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1 SUMMARY  

In cultured motoneurons of a mouse model for the motoneuron disease spinal muscular 

atrophy (SMA), reduced levels of the protein SMN (survival of motoneurons) cause defects in 

axonal growth. This correlates with reduced β-actin mRNA and protein in growth cones, 

indicating that anterograde transport and local translation of β-actin mRNA are crucial for 

motoneuron function. However, direct evidence that indeed local translation is a physiological 

phenomenon in growth cones of motoneurons was missing. Here, a lentiviral GFP-based 

reporter construct was established to monitor local protein synthesis of β-actin mRNA. Time-

lapse imaging of fluorescence recovery after photobleaching (FRAP) in living motoneurons 

revealed that β-actin is locally translated in the growth cones of embryonic motoneurons. 

Interestingly, local translation of the β-actin reporter construct was differentially regulated by 

different laminin isoforms, indicating that laminins provide extracellular cues for the regulation 

of local translation in growth cones. Notably, local translation of β-actin mRNA was 

deregulated when motoneurons of a mouse model for type I SMA (Smn-/-; SMN2) were 

analyzed. In situ hybridization revealed reduced levels of β-actin mRNA in the axons of Smn-

/-; SMN2 motoneurons. The distribution of the β-actin mRNA was not modified by different 

laminin isoforms as revealed by in situ hybridization against the mRNA of the eGFP encoding 

element of the β-actin reporter. In case of the mRNA of α-actin and γ-actin isoforms, the 

endogenous mRNA did not localize to the axons and the localization pattern was not affected 

by the SMN levels expressed in the cell. Taken together our findings suggest that regulation 

of local translation of β-actin in growth cones of motoneurons critically depends on laminin 

signaling and the amount of SMN protein. 

Embryonic stem cell (ESC)-derived motoneurons are an excellent in vitro system to sort out 

biochemical and cellular pathways which are defective in neurodegenerative diseases like 

SMA. Here, a protocol for the differentiation and antibody-mediated enrichment of ESC-

derived motoneurons is presented, which was optimized during the course of this study. 

Notably, this study contributes the production and purification of highly active recombinant 

sonic hedgehog (Shh), which was needed for the efficient differentiation of mouse ESCs to 

motoneurons. ESC-derived motoneurons will now offer high amounts of cellular material to 

allow the biochemical identification of disease-relevant molecular components involved in 

regulated local protein synthesis in axons and growth cones of motoneurons. 
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2 Zusammenfassung 

In kultivierten Motoneuronen eines Maus-Models für die Motoneuronen-Erkrankung Spinale 

Muskelatrophie (SMA) verursachen verminderte Mengen des Proteins SMN (survival of 

motoneurons) Schäden im axonalen Wachstum. Dies korreliert mit einer verminderten 

Menge an β-Aktin kodierender mRNA und β-Aktin Protein. Dies impliziert, dass anterograder 

Transport und lokale Translation von β-Aktin mRNA für die Motoneuronfunktion notwendig 

ist. Bislang gab es jedoch keinen direkten Nachweiß funktioneller lokaler Translation in 

Wachstumskegeln von Motoneuronen.  

In dieser Arbeit wurde ein lentivirales GFP-basierendes Reporterkonstrukt etabliert, welches 

lokale Proteinsynthese von β-Aktin mRNA nachweißt. Zeitraffermikroskopie von GFP-

vermittelter Fluoerszenzregeneration nach Fotobleichung (fluorescence recovery after 

photobleaching; FRAP) in lebenden Motoneuronen zeigte, dass β-Aktin in Wachstumskegeln 

embryonaler Motoneuronen lokal translatiert wird. Interessanterweise wurde die lokale 

Translation des β-Aktin Reporterkonstrukts differentiell durch verschiedene Laminin-

Isoformen reguliert. Dies gibt einen Hinweis, dass Laminin als extrazelluläres Signalmolekül 

die Regulation der lokalen Translation in Wachstumskegeln reguliert. Die lokale Translation 

von β-Aktin mRNA war dereguliert wenn Motoneurone eines Mausmodels für die Typ I SMA 

(Smn-/-;SMN2) analysiert wurden. In situ Hybridisierung bestätigte eine Reduktion von β-

Aktin mRNA in den Axonen von Smn-/-;SMN2 Motoneuronen. Die Verteilung der β-Aktin 

mRNA wurde von verschiedenen Laminin-Isoformen nicht beeinflusst, wie durch in situ 

Hybridisierung gegen eGFP kodierende Elemente des β-Aktin Reporters bestätigt werden 

konnte. Im Fall der mRNA für α-Aktin und γ-Aktin Isoformen wurde keine axonale 

Lokalisierung der endogenen mRNAs festgestellt und das Lokalisierungsmuster dieser 

mRNAs war durch reduzierte zelluläre SMN Mengen nicht beeinflusst. Zusammenfassend 

deuten diese Befunde darauf hin, dass die lokale Translation von β-Aktin in 

Wachstumskegeln von Motoneuronen von Laminin-Signalgebung und von der Menge an 

SMN Protein abhängt.  

Motoneurone aus embryonalen Stammzellen sind ein etabliertes in vitro System um 

biochemische und zelluläre Signalwege zu identifizieren, die in neurodegenerativen 

Erkrankungen wie SMA betroffen sind. Hier wird ein Protokoll zur Differenzierung und 

Antikörper-gestützten Anreicherung von Motoneuron aus embryonalen Stammzellen 

präsentiert, welches im Rahmen dieser Arbeit optimiert wurde. Im Besonderen wird die 

Herstellung und Reinigung von hochaktivem Sonic Hedgehog (Shh) vorgestellt, welches für 

die effiziente Differenzierung von embryonalen Stammzellen der Maus notwendig war. 
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Motoneurone aus embryonalen Stammzellen werden in zukünftigen Studien nun große 

Mengen an zellulärem Material liefern, und somit auf biochemischer Ebene die 

Identifizierung von krankheitsrelevanten molekularen Komponenten ermöglichen, die in der 

Regulation der lokalen Proteinsynthese in Axonen und Wachstumskegeln von Motoneuronen 

involviert sind.  
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3 Introduction 

 

The neuromuscular system enables the regular movements of skeletal muscles via 

motoneurons that excite them. Neuronal activity in motoneurons causes the release of 

neurotransmitters that bind to the post-synaptic receptors at the neuromuscular junction thus 

mediating the electric activation of the skeletal muscle. During development, motoneurons 

have to find their path from the ventral spinal cord towards the skeletal muscles. Within this 

growth process, motoneuron pathfinding and survival depends on a series of fundamental 

differentiation mechanisms before motoneurons axons reach the skeletal muscle cells. 

(deLapeyriere and Henderson, 1997; Hamburger and Yip, 1984; Sanes and Lichtman, 1999). 

Motoneuron growth is a long-distance growth mechanism that requires continous local 

communication of the growth cone with extracellular cues that enable proper local growth 

cone physiology and pathfinding.  

Several lines of evidence point to a major impact of local protein synthesis in growth cones of 

motoneurons thus ensuring the local availability of key substrates for regulated growth, 

differentiation and even presynaptic differentiation and axon maintenance. 

3.1 mRNA transport and local protein synthesis 

Local protein synthesis has been implemented by organisms in an evolutionarily conserved 

manner to spatially and temporally compartmentalize the availability of proteins (citation). 

Sorting of defined mRNA species to distinct subcellular regions is observed in many different 

cell types, eg.MBP (myeline basic protein mRNA in oligodendrocytes. Bicoid and nanos 

mRNA in drosophila oocytes, β-actin mRNA leading edge of a a migrating chick fibroblast 

and particularly in neurons (for review see Mohr and Richter, 2001). In neurons, this provides 

an efficient manner of compartmentalizing the protein synthesis which is an important means 

to respond to the external cue in a synapse specific manner in dendrites as well as growth 

cones of axons (citation). This increases the computational capacity several folds in case of 

dendrites and helps in path finding during axon extension. 

Initial studies using radio labeled amino acid incorporation in isolated dendrites convincingly 

revealed the phenomenon of localized protein synthesis (Rao and Steward 1991). 

Consequently this pointed to a local availability of mRNA molecules and a protein synthesis 

machinery in far distance from neuronal somata (Rao and Steward 1991). The landmark 

discovery that the cytoskeletal protein -actin is a prominent protein which is expressed, at 

least in part, by local protein translation from localized -actin mRNA molecules implicated 

the existence of specific target sequences for regulated mRNA transport. The actin 
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cytoskeleton plays an important role in axon initiation, growth, guidance, and also in 

synaptogenesis and synapse maintainance (for review see Luo, 2002). -actin protein is 

highly enriched in distal parts of axons and growth cones. Specific mRNA encoded motifs in 

the 3’ UTR of -actin are important for the transport of the -actin encoding transcript 

(Kislauskis et al., 1993). A 54-bp domain called zipcode (Kislauskis et al., 1994) is bound by 

still barely defined protein complexes that are involved in this process (Ross et al., 1997; 

Zhang et al., 2001; Gu et al., 2002). Transport with help of small nuclear ribonucleoprotein 

particles (snRNPs) carrying -actin mRNA to axons contributes to this specific distribution 

(Bassell et al., 1998; Zhang et al., 1999, 2001). 

Various attempts have been made in order to visualize the transport of mRNA to the 

periphery and to understand the kinetics and distribution of mRNA within the cells. Labelled 

in vitro transcribed MAP2 and CamKIIα mRNAs were simultaneously microinjected in 

hippocampal neurons. The labeled mRNA formed granules which showed a rapid movement 

in a microtubule dependent bidirectional manner revealing that neuronal transcripts are 

differentially sorted to either dendrites (CamKIIα) or remain with in the cell somata (MAP2) 

(Tubing, Vendra et al. 2010). This sorting was abolished in the absence of the signal 

sequence in the respective mRNA underscoring the importance of the 3’UTR signal 

sequence in the sorting of mRNA in the cell.  

 

Increasing evidence points to the importance of RNA localization in motoneurons physiology 

and transport within polarized cells. This is of clinical relevance. Regulation of the transport, 

the repression of translation of mRNA during transport, regulation of the translation initiation 

of specific mRNAs, its stability and degradation in response to specific external stimuli are 

some of the important steps involved in mRNA metabolism. Several of these processes are 

deregulated in the disease conditions. It is important to understand the molecular basis of 

various steps of mRNA metabolism for development of therapeutic strategies for some of the 

important diseases such as FXS (Fragile X syndrome) the motoneurons diseases ALS 

(Amyotrophic lateral sclerosis) and SMA (Spinal muscular atrophy).  

 

Using microarray analysis of mRNA isolated from micro dissection of brain slices and by 

compartmentalized culturing of neurons, several hundreds of mRNA has been identified to 

be localized preferentially to various subcellular locations (Zivraj, Tung et al. 2010). In neural 

cells local and regulated translation of some of these localized mRNAs has been shown to 

be involved in neuronal processes like stimulus-triggered neurite outgrowth and/or collapse, 

axon guidance, synapse formation, pruning, activity-dependent synaptic plasticity, and injury-

induced axonal regeneration. 
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Various cis-acting signal sequences in the 3’UTR and 5’UTR of the mRNA are known to be 

involved in the targeting of mRNA to specific locations and its translation in response to 

external cues. The RNA transport sequence for mRNA, the RTS(also referred to as the 

A2RE and the hnRNP A2 response element) or smaller segments of this sequence 

(A2RE11: GCCAAGGAGCC) have been demonstrated to be necessary and sufficient for 

trafficking of myelin basic protein RNA in oligodendrocytes (Barbarese, Brumwell et al. 

1999). The RNA-binding protein HuR affects the stability of specific short-lived mRNAs that 

have an ARE (AU-rich element, with a AUUUA core sequence) in their 3´UTR. Translin 

(testis-brain RNA-binding protein, TB-RBP) is another protein that recognizes a small 

oligonucleotide, the Y-element CTGAGCCCTGAGCT. Blocking translin binding to this 

element disrupts the localization of the mRNAs encoding protamine 2, ligatin and CaMKIIα 

(Severt, Biber et al. 1999). One of the best studied targeted mRNA is β-actin. In case of β-

actin, a 54nt sequence in the 3’UTR has been characterized to be responsible for the 

transport of mRNA to the periphery of the axons and chick embryo fibroblast cells 

(Kislauskis, Zhu et al. 1994). 

3.2 Visualization of local translation 

The initial discovery that mRNAs are transported to subcellular compartments of cells 

(Zhang, Eom et al. 2001) initiated research on the function of local protein translation and 

various attempts have been made in order to visualize the translation of locally transported 

mRNA (Aakalu, Smith et al. 2001). Especially the combination of recombinant expression 

constructs enabling the live imaging of local synthesis of fluorescent proteins such as GFP 

by microscopic approaches had a strong impact on the research field..  

Aakalu et al 2001 used eGFP reporter constructs for CamKIIα, (5’eGFP3’) where they fused 

both the 5’UTR and the 3’UTR of CamKIIα (Aakalu, Smith et al. 2001) to the coding region 

of eGFP. Recovery of fluorescence intensity after local laser-assisted bleaching of GFP 

fluorophores enabled to visualize local protein synsthesis in dendrites of isolated 

hippocampal neurons transfected with the eGFP reporter of CamKIIα. Due to the problem of 

free diffusion of soluble cytosolic eGFP, the authors developed a myristylation signal 

sequence for membrane-anchoring GFP reporter construct (Aakalu, Smith et al. 2001). With 

the help of this approach they were able to show that local protein production of CamKIIα at 

synapses is stimulated by application of BDNF.  

A similar approach of membrane-anchored destabilized eGFP reporter construct was also 

used by Zhang et al. (Zhang, Eom et al. 2001) visualizing the local protein production of a β-

actin reporter construct in rat DRG axons.  

An alternative approach was devised by Yan et al. 2009. These authors used dendra, fusion 

construct as well as reporter construct for CEBP mRNA. Dendra is a photo convertible 
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protein.These experiments showed the involvement of DLK kinase in the stabilization and 

translation of localized mRNA in axons and synapses of C. elegans (Yan, Wu et al. 2009). 

3.3 Regulation of local translation by external cues 

Local protein synthesis is mandatory for the regulated dynamics of growth cone extension, 

collapse and turning (Campbell and Holt 2001; Wu, Hengst et al. 2005; Hengst, Deglincerti et 

al. 2009; Holt and Bullock 2009). The rearrangements of cytoskeletal elements in growth 

cones of Xenopus retinal axons are triggered by chemotropic gradients of the guiding factors 

Semaphorin 3A (Sema3a) and Netrin-1 (Campbell and Holt 2001). These factors act by 

triggering local protein synthesis and regulated changes in protein levels, not only via protein 

synthesis, but also by stimulated protein degradation (Campbell and Holt 2001). This 

mechanism is evolutionary conserved. Local translation of RhoA has been demonstrated to 

be involved in the Semaphorin3a mediated growth cone collapse in rat DRG growth cones 

(Wu, Hengst et al. 2005).  an asymmetric translation of β-actin in the growth cones of 

Xenopus cortical neurons was shown in response to nitrin-1 signalling (Leung et al. 2006). 

This revealed that the growth cone steering in response to the external cue in neurons 

depends on the regulation of the local translation (Leung, van Horck et al. 2006).  

 

Spatial and temporal regulation of localized mRNA in response to guidance cues may be 

achieved by regulation of the signalling to various RNA binding proteins. ZBP-1 (Zip code 

binding protein) is an RNA binding protein that binds to the ZIP code of the β-actin mRNA. It 

was demonstrated by Sasaki et al. 2010 (Sasaki, Welshhans et al. 2010) that the BDNF 

signalling causes phosphorylation of the ZBP-1 protein via Src kinase pathway and in turn up 

regulates the translation of β-actin mRNA.  

Several other mRNA binding proteins and transport proteins have been identified that 

interact with β-actin mRNA. hnRNP-R is an RNA binding protein which was shown to interact 

with the 3’UTR of β-actin mRNA in the axons of mouse motor neurons (Rossoll, Jablonka et 

al. 2003). hnRNP-R binds to the 3’UTR of the β-actin mRNA in a complex which contains 

several proteins including SMN (survival of motor neurons). This finding led to the 

development of the hypothesis that the disease spinal muscular atrophy (SMA) is a 

consequence of a motoneuron-specific function of the SMN Protein and that the regulation of 

local protein translation is part of the disease pathophysiology ((Rossoll, Jablonka et al. 

2003)).  

3.4 Spinal muscular atrophy 

Spinal muscular atrophy is caused by the mutation or deletion of the SMN1 gene encoding 

for survival of motor neuron (SMN) which is inherited in an autosomal recessive manner 

(Crawford and Pardo 1996). Depending on the severity of the disease and the age of onset, 
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SMA is categorized as type 1, type 2 and type 3 with type 1 being the most severe form of 

the disease due to infantile onset and death within 6 months of age (Crawford and Pardo 

1996). Fig 1 describes the genetics of the SMN gene in humans. 

 

 
Fig1 Schematic diagram of the SMN1 and SMN2 genes on human chromosome (chr.) 5. In SMA, both 

copies of the SMN1 gene are deleted or mutated. The SMN2 gene is also expressed, but most of the 

resulting gene products give rise to a truncated SMN protein lacking the regions encoded by exon 7. This 

is caused by a C-to-T transition at position 6 of exon 7, leading to disruption of a splice enhancer site and 

generation of a new splice silencer site. Targets for therapy are marked as red circles. Increase of SMN2 

promoter activity gives rise to enhanced production of truncated SMN2∆7 mRNA, but also to enhanced 

production of SMN2 full-length mRNA and SMN protein. Restoration of splicing and inclusion of exon 7 by 

means of antisense oligonucleotides forms a second target for therapy development. Bottom, SMN 

protein is normally found in both the nucleus and the cytoplasm of spinal motor neurons (right); the 

deficit in SMN expression (left) depletes SMN immune reactivity in both regions. From (Sendtner 2010) 

 

Protein derived from the SMN2 gene is unstable and is not able to compensate for the loss of 

SMN1 gene but multiple copies of SMN2 gene may modulate the disease severity(Crawford 

and Pardo 1996; Battaglia, Princivalle et al. 1997). SMN is expressed in all tissues 

(Paushkin, Gubitz et al. 2002) with high levels within the central nervous system, especially 
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the spinal cord (Battaglia, Princivalle et al. 1997). SMN is known to be associated with a 

diverse set of ribonucleoproteins (RNPs) that are targeted to sub-nuclear structures, such as 

Cajal bodies (Carvalho, Almeida et al. 1999), and participate in spliceosome assembly and 

pre-mRNA splicing (Paushkin, Gubitz et al. 2002). The SMN complex is also known to 

contain Gemin2-7 (Battle, Lau et al. 2006) and localize in gems/Cajal bodies in which the 

pre-mRNA splicing factors are also localized and are thought to play a role in snRNP 

biogenesis and in the trafficking of snRNPs and snoRNPs (reviewed by (Battle, Kasim et al. 

2006).  

 

It is puzzling how the loss of the ubiquitously expressed SMN protein, which is a spliceosome 

assembling component in all cell types, is responsible for a specific degeneration  of motor 

neurons. To address this questions, various model systems have been generated and 

studied in detail (reviewed in (Park, Kariya et al. 2010). The homozygous loss of SMN in 

mice is embryonic lethal (Schrank, Gotz et al. 1997), but heterozygous mice (Smn+/-) are 

useful as a model for less severe forms of the disease. Two mouse lines, Smn-/-;SMN2 

(Jablonka, Schrank et al. 2000; Monani, Sendtner et al. 2000) and 

Smn∆7(SMN2+/+;∆7+/+;Smn−/−) (Le, Pham et al. 2005), have been vastly used as model for 

the most severe form of type I SMA.  

 

Various studies on cultured embryonic motor neurons have indicated that SMN may have an 

additional motoneuron specific role (Jablonka, Rossoll et al. 2000). Investigations on the 

localization of the SMN protein in cells revealed that the SMN protein is present mainly in the 

nucleus and forms granules known as gems that are sites of mRNA splicing (Liu and 

Dreyfuss 1996). Later studies revealed that SMN is not only present in the nucleus but also 

in the cell cytoplasm and the axons of the motor neurons (Rossoll, Kroning et al. 2002; 

Zhang, Xing et al. 2006), specifically in the growth cones of motor neurons. SMN is found as 

part of a complex in growth cones which contains Gemin2 and Gemin3 to form a mRNP 

complex. This complex shows a bidirectional movement along the axons of motor neurons 

(Zhang, Xing et al. 2006). In a yeast two hybrid screen for interaction partners of SMN, the 

RNA binding protein hnRNP-R was identified (Rossoll, Kroning et al. 2002). Motor neurons 

isolated from Smn-/-;SMN2 embryos show shorter axon length when cultured on Laminin111 

but over expression of hnRNP-R in a SMN deficient condition rescues the axon length 

phenotype (Rossoll, Jablonka et al. 2003). In the same study, it was seen that the SMN-

hnRNP-R complex associates with β-actin mRNA in the growth cones of motor neurons 

(Jablonka, Beck et al. 2007). Further studies to understand the role of SMN and its 

interaction partner hnRNP-R in translocation of β-actin mRNA revealed its crucial role in its 

transport to the axon terminals (Glinka, Herrmann et al. 2010). Knock down studies of 
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hnRNP-R revealed that they also show reduced levels of β-actin mRNA in axons and axon 

terminals. In vivo studies to knock down the hnRNP-R protein using morpholinos in the zebra 

fish embryo showed increased branching and shorter axons (Glinka, Herrmann et al. 2010). 

This phenotype is similar to that of SMN knock down by morpholino in zebra fish (Winkler, 

Eggert et al. 2005).  

β-actin mRNA was found to be enriched in the growth cones of embryonic cultured motor 

neurons isolated from the spinal cords of Smn+/+;SMN2, whereas there was significant 

decrease in the β-actin mRNA in the growth cones of the motor neurons isolated from Smn-/-

;SMN2 as seen by in situ hybridization against β-actin mRNA, indicating that the SMN protein 

may be involved in the transport of the β-actin mRNA. There is reduction in the size of the 

growth cones of Smn-/-;SMN2 motor neurons (Rossoll, Jablonka et al. 2003). This effect was 

accompanied by defective calcium channel clustering in growth cones, which caused 

reduced spontaneous calcium transients in growth cones of Smn-/-;SMN2 motor neurons. 

Interestingly the frequency and the amplitude of the calcium transients was increased in the 

Smn+/+;SMN2 when cultured on Laminin211/221 as compared to Smn+/+;SMN2 motor 

neurons cultured on Laminin111. This increase in spontaneous calcium transients was 

abolished in Smn-/-;SMN2 motor neurons. This indicated that the external cue of 

Laminin211/221 to stop growing and start differentiating is defective in Smn-/-;SMN2 

motoneurons. Indeed, axon length of motoneurons isolated from Smn-/-;SMN2 is increased 

when cells are cultured on Laminin211/221 (Jablonka, Beck et al. 2007). Knock down of the 

protein PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian 

target of rapamycin (mTOR) pathway, is able to rescue the axon growth defects and 

improves the survival of the motoneurons (Ning, Drepper et al. 2010).  

3.5 Laminin isoforms as signalling cues in the extra cellular matrix 

Laminin isoforms are a group of heterotrimeric molecules present in extracellular matrix of 

different tissues. The Laminin protein family consist of five α subunits, four β subunits and 

three γ subunits which form a heterotrimeric complex to give fifteen different isoforms of 

laminin (Li, Edgar et al. 2003).Extracellular matrix molecules are important signalling cues for 

guiding the axons to its target muscles and are also signalling components that regulate 

growth cone growth and differentiation into a presynaptic compartment (Nishimune, Sanes et 

al. 2004). Laminins also guide the mylenation of the extending axons of the peripheral 

neurons by Schwann cells (Chernousov, Yu et al. 2008).  During development of the 

peripheral nervous system, Laminins, a family of extracellular matrix proteins play an 

important role in axon growth. Studies using adult mouse DRG neurons (Plantman, 

Patarroyo et al. 2008) showed that neurites grow faster and become longer on Laminin-1 

(Laminin111) and Laminin-10 in comparison to the synapse specific Laminin-2 

(Laminin211/221) and Laminin-8. Laminins are differentially expressed in various tissues.  
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Laminin111 is present in many basal laminae in peripheral nerves and skeletal muscle, 

whereas Laminin211 is present in the synaptic cleft at neuromuscular endplates (Sanes and 

Lichtman 2001). Laminin-4 (Laminin221), Laminin-9 (Laminin421), and Laminin-11 

(Laminin521) are predominant in the small stretch of basal lamina that extends through the 

synaptic cleft at the neuromuscular junction (NMJ) (Patton, Miner et al. 1997). Mutant mice 

lacking Lamininβ2 that is common to the synaptic cleft specific Laminin221, -421, -521 show 

defects in differentiation of neuromuscular junctions (Noakes, Gautam et al. 1995).  

Nishimune et al. (2004) demonstrated that the Lamininβ2 subunit present in the synaptic cleft 

interacts directly with the α subunit of voltage gated calcium channels in the presynapse. 

This then mediates the clustering of the calcium channels which promotes the differentiation 

of the presynaptic compartment (Nishimune, Sanes et al. 2004). Mutations in the Laminin 

isoforms cause several forms of muscular dystrophy and myelination defects (reviewed in 

(Chernousov, Yu et al. 2008). Mice lacking laminin β2 show marked defects in maturation of 

motor nerve terminals (Noakes, Gautam et al. 1995) and thus serve as a model system to 

understand the pathophysiology of defects at the neuromuscular junction apparent in several 

motoneuron degenerative diseases such as congenital muscular dystrophy (CMD). In view of 

these findings, the role of Laminins is of great clinical relevance.Previous studies 

demonstrated that axon growth in primary motoneurons is differentially influenced by various 

Laminin isoforms (Porter and Sanes 1995; Jablonka, Beck et al. 2007). Motor axons are 

shorter on Laminin221/211 and presynaptic differentiation is stimulated when these neurons 

are grown on Laminin221/211, the neuromuscular end plate specific Laminin, as compared 

to the more ubiquitously expressed Laminin111 that represents the predominant Laminin 

isoform from Schwann cells (Porter and Sanes 1995; Jablonka, Beck et al. 2007). This effect 

of different Laminins on axon growth is altered in motoneurons isolated from E13.5 embryos 

of Smn-/-;SMN2 mice. In this mouse model, the SMN (survival of motoneuron) protein is 

depleted and it serves as a model of type 1 spinal muscular atrophy (SMA) (Monani, 

Sendtner et al. 2000; Rossoll, Jablonka et al. 2003; Jablonka, Beck et al. 2007; McGovern, 

Gavrilina et al. 2008; Murray, Lee et al. 2010).  

3.6 Embryonic stem cell differentiation into motor neurons 

Primary motoneurons can be isolated from the spinal cord of chick(Arakawa, Sendtner et al. 

1990), rat(Hughes, Sendtner et al. 1993), mouse(Wiese, Metzger et al. 1999) and even 

human embryos(Silani, Brioschi et al. 1998). They can be enriched and studied in culture at 

high purity in the absence of other neuronal and non-neuronal cells that influence specific 

properties such as survival(Wichterle, Lieberam et al. 2002) and axon growth(Porter, Weis et 

al. 1995). Such isolated embryonic motoneurons have been widely used to study 

mechanisms of motoneuron survival(Clarke and Oppenheim 1995; Sendtner, Pei et al. 

2000), axon growth and guidance(Ming, Henley et al. 2001; Nguyen, Sanes et al. 2002), and 
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also for the analysis of disease mechanisms underlying amyotrophic lateral sclerosis(Camu 

and Henderson 1994) and spinal muscular atrophy(Rossoll, Jablonka et al. 2003). However, 

these neurons are normally only available at limited numbers, making it impossible to 

perform state of art analyses of disease mechanisms using for example Chromatin immune 

precipitation (ChIP) or microarray analysis for studying gene expression or pre mRNA 

splicing. Such techniques normally require high numbers of cells, usually in a range of 

several hundred thousands or millions(Tollervey, Curk et al. 2011). The number of 

motoneurons in the lumbar spinal cord of a mouse embryo at E13 to E14 ranges between 

4.000-5.500(Oppenheim, Houenou et al. 1986) and only a portion of these primary 

motoneurons can be successfully isolated and cultured. Thus, the number of motoneurons 

that can be obtained from single embryos is by far not sufficient for such techniques that 

appear key to understand disease processes in spinal muscular atrophy and amyotrophic 

lateral sclerosis.  

 

Embryonic stem cell technology is an important tool in neurobiology for creating defined 

populations of neural cells (Graf and Enver 2009; Cohen and Melton 2011; Hansen, 

Rubenstein et al. 2011) at high numbers. These techniques can be used to create defined 

populations of mouse and human neurons for studying function and disease mechanisms. 

They also can serve as a tool for therapy development. In the last five years, significant 

progress has been made in the field how to differentiate stem cells or to convert other types 

of cells into specific types of neurons such as midbrain dopaminergic neurons, cortical 

neurons or motoneurons (Hansen, Rubenstein et al. 2011; Peljto and Wichterle 2011). In 

principle, three strategies are used to produce specific neuronal populations: The directed 

differentiation of embryonic stem cells into neurons (Peljto and Wichterle 2011), the direct 

reprogramming of a specialized cell type into another by transdifferentiation, lineage 

switching, or lineage conversion (Heins, Malatesta et al. 2002; Heinrich, Blum et al. 2010; 

Vierbuchen, Ostermeier et al. 2010), or the generation of induced pluripotent stem cells (iPS) 

and subsequent directed differentiation towards distinct populations of neurons (Takahashi 

and Yamanaka 2006; Ebert, Yu et al. 2009).  

These techniques appear as an attractive option to overcome the problem of low numbers of 

motoneurons that can be isolated from animal models. Several protocols have been 

developed to generate motoneurons from mouse (Wichterle, Lieberam et al. 2002; Plachta, 

Bibel et al. 2004; Wichterle and Peljto 2008) and human ES cells(Li, Du et al. 2005; Shin, 

Dalton et al. 2005), or to convert these cells from patient derived fibroblasts (Dimos, Rodolfa 

et al. 2008; Ebert, Yu et al. 2009). However, these protocols are limited in that the purity and 

homogeneity of the neurons in these culture is lower than with cultures of primary 
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motoneurons, for example from mouse spinal cord (Wiese, Metzger et al. 1999; Wiese, Pei 

et al. 2001; Wiese, Herrmann et al. 2010).  

3.7 Objective of the present study 

Several studies have shown the presence of β-actin mRNA in the growth cones of mouse 

motor neurons. Local translation of β-actin mRNA has been demonstrated in rat DRGs and 

Xenopus ratinal ganglion cells but local translation of β-actin mRNA in motor neurons was 

yet to be demonstrated. But a direct evidence was missing for the presence of local 

translation on β-actin mRNA in the growth cones of mouse motoneurons. The aim of the 

present study was to develop a suitable method to visualize local translation in cultured 

mouse motoneurons. Furthermore, the regulation of β-actin mRNA has been shown to be 

influenced by RNA binding proteins as well as by external cues for axon guidance. Laminin 

signaling is an important signaling cue derived by the growth cone of motoneuron axon from 

the extracellular matrix, it was of interest if and/or how this external cue affects the local 

protein synthesis. Using this assay system, we also addressed the question if and/or how 

this local translation is affected in motoneuron degenerative disease SMA (spinal muscular 

atrophy) is affected.  

 

In order to analyse the disease mechanism at a biochemical level, it is important to have a 

uniform population of cells in a lorge quantity. The current available method of primary 

motoneurons does not provide sufficient quantities of enriched motoneurons. On the other 

hand, embryonic stem (ES) cell derived motoneurons are a good option but provide a mixed 

population of cells. In order to address this, we aimed to device a protocol for in vitro 

differentiation of ES cells into motoneurons and enriching the motoneuron for biochemical 

analysis.  
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4 Material and Methods 

4.1 Chemicals and enzymes  

All the chemicals and enzymes were procured from following companies unless otherwise 

mentioned: Amersham, Applichem, BD, Calbiochem, Chemicon, Fluka, Gibco, Invitrogen, 

Merck, R&D, Roche, Roth, Sigma-Aldrich, Qiagen, Biotherm, Fermentas, Invitrogen, Roche 

and Sigma, Worthington.  

4.2 Animals 

CD-1 wild type mouse line was used for the standardization of all the methods. Smn+/-;SMN2  

with FVB back ground were used for breeding to obtain Smn-/-;SMN2 embryos and their 

heterozygous as well as wild type litter mates were used for control studies. The animals 

were bred in the animal facility of the Institut für klinische Neurobiologie, Uniklinik Würzburg.. 

They were maintained at 12hr/12hr light dark cycle and were on normal diet with full access 

to food and water.  

4.3 Materials 

4.3.1 Cell lines 

HEK293T cells 

HELA  

Primary Motor neurons  

4.3.2 Buffers, solutions and mediums  

2xHBS :280mM 

50mM HEPES 

 1.5mM Na2HPO4  

Adjust pH to 7.1, filter sterilize and store at -20 oC 

 2.5M CaCl2 

10X TBST: 100 mM Tris  

1,5 M NaCl  

0,2 % Tween 20  

ad 1 l dH2O, pH 7,6 

50x TAE: 242 g Tris  
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571 ml Acetic acid  

100 ml EDTA (0,5 M)  

to 1 L dH2O  

 

TBE (10x): 108 g Tris Base  

55 g Borat  

40 ml EDTA (0,5 M)  

add 1 l dH2O, pH 8,0 

20x SSC: 175,3 g NaCl  

88,2 g NaCitrate 

ad 1l dH2O; autoclaved  

 

4% PFA :40g Paraformaldehyde in 500ml dH2O 

 4-5 drops of 5M NaOH 

 500ml of phosphate buffer (410ml 0.2MNa2HPO4 + 90ml 0.2MNaH2PO4) pH7.4. 

Mouse tail lysis buffer 

0.1M Tris-HCl (pH 8.5) 

 5mM EDTA (pH 8.0) 

 0.2% SDS 

 200mM NaCl 

ACSF (stored at 4°C ) 

127 mM NaCl 

3.0 mM KCl 

1.25 mM NaH2PO4 H20 

23.0 mM NaHCO3 

25.0 mM Glucose (added fresh on the day of performing live cell imaging) 

4.3.3 For Primary mouse motor neuron culture 

Neurobasal (Gibco, cat. no. 21103-041), opened bottles should be used within 4 weeks. 

 Horse serum (Linaris, cat. no. SHD3250ZK) Thaw at 4 °C overnight, aliquot into 5 ml 

and heat-inactivation at 55 °C for 30 min, store inactivated aliquots at -20 °C and thaw 

directly only before use at room temperature (20-24°C). Do not freeze again. The batch of 

horse serum has to be tested for compatibility with motor neuron culture (see Wiese et al., 

2010).  
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 50x B27-Supplement (Gibco, cat. no. 17504-044) store 1ml aliqouts at -20 °C; 

Glutamax (Gibco, cat. no. 35050-038), 100x (i.e., 200 mM). 

 ß-Mercaptoethanol (Sigma, cat. no. M7522) Stock solution 100 µM in sterile cell-culture 

tested water should be stored in the dark at room temperature.  

 Trypsin TRL3 (Worthington cat. no. LS003707) for trypsinization of cell aggregates; 1 g 

trypsin in 100 ml HBSS; store at -20 °C after thawing at 4 °C; use within 2 weeks.  

 Trypsin-Inhibitor (Sigma, cat. no. T-6522) add 1 g to 98 ml HBSS and 2 ml of 1 M 

HEPES pH 7,4; 1 ml aliquots should stored at 4 °C  

 Poly-DL-ornithine hydrobromide (PORN) (Sigma cat. no. P8638) dissolve 50 mg in 1 ml 

150 mM borate buffer pH 8.35; store aliquots at -20 °C  

 PORN working solution of 0.5 mg / ml Poly-DL-ornithine hydrobromide in 150 mM 

borate buffer pH 8.35. 

 Laminin (Invitrogen, cat. no. 23017-015), working concentration 2.5 µg / ml in HBSS; 

store aliquots at -20 °C  

 Depolarization solution Sterile filtered solution of 30 mM potassium chloride, 0.8 % 

(w/v) sodium chloride and 2 mM calcium chloride in water. Store at room temperature. 

 p75 Antibody (MLR2, Biosensis, cat. no. M-009-100) 

 p75-antibody dilution solution  Prepare 10 mM Tris/HCl pH 9.5. Store at room 

temperature. 

 Coating of plates and coverslips Cover the surface with sufficient PORN solution 

overnight at 4 °C. On the next day wash three times with water and air-dry coverslips.  Thaw 

laminin aliquots at 4 °C and prepare 2.5 µg / ml laminin solution in HBSS. Cover the surface 

of PORN coated plates or coverslips. Incubate over night at 4 °C or at least 2 h at room 

temperature; laminin coated coverslips can be stored at 4 °C and used within 1 week. 

 Preparation of panning plates Dilute p75 antibody 1 to 5000 in sterile antibody 

dilution solution. Cover the surface of a culture dish with sufficient antibody solution over 

night at 4 °C or for minimum of 2 hours at room temperature. Before dishes can be used for 

panning they should be washed 3 times with HBSS and covered with prewarmed Neurobasal 

medium containing GlutaMAX (Gibco). Store panning plate at room temperature until use. 

 Neurotrophic factors, e.g. CNTF stocks 10 µg / ml or BDNF stocks 10 µg / ml (made in-

house). 

4.3.4 Antibodies and Labeling dyes 

chicken anti GFP Abcam 

mouse anti Map2 Sigma 
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rabbit anti Tau  

DAPI (4´,6-diamidino-2-phenylindol) Sigma Aldrich 

Mouse monoclonal anti Sonic hedgehog Institute of Neurobiology Uni. Wuerzburg 

Mouse anti p75 Mouse anti p75 Abcam 

Rabbit anti Islet Sigma 

goat anti chicken Alexa488 Invitrogen 

donkey anti mouse DyLight549 JacksonImmunoResearch 

donkey anti rabbit DyLight649 JacksonImmunoResearch 

goat anti mouse HRP JacksonImmunoResearch 

 

4.3.5 Plasmids, Vectors and Lentiviruses made during the course of work.  

The clones are deposited in the central plasmid facility with the vector map and sequence 

details. 

Clone number  Vectorbackbone discription 

002-RR pEGFP-C-1 Mouse Beta actin orf+3’utr 

003-RR pmCherry C-1 Mouse Beta actin orf+3’utr 

004-RR pLVXDsRed Mouse Beta actin orf+3’utr 

005-RR pLVX Puro EOS wt mouse Beta actin orf+3’utr 

006-RR pLVX Puro MyrEOS wt mouse Beta actin orf+3’utr 

007-RR pLVX Puro EOS td 

008-RR pLVX Puro EOS td mouse beta actin orf+3’utr 

009-RR 
FuVal Ubiquitin promotor MyrDestabilized DsRed fusion with 3’UTR 

of mouse beta actin 

010-RR FuVal Ubiquitin promotor MyrDestabilized DsRed  

011-RR 
FuVal Ubiquitin promotor MyrDestabilized DsRed fusion with 3’UTR 

of mouse beta actin 
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012-RR FuVal Ubiquitin promotor MyrDestabilized DsRed 

013-RR FuVal Ubiquitin promotor MyrDestablized EGFP  

014-RR 
FuVal Ubiquitin promotor MyrDestablized EGFP 3’UTR mouse beta 

actin 

015-RR FuVal Ubiquitin promotor LCK Myr EGFP 

016-RR 

pcDNA3 LCK Myr signal sequence tagged at N-

terminus of EGFP 3’UTR mouse beta 

actin 

017-RR 
pcDNA3 LCK Myr signal sequence tagged at N-

terminus of EGFP  

018-RR 

FuVal Ubiquitin promotor LCK Myr signal sequence tagged at N-

terminus of EGFP 3’UTR mouse beta 

actin 

019-RR 
pcDNA3 LCK Myr signal sequence tagged at N-

terminus of EGFP ZIP mouse beta actin 

020-RR 
FuVal Ubiquitin promoter  LCK Myr signal sequence tagged at N-

terminus of EGFP ZIP mouse beta actin 

008-RR A Topo Eosmono mouse beta actin orf+3’utr 

004-RR A Topo Mouse Beta actin orf+3’utr 

003-THRR pTZ19R 3’UTRwith polyA tail (mouse beta actin) 

002RR was made my Thomas Premsler 

003THRR was made by Thomas Herrmann 

015RR and 016RR was prepared by Steven Havlicek and Robert Blum 
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4.3.6 Primers for cloning  

Amplicon Forward primer Reverse primer 

Eos GGGCCCATGAGTGCGATTAAGCCAGACAAT CTCGAGACCCTCTAGATAATCGTCGT

CTGGCATTGTC 

MyrEos GGGCCCATGGGGAGCAGCAAGAGCAAGAGTGCG 

ATTAAGCCAGACAT 

CTCGAGACCCTCTAGATAATCGTCGT

CTGGCATTGTC 

Myr-

Destablised 

DsRed 

TACGGATCCGCCACCATGGGCTGTGTCTGCAGCT

CAAACCCTGAAGATGACGGCGGATCTGGCGGAG

CCTCCTCCGAGGACGTCAT 

ATCAGCGGCCGCCTACACATTGATCC

TAGCAGAAGC 

3’UTR(β-

actin) for 

011RR 

ATGTGCGGCCGCGGACTGTTACTGAGCTGC ATGAATTCGTTTGTGTAAGGTAAGGT

GTGC 

Myr-EGFP-

short  

TACGGATCCGCCACCATGGGCTGTGTCTGCAGCT

CAAACCCTGAAAGATGACGTGAGCAAGGGCGAG

GAGCTGTT 

ATGAATTCTTAGCTAGCCTTGTACAGC

TCGTCCATGCC 

Myr-EGFP-

long FOR 

015RR 

TACGGATCCGCCACCATGGGCTGTGTCTGCAGCT

CAAACCCTGAAGATGACGGCGGATCTGGCGGAG

TGAGCAAGGGCGAGGAGCTGTTTGCTAGCTAAGC

GGACTGTTACTGAGCTGCGTT 

ATGAATTCTTAGCTAGCCTTGTACAGC

TCGTCCATGCC 

3’UTR(β-

actin) FOR 

018RR 

TGCTAGCTAAGCGGACTGTTACTGAGCTGCGTT ATGAATTCGTTTGTGTAAGGTAAGGT

GTGC 

ZIP(β-actin) 

FOR 020RR 

TGCTAGCTAAGCGGACTGTTACTGAGCTGCGTT  

3’UTR(α-

actin) FOR 

024RR 

TGCTAGCTAAGCGCACTCGCGTCTGCGTT ATGAATTCTTGGAGCAAAACAGAATG

GCTGG 

 

4.3.7 PRIMERS FOR RT 

Amplicon Forward Reverse 

WPRE GGAGTTGTGGCCCGTTGTC AGTTCCGCCGTGGCAATAG 

WPRE TGTTGGGCACTGACAATTC CCGAAGGGACGTAGCAGA 
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α-ACTIN TAGACACCATGTGCGACGAAGA GCCTCATCACCCACGTAGGAG 

Γ-ACTIN ATCGCCGCACTCGTCAT GCCGTGTTCGATAGGGTACTTC 

β-ACTIN CATCCGTAAAGACCTCTATGCC AACGCAGCTCAGTAACAGTCC 

β-2LIKE-ACTIN CAACACACCTGCCATGTATGTAG GACATCCCGCACGATCTC 

α-ACTIN-3’UTR CAGGACGACAATCGACAATC GAATGGCTGGCTGGCTTTAATGCT 

β-ACTIN-3’UTR CTGCGTTTTACACCCTTT GTAGAACTTTGGGGGATGTT 

 

4.3.8 Primers for smn Genotyping 

Amplicon Forward Reverse 

Smn wt CTGGAATTCAATATGCTAGACTGGCCTG AATCAATCTATCACCTGTTTCAAGGGA

GTTG 

SMNKO CTGGAATTCAATATGCTAGACTGGCCTG GATGTGCTGCAAGGCGATTAAGTTG 

 

4.3.9 LNA probes for Insitu hybridization 

Recognised mRNA Probe sequence 

Actb2L  /5Biosg/TCAAGACACATTATTAGGCTGA/3Bio/  

α-3’UTR /5Biosg/TGAGGTAAAACGAGTCAATCT/3Bio/  

β-3’UTR /5Biosg/AAACGCAGCTCAGTAACAGT/3Bio 

γ-3’UTR /5Biosg/AGTGACCGAGCCACATGAACTA/3Bio/  

eGFP /5Biosg/ATGTTGTGGCGGATCTTGAAGT/3Bio/ 

Scrambled  /5Biosg/AAGATGTGGCGGATCATGATGT/3Bio/ 

 

4.3.10 Ladders 

100bp ladder fermentas 

1Kb ladder fermentas 

 

4.3.11 Kits 

Endofree Plasmid Maxi Kit (10) QIAGEN 

Topo cloning kit Invitrogen 
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Minipräp Plasmid Kit SeqLab 

Big dye terminator kit Applied bioscience 

NucleoBond Xtra Midi Macherey-Nagel 

QIAEx II Gel Extraction Kit (150) QIAGEN 

QIAquick PCR Purification Kit (50) QIAGEN 

LightCycler FastStart DNA Master SYBR Green I Roche 

SuperScirpt First-Strand Synthesis system for RT-PCR Invitrogen 

Invitro transcription Messageamp kit Ambion 

Neuromag Magnetofection Kit OZ biosceneces 
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4.3.12 For Production of active sonic hedgehog 

E. coli Culture Medium prepare 5 l of Magic Medium (Invitrogen) according to the 

manufacturers instructions 

Lysis buffer (500 mM NaCl, 20 mM Imidazole, 20 mM Sodium Phosphate buffer pH 7.5, 1 

mM DTT, 1 mM EDTA, 1 tablet of Protease Inhibitor, 50 µl Benzonase, Lysozyme) 

Buffer A (binding buffer) To make buffer A prepare fresh from stock solutions directly 

before use (500 mM NaCl, 20 mM Imidazole, 20 mM Sodium Phosphate buffer pH 7.5, 1 mM 

DTT) 

Buffer B (elution buffer) To make buffer B prepare fresh from stock solutions directly before 

use (500 mM NaCl, 500 mM Imidazole, 20 mM Sodium Phosphate buffer pH 8.2) 

Buffer C (Factor Xa buffer) To make buffer C prepare fresh from stock solutions directly 

before use (1 mM CaCl2, 100 mM NaCl, 50 mM Tris-HCl pH 8.0) 

Buffer D (Palmitoylation buffer) To make buffer D prepare fresh from stock solutions 

directly before use (40 mM Sodium Phosphate buffer pH 7.0, 25 mM DTT, 150 mM NaCl)  

Buffer E (final buffer) To make buffer E prepare fresh from stock solutions directly before 

use (5 mM Sodium Phosphate buffer pH 5.5, 150 mM NaCl, 1 % β-octylglucopyrinoside, 0.5 

mM DTT) 

 

4.3.13 For ES cell differentiation into motor neurons 

 ES medium 1 For 20 ml set up (17.56 ml DMEM, 200 µl NEAA (100 x), 40 µl ß-

Mercaptoethanol of 50mM (final concentration 0.1mM), 2 ml KOSR (final concentration10 %), 

200µl Pen/Strep. 

 ES medium 2 For 20 ml set up 19.5 ml DEMEM/F12 (with 4500 mg / ml Glucose), 40µl 

ß-mercaptoethanol of 50 mM(final concentration 0.1mM), 200 µl ITS (100 X), 4 µl 

Progesterone of 100µM (final concentration 20 nM), 3 µl Putrescine of 500mM (final 

concentration 60µM), 200 µl Pen/Strep of 100 X stock.  

 ES medium 3 For 40 ml set up (36 ml Neurobasal, 4 ml KOSR (10 %), 200 µl 

Pen/Strep (100 x), 80 µl ß-mercaptoethanol (50 mM)) 

 ES cell culture differentiation medium Mix ES medium 1, 2 & 3 in a ratio of 1:1:2 to 

make differentiation medium. Prepare fresh before use. 

 Coating of ES cell culture dishes Coat culture dishes with 0.2 % gelatine solution for 

at least 10 min in the incubator. 



Materials and methods  

 

27 
 

 Motoneuron culture medium Neurobasal full medium: Neurobasal supplemented with 

10 % horse serum, 1 x Glutamax, 1% B27 supplement.  

4.3.14 Microscopes and instruments 

Leica sp5 confocal microscope equipped with 488,561,649and UV lazer with 50mWatt power 

for illumination. 

Nikon TE2000 epifluroscence microscope with  

Roche real time light cycler PCR machine 

Eppendorf gradient master cycler instrument 

 

4.3.15 Software 

Adobe Photoshop 7.0 

Oligo 6  

ApE – A plasmid editor 

ImageJ software (WS Rasband, ImageJ, US National Institute of Health, Bethesda, 

Maryland, USA, http://rsb.info.nih.gov/ij/. 1997-2011) 

Confocal Software (Leica, LAS AF Lite) 

NIS element (Nikon TE2000) 
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4.4 Methods 

4.4.1 Primary motor neuron culturing 

The dissection of the lumbar spinal cord and culturing of motor neurons was done as 

described in Wiese et al. 2010. E15 embryos were dissected out from pregnant mothers. 

Lumbar spinal cords were dissected from the embryos and collected in 180µl HBSS. The 

head of the embryo was collected in 300µl of lysis buffer. The spinal cord was trypsinised by 

adding 1% trypsin to 180µl HBSS containing the spinal cord and incubating at 37 °C for 

15min. The cells were triturated well and enriched by transferring them in a p75 panning 12 

well cell culture plate with 1 ml neurobasal medium. The cells were incubated at room 

temperature for 45min and gently washed 3 times with 1ml pre-warmed neurobasal medium. 

The cells were depolarized with 100 µl of depolarization solution and eluted with neurobasal 

full medium. The cells were collected in a 2 ml reaction tube and centrifuged at 1200rpm for 

4min. The supernatant was removed and the cells were resuspended in 500µl of neurobasal 

full medium. The cells were counted and 10000 to 15000 cells were used for plating on 

PORN + laminin111 or laminin211/221 coated live cell imaging microdishes after infecting 

with the virus. For virus infection, the cells were incubated with 1-3µl of corresponding 

measurements, 1500 to 2000 cells were plated on each coverslips coated with PORN and 

Laminin.  

4.4.2 Genotyping of mouse embryos 

The head from E14 embryos were put in 300µl lysis buffer and 20µl Proteinase K (20mg/ml). 

Incubate head samples at 600C for overnight in a thermomixer. Isolate DNA from the 

dissolved head.  

Add 450µl of 5%SDS and 150µl 3M NaCl and vortex. Add 750µl Chloroform and vortex and 

centrifuge at 40C for 10min at 14000rpm.  

Take the upper phase in a 2ml reaction tube and add 750µl Chloroform and vortex and 

centrifuge at 40C for 10min at 14000rpm.  

Take upperphase in a 1.5ml reaction tube (approximately 600-650µl) add 100% ethanol to to 

a final volume of 1ml. 

Mix and centrifuge at 40C for 10min at 14000rpm. 

Wash with 500µl 70% ethanol and centrifuge at 40C for 10min at 14000rpm. 

Dry the pellet and dissolve in 100µl of TE buffer for over night. Use this as DNA sample for 

the PCR. 
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Reaction Conditions: following reaction was set up for the genotyping with the help of PCR 

amplification. Standard PCR reaction was set up to make 50µl reaction volume with 1 µl 

DNA, 5 µl 10 x PCR buffer,1 µl dNTP (10 mM), 1 µl each forward and reverse primer  (10 

pmol/µl) with 0.3 µl Taq polymerase (5-prime) and make up the volume to 50µl with H2O 

Cycle Conditions:  3´ @ 94°C 

Melting condition :  30´´ @ 94°C 

Anneling condition 30´´ @ 59°C   34X 

Extension condition    1´ @ 72°C 

             5´ @ 72°C 

      ∞ @ 15°C 

The product size for the genotyping is 600bp for Smn-/-;SMN2 and 879bp for Smn+/+;SMN2 

4.4.3 Cloning 

4.4.3.1 Restriction enzyme digestion and analysis of DNA fragment. 

Cloning was done using standard laboratory manual of Sambrook et al. For restriction 

digestion of plasmids for cloning, 2.0µg DNA was used with 2-5units of restriction enzyme 

and appropriate buffer depending on the restriction enzyme used. The reaction volume was 

50µl. For the cloning of PCR products, the entire volume of the PCR (50µl) was purified using 

PCR purification kit (Qiagen) and used for the restriction digestion. The reaction was 

incubated at 37°C for 2-6 hours and analyzed by gel electrophoresis on 0.8% to 2% agarose 

gel in 1XTAE buffer depending on the size of the expected DNA fragment to be analyzed 

using UV detector. 

4.4.3.2 Polymerase Chain Reaction (PCR) 

For amplification of the 3’UTR of β-actin, pEGFP β-actin plasmid was used as a template 

after linearising it with appropriate restriction enzyme. A standard PCR reaction was done as 

followed: 

25ng DNA,1.5 µl each of forward and reverse primer (10pmole), 5 µl 3prime PCR buffer, 1 µl 

eppendorf triple master mix proof reading DNA polymerase, 1 µl 10mM dNTPs and made up 

the voule to 50µl with H2O 

cycle conditions: 5 min  95°C 

Melting conditions 30 sec  95°C 

Anneling conditions 30 sec  primer specific     35x 

Extension condition 2.5 min 72°C 
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   10 min  68°C 

   hold  15-22°C 

 

The amplified product was analysed by gel electrophoresis and nanodrop was used for 

measuring the concentration of the DNA. The product was purified using a PCR purification 

kit before further use. For production of the reporter construct for α-actin 3’UTR, cDNA was 

synthesized from RNA isolated from the spinal cord of E14 mouse embryos ( see below) and 

used a s a template. 

4.4.3.3 Ligation of restriction enzyme digested DNA 

The vector backbone and the insert are analysed on agarose gel and the concentration of 

the DNA is estimated with the help of the marker. Around 25ng of vector was used and 

125ng of insert was used for the ligation reaction.  

25ng  Vector DNA 

125ng Insert DNA 

1µl  T4-DNA-ligase 

2µl 10x ligase buffer 

filled up to a total volume of 20µl with water 

At the same time a parallel control only containing vector DNA and no insert is performed to 

test the vector religation. The reactions were incubated overnight at 16oC. 

4.4.3.4 Transformation of chemical competent E.coli 

Either TOP10 or HB101 chemically competent E.coli cells were used for the transformation 

of the ligated DNA. 2-5µl ligation reaction was added to 50µl of competent cells and 

incubated on ice for 30 min. The cells were given a temperature shock by incubating them at 

42oC in a water bath for 90 sec and then transferred to ice for 2mins. Prewarmed 500µl of 

SOB medium was added and bacteria were allowed to recover for 60min at 37 oC. 50µl of the 

transformed bacteria were plated on LB-agar plates with appropriate antibiotic as a selection 

marker, incubated overnight and colonies were selected and grown in 5ml LB medium with 

antibiotics overnight and DNA was isolated by mini prep to screen for positive clones. Mini 

preps were performed by alkali lysis method using SeqLab Miniprep plasmid kit.  The 

resultant DNA was screened by restriction digestion profile followed by sequencing of the 

clone to confirm the identity of the positive clone.  
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4.4.3.5 Isolation of DNA 

200ml LB medium containing appropriate antibiotic was inoculated with the positive clone 

and Endofree maxi kit (Qiagen) was used to isolate DNA suitable for transfection. In general, 

the bacterial cells were grown overnight at 37oC in a shaker incubator. The bacterial pellet 

was obtained by centrifuging the bacteria at 6000rpm for 20min. the medium was removed 

and the pellet was subjected to alkali lysis method of DNA isolation by resuspending in buffer 

P1 containing RNAse to which, 10ml of lysis buffer P2was added and gently mixed by 

inverting the tube up and down several times to lyse the bacterial cells. The reaction was 

neutralized by neutralization buffer P3 to precipitate the protein. The supernatant was passed 

through a cartage to clear the solution. 2.5ml of buffer EB was added to the solution and 

incubated for 30min of ice to make it endotoxin free. The DNA was column purified and then 

precipitated with isopropanol. The DNA was pelleted by centrifuging at 15000rpm at 4oC for 

30min. The DNA pellet was washed with 70% endofree ethanol, air dried and dissolved in 

100µl of endofree TE buffer. The concentration and purity was determined using the 

nanodrop device by checking the OD at 260 and measuring the OD260/280 ratio 

respectively. 

4.4.3.6 Sequencing of the DNA 

DNA sequencing was performed by Sanger sequencing (Sanger et al., 1977) using 

terminator dye (Applied Biosystems). This causes the four used didesoxynucleotides 

(ddNTP), lacking the 3´-OH group to get incorporated and labeled with a different fluorescent 

dye. The fragments of the PCR reaction thus generated are of various lengths depending 

upon the incorporation of the didesoxynucleotieds. These fragments are separated by size 

by capillary electrophoresis. At the end the sequence is identified by scanning the fluorescent 

signals of chains separated by size. The sequencing was done by following protocol: 

PCR reaction:  500ng   DNA 

   2µl  Termination-mix 

   4µl  5x sequencing buffer 

   15pmol primer 

   fill up to a total volume of 20µl with HPLC water 

Cycle conditions: 10 sec  96°C 

   4 min  60°C  25X 

   5 min  60°C 

   hold  22°C 
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The PCR product was precipitated by adding 50µl of 100% ethanol and 2µl of 3M sodium 

acetate. The DNA was pelleted by centrifugation at 14000rpm for 20min at 4°C. the pellet 

was washes twice with 70% ethanol, air dried and dissolved in 20µl of Hi-Di formamide and 

used for sequencing cappliary loading.  

4.4.4 Isolation of RNA 

Spinal cord were isolated from E14 mouse embryos used either freshly or stored at -80oC for 

RNA isolation using RNAeasy kit (Qiagen) as per the manufacturers instruction. 

4.4.5 cDNA synthesis from RNA(reverse transcription). 

RT reaction from the mRNA isolated was performed using Invitrogen Superscript III reverse 

transcriptase according to the manufacturer’s instruction. Following reaction was set up 

25ng  RNA 

1.0 µl oligo dT primer (200-500ng) 

1.0µl Random hexamere primer (50-250ng) 

1 µl 10mM dNTPs 

filled up to 13µl with water 

Heat mixture to 65oC for 5 min incubate on ice for at least 1min, add 

4µl 5XFirst-Strand Buffer 

1µl 0.1MDTT 

1µl RNaseOUT 

1µl SuperscriptIII RTenzyme 

Incubate at 50oCfor 30-60min inactivate the reaction by heating at 70oC for 15 min. 1:10 

dilution in EB buffer was used this as cDNA.  
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4.4.6 Quantiative PCR  

Gene specific primers were used for quantitative PCR for quantifying the mRNA in the 

sample using Roche SYBR green kit. Following is the schematic representation of the 

principle of the lightcycler quantification by SYBR green. 

 

Fig 2 principle of the SYBR green mediated quantification. Adapted from Fraga et al. 2008 Current 

Protocols Essential Laboratory Techniques. 

Primer optimization was done using following conditions and primer specific PCR cycle 

conditions for each of the gene specific primer.  

 1 2 3 4 5 6 7 

For 
Primer 

2 3 4 2 3 4 2 

Rev 
Primer 

2 3 4 2 3 4 2 

MgCl2 1.6 1.6 1.6 2.4 2.4 2.4 1.6 

SYBR 2 2 2 2 2 2 2 

cDNA 2 2 2 2 2 2 2 

H2O        

 20 20 20 20 20 20 20 
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cycle conditions for GAPDH mRNA: 

   10 min  95°C 

   0 sec  95°C 

   5 sec  59°C (primer specific)  

   6 sec  72°C (primer specific)  50X 

   5 sec  83°C (primer specific) 

   0 sec  95°C 

   15min  65oC 

   0 sec  95oC 
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4.4.7 Microinjection  

The microinjection was done in 3DIV motoneurons grown on live cell imaging dishes in 

Leibovitz medium. The microinjection was done with the microinjection apparatus from 

Eppendorf fixed on the live cell imaging adaptor stage of Nikon TE2000 inverted microscope. 

The labeled mRNA along with Alexa 568 labeled 10000kD anionic dextran was filled in the 

injection needle with point diameter of 0.2µm and microinjected with the hold pressure of 

40hPa and injection pressure of 80hPa for injection time of 0.3 second.  

4.4.8 In vitro transcription and fluorescence labeling of mRNA 

The plasmid was digested with EcoRI, which cleaves the plasmid at the end of 3’UTR+ polyA 

and linearizes the vector. The linearized vector was phenol chloroform purified and used as a 

template for in vitro transcription in presence of Alexa 488 labeled UTP. In vitro transcription 

was done using Ambion Megascript kit with the following set up using 3’UTR+polyA PTZ19R 

clone (clone no. 003THRR).   

2µl ATP  

2µl CTP 

2µl GTP 

1µl unlabeled UTP 

1µl Alexafluro488labeled UTP 

2µl 10X reaction buffer 

2µl DNA template (0.5µg linearised DNA) 

2µl Enzyme mix 

6µl nuclease free water 

20µl 

Total volume of 20µl was incubated at 37oC for 7hrs. This was then subjected to spin column 

purification on spin 30 PEG columns from Biorad as per manufacturer’s instructions. The 

yield of such a reaction was 544.5ng/µl of mRNA with the dye incorporation of 25pmol/µl. 

This was stored at -80oC for storage or was used directly for microinjection. 
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4.4.9 Calcium precipitate method for transfection of motor neurons  

Primary motor neurons were transfected with 5µg of  pEGFP C-1 with full length mouse beta 

actin 3’UTR including the ORF or pEGFP C-1 vector as described (ref.) with minor 

modifications. 40,000 cells were plated on laminin coated special microdishes (ibidi) and 

allowed to grow for 3 DIV in NB+2%HS+2%B27 with BDNF and CNTF. Polyornithine was 

added to the cells at final concentration of 10µg/ml and incubated for 1 hr. The transfection 

mix was prepared as follows.  

5µg expression plasmid 

5µg carrier DNA 

6.2µl 2M CaCl2 

Xµl water to make up the volume to 50µl 

Vortexed and added 50µl of 2XHBS pH7.0 and incubated at room temperature for 30 min. 

Added the mix to the cells and incubated them for 5 hrs. Removed the medium and shocked 

the cells by adding 30% DMSO in NB without serum and washed the cells thoroughly with 

HBSS. Added fresh NB+2%B27+2%HS with BDNF and CNTF. 100µg/ml cycloheximide was 

added to the cells and incubated for 1 hr prior to imaging in case of cyclohemaide control 

experiment. 20µM final concentration of Rapamycin and 40µM concentration of Anisomycin 

was added to the cells and incubated for 1 hr prior to imaging.  

4.4.10 FRAP on NikonTE2000 

The imaging was done in Leibovitz medium on the Nikon eclipse TE-2000E inverted 

microscope with BFI optilas camera. Bleaching was done using Melles Griot laser with 488 

exitation with maximum intensity for 3 seconds. The growth cone and 2/3rd of the axon was 

bleached as shown in the fig. and recovery was observed by taking images at time interval of 

5 min, 10min, 15min & 30 min and additionally for some experiments at 45min and 60min of 

bleaching. 
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4.4.11 Magnetofection of motor neurons 

 

Fig3 Outline of the magnetofection. Adapted from origene website. 

The magnetofection was done according to Fallini et al., 2010 (Fallini, Bassell et al. 2010). 

For magnetofection 2DIV motor neuron cells were cultured with NB full medium with BDNF 

and CNTF. On the day of magnetofection, the medium is changed to NB+2%B27with BDNF 

and CNTF for 1 hour to starve the cells for serum. 0.5µg DNA was mixed with 1.75µl of 

Neuromag in 100µl MEM medium were mixed and incubated for 15min. the mixture was 

added dropwise on the culture and incubated for 15min on the magnetic plate. The cells 

were removed from the magnetic plate and incubated for 1hr. The culture was washed with 

HBSS and NB full medium. The cells were examined after 72 hours.  
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4.4.12  Production of lentiviruses 

A HIV based lentiviral expression system has been used in these study. The ∆8.9 and VSVG 

vectors were used as helper plasmid for packaging FuVal expression vector. HEK293T cells 

were used for packaging. The cells were propagated in DEMEM + 10%FCS in 3, 125 cm 

flasks up to 90% confluency. On the day of packaging, following reaction was set up in two 

50ml reaction tubes: 

Tube1  Tube2  

9ml Opti-MEM 9ml Opti-MEM 

45µg ∆8.9 216µl Lipofectamin 2000 

30µg VSVG   

18µg expression plasmid   

The above reaction was incubated for 5min and then the two reactions were mixed and 

incubated for 30min. The cells were washed with 10ml PBS and the cells were harvested by 

trypsination with 0.1% trypsine and incubated the cells for 10 min at 37oC and then 

centrifuged at 14000 rpm for 5 min and the pelleted cells were resuspended in 30ml optimem 

with 10%FCS. This was then mixed with the transfection mix making the volume to 48ml. this 

was then distributed in 6, 10cm petri dishes with 8ml each and incubated in the cell culture 

incubator over night.  

The cells were washed with PBS and the medium was changed to Neurobasal with 1% 

glutamax and 2%B27 packaging medium 12 ml in each petri dish and were incubated for 

48hours. The transfection efficiency was estimated by microscopic examination. 

For harvesting the virus, the supernatant medium was collected and centrifuged at 5000 rpm 

for 15min at room temperature and filtered the supernatant with 0.2µm filter. The supernatant 

was then layered on 10% sterile sucrose solution and centrifuged with ultra centrifuged at 

250000rpm for 1.5 hr at 4oC using a swing bucket rotor (SW28). The pellet was then slowly 

resuspended in 100µl of TBS buffer overnight on ice. The suspension was then gently mixed 

by pipetting up and down and 10µl aliquots were prepared and stored at -80oC until further 

use. 
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4.4.13 Lentiviral infection of motor neurons  

In order to see local protein synthesis in the mouse motor neurons, CD-1 E14 mouse 

embryos were dissected for spinal cord and motor neurons were cultured as published by 

Wiese et al. 2010 with BDNF and CNTF. 10000 cells were infected with either control 

MyreGFP or MyreGFP3’UTR reporter (mouse β actin) for 5min and then plated on Schwann 

cell specific laminin (laminin111) per live cell imaging dishes (ibidi).  

4.4.14  FRAP on SP5 

These infected cells were used for live cell imaging at 5&6DIV. On the day of imaging cells 

were washed with equilibrated ACSF and brought to the SP5 Leica inverted microscope in 

ACSF containing 10ng/µl of BDNF and CNTF. The stage of the microscope was adapted for 

maintaining the temperature and constant CO2 supply was given in order to maintain the pH 

of the ACSF. 63X oil objective (n.a. = 1.6) was used for the imaging and the FRAP wizard 

was used to program the bleaching of the defined area of the cell. The maximum laser power 

was kept at 80% and the used laser power was 100% for the bleaching and around 20% for 

imaging. The pinhole was kept completely opened and images were taken with camera 

settings at 700Hz and bidirectional scanning. Per bleach, 10 images were taken with a 

minimized time interval. 50 bleach images with a minimized time interval were taken. 10 

immediate post bleach images with a minimized time interval were taken and 120 post 

bleach images were taken at interval of 30 sec to see the recovery to the total time of 3750 

sec (1hr). 

 

4.4.15 Data analysis 

 The measurement of the recovery after bleaching was done with the LAS lite software from 

Leica. The regions of interest were defined in a give series of images and the intensity as 

measured by the software was transferred to excel sheet. The 10 immediate post bleach 

image intensities were averaged and used for normalizing the change in the intensity over a 

period of 1hr. The normalized intensity was then plotted against time. 
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4.4.16 In situ hybridization 

The cells were washed shortly with HBSS and fixed with 4%PFA for 15min at 370C. Washed 

the cells 2X5min with PBS and permiabilized with PBS+0.1%TritonX-100 at RT for 10min. 

This was followed by treatment with pepsin (0.1%in 10mM HCl) for 1 min at 370C. 

The cells were washed 2x shortly with water and dehydrated through 70%, 90%, 100% 

ethanol and air dry. 

Dilute the probe in in situ hybridization buffer to final concentration of 20-40nM  and denature 

the diluted probe at 800C for 75sec and put on ice for 1min. 

Hybridization was performed for 30min in an in situ adaptor at 620C (Tm-21). Stringincy 

washes were carried out by immersing the cover slip in 2xSCC,0.1%Tween-20 at room 

temperature and 3x5 min 0.1xSSC at 65oC. Further dehydration was done through 

70%,90%,and 100% ethanol. Air dry. The development of the signal was done by incubating 

with 1XTBST for 5 min and subsequent incubation with 1:100 dilution of Rhodamine avidin 

complex for 15 min. Then the cells were washed for 3X 5 min with TBST followed by washing 

with DEPC water briefly and mount with aquapolymount. 

 

4.4.17 Immunocytochemistry 

The cells were washed with HBSS and fixed with 4% PFA at 370C for 15 min. PFA was 

washed 2x with PBS. Permeabilization and blocking was performed with 1x blocking buffer 

(1xPBS, 10%BSA, 0.1% Triton X-100) at RT for 30min. Primary antibody was diluted and 

incubated for 2hr at RT. The cells were washed 4x with 1xPBS, 01%TritonX-100. Diluted 

secondary antibody in blocking buffer was incubated for 1hr at RT. Washed 4x with 1xPBS, 

0.1% TritonX-100 followed by washing 2x with 1xPBS and 1x with water. The cells were 

subsequently treated with DAPI  and washed with 1xPBS and then briefly with water. Dried 

and mounted with aquapolymount 

 

4.4.18 Differentiation of ES cells into motor neurons 

Gelatin coating of the dishes was done by covering the flask with a 0.2 % gelatin solution for 

at least 10 min in the incubator. Inactivated feeder cells were grown on these gelatin coated 

flasks. The feeder cells were thoroughly washed with medium and allowed to settle at least 1 

hour in the incubator in R1 medium before adding ES cells. A vial of about 3 x 106 J1 ES 

cells quickly were resuspended in 10 ml R1 medium with 500 µl of LIF and centrifuge for 5 

min at 180 g at room temperature. The cell pellet was resuspended in R1 medium and plated 

in the flask with feeders. The ES cells were propagated by splitting them 1:5 every two days 

by washing the cells with 5 ml PBS and trypsinizing with 1 ml trypsine for 7-10 min at room 
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temperature. The ES cells were cultured without feeders on gelatin coated plates for at least 

two passages by splitting the cells with a ratio of 1:3. 

Trypsinized ES cells were then resuspended in ES cell culture differentiation medium (see 

materials for medium composition). 105 cells were plated onto bacteriological Greiner Petri 

dishes in 2.5ml ES cell culture differentiation medium without differentiation factors. Incubate 

at 37C for 2 days. Change ES cell culture differentiation medium after 2 days of aggregation 

by transferring the entire cell aggregate suspension into a 15 ml Falcon tube. The cell 

aggregates were washed twice with 5ml ES cell differentiation medium and resuspended in 

2,5 ml of pre-warmed ES cell culture differentiation medium with Sonic Hedgehog (final 

concentration of  600 nM) and retinoic acid (final concentration of 2 µM). Change the ES cell 

culture differentiation medium after 4 and 6 days of aggregate formation (including retinoic 

acid and Sonic Hedgehog as above). 

4.4.19 Enrichment of Differentiated Motor neurons by a p75 Antibody Panning Step 

For enrichment and subsequent plating, the 2.5 ml differentiation medium including the cell 

aggregates were transferred into a 15 ml Greiner reaction tube and allowed them to settle 

down. The cell aggregates were washed twice with 5 ml HBSS at RT to remove culture 

medium and serum and trypsinised in 200 µl HBSS containing 0.05% trypsin about 3 min at 

37 °C. 20 µl  trypsin inhibitor (1%) was added to stop trypsinization and triturated cell 

aggregates with a yellow tip until no cell aggregates are visible. 

Enrichment was done by p75 antibody panning. For this the cells were transferred onto 

(prepared one day before) a panning plate covered with 10ml Neurobasal medium (including 

Glutamax) in a 9 cm culture plate and kept at room on a surface without vibration for 45 min. 

The panning plate was washed very gently three times with 5 ml pre-warmed neurobasal 

medium (containing glutamax) to remove cell fragments and p75 negative cells not 

expressing the p75 receptor. Add 1ml of depolarisation solution and after 30 seconds, add 

5ml of pre-warmed neurobasal full medium (containing glutamax, horse serum and B27 

supplement). The cells were collected in a reaction tube, counted using a hemocytometer 

and plated on laminin111 coated dishes or coverslips depending on the experiments.  
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5 Results 

5.1 Microinjection of labeled β-actin mRNA to visualize transport of 

mRNPs. 

In order to visualize the transport of the 3’UTR of β-actin mRNA in living cells, labeled mRNA 

was microinjected after in vitro transcription.  

To standardize the microinjection procedure and to control that the cells were viable and 

healthy after the microinjection procedure, they were microinjected with 0.5µg/µl of pEGFP 

N1 plasmid. Motoneurons cultured for 3 days in vitro (3DIV) were microinjected using the 

microinjection settings described in the methods section. The microinjected cells were 

incubated for 72hr in the NB full medium with factors and examined for the expression of 

eGFP at 6DIV. As can be seen in the figure 5.3.1, the cells were alive and were able to 

express the eGFP protein, indicating that the methods for microinjection were suitable for 

keeping the cells alive and observe the subcellular distribution transport of mRNA. 

  

Figure 4peGFPC-1 plasmid microinjected motor neuron expressing eGFP 

 

Figure5  Motor neuron co-microinjected with Alexa 488 labeled 3’UTR (β-actin)+polyA invitro transcribed 

mRNA and Alexa 564dextran. 

These microinjection settings were subsequently used for the microinjection of 500 to 

550ng/µl of mRNA of 3’UTR+polyA with incorporation of 25pmole/µl in 3DIV motoneurons. 
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As can be observed in the Figure 5.3.3, the cells which received the labeled mRNA showed 

a punctuate pattern of distribution soon after the microinjection. The cells were either imaged 

directly or incubated for 30min at 370C in a CO2 incubator prior to imaging. Images were 

taken continuously over a period of 1hr to see the movement of the particles. We were not 

able to observe any movement of the particles over a period of 1.hour. Further optimization 

will be needed in imaging and/or labeling protocol in order to observe the movement.  

5.2 Local translation of β-actin 

The 3’UTR of β-actin has been shown to be responsible for the transport of the mRNA along 

the axon to the growth cone of DRG neurons (Bassell, Zhang et al. 1998). The subcellular 

accumulation of the β-actin mRNA in axons terminals of motoneurons has been shown by in 

situ hybridization by Jablonka et al. (2007). In order to investigate if the localized β-actin 

mRNA is translated, we established fluorescence recovery after photo bleaching (FRAP) to 

address this question. 

 For this purpose, primary wild type CD-1 mouse motoneurons were plated at high density on 

poly ornithine and Schwann cell specific laminin (laminin111) coated live cell imaging micro 

dishes (ibidi). The cells were transfected with mammalian expression plasmid expressing full 

length β-actin open reading frame along with the 3’UTR as an N-terminal eGFP fusion 

protein or eGFP alone (as a control) under the CMV promoter. For transfection, a calcium 

precipitate method was used on 3DIV mouse motoneurons. The plasmid was cloned in the 

lab by Thomas Premsler. Figure 6 shows the schematic map and the confocal image of the 

HELA cells transfected with the construct.  
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Figure 6  Schematic representation of p-eGFP β-actin fusion construct and confocal image of the HELA 

cells transfected with p-eGFP β-actin 002RR fusion construct.  

 

The growth cones of the transfected motoneurons were examined for eGFP signal 24hr after 

transfection. The FRAP experiment was done within 2 days after transfection. For imaging, 

the cells were washed and imaged in Leibovitz medium containing BDNF (10ng/µl) and 

CNTF(10ng/µl). The FRAP and imaging was done as described in detail in the methods 

section. After bleaching, recovery of the eGFP signal was observed in the growth cones of 

motoneurons transfected with eGFP β-actin 3’UTR expressing motoneurons. The 

intermediate axonal section of the motoneurons did not show any significant recovery. The 

marginal increase in the fluorescence in the medial portion of the axon is possibly due to 

lateral diffusion of eGFP. Figure 7a shows a representative cell after FRAP and recovery 

monitored for 30 min with 5 min., 10 min., 15 min., and 30 min time intervals. The 

fluorescence intensity was measured using the NIS software of the Nikon TE2000 

microscope. The fluorescence intensity was normalized using the formula F/F0*100. F is the 

fluorescence intensity measured at a given time point and F0 the initial fluorescence intensity 

before bleaching. Fig 7b shows the quantification of the recovery of fluorescence in the 
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growth cone for 30min. As shown in Fig7A,  there is significant recovery in the cells with β-

actin 3’UTR. 

 

Figure7A Fluorescence recovery of bleached eGFP-β-actin transfected motoneurons. B) The graph shows 

the quantification of the fluorescence intensity after bleaching over 30 min in growth cones of p-eGFPβ-

actin transfected motoneurons. C) Quantification of fluorescence recovery in growth cones of eGFP-β-

actin transfected motoneurons. D) Quantification of the fluorescence intensity after bleaching over 30 

mins in  growth cones of p-eGFPβ-actin transfected motoneurons pretreated with cycloheximide. 
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To see if the recovery was specifically attributed to the translation of the localized mRNA of 

β-actin, we transfected the primary motoneurons with eGFP C-1 vector for control, the mRNA 

of which, is not expected to be translocalized to axon terminals. As shown in figure 7C, there 

is no significant recovery of the fluorescence in the growth cones of the cells transfected with 

eGFP alone. 

Cycloheximide was added to the cells transfected with eGFP β-actin 3’UTR construct to 

block the translation and see if this affected the recovery after photobleaching. Pre 

incubation of cells with cycloheximide showed a significantly lower (***=P < 0.001) recovery 

compared to untreated cells within the same time interval as can be seen in the figure 7D.  

 

Figure 8A quantification of the fluorescence intensity after bleaching over 30 mins in the growth cone of 

p-eGFPβ-actin transfected motoneurons pre treated with anisomycin and B) Rapamycin 

 

Anisomycin was also used as a translational blocker to confirm that the recovery of 

fluorescence is due to local translation of the transported eGFP β-actin mRNA (Figure 8A). 

To investigate if the mTOR pathway in involved in the regulation of the local translation, 

Rapamycin was used (Figure 8B). There was reduction of recovery showing the involvement 

of the mTOR pathway but the number of cells was too low to investigate the significance of 

the effect. Fig 8A shows the quantification of the recovery effects in Anisomycin and 

Rapamycin treated cells.  
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5.3 Optimization of constructs for expression of the 3’UTR of the β-actin to 

examine local translation in axonal growth cones of motoneurons 

In order to examine the influence of various mRNP associated proteins such as hnRNP-R, 

IMP or SMN, it would be important to study the influence of either overexpression or knock 

down of these proteins. The vectors commonly used for overexpression or knock down of 

these proteins were available to generate eGFP fusion or reporter constructs. For this reason 

it was not suitable for us to use eGFP as a fluorescent protein for investigating local 

translation. Therefore we cloned the full length β-actin open reading frame (ORF) along with 

its 3‘UTR as a fusion construct with mCherry.  

 

Figure 9 Schematic representation of pmCherry β-actin fusion construct and confocal image of the HELA 

cells transfected with pmCherry β-actin 003RR fusion construct 

This should enable us to examine local translation in combination with the overexpression or 

knock down of various  mRNP proteins. The ORF of mouse β-actin along with 3’UTR was 

excised from a pEGFP C-1 β-actin clone, using BamHI and XhoI and inserted between 

BamHI and XhoI restriction sites of pmCherry C-1 vector. The positive clones were screened 

with the help of NheI and KpnI restriction sites. Overexpression was confirmed by western 

blot analysis of extracts from HEK293 cells expressing the construct. The expression pattern 

of the construct was examined under confocal microscope by transfecting HELA cells. Figure 

9 shows the schematic map of the pmCherry β-actin and the confocal image of the 
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transfected HELA cells.Since the transfection efficiency of the calcium precipitate method 

was too low and there was high cell death of transfected cells, there was a concern if the 

cells we were examining were a selected subpopulation of motoneurons. Therefore it was 

important to device an alternative method for expressing proteins in motoneurons. For this 

reason, we decided to express β-actin in a lentiviral vector system. The ORF of β-actin with 

the 3’UTR was cloned in pLVX DsRed vector as a fusion construct which can be packaged 

as lentiviruses. XhoI and BamHI were used for opening the vector and the XhoI, BamHI 

double digested fragment from pEGFP-β-actin clone was inserted. Figure 10 shows the 

schematic map and the expression pattern of HELA cells transfected with the pLVXDsRed β-

actin fusion construct.  

 

 

Figure 10 Schematic map of pLVXDsRed β-actin and confocal image of HELA cells transfected with 

pLVXDsRed β-actin 004RR construct  
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EOS is a photoconvertable protein which when exited with UV light is converted from a green 

fluorescent to a red fluorescent protein state. In order to avoid the recovery due to diffusion 

of free cytoplasmic protein, it was important to immobilize the newly synthesized protein. For 

this a myristoylation signal sequence was added to the construct in order to membrane 

anchor the EOS protein avoiding the recovery due to diffusion. For this purpose, the following 

strategy was implemented. The EOS tandem (td) repeat was purchased from Mobitech. The 

EOS td has a mutation which makes it possible to express it as a fusion protein.  

 

 

Figure 11a) anti β-actin western blot from transfected 293HEK cells expressing eGFPβ-actin (002RR) 

(lane1&2), EOSWTβ-actin (005RR) (lane 3&4) and Myr EOSWT β-actin (006RR) (lane 5&6). 11b) Schematic 

map of pLVXEOStd β-actin construct and confocal image of HELA cells expressing pLVX EOStd β-actin 

008RR.  
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The wild type EOS used for the cloning produced the appropriate fusion protein as shown by 

western blot (Figure 11a)but was not fluorescent. This was possibly due to steric hindrance 

of correct folding of the protein. The ORF of the EOS td was then PCR amplified, introducing 

the restriction sites XhoI and ApaI. This fragment was brought into the Topo PCR2.1 vector. 

The ORF of β-actin was cloned in the Topo PCR2.1 vector containing the EOS td ORF by 

BamHI and XhoI. The resultant vector was a EOS/MyrEOStd β actin 3’UTR fusion construct. 

This was then excised with a ApaI-BamHI double digestion and was then inserted in the 

pLVX puro vector which is a lentiviral vector. Figure 11b shows the schematic map of the 

vector and the confocal image of HELA cells transfected with the pLVX PuroEOStd β-actin 

construct.  

Destabilized GFP has a halflife of 1hr as compared to 8hr of the stable eGFP. This would 

allow us to monitor only the newly synthesized protein as compared to the interference of the 

previously existing and diffusing eGFP. But since all the knock down viruses we wished to 

investigate had an eGFP tag, we decided to either use the destabilized DsRed construct with 

3’UTR of β-actin without the open reading frame as a reporter construct. The alternative 

would have been to clone all the viruses with tomato/cherry as a reporter and have 3’UTR of 

β-actin tagged with DsGFP. Therefore the destabilized dsRed was cloned into the FuVal 

vector for a lentiviral expression, as a reporter construct with 3’UTR(β-actin) (Fig.12).  
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Figure12 Schematic map of Myr dsRedExdr3’UTR (β- actin). The lower pannel shows a  confocal image of 

the expression pattern of Myr dsRedExdr3’UTR (β- actin) 012RR in transfected HEK293 cells. 

The destabilized DsRed sequence was PCR amplified from the commercial destabilized 

DsRed obtained from Clonetech. The clone was constructed by inserting a BamHI restriction 

site into the forward primer and the myristylation signal sequence with a linker. NotI 

restriction enzyme was used in the reverse primer, and the PCR amplicon was inserted in 

the FuVal lentiviral vector backbone. The 3’UTR of the β-actin was PCR amplified with the 

NotI in the forward primer and EcoRI in the reverse primer, and inserted in the 

MyrDsRedExdr containing FuVal vector to obtain the MyrDsRedExDr3’UTR construct. Figure 

12 shows the schematic representation of the vector and the expression pattern of the 

construct in transfected Hek293 cells. 

As can be seen here, the protein formed aggregates and appeared not suitable for the 

expression in motoneurons and for the FRAP experiments.  

Therefore, Dr. Rudolf Goetz cloned the myristoylated destabilized GFP 3’UTR in the 

FuVal.The schematic map of the MyrDsGFP 3’UTR of β-actin and the expression pattern of 

the transfected HEK293 cells is shown in figure 13. 

 

Figure 13 Schematic map of Myr dseGFP3’UTR (β-actin) and expression pattern of Myr dseGFP3’UTR (β- 

actin) in transfected HEK293 cells 
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The eGFP from this construct was localized in the membrane, and therefore the construct 

was used for generating lentiviruses. HEK293 T cells were transfected with VSVG and ∆8.9 

helper plasmids, but no infectable viruses were obtained. To analyze the problem 

encountered, small scale viral packaging was performed. We found that the initial 

transfection efficiency was very good and nearly 95% of the HEK293 cells were transfected 

and showed fluorescence after 24 hours of transfection. However,as shown in figure 14, 

there was a rapid downregulation of the expression by 48 hours of transfection of the Myr 

DsGFP3’utr FuVal construct whereas the control vector continued to fluorescence and good 

infectious viruses were obtained.  

 

Figure 14 Fluorescent (upper panel) and DIC images (lower panel) of transfected HEK293T cells for viral 

packaging. MyrdseGFP and MyrdseGFP3’UTR constructs show efficient initial transfection but 

MyrdseGFP3’UTR fluorescence was rapidly downregulatedwithin48 hours after transfection. 

Figure 15 shows confocal images of  HEK293 cells after exposure to supernatants of 

harvested viruses after packaging after postlabelling with anti-eGFP antibody. As can be 

observed, there no signal could be detected in cells infected with MyrDsGFP3’UTR construct 

whereas MyrDsGFP and control FuGW viral supernatant showed excellent virus mediated 

GFP expression in HEK 293 cells.  
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Figure 15 Confocal image of 293 cells infected with either MyrdseGFP or MyrdseGFP3’UTR virus after anti 

eGFP staining shows no eGFP expression in the cells. 

 
To further investigate whether the downregulation of the expression of MyrDsGFP3’UTR 

construct in the HEK293 cells was at the transcriptional or at the translational level, we 

performed quantitative RT PCR. For this, HELA cells were infected with the corresponding 

virus and the mRNA was extracted using RNAeasy RNA isolation kit. mRNA was also 

extracted from the viral supernatant in order to compare if the viral packaging took place or 

not. Real time RT PCR was done against the viral WPRE sequence inorder to detect the viral 

mRNA. The real time RT PCR results showed that there was no difference in the packing of 

the 3’UTR containing virus as compared to the FuGW virus in the viral supernatant as well as 

in the transduced HELA cells extracted mRNA. This indicates that the viral particles were 

present but the expression was inhibited. Figure 16 shows the crossing point of the WPRE 

containing transcripts. cDNA was reverse transcribed from the HELA cells mRNA either 

infected with FuGW virus or MyredsGFP virus or MyrdseGFP3’UTR.  

 

Figure 16 Crossing point for WPRE containing transcript with and without reverse transcription.  
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The samples without RT show the specificity of the primers, but that also some 

contamination with DNA might have occurred. However, there is no difference in the cycle 

numbers for the crossing points between the FuGW or MyrdseGFP or MyrdseGFP3’UTR. 

This indicates that there was no difference in the transcription of these constructs but 

thatdownregulation of expression probably occurred at the translational level.  

Because the transient transfection of the vector gave proper localization and expression 

pattern, we decided to express it with the help of magnetofection.  

Magnetofection is a method of transfecting the MN using magnetic nanoparticles coated with 

DNA. We optimized magnetofection in order to express the MyreGFP 3’UTR construct from 

Dr. Goetz since it was not possible to express it as a recombinant virus. Therefore, 3DIV MN 

were transfected transiently with either eGFP or MyreGFP3’UTR constructs. Figure 17 

shows the magnetofection transfected motoneurons with the MyreGFP3’UTR construct at 

low magnification, and phaseconstrast as well as confocal image.  

 

Figure17 Low magnification fluorescence (upper left) and phase constrast (lower left panel) image of the 

motoneurons expressing MyrdseGFP3’UTR transfected with magnetofection. Confocal image of the cell 

body (upper right) and growth cone (lower right)of motoneurons expressing MyrdseGFP3’UTR by 

magnetofection. 
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In parallel, we tried to clone again the 3’UTR of β-actin in the lentiviral vector with a different 

strategy. Inorder to investigate the problem of inhibited translation or transcription of the 

3’UTR containing lentiviral vector, we investigated alternatives for the pest sequence of the 

destabilized GFP. For this purpose, we cloned MyreGFP with or without a linker between the 

Myr signal sequence and the stable eGFP ORF. The fragment was first cloned in a pcDNA3 

vector with BamHI in the forward primer which contained a Kozack sequence, the Myr signal 

sequence and the linker sequence besides the amplification sequence for the eGFP. The 

reverse primer contained the stopcodon „TAA” flanked by NheI and EcoRI restriction sites. 

The 3’UTR was cloned in the shuttle vector between NheI and EcoRI and then the enitre 

sequence was cloned in FuVal between BamHI and EcoRI. Figure 18shows the schematic 

map and the expression pattern of the Myr eGFP3’UTR (β-actin) 018RR construct. Inorder to 

analyze the role of ZIP code of the 3’UTR of β-actin we also cloned the ZIP code alonewhich 

consisted of the first 54nt of the 3’UTR of β-actin. This sequence is known to be necessary 

and sufficient for the localization of the β-actin mRNA. The cloning strategy and expression 

pattern of MyreGFPZIP was the same as that for the MyreGFP3’UTR FuVal construct.  

 

Figure 18 Schematic map of FuVal-MyreGFP3’UTR (β-actin) construct and confocal image of HELA cells 

expressing FuVal-MyreGFP3’UTR (β-actin) 018RR. 
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Figure 19 Membrane localization of eGFP expressing construct MyreGFP3’UTR (β-actin) in a living motor 

neuron and a fixed motor neuron stained for GFP, Tau and MAP2. 

As can be observed from the confocal images, this construct was nicely expressed in the 

membrane of HELA cells. Therefore this construct was then used for the  viral packaging. 

The viral supernatant was harvested and used for transducing motoneurons. The construct 

efficiently transduced motoneurons and it was possible to observe expression at DIV3. 

Figure 19 shows the expression pattern of the MyreGFP3’UTR construct in a living motor 

neuron and the expression in a motor neuronthat had been fixed and stained with antibodies 

against GFP, Map2 and Tau  



Results  

 

57 
 

 

5.4 Local protein synthesis in axons of mouse motoneurons  

The 3’UTR of β-actin is known to be responsible for the localization of its mRNA to the 

leading edge of migrating chicken fibroblasts (Kislauskis, Zhu et al. 1994) and in the growth 

cones of cortical cells (Bassell, Zhang et al. 1998), where local protein synthesis has been 

observed. In mouse motoneurons, Jablonka et al. 2007 have observed that there is less β-

actin mRNA and protein in the growth cones of Smn-/-;SMN2 motoneurons as compared to 

motoneurons from control  litter mates. Therefore, inorder to investigate the translation of the 

localized β-actin mRNA, we performed FRAP experiments in living cells. Figure 20A shows 

the bleached area and the regions of interests that were analysed. As shown in figure 20B, 

significant recovery in growthcones of CD-1WT motoneurons was observed after infection 

with MyreGFP3’UTR (β-actin) as compared to the MyreGFP construct lacking the 3’UTR. 

Figure 20C shows the quantification of fluorescence recovery for 1hr. The MyreGFP mRNA 

is not expected to translocalize to axons and therefore cannot show local translation in this 

subcellular compartment. As expected,MyreGFP expressing motor neuron growth cones did 

not show any significant recovery within 1hr after fluorescence bleaching. 

Inorder to confirm that the recovery observed in the growth cones with MyreGFP3’UTR 

construct is due to local translation, we used translational inhibitors. The inhibitors were 

added under standardized conditions at various concentrations and incubation time for each 

of the translational inhibitors. 4DIV cultured MN were incubated with 10µg/ml cycloheximide 

and incubated overnight. Cycloheximide was also present in the ACSF during imaging. In 

case of Anisomycin and Rapamycin, cells were incubated with 10ng and 30ng, respectively 

for 2hr prior to imaging. These inhibitors were also present in the ACSF during imaging the 

FRAP experiment.  As shown in figure 20D, the recovery after photobleaching was inhibited 

when translational blocker Anisomycin was used. This confirms that the recovery in the 

growth cones is due to local protein synthesis.  
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Figure 20 (A) axon of a motor neuron marked for the region that received bleaching (right) and the 

regionof interest analysed for recovery of florescence after bleaching (left). (B) Fluorescence recovery 

after photobleaching (FRAP) of the β-actin reporter construct in axons of isolated motoneurons. Distal 

axon including the axonal growth cone of a motoneuron that was bleached (upper panel). Fluorescence 

recovery of the MyreGFP signal is shown over a period of 60 min in motoneurons transduced with control 

MyreGFP virus (Control), (C) Quantification of the change in fluorescence normalized for the post bleach 

images in axonal growth cones of motoneurons treated with Myr-eGFP 3’UTR (β-actin) reporter(black 

n=15), Myr-eGFP control virus (blue n=8). (D) Recovery is abolished by inhibitors of protein translation, 10 

µg/µl cycloheximide (blue n=8) added overnight, 30 ng/µl rapamycin (red n=6) added for 2 hours, or 10 

ng/µl anisomycin (green n=8) added for 2 hours 
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5.5 Local protein synthesis in growth cones of embryonic mouse motoneurons is 

regulated by Laminin signalling 

External signalling regulates the local transaltion for eg. Nitrin-1 induces β-actin local 

translation in retinal ganglion cells (Leung, van Horck et al. 2006) and local translation of 

RhoA is regulated by Semaphorin3a (Wu, Hengst et al. 2005). In order to understand the 

effects of different Laminin isoforms on local axonal translation of β-actin in mouse 

motoneurons, we cultured motoneurons on Schwann cell specific Laminin111 which is 

known to strongly promote axon extension (Porter and Sanes 1995; Jablonka, Beck et al. 

2007) When motoneurons transduced with Myr-eGFP 3’UTR (β-actin) reporter were cultured 

on Laminin211/221, a neuromuscular endplate specific Laminin isoform, we observed 

significantly lower recovery in axonal growth cones (Fig. 21A). The quantification of FRAP of 

3’UTR reporter-derived fluorescence of growth cones on Laminin111 vs. Laminin211/221 is 

shown in figure 21B 

 

Figure 21 A  Fluorescence recovery after photobleaching (FRAP) of the β-actin reporter construct in 

axons of isolated motoneurons cultured on Laminin111 (left) MyreGFP3’UTR (β-actin) cultured on 

Laminin211/221 (right) (B) There is reduced recovery when motoneurons infected with β-actin reporter are 

cultured on Laminin211/221 (G, green n=6). Shown are mean intensity values ± SEM. 
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5.6 Deregulation of local protein synthesis in Smn-/-;SMN2 cells 

Previous studies have shown that β-actin mRNA levels are reduced in growth cones of 

mouse motoneurons isolated from Smn-/-;SMN2 E14 mouse embryo (Rossoll, Jablonka et al. 

2003). Furthermore the Smn-/-;SMN2 motoneurons are known to have shorter axonon 

Laminin111 (Schwann cell specific) as compared to Smn+/+;SMN2 motoneurons. When 

plated on Laminin211/221, the predominant form of laminin at motor endplates, the Smn-/-

;SMN2 cells show longer axon length as compared to Smn+/+;SMN2 motoneurons. The levels 

of β-actin mRNA and protein in the growth cones but not the cell bodies are lower in Smn-/-

;SMN2 motoneurons, indicating that there is a defect in the transport of the β-actin mRNA 

containing transport mRNP. We investigated whether the reduction of SMN in the 

motoneurons isolated from Smn-/-;SMN2 E14 embryos leads to defects only in the transport 

or in local protein synthesis as well. For this, motoneurons from Smn+/+;SMN2, Smn+/-;SMN2 

and Smn-/-;SMN2mouse embryos were prepared from E14 littermates, infected with 

MyreGFP3’UTR (β-actin) virus and cultured on Laminin 111 or Laminin211/221 coated 

micro-dishes. The FRAP experiment for analysis of local translation was done as described 

in the methods section. As shown in figure 22 b, there is markedly reduced local translation 

in the growth cones of Smn+/+;SMN2 mouse motoneurons when plated of Laminin211/221 as 

compared to Laminin111. This indicates that local protein translation of β-actin is influenced 

by an external signal from Laminin.  
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Figure 22 A) Fluorescence recovery of bleached MyreGFP3’UTR (β-actin) transfected Smn+/+;SMN2 

motoneuron growth cone cultured on Laminin111. B) The quantification of the fluorescence intensity after 

bleaching and analysis of recovery over 60 min in growth cones of Smn+/+;SMN2 motoneurons cultured 

on Laminin111 (black, n=8) and Laminin211/221(green=8). C) The quantification of the fluorescence 

recovery after bleaching over 60 min in growth cones of Smn+/-;SMN2 motoneurons cultured on 

Laminin111 (black, n=8) and Laminin211/221(green , n=6). D) The quantification of the fluorescence 

recovery after bleaching over 60 min in growth cones of Smn-/-;SMN2 motoneurons cultured on 

Laminin111 (black, n=12) and Laminin211/221(green, n=4). 
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The question of how reduced SMN levels regulate the local translation of β-actin mRNA was 

addressed by studying local translation in Smn+/-;SMN2 cells.  As can be seen from figure 

22c, there is very minimal local protein synthesis taking place in the Smn+/-;SMN2 motor 

neuron growth cones plated on Laminin111 where as the Smn+/-;SMN2 motoneurons plated 

on Laminin211/221 show much higher recovery in the growth cone.  

The recovery in the growth cones of Smn-/-;SMN2 motoneurons plated on LLaminin111 was 

much less as compared to the ones plated on Laminin211/221 as shown in figure 22d. 

Therefore, in case of the Smn-/-;SMN2 motoneurons plated on Laminin211/221, there was 

much higher recovery and the deregulation was much more severe as compared to Smn+/-

;SMN2 motoneurons. It was difficult to estimate the recovery in the growth cones of Smn-/-

;SMN2 motoneurons owing to the fact that they had very small growth cones and in several 

cases there was a rapid extension of the axon length within the time course of the 

measurement after photo bleaching. 

This shows that the local protein synthesis in the growth cones of mouse motoneurons is a 

tightly regulated phenomenon and is sensitive to external signaling as well as to levels of 

SMN in the motoneurons.  Inorder to understand the surprising results obtained for local 

protein synthesis and to gain better insight into  the role of SMN in the local protein 

synthesis, we transduced the motoneurons with a lentiviral construct containing only the ZIP 

code (54 nt directly following the stop codon in the 3’UTR of β-actin mRNA). The ZIP code is 

known to be necessary and sufficient for the translocation of the mRNA to the periphery 

(Kislauskis, Zhu et al. 1994). Besides, the SMN-hnRNP-R protein complex is known to bind 

the 3’UTR of β-actin at a region other than the ZIP code. Thus the local protein synthesis of 

this construct would not be sensitive or less sensitive to alterations of SMN levels. 
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Figure 23 A) Fluorescence recovery of bleached MyreGFPZIP (β-actin) transfected Smn+/+;SMN2 

motoneuron growth cones cultured on Laminin211/221. B) The quantification of the fluorescence 

recovery after bleaching over 60 min in growth cones of Smn+/+;SMN2 motoneurons cultured on 

Laminin111 (magenta, n=8) and Laminin211/221 (khakhi=8) . C) The quantification of the fluorescence 

recovery after bleaching over 60 min in growth cones of Smn+/-;SMN2 motoneurons cultured on 

Laminin111 (magenta, n=8) and Laminin211/221(khakhi , n=6). D) The quantification of the fluorescence 

recovery after bleaching over 60 min in growth cones of Smn-/-;SMN2 motoneurons cultured on 

Laminin111 (magenta, n=6) and Laminin211/221(khakhi, n=8). 
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FRAP was carried out with the standardized method in the motoneurons transduced with a 

MyreGFP-ZIP construct.Figure 23a shows a representative image sequence of the 

SMN+/+;SMN2 motoneurons cultured on Laminin211/221 and shows no significant recovery 

in growth cones. As can be observed in the figure 23b, the Smn+/+;SMN2 showed higher 

recovery when plated on Laminin111as compared to the recovery on Laminin211/221, 

whereas the recovery in the growth cones of Smn+/-;SMN2 motoneurons(Figure 23c) and the 

Smn-/-;SMN2 (Figure 23D) growth cones was nearly absent on either of the Laminins. This 

indicates that although SMN is important for the regulation of translation of the 

MyreGFPZIP(β-actin) construct, it is subjected to a different mechanism of regulation as 

compared to MyreGFP3’UTR(β-actin). 

 

5.7 Standardization of in situ against eGFP with LNA probes. 

In 2003, Rossoll et al. showed that there was a reduction in the amount of β-actin mRNA in 

the growth cones of the Smn-/-;SMN2 motoneurons as compared to the Smn+/+;SMN2 

motoneurons (Rossoll et al., 2003). In order to investigate whether the local protein synthesis 

is also influenced by SMN protein levels, , we optimized techniques for in situ hybridization of 

eGFP RNA as a tool to investigate the localization of this mRNA.  HEK293T cells were 

transduced with the lentiviral construct expressing eGFP under a CMV promotor and were 

grown for 48hr. The cells were washed and fixed with 4% PFA and then treated with 0.3% 

triton X-100 followed by pepsin treatment (see method section). As shown in figure 5.11a, 

specific signals were obtained for eGFP mRNA in HEK293T cells with an anti-eGFP probe, 

whereas there was no signal with the scrambled probe. Figure 5.11b shows the 

quantification of this experiment. 
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Figure 24 A) Anti eGFP in situhybridization with LNA probes in HEK293 T cells transduced with eGFP 

expressing lentivirus under the CMV promoter (upper panel) and B)In situhybridization with a scrambled 

probe in HEK293T cells transduced with eGFP expressing lentivirus (lower panel). Figure 24 C) 

Quantification of the anti-eGFP in situhybridization signal vs the scrambled signal in HEK 293T cells.  
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Figure 25A)In situhybridization against eGFP using eGFP specific probe. This figure shows the signal  in 

the cell body of CD-1WT motoneurons transduced with MyreGFP3’UTR (β-actin) (018rr) (upper left), eGFP 

scrambled probe in CD-1 motoneurons transduced with MyreGFP3’UTR (β-actin) (lower left), eGFP probe 

in CD-1 untransduced motoneurons(upper right) and scrambled probe in CD-1 untransduced 

motoneurons.  B)Quantification of the in situhybridization signal in the cell body . 

 



Results  

 

67 
 

Treatment with  0.3% Triton X-100 in combination with pepsin destroyed the axons of the 

motoneurons and therefore  was not suitable for the experiment. CD-1 WT motoneurons 

transduced either eGFP expressing lentivirus cultured on Laminin111 for 5DIV were used for 

standardizing the in situhybridization conditions. Subsequently,0.1% triton X-100 was used 

for the permeabilization in combination with pepsin. As shown in figure 25a, there is a 

specific signal for eGFP mRNA in the motoneurons expressing eGFP, whereas the 

untransduced neurons and neurons treated with scrambled control showlow signal intensity. 

Figure 25b shows the quantification of the mean intensity of in situhybridization signals.  

5.8 Localization of the eGFP containing mRNA 

CD-1 WT motoneurons were transduced with MyreGFP3’UTR(β-actin), MyreGFPZIP(β-

actin), MyreGFP or eGFPand were cultured on Laminin111 for 5DIV. The cells were then 

fixed with 4%PFA and in situ hybridization was carried out using eGFP specific probes or 

scrambled probe as a control. As shown in Figure 26, there is a distinct in situhybridization 

signal present in the axons of motoneurons transduced with either MyreGFP3’UTR(β-actin) 

(figure 26a) or MyreGFPZIP(β-actin) (figure 26b), but there was only a low in 

situhybridization signal in the axons of motoneurons transduced with MyreGFP (figure 26c) 

virus or eGFPcontaining virus (figure 26d). The quantification of signals in the cell body of 

motoneurons (figure 26e) revealed high expression of the eGFP under the CMV promoter 

whereas the ubiquitin promoter driven constructs showed lower expression in the cell body. 

Figure 27f shows the quantification of the in situhybridization signal in axons. 
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Figure 26 A) In situhybridization against eGFP usingna eGFP specific probe for detection in cell bodies 

and axons of CD-1WT motoneurons transduced with MyreGFP3’UTR (β-actin). B) MyreGFPZIP (β-actin). C) 

MyreGFP D) eGFP (PGJ eGFP). E) Quantification of the insitu hybridization signal in the cell body and F) 

axons of CD-1 WT motoneurons with afore mentioned virally transduced CD-1 WT motoneurons. 
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5.9 Localization of mRNA is affected by SMN levels but not by Laminin signaling 

To further investigate if SMN and Laminin signaling influence the localization of the β-actin 

mRNA, Smn+/+;SMN2 , Smn+/-;SMN2 and Smn-/-;SMN2 were plated on either Laminin111 or 

Laminin211/221 after transducing the motoneurons with MyreGFP3’UTR(β-actin). The cells 

were cultured for 5DIV, and thenin situhybridization against eGFP was performed. 

 

Figure 27 Transport of mRNA is dependent on SMN levels but not on the signaling from Laminin. A) 

Representative image of antieGFP in situhybridization in Smn+/+;SMN2 B) Smn+/-;SMN2 and C) Smn-/-

;SMN2 motoneurons cultured on Laminin111(left) and Laminin211/221. The lower panelsshowsimages of 

the axon at higher magnification. Quantification of eGFP in situhybridization signal in D) the cell body and 

E) the axon of motoneurons with aforementioned genotype on Laminin111 and Laminin211/221. 

.
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As shown in Figure 27a, 27b and figure 27c, there is decreased intensity of the 

MyreGFP3’UTR(β-actin) signal in the axons of the Smn+/-;SMN2 cells which is further 

decreased in the axons of Smn-/-;SMN2 cells as compared to Smn+/+;SMN2 cells. However, 

the axonal localization of the MyreGFP3’UTR(β-actin) mRNA is not dependent on the signal 

from Laminin. Figure 27d shows the quantification of the in situhybridization signal intensity 

in the cell body of motoneurons cultured on Laminin111 and Laminin211/221. It can be 

observed that the expression levels are similar in the cell body irrespective of the genotype 

and the type of Laminin on which the cells were cultured. Figure 27e shows the quantification 

of the in situhybridization signal intensity in the axons of the respective motoneurons. 

Therefore it can be concluded that the localization of the MyreGFP3’UTR(β-actin) mRNA is 

dependent on the SMN level in the cell but independent of the external signal coming from 

Laminin. 
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5.10 Axon length measurement 

Smn+/+;SMN2 motoneurons plated on Laminin111 have longer axons as compared to Smn-/-

;SMN2 motoneurons, In contrast, on Laminin211/221, the Smn-/-;SMN2 motoneurons have 

longer axons as compared to Smn+/-;SMN2tg. The status of axon length in the Smn+/-;SMN2 

motoneurons is not known. To investigate this, Smn+/+;SMN2, Smn+/-;SMN2 and Smn-/-

;SMN2 cells were cultured on Laminin111 and Laminin211/221. The motoneurons were 

stained with anti-Map2 and anti-Tau antibodies and  axon length was measured using the 

Leica SP5 10X objective. As can be seen in figure 5.13.1, there was no difference in  axon 

length in the Smn+/-;SMN2 cultured on Laminin 111 or Laminin211/221. 

 

Figure 28 A) Axon length of Smn+/+;SMN2, Smn+/-;SMN2 and Smn-/-;SMN2 cells cultured on Laminin111 B) 

Axon length of motoneurons cultured on Laminin111 and Laminin211/221 at 5DIV 
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5.11 Endogenous actin isoform expression 

In 2011, Cheever et al. reported that the motor neuron specific knockout of the β-actin gene 

in mouse did not show any disease phenotype, indicating that β-actin is not essential for the 

function or regeneration of motor axons. This investigation prompted that the loss of β-actin 

could be compensated by transport and/or translation of other actin isoforms i.e. γ-actin or α-

actin or the actinß2Like gene product. Inorder to further investigate this possibility, 

compartmentalized cultures of motoneurons were performed by Lena Saal and RNA was 

isolated from cell body and axonal compartments. The isolated RNA was linear amplified and 

a 1:10 dilution was used as a template to perform realtime quantitative PCR. For this, isoform 

specific and intron spanning primers were designed and the PCR conditions were 

standardized. Real time quantitative PCR was performed on whole cell cDNA using primer 

pairsfor α-actin (NM_009606.2),β-actin (NM_007393.3),γ-actin (NM_009609.2) and β2like 

actin (NM_175497.3). GAPDH was used as a control. 

Figure 29a shows that the crossing point for the α-actinin the cellbody as well as in the axon 

is around 32nd cycle, which is an unexpected result since the α-actin mRNA is thought to be a 

highly expressed mRNA as can be seen from the in situhybridization result and from 

literature (Kislauskis, Li et al. 1993). Also the presence of mRNA in the axonal compartment 

is an unexpected result since from the in situhybridization results (figure 30), it is not 

detected in the axons of the motoneurons. We did agarose gel electrophoresis of the PCR 

amplicon and found that there was presence of multiple bands in the amplicon (Figure 29F). 

Upon sequencing, it was found that there were multiple amplicons containing the intron as 

well suggesting that there is genomic DNA contamination in the sample. In case of β-actin, 

the cell body cDNA shows a crossing point around 17th cycle which shows that it is 

expressed highly in the cell body. The axonal cDNA shows a crossing point at 32nd cycle 

showing the presence of the mRNA in the axonal chamber (figure 29B). In case of γ-actin the 

cell body crossing point is comparable to that of β-actin (figure 29C), but the water control 

also shows the crossing point at 32nd cycle along with the axonal cDNA, indicating that there 

might be unspecific amplification, but the sequencing results showed the identity of the PCR 

amplicon as γ-actin which is an unexpected result. In case of the β2Like actin isoform (figure 

29D), the cell body showed the crossing point at 32nd cycle and the axon as well as here as 

the α-actin and β2Like actin cell body show crossing point around 32nd cycle, indicating that 

there is low expression of these two actin isoforms. Alternately, it may be due to the genomic 

DNA contamination. But the level of mRNA for β and γ actin isoforms and GAPDH is similar 

in the axonal compartment (figure 29E). This is an unexpected result since the β-actin mRNA 

in the axonal compartment is expected to be enriched and therefore the crossing point at 
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lower cycle number. In order to further analyse the results obtained by the Real time PCR, 

unamplified cDNA from the cell body and the axonal compartment needs to be performed.  

 

Figure 29Real time quantitative PCR of A) α-actin, B) β-actin,C) γ-actin D) β2Like actin and E) GAPDH with 

cDNA from cell body and axonal compartment of motoneurons cultured in compartmentalised Xona 

chambers after linear amplification.F) Agarose gel analysis of the amplicon after real time quantitative 

PCR used for sequencing. The arrow points at multiple bands obtained by PCR which was also detected 

in the sequencing as intron containing DNA.  
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5.11.1 In situhybridizationfor analysis of subcellular distribution of endogenous 

actin isoforms 

Inorder to see if the distribution of the different actin isoforms in motoneurons is altered due 

to SMN deficiency, we performed in situ hybridization against endogenous α-actin, β-actin 

and γ-actin isoforms. The LNA probes were designed from sequences in the 3’UTR of each 

of these isoforms because the coding region is highly similar for all actin isoforms. 

Smn+/+;SMN2, Smn+/-;SMN2 and Smn-/-;SMN2 cells were cultured on Laminin111 for 5DIV 

and in situhybridization was performed. As shown in Figure 30, the α-actin mRNA is localized 

in the cell body but not in axons of the Smn+/+;SMN2 motoneurons and the signal is not 

altered in Smn+/-;SMN2 cells and Smn-/-;SMN2 motoneurons.  



Results  

 

75 
 

Figure 30 In situhybridization signal of endogenous α-actin mRNA in A) Smn+/+;SMN2, B)Smn+/-;SMN2 and 

C) Smn-/-;SMN2 motoneurons. D) Quantification of in situhybridization signals in the cell body and E) 

axon. 

In case of β-actin, as can be seen from Figure 31, the in situhybridization signal is present in 

the cell body and axons of Smn+/+;SMN2 motoneurons. The signal intensity is reduced in 

axons of Smn+/-;SMN2 motoneurons and in Smn-/-;SMN2 axons, it is further reduced. 

Therefore, the level of β-actin mRNA in axons depends on the SMN levels in the cells. 
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Figure 31In situhybridization signal of endogenous β-actin mRNA in A) Smn+/+;SMN2, B) Smn+/-;SMN2 and 

C) Smn-/-;SMN2 motoneurons. D) Quantification of the in situhybridization signal in the cellbody and E) in 

the axon of motoneurons.  
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In case of γ-actin as with α-actin, the in situ hybridization signal was restricted to the cell 

body irrespective of the genotype of the motoneurons (figure 32).  

 

 

Figure 32In situhybridization signal of endogenous γ-actin mRNA in A) Smn+/+;SMN2, B) Smn+/-;SMN2 and 

C) Smn-/-;SMN2 motoneurons. D) Quantification of the in situhybridization signal in cellbody and E) in the 

axon of motoneurons.  
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5.12 Cloning of a reporter construct for α-actin 3’UTR 

Inorder to see if there is any local translation of α-actin mRNA, we cloned the 3’UTR of α-

actin in a pcDNA3 shuttle vector containing MyreGFP. For this purpose, MyreGFP3’UTR(β-

actin) construct in the pcDNA shuttle vectorwasdigested using NheI and EcoRI. The 3’UTR 

of α-actin was PCR amplified from the cDNA using NheI forward primer and EcoRI reverse 

primer and then ligated into the pcDNA3 shuttle vector. The MyreGFP3’UTR(α-actin) was the 

cut out with BamHI and EcoRI double digestion and then ligated to the FuVal vector. The 

final construct was sequenced and used for viral packaging. Figure 33 shows the schematic 

map and the expression pattern of the virally transduced HELA cells. 

 

Figure 33 Schematic map of FuVal-MyreGFP3’UTR (α-actin) construct and confocal image of HELA cells 

expressing FuVal-MyreGFP3’UTR (α-actin) 024RR. 
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5.13 Production of active Sonic Hedgehog 

Cell culture is an important tool in biological science to address fundamental questions of the 

molecular as well as implicational basis of the disease progression. Owing to the limited 

number of primary motoneurons and the relative heterogeneity of the cultures that limit 

biochemical analyses, embryonic stem cell derived motoneurons appear as a useful tool. For 

ES cell derived motoneurons, retinoic acid and sonic hedgehog are needed as differentiation 

factors. Therefore, sonic hedgehog was produced from recombinant E.coli expression of N-

terminal fragment of sonic hedgehog. In vitro palmitoylation was done after purification 

inorder to have active sonic hedgehog. For this purpose, the E. coli strain BL21 with the pET-

28-Shh expression plasmid was used with a His tag at the N-terminus for subsequent 

purification of the recombinant protein by Nickel affinity column purification. E.coli was grown 

overnight in Magic medium (Invitrogen) containing the antibiotics Chloramphenicol and 

Kanamycin. The cells were harvested by centrifugation and resuspended in lysis buffer. They 

bacteria were lysed by sonication and then centrifuged. The supernatant was loaded on Ni 

column and the purified protein was eluted. Figure 34A is a representative curve of the Ni 

column loading of bacterial lysate in the FPLC. Figure 34B is a representative HPLC run for 

the Ni column loading and elution. 

 

 
 Figure 34A)Ni column loading of bacterial lysate containing Shh B)Ni column elution of purified His-

tagged Shh 

 

The purified protein was subjected to buffer exchange by gel filtration column in order to 

exchange the buffer suitable for the Factor Xa treatment to remove the His tag present on 

the N-terminal of the purified Shh. Figure 35A is a representative HPLC run for the buffer 

exchange.  
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Figure 35HPLC run for the buffer exchange. Peak 1 is the purified Shh which was collected in various 

fractions. Peak 2 and 3 is the imidazole peak and Peak 3 contains salt 

 

The protein was then treated with FactorXa. The protein was then dialysed against the buffer 

for palmitoylation. Palmitoylation was carried out by adding a 10 times molar excess of 

Palmitoyl-CoA and 1% β-octyl-glucopyranoside in the protein sample at 280C for 24hrs. A 

final Buffer exchange was performed and purified active sonic hedgehog was lyophilized for 

subsequent use. Figure 35B is a representative HPLC run for the final desalting. 

 

 

 

Figure 36 HPLC run of the final desalting of active sonic hedgehog. Peak 1 represents Shh that was 

collected as different fractions. Peak 2 containsβ-octyl-glucopyranoside and  Peak 3 DTT 
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Samples were collected at each step of purification and loaded on SDS PAGE and stained 

with Coomassie to test the purity of each fraction. Figure 37shows a representative SDS 

PAGE with samples from various purification steps.  

 

Figure 37 Representative SDS PAGE analysis after Coomassie staining of Shh at different stages of 

purification.B) anti-Shh western blotting to show the identity of he purified protein.(Figure prepared by Dr. 

RobertBlum). 

5.14 Differentiation of embryonic stem cells into motoneurons 

Embryonic stem cells were first propagated with feeder cells and propagated for 3 passages 

at high densities and then without feeder layer. The cells were then subjected to aggregate 

formation by propagating in ES cell differentiation medium without differentiation factors. The 

cell aggregates were then subjected to differentiation with retinoic acid and sonic hedgehog. 

The cell aggregates were then trypsinised and subjected to panning with a p75NTR antibody 

that specifically binds motoneurons. The cells were then plated on Laminin coated 

coverslips. Figure 38 shows the outline of the procedure for ES cell differentiation. For a 

detailed protocol, please refer the methods and material section 2.3.18. For 

immunostainings, 3000 to 5000 cells per coverslip ( 10mm) were plated in a volume of 100 

µl and incubated at 37°C in an incubator. The cells were allowed to attach for 1 hour and 

Neurobasal full medium (containing neurotrophic factors CNTF and BDNF at 10 ng / ml) was 

added after cells had attached to the coverslip. The cells were cultured for 48 hours, washed 

with phosphatebuffered saline twice and fixed with 4 % paraformaldehyde. Antibody 

stainingtechniques were performed using standard techniques. 
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Figure 38Outline of ES cell differentiation into motoneurons. A)Morphology of ES cells 1 day after the 

third splitting without feeder cells. B) Cellular aggregates before dissociation. C) As shortly after 

dissociation. D) Panning and washing off the unbound cells. E) Differentiated cells without panning and 

F) differentiated cells with panning (Figure prepared by Dr. RobertBlum). 
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Typically, 20-35% of the cells are motoneurons when differentiated in vitro(Wichterle, 

Lieberam et al. 2002). The cell aggregates after trypsination, when put for panning can be 

compared with the cells obtained after washing the panning plate thoroughly. Only 10% of 

the cells remain attached to the panning plate .Figure 38 shows an outline of the procedure 

and highlights the difference in the number of cells on the panning plates after and before 

washing the panning plate. With the help of panning, we are also able to eliminate the cell 

aggregates which sometimes remain even after trypsinization and when plated on Laminin 

coated coverslips or culture dishes. These give rise to clusters of cells with long axons but 

also gives rise to a mixed population of cells (Figure 38E) and cannot be used for any further 

analysis.  

p75 positive cells are present at a low concentration (about 20 %) if you omit the panning 

step (Figure 39B & C). However, when the panning step is included, nearly 90% of the cells 

are strongly p75 positive cells, which can be observed by immunostaining (Figure 39A & C). 

In addition, after panning there is 60% increase of the cells which are p75 and ISLET 1/2 

double positive (Figure 39C).  
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Figure 39A)Anti p75 and Islet 1/2 staining of ES cell derived motoneurons without panning and B) with 

panning step included. C) Quantification of the Islet 1/2  positive cell with and without panning of primary 

as well as ES cell derived motoneurons. (Figure prepared by Dr. Robert Blum, Quantification by Dr. 

Thomas Herrmann) 
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F

 

Figure 40A) Axon length and B) dendrite length of primary motoneurons as compared to ES cell derived 

motoneurons. (measurement done by Dr.Thomas Hermann) 

 

These cells will give rise to a fairly homogenous population of motoneurons.Taking into 

consideration the comparison of ES cell derived motoneurons and primary motoneurons in 

our previously described protocol (Wiese et al., 2010), the Es cell derived motoneurons have 

a much longer axon length 24 hours after plating as compared to the 7 DIV 

motoneurons.(P<0.0001)m, as shown in Figure 40A. Average dendrite length is also 

significantly longer (p=0.0002) than in primary motoneurons (Figure 40B). The primary 

motoneurons can survive for upto 7 days in culture whereas the survival of the ES cell 

derived motor neuron declines within 3 days in culture. motoneuronsmotoneurons 
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6 Discussion 

6.1 Optimization of construct for studying local translation in motoneurons 

Local translation of peripherally localized mRNA and its regulation in response to external 

cues is an important means of compartmentalizing signaling in neurons. To study this in 

motoneurons and how it is deregulated in degenerative motor neuron diseases is an 

important question for understanding the underlying disease mechanisms. Local translation 

of β-actin has been studied in various cell types using membrane anchored destabilized 

eGFP expressing constructs using standard transfection methods such as lipid micro vesicle 

based DNA delivery (lipofectamin), Calcium phosphate based delivery or sindbis virus based 

delivery (Wu, Hengst et al. 2005) . Motoneurons are especially susceptible to the toxicity due 

to these delivery methods. Based on this limitation, getting healthy motoneurons expressing 

the gene of interest was a challenge. Owing to this, local translation was not demonstrated in 

motoneurons so far. We devised and optimized a combination of suitable vector and gene 

delivery methods for motoneurons in order to demonstrate local protein synthesis. We 

expressed an eGFP reporter construct with 3’UTR of β-actin mRNA under the control of an 

ubiquitin promoter ensuring low levels of expression and therefore preventing the mis-

targeting of the mRNA expressed. We also used a myristoylationsignal sequence at the N-

terminus of the eGFP leading to membrane anchoring of the newly synthesized eGFP, 

minimizing the recovery of fluorescence due to diffusion. Analysis of various methods of 

gene delivery such as Calcium precipitation, lipofectamin 2000-mediated transfection and 

magnetofection revealed that these methods were toxic to the cells and that lentiviral based 

delivery is a viable option. The use of destabilized eGFP instead of stable eGFP for the study 

was also tested but it was found that although the cells received the destabilized eGFP 

expressing virus (see figure 14), there was rapid down regulation of the expression of the 

destabilized eGFP when delivered as alentiviral construct. Therefore, we have used a 

myristoylated eGFP reporter construct under ubiquitin promoter control as a lentivirus for the 

study of local translation in motoneurons. 

6.2 Local translation in mouse motoneurons 

As shown in the result section 3.4, by use of the reporter construct in combination with 

FRAP, we could investigatelocal translation in the growth cones of mouse motoneurons. 

There is recovery of the fluorescence intensity after bleaching in the growth cone of the 

MyreGFP3’UTR (β-actin) reporter expressing motoneurons where as the cells expressing 

MyreGFP did not show any significant recovery. The recovery was abolished in the presence 

of translational inhibitors such as cycloheximide, anisomycin and rapamycin, showing that 

the recovery in the fluorescence intensity is due to local translation at ribosomes. This 
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method was then used as a tool to see how the external signalling in motoneurons is affected 

in healthy as well as diseased motoneurons.  

6.3 Transport of β-actin mRNA to axon growth cones and role of SMN 

The SMN protein is part of a complex that plays a role in the assembly of spliceosomal 

snRNP particles. It is expressed in all cell types, but reduced levels due to homozygous 

mutation or deletion of the SMN1 gene affects exclusively motoneurons. This raises a 

puzzling question in the field of SMA. The presence of SMN in the axon growth-cone along 

with β-actin mRNA and its interaction with other mRNP proteins such as hnRNP-R and 

Gemin2-3 in the axon growth cone hints towards a neuron specific role of the SMN. It has 

been demonstrated by Rossoll et al.2003 that there are reduced levels of β-actin mRNA in 

the axonal growth cones of Smn-/-;SMN2 motoneurons hinting towards the role of SMN in the 

transport of β-actin mRNA towards the axon growth cones.  

Although the levels of β-actin mRNA are reduced in motoneurons of Smn-/-;SMN2, they 

extend longer axons when cultured on Laminin211/221 as compared to the Smn+/+;SMN2 

neurons(Jablonka, Beck et al. 2007). The external cue derived from the extra-cellular matrix 

component Laminin is impaired in the axonal growth cones of the Smn-/-;SMN2 

motoneurons. Smn+/+;SMN2 cells, when cultured on Laminin211/221 have a higher 

frequency of spontaneous calcium transients as compared to Smn+/+;SMN2 cells cultured on 

Laminin 111. This increase in spontaneous calcium transients is abolished in Smn-/-;SMN2 

cells. This indicated that the Laminin signalling is deregulated in the Smn-/-;SMN2 cells  

6.4 Analysis of local translation in response to Laminin 1 and Laminin 2 and role of 

SMN in motoneurons 

We have attempted to further characterize the pathophysiology of SMA in this study. We 

monitored the levels of local translation in axonal growth cones of mouse motoneurons from 

Smn+/+;SMN2, Smn+/-;SMN2 and Smn-/-;SMN2 cells cultured on Laminin111 or 

Laminin211/221. The study revealed that there is deregulation of Laminin signalling 

depending on the levels of SMN in motoneurons, affecting the local translation rate of the β-

actin mRNA. As can be seen from the results in the section 3.5, there is increased local 

translation of the β-actin mRNA in growth cones of Smn+/-;SMN2 motoneurons cultured on 

Laminin211/221 which is further exaggerated in the Smn-/-;SMN2 motoneurons. This was an 

unexpected finding since we observed that although there is reduced β-actin mRNA and 

increased translation in the growth cones of Smn-/-;SMN2 motoneurons cultured on 

Laminin211/221, there is decreased β-actin protein in the growth cones of Smn-/-;SMN2 cells 

cultured on either Laminin111 or Laminin211/221 according to Jablonka et al. 2007. One 

possible explanation for this observation was that there was a differential sorting of the 

reporter construct and that it did not behave like the endogenous β-actin mRNA distribution. 
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To test this, we performed in situ hybridization against eGFP mRNA. The in situ hybridization 

of MyreGFP3’UTR (β-actin) reporter mRNA reveals that there is decreased translocation of 

eGFP containing mRNA into the growth cones of the Smn-/-;SMN2, which is consistent with 

the previous findings and therefore it can be ruled out that the reporter construct is sorted 

differentially as compared to endogenous β-actin mRNA. The decreased signal intensity of in 

situ hybridizations in Smn+/-;SMN2 motoneurons shows that the transport machinery of the 

cell is critically dependent on the levels of SMN protein.Here we find that the transport of the 

β-actin mRNA is not dependent on the external cue derived from Laminin since the levels of 

in situ hybridization signals is comparable on Laminin111 and Laminin211/221. However, the 

signal is markedly reduced in the axons depending on the levels of SMN in the cells. 

6.5 Analysis of local translation of reporter constructs with ZIP code in motor 

control and SMA motoneurons 

A study by Ghosh et al. 2008 (Ghosh, Soni et al. 2008)investigated the translocation of 

different species of β-actin mRNA into neurites in PC12 cells which either contained the full 

length 3’UTR of β-actin mRNA or only the ZIP code of the 3’UTR of β-actin mRNA. The 

translation of the longer full length version of β-actin mRNA was shown to be upregulated by 

miRNA binding to its 3’UTR whereas the translation of the shorter mRNP containing only the 

ZIP code was differentially regulated. Besides, it is known that SMN interacts with the 3’UTR 

of β-actin mRNA as a complex with hnRNP-R which binds to the mRNA at a site distinct from 

the ZIP code (Rossoll, Jablonka et al. 2003; Glinka, Herrmann et al. 2010). Therefore it was 

of interest to study the regulation of local translation of an mRNA which can be targeted but 

may not depend on the levels of SMN for its translational regulation. Our study with a 

MyreGFPZIP reporter showed that the mRNA derived from the ZIP code containing construct 

was transported to the axons but the local translation was abolished in Smn+/-;SMN2 as well 

as Smn-/-;SMN2 cells irrespective of the Laminin on which the motoneurons were cultured. 

This indicates that the regulation of translation of MyreGFPZIP in response to Laminin 

signalling is distinct from that of the MyreGFP3’UTR (β-actin). It would be of great interest to 

see if indeed a different species of β-actin transcript exists physiologically in motoneurons as 

well. The physiological role of such a transcript may help to better understand the molecular 

interplay which governs the axon extension and SMA pathology.  

6.6 Transport and translation of other actin isoforms in SMA 

In 2011 Cheever et al. (Cheever, Olson et al. 2011) reported that the motor neuron specific 

knockout of β-actin gene in mice did not show any disease phenotype indicating that β-actin 

is not essential for the neuronal function or regeneration of motor axons after injury. This 

observation could be due to the possibility that the loss of β-actin is compensated by 

transport and/or translation of other actin isoforms i.e. γ-actin or α-actin or the actinβ2Like 
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gene product.Our insitu hybridization experiments with 3’UTR specific LNA probes revealed 

perinuclear localization of α-and γ-actin mRNA in the mouse motoneurons whereas β-actin 

mRNA was present also in the axons of motoneurons. Previous findings ofHill et al. 1993(Hill 

and Gunning 1993), Bassell et al. 1998(Bassell, Zhang et al. 1998) and Willis et al. 2005 

(Willis, Li et al. 2005)showed that γ-actin is not transported to the periphery or to neurites in 

neurons. Kislauskis et al. showed that α-actin mRNA is also not transported to the 

periphery(Kislauskis, Li et al. 1993). Our insitu hybridization results are consistent with the 

previous findings of Hill et al. 1993 as well as Kislauskis et al 1993. The sequencing analysis 

of real time quantitative PCR of α-actin showed the amplification of an additional amplicon 

including the intron. This indicates that there was genomic DNA contamination in the cDNA. 

The cycle number for the β-actin in the axonal compartment was also found to be the same 

as that of γ-actin and GAPDH which are not transported to the axons. In case of actinβ2Like 

quantification, it can be interpreted that the expression of this transcript is either very low or 

not expressed and the amplification was due to the genomic DNA contamination. Further 

experiments using different primers and unamplified cDNA needs to be done in order to 

interpret the results obtained by the real time quantitative PCR in this study.  

β- actin complete knock out is embryonic lethal(Bunnell, Burbach et al. 2011) where as γ-

actin knockout mice are viable but show delayed development and die 48hr postnatal 

(Belyantseva, Perrin et al. 2009; Bunnell and Ervasti 2010). These studies also highlighted 

that the β-actin-/- mice derived primary embryonic fibroblasts showed defects in the cell 

migration. An interesting observation from the same lab showed that motoneuron specific 

ablation of β-actin in mice are healthy and viable(Cheever, Olson et al. 2011). Total actin 

protein concentration was not found to differ in any of these models indicating that each actin 

isoform has a unique cellular functions which may not be compensated(Perrin and Ervasti 

2010). Cheever et al. argued 2011that if the β-actin mRNA was critical for the neuronal path 

finding, recovery after injury and formation of a proper NMJ, then the loss of the β-actin in 

motoneurons should lead to SMA like degenerative phenotype, but these mice are healthy. 

These findings indicate that β-actin loss specifically in motoneurons may be compensated by 

other actin isoforms in vivo. Alternatively studies by Court et al 2008 showed that there is 

transfer of ribosomes from Schwann cell to axon of motoneuron in vivo (Court, Hendriks et 

al. 2008). An alternative explanation for the above observation may come from several new 

findings which give convincing evidence of cross talk between neighbouring cells(Twiss and 

Fainzilber 2009). Court et al. observed 2008that in a Walleriandegeneration mouse model of 

motor neuron degeneration following injury, there was increased transfer of fluorescently 

labeled ribosomes in desomatized axons from neighbouring Schwann cells in vivo, giving 

evidence of the transfer of the translational machinery from Schwann cells to axons(Court, 

Hendriks et al. 2008). Other studies have shown the presence of exosomes which contain 



Discussion  

 

90 
 

distinct sets of mRNA and proteins from that of the recipient cells and thus hint towards the 

possibility that proteins and mRNA can be derived from neighbouring cells (Valadi, Ekstrom 

et al. 2007) and this transfer of cellular components is not restricted to a certain cell 

type(Twiss and Fainzilber 2009). Transport of β-actin mRNA being an important component 

for regulation of various cellular processes, it can be speculated that the mRNA is derived 

from the ensheathing Schwann cells or target muscle cells in the Cheever et al 2011 study. 

Interestingly,(Park, Maeno-Hikichi et al. 2010) study on a motor neuron specific reduction in 

the SMN levels revealed that these mice (Olig2CreSMA mice) show an age-dependent 

attenuation of early functional deficits observed. The authors of this study argue that a cross 

talk exists between the terminal Schwann cells and target muscles with a “wild type” SMN 

level to the motoneurons which specifically have reduced SMN thus resulting in a 

homeostatic compensation at a later age.  

6.7 Regulation of β-actin local translation by mRNA binding proteins 

Previous studies on the transport of β-actin mRNA revealed that ZBP1 (ZIP code binding 

protein-1) is essential for the localization of β-actin mRNA (Oleynikov and Singer 2003) in 

axons. Interfering with the interaction of ZBP-1 and its recognition sequence ZIP code 

causes mis-localization of β-actin mRNA from the leading edge of polarized chick fibroblasts. 

Besides the involvement of ZBP-1 in the transport of β-actin mRNA to the periphery of the 

cells and maintenance of the cell polarity in chick fibroblasts, it has been shown to be 

involved in the regulation of the translation of β-actin mRNA in response to netrin-1 and 

BDNF signalling in neurons (Sasaki, Welshhans et al. 2010). Taking these findings together, 

it can be seen that ZBP-1 acts both for transport as well as regulation of the translation of β-

actin mRNA. Another example is that of the FMRP (Fragile X mental retardation 

protein)which is associated with RNA trafficking granules and translation in dendritic 

spines(Bassell and Warren 2008). FMRP has been characterized as an mRNP component 

for targeting several mRNAs to dendritic compartments. It also n regulates the translation of 

CamKIIα mRNA in response to the mGluR5 stimulation. Mutation in fmr-1 gene is associated 

with two well-recognised syndromes that are a major cause of intellectual disability. In the 

light of these findings,it is not surprising that SMN also has a dual role i.e. in transport as well 

regulation of translation of the mRNA in response to external cues.. 

 

It has also been observed that the local translation of β-actin is dependent on activity in 

hippocampal neurons(Tiruchinapalli, Oleynikov et al. 2003) and on Ca2+ signalling for growth 

cone guidance(Yao, Sasaki et al. 2006). Further experiments involving the role of Ca2+ 

transients mediated by Laminins on β-actin local translation in Smn-/-;SMN2 motoneurons 

may reveal the convergence of signalling from different external cues to the Ca2+ dependent 

regulation of β-actin mRNA local translation.  
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6.8 Signalling pathways for regulation of local translation 

Local protein synthesis is mandatory for the regulated dynamics of growth cone extension, 

collapse and turning (Campbell and Holt 2001; Wu, Hengst et al. 2005; Hengst, Deglincerti et 

al. 2009; Holt and Bullock 2009). Rearrangements of cytoskeletal elements in growth cones 

of Xenopus retinal axons are triggered by chemotropic gradients of the guiding factors 

Semaphorin 3A (Sema3a) and Netrin-1 (Campbell and Holt 2001). When Smn protein is 

reduced in PC12 neuronal cells, profilin IIa expression is increased and a mis-regulated 

activation of the RhoA/ROCK pathway affects cytoskeletal integrity and neurite growth 

(Bowerman, Shafey et al. 2007). In an intermediate SMA mouse model, increased profilin IIa 

expression causes a decrease in the actin bundling protein plastin 3 (Bowerman, Anderson 

et al. 2009) and this might participate in disturbed actin dynamics observed in SMA model 

systems (Rossoll, Jablonka et al. 2003; Bowerman, Shafey et al. 2007; Jablonka, Beck et al. 

2007; Bowerman, Anderson et al. 2009).Based on our analyses, we can estimate the 

number of β-actin molecules that are generated per minute due to local translation versus 

transport, and correlate them to the number which may be needed for integration in the actin 

cytoskeleton. Such analyses have previously been performed with polarized chick fibroblasts 

to study the role of locally produced β-actin for crawling, These analyses show that local 

translation can provide only around 7% of the β-actin protein needed for polymerization 

(Condeelis and Singer 2005). It has been proposed, that the purpose of local translation is to 

define the site of nucleation of actin polymerization rather than affecting the rate of actin 

polymerization. This in turn may trigger various cellular pathways affecting the cytoskeletal 

network (Condeelis and Singer 2005). Our observation of upregulated local translation in 

response to Laminin211/221 signalling in Smn-/-;SMN2 cells supports the idea that the 

purpose of local translation is not to provide the raw material for the actin polymerization but 

to act as a signalling cue. 
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Fig 41 Model for the regulation of β-actin mRNA transport and local translation.  

The axonal transport and accumulation of the β-actin mRNA depends on SMN levels but is independent of 

Laminin signalling. The translation of the β-actin mRNA is regulated by Laminin signalling. A) 

Smn+/+;SMN2 motoneurons cultured on Laminin111 show normal transport of β-actin reporter mRNA that 

is translated efficiently. The motoneurons show normal axonal extension. B) Smn+/+;SMN2 motoneurons 

when cultured on Laminin211/221 show normal transport of β-actin reporter mRNA which is locally 

translated with lower efficiency. The motoneurons show normal axon termination and therefore reduced 

axon length. C) Smn-/-;SMN2 motoneurons cultured on Laminin111 show reduced transport of β-actin 

reporter mRNA and reduced translational efficiency. They exhibit defective axon elongation as compared 

to Smn+/+;SMN2. D) Smn-/-;SMN2 motoneurons cultured on Laminin211/221 show reduced transport of β-

actin reporter mRNA but increased translational efficiency and increased axonal length and a defect in 

axon termination.  
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6.9 ES cell derived motoneurons 

Primary cell cultures have been mainly used for dissecting out the pathways necessary for 

neuronal survival, differentiation and axon growth. Heterogeneity, difficulty in manipulating 

the genetic background and limited amounts of primary cells are some of the drawbacks of 

using primary neurons. Therefore, differentiation of embryonic stem cells into motoneurons 

serve as a valuable tool for the investigation of mechanisms that determine cell fate and play 

important future roles in applications ranging from regenerative medicine by transplantation 

of neurons for therapeutic purposes in neurodegenerative diseases, such as SMA and ALS, 

to drug screening efforts. Production and purification of physiologically active sonic 

hedgehog was established in order to differentiate ES cells into motoneurons. The N-terminal 

fragment of Sonic hedgehog is known to mediate all the physiological functions of Sonic 

hedgehog. The N-terminal fragment is palmitoylated, cleaved and secreted in the 

extracellular matrix where it forms a gradient of concentration. The enrichment of ES cell 

derived motoneurons can provide a homogenous population for all these studies. For 

directed differentiation of mouse embryonic stem cells into motoneurons, we compared three 

different stem cell lines E14Tg2A, J1, 159-2.  All these ESC cell lines efficiently differentiated 

to motoneurons with similar efficacy. Typically, 65-70% of the cells obtained by the described 

technique are motoneurons. Previously published protocols without anti-p75NTR panning step 

usually end up with 20-35% of ESC-derived motoneurons within these cultures (Wichterle, 

Lieberam et al. 2002). After trypsinization, cell aggregates were dissociated and processed 

for panning. Only 10% of the cells remain attached to the panning plate after mild washing, 

similar to the washing step applied to purify primary motoneurons from mixed population of 

spinal neurons from embryonic mouse spinal cord (Wiese, Herrmann et al. 2010). 

The anti-p75NTR panning step is useful for several reasons. It helps to enrich ES cell derived 

motoneurons, but it also eliminates cell aggregates which sometimes remain intact after 

trypsinization and trituration and stably attach on laminin-coated coverslips or culture dishes. 

Cultures contaminated by these aggregates form clusters with mixed neuronal populations. 

In cultures without the p75NTR-antibody panning step, ES-derived motoneurons are present at 

relatively low percentage (about 20%). The p75NTR-antibody panning step leads to 

enrichment of this population to nearly 90% of all DAPI positive cells that express p75NTR. In 

addition, after p75NTR-antibody panning at least 60% of all cells are p75NTR positive and 

express the motoneuron specific marker Islet 1/2, thus representing a fairly homogenous 

population of motoneurons. 

Interestingly, such ES cell derived motoneurons also show some properties that differ from 

primary motoneurons that have been isolated from embryonic mouse spinal cord. ES cells 



Discussion  

 

94 
 

derived differentiated neurons develop long axons (1500 µm +/-50 µm) within 24 hours after 

plating. For comparison, axons of embryonic primary motoneurons of th  mouse(Wiese, 

Herrmann et al. 2010) grow to a mean length of 700 µm (+/-50µm) within 7 days on the same 

laminin-111 substrate. Dendritic length is also increased in ES-cell derived motoneurons (50 

µm +/-5 µm) when compared with primary mouse motoneurons at DIV 7 (30 µm +/-5 µm).  

In the presence of the neurotrophic factors BDNF and CNTF, 80% of mouse primary 

motoneurons survive for at least 7 days in culture whereas survival of ES cell derived 

motoneurons obtained by this protocol is limited and decreases after 3 days in culture. The 

reasons for these differences are not known. However, enrichment by anti-p75NTR antibody 

mediated panning can be used for further biochemical analyses to characterize the reasons 

for these distinct properties. 

The major advantage of this new technique is the possibility to generate high numbers of 

relatively homogenous populations of motoneurons for biochemical analyses that normally 

require high cell numbers, such as microarray based gene expression or DNA methylation 

analyses(Meissner, Mikkelsen et al. 2008; Guttman, Amit et al. 2009; Han, Do et al. 2009) or 

ChIP studies(Tollervey, Curk et al. 2011). Given that proteins such as TDP-43 and FUS that 

are altered in patients with motoneuron disease bind to RNA(Tollervey, Curk et al. 2011), 

such techniques can be used to perform ChIP experiments with enriched motoneurons from 

mouse and human ES cells in order to study specific alterations in motoneurons and to 

search for drugs that can interfere with such mechanisms. 
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7 Abbreviations 

°C  Grad Celsius 
µg microgram 
µl microliter 
A amino acid alanine 
A ampere 
ACSF artificial cerebrospinal fluid 
APS ammoniumpersulfate 
APV 2-Amino-5-phosphonovaleriansäure 
ATP adenosine triphosphate 
BDNF brain-derived neurotrophic factor 
bp  base pairs 
cAMP cyclic adenosine monophosphate 
LTP long-term potential 
cm2 square meter 
CNQX 6-cyano-7-nitroquinoxaline-2,3-dione 
CO2 carbon dioxide 
DAG diacylglycerole 
DAPI 4´,6-diamidino-2-phenlyindol 
ddNTP didesoxyribonucleotide 
DNA desoxyribonucleic acid 
dNTP desoxyribonucleotide 
EGFP enhanced green fluorescent protein 
ER endoplasmatical reticulum 
ERK extracellular-signal-regulated kinases 
et al. latin: and others 
EtOH ethanol  
F amino acid phenylalanine  
FCS fetal calf serum 
FL full-length 
GABA γ-aminobutyric acid 
GFP green fluorescence protein 
GlutaMAX L-alanyl-L-glutamine 
GPCR G-protein coupled receptor 
HBSS Hank´s Buffered Salt Solution 
HCl hydrogen chloride 
K amino acid lysine 
KCl potassium chloride 
kDa kilo Dalton 
l liter 
M molar 
MAP2 microtubule-associated protein 2 
MAPK mitogen-activated protein kinase 
MEK mitogen-activated protein 
MgCl2 magnesium chloride 
MgSO4 magnesium sulfate 
min minute 
ml milliliter 
mM milimolar 
mRNA messenger ribonucleic acid 
N amino acid asparagine 
NaCl sodium chloride 
NfH Neurofilament heavy chain 
ng nanogram 
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NGF nerve growth factor 
nm nanometer 
NT neurotrophin 
OH hydroxide 
  
PAC-1 receptor pituitary adenylate cyclase activating-

polypeptide receptor 
PBS phosphate buffered saline 
PKC protein kinase C 
PLCy phospholipase C 
proSAP proline rich synapse associated protein 
rpm round per minute 
SDS-PAGE Sodium-Dodecylsulfate-Polyacrylamide-

Gelelectrophorese 
sec second 
Trk tropomyosin-related kinase 
TTX tetrodotoxin 
U unit 
UV ultra violet  
V volt 
W watt 
wt wildtype 
Y amino acid tyrosine  
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motoneurons. Reena Rathod, Steven Havlicek, Nicolas Frank, Robert Blum & Michael 
Sendtner.Journal of Histochemistry and cellbiology.2012 (accepted) 

 

 Differentiation of embryonic stem cells into motor neurons. Thomas Herrman, Rathod 
ReenaJ., Blum Robert, Drepper Carsten, Sendtner Micheal. (Manuscript in revision). 

 

 Neuronal translation, do you get the message? A review of mRNA-protein particles in 
neurons. Ross Smith, Rathod Reena J., Shalini Rajkumar and Derek Kennedy. (Manuscript in 
preparation). 

 

Symposia and Conferences Attended 



Curriculum vitae  
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 Presented a poster titled “Local protein synthesis in the growth cones of mouse motor neurons” at 
International Symposium of the Graduate School of Life Sciences, University of Wuerzburg 19th Oct - 
20 Oct 2011 “6th International Symposium organized by the students of the Graduate 
School of Life Sciences – BIOBANG” Wurzburg, Germany. 

 Presented a poster titled “Local protein synthesis in the growth cones of mouse motor neurons” at 
International Symposium of the SFB 487 of 28 July - 30 July 2011 "Molecular Pharmacology of 
Receptors, Channels and Transporters" Wurzburg, Germany. 

 Presented a poster titled “Local protein synthesis in the growth cones of mouse motor neurons” at 
the EMBO “SPATIAL” symposium June ,2011, Engelberg, Switzerland 

 

 Presented a poster titled “Local protein synthesis in the growth cones of mouse motor neurons” at 
the German Cell biology Annual meeting March 31-April2 ,2011, Bonn, Germany.  

 

 Attended National conference on Management of viral diseases in WHO regime Jan 2002, at 
IVRS Banglore, India.  

 

 Attended International symposium on recent advances in molecular biology, allergy and 
immunology by Maharaja Sayajirao university of Baroda and State university of New York at 
Buffalo in association with Indian Academy of allergy. October 2000, Baroda, India. 

 

Transferable skills acquired 

Writing publication 

Poster presentation 

Giving academic talks 

Computer skills acquired 

 Computer skills for scientific analysis, presentation and publication of the data. Well versed with 
imaging software such as ImageJ, NIS elements, LAS lite.  

 Stastical data analysis software such as graphpad prism 
 In silico clone designing software such as oligo6 and ApE.  
 Use of bioinformatical tools such as UCSC genesorter, Ensemble genome browser, NCBI NIH portal, 

IMAGE and FANTOM clone data base.  
 Word office, photoshop, endnote, etc 

 

Languages known 

 

English, Hindi, Gujarati, German 

 

Personal Details 

 Date of Birth : 18 Feb 1979 
 Nationality    : Indian 
 Marital Status  : Single 
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10 Publications 

Laminin induced local axonal translation of β-actin mRNA is impaired in SMN-deficient 

motoneurons. Reena Rathod, Steven Havlicek, Nicolas Frank, Robert Blum & Michael 

Sendtner.Journal of Histochemistry and cellbiology.2012 (accepted) 
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With whose grace, a dumb can speak eloquently, with whose grace, a crippled can climb the 

mountains-Oh my Lord, my respectful obeisance and prostrations to thy Holy feet. 

I thank my Lord –my Prabhuji who came to me through Prof. Sendtner with this opportunity 

to do my PhD and through this, discover myself a new. 

I thank my Prabhuji who came to me as a gentle and unbiased support through Prof. Erich 

Buchner during the difficult times of my PhD.  

I thank my Lord who helped me solve my difficulties and learn the nitty gritty of scientific 

work as Dr. Robert Blum.  

I thank my Prabhuji for coming to me with a very intelligent and warm, selfless and 

supportive friendship through Prof. AnnaMaria-Musti.  

I love and adore my Prabhuji who came to me as (my schatzy) Tom who taught me to take 

my first few steps in the German Scientific world in such a gentle and assuring manner that I 

never realised that did not know how to walk in this world. My lord did not come alone but 

along with so many angles around me like Rudolf, Carsten, Niki (schnooky), Micha, 

Bhuvainesh, Lidia, Preeti,  Sameehan, Elena, Rajeev, Chandu, Narayan, Steve, Christine, 

Christian, Dirk, Benjamine, Frank, Lena, Andrea, Eli, Mehri, Sameera, Sibylle. 

I thank all those angles also whom my lord chose to help me through them technically –

Simone, Elke, Zuzana, Michi(schnooky2), Christian, Hilde, Nicole, Regine, Herr Bauterus, 

Herr Horschic, Helga Bruner.  

I would also thank the GSLS for helping in my all round development and care at the 

professional front. Special thanks to Dr. Stephan Schroeder Khoene whom my Lord had sent 

to support me in several ways.   

My work was not possible without the supreme sacrifices of those thousands of mice from 

whom I snatched away the right to live. I donot know if I really deserve to ask for forgiveness 

from my Lord for this but I thank the souls of those little mice and make a promise not to ever 

do this again in my life. I pray for the peace of their souls.  



Acknowledgements  
 

107 
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I was born in the darkest ignorance, and my spiritual master opened the eyes of me with the 
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Ich wurde in finsterster Unwissenheit geboren, und mein spiritueller Meister oeffnete mir die 
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