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Foreword

Curiosity is one of humanity’s major driving forces. Even children try to learn
as much as possible about their surroundings by asking the famous “why” and
“how” questions which often lead to the first (scientific) insights in the life of every
human being. Over centuries many of these questions were asked, fundamental laws
discovered, and processes developed to control and alter our everyday environment.
These discoveries led to famous inventions like the steam engine, the combustion
engine or the laser.

With the development of the laser by T. Maiman in 1965, a source of coherent radia-
tion with unprecedented optical and temporal properties was finally available. This
first ruby laser produced pulses with a duration of a few ms. Further development in
the field of laser sources led to the invention of new types of lasers with ever shorter
pulse durations. Today Ti:Sapphire oscillators deliver ultra-short laser pulses with a
duration of only a few femtoseconds (1 fs = 107'° s). With the help of these oscilla-
tors and the development of chirped-pulse amplification by G. Mourou in 1985, laser
light with peak intensities of several TW /cm? can be created.

The high intensities created by modern lasers lead to many new and interesting ef-
fects. In our everyday experience most processes are of a linear nature. One example
which can be easily understood is the field of music. By turning up the volume of
music, i.e., increasing the amplitude of the sound wave, the music gets louder lin-
early. When reaching a certain amplitude the maximum capacity of the amplifier
or speaker is reached and the linear behavior is no longer true, i.e., the music starts
clipping. Similar effects can be seen in the interaction of laser light with matter.
When reaching certain intensities several nonlinear processes gain importance. The
scientific field describing these effects is called the field of nonlinear optics. In case of
very high (peak) intensities, even “conventional” nonlinear optical theories cannot
describe the resulting extremely nonlinear effects.

One of the extremely nonlinear optical effects discussed in this work is the generation
of high-order harmonic radiation of a driving laser pulse. This effect generates
photons with energies being integer multiples of the photon energies of the driving
laser pulse with high orders. This typically results in a spectral conversion of near
infrared laser light into the XUV (10 nm-100 nm) regime. With this technique,
harmonic orders even greater than 450 can be obtained, resulting in radiation in the
soft X-ray regime (< 10 nm). The light generated this way is unique in many ways.
It shares many of the properties of the driving laser pulse, and the process of high-
order harmonic generation is a source of spatially and temporally coherent radiation.
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In fact, the pulses generated by this process are the shortest events humans have ever
produced, some being only as short as 63 as (1 as = 10718 5).

When talking about optical phenomena it is necessary to keep in mind that light can
be described as photons as well as waves. In order to completely describe a wave,
information about the amplitude and the phase are necessary. For many of the
nonlinear effects mentioned above to be efficient, the phase plays a very important
role. In case of laser beams, the spatial phase distribution is called wavefront. As
the efficiency of nonlinear effects depends on the phase, the main question discussed
in this work will be:

How does the wavefront of ultra-short laser pulses influence extremely nonlinear
optical processes?
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Chapter 1

Beam optics — Principles, properties
and propagation

When dealing with extremely nonlinear optics and wavefront controlled ultra-short
laser pulses, many basic ideas of optics are still valid. Sometimes even the most
classical models can give surprisingly accurate results.

For example, the high-order harmonic generation is actually an extreme nonlinear
process. Nevertheless, when treating the electron in the laser-field as a simple par-
ticle and using classical motion, as discussed in Chapter 5, many results can be
explained correctly.

Because of the importance of many basic principles even for extremely nonlinear pro-
cesses, the principles and properties of beam optics are discussed here.

1.1 Basics

Maxwell’s equations relate the electric and the magnetic fields to their sources. As
such they are the fundamental equations for all electro-magnetic effects.

1.1.1 Maxwell's equations

When using the Gaussian CGS system [1] Maxwell’s equations can be written as

V- D = 4mp, (1.1a)
V-B =0, (1.1b)
. 1 0B
E=-—=—" 1.1
V X TR (1.1¢c)
L 4x- 10D
H=—j4+——— 1.1d
V x ot (1.1d)
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where E and D are the electric quantities and H and B are the magnetic quan-
tities, respectively. The electric and magnetic fields are E and H. The quantities
D and B are the electric flux density and the magnetic flux density. The sources
are denoted as p for the electric charge density and j as the electric current den-
sity.

To determine the field distribution from Maxwell’s equation additional information
is needed on how substances react and change the fields generated by the sources.
For isotropic media the material equations are expressed by

j=0E, (1.2a)
D = ¢E, (1.2b)
B=yuH. (1.2¢)

The specific conductivity ¢ and the dielectric permittivity € describe how a sub-
stance reacts to electric fields. The magnetic permeability p quantifies the response
to magnetic fields.

For a part of the field where no currents (j = 0) and no charges (p = 0) are present
the general wave equation

- O2E
2 HIT 1.3
v 002 ot? ( )

can be derived from Equations (1.1) and (1.2). Here Equation (1.3) is only given

for the electric field E , but has exactly the same structure for the magnetic field
H.

1.1.2 The wave equation

The solutions of the general wave equation as given by Equation (1.3) are electro-
magnetic waves which propagate with the phase velocity c. Inside a medium the
propagation velocity changes to

¢
¢ =~ with n = /e (1.4)
n
where n is the index of refraction and € and p are the material parameters.

To describe the propagation of waves, it is convenient to define a vector k which
contains information about the propagation. This vector k is called the wave vector
and points in the direction of the propagation of the wave. For propagation through
vacuum the vector has a value of

2w w
ko= % == 1.5
0 )\0 Co ( )
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For propagation through media the propagation speed inside the medium, defined by
Equation (1.4), has to be taken into account. This then leads to

The number k is typically called wave number and this definition is used in this
work. In spectroscopy on the other hand the term wavenumber is used for the quan-
tity kK = % which differs from k& by a factor of 2.

For a principle discussion let’s consider the general wave equation in the form

. 102
5 u

Vu 292 0. (1.7)
All functions u(7, t) which satisfy Equation (1.7) are possible electro-magnetic waves.
Furthermore, if two waves u; (7, t) and us(7, ) are solutions of the wave equation, the
wave resulting from the superposition u(7,t) = uy (7, t) + ua (7, t) is also a valid solu-
tion. This principle of superposition results directly from the linearity of Equation
(1.7).

As a result it is possible to describe arbitrary waves as a superposition of harmonic
waves. For this reason the principles of harmonic analysis and the Fourier transform
can be used to examine the properties of electro-magnetic waves. To simplify the
problem it is convenient to start with a monochromatic harmonic wave with angular
frequency w. The real wave function u(7,t) can be treated as the real part of a
complex wave function

U(r,t) =U() e ", (1.8)

where U(7) is the complex amplitude of the complex wave function. The complex
wave function then completely describes the monochromatic wave. The real wave
function can be retrieved by

u(r 1) = R{UE) et} = 2 [U6F) o 40 () ] (1.9)
with U(7) = a(7) ¢

Because U(7,t) completely describes the wave it also has to satisfy the wave equa-
tion. Inserting Equation (1.8) into Equation (1.7) leads to the so called Helmholtz
equation

V2U + n?ko*U = 0. (1.10)

1.1.3 Solutions of the wave equation

Complex wave functions whose amplitudes U () satisfy the Helmholtz equation also
satisfy the general wave equation. So the Helmholtz equation can also be used to
look for possible wave functions.
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Plane waves

The most simple solution of Equation (1.10) is a plane wave. The plane wave is
defined as . .
U(F) = Ae 'F7 with k = (kg ky, k) . (1.11)

The surfaces of constant phase are called wavefronts. The influence of the wavefronts
on the properties of the wave is discussed in detail in Chapter 2. For plane waves the
surfaces of constant phase are, as the name suggests, planes.

As mentioned above, arbitrary waves can be described as a superposition of waves.
Harmonic plane waves are often used as fundamental waves for the superposition.
This helps describe an arbitrary wave or the influence of linear optical systems on the
wave. Due to its simplicity, many interesting effects can be easily found and under-
stood. This field is called Fourier optics and is widely used [2].

Spherical waves

Another simple solution of Equation (1.10) is the spherical wave. It is given by

A )
U(F) = e ikr (1.12)
r
For spherical waves the wavefronts are concentric spheres which propagate with the
phase velocity c.

Spherical waves are often used to study the diffraction properties of waves. For this
the Huygens principle is used which states that all points of an arbitrary wavefront
are the source of a new elemental spherical wave. The superposition of the spherical
waves leads to a new wavefront. With this principle it is quite simple to calculate
the diffraction of an incoming wave by a general aperture [1, 3.

Paraxial waves

A different class of solutions of the Helmholtz equation (1.10) are paraxial waves.
In the simple model of Gaussian optics [1, 2] only special rays of light are used.
These rays are called paraxial rays because they obey the paraxial approxima-
tion.

The paraxial approximation is valid for rays which form a small angle to the optical
axis of the system, and lie close to the axis throughout the system [4]. Therefore,
the small-angle approximations are valid.

In beam optics the solutions of the Helmholtz equation where the wavefront normals
can be treated as paraxial rays are called paraxial waves. A general approach to
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describe paraxial waves can be written as

U(F) = A(F) e 7=, (1.13)
Here the plane wave e~ ## is modulated by a complex amplitude A(7). This com-
plex amplitude has to fulfill certain boundary conditions so that U(7) is a paraxial
wave.

These boundary conditions are given by the fact that the wave should keep the char-
acter of a plane wave. This means that the wave should still propagate mainly in the
direction of k. To achieve this, the complex amplitude must vary only slowly with z.
This assumption leads to the slowly varying envelope approzimation or short SVEA.
As a result, in differential equations the highest-order derivatives may be neglected.
For the complex amplitude A(7) the SVEA can be written as

ZA < kA, (1.14a)
z

2A|

S| KA (1.14D)

In order to solve the wave equation using paraxial rays, substituting Equation (1.13)
into Equation (1.10) and neglecting the highest-order derivatives according to Equa-
tion (1.14), leads to
0A 0? 0?

VZA — i?ka = 0 with the transversal V7 = 92 + R (1.15)
This equation is called the paraxial Helmholtz equation. It is the approximation of
the Helmholtz equation (1.10) under the boundary conditions given by the slowly
varying envelope approximation.

The simplest solution of Equation (1.15) is the paraboloidal wave, which is also
called the Fresnel approximation of the spherical wave. The paraboloidal wave is
given by

A . 22442

U(7) = 22 e ikz gmikigs (1.16)

z
The use of the paraboloidal wave as approximation for the spherical wave is only
valid for (22 4 y?)° < 423

The most interesting and commonly used solution however is the Gaussian beam

A : —i 22 '.2
U(F) = L emikz o= 1k | (1.17)
q(z)
The complex quantity ¢(z) = z +izp is called Gaussian beam parameter or just g-
parameter. The characteristic length zp is called Rayleigh length.
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The Gaussian beam can be derived from the paraboloidal wave [2], but has com-
pletely different properties. Because of the importance of Gaussian beams for optics
its are discussed in the following.

1.2 Gaussian beam optics

A Gaussian beam, as described by Equation (1.17), is a paraxial wave which propa-
gates in z-direction. Its complex amplitude A(7) only varies slowly with z and solves
the paraxial Helmholtz equation (1.15).

In order to fully characterize a plane wave or spherical wave with a given wavelength
A, only the (complex) amplitude and a second parameter are needed, which is the
propagation direction for a plane wave and the point of origin of the source for the
spherical wave. For Gaussian beams, however, the amplitude and two parameters
are needed. In the following, beam parameters which characterize Gaussian beams
are discussed.

1.2.1 Beam parameters

As seen in Equation (1.17), a Gaussian beam is fully described by its amplitude,
its wavelength and propagation direction, i.e., the wave vector k, and the Gaussian
beam parameter q.

The Gaussian beam parameter is a complex quantity and therefore has two com-
ponents. As such, a combination of two linked, real and physical parameters char-
acterize the Gaussian beam. The Gaussian beam parameter can be written in two
ways. These are

q(z) = z+1zg, (1.18)

and
1 1 ] A

¢) _ R(z)  aw2(z)” (1.19)

Equation (1.19) describes the beam in terms of beam width W(z) and radius of
curvature R(z) of the wavefronts. The location where the beam width is minimal
is called beam waist. For freely propagating beams only one beam waist exists.
Equation (1.18), which describes the same beam as Equation (1.19), contains infor-
mation about the distance from the beam waist (R {q¢} = z) and the focus length
(23 {q} = 2zR) of the beam.

As these two sets are interpretations of the same beam, the parameters used to
describe the beam are connected. The beam width at a distance z from the beam
waist for a given Rayleigh length 2z can be written as

W(2) = Wor |1 + <;>2 (1.20)
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with the waist size
)\ZR
Wy =1/ —. (1.21)

™

The radius of curvature of the wavefront for the same beam is given by
ZR 2
R(z)=z|1+ () : (1.22)
z

The beam width and the wavefront curvature near a beam waist are shown in Figure
1.1. At the position of the beam waist (z = 0) the beam diameter (d = 2W}) is
minimal and the beam looks like a plane wave, i.e., the radius of curvature R(0) —
00. At z = zp the beam width is increased by a factor of v/2 and the radius of
curvature is minimal.

wi(z)/wg

Figure 1.1: A Gaussian beam with width wg, beam divergence 6, and Rayleigh range
zgr. Additionally the wavefronts are shown. At z = 0, the beam width is
minimal (W (0) = wy) and the wavefront is that of a plane wave, i.e., the
radius of curvature is infinite (R(0) — 00). At z = zp the beam width
has increased to W (zz) = /2wy and the radius of curvature R(zg) is
minimal.

When looking at the beam width of a Gaussian beam in the far field, i.e., z > zg,
the beam divergence is given by

W(z) _Wo A

O = (1.23)

2z zr Wy

This equation is the result of neglecting the first part in Equation (1.20) combined
with the use of small-angle approximations.

When comparing a Gaussian beam with a spherical wave in the far field they look
almost identical. The phase of the Gaussian beam, however, is delayed by 7. This
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phase delay is called the Guoy phase which can be written as

((z) = arctan (Z) : (1.24)
ZR

Due to this fact, the phase of a Gaussian beam is shifted by an amount of w

when coming from the far field and going through a beam waist to the far field

again. The physical origin of the Gouy phase shift is the uncertainty principle

[5]-

1.2.2 Beam propagation

In classical ray optics it is possible to describe a beam as a vector and the influence
of optical components as matrices. For propagation, reflection and diffraction the
matrices can be given [2, 3]. As any linear system can be seen as a combination of
these effects, the complete system can be described by a ray transfer matrix. This
matrix is typically written in the form of

T - (é g) (1.25)

and is also called ABCD matrix.

The matrix formalism developed for ray optics is also suitable for Gaussian beams.
All rules which apply to the ray transfer matrices in ray optics are also valid for
Gaussian beams. A system described by a ray transfer matrix has an input plane
perpendicular to the optical axis of the system and an output plane which is also
perpendicular to the optical axis. A Gaussian beam with a g-parameter ¢; at the
input is projected onto the output by the ray transfer matrix. At the output the
g-parameter ¢ is given by

_Aq+B
- Cq+D’

Here A, B, C and D are the components of the ray transfer matrix as mentioned in
Equation (1.25).

q2 (1.26)

The whole matrix formalism is very useful when dealing with laser propagation or
resonator design [2, 3.

1.3 Real laser beams

When using real lasers, the beam profile and beam properties of the laser are typ-
ically not perfect. The Gaussian beam described by Equation (1.17) is just one
special solution of the paraxial Helmholtz equation. In fact it is only the lowest
order of a whole class of solutions and is only valid for a beam with a Gaussian in-
tensity distribution. For other intensity distributions other solutions of the paraxial
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Helmholtz equation are needed. Various other sets of solutions exist, which can be
used to model a real laser beam.

A complete and orthogonal set can be used to fully describe an arbitrary laser beam
as a superposition of solutions from this set. The choice of the set typically depends
on the symmetry of the laser beam. Typically used sets are Hermite-Gaussian beams
for rectangular symmetries, Laguerre-Gaussian beams for cylindrical symmetries
and Ince-Gaussian beams for elliptical symmetries. In daily use Hermite-Gaussian
beams are typically used because in laser resonators many components depend on
rectangular coordinates, e.g. Brewster windows, thin film polarizers or anti-reflective
coatings with different properties for s- and p-polarization.

The description of the Gaussian beam parameter ¢ as given by Equation (1.18)
is only valid for the perfect Gaussian beam. Higher-order solutions, also called
higher-order Gaussian modes, have different propagation properties. The divergence
of the perfect Gaussian mode, for example, is smallest compared to higher-order
modes with the same beam waist. Therefore, the relationships given by Equations
(1.19)-(1.24) cannot be applied directly to beams containing higher-order Gaussian
modes.

1.3.1 The M? concept

In order to solve this problem the M? concept [3, 6] was developed. One of the
main problems in formulating this method is the definition of the beam width.
For Gaussian beam profiles there are many ways to define its width. Some of the
most common definitions are the full-width half-maximum (abbreviated FWHM),
the %— or e%—width and the diameter containing 86% of the beam energy (called
‘D8G’).

For irregular beam profiles, on the other hand, these definitions are problematic.
Some beams may have multiple minima and irregular maxima. This leads to very
different values of the beam width, depending on the used definition of the width.
Another problem is that throughout the course of propagation the beam width is
not always strictly monotonically increasing with propagation distance for all width-
definitions, as described by Equation (1.20) for Gaussian beams.

One definition, however, behaves correctly and is closest to a universal description
of a beam width. This is the variance of the beam based on second-order beam
moments [7-9]. The use of second-order beam moments to determine the vari-
ous beam parameters and its value on characterizing beam propagation is quite
extensive. For this reason only a short summary is given here. A more detailed
discussion on second-order beam moments for further reading is given in Appendix

A.
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The variance of the beam profile in x-direction is given by

o2 @ (@) [(z,y)dedy (1.27)

’ JI1(z,y) de dy

where I(x,y) is the intensity distribution and (z) is the first-order beam moment
which gives the center of gravity of the beam. The variance in y-direction can be
calculated accordingly.

Along the same lines the beam divergence 6y can be calculated from second-order
beam moments as beam variance in spatial frequencies [7].

In order to compare an arbitrary beam with a perfect Gaussian beam, the beam
parameter product, short BPP, can be used. The beam parameter product re-
lates the near-field properties of the beam to its far-field properties and is given
by

BPP = W, 6. (1.28)

For a Gaussian beam the beam parameter product is minimal and has the value
BPP = 2.
s

From the beam parameter product the more convenient parameter M?2, also called
beam propagation factor, can be derived. This is done by comparing the beam
parameter product of an arbitrary (read: real) laser beam with the beam parameter
product of a perfect Gaussian beam. The beam propagation factor is then defined

as
~ BPPofreal beam 7 Whpe Opp (1.29)
~ BPP of Gaussian beam A ’ )

where W2 and 62 are the near-field and far-field properties of the real beam.

M2

w(z)iwy

zizp

Figure 1.2: Influence of M? on beam width and divergence. A multi-mode beam
(blue) with the same beam waist wy as a perfect Gaussian beam (red)
diverges M? times faster than the Gaussian beam.

As can be seen from Equation (1.29), the real beam diverges M? times faster than
a Gaussian beam with the same beam waist. Another interpretation could be that
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a real laser beam creates a M? times larger beam waist than a Gaussian beam with
the same divergence. Because of this simple relation the M?2-parameter is sometimes
also called times-diffraction-limit or TDL. This behavior is shown in Figure 1.2.

With the help of the beam propagation factor it is possible to modify the beam
parameters of a Gaussian beam given by Equations (1.19)-(1.24). This leads to
more general expressions of the equations which are also valid for beams containing
higher-order modes.

The beam width given by Equation (1.20), for example, modifies to

Wi(z) = WO\/l 4 (M2Z>2. (1.30)

<R

It is also possible to define a generalized g-parameter
. %R
q(z) =z4+i—5 (1.31)

which contains all information of the real laser beam. This way, it is possible to use
the ABCD-matrix formalism to calculate the beam propagation of real laser beams

3]-

The M? concept as quality indicator?

Sometimes the M? concept is used to characterize the quality of laser beams [10),
11]. Most of the time it is correct to use the M? concept as quality indica-
tor.

When doing so, one has to keep in mind that the M? concept is based on using the
beam width and divergence obtained by the second-order moments. As these are
only the variance in space and angular-spread, the exact intensity distribution at a
certain point of interest along the propagation axis is not available. Thus the term
‘quality’ only refers to the overall propagation characteristics.

For certain applications, however, the peak intensity of a laser is important. In this
case it is possible that the peak intensity exceeds the calculated intensity when using
the M? parameter. As such, the whole M? concept must be used with caution for
these experiments.

A short excursion into creating beams with interesting properties shows that care-
lessly looking only at the beam profile, either in the near- or far-field, and not taking
propagation into account can be dangerous. In the following an example of such a
beam is given.
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“Non-Gaussian” Gaussian beams

It is possible to create a beam with a nearly perfect Gaussian beam profile which does
not contain any contribution from the TEMyq mode [6]. These types of beams might
be called “non-Gaussian” Gaussian beams. Figure 1.3 shows such a beam with a
near-perfect Gaussian beam profile with absolutely no TEM, part.

Figure 1.3: A “non-Gaussian” Gaussian beam. The beam profile looks like a perfect
Gaussian beam. However, absolutely no contribution of the TEMyy mode
is present. This example is created by an incoherent superposition of five
higher-order Laguerre-Gaussian TEM modes (44% TEMq;, 17% TEM;y,
19% TEMH, 11% TEMQ() and 6% TEMgl) From [6]

This particular example of a “non-Gaussian” Gaussian beam is created by an inco-
herent superposition of five higher-order Laguerre-Gaussian TEM modes. It contains
44% TEMgy, 17% TEM;g, 19% TEMy;, 11% TEMy and 6% TEMy;. It retains its
beam profile during propagation, but it diverges faster than a true Gaussian TEMqq
beam. This different propagation behavior is characterized by a beam propagation
factor of M? =~ 3.1.



Chapter 2

Wavefronts — Definition,
characterization and measurement

As discussed in Chapter 1 it is possible to use Gaussian beams to describe the
propagation of light through media and optical elements. Propagating from a beam
waist to the far field, the beam can be described as a plane wave at the beam-
waist, as a paraxial wave in the intermediate domain and as a spherical wave in
the far field. These three regions of propagation always assume that the beam
has a perfect wavefront with specific curvature, as needed by the approximation
[2].

In general laser beams used in experiments are not perfect. Usually the beam
profile is only near-Gaussian and the wavefront has some distortions [3]. These
distortions can originate from the source itself or from aberrations introduced by
optical elements used to guide the beam. In this chapter the influence of these
distortions on beam propagation and how to characterize them are discussed. A
more detailed discussion of aberrations can be found in [1].

2.1 The concept of wavefronts

2.1.1 The wavefront

For coherent radiation the wavefronts are defined as the surfaces of constant phase
of the electric field [1, 12]. For ease of use it is convenient to define ¢ (7) = 2mm with
m as an integer number. The wavefront can then be written as

A

w (2,y) = 2% (z,y). (2.1)

For each point of the wavefront the surface normal of the wavefront is parallel to
the Poynting vector S at that point. This way the wavefront is directly connected
to beam propagation as shown in Figure 2.1.

Using geometrical optics one can easily describe how a perfect plane wave is fo-
cused by a perfect aberration free lens. In front of the lens the wavefront is plane.

15
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optical element

geometric rays {Ehif tens)

(parallel light) /
/ geometric rays
(focussed light)

geometric focus

\ wavefront
\ (spherical wave)

wavefront
(plane wave)

Figure 2.1: A thin lens (blue) alters the wavefront (red) of an incident beam. The
geometrical rays (black) are also shown to demonstrate the connection
of wave- and ray-optics

After propagation through the lens the beam converges onto a single point, the
focus. One can easily see that the perfect lens changes the plane wave to a spher-
ical wave. This change can be described in terms of a modification of the wave-
front.

As mentioned before, real laser beams typically do not have perfect wavefronts. The
difference between the real wavefront and a perfect wavefront is the wave aberra-
tion.

2.1.2 Wavefront aberrations

As mentioned in Chapter 1, in the simple case of Gaussian optics only paraxial
rays are considered. While staying in the domain of geometrical optics one can
describe the departure of the path of light from the Gaussian optics as geometrical
aberrations.

The effect of an aberrated beam is shown in Figure 2.2. An aberration-free fo-
cused beam produces an image in the Gaussian image plane. This beam has the
Gaussian reference sphere as wavefront, and the point )7 is imaged onto point Py
When comparing the reference beam to an aberrated beam, three aberrations can
be defined.

The wave aberration ® of a wavefront w(zx,y) is defined as
o Wa L

The wave aberration measures as to which extent the wavefront w(z,y) differs from
the reference wavefront s(z,y).
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w(xy)

Plane of exit pupil Gaussian image plane

Figure 2.2: Influence of aberrations on beam propagation. The wavefront w(z, y)
shows aberrations with respect to the Gaussian sphere of reference
s(z,y). The wave aberration Q1Q)7 leads to a ray aberration PP in
. e
the Gaussian image plane [1]. The angle S between the two rays ;P
v g .
and Q% P/ is called the angular shift. After [1].

The wave aberration ® leads directly to a ray aberration § [13] which is given
by N

The ray aberration measures how far a spot is shifted in the Gaussian image plane
due to the wave aberration.

At last, the ray aberration can also be interpreted as angular shift 5 when combined
with the distance d. The angular shift is defined as the angle

=2 (QiPLQiF) (24)

with £ as angle between the aberrated ray and the reference ray.

In order to characterize the wavefront and its aberrations from the Gaussian ref-
erence sphere it is convenient to expand the wave aberration ® or the complete
wavefront w(z,y) into modes. Typically, each mode describes an effect of the aber-
ration or wavefront on propagation. An expansion of the complete wavefront leads
to

w(z,y) = kz_:ck Py. (2.5)

To fully describe wavefronts of beams in this modal way one needs a set of basis
functions Py, with the coefficients ¢, [14]. These functions only need to be linearly
independent, but not necessarily orthogonal. For different beam geometries one
should use appropriate sets of functions. For rectangular geometries, one can use for
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example Legendre, Hermite or Chebyshev polynomials. For circular beams Zernike
polynomials usually are used, because they contain the Primary Seidel aberrations

[1].

2.2 The Zernike polynomials

As the fundamentals of the Zernike polynomials are quite complex, only the equa-
tions needed here are given. For a more complete discussion of the Zernike polyno-
mials see Appendix B.

In order to characterize the wavefront of circular beams it is typically expanded into
the real Zernike polynomials. Equation (2.5) gives then

y) = i_o: A (2.6)

where ¢, are the Zernike coefficients and Zj are the Zernike polynomials with linear
numbering shown in Table B.1. By definition (see Appendix B) the Zernike polyno-
mials are functions with two parameters. In polar coordinates they are

a, R™(p) cos (mh) form >0

. 2.7
a, R (p)sin (mf) for m < 0 27)

Zy(p,0) = {

Here n is the radial order and m the angular dependence. The factors a, are
normalization constants and R!"(p) are the radial Zernike polynomials which can be
written as

S (n—5) ]
RI(p) = Y (-1 = i), (23)
st (5 - 9t (5 - )

With this representation the normalization is usually chosen as a,, = 1 (as opposed
o [14]) and results in
R™(1) =1, (2.9)

for all possible m and n.

For explicit expressions of the Zernike polynomials in Cartesian coordinates (up to
a radial order of n = 6) see Table B.1. These Zernike polynomials are typically used
to quantify the wavefront aberrations present in experiments from data obtained by
a Shack-Hartmann sensor.
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2.3 The Shack—Hartmann sensor

The Shack-Hartmann sensor is based on the effects of the wavefront on beam propa-
gation. It is widely used in diverse application areas. In ophthalmology, for example,
it is used as a diagnostic tool [15] as well as a calibration tool [16].

With a Shack—Hartmann sensor it is possible to quantify different forms of ametropia.
For some forms of refractive eye surgery it is necessary to focus a laser onto an ex-
act spot inside the eye. This can be achieved by quantitative measurements of
the aberrations induced by the eye with a Shack—Hartmann sensor. This informa-
tion is then programmed into the surgical laser which precompensates the aberra-
tions.

2.3.1 The historic Hartmann test

The Shack—Hartmann sensor is based on the principle of the Hartmann test devel-
oped 1900 by Johannes Hartmann [17]. The test is very simple and is still used
today in astronomy for large telescopes. The basic setup of the Hartmann test is
shown in Figure 2.3.

wavefront  plate with holes
from star i

I detector
behind focus

-
.
: detector in
| front of focus

|
| telescope under test |

Figure 2.3: Concept of the early Hartmann test as used in astronomy. The incoming
light of a star passes an opaque mask with pinholes and gets focused by
the telescope. The mask creates individual pencils of rays from the
incoming light. The light is imaged at two positions, one in front of the
focus and one behind the focus. On the detector each pencil of rays
creates a spot. By connecting corresponding spots on the two images
the aberrations at the focus can be retrieved.

The Hartmann test setup consists of a large opaque mask with pinholes which is
installed in front of the test object. In case of Figure 2.3 the test object is a telescope.
The holes in the mask are large enough so that diffraction can be neglected and the
mask produces pencils of rays. These rays are then recorded behind and in front of
the focus. The detected spot patterns are then evaluated, and optical aberrations
can be derived [18].
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The big advantage of this setup lies in its simplicity, which is the reason why it
is still used today [19]. There are, however, some disadvantages which makes the
test not suitable for all situations. First of all, much of the incident light is blocked
by the mask. Thus, very sensitive detectors are needed, or else the light source
has to be bright enough to measure the aberrations. Second, two images, behind
and in front of the focus, are needed. Recording the wavefront and performing the
actual measurement simultaneously is not possible. That is why fast fluctuations of
the wavefront during the measurement process cannot be detected. This makes the
setup only usable in special cases, e.g., for alignment purposes.

In order to improve the detection scheme applying a scanning mechanism to the mask
is possible [19]. A more advanced but still quite simple variation of the Hartmann
test is the Shack-Hartmann sensor which was developed in the late 1960s by Roland
Shack and Ben Platt [16, 20].

2.3.2 Principle of the Shack—Hartmann sensor

The Shack—Hartmann sensor is capable of measuring the wavefront in only one step
and needs only little light [16]. This allows insertion of a beam-splitter to use a
small fraction of the incoming light for the wavefront detection. In this way the
wavefront of the incoming beam and the actual measurement can be recorded at the
same time. With adaptive optics it is even possible to correct fluctuations of the
wavefront during long measurements.

In order to achieve this, the Shack—Hartmann sensor uses an array of micro-lenses
instead of an opaque mask with pinholes. Figure 2.4 shows the basic setup of a
Shack—Hartmann sensor.

The micro-lens array divides the incoming beam into many sub-beams. In the
following the sub-beams are indexed (i,j), or short ij. Each sub-beam j is im-
aged onto the detector by the micro-lens (focal length f) according to its local
wavefront. The detector is placed in the focus of the micro-lenses at distance
Ly = f behind the micro-lens array. The detector measures a spot pattern which
depends on the distribution of the micro-lenses and the wavefront of the incident
beam.

Because the micro-lens array collects all the light from the incident beam, the beam
profile can be reconstructed from the intensities of the individual spots. The res-
olution of beam profile measurement is given by the size and distribution of the
micro-lenses [18].

In order to evaluate the wavefront of the incoming beam, the position of each spot
is calculated. This is done by calculating the centroid position, i.e., the center of
gravity. The centroid position is identical to the first order moment of the spot ¢
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Figure 2.4: Concept of the Shack-Hartmann sensor. The incoming wave is sampled
by the micro-lens array. Each micro-lens images a small part of the
incoming wave onto the detector, which is placed at focal length f of
the micro-lenses. The spot deviation Az of the spot from the reference
position depends on the local wavefront. After [16].

and is calculated according to

JJ I (x,y) dzdy

> __subap,ij

S I(x,y) dedy

subap,ij

(2.10a)

Lejij = <l‘z‘j

Iyl () dedy
cij = \Yij = . 2.10b
Ye,ij <?JJ> ff](x,y)dxdy ( )

subap,ij

Here the integration is carried out only over that part of the detected image which be-

longs to the subaperture ij. This is denoted by the integration limits [/ .
subap,ij

In order to determine the wavefront, the distribution and properties of the micro-
lenses are needed. To obtain this information a reference spot pattern created by a
beam with a well-known wavefront is recorded. For example for a plane wave the
spot pattern directly reproduces the distribution of the micro-lenses and can be used
as reference.

The ray aberration mentioned in Section 2.1.2 is given by the shift of the centroid
positions of the measured beam compared to the centroid positions of the reference.
The local angular shift ;; which represents the local wavefront gradient can be
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calculated from the shift of the centroid position by
ow/0x Be 1 (z.—z,
= = — : 2.11
<8w/0y>ij <6y>ij Ly (yc - yT)zj ( )

For a modal analysis of the beam, the wavefront is expanded into polynomials as
given by Equation (2.5). In order to reconstruct the wavefront the expansion coeffi-
cients ¢; are needed. Instead of the local wavefront the local wavefront gradients are
calculated here. In order to get the coefficients ¢, anyhow the wavefront gradient
can be approximated [14] by

ow K
S =Yt (2.12a)

ij k=0 ij

ow X 0P, (z,y)
— =Yg 2.12b
dy|.. = dy (2.12b)

ij

In order to determine the coefficients ¢, an approach based on the method of the
least squares is used [14]. This is done by taking into account the whole beam
instead of just one subaperture. This way the wavefront can be reconstructed from
a Shack—Hartmann measurement.

In cases where a modal approach to reconstruct the wavefront is not possible,
a zonal approach can be used. Here the local wavefront gradients are numeri-
cally integrated. A more detailed description of this approach is given by [14, 21,
22].

2.3.3 The Hartmann sensor

In some regions of the electro-magnetic spectrum, especially the XUV range, it is
not possible to use conventional lenses. Thus a standard Shack—Hartmann sensor
cannot be used. In order to measure the wavefront of such beams the concept of the
Shack—Hartmann sensor can be combined with the original approach of the opaque
mask of the Hartmann test. This leads to a so called Hartmann sensor which is
shown in Figure 2.5.

In principle the Hartmann sensor works just like a Shack—Hartmann sensor, and
the same evaluation scheme can be used. There are, however, some fundamental
differences, which are due to abandoning the use of micro-lenses, which should be
discussed in the following.

First, the distance Ly between the Hartmann mask and the detector is not fun-
damentally fixed. The placement of the detector with respect to the mask is not
important as long as the distance is known for the evaluation of the angular shift 5.
In practice the length Lj is determined by the detector size, the required resolution
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Figure 2.5: The concept of the Hartmann sensor is very similar to the concept of
the Shack—Hartmann sensor (compare Figure 2.4). The incoming wave is
sampled by the Hartmann hole-pattern. The light which is transmitted
through a pinhole hits the detector, which is placed in the distance Ly.
a) shows the definition of the reference “image” obtained by a plane
wave. b) shows the detector image produced by a distorted wavefront.
With the help of the spot deviations Az and Ay (inset) the wavefront
can be reconstructed. From [22].

and the expected aberrations of the beam. The whole scheme can only work if a
direct mapping of each spot on the detector to its subaperture is possible. If the
distance or the ray aberration is too large the sub-rays will overlap or switch places,
e.g., the rays (i,7) and (i + 1, j) are mapped to the apertures (i + 1,7) and (4, j),
respectively.

Second, the pinholes of the Hartmann mask are quite small and diffraction at the
pinholes might play a role. For typical XUV wavelengths A and reasonable pin-
hole diameters d;, i.e., within typical manufacturing accuracy, diffraction can be
neglected because ds > \. For wavelengths other than XUV or for smaller pinholes
diffraction must be taken into account.

Third, because of the first two arguments the distribution and spacing of the pinholes
must be chosen carefully. In order to avoid overlapping of the spots on the detector
the spacing of the pinholes must be large enough. This, along with the diameter
of the pinholes, reduces the free aperture of the mask, so the transmission of a
Hartmann mask is much lower than the transmission of a micro-lens array which
does not block any light. In order to compensate for the low transmission a beam
with a high photon number is needed, or else the detector must be sensitive enough
to measure the spot pattern even under low light conditions.

Fourth, because the opaque Hartmann mask blocks most of the light, the intensity
of the incident beam is only sampled at the locations of the pinholes. Intensity
variations in the region between two adjacent pinholes cannot be detected. There-
fore, a reconstruction of the beam profile is only partly possible. Calculating the
beam parameters for a beam measured with a Hartmann sensor can only be valid
for reasonably homogeneous beams. For beams with strong inhomogeneities the
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beam profile must be recorded directly in order to calculate the beam parame-
ters.

2.4 The wavefront and beam propagation

In order to fully characterize a beam the beam profile as well as the wavefront must
be measured. With this knowledge the beam parameters and the free propagation
of the beam can be calculated. With a Shack-Hartmann sensor, it is possible to
measure both at the same time. A Shack-Hartmann measurement can therefore be
used to completely determine the parameters of a beam [23] and to calculate its
propagation properties [24].

2.4.1 Determination of beam parameters

As discussed in Section 1.3 for real beams, beam parameters corresponding to Gaus-
sian beam optics can be defined. These parameters are determined by beam prop-
agation. Because both the beam profile and wavefront are known from a Shack—
Hartmann measurement, the beam parameters can be extracted even for general
astigmatic beams [9].

The beam parameters are given by the second-order beam moments [8, 9] which are

mentioned in Section 1.3 and are discussed in more detail in Appendix A.

The second-order spatial moment determines the beam width at the position of the
measurement which, for the spatial coordinate x, is given by

2w, = d, = 4/(22). (2.13)

The beam width in the y-direction can be calculated the same way.

The second-order angular moment is used to determine the divergence of the beam.
The divergence is given by
0, = 4y/(u2). (2.14)

For the beam propagation factor M? mixed second-order moments are needed, which
can be calculated as

M2 = i) (a2) — () (2.15)

By inserting the values for /\/l%y and divergence 6, , into Equation (1.29), it is
possible to determine the beam waist wy.
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2.4.2 Calculation of beam propagation

The beam parameters, beam waist wg, beam divergence 6, beam propagation factor
M? and beam twist 7 can be used to characterize near-Gaussian beams. With the
help of the beam profile and the wavefront, however, it is also possible to use Fourier
optics [2] in order to calculate the resulting beam at any given position along the
propagation axis.

For linear systems it is possible to determine the reaction of the system to arbi-
trary inputs (e.g., beams) with the help of harmonic analysis and thus calculate the
output. For the calculation of the output g(z,y) in response to the input f(2’,1/)
only the impulse response function or the system transfer function is needed. The
calculation of g(z,y) is done by

g(r,y) = // f' ) h(z,y, 2" y') da'dy’ (2.16)

where h(z,y,x’,y') is the impulse response function.

The propagation through vacuum is shift-invariant and linear. The shift-invariance
means that a shift of the whole system, including the input, by a distance § only
shifts the output by the same distance. In this case the impulse response function
in Equation (2.16) simplifies to

h(w,y, 2 y) = e -2,y —y). (2.17)

Here the impulse response function only depends on the differences x — 2" and y — 3/
and not on the absolute positions z and y.

Combining Equations (2.17) and (2.16) yields the convolution

9(x,y) = [h* f](2,y). (2.18)

Here the convolution theorem [2] can be used to calculate the output in spatial
frequencies

Glko, k) = H(ky, ky) Flks, k). (2.19)

The function F(k,,k,) is the Fourier transform of f(x,y) and the system transfer
function H(k,, k,) is the Fourier transform of the general impulse response function

h(z,y).

For the propagation of the distance d of a beam through vacuum the Fresnel approxi-
mation can be used. The general impulse response function then reads

k i i 22442
h(z,y) = (i 27rd> e e k( 2 ) . (2.20)

The actual calculation of the output of an arbitrary linear optical system can be
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accomplished either in real space or in the spatial frequency domain. The choice
of system depends on whether the impulse response function or the system transfer
function is available or in which system the calculation is easier.

Going back to the initial problem of calculating the intensity at a position z from the
Shack—Hartmann measurement at position zy, the propagation can be determined
using Equations (2.16) and (2.20).

The complex amplitude of the input wave at position zj is given by
fla,y) = /I(x/’y/”zo olkw@y)l., (2.21)

The intensity I(z,y)|. = |g(z,y)|* at position z can be calculated by numerical
evaluation [25] of the Fresnel integral

(z—2')+(y—v')? ?

//vf(ﬂﬂ’,y’)lzo el TR dady| L (2.22)

I(z,y)], o

2.4.3 Evaluating Shack—Hartmann measurements

In order to evaluate Shack—Hartmann measurements with respect to beam param-
eters and propagation, integrals have to be solved. For actual measurements the
detection is typically done by a CCD. As an advantage, the integrals are reduced to
sums due to the discrete nature of the detection.

For the evaluation of the wavefront and the determination of the beam parameters
only summation over a finite number of pixels and/or subapertures is necessary.
This greatly simplifies the evaluation schemes. Implementations of the evaluation
can be found in [21-23, 26, 27] and elsewhere.

In a strict mathematical sense the Zernike polynomials are only defined for continu-
ous variables (z,y). For evaluation purposes, however, it is still possible to quantify
wavefront aberrations in terms of Zernike polynomials.

For the calculation of the beam propagation it is convenient to calculate the beam
propagation in the spatial frequency domain. With the help of the Fast Fourier
Transform (FFT) and the convolution theorem it is possible to reduce the necessary
computing power compared to a direct numerical integration in real space consider-
ably.



Chapter 3

Ultra-short laser pulses & nonlinear
optics

Optical beams and systems are most often described using linear functions. In
order to solve Maxwell’s equations, for example, linear approaches are used. These
solutions are then used to compose many different fields of use. Another example is
the field of Gaussian beam optics and its use of transfer matrices which is based on
the linear response of optical components. Another field which uses linear systems
to describe different effects is the field of Fourier optics. One of these effects is
described in Chapter 2 where it is used to calculate the evolution of a beam along
its propagation axis.

In cases where the response of a system is no longer linear, many different effects
can occur. Some of these effects are easily understandable while others are quite
counterintuitive. Some nonlinear effects can already be observed using (focused)
CW lasers. However, because of the nature of these effects, the intensities necessary
to observe most of them are quite high.

For an optical beam the intensity of the beam is defined

I= <§>t with the units [I] =1 W/cm? (3.1)

where <§ >t denotes the average of the Poynting vector S of the beam over a certain
time interval t. In order to get to high intensities the area of the beam has to be
small. The minimal achievable focal spot is determined by the wavelength of the
beam used. Therefore, the highest achievable intensity for a CW laser is limited by
its power and wavelength. To further increase the intensity, the peak power of the
source has to be increased. This can be done by using pulsed sources. For a given
(average) power, the peak power of the pulsed source, and thus the peak intensity,
is much higher, because the same energy is contained inside a much smaller time
interval (the pulse duration). In order to reach very high intensities, ultra-short
laser pulses with a pulse duration of a few (to several ten) femtoseconds are used
[28].

The properties of ultra-short laser pulses determine which nonlinear effects can be
observed. In order to better understand the properties of ultra-short pulses, a short

27
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introduction is given at the beginning of this chapter. Afterwards, some fundamental
basics of nonlinear optics are discussed.

3.1 Ultra-Short Laser Pulses

Only a short introduction shall be given here. For a more thorough discussion on
ultra-short laser pulses and the arising phenomena see [3, 29].

One way to describe ultra-short laser pulses is to use the time-dependent electric
field. For the sake of simplicity, the spatial and polarization properties of the beam
are neglected and the time-dependent electric field can be written as the scalar
quantity F(t). Because many mathematical calculations used to describe ultra-
short laser pulses are greatly simplified when using complex quantities, it is conve-
nient to use complex representations even when the (physically) measured quantities
are real. In the following, complex quantities are denoted by a bar, for example

A.

Starting from the real time-dependent electric field, the spectral properties of the
laser pulse can be obtained by using the complex Fourier transform F7,

E(w) = FT{E(t)}. (3.2)

Here E(w) is the complex spectrum with the spectral amplitude | E(w)| and a spectral
phase e'?«).

The negative frequencies which occur in F(w) have no physical interpretation and
can be neglected. Additionally, a complex time-dependent electric field often sim-
plifies many equations. By taking this into account, one can define a complex field
which satisfies both conditions as

E*(t) = / E(w) el dw. (3.3)

1
2
This leads to a complex spectral field strength which only contains positive frequen-
cies. It is given by

= E(w) forw>0
Jr . —
E (w)_{ 0 for w < 0

where E(w) is given by Equation (3.2). The complex spectral field strength contains
all information to fully describe the physical electric field.

(3.4)

In order to retrieve the real time-dependent electric field from the complex repre-
sentations,

E(t)=Et(t)+ E(t) (3.5)
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can be used. Here E~(t) can be calculcated, along the same way as E*(t), by using
only negative frequencies. This can be further simplified by the identity

E(w) = E*(—w). (3.6)

As mentioned above, E*(t) contains all information about the electric field. In order
to describe an ultra-short laser pulse it is convenient to expand E*(t) into

_ 1 . . . 1= .
E*(t) = §€(t) eleo glelt) giwot — 58(25) et (3.7)

Here £(t) is the complex field envelope. The envelope of the real field is given by
E(t). The parameter wy is the mean frequency, also called carrier frequency, of the
pulse and () is the time-dependent phase. The constant phase g (called carrier-
envelope-phase, short CEP) is only important in case of few-cycle pulses [30-32] and
can be neglected most of the time.

Description of the pulse by a mean frequency wy is only feasible if the spectral width
Aw of the whole pulse is small compared to the mean frequency wy. As can be seen
directly from Equation (3.7), the instantaneous frequency at a given time ¢ can be
obtained from the mean frequency wy and the time-dependent phase ¢(). It is given
by

w(t) = wo + ——. (3.8)

As can be seen from Equation (3.8), the actual instantaneous frequency depends on
the variation of the time-dependent phase. A linear time-dependence, for example,
only leads to a constant shift in the mean frequency, whereas a quadratic time-
dependence leads to a linear variation of the instantaneous frequency with time.
This linear variation is called linear chirp, because in acoustics a linear variation
of the frequency sounds like the chirping of a bird. In optics, a linear chirp leads
to a pulse which has a different “color” at different points in time. In case of
higher-order variations of the time-dependent phase, the pulse shape and color-
distribution gets more complex. A more complete discussion of this can be found in
12, 29].

As mentioned above, a pulse with a linear chirp or higher-order phase variations
shows a variation of the spectral distribution during the pulse duration. Because,
as introduced by Equation (3.2), the time domain and the spectral domain are
connected by a Fourier transform, the pulse duration and the spectral width are
linked. Furthermore, it can be shown [29], that for a given bandwidth Aw the
shortest pulse (pulse duration 7,) occurs when no chirp is present. These pulses
are then called bandwidth limited. Here the pulse duration 7, is defined as the full
width at half of the maximum (FWHM) of the intensity distribution |€(¢)|?>. Along
the same lines, the spectral width Aw is defined as the full width at half of the
maximum (FWHM) of the spectral intensity |£(w)[?.
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When using the above definitions, the pulse duration 7, and the spectral width Aw
are connected by the time-bandwidth product

7o Aw > 27 ¢y, (3.9)

where ¢, is a constant of the order of 1. The exact value of ¢, depends on the pulse
profile. For a pulse with a Gaussian time-dependence, for example, the value is
cp = 0.441. For other pulse shapes such as sech® or Lorentz profiles see Table 1.1
in [29]. The equality holds true if the pulses are unchirped. Such pulses are then
called bandwidth-limited.

3.2 Basics of Nonlinear Optics

As mentioned in the introduction of this chapter, very short pulses are used to
achieve high intensities. These short pulse durations can be achieved when using
bandwidth limited pulses with a broad spectrum. With the help of such pulses
it is possible to explore the field of nonlinear optics. Here only a short intro-
duction, necessary for this work, is given. For further discussion see [2, 29, 33,
34].

Inside a medium an electric field F leads to a polarization P. This polarization
acts as an additional source and modifies the resulting electric field. Thus the
propagation of a wave inside a medium (described by its electric field) is given by
the general wave equation

1 9*°FE 0?pP

V2E — — " = jig—=5.
o oz Moo

(3.10)

In case of a linear medium the polarization depends linearly on the electric field £
and can be written as P = ¢y ) E. Here () is the linear susceptibility, which is
often written just as y. When dealing with very low intensities this description is
adequate. In the case of ultra-short laser pulses, the intensities often reach a regime
where nonlinear contributions cannot be neglected. In this case the polarization
must be written as

P =P, + Py = ¢ X(l) E + Py, (311)

with the nonlinear polarization Pyr,.

For easier treatment, the nonlinear polarization can be expanded into a power series.
Thus, Pyi, can be written as

PNL = € X(2) E2 + € X(g) E3 )] X(4) E4 +--- (312)

with ™ being the nonlinear optical susceptibility of nth order. Note, that this
is the notation used in [29]. It differs slightly from the notation used in [2, 33,
34].
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In general, nonlinear effects require an appropriate medium. The speed of light inside
a medium is discussed in Section 1.1.2. It is given by Equation (1.4) as

Co
= —. 3.13
=" (3.13)

The speed of light in vacuum can also be written as

1
\/Gouo’

and the index of refraction relates to the susceptibility as

n=+v1+x. (3.15)

o= (3.14)

Using Equations (3.12)-(3.15), the polarization, given by Equation (3.11), can be
inserted into the general wave equation, given by Equation (3.10). This leads to the
nonlinear wave equation

1 0°E 0? Py,

2
-2 _
v 2o M Toe

(3.16)

The nonlinear wave equation (3.16) cannot easily be solved directly. To obtain
solutions, an iterative approach is typically used. Generally, the nonlinear parts
of the polarization are much smaller than the linear part. Consequently, only the
linear part of the polarization is used to calculate the initial electric field. In a
second step, the initial electric field is used to calculate the nonlinear parts of the
polarization. This approach is in fact the Born approximation [2, 34], known from
scattering theory.

With the help of the Born approximation it is possible to calculate many different
nonlinear effects. As a full description of all nonlinear effects is beyond the scope of
this work, only the effects which are important for this work are discussed. For a
more complete discussion of the effects see [2, 29, 34] and others.

3.2.1 Kerr effect

One nonlinear effect which should be discussed here is the Kerr effect. It can be
shown [2] that in media where a contribution of the ¥ is present, the index of refrac-
tion linearly depends on the intensity and thus can be written as

n =ngy+ nal. (3.17)

Here ng is the linear index of refraction and ns is the second order nonlinear index
of refraction. It is given by

3
ng = 777X(3), (3.18)
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where 7 is the wave impedance and ng is the linear index of refraction of the
medium.

The wave impedance given by
€
n=.-, (3.19)
1
relates the electric field to the magnetic field of a wave inside a medium. It is
typically given in units of ohms. For nonmagnetic materials (u = po) it can be

simplified to

n="2 (3.20)

n

where n is the index of refraction of the medium and 7, the impedance of free space.
The impedance of free space is a constant given by

o = 2 ~ 1207 Q. (3.21)
€o

Together with a spatial or temporal variation of the intensity, the Kerr effect can lead
to interesting nonlinear effects [2]. Two of these effects, the self-phase modulation
(SPM) and the self-focusing play a major role in filamentation and are discussed in
more detail in Chapter 4.



Chapter 4

Filamentation of ultra-short laser
pulses

For certain experiments with pulsed laser sources it is necessary to achieve very
high intensities. An intensity increase can either be achieved by increasing the pulse
power or by decreasing the beam size. Decreasing the beam size, however, is limited.
The achievable beam size is often limited by experimental boundaries and has an
absolute minimum at the diffraction limit. Thus, increasing the beam power is
sometimes the only option to increase the intensity. For a given laser system it is
not easily possible to increase the pulse energy beyond a certain point. In order to
achieve higher intensities the pulse duration has to be reduced.

In Section 3.1 it is described how the pulse duration and the spectral bandwidth
of a laser pulse are linked. In order to achieve a temporal compression of the laser
pulse, an initially bandwidth-limited pulse has to be spectrally broadened. This
can be achieved by using the effect of self-phase modulation. For efficient and
homogeneous spectral broadening via self-phase modulation, the laser beam has to
be small over a long distance. In order to achieve this, the laser beam has to be
guided.

This guiding can happen inside a so-called filament [35], where the beam is trapped
over a distance significantly longer than its Rayleigh length. The effect of beam-
trapping is described in [29, 36]. In this chapter only the effects leading to the major
contributions to filamentation are described. For full reviews on the properties of
filamentation see [37, 38].

4.1 Fundamentals of filamentation

4.1.1 Self-phase modulation

As mentioned in Section 3.2.1 the Kerr effect, as a time-dependent third-order non-
linearity, can lead to the so called self-phase modulation. However, higher-order non-
linearities can also contribute to self-phase modulation. For the intensities present

33
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during the experiments described in this work, these higher-order contributions are
small compared to the Kerr-effect and are therefore neglected.

An ultra-short laser pulse can be described as a time-dependent electric field (see Sec-
tion 3.1). Together with the intensity-dependent index of refraction, introduced by
the Kerr effect, this leads to an index of refraction which is time-dependent.

When a laser pulse propagates through an optical medium of length L the phase
after the propagation [2] is given by

o=-—-nkyL. (4.1)

Due to the Kerr effect the phase o(t) is now time-dependent. In Section 3.1 it is
explained that the instantaneous frequency of a laser pulse is given by its time-
dependent phase. Using Equations (3.8), (3.17) and (4.1) together with a time-
dependent intensity /() the instantaneous frequency can be written as

dI(t)
dt

w(t) = Wp — N2 ]{70 L. (42)
Here wy is the carrier frequency of the pulse, kg the wave vector of the pulse
and L the length of the nonlinear medium with the nonlinear index of refraction
To.
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Figure 4.1: The effect of self-phase modulation. a) Intensity profile and correspond-
ing frequency shift. b) Experimental spectrum of a laser pulse before
(black) and after (red) self-phase modulation in a filament.

As can be seen from Equation (4.2) the frequency decreases, corresponding to a blue-
shift, during an increase of the intensity. At a later time, the frequency increases,
i.e., gets red-shifted, due to an intensity decrease. This means that for a given laser
pulse, the pulse front, or leading edge, gets blue-shifted, whereas the pulse back, or
trailing edge of the pulse, gets red-shifted. If the laser pulse is initially bandwidth-
limited, no spectral chirp is present. For such pulses, it can be easily understood
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that self-phase modulation leads to the generation of new frequency components
during the course of the pulse.

New frequency components are continuously generated along the propagation through
the nonlinear medium. Thus they can interfere with corresponding frequencies al-

ready present in the pulse or with frequencies generated at later or earlier times.

Due to this interference, the exact shape of the spectrum at the end of the self-phase

modulation strongly depends on the propagation properties of the beam inside the

medium.

In Figure 4.1 the effect of self-phase modulation is shown. A laser pulse with a
Gaussian pulse shape leads to the time-dependent frequency shift Aw(t) shown in
Figure 4.1a). Additionally, the spectrum of a laser pulse before and after undergoing
self-phase modulation inside a filament is shown in Figure 4.1b). When comparing
the spectrum of the pulse before and after the filament, the spectral broadening due
to the generation of new frequencies during self-phase modulation can be seen. Addi-
tionally a blue-shift of the main part of the beam is visible. This blue-shift is caused
mainly by the weak plasma which is present inside the filament.

As has been shown in this section, it is possible to use self-phase modulation to
spectrally broaden an existing laser pulse. That way it is possible to further shorten
the laser pulse.

4.1.2 Self-focusing

Another consequence of the Kerr effect is self-focusing, and as such it is closely re-
lated to self-phase modulation. Self-phase modulation is based on a time-dependent
variation of intensity, whereas self-focusing is caused by a spatial variation of in-
tensity. As for self-phase modulation, the contributions of higher-order nonlin-
earities are neglected here. For a more detailed discussion of self-focusing see

29, 37, 38].

From Section 3.2.1, the intensity-dependent change of the refractive index is known
to be

Angerr(I) =no 1. (4.3)
Assuming a Gaussian beam profile
_2z2+92
I(x,y) =Ipe = w2, (4.4)

it can be easily shown [2] that a thin medium of length L with a nonlinear index of
refraction ny acts as a lens. Its focal length is approximately

w2

fo: 2712[0[/'

(4.5)



36 CHAPTER 4. FILAMENTATION OF ULTRA-SHORT LASER PULSES

Here, self-focusing effects which already occur during the propagation through the
medium are ignored. Additionally, it is assumed that the intensity varies only spa-
tially and is constant over time.

For a real laser beam, in order to show self-focusing, the always present diffraction
has to be overcome. It can be shown that this can happen if the power (not the
intensity) of the beam exceeds a certain critical power P.. In order to calculate
the critical power, different models can be used [29]. All these approaches lead to a
critical power of the form ,
P.=a Ao , (4.6)
g N2

where a depends on the model and is of the order of 0.1 [29, 37].

Once the power of the beam exceeds the critical power, the beam collapses to a
point after the self-focusing distance zi. The calculation of propagation through
a nonlinear medium is extremely difficult. For the self-focusing distance only a
semi-empirical formula, derived from numerical calculations [29, 37], can be found.
Starting from a beam waist, a beam with the Rayleigh length zg will collapse

at
0.183 zr

\/(\/? —0852) - 0.0219

(4.7)

Zsf =

4.1.3 Plasma defocusing

Another aspect present in filaments are effects which arise from a plasma [39, 40].
Self-focusing or external focusing leads to an increased intensity of the laser beam.
Once the intensity is high enough, a weakly ionized plasma is created. This plasma
then gives rise to additional effects which change the index of refraction inside the
filament. Here, only a simple model is introduced. For further discussions see
[29, 37, 38].

The plasma which is generated by the beam can oscillate resonantly at the so called

plasma frequency
e2N,
= ) 4.8
“p €0 Me ( )

Here, N, denotes the density of the free electrons, e is the unit charge and m,
is the electron mass. For frequencies w < w, the plasma is opaque. The free
electron density at which it becomes opaque for a given frequency w is called critical
density

2
€o Me W

Nefw) = 20 (4.9)

Away from resonances or direct transitions of bound electrons into the continuum,

the ionization originates from multi-photon processes [29] and N, shows a (nonlinear)

intensity-dependence.
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The resonance of the plasma also leads to an additional contribution to the index of
refraction. This also plays a huge role in the phase-matching of high-order harmonics
and is discussed further in Section 5.2.2. The contribution of the plasma to the index
of refraction is given by

n = 1—(2")2:J1—<N§Z)>. (4.10)

For weakly ionized plasmas (N, < N.), as they occur inside a filament, the change

of the index of refraction of the medium simplifies to

Ne(I)
Ne

Anprasma(I) = — (4.11)

As one can see, the change of the refractive index is negative. In Section 4.1.2 it
is described that an intensity-dependent change of index of refraction acts like a
lens. In case of the Kerr effect, it produces a positive contribution to the index of
refraction and leads to a focusing effect. For the laser-induced plasma, the contri-
bution is negative and it can be shown that this leads to an additional defocusing
of a beam.

4.2 Filamentation of ultra-short laser pulses

During the interaction between a strong laser pulse and a nonlinear medium, many
effects can occur. Above, two processes which influence the spatial properties of a
laser beam are described. In Figure 4.2 these effects are visualized. On the left,

A A A A

I(r) | I(r)
8 8
5 ’ § ‘
2 2
5 =
@® @
8 K

An An

propagation distance - propégation distance -

Figure 4.2: The effects which lead to filamentation are visualized here. The Kerr
effect (left) causes an intensity-dependent change of the index of refrac-
tion. For higher intensities, the index of refraction increases. This leads
to self-focusing of the beam. The plasma (right) which is generated by
the laser shows the opposite effect. For higher intensities, the index of
refraction decreases. This acts like a defocusing lens, causing the beam
to diverge. From [38].

the impact of the Kerr effect is shown. It leads to the self-focusing of the beam, as
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described in Section 4.1.2. On the right, the influence of the plasma on the beam is
shown. In Section 4.1.3 it is discussed that the plasma causes additional diffraction
which leads to a defocusing effect.

It is evident that these effects compete with each other. Under certain circumstances
it might happen that the strength of both effects alternates. At the beginning the
beam begins to collapse, due to self-focusing. This leads to an increased plasma,
which causes the beam to diverge. The plasma is reduced again, until the self-
focusing dominates once more. When this alternation happens over a long distance,
the beam becomes trapped and travels nearly diffraction free. This effect is called
filamentation.

The processes mentioned here only take the spatial intensity distribution into ac-
count. When dealing with the filamentation of ultra-short laser pulses, the time-
dependent intensity variation cannot be neglected. As a result, time-dependent
effects are always present inside a filament created by ultra-short laser pulses. In
the case of self-phase modulation this is a highly desirable effect, as described in Sec-
tion 4.1.1. Additionally, some simplifications were made throughout this chapter.
For many of the aspects described here, other spatial and time-dependent effects,
e.g., the presence of a background reservoir surrounding the filament [41-43], also
play a role. This leads to the fact that the filamentation of ultra-short laser pulses
is a highly complex process [37, 38, 44-48|.

Inside a filament the beam has a small beam diameter and is trapped over a long
distance. Thus, the length over which the intensity is high enough for a nonlinear
interaction is long. As mentioned at the beginning of this chapter this is a necessary
condition for efficient and homogeneous self-phase modulation. A filament provides
this without the need of external guiding, e.g., by a hollow-core fiber as it is used in
[49]. Thus it is a well suited tool to achieve spectral broadening.



Chapter 5

High-order harmonic generation

The generation of high-order harmonic radiation of an ultra-short laser pulse is one
of the most discussed nonlinear effects. It was first seen experimentally 1977 by
Burnett et al. [50] using a 2 ns CO, laser on solid Al targets. Further studies into
the field of high-order harmonics where conducted in the 1980s [51-53]. In these
studies the plateau region typical for high-order harmonic generation was already
discovered. In Figure 5.1 the typical regimes encountered in high-order harmonic
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Figure 5.1: The different regimes of high-order harmonic generation. The steep de-
cline in the perturbative regime can be explained by perturbation theory.
In the plateau regime intensity of the harmonic lines is nearly constant.
In the cut-off region the intensity decreases again.

generation are shown. The steep decline in the perturbative regime can be explained
by perturbation theory. In the following plateau regime the intensity of the harmonic
lines is nearly constant, whereas in the cut-off region the intensity decreases again.
However, at the time of its findings the occurrence of the high-order harmonics or
the plateau could not be explained.

Later, in 1993, a theoretical model was found by Corkum [54] and Kulander et al.
[55] which describes the spectral properties very well. The model used a semi-
classical approach which splits the process of high-order harmonic generation into
three individual steps. Therefore, the model is often called three-step-model. A fully

39
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quantum-mechanical description [56] was found in 1994 which confirmed many of the
assumptions made in the three-step-model. Since then many interesting phenomena
and applications have arisen. For example, the field of attosecond physics [57, 58],
x-ray microscopy [59, 60], lensless imaging [61] or XUV interferometry [62] to name
just a few.

In the following only an introduction to the wide field of high-order harmonic gen-
eration can be given. For a more complete discussion see reviews [30, 63]. In order
to understand the process of high-order harmonic generation, it is advisable to first
examine the response of a single atom to a strong laser field.

5.1 Single Atom Response

A quasi-classical model to describe the process of high-order harmonic generation
was developed separately by Corkum [54] and Kulander et al. [55] in 1993. The
results of the so-called three-step-model were reproduced shortly after by Lewen-
stein et al. [56] using a fully quantum-mechanical approach. Later it was extended
to elliptically polarized laser fields [64]. It is very interesting to notice that the ex-
tremely nonlinear process of high-order harmonic generation can be described with
high accuracy by a simple and quasi-classical model.

5.1.1 The Three Step model

The quasi-classical model by Corkum and Kulander is also called three-step-model,
because it can be split into three different steps which can be treated separately.
These three steps are shown in Figure 5.2.

Figure 5.2: The three-step-model. a) Step 1: Tonization. b) and ¢) Step 2: Quasi-
free propagation. d) Step 3: Recombination and photon emission.
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The first step is the ionization of an atom, thus creating an electron which can be
treated as free in the following. The second step is the classical motion of the electron
in the oscillating laser field. During the motion in the laser field the free electron
can return to its origin and can recombine with its parent ion, which is the last step.
These three steps are discussed separately in the following.

Step 1: lonization

The ionization comes from the interaction of the electric field of the laser pulse with
the atomic potential of the atom.

multi-photon ionization tunnel ionization barrier-suppressed

ionization

Figure 5.3: The three possible ionization scenarios are (a) multi-photon ionization,
(b) tunnel ionization and (c) barrier-suppressed ionization. The black,
dashed line marks the vacuum level, the blue line is the effective atomic
potential, the red line is the energy level of the bound electron and the
green line (arrows in (a) ), depicts the influence of the laser field.

In Figure 5.3(a) the disturbance of the atomic potential by the laser field is only
weak. Thus, multi-photon ionization is the dominant ionization mechanism. In
Figure 5.3(b) the strength of the laser field is of the order of the atomic potential.
This way the atomic potential is significantly modified. If the frequency of the
oscillation of the laser field is low enough, the created potential wall can be treated
as static and for the valence electrons tunnel ionization is possible. In Figure 5.3(c)
the laser field is even stronger compared to Figure 5.3(b), and the barrier for the
valence electrons is suppressed. This way the electrons are “ripped” from the atom.
This scenario is therefore called barrier-suppressed ionization.

The process of tunnel ionization was studied in detail 1965 by Keldysh [65], and
many aspects of it can be found in the literature. One significant find was that
the oscillations of the laser field must be slow enough to allow significant tunnel
ionization [66]. For this the timescale of the laser field oscillation T}z, must be
longer than the timescale Tiunner 0n which tunneling takes place, i.e. Tlaser > Ttunnel-
If this condition is met, the laser field can be treated as static during the ionization
process. For higher frequencies of the laser field, i.e., shorter wavelengths, the tun-
neling process is less efficient, and consequently high-order harmonic generation is
less efficient. Following this line of thought, the most renowned part of Keldysh’s
work was the definition of a parameter to determine boundary conditions for tun-
nel ionization. This parameter is now called Keldysh parameter. It can be given
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as
Ip

2Up’
where Ip is the ionization potential of the material used and Up is the so called
ponderomotive potential or ponderomotive force.

V= (5.1)

The ponderomotive potential is in fact the average kinetic energy an electron can
pick up in an oscillating electric field. It is given by

212
e“ L

Up = Bun = o

(5.2)
On average an electron in an oscillating field stays more or less at the same place and
only performs a quivering motion. Because of this, Up is sometimes called quiver
energy of the electron due to the oscillating laser field.

With the help of the Keldysh parameter defined by Equation (5.1) it is possible to
distinguish between the domination of multi-photon ionization and tunnel ionization.
For v > 1 the ionization potential is dominant and the atom is ionized mainly by
multi-photon ionization. For 7 < 1 the electric field is strong enough to create a
potential barrier for the electrons and tunnel ionization is the dominant ionization
pathway. In the range v ~ 1 both contributions are of the same order of magnitude
and the transition from multi-photon ionization to tunnel ionization can be observed

67).

As high-order harmonic generation is most efficient when tunnel ionization is pos-
sible, so called ionization saturation must be considered. When the leading edge
of a laser pulse is too long and intense, multi-photon ionization is efficient and all
atoms are ionized this way. At the peak intensity, where tunnel ionization would
be dominant, no neutral atoms are left and high-order harmonic generation is not
possible. To avoid ionization saturation the laser pulses must be short enough so
that the rise in intensity at the pulse front is fast and enough neutral atoms are still
present during the time of peak intensity.

In order to allow for the treatment of the electron after the ionization process as
free electron, the place of “birth”of the electron outside the atom must be away
far enough so that the atomic potential is small compared to the accelerating
laser field. This limits the intensities to regimes where tunnel ionization is dom-
inant.

Step 2: Propagation

After the electron has left the atom it can be treated as a free particle in an oscillating
laser field. This can be done by using a classical approach.

Because tunnel ionization typically happens only when the electric field of the laser
pulse is strongest, the electron is accelerated away from its parent ion immediately
after it is created. After some time the sign of the electric field changes due to its
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oscillation and the electron is slowed down to a stop. After the electron is slowed
down the movement direction is reversed and it is accelerated back to its origin
where it can recombine with its parent ion.

The amplitude ay = 5&62 of this motion is sometimes referred to as ponderomotive

radius. Note that the maximum distance an electron can travel away from its parent
ion is % for electrons traveling close to the speed of light. This relativistic movement
only happens for very high intensities and must be treated differently [28]. The
intensities needed for relativistic motion are greater than 10'® W /cm? and were not
used in the experiments described here. As such, relativistic motion is not within
the scope of this work.

Step 3: Recombination

When the electron travels back to its origin it gains kinetic energy from the laser field.
Eventually it can recombine with its parent ion. Typically the electron recombines
into the ground state and emits its excess energy in form of a photon with the

energy
hwy, = Eyxin + Ip. (5.3)

When using the classical treatment for the propagation it is possible to calculate the
maximum energy an electron can obtain. It can be shown [68] that the kinetic energy
depends on the time of “birth”of the electron (expressed as phase ¢) relative to the
maximum of the electric field oscillation. Calculations show that electrons created
at a phase ¢ =~ 18° obtain the maximum kinetic energy of 3.17Up at the moment of
recombination. This leads to a maximum photon energy of

hwe=3.17Up + Ip. (5.4)

This maximum energy is also called cut-off energy because it can be expected that
the high-order harmonic spectrum is cut off at this energy.

Already one year before the invention of the three-step-model the cut-off law was
obtained empirically [69]. As such, it is remarkable to note that the simple, classical
treatment of the free electron leads to the same cut-off law.

5.1.2 Quantum-mechanical model

Another approach to describe the process of high-order harmonic generation is to
use a quantum-mechanical model. As high-order harmonic generation is a nonlinear
process, the source of the emitted radiation is the nonlinear dipole oscillation of
the system. In order to calculate the nonlinear response of the system, the time-
dependent dipole moment of the system in the special case of high-order harmonic
radiation has to be obtained.
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Derivation of the time-dependent dipole moment

The time-dependent Schrédinger equation in atomic units reads

1;wmwp{}bﬂ+wm+ﬁm0wmoy (5.5)

As was mentioned, in order to quantum-mechanically analyze high-order harmonic
generation, the time-dependent dipole moment is needed. It is obtained by

fit) = ((r, O 7o 8)) - (5.6)

From the dipole moment the high-order harmonic spectrum can be obtained by its
Fourier transform.

Following Lewenstein et al. [56], some assumptions regarding the process of high-
order harmonic generation are made.

1. Only one electron contributes to high-harmonic generation. This is often re-
ferred to as “single-active electron approximation”.

2. Contributions to the evolution of the system of other states than the ground
state |0) are neglected.

3. Depletion of the ground state does not take place, i.e., Up < Ugyy.

4. In the continuum the electron can be treated as a free particle, and the influ-
ence of the atomic potential on the evolution is neglected.

Using these assumptions, the time-dependent wave function [¢(7,¢)) can be written
as

|wﬁm:ab%qmm+/mamm&@. (5.7)

Here a(t) =~ 1 is the ground-state amplitude. The continuum states have the corre-
sponding amplitudes b(7/, t), where ¥ denotes the kinetic momentum.

For convenience, a new parameter
=T+ A1), (5.8)

corresponding to a canonical momentum, is introduced. Here ff(t) is the vector
potential of the laser field E(t).

Using Equations (5.7) and (5.8), and assuming a(t) = 1 in the following, the time-
dependent dipole moment is now obtained by

t — — — . . ’ — —
/ﬂﬂ:i/n/E@)xd%ﬁ—A@Dxe*”m“)xd@lwﬂﬁ)&ﬁdﬂ
0 .
+ c.c.

(5.9)
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The parameter S(p,t,t') is called quasi-classical action [56]. It represents the phase
change an electron experiences as it propagates through vacuum and is there-
fore also called atomic dipole phase. The quasi-classical action can be calculated
as

— / trlogg T 2 "

S(5,t,t) = / ( (7 Aw)) + Ip> dt”, (5.10)
# \2

In Equation (5.9) d is the dipole matrix element for a bound-free transition and its

complex conjugate d* is the dipole matrix element for a free-bound transition. They

are expressions for the probability that such a transition happens. They are given
by

d(7) =
A7) =

=

{

v 7|0y (5.11a)
(0|7 |v

7). (5.11b)

=

|
|
Analysis of the time-dependent dipole moment

With the help of the parameters given by Equations (5.10) and (5.11) it is possible
to find a more intuitive interpretation of Equation (5.9). The first part of the
equation is the external field which drives the process. The other three parts under
the integral can be linked to the three steps found in the quasi-classical three-step
model. Each part corresponds to one step.

o d (ﬁ — At )) — Step 1 — Ionization from ground-state at time ¢'.
o o 1SWLY) — Step 2 — Propagation in laser-field during time ¢t — ¢'.
o d (ﬁ — ff(t)) — Step 3 — Recombination into ground state at time ¢.

In order to examine the properties of the time-dependent dipole moment it is not
necessary to calculate the integral for all possible p’directly. Because the calculation
is restricted to high-order harmonic generation it is safe to assume that changes in
the dipole matrix elements are dominated by the quasi-classical action [56]. Thus,
the major contributions to the integral come from the stationary points of the quasi-
classical action. The quasi-classical action, on the other hand, corresponds to the
difference of the positions of the electron at the times ¢t and ¢. Thus, the stationary
points are given by

Vs S(B, 1) = Z(t) — T(t') = 0. (5.12)

As such, the stationary points are given by the fact that the electron which was
“born” at moment t’ returns to its origin at time ¢. In order to contribute to the
high-order harmonic generation, it is necessary that the origin lies close to the parent
ion so that recombination can occur.

With the help of the stationary points of the quasi-classical action, it is possi-
ble to calculate the dipole moment. As mentioned before, the Fourier transform
of the time-dependent dipole moment yields the high-order harmonic spectrum.
The spectrum retrieved from the fully quantum-mechanical treatment shows the
same behavior as the spectrum created by the quasi-classical three-step model. The
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quantum-mechanical spectrum clearly shows a perturbative regime, a plateau re-
gion and a cut-off region. By examining the spectrum and its different regions some
interesting results can be retrieved.

At first let’s take a close look at the plateau region. As mentioned above, the quasi-
classical action is the phase change, called atomic dipole phase ¢,;, an electron
experiences as it propagates through vacuum. So an electron obtains the atomic
dipole phase ¢, = S(p,t,t'). For the plateau region it can be shown that a given
photon energy contains multiple contributions. It means that electrons with different
trajectories (leading to different phases ¢,¢) have the same kinetic energy when they
recombine. These different trajectories, called quantum paths, interfere to create
the high-order harmonic spectrum. With the help of a quasi-classical model it can
be shown that, for the plateau region, two different quantum paths contribute to
the spectrum.

long 351
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Figure 5.4: Tllustration of the two different quantum paths. a) For a given kinetic
energy gain one trajectory has the ionization event occur earlier and
the recombination event occur later than for the second trajectory. b)
The gain of kinetic energy plotted against the ionization time, given in
terms of phase of the electric field. The maximum kinetic energy gain

of Fiin =~ 3.17Up corresponds to ionization events occurring at a phase
of the electric field of ¢ ~ 18°. From [68].

Figure 5.4 shows these two quantum paths. For a given kinetic energy gain one
trajectory has the ionization event occur earlier and the recombination event occur
later than for the second trajectory. This is shown in Figure 5.4a). Consequently, the
propagation time in the vacuum is significantly longer than for the other trajectory.
Because of this, one trajectory is called long quantum path and the other one is
called short quantum path. In Figure 5.4b) the gain of kinetic energy is plotted
against the ionization time, given in terms of phase of the electric field. For a
given kinetic energy the contributions of the two quantum paths are visible. For
the maximum kinetic energy gain of Fy, ~ 3.17 Up, corresponding to an ionization
event occurring at a phase of the electric field of ¢ ~ 18°, only one trajectory
exists.
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By examining the cut-off region a cut-off law very similar to the one obtained by the
three-step model can be found. In fact only a minor correction of the classical cut-
off law is needed. The cut-off law found by the full quantum-mechanical treatment
is
Ip
hewe =317 Up + F() In. (5.13)
Up
The function F (é—‘;) is the correction term, due to quantum-mechanical effects.
Its value is of the order of 1. For a very weak ionization potential (Ip < Up)
the function has a value of F(0) = 1.32. As the variable (I]—i rises the function
decreases slowly [56]. For example, for Ip = $Up the value of the function is F(3) =

1.25.

The shift of the cut-off law compared to the three-step-model can be explained
by the approximations used in the quasi-classical treatment. It is assumed that
the electron tunnels out of the atomic potential at x = 0. As it tunnels out, the
electron, in fact, is “born” at a small distance xy away from the atom. Due to this,
the electron has to travel longer in the laser field until it can recombine at x = 0.
When this correction is regarded in the quasi-classical model, the same correction
factor as for F'(0) is obtained. The correct behavior for other values of é—i is more
complex and is discussed extensively in [56].

5.1.3 Spectral properties of high-order harmonic generation

The quite simple quasi-classical three-step-model and the quantum-mechanical treat-
ment show remarkable similarities. Especially the cut-off law fits extremely well to
the experimental results [70, 71]. One big difference, however, was not mentioned
before. The measurements conducted, showed the generation of discrete harmonics,
which appear only for odd multiples

WHHG — (2 n+ 1) Wo (514)
of the fundamental frequency wy.

The theoretical treatments described in this chapter, on the other hand, generate a
continuous spectrum. In order to resolve this conflict, the properties of the gener-
ating laser pulse have to be taken into account. Both the three-step-model and the
quantum-mechanical model only use a single atom and describe the atomic response
to the laser-field for one ionization event. This means, they only model the genera-
tion process for one electron from ionization to recombination.

In the experiments where discrete lines are observed, however, multi-cycle laser
pulses are used to generate high-order harmonics from a gas-jet or inside a gas-
cell or a hollow-core fiber. As such, many atoms, which can be treated individ-
ually as single atoms, are involved and the observed experimental spectrum is a
macroscopic build-up of microscopic high-order harmonic generation. Now it can
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be understood why the observed spectrum shows discrete lines of only odd harmon-
ics.

Using a multi-cycle laser pulse, the generation of high-order harmonics with one
specific energy happens every half-cycle of the laser pulse, and the harmonics are
emitted every At = % Temporal interference of many atoms along the path leads
to a coherent superposition of the emitted harmonic radiation. As the temporal
structure and the spectral structure are connected through the Fourier transform,
the periodic emission leads to a discrete line spectrum with spacing Aw = 2& =

At
2w aser Where only odd harmonics are generated.

In some systems the symmetry regarding the direction of the electric field vector
might be broken, e.g., by shaping the temporal properties of the electric field [72-74].
In these systems, high-order harmonics with one specific energy are only generated
every whole cycle of the electric field. In this case, even and odd harmonics are
generated.

5.1.4 Summary

In this section the single atom response to a strong external laser field was discussed
to describe the generation of high-order harmonics. It was shown that the simple,
quasi-classical three-step-model and the full quantum-mechanical treatment of the
problem yield remarkably similar results. Hence, the three-step-model is still used
widely to describe the process of high-order harmonics generation.

As another fact, it was shown that, in the experiment, high-order harmonic gen-
eration is a coherent macroscopic build-up of a microscopic effect. As many single
atoms contribute to the overall signal, it is necessary to ensure that contributions
from all atoms along the beam path interfere constructively, to efficiently gener-
ate high-order harmonics. To examine the generation properties along the beam
path, phase matching phenomena regarding high-order harmonic generation should
be discussed.

5.2 Phase matching

During high-order harmonic generation, many single atoms contribute to the overall
signal. This happens due to the interference of the signals created by the single atoms
along the path of the fundamental laser beam which drives the high-order harmonic
generation. In order to maximize the generated high-order harmonic signal, it is
necessary that the signal generated by the first atom and the signal of all following
atoms can interfere constructively, until the very last atom.

This constructive interference of all contributions can only happen, if the fundamen-
tal laser beam and generated high-order harmonic radiation have the same propa-
gation properties along the beam path. Mathematically, this can be written as the
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phase mismatch of the wave vectors, between the gth harmonic and the fundamental
beam. For a collinear geometry it is given by

Ak = qk(wg) — k(qwo) . (5.15)

Here ¢ is the order of the harmonic and wy is the angular frequency of the fundamen-
tal laser beam. To ensure that all contributing partial signals interfere constructively,
the phase mismatch must be

Ak = 0. (5.16)

As mentioned above, the high-order harmonic generation is based on strong field
effects on atoms. As such, high intensities in the vicinity of the atoms are needed
and it is necessary to focus a laser beam onto a target. In the experiments conducted
in this work, a gas target was used.

As the high-order harmonic generation happens inside a gas target under the influ-
ence of a laser beam, different physical effects influence the propagation properties
of the fundamental beam and the high-order harmonic radiation. As such, the phase
mismatch can be separated into the contributions from these effects. By neglecting
minor contributions [75], the overall phase mismatch from the major contributions
can be written as

Ak = Akgisp. + Akplasma + Akgeom.- (5.17)

Here Akgisp. is the contribution of the dispersion of the used gas. As high-order
harmonic generation is only one consequence of the interaction of the gas with
the strong laser field, most of the generated free electrons do not recombine with
their mother ions creating a plasma. This plasma contributes Akpjasma to the phase
mismatch. The fundamental laser beam has to be focused onto the gas target
to generate high-order harmonics. Due to this, geometric effects, as described in
Chapter 1, influence the phase mismatch. The contribution Akgeom. is the result of
these effects.

In the following, each contributions to the phase mismatch between the fundamental
laser pulse and the gth harmonic shall be discussed in more detail.

5.2.1 Neutral Dispersion

High-order harmonic generation can only take place inside a medium. The wave
vector k = n% depends directly on the refractive index of the medium. This way,
the dispersion of the medium, given by the fact that the refractive index n(w) is
frequency dependent, contributes
qw
Akgiap. = (n(w) = n(quw) )= (5.18)
Co
to the phase mismatch. Here only the difference of the refractive indices plays a
role. The dispersion of a material is governed by resonances inside the medium [2].
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For frequencies not too close to a resonance, Sellmeier’s equation [2] can be used to
calculate the refractive index.

Using a simple approximation, the refractive index of the gas roughly scales linear
with the atomic density N, [1] and can be written as

n(w) = Nao(w), (5.19)
where §(w) is the dispersion per atom of the neutral gas.

For typical gases used in high-order harmonic generation, the index of refraction in
the XUV range, i.e., the range of the generated high-order harmonic radiation,
is lower than the index of refraction in the near-IR and visible regime. Thus
the contribution of the dispersion of the neutral atoms to the phase mismatch
is

Akgigp. > 0. (5.20)

5.2.2 Plasma Dispersion

As mentioned above, only a small fraction of the generated free electrons produces
high-order harmonic radiation. The majority of the electrons do not recombine with
their parent ions, creating a plasma.

The timescale of the recombination of the free electrons with the ions in a plasma
is in the order of nanoseconds. The duration of the laser pulses typically used for
high-order harmonic generation, on the other hand, is on the timescale of several
femtoseconds (up to about 300 fs). Hence, recombination inside the plasma can be
neglected during high-order harmonic generation.

As the plasma is produced even at the leading edge of the laser pulse, it can be
assumed that during the high-order harmonic generation it is already present. Thus,
the contribution of the dispersion to phase matching, created by the plasma has to
be taken into account.

When the cloud of free electrons is excited by an external field, it can start a collec-
tive oscillation. This oscillation has a resonance frequency given by

2N,

€0 Mo’

Wp = (5.21)
the so called plasma frequency. Here e is the unit charge, N, the density of the free
electrons and m, the electron mass.

The resonance created by the plasma leads to a contribution to the refractive in-
dex
Wp

Nplasma (W) = {/1 — ()2 (5.22)

w
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For frequencies w < wy, the refractive index becomes purely imaginary. This means
that the plasma becomes opaque for these frequencies. The critical density at which
the plasma becomes opaque for a given frequency w can be calculated from Equation
(5.21) as

€0 Me W2

Ne(w) = (5.23)

e2

Typical conditions for high-order harmonic generation result in plasma densities
N, < N.(w) for the fundamental laser beam. Thus, the refractive index given by
Equation (5.22) can be approximated by

1 fwp\?
nplasma(w) ~1-— 5 (;) . (524)
Together with Equation (5.18), this leads to a phase mismatch of the gth harmonic
of

2

1 2 w
Akipasma = —q — = (wp) =g (5.25)
Co 2

w 2¢cow’

Thus, the contribution of the plasma to the phase mismatch is

Akpasma < 0. (5.26)

5.2.3 Geometric Effects

In Chapter 1 it was shown that a focused laser beam experiences an additional phase
shift of 7 when going through the focus. Along the optical axis, this Guoy phase
shift is given by Equation (1.24). For a region in the vicinity of a focus located at
z =0, i.e., |z| < zg, the Gouy phase shift can be written as

A¢(z) = arctan (Z> ~ 2 (5.27)

<R <R

Here 2 is the Rayleigh range, which characterizes the “length of the focus”.

The process of high-order harmonic generation is a coherent nonlinear process. Thus,
the high-order harmonics inherit some of the properties of the driving laser pulse.
One important parameter is the Rayleigh range. High-order harmonics in the per-
turbative regime and in the cut-off region have the same Rayleigh range as the
driving laser pulse [76, 77]. This leads to the case that the phase shift for the fun-
damental laser beam and the high-order harmonics is the same. The contribution
of the Guoy phase shift to the wave vector is given by
_Ag(z) 1

bw) = =22 = —, (5.28)

which in fact only depends on the Rayleigh range. For high-order harmonics in the
plateau region, however, the spatial beam profiles show distortions [77, 78]. Thus,
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the beams can no longer be treated as pure Gaussian beams and the geometric phase
shift is quite complex [79].

Other phase shifts stemming from nonlinear geometrical effects, e.g., nonlinear phase
shift of a focused Gaussian beam due to third-order and fifth-order susceptibili-
ties [33, 80|, are possible. Since the contributions of these effects are generally
much smaller than the contribution from the Guoy phase shift, they are usually
neglected. For a rigorous treatment, however, they have to be taken into ac-
count.

The phase mismatch introduced by geometrical effects, in this case only the Guoy
phase shift, is given by

-1

ZR.

Alkgeom, = g k(wo) = kg ) = 2 (5.29)
It should be noted that in the above example, the start of the interaction was
assumed to be at z = 0. Thus, high-order harmonic generation starts exactly at the
focus. By varying the position of the focus with respect to the position where the
generation of high-order harmonics begins, it is possible to adjust the value of the
phase mismatch introduced by the geometric effects.

For typical high-order harmonic generation schemes the contribution of the geomet-
rical effects to the phase mismatch is

Akgeom, > 0 (5.30)

5.2.4 Summary

As mentioned above, efficient high-order harmonic generation can only take place
when phase matching is ensured. Considering only the above mentioned effects,
perfect phase matching implies

An w wi, qg—1
)
Co 2cow ZR
~——— ~—_——— ———
Ak/‘dispA >0 Akplasma <0 Akgeom. >0

Ak = g = 0. (5.31)

It is obvious that the different contributions to the phase mismatch need to be
balanced.

In Equation (5.31) it can be seen that phase matching occurs if the contribution of
the plasma to the phase mismatch cancels out the contributions of the dispersion
of the neutral gas and the phase mismatch due to geometric effects. For a better
identification of the external control parameters it is convenient to rewrite Equation
(5.31) using the relations mentioned above. This leads then to

qu(S_N

qc q—1
o + .
Co 2 €y Mme Cow ZR

Ak = N, (5.32)
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In this form it is transparent that by varying the density of the neutral atoms
N, and electron density N, of the plasma it should be possible to ensure phase
matching.

The density of the neutral atoms and the electron density of the plasma is connected
by the ionization rate. Thus, by varying the gas pressure and the intensity at the
laser focus it is possible to control phase matching.
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Chapter 6

The experimental setup

In order to generate high-order harmonic radiation from ultra-short laser pulses
in the lab, a modular vacuum setup was built [81]. It consists of several vacuum
chambers which are mounted on a rail system for easy configuration. The setup for
the generation of high-order harmonics after temporal compression of the laser pulse
by an optimized filament is shown in Figure 6.1. The setup consists of a commercial

spatial pulse shaping

800 nm, ~25 fs

1kHz, 0.8 mJ - ) 2,
\ filament cell
FEMTO
BN [isens X B
FemtoPOWER e 9 b
o
0

compact PRO

beam and pulse m

diagnostic | ———

2D X-ray CCD spectromeler target chamber focusin g of harmonics HHG in a gas jet
(toroidal focusing mirrr)

Figure 6.1: Overview of the experimental setup. The setup consists of five major
sections. The first section is the FemtoPOWER, compact PRO amplifier
system. The second part is the spatial light modulator for beam shaping.
The third part is a temporal compression setup, consisting of a gas cell
for self-phase modulation inside a filament and a prism compressor. The
fourth section contains different beam and pulse diagnostic tools. The
last part contains the high-order harmonic generation setup.

femtosecond laser system, a spatial light modulator, a setup to further shorten
the laser pulses and the vacuum system for the high-order harmonic generation.
The optimization is done using a genetic algorithm which controls the spatial light
modulator. In the following, each part is shortly described.

o7
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6.1 Laser system

The laser system used during this work is a commercially available FemtoLASERS
FemtoPOWER compact PRO. It is a femtosecond amplifier system based on a multi-
pass CPA amplification scheme [29, 82]. In Figure 6.2 the principle of the laser
system is shown. A Ti:sapphire oscillator, pumped by a green Nd:YVO, cw-laser,

< prism compressor BHolonics
800 nm, 25 fs Industries

1mJ, 1kHz GM30
+ (Nd:YLF)

527 nm, 100 ns
12 W, 1 kHz

9-pass amplifier

800 nm, several ps
1mJd, 1kHz

FemtoLasers
" h FemtoSource
stretcher (Ti:Sa oscillator)
800 nm, several ps 800 nm, 20 fs
80 MHz i 80 MHz

Coherent Verdi V2
(Nd:YVO,)
532 nm, 2 W, cw

Figure 6.2: The FemtoPOWER compact PRO femtosecond amplifier system. The
FemtoSOURCE Ti:sapphire oscillator delivers weak femtosecond pulses.
The pulses are stretched to several picoseconds in the stretcher, using
chirped mirrors. The stretched pulses can then be safely amplified in
another Ti:sapphire crystal. During the nine passes in the amplifier
stage, the repetition rate is reduced by a Pockels cell. Afterwards the
pulses are recompressed by a prism compressor. The green lasers are
needed for pumping the Ti:sapphire crystals.

delivers “weak” femtosecond laser pulses with a repetition rate of 80 MHz. In the
next step, the pulses are stretched to several picoseconds using chirped mirrors. This
is done to reduce the peak intensity of the laser pulses in order to avoid damage of
the amplifier crystal. The amplification of the laser pulses takes place in a multi-
pass amplifier stage. There, a second Ti:sapphire crystal, pumped by a Q-switched
green Nd:YLF laser, is used as gain medium. The laser pulses are amplified during
nine passes through the gain medium. After the fourth pass, one out of 80000 laser
pulses is selected, effectively reducing the repetition rate of the amplifier system to
1 kHz. The pulse selection is done using a Pockels cell between crossed polarizers as
pulse picker. After the amplification the laser pulses are recompressed by a prism
COMpressor.

The FemtoPOWER compact PRO used during this work can deliver laser pulses with
a pulse energy of up to 1 mJ and a pulse duration of about 30 fs (FWHM).
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6.2 Spatial Light Modulator

In order to control the wavefront of the laser pulses a spatial light modulator (SLM)
is used. The SLM can modify the phase of the laser beam in two dimensions
and it is possible to fully control the wavefront of the beam. Two different SLMs
were used during this work. Both SLMs were supplied by Hamamatsu Photon-
ics.

6.2.1 The PPM-SLM

The Hamamatsu PPM-SLM X8267, shown in Figure 6.3, works in reflection and
has an addressable resolution of 768 x 768 pixels. Only a short description of the
PPM-SLM is given here. For more details on the properties of the PPM-SLM X8267
see [26, 49, 83]. The phase is controlled by a computer. The green level of the VGA

Figure 6.3: Hamamatsu PPM-SLM X8267 [84].

output of a conventional graphics adapter serves as modulation signal. For the
X8267 a green level of 255 represents a phase shift of roughly 27. The exact phase
shift depends on the wavelength of the readout light.

The working principle of the PPM-SLM is quite sophisticated. A laser diode images
a conventional XGA-LCD onto the back of the modulation area. The actual mod-
ulation is done by liquid crystals. The orientation of the liquid crystals defines the
phase modulation and depends on the amount of light which hits the back of the
modulation area.

Because the imaging of the LCD on the active area is slightly out of focus, the pixels
appear a little blurry. This is done deliberately, because this way it is possible to
create an output image which shows no pixel structure. The main advantage of this
is the greatly reduced diffraction noise, which normally occurs due to pixelation. On
the downside, this reduces the effectiveness of sharp phase jumps, which are needed
for desired modulation depths greater than 2.
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6.2.2 The LCOS-SLM

Some major disadvantages of the PPM-SLM are the limited damage threshold, which
is less than the maximal achievable intensity of the amplifier system, and the problem
of phase modulation by readout light [49, 83]. In order to be able to use the full
pulse energy of the amplifier system, the LCOS-SLM X10468-02, shown in Figure
6.4, was used. The LCOS-SLM has a resolution of 800 x 600 pixels. Similarly

Figure 6.4: Hamamatsu LCOS-SLM X10468-02 [85].

to the PPM-SLM it can be controlled by a conventional graphics adapter. As the
LCOS-SLM is the successor of the PPM-SLM, it uses a modern DVI connector. The
LCOS-SLM uses the gray level as signal and a phase modulation of approximately
27, again depending on the wavelength, is achieved for a white output image of the
computer.

The actual modulation is also done by liquid crystals. In contrast to the PPM-SLM
the orientation of the liquid crystals is controlled by a CMOS backplane. On the
one hand, this leads to some pixelation effects, on the other hand, the readout light
does not produce any phase modulation itself. Additionally, the CMOS backplane
is more robust and has a much higher damage threshold.

Because both SLMs use a conventional graphics adapter the software created for the
PPM-SLM also works for the LCOS-SLM. Only the use of a black/white color table
instead of a black/green color table must be ensured.

6.2.3 Closed-loop optimization

For nonlinear effects, the influence of the spectral or spatial phase is also nonlinear.
In most cases, for a given nonlinear effect, the phase which leads to the desired result
cannot be calculated analytically. Hence, finding a suitable phase profile poses an
optimization problem [86]. Many optimization methods are available to search for
good solutions of the problem [86]. These optimization methods are mostly closed-
loop optimizations. These closed-loop algorithms use the result of one iteration
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as parameter in the next iteration. Many of these methods, for example particle
swarm optimization, simulated annealing or evolutionary algorithms, are inspired
by nature.

In this work a genetic algorithm, which is a particular implementation of an evolu-
tionary algorithm, was used. The use of genetic algorithms for the optimization of
laser pulses in order to control quantum mechanical systems was first described by
Judson and Rabitz [87]. The genetic algorithm used in this work is very similar to
the one given by Judson and Rabitz and is described in more detail in Appendix

C.

6.3 Temporal compression

As mentioned in Section 3.1, the pulse duration and the spectral bandwidth of a
laser pulse are linked. With the help of the so called time-bandwidth product, given
by Equation (3.9), it is possible to calculate the minimum pulse duration for a given
spectral bandwidth. Thus, in order to temporally compress a laser pulse it has to
be spectrally broadened.

In a first step, the nearly bandwidth limited laser pulse from the amplifier system is
spectrally broadened by the nonlinear effect of self-phase modulation. The effect of
self-phase modulation is discussed in more detail in Section 4.1.1. For efficient and
homogeneous spectral broadening by self-phase modulation, the laser beam has to
be small over quite a long distance. In order to achieve this, the laser beam has to

be guided.

One possible way to guide the laser is the use of a gas-filled hollow-core fiber. This
was done during previous projects and was studied in detail in [26, 49, 68, 83].
Another approach to achieve a long interaction region with a small cross-section, is
to use the self-guiding of the laser beam by filamentation. The effect of filamentation
is the interplay between Kerr self-focusing and plasma diffraction and is discussed
in Chapter 4.

A filament can be created simply in air. Due to pressure variations and air movement
in the lab, filamentation becomes unstable and the self-phase modulation fluctuates
strongly. In order to stabilize the self-phase modulation, a gas cell with a controlled
environment is used. This gas cell is about 1.6 m long and can be filled with argon
gas at an adjustable pressure between 1 mbar and 2 bar.

Due to spectral broadening, the pulse is no longer bandwidth-limited after self-
phase modulation and the chirp has to be compensated. This is done using a pair of
prisms, forming a prism compressor. A full discussion of the properties of a prism
compressor can be found in [29].
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At the exit of the temporal compression setup, the pulse is now significantly shorter
than at the beginning. Due to the optical elements used, some energy loss occurs.
In terms of intensity, the energy loss is more than compensated by the shorter pulse
duration.

In the experimental setup used in this work the transmission of the temporal com-
pression setup is about 70%. The pulse duration, however, is shortened by a factor
of about 2. This leads to an intensity increase of roughly 40%.

6.4 Beam and pulse diagnostics

In order to characterize the beam and pulse parameters, several diagnostic tools are
available. In the following, these tools are shortly described.

For beam diagnostics a near-infrared sensitive CCD is used. Typical commercially
available CCD cameras use an infrared filter to reproduce the color sensitivity of the
eye. This filter is needed because in the near-infrared the CCD is still sensitive to
light whereas the eye cannot detect light in this region. Without the infrared filter
the color of the images produced by CCDs would appear strange. With the filter in
place, the color impression of the pictures seems much more natural to the human
eye. Because the filters are typically built to filter out light at wavelengths longer
than 800 nm, they are not suitable to analyze the beam profile of a Ti:sapphire laser.
Some difficulties concerning the use of standard CCDs for beam characterization
are described in Chapter 7. In order to avoid some of the difficulties, a machine
vision camera without any spectral filtering is used. In first experiments a Sony
XC-STH50CE CCD was used. In later experiments this camera was replaced by a
DALSA Genie M1024 CCD camera.

In order to characterize the pulse, two different tools are available. The first is an in-
terferometric autocorrelator and the second is a SPIDER setup.

The interferometric autocorrelator was built using a Michelson interferometer and
a two-photon photodiode as detector [88]. With the help of the autocorrelator it is
possible to directly measure the pulse duration. In later experiments a commercially
available autocorrelator, capable of measuring pulse durations shorter than 10 fs was
used. This autocorrelator, the FemtoLASERS FemtoMETER [89], provides a faster
and easier readout of the signal.

The autocorrelator, however, is only suitable for measuring the pulse duration. In
order to fully characterize the pulse the phase has to be determined. This can be
achieved using techniques other than an autocorrelator. Among others, e.g., the
frequency-resolved optical gating or FROG [29, 90], the spectral-phase interferom-
etry for direct electric-field reconstruction, shortly called SPIDER [91], is suitable
to fully characterize the pulse. In this work, a SPIDER setup was available for
pulse characterization. The properties of this specific SPIDER setup are discussed
in [26, 49, 68].
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6.5 High-order harmonic generation

In order to generate high-order harmonics, a vacuum setup is available. In princi-
ple, different generation geometries are possible. Some examples are, the generation
in a gas jet, a capillary or in water droplets. For an overview see [68] and else-
where.

In this work, the generation of the high-order harmonics was realized in a gas-filled
nickel tube. The setup is shown in Figure 6.5. The gas is contained in a small nickel
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Figure 6.5: High-order harmonic generation inside a gas-filled nickel tube. The laser
is focused into a gas-filled nickel tube to generate high-order harmonics.
Before the experiment the tube is completely sealed and the laser then
drills holes, only as large as needed, into the front and the back of the
tube. After the high-order harmonic generation, a thin metal foil is used
to filter the fundamental laser light out of the beam. The high-order
harmonics are then detected with a XUV sensitive detector.

tube. Before the experiments the tube is completely sealed. The laser then drills
holes into the front and the back of the tube. These holes are only as small as the
beam diameter and only little gas can flow from these holes into the vacuum. This
way only the interaction region contains a significant amount of gas. With respect
to focusing and phase-matching conditions, this configuration is identical to the gas
jet. The main difference is the greatly reduced background pressure in the vacuum
chamber, compared to a free flowing continuous gas jet.

As the wavelength of the generated high-order harmonic radiation is in the XUV
range, vacuum conditions are necessary for propagation. Therefore, all of the follow-
ing components are placed in vacuum chambers. Each chamber is mounted on rails
for fast and easy movement and configuration. The typical setup of the chambers is
shown in Figure 6.6. From right to left the chambers serve the following purpose:

The first chamber is the generation chamber and contains the nickel tube. It is
connected to the following chamber only by a small hole through which the light
passes. This allows for differential pumping and greatly reduces the background
pressure in the following vacuum chambers.
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2D X-ray CCD spectrometer target chamber focusing of harmonics HHG in a gas jet
(toroidal focusing mirror)

Figure 6.6: The vacuum setup. The vacuum chambers for high-order harmonic gen-
eration and for the experiments are mounted on rails for fast and easy
movement and configuration. The first chamber, called generation cham-
ber, contains the nickel tube for the high-order harmonic generation. The
second chamber contains a toroidal mirror for focusing the high-order
harmonics into the experimental chamber. The experimental chamber
has many connectors to accommodate different experiments. The last
chamber contains a grazing incidence spectrometer which was specifically
designed for this setup [88]. It images the focal spot of the high-order
harmonics in the experimental chamber onto the detector.

The second chamber contains a toroidal mirror for focusing the high-order harmon-
ics. The toroidal mirror has a gold-coating and is used in grazing incidence. The
focusing geometry is designed in such a way that the image of source of the high-
order harmonic radiation, i.e., the focal spot of the fundamental laser inside the
nickel tube, is created at the center of the adjacent experimental chamber. The
magnification is chosen to be 1. Due to the angle, which is introduced by the mir-
ror, this and the following chambers are not aligned in a straight line. In order to
compensate for the bending, the focusing chamber is connected to its neighbors by
bellows.

The third chamber is the experimental chamber. The chamber has many connec-
tors to accommodate different experiments. Connecting an electron time-of-flight
spectrometer, which is available from another team in the work group [92], is also
possible.

The last chamber contains a grazing incidence spectrometer. It was specifically de-
signed for this setup [88], as it images the focal spot of the high-order harmonics
in the experimental chamber onto the detector. The detector, in this case, is a
back-illuminated X-ray CCD (Andor DO420BN [93]). The spectrometer was later
replaced by a commercially available McPherson 248/310G grazing incidence spec-
trometer. It is described in detail in Appendix D.

In order to filter the fundamental laser light from the beam, several thin metallic
foils can be used. They are placed inside special valves in front of and behind the
focusing chamber.



Chapter 7

Spatial optimization of filaments

In order to compress ultra-short laser pulses in the time domain the spectrum has
to be spectrally broadened (see Chapter 3). This can be done using the nonlin-
ear effect of self-phase modulation. For self-phase modulation to be efficient the
laser beam has to be guided. Typically, the guiding of the beam is achieved by
a hollow-core fiber [94]. As interaction medium for the self-phase modulation, the
hollow-core fiber is filled with a noble gas at variable pressure to control the spec-
tral broadening. This way, laser pulses with a pulse duration of only a few optical
cycles [95, 96] can be achieved. This technique is well studied and widely used. It
has, however, some limitations and disadvantages which should be discussed in the
following.

First, the energy of the input pulse is limited to a few mJ pulse energy. This limit
stems from the fact that the pulse has to be efficiently coupled into the hollow-core
fiber. Therefore, the beam width at the entrance of the fiber has to be matched to
the size of the channel inside the hollow-core fiber. Due to the intensities involved,
even for a well matched beam size the glass at the entrance of the hollow-core fiber
starts melting. This leads to a degradation of the fiber entrance so that the fiber
has to be replaced regularly. For pulse energies exceeding a certain limit this effect
is too fast and prevents the laser beam to be coupled efficiently into the hollow-core
fiber.

Another disadvantage of hollow-core fibers is their transmission characteristic. Even
small irregularities inside the hollow-core fiber lead to scattering losses. These losses
lead to a transmittance of about 75 % under optimal conditions. Under typical
experimental conditions a transmittance of about 50 % to 60 % can be achieved.
Additionally, the laser beam can excite different transversal modes inside the fiber.
Which modes are excited depends strongly on the properties of the beam at the
entrance and even small changes in the beam profile, the exact beam position and the
beam pointing strongly influence the propagation inside the fiber [83]. These effects
make an external beam stabilization necessary or otherwise reduce the usability of
temporal compression by hollow-core fiber setups.

Another way for efficient spectral broadening of laser pulses is the use of the self-
guiding effect of filamentation of ultra-short laser pulses. The basics effects leading
to filamentation and some of the properties of a filament are described in Chapter

4.
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From previous works (e.g., [97]) the occurrence of multi-filamentation is well known.
Multi-filamentation occurs if the laser power strongly exceeds the critical power
for self-focusing [98]. Some of the studies show that multi-filamentation can be
influenced by controlling laser parameters like beam width [99], astigmatism [100]
or ellipticity [101].

In order to see if filamentation can be used to replace a hollow-core fiber the trans-
mission properties of the filament were checked first. In a second step, the laser
beam was spatially shaped prior to filamentation in order to optimize the properties
of the beam [102]. This optimization was done using the closed-loop optimization
scheme given in Section 6.2.3.

7.1 Experimental setup

The experimental setup used to investigate the properties of filamentation is de-
scribed in detail in Chapter 6. Here only a short summary is given. The setup is
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Figure 7.1: Experimental setup for the investigation of the properties of filamenta-
tion. For a detailed description see Chapter 6.

shown in Figure 7.1. The multi-pass amplifier delivers laser pulses with a duration
of about 30 fs which are directed onto the Hamamatsu X8267 spatial light mod-
ulator. There, the wavefront of the laser pulses is shaped as described in Section
6.2.1. Afterwards, the spatially modulated beam is focused into the filament cell
using a lens with a focal length of f = 1.5 m. The filament cell itself is filled with
argon gas at a pressure of 1.4 bar. The entry and exit windows of the gas cell are
thin (5 mm) fused silica windows used in normal incidence. After the filament cell
a small lens is used to collimate the beam. The collimated laser beam is temporally
recompressed using a prism compressor. This way, laser pulses with a pulse duration
of about 13 fs, measured with the SPIDER technique, are achieved. In the last step,
the shortened laser pulses are used to create XUV radiation using the process of
high-order harmonic generation. This is done inside the vacuum chambers of the
high-order harmonic generation setup.
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In order to investigate the properties of filamentation different beam and pulse diag-
nostics are available. For beam diagnostics an infrared sensitive CCD camera (Sony
XC-ST50CE) is present. For pulse diagnostics an interferometric autocorrelator and
a SPIDER setup can be used.

7.2 Spatial beam properties after filamentation

After filamentation was successfully observed, the influence of laser intensity and
gas pressure were investigated [26]. This way, the experimental parameters for
stable filamentation were determined. Using a lens of focal length f = 1.5 m and
a gas pressure of 1.4 bar inside the filament cell, a filament with a length of about
15 cm was created. Figure 7.2 shows a picture of the actual filament inside the gas
cell.

Figure 7.2: Picture of the actual filament inside the gas cell. The filament itself is
about 15 cm long.

7.2.1 Beam profile

In the next step, the beam profile after the filament was investigated. When using
the naked eye to examine the beam profile, only the visible parts of the spectrum can
be seen. In Figure 7.3a) the image of the beam profile as seen with the naked eye is
shown. The central part of the beam appears nearly white, whereas the outer part
is blue. This blue part comes from conical emission [103] which is present during
filamentation.

The image was taken with a standard digital camera for photography. These cameras
are typically based on CCDs and use an infrared filter for correct color reproduction.
Typical CCDs are sensitive to near-infrared light which the human eye cannot detect
and images taken without an infrared filter would have a strange color representa-
tion. The filters used in photographic digital cameras typically filter out light with
wavelengths longer than 800 nm. Thus, the image taken with the digital camera
does not show a realistic beam profile.
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Figure 7.3: Beam profile after filamentation. Images taken with a) a photographic
digital camera (VIS) and b) a near-IR sensitive CCD. The red circle in
a) approximately marks the region which is shown in b).

In order to measure the beam profile correctly, a machine vision CCD without
infrared filter (Sony XC-ST50CE) was used. Because the central part of the beam
contains mainly light in the near-infrared it is much more dominant than the outer
part and the laser beam had to be attenuated. This way, the outer (blue) part
was not detected by the machine vision CCD. In Figure 7.3b) the unfiltered beam
profile is shown. The central part, marked by the red circle in the visible image, is
magnified to show more details of the beam profile.

As can be seen, the beam profile in the infrared does not resemble the beam profile
as seen with the naked eye. The visible beam profile appears to be quite regular,
whereas the near-infrared part clearly shows distortions of the central part. Because
of these beam distortions, the focusability of such a beam is reduced. In cases where
tight focusing is necessary, e.g., for high-order harmonic generation, such a beam
profile is not optimal.

7.2.2 Spatial chirp

In this work, filamentation serves as a tool for sustained self-phase modulation of the
laser pulse, as described in Chapter 4. To allow for efficient temporal compression
of the laser pulse, the spectral broadening should be homogeneous over the whole
beam. In order to evaluate the homogeneity of the spectral broadening the spectrum
at different parts of the beam was recorded. In the following, differences of the
spectrum at different parts of the beam are called spatial chirp. This, however, does
not correspond to the effect of spatial chirp in ultrafast optics [104], e.g., created in
prism compressors.

In Figure 7.4a) the approximate positions of the recorded spectra are shown. The
spectrum at the center of the beam, labeled position 5, was taken as reference spec-
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Figure 7.4: Evaluation of the spatial chirp at different positions in the beam. a) Ap-
proximate positions of the measured spectra. b) Spectra taken at two
different positions in the beam. The inset shows the values of the corre-
lations between the spectrum at position ¢ and the reference spectrum
at position 5.

trum. For easier comparison of different beam parts, the correlation
[ EO) () dA
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(7.1)

Tis =

of the spectral intensity I;(\) at position i with respect to the reference was calcu-
lated.

In Figure 7.4b) the spectra at positions 4 and 5 are shown. Theses positions were
selected because they yield the lowest correlation of r4; = 0.77. The data shown
here is actually the reference data taken after the optimization which is described in
the next section. The spectra recorded before the optimization, however, are very
similar with respect to shape and relative intensity. As can be seen, the spectra
differ substantially, which reduces the efficiency of the temporal compression. Addi-
tionally, the correlation for each position is shown in the inset at the top right. The
average correlation of the spectra was (1), = 0.92.

These inhomogeneities are limiting factors for filamentation as a tool for self-phase
modulation. As many experiments require defined pulse profiles, the beam has to
be homogenized using apertures [105]. This reduces the overall transmittance and
limits the intensity throughput.

7.3 Spatial optimization of filaments

In order to be able to use filamentation for self-phase modulation, the beam and
pulse structures have to be optimized. In a similar setup, Pfeifer et al. [106] improved
the pointing stability with the help of a fixed circular phase mask by using a SLM
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similar to the one used in this work. In the setup used for this work the Hamamatsu
X8267 SLM and a genetic algorithm for spatial shaping were already incorporated
in previous experiments. This way, the setup could be easily modified to use a
closed-loop optimization in order to improve filamentation. For this optimization
the genetic algorithm was modified to use tiltable planes. This parameterization is
described in Appendix C.

The symmetry of the spatial beam profile after filamentation was used as fitness
function for the genetic algorithm. In order to evaluate the symmetry, the centroid
of the beam was set as center of the evaluation. Afterwards, the image was split
into four quadrants with an equal number of pixels. In a last step, the integrated
intensities of each quadrant were compared. The signal from each quadrant should
be equal for a symmetric beam. A reasonably symmetric beam shows only small
differences in these signals, leading to a high fitness. An asymmetric beam, however,
produces larger differences and thus has a lower fitness value.

In first experiments, the optimization always resulted in beams which showed no
filamentation. The cause for this was found to be the symmetric input beam. With-
out filamentation, the beam stays symmetric and produces a higher fitness than
a beam which undergoes filamentation. In order to avoid this effect an indicator
for filamentation had to be included in the fitness function. Every time significant
self-phase modulation occurred, a small part of the blue spectrum clipped at the
edge of the end mirror of the prism compressor. The intensity of this blue part,
which is only present because of self-phase modulation, was used as an indicator for
filamentation. With the help of this indicator, the beam could be optimized without
sacrificing filamentation.

In order to quantify the improvements, the effects of the optimization on the beam
profile and the spatial chirp were investigated.

7.3.1 Effects on beam profile

The fitness function of the genetic algorithm is mainly defined by the symmetry
of the beam. Therefore, the influence of the optimization on the beam profile is
immediately evident.

The beam profile before the optimization is shown in Figure 7.5a). It clearly exhibits
an asymmetry and the energy is distributed over two distinct areas. This might be
a sign of multi-filamentation.

Using this beam as initial condition, the genetic algorithm with tiltable planes, as
described in Appendix C, was used to optimize the beam. The optimization started
using only one plane. During the course of the optimization, the number of planes
was successively increased to 32 x 32 planes. Overall, 700 generations were tested,
of which the last 300 generations already had the final number of 32 x 32 planes.
The whole optimization took about two hours.
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Figure 7.5: Beam profile a) before and b) after optimization taken with a near-
infrared sensitive CCD.

After the optimization the beam profile was much more symmetric, as shown in
Figure 7.5b). The distortions present in the initial beam were drastically reduced and
a nearly Gaussian beam profile could be achieved. The position and the length of the
filament inside the filament cell were also altered. The onset of filamentation moved
about 2 cm nearer to the lens and the length of the filament increased by about
4 cm. Additionally, the divergence of the beam decreased for the optimized beam,
leading to a higher intensity at the position of the camera.

7.3.2 Effects on spatial chirp

After the optimization was completed, the spectral properties of the beam were in-
vestigated. Especially the spatial chirp was examined in detail.

As described in Section 7.2.2, the spectrum at nine different positions in the beam
was measured. For each position, spectra of the optimized beam and of the reference
beam were recorded to allow for a comparison between those.

In Figure 7.6 the spectra at positions 4 and 5 in the beam are shown. Before opti-
mization, the spectra, shown in Figure 7.6a), exhibit significant differences. After
the optimization, however, the differences in both spectra are dramatically reduced,
as shown in Figure 7.6b).

In order to quantify the differences between the spectra the same correlation function
as described in Section 7.2.2 was used. The values of the correlation function are
given by the insets in Figure 7.6. Note that the color scaling of the insets differs
between Figure 7.6a) and Figure 7.6b). The average correlation of the spectra
increased from (ri5); = 0.92 before the optimization to (ri); = 0.992 after the
optimization.
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Figure 7.6: Spectra taken at two different positions in the beam a) before and b) after
optimization. The insets show the values of the correlations between the
spectrum at position i and the reference spectrum at position 5. For
further details see Section 7.2.2. Note the different color scaling of the
insets between a) and b).

With this measurement it could be shown that the beam optimization also reduced
the spatial chirp after filamentation. This finding is remarkable because the defini-
tion of the fitness function described above does not contain any information about
spatial chirp. In order to determine the fitness value only the symmetry of the
beam and the width of the spectral broadening, which has only a small contribution
coefficient, were considered.

7.3.3 Calculation of the beam profile

As mentioned in Chapter 2, it is possible to calculate the beam profile at any position
if the wavefront and the intensity profile at one position are known. From the
specifications [107] and previous measurements [26, 108] the beam quality of the
amplifier system is known.

For the amplifier system the beam quality is quantified as M? ~ 1.2 and the beam
profile at the exit is nearly Gaussian. Hence, it is safe to assume a flat wave-
front and a Gaussian profile of the collimated beam at the position of the SLM.
The optimal phase-mask, found by the genetic algorithm, thus corresponds to the
wavefront of the beam directly behind the SLM. Additionally, the properties of the
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lens and the distances between the components are known. With these parameters
the beam at a position shortly before the onset of filamentation was calculated.
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Figure 7.7: a) Phase mask at the SLM after optimization. The black circle marks
the position and the size of the beam. b) Calculated beam profile of the
optimal beam shortly before the onset of filamentation. The beam profile

was calculated from the phase-mask assuming a collimated Gaussian
beam at the SLM.

The calculation was done using Equation (2.22). The influence of the gas inside the
filament cell was neglected. The intensities which occur up to this point allow for
such a simplification. In order to calculate the propagation beyond this point, Kerr
self-lensing and plasma effects must be taken into account.

In Figure 7.7a) the optimal phase-mask is shown. Additionally, a black circle marks
the location of the Gaussian beam. The calculated beam profile shortly before the
onset of the filament is shown in Figure 7.7b). It can be clearly seen that the beam
profile at this point is significantly distorted.

7.4 Optimization of high-order harmonic generation
after filamentation

The high-order harmonic generation, described in Chapter 5, strongly depends on
the pulse duration. Therefore, it is reasonable to evaluate the influence of the tem-
poral compression after filamentation on the high-order harmonic generation. This

was done by using the high-order harmonic generation setup described in Chapter
6.

It could be shown that the compressed pulses were able to efficiently generate high-
order harmonics. As the SLM was still present in this setup, another optimization
run was conducted. This time the overall high-order harmonic yield was used as
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fitness. As mentioned earlier the spatial optimization influenced the spectral broad-
ening and the beam profile. This way a laser pulse with optimal parameters for
high-order harmonic generation was created.
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Figure 7.8: High-order harmonic spectrum after filamentation.

As can be seen in Figure 7.8, the shaped laser beam (red curve) is much better
suited to create high-order harmonics than the reference pulse (black curve). The
39th harmonic, e.g., increased by a factor of about 8.

The optimization resulted in a very complex phase-mask. This phase-mask led to
a complex beam profile but showed quite homogeneous spectral broadening. Thus,
information about which factor led to the increased high-order harmonic yield can-
not be easily retrieved. Further studies are needed to better understand how the
beam profile of the fundamental laser beam influences the high-order harmonic gen-
eration.

7.5 Conclusion

Here it could be demonstrated that filamentation can be used for compression of an
ultra-short laser pulse in the time domain. It was shown that initially the laser beam
after filamentation shows some unwanted properties. With the help of a closed-loop
optimization scheme it was possible, however, to improve important beam charac-
teristics. This way, the spatial chirp and the distortions of the beam profile, present
in the unoptimized beam, could be significantly reduced. The optimization scheme
which realized these improvements was based on a genetic algorithm. These opti-
mizations exhibited some interesting results. It could be shown that the spatial chirp
is reduced automatically when the optimization goal is set to create a symmetric
beam profile. Temporal recompression of this laser beam resulted in a laser pulse
with a duration of about 13 fs. A down-chirp of the laser pulse after filamentation
or even self-compression as mentioned in [105, 109-111] were not observed. Addi-
tionally, it could be shown that it is possible to create a laser pulse which is tailored
specifically to improve the generation of high-order harmonics.



Chapter 8

Measuring the wavefront of
high-order harmonics

As stated in the introduction many experiments rely on brilliant XUV sources. In
order to decide which XUV source is suitable for a given experiment, comparing
the characteristics of different sources is necessary. One such characteristic is the
number of photons which the source emits. As different sources can have different
emission characteristics it is not always enough to compare only the number of
emitted photons.

Another quantity, which allows for easy comparison of different sources, is the bril-
liance or spectral brightness. It takes into account not only the photon flux, but
also the size of the source and its emission characteristics. The brilliance is defined

as
N, photon

At AQAA S

Here Nphoton is the number of photons of a certain energy interval, measured by
%, which are emitted by the source of the size AA into the solid angle A2 during
the time interval At. For pulsed sources it is often reasonable to specify the peak
brilliance Bpeax, Which takes into account that photons are emitted only during
the pulse duration At = 7. In Chapter 1 the beam parameter product, given by
Equation (1.28), connects the waist size to the divergence angle of a beam. The
product of the source area and the solid angle, which corresponds to the beam
parameter product of a real beam, is minimal for diffraction limited beams, i.e.,
M? = 1. Thus, diffraction limited beams have, by definition, the highest brilliance
for a given spot size.

(8.1)

Much work has been done to optimize the spectral shape [112, 113], the photon
flux [114] or the temporal properties [115] of high-order harmonic radiation. Re-
views of much of this previous work are given by [116, 117] and elsewhere. Another
approach for optimizing the brilliance is the control of the wavefront of high-order
harmonics [118-120]. Hence it seems necessary to measure the wavefront of high-
order harmonics in order to examine how the brilliance of the source can be maxi-
mized.
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8.1 Experimental setup

The complete experimental setup is discussed in Chapter 6. Only the experimental
characteristics which are different from those described there are given here. The

CCD Camera metalllic foils generation chamber focussing lens
with for filtering of with gas jet for HHG for
Hartmann mask fundamental beam backing pressure: 0-300 mbara Ar fundamental laser beam

Figure 8.1: Experimental setup for measuring the wavefronts of high-order harmon-
ics. The laser pulse is focused into the nickel tube by a fused silica lens
(f = 300 mm, f/# = 15). For spectral filtering a thin aluminum foil
(thickness 0.2 pm) is used. The X-ray CCD with the Hartmann mask is
installed directly behind the generation chamber.

setup for the wavefront measurements is shown in Figure 8.1. It consists mainly of
the generation chamber, into which the laser is focused, and the Hartmann sensor
which was installed directly behind the generation chamber. For spectral filtering a
thin aluminum foil (thickness 0.2 um), placed between the generation chamber and
the Hartmann sensor, was used.

Similar to [121], the Hartmann sensor is composed of a Hartmann mask which is
placed at a distance of 50 mm in front of the Andor DO420-BN X-ray CCD. The
Hartmann mask, shown in Figure 8.2, was custom-made by LUMERA LASER. It
has an array of 50 x 50 holes, laser drilled into a molybdenum plate. Each hole
has a diameter of 40 pum. The holes are spaced 140 wm apart. Since it is necessary
to illuminate at least four adjacent pixels on the detector to compute the centroid
position of each spot precisely, the pixel size of the detector defines the lower limit
for the hole size. In this case it was given by the pixel size of the X-ray CCD,
which is 26 x 26 um?. Larger holes are not useful, as though they would increase the
precision of the centroid positions, the total number of holes illuminated by the high-
order harmonic beam (beam diameter d = 1 mm foot-to-foot) is more important for
accurate reconstruction of the wavefront. Thus, the parameters of the hole array
are the best compromise for the given setup.
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Figure 8.2: The Hartmann mask was custom-made by LUMERA LASER. It has an
array of 50 x 50 holes, laser drilled into a molybdenum plate. Each hole
has a diameter of 40 um. The holes are spaced 140 um apart.

The Hartmann sensor was calibrated using the expanded beam of an He-Ne laser. A
flat wavefront across the whole Hartmann mask could be ensured this way. Because
the hole diameter of the mask was not designed to be used with a He-Ne laser each
hole exhibited strong diffraction patterns. This greatly reduced the intensity of the
laser beam which reached the detector. Nevertheless is was possible to evaluate
the centroid of the image of each hole. This way a reference pattern could be
defined.

8.2 The measurement

The wavefront measurements were done using laser pulses with a pulse energy of
500 wJ and a pulse duration of about 40 fs. For focusing, a fused silica lens (f =
300 mm, f/# = 15), mounted on a translation stage, was used. Thus, the focal
position inside the vacuum chamber could be changed along the propagation axis. In
the following, this is called z-position with positive z values meaning a focal position
in front of the nickel tube and z = 0 mm meaning the focal spot is at the position of
the nickel tube. Due to self-focusing of the laser beam in air, it is hard to set this up
exactly for vacuum conditions. Additionally, there is no easy way to determine the
exact focal position during the experiment and the z-position in these measurements
is only a rough estimate given with the naked eye.

The laser pulses were focused into a nickel tube with an inner diameter of about
2 mm. The holes created in the nickel tube had a diameter of 40 pm to 60 um. Thus,
a peak intensity in the region of about 2 x 10'® W /cm? was achieved.

After the drilling of the holes, the nickel tube was filled with argon gas as interaction
medium. Because of the small holes, the gas-filled region was limited to the vicinity
of the tube and the interaction length between the laser and the gas was about
2 mm. The backing pressure of the argon gas was adjustable between 0 mbar and
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300 mbar. The pressure was controlled by an electronic valve with an accuracy of
+1% of the selected value. This led to a background pressure in the generation
chamber ranging from 5 x 1072 mbar to 8 x 1072 mbar.

Because of small pointing instabilities of the laser, the hole diameter increased dur-
ing the measurements. These instabilities did not affect the high-order harmonic
generation directly. Due to the larger holes, the background pressure in the cham-
ber increased. At background pressures higher than 0.1 mbar, reabsorption in both
the interaction medium and the chamber became significant and reduced the mea-
sured signal to very low levels preventing the extraction of meaningful data. The
gas pressure at the end of the measurement was limited to approximately 200 mbar
by this effect.

Prior to the wavefront measurements, the spectrum of high-order harmonics gener-
ated with comparable laser pulse parameters, was recorded. A typical spectrum is
shown in Figure 8.3. Experience from previous experiments shows that the overall
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Figure 8.3: Typical high-order harmonic spectrum with a gas pressure of about
100 mbar argon gas and pulse energies of 500 uJ at a pulse duration
of 40 fs, detected behind an aluminum filter.

shape of the harmonics, i.e., the number and relative intensities of the harmonics,
does not change much in the pressure range and z-position range used for the wave-
front measurements. It can be safely assumed, that the spectrum of the detected
high-order harmonic beam is more or less the same and only the beam profile and
the photon flux change.

After the spectrum was recorded, the Hartmann setup was used for the wavefront
measurements. An example of a measured Hartmann signal is shown in Figure
8.4. It was obtained using an exposure time of 1s. All data was recorded using
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Figure 8.4: Example of a wavefront measurement with high-order harmonics. For
some holes the transmission is reduced due to dust remaining inside the
hole. From this image the wavefront and the beam profile of the high-
order harmonics can be reconstructed.

the same exposure time and the data represents an average over approximately
1000 pulses. Changing the exposure time slightly had no significant effect on the
evaluated wavefronts. Thus, it is safe to assume that the wavefronts do not change
much over consecutive pulses.

In a first experiment, the measurement and evaluation of the wavefront of high-
order harmonics could be demonstrated successfully. Additionally, the influence of
the gas pressure and the z-position on the wavefront was studied. In a first step,
the counts detected by the camera were optimized. This was done for gas pressure
and z-position.

After the optimal configuration was found, the influence of the gas pressure was
investigated first. This was done by scanning over the whole pressure range at a
fixed focal position of z = 1.5 mm. In the next step, the z-position at a fixed
gas pressure of 120 mbar was scanned, by moving the focus in front of the nickel
tube.

As a last step, a spatial light modulator was used to modify the wavefront of the
fundamental laser beam prior to focusing. For this spatial shaping the Hamamatsu
X8267 PPM-SLM was used, as it was still present in the beam line from the ex-
periments described in Chapter 7. The wavefronts which were imprinted onto the
beam were parameterized using Zernike polynomials and included tilt, divergence,
astigmatism, trefoil and comatic aberration. With the Hartmann mask in place the
beam profile and wavefront of the high-order harmonics generated by the spatially
shaped laser beam were investigated.
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8.3 Experimental results

The evaluation of the recorded Hartmann spot patterns was done using the software
described in [21, 22]. The evaluated wavefronts were characterized using Zernike
polynomials (see Chapter 2 and Appendix B). It was observed that the reconstructed
higher-order Zernike coefficients were not reliable due to experimental noise and only
lower order polynomials such as divergence (Z;), astigmatism (Z3, Z5) and partly
trefoil (Zs, Zy) and comatic aberrations (Z7, Zg) were considered in the experimental
results.

8.3.1 Results of the pressure scan

The generation of high-order harmonics is a coherent macroscopic build-up from a
microscopic effect (see Chapter 5). As such, the number of generated photons scales
quadratically with the number of atoms, i.e., with the pressure in the interaction
region [122]. Another aspect is the pressure dependence of the reabsorption in the
medium and of the phase-matching, as described in Section 5.2. All these contri-
butions lead to the fact that the generation of high-order harmonics has a strong
pressure dependence. Additionally, it is easily understood that the beam profile and
the wavefront of the fundamental laser beam also influence phase-matching. There-
fore, not only the number of generated photons is pressure dependent, but also the
profile of the generated XUV beam [123].

In order to quantify the intensity of the high-order harmonic beam, the counts
from the camera where evaluated. Note that in the following the term “intensity”
is used somewhat sloppy as a measure for the number of detected photons and is
not the actual physical quantity measured in units of W/cm?. Additionally, the
wavefronts were reconstructed to evaluate the divergence and the astigmatism of
the beam.

The results of the intensity and divergence evaluation is shown in Figure 8.5. Here,
the red curve represents the number of counts which were integrated over the full
CCD chip. The black curve was obtained by evaluating the number of counts of the
brightest pixel of the measured image. This pixel is usually near the optical axis and
can serve as a fairly good indicator of the peak intensity. Additionally, the Zernike
coefficient for divergence (c) is shown as a blue curve.

At low pressures almost no high-order harmonics are generated. Up to pressures
of about 100 mbar the intensity increases roughly quadratic. This is an indicator
for a coherent build-up, as explained above. At pressures between 110 mbar to
120 mbar both the peak intensity and the integrated intensity reach a maximum.
At even higher pressures the XUV signal decreases again. A study of the divergence
coefficient shows a corresponding behavior. At pressures where the signal has its
maximum, the divergence is smallest. As a result, the brilliance has its maximum
at a pressure of about 120 mbar. There, the number of photons is highest and the
solid angle is lowest.
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Figure 8.5: The peak intensity (black squares, solid line) and integrated intensity
(red triangles, dashed line) versus gas pressure at z = 1.5 mm. The
divergence (blue circles, dotted line) has its minimum in the same pres-
sure range where the intensity peaks (110 mbar-130 mbar). Note that
the lines should serve just as a guide and do not correspond to a model.

In order to ensure a good focusability of the high-order harmonic beam in the ex-
perimental chamber, it is important to know the astigmatism. This way, it might be
possible to compensate for it. As the astigmatism can easily be retrieved from the
wavefront-measurements, the influence of the gas pressure on astigmatism was stud-
ied. In Figure 8.6 both parts of the astigmatism are plotted against the pressure.
For a description of these two parts see Section B.3.2. The pressure dependence of
the 45°-astigmatism is given by the black curve. The red curve shows the depen-
dence for the 90°-astigmatism. The different behavior of both parts reveals some
interesting results.

The 45°-astigmatism varies only very little with gas pressure. The variation can be
fitted quite well by a quadratic function. Compared to the 90°-astigmatism, however,
it is nearly constant. The 90°-astigmatism shows quite a strong dependence on gas
pressure. Interestingly this contribution to the astigmatism has its minimum at the
same gas pressure where the intensity is highest.

8.3.2 Results of the variation of the focal position

As stated in Section 5.2.3, the geometric effects influence the phase-matching con-
ditions of high-order harmonics. It can be easily understood that the position of
the focus relative to the gas jet influences the generation of high-order harmonics.
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Figure 8.6: Comparison of the two contributions to astigmatism.  The 45°-
astigmatism (black squares, solid line) and the 90°-astigmatism (red tri-
angles, dashed line). While the 45°-part remains nearly unchanged, the
90°-part has its minimum in the same pressure regime as the intensity
(see Figure 8.5). Again, the lines do not correspond to a model and serve
just as a guide.

It was even shown that it is possible to suppress the contribution of the long or

short quantum path to the generation process by carefully choosing the position
[124].

For easier comparison with the pressure scan, the same observables were used for the
z-scan. It has to be noted, that compared to the pressure scan, much less less data
points are available for the z-scan. This is due to the fact that even with careful
alignment the change of the z-position of the focal spot always slightly changed the
x- and y-position as well. Due to these small instabilities, the holes in the nickel tube
grew larger and the background pressure in the chamber increased with each change
of z-position. Thus, the number of z-positions over which the effect was small enough
to allow for comparison between two data points was limited. Changing the nickel
tube during the experiment was not an option, because this would have changed the
properties of the high-order harmonic generation.

In Figure 8.7 the integrated intensity, the peak intensity and the divergence are plot-
ted against the z-position. Again, the red curve represents integrated intensity, the
black curve the peak intensity and the blue curve the divergence. When comparing
these results with the pressure scan, some similarities can be observed.

In the accessible region, integrated intensity and peak intensity behave pretty much
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Figure 8.7: Plot of the peak intensity (black squares, solid line) and integrated inten-
sity (red triangles, dashed line) versus z-position (at z = 0 mm the focus
lies in the middle of the gas medium, positive z values mean the focus is
in front of the nickel tube). The blue dotted graph (circles) again gives
the divergence of the beam during the position scan. Similar to Figure
8.5 the divergence is lowest when the intensity of the XUV radiation is
high.

the same. Only the order of magnitude of the signal differs. Again, a pronounced
maximum can be found which occurs at z = 1.5 mm. In contrast to the pressure
scan, the minimum of the divergence (around z = 1.0 mm) is not at the maximum
of the intensity. It has to be noted that in the vicinity of the highest intensity, the
divergence does not change dramatically. For regions near the gas jet and far away
from it, the divergence grows while the intensity decreases. This behavior is in good
agreement with [123].

Similar as for the pressure scan, the astigmatism was studied. The variation of
astigmatism with z-position is shown in Figure 8.8. Between z = 1.0 mm and
z = 2.0 mm the 90°-astigmatism is more or less not present. When moving closer
to the gas jet or further away from it, the 90°-astigmatism becomes significant.
The behavior of the 45°-astigmatism is more complex. It shows a nearly linear
behavior. Around z = 2.0 mm the 45°-astigmatism vanishes when it changes its
sign. When looking at the overall astigmatism, a minimum can be observed around
z = 2.0 mm.
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Figure 8.8: The two components of astigmatism (45°-astigmatism: black squares,
solid line; 90°-astigmatism: red triangles, dashed line) are plotted versus
focal position change. Both components change slightly with the focal
position. Near the focal position for maximum intensity (compare Fig-
ure 8.7) the astigmatism clearly shows a plateau where the aberrations
remain constant.

8.3.3 Phase masks

The results show that it is possible to generate high-order harmonics with quite a
good beam quality. As the wavefront of the driving laser beam shows some minor
aberrations, quantified as M? & 1.2 [26, 108], the question arises whether the wave-
front of the driving laser beam gets transferred onto the high-order harmonic beam,
as suggested by [120]. This influence was studied systematically.

The wavefront of the fundamental laser beam was modified using phase masks,
parameterized by Zernike polynomials. The phase masks were applied to the funda-
mental laser beam prior to focusing, using the Hamamatsu X8267 PPM-SLM. The
modulation depth of the phase masks were adjustable to change the strength of the
aberrations. For very strong aberrations the signal from the high-order harmonics
decreased considerably. In some cases, however, the signal increased. This can be
explained by the changed intensity in the interaction region. For the signal increase,
the applied phase mask perhaps compensates some aberrations already present in
the fundamental beam.

In order to systematically investigate the influence of the wavefront of the funda-
mental beam, different aberrations were applied. Afterwards the wavefront of the
generated high-order harmonics was evaluated and compared with the applied phase
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mask. Doing this, no clear correlation between the wavefront of the fundamental
laser beam and the wavefront of the high-order harmonics could be found. In many
cases, when using simple lower-order aberrations as phase mask, many different
higher-order wavefront aberrations could be observed. Thus, no evidence for the
direct transfer of the wavefront from the laser beam onto the beam of the high-order
harmonics could be found. A nontrivial connection between the two wavefronts
might still be possible.

8.3.4 The beam parameters of the high-order harmonic source

In order to quantify the quality of high-order harmonics as XUV source, the beam
and propagation parameters of the high-order harmonic beam were calculated. As
mentioned in Appendix A and Appendix B, this was done using the defocus coeffi-
cient ¢4 and second-order beam moments obtained from a Hartmann measurement
taken at optimal values for pressure and z-position.

a) 10 = b) I

[ \ 50

i 1.0 !

0.5- !

[ 0.5 .
£ | E =
£ o0 E o0 1%
B 7 ” 1 50

[ -0.5 ]
0.5+ 1
[ -1.0 i
qo . =
-1.0 -0.5 0.0 0.5 1.0 1.0 05 00 05 1.0
X/ mm x / mm

Figure 8.9: a) Beam profile and b) wave aberration of a high-order harmonic
beam. High-order harmonics generated in Ar gas at optimal pressure
of 120 mbar.

In Figure 8.9a) the spatial beam profile is shown. Figure 8.9b) shows the wave aber-
ration which is in fact the reconstructed wavefront without the terms for piston, tilt
and defocus. From the beam profile, the wave aberration and the defocus coefficient,
the beam and propagation parameters were calculated. The high-order harmonic
beam has a Rayleigh length of zg = 12.5 £ 2.0 mm. Taking the whole beam pro-
file into account as described in Appendix A, the beam exhibits an effective beam
propagation factor of
MZ =5+1.

This result is comparable to [125].

With the help of these parameters, the peak brilliance of the high-order harmonic
beam was estimated to

photons
s st mm20.1%BW’

Bpeak = 2 x 10"
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8.4 Conclusion

It could be demonstrated that it is possible to measure the wavefront of XUV radi-
ation with a simple Hartmann mask. From this simple measurement the beam and
propagation parameters of the high-order harmonic beam could be retrieved. Addi-
tionally, the influence of the gas pressure and the position of the focus relative to the
gas jet on the wavefront of high-order harmonics were studied.

It could be demonstrated that the best beam quality and lowest divergence co-
incide with the highest photon flux. Additionally it was shown that the wave-
front of the fundamental laser beam is not transferred directly onto the wave-
front of the high-order harmonics. Hence, by adjusting the gas pressure and focal
position to maximize the detected signal, the optimal brilliance of the source is
achieved.



Chapter 9

High-order harmonic generation with
wavefront controlled laser pulses

The experiments described earlier and in previous works [120, 126, 127] suggest that
the wavefront of the fundamental laser beam has a significant influence on the process
of high-order harmonic generation. In Chapter 8 the wavefront of the high-order
harmonics was measured. In addition to the wavefront measurements experiments
were conducted to see if the wavefront of the driving laser beam gets transferred
onto the high-order harmonic beam. The results of these experiments, described in
Section 8.3.3, show no direct transfer of the wavefront. There are some indications,
however, that some effects depend on the wavefront. During these experiments a
non-ideal fundamental laser beam sometimes resulted in an increased high-order
harmonic yield. In order to better understand the process, attempts were made to
evaluate this influence of the wavefront.

As a first experiment, it was examined if a beam with a non-flat wavefront is able
to generate more high-order harmonics than an undistorted laser pulse. This was
done using a closed-loop optimization scheme based on a genetic algorithm. In
subsequent experiments the influence of the optimization on the beam profile of the
fundamental laser beam was evaluated.

These experiments were conducted after the equipment was moved to the new labo-
ratory at the Institute for Optics and Quantum-electronics of the Friedrich-Schiller-
University of Jena.

9.1 Experimental setup

Due to the move to the new laboratory, some of the components of the experimental
setup, described in Chapter 6, were replaced. In Figure 9.1 the setup used for the
experiments described in this Chapter is shown.

The laser pulses from the amplifier system are spatially shaped by the SLM. As
mentioned in Chapter 6, the Hamamatsu PPM-SLM X8267 is replaced by the LCOS-
SLM X10468-02. As both SLMs are very similar, only minor modifications to the
genetic algorithm were necessary.

87
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1kHz, 0.8 mJ

FEMTO

ES i<sems
FemtoPOWER
compact PRO

McPherson 248/310G focusing chamber generation chamber spatial shaping
(gated MCP with CCD) (toroidal mirror) (nickel tube) (Hamamatsu X10468-02)

Figure 9.1: Setup for high-order harmonic generation with wavefront controlled laser
pulses. The laser beam from the FemtoPOWER amplifier system is spa-
tially shaped before it is focused into the generation chamber. The gener-
ated high-order harmonics are focused onto a McPherson 248 /310G spec-
trometer where they are analyzed. In order to measure the beam profile
of the fundamental laser beam near the focus, a long-working-distance
microscope is available. The use of the focus diagnostic is optional.

The shaped beam is afterwards used to generate high-order harmonics. The gener-
ation takes place in a gas-filled nickel tube, as described in Chapter 6. The nickel
tube is located inside the generation chamber. As interaction medium the noble
gases argon and neon are used at varying pressures.

In order to increase the available intensity of the high-order harmonics, a toroidal
mirror is used to focus the generated radiation onto the entrance slit of an XUV
spectrometer. In order to filter out the remaining fundamental light from the high-
order harmonic beam, thin metallic foils are used. Two different sets of foils are
available during the experiments. An aluminum foil with a thickness of 200 nm is
used to detect high-order harmonics in the wavelength range between 17 nm and
50 nm. For higher-order harmonics in the wavelength range between 10 nm and
20 nm, a 200 nm thick zirconium foil, supported by a mesh layer, is used. In Figure
9.2 the transmission curves of the aluminum filter (red curve) and the zirconium
filter (black curve) for the XUV range are shown. The data to plot these curves is
taken from [128].

The XUV spectrometer is another component which has changed compared to the
setup used in Wuerzburg. The custom made spectrometer is replaced by a commer-
cially available McPherson 248/310G spectrometer. The McPherson 248/310G spec-
trometer is discussed in more detail in Appendix D and in [129].

In order to evaluate the influence of the spatial shaping on the fundamental laser
beam, a long-working-distance microscope was built. A pickup mirror can be moved
in and out of the beam inside the vacuum directly behind the nickel tube. This way;,
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Figure 9.2: XUV transmission of the thin metallic foils used as filter. Transmission
curve (red) of aluminum (thickness 200 nm). Transmission curve (black)
of zirconium (thickness 200 nm). Data taken from [128].

the usage of the microscope which is placed outside the vacuum chamber is optional.
A similar setup was already used to study water microdroplets as interaction medium
for high-order harmonic generation [130]. The remote microscope employs a stan-
dard SLR camera objective with a focal length of f = 200 mm. The objective creates
a real intermediate image of the interaction region at its backplane. The magnifica-
tion of this intermediate image is slightly less than 1. The SLR objective was chosen
because of its wide aperture and its very good imaging properties. In order to exam-
ine the beam profile at the beam waist a standard 20x microscope objective is used
as ocular lens. A near-infrared sensitive CCD camera (DALSA Genie M1024) serves
as detector. The resolution of this microscope is about 5 pm.

9.2 The measurement

As a first step, the high-order harmonic generation was done using argon gas as
interaction medium. The position of the focusing lens and the gas pressure were
adjusted as already described in Chapter 8. It was found that the lens position and
the gas pressure were nearly the same as in Chapter 8.

After the setup was manually adjusted for best high-order harmonic yield, several
optimizations with the genetic algorithm were carried out. This was done in or-
der to adjust the free experimental parameters of the genetic algorithm, such as
mutation probability or mutation deviation mentioned in Appendix C. Similar to
Villoresi et al. [127] and Yoshitomi et al. [126], the genetic algorithm was modified
to influence the wavefront of the fundamental laser beam. In order to allow for a
direct evaluation of the applied wavefront, the algorithm used Zernike polynomi-
als. The Hamamatsu LCOS-SLM used in this work has a much higher resolution
compared to the deformable mirrors used by Villoresi et al. and Yoshitomi et al..
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Additionally, the SLM is capable of greater modulation depths. This way, the in-
fluence of strong higher-order wavefront aberrations can be studied. During this
work Zernike polynomials up to the 6th radial order were used. The corresponding
Zernike polynomials are shown in Table B.1 in Appendix B.

After the genetic algorithm was tested the experiments were carried out. As a
first experiment the overall harmonic yield was optimized. This was done using
argon gas at a backing pressure of 120 mbar. Several optimization runs were carried
out.

In the next step the interaction medium was changed from argon to neon. The
backing pressure of the neon gas was increased to 300 mbar to compensate for the
lower ionization rate of neon compared to argon due to its higher ionization potential
[131].  Generation of high-order harmonics in neon proved to be more difficult.
Even with careful adjustment no harmonics could be detected. When using the
optimized phase mask, found during the optimization with argon, together with
neon as interaction medium, however, high-order harmonics were generated. With
this phase mask as initial generation, further optimizations in neon were carried
out.

In order to study the wavefront of the optimized laser beam, a commercial Shack-
Hartmann was used. The Shack-Hartmann sensor was placed behind the focusing
lens to directly evaluate the wavefront which influences the generation of high-order
harmonics. This evaluation was done with the reference beam and a beam which was
optimized for the generation of high-order harmonics in argon.

From the wavefront measurements the beam profile in the focus was calculated.
The spatial resolution of this calculation is limited, however. This limit is given
by the resolution of the Shack-Hartmann sensor. In order to determine how the
optimized wavefront modifies the intensity distribution, the beam profile in the
interaction region was measured directly. This was done using the long-working-
distance microscope described above. As the laser had to be realigned between
the Shack-Hartmann measurement and the beam profile measurement, the beam
properties changed slightly between these conditions. Thus, the results of both
measurements can only be compared with caution. Furthermore, the wavefront
measurement could not be repeated during the beam profile measurements as the
Shack-Hartmann sensor was no longer available.

9.3 Experimental results

In a first step the free parameters of the genetic algorithm were adapted to the exper-
iment. The free parameters control the properties of the “reproduction ” operations
described in Appendix C. During the initial experiments experience with the new
setup was gained. With the free parameters given in Table 9.1 the genetic algorithm
produced quite stable results. Additionally, the time needed for one optimization
run could be decreased. This speed increase, however, led to an increased memory
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parents clone Cross-over mutation mutation
ratio content content probability deviation
103 [ 0.2 [ 04 [ 04 [ 35 |

Table 9.1: The free parameters of the genetic algorithm and their respective values,
as used for the optimization experiments. For a description of the free
parameters see Appendix C.

usage. Due to the high memory requirements only optimizations with about 100
generations were possible. Typically, the optimizations converged within 50 gen-
erations. Thus, the limited generation size posed no problem. With these results
further wavefront optimizations were conducted.

9.3.1 Optimization of high-order harmonic generation

In a first step the yield of high-order harmonic radiation generated in argon gas
was optimized. In Figure 9.3 the evolution of the fitness during the optimization
is shown. In total, four different types of fitness value which are characteristic for
genetic algorithms are displayed.
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Figure 9.3: Evolution of the fitness during an optimization. The fitness function was
defined such as to increase the overall high-order harmonic yield. As an
interaction medium, argon gas at a pressure of 120 mbar was used.

At the beginning of each generation cycle the fitness of a beam with a flat wavefront
applied is recorded. This reference, shown as black curve, is used to monitor the
long term stability of the laser. With its help the data can be corrected for slow
drifts of the laser parameters. The red curve shows the fitness of the best individual
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and the blue curve shows the least fittest individual. Together these two determine
the range of the fitness which is supported by current gene pool. Another important
information is the average fitness of the generation shown as green-blue curve. It
can be used to measure the overall fitness of the gene pool. It also serves as an
indicator for the diversity which is described in Appendix C.

The evolution of the fitness clearly shows a significant increase over the course of
optimization. Both the average fitness (green-blue) and the fitness of the best indi-
vidual (red) increase steadily. The fitness of the worst individual (blue), however,
remains more or less constant. This can be explained by the fact that all genera-
tions contain individuals which do not generate any high-order harmonics at all and
the fitness value contains only detector noise of the spectrometer. The reference
curve (black) shows some strong peaks between generations 11 and 18. These peaks
are probably caused by random laser fluctuations. In order to rule out that these
fluctuations prevented the algorithm from finding an optimal wavefront, all individ-
uals of these generations were examined. Especially the fitness values of the cloned
individuals between two generations were compared. The clones had very similar
values between two generations. Thus it is safe to assume that the fluctuations did
not disturb the genetic algorithm significantly.

In Figure 9.4 the resulting spectra of the reference (black curve) and the fittest
individual (red curve) at the end of the optimization are shown. These spectra were

reference beam
fittest beam
cursor position

intensity / arb.u.

wavelength / nm

Figure 9.4: The high-order harmonic spectrum before (black curve) and after (red
curve) optimization. The optimization goal was set to increase the over-
all high-order harmonic yield in the regions B and C'. The order of each
harmonic is shown on top of the harmonic line. The spectra are rescaled
for a better readability while preserving the relative intensities.

also used to calculate the fitness. Three spectral regions, called A, B and C were
defined. These three regions, marked by the blue cursors, are also shown. From
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these, the fitness was calculated using the fitness function

B
F = +C.
1000

(9.1)

The spectra clearly show a significant increase of the high-order harmonic yield. The
25th harmonic, for example, increased by a factor of about 6. In the cut-off region
three additional lines (31st - 35th harmonic) can be seen in the optimized spectrum.
The additional lines indicate an intensity increase in the interaction region, whereas
the increased yield in the plateau indicate phase-matching effects [126, 127]. Further
studies were conducted in order to examine the influence of the wavefront on high-
order harmonic generation more closely.

9.3.2 Beam profile of the optimized laser beam

As mentioned above, further experiments were carried out to see how the opti-
mization influenced the generation process. In order to evaluate how the optimized
wavefront modifies the intensity distribution of the fundamental laser beam, the
beam profile in the interaction region was determined.

Shack-Hartmann wavefront measurement of the fundamental laser beam

In a first step the beam profile and the wavefront of the fundamental laser were
measured behind the focusing lens. This was done for the reference beam and the
optimized beam, using a commercial Shack-Hartmann sensor. From the beam pro-
file and the wavefront the intensity distribution at any point along the propagation
axis can be calculated. As described in Section 2.4.2, this calculation is done by nu-
merically solving the Fresnel integral given by Equation (2.22).
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Figure 9.5: Calculated beam profile near the interaction region. Calculations for
a) the reference beam and b) the optimized beam were done with data
acquired by a Shack-Hartmann measurement. The spatial resolution of
these calculations is about 20 pum.
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In Figure 9.5a) the calculated beam profile of the reference beam is shown. The
beam profile shows strong disturbances above and below the “actual” beam cen-
ter. These disturbances are artifacts from the calculations. They are caused by
interference fringes visible in the beam profiles retrieved from the Shack-Hartmann
measurement. These interferences are caused by neutral density filters. The filters
are used to attenuate the beam to avoid damage of the Shack-Hartmann sensor.
As can be seen from the calculated beam profile, the actual reference beam in the
center of the image is quite elongated which is caused by astigmatism present in the
wavefront.

When comparing the beam profile of the optimized beam, shown in Figure 9.5b),
to the beam profile of the reference beam, a larger beam diameter is apparent.
This larger beam diameter indicates that the increased high-order harmonic yield,
described above, is in fact not caused by an intensity increase but originates from
other effects.

Direct measurement of the beam profile near the interaction region

In a second step the beam profile near the interaction region was recorded directly.
This was done to confirm if the calculations of the beam profiles discussed above are
correct. In order to directly measure the beam profile, the long-working-distance
microscope mentioned earlier was used.

Between the Shack-Hartmann measurement and these experiments the laser system
and the setup were realigned. This led to a beam which displayed less aberrations
in the unshaped beam. Therefore, caution is needed when comparing the results of
both measurements.

y/pm

-100 -50 0 50 100
X/ um

Figure 9.6: Beam profile of the reference beam at full intensity with argon gas
(120 mbar backing pressure) as interaction medium. The spatial res-
olution of the beam profile measurement is about 5 pm.

The beam profile of the reference beam is shown in Figure 9.6. As can be seen,
the beam profile is nearly Gaussian and has a diameter of about 43 um. Below the
actual beam profile small disturbances are visible. These disturbances are caused by
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multiple reflections at two neutral density filters. These filters were placed directly
in front of the microscope and were used to attenuate the beam.
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Figure 9.7: Phase-mask applied to the SLM to create the optimized laser beam. The
phase-mask is dominated by large Zernike coefficients for trefoil, coma
and astigmatism. In order to increase the modulation depth beyond 27 a
phase wrapping technique with sharp phase jumps of 27 was used before
the phase-mask was applied to the SLM.

The same measurement was also done for an optimized beam. The optimization was
carried out with the same parameters used for the optimization preceding the Shack-
Hartmann measurement. From the phase-mask applied to the SLM the intensity
distribution near the focus was calculated. For this, the phase-mask, shown in
Figure 9.7, was used as wavefront of the incident beam. Again, this was done by
numerically calculating the Fresnel integral given by Equation (2.22). This way, the
beam profiles of the optimized beam at different experimental conditions can be
compared.

In Figure 9.8 the calculated and the measured beam profiles are compared. Figure
9.8a) shows the calculated beam profile. As can be seen, the beam profile in the
interaction region is slightly distorted. The beam diameter along the longer main
axis is about 46 pm. The resolution achieved by the calculation is about 10 um and

is limited by the available computational power and the limited resolution of the
SLM.

In Figure 9.8b) a measured beam profile is shown. This beam profile was recorded
using an attenuated beam with an optimized wavefront. Additionally, no gas was
present in the interaction region. This allows for a comparison of the measured
data with the calculation. The calculated beam diameter of about 46 um is in
good agreement with the measured beam diameter of about 48 um. Similar to Fig-
ure 9.6, small disturbances appear below and on the left side of the actual beam
profile. Again, these disturbances are caused by multiple reflections at two neu-
tral density filters. This time, the filters were placed in front of the focusing lens.
Thus, the intensity at the interaction region was very low and no nonlinear effects
occurred.
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Figure 9.8: a) Beam profile of the optimized beam calculated from the SLM phase-
mask assuming a Gaussian beam profile. The spatial resolution of the
calculation is 10 um. b) Beam profile of the optimized beam at low
intensity (attenuation: 107 in front of focusing lens) with no interaction
medium present. ¢) Beam profile of the optimized beam at full intensity
with argon gas (120 mbar backing pressure) as interaction medium. The
spatial resolution of the beam profile measurement is about 5 pum.

Figure 9.8c) shows the beam profile measured under the same experimental con-
ditions which were used for the optimization. Under these conditions the beam
diameter of about 53 um is slightly larger than the beam diameter at low intensi-
ties without interaction medium. Similar to Figure 9.6, attenuation of the beam
occurred directly in front of the microscope using the same two neutral density fil-
ters. This way, all nonlinear effects in the interaction medium which might affect
the beam profile were present.

When comparing the different beam profiles, several interesting characteristics can
be noticed. The comparison of Figure 9.8a) and Figure 9.8b) shows that the beam
profile at the interaction region is influenced mainly by the phase mask applied to
the SLM. The calculated and the measured beam diameter agree very well. By
comparing Figure 9.8b) and Figure 9.8¢c) the influence of nonlinear effects in the
interaction medium on the beam profile can be detected. As can be seen, the
nonlinear effects slightly reduce the asymmetry of the laser beam, but increase
the beam diameter significantly. A comparison between Figure 9.8c) and Figure
9.6 clearly shows that the beam diameter of the beam optimized for an increased
high-order harmonic yield is larger than the beam diameter of the reference beam.
Additionally, the optimized beam profile has a pronounced asymmetry. Even though
this optimized beam has a reduced peak intensity compared to the reference beam,
the high-order harmonic yield from this beam is higher. This finding is in good
agreement with [126, 127] and also confirms the results of the Shack-Hartmann
measurement which show the same general behavior.
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9.4 Conclusion

It has been shown that it is possible to increase the high-order harmonic yield by
using wavefront-shaped laser beams. The investigation of the beam profile near
the interaction region showed that the optimized beam has an asymmetric beam
profile with a larger beam diameter. Thus, the optimized beam leads to a higher
yield even when the peak intensity is lower compared to an unoptimized beam.
This indicates that the wavefront and the beam profile of the fundamental laser
beam play an important role in the efficient generation of high-order harmonic ra-
diation.

In order to understand whether this influence is purely a phase-matching phe-
nomenon or if other processes also play a role further studies are needed.






Chapter 10

Summary

In many experiments which are based on nonlinear optical effects, the phase of the
driving laser pulse plays a crucial role. In this work, the influence of the spatial
phase distribution, also called wavefront, on extremely nonlinear effects was stud-
ied. These nonlinear effects, namely filamentation of ultra-short laser pulses and
high-order harmonic generation, cannot be easily described in terms of perturbation
theory. Therefore, these extremely nonlinear optical processes need special theoret-
ical models. An introduction to these models is given in order to better understand
the physical background.

Filamentation of ultra-short laser pulses provides a tool to spectrally broaden the
laser pulse. This spectral broadening is caused by self-phase modulation and can
be used to further shorten the laser pulse. In earlier experiments a gas-filled hollow
core fiber was used to achieve this broadening. In order to decide if filamentation
can serve as a suitable replacement for hollow-core fibers, the properties of the laser
beam after filamentation were investigated. These experiments showed that the
laser beam exhibits some unwanted features after filamentation. In the next step,
the wavefront of the fundamental laser beam was controlled prior to filamentation.
This control was achieved by using a spatial light modulator. The spatial light mod-
ulator was combined with a genetic algorithm in order to adaptively optimize the
filamentation process and to remove the unwanted features. It was shown that by
removing the unwanted features, filamentation is a suitable tool to perform spectral
broadening and can be used to replace a gas-filled hollow core fiber.

The second extremely nonlinear effect studied in this work is the process of high-
order harmonic generation. This effect converts laser light into the extreme ultravi-
olet regime. The radiation generated this way shares many of the properties of the
driving laser pulse and is thus a source of spatially and temporally coherent XUV
radiation. A quantity which allows for easy comparison of different XUV sources
is the brilliance or spectral brightness. It takes into account not only the photon
flux, but also the size of the source and its emission characteristics. Much work has
been done to optimize the spectral shape, the photon flux or the temporal proper-
ties of high-order harmonic radiation sources. Another approach to optimizing the
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brilliance is the control of the wavefront of high-order harmonics. In order to exam-
ine how the brilliance of the source can be maximized, the wavefront of high-order
harmonics was measured.

The wavefront measurement used a simple Hartmann mask combined with a back-
illuminated X-ray CCD. The measured wavefronts were evaluated using Zernike
polynomials. From these, the beam and propagation parameters of high-order har-
monic beams could be retrieved. This way, the influence of external parameters,
i.e., the gas pressure of the interaction medium and the position of the focus relative
to the interaction medium, was studied. Additionally, it was examined if the wave-
front of the fundamental laser beam gets transferred onto the high-order harmonic
beam. In order to modify the wavefront of the driving laser beam, it was directly
influenced using a spatial light modulator. Afterwards, the wavefront of high-order
harmonics generated by such modified beams was measured. These studies revealed
that no direct transfer of the fundamental wavefront onto the high-order harmon-
ics takes place. Furthermore, it was shown that for high-order harmonic beams,
the best beam quality and lowest divergence coincide with the highest photon flux.
Thus, optimization of the high-order harmonic yield results in a beam with the best
achievable brilliance.

Some results of this work as well as previous experiments suggest that the wave-
front of the fundamental laser beam has a significant influence on the process of
high-order harmonic generation. During experiments a non-ideal fundamental laser
beam sometimes resulted in an increased high-order harmonic yield. In order to
better understand the process, attempts were made to evaluate this influence of
the wavefront. This was done using wavefront-controlled laser beams to generate
high-order harmonics. The wavefront control used phase masks which were applied
to the driving laser beam by a spatial light modulator. These phase mask were
created using Zernike polynomials and were optimized by a genetic algorithm for
increased high-order harmonic yield. From investigations of the beam profile near
the interaction region it was shown that the optimized fundamental beam has an
asymmetric beam profile with a larger beam diameter compared to the initial beam.
Thus, optimization led to a higher yield even by decreasing the peak intensity of
the driving laser pulse. This indicates that the wavefront and the beam profile of
the fundamental laser beam play an important role in the efficient generation of
high-order harmonic radiation.



Chapter 11

Zusammenfassung

Bei vielen Experimenten, die auf nichtlinearen, optischen Effekten basieren, spielt
die Phase des erzeugenden Laserpulses eine tragende Rolle. In dieser Arbeit wird
der Einfluss der rdumlichen Phasenverteilung, auch Wellenfront genannt, auf extrem
nichtlineare Effekte untersucht. Diese nichtlinearen Effekte, namentlich Filamentie-
rung von ultrakurzen Laserpulsen und die Erzeugung von Hohen Harmonischen von
Laserstrahlung, kénnen nicht ohne weiteres mit Hilfe der Storungstheorie erklért
werden. Deshalb erfordern diese extrem nichtlinearen Effekte spezielle theoretische
Modelle. Zum besseren Verstandnis des physikalischen Hintergrunds werden diese
Modelle kurz eingefiihrt.

Die Filamentierung von ultrakurzen Laserpulsen bietet ein einfach zu nutzendes
Werkzeug, um Laserpulse spektral zu verbreitern. Diese spektrale Verbreiterung
wird durch Selbstphasenmodulation in einem Medium hervorgerufen und kann da-
zu verwendet werden, Laserpulse zeitlich zu verkiirzen. In fritheren Experimenten
wurde eine gasgefiillte Hohlfaser zur Verbreiterung verwendet. Um zu entscheiden,
ob Filamentierung einen geeigneten Ersatz fiir die Verwendung von Hohlfasern dar-
stellt, wurden deshalb zuerst die Strahleigenschaften des Lasers nach dem Filament
vermessen. Diese Experimente zeigten einige unerwiinschte Strahleigenschaften auf.
Im néchsten Schritt wurde die Wellenfront des erzeugenden Laserstrahls vor dem Fi-
lament gesteuert. Diese Steuerung wurde mit Hilfe eines Raumlichtmodulators (engl.
spatial light modulator) realisiert. Zur adaptiven Optimierung des Filamentierungs-
prozesses und zur Unterdriickung der unerwiinschten Strahleigenschaften erfolgte
die Ansteuerung des Raumlichtmodulators mit Hilfe eines genetischen Algorithmus.
Auf diese Weise konnte gezeigt werden, dass Filamentierung durchaus ein geeignetes
Werkzeug zur spektralen Verbreiterung von Laserpulsen ist und sich eignet, Hohl-
fasern zu ersetzen.

Der zweite nichtlinearen Effekte der in dieser Arbeit untersucht wurde, ist die Hohe-
Harmonischen Erzeugung. Dieser Effekt konvertiert Laserstrahlung vom nahinfra-
roten in den extrem ultravioletten (XUV) Bereich. Die auf diese Weise erzeugte
XUV-Strahlung besitzt einige Eigenschaften des sie erzeugenden Laserpulses, und
ist somit eine Quelle fiir rAumlich und zeitlich kohdrente XUV-Strahlung. Um ver-
schiedene Strahlungsquellen im XUV Bereich zu vergleichen, wird héufig die Brillanz
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verwendet. Die Brillanz beinhaltet hierbei nicht nur den Photonenfluss, sondern auch
die Grofle und Abstrahlcharakteristik der Quelle. Viele Arbeiten beschreiben die
Optimierung von Hohen-Harmonischen Quellen in Bezug auf spektrale Verteilung,
Photonenfluss oder den zeitlichen Verlauf. Ein weiterer Ansatz die Brillanz der Quel-
le zu optimieren ist die Steuerung der Wellenfront des Hohen-Harmonischen-Strahls.
Um zu untersuchen wie die Brillanz der Quelle optimiert werden kann, wurde die
Wellenfront des Hohen-Harmonischen-Strahls gemessen.

Die Wellenfront wurde mit Hilfe einer Kombination aus einer riickseitig-beleuchteten
Rontgen-CCD-Kamera und einer einfachen Hartmann-Maske bestimmt. Die aufge-
nommenen Wellenfronten wurden anschliefend mit Hilfe von Zernike-Polynomen
quantifiziert und ausgewertet. Weiterhin konnten die Strahl- und Propagationspara-
meter des Hohen-Harmonischen-Strahls bestimmt werden. Auf diese Weise konnte
der Einfluss externer Erzeugungsparameter wie Gasdruck des Erzeugungsmediums
und die Position des Fokus relativ zum Erzeugungsgebiet untersucht werden. Zusatz-
lich wurde untersucht, ob die Wellenfront des erzeugenden Strahls auf den Hohen-
Harmonischen-Strahl iibertragen wird. Um die Wellenfront des Fundamentalstrahls
zu steuern, wurde diese mit Hilfe eines Raumlichtmodulators verdndert. Anschlie-
Bend wurde die Wellenfront des Hohen-Harmonischen-Strahls untersucht, der mit
solch einem veranderten Fundamentalstrahls erzeugt wurde. Diese Untersuchungen
zeigten, dass kein direkter Transfer der Wellenfronten vom Fundamentalstrahl auf
den Hohen-Harmonischen-Strahl stattfindet. Weiterhin konnte gezeigt werden, dass
fir Hohe-Harmonischen-Strahlen die beste Strahlqualitat und die geringste Diver-
genz zusammen mit dem hochsten Photonenfluss auftritt. Daher fithrt eine Opti-
mierung auf die beste Hohen-Harmonischen-Ausbeute automatisch zu einem Strahl
mit hochster Brillanz.

Die Ergebnisse dieser Arbeit sowie frithere Experimente weisen auf einen deutli-
chen Einfluss der Wellenfront des fundamentalen Laserstrahls auf die Erzeugung
von Hohen-Harmonischen hin. Bei einigen Experimenten zeigte sich, dass ein nicht-
idealer fundamentaler Laserstrahl eine verbesserte Ausbeute an XUV-Strahlung zur
Folge hatte. Um diesen Prozess besser zu verstehen, wurde der Einfluss der Wel-
lenfront auf den Erzeugungsprozess naher untersucht. Diese Untersuchungen wur-
den mit Hilfe von Wellenfront-gesteuerten Laserpulsen zur Erzeugung von Hohen-
Harmonischen durchgefiihrt. Die Steuerung der Wellenfront erfolgte durch Phasen-
masken, die mittels eines Raumlichtmodulators auf den erzeugenden Laserstrahl
aufgepragt wurden. Diese Phasenmasken wurden mit Hilfe von Zernike-Polynomen
konstruiert und durch einen genetischen Algorithmus so optimiert, dass sie die
Ausbeute von XUV-Strahlung steigerten. Durch Untersuchungen des Strahlprofils
des erzeugenden Strahls in der Nahe des Erzeugungsgebiets konnte gezeigt wer-
den, dass der optimierte Fundamentalstrahl ein asymmetrisches Strahlprofil mit ei-
nem grofleren Strahldurchmesser ausweist, als der urspriingliche Strahl. Daher zeigt
sich, dass die Ausbeute durch Optimierung verbessert werden kann, obwohl sich
die Spitzenintensitdt des erzeugenden Laserpulses verringert. Dies weist auf den

wichtigen Einfluss der Wellenfront und des Strahlprofils auf den Erzeugungsprozess
hin.
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Appendix A

Derivation of beam parameters from
second-order beam moments

In [6] it is shown that the first and second order beam moments serve as good quan-
tities to determine beam parameters. Their special properties make them ideal for a
wide area of applications. They are even used to define standard beam parameters
8, 9]. Some of the standard beam parameters and how they are derived from the first
and second order beam moments are discussed in the following.

The second-order spatial moments (z?) and (y?) can be calculated from the beam
profile by

_ M (@ = (@) I(,y) dady
) = T e dey (A1)
and likewise for y as

o S y— ) I(z,y) dady
)= e dedy (4.2)

Here the integration is carried out over the whole beam. The first-order spatial
moments (x) and (y) which are used are given by

[ xI(z,y) dzdy
S (2, y) dady

_ [ yl(z,y) dady
JI1(z,y)dedy -

The second-order spatial moments determine the beam widths (in 2 and y direction)
which are given by

(x) (A.3a)

(y) (A.3b)

2w, = d, = 44/ (2?), (Ada)
2wp,, = d, = 44/ (y?). (A.4Db)

The second-order angular moments (u2) and <u§> are calculated with the help of
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the local angular shift . This leads to

2\ __ ff (ﬁz<x7y) B <ux>)2 ]('Tay> dxdy a
() = [ T(z,y) dudy ’ (A.5)

o Byl y) — () I(z,y) dady
() = [ Tz, y) dedy (4.50)

with the first-order angular moments

) = Bu(,y) I(2,y) dedy
’ I 1(z,y) dady

(A.6a)

Sl By(z,y) I(z,y) dedy
(uy) = [[1(z,y) dedy . (A.6D)

The second-order angular moment is used to determine the divergence of the beam.
The z- and y-divergence is given by

0, = 4/ (u2), (A.7a)
0, = 4y/(u2), (A.7b)

For calculation of the beam propagation factor M? and twist parameter 7 mixed
second-order moments are needed. The mixed moment of x and u,, is given by

(i) = 1 1z, 3) dedy | (4-8)

Other mixed moments, eg. (zy) or (yu,), can be calculated the same way. From the
mixed second-order moments, the beam propagation factor M? can be calculated
as

M2 =T (a2) () — (o) (A90)
M, = 4; (W2) (u2) = (yuy)*, (A.9b)

and the twist parameter 7 is given by

T = (yuy) — (Tuy) . (A.10)

For the sake of simplicity the point of origin of the coordinate system should be
chosen such that the first order moments vanish. This greatly simplifies the equa-
tions.
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To fully describe an arbitrary beam it is possible to combine all the beam parameters
into one compact form. The so called beam matrix [9] contains all information about
the beam. It is given by

Y Yy YUy Yy
(rug) (yue)  (u2)  (uguy) |- (A.11)
(wuy)  (yuy) (uguy)  (u2)

From the beam matrix many beam properties can be extracted directly. One beam

parameter which describes the overall beam focusability is the effective beam prop-

agation factor A
M2 = 7”\4/det P. (A.12)
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Zernike Polynomials

For the treatment of wavefronts of circular beams one typically uses Zernike poly-
nomials. The Zernike polynomials are a complete set of complex functions which
are orthogonal inside the unit circle. In the following the Zernike polynomials are
shortly described. For a more complete description of how the Zernike polynomials
can be derived see [1].

B.1 Fundamentals of the Zernike polynomials

For coordinates (z,y) with x = pcosf and x = psinf the wavefront can be de-
scribed by a function V(z,y). Because of its symmetries V(x,y) can be separated
into

V(pcosb, psinf) = R(p) '’ (B.1)
where (p, ) correspond to polar coordinates.

If V' is a polynomial of degree n in (z,y) it follows that R(p) is also a polynomial
of degree n in p and furthermore contains only powers of p greater than or equal to

1]

With this information one can express the Zernike polynomials in polar coordinates
as
Z3(p,0) = an Ry, (p) (B.2)

where n and [ are integer numbers with n > || and even values for (n — |l|). Here
a, is a normalization constant which is independent of [.

The radial Zernike polynomials RL (p) satisfy
1

Ay, Ay

[ o) B pdo = —— G, (B.3)

and are therefore orthogonal.

Because (n — |I|) must be even, n can only take the values [I|, |I| + 2, |I| + 4, and so
forth. This leads to the symmetry

R,'(p) = Bu(p) Ry(p) (B.4)
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where 3! (p) only depends on a,. Because of this symmetry, a,, can be chosen such
that Equation (B.2) simplifies to

Z"™(p,0) = an Ry (p) e (B.5)
with m = |l].

Instead of using the complex polynomials given by Equation (B.5) for the de-
scription of wavefronts it is easier to use only real functions. These are given
by

a, R (p) cos(mB) form >0

. , (B.6)
a, R (p) sin(mf) for m <0

Zy(p,0) = {

which is in fact Equation (2.7) described in Chapter 2.

B.2 Explicit expression of the Zernike polynomials

For the evaluation of wavefronts, explicit expressions of the Zernike polynomials are
needed. There are different expressions for the Zernike polynomials which result in
slightly different sets of polynomials. Theses sets have slightly different properties
regarding individual terms. In this work the typically used set described in [1] is
applied. Other commonly used sets and their special properties can be found in
[132-136].

The radial Zernike polynomials are represented by a series. The series

n—m

RI(p) =3 (1) (n—s) =29 (B.7)

520 s! ("*%—s)!(%—s)!

is the usual representation. In this representation the normalization constant a, is
usually omitted. If a, = 1 is used, the normalization is such that R"(p) =1 at the
border of the unit circle (p = 1).

Other normalizations are also valid. Especially [14] uses a normalization given
by
an, =1/2(n+1) (B.8)

which makes the Zernike polynomials orthonormal (see Equation (B.3)) and satis-
fies

[} B2 0)) (@ B 0)) pd = G (B.9)

For a normalization R]"(1) = 1 the Zernike polynomials in Cartesian coordinates and
their corresponding optical aberrations are given in Table B.1.
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’ 7y \ /g \ polynomial (in Cartesian coordinates) \ aberration ‘
Zo | 2§ |1 piston
Z | Z{ | «x x-tilt
Zy | Z1 |y y-tilt
Zs | Z3 | 2xy 45°astigmatism
Zy | Z9 | 227 +2y* — 1 defocus
Zs | Z2 | =2 + o> 90°astigmatism
Zs | Zy | —a® 4 3xy? x-trefoil
Zr | Z3 | 32% + 3wy? — 2z X-coma
Zs | Z3 | 32%y + 3y — 2y y-coma,
Zy | Z3 | y® — 32y y-trefoil
ZlO Zf —4$3y + 41’y3
Zn | Z2 | 8x%y + 8wy — 6xy
Zio | Z9 | 62% + 122%y% + 6y* — 62% — 69% + 1
Ziz | Z2 | —dat + 4yt + 327 — 3y?

Zu | 2§ | 2t —62%y® 49!

Zis | Z2 | 2° —102%y* + Hay?

Zie | Z3 | —5x® + 1023y? + 15xy* + 42% — 121y?

Zir | Z3 | 1025 4 202%y? 4+ 10zy* — 1223 — 12292 + 3z

Zis | Z3 | 102ty + 202%y3 4+ 10y° — 122%y — 12¢° + 3y

Zig | Z3 | —15zy — 10223 + 5y° + 1222y — 4¢3

Zao | 22 | 5ty — 1022y 4+ ¢°

Zoy | Z& | 62°y — 20x3y> + 6xy°

Zoo | Z§ | —24a5y + 24xy°® + 2023y — 20293

Zas | Z2 | 302y + 6023y 4+ 302y® — 4023y — 402> + 122y

Zoy | Z2 | 202% 4 6021y? + 602%y* + 20y° — 302" — 6022y>—
=30yt + 1222 + 1292 — 1

Zos | Z2 | —1525 — 1524y* + 152%y* + 15¢y° + 20z* — 20y*—
—62? + 632

Zos | Z¢ | 62° — 30aty? — 3022y* + 65 — St + 3022%y? — 5yt

Zop | Z8 | —ab 4+ 152%y? — 152%y* + ¢/°

Table B.1: Zernike polynomials in Cartesian coordinates (normalized to R'(p) = 1

for p = 1) as used in the optimization algorithm. The numbering k fol-
lows references [21, 22, 26]. For easier comparison of different numbering
schemes, the order of the Zernike polynomials with the convention used
here is given. The boxes group aberrations with the same radial order n.
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B.3 Using and Interpreting Zernike polynomials

When using Zernike polynomials Zj, to describe wavefronts, the corresponding Zernike
coefficients ¢, contain important information about the beam. As some polynomials
correspond to primary Seidel aberrations, the physical interpretation of the corre-
sponding coefficients is quite simple. In the following the meaning of the coefficients
of some Zernike polynomials with special properties are given.

B.3.1 The defocus coefficient ¢,

The defocus coefficient ¢4 of the Zernike polynomial Z4, shown in Figure B.1, can be
used to calculate the radius of curvature of the beam. As the Zernike polynomials are

#=4;n=2;m=0; Z(x,y) =2 x2+2y?-1

Figure B.1: Plot of the Zernike polynomial Z,. It corresponds to a defocus of the
beam.

defined inside the unit circle, the coefficients given here are normalized accordingly.
In experiments, however, the Zernike coefficients are typically given either in units of
wavelength A or in units of pm. This has to be taken into account when calculating
the radius of curvature.

The wavefront of a Gaussian beam is shown in Figure B.2. For such a geometry
the chord of the circle s and the height of the circular segment h can be given

as
h =2¢y and s = 2W, (B.10)

where ¢4 corresponds to the defocus coefficient and W to the beam width. Using
basic geometry the radius of curvature of the Gaussian beam can be calculated
as

_ 16¢; +4W?

R
1664

(B.11)
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Jo

~—7

) /

Figure B.2: The radius of curvature R of a beam, determined by beam width W
and defocus coefficient ¢y.

As discussed in Chapter 1, the Gaussian beam parameter ¢ can be calculated from
the radius of curvature R and the beam width W. With the help of the Gaussian
beam parameter, the distance from the beam waist and the Rayleigh length of the
beam can be retrieved. Combining Equations (1.19) and (1.18) gives

1 A
. 2
R +1 T W

! .
q=- Sz = =2tz (B.12)
mtewm et owe
Here, the real part of the Gaussian beam parameter R{q} gives the distance z from
the beam waist and the imaginary part 3{q} corresponds to the Rayleigh length zg

of the beam.

B.3.2 The effect of astigmatism

The Zernike polynomials Z3 and Z; correspond to two orthogonal parts of beam
astigmatism. Plots of both polynomials are shown in Figure B.3.

The Zernike polynomial Z3 corresponds to a 45° astigmatism and the polynomial
Zs5 corresponds to a 90° astigmatism. The effect of both parts of astigmatism on a
Gaussian beam are shown in Figure B.4. As can be seen, the astigmatism leads to
the effect that two beam waists occur at different positions along the propagation
axis. In case of 45° astigmatism, the main axes of the beam waists are rotated by
45° with respect to the z- and y-axes. In case of 90° astigmatism, the main axes of
the beam waists correspond to the z- and y-axes.

As the orientation of the z- and y-axes is determined by experimental conditions,
this definition, however, is quite arbitrary. For regular beams astigmatism always
leads to two perpendicularly oriented beam waists. The exact orientation of the
main axes with respect to the z- and y-axes can always be described in terms of 45°
and 90° astigmatism. This can be done by using a linear combination of Zernike
polynomials Z3 and Z5. As such, the relative strengths of the Zernike coefficients c3
and ¢; determine the exact orientation of the main axes.
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#=3;n=2;m=2;Z(x,y)=2x #=5n=2;m=2; Z(x,y) = -x?+y?
a) (x.y) y b) (x.y) y

Figure B.3: a) Plot of the Zernike polynomial Z3 corresponding to the 45° astigma-
tism. b) Plot of the Zernike polynomial Z5 corresponding to the 90°
astigmatism.

B.3.3 Calculating the M? parameter

In Appendix A it is described how the M? parameter can be retrieved from the
second-order beam moments. In order to calculate the M? parameter both the
spatial beam moments and the angular beam moments are required. The spatial
beam moments are calculated from the intensity profile alone. Therefore, they can
be determined as part of a Shack-Hartmann measurement or from a separate beam
profile measurement. The angular beam moments, however, need information about
the local angular shift which is contained in the wavefront described by Zernike
polynomials.

The local angular shift § originates from the local deviation of the wavefront from
a spherical wave. This deviation corresponds to the wave aberration ® which is
discussed in Chapter 2. The local angular shifts along the z- and the y-axes can be
calculated as

do

= —— B.1
and
do

= 1

where ®(z,y) is the wave aberration. As mentioned above, the wave aberration is
in fact the wavefront without the terms for piston (Zy), tilt (Z;, Z2) and defocus (Zy).
From this the M? parameter can be calculated using Equation (A.9).
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Figure B.4: Effect of the a) 45° astigmatism and the b) 90° astigmatism on a Gaus-
sian beam.

B.3.4 Comparing Zernike coefficients

As was shortly discussed at the beginning of Section B.2, there are different sets
of Zernike polynomials. Together with different possible normalizations and num-
bering schemes it can be difficult to compare Zernike coefficients from different
resources.

In order to do a comparison of Zernike coefficients between two resources, extreme
caution is necessary to ensure that the same set of Zernike polynomials was used.
Additionally, before the data can be compared it has to be corrected for the use of
the same normalization.






Appendix C

The genetic algorithm

The genetic algorithm is a special implementation of an evolutionary algorithm [137].
The genetic algorithm used in this work is very similar to the one given by Judson
and Rabitz [87] and is also described in [26, 49] and elsewhere.

C.1 Basics

The genetic algorithm is based on the idea of “survival of the fittest”. Each iteration
step, called “generation”, contains a (fixed) number of “individuals”. Each individ-
ual is described by a set of parameters. These parameters are called “genes”.

All possible gene combinations create the so called search space. In order to find
the global maximum the whole search space must be accessible, i.e., all possible
gene values must be present in a generation. The size of the accessible parts of the
search space can be quantified by the so called diversity. There are several possible
ways to define the term diversity [137]. In this work, however, the diversity was not
calculated and is only mentioned for the sake of completeness.

During the course of the optimization the population can converge to a local or
global maximum. For a fully converged population the diversity is minimal as all
individuals are identical. Such a population is trapped inside the maximum. In
this case a local maximum cannot be distinguished from the global maximum. One
possible counter to this problem is the use of mutation, which is described further
down, as part of the reproduction cycle. Mutation ensures that the whole search
space is accessible at all times [137].

In order to optimize a physical system, each individual is applied to the system
under test and the quality of the measured result is evaluated. The quality, which
is calculated as a number, is called the “fitness”. After all individuals are tested
only the fittest individuals of the generation are carried over to the next genera-
tion.

Based on the fittest individuals of the previous generation, the new generation is
created. The way this is done is also inspired by nature. In our case, three operations

117
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— “cloning”, “cross-over” and “mutation” — are used. The amount of clones, cross-
over individuals and mutants as well as the strength of the mutation strongly depend
on the problem and must be adapted accordingly.

The clones are, as the name suggests, just copies of the fittest individuals of the
last generation. In case of the cross-over operation, two of the fittest individuals of
the last generation are chosen randomly. These two individuals serve as “parents”.
Each parent individual contributes half of its genes to form a new “child” individ-
ual. Mutation is the last operation which is used. For mutation, one of the fittest
individuals of the last generation is chosen randomly. Afterwards, a small amount
of the genes of this individual is changed randomly.

The properties of the “reproduction” operations are controlled by free parameters. In
this work the parameters parents ratio, clone content, cross-over content, mutation
probability and mutation deviation were used. The parameters parents ratio, clone
content and cross-over content are given as percentage in order to be independent
from the number of “individuals” present in a generation. In order to create a new
generation, the clones from the previous generation are taken first. The number of
clones is determined by the clone content parameter. In a second step the number
of individuals which can serve as parent individuals for the cross-over and mutation
operations is determined by the parents ratio. From these parents the cross-over
individuals, where the number of cross-over individuals is given by the cross-over
content parameter, are then calculated. In a last step the mutated individuals are
calculated from the parent individuals. Each gene is mutated with a probability
given by the mutation probability. In case of mutation the gene is changed using
a random number. This random number is taken from the interval [—o; o] with o
being the mutation deviation. In order to ensure a constant generation size, the
number of mutant individuals is determined accordingly.

For heuristic search methods, the speed and the success of the optimization depend
on the form of the problem. This means that the search space has to be parame-
terized in a way suitable for the genetic algorithm. In cases where this cannot be
achieved other optimization methods should be used.

C.2 Parameterization

The use of the genetic algorithm for the phase optimization is based on the principle
that certain pulse or beam parameters are linearly independent. In case of the
spectral phase, these can be the components of the polynomial expansion of the
spectral phase. For the spatial phase, the wavefront can be expanded into Zernike
polynomials, as described in Chapter 2. In terms of the genetic algorithm, the
expansion coefficients serve as “genes”. The laser pulse which is described by these
parameters corresponds to the “individual”. In the following the parameterizations
used in the scope of this work are discussed in more detail.
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C.2.1 Tiltable Planes

For the spatial optimization of filaments described in Chapter 7 a high-resolution
spatial light modulator (SLM) was used. The SLM has a very high number of
degrees of freedom. The active area has 768 x 768 pixels and each pixel can be
addressed with 8 bit resolution. Due to this high number of degrees of freedom the
genetic algorithm would take a very large amount of time and computational power
to optimize laser pulses. The easiest way to reduce the time and the computational
power needed is to use a process called binning. This is done by combining multiple
pixels into one larger meta-pixel. This effectively reduces the pixel resolution of the
SLM.

In order to reduce the needed computational power without losing too much spatial
resolution, a parameterization based on tiltable planes was used. This parameter-
ization is an improved version of the simple binning technique [26, 49]. Similar to
binning, the active area is divided into smaller areas. However, these smaller areas
do not form meta-pixels where each pixel has the same value, but form planes which
can be tilted. This concept is shown in Figure C.1 where it is compared to simple

20 30 40 50 60 70 80 pixel #

30 40 50 60 70 80 pixel #

Figure C.1: Comparison between binning (top) and tiltable planes (bottom). On
the left side images of optimized phase masks are shown. From [26].

binning. The binning technique is shown at the top and the tiltable planes at the
bottom of the figure. On the left hand side images of optimized phase masks are
shown. The phase mask created with tiltable planes shows a much smoother phase
surface than the phase mask created with binning. This smoother phase distribution
is better suited for laser pulses as phase jumps other than A¢ = m 27 with m being
an integer number usually create unwanted diffraction patterns.

The binning technique only needs one color value to describe a meta-pixel. In order
to fully describe a tiltable plane, however, three coordinates are required. In the
algorithm used during this work, the color level at three corners of the plane was
used. These three points fully define the plane, and the color level of all other pixels
can be calculated from these. Thus, tiltable planes need three times the number
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of genes compared to binning, but effectively utilize the full resolution of the SLM.
Compared to standard optimizations with full resolution, tiltable planes reduce the
needed computational power considerably.

C.2.2 Zernike Polynomials

Another approach which uses the high resolution of the SLM is the parameterization
of the phase mask by Zernike polynomials. This was done during the high-order
harmonic generation with wavefront controlled laser pulses described in Chapter
9. During this experiment the SLM was used to imprint phase masks onto the
incoming laser beam. As the incident laser beam was collimated, these phase masks
correspond to the wavefront of the laser beam after the SLM. In Chapter 2 it is
shown that it is helpful to describe wavefronts in terms of Zernike polynomials. This
is due to the fact that the expansion coefficients allow for a quantitative physical
interpretation of optical aberrations present in the beam. The properties of Zernike
polynomials, the way they are connected to optical aberrations and how they can
be derived is described in Chapter 2 and in Appendix B.

Figure C.2: Example of a phase mask created by the genetic algorithm. In this case
Zernike polynomials were used to describe the phase mask. The Zernike
coefficients ¢y to co7 serve as genes for the genetic algorithm.

An example of the phase masks which are created by the genetic algorithm is
shown in Figure C.2. In this case Zernike polynomials were used to describe the
phase mask. For this parameterization the Zernike coefficients ¢y to co7 serve as
genes.



Appendix D

McPherson 248/310G

The McPherson 248/310G spectrometer is a grazing incidence spectrometer for the
XUV regime. In Figure D.1 a photo of the actual spectrometer with the imaging
detector is shown.

Figure D.1: The McPherson 248/310G spectrometer (with imaging detector) as used
in the laboratory.

This chapter describes the basic principles of the McPherson 248 /310G spectrometer
as well as the detection scheme and how to evaluate the measured data. Not all de-
tails are covered here. For more technical information see [129, 138-140].

D.1 Basics

The McPherson 248/310G spectrometer is based on the Rowland circle principle,
which is shown in Figure D.2. Due to this, some caution has to be taken when it is
used together with an imaging detector.
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grating (curvature R)

a

entrance slit

Figure D.2: The Rowland Circle. When using a (concave or cylindrical) grating
with a radius of curvature R, the surface of the grating is part of a large
circle. A second circle, the so called Rowland circle, can be constructed
for such a setup. This smaller circle has a diameter of R and touches
the larger circle at the center of the grating. When the entrance slit
is placed on the Rowland circle, all diffracted wavelengths are focused
onto other points of the Rowland circle.

In this geometry, the wavelength for a given angle of incidence v and a diffraction
angle 3 (in first order) is given by

A= ; (sin v — sin ), (D.1)

lines
mm *

where ¢ is the groove density, typically measured in

D.2 Detection & Spectral foreshortening

The McPherson 248 /310G spectrometer is equipped with an imaging detector. Op-
tionally, an exit slit for use as scanning spectrometer can be used.

The imaging detector consists of a single stage multi-channel plate (MCP) [141]
which is coupled to a CCD detector using a fiber-optic taper with a reduction ratio
of 40 : 25. The photocathode in front of the MCP is made of Cesium Iodide (Csl) to
detect XUV photons. The phosphor screen behind the MCP is made of P43 [142],
which has a decay time of a few ms.
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The CCD used to read out the MCP is an Andor DH420-FO. It is an OEM version of
the Andor iDus 420 series. No manual for the DH420-FO is available. The manual
of the Andor iDus [143] has to be used instead.

grating (radius R)

e

=R/2

r

=
000190

Figure D.3: The effect of spectral foreshortening. For a fixed detector position,
typically only one intersection point (two at most) of the detector with
the Rowland circle exist. For pixels which are not at the intersection of
the detector and the Rowland circle, the length v corresponding to the
diffraction angle § = fy + 0, cannot be used directly (as effective chord
length) to calculate the wavelength A. Instead the exact angle 5 has to
be calculated.

The detector can be mounted in two slightly different configurations. In the tan-
gential configuration, the detector plane is the tangent to the Rowland circle. In
a more general configuration, the detector is moved slightly towards the center of
the Rowland circle. This way, two intersection points of the detector plane with
the Rowland circle exist and the overall spectral foreshortening (see Figure D.3 and
[138]) can be minimized.

For the Rowland circle geometry, the diffraction angle 3y can be calculated by

C

Bo = arccos(é) = arccos(R) (D.2)

where R is the radius of curvature of the grating and c is the chord length (see Figure
D.3). For pixels which are not at the intersection of the detector and the Rowland
circle, the length v corresponding to the diffraction angle 5 = [y + 0, cannot be used
directly (as effective chord length) to calculate the wavelength A. Instead the exact
angle 8 has to be calculated.
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D.3 Mapping detector position to wavelength

As mentioned above, the exact angle 3 has to be calculated for each pixel. This map-

ping of the pixel position on the detector to the respective wavelengths is discussed
in the following.

D.3.1 Basic overview

grating (radius R)

e

=R/2

r

Figure D.4: Principle of an imaging Rowland circle spectrometer with all needed
quantities. In the so called tangential configuration, shown here, the
detector plane is the tangent to the Rowland circle at the point E.
The quantities R (radius of curvature), ¢ (chord length), p (position on
detector relative to the center of the detector) and « (angle of incidence)
are known from the experiment.

For a spectrometer in Rowland geometry, as shown in Figure D.4, the diameter of
the Rowland circle is the radius of curvature of the grating. Therefore the iden-
tity
R
== D.3
r=5 (D.3)
is valid.

In the experiment the quantities R, ¢, p and « are known. Here, grating parameters
are the groove density ¢ (typically given in lines/mm) and the radius of curvature
R of the grating. The detector parameters are the chord length ¢ and the position
p on the detector relative to the center of the detector. The angle of incidence «
depends on the exact position of the entrance slit.
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The grating parameters are known and the detector parameters can be retrieved
from the experiment. The chord length ¢ can be read from a mechanical counter
which is mounted on the spectrometer. The counter displays the chord length in
inches. The detector position p can be calculated from the image/signal. As each
CCD pixel is 26 pm wide and the fiber-optic has a reduction ratio of 40 : 25 the
effective pixel size is 41.6 um. In the default configuration the angle of incidence is
a = 87°.

D.3.2 Calculating the needed angles — tangential configuration

In the following it is assumed, that the detector plane is the tangent to the Rowland
circle at the point E! This is shown in Figure D.J.

The angle 3y can be calculated from the triangle ABC'. Together with the relation
of r and R this can be written as

c/2 ¢

= =—_. D.4
cos 5 " I (D.4)

This way, the angle 3, is given by
Bo = arccos (;) : (D.5)

In the triangle DEF, the angle ¢ is related to the angle [, by
¢ =90° — fy. (D.6)

The length u is given by

u:psingzﬁzpcosﬁoz%. (D.7)

In the triangle ADF',| the law of cosines can be used to calculate the length v. It is
given by
v = p? + ¢ — 2pecos ¢ = p? + 2 — 2pesin fo. (D.8)

Inserting Equation (D.5) into Equation (D.8) and using the identity

si (a ccos(c)> =1/1— < (D.9)
in(ar 7)) = 77 :
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it is possible to calculate v by

[ 2
v =p® 4+ — 2pe 1_ﬁ' (D.10)

Here v contains only the known quantities ¢, p and R.

The angle 0 is defined as the variation of the diffraction angle f when moving

along the detector plane and away from the center of the detector. It is given
by

$ind = —. (D.11)
v
Using Equations (D.7) and (D.10), the angle § is calculated as

pc

R\/p2+02 — 2pey/1 — }%22

d = arcsin (D.12)

D.3.3 Calculating the needed angles — generalized configuration

In the more general configuration the detector is placed such that the detector
plane is parallel to the tangent to the Rowland circle. This way it is possible to
minimize the effect of spectral foreshortening and increase the effective resolution of
the spectrometer.

grating (radius R)

b

=R/2

r

Figure D.5: Rowland circle spectrometer in generalized configuration. Here the de-
tector plane is parallel to the tangent to the Rowland circle at the point
E. The quantities R, ¢, p, d and « are known from the experiment.
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Figure D.5 shows the more general configuration of the Rowland circle spectrometer.
Compared to the tangential configuration, described in Section D.3.2, the detector
is moved slightly closer (distance d) to the center of the Rowland circle. The angles
needed to calculate the wavelength distribution along the detector can be calculated
the same way as for the tangential configuration.

The shift of the detector by an amount d leads to a shift of the wavelength at the
center of the detector. This shift corresponds to an angle ¢ which can be calculated
from the experimental parameters as

¢ = arccos(dz_;jf_fz> , (D.13)
with the length f calculated in the triangle ABC as
fP=rt+(r—d)?—2r(r—d)cosny. (D.14)
The angle v is given by
v = 2arcsin (;) . (D.15)

Because the angle «v is the same for the generalized configuration and the tangential
configuration, two new angles y  and £ can be derived as

BO,f - 60 - Cv <D16)

and

§=0o+¢. (D.17)

With the help of these angles, the angles needed to calculate the wavelength dis-
tribution can be derived. The angle 0 for the generalized configuration, as for the
tangential configuration, is given by

sind = - (D.18)
v

The value of v can be calculated from the triangle AC'D as

vi=p*+ f2—2pfcosd (D.19)
with
¢ =90°—¢. (D.20)
The value of u is given by
u=psing (D.21)

Using the Equations above, the angle ¢ (here called ¢ to avoid confusion with the
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tangential configuration) is calculated by

B . pcos
o = arcsm(\/p2 . sin§> : (D.22)

D.3.4 Calculating wavelengths

The wavelength for a given angle of incidence o and a diffraction angle 5 (in first
order) is given by

A= ; (sina — sin f3) |, (D.23)

where ¢ is the groove density, typically measured in 1;1;5 To calculate the wave-

length at a certain position p on the detector, the corresponding angle ( is needed.

For the tangential configuration the angle [ is given by

B=0y+06= arccos(lc%) + arcsin pe , (D.24)

c2
Ry\[p* + ¢ = 2pcy/1 — £

) is the angle corresponding to the center of the detector.

where 3y = arccos(%

For the generalized configuration the angle 3 is given by

(D.25)

B=Pos+ =P —C+ arcsin( peos(fo +¢) ) :

P2+ 12— 2pfsin(By +¢)

£

Here gy = arccos( R) is the angle corresponding to the center of the detector in
tangential configuration and

‘= arccos(W) (D.26)
with
fP=rt4(r— d)2 —2r (r — d) cos (2 arcsin(é)) . (D.27)

D.4 The spectrometer software

The control software for the McPherson 248/310G spectrometer was designed in
LabVIEW specifically for the use in the laboratory of the Quantum-electronics group
at the “Institute of Optics and Quantum-electronics (I0Q)” at the Friedrich-Schiller
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University Jena. It is based on the software used with a self-built spectrometer which
used an X-ray CCD from Andor (DO420-BN).

D.4.1 The control software

The user interface of the control software mainly consists of a main window, which
controls the spectrometer and grants access to several configuration dialogs.
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Figure D.6: User interface of the McPherson spectrometer software. The different
regions are marked for better readability.

The main window, as shown in Figure D.6, consists of six regions. Each region con-
tains controls and indicators for a specific task. Not all parameters can be accessed
using the main window. For some configuration options special configuration dialogs
can be opened through buttons placed in the respective region.

For full information about the control software for the McPherson 248/310G spec-
trometer see [129].

D.4.2 Viewer & Converter — ASDX-Viewer&Converter.vi

To view and convert data recorded with the LabVIEW software the “ASDX-Viewer
& Converter” is available. It can be called from within the control software, men-
tioned in Section D.4.1. Alternatively it can be started directly.

In Figure D.7 the user interface of the Viewer&Converter is shown. The appear-
ance is very similar to the spectrometer software. Like the main window of the



130 APPENDIX D. MCPHERSON 248/310G

Date

feeassiuns

é |

&
ik

subtract
background
-
display
background
(-

I

avel
@ﬁl Status.
| Dane

Figure D.7: User interface of the ASDX-Viewer&Converter. The regions are marked
for better readability.

spectrometer software the user interface of the Viewer&Converter is divided into six
regions.

A full description of usage and the capabilities of the Viewer&Converter is given in
[129].

D.4.3 The ASDX-File Format

The ASDX file format, used to save measurement data to the hard disk, was created
for the use with Andor-CCDs. Initially it was created as successor to the old ASD
file format which was used with the old XUV spectrometer built in Wuerzburg [88].
Later it was extended to store additional data. This was necessary to save the
configuration of the McPherson 248/310G spectrometer.

Similar to OASIS Open Document Format (ODF) and Office Open XML (OOXML)
the ASDX file format saves the configuration in XML, alongside the raw measure-
ment data. Actually the ASDX file is a ZIP compressed file containing the following
files.

e header.xml Contains information about the configuration of the detec-
tor and the spectrometer.

e AABBCCDD.dat Contains the data and the background as received from the
detector.
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The file name of the data file is created during the save-process. It contains the
timestamp in hexadecimal form. As the file format is implemented using LabVIEW
8.2, the timestamp uses January 1, 1904 as epoch date [144].

The header.xml contains all the information about the configuration of the detector
and the spectrometer. This information is needed to interpret the raw data saved
in the corresponding data file.

For a full documentation of the file format and the structure of the XML header see
[129].
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