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Zusammenfassung

Diese Doktorarbeit befasst sich mit Transportmessungen an resonanten Tunneldioden

(engl. resonant tunneling diode, RTD), welche vollständig aus II-VI Halbleitermaterial

bestehen. Das verdünnt magnetische (engl. dilute magnetic semiconductor, DMS) Halb-

leitermaterialsystem (Zn,Be,Mn,Cd)Se ist sehr vielseitig und eignet sich hervorragend als

Testsystem für diverse Spintronik Bauelemente, denn magnetische und elektrische Eigen-

schaften lassen sich getrennt voneinander einstellen. Im Gegensatz zum ferromagnetischen

Halbleiter (Ga,Mn)As verändert das Dotieren von ZnSe mit Mn nicht die elektrischen Ei-

genschaften des Halbleiters.

Im ersten Teil dieser Arbeit stellen wir ein neues Modell vor, das sowohl die qualita-

tive als auch die quantitative Analyse zweidimensionaler (Zn,Mn)Se Quantentrog RTDs

ermöglicht. Eine vollständige theoretische Beschreibung zeigt lediglich ansatzweise Über-

einstimmung mit dem Experiment [Havu 05]. Anstatt die Beschreibung der I-V Kennli-

nie aus grundlegenden quantenmechanischen Prinzipien aufzubauen, verwendet das hier

vorgestellte Modell eine empirische Beschreibung der Resonanzen in den I-V Kennlinien

der RTDs. Wir zeigen, dass die nicht resonanten Beiträge zum Tunnelstrom maßgeblich

von der durch die angelegte Spannung verkippten Doppelbarriere abhängen und dass

dies durch eine Transfermatrix modelliert werden kann. Angesichts dieser Erkenntnisse

diskutieren wir die Anwendbarkeit idealisierter Modelle für die Beschreibung der Charak-

teristika von II-VI Halbleiter RTDs und zeigen warum diese nicht in der Lage sind ihre

wichtigste Transporteigenschaft, die Resonanz, richtig wiederzugeben.

Wie bereits von Slobodskyy et. al gezeigt wurde, lassen sich diese DMS RTDs als span-

nungsgesteuerte Spinfilter nutzen. In ihrem intuitiven Modell zur Beschreibung der Spinfil-

ter Eigenschaften ist die gemessene I-V Kennlinie bei B=0 T der Startpunkt für die weitere

Modellierung der Magnetfeldabhängigkeit. Dieses Modell zeigt gute Übereinstimmung mit

den Messungen bis einschließlich B=6 T. Es wird jedoch weder versucht das Zustande-

kommen dieser Nullfeld I-V Kennlinie herzuleiten, noch den Wirkungsgrad des untersuch-

ten Spinfilters zu bestimmen. Das hier vorgestellte Modell beinhaltet eine vollständige,

konsistente Beschreibung des erweiterten Messbereichs bis B=14 T einschließlich der Null-

feldkennlinie. Des weiteren ermöglicht es uns den Wirkungsgrad des Spinfilters aus den

Messdaten zu bestimmen. Zusätzlich werden die Auswirkungen von Emitterzuständen

und Probenunregelmäßigkeiten auf die Transporteigenschaften der DMS RTDs aufge-
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2 Zusammenfassung

zeigt. Während es für selbstorganisierte Quantenpunkt RTDs bekannt war, dass sich in

der Nähe von lokalisierten Zuständen eine mikroskopische magnetische Ordnung bildet,

zeigt unser Modell dass diese so genannten gebundenen magnetischen Polaronen (engl.

bound magnetic polaron, BMP) auch für den Transport in DMS Quantentrog RTDs eine

Rolle spielen. Trotz des paramagnetischen Quantentrogmaterials zeigen auch die zweidi-

mensionalen RTDs eine remanente Nullfeldaufspaltung, da sich BMP-artige Zustände an

der Grenzfläche des Quantentrogs bilden.

Um die Annahme, dass diese Unregelmäßigkeiten an der Quantentroggrenzfläche die

Transporteigenschaften der RTDs beeinflussen zu überprüfen, untersuchen wir die Zugver-

formung der II-VI Heterostrukturen, welche sich durch den Gitterunterschied zum GaAs

Substrat während des Wachstums ausbildet. Wir entfernen das GaAs Substrat von einer

RTD, welche die zuvor erwähnte Nullfeldaufspaltung der Spin-up und Spin-down Zustände

im Quantentrog aufweist. Die Verspannung die sich während des Wachstums aufgebaut

hat löst sich durch das Entfernen des Substrates. Durch die resultierende Glättung der

Grenzflächen wird die Bindungsenergie der BMP artigen Zustände geschwächt. Vergleicht

man nun Fits der I-V Kennlinien vor und nach dem Entfernen des Substrats, zeigen

sich geänderte Probeneigenschaften wie man sie innerhalb unseres Modells für glattere

Grenzflächen erwarten würde. Während die Finesse der Resonanz sich deutlich verbessert,

nimmt die beobachtete Nullfeldaufspaltung ab, sowie die Qualität der Tunnelbarrieren zu.

Nachdem wir ein vollständiges Modell zur Beschreibung der Transporteigenschaften

einer II-VI DMS RTD eingeführt haben, ist der folgerichtige Schritt die Vereinigung zweier

solcher DMS RTDs in einem Bauteil. Während die erste RTD als Injektor benutzt wird,

dient die zweite in Serie geschaltete RTD als Detektor des spinpolarisierten Stroms. Wir

untersuchen ein solches Spin-Ventil (engl. spin valve) und zeigen warum es zu keiner Ab-

schnürung des Stroms kommt, selbst wenn die beiden RTDs so eingestellt werden, dass

sie nur entgegengesetzte Spins durchlassen. Der Kontakt zwischen den RTDs ist nicht

nur notwendig um die einzelnen Bestandteile des Spin-Ventils unabhängig voneinander zu

steuern, er schränkt auch gleichzeitig dessen Funktion ein, da er die Region zwischen den

RTDs mit einem unpolarisierten Reservoir verbindet. Das zuvor für eine einzelne DMS

RTD entwickelte Modell wird für das Spin-Ventil erweitert und zeigt erneut qualitative

sowie quantitative Übereinstimmung mit dem Experiment. Wir zeigen, dass die Spinin-

formation während des Transfers vom Injektor zum Detektor größtenteils erhalten bleibt

und extrahieren den Wirkungsgrad des Spin-Ventils. Da beide DMS RTDs Nullfeldauf-

spaltung aufweisen, diskutieren wir anschließend die Verwendung des Spin-Ventils ohne

angelegtes externes Magnetfeld.

Messungen an Quantentrog RTDs mit Nullfeldaufspaltung zeigen den simultanen Trans-

port durch das Ensemble der niederdimensionalen Grenzflächenzuständen in der Probe.

RTDs mit selbstorganisierten Quantenpunkten erlauben es hingegen den Transport durch

einen einzelnen nulldimensionalen Zustand zu beobachten. Die reduzierte Dimensiona-

lität der resonanten Zustände kann des weiteren Vielteilcheneffekte wie die Singularität

der Transmissionsrate an der Fermi-Kante (engl. Fermi-edge singularity, FES) zur Folge
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haben.

Zunächst betrachten wir eine Quantenpunkt RTD ohne magnetische Dotierung. Durch

eine FES entsteht eine Singularität in der I-V Charakteristik sobald der Zustand im

Quantenpunkt auf Höhe der Fermienergie im Emitter liegt. Vorhergehende Studien dieses

Vielteilcheneffekts in RTDs beschränkten sich auf das III-V Materialsystem und wurden

meist bei hohen Magnetfeldstärken durchgeführt. Die hier gezeigten I-V Kennlinien einer

II-VI Quantenpunkt RTD zeigen den Effekt bereits deutlich ohne angelegtes Magnetfeld.

Weiterhin ist er bei Temperaturen bis 45 K sichtbar und zeigt eine Magnetfeldabhängigkeit

die für einen zweidimensionalen Charakter der Injektorzustände spricht.

Ein weiterer Vielteicheneffekt in solchen nulldimensionalen Systemen kann nach ma-

gnetischer Dotierung der Tunnelbarrieren beobachtet werden. Resonantes Tunneln durch

einen magnetischen Quantenpunkt ermöglicht es uns, den Transport durch ein einzelnes,

gebundenes magnetisches Polaron zu beobachten. Gould et al. zeigten bereits die Spin-

aufspaltung, die aus der Kopplung des Quantenpunktzustands mit seiner magnetischen

Umgebung resultiert [Goul 06]. In dieser Arbeit zeigen wir, dass es möglich ist, den Quan-

tenpunktzustand gleichzeitig an das magnetische (BMP) sowie an das fermionische (FES)

Reservoir anzukoppeln. Die durch die FES erhöhten Tunnelraten an der Fermi-Kante

ermöglichen es bei T=20 mK eine zusätzliche Feinstruktur der Resonanzen zu beobach-

ten. Diese Feinstruktur entspricht wahrscheinlich dem Anregungspektrum des Polaronen-

zustands. Des weiteren stellen wir ein vorläufiges Modell vor, welches bereits qualitative

Übereinstimmung mit der Nullfeld I-V Kennlinie, sowie deren Temperatureverhalten lie-

fert. Auf Grund der Ankopplung des Quantenpunktzustandes an beide Reservoire, können

an solchen Systemen erhobenen Daten zur Überprüfung moderner Bose-Fermi Theorien

genutzt werden.

Zur genaueren Untersuchung solcher Vielteilcheneffekte betrachten wir eine weitere

RTD die eine Ankopplung an beide Reservoire vorweist. Diese zweite Probe zeigt sowohl

charakteristisches FES Verhalten, als auch die BMP typische Nullfeldaufspaltung, jedoch

schon bei sehr kleinen Vorspannungen von 2 mV. Durch die ausgeprägte Asymmetrie

der Quantenpunkt RTDs zeigen die meisten untersuchten Proben die Singularitäten in

der I-V Kennlinie nur beim Laden des Quantenpunkts durch die dickere der beiden Bar-

rieren. Zudem wird der Einfluß des Fermisees im Kollektor meist vernachlässigt, da bei

den Spannungen, bei denen die Resonanzen üblicherweise auftreten, die Fermikante des

Kollektors bereits weit unterhalb der Emitterzustände liegt. Dies trifft hier jedoch nicht

zu, da die für die Resonanz benötigten Vorspannungen kleiner sind als die Bandbreite

der Emitterzustände. Wir vergleichen Transportmessungen für negative und positive Vor-

spannungen, bei denen die FES Charakteristik jeweils von der dünneren bzw. dickeren

Barriere bestimmt wird.

Letztendlich hat die Untersuchung der Auswirkungen von Kontaktwiderständen, Ab-

weichungen vom idealisierten Bild der Probe, sowie der angelegten Spannung zu einem

einfachen vereinenden Modell geführt. Dieses beschreibt nicht nur einzelne DMS RTDs,

sondern auch komplexere, aus mehreren RTDs zusammengesetzte Bauteile.
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Summary

We investigate transport measurements on all II-VI semiconductor resonant tunneling

diodes (RTDs). Being very versatile, the dilute magnetic semiconductor (DMS) system

(Zn,Be,Mn,Cd)Se is a perfect testbed for various spintronic device designs, as it allows for

separate control of electrical and magnetic properties. In contrast to the ferromagnetic

semiconductor (Ga,Mn)As, doping ZnSe with Mn impurities does not alter the electri-

cal properties of the semiconductor, as the magnetic dopant is isoelectric in the ZnSe host.

In the first part of this thesis, a new modeling scheme is presented which allows

for qualitative and quantitative analysis of two dimensional (Zn,Mn)Se quantum well

RTDs. A full theoretical modeling scheme only shows rough qualitative agreement to the

experiment [Havu 05]. Instead of relying on such a bottom-up description of the transport

characteristics, the model presented in this thesis is based on an empirical description of

the apparent resonances in the I-V characteristics of our RTDs. We show that the non-

resonant contributions to the current are dominated by the tilt of the double barrier

region due to the applied bias voltage and can be modeled with a transfer matrix method

(TMM). In light of these findings, we show to what limited extent the usual idealized

pictures are useful tools to describe the nature of the II-VI RTDs, and give explanations

to why they fail to reproduce the most important characteristic of such an RTD, its

resonance.

As shown by Slobodskyy et al. [Slob 03], these DMS RTDs act as voltage controlled

spin filters. In their intuitive model of the spin-filter properties, the zero magnetic field I-V

characteristic was used as a starting point for the fits to the magnetic field measurements.

While this model shows good agreement to the experiment for magnetic fields up to 6 T,

no effort was made to discuss the fundamental transport properties at zero magnetic field

or to extract the spin-filter efficiencies of the device. The detailed model presented in this

thesis provides this description of the zero magnetic field I-V characteristic, shows good

agreement to the experimental data in an extended magnetic field range up to 14 T and

also allows for the extraction of the current spin polarization of the device. Additionally,

the implications of emitter effects and device imperfections on the transport properties are

shown. While it was known for self-assembled quantum dot states that localized impurity

states form a microscopic order in their vicinity [Goul 06], the modeling revealed that these

so called bound magnetic polarons (BMPs) also play a role in the transport characteristics
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6 Summary

of DMS quantum well RTDs. Counterintuitively, a remanent zero field splitting is also

observed for two dimensional RTDs, as BMP states form at the interface of the (Zn,Mn)Se

quantum well.

To further test the assumption that imperfections at the quantum well interface sig-

nificantly alter the transport properties of an RTD, we investigate the tensile strain that

builds up in our II-VI heterostructures due to the lattice mismatch to the GaAs substrate.

We remove the GaAs substrate from an RTD which shows the aforementioned splitting

of the spin-up and down channels without an applied external magnetic field. The tensile

strain built up during growth relaxes as the substrate is removed and the interface is

flattened, weakening the BMP states. By comparing fits to the I-V characteristics of the

device before and after removing the substrate, the device properties are altered according

to what is expected within our model for a smoother interface. The sharpening of the

resonance, the reduction of the zero field splitting as well as an increase in tunnel barrier

quality are clearly observed.

Equipped with a complete picture of the transport physics of a II-VI DMS RTD, the

next logical step is to combine two such spin sensitive RTDs in a injector-detector scheme.

We investigate such a spin-valve device and discuss why no clear off-state is observed when

the two RTDs are set to transmit opposite spin species. While the middle contact between

the two RTDs is necessary to independently operate the building blocks of the spin-valve,

it also hinders spin-valve operation as it connects the region between the two RTDs to

an unpolarized reservoir. The model developed for the single DMS RTDs is extended

for the compound device and is again in full qualitative and quantitative agreement with

the experiment. We show that spin is mostly conserved as it is transferred from the

injector to the detector and extract the spin valve efficiencies. As each of the DMS RTDs

exhibit remanent zero field splitting, the possibility of using the spin-valve at B= 0 T is

subsequently assessed.

Measurements on RTDs showing remanent zero field splitting reflect simultaneous

transport through the ensemble of low dimensional interface states in the device. RTDs

employing self assembled CdSe quantum dots as resonant tunneling states however allow

for the observation of resonant transport through a single zero dimensional state. The

reduced dimensionality of the resonant tunneling state also gives rise to many particle

effects such as the Fermi-edge singularity (FES).

First we investigate an RTD containing self-assembled CdSe quantum dots without

magnetic doping. A singularity in the I-V characteristic arises due to a FES when the

quantum dot state is aligned with the emitter Fermi energy. Previous experimental studies

of FES have been limited to III-V devices, often at high magnetic fields. The feature we

report here is already clearly observed in the absence of external magnetic field for tem-

peratures up to 45 K, and shows magnetic field dependence reflective of two dimensional

character in the injector.

A second many particle effect is observed in these zero dimensional RTDs as we add

magnetic dopants to the tunnel barriers. Resonant tunneling transport through a single
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self-assembled quantum dot embedded in a magnetic environment enables us to observe

the transport through a single bound magnetic polaron. Gould et al. previously observed

the spin splitting of a single quantum dot state due to the coupling to its magnetic vicinity

[Goul 06]. Here we show that it is possible to achieve the simultaneous coupling of the

quantum dot state to its Mn doped vicinity and the emitter Fermi sea. Due to the FES

enhancement of the tunneling rate, we observe an additional fine structure of the resonance

peaks at T=20 mK, which probably stems from the excitation spectrum of the BMP state.

Furthermore we present a preliminary model that is able to qualitatively reproduce the

I-V characteristics at zero magnetic field as well as the temperature dependence thereof.

As the localized state is clearly coupled to both baths, transport measurements on such

systems provide data against which modern theories of Bose-Fermi systems can be tested.

To further investigate the many body correlation effects in these systems, we study a

second RTD that shows a Bose-Fermi coupling. While we again observe both BMP and

FES likes behavior, in this device the zero field split resonance is observed at bias voltages

as low as 2 mV. Due to a pronounced asymmetry, most quantum dot RTDs showing FES

enhancement of the tunneling rate only exhibit the enhancement while tunneling into the

quantum dot through the thicker of the two barriers. Furthermore the influence of the

collector Fermi sea is usually neglected, as it is already lowered far below the emitter

states at the bias voltage where the resonances occur. Here we demonstrate that this as-

sumption brakes down for resonant tunneling at bias voltages smaller than the bandwidth

of the emitter. We compare transport measurements through the same dot for negative

and positive bias voltages, where the FES enhancement is governed by the thinner and

thicker tunnel barrier, respectively.

Ultimately, an impact study on contact resistances, device imperfections as well as

the applied bias voltage, has led us to a simple unifying model, descriptive of both single

DMS RTDs and more complex compound devices.
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Chapter 1

Introduction

The hope for a new information processing scheme has pushed scientists in the field of

spintronics (neologism for spin based electronics) over the past decades to advance their

understanding of spin related phenomena in the solid state. Information processing has

become a constituent of our workaday life, and still mainly relies on electrical charge to

write, store and read information at high processing speeds. Spin as a quantum mechanical

property is also a promising candidate to encode information. A prominent example

thereof is giant magnetoresistance, the fundamental building block for today’s cheap non-

volatile storage of data in hard drives.

It is thus fundamentally important to research methods to reliably create, store and

read spin in order to establish a spin-based semiconductor technology scheme. Early

experiments on direct spin injection from ferromagnetic metals into semiconductors have

at best yielded inconclusive signs of very low efficiencies. Schmidt et al. revealed the

fundamental obstacle for this method of spin injection, namely the conductance mismatch

between the metal and the semiconductor [Schm 00].

This mismatch can be overcome by either using a dilute magnetic semiconductor

(DMS) as a spin-injector [Fied 99] or by separating the magnetic metal injection layer

by a tunnel barrier from the semiconductor [Rash 00, Jans 07, Pate 09]. Both of these

options however mainly inject majority spins and a magnetic field is needed to switch the

injector magnetization. Rather than switching the contact, Slobodskyy et al. use a DMS

resonant tunneling diode (RTD) as voltage-controlled spin-filter [Slob 03]. At different

bias voltages this device is able to selectively transport either of the two spin species from

the emitter to the collector, without the need for a pre-polarized injector layer.

As the DMS (Zn,Mn)Se is paramagnetic, an external magnetic field is necessary to

lift the degeneracy of the spin-up and spin-down states. A localized level is however able

to stabilize a microscopic magnetic order in its vicinity by forming a bound magnetic

polaron (BMP) [Diet 82]. Gould et al. show that such an ordering mechanism can also

lift the degeneracy of the resonant tunneling state in a DMS RTD [Goul 06]. Using CdSe

quantum dots embedded in DMS (Zn,Be,Mn)Se tunnel barriers instead of a (Zn,Mn)Se

quantum well enables the DMS RTD to act as a voltage controlled spin-filter without the

9



10 1. Introduction

need for an external magnetic field.

In addition to inducing a magnetic order, zero dimensional RTDs have also proven

a useful testbed for many body correlation effects. Matveev and Larkin predicted that

an effect similar to the Fermi edge singularity (FES) seen in the X-ray absorption spec-

trum of metals [Ohta 90] can also be seen while tunneling into zero dimensional (0D)

states [Matv 92]. This is confirmed by Geim et al. for a quantum well (Al,Ga)As-GaAs

RTD, where resonant tunneling through a localized impurity shows such a characteristic

enhancement of the tunneling rate when the impurity is aligned with the emitter Fermi

energy by an applied bias voltage [Geim 94]. Subsequent observations of the FES in RTDs

have been limited to III-V devices and often required high magnetic fields to be observed,

as the FES is most prominent for 2D-0D tunneling and the quantization by the magnetic

field reduces the dimensionality of the emitter states.

In this thesis we present a comprehensive study of resonant tunneling in 0D and two

dimensional (2D) II-VI semiconductor heterostructures. The thesis is organized as follows.

Chapter 2 gives a brief introduction to the ZnSe material system and discusses why it

was chosen for this study. A new empirical modeling scheme is presented, which is used

for the analysis of all II-VI DMS quantum well RTDs. The model is also used to briefly

review the application of a DMS RTD as a voltage controlled spin filter. In chapter 3 we

show evidence for remanent zero field splitting in these devices, despite the paramagnetic

nature of the (Zn,Mn)Se quantum well material. As our detailed model shows, a high

spin polarization is achieved without the need for an external magnetic field. To further

investigate this magnetic ordering at the interface, in chapter 4 we remove the substrate

on such a device to release the tensile strain in the heterostructure, smoothing the layers

of the device.

A logical extension of the voltage controlled spin-filter is to couple two spin selective

RTDs into a spin injector and detector pair. In chapter 5, we show how such a structure

can be operated as a voltage controlled spin valve. An extended model based on the

findings of chapters 2 and 3 is used to extract the spin-valve efficiencies.

In chapter 6 we investigate many body correlation effects on the resonant tunneling

transport through a single self-assembled CdSe quantum dot (SAD). We demonstrate

an FES in an all II-VI semiconductor RTD containing self-assembled CdSe quantum

dots, where the enhancement to the tunneling rate is already observed at zero magnetic

field. Additional enhancement is observed at low temperatures which is suggestive of

backscattering associated with local effects near the dot and cannot be explained within

conventional FES theory. While the many particle modifications to the resonant tunneling

characteristics through a single CdSe quantum dot from the electron gas (FES) and its

magnetic vicinity (BMP) have previously been observed independently, we demonstrate an

optimized DMS SAD RTD in chapter 7, where both effects can be observed simultaneously.

Systems coupled to two baths are promising prospects for the observation of quantum

critical points [Kirc 09]. Chapter 8 presents findings on a similar device with an apparent
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resonance at very low bias voltages in the order of the emitter bandwidth. The impact

of the coupling of the quantum dot state to the emitter electrons can be assessed, as we

see resonant tunneling through the same localized level from two different Fermi seas for

positive and negative bias voltages, thus inverting the symmetry of the problem.
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Chapter 2

Resonant tunneling in all II-VI

semiconductor devices

After the development of molecular beam epitaxy (MBE) in the 60’s, by means of het-

eroepitaxy it was henceforth possible to design man-made crystals of specific vertical

conduction/valence band profiles. As the crystal quality grew with further development,

resonant tunneling was observed in GaAs-Ga1−xAlxAs heterostructures in the pioneering

work of Esaki, Chang and Tsu [Chan 74]. In analogy to the Fabry-Pérot étalon, where

the system parameters can be chosen such that light of a certain wavelength is transmit-

ted resonantly, a double barrier semiconductor heterostructure of a certain barrier height,

barrier thickness and quantum well width is used to achieve resonant transmission of

incident electrons. The most important criterion for the realization of the latter is the

quality of the epitaxial growth of the heterostructure. As the quality of resonant tunneling

diodes (RTD) drastically improved over the last decades, fabrication of such devices was

extended from the well controlled GaAs-Ga1−xAlxAs system to material systems such as

ZnSe-Zn1−xBexSe, which is utilized for all devices discussed in this thesis.

In this chapter, the theoretical framework used for the modeling of II-VI quantum well

RTDs is established. After a brief introduction to the theoretical description of resonant

tunneling via a transfer matrix method (TMM), several sets of device parameters and their

implications for the device characteristics are discussed within this rudimentary model.

Then its is shown how the bias voltage applied across the double barrier heterostructure

is influencing the transmittance of the structure and that it has to be considered in

the device designing process. Finally, the application of these concepts for an empirical

transport model are discussed. Instead of employing idealized and yet complex theoretical

calculations, this model is based on empirical observations and a thorough discussion of

the device circuitry including all leads and contacts, which play an important role in both

experimental and theoretical data.

13
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2.1 The (Zn,Be,Mn,Cd)Se material system

The face centered cubic ZnSe crystal is the starting point for all our devices. All devices

discussed in this thesis are MBE grown samples on GaAs substrates by T. Slobodskyy and

A. Frey, and were patterned with standard lithography techniques. For recipes thereof

and a more detailed description of the sample processing procedures, the reader is referred

to reference [Ruth 08a].

An important first step for every transport experiment is the realization of a proper

contacting scheme. The impact of contacts can be severe and their presence is too often

neglected both in device design and data analysis. For the II-VI material system contacts

are either evaporated metal Ti/Au pads [Rich 03, Lehm 05] or Indium droplets, interdif-

fused into the semiconductor surface [Wang 92]. Contacts should be of ohmic character,

as while their presence is not to be neglected, their description within the equivalent

circuit of a device is by far less challenging if they exhibit a constant resistance. Since

metals form Schottky barriers at n-ZnSe interfaces [Tyag 75], the ohmic character in this

contacting scheme is achieved by a very thin interface tunnel barrier, which in general is

a result of high (up to 1019 cm−3 in Iodine doped ZnSe) carrier concentrations [Sze 81].

The next step towards a vertical RTD are the tunnel barriers which form due to the

incorporation of Be atoms in the ZnSe host. Intermixing with Be increases the bandgap

Eg at the Γ point and is described by [Asta 02]

Eg(Zn1−xBexSe) = Eg(ZnSe) + 1.77x+ 1.1x2 (2.1)

Reference [Chau 00] gives a similar result of Eg(Zn1−xBexSe) = 2.80 + 1.83x+ 0.97x2

for low temperatures. For the ternary (Zn,Be)Se the larger part of the increase in Eg due

to the incorporation of Be results in a conduction band offset [Kim 00] with respect to

the ZnSe crystal. This conduction band offset is the equivalent of the barrier height for

tunneling electrons in II-VI semiconductor RTDs.

Once we have two tunnel barriers with a quantum well spacer layer (usually between

5 to 10 nm), quantized states form in the well between those barriers due to the quantum

confinement in growth direction. For a spin selective RTD we also need to adjust the

magnetic properties of the heterostructure. The intrinsic g factor of ZnSe conduction band

electrons is only 1.1 [Land 99] which is mainly due to the wide band gap of the material.

Doping the crystal with Manganese impurities will however result in an interaction of the

s-type conduction band electrons with the 5/2 spin of the Mn d-shell. The strength of

this magnetic interaction exceeds by far the intrinsic Zeeman splitting of undoped ZnSe.

A description of the magnetic properties of the dilute magnetic semiconductor (DMS)

(Zn,Mn)Se is given by the well established modified Brillouin function [Gaj 79]. The

concentration xMn of the Mn impurities is well below the percolation limit, and to a

first order approximation a Mn state will not directly couple to another Mn state in its

vicinity. As the direct Mn-Mn interaction is antiferromagnetic, a small fraction of the
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Mn impurities form clusters with zero net magnetic moment. Those clusters essentially

do not participate in the macroscopic magnetic order and effectively reduce the density

of active Mn impurities [Shap 84]. This fact is treated within the Brillouin picture by

an effective spin seff < 5/2. Introducing a second empirical parameter, the effective

Temperature Teff , which adds to the temperature of the electron system, the modified

Brillouin function can be utilized to describe the magnetization of bulk (Zn,Mn)Se. Both

Teff and seff depend on the amount of Mn in the crystal, and have to be determined

experimentally [Gaj 79, Twar 84]. The splitting ∆E of the spin levels due to the s-d

interaction reads

∆E = N0α xMnseff B5/2

(
5/2 g µBB

kB(T + Teff )

)
(2.2)

where N0α is the s-d exchange integral, g is the electron g-factor and µB the Bohr

magneton.

As long as the interaction between one Mn 5/2 spin and the external field is weaker

than the binding energy of an antiferromagnetic cluster, the cluster does not contribute

to the macroscopic magnetization. If the strength of the magnetic field however exceeds

this binding energy, all Mn spins of the cluster start to align with the external magnetic

field and suddenly contribute to the macroscopic magnetization of the material. This

breakup of antiferromagnetic pairs is evidenced by steps in measurements that reflect the

macroscopic magnetization within the crystal [Shap 84].

For further fine-tuning of the conduction band profile, Cd incorporation is used to

reduce the bandgap of the ZnSe crystal. Lowering the conduction band edge in the quan-

tum well material increases the confinement of the quantized states as the tunnel barriers

are effectively increased and reduces their energetic offset with respect to the emitter

states. As a result, a lower bias voltage is needed to align the quantum well states with

the emitter to achieve resonant transmission through the double barrier heterostructure.

Furthermore, Cd can be used for the growth of self-assembled quantum dots incorpo-

rated in the all II-VI RTDs. Substituting the quantum well with self assembled quantum

dots results in a tunneling state of reduced dimensionality which, as is shown in the chap-

ters 6,7 and 8 of this thesis, enriches the resonant tunneling process with many body

correlation effects. The lattice mismatch between CdSe and the tunnel barrier material

results in the strain induced self-assembly of the quantum dots. Their shape, composition

and thus the electronic properties vastly depend on the growth procedure and a compar-

ative study thereof can be found in [Maha 06, Maha 07]. Changing the Be concentration

as well as adding Mn to the tunnel barriers influences the properties of the self-assembled

quantum dots [Mock 01, Tito 02, Zhou 05, Lee 07] and have to be considered for the

device design.

While the GaAs/(Al,Ga)As system offers a great deal of growth control due to the

extensive growth development on this material system (e.g. for high mobility 2DEG
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systems), it has one major caveat for magnetic RTDs. Tuning the magnetic properties

by incorporation of Mn atoms results at the same time in p-doping of the material, as

Mn acts as an acceptor in the GaAs crystal. The charge profile of an RTD is however

a delicate aspect of RTD device design. In our II-VI RTDs, the active region of the

RTD is not doped with charge carriers for two reasons. Charging the active region would

lower the conduction band profile of the quantum well with respect to the Fermi level,

which is pinned by the metallic contacts. The bandwidth of the emitter states thus

increases massively, which additionally broadens the resonance in the I-V characteristic.

Furthermore, some of the quantum well states might be lowered below the fermi energy

at zero bias voltage, making it impossible to tune them in and out of resonance with the

applied bias voltage.

The presence of a large number of charges/impurities will furthermore reduce the

coherence time for a tunneling electron due to increased probability of scattering events.

It is shown in this chapter how a loss of coherence will result in the breakdown of the

resonant tunneling process. Our devices are n-doped with iodine in a specific way to

achieve an optimum conduction band profile resulting in a narrow emitter bandwidth

and reduced impurity scattering in the active region. A big advantage of the (Zn,Mn)Se

material system is that adding Mn to the quantum well or the tunnel barriers does not

result in electrical doping of the crystal. We are therefore able to optimize both magnetic

and electrical properties separately. On the downside, one looses the carrier mediated,

macroscopic ferromagnetic order present in (Ga,Mn)As.

The (Zn,Be,Mn,Cd)Se material system is thus a perfect testbed for the research of spin

related phenomena in resonant tunneling transport as well as RTDs of low dimensionality.

A theoretical description of these devices helps not only to unravel the apparent new

physics in such devices, but also provides a tool to speed up the development of possible

spintronic applications based on this material system. In the following a new empirical

modeling scheme is presented, that enabled us to shed some light on the physics of the

all II-VI resonant tunneling diodes.

2.2 The transfer matrix method

For a resonant tunneling heterostructure the potential landscape is in general assumed to

be invariant under lateral translation. Separating the total electron energy into the energy

Ez with respect to the growth direction z and the lateral component E‖ = Ex + Ey, it is

sufficient for the description of the transmittance of the double barrier structure to look at

the one dimensional problem in z direction as it is schematically shown in fig. 2.1a. The

resulting picture of two rectangular barriers under flat band conditions however implies

further simplifications, e.g. omittance of contacts, scattering, band bending effects or

tilted potentials due to an applied bias voltage. Nevertheless, this poor mans approach

to resonant tunneling can be used as a tool to make first estimates for the quantization
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Figure 2.1: a) 1D Schematic of the conduction band profile under flat band conditions. Two

tunnel barriers form a quantum well with confined states in z direction. These states result in

peaks in the transmission probability as a function of the incident electron energy. b) Transmis-

sion probability for an RTD with (Zn,Be)Se tunnel barriers of 5 nm thickness, an 8 nm ZnSe

quantum well and a barrier height of 440 meV, as approximated for a Be content of 30%

energies in the quantum well for a specific set of device parameters such as quantum well

and tunnel barrier thickness.

As will be shown in this chapter the eigenenergies En of an infinite quantum well as

given by

En =
n2h2

8m0meffd2
qw

(2.3)

are only to be used as rough estimates for the devices under consideration. The perfect

confinement of such a particle in a box model is used in section 2.2.2 to validate the results

of the transfer matrix (TM) modeling in the limit of very high barriers.

Fig. 2.1a shows a quantum well with four quantized states which form in z direction

between the two barriers, if the coherence time in the respective states is sufficient. In

plane electrons are treated as plane waves and do not influence the transmittance T (Ee =

Ez) of the double barrier structure, but still can play an important role for the resulting

I-V characteristic as will be shown in section 2.6.

The transfer matrix method assumes that within the WKB-approximation (see e.g.

[Schw 02]), the wavelength of the electron is small compared to the characteristic length

scale on which the potential is significantly altered. In this case a constant wave number

ki can be assigned to this area of quasi-constant potential Vi. An arbitrary potential of

length l can now be divided into steps dl, while fulfilling this condition. For each dl the

stationary solution for the Schrödinger equation in general reads

Ψi(x) = AeIkix +Be−Ikix (2.4)

where A and B are the amplitudes for the left and right moving part of the wave, respec-

tively. At each interface Ψ(xi) and 1/miΨ
′(xi) have to be continuous [Schw 02, p. 58].
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Given an initial condition, solutions can be found for the amplitudes A (amplitude of

incoming wave) and B (amplitude of reflected wave at interface) for all boundary con-

ditions. As shown in [Mizu 95], the transfer matrix Ti can be defined for each interface

i→ i+ 1

TMi =

(
a+
i Pi a−i /Qi

a−i Qi a+
i /Pi

)
(2.5)

with the electron wavenumber

ki(Ee) =
√

2m0mi(Ee − Vi)e/~ (2.6)

and the substitutions

a+
i =

ki+1mi + kimi+1

2ki+1mi

a−i =
ki+1mi − kimi+1

2ki+1mi

Pi = exp [I(ki − ki+1)zi)]

Qi = exp [I(ki + ki+1)zi)] (2.7)

where mi is the effective masse in the region of quasi-constant potential Vi and zi is

the position in z direction.

The total transfer matrix is then given by TMtot = TM1 · . . . · TMi · . . . · TMN−1 for a

potential landscape divided into N parts. For equivalent effective masses in the emitter

and collector layers (m1 = mN), the probability T for an electron of energy Ee is then

evaluated from the (11)-element of the matrix TMtot.

T (Ee) =
kN
k1

∗ 1/|TM11
tot |2 (2.8)

For the simplistic case of fig. 2.1a, the problem reduces to 5 areas of constant potential.

Figure 2.1b shows the transmittance T (Ee) for tunnel barriers of 5 nm thickness, 0.44 eV

height and a quantum well of 8 nm thickness, assuming a constant effective mass of 0.15

m0 for all layers [Land 99]. For finite barrier height and barrier thickness the symmetric

case (TL = TR) will always lead to a transmission of unity (peaks in fig. 2.1b) when

the energy of the incident electron is aligned with a quantum well state (red lines in fig.

2.1a) of the double barrier structure. This idealized one dimensional fully coherent system

produces very narrow line-widths especially for strongly confined quantum well states.
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Figure 2.2: Transmission probability for a 8 nm ZnSe quantum well with a barrier thickness of

5 nm and a barrier height of 440 meV. As the imaginary potential Γ is increased, the resonant

feature broadens and the probability for the electron to tunnel resonantly is reduced. a) Detail

of the first resonant feature. b) Overview of the first three resonances. The impact on the

resonances are severe, while changes to the non-resonant parts of the spectrum due to the

imaginary potential are minor.

2.2.1 Implementation of disorder in the idealized coherent pic-

ture

However, perfect resonances as discussed above will never be accomplished in any device,

even though molecular beam epitaxy (MBE) nowadays provides the means to grow very

high quality layer stacks for example in the AlAs/GaAs material system. Not only is the

assumption of fully coherent transport with a transmission of unity and the underlying

narrow line width unrealistic for a ZnSe heterostructure, it also may result in numerical

errors while integrating the transmission probability as a function of the electron energy

if the numerical summation is too coarse. In fig. 2.1b a resolution of 104 data points only

fully resolves the forth resonance. Since the lower resonances (1-3) are sharpening due to

the increase in confinement, the resolution was increased by a factor of 4400 in order to

fully resolve the unitary transmission of the first resonance (see inset of fig. 2.1b).

An easy way to implement disorder in these type of calculations is to add a small

imaginary potential for the quantum well layer which hosts the quantized states. An

imaginary potential will damp part of the wave function, which results in a loss of prob-

ability and the breakdown of unitarity on resonance [Ston 85]. One can think of this

imaginary potential as a scattering mechanism, removing (on average) electrons from the

coherent picture by phase breaking events.

The imaginary potential slightly shifts the energetic position of the resonance and

broadens the peak as well as reduces its absolute amplitude. Figure 2.2 shows the trans-

mittance of a double barrier system with 5 nm barrier thickness, an 8 nm quantum well

layer and 440 meV barrier height at its first resonance for various imaginary potentials Γ.

In the following a small imaginary potential will be used in all transfer matrix analysis,

not only to gain more realistic transmission curves, but also to prevent numerical errors
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Figure 2.3: Transmission probability for various quantum well thicknesses (blue lines) and

tunnel barriers of 5 nm thickness and 440 meV height. The dashed lines represent the energetic

positions as given by an infinite quantum well model (eq. (2.3)).

in the calculations.

2.2.2 A study of various double barrier systems with TMM

Semiconductor devices are usually designed to meet certain criteria of the planned exper-

iment. In order to get a trend on how the eigenstates of the quantum well and thus the

I-V characteristics of the device are altered while changing certain sample parameters,

one can look at the transmission probabilities of the double barrier region in the simple

picture of a flat band with two tunneling barriers in series. The parameters of relevance

are quantum well thickness, barrier thickness and barrier height. A typical DMS quantum

well RTD is comprised of a 8 nm (Zn0.92,Mn0.08)Se quantum well and two (Zn0.7,Be0.3)Se

tunnel barriers of 5 nm thickness, which results in a barrier height of approximately 440

meV.

Figure 2.3 shows the transmission probability as a function of the kinetic energy of

the tunneling electron for various quantum well widths dqw from 2 nm to 10 nm for a

(Zn,Be)Se double barrier system of 5 nm barrier thickness, 440 meV barrier height and

an additional imaginary quantum well potential of Γ = 0.3 meV. Strong confinement for a

quantum well layer of dqw=2 nm thickness only allows for one bound state in the quantum

well. Each transmission peak in the plots of fig. 2.3 is descriptive of an eigenstate of the
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Figure 2.4: Transmission probability for various barrier heights (blue lines), tunnel barriers

of 5 nm thickness and a quantum well layer thickness of 8 nm. The dashed lines represent the

energetic positions as given by an infinite quantum well model (eq. (2.3)).

quantum well and will potentially result in a resonance in the I-V characteristic of such

an RTD.

Comparison of the results from 2 nm to 10 nm in fig. 2.3 shows that increasing the

thickness of the quantum well layer results not only in the lowering of the eigenstate

energy of the confined states, but also in sharpening of the respective transmission peaks

as well as a reduction of the energetic distance between the levels. As evidenced by the

dashed lines, which show the energetic positions of the confined states as given by an

infinite quantum well model in equation (2.3), the exact TMM calculations deviate from

the energetic positions predicted by the harsh assumption of an infinite quantum well.

Increasing the quantum well width lowers the quantum well states, strengthening the

confinement (while still assuming the same level of coherence). The discrepancy between

the TMM model and the infinite quantum well model is thus reduced for wider quantum

wells, especially for the lowest eigenstate.

Instead of increasing the quantum well width one can also increase the barrier height

to allow for more confined states in the quantum well. An increase in barrier height will

also increase the confinement of the bound states, since the leaking of the wave function

into the barriers is reduced. Figure 2.4 shows calculations for various barrier heights from

200 meV to up to 100 eV for a barrier thickness of 5nm, a quantum well width of 8
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Figure 2.5: Transmission probability for various barrier thicknesses (blue lines), a barrier

height of 440 meV and a quantum well layer thickness of 8 nm. The dashed lines represent the

energetic positions as given by an infinite quantum well model (eq. (2.3)).

nm and an additional imaginary quantum well potential of Γ = 0.3 meV. As the barrier

height is increased and more and more confined states manifest in the quantum well,

the transmission peaks sharpen and their amplitudes are reduced (since the scattering

potential is kept constant). While the last four plots of fig. 2.4 (1,2,10 and 100 eV

barrier height) are not realistic (Zn,Be)Se barrier heights (the Be content is limited due

to the BeSe lattice mismatch to ZnSe), they are plotted to clarify the impact of the barrier

height and test the TM model in the limit of the infinite quantum well. The peaks slightly

change their eigenstate energy with barrier height due to the increase in confinement. As

is shown in the last picture of fig. 2.4, in the limit of very large barriers, the energetic

positions of the quantum well eigenstates calculated by a TMM are nearly identical to

the ones extracted from the infinite quantum well model given by equation (2.3).

One more way to increase the confinement is to increase the thickness of the tunneling

barriers. Figure 2.5 shows TM calculations for barrier thicknesses from 2 nm to 10 nm for

a quantum well width of 8 nm, a barrier height of 440 meV and an additional imaginary

quantum well potential of Γ = 0.3 meV. The increase in confinement results again in

a reduction of both the non resonant contributions and the amplitudes of the resonant

features.

All these findings are only valid as long as no voltage drops across the layer stack
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and tilts the conduction band profile. Since a bias voltage is however needed to align the

resonant states with the electrons in the emitter, this simplified model obviously brakes

down. A theoretical description for a tilted conduction band profile is possible within

the framework of the TMM discussed above, as it can be used for arbitrary potential

landscapes. However, a strong tilt requires the steps dl to be small to gain regions of

quasi constant potentials. For each applied bias voltage (that is every data point of the

measurement), the potential profile and the T (Ee) spectrum thereof needs to be calculated

since the potential landscape is altered.

2.3 Tilted conduction band profiles

In our DMS RTDs, resonance conditions are reached by applying a bias across the resonant

tunneling diode. As the voltage drop over the first barrier and the quantum well is needed

to align the quantum well state with the emitter electrons, the resulting conduction band

profile is continuously altered during the measurement. In this section we examine the

transmission probability through a double barrier structure as a function of the applied

bias voltage.

Figure 2.6 shows a self-consistent conduction band profile of a (Zn,Be)Se heterostruc-

ture with an applied bias voltage of 200 meV, computed with the Wingreen simulation

package [Indl 04]. As boundary conditions, we assume a pinned Fermi energy to account

for the band bending at the metal contact interfaces. High doped ZnSe (n≈ 1019 cm−3)

layers at these semiconductor-metal interfaces are needed for a proper contacting scheme.

The shaded gray area highlights the active region of the RTD. An applied bias voltage

drops mainly across the intrinsic (not iodine doped) active region and the contacts. As is

clear from fig. 2.6, the shaded part of the conduction band profile can be approximated

by a uniform electrical field.

This shaded region is now divided into five regions, as shown by the labels 1 through

5. The voltage drop VAR across the active region (regions 2-4) is only a fraction of the

applied bias voltage in a real device. VAR however dominates the device properties, as it

responsible for the actual resonant tunneling process (therefore it is often referred to as

the ”active region”). Following the horizontal black line, depicting the Fermi level in the

emitter, it is clear that due to the applied bias voltage, the emitter electrons incident to

the barriers will find a double barrier system of reduced symmetry and effective barrier

height (compared to the flat band case of fig. 2.1a). As a guide to the eye, the latter is

indicated by the black arrows inside the tunnel barriers in fig. 2.6.

The solution to the Schrödinger equation for a uniform electrical field (linear potential)

is given by the Airy functions and the transmittance of such a tiled double barrier system

can be solved [Alle 94, Alle 96, Miya 98] analytically. Numerically inverting parts of the

total transfer matrix with the Airy functions however results in ill-conditioned matrices

especially for low bias voltages and low electron energies.
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Figure 2.6: Self consistent conduction band profile for a (Zn,Be)Se heterostructure at an bias

voltage of 200 mV applied across the layer stack. Fermi levels are pinned at the metal contacts

to account for the strong band bending at the metal-semiconductor interface.

A tilted potential landscape as in the shaded area of fig. 2.6 can also be calculated

with the TMM approach given in section 2.2 if the potential landscape is divided into

sufficiently small parts dz. This can be tested easily by decreasing dz until the resulting

transmission spectrum stops changing. The model was also tested in the limit of VAR → 0

V and yields, in contrast to the Airy function approach, identical results for the flat band

case.

While the potential landscape is symmetric under flat band conditions, the asymmetry

induced by an applied bias voltage will not lead to a transmittance of unity since the latter

can only be achieved for the case of two barriers with identical transmittances TL and TR
[Ricc 84, Butt 88, Lury 89]. For a device with two identical tunnel barriers, the second

barrier will always be lower than the first one with respect to the kinetic energy of the

incident electron. The symmetry of the conduction band profile is thus more and more

reduced as the applied bias voltage is increased. This effect could be compensated by a

higher and/or thicker second barrier. The optimization of the latter is very difficult in

reality, as one can only optimize for a single bias voltage and the underlying tilt of the

conduction band profile. The result does however not necessarily yield a resonance in the

I-V characteristics as is discussed in detail in reference [Ricc 84].

Figure 2.7a shows the transmittance T (Ee, VAR) as a function of the voltage drop VAR
across the active region for a constant incident electron energy of Ee= 8.5 meV. The two

apparent transmission peaks look alike on a logarithmic scale and show comparable peak

heights of one order of magnitude with respect to the background current. Figure 2.7b
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Figure 2.7: a) The transmission probability T at a constant electron energy at the conduction

band edge as a function of the voltage drop VAR across the active region b) The transmission

probability as a function of electron energy for various VAR in the vicinity of the Fermi energy.

While the resonant level is lowered with respect to the electronic states of the emitter, the change

in the potential landscape due to the increase in bias voltage alters the transmission spectrum

of the bound state.

however shows that increasing the bias voltage will reduce the transmission on resonance.

The loss of transmittance stems from the reduced symmetry, since an increase in VAR also

increases the tilt of the conduction potential profile. Therefore as one sweeps the RTD

through a resonance via the applied bias voltage, even for an idealized clear cut picture

as shown in fig. 2.6 the shape of the resonant peak will slightly be deformed as the

underlying potential is continuously altered. We note that if the fidelity of the resonance

is already limited by a phase breaking process as discussed above, such optimization will

most likely yield no gain in fidelity.

The blue and black peaks in fig. 2.7b depict the transmission for VAR settings of 40

and 10 mV, respectively. Comparing to the energy scale of the plot, the resonance is

however only moved by approximately 15 meV. Considering only the active region of an

RTD, a ratio of l=V/E of 2 is a reasonable approximation to link the voltage drop across

the active region to energy scale of the problem. This ratio is often referred to as the

lever arm of the device. In literature, this value is mostly comparing the total applied

bias voltage Vapp to the energy scale of the problem, and thus deviates from the value 2.

This discrepancy can arise from an asymmetry of the active region, as well as all effects

that reduce the ratio of VAR/Vapp, such as contact resistances.

2.4 Implications of contact resistances

Figure 2.8a shows the simple equivalent circuit for a typical transport measurement on a

DMS RTD. We apply a DC bias voltage VDC to the device in series with a resistor RS.

The voltage drop across RS is used to measure the current through the RTD. Such an I-V

characteristic of a DMS RTD (8% Mn, 7 nm quantum well) is shown in fig. 2.8b for both



26 2. Resonant tunneling in all II-VI semiconductor devices

�0.3 �0.2 �0.1 0.0 0.1 0.2 0.3

�100

�50

0

50

Vbias�V�
I�ΜA�

VRes
-

VRes
+

VRes
- + ELO l- 

Vbias

VDC

VLVCL VCRVR

Rs

a) b)

Figure 2.8: a) Equivalent circuit of a standard I-V measurement. A series resistor RS is used

to measure the current traversing the RTD. b) I-V characteristic of such a measurement for both

negative and positive bias voltages. The apparent asymmetry of the device results in different

peak positions, shapes and amplitudes for bias voltages of opposite sign.

negative and positive bias voltages at B=0 T. The voltage drop Vbias across the device

includes the voltage drops at the contact resistances VCL and VCR on both ends of the

RTD as well as the voltage drop VAR = VL + VR across its active region. For simplicity

we here redistribute any voltage drop across the quantum well layer Vqw equally among

the voltage drops VL and VR across the left and right tunnel barrier, respectively.

Figure 2.8b shows a second peak of reduced amplitude and increased width with

respect to the first resonance at V −LO= -228 mV. While the first quantum well level is

already lowered below the conduction band of the emitter, resonant tunneling is still

possible while exciting a longitudinal optical (LO) phonon [Gold 87a]. A second peak

thus arises when the energetic distance between the emitter electrons and the quantum

well state is exactly the LO phonon energy of the crystal. This replica peak is often used

to make an estimate for the lever arm of the device as the energy for the LO phonon

in ZnSe is known [Land 99] and the difference in voltage can be determined from the

I-V characteristics. The replica peak at positive bias voltages is hardly visible in the

I-V characteristic, and its position V +
LO= 299 mV is therefore determined via the first

derivative dI/dV (not shown).

As l− and l+ are related to the voltage axis of our measurements, we can determine

them from characteristic features in the I-V characteristics, such as the LO replica peak

(see fig. 2.8b). Using l± = (V ±LO − V ±Res)/ELO, we find lever arms of 2.2 and 2.4 for

negative and positive bias voltages, respectively. We however have no direct access to

lL and lR, which are the lever arms related to the voltage drop across the left and right

tunnel barrier. They thus are descriptive of the symmetry of the active region of the
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RTD. From fig. 2.8a it is clear that they relate via

1

lL
+

1

lR
=

VL
VAR

+
VR
VAR

= 1 (2.9)

The device lever l− and l+ include the voltage drops across the contacts. Using the

equivalent circuit of fig. 2.8a, they read

l− =
Vbias
VL

=
VAR
VL

+
VC
VL

= lL +
VC
VL

(2.10)

l+ =
Vbias
VR

=
VAR
VR

+
VC
VR

= lR +
VC
VR

(2.11)

where VC = VCL + VCR is the total voltage drop across all contact resistances. Using

the same approach as in equation (2.9) for l− and l+ yields

1
l−

+ 1
l+

=
VL
Vbias

+
VR
Vbias

=
VL + VR
Vbias

=
Vbias − VC
Vbias

= 1− VC
Vbias

(2.12)

By simply comparing the sum of the inverse lever arms to unity, we thus have a tool to

estimate the internal (contact) resistance in our devices. As RTDs are highly non-ohmic

resistors, we approximate the device resistance by using the on-resonance resistance at

negative bias voltage R−Res to approximate VC/Vbias ≈ RC/R
−
Res. Using equation (2.12)

we thus find a total contact resistance of approximately 320 Ω for the device shown in

fig 2.8b. Two similar DMS RTD using the same contacts as the device considered here

are presented in chapter 3. Fits to the I-V characteristics for these devices yields series

resistances of 250 and 400 Ω, in good agreement with the estimate from this simple lever

arm model.

2.5 Comparison to experiment

In order to test our findings, we plot the eigenenergies of the first two resonant quantum

well states as a function of the quantum well width in fig. 2.9. For a comparison with

experiment, the voltages at which the resonances occur (negative bias voltage applied to

the top of the layer stack given in fig 2.9b) are converted to an energy scale by dividing VRes
by a lever arm of 2.4, in good agreement to the ones determined from the experimental

data. The result yields an offset of 30 meV between theory and experiment, which is

subtracted in fig. 2.9a. The offset is likely stemming from simplifying assumptions in the

model, such as using an equal mass for the emitter, collector, quantum well and tunnel
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Figure 2.9: a) Comparison of the peak positions (blue dots) determined by a flat band TM

model to experimentally observed peak positions (red dots) for DMS RTDs of various quantum

well widths. For a description of the error bars, see text. b) layer stack of the DMS RTDs

barrier materials [Ohno 90]. Moreover, we did not account for changes to the conduction

band offset in the quantum well layer by the incorporation of the magnetic impurities

[Dai 94]. Any deviations from the assumed digital iodine doping profile will also result in

a bending of the conduction band profile, shifting the quantum well state with respect to

the emitter.

The error bars for the of the calculated level positions in fig.2.9 (blue dots) are gen-

erated by running calculations for worst case combinations of the individual parameter

variations. We assume an error of ±40 meV for the barrier height, as well as a variation

of the barrier thickness of ±0.5 nm. Both effects the confinement of the state and thus

changes its eigenenergy. As is clear from the vertical error bars, errors due to a change

in the confinement are most prominent for levels located at the top of the quantum well,

where the confinement is already weak.

We furthermore assume an uncertainty of ±0.5 nm for the actual width of the quantum

well layers used in the measurements, which results in the horizontal error bar of the

red dots. There will also be a small variation in the symmetry of the device as well

as in the contact resistances. This is all captured within the lever arm of the device.

From experience, we assume a variation for the lever arm of ±0.2. The vertical error

bars of the red dots are dependent on the energy of the quantum well state, as dE =

VRes/l − VRes/(l + dl).

Additionally, also the aforementioned shift of 30 meV of the quantum well conduction

band could very well also show a weak dependence on the quantum well width, we however

assume that this error is smaller than the one stemming from the variation of the quantum

well layer thickness.
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2.6 Empirical modeling of resonant tunneling con-

ductance

Having established the transmission spectra of a double barrier heterostructure both as a

function of the incident electron energy and the applied bias voltage, this section will now

discuss if the latter is applicable for the modeling of the I-V characteristics of all II-VI

semiconductor RTDs.

Assuming that the transmission through the double barrier region of the RTD is

described by running a TMM on a self-consistent conduction band profile, the calculated

line width for the resonance is very sharp (sub meV). Near the resonance this transmission

line shape is described by a Lorentzian [Lury 89] and thus reads

T (Ee) =
4TLTR

(TL + TR)2

γ2

(E − Ee)2 + γ2
(2.13)

where γ is the intrinsic width of the resonant state and TL and TR are the transmit-

tances of the left and right barrier, respectively.

The transmission spectra is however only a measure for the probability of an electron

of energy Ee to traverse the underlying potential landscape. It does not yet fully describe

the current through the RTD. An intuitive picture for the 3D-2D tunneling current is

given by [Lury 85] and is briefly reviewed in the following.

Assuming conservation of the lateral momentum, only emitter electrons of a certain

kz value are able to tunnel into the quantum well state. The selection of a single kz
value is a result of the afore discussed narrow intrinsic width of the resonant transmission

through the quantum well state. Which kz values are selected depends on the energetic

position of the resonant state with respect to these emitter states. As soon as there is

an overlap with occupied states in the emitter, the resonant level in the quantum well,

as well as unoccupied states in the collector, the resonant current sets in. This overlap

of the density of states in the emitter and the density of states in the quantum well is

schematically shown for three bias voltages V1,V2 and Vmax by the gray discs in fig. 2.10b.

We omit the collector states, as for bias voltages much greater than the bandwidth of

the emitter, there will always be empty states available in the collector. At Vmax and

kz = 0 the maximum overlap of the density of states is reached and a further increase in

bias voltage will produce a sharp cutoff in the I-V characteristic (assuming a sufficiently

sharp transmission spectrum). For a specific kz, the area where the density of states in

the emitter and the quantum well overlap is given by

I ∝ AI(kz) =

∮ ∫ ∞
0

1

1 + exp
[

~2
2meff

(
k2r+k2z−k2F

kBT

)]krdkrdφ (2.14)

Figure 2.10 depicts this finite temperature extension to Luryi’s picture for resonant
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Figure 2.10: The Luryi picture for resonant tunneling extended for finite temperatures. a)

Schematic of the resulting I-V characteristics without a non-resonant background current con-

tribution. b) The emitter Fermi sphere for finite temperature. The red color illustrates the

smearing of the Fermi distribution at the Fermi energy. The three gray disks depict the inter-

section of the Fermi sphere with the density of states of the resonant level in the quantum well

for the onset voltage V1, an intermediate voltage V2 and the bias voltage Vmax where the resonant

level is aligned with the conduction band edge and the resonant current reaches its maximum.

For a given voltage Vi the current I(Vi) in is proportional to this gray area. c) Conduction

band profiles for the applied bias voltages in a) and b). The position of the resonant level (red

line) with respect to the emitter Fermi sea (blue) is lowered by increasing the bias voltage. The

effects of the band bending visible in these conduction band profiles are not included in the

Luryi picture

tunneling and shows how the Fermi smearing alters the onset of the resulting I-V char-

acteristics, but not the sharp end of the peak at higher voltages. While equation (2.14)

is calculated in k-space, fig. 2.10a plots the dependence of the tunneling current as a

function of the applied bias voltage. The energy separation ∆E between the quantum

well level and the conduction band edge in the emitter is linked to the applied bias voltage

Vapp and reads

∆E = E0 − Vapp/l = (~kz)2/(2meff ) (2.15)

where E0 is the energetic distance of the quantum well state to the conduction band edge
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a) b) c)

Figure 2.11: Pictures from [Choi 92], color added as a guide to the eye. a) Conduction band

profile of a III-VI RTD for emitter n-doping concentrations of 0 (blue), 10 (red) and 20% (green).

b) calculated I-V characteristics for the various doping concentrations at room temperature. c)

Measurements corresponding to a)+b)

at Vapp=0.

In order to be able to compare this model to a device I-V characteristic, equation 2.14

is thus plotted as a function of k2
z in fig. 2.10a. As is clear from fig. 2.10a, for an ideal

3D-2D resonant tunneling process, the width of the resulting resonance-peak in the I-V

characteristic is governed by the bandwidth of the emitter Fermi sea, since it is large (tens

of meV) compared to the transmission line width (sub meV).

An example of such emitter dominated resonant tunneling transport at room temper-

ature is shown in [Choi 92]. Figure 2.11 shows the findings of Choi et. al for various 3D

emitters of different bandwidth. Increasing the Fermi energy of the emitter Fermi sea

clearly results in an increased width of the resonance-peak in the I-V characteristics of

the respective sample, in good agreement to Luryi’s picture of 3D-2D resonant tunneling.

Also the aforementioned thermal broadening is clearly observed in the onset of the I-V

characteristics at 300 K.

For a sharp cutoff of the I-V characteristic at the conduction band edge, broadening

on the onset of the resonant peak can be allocated to temperature smearing of the emitter

Fermi sea. In case of broadening at the high bias voltage side of the peak, the line width

of the resonant state is however no longer negligible.

Most II-VI resonant tunneling devices examined in Würzburg so far, neither represent

the shape expected from the Luryi picture nor resemble a Lorentzian line shape. The best

fits to the I-V characteristics while accounting for the background current and the contact

resistances are achieved by assuming a Gaussian shaped conductance peak to model the

apparent resonances. As will be shown later in this thesis, this Gaussian broadening of

the resonance-peaks is persistent to cooling of the electron system and thus cannot be of

thermodynamic nature.

Figure 2.12a shows a schematic of the afore discussed ideal 3D-2D tunneling density of
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Figure 2.12: a) Overlap (purple shaded area) of the tunneling density of states (blue line) with

the density of states of the intrinsic quantum well state (red line) for a given bias voltage where

the quantum well state is almost aligned with the conduction band edge. b) I-V characteristic

for various intrinsic line widths of the quantum well state. As the variance of the quantum well

state is increase and becomes comparable to the band width of the emitter electrons, the line

shape of the quantum well state dominates the resulting G-V characteristic which then more

and more deviates from the expected result given by the Luryi picture of resonant tunneling.

states (blue curve) at T=0 K as a function of the energetic distance from the conduction

band edge. We now introduce an additional broadening mechanism (red curve), which is

attributed to the quantum well state. At a bias voltage VAR which levels the quantum

well state near the conduction band edge of the emitter, the overlap (purple shaded area)

of these curves is proportional to the resonant current at VAR. The latter is plotted for

various intrinsic (Gaussian) line widths as a function of VAR in fig. 2.12b (lever arms and

replica peaks from LO-phonon assisted tunneling processes are omitted for simplicity).

As long as the intrinsic width Γi is much smaller than the emitter bandwidth, the

resulting I-V characteristic will resemble what is predicted by the Luryi picture. Such an

I-V characteristic is to be expected for high quality material systems like GaAs/(Al,Ga)As

where the line width of the quantum well state is much smaller than the emitter bandwidth

[Lead 89, fig. 1]. For Γi ' EF however, the resulting I-V characteristics will to a good

approximation only resemble the intrinsic line shape of the 2D quantum well state. Figure

2.12b also shows that due to the broadened intrinsic line width, the maximum current

does not occur at the conduction band edge as predicted by the Luryi picture, but shifts

towards a smaller VAR.

A likely broadening mechanism for a II-VI quantum well RTD are quantum well width

fluctuations. All transfer matrix calculations as well as the self-consistent conduction band

profile calculations in this thesis are done in 1D. The layer stack of the heterostructure,

even though grown by MBE, will however not be perfectly flat. For an ideal resonant

tunneling diode, the transmission does not depend on the x and y coordinates and the

problem reduces to one dimension, where the x-y distribution of the electronic states only

enter as described in the Luryi picture shown in fig. 2.10. For a device exhibiting thickness
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Figure 2.13: a) resonant currents for a pure Gaussian conductance (red line) and for a energy

distribution calculated from a Gaussian quantum well thickness distribution (blue dots) with

a variance of 0.5 nm b) the I-V characteristic calculated from the thickness fluctuations (blue

dots) subjected to small series resistance. The red curve again depicts an I-V characteristics

from a pure Gaussian conductance peak.

fluctuations of the quantum well layer, one can think of the RTD pillar as a large number

of 0D RTDs, each with its own quantum well width. These subspaces conduct in parallel

and show resonances occurring at different bias voltages due to their slightly different

eigenstate energies.

The thickness fluctuations can be described by a Gaussian distribution of dqw as the

relevant length scale is likely to be in the order of tens of nm and the mesa is thus com-

prised of a large number of subspaces. Using the simple picture of an infinite quantum

well (Eqw ∝ 1/d2
qw), the resulting distribution of eigenstate energies is however not ex-

actly bell shaped. Figure 2.13a shows an I-V characteristic assuming a single Gaussian

conductance peak (red line) while omitting the non-resonant background current. The

I-V characteristic that result from a Gaussian distribution of the quantum well width

(blue dots) is slightly tilted towards lower bias voltages compared to I-V characteristics

calculated from a bell shaped conductance. In fig. 2.13b it is however shown that adding

a small intrinsic series resistance RS converts the dotted curve to the bias axis of the red

line via Vbias = V ∗bias +RSI and compensates for this asymmetry.

Using a Gaussian conductance peak therefore still is a good approximation. The anal-

ysis in [Ruth 11] focusses on the changes in amplitudes and the energetic positions of the

resonant peaks. While using a Gaussian conductance adds no error to the determination

of the peak position and height, it will only result in slightly overestimating the intrinsic

series resistance of the device, since as shown in fig. 2.13b, an additional series resistance

will compensate the deviations between the two distributions. While there are still small
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Figure 2.14: a) Schematic conduction band profile used for the TMM calculation at VAR=200

mV. The quantum well layer is omitted to hinder the formation of resonances. The voltage is

assumed to only drop at the barrier regions of the device. b) I-V characteristic of a DMS RTD

with two 5nm (Zn,Be)Se barriers (blue circles) and the calculated background current (purple

line). The gray dashed line represents a fit to the background current with Ibg = c1(c2Vbias)
c3

discrepancies remain in both onset and tail of the resonant peak, the resulting error is

very likely to be negligible since fits are usually optimized for the peak maxima.

2.7 The non-resonant background current

Assuming a Gaussian line shape to fit the resonance-peaks in the I-V characteristics of the

RTDs still lacks the description of all electrons that tunnel through the two series barriers

off resonance. We know from experiment that this background current is highly dependent

on the applied bias voltage. The transmission probability Tbg ≈ TLTR for an electron at

small bias voltages is very low, since it has to essentially tunnel through a potential step

comprised of the left barrier with the transmittance TL and the right barrier with the

transmittance TR [Ricc 84]. Both tunnel barriers are several hundred meV higher than

the electron’s kinetic energy and approximately 5 nm wide. As is shown in fig. 2.14a, for

a voltage drop VAR = VL + Vqw + VR across the active region of the device, the second

barrier is however already lowered by the voltage drop VL across the first barrier and the

voltage drop Vqw across the quantum well. At bias voltages comparable to the barrier

height the background current increases massively, since tilting the tunnel barriers via

VAR reduces the effective barrier heights φeff1 and φeff2 for the incident electrons.

Even though the quantum well layer is not doped, charge will be present in this layer

as soon as the resonant steady state is established [Ricc 84]. Self consistent calculations of

the conduction band profile suggest a bias voltage drop at the quantum well layer which is

of the same order as the potential drop at the barriers. An example of such a calculation

is shown in fig. 2.6 for an RTD with 5 nm tunnel barriers and a 8 nm quantum well.

Charging of the quantum well will of course depend on the tunnel barrier and quantum
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Figure 2.15: Ibg for various voltage drops at the quantum well layer. α denotes the ratio of

the electric fields εqw/εbarriers

well properties of the device and should not categorically be neglected, especially for

asymmetric devices where the collector barrier is limiting the transport.

Charge build up in resonant tunneling double barrier structures is possible [Shea 88,

Buot 00], and was demonstrated in optimized asymmetric structures [Zasl 88]. The charg-

ing leads to bistabilities and hysteresis in the I-V characteristics. In our II-VI RTDs, this

intrinsic bistability is however not observed which is most likely due to chosen symmetric

layout paired with the broadened resonances observed in these devices. In the theoretical

discussion of the intrinsic bistabilities due to charging of reference [Shea 88], it is stated

that ”[...] the intrinsic bistability could be reduced or removed by a large inhomogeneous

broadening of the bound state”. In the light of this, we assume that while a fraction of

the applied bias voltage drops across the quantum well layer, the magnitude of Vqw is

partially reduced due to the presence of charges.

As we are interested in a description of the background current, we omit the quantum

well layer as shown in fig. 2.14a. Without a quasi bound state between the tunnel barri-

ers, no resonance occurs in the calculated transmission spectrum. The kz selection rules

discussed in fig. 2.10b do therefore not play a role for electrons tunneling off-resonance

through the double barrier region. Omitting the quantum well region for the calculation of

Ibg does however not imply that the voltage drop across this layer is to be neglected. Tilt-

ing only the barrier potentials or dividing the voltage drop among barriers and quantum

well layer with regard to their layer thickness, dielectric constants and charging makes a

huge difference for the resulting transmission probability at a given energy of the incident

electron. Hence we can test our assumption that a non negligible portion of the applied

bias voltage drops across the quantum well by comparing calculations for the various

cases against a measured I-V characteristic of an RTD where the barrier and quantum

well thicknesses are known from XRD measurements of the layer stack [Frey 10].
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Assuming a constant emitter Fermi energy, Ibg is given by [Tsu 73]

Ibg = cbg

∫ µ+2kBT

Ec

T (Ee, Vbias) · dF (Ee, VAR) dEe (2.16)

with the transfer function

dF = ln

 1 + exp
[
µ−Ee

kBT

]
1 + exp

[
µ−Ee−eVbias

kBT

]
 (2.17)

which weighs occupied emitter states against unoccupied collector states and results in a

linear slope for bias voltages Vbias < lEF . In this bias range transport is not only governed

by T (Ee) but also by the small number of unoccupied electron states in the collector. The

transfer function saturates for bias voltages in the order of the Fermi energy and above.

For Vbias � lEF it plays a minor role in the shape of the discussed Ibg-V characteristic.

The Fermi statistics however play an important role in chapter 8, where their implications

for the resonant tunneling transport at Vbias < lEF will be discussed.

Figure 2.15 plots equation (2.16) for one cbg and various voltage drops at the quantum

well layer. α = Eqw/Ebarriers denotes the ratio between the electric fields in the quantum

well and the barrier regions. As we increase α and thus the voltage drop across the

quantum well layer, the model yields an increase in the background current. A large

voltage drop across the quantum well layer thus results in a strong contribution from the

non-resonant background current. This should be considered in the sample design while

planning RTDs with wider quantum well layers, as Vqw is also likely related to the width

of the quantum well.

In fig. 2.16 we plot equation (2.16) (purple curve) for various α from 0.06 to 1 and use

cbg to fit each curve to the experimental data (black curve). The best result is achieved

by assuming an electric field in the quantum well layer which is approximately 20% lower

(α=0.76) than in the barriers. This analysis is best done by subtracting the calculated

background current from the experimental I-V characteristic and comparing the resulting

curve (blue line) to the shape of the resonant contribution in fig. 2.13

As shown in fig. 2.14b, this calculated background current Ibg (purple curve) can

furthermore be fitted (gray dashed line) by a power law

Ibg = c1(c2Vbias)
c3 (2.18)

Our model thus shows that the voltage dependence of the background current in an

RTD can be explained by the dependence of the non resonant transmission probability

through the two barriers in series. It should be noted that in this section only the voltage

drop VAR across the double barriers and the quantum well are considered. As the I-

V characteristics of experimental data include effects from both intrinsic (contacts) and
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Figure 2.16: the difference (blue line) between the I-V characteristic of the real device (black

line) and the modeled background current Ibg (purple line)

external series resistances, fitting equation 2.16 directly to experimental data in fig. 2.14b

still is an approximation.

In chapters 3,4 and 5 this model for the background current is used as a building block

in the equivalent circuit of an RTD. In combination with other circuit elements such as

the afore discussed resonant contributions and contact resistances it is able to capture the

essence of a DMS RTD. The parameters of equation (2.18) for the fits in the following

chapters are fine-tuned within the full model and do not make the same approximations

as the fit in fig. 2.14b.

2.8 The DMS RTD as a voltage controlled spin-filter

In the previous sections we established an empirical model that allows for the description

of the I-V characteristics of a II-VI RTD. In this section we now use this model to briefly

review the basic principles a voltage controlled spin filter based on a DMS RTD [Slob 03].

Let us consider a (Zn,Mn)Se quantum well RTD showing a magnetization according

to the modified Brillouin function of reference [Gaj 79] and only the first confined state

thereof. Applying an external magnetic field, the two fold degeneracy of the quantum

well state is lifted. The spin splitting of the quantum well states given by equation 2.2 is

plotted in fig. 2.17a. Each spin-split state in the quantum well results in a resonance-peak
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Figure 2.17: a) Plot of the modified Brillouin function used to simulate the splitting for the

curves shown in b). b) Model I-V characteristics for magnetic fields from 0 to 14 T. The curves

are offset by 5µA for clarity. c) Current spin polarization for magnetic fields from 400 mT to

3 T. The two additional features at the higher bias voltages stem from the LO phonon replica

peaks.

in the I-V characteristic of the DMS RTD. The resulting I-V characteristics for magnetic

fields from 0 to 14 T are shown in fig. 2.17a, where an y-axis offset of 5µA is used for

clarity. At zero magnetic field, in the absence of splitting, the resulting I-V characteristic

is shown as the bottom curve in fig. 2.17b. The second peak at approximately 180

mV and B= 0 T is a phonon replica due to the resonant tunneling process through the

same quantum well state involving the excitation of a longitudinal optical (LO) phonon.

As the degeneracy is lifted we thus see four resonance-peaks in total, two for each spin

species. Each peak represents a current comprised of only one spin species and a sufficient

splitting of the resonances will thus result in a spin polarized current through the RTD.

The resulting spin polarization (I↑ − I↓)/(I↑ + I↓) is plotted as a function of the applied

bias voltage in fig. 2.17c for various magnetic fields from 400 mT to 3 T. The filtering

mechanism improves as the splitting of the spin states increases and the overlap of the

spin-signals is reduced. The polarization however saturates for magnetic fields above 3 T

due to the saturation of the spin-splitting in fig. 2.17a.

The maximum spin-down polarization (blue lines in fig. 2.17c) is lower than the maxi-

mum spin-up polarization (red lines), although the conductances for the two spin channels

are assumed to be identical in this simple model. This is due to the increased contribution

of the background current, which is not spin polarized and effectively reduces the overall

spin polarization of the current traversing the RTD. The polarization at the second reso-

nance is furthermore reduced by an overlap with the spin-up replica peak. Especially for

samples containing 8% Mn, where the splitting is in the order of the LO replica energy,

the spin-down resonance-peak and the spin-up replica-peak occur at comparable bias volt-

ages at B≈6 T. These two transport channels in parallel thus inject electrons of opposite

spin types into the collector, further reducing the spin-filter efficiency for the spin-down

operation mode.
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In summary, given a sufficient splitting of the quantum well spin states, the latter

act as two independent resonant transport channels, each occurring at a different bias

voltage. One thus is able to switch from a spin-up polarized current to a spin-down

polarized current by changing the voltage drop across the RTD to the respective setting.

In the following chapter we present evidence that this picture however oversimplifies the

transport properties of such a device and that some of the above made assumptions break

down.
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Chapter 3

Zero field spin polarization in a 2D

paramagnetic resonant tunneling

diode

In chapter 2 we established the theoretical framework for the description of the active

region of an all II-VI semiconductor RTD. In this chapter this empirical model will be

used to fit the I-V characteristics of a DMS RTD which acts as a voltage controlled spin

filter [Slob 03]. Parts of this chapter are published in [Ruth 11].

The implementation of device components based on RTDs is one route towards the

elaboration of a full semiconductor spintronics based technology scheme. While a fer-

romagnet/tunnel barrier spin injector [Croo 05, Jans 07, Pate 09] produces a fixed spin

polarization for each given magnetization state, DMS can be used in II-VI semiconduc-

tor RTDs to implement spin selective tunneling at different bias voltages [Slob 03]. A

caveat to this approach has been the paramagnetic nature of bulk (Zn,Mn)Se, which

makes the application of an external magnetic field necessary for spin filter operation.

This can be overcome by using the 0D states of self assembled quantum dots embedded

in a DMS host material, since the microscopic magnetic environment of a dot allows

for the formation of BMP-like states which lift the spin degeneracy for the tunneling

electrons [Diet 82, Goul 06]. Such self assembled quantum dot structures have a rich

resonance spectrum which typically occur over a broad range of bias voltages, limiting

the controllability of device characteristics. Here we show that similar zero field splitting

can be achieved in the much more reliable quantum well geometry. RTDs containing

self-assembled quantum dots will be further discussed in chapters 6, 7 and 8.

We investigate an all-II-VI RTD grown on a GaAs substrate. The active RTD re-

gion contains a 9 nm Zn0.96Mn0.04Se quantum well layer sandwiched between two 5 nm

Zn0.7Be0.3Se tunnel barriers (device A). Proper contact layers are applied on each side

of this structure to allow for measurements of transport through the layer stack (fig.

3.1). The quantum well layer is made from a DMS that exhibits giant Zeeman split-

ting in an external magnetic field, which is described by a modified Brillouin function

41
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Figure 3.1: Schematic conduction band profile of the resonant tunneling diode at zero bias,

with lifted spin degeneracy in the quantum well.

[Twar 84, Slob 03] with a pair breaking contribution at high magnetic fields [Shap 84].

Lifting the degeneracy of the quantum well spin states with an external magnetic field

allows the RTD to be used as a voltage controlled spin filter [Slob 03]. The I-V charac-

teristic shows current peaks at two different bias voltages as long as the splitting is large

enough to resolve the separate spin up and down resonances.

The black lines in fig. 3.2 (device A) show I-V characteristics for measurements at 1.3

K from 0 to 14 T. Figure 3.3 shows experimental data for a second type of sample (device

B) with 8% Mn and layers that are 6% thinner than for device A. Due to the high Mn

content of device B, the spin down resonance is merged with the spin up replica peak at

high magnetic fields. Thus the polarization analysis shown in fig. 3.9 will focus on device

A.

Similar results for fields up to 6 T have previously been successfully described [Slob 03]

using a model based on taking the conductance of a single spin channel to be one half of

the B=0 T curve, applying Brillouin splitting to the quantum well levels and recombining

the contribution of the two spin channels into a total I-V curve by using Kirchhoff’s laws.

Such a model implicitly assumes spin degeneracy at B=0 T, and obviously breaks down

if that condition is not fulfilled. The data presented here, which includes higher magnetic

fields than available previously, suggests that a modified picture of the zero-field tunneling

process is necessary.

As shown by the blue lines in fig. 3.2 the data is suggestive of the peak splitting not

vanishing at B=0 T. More importantly, the peak in the zero field I-V characteristic is also

less symmetric than each of the split peaks at high magnetic fields, and the resonance in

the zero field curve is much broader than that of the individual resonances in the 14 T

curve. Both the asymmetry and the increased width of the peak in the B=0 T curve may

be a consequence of this peak actually being comprised of two resonances occurring at

somewhat different bias voltages. These considerations indicate the need for a different

modeling scheme.
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Bottom-up approaches to modeling such data have been reported [Egue 98, Havu 05,

Saff 05, Bele 05, Li 06, Rado 06, Qiu 08, Saff 09, Wang 09], but these typically treat an

idealized system ignoring considerations such as contact resistances. In fig. 3.4 we show

that such considerations are important. Figure 3.4a gives the equivalent circuit of our real

device in the two channel model, and includes magnetic field dependent contact resistances

R↑,↓s , an interface scattering term Rscat and a non resonant contribution to the tunneling

current, Rbg. The active region of the RTD is represented by the two diodes, one for

each spin channel, and each with a voltage and magnetic field dependent resistance Rbg

in parallel. While the diode carries the resonant part of the current including the LO-

phonon replica contributions, the background current through Rbg accounts for electrons

tunneling off resonance through the double barrier region.

To obtain an expression for the highly non-linear resistance resulting from the reso-

nant tunneling transport, one normally assumes a Lorentzian shaped transmission at the
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the spin up and down species, adding up to the purple curve which is the fit to the measurement

(black curve). c) Plot of the potentials V ↑ and V ↓ at each spin diode as a function of the applied

bias voltage.

resonance condition. As discussed in chapter 2 of this thesis, the peaks in our experiment

show a Gaussian line shape with a bandwidth much broader than the expected injector

Fermi energy (multiplied by the lever arm). Thus an additional broadening mechanism

dominates the resonance width.

In fig. 3.5 we plot the B=0 T I-V characteristics of 40 mK (black line), 1.3 K (blue

dots) and 15 K (red dots), showing that in the absence of magnetic field, temperature

does not have any influence on the I-V characteristic. This indicates that a much stronger

broadening mechanism is at work in the device, probably stemming from imperfect in-

terfaces at the active RTD region. Local potential fluctuations, caused by well width

fluctuations [Zren 94] or inhomogeneous alloy or doping concentrations [Maka 10], im-

pose an additional in-plane confinement for tunneling electrons thus creating 0D type

tunneling states, so called interface quantum dots [Gamm 96, Cate 92, Sale 93]. Since

our device is 1002 µm2 and these fluctuations are typically on a nm scale, we sample over

an ensemble of these states in our vertical transport measurements. One can view this

configuration as a large number of 0D resonant tunneling diodes in parallel, each with its

own resonance condition. This results in a broadened Gaussian line shape [Zren 94] for

the overall resonant conductance feature.

The LO-phonon replica are described by additionally broadened Gaussian conductance

peaks with reduced amplitudes and an energetic separation from their respective spin-split

resonance peaks of 31.7 meV, the LO phonon energy of bulk ZnSe [Land 99].

For the non-resonant background current we use the transfer matrix model discussed

in section 2.7 consisting of two tilted barriers where the quantum well was omitted in
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order to remove resonant contributions. The potential drop over the quantum well region,

which effectively lowers the second barrier, plays an important role, and is explicitly taken

into account. The resulting transmission is proportional to the non-resonant tunneling

of emitter electrons and fits well to the measurement at high bias voltage, where the

contribution of resonant tunneling is small.

Due to the contact resistances R↑,↓s , the two voltage nodes V↑ and V↓ in fig. 3.4a are

not necessarily at equipotential for a given applied bias voltage Vapp. Figure 3.4c shows

the potential at the points V↑ and V↓ as a function of Vapp. When a resonance condition

is reached for either of the spin diodes, the resistance of that spin diode drops and the

potentials across each of the diodes is altered accordingly. While we have experimental

access to Vapp, the transport theory for resonant tunneling only describes the active region

of the device. Thus considering the contact resistances is vital for fitting any RTD model

to actual experiments. As an example, the resulting fits for a magnetic field of 14 T

are presented in fig. 3.4b where contributions from both the spin up and down channels

are shown as well as how they add up to produce a fit (purple curve) to the observed

measurement (black curve). While the conductance of a resonant channel is perfectly

symmetric on an energy scale, fig. 3.4 and 3.6 show how in a real device, the contact

resistances influence the shape of the resulting I-Vapp characteristics.

As is clear from the circuit diagram in fig. 3.4a, the total current traversing the device

is given by

I(Vapp) = V ↑
(
σ↑(V ↑) + σ↑LO(V ↑) + σ↑bg(V

↑)
)

+

V ↓
(
σ↓(V ↓) + σ↓LO(V ↓) + σ↓bg(V

↓)
)

(3.1)

with σ↑,↓(V ↑,↓) ∝ p↑,↓ · exp

(
(l(E − E↑,↓0 ))2

2Γ↑,↓2

)
(3.2)
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where σ↑,↓, σ↑,↓bg and σ↑,↓LO are the conductances for the spin channels, the background

contributions and the LO-phonon replica peaks respectively. l is the lever arm linking

the energy scale in the quantum well to the diode bias voltages V ↑,↓, E↑,↓0 is the energy

between the spin levels and the conduction band edge, p↑,↓ are fitting parameters for the

amplitudes of the spin conductances (and thus yield the spin polarization) and Γ↑,↓ are the

variances of the Gaussians describing the energy level distribution for the spin channels.

Equation 3.2 is also used for σ↑↓LO but with different variances Γ↑↓LO, amplitudes p↑↓LO and

E↑↓0,LO = E↑↓0 + 31.7 meV.

Our detailed model therefore consists of solving the equivalent circuit of fig. 3.4a for

an RTD with a spin split resonance and the associate LO-phonon replica. For each applied

bias voltage, we use a Newton Method to solve the following set of equations

V ↑s + V ↑ = Vapp (3.3a)

V ↓s + V ↓ = Vapp (3.3b)

V ↑s /R
↑
s + V ↓s /R

↓
s = V ↑/R↑[V ↑] + V ↓/R↓[V ↓] (3.3c)

(V ↑s /R
↑
s − V ↑/R↑[V ↑])Rscat = V ↓s − V ↑s (3.3d)

with the boundary condition that the set of V ↑s , V ↓s , V ↑, V ↓ and Vscat be consistent

with the applied bias voltage.

This equation set does not yield an analytical solution for our non-linear circuit com-

ponents as the resistance of both RTDs are a function of the voltages V↑ and V↓ dropping

over these RTDs.

Figure 3.6 shows a graphical representation of this problem in a load line analysis. The

load line indicates the current flowing through the contact resistance as a function of the

RTD bias voltages and under the simplifying assumption of infinite scattering resistance

Rscat the intersection points of this load line with the spin-up and spin-down I-V curves

yields the solution to equations (3.3).

To evaluate the impact of assuming Rscat →∞ the markers indicating the intersection

points in fig. 3.6 are solved for numerically allowing for finite Rscat. As is readily apparent

from the figure the agreement is quite good allowing fig. 3.6 to be used as a useful intuitive

guide at intermediate to high fields. The discrepancy between the simplified picture and

the exact numerical solution becomes worse at low fields. Throughout this chapter the

full numerical solution is used in all analysis.

This intuitive picture clearly illustrates the importance of contact resistance in such

a device. A large contact resistance (compared to the internal device resistance) would

significantly reduce the slope of the load line (dashed gray line in fig. 3.6). Then due to

the negative differential resistance of the RTDs, the circuit has multiple possible operation

points, and is thus unstable making it impossible to access all regions of the diode I↑,↓-

V↑,↓ characteristics within the measurement of (I↑ + I↓)-Vapp. Furthermore since the

measurement of the device necessarily includes a contact resistance, the recorded signal

is stretched and deformed compared to the intrinsic diode characteristics.
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Figure 3.6: Example for an applied bias of 0.1 V and B=6.5 T. Due to the contact resistance

in the model, both spin channels are able to operate at different diode bias voltages. A load line

analysis depicts the current flowing through the contact resistance is plotted on the axis of the

diode voltage. The gray dashed line represents an increased series resistance that would result

in an unstable circuit.

For an RTD that does not discriminate between spin-up and spin-down electrons, one

can simply convert the measurement back to the intrinsic scale using

Vd = Vm − IdRs (3.4)

where Vm is the measured voltage across the device, Id is the current flowing through

the diode and Rs is the contact resistance. This procedure is not valid for an RTD with

separated transport channels as depicted in fig. 3.4 because there is no experimental

access to the voltage of each separate spin channel excluding contacts. The effect of the

contact resistance combined with the non-linearity of the channels means that the oper-

ating voltage of the two channels is different, an effect which is especially important in

the regions near the resonances. A more thorough analysis is therefore needed as the line

shape of the individual channels cannot be directly inferred from the measurements.

Since the zero field I-V characteristic is a superposition of two strongly overlapping

peaks, the best starting point for the fits is the high magnetic field data, where one easily

can find the proper variances Γ↑,↓ and Γ↑↓LO of the resonant peaks and LO-phonon replicas.

Starting at 14 T, the I-V characteristic for each magnetic field is fitted by adjusting p↑,↓,

p↑↓LO and E↑,↓0 . We also allow for a magneto-resistance effect in the contacts R↑,↓s and in the

scattering channel Rscat. By including a magnetic field dependence of Γ↑↓LO, we account

for the small, experimentally observed field dependent broadening of the replica peaks.

The resulting fits are shown as red dashed lines on top of the I-V characteristics in fig.
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Figure 3.7: Self consistent conduction band profile of the resonant tunneling diode at the

approximate resonance biases (device A). The inset shows the increase of tunneling states due

to the applied bias voltage.

3.2, while in fig. 3.4b the contributions of spin-up and spin-down electrons to the 14 T I-V

characteristic are illustrated. One would a priori expect a Brillouin function to describe

the magnetic field dependence of the splitting [Slob 03]. The measurements shown in fig.

3.2 (device A) and 3.3 (device B) exhibit a very different behavior. At low magnetic fields

we observe that instead of a spin degeneracy, the I-Vapp characteristic is properly fit only

by allowing for finite splitting even at zero magnetic field. We have previously observed

such a remanent zero field splitting in the zero dimensional resonant tunneling states

of self assembled CdSe quantum dots [Goul 06]. Here the quantum well is nominally

a two dimensional object. As previously discussed, however, various inhomogeneities

cause the current transport to be effectively mediated by a large ensemble of parallel

paths each flowing in a local environment. The relatively low number of magnetic atoms

influenced by each of these regions means that each will statistically have, on average, a

net magnetization at zero field [Diet 82, Diet 86]. This effect is further enhanced by the

presence of the spin of the tunneling electron [Diet 83].

The energy separation between spin-up and spin-down peaks is 15 meV at B=0 T

as determined by the fit. This energy is not necessarily the same as the splitting of the

two spin states. As the measurement is always referred to the conduction band of the

emitter, this energy difference is influenced by the different bias conditions needed to

align each spin state to the emitter. Figure 3.7 shows self-consistent calculations of the

conduction band profile at the resonance conditions for device B. As the inset shows, the

Fermi energies differ by approximately 20% for the two resonance conditions. Since the

maximum current flows when the quantum well level is aligned with the conduction band

edge and is proportional to the cross-sectional plane A = πk2
F of the emitter Fermi sphere

at constant Ez this would result in a ≈44% change of the peak amplitudes.

The first peak at lower bias voltage is suppressed while the second peak is enhanced
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in the B=0 T I-Vapp characteristic. For a small energetic splitting in the resonant state,

one would expect similar conductances for the two transport channels. A change in the

confinement caused by the splitting will influence the amount of leakage of the quantum

well wave function into the emitter, while for each Vapp the resulting change in symmetry

of the double barrier will affect the transmission [Ricc 84, Butt 88, Lury 89, Alle 94,

Miya 98]. A higher bias voltage will also drive more current at the same conductance.

From transfer matrix calculations for the transmission probabilities of the double barrier

we however conclude that different biasing conditions alone cannot explain the magnitude

of the effect on the amplitudes of the B=0 T spin currents.

While the peak positions stay constant at intermediate fields because the Brillouin

function saturates, above 8 T there is a clear reduction in the splitting of the peaks

on the bias voltage axis. A reason for this reduction is likely the Zeeman splitting of

the emitter electrons, since both ZnSe and (Zn,Mn)Se have a positive g-factor and the

resulting splitting ∆Vres on the voltage axis is given by ∆Vres = l (gQW − gE)µB, where

l is the lever arm of the device and gQW and gE are the effective g-factors of the ZnSe

emitter and the quantum well electron states respectively. From the fits we obtain a slope

of 0.24 meV/T (-0.17 meV/T) for the spin-up (down) peak. The corresponding g-factors

are g↑ = 8.2 and g↓ = 5.7, far greater than the bulk ZnSe value of 1.1 [Land 99]. Possible

explanations for this increase in magnetic response include that tunneling electrons at

the interface to the barrier cannot be treated in the free electron picture of a parabolic

s-type conduction band, that there is a dilute Mn concentration in the emitter due to

diffusion during growth, or that the energetic distance to the resonant quantum well

state is altered by spin selective band bending of the emitter. The peak amplitudes are

also strongly magnetic field dependent. The asymmetry of the effective g-factors for the

emitter polarization suggests an effect that is linked to the resonance bias conditions. The

two peaks occur at different bias voltages and therefore have different conduction band

bending conditions. This bending changes the number of available electronic states for

resonant tunneling, strongly influencing tunneling currents. This factor can easily surpass

the effect of Zeeman splitting. The resulting effective g-factors are therefore not purely

a result of the electron spin interacting with the magnetic field but also of the feedback

mechanisms induced by changes in the potential landscape (as shown in fig. 3.7). Different

transmittances of the spin channels may also result in spin sensitive charge build-up in

front of the barrier that can influence not only the amount of available states in front of

the barrier, but also the bias voltage needed to attain the resonance conditions [Choi 92].

For an I-V characteristic consisting of a spin-up and spin-down resonance, a peak

movement may very well be caused by a change in line shape of one of the peaks due to

their superposition. Therefore we now consider the effect of temperature dependence, by

analyzing data taken at 6 T for various temperatures ranging from 45 mK to 15 K. For

each temperature Temp one can solve the equation

Brillouin[6 T,Temp] = Brillouin[Beff ,1.3 K]



50 3. Zero field spin polarization in a 2D paramagnetic RTD

0 2 4 6 8 10 12 14

50

55

60

65

le
ve

lp
os

iti
on

 [m
eV

]

Beff[T]

Figure 3.8: Energetic distance to the con-

duction band of spin up (circles) and down

(triangles) levels in the quantum well. Filled

symbols show results from fits at various tem-

peratures at B=6 T, while empty symbols

show fits at various magnetic fields at T=1.3

K.

Bext>Beff Bext<Beff


























0 2 4 6 8 10 12 14

0.5

1.0

1.5

2.0

2.5

3.0

Beff[T]

po
l[B

]/p
ol

[0
]

Figure 3.9: Change in amplitudes of the spin

up (circles) and down (triangles) levels with

applied external magnetic field (normalized to

the B=0 T amplitudes). Filled symbols show

results from fits at various temperatures at

B=6 T, while empty symbols show fits at var-

ious magnetic fields at T=1.3 K.

to determine at which magnetic field Beff a curve from the 1.3 K dataset has the same

level splitting in the quantum well as the 6 T curve at the given temperature. Figure 3.8

presents the level positions of the resonant spin states for both the 1.3 K data set of fig.

3.3 and this temperature dependent measurement. The open symbols are for the 1.3 K

dataset, and the x-axis is then directly the magnetic field at which the measurement was

performed. The solid symbols are for the temperature dependent data, plotted against

Beff as described above. This comparison confirms that the movement of the peak position

is a result of changes in the band diagram, and not a result of any deformation of peak

shape, as these would not be stable under the different environmental conditions.

A similar analysis also is conducted for the amplitudes of the spin channel conduc-

tances in fig. 3.9. The polarization values acquired from fits to measurements at various

temperatures differ from those acquired from the magnetic field dependent measurements

at T=1.3 K. After correcting for the level splitting using Beff , the only visible difference

between the two sets of measurements are peak amplitudes. This is because a constant

quantum well splitting is maintained in the two configurations, which then only differ in

emitter polarization due to the applied external magnetic field. Figure 3.9 shows that

indeed, the only field where both polarization values are identical, is at Beff= 6 T, where

both temperatures are the same. For Beff < 6 T the temperature measurements show

higher polarization since, while the splitting in the quantum well is maintained constant,

the external magnetic field effect on polarizing the emitter produces a higher polarization

of the spin current. The opposite is true for Beff > 6 T. The results of fig. 3.9 thus

suggest that both the splitting in the quantum well and the polarization of the emitter

influence the spin polarization of the resonant current. For Beff > 6 T when the splitting

of the Brillouin function saturates, the only effect left should be the polarization of the
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emitter electrons. The polarization for different temperatures therefore saturates, since

the external field is also kept constant. The magnetic field sweeps at constant temperature

of 1.3 K show a linear increase / decrease above Beff=6 T of different slopes which is the

additional feedback of the emitter and is in agreement to the different effective g-factors

for the high magnetic field response as presented earlier in this paper.

The amplitudes p↑,↓ we obtain from the above fitting process give quantitative results

for the spin polarized currents. To use this device as a detector for the emitter spin polar-

ization one would need to link the emitter polarization to the amplitude of the traversing

spin currents. The increased and asymmetric magnetic feedback that is evidenced by

the movement of the spin peaks suggests that other effects in addition to pure Zeeman

splitting of the emitter are involved. Therefore usage as a detector for the emitter spin

polarization is difficult. Within our model it is possible to evaluate currents for spin-up

and down electrons separately, thus allowing for a quantitative analysis of the polariza-

tion of the current traversing the device. Figure 3.10 shows the current spin polarization

as a function of magnetic field and bias voltage. Blue (red) indicates spin up (down)

polarization of the current. The non-resonant background current is not spin selective

and therefore the current polarization Pc plotted in fig 3.10 is given by

Pc =
I↑ − I↓

I↑ + I↓ + Ibg(↑+↓)
(3.5)

The splitting of the spin levels in the external magnetic field and the changes in the

amplitudes of the resonant peaks lead to a polarization above 90% (device A) for the

spin-up peak at B=14 T, while the spin-down peak polarization decreases to below 60%.

While a high degree of polarization of both spin types can be achieved at all measured

magnetic fields, counterintuitively, despite the paramagnetic nature of bulk (Zn,Mn)Se,
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the maximum polarization efficiency is achieved without applying an external magnetic

field. For device A a polarization of 80% for spin-up and 90% for spin-down is observed,

as evidenced by the I-V curve of the two channels for B=0 T presented in fig. 3.11, where

also the similar results for device B are displayed.

In summary, we have shown high spin polarizations can be achieved due to formation of

BMP like states in the active RTD region. The resulting microscopic magnetization for the

tunneling electrons lifts the spin degeneracy and provides two separate transport channels.

Feedback mechanisms stemming from the influence of different biasing conditions both

increase the energy splitting of the peaks and influence their amplitudes, resulting in

high degrees of current spin polarization. Our model allows for good fits to the device

characteristics and thus quantitative analysis of the polarization. Not only does this

model confirm the findings of reference [Slob 03] that the device can work as a voltage

controlled spin filter at moderate magnetic fields, but it also establishes that the local

spin polarization efficiency not only remains, but is even enhanced in the absence of a

magnetic field.



Chapter 4

0D interface states in a DMS

resonant tunneling diode

In a joint project with my colleagues Philip Hartmann and Steffen Bieker, the impact of

a process which removes the GaAs substrate from a pre-patterned II-VI semiconductor

device is examined. A combined mechanical polishing and selective chemical etching pro-

cess is used to lift the MBE grown II-VI semiconductor material from its substrate. This

procedure is presented in [Biek 10] and is thus not discussed in this thesis. We also note

that purely chemical methods of lifting II-VI heterostructures of a GaAs substrate using

MgS [Brad 05] and ZnMgSSe [Moug 09] as release layers have also been demonstrated.

DMS RTDs similar to the one discussed in chapter 3 were chosen for preliminary test-

ing of this method. As the properties of a resonance-peak in the I-V characteristic of

an RTD are a measure of the heterostructure layer quality, transport measurements can

a) b)

RTD

backside contact

Figure 4.1: Images by courtesy of P. Hartmann. a) A lifted layer resting on the corner of a

piece of silicon wafer. The stiffness of the lifted layer evidences its continuous structural integrity

after removal of the MBE substrate. b) The fragile lifted layers are soft-bonded by a conductive

adhesive, as they do not withstand the stress imposed by standard bonding routines.
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Figure 4.2: I-V characteristics of a dilute magnetic quantum well RTD, before and after

polishing at B=0 T and B=6 T

be used to examine potential damages to the lifted layers. Here we investigate transport

measurements on such a lifted DMS quantum well RTD.

Figures 4.1a shows a lifted II-VI heterostructure with pre-patterned RTD mesas, over-

lapping with the edge of a Silicon wafer which is used as a carrier material after removing

the substrate. The intact crystalline structure is evidenced by the apparent stiffness of

the lifted layer. As a result of the thinning process, the fragile II-VI heterostructures do

however not withstand the stress from standard wire bonding routines. Instead, small

droplets of an electrically conductive adhesive are applied to the contact pads of the RTD

pillars. Figure 4.1b shows this contacting scheme for a single RTD pillar on a lifted layer.

Being subjected to mechanical stress during the polishing procedure, samples were

expected to degrade in crystalline quality, even though special care is taken prior to the

mechanical polishing to prevent damages to the II-VI heterostructure [Biek 10]. Compar-

ing transport measurements on a standard DMS RTD to those on an nominally identical

layer stack that was lifted from the MBE substrate, we however find a contrary behavior.

We investigate a standard II-VI DMS RTD grown on a GaAs substrate. The active

region of the device is comprised of a Zn0.92Mn0.8Se quantum well sandwiched between
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two 5.5 nm thick Zn0.8Be0.2Se tunnel barriers. The pattering of the RTD mesas is done

prior to the polishing process in the same manner as for the devices presented in chapter

3.

Figures 4.2a+c show I-V characteristics of an RTD which is still connected to its GaAs

substrate. As discussed in chapter 3, due to the remanent zero field splitting in these

devices, the best starting point for a proper set of fitting parameters is a magnetic field

that results in a sufficient splitting of the two spin-selective transport channels. Figure

4.2c plot the I-V characteristic at a magnetic field of B=6 T, applied perpendicular to the

layer stack. The experimental data (black circles) is fitted using two Gaussian conductance

peaks of variance Γ0 = 8.9 meV. The blue and red lines depict the contributions to the

total current (purple line) of the spin-up and down channels, respectively. These findings

are then used as fixed parameters while fitting the I-V characteristic at B=0 T in fig.

4.2a. As for the devices discussed in chapter 3, the data is suggestive of a remanent zero

field splitting of the two resonance-peaks.

A second sample of same pillar size from the identical layer stack is characterized

after removal of the GaAs substrate. For a proper comparison, we use the identical

measurement setup for the characterization as for the first sample. The current through

each RTD is measured with a load resistor of R=6 Ω in series to the device. Figure 4.2b

shows the I-V characteristic at B=0 T of the lifted RTD. The region of negative differential

resistance (NDR) cannot be completely accessed by the measurement as evidenced by the

jump (depicted by the dashed arrow) in the measured bias voltage. Vertical jumps (large

reduction of the measured current I for a very small increase of Vbias) occur due to intrinsic

properties of the RTD [Shea 88, Fost 89, Lury 89]. A sudden jump in the measured bias

voltage as seen in fig. 4.2b however indicates a bistability in the measurement circuit.

Such a problem arises if the load resistance is too high with respect to the device resistance

[Fost 89, Ruth 08a]. That this kind of bistability occurs only after removing the substrate

shows that the on-peak resistance of the device is reduced by this procedure. As the same

load resistance as well as the same RTD pillar size is used for both measurements, we

conclude that the apparent changes stem from a enhancement of the resonance after lifting

the II-VI layer stack from the GaAs substrate. More importantly, the bistability vanishes

in the I-V characteristic of the lifted layer at B=6 T as is shown in fig. 4.2d. Due to

the increased splitting of the resonance-peaks at B=6 T, the on-resonance resistance is

slightly larger than at B=0 T and the measurement is now able to access the NDR region.

We again use the same model as in fig. 4.2a+c to fit the I-V characteristics at B=6 T

and B=0 T, and find a reduced peak variance of Γp = 8.2 meV. In addition to an increased

fidelity of the resonance, we find a reduction of the apparent remanent zero field splitting

for the I-V characteristics in fig. 4.2b. Furthermore, as is clear from comparing fig. 4.2b+d

to fig. 4.2a+c, the non-resonant background current is reduced for the lifted layers. All

these findings indicate an increase in the layer quality of the heterostructure. Figure 4.3a

depicts a patterned RTD pillar on a GaAs substrate. The rough interface between the

quantum well layers and the tunnel barriers result in an additional in-plane confinement
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Figure 4.3: a) Schematic of the strained layer stack after growth on a GaAs substrate. Imper-

fect interfaces result in broadening of the observed resonances in the RTD I-V characteristics. b)

Layer quality improves after removal of the substrate, reducing the observed zero field splitting

as well as the variance of the bell-shaped peak.

allowing for the formation of BMP states at the interface. While this roughness governs

the broadening of the resonance, it at the same time allows for the magnetic ordering at

the interface.

In the MBE growth of all II-VI heterostructures on GaAs substrate, the lot of the

material grown is not perfectly lattice matched to the substrate. The resulting strain

build up sets an upper limit for the total layer stack thickness and is also likely to influence

the layer quality of II-VI RTDs. Removing the substrate, this build-up strain is relaxed

as is schematically shown in fig. 4.3b. Stemming from the interface roughness, the

additional in-plane confinement is also diminished, weakening the BMP like states at the

quantum well interfaces. Such a reduction of the average BMP energy is consistent with

the observed reduction in the zero-field splitting of the resonance-peaks in fig. 4.2b. The

reduced splitting at the same time results in an increased overlap of the spin-up and spin-

down resonance-peaks. The resulting superimposed I-V characteristic shows a sharper

resonance-peak which ultimately results in the observed bistability in fig. 4.2b.

A strong potential roughness will also introduce weak spots in the barriers. These weak

spots dominate transport as the tunneling probability shows an exponential dependence

on the barrier thickness. Flattening the tunnel barrier layer will increase the tunnel

barrier thickness at these weak spots, thus increasing the overall tunnel barrier quality.

Hence we conclude that the reduction in the background current for the lifted RTDs is

also consistent with our model picture in fig. 4.2.

While the remanent zero field splitting in fig. 4.2b is reduced, it remains finite. Due

to lattice mismatch between BeSe and ZnSe and the high Be content of the tunnel barrier

material, the interface is still subjected to strain, even though the contribution stemming

from the lattice mismatch to the substrate is removed. The remaining zero field splitting

could either result from this remaining lattice mismatch at the interface, or from other

imperfections such as alloy or doping fluctuations. In the light of this remanent spin-

splitting, a future, more detailed analysis of lifted RTDs with different Be and Mn contents

as well as tunnel barrier thicknesses is desirable.
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In summary, the apparent reduction of remanent zero field splitting, the increase in

sharpness of the resonance as well as the reduction of the non-resonant background current

shown in fig. 4.2b and d can be explained by a strain relaxation process due to the removal

of the substrate. This adds further support to the assumptions made on the origin of both

the Gaussian broadening and the remanent zero field splitting made in chapter 3.
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Chapter 5

A voltage controlled spin-valve

As semiconductor spintronics moves beyond basic issues such as electrical spin injection

[Schm 00, Rash 00, Appe 07] and detection [Lou 07, Appe 07], attention is shifting to

combining the fundamental building blocks into useful compound devices. Slobodskyy et

al. demonstrated one such device in the form of a voltage controlled spin filter based on

a (Zn,Mn,Be)Se DMS RTD. Equipped with a comprehensive understanding [Ruth 11] of

such a device, a logical extension is to couple two of these devices into a spin injector and

detector pair. In this chapter, we show how such a structure can be operated as a para-

magnetic voltage controlled spin valve. Such a device could lead to a full implementation

2 µm
middle contact

top 
contact

backside
contact

r2

r1

top contact

backside contact

substrate

RTD2
50 nm ZnSe

RTD1
middle contact

Figure 5.1: SEM image of the spin valve device with colors added to highlight the various

elements. Top (green) and middle contact (blue) layers are connected to bond pads via metal

air-bridges, while the backside (orange) contact layer is bonded directly. The schematic shows

a side profile of the device.
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Figure 5.2: Kirchhoff circuit of the device. a) equivalent circuit for the internal properties

of the device in a one channel picture. b) circuit diagram of the two channel model including

the description of the experimental configuration. VS and VD are the source and drain voltages

applied to the device, while V1,V2,VT and VB are measured. The circuit in the shaded area is

the extension of a) for the two channel model, describing the internal device properties.

of spin based logic in a material system that does not exhibit ferromagnetism.

Figure 5.1 shows a scanning electron microscope (SEM) image of our device along

with a schematic side view. Each of the RTDs is comprised of a 7 nm thick magnetic

(Zn,Mn)Se quantum well sandwiched between two 5 nm thick (Zn,Be)Se barriers. These

are separated by a 50 nm ZnSe layer, highly doped (n= 1.5 · 1019 cm−3) to allow for

proper electrical contacting. This layer stack is patterned into a circular pillar of varying

diameter, with the largest part forming a mesa in the contact layer to accept the backside

contact. The next level, of radius r2, exposes a ring shaped area on top of the bottom

RTD, where a middle contact is formed. The upper level of radius r1 is fitted with a

contact to the top RTD. Top and middle contacts are then connected to large contact

pads using an air-bridge technique [Borz 04]. The data presented in this chapter is from

two devices A and B, where the diameters of the top and bottom RTDs are 10 and 12.8

µm for sample A and 5 and 6.4 µm for sample B, respectively.

5.1 Measurement and single channel analysis

Transport characterization of this sample is done in a 4 K bath magnetocryostat using the

electrical circuit given in fig 5.2b. The shaded area represents the device as a whole (the

internal details will be discussed when describing the model), which is grounded at its

middle contact, and connected to voltage sources at its top and bottom, through standard
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Figure 5.3: a) IB − VT − VB characteristics at B = 6 T for sample A. On the left hand side

of the VB axis of fig. a) the IB − VB characteristic at VT=53 mV is shown. b)+c) IB − VT
characteristics at VB=140 mV and VB=180 mV along the dashed lines in fig. a)

resistors R1 and R2, respectively. Four voltmeters are used to measure the voltage drops

VT , VB, V1 and V2 as indicated, allowing us to determine both the voltage drop across and

the current flowing through each diode.

The results of a measurement performed in a magnetic field of 6 T are shown in fig.

5.3a, where the current flowing through the bottom RTD is plotted as a function of the

bias voltages dropping over each of the two RTDs. Some lines of equal current are drawn

darker as a guide to the eye, indicating the positions of the two spin-split resonances of the

bottom RTD. The kinks in these lines, which occur when these resonances intersect the

resonances of the top diode, are accompanied by small changes in amplitude (noticeable

by the slight increase in distance between the lines of equal current in the figure) which

are a result of the spin valve effect.

Figures 5.3b+c give cross-sections of this data at the two constant bottom diode bias

voltages indicated by the dashed horizontal lines in fig. 5.3a. The pronounced dependence

of IB on the bias voltage dropping across the top RTD clearly shows the strong interaction

between the two RTDs of the spin-valve.

For a better understanding of this crosstalk, we at first discuss the internal properties

of the spin-valve in the simple one channel picture of fig. 5.2a. The measured voltage drops

VT and VB across the top and bottom diode are comprised of the effective bias voltages

V RTD
T and V RTD

B at the respective RTDs (including the comparably small top and bottom

contact resistances RC) and the voltage drop across the middle contact resistance Rm.

The observed crosstalk stems from the fact that the middle contact resistance Rm is in the

current path of both VT and VB. As we change for example only VT in the equivalent circuit
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Figure 5.4: The sign of IT − IB illustrates the regions whether current is dumped into the

middle contact or flows from the middle contact. a) Device A with a middle contact resistance

of Rm = 130 kΩ b) Device B with a middle contact resistance of Rm = 430 kΩ

of fig.5.2a, the voltage redistributes according to Kirchhoff’s laws. More importantly, as

the resistance of both RTDs change significantly with V RTD
T and V RTD

B , the influence of

VT on V RTD
B is potentially strong, explaining the observed IB − VT characteristics in fig

5.3b+c.

Let us assume that the transport properties of the spin valve can be explained within

the equivalent circuit of fig.5.2a. A straight forward way to visualize the spin-valve be-

havior is to plot only electrons traversing both RTDs. Electrons which are injected by

the top RTD and exit the device via the middle contact are not of interest to us. The

same is true for electrons that enter via the middle contact and exit the bottom RTD. In

both cases, these electrons either come from or exit to an unpolarized reservoir and do

not play a role in the spin-valve functionality.

The current traversing both RTDs is always given by the smallest of the two currents

I1 and I2 flowing through the top and bottom RTD, respectively. If I1 > I2, some of the

current exits the middle contact, while the remaining current also traverses the bottom

diode. For I2 > I1 an additional current is supplied by the middle contact and only the

current entering at the top of the spin valve traverses both RTDs.

As already mentioned, the resistance of each RTD highly depends on its applied bias

voltage. Which one of the two currents is smaller thus depends on the bias voltages V RTD
T

and V RTD
B dropping across the top and bottom RTD. Figures 5.4a+b plot the sign of

I1−αI2 for devices A and B as a function of V RTD
T and V RTD

B . I2 is scaled by a factor α,

accounting for the different sizes of the top and bottom RTDs. A comparison of IT − VT
and IB − VB characteristics yields scaling factors of 0.67 and 0.94 for devices A and B,
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Figure 5.5: a)+b) Current traversing both diodes as a function of the bias voltages of the two

diodes for devices A and B, respectively.

respectively. Within the one channel picture, the effective bias voltages V RTD
T and V RTD

B

are extracted from the measured voltages VT and VB by subtracting the voltage drop

across Rm. As is clear from the equivalent circuit in fig. 5.2a, plotting IB as a function of

V RTD
T should result in a constant IB for all V RTD

T . Hence, we estimate Rm by changing

its value until such a situation is reached and find contact resistances of 130 kΩ and 430

kΩ for devices A and B, respectively.

In fig. 5.4 we have removed the crosstalk of the two devices via the middle contact

resistance as well as the resistive influence stemming from the different sizes of the top

and bottom RTD. The color coded plot is thus comparing the intrinsic properties of the

two RTDs. The apparent symmetry along 45◦ indicated by the dashed line in fig. 5.4 is

expected for two equal RTDs and is used as an additional tool to verify the scaling factors

discussed above. The sign changes in the region labeled with two spin-up arrows occurs

when both RTDs are tuned to their spin-up resonance. A similar feature arises at higher

bias voltages when both RTDs are set to their spin-down resonance. Its shape however

differs from the first feature as we get an additional contribution from both spin-up replica

peaks occurring at similar bias voltages.

We do not see evidence for additional features when one RTD is set to its spin-up

resonance and the other RTD to its spin-down resonance and vice-versa. This however

does not yet exclude spin-flip processes between the two RTDs. Background contributions

at the spin-down resonance are much stronger than for the spin-up resonance-peak at lower

bias voltages. The analysis presented in fig. 5.4 does thus not yield a spin-flip signal,

even if it were present.

Figure 5.5 plots the current traversing both RTDs as a function of V RTD
T and V RTD

B .

Rescaling I2 with α again reveals the same features as in fig. 5.4 and are labeled ac-

cordingly. For an ideal spin-valve this plot would yield only two peaks, as the valve only
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transmits current if both RTDs are set to transmit the same spin type (parallel setting).

In case of spin-flips in the area between the two RTDs two more peaks would arise for the

antiparallel settings. Although the plot of Iboth(V
RTD
T , V RTD

B ) in fig. 5.5 shows what could

be interpreted as the four discussed features, the long tails are not a result of a spin-flip

contribution to the resonant transport. They again arise due to characteristic background

of each RTD and the analysis described above. At small applied bias voltages either one

of the RTDs results in a high resistance and the current traversing both RTDs is almost

zero, since most of the current is either coming from or going to the middle contact. As

discussed above, the first peak arises when both RTDs are set to their spin-up resonance,

Increasing V RTD
T while maintaining V RTD

B at the first resonance will put the top RTD

in the valley between its first peak and the increasing background current (and second

resonance). Iboth is thus given by I1 until due to the increase of the background current

and/or the second resonance I2 is greater than I1.

We conclude that the single channel analysis does not yield conclusive evidence for a

spin-valve functionality. In the following we therefore discuss a two channel model, which

treats spin-up and spin-down transport channels separately.

5.2 The two channel model

The reason that the data of fig. 5.3a does not show an explicit off state for our spin

valve is that the middle contact ground actually has an active role in device operation.

The middle contact resistance is however a necessary element to allow for independent

control of the two RTDs. Specifically, when one of the spin channels in either diode is

off-resonance, then its resistance is ideally infinite. The middle grounding contact then

provides an alternative current path. Each RTD can be either set to transmit spin-up or

spin-down electrons. Figure 5.6 shows the four resulting possible settings for the spin-

valve. In fig. 5.6a, the bottom RTD is set to transmit only spin down, while the top RTD

is allowing spin up current to flow. The spin up current traversing the top RTD will not

be able to enter the bottom RTD, but instead divert into ground. This does not however

prevent a current from flowing through the bottom RTD, as the same ground contact can

act as a source of spin down current to supply this diode. A similar situation is shown

in fig. 5.6b, with top diode set to spin-down and the bottom diode set to spin-up. For

completeness, fig. 5.6c+d show the two on states of the spin valve, when both RTDs are

set to transmit the same spin species.

A more detailed analysis is therefore necessary to assess the performance of the spin

valve. The essence of the model is contained in the equivalent Kirchhoff circuit of fig. 5.2b.

The device is described in a two channel model [Fert 68], as a spin-up and spin-down path

in parallel, each comprised of two RTDs in series.

A key element is the description of the middle contact, for which two important aspects

must be considered. First, the resistive value of the middle contact to ground is important.
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Figure 5.6: Four modes of spin-valve operation a+b) Top and bottom RTD are set to transmit

opposite spin species. Electrons injected by the top RTD are blocked by the lower RTD and

are thus diverted into ground. A current however still flows through the bottom RTD as the

same ground contact acts as a source of electrons of the opposite spin type. c+d) Both RTDs

transmit the same spin species.

If this resistance is too low, then the shorting effect described above would completely

decouple the two RTDs and prevent any spin valve functionality. If on the other hand this

resistance is too high, it would, since it is essentially in series to the RTDs, cause circuit

bistabilities [Fost 89] and destabilize device operation. This is shown in fig. 5.7, where a

load line analysis according to fig. 5.2a is plotted for various middle contact resistances.

Given the other relevant parameters in our circuit, the middle contact resistance of ≈130

kΩ in device A falls in the appropriate intermediate range. As evidenced by the small

jumps in fig. 5.5, occurring near the resonant features, the device resistance of ≈430 kΩ

in device B is already slightly too large. If not stated otherwise, subsequent analysis will

thus be on device A, while a summary of the results is given for device B at the end of

this section.

Second, while the thickness of the middle contact (50 nm) is below the expected spin-

flip length in doped ZnSe [Lehm 05], spin flip processes cannot be assumed to be negligibly

small. In order to take these spin flip processes into account, a scattering resistance (Rflip)

between the two spin channels is included in the two channel model.

For completeness, the contact resistances (Rc) at the top and bottom of the device

are also indicated in the circuit. However, since these have been optimized to minimize

their resistance, they are negligibly small (of order 1 kΩ) compared to the middle contact

resistance with which they are in series, so they can safely be neglected in the subsequent
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top RTD. reservoir.

modeling. Having established the correct equivalent circuit, the full model reduces to

simply solving Kirchhoff’s laws. All resistors in fig. 5.2b are linear, and each of the RTD

elements in the circuit is modeled as described in Ref. [Ruth 11]. While the non-linear

behavior of the RTDs prevents an analytical solution, this equivalent circuit can be solved

numerically, and doing so reproduces all features of the measurements.

This is evidenced in fig. 5.8, which compares the results from the model (dots) to the

experimental data (lines) for IT − VT curves at 6 T, showing the current flowing through

the top diode as a function of the bias voltage VB across this diode, and this for three

different values of the bias across the bottom diode. As suggested above, the primary

influence of the bottom diode on the IT − VT curves of the top diode results from the

existence of the middle contact. Current leaving the top diode has the choice of two

parallel paths to ground, either through the middle contact or the bottom contact. As

the resistance of the bottom diode changes, so does the effective resistance to ground.

This resistance to ground is the series resistance that sets the lever arm for converting

the voltage scale to an energy scale for the top diode. Changes to the resistance of the

bottom diode thus constitute an effective rescaling of the voltage axis in the I-V curves

of the top diode [Ertl 07], accounting for the shift seen in figure 5.8.

In order to distinguish between this pure resistive influence of the diodes on each other

and the actual spin valve mechanism, a more detailed examination of the data is needed.

The spin-valve effect is best seen in how the conductance GB = IB/VB of the bottom

diode reacts to the change in the voltage falling across the top diode. Figure 5.9 plots

the second derivative of GB with respect to the top voltage, d2(GB)/(dVT )2, and this as

a function of the voltage drop across each diode. Figures 5.9a and b are the experimental

data whereas figure 5.9c and d are the results of the model for two different values of the

spin scattering resistance. In all cases, the results are filtered with a cubic spline before
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top diode for various voltages across the bottom diode for samples A and B respectively.

the derivative is taken.

Plotted this way, the experimental data seen in fig. 5.9a shows a fairly complex pattern

of conductance resonances. In order to more clearly explain this pattern, the same data

is reproduced in fig. 5.9b, overlaid with a schematic diagram identifying the different

features. If the two diodes acted as non-interacting elements connected in series, each

with a spin split resonance, then we would obtain a simple square grid in the shape of

a number symbol (#), with the two horizontal lines representing the resonances of the

bottom diode and the two vertical lines those of the top diode. The rescaling of the lever

arm caused by the resistive influence of each diode on the other causes these lines to

bend, and also to kink near their intersection points, deforming the pattern as sketched in

fig. 5.9b. The structure is then further enriched by the additional resonances stemming

from the LO-phonon assisted replicas of the main resonance peaks [Gold 87a]. These are

highlighted as dashed lines in fig. 5.9b.

We now compare this experimental data to the plots resulting from the model. In fig.

5.9c, significant spin conservation is assumed (as modeled by using a spin flip resistance

of 230 kΩ), whereas fig 5.9d is for the case of full spin relaxation (Rflip=10 Ω 1). In both

cases, the model reproduces well the data for the primary peaks. A significant difference

is however observed when examining the behavior of the phonon replica peaks. In the

case of full spin relaxation (fig. 5.9d) the spin up phonon replica and the spin down

resonance partially overlap and become nearly indistinguishable from each other. This is

also the case for individual RTDs and results from the saturation spin splitting energy in

Zn0.92Mn0.08Se [Twar 84] and the LO-phonon energy [Land 99] being similar.

This situation is different for the spin conserving case (fig. 5.9c). Here, the lever arm

rescales independently for the spin up and spin down branch of the device. The resulting

different lever arm for the spin up LO-phonon peak and the spin down resonance separates

110Ω is chosen for the model instead of 0Ω since a too small resistor causes numerical instabilities
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The dashed lines are guides to the eye to depict the differences between the model with full

spin relaxation between the RTDs (c), the model with decoupled spin channels (d) and the

measurement (a+b).

them and both become clearly visible. Comparing the experimental data of fig. 5.9a to

fig. 5.9c and d, it is clear that the spin conserving case is the one which correctly describes

the experiment. To emphasize the correspondence of this model to the experiment, the

identical schematic grid used in fig 5.9b is reproduced in fig. 5.9c.

As an estimate of the level of spin conservation in the device, we note that the spin

flip current flowing through the 230 kΩ Rflip is an order of magnitude smaller than the

current exiting the device from the bottom RTD. Note also that assuming significantly
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Figure 5.10: a) Polarization of the current exiting the bottom RTD as a function of the voltage

across each RTD. The dashed lines indicate the positions of the resonances of this RTD. b)+c)

Line plots of the polarization following the dashed lines in a), normalized to the natural spin

filter efficiency of the diode (see text).

higher values of Rflip (or more perfect spin conservation) begins to modify the lever arms,

and causes a misfit between the main peaks in the model and the experiment.

Having established the correct degree of spin conservation required to describe the

experiment, it is now a simple matter to extract the spin valve efficiency from the

equivalent circuit. The polarization of the current exiting the second diode is given by

p = (I↑B − I
↓
B)/(I↑B + I↓B), and is plotted as a color scale in fig. 5.10a as a function of the

voltage across each diode. The dashed lines show the position of the two resonances of

the bottom diode. Due to the afore discussed crosstalk of the RTDs, these dashed lines

are a function of both voltages and need to be computed. A description thereof is given

in appendix A.2.

If full spin relaxation was taking place between the two RTDs, the device would reduce
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to a simple spin filter. The current flowing along each of these dashed lines would still

be spin polarized as a result of the spin filtering properties of the bottom diode, but its

polarization would be constant, and independent of the voltage on the top diode. To get

a measure of the spin valve efficiency, we plot in fig. 5.10b and c the spin polarization of

the current exiting the second diode as a function of the voltage on the first diode, while

following the dashed lines in fig. 5.10a. The data is normalized when 0 V is applied to

the top diode, since in this case, current comes from the unpolarized middle contact, and

this thus corresponds to the natural spin filtering of the bottom diode. Departures from

a value of 1 are then a direct measure of the pure spin valve effect of the device.

For each spin channel of the bottom diode, we see two regions of enhancement and

two of reduction of the spin polarization. The enhancement occurs when the top diode

is tuned such that either the main resonance or its phonon replica are transmitting a

spin parallel to the analyzer setting, whereas the regions of reduction come from the two

diodes being set to select opposite spins.

The efficiency of the spin valve appears much larger for the spin down than the spin

up channel. This results from the properties of the individual diode. As seen in fig 5.10a

(by looking at values near the left axis), the natural spin filtering efficiency of the bottom

diode is approximately 90% for spin up, but only 35% for spin down. This difference comes

from the second peak being superimposed with a larger background current and the LO

replica of the first peak. Similar values are true for the top diode. The big difference in

efficiency of the two channels is a reflection of the fact that in one case the analyzer is

being fed a 90% polarized signal whence in the other case it sees an incoming signal with

35% polarization.

To further test the generality of the model, we conduct the same analysis on device B,

adjusting the model for the different device geometry and middle contact resistance. Even

though the middle contact resistance in this device is at the upper end of the acceptable

range and causes the device to exhibit mild current instabilities, the model reproduces all

results on device B, as exemplified in fig. 5.8b. The analysis of the polarization of the

current exiting the bottom RTD, yields comparable spin valve efficiencies as for device A.

In summary, we have demonstrated a voltage controlled spin valve comprised of two

magnetic RTDs in series which act as an injector and analyzer pair. The behavior of

the compound device is fully described by implementing a preexisting model [Ruth 11]

describing the individual diodes into a basic Kirchhoff equivalent circuit, allowing for a

quantitative assessment of the spin valve efficiency.

5.3 Zero magnetic field operation

In chapter 3 we show that BMP-like states at the interface of the quantum well layer lead

to a zero field spin polarization in these devices. In the light of this and the findings of

the previous section, spin-valve operation without the need for an external magnetic field
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Figure 5.11: a) IB − VT − VB characteristics at zero magnetic field for sample A. On the left

hand side of the VB axis of fig. a) the IB − VB characteristic at VT=53 mV is shown. b)+c)

IB − VT characteristics at VB=140 mV and VB=180 mV along the dashed lines in fig. a) The

apparent jump in fig b) is due to the pronounced NDR regions of the top and bottom RTDs at

zero magnetic field coinciding at certain bias voltages VB and VT .

seems feasible. While the model indeed suggests a remanent zero field splitting of the

resonance-peaks for both diodes, we however show that proper spin-valve operation is not

possible at zero magnetic field. For the above stated reasons, we study the zero field data

of device A.

As done for the data at B=6 T, fig. 5.11a plots the current through the bottom

diode as a function of the voltages across the top and bottom RTD, however without an

applied external magnetic field. In contrast to the B=6 T data, the measurements done

at zero magnetic field show strong current discontinuities when both RTDs are biased in

the vicinity of their resonance-peaks. This is best seen on the cross-section of fig. 5.11a

along the dashed line labeled b). Figure 5.11b plots IB − VT along this dashed line. A

bistable circuit configuration is evidenced by the sudden jump of IB at approximately 160

mV. For completeness, we plot a second IB − VT characteristic along the second dashed

line labeled c). Figure 5.11c does not exhibit a current instability as it is only governed

by the resonance-peak of the top diode.

Without the external magnetic field, the splitting of the resonance-peaks of each diode

is reduced to its remanent value of 9 meV. On resonance, the overlap of the two resonances

increases and the total diode resistance, given by the applied bias voltage divided by the

superposition of the current through both spin-channels, is lowered. At B=0 T we find

peak currents of ≈300 nA, while at B=6 T the maximum peak current is ≈ 200 nA (at

comparable bias voltages). As the middle contact resistance however is only subjected to
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Figure 5.12: a) IT − VB characteristics for various VT . While the influence on the current b)

I-V characteristics at various VT settings. When both diodes are set to the bias region of their

resonances, instabilities occur in the circuit. This is much more pronounced at zero field since

the total on resonance resistance is much lower than for the spin split peaks at 6 T. The zero

field curve is thus the best way to determine the ratios between the resistance of the active RTD

region and all involved ohmic contacts.

a small change of its magnetoresistance, the circuit exhibits current instabilities at B=0

T due the changes in the diode resistances. While a reduction of the middle contact resis-

tance would overcome this problem, the spin-valve efficiency would however be reduced

at the same time, as discussed in the previous chapter.

Although device A exhibits current instabilities at zero magnetic field, the behavior

of the spin-valve is still fully described by our two-channel model assuming a spin-flip

resistance of 70 kΩ. Figures 5.12a+b show fits (dashed lines) to the zero magnetic field

IT − VB and IB − VB characteristics (full lines), respectively. The two channel model is

able to reproduce the apparent jumps in the IT − VB and IB − VB characteristics. The

purple line in fig. 5.12a shows a similar situation as in fig 5.11b, while the purple line fig.

5.12b is the equivalent of a vertical cross-section of the data shown in fig. 5.11a. That the

bistabilities seen in these purple lines are fully reproduced by the equivalent circuit of fig.

5.2b indicates that the latter are due to the resistive properties of the circuit [Fost 89],

and not an intrinsic property of the RTD [Gold 87b].

To further test the validity of the fits to the I-V characteristics in fig. 5.12, we again

plot in fig. 5.13a+b d2(GB)/(dVT )2 of the experimental and model data, respectively. As

for B=6 T, the model achieves good agreement to the experiment. Plotting the model for

Rflip=10 Ω does however yield very similar results (not shown). Note that the apparent

instabilities in fig. 5.12 are however only reproduced at the correct bias voltages for a

middle contact resistance of 70 kΩ.

As the model is able to account for even the current instabilities in the device, we again

extract the spin-valve efficiencies. Figure 5.14a plots the polarization p of the current

exiting the bottom RTD at zero magnetic field as a function of the voltage across each

diode. Compared to the B=6 T data, the spin-valve exhibits only a very narrow region
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Figure 5.13: second derivatives of data and model for zero magnetic field as a function of the

two diode biases. As for the B=6 T case, the spin-valve signal (a) is reproduced very well by

the two channel model (b).
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Figure 5.14: a) polarization at zero external magnetic field of the current exiting the bottom

RTD as a function of the voltage across each RTD. The dashed lines indicate the positions of

the resonances of this RTD. b)+c) line plots of the polarization following the dashed lines in a),

normalized to the natural spin filter efficiency of the diode (see text).

of spin up polarization at zero magnetic field, which is a combined effect of the resonance

positions and the peak amplitudes of the two spin-channels at B=0 T. Figures 5.8b and c

plot the spin-valve efficiencies along the dashed lines in fig. 5.8a. The apparent jumps in
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the spin up efficiency shows that spin-valve operation is also subjected to the bistabilities

present in the I-V characteristics and does not reproduce a continuous spin-valve signal

as shown in fig. 5.10b+c. More importantly, the spin-down efficiency shown in fig. 5.8c

exhibits a small bias range at approximately 170 mV where no proper spin-valve efficiency

can be defined.

In summary, the zero magnetic field operation of the spin-valve has not proven to offer

the same amount of control as in the B=6 T case. The evidence for spin conservation

between the two RTDs is less conclusive than for the B=6 T case. Nevertheless the

model shows good agreement to the additional B=0 T data and is even able to properly

reproduce the apparent current instabilities in the device, caused by magnetoresistance

effects of the two RTDs.



Chapter 6

Fermi-edge singularity in a

non-magnetic self-assembled

quantum dot resonant tunneling

diode

The resonant tunneling phenomena observed in quantum well RTDs is a result of the

reduced dimensionality of the quantum well layer. The resonant states form due to the

vertical confinement between the two tunnel barriers. As we have learned in the previ-

ous chapters, additional lateral confinement in these resonant tunneling devices leads to

enriched transport physics due to the BMP states at the quantum well interface.

The reduced dimensionality in resonant tunneling devices has led to the observation

of new fundamental transport properties, such as coulomb blockade in artificial atoms

[Taru 96] or many body correlation effects such as the Fermi edge singularity (FES)

[Geim 94]. Previous experimental studies of FES have been limited to III-V devices,

often at high magnetic fields. Here we report on the observation of a FES in an all-II-VI

semiconductor resonant tunneling diode (RTD) without an applied magnetic field.

6.1 The Fermi-edge Singularity

The response of a Fermi sea of electrons to a sudden appearance of a localized pertur-

bation manifests itself as a Fermi-edge singularity. This many body correlation effect is

known from X-ray absorption in metals [Maha 67, Nozi 69], where an enhancement of the

absorption is observed near the Fermi-edge. A similar enhancement was also predicted

for the I-V characteristics of tunneling through localized levels, as the photon itself does

not play a role in the solution of the X-ray problem [Matv 92]. The first experimental

observation of the latter was by Geim et al., where resonant tunneling through an 0D

impurity state embedded in a quantum well layer shows this enhancement if the impurity

75
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Figure 6.1: a) Illustration of the FES mechanism. Additional electrons (red) are able to tunnel

into the localized site from an initial state that would not contribute to the resonant tunneling

current without the many body correlation effect (blue). b) Schematic of the resulting resonant

tunneling current as a function of the applied bias voltage.

state is aligned with the Fermi energy of the emitter states [Geim 94].

The theoretical predictions for the FES in resonant tunneling transport [Matv 92] are

made for a localized level situated below the Fermi edge of both emitter and collector. At

first, transport is blocked since the collector states are fully occupied at zero temperature

and zero bias voltage. The applied bias voltage lowers the chemical potential of the

collector states and as soon as the localized state is aligned with the Fermi energy of the

collector, electrons tunnel from the localized state into the collector. The authors assume

that the state is always occupied and the bottleneck of the transport is thus tunneling

into the collector. The enhancement of this tunneling rate is due to the presence of the

collector Fermi sea, and decays with a power law as the distance between the localized

state and the Fermi-edge is increased via the applied bias voltage.

In the experimental observations of the FES enhancement in resonant tunneling through

impurity states [Geim 94] and self-assembled III-V [Bene 98, Hapk 00, Frah 06, Mair 07,

Vdov 07] and II-VI [Ruth 08b] quantum dots, the situation is somewhat different.

Let us assume an RTD with a single self-assembled quantum dot sandwiched between

two tunnel barriers. Furthermore, the eigenenergy of the dot state is just above the Fermi

energy of the emitter electrons, and no resonant tunneling process through the quantum

dot state is possible. For simplicity, we omit the contribution of electrons, which tunnel

through both barriers off resonance. An increase of the bias voltage across the double
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barriers lowers the quantum dot state with respect to the conduction band of the emitter.

Aligning the quantum dot state with the emitter Fermi sea creates a resonant transport

channel that allows electrons to traverse the double barrier system.

Since the collector Fermi sea is lowered even further than the quantum dot state, its

presence can be neglected, especially as soon as the bias voltage exceeds the bandwidth of

the emitter states. The problem thus reduces to the emitter Fermi sea and the dot state

sandwiched between the double barriers.

The charging energy of a self-assembled quantum dots is very likely much greater than

the bandwidth of the emitter electrons. Thus only one additional electron can occupy the

dot at the same time during the resonant tunneling process. Tunneling one electron at a

time, there are two possible configurations for the system. In configuration A, an electron

is occupying the dot and no impurity of positive charge is present in the system. As

soon as the electron tunnels into the collector, it leaves behind an unoccupied positively

charged state that acts as a Coulomb potential (configuration B). As current is flowing

through the self-assembled dot state, the electrons in the emitter are thus exposed to a

fluctuating charge. While the Coulomb interaction between the tunneling electron and

the hole left behind in the dot will enhance the tunneling current, the shakeup of the

Fermi sea due to the fast scatterer switching (configurations A ↔ B) suppresses this

enhancement. Figure 6.1a shows a schematic of these processes, while fig. 6.1b depicts an

idealized I-V characteristic for temperatures close to T=0 K. In addition to the step-like

dependence for conventional 2D-0D resonant tunneling shown as the blue line of fig. 6.1b,

the many-body enhancement (red line) results in a very sharp additional feature if the

quantum dot state is aligned with the Fermi energy in the emitter.

As the FES is one of few simplest many-body effects with an exact solution, it provides

a promising starting point for the research on nonequilibrium physics in many body sys-

tems [Brau 03, Aban 05]. Here we show that the I-V characteristics of an RTD containing

self-assembled CdSe quantum dots still reflects the characteristics of a conventional ther-

mally broadened FES problem at fairly large bias voltages. As discussed in [Frah 06],

non-equilibrium effects can however be described by an effective temperature, broadening

the FES.

6.2 Measurement and analysis

Our device is a molecular beam epitaxy (MBE) grown all-II-VI semiconductor RTD with

an active region consisting of a Zn0.7Be0.3Se tunnel barrier with embedded self assembled

CdSe quantum dots. Because of the lattice mismatch between the CdSe and the barrier

material, the growth of 1.3 monolayers of CdSe into the middle of the barrier induces

a strain build up. Relaxation of this strain results in the formation of quantum dots.

Emitter and collector are gradient n-type doped, with an undoped spacer layer next to

the barriers and a high doping concentration (1019 cm−3) at the contact layer to allow the
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Figure 6.2: Device layout and layer structure. Self assembled quantum dots which are em-

bedded in the (Zn,Be)Se tunnel barrier provide the resonant state for the tunneling transport

mechanism.

formation of ohmic contacts at the metal-semiconductor interface. The layer structure

and the device layout are shown in fig. 6.2. In order to allow for transport measurements

vertically through the layer stack, standard optical lithography techniques are used to

pattern 10 x 10 µm2 square pillars, and contacts are applied to the bottom and top ZnSe

layers. The contact on top of the RTD pillar is deposited immediately after growth by

transferring the sample to a ultra-high-vacuum metallization chamber without breaking

the vacuum. It has ohmic behavior and a contact resistance on the order of 10−3 Ωcm2

as determined by stripline measurements on calibration samples. Bottom contacts must

be deposited ex-situ after processing the pillar and thus have higher resistivity which is

compensated in our device by the larger area (5002 µm2) of these contacts. Although

for the size of our pillar one expects some ten thousand self assembled quantum dots in

each device, transport through self assembled quantum dot RTDs at lower bias voltages

is usually dominated by only a few dots that have resonant levels at relatively low ener-

gies and/or at weak spots in the barriers [Hill 01, Vdov 00, Pata 02, Itsk 96, Hapk 00].

Therefore a resonant feature at low bias is characteristic of resonant tunneling from the

injector through a single self assembled quantum dot into the collector.

Figure 6.3 shows the I(VD) characteristic of our sample at 4.2 K in zero magnetic

field and under forward bias (the top of the pillar being defined as ground). At bias

voltages above 300 mV, the current shows many resonance-peaks superimposed on the

normal background. These originate from the ensemble of quantum dots in the structure.

The inset shows the first resonant feature of our device at 250 mV which is separated by

approximately 60 mV from the next visible resonance. The shape of this feature is clearly

suggestive of FES behavior [Matv 92, Geim 94, Frah 06]. The FES causes an additional

flow of electrons on resonance with the emitter Fermi level. This enhancement decays as

a power law with increasing bias voltage [Matv 92]. At 1.6 K, it has a maximum value of
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Figure 6.3: Forward bias I(VD) characteristic at 4.2 K and zero magnetic field. The inset shows

a magnification of the first peak, at 250 mV, which has the shape of a Fermi edge singularity

enhanced resonance.

seven times the current flowing at higher biases (say 30 mV after the resonance onset),

where many particle effects are negligible.

Figure 6.4(a) illustrates the temperature dependence of the I-V characteristics. The

resonant feature survives to high temperature with the current enhancement decreasing

by only a factor of 4.7 from 2 to 45 K. As observed before in III-V devices [Vdov 07],

the maximum current of the FES enhanced resonance decays with increased temperature

according to a power law. We fit the results using the temperature dependent modeling

developed by Frahm et al. for a FES enhanced resonant tunneling current through a self
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Figure 6.4: (a) I(VD) characteristics for various temperatures up to 45 K and at zero magnetic

field. Symbols are the experimental data. The colored line for each data set represents a fit

to equation 6.1 for each temperature. (b) Rescaling both axes collapses the data sets for all

temperatures on a single scaling curve. The solid line is a fit to the rescaled equation 6.1 which

is now independent of the effective temperature T ∗.
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resonance features are observed.

0.25 0.26 0.27 0.28 0.29

25

50

75

100

125

175

 16 T
 14 T
 12 T
 10 T
 8 T
 6 T
 4 T
 2 T
 0 T

VD[V]

150

I[p
A

]

Figure 6.6: I(VD) characteristics for various

magnetic fields at 25 mK. An additional fine

structure on the classical Fermi edge singular-

ity can be resolved (The curves are offset by 3

mV and 11 pA for clarity).

assembled InAs quantum dot [Frah 06]. The tunneling current is given by

I(VD, T
∗) ∝ 1

π
Im

[(
iD

πkBT ∗

)γ
B

(
1− γ

2
− iα(VD − V0)e

2πkBT ∗
, γ

)]
(6.1)

with a lever arm α = 0.4, the characteristic cutoff parameter D of the order of the

bandwidth and the edge-exponent γ. B represents the Beta-function. An effective Tem-

perature kBT
∗ =

√
(kT )2 + Γ2

i is used to account for the effect of the intrinsic line width

Γi of the participating quantum dot state. As shown experimentally in fig. 6.4(b), and

consistent with equation (6.1), the I(VD) curves taken at various temperatures collapse

to a common curve after rescaling voltage and current axes with VD → e(VD − V0)/kBT
∗

and I → IT ∗γ, where the Fermi-edge exponent γ = 0.54 and the intrinsic bandwidth

Γi = 0.25 meV are used as fitting parameters. The model agrees with experiment, with

only a slight deviation at higher bias voltages, which probably stems from a small thermal

drift during measurement.

The current of a FES enhanced tunneling process is influenced by magnetic field

[Frah 06, Vdov 07, Hapk 00]. Figure 6.5 shows transport measurements at 25 mK in

various magnetic fields perpendicular to the layer stack, which clearly shows Landau fan

like structure.

In general, this structure could result from electronic states either in the emitter or in

the dot. If it was related to the quantum dot, well known Darwin-Fock behavior would

lead to an increase of the energy of the resonant Landau levels with increasing magnetic

field, which is in stark contrast to the observations of fig. 6.5. Thus we conclude that the
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Figure 6.7: The additional Landau-like Structure in a magnetic field perpendicular to the layer

stack is shown in a) and disappears completely for an in-plane magnetic field configuration (b).

magnetic field dependence of all features is dominated by the emitter states, which gain

energy with magnetic field and thus reduce the peak position of each feature.

The black lines in fig. 6.5 represent an emitter Landau fan, calculated assuming a

bulk ZnSe effective mass m ≈ 0.18me and the same lever arm determined by the previous

fit at zero magnetic field. Many important features are fitted by the Landau fan, however

some additional field dependent features that are present cannot be explained by using

only this one Landau fan or by including the Darwin-Fock like behavior of the quantum

dot level.

Resonant tunneling transport showing magnetic properties of the emitter layer, where

all main features could be explained by one Landau fan, has been observed in a III-

V device with self assembled InAs quantum dots and a high quality two dimensional

electron gas (2DEG) as emitter [Main 98]. We suggest that in our device we measure

a 2D-like disordered emitter which results in various additional resonance signals in the

energy-magnetic field plane due to a more complicated density of state structure in the

emitter. These additional features cannot be attributed to a second dot or an additional

dot level. In that case, one would expect two resonant features for each emitter Landau

level, separated by an almost constant voltage offset. It is however not possible to match

the data with two such Landau fans. Moreover a second dot should show a clearly visible

feature at zero magnetic field, but none is observed (see fig. 6.3). Figure 6.7 shows

direct evidence of the 2D characteristics of the emitter. While in fig. 6.7a the Landau

structure is visible for the perpendicular magnetic field configuration, it vanishes for the

measurements in in-plane magnetic field shown in fig. 6.7b.

While the model of equation (6.1) correctly describes the shape of the Fermi edge

singularity at temperatures above 1 K, measurements at 25 mK (fig. 6.5) reveal additional

fine structure which is not explained within this model. To emphasize the nature of this

fine structure, I(VD) characteristics for some of the measured magnetic fields from fig.

6.5 are plotted in fig. 6.6. This fine structure may result from properties of the emitter.

A generalized approach to the FES problem shows that backscattering in the contacts
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may have an effect on the FES exponent [Aban 04]. In our case, back scattering within

the disordered emitter is a function of the applied bias voltage and produces additional

structure on the FES enhanced tunneling current. This could result from characteristics

of the local geometry near the dot or local density fluctuations in the disordered-metal-like

emitter [Schm 01].

In summary, we have observed a Fermi edge singularity in tunneling from an intrin-

sic ZnSe injector through a self assembled CdSe quantum dot state. Above 1 K and at

zero magnetic field, the behavior of the Fermi edge enhancement is consistent with pre-

vious observations in III-V devices, and consistent with conventional theory. At lower

temperatures or in a magnetic field, additional enhancement effects are observed, and

are suggestive of backscattering associated with local effects near the dot. This detailed

characterization of Fermi edge singularity in the II-VI material system thus provides sup-

plementary data against which modern theories of Fermi edge enhanced transport can be

tested.



Chapter 7

Simultaneous strong coupling of a

self-assembled quantum dot to a

Fermionic and a Bosonic bath

As shown in chapter 6, the presence of a zero dimensional state can lead to a strong

enhancement of the resonant tunneling current when the quantum dot state is aligned

with the Fermi energy of the emitter electrons. While this enhancement stems from the

coupling of the resonant state to the Fermionic bath in the emitter, a second kind of many

particle effect was previously demonstrated for a quantum dot state coupled to a dilute

magnetic spin system [Goul 06]. The observed remanent zero field splitting in the I-V

characteristics stems from the formation of BMP-like states. These two manifestations

of many particle effects have previously only been demonstrated independently. Here we

show an optimized structure yielding both enhancements simultaneously in the transport

measurements through a single magnetic quantum dot state.

7.1 Quantum dot coupled to its Mn doped environ-

ment

To create a magnetic environment for the self-assembled CdSe quantum dots, magnetic

Mn dopants are added to the (Zn,Be)Se tunnel barriers. As these quantum dots form due

to the lattice mismatch between the CdSe monolayer and the barrier material, the shape,

the size as well as the overall distribution of the self assembled quantum dots are likely to

differ in systems with magnetic tunnel barriers from those lacking the magnetic dopants.

Figure 7.1 illustrates a crosscut of the double barrier region of such a magnetic self-

assembled quantum dot RTD, showing only one CdSe quantum dot for simplicity. The

shaded area depicts the overlap of the quantum dot wave function with the Mn atoms in

its vicinity. Despite the lack of long range magnetic order [Twar 84] in dilute (Zn,Mn)Se,

BMPs form in the vicinity of a single electron/hole state [Diet 82].

83
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local magnetic moment
Beff ≈ 200 mT

Mn-ion, J=5/2

direct coupling: antiferromagnetic

diluted Mn atoms: paramagnetism

bound magnetic polaron: magnetic order

Figure 7.1: Schematic of the microscopic magnetic ordering in the vicinity of a self-assembled

CdSe quantum dot. While the bulk (Zn,Mn)Se material is paramagnetic, due to the presence of

the zero dimensional state a local magnetic order forms, lifting the degeneracy of the quantum

dot state without the need for an external magnetic field.

These systems are known to be governed by two temperature regimes. For low tem-

peratures, where kBT is smaller than the s-d exchange energy Es−d of the BMP, it is

favorable for the BMP state to align the Mn spins that overlap with the quantum dot

wave function along the spin of the quantum dot state. A ferromagnetic microscopic order

thus forms in the vicinity of the quantum dot, lifting the degeneracy of the quantum dot

state. In transport, this splitting is observed as two distinct resonant tunneling peaks in

the I-V characteristic of such a device. As kBT exceeds Es−d, the local magnetization

is reduced but remains finite, despite of the lack of correlation between the Mn spins.

This stems from the reduced number of Mn spins involved in this process, as the ther-

modynamic fluctuation of the magnetization will also yield a finite spin splitting for a

sufficiently small number of spins.

The effective zero magnetic field splitting which is observed in our quantum dot sys-

tems is thus a combined effect of the s-d coupling of the electron wave function on the

quantum dot to the d orbital spins of the Mn atoms and the thermodynamic fluctuations

of the Mn spin cloud in the vicinity of the quantum dot. For a more detailed discussion

of the BMP see references [Diet 82, Diet 83, Diet 86, Isaa 88, Herb 98].

7.2 Quantum dot coupled to both baths

A single spin state coupled to both a fermionic bath and a bosonic bath is currently under

considerable interest since these systems can be used to access a quantum critical point

[Kirc 05, Kirc 08a, Kirc 08b]. Here we show an experimental realization of such a system.

Figure 7.2a shows the I-V characteristic of a DMS SAD RTD with one monolayer of

CdSe sandwiched between two Zn0.66,Be0.3,Mn0.04Se barriers of 5.6 nm thickness at T=20

mK and B = 0 T. Only at negative bias voltages, the I-V characteristic is suggestive of

an FES enhancement of the resonances, while for the positive bias voltages both features

merely show a step in the I-V characteristics. That this enhancement only occurs at

negative bias voltage is due to the asymmetry of the double barrier region. As is clear
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Figure 7.2: a) I-V characteristics at ≈20 mK and B = 0 T of a SAD RTD with magnetic

impurities incorporated in the tunneling barriers. Both features show a remanent zero field

splitting of the spin-up and down peak. b)+c) dI/dV characteristics for features A and B,

respectively. Both plots emphasize the apparent additional structure on the resonant tunneling

current traversing the quantum dots.

from fig. 7.2a, a different bias voltage is required to bring feature A into resonance than

for feature A’. In section 2.4 we have discussed the lever arms of an RTD and the influence

of contact resistances. In the SAD RTDs with an on-peak resistance in the order of MΩ

to GΩ, contact resistances are approximately four to five orders of magnitude lower and

only result in small corrections to the lever arms. In the following we thus assume that

1

l−
+

1

l+
≈ α− + α+ = 1 (7.1)

where α− and α− are (inverted) lever arms descriptive of the upper and lower tunnel
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Figure 7.3: I-V characteristic at T=20 mK and B=0 T from the model (a) and the experimental

data (c). The various contributions for spin-up (down) transport channels are shown as red (blue)

lines below the modeled curve. The apparent fine structure is best seen in the first derivative.

Features arising from the various channels and are labeled accordingly from low to high bias

voltages for both the experimental (b) and model (d) data.

barrier, respectively. The energetic distance E0 of each resonant state to the Fermi sea at

V = 0 V reads E0 = α−V− = α+V+, where V− and V+ are the negative and positive bias

voltages required to align a resonant state with the emitter Fermi energy. These lever

arms thus relate via

α+

α−
=
V−
V+

(7.2)

and from equations (7.1) and (7.2) we find α−=0.68. The enhancement of the tunneling

rate is thus only seen for tunneling into the quantum dot state through the thicker tunnel

barrier. A similar experiment on an RTD containing InAs quantum dots also only shows

the FES enhancement while loading the dot through the thicker tunnel barrier, while

for the opposite tunneling direction, only a current step without additional enhancement

occurs [Vdov 07].

A magnification of the two apparent pairs of resonance-peaks at -45 mV (feature A)

and -75 mV (feature B) is shown in 7.2b. Both feature A and B show a remanent zero field

splitting of the spin-up and spin-down resonances of 5.6 mV and 9.2 mV, respectively.

The apparent fine structure on both feature A and B suggests that the resonance-peak is
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Figure 7.4: Bias voltage dependence of the Fermi-edge exponents for spin-up (red) and spin-

down (blue) electrons as used in the model. The dashed gray lines depict the curve for T→0

K, where each vertical steps is the amplitude of the phase loss dγ per additional conducting

transport channel. The intrinsic line width Γi is used as the temperature scale for the broadening

of the red and blue curve.

comprised of more than one tunneling contribution. Plotting dI/dV in fig. 7.2b+c gives

further support to this assumption, as it clearly reveals the fine structure on the higher

bias voltage tails of the resonance-peaks.

This fine structure however is of different character than the one seen for the FES in

the non-magnetic quantum dot (see fig. 6.6) and was also never seen in such a magnetic

quantum dot RTD without an apparent FES enhancement.

Furthermore, this fine structure is clearly observed at zero magnetic field and cannot

be caused by Landau level quantization effects. We thus argue that it originates from the

simultaneous observation of both many body correlation effects (FES and BMP) on the

same quantum dot. Figure 7.3c shows a further magnification of feature A at B=0 T and

T=20 mK while 7.3d again plots its derivative. Even though it exhibits a complex fine

structure, it still has some resemblance with the I-V characteristics of an FES enhanced

resonance-peak. The sharp onset as well as the characteristic high bias voltage tail are

still clearly observed, and the overall shape suggests that feature A is comprised of a

superposition of several FES-like contributions. In fig. 7.3a, we present a modeled I-

V characteristic employing the aforementioned observations. The red (blue) curves are

contributions from various FES enhanced spin-up (spin-down) transport channels. The

I-V characteristics of each transport channel are given by equation (6.1) with the above

determined lever arm α− and an intrinsic quantum dot width of Γi=0.4 meV. Each of the

additional resonance-peaks occurring at increased bias voltages has a reduced amplitude,

stemming from a reduction of the Fermi-edge exponent γ.

The dI/dV plot of the experimental data in fig. 7.3d suggests a total of ten transport

channels. We thus assume four additional excited states on top of the spin-up and spin-

down states. The apparent fine structure is labeled from 1-10 in order to compare to the

dI/dV plot of the modeled data in fig. 7.3b.
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For the FES previously discussed in chapter 6 only one transport channel is present

and a constant γ is assumed for the complete bias voltage range. Here we however observe

several transport channels, and the assumptions made for equation (6.1) break down. As

soon as the spectral density of the quantum dot state shows several maxima instead of

a single sharp spectral line, a distinct electron energy is no longer singled out by the

resonant tunneling process. For the first resonance-peak at approximately 42 mV, we

assume a Fermi-edge exponent of γ↑0=0.76. As the bias voltage is increased, the next

transport channel is aligned with the Fermi energy EF of the emitter, resulting in a

second FES enhancement. However the resonant level causing the first FES enhancement

is still aligned with the emitter states, but at an energy below EF . The dot can only

accommodate one additional electron due to a charging energy much bigger than the

sub meV level spacing of these transport channels. Electrons thus tunnel one at a time

through either one of the states currently aligned with the emitter Fermi sea. One can

think of the tunneling process through the lower state as an additional perturbation to the

FES enhancement of the state currently aligned with the Fermi-edge, effectively reducing

the enhancement of its tunneling rate. We simply assume that each additional channel

will result in a reduction dγ=0.023 of the Fermi-edge exponent γ. The resulting voltage

dependence of γ thus reflects the spectrum of the quantum dot and is plotted in fig. 7.4

for the two spin types as the dashed gray lines. This however lacks a description for the

broadening of the quantum dot spectrum due to the intrinsic line width Γi of each channel.

Assuming a constant line width for all transport channels, the bias voltage dependence

of γ reads

γ(V ) = γ0 −
N∑
Ei

dγ

1 + exp
[
−V−Ei/α

Γi

] (7.3)

Equation (7.3) is plotted in fig. 7.4 for both spin-up (red curve) and spin-down (blue

curve) Fermi-edge exponents, with γ↓0=0.71.

To further test our model, we investigate the temperature dependence of feature A.

Figure 7.5a shows transport measurements on feature A at temperatures from 8 mK

to 20 K. These measurements are suggestive of a characteristic threshold temperature

in this system. Figure 7.5b shows a magnification of the resonance-peak maxima for

temperatures up to ≈770 mK. The impact of an increase in temperature below 770 mK is

small and there are only minor changes to the amplitudes of the individual features of the

fine structure. The onset of the first resonance-peak in fig. 7.5a is nevertheless slightly

broadened, indicating an increase in the electron temperature of the emitter Fermi sea.

For temperatures from 1.3 K to 20 K (fig. 7.5c), temperature however massively broadens

the I-V characteristics.

Figure 7.5d shows modeled I-V characteristics using the same parameters as in fig.

7.3a, but for the various temperatures of the experimental data in fig. 7.5a. As is clear

from fig. 7.5e+f, the model data also shows no change for the low temperature range, as
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Figure 7.5: a) I-V characteristics of feature A for temperatures from 8 mK to 20 K b) mag-

nification of the I-V characteristics at the peak maxima for temperatures up to 770 mK c) as

in b), but for temperatures from 1.3 K to 20 K d)-f) The same plots as in a)-c) but from the

model presented in fig. 7.3a, evaluated for the same temperatures as in the experimental data.

the intrinsic line width Γi > kBT sets a lower limit for the finesse of the features. As soon

as kBT however is of the same order as Γi, the I-V characteristics are further broadened

by an increase in temperature.

For a single transport channel as in chapter 6, the maximum of the resonance-peak

shifts to higher bias voltages for elevated temperatures. In the apparent transition between

the two temperature ranges of fig. 7.5a, both resonance-peak maxima however shift to
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a) b)

Figure 7.6: I-V-B characteristics at 20 mK of a dilute magnetic quantum dot for magnetic

fields from 0 to 16 T applied vertical to the layer stack. a) feature A b) feature B

lower bias voltages. As all transport channels have different Fermi-edge exponents they

exhibit different changes to their amplitudes due to an increase in temperature. While

the resulting superposition of these transport channels accounts for an overall shift to

lower negative bias voltages as shown in fig. 7.5d-f, the shift of the sharp feature at ≈-42

mV and the sudden drop in the amplitude thereof between the two temperature ranges

is not yet reproduced by our model. In our model we assume a constant splitting of the

spin-up and spin-down channels. The remaining discrepancy between our model and the

experimental data thus probably stems from not including the temperature dependence

of the BMP state [Herb 98].

Due to the giant Zeeman effect, the influence of the external magnetic field on the

spectrum of the magnetic quantum dot should be much more pronounced than any influ-

ence on the emitter states. While the FES enhancement is known to show strong magnetic

field dependence as well [Vdov 07], it should not result in additional structure in I-V-B

measurements, merely in changes to the amplitude of a FES enhanced transport channel.

As these contributions are highly asymmetric, their superposition will however change its

appearance if their feedback to the magnetic field differs from each other.

Figures 7.6a+b show transport measurements at 20 mK in magnetic fields perpen-

dicular to the layer stack from 0 to 16 T for features A and B, respectively. The afore

discussed fine structure is clearly observed on both feature A and B while sweeping the

external magnetic field, as both the level splitting and the respective amplitude of the

particular contributions to the resonance-peaks change.

Feature A shows a similar magnetic field dependence as the previously observed re-

manent zero field splitting in II-VI DMS SAD RTDs [Goul 06] modulo the apparent fine

structure. The apparent sawtooth pattern on the fine structure probably stems from a
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Fock-Darwin like spectrum of the quantum dot system in the perpendicular external mag-

netic field [Fock 28, Taru 96]. It should be noted that in our DMS quantum dot system,

the contribution of the giant Zeeman splitting to the eigenenergy of the resonant tunneling

state needs to be considered, resulting in a quite different pattern than for a conventional

Fock-Darwin spectrum. A broad additional peak emerges between the spin-up and spin-

down resonance-peaks at magnetic fields above B= 10T and continuously grows while

increasing the perpendicular magnetic field to B= 16 T. The origin of the latter remains

however unclear. Effects like Kondo screening suggest themselves, where an additional

channel forms between two quantum dot states due to spin screening effects.

The I-V-B measurements of feature B are remarkably different than those of feature

A. As discussed above, feature B exhibits a much bigger remanent zero field splitting.

In the BMP picture, this splitting of the spin-up and spin-down state depends amongst

other things on the number of Mn atoms within the extend of the quantum dot wave

function. It thus depends on the Mn distribution in the vicinity of the dot and the shape

of its wave function, both of which are likely different for features A and B if we assign

each of them to a different quantum dot.

For a better comparison of the magnetic field dependence of features A and B and

its fine structure in particular, fig. 7.7 plots dI/dV as a function of the applied bias

voltage and the external magnetic field. Figures 7.7a+b plot dI/dV-V-B in magnetic fields

perpendicular to the layer stack (parallel to the current) for features A and B, respectively.

As we have seen for the non magnetic quantum dot in chapter 6, the perpendicular

magnetic field configuration can result in a fan like structure due to emitter Landau

levels. A perpendicular field also causes the aforemention Fock-Darwin energy spectrum

on a disk-shaped quantum dot, to which we attribute the sawtooth pattern observed in

fig. 7.7a.

In order to discriminate these effects from the ones caused by the magnetic vicinity

of the dot, we plot dI/dV-V-B in an in-plane configuration in fig. 7.7c+d for features A

and B, respectively. Both the sawtooth pattern and the additional tilt to the Brillouin

like behavior are no longer observed for a magnetic field in the plane of the layer stack.

The additional fine structure is however still clearly observed on both features.

The most striking difference between figs 7.6a and b is the suppression of the spin-

down resonance for external magnetic fields between 3 and 14 T. This suppression of the

spin-down transport channel of feature B is however not observed in parallel magnetic

field configuration (fig. 7.6d), suggesting that it was also caused by the crossing of Fock-

Darwin states with different angular momentum quantum numbers. For example in an

perpendicular magnetic field, increasing the magnetic field above B=3 T lowers a p-

type state below the afore occupied s-type state, thus changing the wave function of

the resonant state. The overlap between the quantum dot wave function an the emitter

electrons is massively reduced and the resonance is damped. For magnetic fields above 14

T, the situation is however reversed and tunneling again occurs through an s-type state

with a comparable amplitude to the B=3 T case.
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Figure 7.7: a)+b) dI/dV-V-B characteristic at T=20 mK for an external magnetic field parallel

to the current (perpendicular to the layer stack) for features A and B,respectively. c)+d) The

same measurements as in a)+b), but in an in-plane magnetic field.

Following the magnetic field dependence of the main feature in fig. 7.7d at higher bias

voltages, its onset bias voltage is highly suggestive of an additional contribution to the

local magnetization by the breakup of antiferromagnetic Mn pairs within the BMP state

[Shap 84]. All four measurements in fig. 7.6 show a more complex structure above these

fields. These changes to the magnetic environment are thus likely important for a proper

description of these systems at high magnetic fields and future theories can be tested on

this additional effect. The breakup of these pairs will effectively increase the number of

Mn spins contributing to the BMP state. A proper theoretical description should thus
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a) b)

Figure 7.8: a) I-V-B measurement for a DMS SAD RTD, showing parallel transport through

distinct resonant states. The magnetic field dependence of the I-V characteristic is needed to

determine wether the resonance-peaks originate from a single state or are superimposed features

stemming from different quantum dots. b) A direct comparison of a single feature (≈28 mV) to

a superposition of two features (≈45 mV).

be able to explain some of the differences between the measurements at intermediate and

high magnetic fields, as this transition is likely to be explained by changing the number

of Mn spins in the model.

The additional fine structure, which is present at all magnetic fields in the perpendic-

ular and parallel field configurations, is most likely linked to the coupling of the quantum

dot to the Mn spins in its vicinity. A detailed model of the BMP state shows an energy

spectrum with a level spacing similar to the here observed fine structure [Herb 98].

It is likely that feature A and B differ due to a distinct amount of electrons occupying

each quantum dot. Regarding the spacing of approximately 20 meV between feature A

and B, the two features could very well originate from the same dot. Adding another

electron to the N electron system of feature A will have a different resonant tunneling

state with a different extend of its wave function. The BMP formed around this N+1

quantum dot state therefore is likely to have different properties than the one seen in

feature A, even though the Mn vicinity is the same.

7.3 A comparison of various magnetic dots

Figure 7.8 shows I-V-B measurements on a different DMS SAD RTD, however with the

same nominal layer stack as for the device presented in the previous section. Growth

conditions of the CdSe quantum dot layer were slightly altered to achieve a different

kind of dot distribution. Here we give an overview on the variety of resonant features
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obtained from a single DMS SAD RTD. In fig. 7.8a the pair of resonance-peaks at ≈70

mV looks promising at first, due to the apparent zero field splitting and the fine structure

on the resonance-peak occurring at lower bias voltages. The resonance-peak occurring at

higher bias voltages however overlaps with a different resonance. This overlap increases

as both signals move in opposite directions while sweeping the external magnetic field.

The study of a single strongly correlated system is already challenging, and the additional

superposition of a second unrelated, equally complex signal renders these efforts essentially

hopeless.

The various superimposed resonances above 75 mV in fig. 7.8a clearly stem from

tunneling through various quantum dots. While one cannot clearly state that for a single

I-V characteristic at any given field, the complete I-V-B measurement usually provides

enough information to determine whether a feature is descriptive of tunneling through a

single quantum dot or not. Figure 7.8b for example provides a perfect comparison of a

feature descriptive of tunneling through a single quantum dot (≈ 28 mV) to a feature

which is most likely comprised of tunneling through two magnetic quantum dots and can

be explained by the superposition of two Brillouin-like magnetic field dependencies.

In summary, we have investigated transport measurements on quantum dot systems

exhibiting two kinds of many-body correlation effects simultaneously. Due to the sharp

features that arise from the FES enhancement when the quantum dot is aligned with the

emitter Fermi-edge, we observe fine-structure which is suggestive of a BMP excitation

spectrum. The spectrum of the magnetic dot in a perpendicular magnetic field is further-

more suggestive of Fock-Darwin like behavior, which has a strong impact on the coupling

to the emitter reservoir. A preliminary model is able to reproduce the overall shape of the

I-V characteristic at B=0 T and also yields quantitative agreement on the temperature

dependence thereof. The data presented can be used to test future models, including an

exact description of the multi channel FES due to the presence of the BMP state. Once

such a theory is established, it can be used to test these systems for quantum critical

behavior, yielding the necessary conditions for the experimental realization thereof.



Chapter 8

Resonant tunneling through a dilute

magnetic self-assembled quantum

dot near zero bias voltage

In the previous chapters we showed for the quantum well RTDs that the applied bias

voltage needed to align the quantum well layer with the emitter Fermi sea effects the

transport characteristics. Conventional theories for the afore discussed many body effects

often assume quasi-equilibrium, where influences like the applied bias voltages are treated

as small perturbations to the system.

In lateral quantum dots defined by gating a two dimensional GaAs/(Al,Ga)As electron

gas [McEu 91], one has control over the energetic distance of the quantum dot states with

respect to the emitter by means of a plunger gate [Kouw 21]. Also the gating of vertical

RTDs containing self assembled InAs dots has been demonstrated successfully in the III-V

material system, achieving a similar level of control [Aust 99]. Gating of vertical RTD

structures in the ZnSe material system however is technologically challenging and is not

discussed in this thesis, but the realization of the latter is currently under development

by my colleague Gabriel Dengel.

As the gating effect on the resonant levels is limited, devices with resonant levels close

to the emitter Fermi level are desirable. Assuming a proper gate efficiency, only small

gate voltages are required to align the resonant states with the emitter. Using a small

fixed bias voltage to drive the resonant current, such systems could for example be used

to test theories on the nonequilibrium FES problem [Brau 03, Aban 05]. As discussed in

chapter 6, coupling to the collector Fermi sea is challenging in our devices without lateral

gates, as while we use the applied bias voltage to align the resonant quantum dot states

with the emitter, the distance between the confined states and the collector Fermi sea is

increased. Using a gate to lower the resonant level and a small fixed applied bias voltage,

one could however sweep the resonant state through both Fermi energies.

Here we present a DMS SAD RTD where the lowest resonant level is located only ≈1

95
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Figure 8.1: a) I-V characteristic at zero magnetic field. The first resonance for negative bias

voltages is enhanced by a FES, while the same resonance shows no such effect for positive bias

voltages. b) In order to compare the two ranges, the negative bias I-V characteristic (purple) is

plotted on the axis of the positive bias range I-V characteristic (blue). The positive bias axis is

rescaled by a factor of 1/1.3 to account for the different lever arms of the two bias ranges (see

text).

meV above the emitter Fermi level under flat band conditions, reducing the required bias

voltage for resonant transport and thus the resulting distance to the collector Fermi sea.

Figure 8.1 shows the I-V characteristic at 1.7 K for positive and negative bias voltages.

The apparent small remanent zero field splitting of approximately 1.5 mV of the peak at

-2 mV is again the result of magnetic impurities in the vicinity of the quantum dot state

[Goul 06].

At zero magnetic field, three resonances are observed for both negative (A, B and

C) and positive (A’,B’ and C’) bias voltages. Only feature A is however suggestive of

an FES. That this enhancement only presents at negative bias voltage is due to the

asymmetry of the active region and the resulting distinct interaction of the quantum dot

state with the adjacent Fermi seas. As is clear from fig. 8.1, less bias voltage is required

for feature A than for feature A’. Using equations (7.1) and (7.2) we determine lever arms

of α−=0.57 and α+=0.43 for negative and positive bias voltages, respectively. Figure 8.1b

shows the negative I-V characteristic mirrored on the positive bias voltage axis, which

was rescaled by α+/α−=1/1.33 to account for the asymmetry of the active region. As this

rescaling perfectly aligns (A,A’), (B,B’) and (C,C’), we conclude that each pair of features

is reflective of tunneling through the same quantum dot level, where the only difference

is the direction of the tunneling process. While features A,B and C enter the dot through

the thicker of the two barriers, A’,B’ and C’ describe the inverse path through the thinner

barrier. By comparing the positive (blue) data to the rescaled negative (purple) data, we

can estimate what fraction of the current stems from the stronger many body correlation

effects at the top contact. A similar picture presents itself as in fig. 6.1, where a schematic

of the enhancement is shown for degenerate spin levels at zero magnetic field and T=0 K.
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Figure 8.2: a) I-V characteristic at zero magnetic field and T=1.7 K (black dots) and a fit

using the same parameters for positive and negative bias voltages except a smaller FES exponent

b) Fits to I-V characteristics at temperatures from 4.2 K to 30 K at negative bias voltages c)

The same fits as in b), but again with smaller FES exponents.

While feature A exhibits a small remanent zero field splitting, no clear splitting of the

resonance A’ is observed. The enhancement to the tunneling rate when the state is aligned

with the Fermi edge of the electrons in the top contact introduces a strong asymmetry in

the peak shape and even the small splitting is clearly observed in feature A. Feature A’

on the other hand shows no clear signs of such a spin-split resonant state, due to the lack

of a strong FES enhancement from the bottom contact.

To further test the assumption that feature A is comprised of two FES enhanced

resonance-peaks, we study the temperature dependence of features A and A’. Figure 8.2a

shows the I-V characteristic at T=1.7 K and zero magnetic field (black dots) and further

measurements at elevated temperatures up to 30 K in its inset. While conventional FES

theory only describes the enhancement of the tunneling rate, the resonant states studied
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here are already so close to the Fermi energy at zero bias voltage, that the Fermi statistics

will play a non-negligible role in the transport. A full description of the tunneling current

is given by

I ∝
∫
T (E)DE(E)DC(E + eV )(fE(E)− fC(E + eV ))dE (8.1)

where DE(E) and DC(E + eV ) are the density of states in emitter and collector, T (E) is

transmittance of the double barrier and fE(E) and fC(E+eV ) are the Fermi distributions

in the emitter and the collector, respectively.

For a narrow line width of the resonant state on the quantum dot, we assume that

transmission only occurs at the one energy in the emitter which is aligned with the

resonant state. This energy is dependent on the applied bias voltage, as the quantum dot

energy Edot = E0 − α · eV is lowered by the bias voltage drop across the barrier between

the emitter and the quantum dot state. Assuming a constant density of states for the 2D

emitter and collector states, equation (8.1) reduces to

I ∝ T (Edot)(fE(Edot)− fC(Edot + eV )) (8.2)

The nature of the transmission rate and its enhancement by the FES is captured within

the conventional FES theory, which we use to model the I-V characteristics in chapter 6.

The fit (light blue curve) to the experimental data in fig. 8.2a is thus accomplished by

multiplying equation 6.1 with (fE(Edot) − fC(Edot + eV )). Using a two channel model,

it yields a level position for the spin-up and spin-down states of 1.2 and 2.5 meV above

the emitter Fermi energy, respectively. We find Fermi-edge exponents of γ↑−=0.72 and

γ↓−=0.71 at this temperature. For positive bias voltages, using the same set of parameters

and equation (7.2), we find Fermi-edge exponents of γ↑+=0.51 and γ↓+=0.50. Due to the

small asymmetry in this device, which can be expressed by the aforementioned ratio 1/1.33

of the lever arms, we observe an enhancement effect on both sides at low temperatures.

In the previous chapter, where this ratio is approximately 1/2.1, no FES-like behavior is

observed for positive bias voltages while a strong enhancement is present on all resonance-

peaks occurring at negative bias voltages (see fig. 7.2a).

As is clear from the inset of fig. 8.2a, the only small difference between the I-V

characteristics at 1.7 K and 4.2 K is the minor increase in amplitude of the resonance-peak

occurring at ≈ −1.5 mV. In chapter 7, we find that the low temperature data is suggestive

of a characteristic temperature in these systems, probably due to the intrinsic width of

the BMP-like state. We thus exclude the measurement at 1.7 K from the temperature

analysis in fig. 8.2b+c, as we allocate this temperature to the range where the system

is still dominated by this intrinsic width. Figure. 8.2b shows good agreement of a two

channel FES model (solid lines) to the experimental data (dots) for temperatures from

4.2 to 30 K at negative bias voltages.

For this elevated temperature range, we however find best results for a slightly different

spin-up Fermi-edge exponent of γ↑=0.77 and for small changes to the level positions.
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These changes probably have two origins. First, here we fit the I-V characteristics within

a two channel model. The spin-split pair of FES enhanced resonance-peaks is however

likely comprised of a more complex spectrum as discussed in the previous chapter of

this thesis. Here we however do not directly observe this fine structure, probably due to

the lowest available temperature in the used 4He cryostat of 1.7 K and the very small

zero field splitting. As the various transport channels do not share the same Fermi-edge

exponent, they show a slightly different temperature dependence than a single broadened

spin channel. Second, we most likely oversimplify the physics of the resonant tunneling by

multiplying the conventional FES theory with a transfer function based on simple Fermi

statistics, as the resonant level is of finite width. Furthermore this conventional theory

omits the presence of the second Fermi sea, which can modify the FES enhancement

[Aban 05]. As discussed above, the quantum dot will never be aligned with the Fermi-

edge of the collector if it is located above EF at zero bias. While the dot level is lowered

by e(α−V ), the collector Fermi-edge will at the same time be lowered by eV > e(α−V ).

For a finite width of the resonant state and small bias voltages, the presence of the second

Fermi sea however probably effect the transport physics.

The giant Zeeman effect of the quantum dot state allows us to reduce the energy of

the lower spin-state by several meV by means of an external magnetic field. As the fits

suggest that this spin-state is located only ≈ 1 meV above the Fermi energy at zero bias

voltage, we can use the external magnetic field to move this spin state with respect to the

emitter Fermi sea without the need to alter the bias voltage.

Figure 8.3a shows I-V characteristics for external magnetic fields perpendicular to the

layer stack from 0 to 6 T at 1.7 K. At 2 T and above the peak near zero bias voltage is

suppressed, since its zero bias position is lowered below the Fermi energy of the emitter

electron states by the giant Zeeman splitting of the quantum dot states in the external

magnetic field.

As previously discussed, the fit to the I-V characteristics at T=1.7 K and B=0 T in

(fig. 8.2a) suggests that both spin levels are still located above the Fermi energy at zero

bias voltage. To further test this assumption we investigate the current at a small bias

voltage for both positive and negative biases. Increasing the splitting of the two spin

states via the external magnetic field should at first bring the spin-up state closer to the

emitter Fermi energy, increasing the tunneling current due to the strong FES enhancement

of the tunneling rate near the Fermi-edge. As we further increase the magnetic field, the

spin state is lowered below the Fermi energy and the enhancement of the tunneling rate

is reduced. Figure 8.3b plots the current at a constant small negative (red dots) and

positive (blue dots) bias voltage, indicated by the dashed lines in fig. 8.3a. A constant

bias voltage does not change the overlap of the occupied emitter electron states with the

unoccupied collector states. Using the external magnetic field to move the level through

this narrow channel, the current is mainly influenced by the energy dependance of the

tunneling probability. While a magnetic field of B=1 T yields a bigger current than for

B=0 T, a further increase of the magnetic field results in a reduction of this current, as we
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Figure 8.3: a) I-V characteristics for magnetic fields from 0 to 6 T. The curves are offset by 40

pA for clarity b) Dependence of the current at ±0.3 mV on the external magnetic field c) Fit

to the I-V characteristic at B=2 T

increase the energetic distance of the quantum dot state from the Fermi-edge, reducing

the FES enhancement. Figure 8.3b thus gives further evidence that the spin-up state is

still located slightly above the Fermi energy at V=0 V. Comparable amplitudes at 0 and

2 T however suggest that there is already finite overlap with the Fermi sea in the emitter

at B=0 T due to the intrinsic broadening of the quantum dot state.

In summary, we have investigated the coupling of the same BMP-like state to two

different Fermi reservoirs. A preliminary model shows that the transport at 1.7 K can

be properly described by assuming different Fermi-edge exponents for the coupling to the

two Fermionic baths. The small zero field splitting in this device is observed for negative

bias voltages, due to the strong FES enhancement of the tunneling rate while coupling to

the upper reservoir. Without this enhancement at positive bias voltages, this splitting is

however not resolved.



Chapter 9

Conclusion and outlook

In this thesis we study the I-V characteristics of all II-VI semiconductor RTDs. We present

a new empirical model that has led to a comprehensive understanding of the transport

physics of these devices, and underlines the importance of often neglected device properties

such as contact resistances and device imperfections.

Theoretical descriptions of such devices rely in many cases on idealized pictures based

on the intended sample layout, assuming perfect layer interfaces, digital doping profiles

and no intermixing of the various heterostructure materials. Additionally, effects from

contacts and other secondary parts of the device are considered small and are thus omitted.

Here we show that most of these assumptions break down for the II-VI quantum well

RTDs, and that considering these effects is important for a proper description of these

devices.

In particular, we find that interface states play an important role in the transport

characteristics of quantum well RTDs. Our detailed model suggests spin-filter capabilities

without the need for an external magnetic field despite the paramagnetic nature of the

quantum well material. We further investigate these interface states by removing the

substrate from such devices, altering the layer properties and eventually the interface

states. A comparison of the fits to the I-V characteristics before and after removal of the

substrate yield results which are consistent with a general increase of layer quality.

To further investigate the role of reduced dimensionality in the resonant tunneling

process one could combine the quantum dot with the quantum well design. For example

growing CdSe quantum dots between the DMS quantum well and one of the tunnel barriers

should result in an even stronger lateral potential roughness. One could thus study the

dependence of the I-V characteristics on the CdSe coverage at the interface. By doing so

only on one side, we could compare the tunneling from the emitter through the (Zn,Be)Se-

CdSe-(Zn,Mn)Se interface to tunneling through the opposite side by changing the sign of

the applied bias voltage

Equipped with a comprehensive understanding of the transport physics of a single

DMS RTD, a natural extension is to combine two such devices in an injector-detector

scheme. Having a highly non-linear I-V characteristic, the interplay of the RTD with any
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Figure 9.1: Device proposal for a compound spintronics device utilizing the lateral Gurzhi

device as a spin aligner for the injection into a RTD. a) Due to the polarized layer, only one spin

type has a low resistance to ground and is thus extracted from the upper layer, polarizing the

latter. As the injected current is now spin polarized, it can be detected by the magnetic RTD.

b) Via the gate the upper layer is depleted, forcing all current to flow throw the polarized layer.

The polarized current is reinjected into the upper layer and into the analyzer RTD.

additional resistances of comparable size is prone to cause bistabilities in its circuitry.

This limits their integrability into more complex compound devices. Nevertheless, we

demonstrate such a device comprised of two RTDs in series and find that an optimized

contact resistance between the two is of utmost importance for the realization of the

latter.

My colleague Philip Hartman is currently developing a spin aligner based on the pro-

posal made by Gurzhi [Gurz 09]. Combining the lateral transport in the Gurzhi device

with the vertical transport through a DMS RTD might be a promising prospect for an

improved spin-valve layout. This compound device is shown in fig. 9.1. We apply a bias

voltage between the contact on the left and the top of the RTD. For a finite magnetic

field the (Zn,Mn)Se is polarized and as soon as the backside of the sample is shorted to

ground, the majority spin species in the upper layer will see a low resistance to ground,

leaving the sample through the backside contact (9.1a). The minority spin species will

however mainly remain in the upper layer and is thus injected into the RTD. In a second

operation mode (9.1b) the gate is be used to force the electrons through the DMS layer,

resulting in a polarized current. However if the lateral extend of the RTD is a lot larger

than the spin flip length in this material, most of the spin-polarization would be lost due

to the current spreading. Thus a proper planing of the device geometry will be of essence.

The Gurzhi part of the compound device is likely of lower resistance than a second DMS

RTD, but can also be controlled via the gate voltage. It can however only produce one

spin type at a given magnetic field. The RTD bias voltage can then be used to either

transmit or block the injected electrons.

We have shown that modifications to the I-V characteristics stemming from an addi-

tional lateral confinement in the quantum well RTD are useful for spintronic applications.
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To enhance these effects we replace the quantum well layer with self-assembled quantum

dots.

First experiments on resonant tunneling through a non-magnetic self-assembled CdSe

quantum dot yield a strong enhancement of the tunneling rate due to the interplay of the

localized quantum dot state with the emitter Fermi sea. Furthermore, Gould et al. previ-

ously demonstrated that these CdSe dots lead, if imbedded in magnetic tunnel barriers,

to a second many particle effect, namely the formation of BMPs. Lifting the degeneracy

of the spin states, resonant tunneling through such BMPs allows for a spin dependent

transport without the need for an external magnetic field. Here we demonstrate a mag-

netic SAD RTD where both many particle effects are observed simultaneously. As one of

these many particle effects stems from interaction with a Fermionic bath while the other

is due to the coupling to a cloud of magnetic moments, such a system could prove a suit-

able testbed for Fermi-Bose Kondo physics. These system are currently of considerable

interest as they can be tuned to a quantum critical point.

An important tool to further study such low dimensional systems are lateral gates.

Lateral gates can be used to shift the quantum states between the tunnel barriers, instead

of tilting the potential landscape. As we have shown for quantum well RTDs the applied

bias voltage can strongly influence the transport characteristics by altering the barrier

heights, the symmetry of the double barrier structure as well as the emitter states. This

technology is currently under development by my colleague Gabriel Dengel showing first

promising results on artificial atoms created by lateral down-sizing of magnetic quantum

well RTDs. Comparing such devices to the RTDs based on self assembled quantum dots

will also shed light on the influence of the geometry, composition and confinement of the

0D quantum state.

Spin-polarized scanning tunneling microscopy on the cleaving edge of a self-assembled

dot RTD with DMS tunnel barriers could furthermore be used to investigate the BMP

states that manifest themselves in these systems. While it is not feasible to examine the

exact same dot characterized in transport, a general picture of the shape of the dots as

well as the distribution of the Mn atoms in their vicinity could be established. To study

the wave function of a specific dot by means of transport, one could use angle resolved

magnetotunneling spectroscopy. This technique was developed to image the quantum dot

wave function on non-magnetic III-VI SAD RTDs [Vdov 00].

By means of the lateral gates and the angle resolved magnetotunneling experiments,

one has two more ways to probe the rich physics of these magnetic nanostructures. These

are in my opinion imperative to a comprehensive understanding of present and future

experiments on these complex transport systems.



104 9. Conclusion and outlook



Appendix A

Numerical solution of a double RTD

circuit

A.1 A homotopy Newton method

While the Kirchhoff equations for the equivalent circuit of fig. 3.4a can be solved nu-

merically with a standard Newton method for a single DMS RTD, this method fails for

two of these RTDs in series. For the spin-valve compound device presented in chapter

5, one RTD acts as a non-linear series resistance to the other RTD. In combination with

the alternative current path to ground through the middle contact resistance, a load line

analysis as shown in fig. 5.7 has to be conducted. Depending on the size of the middle

contact resistance, the load line reflects the I-V characteristics of the second diode. The

second RTD is an additional non-linear element in the circuit and the equivalent circuit

shown in fig. 5.2b is more prone to instabilities than the one for a single RTD.

Figure A.1 depicts the load line analysis for the separate spin-up and down channels

at VT=144 mV and VB=140 mV. Figures A.1a+b show the solutions to the Kirchhoff

equations of fig. 5.2 given by the standard Newton method, while fig. A.1c+d show the

results yielded by a homotopy method. For these bias voltages a problem arises only for

the spin-up channel. The standard Newton method fails to compute the correct solution

because the load line and the IT −V ↑T characteristics run almost parallel between 120 and

140 mV. The path of the Newton method is depicted as the dashed lines, connecting the

iteration points (black dots) of the algorithm. The correct (graphical) solution is marked

by the dashed circle at Vsol=159.2 mV, which differs more than 25 mV from the solution

VNM computed with the Newton method.

The Newton method often fails in these situations, unless a good initial guess is chosen

as the starting point for the iteration. Especially for two non-linear elements in the circuit,

as in the case of the spin-valve, it can prove difficult to find a proper starting point for

the complete range of both bias voltages.

We introduce the homotopy parameter λ by substituting the middle contact resistance
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Figure A.1: a)+b) Solution to the Kirchhoff equations of the equivalent circuit of fig 5.2 as

given by a standard Newton method for the spin up and down channel, respectively. c)+d) The

same set of equations solved within a homotopy method, yielding a result in agreement with the

graphical solution.

Rm with λ · Rm in the equivalent circuit of fig. 5.2. As is shown in fig. A.1c and d, the

starting point for the homotopy method is the solution to the Kirchhoff equations of the

circuit for λ→ 0, which effectively shortens both diodes to ground as discussed in chapter

5 and shown in fig. 5.7. This results in a stable solution for the Newton method, as the

problem reduces to a normal load line analysis with a small series resistance. This stable

solution is used for the starting point for the next iteration with λi+1 = λi + dλ. As is

apparent from the gray lines in fig. A.1c and d, steadily increasing λ will slowly converge

the solution to the case of fully coupled RTDs. For each iteration the previous solution

is used as a starting point. As a result, there is no need to guess a proper starting point,

no matter what bias voltages VT and VB are applied to the spin-valve.

A.2 Computing the path along a spin-resonance

The homotopy method described in the previous section enables the model presented in

chapter 5 to calculate the currents I1 and I2 as a function of the voltages VB and VT across
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Figure A.2: Polarization of the current exiting the bottom RTD as a function of the voltage

across each RTD. a) The dark red dotted line is the projection on the VT axis as it is shown

in fig. 5.10b. The light red dots also show the VB dependence while following the spin-up

resonance as indicated by the dashed line of fig. 5.10a. The black dots the same analysis when

setting Rflip to 10 Ω. The resistivity effects are still visible, while the spin-valve effects (change

of polarization) is destroyed by allowing spin flips in between the two diodes. b) The same path

analysis as in a), but for following the spin-down resonance in fig. 5.10a.

each diode.

Due to the highly non-linear character of the device, the analysis of a parameter

like the polarization as a function of one voltage while keeping the other constant does

however not reflect the spin-valve functionality as is clear from fig 5.3b+c. The best way

to distinguish the spin-valve properties from the resistive effects is to select points in the

VB-VT plane such that the bias voltage across a certain circuit element is kept constant.

These points form a path along which the spin-valve property tributary to this circuit

element can be extracted.

This method is used for example in fig. 5.10a, where the dashed lines represent two

such paths. These paths, following the up and down spin resonances of the bottom diode,

are used to extract the polarization of the bottom diode as a function of VT (shown in

fig. 5.10b+c). At first the peak positions for the I2 − VB characteristics at a small VT
are determined. As discussed in chapter 5, this setting resembles a simple spin-filter

characteristics with an additional series resistance, similar to the device shown in chapter

3. These peak positions are the starting points for computing the aforementioned dashed

lines. As we are interested in the polarization values at the spin-up and down resonances

of the bottom diode, the relevant voltages in the equivalent circuit of fig. 5.2b are the

voltage drops V ↑B and V ↓B across the active regions of the spin-up and down channels



108 A. Numerical solution of a double RTD circuit

respectively. For instance, to compute the path for a constant voltage drop V ↑B across the

spin-up channel of the bottom diode, we at first increase VT by dVT . VB now has to be

changed as well, as VT + dV results in a different V ↑B than for the VT setting. VB is thus

changed iteratively until V ↑B has the same value as for the setting (VT ,VB).

The light red (light blue) dots of fig. A.2a (b) show this procedure for extracting the

spin-valve efficiency from fig. 5.10 following the paths along the spin-up (down) resonance

of the bottom diode. Figures A.2a+b show the resulting complex path assuming spin

conservation between the two didoes. The black and gray curves show the path for

Rflip=10 Ω and its projection to the p/p(0) − VT plane, respectively. The red and blue

projections shown on the p/p(0) − VT planes of fig. A.2a+b are the equivalents of fig.

5.10b+c for the spin-up efficiency (dark red dots) and the spin-down efficiency (dark blue

dots) respectively.



Appendix B

Scientific publishing with

Mathematica

Mathematica is a powerful and versatile tool for the plotting and postprocessing of data

as well as for the modeling thereof.

While programming your graphical output is often less convenient than a graphical

user interface like Origin, it gives you full control of what your graphic will look like in the

end. Mathematica allows you to write customized functions for pretty much everything,

from color coding your data to a customized mesh in a 3D plot.

While all this control is great, as a scientist, at the end of the day you need something

which can easily be implemented in your talks, papers and/or posters. The best possible

way to achieve all that is in my opinion the pdf format. You can easily add it almost

everywhere as pdf is a wide spread container format, and even if that doesn’t work, you

still can use the ”snapshot” tool in Acrobat Reader to create a high resolution JPG image

of your graphic and copy and paste it pretty much everywhere.

But actually getting from your data to a high quality pdf with Mathematica can

cause quite some frustration. The export of pdf graphics from Mathematica has some

peculiarities I’d like to address, as I have been asked these questions several times by

various colleagues.

As long as you export a simple curve like an I-V characteristic to a pdf file and include

this graphic in TeX as is, you won’t experience any problems. However, often the picture

needs to be part of a bigger layout as a sub-figure, or processing of the exported pdf

within a vector program like Adobe Illustrator is necessary. Opening a pdf exported with

Mathematica in Adobe Illustrator will reveal how bad the pdf export actually is. Every

single vector entity will be grouped and covered by a clipping mask, which unnecessarily

increases the file size and also makes working with the layers a nightmare.

In general, I advise to ”place” Mathematica pdf files in Illustrator, not copy and paste

them (which also works). Note that the resulting Illustrator file will not contain the

placed graphics, but only link to the object. Let us assume we want to create a graphic

containing four sub-figures a-c. Each of those figures is a plot created within Mathematica.
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a) b) c)

Figure B.1: Export of the same image, employing different export options in Mathematica

8. a) Exporting as PNG in its original size, with screen resolution. b) Increasing the image

size for better quality will result in unreadable axis labels c) Export as in a) but increasing the

”ImageResolution” instead of ”ImageSize”

Now we place, scale, arrange and label all of them within Illustrator. The beauty about

placing the graphic is that once we make changes to the graphic within Mathematica and

export it again to the same filename and location, Illustrator will notice the change and

ask you, whether you want to update your link. Press ”yes” and you will see the new

version of the graphic, perfectly scaled and arranged within your document.

The aforementioned clipping masks and white background rectangles Mathematica

likes to add to your otherwise perfect images can however result in glitches during the

export of your final composed image from Illustrator to the pdf format. Parts of the

graphics often vanish due to overlapping clipping masks and/or white background rect-

angles. In order to remove those from your exported Mathematica pdfs, open the pdf in

Illustrator and simply use ”Select→ Object→ Clipping Masks” and press delete on your

keyboard. Then control your graphic by pressing ”Ctrl+Y” to show only the outlines of

your graphic and detect any useless background shapes. Use the direct selection tool to

delete those as well.

Be aware that if you use ”PlotRange” within Mathematica, the overhead of data is

not shown within your graphic, but an exported pdf still contains it. To reduce file size

and also trouble with your exported pdf, be advised to chop your data according to your

desired PlotRange, instead of just hiding it. Mathematica will do so by, of course adding

another clipping mask. If we delete all of those, you will end up with revealing your

hidden data in your graphic. So either get rid of it before exporting, or simply locate the

clipping mask hiding this data in the layers of your pdf and lock it before selecting and

deleting the rest of them.

Please also note that there is a problem of exporting and reimporting Mathematica

fonts. Illustrator will often display crossed out rectangles instead of minus signs, or

brackets. The best way to minimize the extra effort is probably to create plot labels

within Illustrator. So all you have to repair after loading the pdf within Illustrator usually
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a) c)b)

Figure B.2: a) Exporting the graphic as fully vectorized produces white lines around each

vexel. b) 400% magnification of the image shown in a). c) Rasterized image with an resolution

of 300 dpi.

are some minus signs on your axes.

I will also outline my way of exporting high quality ListDensityPlots at an arbitrary

example. Figure B.1 shows three ListDensityPlots exported to png files from Mathemat-

ica. For fig. B.1a the standard export options were used, resulting in an image with

low resolution. While it has reasonable quality at this size in a printout, you will not

be able to use it for anything larger. If we just export the same picture while increasing

the ImageSize in Mathematica, you will end up having tiny axes labels after rescaling

it in your TeX file as shown in fig. B.1b. What you could do is to use the export op-

tion ”ImageResolution-¿300” to achieve a higher image quality, while maintaining the

appearance of the figure (fig. B.1c).

If we export the same image in the pdf format, we are confronted with a different kind

of problem. As is shown in fig. B.2a, Each data point is represented by a vector shape.

These shapes are however not perfectly aligned in the pdf output of Mathematica, which

results in very thin, but ugly white lines in your plot. This is more clearly shown by a

magnification of this plot in fig. B.2b. Figure B.2 again shows a 300dpi png version of

this graph, where we do not have this problem. Note however that the tick marks are

barely big enough to see.

The proper (but more time consuming) way to do these graphics is the following.

First, export a ContourPlot of your data while only showing the contour lines and not

the color encoding of your data. Export to the pdf format to gain a vector graphic of this

wire frame (fig. B.3a). Second, export the color coded data as a high resolution png file

(fig. B.3b). Ultimately, combine steps one and two in Illustrator. Note that fig. B.3a will

have a white background layer which needs to be removed before it is transparent. The

big advantage of this procedure is that you will be able to change the appearance of the

mesh using Illustrator as is shown in fig. B.3a. This method was for example used in fig.

5.3 of this thesis.

For completeness, the source code for fig. B.3a+b is given in B.1.
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Figure B.3: Comprising the picture from a rasterized background and a vector wire frame

showing axes labels and the contour lines.

1 graphFrame = ContourPlot [

Cos [ y ]*Sin [ x ] , {x , −\[Pi ] , \ [Pi ]} , {y , −\[Pi ] , \ [Pi ]} ,

3 FrameLabel −> {”x” , ”y” } , ImagePadding −> {{40 , 0} , {40 , 0}} ,

ContourShading −> None

5 ]

graphBG = DensityPlot [

7 Cos [ y ]*Sin [ x ] , {x , −\[Pi ] , \ [Pi ]} , {y , −\[Pi ] , \ [Pi ]} ,

FrameLabel −> None, FrameTicks −> None,

9 ImagePadding −> {{40 , 0} , {40 , 0}} , ColorFunction −> ” SunsetColors ”

]

11

Export [ ”graph Frame . pdf ” , graphFrame ]

13 Export [ ” graph bg . png” , graphBG , ImageResolution −> 300 ]

Listing B.1: Creating two separate graphics to recombine them in Adobe Illustrator has various

advantages over a pure rasterized output.
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