largely unknown. For MV 
and related viral system.s, evidence for a role of 
cytoskeletal components like tubulin for efficient 
replication has been provided in vitro. 21 ,42,43 Due to 
their ubiquitous expression, the linkage of these 
proteins to host cell dependent transcriptional regulation 
is not obvious. More recently, uncharacterized host 
proteins directly binding to the Ieader RNA of MV 
have been proposed to play a role in determining 
permissivity for MV on a transcriptional Ievel. 44 

Altematively, host cell specific modifications of viral 
proteins essential for transcription and replication 
could be envisaged. As shown for vesicular stomatitis 
virus (VSV), at least one of the functionally required 
phosphorylation events of the viral P protein is due 
to the action of a cellular kinase and an inhibition 
of that kinase activity directly correlates with 
transcriptional inhibition z'n vitro. 45,4-6 It is well 
established that at least three MV proteins (N, P and 
the nonstructural V protein) are phosphorylated, 
exact phosphorylation sites, however, and their 
functional importance have not been defined.47-49 

Although the polymerase protein L, is probably 
just required in catalytic a.mounts, its Iow abundancy 
due to the under-representation of the corresponding 
transcript, may be lirniting for transcriptional 
efficiency in brain cells. A certain stoichiometry of 
N, P and L proteins for the formation of functional 
complexes has been shown to be required for the 
related Sendai virus system. so In addition, an 
inhibitory capacity of thc! Sendai vin.ts V protein on 
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viral RNA replication was found in vitro with the L 
protein being limited. In the presence of strongly 
polar expression gradients for the corresponding 
transcripts, V protein may exert a negative effect on 
replication in infections where the concentration of 
L is relatively low, such as in brain cells. 51 Thus, 
although editing required for the synthesis of the V 
protein is most presumably an activity intrinsic to 
the viral polymerase and independent of host cell 
factors, 52 the gene function(s) of the editing product 
may be regulated by the host background. 

Biological activity of virus-specific transcripts 

M utational alterations 

In addition to altering the relative frequencies of 
virus-specific 'transcripts, their translational activity 
provides an important site of control for viral gene 
functions. From the analyses of envelope gene 
specific mRNAs from persistent brain infections it 
became apparent that most of the restrictions on 
translational Ievel are based on sequence mutations 
leading to premature termination or complete 
abolishment of the corresponding reading frames. 7,t8 

An exception is provided by the M-specific mRNAs 
isolated from the brain of experimentally infected 
Lewis rats with SAME, that were not translated 
in vivo and in vitro, independent of detectable 
sequence alterations. 27 

In addition to point mutations as introduced 
by the viral polymerase during the long Iasting 
virus-host interactions, a second type of mutations 
involving simultaneaus dustered transitions of 
several uridine (U) to cytidine (C), or, less frequent, 
adenosine (A) to guanosine (G) residues, specified 
in the plus strand sense, has been encountered 
predominantly in the M genes of SSPE and MIBE 
cases and persistently infected tissue culture cells. 8,53-55 

These hypermutation events have been ascribed to 
the activity of a double-strand (ds) RNA dependent 
unwinding/modifying enzyme, now referred to as 
DRADA (gouble-strand RNA specific ~denosine 
ges~minase) intrinsic to the host cell. 54,56,57 The 
model predicts that A residues would be desaminated 
to yield inosine (I) in MV -specific dsRNAs du ring 
transcription. Subsequently, within the first round 
of replication, the modified I residues would base 
pair with C replacing the primary A/U pairing. 

The potential importance of this cellular activity 
in silencing MV gene functions has been recently 

Restrietions oJ MV gene expression in brain tissue 

supported by the characterization of several evolved 
hypennutated sequences within different brain areas 
of a case of SSPE. 8 As obvious from that study, a 
wild-type like M sequence was actively modified in the 
course of the infection by several discrete, consecutive 
hypermutation events. Moreover, evidence for 
hypermutation of viral genes has been provided for · 
viral systems other than MV. 58-60 In vitro, the 
activity could be detected in a variety of mammalian 
tissue culture cells without an apparent template 
specificity.6l-63 The intracellular localization of the 
activity has been shown tobe dependent on the cell 
cycle61 ,62 usually being extremely low under growth 
arresting conditions. 61 An MV M specific subgenic 
fragment has been successfully modified in vz"tro in 
nuclear extracts of a human neuroblastoma cellline 
(IMR-32) but not of Vero cells. 64 More recently, 
the presence and activity of the enzyme in cytoplasmic 
extracts of in vitro differentiated brain cells has been 
confirmed. 65 Thus, although the further propagation 
of the mutated viral sequence is completely dependent 
on their impact on viral gene functions, the basic 
attenuation is dependent on host cell rather than viral 
determinants. 
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Translational control independent of mutations 

Apart from mutational events discussed above, 
translational efficiency may depend on 51 and 3' 
noncoding sequences of a mRNA interacting with 
common or host cell specific cellular RNA binding 
proteins. 66 A temperature shift of persistently infected 
rat glioma cells led to a selective and reversible 
translation inhibition of MV M and F-specific 
mRNAs arguing strongly for the involvement of 
cellular determinants in contraHing viral gene 
functions. 67 Similar observations of translational 
inhibition affecting partial as weil as complete, 
MV protein synthesis have been described as a 
consequence of in vitro differentiation of tissue culture 
cells of neural origin. 24,26,68 In one of these studies, 
in vitro differentiation of human glial celllines prior 
to MV infection led to an almost complete block of 
viral protein synthesis in vivo, whereas the synthesis 
of the corresponding mRNAs and their ability to 
direct the synthesis of translation product in vitro were 
apparently unaffected. 24 In addition, the overall 
protein synthesis of the infected cells was not 
inhibited. The obvious specific inhibition of viral 
rather than cellular gene expression is reminiscent 
ofthat described for the antiviral activity of certain 
IFN-induced proteins.69 Although as a consequence 
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of MV infection the induction of IFN is indicated 
by the expression of human MxA in these cell 
lines, 35 in vitro differentiation did not Iead to a 
detectable stimulation of IFN synthesis arguing 
against a pronounced inhibitory effect brought about 
by Pl kinase.24 The sensitivity of MV specific 
protein expression to exogenaus treatment with 
IFN-a independent ofviral mRNA down-regulation 
was shown in PBMCs. 70 

Conclusions and future perspectives 

As outlined above, host cell dependent attenuation 
of MV gene expression and functions on different 
levels may be of crucial relevance in favoring 
the establishment of persistent infections. An 
additional role for viral constituents in this process 
cannot, however, be excluded. Recently, the clonal 
expansion of a MV identified by a hypermutated 
M sequence in the brain of one SSPE patient 
has been suggested to be based on a selective 
advantage of this particular isolate. 8 To evaluate 
and characterize the role of viral and cellular 
determinants in the pathogenesis of human CNS 
infections, a precise definition of functional domains 
within the viral structural proteins required for 
intracellular amplification of viral genetic material 
and the maturation and release of viral particles will 
be indispensable. So far, the C-terminal domain of 
the MV P protein has been identified as necessary 
for complex formation of MV N and P proteins 
in vivo, 7l and the binding of MV M protein to MV 
RNP complexes has been investigated in vitro. 72,73 As 
for influenza virus and VSV, a role forthat protein 
has been proposed in regulating MV transcription. 74 

Ultimately, the MV -glycoprotein-dependent 
membrane fusion has been investigated in tissue 
cultureJ5 Understanding of MV protein functions 
and the relevant domains will allow the evaluation 
of alterations within these proteins sequences 
encountered in persistent infections and their 
potential contribution to this particular virus-hast 
interaction. 
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