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The rate limiting step in 5-fluorouracil catabolism is catalyzed by the enzyme dihydropyrimidine 
dehydrogenase. Since degradation of 5-fluorouracil decreases its efficacy in chemotherapy, the 
inhibition of its catabolism is a promising tool. We investigated the formation of micronuclei in 
vitro in mouse L5178Y cells. 5-fluorouracil induced an increase in micronucleus frequency, 
which could significantly be enhanced by the concurrent application of 2,6-dihydroxypyridine, an 
inhibitor of dihydropyrimidine dehydrogenase. The 5-fluorouracil concentration necessary to 
reach maximal genotoxic effects could be reduced to half in the presence of inhibitor. 
2,6-Dihydroxypyridine alone and the naturally occuring enzyme substrate uracil did not induce 
micronucleus formation. Combined application of the chemotherapeutic agent 5-fluorouracil and 
an inhibitor of its could reduce side-effects by lowering the effective dose of the active drug. 
With this study we provide further support for the usefulness of this concept. " 1994 Ac.:>demic 

Press, lnc. 

5-Fluorouracil and uracil are catabolized by the same enzymes. The first of a chain of three 

enzymes concemed with pyrimidine base catabolism in mammalians is DPD (EC 1.3.1.2). The 

enzyme was identified to catalyse the rate limiting step in this sequence (1 ,2). Uracil or other 

5-substituted pyrimidines like thymine or 5-FU are reduced in a NADPH-dependent reaction to 

the corresponding 5,6-dihydropyrimidines. The significance of this enzyme for chemotherapy 

stems from the fact that the widely used anticancer drug 5-FU which is administered in the 

treatment of various solid tumors including gastrointestinal, breast and ovarian carcinomas (3) is 

effectively catabolized and inactivated by the enzyme. The drug is usually administered by bolus 

i.v. injection or by continuous i.v. infusion. Humans with normal Ievels of DPD catabolize 

1 Address correspondence to: Dr. Helga Stopper, Institute of Pharmacology and Toxicology, 
University ofWürzburg, Versbacher Str. 9, 97078 Würzburg, Germany (Fax: 0931-201-3446). 

Abbreviations: 5-FU, 5-fluorouracil; F-DHU, 5,6-dihydro-5-fluorouracil; DHP, 2,6-
dihydroxy-pyridin; DPD, dihydropyrimidine dehydrogenase; DTE, dithioerythriol. 

0006-29IX/94 $5.00 
Cnpyri~ht © 1994 by Academic" Press, Jnc. 
All rights of reproduction in cmy form reserved. 1124 



Vol. 203, No. 2, 1994 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 

between 60% and 90% of the applied 5-FU. Therefore, inhibitors of this enzyme may be useful 

as chemotherapeutic agents by enhancing the antitumor activity of 5-FU. Most of the compounds 

that are used to inhibit enzymatic uracil reduction, are reduced by DPD. In contrast to these 

compounds the radiosensitizing drug 5-jodouracil acts as suicide substrate by covalent 

modification of an active site cystein residue (4). 5-Ethynyluracil is an other mechanism-based 

irreversible inhibitor of DPD (5). It has been shown in rat and mouse models that 5-ethynyluracil 

potentiales the antitumor activity and the toxicity of 5-FU. The antitumor activity increases to a 

greater degree and thereby the therapeutic index of 5-FU increases 2- to 4-fold. In the extended 

Iist of ligands of DPD (6) one of the most effective inhibitors is DHP. It has strong inhibitory 

activity without acting as a substrate for the enzyme (7). DHP has been used in defining the 

kinetic mechanism of pig liver DPD (8). The enzyme processes the reactants (NADPH and e.g. 

uracil or 5-FU) at separate, nonoverlapping catalytic sites that are linked by an intermolecular 

electron transport chain. The pig liver enzyme is an excellent model for human DPD showing 

similar physical, kinetic and immunological properlies (9). 

We investigated 5-FU-induced micronucleus-formation in mause L5178Y cells. This cell line has 

been shown to be suitable for analysis of micronucleus induction (10, 11 ). The main question was 

whether the genotoxicity of 5-FU could be enhanced in vitro by inhibiting 5-FU catabolism. 

Material and Methods 

Material: Bisbenzimide 33258 and 5-FU were obtained from Sigma, DHP was from Aldrich. 
F-DHU was generously supplied by Hoffmann-La Roche AG, Basel, Switzerland. 

Cell culture: Mouse L5178Y cells, clone 3.7.2c, were cultured in suspension in RPMI-1640 
supplemented with antibiotics, 0.25 mg/ml L-glutamine, 107 J.tg/ml sodium pyruvate and 10% 
heat inactivated horse serum (Sigma Chemie GmbH, Deisenhofen, Germany). Cell cultures were 
grown in a humidified atmosphere with 5% C02 in air at 37°C. 

In vitro micronucleus assay: Exponentially growing mause L5178Y cells which have a doubling 
time of 10 hours were treated for 4 hours. The vehicle control was 1% DMSO. After removing 
the chemieals by centrifugation and medium replacement, the cells were incubated for 15 hours 
for dose-response experiments or for 0 to 25 hours for time course experiments (expression time). 
The cells were then brought onto glass slides by cytospin-centrifugation and were fixed with 
methanol (-20°C, 1 hour). For the staining of nuclei and micronuclei, the slides were washed 
with destilled water, incubated with bisbenzimide 33258 (5 1-'g/ml, 3 min.), washed three times 
with destilled water and mounted for microscopy. Using a magnification of 1250x the numbers of 
nuclei and micronuclei were scored. Each data point represents the mean of three slides with 
2000 nuclei evaluated per slide. Allexperiments were repeated with consistent results. 

Preparation of cell extracts: Cells in suspension were collected by centrifigation for 30 min at 
10,000 g. The cells were broken by hypotonic treatment in 10 ml ofhomogenation buffer. In the 
control experiment the homogenation buffer contained 35 mM potassium phosphate, pH 7.3, 
I mM DTE ( = buffer A). In the other experiments cells were homogenized in a) buffer A plus 
9. 75 J.tM 5-FU, b) buffer A plus 0.2 #-'M DHP or c) buffer A plus 9. 75 #-'M 5-FU and 0.2 #-'M 
DHP. After centrifugation at 20,000 g for 30 min the supematant fluid was concentrated to a 
volume of 1 ml by Ultrafiltration using centricon 10 devices (Amicon). All steps were performed 
at 4 oc. The concentrated fluids (cytosol) had protein contents of 10.11 mg/ml and were used for 
DPD assays as described (12). Protein was determined according to Schaffner and Weisman (13). 
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Results 

Micronucleus formation after treatment with 5-FU was investigated using mouse L5178Y cells. 

The micronucleus frequency increased in a dose dependent roanner (Fig. la) and decreased after 

reaching a maximum at 19.5 #'M. The time course of micronucleus forroation after application of 

19.5 #'M 5-FU (Fig. lb) showed that the micronucleus frequency was optimal after an expression 

time of 15 hours. There was no visible toxicity at this time point, whereas some toxicity resulting 

in damaged nuclei could be seen at 25 hours. Cell growth was also impaired at 25 hours. This 

was reflected in a reduced cell nurober in the treated culture at the time of cell fixation to 33% 

compared to an untreated control culture. At 15 hours, cell nurober was 86% of the control. 

Therefore, an expressiontime of 15 hours was considered appropriate for further investigation of 

5-FU-induced roicronuclei. 

Uracil, a naturally occuring substrate of DPD, did not induce roicronuclei if applied under 

comparable conditions (fable 1). The pyriroidine-product (F-DHU) of the reaction catalysed by 

DPD was also investigated and was found not to induce micronuclei under comparable conditions 

(Table 1). 

A putative enhancing effect of the inhibitor DHP on the roicronucleus inducing capacity of 5-FU 

was investigated. DHP fits much better into the uracil binding site of DPD than 5-FU, as 

indicated by kinetic studies on the pig liver enzyroe (8). The true Kj-value is 0.007 #'M for 

competition of DHP with the natural substrate uracil to bind at the pyriroidine binding site. In pig 

liver DPD the Kro-value for 5-FU is 5.5 #'M. Since the Kro(5-FU)1Ki(DHP) ratio is 

approximately 800, a much smaller concentration of DHP than 5-FU should inhibit the 

metabolising step sufficiently. However, interactions with components of the cell culture medium 

are possible and the most effective concentration had to be determined experimentally. First, it 

was examined whether DHP itself induced micronuclei (Table 1) and no induction was found 

within the dose range tested. At concentrations higher than 0.385 #'M some toxicity was seen 
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Fl&Ure 1. Doseresponse (a) and time course (b) of the micronucleus induction by 5-FU. Given 
are the time points after substance withdrawal. Control cultures showed 5. 7±2.3 
micronuclei/2000 cells. Concentration of 5-FU was 19.5 pM in (b). 
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Table 1: In vitro micronucleus assay 

C'onc of Varied 
C'ompound [~MI 

0 
0.385 
077 
3.85 
77 

38 5 

0 
4.85 
9.75 

lC) 5 
38.5 

0 
19.5 
38 0 

Micronuclei/2000 Cells 

6.3 ± 0.6 
7 0:!: 2.7 
4.3 ± 1.5 
6.0± 1.0 
5.3 ± 0.6 
7.3 ::t 0.6 

80±20 
8.0 ± 17 
7.7 :t 15 
77±.06 
7 7 :t o.o 

5.3 ± 2.1 
7.0 ± 1.7 
6.0 ± 1.0 

when measuring cell growth and trypan blue uptake (data not shown). As the result of an 

experiment, in which the concentration of 5-FU was kept at 9. 75 I'M and the concentration of 

DHP was varied (Fig. 2a), 0.195 J.tM DHP was chosen as being appropriate for further 

investigations. 

The combination of DHP and 5-FU was further examined (Fig. 2b). While DHP alone again did 

not induce micronuclei, 5-FU did. The combination of both yielded the highest micronucleus 

frequency. This increase of micronucleus frequency was reproducible in 3 independent 

experiments (data not shown). As a final experiment, a dose response for micronucleus induction 

by 5-FU in the presence of DHP was performed (Fig. 3) and compared to that without DHP 

Mlcronuclel/2000 Cella 40T 
351 5-FU: 9.75 ~M 

::J ' h rf + 
20. ! 
15 ; I· ! 

·:li I i JL ' 
0 32 nM 88 nM 185 nM 

Concentratlon DHP 

+] -l 

.... , .... J.- ..... , .... 
390 nM e76 nM 
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• I ' ' J I 

Control DHP 
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--1-t 

.. ' 
5-FU 5-FU.OHP 

G.76 uM g,75•0.2~M 

Fi&u.re 2. Micronucleus induction after treatment with 5-FU and DHP. (a) 5-FU concentration 
was constant (9.75 pM) and the concentration of the inhibitor DHP was varied. A control culture 
wi.thout 5-FU or DHP showed 7.0 ± 1. 7 micronuclei/2000 cells. (b) Each of the compunds was 
tested alone and in combination. 
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Figure 3. Dose response of the micronucleus induction by 5-FU with and without the addition of 
the metabolic inhibitor DHP. 

(Fig. 3, narrow line; Fig. la). The 5-FU concentration necessary for maximum genotoxic effects 

was reduced to half in the presence of the inhibitor. lt was shifted from 19.5 pM to about 10 ~M 

in the presence of 0. 195 iJM DHP together with a shift of the entire dose-response curve to 

smaller concentrations of 5-FU. 

The specific activity of DPD in cytosolic extracts of mouse L5178Y ceiJs was 0.00162 U/mg 

(control experiment). Aftertreatment with DHP alone (0.2 llM, 4 hours) and after treatment with 

a combination of 5-FU (0. 975 iJM) and DHP (0.2 iJM) the activity of the catabolizing enzyme 

was below the detection limit. Under these conditions DHP inhibited the enzyme effectively. 

Discussion 

Micronuclei are DNA-containing structures in the cytoplasm of cells. They can contain 
chromosomal fragments or whole chromosomes which are surrounded by a membrane. 

Micronucleus frequency is a widely used genotoxicity endpoint for in vitro and in vivo studies 

and in the biomonitaring of human populations. 

Micronucleus induction in mouse L5178Y cells after treatment with 5-FU decreased again after 

reaching a max.imum at a certain time and dose. For the concentration dependence this may be 

due to toxicity of 5-FU and inhibition of cell cycle progression at higher doses. In fact, inhibition 

of cell growth as measured by cell counting and an increase in trypan blue uptake (data not 

shown) was observed at those higher concentrations. In the time course of micronucleus induction 

a delayed toxicity (some damaged nuclei at 25 hours) and a dilution of the micronucleus 

containing cell population with normal cells may both be responsible for the declining 

micronucleus frequency. Micronucleus induction by 5-FU has been described in vitro (14) andin 

vivo (15-17). 
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5•FU induced micronuclei in L5178Y mouse cells, but neither its first metabolite F-DHU nor its 

naturally occuring analog uracil did. The genotoxic effect seems to be specific for the fluoro

substituted pyrimidine. The micronucleus induction does not reflect an effect of a total pyrimidine 

concentration. 

In · chemotherapy of solid tu mors 5-FU exerts its cytotoxic effect rnainly via thymidylate 

depletion, which Ieads to cell death. 5-Fluoro-2'-desoxyuridine-5'-monophosphate, an anabolite 

of the fluoropyrimidines, inhibits thymidylate synthase, an enzyme that catalyses the conversion 

of deoxyuridylate to thymidylate. Inhibition of thymidylate synthase results in a pronounced 

inhibition of DNA synthesis. Following its metabolism to 5-fluoro-2'-desoxyuridine-5'

triphosphate, 5-FU is incorporated into DNA in certain cell types. Via metaboJism to 

5-fluorouridine triphosphate 5-FU is incorporated into cellular RNA in place of the normal 

metabolite, thus yielding fraudulent RNA. The incorporation of 5-FU into DNA and RNA may 

be summarized as genotoxicity of the drug. Since it is known that 5-FU is readily catabolized in 

mammalian cells and that this Ieads to a loss in the amount of active substance available in 

chemotherapy, we investigated whether addition of an inhibitor of the first step of 5-FU 

catabolism could enhance micronucleus induction by 5-FU. DHP has been shown to have 

excellent inhibitor properties in this respect. DHP itself proved to be unable to induce 

micronuclei, but its combination with 5-FU yielded an increased micronucleus frequency. The 

increase was independent of the DHP concentration within the tested range. Since DHP alone did 

not induce micronuclei even at much higher doses than those used for the combination 

experiments, a synergistic genotoxicity of the two compounds DHP and 5-FU is not a likely 

explanation for the increase in micronucleus frequency. Indeed, in the presence of DHP the 

activity of cytosolic DPD is inhibited. Therefore, the increase in micronucleus frequency was 

most likely due to inhibition of 5-FU catabolism. The dose response of 5-FU-induced micronucJei 

was shifted towards lower 5-FU concentrations in the presence of DHP. Under in vitro conditions 

DHP exerted no toxicity even at much higher concentrations than those necessary for the 

enhancement of micronucleus induction by 5-FU. The experiments also demoostrate that data 

which may be useful for medical treatment can be achieved by applying the in vitro micronucleus 

assay as an endpoint for the effectiveness of a genotoxic agent. 

Inhibitors of DPD were shown to potentiale certain effects of 5-FU in vitro andin vivo (18-23). 

In fact, an increase in antitumor activity by the use of a combination of a 5-FU derivative and 

2,4-dihydroxypyridine in vivo has been reported by Fujii and Sakai (24). The mechanism-based 

inhibitor 5-ethynyluracil has been shown to be a potent modulator of the pharmacokinetics and 

antitumor efficacy of 5-FU in mice and rats (25). In the prescence of 5-ethynyluracil the toxicity 

of 5-FU increased about 10-fold. In mice treated with 2 mg/kg of 5-ethynyluracil p.o. in addition 

to 5-FU for 9 days, the LD50 decreased from 45 mg/kg 5-FU (without inhibitor) to 4 mg/kg 

5-FU (in the presence of inhibitor). One part of the observed effect may be the result of an 

increased genotoxic action of 5-FU. As measured by micronucleus induction, the genotoxicity of 

s .. FU increased about 2-fold, when the pyrimidine catabolism was inhibited. Detailed 

mechanisms by which the toxicity of 5-FU increases after inhibition of catabolism may be 
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difficult to evaluate because of the complex biochemical effects of 5-FU in normal and tumor 

cells. 

These results are promising in view of a possible use of such a combination in chemotherapy. It 

might be possible to influence the other factors which Iead to the additional toxicity in order to 

optimize the therapeutic index of 5-FU. With our study we could provide further support for the 

usefulness of the concept that the chemotherapeutic agent 5-FU may be combined with a 

compound able to inhibit one of the three pyrimidine catabolizing enzymes. 
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