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8-oxo-dG  8-oxo-2'-deoxyguanosine 
ABC   avidin-biotin-complex 
ACE   angiotensin converting enzyme 
AP-sites  apurinic/apyrimidinic sites 
ARE   antioxidant response element 
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BN   binucleated 
BSA   bovine serum albumin 
BSO   buthionine sulfoximine 
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Cispt   cis-platin 
Co.   control 
COX-2  cyclooxygenase-2 
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DAB   3,3'-diaminobenzidine 
DCF   2,7-dichlordihydrofluorescein 
DES   diethylstilbestrol 
DHE   dihydroethidium 
DMSO  dimethyl sulfoxide 
DOCA   deoxycorticosterone acetate 
FBS   fetal bovine serum 
FDA   fluorescein diacetate 
FITC   fluorescein isothiocyanate 
FPG   formamidopyrimidine DNA glycosylase 
FRAP   ferric reducing ability of plasma 
   / ferric reducing antioxidant power 
GC-MS  mass spectrometry coupled gas-chromatography 
GSH   glutathione 
GSSG   glutathione disulfide 
GST   glutathione S-transferase 
FRAP   ferric reducing ability of plasma 
H2DCFDA  2',7'-dichlorodihydrofluorescein diacetate 
HPLC   high-performance liquid chromatography 
HRP   horseradish peroxidase 
HUMN  human micronucleus project 
IARC   International Agency for Research on Cancer 
JCR   Joint Research Centre 
JECFA  Joint Expert Committee on Food Additives 
LC-MS  mass spectrometry coupled liquid-chromatography 
LD50   lethal dose, 50% 
LDL   low density lipoprotein 
MCB   monochlorobimane 
MDA   malondialdehyde 
MEM   minimum essential medium 
MMR   mismatch repair  
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MMS   methyl methane sulfonate 
MN   micronuclei 
Na2EDTA  dinatrium-ethylendiamintetraacetat-dihydrat 
NADH   reduced nicotinamide adenine dinucleotide 
NADPH  reduced nicotinamide adenine dinucleotide phosphate 
NER   nucleotide excision repair 
NIH   National Institutes of Health 
NO synthetase nitric oxide synthetase  
NOAEL  no observed adverse effect level  
NPB   nucleoplasmic bridge 
NQO1   NAD(P)H quinone oxidoreductase 1 
ORAC   oxygen radical absorbance capacity 
Pat   patulin 
PBMC   peripheral blood mononuclear cell 
PMTDI  provisional maximum tolerable daily intake 
PBS   phosphate buffered saline 
Res   resveratrol 
RAS   renin-angiotensin system 
ROS   reactive oxygen species 
RSA   reactive scavenging activity 
SCOOP  Scientific Cooperation 
SD rat   Sprague Dawley rat 
SIRT1   sirtuine 1 
TBARS  thiobarbituric acid reactive substances 
Tris   tris(hydroxymethyl)aminomethane 
VEGF   vascular endothelial growth factor 
WHO   World Health Organization 
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1 INTRODUCTION 

1.1 DNA DAMAGE 

Genomic damage can be caused by a variety of physical and chemical agents such as 

ultraviolet and ionizating radiation, xenobiotics and endogenous reactive oxygen 

species (ROS) that accumulate in cells due to natural metabolic processes. DNA 

damage occurs at a rate of 1,000 to 1,000,000 molecular lesions per cell per day. While 

this constitutes only a small part of the 6 billion bases, unrepaired or misrepaired lesions 

in critical genes (such as tumor suppression genes) can impede cellular functions and 

increase the likelihood of tumor formation [1]. 

Common types of DNA damage are: base loss, base deamination, base alkylation, base 

dimerization, base oxidation and single/double-strand breakage [2]. If this DNA damage 

is converted to mutations three types of lesions can be differentiated: (1) Gene or point 

mutations affect one single gene and are mainly based on substitution, insertion or 

deletion of a few nucleotides; (2) Chromosomal mutations describe larger lesions e.g. 

translocations of gene sequences between or within chromosomal regions; (3) genomic 

mutations refer to changes of chromosome number within a cell. 

The formation of ROS inside the cell can lead to oxidized DNA bases, 

apurinic/apyrimidinic (AP) sites or DNA strand breaks. The most common oxidized base 

lesion is the highly mutagenic 8-oxo-2'-deoxyguanosine (8-oxo-dG). 8-oxo-dG is 

unstable and can react with compounds such as peroxynitrate to even more mutagenic 

lesions.  

Electrophilic alkylating agents can bind to nucleophilic sites of DNA, such as N7 position 

of guanine, N3 position of adenine or O6 position of guanine. 

DNA damage provokes three possible cellular responses: (1) DNA repair or excision of 

lesion, (2) DNA damage tolerance by error-free or error prone (mutagenic) mechanism 

and (3) apoptosis. Examples for cellular repair systems are base excision repair (BER), 

nucleotide excision repair (NER) or mismatch repair (MMR) [3]. 
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Figure 1: Cellular response to DNA damage leads in proliferating cells to a cell cycle arrest to provide the 
cell the possibility of DNA repair. After completion of repair the cell may proceed in its cell cycle. In 
resting/terminally differentiated cells, DNA repair will be initiated directly. Cell cycle can be blocked 
permanently if the damage cannot be repaired, leading to apoptosis or a senescent state of the cell. If 
unrepaired damage remains undetected, lesions may lead to mutations and genomic instability that 
ultimately can lead to oncogenesis. Modified after Houtgraaf et al. [4] 

 

1.2 OXIDATIVE STRESS 

The group of ROS includes among others hydroxyl radical (�OH), superoxide radical 

(O2
�-) and hydrogen peroxide (H2O2). ROS-mediated reactions have been shown to be 

involved in various pathogenic processes [5, 6] and therefore play an important role in 

the development of certain diseases [7, 8].  

All cells in eukaryotic organisms contain a powerful endogenous antioxidative enzyme 

system. The three major classes of antioxidant enzymes are superoxide dismutases, 

catalases and glutathione peroxidases. Non-enzymatic antioxidative defense comprises 

the endogenous molecules glutathione (GSH), ascorbic acid, tocopherol and uric acid 

[9]. Many natural food compounds such as vitamins, polyphenols (e.g. resveratrol, 

anthocyanins) and flavonoids show also antioxidative properties [10]. When the defense 

system is compromised due to excessive oxidative stress, redox imbalance may take 

place [11]. ROS have also been shown to play an important role in carcinogenesis by 

damaging DNA and acting as tumor promoters [5, 6, 12]. Further processes and 
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diseases related to oxidative stress are aging [13], cardiovascular injury [14] and 

neurodegenerative diseases [15]. 

 

1.3 GSH 

GSH is a tripeptide synthesized from the amino acids L-cysteine, L-glutamic acid and L-

glycine. It is an antioxidant, preventing damage to cellular components caused by ROS 

such as free radicals and peroxides [16]. 

 

 

Figure 2: Structure of glutathione (GSH) [17] 

 

The thiol group (SH) of cysteine serves as an electron donor and is responsible for the 

biological activity. GSH offers reducing equivalents to unstable molecules such as ROS. 

In this process, GSH is converted to its oxidized form glutathione disulfide (GSSG). 

GSSG can be again reduced by glutathione reductase, using reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) as an electron donor. In healthy cells and 

tissues, more than 90% of the total glutathione pool is in the reduced form and less than 

10% exists in the disulfide form. The ratio of GSH to GSSG within cells is often used as 

a marker for oxidative stress and cellular toxicity [18]. 

Reaction of cysteine with L-glutamate catalyzed by ɣ-glutamylcysteine synthetase is the 

rate-limiting factor in GSH synthesis by the cells, since the availability of cysteine is low 

[19]. Treatment with buthionine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine 

synthetase leads to decreased cellular GSH levels and its application provides a useful 

experimental model of GSH deficiency [20]. Oxidative stress can lead to an induction of 

γ-glutamylcysteine synthetase indicating an adaptive cellular response [21].  

GSH occurs in high concentrations (0.5 to 10 mM) in virtually all mammalian cells [22]. It 

is the major endogenous antioxidant produced by the cells, participating directly in the 

neutralization of free radicals and reactive oxygen compounds, as well as maintaining 

exogenous antioxidants such as vitamin C and E in their reduced (active) forms [23]. 
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1.4 NATURAL FOOD COMPOUNDS 

Each year, several million people are diagnosed with cancer around the world and more 

than half of the patients eventually die from it [24]. Several lines of evidence indicate 

that nutrition contributes to human cancer risk [25, 26]. Nutrition has been thought to 

account for about 30% of cancers in Western countries. Therefore, diet contributes to 

equal amount to lifestyle provoked cancer as smoking [27].  

Mutagens and carcinogens consumed with human diet can be classified into three 

groups: naturally occurring chemicals, synthetic substances and compounds produced 

by cooking. Examples for the first group are plant alkaloids and mycotoxins such as 

patulin, the second group includes food additives and pesticides and the third category 

comprises for example polycyclic aromatic hydrocarbons and heterocyclic amines [28]. 

Additionally, food mutagens can be categorized into genotoxic and non-genotoxic 

agents regarding their mechanistic way of action. Genotoxic substances cause DNA 

damage through several mechanisms, e.g. gene point mutations and chromosomal 

aberrations. Non-genotoxic agents are presumed to indirectly affect the cell as tumor 

promoters [29].  

However, it should be recognized that nutrition delivers both mutagens and components 

that decrease the cancer risk. Dietary components could reduce the risk through 

protection of DNA from electrophiles or detoxification of carcinogenic substances [25, 

30].  

There is growing scientific evidence that antioxidants in general and particularly 

polyphenols such as resveratrol help lower the incidence of cancer and have beneficial 

effects on other negative aspects of human health such as cardiovascular and 

neurodegenerative diseases, DNA damage and aging. On the other hand, questions 

remain as to whether some antioxidants or phytochemicals potentially could do more 

harm than good [31]. 
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PART I: INFLUENCE OF PATULIN AND RESVERATROL ON DNA 

STABILITY 

1.4.1 Patulin 

1.4.1.1 General aspects 

The mycotoxin patulin (4-hydroxy-4H-furo (3,2C) pyran-2(6H)-one) is a secondary 

metabolite of fungal species, including Penicillum, Aspergillus and Byssochlamys.  

Patulin is a colorless crystalline substance with a molecular weight of 154 Da and a 

melting point of 111 °C. 

Patulin’s chemical structure was determined by Birkinshaw et al. 1943 [32] when 

interest was high in its antibiotic properties [33]. Patulin was subsequently tested in a 

large study, which is sometimes declared as the first properly controlled multicentrical 

trial in the history of medicine, however the substance was not found to be effective in 

common cold [34]. 

 

 

 

Figure 3: Chemical structure of patulin [35]) 

 

1.4.1.2 Sources and impact 

It is a frequently found contaminant in spoiled fruits, especially apples and related 

products. Many other fruits, including grapes, pears, peaches, berries, tomatoes, other 

vegetables and cereals [36] have also been shown to contain patulin. Several studies 

have been performed on the occurrence and the toxicity of patulin. Patulin was found to 
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be stable to heat processing at pH < 6. It is gradually destroyed during storage in the 

presence of sulphites, sulfhydryl groups and ascorbic acid [37]. Removing of mouldy 

tissue does not necessarily remove all patulin present in fruit since some may have 

diffused into apparently healthy tissue [38]. 

A liquid chromatography method for determination of patulin in apple juice which has 

been validated by MacDonald et al. [39] was taken over by the Joint Research Centre of 

the European Union (JRC/IRMMT) [40]. Alternatively, patulin can also be measured with 

mass spectrometry coupled gas chromatography (GC-MS) [41]. Detection with an 

antibody-based system is not possible due to the small molecule size of patulin. 

Safety assessments have been made by international organizations like the World 

Health Organization (WHO) and the Joint Expert Committee on Food Additives 

(JECFA). The World Health Organisation has established a safety level of 50 µg/L for 

apple juice [42] which was taken over by the European Union and many other countries 

[43]. However, several publications documented the exceedance of this safety level [44-

46]. 

Data about the intake of patulin and other mycotoxins in the European Union are 

regularly collected and used for risk assessment by the Scientific Cooperation (SCOOP) 

Task Reports. Most products do not reach the threshold but single samples exceed the 

specified value up to twenty times. The no observed adverse effect level (NOAEL) was 

determined to be 43 µg/kg/d [47] leading to a Provisional Maximum Tolerable Daily 

Intake (PMTDI) of 4 µg/kg bw/d. By evaluation of questionnaires from the member 

states the average daily intake of patulin was calculated to be about 3 ng/kg bw/d and 

thereby to be below the PMTDI [45]. 

Due to their body size and the increased consumption of apple juice, children have a 

higher risk to reach this value. Therefore the European Union has set a value of 10 µg/L 

especially for products dedicated to children. However, home made products or food 

and drinks from other states do not necessarily underlie controls and may exceed the 

specified values. 

 

1.4.1.3 Kinetics  

Overall, very little is known about pharmacokinetic behaviour and metabolism of patulin 

[47]. When contaminated food is ingested, the intestine is the first organ coming in 

contact with mycotoxins. The toxic effects of mycotoxins on intestinal epithelia cells 
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have been reported in several studies [48-50]. After the resorption patulin is relatively 

fast metabolized and effectively excreted within 24 h after oral consumption [51, 52]. No 

free patulin was found after the voluntary consumption of apple juice containing patulin 

indicating a possible fast degradation by the big excess of GSH [53]. However, the 

activity of metabolites has not yet been fully elucidated e.g. patulin-cysteine adducts 

have been shown to be still partially bacteriostatic and capable of enzyme inhibition 

[54]. 

The major retention sites of patulin were erythrocytes and blood rich organs like spleen, 

lung, liver and kidney [52]. The enhanced DNA damage observed in liver, kidneys and 

brain could be associated with increased cellular accumulation of patulin in these 

tissues, mediated by specific membrane transport of this hydrophilic compound [55]. 

Such interactions of organic ion transporters with mycotoxins have been identified by 

Tachampa et al. [56]. These transporters have been found mainly in the kidneys, liver 

and recently in the blood–brain barrier [55]. 

Patulin reacts fast with sulfhydryl groups and more slowly with amino functions of 

proteins and glutathione [57, 58]. Up to three molecules of GSH can bind to one 

molecule patulin. The structures of the main reaction products were reported in different 

studies [59, 60].  

 

1.4.1.4 Acute and chronical toxicity 

Several cases of lethal mycotoxicosis in cattle by patulin-contaminated forage have 

been reported by Ciegler [54]. In vivo patulin caused severe damage in several organ 

systems like kidney, intestinal tissue [61, 62] and immune system [63]. Acute toxicity in 

mice, rats and hamsters ranged from 9-55 mg/kg bw. Agitation, convulsions in some 

cases, dyspnoea, pulmonary congestion and oedema and ulcerations, hyperaemia and 

dilatation of the gastrointestinal tract were reported in several studies [64]. Another 

symptom seen in almost all the studies was a loss of body weight [61, 62]. A high 

mortality in rats was attributed to severe dilatation of the gut and/or pneumonia [47]. 

Problems might be related to the antibiotic effect of patulin against Gram-positive 

bacteria thereby giving a selective advantage to pathogenic Gram-negative bacteria in 

the gut [64]. Besides the kidney, liver is one of the major target organs of patulin. It 

reduces the activity of hepatic aldolase [65] and inhibits protein synthesis and 

consequently cell growth in cultured hepatic cells [66].  
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1.4.1.5 Genotoxicity 

Regarding carcinogenicity, the International Agency for Research on Cancer (IARC) 

assigned patulin to category C, since the evidence of carcinogenicity was considered 

limited in experimental animal studies [67]. After oral administration patulin did not 

induce any noticeable tumors in Wistar rats and Swiss mice [68, 69]. However, Oswald 

et al. detected adenomas in Sprague-Daley (SD) rats after gavage [69]. Dickens and 

Jones found local sarcomas after subcutaneous injection of patulin [70] and Saxena et 

al. identified patulin as a tumor initiator after topical application [71]. Additionally to 

embryotoxic effects [72, 73] patulin was shown to have also weak teratogenic properties 

[72-75].  

Genotoxicity of patulin was shown in various studies. De Melo et al. applied an in vivo 

comet assay and found a dose-dependent increase of strand breaks in brain liver and 

kidney [55]. In vitro mutagenicity was shown in different mammalian cell types like 

Chinese hamster lung fibroblast V79 cells, mouse lymphoma L5178Y cells [76] or 

mouse mammary carcinoma FM3A cells [77].  

Patulin did not increase revertant frequency in the Ames test using Salmonella 

typhimurium [78, 79] but was mutagenic in Saccharomyces cerevisiae [78].  

The frequency of chromosomal aberrations in HepG2 [80] and V79 cells [81] was 

increased after patulin treatment. An elevated level of sister-chromatid exchanges was 

detected in CHO cells and human lymphocytes [82] but not in V79-E cells [83]. Patulin 

induced both kinetochore-positive and -negative micronuclei in V79 cells [58]. The 

clastogenic properties of patulin were described by Alves et al. and Liu et al. [58, 81, 

82]. Cytogenetic studies in vivo suggest the induction of chromosomal aberrations and 

mitosis disturbance in mice and Chinese hamster [74, 84, 85]. The genotoxic and 

cytotoxic [76, 81] properties are believed to be due to the high reactivity of patulin to 

cellular nucleophiles. A reduction of the cellular GSH content by the GSH synthesis 

inhibitor BSO is known to increase the cytotoxicity [86] and genotoxicity of patulin [76, 

87]. 
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1.4.2 Resveratrol 

1.4.2.1 General aspects 

Resveratrol is a plant polyphenol found in the skins of red grapes and several other 

foods. It is a member of the stilbene family and can be found either in a glycosylated 

form or as the parent molecule. Resveratrol exists as cis and trans isomeric form, with 

significant higher concentrations of the latter. Trans-resveratrol is relatively stable if 

protected from light and high pH .Trans to cis isomerization is facilitated by UV light [88].  

 

 

Figure 4: Structure of resveratrol [89] 

 

1.4.2.2 Sources and Impact 

High concentrations of resveratrol are found in grapes, peanuts and Japanese 

knotweed. The content in wine is higher than in grape juice due to the increased 

solubility of resveratrol in ethanol compared to water. In red wines concentrations of 

resveratrol range between 1-18 mg/L [90]. The majority of the stilbene is present as 

aglycone rather than glycoside due to sugar cleavage presumably occurring during 

vinification [91]. Red wines contain much higher resveratrol concentrations than white 

wines. This may, at least in part, be explained by the fact that skins are removed in 

white wine immediately after pressing while in red wine production the grape skins are 

left with the freshly pressed red wine for a while in order to extract aromatic compounds. 

Variations of resveratrol concentrations in red wine are explained by differences in wine 

processing, type of grapes and vintage, as well as climatic factors. Levels are generally 

higher in cooler climates because resveratrol is thought to play a role in the Defense of 
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plants against fungal infections [92]. Resveratrol synthesis in plants is also increased as 

a response to UV irridation [93]. 

 

1.4.2.3 Kinetics 

Although there has been remarkable evidence for resveratrol as a potent 

chemopreventive agent in vitro, it seems that the low bioavailability of resveratrol in 

humans could interfere with a successful in vivo treatment. After oral administration 

resveratrol is absorbed in large parts but bioavailability is quite low due to extremely 

rapid sulphate conjugation by the intestine/liver within 30 min [94-96]. A 30-fold 

enrichment of resveratrol over serum concentrations has been observed in the intestinal 

mucosa [95]. Significant accumulation of resveratrol was also found in the bile, the 

stomach, the liver and the kidney [97]. Serum half-life of total resveratrol metabolites 

was 9.2 h, indicating that exposure to modified forms is much higher than that of 

unchanged resveratrol. However, it is not known whether metabolites exert health 

promoting effects or not [96]. 

Doses used to reveal the various effects reported for resveratrol (~32 nM–100 µM in 

vitro and 100 ng–1,500 mg per kg bw in animals) raise the questions about the 

concentrations that are achievable in humans. Assuming a consistent daily intake of 

375 mL, or about two glasses of wine, a person weighing 70 kg would receive a dose of 

~ 27 µg/kg bw each day. The detrimental effects of alcohol are likely to mask any health 

benefits achieved with higher intake [98]. However, nowadays a lot of food supplements 

are available delivering up to 1,000 mg resveratrol per day. Administering such high 

doses to improve efficacy might not be expedient since toxic effects have been 

observed at or above 1 g/kg bw [99]. No serious adverse effects were detected in any 

human study [100-102]. The highest doses reported were 5 g/ 70 kg bw for a single 

intake [101] or 0.9 g/d for repetitive application [100]. 

 

1.4.2.4 Health promoting effects 

Resveratrol has been cited in many recent investigations for its possible protective 

effects against certain forms of oxidative stress related diseases. The health promoting 

properties of resveratrol are primarily attributed to the antioxidant effects of resveratrol. 

Resveratrol was found to be an effective scavenger of hydroxyl, superoxide and metal-

induced radicals. It exhibits a protective effect against lipid peroxidation in cell 



INTRODUCTION 13 
 

 

membranes and DNA damage caused by ROS. Resveratrol showed also a significant 

inhibitory effect on the NF-κB signaling pathway after cellular exposure to metal-induced 

radicals [103]. 

Resveratrol has been suggested to be one of the major compounds being responsible 

for the so called “French Paradoxon”. The French paradox refers to the observation that 

French people suffer a relatively low incidence of coronary heart disease, despite 

having a diet relatively rich in saturated fats [104]. It has been proposed that regular 

consumption of red wine in moderate amounts may explain this phenomenon [105]. 

Besides acting as antioxidant, resveratrol can further inhibit platelet aggregation [106].  

On the basis of the structural similarity of resveratrol (trans-3,5,4'-trihydroxystilbene) to 

the synthetic estrogen diethylstilbestrol (4,4'-dihydroxy-α,β-diethyl-stilbene) resveratrol 

might work through the same cardioprotective mechanisms as estrogens [107]. 

However, resveratrol showed in different studies estrogenic, superestrogenic and anti-

estrogenic effects dependent on cell type, receptor type and presence of 17β-estradiol 

[108]. Trans-resveratrol was found to competitively inhibit binding of [3H] estradiol to 

type 1 estrogen receptors in estrogen-positive MCF-7 human breast cancer cells. This 

ability to antagonize estrogen binding provides a rationale for the possible use of trans 

resveratrol in the prevention or treatment of breast cancer [109]. 

Resveratrol was shown to extend life in yeast, worms and flies in a SIR2 (SIRT1 

homolog)-dependent manner [110, 111]. 

Prolongation of lifespan was attributed to imitation of transcriptional response to caloric 

restriction including improvements in insulin sensitivity, endurance and overall survival 

in obese mice [8, 112]. Whether these effects are related to a potential activation of 

SIRT1 is still controversially discussed [113]. However, treatment of mice on a normal 

diet did not produce any further extension of lifespan, indicating that resveratrol might 

mainly be counteracting the deleterious consequences of obesity, rather than slowing 

aging in a caloric restriction-like manner [114]. Several follow-up studies have confirmed 

that resveratrol does not elongate lifespan in healthy mice. Increasing the dose of 

resveratrol to approximately 200 mg/kg had no effect on survival and intake about  

1.5 g/kg revealed toxic effects [112]. 

Recent data give clear evidence that resveratrol can act as a chemopreventive agent as 

well. Kraft et al. [115] have reviewed the anticarcinogenic effects of resveratrol. Tumor 

initiation, promotion and progression are affected by resveratrol via multiple pathways. 

Resveratrol has anti-inflammatory effects by counteracting NF-κB and AP-1 
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transcription. It prevents bioactivation of procarcinogens [116], constrains the initiation 

of tumors and inhibits the metastasis of carcinomas through prevention of angiogenesis 

by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteases 

[117]. Induction of apoptosis and cell cycle arrest which are important mechanisms for 

cancer therapy, are stimulated by resveratrol through different mechanisms including 

activation of p53 and modulation of cell cycle proteins [118].  

 

1.5 PART II : EFFECTS OF AN ANTHOCYANIN RICH EXCTRACT ON 

HYPERTENSIVE RATS 

1.5.1 General aspects of anthocyanins 

Anthocyanins (from Greek: ἀνθός (anthos) = flower + κυανός (kyanos) = blue) are 

water-soluble plant pigments that may appear red, purple or blue according to the pH. 

Anthocyanins are a separate group of over 635 compounds [119] belonging to the class 

of flavonoids. They are derivatives of 2-phenylbenzopyrlium and consist of two benzoyl 

rings (A and B) separated by a heterocyclic (C) ring. The skeleton is usually bound to 

saccharide residues such as glucose, galactose, rhamnose or arabinose as  

3-glycosides or 3,5-diglycosides. Anthocyanidins are the sugarfree derivatives of 

anthocyanins, being very unstable at physiological pH. 

The strong antioxidant power of anthocyanins is dependent on the chemical structure 

particularly on (the number of) hydroxyl groups. The presence of a hydroxyl group at 

ring C enables also the chelation of metal ions, e.g. iron and copper [120]. 

They are odorless and nearly flavorless, contributing to taste as a moderately astringent 

sensation [121]. Anthocyanins are reactive compounds, which degrade readily to 

colourless or brown substances under the influence of various enzymes, oxygen, 

hydrolyzes, high temperatures or light [122]. 

Depending on nutrition customs, the intake of anthocyanins in Germany was estimated 

in 2002 to be 2.7 mg/d with a personal variety of 0-76 mg [123]. 

Anthocyanin sources include colored fruits such as berries, cherries, peaches, grapes, 

plums any many dark colored vegetables such as red onion, eggplant and black beans 

[124]. Although they occur particularly in flowers and fruits they are also present in 

leaves, stems and storage organs [119]. 
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If not mentioned otherwise the term anthocyanins includes hereafter also 

anthocyanidins. 

 

 

 

Figure 5: Structure of the most common anthocyanidins [125] 

 

1.5.2 Kinetic 

The bioavailability of anthocyanins is consistently very low across all studies with often 

less than 0.1% of the ingested dose appearing in the urine. It has to be remarked that 

there is currently no method available which would be able to detect alternative 

molecular structures of anthocyanins which are very probable to be formed under in 

vivo conditions. Most studies use a high-performance liquid chromatography (HPLC) 

based method to detect the flavylium cation which is not likely to be present at neutral 

pH in vivo [122]. In vitro absorption of anthocyanins was low, but anthocyanins were 

detectable inside the cell [126] and glycosides showed a higher transport efficiency than 
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aglycons [127]. The absorption in vivo occurs quickly with a tmax of 15-60 min, 

suggesting an uptake of anthocyanins from stomach [128], but the major site for 

flavonoid absorption is the small intestine [119]. Passamonti et al. showed an efficient 

absorption of anthocyanins by the small intestine of rats after in situ perfusion, which 

might be related to an interaction with bilitranslocase [129]. Changing pH and microbial 

flora in the gastrointestinal tract may modify the molecular structure of anthocyanins. In 

colon neutral pH and a different microbial population lead to a fast degradation of 

anthocyanins to their phenolic acids and aldehydes [130]. The concentrations found in 

humans after ingestion of anthocyanin-rich products are located in the lower nanomolar 

range [123]. 

Most animal studies found that anthocyanins were absorbed mainly in their intact 

glycosylated form. Different studies describe the detection of intact anthocyanins but, 

neither aglycons nor conjugates in plasma [131, 132] and urine [133, 134]. However, 

these last years, methylated derivatives, glucuronides and glycoside glucuronides have 

been identified in urine and plasma by the use of HPLC combined with mass 

spectrometry [135, 136]. Some of the metabolites of flavonoids have comparable or 

even higher activity than the precursors [137].  

Anthocyanins are largely excreted in urine but portions of them may reenter the jejunum 

by bile and be excreted through faeces together with the unabsorbed anthocyanins 

[138]. Excretion was usually completed after 6-8 h [122]. 

 

1.5.3 Acute and chronic toxicity  

For the evaluation of acute toxicity test animals were administered anthocyanins 

(cyanidin, petunidin and delphinidin mixture extracted from currants, blueberries and 

elderberries) in doses from 0 to 25,000 mg/kg for mice and 0 to 20,000 mg/kg for rats 

[139]. Following i.p. or i.v. application toxic doses lead to sedation, convulsions and 

finally death. The LD50 value ranged between 240 (i.v.) to 20 000 mg/kg bw (oral) for 

rats. 

Short-term studies with diets containing very high concentrations of anthocyanins 

showed no adverse effects in rats and guinea pigs [139] or dogs [140]. Anthocyanins 

were not found to be mutagenic [141-143] or teratogenic [139]. A two-generation study 

showed no difference in reproduction performance or pup viability between control and 

treated group [144]. 
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1.5.4 Health-promoting properties 

Results from various cell line studies, animal models and human clinical trials give 

indication for the anti-inflammatory and anti-carcinogenic activity, cardiovascular 

disease prevention, obesity control and diabetes alleviation. These health promoting 

effects of anthocyanins are at least in part related to their antioxidative properties. 

Epidemiological studies suggest a lower incidence of many chronic diseases for people 

consuming a polyphenol rich diet [119]. As already described, anthocyanins in wine 

might also contribute to the low incidence of cardiovascular disease in France known as 

French Paradoxon [145]. 

Due to their polyphenolic structure anthocyanins can scavenge effectively ROS such as 

superoxide, singlet oxygen, peroxide, hydrogen peroxide and hydroxyl radicals [146]. 

The scavenging properties of anthocyanidins are superior to those of the respective 

anthocyanins. Additionally, they possess the ability to chelate metal ions such as Fe 

and Cu and inhibit thereby their prooxidative effects. Antioxidant activity of anthocyanins 

was proved in vitro with the ORAC (oxygen radical absorbance capacity) assay showing 

the highest values for cyanosin-3-glycoside [147]. 

A decreased level of biomarkers related to oxidative stress was also found in vivo [148, 

149]. Different anthocyanins inhibit proliferation of cancer cells derived from various 

tissues [150] and tumor formation in vivo [151]. However, in these studies anthocyanins 

were used in supra-natural doses.  

Anthocyanins were shown to be antimutagenic in both the Ames Test and sister 

chromatid exchange test [152]. Oxidative DNA damage such as the highly mutagenic  

8-oxo-dG was decreased more than 80% in the urine from animals treated with 

raspberry extract and azoxymethane [153]. 

Further suggested mechanisms are the inhibition of carcinogen activation and induction 

of phase II enzymes for detoxification [154, 155], cell cycle arrest [156], 

antiangiogenese [157], induction of apoptosis [158] and inhibition of cyclooxygenase-2 

(COX-2) enzymes. 

The antiinflammatory properties of cyanidin and other anthocyanins were comparable to 

commercial products in a COX activity assay [159]. 

Anthocyanins reduce also the oxidation of low density lipoprotein (LDL) [160] and show 

vasodilating activity [161]. Therefore, they are suggested to prevent cardiovascular 

diseases. Further discussed health promoting effects are the prevention of metabolic 

syndrome, obesity [162], diabetes [163] and the improvement of eye vision [164]. 
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1.5.5 Dacapo extract  

We used in this study an extract of Dacapo grapes from Geisenheim Research Centre 

(Geisenheim Research Centre, Geisenheim Germany) which possesses an extremely 

high amount of anthocyanins (231 mg/g) and polyphenols (640 mg/g). Dacapo is a 

crossing of Deckrot with Blauer Portugieser. It is characterized by blue-black berries 

that result in a dark red juice. After harvesting, grapes were ground, treated with 

pectolytic enzymes, pressed and further processed. The liquid extract was then rinsed 

through a chromatography column with an adsorber resin (SP70, Resindion/Mitsubishi, 

Mailand). The exact anthocyanin profile is published in Deutsche 

Lebensmittelrundschau [165]. Briefly, the most abundant anthocyanins found by 

HPLC/MS were the 3-glycosides and 3-(6’’-O-acetyl) glycosides of delphinidin, cyanidin, 

petunidin, peonidin and malvidin, with malvidin-3-glucoside and malvidin-3-(6’’-O-

acetyl)glucoside accounting for more than 50% of the anthocyanins. Further 

components of the extract are polysaccharides (19.5%) and amino acids (4.6%). With 

the applied methods only ~ 50% of the extract could be structurally characterized. The 

unidentified part consists mainly of monomeric and polymeric polyphenols as detected 

by Folin-Ciocalteu measurement [165]. 

 

1.5.6 Renin-angiotensin system 

The renin-angiotensin system (RAS) is a cascade of enzymatic reactions involved in the 

regulation of blood pressure:  

Renin is an aspartyl protease synthesized and secreted as the inactive proenzyme pro-

renin, which matures in the myoepithelioid cells of the juxtaglomerular apparatus (JGA). 

Angiotensinogen is cleaved by renin to generate angiotensin I. Angiotensin I is then 

converted to angiotensin II by the angiotensin-converting enzyme (ACE). A local 

angiotensin II synthesis exists in tissues such as the brain, heart, eye, adipose tissue 

and kidney. The vasoconstrictor angiotensin II increases blood pressure through binding 

to its AT1 receptor. Additionally, it has a regulatory impact on homeostasis of the body's 

water content by stimulating the release of aldosteron and anti-diuretic hormone (ADH). 

Reduction of angiotensin II level by inhibition of ACE with drugs such as ramipril is 

therefore one of the major approaches in therapie of hypertension. 
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Figure 6: The renin-angiotensin system 

 

1.5.7 Ren-2 rats 

Over the past 50 years various animal models of hypertension have been developed, 

including spontaneously hypertensive rat, deoxycorticosterone acetate (DOCA) –salt rat 

and transgenic Ren-2 rat. Rats from all hypertensive models exhibit cardiac hypertrophy 

and show reduced endothelium-dependent relaxation of isolated arteries [166]. 

Accelerated hypertension is usually accompanied by organ damage. End organ 

damage is not only related to high blood pressure itself, but also to the underlying 

biochemical alterations. Perturbed kidney function is reflected in proteinuria and high 

serum creatine levels [167, 168].  

Ren-2 rats are a rat strain transgenic for the murine Ren-2 renin gene suffering from 

angiotensin II-dependent hypertension [169, 170]. Homozygous male animals show 

blood pressure values up to 300 mmHg whereas females have around 20-30 mmHg 

lower values [171]. 

Ren-2 rats show also significant differences in albuminuria, lipid peroxidation 

((malondialdehyde (MDA)) and nitrotyrosine-staining compared to Sprague Dawley (SD) 

rats [172]. In contrast to Ren-1 Ren-2 codes for a non-glycosylated renin protein, which 

is especially expressed in extrarenal tissue. The mechanism for high blood pressure 

might be based on an adrenal gland-induced activation of adrenal steroids. Transgenic 

rats are characterized by unchanged or even suppressed concentrations of active renin, 
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angiotensinogen, angiotensin I and angiotensin II in plasma, whereas the plasma levels 

of pro-renin are much higher in Ren-2 rats [169, 173]. Previous studies have proven that 

hypertension in Ren-2 rats is angiotensin II-dependent and that activation of angiotensin 

II receptor subtype 1 (AT1) substantially contributes to the development of hypertension 

[174, 175]. Local increased generation of angiotensin II in organs might be also involved 

in end organ damage [176, 177]. Despite the known genetic alterations, the exact 

mechanism underlying the hypertension remains elusive [166]. 
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1.6 OBJECTIVES 

Nutrition has been identified to be one of the main factors of lifestyle-induced cancers in 

Western countries. Besides synthetic contaminations in food and substances arised 

from heating processes natural food compounds are one of the major sources of 

mutagens.  

An important source of diet derived mutagens is contamination of food with mycotoxins. 

In comparison to more prominent substance of this group such as aflatoxin B1, the 

genotoxic effects of patulin are less clarified. One aim of this study was therefore to 

investigate further steps of patulin-induced genotoxicity. 

However, nutrition delivers not only mutagens but also compounds that decrease the 

risk for cancer. Resveratrol has been vaunt as a miracle drug against many diseases, 

cancer and aging. Therefore, we wanted to evaluate a potential protective effect of the 

antioxidant resveratrol on patulin-induced genomic damage. Considering that 

polyphenols and other antioxidants can not only exert beneficial effects but also cause 

DNA damage in higher concentrations, a further issue of our study was the revision of 

potential genotoxic effects of resveratrol. 

In the second part of this thesis we wanted to investigate the effects of an anthocyanin-

rich extract on hypertension and oxidative stress. 

Anthocyanins are very potent antioxidants, which have shown many health promoting 

effects, including the prevention of cancer and cardiovascular diseases. An 

anthocyanin-rich Dacapo grape extract was given to a subgroup of hypertensive Ren-2 

rats. Blood pressure and markers of oxidative stress and DNA damage were measured 

and compared with the results of untreated Ren-2 rats and a subgroup receiving 

antihypertensive medication. 
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The approach was as follows: 

 

Part 1: Effects of patulin and resveratrol in V79 cells 

 

Investigation of: 

• cell viability after patulin or resveratrol treatment: fluorescein diacetate/ Gel Red-

staining 

• genotoxicity after patulin or resveratrol treatment: micronucleus assay, 

kinetochore-staining; for patulin additionally: comet assay, cross-link comet 

assay, mitosis disturbance analysis 

• oxidative stress after patulin/resveratrol treatment: 2,7-dichlordihydrofluorescein 

(DCF) assay, GSH measurement 

• effects of resveratrol on patulin-induced damage: micronucleus assay 

 

 

Part 2: Effects of an anthocyanin-rich Dacapo grape extract on hypertensive  

   Ren-2 rats 

 

Investigation of: 

• health status: body weight, food and water intake 

• blood pressure: measurement of systole, diastole and pulse 

• oxidative stress: dihydroethidium (DHE)-staining, FRAP assay 

• genotoxicity: comet assay, ɣ-H2AX-staining 
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2 EXPERIMENTAL PROCEDURES 

2.1 PART I: INFLUENCE OF PATULIN AND RESVERATROL ON DNA 

STABILITY 

 

2.1.1 Materials 

If not otherwise mentioned, chemicals were purchased from Sigma–Aldrich, 

(Taufkirchen, Germany) or Carl Roth GmbH (Karlsruhe, Germany). Cell culture 

medium and supplements were purchased from PAA (Pasching, Austria), fetal 

bovine serum (FBS) was from Biochrom (Berlin, Germany). Patulin, cytochalasin B 

and cis-platin (cispt) were dissolved in dimethyl sulfoxide (DMSO), resveratrol was 

dissolved in ethanol and H2O2 and BSO were dissolved in phosphate buffered saline 

(PBS). Compounds were added to the medium to a final solvent concentration of ≤ 

1%. Control experiments were carried out with equal amount of solvent without test 

compound. 

 

2.1.2 Cell culture  

Experiments were carried out using V79 cells, a standard cell line for genotoxicity 

testing. V79 fibroblasts derived originally from the lung of a male Chinese hamster 

(Cricetulus griseus, 2n=22) were used for in vitro experiments. The adherent cell line 

offers of a number of desirable properties for mutagenesis assays. Due to their rapid 

growth rate V79 cells double every 12-16 h. They possess a stable karyotype with a 

modal chromosomal number of 22 ± 1 [178]. Furthermore V79 cells lack major types 

of xenobiotic metabolizing enzymes [179]. 

Cells were routinely grown in MEM (Minimum Essential Medium Eagle) with 10% 

fetal bovine serum, 1% L-glutamine and 1% antibiotics (penicillin, streptomycin) at  

37 °C in a water-saturated atmosphere containing 5% CO2. Cells were routinely split 

three times per week. For treatments the indicated number of cells were seeded the 

day before in 6-well-plates (tissue culture plate, flat bottom cell +; Sarstedt, 
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Nümbrecht, Germany) containing 3 mL of medium. Cell number was calculated using 

a CasyTM cell counter (Innovatis, Reutlingen, Germany). 

 

2.1.3 Viability assay 

Viability assay was used to prove that the applied concentrations of a substance has 

no cytotoxic effects. This is important to ensure that the investigated outcomes are 

real genotoxic and not unspecific cytotoxic effects. Corresponding to the incubation 

conditions of the micronucleus assay, cells were treated for 4 h with the indicated 

concentration of patulin, resveratrol or H2O2, followed by an 20 h postincubation with 

cytochalasin B (5 µg/L). Afterward cells were treated with an premixed solution of 

fluorescein diacetat (30 µg/mL) and Gel Red (Biochrom, Berlin, Germany; 1 µL/mL)) 

to distinguish between viable cells and dead cells. 

Living cells actively convert the non-fluorescent fluorescein diacetate (FDA) into the 

green fluorescent compound fluorescein by esterases, a sign of viability; while 

membrane-compromised cells take up the dye Gel Red, indicating cell death. 200 

cells per concentration were counted with an Eclipse 55i microscope (Nikon GmbH, 

Düsseldorf, Germany) at 200 x magnification.  

 

2.1.4 Micronucleus assay 

Cytokinesis blocked micronucleus assay was used to investigate the potential of the 

applied substances to generate micronuclei and nucleoplasmic bridges. 

The micronucleus assay is a widely used and well established test, to evaluate 

potential genotoxic effects of substances. Micronuclei mainly originate from acentric 

chromosome fragments, acentric chromatid fragments or whole chromosomes that 

fail to be included in the daughter nuclei during mitosis because they did not attach 

properly with the spindle during the segregation process. Displaced chromosomes or 

chromosome fragment which were enclosed by a nuclear membrane form 

micronuclei that are morphologically similar to nuclei but smaller in size [180].  

Do investigate a potential dose response of patulin V79 cells (2 × 105 cells, seeded 

the day before) were incubated for 4 h with the indicated concentrations of patulin, 



 EXPERIMENTAL PROCEDURES 25 
 

 

followed by 24 h substance free post-incubation and the number of micronuclei was 

evaluated in 1000 cells from each of two slides. 

Further micronuclei experiments were carried out in cytokinesis blocked assays. 

To investigate the effects of GSH depletion 2 × 105 cells, seeded the day before in  

3 mL well plates, were incubated for 20 h with 20 µM BSO. Subsequently, cells were 

washed and treated with 0.5 µM patulin. After 4 h patulin was removed and the 

cytokinesis inhibitor cytochalasin B (5 µg/mL) was added for further 20 h.  

For experiments with resveratrol 2 × 105 cells, seeded the day before in 3 mL well 

plates, were preincubated for 30 min with the indicated concentration of resveratrol or 

solvent. Then 0.5 µM patulin or solvent was added for further 4 h to the cells. After  

4 h the substances were removed and the cytokinesis inhibitor cytochalasin B  

(5 µg/mL) was added for further 24 h. 

By limiting the analysis to such binucleated cells, it can be ensured that these cells 

have actively divided since the treatment. For the time course of micronuclei and 

nucleoplasmic bridge formation, cells seeded the day before, were incubated for the 

indicated time with 0.5 µM patulin and 5 µg/mL cytochalasin B simultaneously. Cells 

were brought onto glass slides by cytospin centrifugation and fixed in methanol 

 (-20°C, ≥ 1h). Slides were stained with Gel Green (Biochrom, 1:1000 in PBS for  

3 min). From each of two slides, 1000 binucleated cells were evaluated with regard to 

frequencies of micronuclei-containing and nucleoplasmic bridge-containing cells.  

Cytokinesis block proliferation index (CBPI) was calculated in 1000 cells per slide 

using the formula CBPI = (MI + 2MII + 3 (MIII +MIV)) with MI-MIV representing the 

number of cells with one to four nuclei [181]. 

Micronuclei and nucleoplamic bridges were scored according to the criteria defined 

by the members of HUman MicroNucleus (HUMN) project [182]. Structures were 

defined as micronuclei if they were round or oval, had the same staining intensity as 

the main nuclei and were not connected to them. The main size of micronucei in 

binucleated cells was between 1/256 and 1/9 of one of the main nuclei. Continuous 

links between the nuclei in binucleated cells were scored as nucleoplasmic bridges if 

their width did not exceed one-fourth of the diameter of the nuclei within the cell. 

Cells containing more than one micronucleus or nucleoplasmic bridge were 

frequently seen and scored as cell with one or more micronuclei or bridge 

respectively [183]. 
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Figure 7: Mechanism of micronuclei generation 
Micronuclei originate from either chromosome fragments (A) or lagging chromosomes (B). If 
cytokinesis is blocked by cytochalasin B the last step does not occur. Modified after Fenech et al. 
[184] 
 

 

Figure 8: Representative picture of a micronucleus (left side) and nucleoplasmic bridges (right side) 

2.1.5 Kinetochore-staining 

The nature of micronuclei can be differentiated by kinetochore-staining. Kinetochore-

negative micronuclei indicate for the potential strand breaking properties of a 

substance (Figure 7 (A)) whereas kinetochore-positive micronuclei consist mainly of 

whole chromosomes (Figure 7 (B)) not distributed to one of the daughter nuclei 

during mitosis. For kinetochore analysis cells were treated for 4 h with 0.5 µM patulin, 

resveratrol or solvent followed by 20 h post-incubation with cytochalasin B (5 µg/mL). 

Cells were brought onto glass slides by cytospin centrifugation and fixed in methanol 

(-20 °C, ≥ 1h). Kinetochores were stained with a primary antibody against 

centrosomes (Positive Control Serum (Centromere), Antibodies Incorporated, Davis, 

USA; undiluted, 37 °C, over night) and a rhodamine-conjugated secondary antibody 

(sc-2457, Santa Cruz Biotechnology, Santa Cruz, USA; 1:20, 37 °C, 2 h). Counter-

staining of nuclei was done with chromomycin A (50 µM, 3 min). In total more than 
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5000 cells per concentration cells were evaluated for the presence of kinetochore-

positive or –negative micronuclei, using an Eclipse 55i microscope (Nikon GmbH, 

Düsseldorf, Germany) at 200 x magnification. 

 

2.1.6 Comet assay 

The comet assay (also known as single cell gel electrophoresis assay) is a standard 

technique for the detection of DNA damage at the level of the individual eukaryotic 

cell. It was first described by Singh et al. in 1988 [185].  

Single and double strand breaks as well as alkali labile sites and apurinic or 

apyrimidinic sites can be detected by this method. The technique involves the 

encapsulation of cells in a low-melting-point agarose suspension, lysis of the cells in 

neutral or alkaline conditions and electrophoresis of the suspended lyzed cells. The 

lysis process removes membranes, cytoplasm and also histones but leaves 

supercoiled DNA and some DNA-associated proteins. Electrophoresis allows the 

migration of broken DNA strands and relaxed DNA toward the positive pole of the 

electrophoresis field resulting in a comet shape formation of damaged cells. After 

staining of DNA, comets can be observed by fluorescence microscopy and the 

intensity of the comet tail relative to the head reflects the number of DNA breaks. 

Determination of DNA damage can be performed by manual scoring or automatically 

by imaging software [186]. 

 

 
 
Figure 9: DNA damage in comet assay 
The head of a cell is mainly composed of intact genomic DNA, whereas any fragmented or damaged 
DNA is concentrated within and towards the tail. Damaged DNA such as small fragments and relaxed 
loops move faster than larger fragments and intact DNA. Comets are quantified microscopically after 
DNA-staining. 
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For the dose response to patulin V79 cells (5 × 105), seeded the day before were 

treated for 4 h with the indicated concentrations of patulin. In a second assay cells 

were first pretreated with 20 µM BSO for 20 h to investigate the effect of GSH on 

patulin -induced damage in comet assay.  

Subsequently, for all comet assays the cells were harvested and suspended in  

180 µLof low-melting-point agarose (0.5% diluted in calcium and magnesium-free 

PBS). 45 µL of the suspension was embedded on frosted microscope slides, which 

have been coated with a layer of high-melting-point agarose (1.5%, diluted in 

calcium-and magnesium-free PBS). Cells were lyzed in a jar containing fresh cold 

lysing solution (1% Triton X-100, 10% DMSO and 89% lysis buffer containing 10 mM 

tris(hydroxymethyl)aminomethane (Tris), pH 10; 1% Na-sarcosine; 2.5 M NaCl; and 

100 mM dinatrium-ethylendiamintetraacetat-dihydrat (Na2EDTA) at 4 °C in a dark 

chamber for 1 h. Afterwards, slides were placed into a horizontal electrophoresis tank 

filled with an alkaline electrophoresis buffer (300 mM NaOH and 1 mM Na2EDTA, pH 

13). DNA was allowed to unwind for 20 min at 4 °C in the dark. Electrophoresis was 

carried out, at 4 °C in the dark, for 20 min in a 25-V and 300-mA electrical field. 

Afterward, the slides were neutralized for 5 min in 0.4 M Tris (pH 7.5), fixed in 

methanol and dried. A fluorescence microscope at 200-fold magnification and a 

computer-aided image analysis system (Komet 5; Kinetic Imaging, Bromborough, 

UK) were used for analysis. 25 cells from each of two slides stained with Gel Red  

(20 µg/mL in PBS) were measured, with percent tail DNA as the evaluation 

parameter. 

 

For the detection of cross-links a modified protocol has be proposed by Olive et al. 

[187]. By creating DNA-cross-links DNA fragments resulting from treatment with 

radiation or strand breaking agents are artificially increased in size and their 

migration in an electrical field is impeded.  
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Figure 10: Detection of cross-links by a modified version of comet assay 
Cross-linked DNA results in bigger fragments after treatment with strand breaking agents. Bigger 
fragments move slower in the electrical field and result therefore in smaller comets after DNA-staining. 

V79 cells (5 × 105) seeded the day before, were treated for 4 h with 0.5 µM patulin or 

the known cross-linker cis-platin (10 µM). After a washing step 100 µM H2O2 was 

added for 30 min [183]. Rest of the experiment was carried out as describes above. 

 

2.1.7 α/ɣ-tubulin-staining 

α-tubulin-staining was used to visualize mitotic spindles and structure of 

cytoskeleton. ɣ-tubulin-staining was applied to evaluate the number of centrosomes 

in mitotic cells. 

2 × 105 cells, seeded the day before were incubated with 0.5 µM patulin for 4 h. After 

20 h substance-free post incubation cells were harvested and brought onto glass 

slides as described above. Fixed slides were washed with PBS containing 0.5% 

Tween 20 and incubated at 37 °C for 1 h with FITC-labeled Sigma mouse anti-α-

tubulin (F2168) 1:50 in 5% FBS-PBS or at 4 °C overnight with Sigma mouse anti-ɣ-

tubulin (T6557) 1:50 in 5% FBS-PBS. Slides for ɣ-tubulin were subsequently washed 

and incubated with Alexa 488-labeled goat anti-mouse antibody (Nitrogen A11001) 

1:200 in 5% FBS-PBS for 3 h at room temperature. For evaluation α- and ɣ-tubulin 

dyed slides were counter stained with Hoechst 33258 for 3 min. 400 mitotic figures 

were counted and classified as normal or multipolar mitoses [183]. Higher 

concentrations of patulin (5 µM and 50 µM) were applied for 6 h to V79 cells to 
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investigate a potential compromise of cytoskeleton. Cells were stained as described 

above, examined and representative pictures were taken with an Eclipse 55i 

microscope (Nikon GmbH, Düsseldorf, Germany) at 200-fold magnification and a 

Fluoro Pro MP 5000 camera (Intas Science Imaging Instruments GmbH, Göttingen, 

Germany). 

 

2.1.8 GSH 

GSH content of cells was measured by flow cytometry. 5 × 105 cells were seeded the 

day before and treated for the indicated time with 1, 10 and 100 µM resveratrol;  

0.5, 5 and 50 µM patulin or solvent control, trypsinized, washed in PBS and 

incubated with 300 µL 400 µM monochlorobimane (MCB) solution in PBS for 30 min 

on ice. Afterwards cells were washed twice, resuspended in PBS and analyzed by 

flowcytometry using a LSR I (Becton-Dickinson, Mountain View, CA, USA). 

Fluorescence intensities of 20,000 cells were recorded. The shift to the right of the 

fluorescent histograms indicates an increase of cellular GSH content. Mean 

intensities of peaks were used for statistical analysis. Data is shown as percentage of 

peak intensity compared to solvent treated control. 

 

2.1.9 DCF 

Oxidative stress in cells was measured by flow cytometry using the dye  

2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). This non-flourescent probe 

enters the cytoplasm, where its acetyl groups are cleaved by esterases and the dye 

is oxidized to its fluorescent derivate (DCF) by intracellular oxidants.  

0.5 x 105 cells were seeded the day before were incubated for 4 h or 24 h with the 

indicated concentrations of substances. In the last 10 min of treatment cells were 

additionally loaded with 10 µM H2DCFDA (Invitrogen, Oregon, USA) at 37 °C. After 

incubation, cells were harvested, washed twice with cold PBS and incubated for  

10 min with 1 µg/mL propidium iodide on ice. 

Propidium iodide-positive cells were excluded from evaluation due to the failure of 

esterase activity in dead cells. 20,000 cells were analyzed by flow cytometry using a 

LSR I (Becton-Dickinson, Mountain View, USA). The shift to the right of the 

fluorescent histograms indicates an increase of ROS. Mean intensities of peaks were 
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used for statistical analysis. Data is shown as percentage of peak intensity compared 

to solvent treated control. 

 

 

 

Figure 11: Mechanism of ROS-induced fluorescence of 2',7'-dichlorofluorescein  
The diacetylated derivative of DCFH penetrates easily cell membranes. Intracellular esterases cleave 
the two ester bonds of DCFH-DA, resulting in cell membrane-impermeable product H2DCF. This non-
fluorescent molecule can be oxidized by intracellular ROS yielding the highly fluorescent product DCF, 
which can be detected by flow cytometry. 

 

2.1.10 FRAP assay 

FRAP assay (ferric reducing ability of plasma; also: ferric reducing antioxidant power) 

is an antioxidant capacity assay which uses the water-soluble derivative of vitamin E 

Trolox® (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) or ferrous 

sulphate as a standard. The FRAP assay is often used to measure the antioxidant 

capacity of plasma or solution of antioxidants. 

7 µL of sample was mixed with 193 µL of water and 600 µL of FRAP reagent (ferric 

chloride 1.67 µM, 2,4,6-tripyridyl-s-triazine 0.83 µM, hydrochloric acid 6.67 mM and 

acetate buffer 250 mM). The mixture was measured after a 6 min incubation time at 

593 nm with a spectrometer (Evolution 160 UV-VIS, Thermo Scientific, Dreieich, 

Germany). The antioxidant capacity was calculated with help of a calibration curve of 

ferrous sulphate (0-40 µM). 
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2.1.11 Cell cycle analysis 

 

 
 
Figure 12: Cell cycle is divided into two major parts: interphase and mitosis. During interphase, the 
cell growth and chromosome replication takes place. The interphase is subdivided into three phases: 
gap phase 1 (G1), synthesis (S) and gap phase 2 (G2). Interphase is followed by mitosis (nuclear 
division) and cytokinesis (cell division). The sub-G1 peak contains apoptotic cells and particles whose 
DNA content is less of that of cells in G1.  Modified after Answers™ [188] 

 

Cell cycle analysis was carried out by fluorescence labeling of cellular DNA with 

Hoechst 33342. The replication state of each cell was then analyzed by measuring its 

fluorescence intensity with cell cytometry. Quiescent and G1 cells have one copy of 

DNA and will therefore have 1X fluorescence intensity. Cells in G2/M phase of the 

cell cycle have two copies of DNA and give therefore 2X intensity. S-phase 

represents cells during DNA synthesis with fluorescence values between the 1X and 

2X populations. 

0.5 x 105 cells, seeded the day before were treated for 6 h with 0.5 µM patulin or 

solvent control. BD Kit CytoPerm/CytoFix (BD Bioscience, San Diego, USA) was 

used for permeabilization and fixation of cells. After trypsinization cells were washed 

twice with PBS and resuspended in Cytofix/Cytoperm™. After 20 min of 

pemeabilization cells were washed in Perm/Wash ™ and resuspended in 1 mL  

2.5 µM Hoechst 33342. Samples were incubated for 15 min at 37 °C. Samples were 

then centrifuged and suspended in a 1 % solution of bovine serum albumin (BSA). 

20,000 cells were analyzed by flow cytometry using a LSR I (Becton-Dickinson, 

Mountain View, USA). The amount of cells in the G1/S/G2 phase was calculated by 

comparing the mean peak intensities.  
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2.2 PART II: EFFECTS OF AN ANTHOCYANIN RICH EXCTRACT ON 

HYPERTENSIVE RATS 

2.2.1 Experimental procedure 

All animal experiments were performed in accordance with the European Community 

guidelines for the use of experimental animals and with the German law for the 

protection of animals.  

Homozygous female Ren-2 rats (n=23) were housed in an air-conditioned humidity-

controlled environment (25 °C) with a 12 h light/dark cycle (light 7:00-19:00). Before 

begin of the experiment Ren-2 were treated with ACE inhibitor ramipril (Delix, Sanofi 

aventis, Frankfurt am Main, Germany; 1 mg/kg bw) to keep the blood pressure to the 

level of genetically unmodified control rats 

 

 

 

Figure 13: Treatment scheme of animal experiment 
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6 non-transgenic SD rats of the same age were kept under the same conditions to 

compare the development of body weight and digestive behaviour.  

At the age of 12 weeks Ren-2 rats were randomly divided into three groups: 

untreated (n=9), ACE inhibitor ramipril (n=7) and Dacapo-grape extract (n=7). Three 

to five rats of each group were kept in one cage. They were given free access to a 

stock diet (ssniff, Soest, Germany, SM M-Z, 10 mm) and water. The ACE inhibitor 

group was further treated with 1 mg/kg bw ramipril per day dissolved in drinking 

water, whereas the other two groups did not obtain any medication from the 

beginning of the experiment.  

Dacapo-grape extract was compacted to pellets in a concentration of 2.175 g/kg  

(≈ 0.05% anthocyanins) leading to a daily intake of approximately 10 mg/d for rats of 

the extract-group. The untreated group and the ramipril group were fed with placebo 

chow. 

Body weight, food intake and water intake were controlled regularly. Before the 

beginning and at the end of the study rats were kept for 24 h in metabolism cages. 

Individual water consumption was recorded and samples of urine were stored at  

-80 °C for further evaluation. 

Before starting the experiment rats were trained for three weeks to reduce the stress 

associated with the blood pressure measurements and hence reduce the variability 

of results. The blood pressure and the heart rate of rats were measured twice a week 

using the direct tail cuff method. Non-invasive blood pressures were obtained using 

the BP 2000 Blood Pressure Analysis System (Visitech Systems, Apex, USA). The 

pulse was detected on tail, distal to the tail cuff, with a photoelectric sensor. Rats 

were placed on a warm platform to increase blood flow to the tail in order to improve 

the pulse detection.  

The mean of at least three successful measurements was taken as data for heart 

rate and blood pressure of the animal. One rat of the untreated group was excluded, 

due to excessive movement in all measurements. 

The planned treatment time was four weeks, but the experiment was stopped ahead 

of schedule after the spontaneous death of four animals (two animals of the 

untreated group, day 11 and 12; one animal of the ramipril group, day 11; and one 

animal of the extract group day 11). The rats prematurely deceased were excluded 

from all data except of food intake, where individual data was not available. Blood 

pressure could not be measured successfully anymore after the first week because 
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the rats moved excessively and were rather agitated. Therefore, the blood pressure 

diagrams of this study include only the first three survey points of blood pressure 

measurement. 

On the day of the experiment rats were anesthetized with Ketamin (0.6 mL,  

10% medistar®, Ascheberg, Germany) and Xylazin (0,2 mL, Xylazin 2% cp-pharm; 

Burgdorf, Germany). Isofluran (Isofluran CP®, cp pharma, Burgdorf, Germany) was 

used to maintain the narcosis. Before surgery an isotonic saline solution (Fresenius 

Kabi Deutschland GmbH; Bad Homburg, Germany) was used for perfusion of rats to 

remove blood from organs and reduce thereby artefacts. Organs (heart, kidney, 

aorta, liver, lung, brain, small and large intestine) were taken out, weighted (heart, 

kidney), cut in pieces and frozen at -80 °C or fixed in Roti®-Histofix. Organs fixed in 

Roti®-Histofix were embedded in paraffin shortly after fixation. 

Parts of liver and kidney tissue were used for comet assay (see 2.2.2)  

Blood was withdrawn from retrobulbar vessels if possible, but the collection was just 

successful for 12 of 19 animals. Blood was collected in S-Monovetten (Sarstedt, 

Nümbrecht, Germany) with clotting inhibitor, centrifuged and serum was stored at  

- 20 °C until analysis. 

 

2.2.2 Comet assay 

Samples of kidney and liver tissue were choped up on ice and suspended in RPMI 

1640 medium (+ 15% DMSO, + 1.8% (w/v) NaCl). The suspension was sifted through 

a cell strainer with a mesh pore size of 100 µm (Becton Dickinson Mountain View, 

USA), centrifuged for 5 min at 1000 rpm and at 4 °C and the resulting pellet was 

resuspended in 1 mL of the medium. Cells were kept on ice until the experiments 

started. Comet assay was carried out as described in 2.1.6 and 50 cells from each of 

two slides stained with Gel Red (20 µg/mL in PBS) were measured, with percent tail 

DNA as the evaluation parameter.  

For logistic reasons analysis was split in two parts with equal number of animals from 

each group in each part. After evaluation of each part results were normalized to the 

ramipril treated group due to strong differences in the background damage related 

with variances in the experimental procedure. After the normalization data was 

collected in one graph. 
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V79 cells treated with 12.5 µg/mL methyl methan sulfonate (MMS) were used as a 

positive control and to prove the efficiency of the experimental conditions 

 

2.2.3 ɣ-H2AX-staining 

Paraffin sections of different organs were stained with an antibody against ɣH2AX to 

visualize double strand breaks in the DNA. 

Double strand breaks are highly deleterious DNA lesions as they lead to 

chromosomal aberrations and/or apoptosis. They can be triggered by ionizing 

irradiation and a variety of chemical agents, e.g. topoisomerase II poisons, heavy 

metal ions and ROS. The formation of double strand breaks leads to the 

phosphorylation of histone H2AX on Ser-139 (termed as ɣ-H2AX) which is probably 

involved in the repair of damage by holding broken DNA ends together and recruiting 

other repair factors [189].  

At necropsy, kidneys were removed and fixed in Roti® Histofix and embedded in 

paraffin. The tissue blocks were cut in a microtome (LEICA RM 2165, Wetzlar, 

Germany) to a thickness of 2 µm and mounted on positively charged slides. Sections 

were deparaffinized and rehydrated in Roti® Histol and an ethanol series. Antigen 

retrieval was achieved by a 15 min treatment with 10 mM sodium citrate (pH 6) buffer 

in a microwave. Unspecific binding was avoided by blocking with donkey serum 

(Chemicon International, Hofheim am Taunus, Germany) for 1 h. Endogenous 

peroxidase activity was suppressed by 3% H2O2 to reduce background staining. ABC 

(Avidin-Biotin-Complex) method was used to enhance the signal of the applied 

antibody. Free avidin and biotin in the tissue was blocked in advance by incubation 

with 1 ppm avidin and biotin for 15 min respectively. The primary antibody (Phospho-

Histone H2AX (Ser139, clone 20E3) rabbit mAb, 9718, Cellsignaling, Danvers, USA) 

was applied in a 1:200 concentration overnight at 4 °C. Biotinylated secondary 

antibody (donkey anti rabbit IgGB, sc2089, Santa Cruz Biotechnology, Santa Cruz, 

USA) was used afterwards in a 1:200 dilution for 45 min at room temperature. 

Afterwards a horseradish peroxidase (HRP) coupled ABC reagent (Vector 

Laboratories. Burlingame, USA) was added for 30 min. 
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Figure 14: The amplification of signal by avidin-biotin methods rely on the strong affinity of avidin or 
for the vitamin biotin. Avidin (from chicken egg) possesses four binding sites for biotin. The biotin 
molecule is easily conjugated to antibodies and enzymes. In the avidin-biotin-complex (ABC) method 
the secondary antibody is conjugated to biotin and functions as links between tissue-bound primary 
antibodies and an avidin-biotin-peroxidase complex.  Modified after Key [190]. 

Avidin-biotin-coupled system was used to enhance the signal of the antigen. 3,3’-

diaminobenzidine (DAB, Vector Laboratories. Burlingame, USA) reagent was applied 

for 5 min. DAB reacts with HRP in the presence of peroxide to yield an insoluble 

brown-colored product at locations where peroxidase-conjugated antibodies are 

bound to samples. Sections were counterstained with Ehrlich’s haematoxilin (1 g 

haematoxylin , 48 mL 99.8% isopropanol, 51.9 mL H2O d, 50 mL glycerol, 1.5 g 

potassium alum, 5 mL acetic acid, 0.2 g potassium iodat) for three minutes and 

mounted with Eukitt® after dehydration in an alcohol series and Roti® Histol. Pictures 

were taken with a LEICA DM750 microscope equipped with a LEICA ICC50HD 

camera (LEICA Camera AG, Solms, Germany).  

For logistic reasons sections were split for the staining procedure in two parts with 

equal number of animals from each group in each part. Data was collected 

afterwards in one graph. Slides were analyzed using a semiquantitative scoring 

Kidney was divided in papilla, medulla and cortex (Figure 15).  
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Figure 15: Cross-section of a kidney 
Mallory-azan-staining; 10x; Hammersen, F. (1980) Histology, A Color Atlas of Cytology, Histology and 
Microscopic Anatomy 2nd Ed. Urban & Schwarzenberg [191] 

 
The percentage of positive cells in the kidney was assessed by manual scoring of 

brown nuclei in minimum 5 pictures with at least 1500 cells per picture for each 

region and each animal. Total number of nuclei on each picture was counted by 

using the automatical evaluation software cellprofiler (2.0, Broad Institute, 

Cambridge, USA).). For the analysis of heart 5 pictures representing different parts of 

the heart were taken and all cells on the picture (at least 2400 per animal) were 

classified as negative or positive for ɣ-H2AX. 

For the analysis of small intestine 1000 nuclei in crypts were counted manually for 

each animal and the percentage of ɣ-H2AX positive nuclei was calculated (Figure 

16). 
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Figure 16: Crypt in a section of small intestine 

 

2.2.4 DHE-staining 

To evaluate the release of ROS and particularly superoxide anion, the cell-permeable 

fluorogenic probe DHE was used. Frozen tissues were embedded into Tissue-tek 

(Sakura, Alphen aan den Rijn, The Netherlands). The blocks were cut in a cryotome 

(Leica CM 3050 S, Wetzlar, Germany)) to a thickness of 3 µm. Sections were 

brought on a slide and stored at -80 °C.  

Frozen sections were incubated for 20 min at room temperature with a 10 µM 

solution of DHE (Merck Bioscience GmbH, Schwalbach, Germany) in distilled water. 

160 µL were added on each section and covered with a cover slip. An Eclipse 55i 

fluorescence microscope (Nikon GmbH, Düsseldorf, Germany) at 200-fold 

magnification and a Fluoro Pro MP 5000 camera (Intas Science Imaging Instruments 

GmbH, Göttingen, Germany) were used for analysis. At least 10 pictures were taken 

from each animal and the level of fluorescence intensity was calculated with the aid 

of the image analysis system (Cell profiler; 1.0.9717; Broad Institute, Cambridge, 

USA). 
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2.2.5 FRAP analysis 

We used FRAP assay to prove the antioxidative properties of Dacapo grape extract 

and the antioxidative capacity of serum from experimental animals. FRAP assay was 

carried out as described in 2.1.10, using 7 µL of extract or 7 µL of serum. 

 

2.3 STATISTIC 

Statistical calculations were performed using Statistica 8 (StatSoft (Europe) GmbH, 

Hamburg, Germany). For in vitro experiments, if not mentioned otherwise, data from 

at least 3 independent experiments ± standard deviation was depicted. For the 

animal study each group represents 6-7 Ren-2 rats if not mentioned otherwise. 

Individual groups were tested using the Mann Whitney U-test and results were 

considered significant if the p-value was ≤ 0.05.  
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3 RESULTS  

3.1 PART I: INFLUENCE OF PATULIN AND RESVERATROL ON DNA 

STABILITY 

3.1.1 Viability assay after patulin treatment 

Viability assay was used to exclude a potential cytotoxic effect for the concentrations 

of patulin used in genotoxicity assays. Figure 17 shows only slight cytotoxic effects 

for 0.5 µM and 5 µM patulin whereas 50 µM patulin killed almost 80% of cells. 

 

 
 
Figure 17: Viability assay with different concentrations of patulin.  
V79 cells were treated for 4 h with the indicated concentrations of patulin followed by 20 h post-
incubation with cytochalasin B (5 µg/mL). Cells were stained with fluorescein diacetate (viable cells) 
and propidium iodide (dead cells). Data represents the mean of two experiments. 

 

3.1.2 Influence of patulin in micronucleus assay  

Treatment of V79 cells with patulin for 4 h led to a significant, dose-dependent 

formation of micronuclei up to 96 micronuclei per 1000 cells with 0.5 µM patulin. 
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However, with higher doses of patulin the number of micronuclei in mononucleated 

cells was reduced (Figure 18). 

  

Figure 18: Micronucleus (MN) assay with different concentrations of patulin.  
V79 cells were treated for 4 h with the indicated concentrations of patulin followed by 24 h substance-
free post-incubation. 1000 from each of two slides per concentration were checked for the presence of 
micronuclei. Data show means of three experiments + standard error of mean. Significance (p ≤ 0.05; 
Mann Whitney U-test) compared to the control is shown by an asterisk. 

 

3.1.3 Influence of GSH on patulin-induced micronuclei and nucleoplasmic 

bridges 

The micronucleus assay and an analysis of nucleoplasmic bridges were carried out 

to evaluate the genotoxicity of patulin in V79 cells (Figure 19). We used for the 

following experiments cytokinesis blocked micronucleus assay to avoid artefacts by a 

potential treatment-induced inhibition of proliferation. The formation of micronuclei 

increased dose-dependently in BSO-pretreated (GSH-depleted) cells, but increased 

only slightly without BSO pre-treatment. Nucleoplasmic bridges increased 

significantly in BSO-pretreated as well as in not pretreated cells. However, the 

induction of nucleoplasmic bridges occurred at lower concentrations in the BSO-

pretreated cells.  

Cell proliferation was slightly reduced with increasing concentrations of patulin and 

much stronger in BSO-pretreated cells (Figure 19a). At the highest concentration of  
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1 µM patulin, proliferation of the BSO-pretreated cells was almost completely 

blocked, making an evaluation of binucleated cells for micronuclei/nucleoplasmic 

bridges impossible [183]. 

 

 

Figure 19: Induction of micronuclei (MN), proliferation index (Figure 19a) and nucleoplamic bridges 
(NPB) (Figure 19b) in 1000 binucleated (BN) V79 cells.  
Cells were pretreated with PBS buffer (white bars) or 20 µM buthionine sulfoximine (BSO, grey bars) 
for 20 h and then incubated with different concentrations of patulin (4 h treatment and 20 h post-
incubation with cytochalasin B (5µg/mL)). Data show means of three independent experiments + 
standard error of mean.  
Cytokinesis block proliferation index (CBPI) was calculated in 1000 cells per slide using the formula 
CBPI = [MI + 2MII + 3 (MIII +MIV)] with MI-MIV representing the number of cells with one to four 
nuclei. Significance (p ≤ 0.05; Mann Whitney U-test) compared to the control is shown by an asterisk. 
Significance (p ≤ 0.05; Mann Whitney U-test) in BSO pretreated cells is indicated by a hash key [183]. 
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3.1.4 Kinetochore analysis of patulin-induced micronuclei 

Kinetochore-staining was applied to differentiate the origin of micronuclei induced by 

patulin. Figure 20 shows, that patulin induced both kinetochore-positive and -

negative micronuclei with a higher percentage of kinetochore-negative micronuclei. 

Patulin-induced nucleoplasmic bridges were almost all kinetochore-negative (data 

not shown). 

 

 

 

Figure 20: Kinetochore-staining after patulin treatment. V79 cells were incubated for 4 h with patulin 
or solvent, followed by 20 h substance free post-incubation. Kinetochores were stained with CREST 
serum and TRITC labeled secondary antibody. Hoechst 33258 was used for counterstaining. Data 
represents the number of kinetochore-positive/ -negative micronuclei per 1000 binucleated cells 
evaluated in two independent experiments. 

 

3.1.5 Time course of NPB formation after patulin treatment 

Time course of NPB formation after simultaneous incubation with patulin and 

cytochalasin B was used to investigate the generation of nucleoplasmic bridges. The 

time course revealed that nucleoplasmic bridges were already present after 3 h with 

patulin treatment. The number further increased with longer treatment time, reaching 

almost 20% NPB-positive cells after 6h. In contrast the level of micronuclei did not 

change within the first 6 hours after treatment (Figure 21).  
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Figure 21: Induction of micronuclei (MN) and nucleoplamic bridges (NPB)  
Cells were treated with 0.5 µM patulin or solvent control (DMSO) for the indicated time. Cytochalasin B 
(5 µg/mL) was added simultaneously with patulin to all samples. Micronuclei and nucleoplasmic 
bridges were counted in 1000 cells from each of two slides per concentration. Data show the means of 
two independent experiments + standard error of mean [183]. 

 

3.1.6 Influence of patulin in a modified version of comet assay 

A modified version of alkaline comet assay was performed to investigate the potential 

cross-linking properties of patulin. Figure 22 shows the DNA damage induced by 

H2O2 with or without pre-treatment with the known cross-linking agent cis-platin or 

patulin. If there are cross-links, the DNA can migrate less after H2O2 treatment. DNA 

migration was decreased in patulin pretreated cells and significantly reduced in cis-

platin-pretreated cells compared to H2O2 alone [183]. 
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Figure 22: The influence of patulin or the known cross-linking agent cis-platin (Cispt) on the DNA 
migration of H2O2 treated V79 cells.  
Cells were treated with solvent control (Co), 0.5 µM patulin (Pat) or 10 µM cis-platin for 4 h. 
Subsequently 100 µM H2O2 or solvent control was added in fresh medium for 30 min. Left side: 
damage of control, patulin and cis-platin (post-incubation with solvent control) and control with H2O2-
post-incubation. Right side: control, patulin and cis-platin with H2O2-post-incubation. Basic damage of 
each pre-treatment was substracted respectively from the H2O2 treated samples. Data represent 
means of five independent experiments + standard error of mean. Left side: Highly significant 
difference (p ≤ 0.01; Mann Whitney U-test) compared to the control is shown by a double asterisk. 
Right side: Significance (p ≤ 0.05; Mann Whitney U-test) compared to the H2O2 treated control is 
shown by a hash key. Insert: representative picture of a cell in comet assay [183]. 

 

3.1.7 Effects of patulin on tubulin 

To investigate if the high reactivity of patulin on cellular macromolecules also affects 

the formation of tubulin fibers from its subunits, a well known mechanism of 

genotoxic micronucleus forming spindle poisons such as colcemide, α and ɣ- tubulin-

staining for detection of mitotic spindles (α) and centrioles (ɣ) was employed.  

Microscopic inspection did not reveal a compromised formation of spindle fibers after 

patulin treatment at the lower concentration of 0.5 µM, whereas the higher cytotoxic 

concentrations showed a clear conglutination of the cytoskeleton (Figure 23). 

However, an eyecatching phenomenon of after incubation of cells with 0.5 µM patulin 

was the very high number of mitoses containing multipolar spindles (Figure 24, left 

side), which was about 25 times increased compared to control cells (Figure 25, left 
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side). This was associated with an equal increase (Figure 25, right side) of cells with 

supernumerary centrosomes as shown by ɣ-tubulin-staining (Figure 24, right side).  

 

 

Figure 23: Effects of patulin treatment on tubulin polymerization.Cells were treated for 6 h with 
different concentrations of patulin. Pictures show representative cells, whose cytoskeleton was stained 
with a FITC labeled antibody against α-tubulin 
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Figure 24: Binucleated and multinucleated cells (left side) and normal and multipolar mitoses (right 
side) after 4 h incubation followed by 20 h postincubation with cytochalasin B (5 µg/mL). Cells in the 
upper part were treated with solvent. Pictures of the lower part show cells treated with 0.5 µM patulin. 
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Figure 25: Induction of mitoses with > 2 spindles (left side) and > 2 centrosomes (right side) in V79 
cells exposed to patulin (Pat).  
Cells were treated with 0.5 µM patulin or solvent control (Co.) for 4 h, followed by 20 h substance free 
post-incubation. Data indicate the means of three independent experiments + standard error of mean. 
Significance (p ≤ 0.05; Mann Whitney U-test) compared to the control (Co) is shown by an asterisk 
[183]. 

 
Figure 26: Number of mitoses per 1000 cells after a 4 h treatment with patulin or solvent control, 
followed by 20 h substance free post-incubation. Cells were stained with an FITC labeled antibody 
against α-tubulin. Data indicate the means of three independent experiments + standard error of 
mean. Significance (p ≤ 0.05; Mann Whitney U-test) compared to the control (Co.) is shown by an 
asterisk. 
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The mitotic index was reduced by around one quarter in patulin treated cells (Figure 

26). This was also reflected in a clear increase of cells arrested in G2 phase. 45.5% 

of patulin treated cells were in G2 phase compared to 25.6% of the solvent treated 

cells, indicating a patulin-induced G2 arrest (Figure 27). Patulin incubated cells 

showed additionally an increased number of odd multinucleated cells and disturbed 

mitoses (Figure 28). 

 

 
 

 
Figure 27: Cell cycle analysis 
Cells were treated for 6 h with patulin. Phase of cell cycle was determined by measurement of cellular 
DNA concentration after staining with Hoechst 33342. Data represents the mean of three independent 
experiments + standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) compared to the 
control (Co.) is shown by an asterisk. 
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Figure 28: Upper part: binucleated cell (left side) and control mitosis (right side) after 4 h solvent 
treatment and 20 h post-incuabtion with cytochalasin B (5 µg/mL). Lower part: multinucleated cell (left 
side) and disturbed mitosis (right side) after 4 h treatment with 0.5 µM patulin and 20 h post-incubation 
with cytochalasin B (5 µg/mL). 

 

3.1.8 Comet assay with patulin  

We used comet assay to investigate the potential strand breaking properties of 

patulin at different concentrations. Patulin induced a significant, dose-dependent 

increase of DNA damage in comet assay (Figure 29). The higher concentration of  

50 µM led to the formation of so called ghost cells in which DNA damage can not be 

evaluated properly. This concentration was therefore excluded from analysis (data 

not shown). 
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Figure 29: Measurement of DNA damage in comet assay  
V79 cells were treated for 4 h with indicated concentrations of patulin. Data represent means of three 
independent experiments + standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) 
compared to the control is shown by an asterisk 

 

3.1.9 Influence of GSH in comet assay 

To further investigate the influence of GSH on DNA stability we used comet assay in 

BSO-pretreated cells. BSO treatment and patulin treatment at low concentrations 

(0.5 µM) induced an increasement of strand breaks of around 100%, whereas a 

higher damage was seen in cells treated with 5 µM patulin. Genotoxicity was 

increased in a synergistic manner when patulin 0.5 µM treated cells were 

preincubated with BSO. No difference was seen for patulin 5 µM treated cells with or 

without BSO pre-treatment (Figure 30). 
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Figure 30: Measurement of DNA damage in Comet assay 
V79 cells were pretreated with PBS buffer or 20 µM buthionine sulfoximine (BSO) for 20 h and then 
incubated with different concentrations of patulin (4 h treatment). Data represent means of three 
independent experiments + standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) 
compared to the control is shown by an asterisk. 

 

3.1.10 Oxidative stress measurement after patulin treatment 

We used DCF measurement to check if the patulin-induced damage in comet assay 

is also reflected in an increased oxidative stress after patulin treatment. In contrast to 

the results from comet assay patulin at a concentration of 0.5 µM patulin did not 

cause any effect, whereas the incubation with 5 µM doubled the level of oxidative 

stress in cells (Figure 31). 
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Figure 31: Measurement of oxidative stress 
V79 cells were treated for 4 h with indicated concentrations of patulin. Data represent means of three 
independent experiments + standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) 
compared to the control is shown by an asterisk 

 

3.1.11 Cellular GSH level after patulin treatment 

We used cell cytometry to investigate the influence of patulin on cellular glutathione 

content after different incubation times. Figure 32 shows a dose-dependent decrease 

of glutathione level after 30 min incubation with patulin. However, after 24 h patulin 

led to a significant induction of cellular glutathione synthesis (Figure 33). Due to the 

high cytotoxicity of patulin and the decreased proliferation at a concentration of  

50 µM, the glutathione level in these cells could not be evaluated after 24 h. 
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Figure 32: Cellular GSH level after 30 min incubation with the indicated concentrations of patulin. 
Analysis was done by flow cytometry using the dye monochlorobimane. Data represent means of 
three independent experiments + standard error of mean. 

 

 

Figure 33: Cellular GSH level after 24 h incubation with the indicated concentrations of patulin. 
Analysis was done by flow cytometry using the dye monochlorobimane. Data represent means of four 
independent experiments + standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) 
compared to the control is shown by an asterisk. 
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3.1.12 Effects of resveratrol on patulin-induced micronucleus formation 

We incubated V79 cells with 0.5 µM patulin and different concentrations of 

resveratrol to investigate a potential protective effect of the antioxidant resveratrol on 

patulin-induced genotoxicity. With 1 µM resveratrol no protective effect was observed 

whereas resveratrol in a concentration of 10 µM showed a small reduction of patulin-

induced micronuclei formation. However, resveratrol in higher concentration led to a 

strong micronuclei formation itself and had no more protective effects on micronuclei 

induction by patulin. Proliferation of cells was reduced by patulin (0.5 µM) and 

resveratrol in higher concentrations (100 µM) as well (Figure 34). 

 
 
Figure 34: Effects of resveratrol on patulin-induced micronucleus (MN) formation. 
V79 cells were incubated with the indicated concentrations of resveratrol (4.5 h), patulin (4 h) or 
combinations of both. After the treatment cells were incubated for further 24 h with cytochalasin         
(5 µg/mL). Micronulei frequency was evaluated in 1000 binucleated (BN) cells from each of two slides. 
Cytokinesis block proliferation index (CBPI) was calculated in 1000 cells per slide using the formula 
CBPI = [MI + 2MII + 3 (MIII +MIV)] with MI-MIV representing the number of cells with one to four 
nuclei. Significance (p ≤ 0.05; Mann Whitney U-test) compared to the control is shown by an asterisk. 

 

3.1.13 Kinetochore analysis of resveratrol-induced micronuclei 

Treatment with higher concentrations led to an increased number of micronuclei after 

20 h post-incubation. Kinetochore-analysis with a CREST serum and rhodamine 

labeled antibody proved that the resveratrol-induced micronuclei were apparently all 
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negative. Compared to the control level no kinetochore-positive micronuclei were 

induced (Figure 35). 

 

 
 
Figure 35: Kinetochore-staining after resveratrol treatment 
V79 cells were incubated for 4 h with patulin or solvent, followed by 20 h substance free post-
incubation. Data represents the number of kinetochore-positive/ -negative micronuclei per 1000 
binucleated cells. 

 

3.1.14 Viability after resveratrol treatment 

Viability assay with resveratrol under the conditions of micronucleus assay (4 h 

incubation, 20 h post-incubations with cytochalasin B (5 µg/mL)) indicated a slight 

cytotoxic effect of resveratrol at higher concentrations (Figure 36). 
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Figure 36: Viability assay with different concentrations of resveratrol 
V79 cells were treated for 4 h with the indicated concentrations of resveratrol or H2O2 as a positive 
control for cytotoxicity, followed by 20 h post-incubation with cytochalasin B (5 µg/mL). Cells were 
stained with fluorescein diacetate (viable cells) and Gel Red (dead cells). Data represents the mean of 
two experiments + standard error of mean. 
 

 

3.1.15 FRAP assay with resveratrol 

We used FRAP assay to prove the the antioxidant properties of resveratrol, which 

are attributed to this polyphenol in literature. Figure 37 shows a dose-dependent 

increase of antioxidative capacity. Higher concentrations of resveratrol led to a 

saturation of absorbance (data not shown). 
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Figure 37: Measurement of antioxidative capacity of resveratrol with FRAP-Assay (ferric reducing 
ability of plasma). Indicated concentration were incubated for 6 min with FRAP-reagent and analyzed 
at 593 nm with a spectrophotometer. Data represents the mean of three experiments + standard error 
of mean 

 

3.1.16 Oxidative stress after resveratrol treatment 

DCF assay was used to investigate if the antioxidative properties shown in a cell free 

environment are also present on cellular level. Figure 38 shows that 24 h after 

treatment resveratrol did not exert any antioxidative properties but led to a slight 

increased oxidative stress in V79 cells as shown by an increased fluorescence of 

difluorescein diacetate. 
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Figure 38: Measurement of oxidative stress 
V79 cells were treated for 24 h with indicated concentrations of resveratrol. Analysis was done by flow 
cytometry using the dye 2',7'-dichlorodihydrofluorescein diacetate. Data represent means of three 
independent experiments + standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) 
compared to the control is shown by an asterisk. 

3.1.17 Cellular GSH level after resveratrol treatment 

 
To investigate a potential relationship of resveratrol-induced oxidative stress and 

cellular GSH level, we repeated the experiment under the same incubation 

conditions, followed by GSH measurement. Figure 39 shows that resveratrol-induced 

stress was accompanied by an increase of cellular GSH concentration. Thereby 

incubation of V79 cells with 100 µM caused almost a doubling of cellular GSH level. 
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Figure 39: Cellular GSH level after 24 h incubation with resveratrol. Analysis was done by flow 
cytometry using the dye monochlorobimane. Data represent means of three independent experiments 
+ standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) compared to the control is 
shown by an asterisk. 

 

 



RESULTS 62 
 

 

3.2 PART II: EFFECTS OF AN ANTHOCYANINS RICH EXCTRACT ON 

HYPERTENSIVE RATS 

The aim of this study was to investigate the potential protective effects of an 

anthocyanin-rich Dacapo grape extract in hypertensive Ren-2 rats as a model for 

oxidative stress in vivo. 

 

3.2.1 General physical conditions 

After two weeks small differences in the body weight were observable, with ramipril 

treated animals showing little higher values than the other two groups without 

medication (Figure 40). SD-rats of the same age showed a body weight of 318 ± 16 g 

(mean ± SEM). Ren-2 rats without medication also showed a continuous decrease in 

food intake over the study time, whereas the food consumption of ramipril treated 

rats was more stable (Figure 41). In contrast the untreated group and the 

anthocyanin group showed an elevated intake of water (Figure42).  

 

 
Figure 40: Body weight of Ren-2 rats after 2 week treatment with Dacapo grape extract, ramipril or 
without treatment. Data represents the mean bodyweight of 6 extract treated rats, 6 ramipril treated 
rats and 7 untreated rats + standard error of mean. Significance (p ≤ 0.05; Mann Whitney U-test) 
compared to the untreated group is shown by an asterisk. 
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Figure 41: Daily food intake (g) of Ren-2 rats during 2 week treatment with Dacapo grape extract, 
ramipril or without treatment. Data represents the mean food intake of 6 extract treated rats, 6 ramipril 
treated rats and 7 untreated rats. 

 

 
Figure 42: Water consumption of Ren-2 rats over 24 h after 2 week treatment with Dacapo grape 
extract, ramipril or without treatment. Individual water consumption was measured during 24 h 
metabolism cage housing. Data represents the mean water consumption of 6 extract treated rats, 6 
ramipril treated rats and 6 untreated rats 

 
Heart size of Ren-2 rats without medication was increased in comparison to the 

ramipril treated animals (Figure 43). The weight of kidneys was nearly equal for all 

three treatment groups (data not shown). 
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Figure 43: Heart weight in % of body weight of Ren-2 rats after 2 week treatment with Dacapo grape 
extract, ramipril or without treatment. Data represents the mean heart weight of 6 extract treated rats, 
6 ramipril treated rats and 7 untreated rats + standard error of mean. Significance (p ≤ 0.05; Mann 
Whitney U-test) compared to ramipril treated animals is shown by an asterisk. 

 

3.2.2 Blood pressure 

Changes in blood pressure were tracked over the first week of the experiment 

(Figure 44). The stop of antihypertensive treatment in the untreated group induced a 

significant increase of systolic (Figure 45) and diastolic (Figure 46) blood pressure 

compared to the ramipril group, whose blood pressure kept nearly constant. The 

extract treated group showed also an elevation of blood pressure, which was 

however less prominent than in the untreated group. 
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Figure 44: Change in systolic and diastolic blood pressure of Ren-2 rats over one week treatment with 
Dacapo grape extract, ramipril or without treatment. Data represents the mean systolic or diastolic 
blood pressure values of 6 extract treated rats, 6 ramipril treated rats and 6 untreated rats + standard 
error of mean. 

 

 
 

Figure 45: Change in systolic blood pressure of Ren-2 rats after one week treatment with Dacapo 
grape extract, ramipril or without treatment. Data represents the mean change of systolic blood 
pressure of 6 extract treated rats, 6 ramipril treated rats and 6 untreated rats + standard error of mean. 
Significance (p ≤ 0.05; Mann Whitney U-test) compared to ramipril treated animals is shown by an 
asterisk. 
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Figure 46: Change in diastolic blood pressure of Ren-2 rats after one week treatment with Dacapo 
grape extract, ramipril or without treatment. Data represents the mean change of systolic blood 
pressure of 6 extract treated rats, 6 ramipril treated rats and 6 untreated rats + standard error of mean. 
Significance (p ≤ 0.05; Mann Whitney U-test) compared to ramipril treated animals is shown by an 
asterisk. 

 

3.2.3 Comet assay 

We used isolated cells from kidney and liver to investigate DNA damage in comet 

assay. The results from comet assay show a small variance of damage for kidney 

cells. However, there was a significant lower DNA damage in extract treated rats 

compared to the untreated group (Figure 47). 

Similar results were obtained in the comet assay with liver cells, indicating a small 

reduction of DNA damage in the extract group compared to the other two groups.  

MMS treated V79 cells were used as a positive control and proved the efficiency of 

the experimental conditions (data not shown). 
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Figure 47: Comet assay with kidney cells. 50 cells from each of two slides per individuum were 
evaluated for the percentage of DNA in tail. Data is normalized to the mean of ramipril treated group 
and represents the mean damage of 6 extract treated rats, 6 ramipril treated rats and 6 untreated rats 
+ standard error of mean Significance (p ≤ 0.05; Mann Whitney U-test) compared to extract treated 
animals is shown by an asterisk. 

 

 
Figure 48: Comet assay with liver cells. 50 cells from each of two slides per individuum were 
evaluated for the percentage of DNA in tail. Data is normalized to the mean of ramipril treated group 
and represents the mean damage of 6 extract treated rats, 6 ramipril treated rats and 6 untreated rats 
+ standard error of mean. 
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3.2.4 ɣ-H2AX-staining 

ɣ-H2AX-staining was applied to investigate DNA damage in kidney, heart and small 

intestine of the experimental animals. To equalize the results from 

immunohistochemistry kidney was divided into different sections. In average extract 

treated animals show the lowest damage of all three groups. Standard error of mean 

was big between the individual animals from each group resulting from the high 

variability of damage between single regions of one section. Results from papilla 

show for the anthocyanin fed animals a half as large damage as for the other groups. 

Similar results were seen for medulla. In cortex the number of ɣ-H2AX positive cells 

in extract fed rats and ramipril treated rats was on an equal level, whereas untreated 

rats showed a twofold higher damage (Figure 49).  

The result of ɣ-H2AX-staining in the heart indicate clearly a higher amount of double 

strand breaks in untreated rats compared to the extract group. The values for rats 

with ramipril medication range in the middle between the other two groups (Figure 

50). 

ɣ-H2AX-staining of small intestine showed an around threefold higher DNA damage 

in extract treated group compared to the ramipril medicated animals, whereas the 

number of ɣ-H2AX positive cells was only slightly increased in the untreated group 

(Figure 51). 
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Figure 49: Percentage of ɣ-H2AX positive cells in papilla (upper figure), medulla (middle figure) and 
cortex (lower figure). Paraffin sections were stained with an antibody against ɣ-H2AX to check for 
double strand breaks. Data represents the mean of 6 extract treated rats, 6 ramipril treated rats and 7 
untreated rats + standard error of mean. 
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Figure 50: Percentage of ɣ-H2AX positive cells in heart. Paraffin sections were stained with an 
antibody against ɣ-H2AX to check for double strand breaks. Data represents the mean of 6 extract 
treated rats, 6 ramipril treated rats and 7 untreated rats + standard error of mean. 

 

 

 

Figure 51: Percentage of ɣ-H2AX positive cells in small intestine. Paraffin sections were stained with 
an antibody against ɣ-H2AX to check for double strand breaks. Data represents the mean of 6 extract 
treated rats, 6 ramipril treated rats and 7 untreated rats + standard error of mean. 
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3.2.5 DHE-staining 

DHE-staining of kidney, heart and small intestine was used to investigate potential 

differences in the level of ROS in experimental animals. DHE-staining of tissues did 

not reveal significant differences between the different treatment groups. There was 

a slightly reduced level of oxidative stress in the group treated with the antioxidant 

grape extract. 

In the renal cortex levels for ramipril medicated animals and extract treated animal 

were nearly equal and the fluorescence for untreated rats was slightly increased 

(Figure 52). In heart (Figure 53) and small intestine (Figure 54) levels for Ren-2 rats 

with ramipril medication and untreated rats were equal and just the group fed with 

extract showed a slightly reduced DHE fluorescence. 

 

 
Figure 52: DHE-staining of kidney tissue. Frozen sections were stained with DHE to evaluate the 
cellular level of ROS. Data represents the mean of 6 extract treated rats, 6 ramipril treated rats and 7 
untreated rats + standard error of mean. 
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Figure 53: DHE-staining of heart tissue. Frozen sections were stained with DHE to evaluate the 
cellular level of ROS. Data represents the mean of 6 extract treated rats, 6 ramipril treated rats and 7 
untreated rats + standard error of mean. 

 
Figure 54: DHE-staining of tissue from small intestine. Frozen sections were stained with DHE to 
evaluate the cellular level ROS. Data represents the mean of 6 extract treated rats, 6 ramipril treated 
rats and 7 untreated rats + standard error of mean. 
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3.2.6  Frap extract  

We used FRAP assay to investigate the antioxidative properties of anthocyanin-rich 

Dacapo grape extract in vitro. Figure 55 shows a dose-dependent increase of 

antioxidative capacity with increasing concentration of extract. 

 

 
 

Figure 55: Measurement of antioxidative capacity of Dacapo grape extract with FRAP-assay. 
Indicated concentration were incubated for 6 min with FRAP-reagent and analyzed at 593 nm with a 
spectrophotometer. Data represents the mean of three experiments + standard error of mean 

 

3.2.7 Plasma antioxidant capacity assessed by the FRAP assay 

We applied FRAP assay also to investigate if the antioxidative properties seen in 

vitro were also reflected in an increased antioxidative capacity in serum. However, no 

increased ferric reducing ability was detected in extract fed animals of our study 

(Figure 56). 
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Figure 56: Measurement of antioxidative capacity of serum with FRAP assay. Serum from each 
animal was incubated for 6 min with FRAP reagent and analyzed at 593 nm with a spectrophotometer. 
Data represents the mean FRAP value from animals of each group (extract: n=4, ramipril: n=2, 
untreated: n=6). 
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4 DISCUSSION 

4.1 PART I: INFLUENCE OF PATULIN AND RESVERATROL ON DNA 

STABILITY 

 

The mycotoxins patulin is a well-known mutagenic substance, which is frequently 

found in spoilt fruits and related products. However, the genotoxic effects of patulin 

are not yet completely clarified. The aim of the first part of this study was therefore to 

investigate further steps of patulin-induced genotoxicity. 

The micronucleus assay revealed a dose-dependent induction of micronuclei. 

However, at high doses the number of micronuclei decreased, indicating a reduced 

cell proliferation. This was also reflected in viability assay, showing a dose-

dependent increase of dead cells after patulin treatment. Therefore, the following 

micronucleus experiments were carried out with cytochalasin B to ensure that all 

evaluated cells have passed mitosis since the treatment. 

After staining centromeres with an TRITC labeled antibody, kinetochore-positive and 

–negative micronuclei were present, which is in agreement with the results of Pfeiffer 

et al. [58]. Microscopic evaluation revealed a striking number of nucleoplasmic 

bridges, which were formed directly after patulin treatment. Nucleoplasmic bridges 

are generally explained by the disturbed distribution of dicentric chromosomes during 

mitosis. Dicentric chromosomes which are pulled to opposite poles during mitosis 

lead to the formation of anaphase bridges, which in the absence of rupture form 

nucleoplasmic bridges. However, for the formation of dicentric chromosomes, a 

breakage and reunion event is needed [192]. This cannot be passed off within 3 h, 

the shortest time after which nucleoplasmic bridges were observed in our study. 

Furthermore, the mechanism of breakage-fusion-bridge-cycles is thought to include 

the formation of micronuclei accompanying the generation of nucleoplasmic bridges 

[192]. Such simultaneous appearance of micronuclei and nucleoplasmic bridges was 

rarely seen during microscopic evaluation of patulin-treated cells in our experiments.  

Therefore, another mechanism must be responsible for the formation of 

nucleoplasmic bridges by patulin. We hypothesized that cross-linking of sister-

chromatids by patulin provides an explanation [183]. If sister chromatids cannot 
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separate, but are pulled to the two opposite spindle poles, the chromatin must either 

rupture or a bridge is formed. The cross-linking ability of patulin was proved in a 

modified version of comet assay [183] and is in agreement with previous 

publications. Fliege and Metzler reported that patulin causes protein-protein cross-

links. Patulin was not only able to react with the thiol group of cysteine but also with 

side chains of lysine, histidine and α-aminogroups. After the first Michael-like addition 

the resulting primary monoadduct was shown to be even more reactive with further 

nucleophiles [193]. Later, the same working group has shown as well that the 

treatment of V79 cells with patulin lead to irreversible DNA-DNA cross-links [194]. 

Moreover, analysis of the yeast transcriptome upon challenge with patulin has 

revealed the induction of genes involved in repair of alkylation damage among others 

[195]. An increased cellular DNA repair was also reported by Lee and Roschenthaler 

[57]. In case of unsuccessful DNA repair a later rupture of bridges may lead to the 

formation of chromatin fragments, which are then enclosed into micronuclei [196]. 

This might particularly be the case if cytokinesis is not impeded by cytochalasin B 

and could explain why substance-free post-incubation of cells leads to higher 

numbers of micronuclei compared to experiments with cytochalasin B treatment after 

patulin incubation. 

This hypothesis of action by patulin through cross-linking would also be in agreement 

with our observations made after GSH depletion with the synthesis inhibitor BSO, 

which significantly increased the formation of micronuclei and nucleoplasmic bridges 

in cells incubated with patulin [183]. GSH has been supposed to protect cells by 

inactivation of substances through direct binding, increased metabolism and 

detoxification of free radicals. The protective effect of cellular GSH against cross-

linking agents has been described in several studies. It was suggested that GSH 

either inhibits the reaction of cross-linking agents with DNA or prevents the 

monoadducts from rearranging to bifunctional adducts [197]. Cells exposed to BSO 

before drug treatment showed a significant increase of DNA interstrand cross-links 

[198]. The high susceptibility of V79 cells to patulin might also be based on their 

relative low level of GSH (11.3 nmol/mg cellular protein) [58]. Cells with an high GSH 

level in comparison to V79 such as HepG2 [199] showed a lower level of 

micronucleus and nucleoplasmic bridge formation upon patulin treatment. Under the 

given incubation conditions patulin led to a 1.3 times higher number of micronuclei 
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and 2.7 times higher number of NPB in HepG2, but to an elevation of 2.3 times more 

micronuclei and 9.8 times more NPB in V79 (unpublished data).  

One of the molecules which might be affected by the high reactivity of patulin is 

tubulin, as an important constituent of the mitotic apparatus. Patulin impeded cell-free 

microtubule polymerization at higher concentrations (50-200 µM) [58]. It is known that 

accessible sulfhydryl groups are essential for polymerization of microtubuli subunits 

[200]. In cultured hepatoma cells patulin treatment (30 µM) led to disorganization of 

the cytoplasmatic microfilaments similar to effects caused by colchicin [201]. 

Anaphase bridges [58] and entangled chromatids [76] indicate a potential mitotic 

disturbance by patulin. 

Therefore, we applied staining of α-tubulin to investigate the effects of patulin on 

mitotic spindles. Cells were exposed to patulin under similar conditions as in 

micronucleus assay. The formation of fibers from the tubulin subunits did not seem to 

be affected at the concentration used in genotoxicity assays, but cytoskeleton was 

compromised at higher patulin concentrations. However, the number of multipolar 

mitoses was strikingly elevated after patulin treatment. Staining of ɣ-tubulin was 

carried out to show that supernumerary spindles were connected with centrosome 

amplification [183]. 

Centrosomes consist during G1 phase of two centrioles which are supplemented 

during S phase by two procentrioles. In late G2 phase, the two centrosomes each 

containing a parental and a daughter centriole separate to the two poles of the mitotic 

spindle [202]. 

Centrosome amplification can be a passive consequence of an elongated cell cycle 

[204]. The generation of supernumerary centrosomes has been described for an 

extended S-phase [205, 206] as well as for an elongated G2-phase [204]. We 

detected a patulin-induced G2 arrest after 6 h, which is an accordance with the 

results of Pfeiffer et al. [58] and Schumacher et al. [76], who describe a mitotic and/or 

G2 arrest for patulin-treated V79 cells. Thus, patulin might lead to centrosome 

amplification via DNA damage-related cell cycle arrest. Patulin was also reported to 

repress RAD51 expression in BY4743 yeast cells [207]. Deficiency of RAD51 is 

known to lead to the formation of supernumerary centrosomes, possibly by the 

reduced ability of RAD51 deficient cells to repair DNA damage and thereby suffering 

from an arrest in G2 phase [204]. 
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Figure 57: The centrosome cycle 
Schematic illustration of the main phases of the centrosome cycle (centriole disengagement, centriole 
duplication and elongation, centriole maturation and centrosome separation). A pair of mother 
centrioles is supplemented during S phase by two daughter centrioles. After elongation of daughter 
centrioles centrosomes split in G2 phase and migrate to the opposite spindle poles.  Modified after 
Bettencourt-Dias and Glover [203]. 

 

 
 
Figure 58: Potential pathway of patulin-induced DNA damage 
Patulin-induced centrosome amplification might be caused by a direct interaction of patulin with 
centrosome proteins or by a patulin-induced DNA damage resulting in cell cycle arrest and therefore 
desynchronisation of DNA synthesis and centrosome doubling 

 

As another possible pathway for centromsome amplification, cells lacking the tumor 

suppressor p53 overduplicate centrosomes, if they are arrested in S phase with 
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substances such as hydroxyurea or aphidicolin [205, 208]. The absence of functional 

p53 in V79 cells [209] might therefore contribute to the patulin-induced formation of 

supernumerary centrosomes. 

Induction of p53 by patulin was reported in various species and cell lines with 

functional p53 [71, 80, 210] and might indicate a p53 mediated cell cycle arrest or 

apoptosis as a response to patulin-induced DNA damage. We used comet assay to 

evaluate a potential dose response relationship for patulin. The induction of strand 

breaks at low concentrations supports the finding of clastogenic effects seen in 

kinetochore-staining. This is in accordance with the results of previous studies which 

also described the strand breaking properties of patulin [77, 87, 211, 212] 

The pre-treatment of cells with BSO increased DNA damage of lower doses patulin 

whereas there was no difference with 5 µM patulin for BSO and solvent pretreated 

cells. This indicates that the cellular GSH can detoxify parts of the dose at lower 

patulin concentrations, whereas the protecting impact of natural GSH in cells was 

negligible at higher levels of patulin. The protective effects of cellular GSH against 

patulin-induced damage were also described in some other studies [76, 86, 87, 210]. 

Zhou et al. attribute the protective effects of GSH on oxidative stress-induced by 

patulin. Indeed a few studies report the ability of patulin to induce oxidative stress. 

Measurement of ROS with DCF assay showed in a few studies an induction of 

oxidative stress after patulin treatment [35, 80, 210, 213, 214]. 

The incubation of cells with patulin leads to an amplified TBARS (thiobarbituric acid 

reactive substances) formation indicating an increase in lipid peroxidation [210, 213-

215]. The raise of ROS also led to oxidative DNA damage, as shown in FPG 

(formamidopyrimidine DNA glycosylase) comet and 8-oxo-dG measurement [82, 

214]. 

However, almost all the above mentioned studies were accomplished with 

concentrations in a range from 5 – 100 µM patulin. A publication of Schumacher et al. 

does not show any clastogenicity or induction of FPG-labil sites at non-cytotoxic 

concentrations [194]. 

We applied DCF assay to investigate the potential prooxidative effects of patulin in 

low doses under our experimental conditions. No effects were seen with 0.5 µM, the 

concentration generally used in genotoxicity assays of our study.  

The impact of cellular GSH on patulin-induced genotoxicity has been reported in 

several studies. Depletion of GSH led to elevated number of micronuclei [87], 
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increased damage in comet assay [210], cell cycle delay, enhanced mutant number 

and a lower viability [76]. Therefore we investigated the effects of patulin on GSH 

homeostasis of V79 cells. We saw a slight reduction of cellular GSH level after 

incubation of cells with high doses of patulin (50 µM) for 30 min and a later increase 

of GSH concentrations. This is in accordance with the results of Schumacher et al., 

who also detected 24 h after patulin treatment a dose-dependent increase in GSH 

level [76]. Other studies – most of them with a short incubation time - report a 

depletion of GSH in association with patulin treatment [55, 210, 214-217]. 

The authors mostly suppose a potential consumption of cellular GSH by patulin-

induced free radicals, whereas Schumacher et al. suppose a loss of GSH due to a 

decrease in structural integrity after patulin treatment, referring to the discrepancy 

between the reported effects and ratio of patulin and cellular GSH level [76]. 

However, it seems to be reasonable that depletion of GSH is a short time effect, 

whereas after 24 h the level increases due to an enhanced biosynthesis of GSH as 

an adaptive response.  

We hypothize that cellular levels of reduced GSH are not mainly decreased by an 

oxidation to GSSG but by a direct reaction of GSH with patulin or a loss of GSH due 

to patulin-induced membrane permeability. This would also explain, why de Melo et 

al. found a depletion of cellular GSH but no increased level of GSSG after patulin 

treatment, how one would expect after a ROS-induced oxidation of GSH [55]. 

Therefore, we assume, that patulin has no prooxidative effects at the low genotoxic 

concentrations applied in our study. The impact of glutathione against patulin-

induced damage might be explained by a direct reaction of glutathione with patulin 

leading to the formation of less genotoxic products. 

As mechanism for cytogenetic damage induced by patulin in V79 cells, we suggest 

that cross-linked sister chromatids do not segregate well during mitosis and are 

pulled to the opposite poles forming an anaphase bridge, which converts to a 

nucleoplasmic bridge during cytokinesis. DNA-damage-induced cell cycle 

disturbances may then lead to centrosome amplifications, which cause multipolar 

spindles. The kinetochore-negative micronuclei might be generated by rupture of 

bridges or during repair and replication processes of cross-linked DNA, whereas the 

kinetochore-positive micronuclei are likely the result of the mitotic disturbances. 

Whether this mechanism occurs in vivo after consumption of patulin contaminated 
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food products, for example in individuals with reduced glutathione levels caused by 

inflammation, hypoxia, or enzyme polymorphisms remains to be determined.  

 

 

A few studies describe the protective effects of antioxidants on patulin-induced 

genotoxicity and oxidative stress [80, 81, 214]. These studies attribute the protective 

properties of the employed substances mostly to the scavenging of free radicals 

induced by the potential prooxidant patulin. Therefore we used resveratrol to 

investigate if this antioxidant substance can also reduce the genotoxic effects of 

patulin in lower, non-prooxidative concentrations. 

Small reductions of micronucleus frequencies were seen by co-incubation with 10 µM 

resveratrol. There are several possible mechanisms explaining the protecting effects 

of resveratrol at this concentration. Assuming that patulin is not prooxidative at a 

concentration of 0.5 µM the direct antioxidative properties of resveratrol as a radical 

scavenger [89] might be non-relevant however resveratrol might increase 

detoxification of patulin by inducing enzymes of glutathione system such as 

glutamate cysteine ligase [218], glutathione peroxidase [219] or glutathione S-

transferase [220]. Resveratrol was also described to decrease markedly the oxidation 

of thiol groups after incubation with cis-platin [221]. Similar mechanism might 

influence the high reactivity of patulin towards thiol groups. Resveratrol-induced 

phase II enzyme activity [222] could accelerate the metabolism of xenobiotics such 

as patulin.  

Resveratrol affects many aspects of DNA metabolism such as replication, 

recombination, repair, relaxation and telomere maintenance. Resveratrol, though 

itself not intercalating with DNA, has been shown to revert DNA intercalation by 

stabilization of helical structure and protect DNA therefore against mutagenic 

substances such as patulin [89]. By a putative activation of sirtuin 1 resveratrol might 

accelerate proteins involved in DNA repair such as p53, KU70, NF-κB and FOXO 

proteins. [89]. Resveratrol might counteract the patulin-induced RAD51 suppression 

[207] by its RAD51 upregulating properties [223]. Resveratrol-induced cell cycle 

arrest [224-226] and apoptosis [89] prevents additionally the proliferation of cells with 

genomic damage. 
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However, higher concentrations of resveratrol-induced themselves the formation of 

micronuclei and proliferation inhibition in our experiments. The role of resveratrol on 

genomic damage is controversially discussed. Several publications describe a 

protective effect of resveratrol [222, 227-229]. In contrast there are also many 

publications reporting a resveratrol-induced DNA damage. Resveratrol mediated 

strand scissions were strongly dependent on the presence of copper [230-236]. A 

ternary complex between resveratrol, copper (II) and DNA has been proposed to be 

responsible for DNA cleavage [237].  

Matsuoka et al. described a resveratrol-induced increase in sister chromatid 

exchange and micronuclei [226]. Due to its structural similarity to the synthetic 

estrogen diethylstilbestrol resveratrol was suspected to share its aneugenic 

properties. However, Matsuoka et al. report only a very weak increase of numerical 

chromosome aberrations in Chinese Hamster lung (CHL) cell line [226]. Mitotic 

chromosome displacement was described in L5178Y mouse lymphoma cells but not 

in V79 cells [224]. This is in accordance with our results from kinetochore analysis 

and the data from Schmitt et al. [224] showing only an elevated level of kinetochore-

negative micronuclei but no kinetochore-positive micronuclei in V79 cells. 

Incubation of V79 cells with 100 µM resveratrol led to a marked reduction of viable 

cells. This is in agreement with the results of Matsuoka et al. who also reported a 

dose-dependent decrease of viability in CHL cell line after incubation with low 

concentrations of resveratrol [226]. 

Despite its antioxidative properties proved in FRAP assay, measurement of DCF 

fluorescence showed the induction of oxidative stress in a cellular system. As every 

antioxidant has in fact redox properties prooxidative effects have been described for 

several classes of plant-derived polyphenols [237]. These antioxidants can turn into 

prooxidants via interaction with transition metal ions. The prooxidative properties of 

resveratrol have been investigated by de la Lastra et al. and Heiss et al. [237, 238]. 

Under certain conditions even physiological concentrations of resveratrol (100 pM – 

100 nM) can result in oxidative stress [239]. Incubation of V79 cells with resveratrol 

for 24 h led to a dose-dependent increase of cellular GSH. This is in agreement with 

the results of other studies [218, 222, 240, 241] and might be explained by an 

activation of Nrf2 [240]. Nrf2 can be induced by oxidative stress [242]. This raises the 

general question whether disturbance of glutathione homeostasis results from to 

oxidative stress or leads to oxidative stress [243]. 
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We proved in our study a slight protective effect of resveratrol on patulin-induced 

DNA damage. However, higher concentrations of resveratrol showed genotoxic and 

prooxidative effects themselves. Although it is difficult to compare directly, the 

effective concentrations used in our study (10/ 100 µM ≈ 2.3/ 23 mg/L) correspond to 

the higher concentrations of resveratrol in red wine (1-18 mg/L) [90] and may 

potentially exert deleterious effects in gastro intestinal tract, which is exposed to high 

concentrations of resveratrol after oral ingestion. Due to the low bioavailability only 

concentrations in the lower nano- and micromolar range of unmodified resveratrol are 

reached in plasma. However, concentrations of metabolites can be > 10 times higher 

and potentially take over the effects attributed to resveratrol.  

In this context the intake of resveratrol in high doses e.g. as food supplement should 

be assessed very carefully, since the potential prooxidative and genotoxic properties, 

of resveratrol have not been fully elucidated yet. 
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4.2 PART II: EFFECTS OF AN ANTHOCYANINS RICH EXCTRACT ON 

HYPERTENSIVE RATS 

Epidemiological data as well as in vivo and in vitro studies indicate that diets rich in 

fruits and vegetables may exert protective effects against the development of cancer 

and cardiovascular diseases [244, 245]. These protective effects have often been 

attributed to antioxidative compounds of vegetables. Anthocyanins are well-known 

antioxidants, but there is a controversial discussion about their benefit on health 

aspects. Therefore we tried to investigate in this part of the study the effects of an 

anthocyanin-rich diet on hypertension, oxidative stress and DNA damage in Ren-2 

rats. 

The planned period for the treatment and blood pressure measurement was four 

weeks, but the experiment was stopped ahead of schedule after aggravation of 

health status and premature decease of four animals. A higher mortality in Ren-2 rats 

was also described by Langheinrich et al. [173] and Pinto et al. [177]. Homozygous 

Ren-2 rats developed excessive hypertension and died from cardiovascular 

complications such as heart and kidney failure or stroke, if they were not medicated 

with an ACE inhibitor [177]. Animals show functional and biochemical markers of a 

cardiac insufficiency and cardiovascular hypertrophy in their study. Inhibition of the 

renin-angiotensin system by ACE inhibitors and AT1 receptor antagonists effectively 

lowered blood pressure, attenuated the development of cardiac hypertrophy and 

improved endothelium dependent relaxation [166]. 

Body weight of Ren-2 rats in our study was in general low and values were reduced 

in comparison to non-transgenic age-matched littermates. This is contradictory to the 

data observed in other studies [166, 246]. Discrepancies might reflect the different 

genetical background of Ren-2 strains or the effects of longtime inbreeding.  

Small differences in body weight were observed after two weeks of treatment. The 

slightly reduced body weight of untreated and extract treated group corresponds to 

the decreased food intake by these animals and might be related with general 

aggravation of health status after the start of the experiment. 

Untreated or extract treated Ren-2 rats consumed greater amount of water compared 

to the group with ACE inhibitor medication. This might be explained by the elevated 

levels of angiotensin II, which is well known for its dipsogenic properties [247]. 
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Szczepanska-Sadowska et al. described for Ren-2 rats increased concentrations of 

angiotensin II in brain regions, involved in regulation of body fluid balance [248]. 

However, this study found also an increased food ingestion by Ren-2 rats compared 

to age-matched control rats, which was not present in our study (data not shown). 

Weighting of organs at the end of the experiment revealed an increased heart size of 

untreated and extract treated group compared to the ramipril medicated group. 

Similar heart to body weight ratio in untreated Ren-2 rats was also described by 

Tschudi et al. [246]. Pinto et al. observed the development of cardiac hypertrophy in 

untreated transgenic Ren-2 rats [177]. Some authors attribute cardiac hypertrophy 

and end organ damage to the raised RAS system [177]. Others place responsibility 

on the increased blood pressure [249] or describe a contribution of elevated blood 

pressure and augmented RAS system [176]. 

The increased heart size of not-medicated animals might therefore reflect an 

adaptive response to the increased burden by higher blood pressure or is related on 

potentially augmented concentrations of angiotensin II in various tissues compared to 

the ACE inhibitor treated group. 

Johnson et al. [250] have investigated sexual dimorphism in the cardiovascular 

parameters between male and female SD and Ren-2 rats. They describe for nearly 

all the endpoints a worse prognosis for Ren-2 rats compared to the SD control 

animals and between the two genders worse values for the male Ren-2 rats. The 

study describes the relative protection of females compared with males in 

development of hypertension, autonomic dysfunction (e.g. baroreflex sensitivity and 

heart rate variability) and associated end organ damage. Female Ren-2 rats 

demonstrated a 20-30 mmHg lower systolic blood pressure compared to their male 

counterparts. 

An early onset of hypertension in homozygotous Ren-2 rats was reported by Lee et 

al. [176] and Mullins et al. [251], who describes a beginning of hypertension at the 

age of four weeks reaching a maximum by nine weeks. In our study blood pressure 

increased significantly in Ren-2 rats after one week deprivation of antihypertensive 

medication. Systolic blood pressure of untreated rats reached one week after the 

beginning of experiment values of 163 ± 7 mmHg (mean ± SEM). These values are 

much lower than the blood pressure of 239 ± 8 mmHg (mean ± SEM) in 12 week old 

Ren-2 rats reported by Tschudi et al. [246]. However, in their study, rats were grown 
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up without medication and it seems reasonable, that blood pressure would have 

further increased in our study if the unmedicated period had been longer. 

Unfortunately, blood pressure could not be measured successfully anymore after the 

first week because rats moved excessively and were rather agitated. 

Raised activity of the renin-angiotensin system in Ren-2 rats was reported to 

increase anxiety, which could be reversed by a treatment with the ACE inhibitor 

ramipril [252]. Elevated anxiety particularly in unmedicated Ren-2 rats might have 

influenced the problems of blood pressure measurement but also the blood pressure 

values themselves.  

Activation of the renin-angiotensin system in tissue enhances the vascular production 

of ROS in part through activation of membrane bound NADH and NADPH oxidase 

[253]. Angiotensin II leads to an increased formation of ROS in vascular tissue [254] 

and kidney [255, 256]. Superoxide anion and H2O2 can act as second messengers in 

angiotensin II mediated signaling but in an excess level they lead to inflammation and 

cellular dysfunction [257].  

The protective effects of the anthocyanin-rich extract in our study might be related 

with its antioxidative properties. Hypertension is associated with increased oxidative 

stress. However, there is still a debate whether oxidative stress is a cause or a result 

of hypertension [258]. Several studies describe the important role of oxidative stress 

for the pathogenesis of essential hypertension [259, 260] 

Oxidative stress may contribute to the generation of hypertension via a number of 

possible mechanisms. These include among others quenching of the vasodilatator 

nitric oxide, generation of vasoconstricting lipid peroxidation products, stimulation of 

inflammation and increased intracellular free calcium concentration [258]. Tempol, a 

superoxide dismutase mimeticum attenuates the development of hypertension via 

scavenging of ROS [261]. However, there are also many contrarious studies, failing 

to prove an amelioration of hypertension by application of antioxidants [262-264]. 

Ren-2 rats are known to express significantly higher amounts of Nox1 and Nox4 in 

aorta and kidney compared to tissues from normotensive wild-type animals which 

leads to a enhanced generation of superoxide [265]. Results from previous studies 

suggest that high superoxide levels in Ren-2 rats might contribute to the 

pathophysiology of hypertension but treatment of Ren-2 rats with the known 

antioxidants apocyanin and tempol did not alter systolic blood pressure or 

angiotensin II level in studies conduced by Kopkan et al. [266] and Wei et al. [267]. 
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They conclude therefore that hypertension in Ren-2 rats is dependent on angiotensin 

II but independent from the elevated oxidative stress level.  

On the contrary antihypertensive drug therapy has additionally to the blood pressure 

lowering properties also beneficial effects on oxidative stress and endothelial function 

[268, 269]. Therefore Grossman concludes in his review that oxygen stress is not the 

cause, but rather a consequence, of hypertension [258]. Ren-2 rats treated with 

Dacapo grape extract showed obviously a lower blood pressure than animals of the 

untreated group. Anthocyanins rich plant extracts have been shown to reduce blood 

pressure in various studies with hypertensive individuums. [270, 271]. In contrast, no 

effects were seen after treatment of healthy volunteers [272]. 

Despite the known antioxidative properties anthocyanins may exceed their protective 

effects also by a few other mechanisms. The results of Dell’ Agli et al. indicates that 

an inhibition of phosphodiesterases might contribute to the vasorelaxing effects of 

anthocyanins [273]. 

Additionally, anthocyanins are known to activate endothelial nitric-oxide synthetase 

leading to a NO-mediated vasorelaxation [274-276], which might contribute to their 

hypotensive properties. 

Beside the potential factors mentioned above anthocyanins exceed also a direct 

inhibitory effect on ACE. There are several reports describing the inhibitory effects of 

anthocyanins [277, 278] and other flavonoids [279, 280] on the activity of ACE. 

Therefore, it is possible that the protective effects of anthocyanin-rich Dacapo extract 

are not only due to the antioxidative properties of anthocyanins but also related with 

a potential reduction of angiotensin II by inhibition of ACE, inhibition of 

phosphodiesterases or activation of endothelial NO synthetase. 

Al-Awwadi et al. [271] tested different polyphenol rich plant extracts in hypertensive 

high-fructose-fed rats. Only the anthocyanin enriched extract was able to reduce the 

blood pressure of high-fructose-fed rats to the level of the control group with normal 

diet, indicating the impact of anthocyanins for health-promoting effects of such plant 

extracts. 

The protective effects of Dacapo grape extract on DNA damage were shown by 

Comet assay and ɣ-H2AX-staining in our study. The results of comet assay in kidney 

and liver indicate only small differences between the treatment groups. The 

anthocyanin-rich diet proved slight protecting properties, whereas there was only a 

negligible effect in ramipril treated animals. In contrast, ɣ-H2AX-staining showed a 
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strong protective effect on DNA damage in heart and kidney of the anthocyanin 

treated group and smaller effects for the ramipril medicated group. This is 

accordance with several other studies, which investigated the effect of anthocyanins 

on DNA damage in vivo. Weisel et al. investigated in healthy probands the effect of 

an anthocyanin and polyphenol rich juice, which was also developed by Research 

Institute Geisenheim. Intake of the fruit juice markedly reduced DNA damage of 

peripheral blood mononuclear cells (PBMCs) in comet assay and increased GSH 

level already at the first blood sampling time point after one weak. This might result 

from direct antioxidant effects, such as scavenging of ROS, chelating of transition 

metals, increased synthesis of cellular antioxidants or enhanced DNA repair activity 

[281]. Similar results were also reported by the same working group after treatment of 

hemodialysis patients with a red fruit juice derived from Research Institute 

Geisenheim [282]. Luceri et al. [283] used in their study different Arabidopsis thaliana 

mutants with a contrasted flavonoid profile. They compared in rats four different diets 

containing flavonols, flavonols and proathocyanidins, flavonols and anthocyanins or 

none of these flavonoids. Rats fed with the diet containing anthocyanins showed a 

strong decrease in DNA damage compared to rats with an anthocyanin free diet. 

Thus the protective effect of this extract and similar preparations might be mainly 

based on the presence of anthocyanins in the diet. 

The protective effect of anthocyanin-rich extract could not only be related to a direct 

radical scavenging activity of anthocyanins or polyphenols, but it could also be due to 

a modulation of gene expression of the antioxidant response element (ARE) and/or 

of enzymes involved in DNA repair. Cyanidin was shown to exert its activities by 

increasing ATM, topoisomerase II, HSP70 and p53 expression and influencing 

thereby genome integrity [156]. 

The results of Shih et al. in rat liver Clone 9 cells showed that treatment with 

anthocyanins (particularly delphinidin and cyanidin) leads to elevation of antioxidant 

capacity, including augmented activation of glutathione-related enzymes (glutathione 

reductase, glutathione peroxidase and glutathione S-transferase) and increased 

GSH/GSSG ratio. In addition, the expression of NAD(P)H quinone oxidoreductase 1 

(NQO1) was also promoted by activation of antioxidant response element (ARE). 

However, this important aspect seems also to be dependent on the time of exposure 

to the dietary components. Boateng et al. [284] reported a significant increase in liver 

glutathione S-transferase (GST) activity of rats after 13 weeks of a freeze-dried 
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blueberry supplementation, while no effect was evident on the level of GST, quinone 

reductase and UDP-glucuronosyltransferase after a period of three weeks, as 

reported by Dulebohn et al. [285].  

Del Bo’ et al. treated rats with an anthocyanin rich (24.0 ± 5.2 mg/day) wild blueberry 

extract and assessed resistance to oxidative DNA damage by H2O2 afterwards ex 

vivo in comet assay. Level of DNA damage was significantly lower in rats fed with the 

wild blueberry diet compared with those on the control diet after eight weeks but not 

after four weeks [286]. Similar effects were also seen by Dulebohn et al., who 

observed after a three weak treatment with a diet highly concentrated in 

anthocyanins (1%) only slight effects in comet assay with liver cells [285]. In this 

context one could suspect that the treatment time of two weeks in our experiment 

was maybe not enough for pointing out differences in comet assay between the 

treatment groups. Several studies describe a lower sensitivity for the comet assay 

compared to ɣ-H2AX-staining [287, 288]. Additionally the relative high background 

DNA damage of cells in the in vivo comet assay might mask smaller differences 

between the groups. 

Contradictory results were obtained by ɣ-H2AX-staining of small intestine, where 

animals treated with Dacapo grape extract showed much more DNA damage than 

animals of the other two groups. There are also other conflicting studies available 

describing the prooxidative and strand breaking properties of anthocyanins in vitro 

[289-291] or the increased damage in comet assay after ingestion of an anthocyanin-

rich diet in vivo [292]. Hanif et al. proved the ability of anthocyanins and other 

flavonoids to cause oxidative strand breakage in DNA either alone or in the presence 

of chromatin bound copper. Structure–activity studies indicated that the presence of 

orthodihydroxy phenol groups on the B-ring of anthocyanidins (Delphinidin and 

Cyanidin) appears to be essential for apoptosis and oxidative degradation of DNA in 

the presence of copper ions [291]. Anthocyanins have been described by 

Habermeyer et al. and Esselen et al. to be catalytic inhibitors of topoisomerases I 

and II. Topoisomerases change DNA topology by introducing transient single (I) or 

double (II) strand breaks in the phosphodiester backbone of the DNA, enabling the 

release of torsion stress associated with replication, transcription, translation and 

recombination. Catalytic inhibitors bind to topoisomerases prior to DNA binding, thus 

inhibiting the formation of the cleavable complex. Habermeyer et al. investigated the 

potential catalytic inhibition of topoisomerase II in a decatenation assay. Catalytic 
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activity was found to be completely blocked with 10 µM cyanidin or delphinidin. 

Malvidin, pelagonidin and petunidin showed no effect on the catalytic activity of 

topoisomerase IIα and IIβ up to 100 µM. Data suggest that inhibitory properties are 

limited to analogues possessing vicinal hydroxy groups at the B-ring (cyanidin, 

delphinidin). At low micromolar concentrations anthocyanidins showed no effect on 

DNA integrity, whereas at higher doses (50 µM) all anthocyanidins tested induced at 

least a slight but significant increase of DNA strand breaks, with delphinidin being the 

most potent derivate. They speculate that DNA-breaking properties might be due to 

increased torsion stress resulting from inhibited activity of topoisomerases. 

Therefore, the apparent protective effects of anthocyanins in low concentrations 

regarding topoisomerase I might cross over to breaking of double strands by 

inhibition of topoisomerase II in higher concentrations (50 µM) [293, 294]. Such 

concentrations might be exceeded in our study by the intake of fed enriched in 

anthocyanins. 

Structural analysis showed that delphinidin and other flavonoids bind weakly to 

adenine, guanine and thymine bases, as well as to the backbone phosphate group. 

Low flavonoid concentration induces helical stabilization, whereas high anthocyanin 

content causes helix opening [295]. 

Felgines et al. found 3 h after gavage more than 50% of the administered 14C labeled 

cyanidin 3-O-glucoside in the small intestine. Concentrations in heart and kidney 

were much lower, showing nearly no accumulation in these organs [296].  

This might explain why the extract showed protective effects in heart and kidney 

whereas in small intestine where higher local concentrations of anthocyanins were 

reached the extract induced DNA damage in crypt. The high number of double strand 

breaks found in small intestine tissue might be related with ther effects of 

anthocyanins on topoisomerases and their ability to cause oxidative stress. 

However, it should be remarked that only 50% of the extract was structurally 

characterized, the other half consist of undefined polyphenols, which could also exert 

negative effects. One possible example for such polyphenols in grape extract might 

be resveratrol, whose strand breaking properties were shown in the first part of our 

study. 

The antioxidant potential of glycosides was generally lower than that of the 

corresponding anthocyanidins [297]. Structural factors modulate the stability and 

polarity of anthocyanins and also their ability to scavenge free radicals and chelate 
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reactive metals. In the aqueous environment of RSA (reactive scavenging activity) 

assay anthocyanins with orthodihydroxy phenol groups on the B-ring (delphinidin and 

cyanidin) possessed the highest activity [297, 298]. However, in a oil-water-mixture 

(methyl linoleate emulsion) or in an assay with human LDL (low density lipoprotein) 

malvidin - the most prominent anthocyanin in Dacapo grape extract - showed also a 

very high antioxidative capacity, what might be related to the fact that it has better 

access to the lipophilic phase due to its methoxy groups in the B ring [297]. 

We compared the extract in a 10 ppm concentration (corresponding to an 

anthocyanin concentration of ~ 5 µM) with single anthocyanidins (10 µM) and found 

even with this low concentration a 6 times higher value in FRAP assay compared to 

delphinidin, which showed the highest antioxidative capacity of the single 

anthocyanidins [299]. Other uncharacterized polyphenols and flavonoids might 

contribute therefore to antioxidative properties of Dacapo extract. 

We used FRAP assay also, to check if the antioxidative properties of the extract 

found in vitro were also detectable in serum of the respective animals. 

Anthocyanins are fast metabolized and disappear from the blood stream around 4 h 

after the intake. As rats are nocturnal animals the last ingestion of feed happened 

likely several hours before the time of sacrifice, explaining the absence of 

anthocyanins in the plasma and therefore, the difficulty to detect an increased 

antioxidant capacity in plasma, as evaluated by the FRAP assay. However, it has to 

be remarked that the withdrawal of blood was only successful for a few animals of 

each group and therefore not necessarily representive. 

No protective effect was also detected in DHE assay with sections of different 

organs. It might be possible that there were no significant differences between the 

groups (yet). Another option would be that this assay was inappropriate for the issue 

and other methods, e.g. 8-oxo-dG measurement with mass spectrometry coupled 

liquid-chromatography (LC-MS) would be more sensitive in the detection of oxidative 

damage. 

Our study proved the health promoting effects of a diet enhanced in anthocyanins on 

hypertension and DNA damage in Ren-2 rats. Recently, preparations enriched in 

anthocyanins as natural antioxidants have gained increasing popularity on the fast 

expanding market of food supplements. Products are available enabling a several 

fold augmentation of daily intake above the ordinary amount, raising the question 

whether such an enhanced intake might potentially be related with adverse health 
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effects. Considering the low bioavailability the oral intake of anthocyanins with the 

diet should not result in plasma concentrations in the range where DNA strand 

breaks were observed in vitro. On the other hand, enhanced local concentrations in 

the gastrointestinal tract or in tissues with increased uptake might have to be 

considered. Our data indicate that at least locally in the gastrointestinal tract 

concentrations might be reached, at which the reported strand breaking effects of 

anthocyanins or other compounds of the extract might be of relevance. On the other 

side, under the same conditions a reduction of the hypertension related DNA damage 

in the heart and even more in the kidney was observed. Therefore, in our opinion 

before any dietary recommendation can be made, in-depth analysis of exposure 

conditions is required. 
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Cancer is one of the leading causes of death all over the world. Malnutrition and toxic 

contaminations of food with substances such as mycotoxins have been thought to 

account for a high percentage of cancers. However, human diet can deliver both 

mutagens and components that decrease the cancer risk. Genomic damage could be 

reduced by food components through different mechanisms such as scavenging of 

reactive oxygen species. 

 

In the first part of this study we tried to investigate the effects of patulin and 

resveratrol on DNA stability in V79 cells. Patulin is a mycotoxin, which is frequently 

found in spoiled apples and other fruits. The WHO has established a safety level of 

50 µg/L, which is indeed not observed by all manufacturers. The acute toxicity of 

patulin in high concentrations is well known, however its potential carcinogenicity is 

still a matter of debate. Therefore we wanted to investigate further steps in the 

mechanism of patulin-induced genotoxicity. Patulin caused the formation of 

micronuclei and nucleoplasmic bridges in a dose-dependent manner. Further 

analysis revealed that patulin induced both kinetochore-negative and positive 

micronuclei. Time course of incubation indicate a new mechanism for patulin-induced 

nucleoplasmic bridge formation. We hypothized a mechanism via cross-linking of 

DNA, which was confirmed by a modified version of comet assay. Incubations of cells 

with patulin led to an increased number of multinucleated cells and multipolar 

mitoses. Cell cytometry revealed a G2 arrest by patulin, which might explain the 

amplification of centrosomes and patulin-induced aneuploidy. Patulin cause a dose-

dependent DNA damage in comet assay which was influenced by the cellular GSH 

content. However, an induction of oxidative stress was just seen with higher 

concentrations of patulin. Levels of cellular glutathione were increased after 24 h 

incubation indicating an adaptive response to patulin-induced stress.  

There is growing interest in polyphenols such as resveratrol which have shown many 

positive effects on human health. The beneficial properties are partially attributed to 

their ability to scavenge reactive oxygen species. 

Co-incubation of V79 cells with patulin and 10 µM of the antioxidant resveratrol led to 

a slight reduction of micronucleus frequency compared to cells which were just 
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treated with patulin. However, in higher concentrations resveratrol themselves 

caused the formation of micronuclei in V79 cells. Kinetochore analysis indicated only 

clastogenic properties for resveratrol but no disturbance of mitosis. The antioxidant 

properties of resveratrol were shown in ferric reducing antioxidant power (FRAP) 

assay. However, in cellular system resveratrol in higher concentrations revealed also 

prooxidative properties, as shown in 2,7-dichlordihydrofluorescein (DCF) assay. The 

increased level of glutathione after resveratrol treatment might reflect an adaptive 

response to resveratrol-induced oxidative stress. 

 

For the second part of this thesis we investigated the effects of an anthocyanin-rich 

grape extract on hypertensive Ren-2 rats.  

Ren-2 rats are an accepted genetically modified rat model for the investigation of 

hypertension and increased oxidative stress. We divided 23 female Ren-2 rats into 

three groups. One group was fed with an anthocyanin-rich Dacapo grape extract, one 

group was treated with the angiotensin converting enzyme (ACE) inhibitor ramipril 

and the third group was kept without medication during the experiment. After one 

week untreated group showed a clear increase in systolic and diastolic blood 

pressure compared to the ramipril treated rats. This was in part attenuated in the 

animals fed with anthocyanin-rich Dacapo grape extract. Effects on blood pressure 

were also reflected in an increased thirst of untreated and extract fed animals. Comet 

assay with cells of kidney and liver revealed a slight protective impact of Dacapo 

extract on DNA damage compared to the other groups. Similar results were obtained 

after evaluation of ɣ-H2AX-staining of kidney and heart sections. However, in the 

small intestine oppositional effects were seen, indicating an increased number of 

double strand breaks probably due to the high local concentration of polyphenols 

after oral ingestion. Antioxidative properties of the extract were shown in FRAP 

assay. However, this effect was not reflected in an increased antioxidative capacity in 

serum or a protective impact in the dihydroethidium (DHE) assay. 

The extract showed protective effects on DNA damage in comet assay and ɣ-H2AX-

staining, but was not able to reduce hypertension back to the control level of ramipril 

treated animals. High local concentrations could also result in an increased damage 

of the affected tissue. Therefore, the administration of such concentrated compounds 

should be handled with care. 
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6 ZUSAMMENFASSUNG 

Krebs ist eine der häufigsten weltweiten Todesursachen. Fehlernährung und 

Kontaminationen der Nahrungsmittel mit Toxinen wie Schimmelpilzgift tragen zu 

einem hohen Prozentsatz zu Krebserkrankungen bei. Allerdings enthält die Nahrung 

neben Mutagenen auch Bestandteile, die dazu beitragen das Krebsrisiko zu senken. 

Schäden am Genom können durch Nahrungsbestandteile über verschiedene 

Mechanismen, wie zum Beispiel das Abfangen von freien Radikalen reduziert 

werden. 

Im ersten Teil dieser Studie haben wir versucht die Effekte von Patulin und 

Resveratrol auf die DNA Stabilität von V79 Zellen zu untersuchen. Patulin ist ein 

Schimmelpilztoxin, welches häufig in verfaulten Äpfeln und anderen Früchten 

gefunden wird. Die WHO hat einen Grenzwert von 50 µg/L festgelegt, der jedoch 

nicht von allen Herstellern eingehalten wird. Die akute Giftwirkung von Patulin in 

hohen Dosen ist gut bekannt, wohingegen seine potentielle Kanzerogenität immer 

noch umstritten ist. Daher wollten wir weitere Schritte der Patulin induzierten 

Genotoxizität aufdecken. Patulin führte zu einer dosisabhängigen Bildung von 

Mikrokernen und Nucleoplasmic Bridges. Weitere Untersuchungen zeigten, dass 

Patulin sowohl kinetochor-positive wie auch kinetochor-negative Mikrokerne 

verursacht. 

Bei der Analyse des Zeitverlaufs einer Patulininkubation deutete sich ein neuer 

Mechanismus für die Patulin induzierte Bildung von Nucleoplasmic Bridges an.  

Wir haben die Hypothese einer Quervernetzung von DNA-Strängen aufgestellt, die 

durch eine modifizierte Version des Comet Assays bestätigt wurde. Die Inkubation 

mit Patulin führte zudem zu einer erhöhten Anzahl von vielkernigen Zellen und 

multipolaren Mitosen. Mittels Durchflusszytometrie konnten wir einen durch Patulin 

verursachten G2 Arrest nachweisen, der die Amplifikation von Centrosomen und die 

Patulin induzierte Aneuploidie erklären könnte. Patulin verursachte einen 

dosisabhängigen Schaden im Comet Assay, der durch den zellulären 

Glutathiongehalt beeinflusst ist. Eine Auslösung von oxidativem Stress wurde 

dagegen erst bei höheren Konzentrationen an Patulin beobachtet. Der zelluläre 
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Gluathiongehalt war nach 24 h Inkubationszeit erhöht, was auf eine adaptive Antwort 

auf den durch Patulin verursachten zellulären Stress hindeutet.  

Polyphenole wie Resveratrol gewinnen zunehmend an Bedeutung, da zahlreiche 

positive Effekte auf die menschliche Gesundheit bewiesen wurden. Diese 

vorteilhaften Eigenschaften werden zum Teil ihrer Eigenschaft als Radikalfänger 

zugeschrieben. Die Co-Inkubation von V79 Zellen mit Patulin und Resveratrol führte 

zu einer leichten Reduktion der Mikrokernfrequenz im Vergleich zu Zellen, die nur mit 

Patulin inkubiert wurden. Allerdings löste Resveratrol in höheren Konzentrationen 

selbst die Bildung von Mikrokernen aus. Die Kinetochor-Analyse zeigte für 

Resveratrol clastogene Eigenschaften aber keine störende Effekte auf den Ablauf 

der Mitose. Die antioxidativen Eigenschaften von Resveratrol wurden im FRAP (ferric 

reducing antioxidant power) -Assay nachgewiesen. Im Gegensatz dazu wurden im 

zellulären System mittels DCF (2,7-Dichlordihydro-fluorescein) -Assay in höheren 

Konzentrationen auch prooxidative Eigenschaften festgestellt. 

Der erhöhte zelluläre Glutathionspiegel nach Resveratrol-Behandlung könnte dabei 

auf eine adaptive Anwort auf den durch Resveratrol ausgelösten oxidativen Stress 

hindeuten 

 

Im zweiten Teil dieser Doktorabeit haben wir die Effekte eines anthocyanreichen 

Traubenextrakts auf hypertensive Ren-2 Ratten untersucht. 

Ren-2 Ratten sind ein anerkanntes genetisch modifiziertes Rattenmodell zur 

Untersuchung von Bluthochdruck und erhöhtem oxidativem Stress. Wir haben 23 

weibliche Ren-2 Ratten in 3 Gruppen geteilt. Eine Gruppe wurde mit einem 

anthocyan-reichen Dacapo Traubenextrakt gefüttert, eine Gruppe wurde mit dem 

ACE (angiotensin converting enzyme) Inhibitor Ramipril behandelt und eine dritte 

Gruppe wurde während dem Experiment nicht medikamentös behandelt. Nach einer 

Woche zeigte die nicht therapierte Gruppe einen deutlichen Anstieg des systolischen 

und diastolischen Blutdrucks. Dieser Anstieg war bei der mit anthocyanreichem 

Dacapo Traubenextrakt gefütterten Gruppe abgeschwächt. Die Effekte auf den 

Blutdruck spiegelten sich auch in einer erhöhten Trinkmenge der unbehandelten und 

mit Extrakt behandelten Tiere wider. Ein Comet Assay mit Nieren- und Leberzellen 

zeigte einen schwachen schützenden Einfluß des Dacapoextrakts auf den DNA 

Schaden im Vergleich zu den anderen Behandlungsgruppen. Ähnliche Ergebnisse 

wurden auch bei der Auswertung der ɣ-H2AX Färbung in Nieren- und Herzschnitten 
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erzielt. Im Dünndarm wurden dagegen gegensätzliche Effekte beobachtet, die auf 

eine erhöhte Doppelstrangfrequenz durch die hohe lokale Konzentration an 

Polyphenolen nach oraler Aufnahme hindeuten. Die antioxidative Eigenschaften des 

Extrakts wurden im FRAP_Assay nachgewiesen. Diese Effekte spiegelten sich 

jedoch nicht in einer erhöhten antioxidativen Kapazität des Serums oder einem 

schützenden Effekt im DHE-Assay wider.  

Der Extrakt zeigte schützende Eigenschaften im Comet Assay und in der ɣ-H2AX-

Färbung, war aber nicht in der Lage den Bluthochdruck auf das Kontrollniveau der 

Ramipril-behandelten Tiere herabzusenken.  

Hohe lokale Konzentrationen können auch zu einem erhöhten Schaden des 

betroffenen Gewebes führen. Daher sollte die Anwendung solcher 

hochkonzentrierter Präparate mit Vorsicht bedacht werden.  
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