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SUMMARY 
 

In this thesis the Drosophila mutant loechrig (loe), that shows progressive 

degeneration of the nervous system, is further described. Loe is missing a 

neuronal isoform of the protein kinase AMPK γ subunit (AMP-activated protein 

kinase- also known as SNF4Aγ) The heterotrimeric AMPK controls the energy 

level of the cell, which requires constant monitoring of the ATP/AMP levels. It is 

activated by low energy levels and metabolic insults like oxygen starvation and 

regulates multiple important signal pathways that control cell metabolism. Still, its 

role in neuronal survival is unclear.  

One of AMPK’s downstream targets is HMGR (hydroxymethylglutaryl-CoA- 

reductase), a key enzyme in cholesterol and isoprenoid synthesis. It has been 

shown that manipulating the levels of HMGR affects the severity of the 

neurodegenerative phenotype in loe. Whereas the regulatory role of AMPK on 

HMGR is conserved in Drosophila, insects cannot synthesize cholesterol de 

novo. However, the synthesis of isoprenoids is a pathway that is evolutionarily 

conserved between vertebrates and insects. 

Isoprenylation of target proteins like small G-proteins provides a hydrophobic 

anchor that allows the association of these proteins with membranes and 

following activation. This thesis shows that the loe mutation interferes with the 

prenylation of Rho1 and the regulation of the LIM kinase pathway, which plays an  
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important role in actin turnover and axonal outgrowth.  

The results suggest that the mutation in LOE, causes hyperactivity of the 

isoprenoid synthesis pathway, which leads to increased farnesylation of RHO1 

and therefore higher levels of phospho-cofilin. A mutation in Rho1 improves the 

neurodegenerative phenotype and life span. The increased inactive cofilin 

amount in loe leads to an up regulation of filamentous actin. Actin is involved in 

neuronal outgrowth and experiments analyzing loe neurons gave valuable 

insights into a possible role of AMPK and accordingly actin on neurite growth and 

stability.  

It was demonstrated that neurons derived from loe mutants exhibit reduces 

axonal transport suggesting that changes in the cytoskeletal network caused by 

the effect of loe on the Rho1 pathway lead to disruptions in axonal transport and 

subsequent neuronal death. It also shows that actin is not only involved in 

neuronal outgrowth, its also important in maintenance of neurons, suggesting 

that interference with actin dynamics leads to progressive degeneration of 

neurons. Together, these results further support the importance of AMPK in 

neuronal function and survival and provide a novel functional mechanisms how 

alterations in AMPK can cause neuronal degeneration. 
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ZUSAMMENFASSUNG 
 

In dieser Doktorarbeit wird die Drosophila Mutante loechrig (loe), die 

progressive Degeneration des Nervensystems aufweist, weiter beschrieben. In 

der loe Mutante fehlt eine neuronale Isoform der γ- Untereinheit der 

Proteinkinase AMPK (AMP-activated protein kinase). Die heterotrimere AMPK 

(auch als SNF4Aγ bekannt) kontrolliert das Energieniveau der Zelle, was 

ständiges Beobachten des ATP/AMP- Verhältnis erfordert. AMPK wird durch 

niedrige Energiekonzentrationen und Beeinträchtigungen im Metabolismus, wie 

zum Beispiel Sauerstoffmangel, aktiviert und reguliert mehrere wichtige 

Signaltransduktionswege, die den Zellmetabolismus kontrollieren. Jedoch ist die 

Rolle von AMPK im neuronalen Überleben noch unklar. 

Eines der Proteine, dass von AMPK reguliert wird, ist HMGR 

(hydroxymethylglutaryl-CoA- reductase), ein Schlüsselenzym in der Cholesterin- 

und Isoprenoidsynthese. Es wurde gezeigt, dass wenn die Konzentration von 

HMGR manipuliert wird, auch der Schweregrad des neurodegenerativen 

Phänotyps in loe beeinflusst wird. Obwohl die regulatorische Rolle von AMPK auf 

HMGR in Drosophila konserviert ist, können Insekten Cholesterin nicht de novo 

synthetisieren. Dennoch ist der Syntheseweg von Isoprenoiden zwischen 

Vertebraten und Insekten evolutionär konserviert.  
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Isoprenylierung von Proteinen, wie zum Beispiel von kleinen G-Proteinen, 

stellt den Proteinen einen hydophobischen Anker bereit, mit denen sie sich an 

die Zellmembran binden können, was in anschließender Aktivierung resultieren 

kann. In dieser Doktorarbeit wird gezeigt, dass die loe Mutation die Prenylierung 

von Rho1 und den LIM-Kinasesignalweg beeinflusst, was eine wichtige Rolle im 

Umsatz von Aktin und axonalem Auswachsen spielt.  

Die Ergebnisse weisen darauf hin, dass die Mutation in LOE, Hyperaktivität des 

Isoprenoidsynthesewegs verursacht, was zur erhöhten Farnesylierung von Rho1 

und einer dementsprechend höheren Konzentration von Phospho- Cofilin führt. 

Eine Mutation in Rho1 verbessert den neurodegenerativen Phänotyp und die 

Lebenserwartung von loe. Der Anstieg vom inaktiven Cofilin in loe führt zu einer 

Zunahme von filamentösen Aktin. Aktin ist am Auswachen von Neuronen 

beteiligt und Experimente in denen loe Neurone analysiert wurden, gaben 

wertvolle Einblicke in eine mögliche Rolle die AMPK, und dementsprechend 

Aktin, im Neuronenwachstum spielt.  

Des Weiteren wurde demonstriert, dass Neurone, die von der loe Mutante 

stamen, einen verlangsamten axonalen Transport aufweisen, was darauf 

hinweist dass Veränderungen, die durch den Einfluss von loe auf den Rho1 

Signalweg im Zytoskelettnetzwerk hervorgerufen wurden, zur Störung des 

axonalen Transports und anschließenden neuronalen Tod führen. Es zeigte 

außerdem, dass Aktin nicht nur am neuronalen Auswachsen beteiligt ist, sondern  
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auch wichtig für die Aufrechterhaltung von Neuronen ist. Das bedeutet, dass 

Änderungen der Aktindynamik zur progressiven Degeneration von Neuronen 

führen kann.  

Zusammenfassend unterstreichen diese Ergebnisse die wichtige Bedeutung von 

AMPK in den Funktionen und im Überleben von Neuronen und eröffnen einen 

neuartigen funktionellen Mechanismus in dem Änderungen in AMPK neuronale 

Degeneration hervorrufen kann.  
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1 INTRODUCTION 
Neurodegenerative diseases are becoming increasingly present in our 

modern society due to the demographic changes and longer life expectancy. 

Neurodegenerative diseases are caused by progressive loss of specific neurons 

and are typically age-related human disorders with important pathological and 

clinical similarity. 

 For instance, Alzheimer’s disease, which is the most common form of 

dementia and the 6th leading cause of death (Alzheimer's Association; 

www.alz.org), affects 35 million people worldwide (Querfurth and LaFerla, 2010) 

and with the increase in life span this number is predicted to quadruple by 2050 

(Brookmeyer et al., 2007).  

Other well-characterized neurodegenerative diseases include Parkinson’s 

disease (PD) and Huntington’s disease. PD is the most frequent movement 

disorder known and is caused by a progressive loss of dopaminergic neurons 

and the consequent depletion of the neurotransmitter dopamine in the striatum 

(connected to the basal ganglia). There have been several genes linked to the 

familial form of PD, however the majority of the cases are sporadic and the cause 

is unknown (Correia et al., 2012). In Huntington’s disease, which is also an age 

related disorder that affects brain cells, an extended CAG stretch mutation in the 

huntingtin gene leads to a Poly-Q repetition that causes a loss of neurons in the 

striatum and cortex (Bates, 2005).  
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 The mechanisms that lead to cell death in most neurodegenerative 

diseases, including the three mentioned above, are so far irreversible. Therefore 

it is so important to understand which pathways are involved and how they are 

affected in order to improve existing treatments and finding a prevention to help 

people that suffer from these diseases.  

In many neurodegenerative diseases, the identification of mutations 

associated with familial cases, like in Huntington’s disease, has allowed 

investigators to develop in vitro and in vivo model systems to define the cellular 

and molecular aberrations associated with the mutant gene product. 

Understanding the molecular processes that can cause neurodegeneration are of 

prime importance and will be addressed in this thesis with the aid of a 

neurodegenerative fly model.  

 

1.1 Why use Drosophila melanogaster as model organism  

Drosophila melanogaster, also known as the common fruit fly (Figure 1) is an 

excellent model organism for the study of genes and molecular pathways that are 

known to be involved in the development of human diseases. Surprisingly, a lot 

of genes are conserved between mammals and diptera and approximately 75% 

of human disease-causing genes are believed to have a functional homolog in 

the fly (Pandey and Nichols, 2011). In fact, the gene loe, which will be discussed 
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in this work is conserved in humans and it has been closely related to several 

rare diseases in humans (look at 1.3.2).  

 

 

 
Figure 1 - The common fruit fly- Drosophila melanogaster  

 
Given that the fly has a short reproduction cycle (10 days), it is fairly easy 

to generate several generations in a relatively short time. The fruit fly also has, 

compared to humans, a small genome (flies-14.000 genes, humans 20.000-

30.000 genes) and a high number of genetic tools with numerous markers that 

allow us to generate various mutants, which can then be studied. The fly can 

therefore help to find new insights into the basic mechanisms and genetic 

pathways important for various research fields.  

When pathways in the development of the nervous system or 

organogenesis are disrupted similar defects in either vertebrates or invertebrates 

can be observed. Human diseases like Huntington’s disease (Fortini and Bonini, 

2000), hereditary spastic paraplegia, which is an NTE-related motor neuron 
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disorder (Bettencourt da Cruz et al., 2008) and Alzheimer’s disease (Crowther et 

al., 2005) have been analyzed effectively using Drosophila as a model genetic 

system. 

Another benefit of working with flies is the big selection of genetic tools 

that are available for the Drosophila model. For example, the UAS-GAL4-

System, which will be described in the third chapter (Figure 14) is used daily in fly 

laboratories. It is a very powerful tool for the geneticist, because it allows to 

express, overexpress or down regulate a gene of interest in almost every tissue 

or body part of the fly.  

 

1.2 The Drosophila mutant loechrig 

The loe mutant was generated in a P-element (transposon in Drosophila) 

insertion collection (Deák et al., 1997) of genes on the third chromosome and 

subsequently characterized in the Kretzschmar laboratory.  

Particularly noticeable about the new mutant was the neurodegenerative 

phenotype in the brain, which is caused by necrotic cell death of neurons. The 

brains of newly eclosed loe flies show no apparent defects, but within the next 4 

days of adult life they display spongiform lesions that keep enlarging with time. 

The “big holes” phenotype (Figure 2B) is the reason for naming the mutant 

löchrig, which means “full of holes” in German. The increasing number of dying 
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neurons in the brain leads to a premature death of the flies after approximately 

three weeks.  

 

    

Figure 2 - Neurodegenerative loe Phenotype 
Paraffin section of an adult fly head (5d old):  wild- type (re- retina, la- 
lamina, me- medulla, lo- lobula, lp- lobula plate) (A) and vacuolization 
(white arrows) in loe (B). Scale bar= 50µm 
 
 

1.3 AMPK - and why it is so important 

Adenosine triphosphate (ATP), which cleaves to adenosine diphosphate 

(ADP) thereby releasing energy, is critical for maintaining energy homeostasis 

within the cell. Every cellular reaction contributes to energy consumption. One 

example of this is nucleosome remodeling, which leads to DNA unwrapping 

(Blossey and Schiessel, 2011) or release, e.g., oxidation of glucose. It is 

essential for the cell to have the energy flow constantly monitored by sensing the 

ATP level. Because this is a key function of AMPK (AMP- activated protein 

kinase) it is also called “the energy sensor of the cell” (Figure 3). 

l a 

me 

lo 

lp 

re 

A                     B 
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 The heterotrimeric protein kinase AMPK is activated by an increased ratio 

of AMP to ATP, which results in the activation of energy-producing pathways 

(catabolic reactions), like glycolysis, and the suppression of energy-consuming 

ones (anabolic reactions), like cholesterol synthesis, to restore ATP levels.  By 

regulation of AMPK in the hypothalamus of the brain through cytokines, food 

intake can be controlled (Hardie, 2007), which is critical for drug research in the 

obesity field. Furthermore, in yeast, AMPK plays an important role in metabolism. 

It can react to the energy levels with a fast response through direct 

phosphorylation or a slower response via adaptive transcription. With those 

responses, AMPK is able to communicate between the metabolic environment 

and the energy status of the cell. Because of its significant cellular value, AMPK 

is highly conserved between eukaryotes. Bland et al. has shown that SNF1 

(yeast homologue of AMPK) is essential for cellular adaptation to growth on non-

glucose carbon sources. (Bland et al., 2010) This emphasizes the close 

connection between AMPK and glycogen metabolism. 

 AMP- activated protein kinase consists of one catalytic α and two 

regulatory β and γ subunits. Mammals have two isoforms for the α- and β- 

subunit and three isoforms for the γ subunit. That means the AMPK can be 

assembled to twelve different isoform combinations.  

At the tissue level, AMPK trimer composition is extremely varied (Cantó and 

Auwerx, 2010). The tissue-specific pattern is especially clear for the γ 3 subunit 
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of AMPK. Its expression is mostly restricted to glycolytic skeletal muscle, where it 

is the most common γ isoform (Mahlapuu et al., 2004). 

 

 

 
 

Figure 3 - The Role of AMPK in the cell 
The activity of the heterotrimeric protein kinase AMPK is depended on the 
energy level in the cell. It gets phosphorylated by upstream kinases and 
activated by a high AMP-ATP ratio. AMPK controls glycogen synthesis and 
is able to regulate the transcription of a number of gene sets. In response 
to muscle contraction AMPK can even influence the translocation of GLUT4 
and therefore induce glucose uptake. To reduce energy, AMPK switches off 
anabolic pathways such as triglyceride, fatty acid and cholesterol 
synthesis and turns on catabolic pathways like glycolysis and lipolysis 
(fatty acid oxidation). 
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Each isoform has its own function. The C-terminal region of the α- subunit 

is required for formation of the complex with the β- and γ- subunit (Crute et al., 

1998) and it contains the Thr172 residue, which phosphorylation is required for 

full enzymatic activity (Hawley et al., 1996). The β subunit has a myristoyl 

sequence, which leads some researchers to believe that AMPK could undergo a 

“myristoyl switch” that leads to increased AMPK activity (Steinberg and Kemp, 

2009). The β subunit also contains an evolutionary conserved carbohydrate-

binding domain (Hudson et al., 2003). This domain enables AMPK to interact 

with glycogen particles, which is important for its earlier mentioned role in 

glycogen metabolism. The γ subunit has a very special function- it binds 

AMP/ATP. The AMP/ATP binding is necessary for AMPK to perform its unique 

energy sensing function. As long as ATP is bound to the γ subunit (Figure 3), the 

enzyme activity is low. As soon as AMP replaces ATP, the enzyme activity rises 

although only slightly at first. With the binding of AMP to the allosteric site in the  

γ subunit, more phosphorylation of the α subunit takes place, which increases the 

AMPK activity to more than 1,000-fold (Suter et al., 2006).  
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1.3.1 AMPK UPSTREAM KINASES 

There are only a few known upstream kinases (AMPKK) for AMPK. 

Calmodulin-dependent kinase kinase (CaMKK), which is highly expressed in the 

brain, LKB1 and TGF-β-activated kinase-1 (TAK1). The structure and the 

function of the known AMPKKs is beyond the scope of this thesis, but there is 

one very interesting fact about LKB1 that should be mentioned. When mutated, 

LKB1, known as a tumor suppressor, can cause Peutz–Jeghers syndrome (PJS). 

PJS is a rare genetic disease that is characterized by an increased likelihood of 

epithelial cancers and intestinal hamartomas. Patients that have inherited this 

autosomal dominant disease develop benign hamartomatous polyps, especially 

in the gastrointestinal tract, that will, in most cases develop into malignant tumors 

(Ji et al., 2007). Another symptom of PJS is cutaneous pigmentation of the 

mucous membranes (Alessi et al., 2006). 

 

1.3.2 AMPK MUTATION CAUSING DISEASE IN HUMANS 

Approximately three-quarters of the candidate human disease genes (929 genes 

where found in blast analysis against the Drosophila melanogaster genome) are 

clearly related to genes in Drosophila (Reiter et al., 2001). Several point 

mutations in the γ2- subunit isoform are associated with a cardiac glycogen 

storage phenotype. A rare mutation in PRKAG2, the γ2 isoform of the human 
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AMPK, can lead to Wolff-Parkinson-White syndrome that displays a distinctive 

cardiac histopathology which leads to arrhythmia and can cause sudden death. 

 

       
 

Figure 4 - Myocardium section of patient with AMPK mutation  
A: Longitudinal section with vacuolated myoctes of a 26 year old individual 
who died suddenly (bar = 100µm). B: Electron micrograph shows large, 
irregular sarcoplasmic inclusion (arrows) within a large vacuole and 
normal-appearing sarcomeres (arrowhead) (bar = 1µm).(Arad et al., 2002)  
 
 
Scientist are trying to find out whether a PRKAG2 mutation leads to hypertrophic 

cardiomyopathy (Burwinkel et al., 2005) or if it is myocardial metabolic storage 

disease characterized by enlarged myocytes with vacuoles containing glycogen 

derivatives in which hypertrophy, ventricular pre-excitation and conduction 

system defects coexist (Arad et al., 2002). 

Figure 4 shows a section of muscular tissue with enlarged myocytes and another 

section with dense packed granular that is characteristic of amylopectin, a 

nonsoluble product of glycogen metabolism. Glycogen can generate sinus 

dysfunction and electrophysiological abnormalities if accumulated in conductive 

tissue.  

A                     B 
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Figure 5 - Heart schematic of WPW disease 
An additional conductive pathway between atrium and ventricle leads to 
preexcitation.  

 

 
One characteristic of the Wolff-Parkinson-White syndrome is an 

electrophysiological abnormality, which involves an extra, abnormal electrical 

pathway between the atrium and the ventricle of the heart that bypasses the 

atrioventricular (AV) node and disrupts the normal timing of the hearts electrical 

system (Sidhu et al., 2005). With open-heart surgery, a permanent cure is 

possible by ablation of the extra pathway. 
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1.4 The LOE Protein 

The fly mutant loe, was described in 2002 in the Kretzschmar lab (Tschäpe et al., 

2002). LOE, also known as SNF4Aγ, encodes the γ subunit of the fly AMPK.  

Whereas vertebrates have several genes for each subunit, flies contain only a 

single gene for each subunit, which simplifies the genetic analysis of AMPK’s 

function in Drosophila. However, the γ subunit has at least six alternatively 

spliced transcripts (Figure 6). The LOE I isoform has a unique N-terminus and is 

expressed in the brain and needed for the brain’s maintenance because it cannot 

be substituted by other isoforms (Tschäpe et al., 2002).  

 
 

 
 

Figure 6 - P-element insertion in the loe gene 
Shown is the exon/intron structures of the six LOE transcripts (LoeI to 
LoeVI). The P- element insertion (PlacW) of the loe mutant is located in the 
seventh intron of the Loe I transcript and 38 bp upstream of the 
transcription start site of LoeII (Tschäpe et al., 2002). 
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As mentioned before, the AMPK γ subunit has the important role of binding ATP 

or AMP, which is necessary for assessing the energy status of the cell.  

In humans the three different AMPK γ subunit isoforms contain the β binding 

domain and Bateman domains. The Bateman domain consists of different 

combinations of CBS (cystathionine-β-synthase) domains, which are AMP/ATP 

binding domains (Hardie, 2007). 

 

 
Figure 7 – Homology of AMPK γ-subunits of different species 

Homology of the LOE I C-terminus between Drosophila, human rat and 
yeast. Light gray areas indicate the CBS domain, which binds AMP and 
ATP (Tschäpe et al., 2002). 
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1.5 Protein Prenylation 

In complex organisms, proliferation, differentiation and survival of the cell 

are regulated by a number of extracellular hormones, growth factors and 

cytokines. The signal transduction of these factors from the cell surface to the 

nucleus often requires the presence of small intracellular proteins like small G-

proteins. Small G-proteins get switched on when they bind GTP (guanosine 

triphosphate) and get switched off by binding GDP (guanosine diphosphate). 

Small G-proteins are linked to the plasma membrane through a hydrophobic 

anchor. For this group of proteins, biological activity is dependent on localization 

to the cell membrane. Protein anchoring can be achieved by prenylation of the C-

terminus or myristoylation of the N-terminus.  

Protein isoprenylation is a post-translational modification in which a 

downstream product of mevalonate, either farnesyl or geranylgeranyl isoprenoid, 

is attached to a carboxy-terminal cysteine residue (Goldstein and Brown, 1990). 

Without prenylation, proteins like Rac, Ras and Rho would be unable to find the 

right intracellular position, which is a necessary condition for them to change into 

their active form. To be modified by farnesylation or geranylgeranylation, a 

sequence of amino acids in a protein must become more hydrophobic and then 

further modified by methylation. This hydrophobic site allows proteins to bind to 

the membrane (Glomset et al., 1990).  

For example Inglese et al demonstrated that the kinase of Rhodopsin (G- 

protein coupled receptor), which is responsible for light processing in the retina, 
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is unable to anchor the photon-activated rhodopsin when isoprenoid is mutated. 

Without the isoprenoid anchor, the rhodopsin kinase cannot be translocated to 

the membrane and consequently not be activated (Inglese et al., 1992).  

It has been shown that changes in protein encoding genes that are 

involved in prenylation can lead to rare diseases like Hutchinson-Gilford progeria 

syndrome, retinitis pigmentosa and more frequent diseases like cancer (Novelli 

and D'Apice, 2012). And as early as the 90’s it was assumed that manipulation of 

this regulatory system could be useful in treating certain forms of cancer, as well 

as heart disease (Goldstein and Brown, 1990). One of the genes, that when 

mutated can cause cancer is p21, which is the gene product of the 

protooncogene ras. Because p21 requires a farnesyl moiety to bind to the cell 

membrane, interfering with its function by manipulating its isoprenylation could 

therefore provide a therapeutic treatment.  

 

1.5.1 THE ISROPRENOID PATHWAY 

The isoprenoid pathway, also known as the mevalonate pathway, leads to 

synthesis of Geranyl-PP and Farnesyl-PP and cholesterol (Figure 8). However, 

insects do not synthesize de novo cholesterol, because they lack at least two 

enzymes necessary for this synthesis (Gertler et al., 1988). In order to sustain 

growth and reproduction cholesterol has to be obtained from food, which is then 
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also used to synthesize the molting hormone 20-hydroxyecdysone (20HE) (Clark 

and Block, 1959).  

HMG-CoA-Reductase (HMGR) is a key enzyme in the isoprenoid 

pathway, it reduces Acetoacetyl- CoA to HMG-CoA. AMPK acts as a negative 

regulator on HMGR. Therefore it controls the rate of synthesis of downstream 

products from Acetoacetyl- CoA. Due to AMPK not being fully functional in the 

loe fly, because of the P-element insertion in the γ subunit, the inhibition of 

HMGR through AMPK should be eliminated. This was confirmed by genetic 

interactions between loe and a Drosophila mutant in HMGR (Tschäpe et al., 

2002). 

HMGR can be inhibited pharmacologically by a class of drugs called 

statins (Figure 8), which have been shown to decrease the prevalence of 

Alzheimer's disease (Wolozin et al., 2000). Tschäpe et al. also tested if statins 

can suppress the neurodegenerative loe phenotype and found indeed an 

improvement of vacuolization by feeding statins to loe flies (Tschäpe et al., 

2002). Due to the missing inhibition of HMGR in loe, one would expect changes 

in isoprenylation, which was addressed in this thesis.  
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Figure 8 – Isoprenoid pathway 
The isoprenoid pathway leads to cholesterol and isoprenoid synthesis. By 
inhibiting HMGR, AMPK controls the prenylation rate through 
farnesyltransferase and geranylgeranyltransferase. Target proteins, like 
RHO will be modified and receive an hydrophopic anchor. (PP- 
pyrophosphate). 
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1.6 The RHO Pathway and the Role of RHO 

Since the prenylation plays an important role in the modification of small 

G- proteins (e.g. Rho), effects of loe on the Rho signaling pathway (Figure 9) 

were investigated. 

Rho GTPases are essential regulators of cytoskeletal reorganization, 

because they control multiple aspects of growth cone behavior, including growth, 

branching, turning, retraction and pausing. Growth cones, which are found at the 

end of neuronal processes, are essential for neuronal outgrowth to connect to 

their targets and for the formation of neural circuits. In response to environmental 

guidance signals, they are also required to initiate the neurons extension over 

long distances.  

The Rho pathway is conserved in flies (Ng and Luo, 2004), and Rho 

GTPase signaling can be modulated by many extra cellular cues that regulate 

neuronal morphogenesis through interactions with positive regulators 

(RhoGEFs), negative regulators (RhoGAPs), Rho GTPases themselves, or 

downstream effectors (Luo, 2000). 
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Figure 9 – Rho Pathway 
The Rho Pathway controls the actin dynamics by activating/deactivating 
cofilin and profilin. It also regulates actomyosin contractions. LIM Kinase 
phosphorylates cofilin, which inhibits it. Slingshot phosphatase activates 
cofilin by de- phosphorylation. Red circles indicate actin monomers 

 
 

1.6.1 ACTIN 

 
 Axon elongation and dendritic branching is mediated by the actin and 

microtubule cytoskeletons. The ability of the cell to change from actin monomers 

(G-actin) to filaments (F-actin) and vice versa is required to maintain the flexibility 
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that the actin cytoskeleton needs to respond to the outside stimuli. In this 

process, known as tread milling or actin recycling (Figure 10), actin monomers 

severed by cofilin travel with the help of ATP binding, from the actin filament 

minus-end to the plus-end where they are reassembled. 

 

 

 

 

 
Figure 10 – Actin tread milling in the growth cone  

Actin filament plays a major role in the outgrowth of the filopodia of the 
growth cone (A). Proper functioning of actin recycling (B) is necessary for 
the filamentous actin to move along. Acting recycling/tread milling requires 
regulation of actin dephosphorylation on the minus- end and 
phosphorylation on the plus- end.   

A 

 
B 

-G-actin 
-F-actin 
-microtubules 
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1.6.2 LIM-KINASE AND COFILIN  

The actin de-polymerization factor cofilin is essential for axon growth in 

Drosophila neurons. Rho GTPases are linked to the actin cytoskeletal machinery 

during axon growth and cofilin regulates this critical step (Ng and Luo, 2004). 

Interestingly, Meber and Bamburg (2000) provided direct evidence showing that 

increased cofilin (actin depolymerizing factor/cofilin (ADF)) activity promotes 

process extension and neurite outgrowth. They did this by overexpressing 

ADF/cofilin and then measuring the neurite lengths (Meberg and Bamburg, 

2000). Cofilin is deactivated by LIMK (Figure 9). Through phosphorylation of 

LIMK, cofilin is switched off, and thus, does not promote actin de-polymerization 

anymore. In humans the LIM-kinase protein family has two highly related 

members, LIMK1 (LIM kinase 1) and LIMK2 (LIM kinase 2), which are encoded 

by separate genes (Scott and Olson, 2007).  

A disease called Williams syndrome has been mapped to a deletion of 

chromosome 7q11.2, which contains more than 20 genes including LIMK1. This 

disease is a rare genetic disorder with symptoms like narrow arteries and mild to 

moderate mental retardation (Meyer-Lindenberg et al., 2006). Although the 
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missing LIMK1 gene can contribute to the development of Williams syndrome, 

additional genes in this region may play a role and add to the overall spectrum of 

this disease. 
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2 MATERIAL METHODS 

2.1 Material 

2.1.1 FLY STRAINS 
 

Table 1- List of flies 

GENOTYPE COMMENT SOURCE REFERENCE 
loe loechrig mutant D. Kretzschmar (Deák et al., 

1997) 
w* sn1; e1 

 
white, ebony 
mutant Bloomington 

SC 

 
1870 

WT- Canton S Wild-type flies  n 
special 

stock collection (Lindsley and 
Zimm, 1992) 

    
w 1118 white mutant stock collection (Lindsley and 

Zimm, 1992) 
w/FM7a; D/TM3Sb White mutant 

balanced on the 
1st and 3rd 
chromosome 

stock collection  

w; CyO/Sco; D/TM3Sb White mutant 
balanced on the 
2nd and 3rd 
chromosome 

stock collection  

w; (elav-GAL4/TM3Sb)} neuronal GAL4 
expression line  

Bloomington 
SC 

 

w; (loco-GAL4/TM3Sb) glial GAL4 
expression line  

C. Klämbt  

w; (GMR-GAL4/CyO) retinal GAL4 
expression line  

M. Freeman  

w; (actin-GAL4/TM3Sb) ubiquitous GAL4 
expression line  

Bloomington 
SC 

 

elavAppl-Gal4/TM3Sb Gal4 expression 
under the control 
of the elav and 
Appl promotor 

stock collection  

[1] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.JF02060}attP2 

Expresses 
dsRNA for RNAi 

Bloomington 
SC 

26291 
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of SNF4Agamma 
(FBgn0025803) 
under UAS 
control, TRiP 

y1 w67c23; 
P{lacW}Fppsk06103/CyO 

 

FPPS- insertion 
on II-chromosom 

Bloomington 
SC 

10604 

y1 w*; P{UAS-ssh.N}30 
 

Expresses wild 
type SSH under 
UAS control 

Bloomington 
SC 

9112 

P{UAS-tsr.N}1.7, y1 w*; 
Pin1/CyO 

 
 

Expresses wild 
type tsr (cofilin) 
under UAS 
control 

Bloomington 
SC 

9234 

P{UAS-tsr.S3A}4.1, y1 w*; 
Pin1/CyO 

 
 

Expresses a 
constitutively-
active tsr (cofilin) 
protein under 
UAS control 

Bloomington 
SC 

9236 

y1 w*; P{FRT(whs)}G13 
P{A92}tsr1/CyO, 

P{sevRas1.V12}FK1 
 

tsr - insertion on 
II-chromosom 

Bloomington 
SC 

9107 

y1 w*; Rho172O/CyO, 
P{sevRas1.V12}FK1 

 

Rho1 – insertion 
on II-chromosom 

Bloomington 
SC 

7325 

y1 w*; Rho172F/CyO 
 
 
 

Rho1 – insertion 
on II-chromosom 

Bloomington 
SC 

7326 
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2.1.2 ANTIBODIES 

 

2.1.2.1 Primary 

 
Table 2- List of primary antibodies 

ANTIBODY ANTIGEN ORGANISM SOURCE Dilution 

WB 
22C10 Drosophila 

futsch 
mouse DSHB 1:200 

E7 tubulin mouse DSHB 1:200 
JLA 20 actin mouse DSHB 1:200 
α-G-actin actin rabbit Cytoskeleton 1:200 
ADL101 Drosophila 

lamin 
mouse DSHB 1:200 

farnesyl farnesyl rabbit abcam 1:200 
α-p-cofilin 30phosphor- 

cofilin 
rabbit (Jovceva et al., 

2007) 
1:300 

PD-190 Drosophila Rho mouse DSHB 1:100 
α-TSR Drosophila 

cofilin 
rabbit (Niwa et al., 

2002) 
1:500 

     
α-SSH Drosophila 

slingshot 
rabbit (Niwa et al., 

2002) 
1:2000 

NC 82 bruchpilot mouse Buchner 1:10 
α-sws swiss cheese rabbit  1:500 
AB49 cysteine string 

protein 
mouse DSHB 1:500 
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2.1.2.2 Secondary 

 
Table 3- List of secondary antibodies 

ANTIBODY ANTIGEN ORGANISM SOURCE 
α- mouse mouse IgG Peroxidase-

conjugated sheep 
Jackson 

α- rabbit rabbit Ig Peroxidase-
conjugated donkey  

Jackson 

α- chicken rabbit IgY (IgG) Peroxidase-
conjugated donkey  

Jackson 

 

2.1.3 LADDERS AND ENZYMES 

 
Table 4- List of ladders 

 
 
 
 
 
 
 
 
 
 
 

2.1.4 KITS 
Table 5- List of kits 

 
 

 

 

 

LADDER SOURCE 
1 kb Ladder NEB 

2 Log DNA Ladder (0.1-10kb) NEB 
Prestained Protein Molecular 

Weight Marker 
Fermentas 

NAME SOURCE 
G-actin/Factin Assay Kit Cytoskeleton 

GenJET PCR Purification Kit  Fermentas 
GenJET Plasmid Miniprep Kit Fermentas 
QIAquick Gel Extraction Kit QUIAGEN 
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2.2 Methods 

2.2.1 WORKING WITH FLIES 

2.2.1.1 Fly keeping 

Stocks were kept at 18°C on standard corn meal fly food. The generation 

time for flies grown at 18°C is 19 days and at 25°C 10 days. Crosses and aging 

experiments were performed on standard food (except feeding experiments; see 

3.3.2) at 25°C.  

2.2.1.2 Paraffin sections 

 Paraffin sections of fly heads were used to determine and compare the 

level of vacuolization of various fly strains. Photoshop was used to calculated 

total pixel number (converted into µm2) of the vacuoles in the lamina, medulla, 

lobula, and lobula plate of each brain hemisphere. 

2.2.1.2.1 Preparing collars: 

- thread the flies in the collar 

- fixation in Carnoy’s fix 4h 

- dehydration in 99% Ethanol 2 x 30 min following 100% Ethanol 45 min 

- in Methylbenzoat p.A room temperature, 4 h or over night. 

- 1:1 Methylbenzoat- Paraffin mix at 60°C for1h 

- Paraffin washes at  60°C, 6 x 30min 

Casting collars:- embedding collars in suitable mold in hot paraffin 
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Cutting heads: fix the paraffin blocks on warm metal block by melting briefly 

- carve into 5µm thick slices 

- slices are placed on a poly-L- lysine coated slide 

- dry at room temperature over night 

- removing the paraffin with safe clear 2x 30min 

- embedding in mounting medium 

2.2.1.3 Fast phototaxis assay 

For the fast phototaxis assay, a countercurrent apparatus (first described 

by (Benzer, 1967)) is used to rate the speed of flies walking toward the light. Five 

repeated cycles (6 s each) were used to determine the performance index.  

The performance index is dependent on the number of flies that stayed in the first 

tube (performance index- 0) or passed to any of the following five vials (reaching 

the last vial- performance index- 100). At least eight independent tests with 

groups of 5-15 flies were performed for each genotype, gender. A detailed 

description of the conditions can be found in (Strauss and Heisenberg, 1993). 
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2.2.2 WORKING WITH PROTEINS 

2.2.2.1 Western Blot 

 

Prearrangement: 

- decapitating flies 

- grind heads (10 per tube) in 35µl loading buffer 

- heat in temp.block 95°C for 5 min 

- loading the SDS-Gel 

- the gel runs in LAEMMLI buffer at 150V for 60 min 

Blotting: 

- soak filter paper (whatman)  and nitrocellulose or PDVF membrane in transfer 

buffer 

- prepare the gel sandwich for the wet transfer electrophoretic transfer cell 

(BIORAD) :  

3 x Filter paper- 1 x Nitrocellulose membrane -SDS- PAGE- Gel 3 x Filter paper 

- blotting 1h 100V at RT or over night 30V 4°C 

Blocking: 

- block membrane in 5% dry milk/TBST(milk buffer) 1h 

- incubate in primary antibody in milk buffer at least 1h 

- rinse in TBST 3 x 10 min 

- incubate in secondary antibody in milk buffer at least 1h 
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- rinse in TBST 3 x 10 min 

Displaying: 

- mix Visualizer Reagent 1 and 2 in appropriate ratio 

- overlay blot in detection solution for 1-5 min 

Detection: 

Expose leave the blot in the 10sec- 1h the Biospectrum Imaging system (UVP)  

 

2.2.2.2 Visualizing F-actin and G-actin levels 

To visualize the amount of filamentous and globular actin in the fly head, the in 

vivo assay kit from Cytoskeleton was used. The assay principle is that cells are 

lysed in a detergent-based lysis buffer that stabilizes and maintains the G– and 

F– forms of cellular actin. The buffer solubilizes G-actin but will not solubilize F-

actin. A centrifugation step pellets the F-actin and leaves the G-actin in the 

supernatant. Samples of supernatant and pellet are run in an SDS-PAGE system 

and actin is quantitated by western blot analysis.  

For each sample 10 fly heads were used and prepared as described in the 

Cytoskeleton protocol.  

For more detailed information look at the Cytoskeleton Cat. # BK037 user book.  
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2.2.3 IMMUNOPRECIPITATION AND SUBCELLULAR FRACTIONATION 

For immunoprecipitations approximately 500 heads were homogenized 

and Rho1 precipitated following the protocol in (Swanson et al., 2005, #2096), 

using the anti-Rho antibody and Gammabind bead TM plus Sepharose 

(Amersham Biosciences) beads (Vector laboratories). 

Membrane and cytosolic fractions were prepared from the different 

genotypes following the protocol of Orgad et al. (Orgad et al., 1987, #2100). 

Approximately 500 heads were used for each preparation, protein amounts 

determined by Bradford assays (Bradford, 1976, #2143) and 10µg total protein 

loaded per lane. 

2.2.4 WORKING WITH PRIMARY CELLS 

For the cell culture experiments 3rd instar larvae brain cells were used. 

- Prepare enzyme solution: collagenase 1mg in 4ml Rinaldini solution. 

- Washing: put larvae in ethanol bath and afterwards two times in PBS 

- Dissect brains out of larvae in the PBS and transfer brains into enzyme 

solution 

- After all brains are in enzyme use forces to rip the brain into small pieces 

- Transfer all pieces into eppendorf tube with 0.5-1ml of enzyme 

- Let brains at room temperature for 60 to 90 min depending on the freshness 

of the enzyme 

- Spin down the tubes for 6 min max speed, you should see a small pellet 
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- Remove enzyme solution and re-suspend in media or Schneider´s 1ml. Using 

a fire polished glass pipette triturate the pellet 

- Spin down the tubes for 6 min max speed. Remove media and resuspend 

in fresh full media 200µl. 

- Pipette cells and media to distribute cells evenly and then plate 125µl of 

mixture into each culture dish. Make sure small dishes are in larger dish to 

keep them from drying out in the incubator. 

- Incubate 2h to overnight so cells can adhere to dish. 

- The next day flood dish with dish media 2ml. Be gentle when adding media so 

you do not wash the cells of the dish 

- Feed cells with new media every two to three days. 

 

2.2.4.1 Measuring neurite length and movement of mitochondria  

Neuronal cell cultures were prepared from 3rd instar larvae as described 

by (Kraft et al., 1998). To determine neurite number and length photographs 

were taken after 24h and 48h in culture without knowing the genotype, using a 

Leica inverted microscope. The number of neurites each cell had extended was 

counted and the length of the longest neurite measured in pixels using ImageJ 

and converted into µm before the genotype was determined. Measurements of 

mitochondrial movements were performed on 24h old primary cultures, using 

green Mitotracker CM-H2XRos (Molecular Probes, Eugene, USA). Cells were 
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stained for 10 min and then observed with an inverted microscope. Images were 

taken every 2 seconds for 4.5 minutes. To perform an analysis of mitochondrial 

movement, we used the tracking function in Metamorph Universal Imaging and 

created tables with the amount of pixels each mitochondrion moved after 2 

seconds. The average distance traveled in the 2 second intervals was 

determined and converted into velocity 
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3 RESULTS 

 
The experiments described in this thesis where performed using the very 

helpful and straightforward model, Drosophila melanogaster, to determine the 

functions of AMPK (AMP- activated protein kinase) and its downstream targets. 

As shown by Tschäpe et al., 2002, flies homozygous for loe and 

heterozygous for lethal alleles of HMGR, which in Drosophila is encoded by the 

columbus gene, show a suppression of the degenerative phenotype compared to 

loe alone. These experiments confirmed that the inhibitory function of AMPK on 

HMGR is conserved in flies and that changes in the activity of HMGR play a role 

in the observed degenerative phenotype. HMGR is a key factor in cholesterol 

synthesis but also in isoprenoid synthesis, a pathway conserved in Drosophila 

(Figure 8). 

AMPK negatively regulates HMGR and the isoprenoid pathway, therefore 

one would expect more farnesylation, when AMPK is impaired by the loe 

mutation. It was previously shown that FPPS (Farnesyl- pyrophosphate- 

synthase), which is essential for farnesylation, influences the loe phenotype and 

a mutation in this gene has an suppressing effect on the vacuolization in loe 

(Kadshojan, 2006). This suggested that targets of the isoprenoid pathway, like 

GTPases, may interfere with the loe phenotype. In order to reveal a possible 
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correlation between GTPases and LOE the following experiments where 

performed.  

3.1 Interactions with RHO and ROK  

To determine whether the Rho1 pathway is involved in neuronal survival in 

loe, double mutants that had mutations in genes that are involved in the Rho1 

pathway and loe were generated, aged and tested for the amount of 

neurodegeneration within the adult brain. Furthermore, immunoprecipitation and 

Western Blot analysis was used to quantify the amount of isoprenylated Rho1. 

 

3.1.1 LOE SHOWS MORE ISOPRENYLATION OF RHO1 

To confirm the hypothesis that loe affects the levels of prenylated Rho1, 

Rho1 was immunoprecipitated from head lysates using a α-Rho1 antibody 

followed by Western Blots with a α-farnesyl antibody.  

As shown in Figure 11, loe flies showed increased levels of prenylated 

Rho1 (left panel) when compared to wild type. Surprisingly, the western blot also 

showed that the total levels of Rho1 are reduced (right panel). This confirms the 

hypothesis that the isoprenoid pathway is upregulated in loe and leads to 

hyperfarnesylation of Rho1 in loe. This suggests that interfering with the 

prenylation of Rho1 might activate a regulatory process that reduces Rho1 

transcription or protein stability.  
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Figure 11 – loe affects the levels of farnesylation of  Rho1   

Immunoprecipitation from head lysates using anti-Rho1 probed with an α-
farnesyl antibody (left panel) shows an increase in farnesylated Rho1 in 
loe. The identity of this band with Rho1 was confirmed by reprobing with α-
Rho1 (right panel).  

 
 

3.1.2 MORE RHO IS LOCATED AT THE MEMBRANE IN LOE 

The previous experiment demonstrated that loe has more farnesylated 

Rho1, which suggests that because the attachment of isoprenyl moieties 

facilitates membrane association of small GTPases, the majority of Rho1 in loe 

should be located at the membrane. To address this, membrane and cytosolic 

fraction were prepared from loe and control flies (as a control for the separation 

of membrane and cytosol fractions two antibodies (CSP and tubulin) were used 

as markers). 
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Figure 12 – More Rho is found at the membrane in loe  
Western Blot using membrane and cytosolic fractions shows an increase 
of membrane-associated Rho1 and a decrease of cytosolic Rho1 in loe (A). 
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α-tubulin antibody (B) serves as cytosolic and α-CSP antibody (C) as 
membrane marker. 10µg of total protein were loaded in each lane. 

 
 

Figure 12 C and B shows that CSP, a protein associated with synaptic 

vesicles, is mostly restricted to the membrane fractions. In contrast, tubulin, a 

cytosolic protein is almost exclusively found in the cytosol fraction, confirming a 

separation of membranes from the cytosol fractions. Comparing the levels of 

Rho1 in Western Blots, loe flies show a clear reduction of cytosolic Rho1 

compared to control whereas they show a small increase in membrane 

associated Rho1 (Figure 12A). Comparing the weak increase in membrane 

associated Rho1 with the strong increase in farnesylated Rho1 in loe (as shown 

in Figure 11) suggests that not all of the farnesylated Rho1 is actually attached to 

membranes in loe. Together these experiments confirm the hypothesis that loe 

mutant flies have an increase in farnesylated, and although weak, membrane- 

associated Rho1.  

At this point it is worth mentioning an experiment, that was performed by 

P. Mani (Cook et al. 2012 in preparation) to investigate whether loe genetically 

interacts with mutations in Rho1. Combining one copy of Rho72F, an allele that 

deletes part of the coding region of Rho1, including the translation start site, with 

homozygous loe reduced the neurodegenerative phenotype almost by half. This 

result shows that the protein Rho1 is affecting the vacuolization and that down 

regulating it, is beneficial for the loe phenotype. Therefore the question arose 
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whether increased Rho1 levels or activity can aggravate the degeneration in loe. 

For this purpose, loe flies with an UAS-RHO construct (Rho1V14) driven by a pan-

neuronal Appl-GAL4 promoter where examined. Rho1V14 has a p-element 

insertion resulting in constitutively active Rho1. With a 70% increase in 

vacuolization, the expected enhancement of the neurodegenerative phenotype in 

a loe fly that expresses constitutively active Rho was verified.  

In addition western blots with an anti-Rho1 antibody where used to confirm that 

the genetic manipulations did affect the levels of Rho1. At this point it has not 

been addressed whether an enhancement can also be achieved by increasing 

the levels of wild type Rho1.   

 

3.1.3 THE INFLUENCE OF ROK1 ON THE NEURODEGENERATIVE PHENOTYPE IN LOE  

After finding out that the amount of isoprenylated Rho was changed in loe 

and Rho1 genetically interacted with loe, looking at the Rho Kinase, which is a 

downstream target of Rho1 (Figure 9), was the next step.  

For this experiment, and for all the following genetic interactions, loe flies 

carrying the additional mutation were compared to loe flies from the same cross 

without the additional mutation, to minimize genetic background effects. 

Analyzing head sections from five and ten day old female flies homozygous for 

loe with age-matched flies that, in addition, carry one mutant copy of the rok1 

allele, revealed a significant suppression (from 376 to 226µm2 holes in the brain) 
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of the degenerative phenotype in 10 day old flies (Figure 13). A small reduction 

of the area of vacuoles was also found in 5 day old flies, although it was not 

significant at this age. Nevertheless this shows that reducing the levels of rok1 

can partially counteract the increased activity of the Rho pathway. The 

heterozygous rok1 mutation alone did not exhibit holes.  

 

 
 

Figure 13 – A Rho- Kinase mutant decreases neurodegeneration  
10 day old loe rok1 mutants show a significant improvement (about 30%) in 
neurodegeneration. The number of measured optical lobes is given above 
each bar.  SEMs are indicated 

 

3.2 Effect of the Proteins LIMK and Slingshot on loe 

To investigate the influence of further downstream proteins of the Rho 

pathway, like LIM-Kinase (cofilin-inactivator) and Slingshot (SSH; cofilin-

activator), flies where generated that overexpress LIMK or SSH in in the loe 
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background. The Gal4-UAS-System, described in Figure 14, was used for these 

overexpression experiments.  

 

 
 

Figure 14 – Schematic of the GAL4- UAS system in Drosophila 
melanogaster 
The Gal4-UAS-System is a unique tool that can be used in Drosophila 
melanogaster to express a gene of interested in a desired location in the fly 
body and was developed by {Brand and Perrimon, 1993, #2493}. This 
system allows analysis of function of certain gene products. The 
UAS(Upstream Activating Sequence ) - and the GAL4 line must be crossed 
to obtain the fly with both elements. The heterozygote F1 flies contain the 
Gal4 driver and responder gene. The driver does not activate native 
Drosophila genes. In the F1 generation the Gal4 protein product binds 
directly to the UAS element. Subsequently the Gal4- UAS complex drives 
the expression of the gene located downstream of the UAS sequence. The 
responder gene only gets expressed in presence of Gal4. This method 
allows expression of mutated genes in a tissue specific manner. 
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The UAS-LIMK or UAS-SSH constructs where driven with Appl-Gal4, a 

pan neuronal driver to achieve expression in neurons. To quantify the amount of 

neurodegeneration in LIMK or SSH overexpression loe flies, the same method as 

mentioned in the previous experiment 3.1.3 was used.  

 

 
 

Figure 15 – Increased activation of LIMK or SSH results in enhanced 
neurodegeneration in loe  
5 and 10 day old LIMK overexpression flies show an enhanced 
neurodegenerative phenotype with an increase of about 50% in both ages. 
The Slingshot (SSH) over-expression fly only enhances the 5 day old loe 
phenotype. The number of measured optical lobes is given above each bar.  
SEMs are indicated 

 
As shown in Figure 15, the neurodegeneration is significantly increased in 

loe flies that overexpress LIMK. After 5 days the area of holes increased 

significantly from 159 to 238µm2 and after 10 days from 376 to 554µm2.  
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Because after expressing more LIMK, which should lead to even more 

active LIMK, in the loe background, the vacuolization is significantly increased. 

This further confirms the hypothesis that the up-regulated Rho1 pathway is 

connected with the neurodegenerative phenotype in loe. More LIMK means more 

phosphorylated cofilin, which would result in more inactive cofilin. Therefore the 

neurodegeneration in loe could be caused by higher levels of inactive cofilin or 

reduced levels of active cofilin because it is inactivated by phosphorylation.  

However, looking at the SSH results shows that this is not the case. 

Slingshot dephosphorylates cofilin, which is the opposing action of what LIMK 

does, nevertheless overexpressing SSH did not improve the loe phenotype - it 

made it worse. Currently it is unknown why both have the same effect. However 

the slingshot overexpression in the loe background only affected the 

neurodegenerative phenotype after 5 days, where holes increase from 159 to 

313µm2. After 10 days of aging the SSH overexpression shows neither 

enhancement nor suppression. This suggests that at this age, a compensatory 

mechanism might start taking place that prevents the effects of SSH 

overexpression in 10 day old flies.  

Overexpression of LIMK or SSH by itself show no phenotype, which demonstrate 

that LIMK and SSH enhance neuronal death only in connection with the loe 

mutation.  
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3.3 The Protein Cofilin  

Since the previous results demonstrate the involvement of LIMK and SSH 

in the degenerative phenotype of loe, the next experiment is focused on the 

protein cofilin. Cofilin is a key protein in the RHO pathway, which is 

phosphorylated by LIMK and dephosphorylated by SSH. As an actin 

depolimerization factor, cofilin plays an important role in actin dynamics.  

 
 

3.3.1 THE INFLUENCE OF COFILIN ON THE NEURODEGENERATIVE PHENOTYPE IN LOE  

 

To prove that cofilin, which in Drosophila is encoded by the twinstar gene, 

is involved with the loe phenotype, neurodegenerative analysis like in 3.1.3 and 

3.2, and western blotting were used.  

After seeing the enhancement of degeneration in the UAS-LIMK loe and 

UAS-SSH loe flies the question was, whether the phenotype could be due to 

increased levels of cofilin, specifically an accumulation of phospho-cofilin. It was 

therefore investigated whether loe flies with a mutation in twinstar show changes 

in the degenerative phenotype. 
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Figure 16 – Effects of TSR on loe neurodegeneration    
Interestingly both, a mutant in tsr and TSR overexpression suppress the 
area of holes. The number of measured optical lobes is given above each 
bar. SEMs are indicated. 

 

Loe flies with a heterozygous twinstar mutation should have a lower level 

of total cofilin, which should then also decrease phospho-cofilin and reduce the 

vacuolization. And indeed, a significant suppression was found in tsrN961loe. After 

5 days the area of holes was reduced from 159 to 60µm2 in tsrN961loe. Also the 

phenotype significantly improved in the tsrN961loe mutant fly after 10 days. By 

itself, tsrN961 showed no neurodegeneration after 5 or 10 days (Figure 16).  

In contrast to the tsr mutation an overexpression of twinstar should show 

an enhanced phenotype because of the higher level of cofilin and inactive cofilin 

mimicking the overexpression LIMK phenotype. Surprisingly, the area of holes in 
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TSR loe was reduced from 159 to 41µm2. These results show that a change of 

cofilin levels in either direction improves the neurodegenerative phenotype in loe. 

To address whether changing the levels specifically of active, dephosphorylated 

cofilin, a constitutively active form of TSR, was expressed. Interestingly, this also 

reduced the degeneration (cTSR loe flies show reduction from 159 to 35µm2) 

although overexpression of SSH, which should have the same effect, enhanced 

the phenotype.      

 

 

3.3.2 UP-REGULATION OF INACTIVE COFILIN IN LOE  

Due to the up-regulation of LIM-Kinase in loe flies, the amount of 

phosphorylated cofilin should be increased as well. In order to test that, Western 

blotting was used to compare the level of phospho-cofilin in loe and wild-type 

flies (Figure 17).  
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Figure 17 – Increased level of P-Cofilin and SSH in loe 
Western Blot probed with a α- p-cofilin antibody reveals an increase in p-
cofilin in loe (A-last lane). Twinstar mutants (first lane) and twinstar 
overexpression (second lane) show the expected decrease and increase of 
p-cofilin. A western blot using α- ssh antibody, shows that the loe fly has 
an increase of about 20 % in slingshot expression (B-upper panel). As 
loading control α-tubulin was used in A and B (lower panels). 

 
 

Figure 17 A showed that, as expected, the level of p-cofilin (inactive cofilin) is 

increased in the loe fly compared to controls. This confirmed that the 

hyperactivity of the Rho1 pathway indeed results in increased levels of the 

downstream target p-cofilin. Twinstar mutant and overexpression confirm that the 

α-p-cofilin antibody is specific and that the genetic manipulations of tsr in 3.3.1 

had the expected effects on p-cofilin levels. Unfortunately, the overall levels of 

cofilin could not be determined, because the obtained antibody did not work in 

western blotting. After demonstrating that the p-cofilin level is increased in loe, it 

was interesting to find out if this increase affects the slingshot expression. 
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The increased phospho-cofilin level found in loe, could result in an up regulation 

of SSH to remove the p-cofilin. And in fact, as shown in Figure 17B, the SSH 

expression is increased about 20%, which could be a reaction to the increased 

inactive cofilin level. Also the unexpected results of the genetic interactions 

(Figure 15) could be explained after finding out, if the level of SSH is already 

increased in loe. The already elevated level of SSH in loe might explain why 

additional expression of SSH is not beneficial but even enhances the 

neurodegenerative phenotype. 

 

3.4 The Role of Actin  

Because of the clear association of cofilin with the loe mutation and 

because cofilin promotes actin disassembly, experiments to detect actin 

dynamics were performed. A higher amount of inactive cofilin should lead to less 

53epolimerization of actin in loe (look at Rho-pathway Figure 9). Which means 

an increased presence of filamentous actin and therefore decreased levels of 

free actin monomers (G-actin).  

To find out if actin turnover and polymerization is actually affected, a G-

actin/F-actin assay was performed that indicates the ratio of monomeric 

depolymerized globular actin, which is found in the supernatant versus 

polymerized filamentous actin, which is found in the pellet. 
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Figure 18 – Loe shows increased level of fibrilar actin  
Western blot with α-actin antibody. Left side- the first two lanes show that 
in wild type the amount of both forms of actin are found at equal levels. Loe 
shows a higher amount of insoluble F-actin Right side- LIMK 
overexpression, as expected, also shows more insoluble F-actin compared 
to G-actin. (B) Blot with α-actin antibody shows no difference of the total 
actin concentration in wild type and loe g: Supernatant fraction represents 
globular actin. f: Pellet fraction represents filamentous actin 

 
As predicted, the balance between free actin and filamentous actin is 

disrupted in loe (Figure 18A), with more filamentous actin than globular actin in 

the mutant. The same phenotype can be observed in a fly that expresses more 

LIMK and is serving as a positive control and confirms that a hyperactivation of 

the Rho pathway does indeed lead to more filamentous actin. The total actin 

concentration in loe compared to wild type is unchanged supporting the 

hypothesis that loe leads to a change in actin dynamics and does not have 

effects on the levels of actin per se.  
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3.5 loe neurons show a change in neurite outgrowth and 
organelle transport 

 
Due to the role of actin in neuronal outgrowth, larval brain neurons were 

dissected and cultivated for 24 hours or 48 hours and analyzed for outgrowth 

phenotypes. Although loe mutant flies do not exhibit detectable defects in the 

development of the brain (Tschape et al., 2002), these primary neuronal cell 

cultures could reveal more subtle effects that might be visible in these isolated 

cells. To determine if the outgrowth of neurites is disturbed, measurements of the 

longest process where taken and compared to wild type neurites. In addition the 

number of neurites formed by each cell were determined (see 3.5.1). To 

investigate whether the transport of proteins and organelles through the axons 

and dendrites might be affected, the speed of the mitochondria was recorded. 

(see 3.5.2)  

 
 

3.5.1 OUTGROWTH OF NEURITES IS AFFECTED IN LOE 

 
The genetic interaction studies shown in Figure 13, Figure 15 and Figure 

16, strongly suggest that LOE interferes with the dynamics of the actin network. 

Due to the well-known role of actin dynamics during neuronal outgrowth, the 

following experiments were performed to elucidate whether the loe mutation 

affects neural outgrowth and/or morphology. As mentioned before loe does not 
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visibly affect brain development. To investigate if larval neurons show a 

phenotype, processes of primary neurons from 3instar larva were measured after 

being cultured for one or two days, (Figure 19). Testing the cells after 24 hours, 

helped to determine the initial outgrowth of neurites, whereas looking after 48 

hours should reveal if the neurites can maintain the outgrowth.  

 

 
 

Figure 19 – loe neuron cultured for twenty-four hours 
The longest neurite (highlighted in red) was measured and compared to 
control neurons. Scale bar= 2µm. 

 
 

Whereas no changes in neurite numbers or branching patterns were found 

between wild type and loe neurons grown for 24h (Figure 20, lower graph), 

measurements of the longest neurite of each cell revealed a significant difference 

in length. Surprisingly the neurites were significantly longer in loe with 22.4 µm in 

wild type and 34.4 µm in loe (p<0.001; Figure 20, upper graphs).  
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Figure 20 – Neurite length of larval brain neurons   
Length of the longest processes of each cell in loe and wild type neurons. 
Loe processes seem to grow faster in the first 24h. After 48 h in culture the 
processes of loe neurons are shorter than wild type.. Lower graph- The 
number of processes is unchanged. The number of measured cells is given 
above each bar SEMs are indicated. 
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These results show that the initial outgrowth is occurring even faster in 

loe. To determine whether loe neurons can maintain neurite growth, 48h old 

cultures were measured, which revealed the opposite result. Loe processes are 

significantly shorter, with a length of 41.2µm compared to wild type with 53.4 µm. 

This result suggests that the increased activation of Rho1 in loe and the resulting 

LIMK activity and inhibition of tsr/cofilin initially promotes outgrowth, possibly by a 

stabilization of actin filaments. However loe cells appear not to be able to sustain 

this increased outgrowth and are even not able to maintain normal length over 

time.  

The loe mutation does not affect the amount of processes of each cell. The 

average number is a little decrease however not significantly changed.  

 

3.5.2 SLOWER TRANSPORT THROUGH NEURITES IN LOE 

Mitochondrial defects are key features of chronic neurodegenerative 

diseases. To determine, whether change in the actin cytoskeleton might have 

effects on organelle movement through the processes, mitochondria were 

visualized and tracked as described in 2.2.3.1.  

 

Figure 21 shows a neuron that was treated with green Mitotracker CM-

H2Xros to visualize mitochondria. Comparing mitochondria motions in loe and 
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wild type neurons after being cultured for 24 hours showed that the speed of 

mitochondria in loe cells is about 30nm/sec slower than in wild type (p<0.01).  

 

       
 

Figure 21 – Velocity of mitochondria and number of processes in neurons  
Left side: Neuron from a loe larva that was cultured for 24 hours. White 
arrow points to mitochondrion that moves through a process towards the 
cell body. Scale bar= 2µm. Right graph- Mitochondria move significantly 
slower from and towards the cell body in loe neurons than in wild type. 
SEMs are indicated 

 
These results support the hypothesis that interference with the actin 

dynamics in the loe mutant, also leads to changes in the tubulin network and, 

therefore, a dysfunction in axonal and dendrite transport.  
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3.6 Behavioral phenotype in loe  

Many degenerative diseases exhibit behavioral phenotypes before the 

degenerative phenotype is detectable. Therefore behavior assays have been 

done with loe flies. The neurodegenerative phenotype in loe appears a few days 

after of eclosion. To find out if there is a detectable behavioral phenotype before 

the neurons undergo necrotic cell death, behavior assays where done in 1-day-

old flies. 

 

 
Figure 22 – Phototaxis assay with loe flies    

Loe males show a highly significant decrease in the performance index. 
Females also preform worse than the control flies but show no 
significance. The number of groups tested is given above each bar.  SEMs 
are indicated 

 
To detect behavioral defects a phototaxis assay was used in which males 

and females were tested separately in groups of 15-20 individuals. Whereas loe 
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males have a significant behavioral deficit when compared to control (p<0.0006, 

Figure 22), females showed no significant difference. The neurodegenerative 

phenotype develops slower in females than males. Accordingly the same could 

be the case for the behavioral phenotype and therefore the difference is not 

visible at 1 day.  

 

 
 

Figure 23 – Phototaxis assay with loe tsr and loe rho flies    
Loe males and females that have a mutation in tsr perform significantly 
better in the Phototaxis assay than loe flies alone. Loe rho flies show now 
difference to loe. The number of groups tested is given above each bar.  
SEMs are indicated 

 

Moreover, loe flies were tested that express less cofilin. Both male and 

female flies performed significantly better ( p<0.009 male, p<0.02 female) in the 

fast phototaxis assay (Figure 23). This indicates that cofilin plays a relevant role 

in the loe behavior phenotype and by knocking down the cofilin levels in the loe 
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fly, the behavioral phenotype improves as does the neurodegenerative 

phenotype (Figure 16). Unexpectedly the loe rho mutants show no significant 

improvement also rho suppressed the neurodegenerative phenotype of loe.  

 

 

 
Figure 24 – Phototaxis assay with TSR overexpression  

Female loe UAS TSR flies do not differ in the behavioral phenotype. The 
number of groups tested is given above each bar.  SEMs are indicated 

 
Given that loe flies with a decreased cofilin expression showed a significant 

improvement in the phototaxis assay, the question was if a overexpression of 

cofilin would worsen the phenotype. However, the results demonstrate that flies 

overexpressing (UAS driven with a pan neuronal driver) cofilin in the loe 

background showed no change in the performance index (Figure 24). 

Overexpression of constitutively active cofilin slightly increased the performance 
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also not statistically significant. Interestingly, overexpression of constitutively 

active Rho alone resulted in a performance index similar to loe suggesting the 

expression of constitutively active Rho also leads to a behavioral phenotype.  

The last and following phototaxis experiment demonstrated that 

overexpressing slingshot in the loe background does not affect the performance 

index.  

 
Figure 25 – Phototaxis assay with SSH overexpression  

Female UAS SSH loe flies do not perform different than loe flies. The 
number of groups tested is given above each bar.  SEMs are indicated 

 

 
Since slingshot overexpression surprisingly enhanced the 

neurodegenerative phenotype in loe it was interesting to find out if the 

overexpression affects the behavioral phenotype in the same way. Flies that 

overexpress (pan neuronal driver) slingshot in the loe background showed a 
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slight improvement but no significant change in the performance index. Slingshot 

overexpression alone did not differ from the wild type performance (Figure 25).  

 

It has been previously shown that the loe fly has a significantly shorter life 

span, than wild type flies. After demonstrating that rho influences several loe 

phenotypes, the question is if it also has an affect on the life span. Therefore flies 

were aged and the time of death was recorded.  

 

Figure 26 – Life span in loe and rho loe flies    
Loe females carrying rho1 mutation live significantly longer than loe 
females alone. Males do not show a significant difference.  
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The death curve shows that the heterozygote rho mutation affected the life 

span of loe flies. The life span of rho loe female flies is significantly longer 

(p<0.001 female) than loe females. Thus, their life span improved seemingly due 

to a decreased expression of Rho1 caused by taking out one copy of rho. 

However, an examination of the males showed that the rho mutation did not have 

the same effect on the life span of male loe flies. This demonstrates that the loe 

mutation and rho mutation disturbs males and females to a different degree. 

Although beyond the scope of this thesis, this deserves further investigation 

because it suggests that there are different roles for AMPK in male and female 

flies. 
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3.7 AMPK γRNAi shows a degenerative phenotype with various 

drivers 

To find out if a knock down of the AMPK γ subunit transcript has a similar 

effect as the p-element insertion in AMPK γ subunit (loe- mutant), an RNAi line of 

SNF4A γ was investigated. This RNAi construct specifically affects the loeI 

transcript. With the UAS-SNF4A γ RNAi (AMPK RNAi) construct, a silencing of 

the γ subunit in the tissue of interest was possible. The UAS-RNAi line was 

crossed with several Gal4-drivers and observed for phenotypes in the brain and 

eye. The most dramatic phenotypes are displayed below.  

 

3.7.1 PHENOTYPE IN UAS-AMPK γ  RNAI DRIVEN WITH GMR II – GAL4 AND GMR III 
– GAL4  AND EY-GAL4 

 
As shown in the figure below, UAS-AMPK RNAi driven by GMR-II and GMR-III 

(stronger driver) lead to severe neurodegeneration. The GMR-II diver causes vacuoles 

in the medulla and medulla cortex (A). In contrast, UAS-AMPK RNAi driven with GMR-

III leads to complete destruction of the photoreceptor cells (B). Figure C shows that the 

eye less- GAL4 driver causes, in males, the same phenotype as GMR-II-GAL4 after 

only one week of aging, compared to 21days with GMR-II. Although the experiments 

with GMR-III show an important function of AMPK in the eye, it is unknown why its 

knock down leads to a degeneration in the medulla with GMR-II- and ey- GAL4 
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Figure 27 – Cell death in the eye causes by AMPK RNAi  
UAS-AMPK RNAi driven with A: GMR-II-GAL4 in 21 day old females and 
with B:  GMR-III-GAL4 21 day old females and with C: Ey-GAL4 in 7day old 
males causes degeneration. Scale bar= 50µm 
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3.7.2 PHENOTYPE IN UAS AMPK γ  RNAI DRIVEN NEURONAL DRIVERS 

 
Phenotype of AMPK-RNAi  with neuronal drivers are shown in the figure below.  

      

 

Figure 28 – Degeneration in neurons caused by the AMPK RNAi line  
AMPK RNAi driven by A: elav-GAL4 in 42 day old males and B: UAS- dicer 
Appl- GAL4 in 14 day old females and C: Applelav-GAL4 in 7 day old males 
Scale bar= 50µm 
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Figure 28 shows the degeneration that is caused by expression of the 

AMPK-γ- RNAi line in neurons. After 42 days males that express elav driven 

AMPK RNAi develop holes in the lateral protocerebrum. Two weeks old AMPK 

RNAi females that also express dicer via Appl GAL4 show big lesions in the 

optical lobes. And AMPK RNAi driven with Applelav- GAL4 show cell death in 

medulla and lobula after only 7 days.  

 

3.8 Cholesterol Influences neurodegeneration  

The loe fly has a reduced level of cholesterol ester. Nevertheless, the level 

of its triglycerides, phospholipids and free cholesterol remain steady(Tschäpe et 

al., 2002). As mentioned before, Drosophila melanogaster cannot synthesis 

cholesterol, yet the cholesterol ester concentration is affected by the mutation in 

AMPK  (Figure 29). Because cholesterol ester is the storage form of cholesterol 

this could indicate that loe flies do not take up sufficient levels of cholesterol from 

the standard food.  
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Figure 29 – Cholesterol ester concentration in loe  

Tschaepe et al showed that loe has about 60% reduction of cholesterol 
ester levels. SEMs are indicated 

 
 

It was therefore tested, whether or not the amount of cholesterol provided 

in the food can affect the neurodegeneration. For this experiment loe and control 

larva were raised on standard food until pupariation. Fly pupas where transferred 

to the feeding assay vials that contain tissues soaked in glucose with and without 

yeast, which ensured that the flies had the special diet from the very beginning of 

their adult life. They were aged on the special diet for 7 days and then sectioned.  
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Figure 30 – Feeding assay with cholesterol free food    

Male and female flies show significant improvement of the 
neurodegenerative phenotype on food, that does not contain cholesterol. 
The number of measured optical lobes is given above each bar. SEMs are 
indicated 

 
 

Comparing flies kept on cholesterol containing food with flies that had 

cholesterol free food showed a decreased area of holes from 163 to 133µm2 in 

females and 348 to 265µm2 in males when kept on cholesterol free food (Figure 

30).  

This surprising result shows that cholesterol enhances the 

neurodegeneration although the levels of cholesterol are already decreased in 

loe (in the form of cholesterol ester). 
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4 DISCUSSION 
 

The heterotrimeric protein kinase AMPK, which was first mentioned in 1973 by 

Carlson and Kim, controls the energy levels of the cell, which requires constant 

monitoring of the ATP/AMP level. In cases of ATP depletion, its major function is 

to activate energy-providing mechanisms while inactivating energy-consuming 

processes. But besides these more general function in metabolism, AMPK has 

also been shown to regulate protein synthesis, cell growth and cell polarity 

(Hardie, 2007); (Steinberg and Kemp, 2009a). Therefore, it is expected that 

AMPK is an evolutionary conserved protein that is expressed in all tissues 

including the brain (Culmsee et al., 2001), liver, and muscle.  

As discussed in the introduction, a mutation in such an important protein 

as AMPK can lead to many disorders involved in metabolism and of course the 

nervous system, and therefore more investigation is needed to fully understand 

and explain how the processes in the cell are affected when AMPK is affected. 

The insights that have been gained so far are very interesting, encouraging and 

in some way surprising regarding the effects from just one mutation, in one 

subunit (p-element insertion in AMPK-loe mutation) and how dramatically cell 

growth, homeostasis and survival is affected.  

AMPK has been connected to a rare hereditary disease, Wolf Parkinson 

White Syndrome (see 1.3.2), and also cancerous diseases. Activation of AMPK 
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by AICA (AMP analogue) in breast cancer cell lines is able to block proliferation 

and colony formation in culture, as well as reducing tumor growth in nude mice 

(Steinberg and Kemp, 2009b).  

In Drosophila, each subunit of AMPK is encoded by a single gene (Spasić et al., 

2009) but alternative transcripts exist and for the γ subunit these encode six 

different protein isoforms (www.flybase.org). The loe mutation affects only one of 

these isoforms, which is expressed in the nervous system and cannot be 

replaced by other isoforms (Tschäpe et al., 2002b). Contrary to the fly, in humans 

the combination of various isoforms for the different subunits can be produced 

from different genes or by alternative splicing (Hardie, 2007). 

 

4.1 loe interferes with the Rho pathway 

Experiments done by Tschäpe et al. confirmed that the inhibitory function of 

AMPK on HMG-CoA reductase is conserved in flies and that alterations in the 

activity of HMGR, which in Drosophila is encoded by the columbus gene (Van 

Doren et al., 1998), play a role in the degenerative phenotype (Tschäpe et al., 

2002). As described above, flies do not synthesis cholesterol and therefore the 

focus of this work is on isoprenoid synthesis, which is another pathway regulated 

by HMG-CoA. Due to the role of AMPK as a negative regulator of protein 

prenylation, mutations in this complex are expected to increase isoprenylation 
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and indeed a strong increase in prenylated Rho1 was found, although the 

membrane-associated, and therefore activated Rho1 only slightly increased 

(Figure 11 and Figure 12). The small increase in membrane associated Rho1 

suggests that isoprenylation of Rho1 might not be the only mechanism that 

regulates its membrane association. Interestingly, a decrease in the total levels 

of Rho1 in loe mutant flies was observed, indicating that some feed-back 

mechanism exists to connect the levels of prenylated active Rho1 with Rho1 

expression or degradation. 

Rho1, a G-Protein and ROCK, the downstream target of Rho1 have 

essential functions in cell. Rho-GTPases affect many functions of the cellular 

cytoskeleton depending on the cell type, due to their role in actin polymerization. 

In neurons, Rho-GTPases have been shown to regulate axon formation and 

axonal guidance by coupling guidance clues with cytoskeletal rearrangements in 

the growth cone whereby different family members can differ in their functions 

(Lowery and Van Vactor, 2009).  

Rho1 activation can result in growth cone collapse or promote forward 

progression depending on its downstream effector (Kranenburg et al., 1999). Rho 

GTPases are key regulators of the actin and microtubule network and have been 

connected with several neurodegenerative disease due to increasing data 

suggesting that impaired axonal transport and neuronal connectivity may be 

underlying causes of many of these diseases (Chevalier-Larsen and Holzbaur, 

2006), (Linseman and Loucks, 2008), (Nadif Kasri and Van Aelst, 2008) (Vickers 
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et al., 2009). By genetic interactions it was shown that loe interferes with the 

Rho1 pathway and its downstream effectors ROCK and LIMK. In agreement with 

the assumption that loe hyperactivates this pathway, mutations in ROCK 

suppressed the loe-induced degeneration (Figure 13). Interestingly ROCK also 

seems to be correlated with Alzheimer’s disease. ROCK has been implicated in 

the processing of the Amyloid Precursor Protein (APP), from which the 

neurotoxic Aβ  fragments are produced (Cole and Vassar, 2006). Treatment with 

ROCK inhibitors reduced Aβ levels, whereas increasing prenylation by adding 

GGPP (geranylgeranyl-pyrophosphate) resulted in increased levels of Aβ  (Zhou 

et al., 2003).The next target downstream of ROCK is LIMK and as expected 

neuronal expression of LIMK enhanced the loe phenotype (Figure 15). The 

association of LIMK with a variety of human diseases emphasizes the critical 

importance of this protein and proper regulation of actin cytoskeletal structures. 

For example, clusters of p25 (a tubulin polymerization factor that is 

phosphorylated by LIMK1) are found along the filaments of neurofibrillary tangles 

in Alzheimer's disease, implicating p25 in tau fibril formation (Lehotzky et al., 

2004) 

To determine if overexpression of LIMK indeed affects actin 

polymerization, a globular-/fibrilar- actin assay was used (Figure 18). As 

expected, the LIMK overexpressing flies have an increase in fibrilar actin, which 

demonstrates the actin polymerization enhancing function of LIMK. Similarly, 
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fibrilar actin was increased in loe, confirming that the loe mutation did have the 

same effect as genetically increasing LIMK.  

The loe mutation also interacts genetically with cofilin. When twinstar, 

which encodes cofilin in flies, expression is up- or down- regulated in the loe fly, 

the vacuolization is suppressed in both cases. Because tsr flies should reduce 

levels of active cofilin and TSR overexpression should increase active cofilin, it 

was expected that the phenotype of loe would have been suppressed or 

enhanced respectively.  

This surprising result shows that an alteration of cofilin expression in either 

direction is beneficial for the neurodegenerative phenotype. Assuming that the 

activity of cofilin is related to the vacuolization, three possibilities how cofilin 

could affect the neurodegenerative phenotype in loe are possiblr: 

1- Not enough active cofilin: 

The upregulation of LIMK in loe leads to an increase of phosphorylation of cofilin, 

which therefore could result in lower levels of active cofilin. Accordingly, an 

overexpression of constitutively active cofilin improves the phenotype. But a 

mutation in twinstar, which should lead to an even lower level of active cofilin, 

does not make it worse.  
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2- Too much phospho-cofilin:  

The other option is that the increased concentration of phospho-cofilin, which will 

be discussed in 4.2 is causing the phenotype. The tsr mutant in the loe 

background could then reduce vacuolization because of a reduction of phospho- 

cofilin. But if that is the case, the TSR overexpression should have led to an 

enhancement of the vacuolization due to the consequently elevated p-cofilin 

levels.  

3- Imbalance of active and inactive cofilin : 

The results suggest the third theory is the most likely one. That means that the 

overexpression of cofilin and constitutively active cofilin could lead to an 

increased active- and phospo- cofilin, therefore reducing the imbalance and 

improve the phenotype. In this case, overexpressing active cofilin would work 

even more against the elevated level of phospho- cofilin (as shown in Figure 16– 

UAS cTSR suppresses the phenotype more than UAS TSR). Generally reducing 

cofilin by the tsr mutant might counterbalance the effect by only effecting 

phospho-cofilin. Unfortunately there is no antibody against total cofilin available 

and therefore no testing of this hypothesis possible.  
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4.2 loe has more inactive cofilin  

The motility of growth cones is dependent on rapid reorganization of the 

actin cytoskeleton. When reorganization is not working properly, axonal and 

dendritic outgrowth is affected. 

Surprisingly, removing one copy of cofilin (tsr), suppressed the phenotype 

of loe although an enhancement was expected. This was based on the 

assumption that decreased levels of cofilin expression would aggravate the 

effects caused by increased LIMK activity and the resulting phosphorylation and 

inactivation of cofilin by removing even more inactive cofilin. The loe fly with the 

tsr mutation also significantly improves the loe performance index (Figure 23), 

which suggests that the tsr mutation is a real suppressor of the loe phenotype. 

Western Blots revealed that the loe mutant has 20% more phosphorylated cofilin 

protein (Figure 17), which confirms the theory that because of hyperactive RHO, 

loe has more active LIMK and therefore more phospho- cofilin. Cofilin gets 

inactivated by LIMK, which is the contrary reaction to what slingshot does, 

because slingshot activates cofilin by dephosphorylation. Loe flies also showed a 

15% increase in slingshot, indicating that because of the increased level of active 

LIMK, the loe mutant might require a higher amount of slingshot; so more cofilin 

can be dephosphorylated and activated.  
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4.3 Cholesterol effects the neurodegeneration phenotype  

The brain is the organ with the highest cholesterol level (Dietschy and 

Turley, 2001). Therefore changes in cholesterol ester (the storage form of 

cholesterol), which is the case in loe, could have a dramatic effect on the 

maintenance of neurons. As mentioned before, the fruit fly lacks several 

enzymes required for the de novo synthesis of cholesterol. So to maintain the 

necessary cholesterol levels flies need to obtain it by ingestion. Loe has a 

significant reduction in the cholesterol ester levels, but not free cholesterol levels 

in the head (Tschäpe et al., 2002b). Therefore it seemed to be interesting to test 

whether or not a cholesterol free diet would affect the neurodegenerative 

phenotype in loe. Surprisingly, diet did have an effect on the phenotype, but as 

Figure 30 shows, the cholesterol-free diet causes a significant reduction of 

vacuolization in male and female flies. This suggests that there is a connection 

between the cholesterol/ cholesterol ester level and the neurodegeneration. More 

experiments need to be done to fully understand this correlation.  

Although it has been shown that the free cholesterol levels in the loe head 

are unchanged, it is unknown how the concentrations of cholesterol ester and 

cholesterol are in the fly body. There is a possibility that the loe mutation 

influences cholesterol distribution and that the cholesterol level is elevated in the 

body and affect behavior. As was shown using rats an overload of free 

cholesterol in smooth muscle cells (SMC) increases the number of autophagy 
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vesicles (AV), which prevents cell death of SMC (Xu et al., 2010). The protective 

role on AV of SMC death shows the importance of properly functioning 

autophagy. Lippai et al. demonstrated that a SNF4A γ Drosophila mutant cannot 

form AV’s in the fat body in 3rd larval stage (Lippai et al., 2008). So it is 

imaginable that an increased concentration of cholesterol requires an appropriate 

autophagy response to down regulated the levels, which might not take place in 

the loe fly. That means, that the necessary AV’s cannot be formed and reduce 

the increased cholesterol levels. Therefore, smooth muscle cell death could 

occur and lead to weak performance in the phototaxis assay (Figure 22). 

As shown in Figure 30 the neurodegenerative phenotype improved in loe 

flies that grew up on cholesterol free food. This special diet should have 

prevented any cholesterol accumulation in the cells, including muscle cells. This 

suggests, that the improvement should also be found in the fast phototaxis 

assay, but this still needs to be tested. The lack of a cholesterol could therefore 

prevent SMC death. However, this needs further investigation.  

In addition, hormone sensitive lipase and cholesterol esterase (lipase A) that 

catalyze the step from cholesterol to cholesterol ester and back, should be tested 

to understand the connection between cholesterol homeostasis and cell death.  
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4.4 Neurite outgrowth and transport is affected in loe 

Neurons have a high energy demand, but a low capacity to store and 

generate energy, rendering them especially sensitive to changes in energy levels 

(Poels et al., 2009). Indeed the energy restoring function of AMPK has been 

shown to play a role in neuronal survival, because a knock-out of the β-subunit 

(encoded by the alicorn gene) in the Drosophila eye resulted in light-dependent 

photoreceptor degeneration (Spasic et al., 2008). A neuroprotective function of 

AMPK has also been suggested by studies in vertebrate cell cultures. 

The experiments involving 3rd instar larva neurons helped to address two 

issues. First, it showed the transport speed of mitochondria through axons and 

dendrites of larval neurons and second, an insight of neurite outgrowth in loe has 

been provided. Also the length of the processes is changed compared to wild 

type. Surprisingly, after 24 hours the loe neurons are on average longer. But the 

growth cannot be maintained, which leads to a reduction of growth in loe neurons 

after 48 hours. Meber and Bamburg (2000) provided direct evidence that 

increased actin depolymerizing factor/cofilin (ADF) activity by overexpressing 

ADF/cofilin promotes process extension and neurite outgrowth when measuring 

the neurite lengths (Meberg and Bamburg, 2000). As previously demonstrated, 

the loe mutant has decreased actin depolymerization, which would be the 

opposite case of the scenario described by Meber and Bamburg. Therefore this 

could result in the opposite phenotype, namely reduced outgrowth at least over 
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time. Nevertheless this confirms that altering actin dynamics correlates with 

changes in neurite outgrowth in loe. 

Tracing mitochondria movement in larval brain neurons by using 

mitotracker revealed reduced speed of mitochondria moving through loe neurites. 

The velocity was reduced by 42%, which clearly shows that the transport is 

dramatically disturbed (Figure 19).  

Mitochondria, also called “gatekeepers of life and death”, are ubiquitous 

and dynamic organelles involved in many crucial cellular processes in the 

eukaryotic organism (Correia et al., 2012). As metabolically active cells, neurons 

have a high-energy demand, which makes them very dependent on functional 

mitochondria. If mitochondria show a disturbance it can quickly affect the 

neuronal cell. Neurons are very vulnerable to bioenergetics crisis when it comes 

to dysfunction of the mitochondrial machinery (Moreira et al., 2009).  

It is reasonable to assume that a mutation in the AMPK protein affects 

mitochondria, considering the fact that AMPK plays a major role in controlling 

energy productions/consumption within the cell and that mitochondria are 

responsible for over 90% of cellular ATP production. Therefore, a reduction of the 

mitochondria velocity through loe neurons could be a consequence due to 

changes in energy metabolism when AMPK is mutated. In addition although loe 

neurites are growing faster in the first 24 hours, which was a really surprising 

result, the reduction at 48 hours suggests that their structure is compromised 

presumably also affecting the microtubule network. It is a possibility that the 
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effect on microtubules is indirect and caused by the alteration in actin, because it 

has been shown that actin guides microtubule into newly forming neurites 

(Rodriguez et al., 2003) (Zhou and Cohan, 2004). However it could also be a 

direct effect. 

Nevertheless, it seems unlikely that the formation and extension of microtubules 

is dramatically affected because the processes are quite capable of growing and 

it has been shown that growth cones cannot advance without functional 

microtubules (Tanaka and Kirschner, 1995) (Lowery and Van Vactor, 2009). One 

could therefore assume that loe interferes with the stability of microtubules, which 

is in agreement with the strong enhancement of the neurodegenerative 

phenotype of loe by a mutation in MAP1b (futscholk1)(unpublished data). MAP1b 

is a protein known, besides tau, for its microtubule-stabilizing function (Takemura 

et al., 1992) (Bondallaz et al., 2006). It is possible that AMPK acts directly on 

MAP1b, because AMPK is closely related to Par-1/MARK (polarity-inducing 

kinase/microtubule affinity-regulating kinase), which has been shown to 

phosphorylate MAP’s and increases microtubule dynamics (Drewes et al., 1997) 

(Marx et al., 2010) and affect axonal transport (Mandelkow et al., 2004). 

Another explanation for the effects of AMPK on microtubule could be that the 

effects are mediated through the interference of loe with the Rho pathway 

because it has been shown that LIMK activity can promote microtubule 

disassembly in endothelial cells (Acevedo et al., 2007), showing a surprising 

connection between the actin and tubulin cytoskeleton.  
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Although future experiments are needed to investigate the mechanisms of how 

AMPK affects microtubule, the results shown in this dissertation demonstrate that 

interference with isoprenylation and the resulting disruption of the cytoskeleton is 

an important factor in the progressive neurodegeneration in loe. 
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6 ABBREVIATIONS 

 
Abbreviation 

 AD Alzheimer’s disease 
ADF actin depolymerizing factor 
AICA  5-aminoimidazole-4- carboxamide 
AMP  adenosine monophosphate 
AMPK AMP- activated protein kinase 
Appl Amyloid precursor protein like 
ATP Adenosine triphosphate  
CaMKK Calmodulin-dependent kinase kinase  
CBS cystathionine-b-synthase 
CSP  91ysteine string protein 
DNA  Deoxyribonucleic acid  
F-actin filamentous actin 
FPPS Farnesyl- Pyrophosphat- Synthase  
G-actin globular actin 
GAP GTPase-activating protein 
GDP guanosine diphosphate 
GEF Guanine nucleotide exchange factor 
GLUT4  glucose transporter 4 
GTP guanosine triphosphate 
HMGR HMG-CoA-Reductase  
LIMK LIM Kinase  
LKB1  liver kinase B1 
MARK microtubule affinity-regulating kinase 
MAP  Microtubule-associated protein  
NTE Neuropathy target esterase 
PD Parkinson’s disease 
PDVF  Polyvinylidene fluoride 
PJS Peutz–Jeghers syndrome  
PP pyrophosphate 
ROK  Rho kinase 
SDS  sodium dodecyl sulfate 
SNF1 sucrose non-fermenting 1 
SSH Slingshot  
TAK1 TGF-b-activated kinase-1  
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TSR twin star 
UAS Upstream Activating Sequence 
WPW Wolff-Parkinson-White syndrome  
20 HE 20-hydroxyecdysone  
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