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Summary 

The obligate biotrophic fungus Blumeria graminis f.sp. hordei is the causative agent 

of barley powdery mildew, a destructive foliar disease. The fungus infests barley 

(Hordeum vulgare), an important crop plant, which causes remarkable yield losses.  

Leaf cuticular wax of barley consists mainly of primary alcohols (80%), alkyl 

esters (10%) and minor constituents such as fatty acids (2%), alkanes (2%) and 

aldehydes (1%). The asexual airborne conidia have an initial contact to the leaf 

surface, in an environment dominated by cuticular waxes, which trigger 

germination and differentiation. The conidia undergo a sequential morphogenesis 

during that phase, the so-called prepenetration processes. The conidium initially 

forms a short primary germ tube, followed by a secondary elongated germ tube, 

which swells and finally forms a septate appressorium. The fungal appressorium 

infests the epidermal cell of the host plant and establishes an initial haustorium, the 

feeding structure of the fungus. 

In order to assess the effects of single host plant wax constituents on the 

prepenetration processes a novel in vitro assay based on Formvar® resin was 

established. This system permits the setting up of homogeneous surfaces as 

substrata, at which the adsorbed amounts and the surface hydrophobicity are 

highly reproducible, independently of the tested substance classes and chain 

lengths of the molecules. In this system, very-long-chain aldehydes promoted 

germination and differentiation of B. graminis f.sp. hordei conidia. The 

appressorium formation rates were decreasing in a concentration and chain-length 

dependent manner compared to n-hexacosanal (C26), which was the most effective 

aldehyde (C22<<C24<C26>C28>>C30). The tested alkanes with even and odd numbers 

(C24-C33), fatty acids (C20-C28), alkyl esters (C40-C44) and primary alcohols (C20-C30) did 

not induce germination and appressorium formation. The primary alcohol n-

hexacosanol (C26) was an exception, as it was capable of significantly stimulating 

conidial germination and appressorial germ tube formation.  

To elucidate the impact of very-long-chain aldehydes on an intact plant 

surface in vivo, B. graminis f.sp. hordei conidia were inoculated on glossy11 mutant 

leaves of the non-host plant maize (Zea mays), which are - unlike the wildtype - 

completely devoid of very-long-chain aldehydes. On glossy11 leaves 60% of 

B. graminis f.sp. hordei conidia remained ungerminated and 10% developed a 

mature appressorium, which is three times less than on wildtype plants. Spraying of 

synthetic n-hexacosanal or wildtype leaf wax on glossy11 leaves fully restored the 

fungal prepenetration processes. In contrast, spraying of non-inducing n-alkanes, 

primary alcohols or very-long-chain fatty acids on wildtype leaves of maize 

mimicked the aldehyde deficient phenotype of glossy11.  
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During the prepenetration processes an appressorium is formed, which is a 

newly formed specialized cell. Germination and subsequent morphogenesis are 

linked to the cell cycle in certain phytopathogenic fungi. It was investigated to what 

extent the prepenetration processes of B. graminis f.sp. hordei are synchronized 

with cell cycle progression. Hence, a distinct staining procedure of nuclei for fixed 

samples of B. graminis f.sp. hordei conidia based on DAPI (4,6-diamidino-2-

phenylindole) was developed. In combination with a pharmacological approach it 

was possible to trace mitosis in dependency of conidial germination and 

differentiation in vivo and in vitro. The uninucleate conidium germinated and after 

formation of the appressorial germ tube, a single mitosis occurred in the primordial 

conidium six hours after inoculation. The inhibition of S-phase with hydroxyurea or 

M-phase with benomyl prevented appressorium formation, but not the 

development of the appressorial germ tube. These results indicate that mitosis and 

a successful cytokinesis are necessary prerequisites for the appressorium formation 

but not for conidial morphogenesis. 

 In order to identify genes that are expressed in response to certain host 

plant wax constituents, which may be critical for the prepenetration phase, cDNA 

clone libraries were constructed by suppression subtractive hybridization (SSH) 

after inoculation. The Formvar® resin based in vitro system provided a stable 

platform to enrich cDNA sequences that were expressed in B.graminis f.sp. hordei 

conidia incubated on n-hexacosanal coated surfaces for 22 minutes. Among various 

candidates, a cDNA sequence was identified, which was upregulated on barley 

leaves and on surfaces coated with n-hexacosanal or extracted barley leaf wax. The 

hexacosanal responsive transcript was cloned by 3’ and 5’ RACE. The cDNA 

sequence showed no homologies to genes of known function in fungal 

development and fungal pathogenicity in plants. 
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Zusammenfassung 

Der obligat biotrophe Pilz Blumeria graminis f.sp. hordei gilt als Erreger des 

Gerstenmehltaus, einer destruktiven Erkrankung der Gerste (Hordeum vulgare). Als 

Folge des Befalls mit B. graminis f.sp. hordei drohen erhebliche Ernteeinbußen. 

Das kutikuläre Wachs von Gerstenblättern besteht hauptsächlich aus 

primären Alkoholen (80%), Alkylestern (10%) sowie aus geringfügig vorkommenden 

Bestandteilen wie Fettsäuren (2%), Alkanen (2%) und Aldehyden (1%). Der initiale 

Kontakt der asexuellen und durch die Luft verbreiteten Konidien findet auf der 

Blattoberfläche in einer Umgebung statt, die von den kutikulären Wachsen 

bestimmt ist, welche Keimung und Differenzierung stimulieren. Während der 

Keimungs- und Differenzierungsphase durchlaufen die Konidien eine sequenzielle 

Morphogenese, die so genannten Präpenetrationsprozesse. Dabei bilden die 

Konidien auf der Pflanzenoberfläche zunächst einen primären, kurzen und im 

weiteren Verlauf einen sekundären, elongierten Keimschlauch aus. Im Anschluss 

daran schwillt dieser an und wird letztlich zu einem septierten Appressorium 

differenziert. Mit Hilfe des Appressoriums dringt der Pilz dann in die Epidermiszelle 

der Wirtspflanze ein und bildet ein initiales Haustorium, das die Ernährung des 

Pilzes sicherstellt.  

Um den Einfluss von einzelnen Wachsbestandteilen der Wirtspflanze auf die 

Präpenetrationsprozesse systematisch zu untersuchen wurde ein neues in vitro 

System auf der Basis von Formvar®-Harz etabliert. Dieses System ermöglicht die 

Erzeugung homogener Oberflächen als Substrate für den Pilz, bei denen sowohl die 

aufgelagerten Mengen als auch die Oberflächenhydrophobizität unabhängig von 

den getesteten Substanzklassen und Kettenlängen der Moleküle hochgradig 

reproduzierbar sind. In diesem System haben langkettige Aldehyde die Keimung 

und die Differenzierung von B. graminis f.sp. hordei Konidien am wirksamsten 

induziert, wobei die Raten der Appressorienbildung in Abhängigkeit von der 

Konzentration und der Kettenlänge im Vergleich zu n-Hexacosanal (C26), das sich als 

am effektivsten zeigte, abnahmen (C22<<C24<C26>C28>>C30). Die getesteten gerad- 

und ungeradzahligen Alkane (C24-C33), Fettsäuren (C20-C28), Alkylester (C40-C44) und 

primären Alkohole (C20-C30) hatten keinen signifikanten Einfluss auf die Keimung 

und die Appressorienbildung des Pilzes. Der primäre Alkohol n-Hexacosanol (C26) 

stellte hierbei eine Ausnahme dar, da er die Keimung und die Bildung des 

Appressorium-Keimschlauchs signifikant erhöhte. Um die Rolle von langkettigen 

Aldehyden auf einer intakten Pflanzenoberfläche in vivo genauer zu untersuchen 

wurden B. graminis f.sp. hordei Konidien auf Blätter von glossy11 Mutanten der 

Nicht-Wirtspflanze Mais (Zea mays) inokuliert. Anders als der Wildtyp weisen 

glossy11 Blätter keine langkettigen Aldehyde auf. Auf glossy11 Blättern keimten 

60% der B. graminis f.sp. hordei Konidien nicht und nur 10% der Konidien 
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entwickelten ein reifes Appressorium, was einer dreimal geringeren Rate als auf 

Wildtyp-Blättern entspricht. Durch das Besprühen von glossy11 Blätter mit 

synthetischem n-Hexacosanal oder mit Wachs des Wildtyps wurden die pilzlichen 

Präpenetrationsprozesse wieder vollständig durchlaufen. Wurden im Gegensatz 

dazu Blätter des Mais-Wildtyps mit nicht induzierenden n-Alkanen, primären 

Alkoholen oder langkettigen Fettsäuren besprüht, konnte das den Aldehyd-

defizienten Phänotyp von glossy11 imitieren. 

 Während der Präpenetrationsprozesse wird ein Appressorium gebildet, 

wobei es sich hierbei um eine neu gebildete Zelle handelt. Die Keimung und die 

anschließende Morphogenese sind wichtige Schritte in der Etablierung der 

pilzlichen Infektionsstrukturen. Da diese Prozesse in einigen phytopathogenen 

Pilzen mit dem Zellzyklus gekoppelt sind wurde untersucht, inwieweit die 

Präpenetrationsprozesse von B. graminis f.sp. hordei mit dem Verlauf des 

Zellzykluses synchronisiert sind. Hierfür wurde eine Methode basierend auf DAPI 

(4,6-diamidino-2-phenylindole) zur Färbung der Zellkerne für fixierte Präparate von 

B. graminis f.sp. hordei Konidien entwickelt. Mittels eines pharmakologischen 

Ansatzes war es auf diese Weise erstmals möglich die Abhängigkeit der 

Präpenetrationsprozesse von der Mitose in vivo und in vitro zu verfolgen. Sechs 

Stunden nach der Inokulation trat nach Ausbildung des Appressorium-

Keimschlauchs eine Mitose in der einkernigen Konidie auf. Die Hemmung der S-

Phase mit Hydroxyharnstoff oder die Hemmung der M-Phase mit Benomyl 

verhinderten eine Bildung des Appressoriums, nicht aber die Entwicklung des 

Appressorium-Keimschlauchs. Diese Ergebnisse weisen darauf hin, dass die Mitose 

und eine abgeschlossene Zytokinese notwendige Voraussetzungen für die 

Appressoriumsbildung, jedoch nicht für die Morphogenese der Konidie, sind.  

 Als Reaktion auf bestimmte Wachsbestandteile der Wirtspflanze werden 

pilzliche Gene, die während der Präpenetrationsprozesse eine wichtige Rolle spielen 

können, differenziell exprimiert. Um solche Gene zu identifizieren wurden cDNA 

Klonbibliotheken mittels der suppression subtractive hybridization (SSH) 22 Minuten 

nach der Inokulation erstellt. Das auf Formvar®-Harz basierende in vitro System 

ermöglichte die selektive Anreicherung von cDNA Sequenzen aus B. graminis f.sp. 

hordei Konidien, die auf n-Hexacosanal beschichteten Oberflächen inokuliert 

wurden. Aus einer Reihe von Kandidaten wurde eine cDNA-Sequenz identifiziert, die 

sowohl auf Gerstenblättern als auch auf mit n-Hexacosanal oder extrahiertem 

Gerstenwachs beschichteten Oberflächen hochreguliert war. Mittels 3’ und 5’ RACE 

wurde das n-Hexacosanal induzierte Transkript kloniert. Diese cDNA-Sequenz wies 

keine Homologien zu bekannten Genen, die Funktionen in der pilzlichen 

Entwicklung und der Ausbildung von Pathogenität in Pflanzen haben, auf. 
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1 Introduction 

1.1 The plant cuticle 

Plants are exposed to various abiotic and biotic stress factors. The most meaningful 

biotic stress for plants is a consequence of the interaction with organisms, such as 

fungi, bacteria or viruses. The initial contact between airborne pathogenic fungi and 

plants is the cuticle. Aerial organs of higher plants are covered by the cuticle, which 

is an extracellular membrane between the plant and its environment. The cuticle is 

a passive protection barrier against herbivores, pathogenic fungi and 

microorganisms. On the contrary the cuticle itself influences the behaviour of 

herbivores or phytopathogenic fungi, as the physical and chemical properties may 

guide and induce the interaction or the infection process, respectively (Müller, 

2006; Carver & Gurr, 2006). The most important physiological function of the cuticle 

is to provide an effective barrier against water loss by transpiration, which is an 

essential prerequisite for the survival of terrestrial plants (Kerstiens, 1996; Riederer 

& Schreiber, 2001; Burghardt & Riederer, 2006). Other physiological functions of 

the cuticle are controlling uptake and loss of solutes, gases and lipophilic organic 

compounds. The cuticle is also a protection barrier against abiotic influences like 

shielding of UV radiation or shelter against wind. In some cases the cuticle provides 

a mechanical support to maintain structural integrity. During developmental 

processes the cuticle has a critical role in preventing the fusion of distinct tissues in 

organo- and embryogenesis and the cuticle has a function in the communication 

process between pollen and pistil (Tanaka & Machida, 2006).  

Structurally, the cuticle consists of a core polymer matrix (cutin) anchored 

with a pectin lamella to the cell wall layer of the epidermal cells and the embedded 

cuticular waxes. The cell wall layer itself is composed mainly of cellulose and 

proteins (Carpita & Gibeaut, 1993). Cutin is an amorphous biopolymer of mainly 

esterified ω-epoxy and hydroxy C16 and C18 fatty acids (Stark & Tian, 2006). The 

cuticular waxes can be divided in two spatially distinct layers. Outermost are the 

epicuticular waxes (wax crystals and/or wax film) and the intracuticular waxes, 

which are embedded in the cutin matrix (Jeffree, 1996). Cuticular waxes are a 

mixture of aliphatic very-long-chain fatty acid derivatives, e.g. primary and 

secondary alcohols, aldehydes, esters, alkanes or ketones and cyclic compounds like 

triterpenoids (Holloway, 1982; Walton, 1990; Jetter et al., 2006; Nawrath, 2006). 

The current biochemical and genetic understanding of wax biosynthesis is based on 

work on the model plant Arabidopsis thaliana. The precursors of cutin and aliphatic 

wax constituents are fatty acids of C16 and C18 acyl chains and are synthesized de 

novo by the soluble fatty acid synthase complex (FAS) in the plastid stroma (Slabas 

& Fawcett, 1992; Ohlrogge & Browse, 1995). In the first step a β-ketoacyl synthase 
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(KASIII) initiates the fatty acid biosynthesis with acetyl-CoA bound to acylcarrier 

proteins, KASII and KASI elongate the chain by condensation of a C2 moiety from a 

malonyl-acyl carrier protein (ACP). A reduction of β-ketoacyl-ACP followed by the 

dehydration of β-hydroxyacyl-ACP and the reduction of trans-enoyl-ACP are 

necessary to complete the elongation until a chain length of C16 and C18 is achieved 

(Kunst et al., 2006; Figure 1-1). 

The further elongation of the fatty acids proceeds in the endoplasmatic 

reticulum by repeated cycles of attaching a C2 moiety, in a similar way as in the 

plastid by a fatty acid elongase (FAE) complex (Kunst & Samuels, 2003; Kunst et al., 

2006). The C16 and C18 acyl precursors are hydrolysed by an acyl-ACP thioesterase 

and are exported from the plastid. Subsequently the precursors are esterified to 

free coenzyme A (CoASH) by a long-chain acyl-CoA synthetase (LACS). The β-

ketoacyl-CoA synthase adds malonyl-CoA by condensation. The reaction product is 

further processed by β-ketoacyl-CoA-reductase (KCR), β-hydroxyacyl-CoA-

dehydratase (HCD) and enoyl-CoA-reductase (ECR) to a fully saturated acyl-CoA, 

which serves as substrate for the next elongation cycle (Kunst & Samuels, 2009) 

(Figure 1-1). The final products of the FAS are very-long-chain fatty acids (VLCFA) 

that are converted into the aliphatic compounds of cuticular waxes. 

In A. thaliana primary alcohols are products of the acyl reduction pathway 

(Kunst & Samuels, 2009; Kunst et al., 2006). Fatty acyl-CoA is reduced by two fatty 

acyl-CoA-reductases, with a released aldehyde intermediate. Mutants, defective in 

fatty acid reductase (FAR) activity show a decreased level of primary alcohols and 

wax esters, whereas the levels of aldehydes, alkanes and secondary alcohols are 

increased. Wax esters are synthesized by a wax synthase that is an acyltransferase, 

which transfers the acyl chain from fatty acyl-CoA to a fatty alcohol. The initial step 

of the decarbonylation pathway is the production of aldehydes from fatty acyl-CoA 

precursors (Kunst & Samuels, 2003). These aldehydes are then decarbonylated to 

odd-chain alkanes by release of carbon monoxide. The alkanes are hydroxylated to 

secondary alcohols that can be converted into ketones by oxidation. 
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Figure 1-1 Fatty acid elongation pathway (>C20) and conversion into aliphatic wax constituents by the 

acyl reduction and decarbonylation pathway. (FATB) acyl-ACP thioesterase (1), (LACS) long-chain 

acyl-CoA synthetase (2), (KCS) β-ketoacyl-CoA-synthase (2), (KCR) β-ketoacyl-CoA reductase (4), 

(HCD) β-hydroxyacyl-CoA-dehydratase (5), (ECR) enoyl-CoA-reductase (6), (FAR) fatty acyl-CoA-

reductase (7), (WS) wax synthase (8). For the proposed enzymes thioesterase (9), aldehyde-forming 

fatty acyl reductase (10), decarbonylase (11), hydroxylase (12), oxidase (13) molecular biology data 

are lacking. 

 

1.2  Blumeria graminis  

Blumeria graminis is a plant pathogenic fungus in the order of the Erysiphales 

(family: Erysiphaceae), which belongs to the phylum of Ascomycota and is the 

causative agent of powdery mildew disease. Powdery mildew of cereals is one of 

the economically most important diseases of barley (Hordeum vulgare), which may 

lead to severe yield losses of up to one third (Johnson et al., 1979; Murray & 

Brennan, 2010). The genus Blumeria is a phylogenetically distinct clade within the 

Erysiphales (Glawe, 2008). Members of the genus Blumeria only affect plants 

belonging to the family of Poaceae, whereas adapted special forms (forma 

speciales, f.sp.) infest particular genera of cereals. B. graminis f.sp. avenae infects 

oats (Avena spp.), f.sp. secalis rye (Secalis spp.), f.sp. hordei barley and f.sp. tritici 

wheat (Inuma et al., 2007). Beside crop plants, also special forms are known to 

affect wild grasses, like f.sp. poae meadowgrasses of Poae spp., f.sp. lolii ryegrasses 

(Lolium spp.), f.sp. agropyri perennial grasses (Agropyron spp. and Elymus spp.) 

(Inuma et al., 2007). B. graminis is a pleomorphic organism with a sexual 
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(teleomorph) and an asexual state (anamorph) during its life cycle and is an obligate 

biotrophic fungus. Obligate biotrophic fungi infect their host plants without causing 

cell death and establish a long term relationship (Perfect & Green, 2001). They 

cannot be cultivated on artificial media in axenic cultures. The obligate biotrophic 

lifestyle limits studying biological questions in vast comprehensiveness as it is 

possible with other common model fungi of Ascomycota, which have been used in 

past and present like Neurospora crassa (Raju, 2009) or Aspergillus nidulans 

(Etxebeste et al., 2010). A targeted mutagenesis is not yet feasible, which is a 

prerequisite for studying the impact of single genes, though the transformation of a 

reporter gene by particle bombardment, which was stable over 24 asexual 

generations, was reported (Chaure et al., 2000). 

Nevertheless, B. graminis f.sp. hordei became an important model organism 

for understanding the genetics of host-pathogen interactions and resistance 

mechanisms towards fungicides (Brown, 2002). First genetic maps and DNA libraries 

of B. graminis f.sp. hordei were constructed during the 1990ies (Borbye & Giese, 

1994) and linkage analyses for avirulence genes were performed (Christiansen & 

Giese, 1990). Recently, the genome of B. graminis f.sp. hordei was sequenced and 

annotated, providing a detailed insight into the genome organisation (Spanu et al., 

2010). The estimated genome size is approximately 120 Mb, which is four times 

larger than in other ascomycetes, whereas the number of predicted genes is 5854, 

which is low in comparison to other fungal genomes. About 64% of the genome 

consists of transposable elements, which are evenly distributed in long stretches 

between clusters of 2-10 protein coding genes. A set of 99 genes that are assigned 

to primary metabolic pathways and its regulation are missing in B. graminis, though 

a subset of these genes (57% -77%) is also not present in other biotrophic 

phytopathogens. The number of key enzymes of secondary metabolic pathways is 

drastically reduced, similar as in other biotrophic fungi, such as Ustilago maydis or 

Tuber melanosporum. B. graminis encodes only one nonribosomal peptide 

synthase, one iron siderophore and a single polyketide synthase. Furthermore, the 

genome of B. graminis exhibits no plant cell wall degrading enzymes, such as 

cellulases, xylanases or pectinases. However, secreted enzymes were identified that 

might erode the plant cuticle during the infection process. Nicholson et al. (1988) 

described the activity of a non-specific esterase and Pascholati et al. (1992) 

specified cutinase activity. A secreted lipase that has the capabilities of liquefying 

cuticular wax was recently reported (Feng et al., 2009). A class of typical cell wall 

proteins of fungi, the hydrophobins are also missing in the genome. The genome 

provides 248 putatively secreted effector proteins that show high sequence 

diversity that presume specific functions in biotrophic lifestyle. The majority of 

these putative effectors are only found in the genome of B. graminis in comparison 
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to the mildews Erysiphe pisi and Golovinomyces orontii affecting the dicotyledones 

Pisum sativum and Arabidopsis thaliana, respectively.  

Even though, the exploration of genomic information unravels features of 

biotrophic lifestyle, it does not give any information about gene expression and the 

proteomic inventory of the fungus during its development. Other studies, which 

circumvented these limitations, were analyses of transcript and proteomic profiles 

at different developmental stages during the asexual life cycle of B. graminis 

(Thomas et al., 2002; Both et al., 2005ab; Noir et al., 2009; Bindschedler et al., 2009, 

2011). During the prepenetrative stage on the plant surface the B. graminis 

conidium forms a primary germ tube, followed by a secondary one. After 15 hours 

the secondary germ tube develops into an appressorium, which is a differentiated 

cell, in order to penetrate the host plant. (Carver & Ingerson, 1987; Both et al., 

2005a). After successful plant cell wall penetration B. graminis develops a digitate 

haustorium, a specialized absorption structure (Green et al., 2002). The fungal 

mycelium spreads only epiphytically and forms secondary haustoria as the colony 

grows. The haustoria are restricted to the epidermal cell layer and are surrounded 

by the invaginated plasma membrane of the plant cell (Perfect & Green, 2001; 

Green et al., 2002). After three days, the now macroscopic colonies become visible 

and start to produce conidiophores, which release again a large number of asexual 

conidia. In ungerminated conidia most of the characterized proteins belong to 

metabolic pathways like in active fungal hyphae. This suggests that the molecular 

machinery for energy production and biogenesis of novel cellular material after 

conidia germination is preformed to guarantee a rapid growth on the plant surface 

(Noir et al., 2009). About one fourth of the peptides are involved in carbohydrate 

metabolism, such as the citric acid cycle, the pentose phosphate pathway, glycogen 

degrading enzymes and the fatty acid metabolism. Glycogen and lipids are the most 

prevalent storage compounds of carbon and energy in B. graminis conidia. The 

second most abundant proteins in conidia are peptides functionally belonging to 

the category of protein metabolism and modification like peptidases, ribosomal 

proteins, translation- and elongation factors as well cellular stress related peptides 

like heat shock proteins (23%). Also components of the amino and nucleic acid 

metabolism are present in resting conidia (22%). Catalases and peroxidases that 

detoxify reactive oxygen species, released by the host as immune response, can be 

found preformed in the conidia and were demonstrated to be released during the 

infection process (Zhang et al., 2004). About 6.5% of the proteome is of unknown 

function and could be effectors or proteins that are specific for the establishment of 

biotrophic lifestyle.  

Detailed expression analyses of different asexual pre- and post penetrative 

stages of conidia and of growing or sporulating mycelium were performed by Both 

et al. (2005a) using high density cDNA microarrays. These expression analyses 
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revealed a dynamic regulation of genes involved in primary metabolism. During 

conidia germination, lipids are hydrolysed and glycogen is degraded that feeds into 

the upregulated glycolysis (1-4 hours post infection) to provide energy for the 

penetration of the cuticle and cell wall. After formation of the appressorium and 

establishment of an active haustorium, glucose is directly taken up from the host 

plant (3 days post infection). Protein and DNA synthesis are highly upregulated 

during the epiphytic growth phase. When the colonies start to produce 

conidiophores, lipid and glycogen biosynthesis are raised up, since these 

compounds are accumulating in the conidia, whereas the expression of degrading 

enzymes is repressed. A central aspect of these studies is the fact that B. graminis 

expresses and translates enzymes of the main metabolic pathways that all 

filamentous fungi have. But nevertheless, B. graminis is a biotrophic fungus that 

cannot grow on an artificial media. Therefore, it might be possible that B. graminis 

regulates its metabolic genes strongly in response to specific host plant signals, 

which still has to be elucidated (Both, et al., 2005a). 

 

1.3 The prepenetration processes of Blumeria graminis 

Conidia of B. graminis are produced in chains, whereas the mature conidia can be 

found at the apical end of the chain and are separated by the formation of septa 

(Jarvis et al., 2002). Under natural conditions, mature conidia are dispersed by wind 

and are preferentially released at high temperatures, at low relative humidity and 

when leaf surfaces are dry. In contrast, surface wetness, low temperatures and high 

relative humidity inhibit the release. Even circadian patterns of conidiation are 

characteristic for B. graminis. The infection process of the conidia is initiated 

immediately after landing on aerial parts of the plant and follows a complex 

sequential morphogenesis on the surface, the prepenetration processes (Figure 

1-2). Approximately 30 min after contact with the plant surface the ungerminated 

conidium (not germinated, ng) forms a short (5-10 µm) aseptate primary germ tube 

(pgt). The pgt forms a short penetration hypha, which is a cuticular peg that does 

penetrate the cuticle, but not the cell wall and remains in the apoplast (Edwards, 

2002). Through the pgt the conidium possibly can absorb water from the host plant 

(Carver & Bushnell, 1983) and molecules of low molecular weight (Nielsen, et al., 

2000). Later a second germ tube emerges that elongates up to approximately 40 µm 

and starts to swell (appressorial germ tube, agt). After nine to ten hours the apical 

part of the tube forms a hook and becomes septate, which marks the mature 

appressorium (app). 
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20 µmng pgt sgt agt app
 

Figure 1-2 Prepenetration stages of Blumeria graminis conidia on leaf surfaces: non-germinated 

conidium (ng), conidium with only a primary germ tube (pgt), conidium with an additional secondary 

elongated germ tube (sgt), conidium with a swollen appressorial germ tube (agt) and a fully 

differentiated conidium with a lobed appressorium (app) and septum (arrow). Leaves were bleached 

and conidia were stained with trypan blue. 

 

From beneath the appressorial germ tube, a so-called penetration peg emerges 

from the appressorium cell, which attempts to penetrate the host cuticle and cell 

wall. The forces that drive the penetration process are enzymatic activities and an 

increased turgor up to 2-4 MPa (Pryce-Jones et al., 1999). The prepenetration phase 

of B. graminis is completed with the formation of a functional appressorium and the 

initial penetration peg. Within 24 hours past infection of an epidermal cell a digitate 

haustorium is established, the feeding structure. The fungus mainly takes up 

glucose (Sutton et al., 1999), but can also metabolize sucrose and fructose (Bushnell 

et al., 1987). 

The leaf surface is the first barrier that has to be overcome by potential 

pathogens. Likewise, the outermost surface provides a multitude of physical and 

chemical cues that may promote the development of infection structures (Walters, 

2006). Several studies corroborated a role of plant surface properties in triggering 

the germination and differentiation processes of pathogenic fungi. Beside B. 

graminis (Carver et al., 1990; Francis et al., 1996; Iwamoto et al., 2002; Tsuba et al., 

2002; Zabka et al., 2008), the rice blast fungus Magnaporthe grisea (Gilbert et al., 

1996; Hegde & Kolattukudy, 1997), the anthracnose fungus Colletotrichum 

gloeosporioides (Podila et al., 1993), the pea powdery mildew Erysiphe pisi 

(Gniwotta et al., 2005), the cereal rust Puccina graminis (Reisige et al., 2006), the 

grey mould Botrytis cinerea (Doehlemann et al., 2006) and the corn smut Ustilago 

maydis (Mendoza-Mendoza et al., 2009) develop infection structures in response to 

cuticle derived constituents. 

 

1.4 Prepenetration processes of Blumeria graminis on native and 
artificial surfaces 

The whole prepenetration processes are epicuticular events and take place long 

before cell to cell interactions (fungus-plant) occur, in an environment dominated 

by cuticular waxes. The prepenetration processes during the early infection phase 

are essential parts of the fungal life cycle. The successful establishment of 
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appressoria and the overcoming of the cuticular barrier are needs for the 

subsequent host plant infestation.  

The impact of cuticular wax components on the prepenetration processes of 

B. graminis were first studied with eceriferum (cer) barley mutants that had a glossy 

appearance and were altered in leaf wax composition and physical structure (Yang 

& Ellingboe, 1972). Altered germination and differentiation of B. graminis conidia 

on non-host plants and on artificial surfaces indicated that the prepenetration 

processes might be dependent on the substratum. B. graminis conidia germinated 

regularly and mature appressoria were formed on native host surfaces, epidermal 

strips and isolated cuticles but after removal of cuticular waxes mature appressoria 

were rarely observed (Yang & Ellingboe, 1972). On artificial surfaces such as water 

agar and cellulose, germination occurred but no mature appressoria could develop 

(Carver & Ingerson 1987). In other studies using cellulose film, the conidia 

developed infection structures at high levels, similar as on stripped barley epidermis 

(Kobayashi et al., 1991). Other polymer films, like Formvar® films or nitrocellulose 

films, were capable of inducing infection structures at moderate levels, but on 

hydrophilic glass slides even germination was drastically reduced and no mature 

appressoria were observed.  

A detailed study using different cer-mutants that showed a difference in 

quantity and a shift in the relative composition of cuticular waxes could 

demonstrate that chemical composition and surface hydrophobicity are of 

importance for triggering germination and differentiation of B. graminis conidia, 

whereas the micromorphology plays at best a minor role (Zabka et al., 2008). 

Another study supporting the assumption that the chemical nature of cuticular 

waxes plays a major role in the prepenetration processes were performed on leaves 

of the perennial ryegrass Lolium perenne (Carver et al., 1990). The adaxial and 

abaxial sides of the leaves differ in chemical composition, surface hydrophobicity 

and in the physical microstructure (Ringelmann et al., 2009). The most striking 

differences between the abaxial and the adaxial leaf surface were the absence of 

C26 aldehyde n-hexacosanal, decreased primary alcohol content and a reduced 

surface hydrophobicity. On the abaxial leaf surface the formation of differentiated 

conidia (agt+app) was reduced to 12% compared to the adaxial side (80% agt+app). 

After mechanical removal of epicuticular waxes from both sides the differentiation 

rates were similarly high (60% agt + app). Subsequent assays with mechanically 

removed wax sprayed on glass slides, revealed again significantly reduced 

differentiation rates on slides covered with the abaxial wax fraction (40% agt + app) 

compared to slides covered with the adaxial wax (70% agt + app). 

Single chemical compounds of the cuticle that may act as a distinct signal 

were already identified previously. A minor wax constituent of barley, n-

hexacosanal, is capable of strongly inducing the appressorium formation of B. 
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graminis conidia in vitro, whereas the C30 aldehyde n-triacontanal had less inducing 

capabilities (Tsuba et al., 2002). The cutin monomers cis-9,10-epoxy-18-hydroxy-

stearic acid and 8,16-dihydroxy-palmitic acid applied to glass as substratum were 

also able to enhance the rates of appressorium formation, (Francis et al., 1996). The 

impact of the surface hydrophobicity was not considered in the experiments with 

synthetic cutin monomers. The cutin monomers may be released from the host 

cuticle by the activity of fungal cutinases and the breakdown products are 

presumably sensed via the primary germ tube, but experimental evidences are 

lacking (Kunoh et al., 1990; Pascholati et al., 1992). The release of a liquid 

extracellular matrix (ECM), which had an esterase activity three minutes after 

deposition upon contact with hydrophilic cellophane or hydrophobic glass surfaces 

were observed (Nicholson et al., 1988; Nielsen et al., 2000). When the esterase 

activity was inhibited chemically in planta, the number of powdery mildew colonies 

was significantly reduced (Francis et al., 1996; Feng et al., 2011). The ECM is also 

released after contact with the plant surface and goes along with a change of the 

conidial surface from a hydrophobic to a hydrophilic state (Nicholson et al., 1993). 

This process is believed to decrease the hydrophobicity of the host leaf surface at 

the contact site, which is necessary to promote agt formation (Nicholson, et al., 

1988).  

The release of the ECM was observed very rapidly within 20 seconds after 

contact with hydrophobic plastic surfaces. Therefore the ECM must be preformed in 

the conidium, since that process is insensitive towards the protein biosynthesis 

inhibitor cycloheximide (Carver et al., 1999). The excretion of the ECM on barley 

leaves is much less in quantity and seems to be released from cell wall projections 

on the surface of the conidium (Carver et al., 1999; Green et al., 2002). Another 

enzyme, the non-specific lipase LIP1 identified in the ECM had cuticular wax 

liquefying capabilities (Feng et al., 2009). The enzyme hydrolyses a broad range of 

glycerides in vitro and presumably releases alkanes and primary alcohols from the 

epicuticular wax. Glass slides covered with the C24 alkane n-tetracosane or the C25 

alkane n-pentacosane significantly enhanced the differentiation rates of B. graminis 

f.sp. tritici conidia. However, the substrate that is hydrolysed in vivo was not 

identified, but also a transesterification reaction between the conidium and the 

cuticular leaf wax was discussed by the authors. 

 

1.5 Aims of this work 

Influence of cuticular wax constituents on the prepenetration processes 

Inoculation of B. graminis f.sp. hordei conidia on different fractions of barley 

cuticular waxes as substrata revealed the highest differentiation rates on surfaces 

covered with the aldehyde fraction (Tsuba et al., 2002). B. graminis conidia 
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inoculated on chemically synthesized n-hexacosanal (C26) showed higher 

differentiation rates than on n-triacontanal (C30). Physical properties of the surface, 

like the leaf surface microstructure and more important the surface hydrophobicity, 

additionally have an impact on the germination and differentiation (Zabka et al., 

2008). Inoculation of B. graminis f.sp. hordei conidia on non-host waxes revealed 

significantly decreased germination and differentiation rates (Tsuba et al., 2002).  

The central aim of this study was to systematically elucidate the impact of 

cuticular wax constituents using one in vitro experimental system. Existing in vitro 

systems, which were previously used, were quite diverse. The quantities and the 

homogeneity of the surface coatings proved not to be reproducible when the 

substances were sprayed with a glass chromatographic sprayer. Furthermore, the 

chemical nature of lipophilic substrata strongly influences the surface 

hydrophobicity, which made it difficult to distinguish between the impact of the 

physical properties and the substrata itself on B. graminis conidia during the 

prepenetration processes (Zabka et al., 2008). Chapter 2 describes a novel highly 

reproducible system based on Formvar® resin, which provides a homogenous 

surface hydrophobicity and enables the deposition of equimolar amounts of 

lipophilic compounds on glass slides. This in vitro system offered the prerequisites 

to systematically address the following questions about the impact of cuticular 

waxes on B. graminis conidia differentiation:  

• Which components, beside n-hexacosanal are capable of inducing B. graminis 

conidia differentiation and do certain cuticular wax constituents have an inhibitory 

effect on conidia differentiation? 

• Do different chain lengths of molecules of the same chemical compound class 

have an effect on conidia differentiation? 

• Do different blends of cuticular wax constituents influence conidia differentiation 

in a positive or negative way? 

• Does a critical minimum concentration or proportion of a certain cuticular wax 

constituent exist, promoting or inhibiting conidia differentiation? 

The in vitro studies presented in this work could clearly demonstrate that 

very-long-chain aldehydes promote germination and differentiation of B. graminis 

conidia in a chain length and concentration dependent manner. This finding raised 

up the question, which impact very-long-chain-aldehydes generally have on conidia 

differentiation during the prepenetration phase in vivo on the plant surface. In 

Chapter 3, the fungal development was studied on leaves of the non-host Zea mays 

wax mutant glossy11 that is completely devoid of very-long-chain aldehydes. 

Additionally, the impact of elevated levels of very-long-chain aldehydes was studied 

on leaves of Zea mays wax mutant glossy5, which had a six times larger aldehyde 

content in its cuticular wax compared to wildtype plants. It was elucidated, whether 

increased aldehyde contents in leaf cuticular waxes lead to enhanced conidia 
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differentiation. The non-host Poaceae Zea mays was chosen for these experiments, 

since corresponding barley mutants are not available.  

 

Timing of morphogenesis and cell cycle progression during the prepenetration 

processes 

The germination of resting conidia is a crucial step in the life cycle of pathogenic 

fungi. The differentiation of infection structures is associated with a general 

reprogramming of the cell. The conidial morphogenesis on the plant surface is often 

tightly coupled to cell cycle progression. In the rice blast fungus Magnaporthe 

grisea a single round of mitosis in the previously formed appressorial germ tube is a 

prerequisite for appressorium formation (Saunders et al., 2010ab) and subsequent 

autophagic cell death is necessary for pathogenicity (Veneault-Fourrey et al., 2006). 

On the contrary, in the anthracnose fungus Colletotrichum gloeosporioides the 

emergence of the appressorial germ tube and the appressorium formation are 

independent of mitosis (Nesher et al., 2008). 

 So far, description of mitosis during the prepenetration phase for the 

important obligate biotrophic model organism B. graminis and a possible 

dependency on the morphogenesis was lacking. The work in Chapter 4 describes in 

detail the mitotic processes during the prepenetration phase. In order to answer 

the question, whether development of the secondary germ tube and appressorium 

maturation are associated with the cell cycle, a pharmacological approach, using 

cell cycle inhibitors, was applied. Additionally, the observations of cell cycle 

progression and morphogenesis in vitro were compared with the situation on barley 

leaves in vivo. This part of the work focused mainly on two questions: 

• Which impact has the inhibition of the cell cycle on the conidial morphogenesis 

and appressorium maturation? 

• Are cuticular waxes sufficient to promote cell cycle progression during the 

prepenetration phase or are they even responsible? 

To address these questions experimentally, the in vitro system based on 

Formvar® resin was improved, because the conidia are highly susceptible to free 

water and burst during the early stages of the prepenetration. Furthermore, the 

presence of free water impedes the germination of B. graminis conidia (Manners & 

Hossain, 1963; Sivapalan 1994). The system provides a Formvar® membrane with 

differentiation inducing barley leaf wax and simultaneously allows a treatment with 

water soluble inhibitors, without disturbing the development of the conidia. Using 

nuclei labelled with green fluorescent protein (GFP), a usual technical approach to 

trace nuclear division is currently impossible, since a stable transformation system 

for B. graminis is not yet available. Also well established staining methods for nuclei 

based on dyes, which are used for fungi were not applicable for B. graminis. 

Therefore, additionally a distinct procedure for staining nuclei of B. graminis based 
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on DAPI (4',6-diamidino-2-phenylindole), which made it possible to investigate 

morphogenesis and nuclear division during the prepenetration was developed in 

this work. 

 

Surface dependent gene expression during the prepenetration processes 

The dynamics of gene expression of B. graminis at different developmental stages 

during the whole asexual life cycle allowed detailed insights in the metabolic status 

of this obligate biotrophic fungus (Thomas et al., 2002; Both et al., 2005ab; Noir et 

al., 2009). So far, molecular biological work, which compares gene expression on 

substrata that induce appressoria formation and those that are non-inducing, is not 

available. This part of the work focuses on the question:  

• Do genes exist, that are specifically transcribed in response to cuticular waxes or 

single wax constituents, which act as signals for conidial germination and 

differentiation? 

Chapter 5 presents an approach for the identification of wax specific transcripts 

expressed by B. graminis conidia in response to n-hexacosanal, the most effective 

very-long-chain aldehyde present in the host plant cuticular waxes. The Formvar® 

resin based in vitro system, presented in Chapter 2, provided a stable platform for a 

suppression subtractive hybridization (SSH)-based experimental approach, because 

effects due to variations in the surface hydrophobicity can largely be excluded. The 

subtraction was performed with two pools of RNA originating from an inductive 

surface (n-hexacosanal) and a non-inductive surface (n-hexacosane). The non-

inductive substratum was previously identified in the large scale screening of wax 

constituents (Chapter 2). After identification and cloning of the differentially 

expressed sequences it was investigated, to which extent these putative genes are 

induced in vivo on barley leaves and on artificial wax coated surfaces. The further 

characterization of transcripts, which are responding to cuticular waxes, could be of 

relevance for initiation and progression of the prepenetration processes of B. 

graminis. 
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2.1 Abstract 

 

•  Surface properties of aerial plant organs have been shown to affect the 

interaction of fungal plant pathogens and their hosts. Conidial germination and 

differentiation – the so-called prepenetration processes – of the barley powdery 

mildew fungus (Blumeria graminis f. sp. hordei) are known to be triggered by n-

hexacosanal (C26-aldehyde), a minor constituent of barley leaf wax. 

 

•  In order to analyze the differentiation-inducing capabilities of typical 

aldehyde wax constituents on conidia of wheat and barley powdery mildew, 

synthetic even-numbered very-long-chain aldehydes (C22–C30) were assayed, 

applying an in vitro system based on Formvar®/n-hexacosane-coated glass slides. 

 

•  n-Hexacosanal was the most effective aldehyde tested. Germination and 

differentiation rates of powdery mildew conidia increased with increasing 

concentrations of very-long-chain aldehydes. Relative to n-hexacosanal, the other 

aldehyde compounds showed a gradual decrease in germination- and 

differentiation-inducing capabilities with both decreasing and increasing chain 

length. 
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•  In addition to n-hexacosanal, several other ubiquitous very-long-chain 

aldehyde wax constituents were capable of effectively stimulating B. graminis 

prepenetration processes in a dose- and chain length-dependent manner. Other 

wax constituents, such as n-alkanes, primary alcohols (with the exception of n-

hexacosanol), fatty acids and alkyl esters, did not affect fungal prepenetration. 

 

Keywords: barley (Hordeum vulgare); Blumeria graminis; hexacosanal; mildew; 

octacosanal; very-long-chain aldehydes; wax; wheat 

 

2.2 Introduction 

Primary aerial plant surfaces are covered with the cuticle that forms the direct 

interface between a plant and its environment. The primary function of the cuticle 

is to form a permeability barrier against water vapour loss from tissues (Schönherr 

& Merida, 1981; Riederer, 1991; Riederer & Schreiber, 2001; Burghardt & Riederer, 

2006). Other functions comprise protection against pathogens, herbivores, UV 

radiation and mechanical damage (Heredia, 2003). The plant cuticle, which 

represents the first site of contact with a variety of organisms, such as herbivores 

and fungal pathogens (Müller & Riederer, 2005; Müller, 2006), is composed of a 

polymer matrix (cutin) and associated solvent-soluble lipids (cuticular waxes), which 

can be divided into two spatially distinct layers: the intracuticular waxes embedded 

in the cutin matrix and the epicuticular waxes coating the surface (Jetter et al., 

2000). Cuticular waxes are typically composed of very-long-chain aliphatic 

compounds, such as, for example, primary and secondary alcohols, aldehydes, 

esters, ketones or alkanes, composed and arranged in a species-, organ- and tissue-

specific manner (Baker et al., 1982; Jeffree, 1996; Jetter et al., 2000). Very-long-

chain aldehydes (> C18) are common, ubiquitous wax components that mostly 

consist of a homologous molecule series with chain lengths ranging from 20 to 

almost 40 carbons, and can be found in most of the cuticular plant waxes analyzed 

so far (Jetter et al., 2006). 

Plant cuticles have been found to contain substances that affect the 

germination and differentiation of several plant pathogenic fungi, including the 

grass powdery mildew Blumeria graminis (Carver et al., 1990; Podila et al., 1993; 

Gilbert et al., 1996; Tsuba et al., 2002; Reisige et al., 2006; Zabka et al., 2008). The 

obligate biotroph B. graminis attacks the cereals wheat and barley, two of the most 

important food crops, and causes one of the most destructive foliar diseases of 

cereals (Jørgensen, 1988). The asexual conidia of B. graminis germinate and 

continue their development following a highly ordered morphogenetic sequence. 

After initial contact with the host surface, B. graminis asexual conidia form a 

primary germ tube, which attaches to the leaf surface and forms a short peg that 
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penetrates the cuticle (Edwards, 2002; Yamaoka et al., 2006). Subsequently, a 

secondary germ tube elongates that swells and differentiates into an appressorial 

germ tube, which matures and becomes a lobed, apical appressorium with a 

penetration peg formed to breach both host cuticle and cell wall. These 

prepenetration processes of fungal development are completed c. 12–15 h after 

inoculation. 

To date, the chemical nature of only a few substances that promote B. 

graminis prepenetration processes on the leaf surface has been identified. Francis 

et al. (1996) reported that cutin monomers are involved in triggering appressorial 

germ tube development, and, more recently, it has been found that n-hexacosanal 

(C26-aldehyde) and n-triacontanal (C30-aldehyde), chemical constituents of the 

epicuticular wax layer of barley, are capable of inducing appressorium formation of 

B. graminis germlings in vitro (Tsuba et al., 2002). Conidia inoculated onto n-

triacontanal-coated polystyrene dishes, however, showed significantly lower 

differentiation rates than those on plates covered with n-hexacosanal, the main 

aldehyde component of barley leaf cuticular wax. These results suggest that 

aldehyde wax components of different chain length could affect the prepenetration 

processes of B. graminis in a substance- and/or chain length-specific manner. 

However, this remains to be demonstrated. 

In addition to the chemical composition of the plant cuticle, physical 

parameters such as surface hydrophobicity can play an important role in the course 

of the prepenetration process. Indeed, a sufficiently high surface hydrophobicity 

was required for B. graminis conidia on wax-sprayed glass slides to effectively 

trigger germination and appressorium differentiation in the presence of n-

hexacosanal (Zabka et al., 2008). This important feature, however, was not under 

consideration in the study of Tsuba et al. (2002). 

The central aim of the present study was to determine the germination- and 

differentiation-inducing capabilities of different very-long-chain aldehydes present 

in cereal leaf cuticular waxes in order to understand which chemical properties 

present in cuticular wax are required for the efficient promotion of appressorial 

differentiation of B. graminis conidia. For this purpose, a novel Formvar® resin-

based in vitro system was developed, which provides highly homogeneous 

hydrophobic surfaces that exhibit essentially uniform contact angles. This permitted 

specific analysis of the effects of bioactive lipophilic extracts or single wax 

constituents on the prepenetration processes of B. graminis f. sp. hordei and B. 

graminis f. sp. tritici, excluding secondary effects caused by variations in surface 

hydrophobicity. 
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2.3 Material and Methods 

Pathogen and plant material 

Hordeum vulgare L. cv Bonus (obtained from the Nordic Gene Bank, Alnarp, 

Sweden) and Triticum aestivum cv Winnetou (Saatzucht Firlbeck, Atting-Rinkam, 

Germany) seeds were sown in plastic pots (diameter, 9 cm) filled with standard 

potting soil (Typ ED73; SteuderComp, Schermbeck, Germany). The plants were kept 

in growth chambers with 300 μmol photons m−2 s−1 light intensity in a 16 h : 8 h 

photoperiod (22°C : 18°C) and 70% relative humidity. For wax analysis, 14-d-old 

secondary leaves were harvested and analyzed with respect to surface 

hydrophobicity and epicuticular wax chemistry, and subjected to assays with B. 

graminis. 

Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal [isolate CC1, 

originally obtained from Tim Carver, Institute of Grassland and Environmental 

Research (IGER), Aberystwyth, UK] was propagated on its host barley (Hordeum 

vulgare L. cv Bonus), and Blumeria graminis (DC.) E.O. Speer f. sp. tritici Em. Marchal 

(kindly provided by Professor R. Hückelhoven, Technical University of Munich, 

Germany) on its host wheat (Triticum aestivum L. cv Winnetou) under the same 

conditions as described above until distinct white powdery pustules appeared. One 

day before conidia were required for experimentation, spore-bearing leaves were 

shaken to remove older conidia, so that freshly emerged conidia were available for 

subsequent assays. 

 

Sampling of cuticular waxes 

Total leaf extracts of secondary leaves (n = 5) of 14-d-old barley or wheat plants 

were obtained by dipping entire leaves (apart from cut edges) for 2 min into 25 ml 

chloroform (> 99%; Roth, Karlsruhe, Germany). n-Tetracosane (Sigma-Aldrich, 

Steinheim, Germany) was added to all extracts as an internal standard. The solvent 

was removed under a gentle flow of nitrogen. 

 

Chemical analysis 

Before gas chromatography (GC) analysis, hydroxyl-containing compounds in all 

samples were transformed into the corresponding trimethylsilyl derivatives by 

reaction with bis-N,O-trimethylsilyltrifluoroacetamide (Macherey-Nagel, Düren, 

Germany) in pyridine (30 min at 70°C). 

The quantitative compositions of the mixtures were studied using capillary 

GC (5890 Hewlett Packard Series II; Agilent Technologies, Santa Clara, CA, USA) and 

a flame ionization detector under the same conditions as a qualitative analysis 

(6890 N, Agilent Technologies), with mass spectrometric detection (m/z 50–750; 

MSD 5973, Agilent Technologies). 
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GC was carried out with on-column injection (30 m, 0.32 mm inner diameter, 

DB-1, df = 0.1 μm, J&W Scientific, Agilent Technologies). The oven temperature was 

programmed for 2 min at 50°C, 40°C min−1 to 200°C, 2 min at 200°C, 3°C min−1 to 

320°C, 30 min at 320°C, and He carrier gas inlet pressures were programmed for 5 

min at 50 kPa, 3 kPa min−1 to 150 kPa and 30 min at 150 kPa. Wax components were 

identified by comparison of their mass spectra with those of authentic standards 

and literature data. For the quantification of individual compounds, GC was used 

under the conditions described above, but with H2 (5 min at 5 kPa, 3 kPa min−1 to 50 

kPa and 30 min at 50 kPa) as the carrier gas and a flame ionization detector (HP 

ChemStation software package, Hewlett-Packard, Waldbronn, Germany). 

 

Characterization of artificially coated surfaces and contact angle measurements 

Small pieces of air-dried glass slides with different surface coatings were mounted 

on aluminum holders, sputter coated with gold–palladium (Bal-Tec SCD005 sputter 

coater; 25 mA, 300 s, Balzers, Oerlikon, Switzerland), and examined by scanning 

electron microscopy (SEM) (Zeiss DSM 962, 15 kV; Zeiss, Oberkochen, Germany). 

Sputtering conditions, depositing c. 20 nm of the alloy on the tissue samples, were 

optimized for the acceleration voltage used in SEM. To measure surface 

hydrophobicity, contact angles of 1 μl droplets of distilled water were determined 

(contact angle system OCA 15, software system SCA20; Dataphysics Instruments, 

Filderstadt, Germany). A total of 20 measurements on each of at least five 

independent surface samples was performed. Data are given as means ± SD. 

 

Synthesis of very-long-chain aldehydes 

Very-long-chain aldehydes were synthesized from their corresponding n-alkanols (n-

docosanol, 0.61 mmol; n-tetracosanol, 1.8 mmol; n-hexacosanol, 0.91 mmol; n-

octacosanol, 1.19 mmol; n-triacontanol, 0.26 mmol; all 99%, Sigma-Aldrich) 

according to the protocol developed by Corey & Suggs (1975). The respective n-

alkanol was dissolved in CH2Cl2 (99.5%; Roth, Karlsruhe, Germany) and 

supplemented in a molar ratio of 1.2 : 1 to an ice-cold solution of pyridinium 

chlorochromate (PCC, 99%, Sigma) in CH2Cl2 containing 4 g Celite (Merck, 

Darmstadt, Germany). 

After continuous stirring overnight at room temperature, the slurry formed 

was filtered over a silica gel column (Ø = 5 cm) and the aldehyde fractions were 

eluted with CH2Cl2. The purity of the aldehydes was checked by NMR spectroscopy 

and mass spectrometry (data not shown). Pure n-docosanal, n-tetracosanal, n-

hexacosanal, n-octacosanal, and n-triacontanal were dissolved in chloroform and 

then applied to glass slides as described below. 
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Coating of glass slides 

Histobond® glass slides (Marienfeld, Lauda-Königshofen, Germany) were carefully 

cleansed with a few drops of Deconex® 11 UNIVERSAL detergent (Applichem, 

Darmstadt, Germany), subsequently rinsed with distilled water, immersed in 

isopropanol for c. 10 s, again in distilled water for c. 1 min and finally dried at room 

temperature. A 0.5% solution of Formvar® resin (polyvinyl formal, CAS 63450-15-7, 

Applichem) in chloroform was supplemented with the C26 alkane n-hexacosane or 

other wax components to a final concentration of 7 × 10−4 mol l−1 (0.25 mg ml−1 n-

hexacosane) only, or additionally with the respective very-long-chain aldehyde to 

final concentrations of 7 × 10−8, 7 × 10−7, 7 × 10−6 and 7 × 10−5 mol l−1 aldehyde. 

Isolated barley or wheat leaf wax was added to the 0.5% Formvar® solution to yield 

concentrations between 0.48 and 1 mg ml−1. The dried glass slides were dipped into 

the respective coating solution for a few seconds. Subsequently, the slides were 

dried completely for 16 h at room temperature and then used for the experiments. 

All single wax components – except very-long-chain aldehydes – used for coating 

glass slides were purchased from Sigma-Aldrich. 

Because of the similar solubility of the Formvar® resin and cuticular wax 

components in organic solvents, it was not possible to subsequently analyze the 

exact amounts of single wax components deposited onto the surface of the 

Formvar®-coated glass slides. In the following, we consequently refer to the 

concentrations of the single compounds present in the dipping solution. However, 

when the lipophilic dye Sudan III (Sigma-Aldrich) was employed as a ‘model wax 

constituent’ and supplemented to the Formvar solution in a defined concentration, 

increasing amounts of Sudan III resulted in similarly increasing amounts deposited 

onto the glass slide surfaces (data not shown). Hence, this dye might allow a rough 

estimate of the amount of wax compounds deposited onto the glass slide surfaces 

after dipping. Assuming that the deposition of Sudan III and of wax constituents was 

almost identical, Formvar®-coated glass slides had an average estimated total wax 

coverage of c. 0.5 μg cm−2. Therefore, a concentration of 7 × 10−5 mol l−1 of a single 

wax compound in the dipping solution should correspond to a coverage of c. 50–60 

ng cm−2, depending on the molecular weight of the molecule. 

For the production of glass slides coated with blends of wax constituents or 

extracted cuticular leaf waxes by means of spraying, the substances were dissolved 

in chloroform and sprayed onto Histobond® glass slides using a glass 

chromatography sprayer. In order to ensure full coverage of the glass surface, only 

those coated with ≥ 3 μg cm−2 of wax or wax constituents were used for data 

retrieval (Zabka et al., 2008). 
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Studies of fungal prepenetration processes 

Detached 14-d-old secondary leaves of H. vulgare or T. aestivum, with their adaxial 

surface up, and glass slides with different surface coatings were fixed at the base of 

a settling tower. Conidia from infected barley or wheat leaves, respectively, were 

blown into the tower using pressurized air to ensure their even distribution at a 

density of c. 2 × 103 conidia cm−2. Artificial surfaces and leaves were kept moist with 

wet filter paper applied underneath to achieve a relative humidity of at least 90%. 

The samples were incubated for 16 h in the darkness at 20°C. To avoid displacement 

of ungerminated conidia, the leaves were placed, with their inoculated surface up, 

onto Whatman 3 MM paper moistened with ethanol : acetic acid (3 : 1, v/v) until 

bleached, and then transferred to filter paper moistened with lactoglycerol (lactic 

acid : glycerol : water, 1 : 1 : 1, v/v/v) for 3 h. Finally, fungal structures were stained 

for 30 min by carefully pipetting a few droplets of trypan blue (Merck) (0.05% w/v) 

acetic acid : glycerol : water (1 : 1 : 1, v/v/v) onto the inoculated surface (Lyngkjær & 

Carver, 1999). 

Individual conidia were analyzed on each surface by light microscopy (Leica 

DMR with Leica IM1000 software package, Wetzlar, Germany) to determine 

whether they remained nongerminated (ng), had formed a primary germ tube only 

(pgt), a nonswollen secondary germ tube (sgt), a swollen appressorial germ tube 

(agt) or a hooked appressorium (app). In addition, the loss rate of conidia that were 

apparently damaged, burst or desiccated during the inoculation procedure was 

recorded (aberr). Only single, well-separated conidia were counted at each 

observation to eliminate the possibility of inhibition caused by crowding. 

 

Statistical analysis 

The basis for statistical analysis was n = 5 independent experiments in each case. 

For data concerning conidium development, n = 1 represents 500 examined conidia 

for in vitro experiments and 300 examined conidia for in vivo experiments. 

Significant differences (P < 0.05) between multiple datasets were tested by one-way 

ANOVA, followed by a Tukey HSD post hoc test; pairwise comparisons were tested 

by a Mann–Whitney U-test. In cases of significant differences (P < 0.05, Levene’s 

test) of homogeneity between multiple datasets, the data were transformed. 

 

2.4 Results 

2.4.1 Composition of barley and wheat leaf cuticula r waxes 

The quantity and composition of the leaf cuticular waxes of the assayed barley and 

wheat cultivars were studied. In the wheat cv Winnetou, n-octacosanol – and not n-

hexacosanol as in barley – was identified as the main wax constituent (Figure 1). 

The C28-aldehyde n-octacosanal represented 1.1% of the cuticular wheat wax (0.12 



Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain 
length-dependent manner 

 

20 

μg cm−2). In barley, the C26-aldehyde n-hexacosanal amounted to only c. 0.8% of the 

total cuticular wax (0.06 μg cm−2). The chain length distribution spectrum within the 

different substance classes (primary alkanols, aldehydes, alkyl esters and fatty acids) 

– with the exception of n-alkanes – was predominantly shifted by two carbon atoms 

towards a longer chain length in wheat. Approximately 3–4% of the leaf wax 

constituents of the two species remained unidentified. The absolute amount of 

cuticular wax of barley leaves (8 ± 1 μg cm−2) did not largely differ from the amount 

that was extracted from the leaves of wheat (11 ± 1 μg cm−2). 
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Figure 1 Relative composition (%) of total leaf wax extracts from Hordeum vulgare cv Bonus (a) and 

Triticum aestivum cv Winnetou (b). Carbon chain lengths are indicated for each chemical compound 

class, except for n-hexacosane-1,3-diol (D) and nonidentified (n.i.) compounds. Data are given as 

means from five replications ± SD. 

 

2.4.2 Surface structures and contact angles 

Adaxial barley and wheat leaf surfaces used for inoculation experiments were 

covered by the typical wax crystal platelets usually found on barley and wheat (data 

not shown), resulting in contact angles of 140 ± 5° for barley and 159 ± 7° for the 

even more hydrophobic wheat leaf surfaces. By contrast, SEM analysis of a glass 

slide surface coated with the Formvar® resin showed a largely homogeneous 
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smooth coverage, occasionally exhibiting fairly small irregularly scattered structures 

with contact angles of only 70 ± 3° (Figure 2a). When extracted barley leaf wax was 

added to the 0.5% Formvar® solution, yielding a final concentration of up to 

1 mg l−1, larger protrusions with a slab- to plate-like outer appearance and an 

average diameter of c. 2–5 μm appeared on the coated glass slide surface and 

exhibited contact angles of 108 ± 1° (Figure 2b). The addition of n-hexacosane 

(7 × 10−5 mol l−1) to the 0.5% Formvar® solution resulted in smaller horizontal rod- 

or worm-like structures on the surface, having a length of c. 1 μm and similar 

contact angles of 114 ± 1° (Figure 2c). Supplementing the Formvar®/n-hexacosane 

mixture with different proportions of the assayed aldehydes did not result in further 

modifications of contact angle and surface topology – exemplified for 7 × 10−4 mol 

l−1 n-hexacosanal (Figure 2d). 

 

 

Figure 2 Scanning electron micrographs of glass slides with different surface coatings: (a) Formvar® 

only; (b) Formvar® resin supplemented with barley leaf wax (1 mg ml
−1

 in the dipping solution); (c) 

Formvar® with n-hexacosane; and (d) Formvar® with a mixture of n-hexacosane and n-hexacosanal. 

The insets in (b) and (c) show the respective surface at a higher magnification. 

 

2.4.3 Prepenetration processes of B. graminis on native leaf surfaces 
and on wax-coated glass slides 

After inoculation of host and nonhost adaxial leaf surfaces, B. graminis f. sp. hordei 

and B. graminis f. sp. tritici showed no significant differences with respect to 

conidial germination and differentiation (Figure 3a,c). More than 80% of the conidia 

formed a mature appressorium. Less than 4% of the barley powdery mildew conidia 
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remained nongerminated although apparently remaining intact (Figure 3a), 

whereas only < 1% of the wheat mildew conidia did not germinate (Figure 3c). This 

difference is also reflected by the slightly increased proportion of wheat mildew 

conidia with fully mature appressoria on wheat and barley leaves. The wheat and 

barley powdery mildew fungi showed very similar in vitro germination and 

appressorium formation rates on the Formvar®/n-hexacosane/isolated leaf wax-

coated glass slides. However, comparable with the situation on adaxial leaf surfaces 

(Figure 3b), B. graminis f. sp. tritici exhibited slightly higher rates of germination and 

appressorium formation than did B. graminis f. sp. hordei on the respective wax 

glass slides (Figure 3d). Generally, formation rates of mature appressoria were 

distinctly reduced on Formvar®/n-hexacosane/isolated leaf wax-coated glass slides, 

whereas the majority of conidia (c. 60%) remained in the appressorial germ tube 

stage of fungal differentiation. On glass slides, the percentage of dead, burst conidia 

was, at most, 1%, whereas, on native surfaces, this proportion increased to 5–8% on 

average. 

 

Among various single nonaldehyde wax constituents, only n-hexacosanol 

promotes germination and differentiation of B. graminis conidia 

Control glass slides covered with Formvar® only (contact angle, 70 ± 3°) exhibited 

high germination rates (78 ± 8%), whereas only c. 7% formed an appressorial germ 

tube or an appressorium (Table 1). The majority of conidia, however, showed an 

aberrant development, resulting in mainly desiccated and burst conidia (56 ± 9%). 

Inoculation onto Formvar® membranes covering a block of 2% water agar 

(Kobayashi et al., 1991) resulted in c. 21% differentiated conidia and only 5% 

showing an aberrant development. 
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Figure 3 Development of Blumeria graminis f. sp. hordei (a) and B. graminis f. sp. tritici (c) conidia on 

adaxial leaf surfaces of Hordeum vulgare cv Bonus (black bars) and Triticum aestivum cv Winnetou 

(gray bars). Development of B. graminis f. sp. hordei (b) and B. graminis f. sp. tritici (d) conidia on 

glass slides covered with Formvar® resin supplemented with wax preparations of H. vulgare (black 

bars) and T. aestivum (gray bars). (e) Prepenetration developmental stages of B. graminis conidia: 

ng, nongerminated conidium without a germ tube; pgt, germinated conidium with a primary germ 

tube formed; sgt, conidium with an additionally formed and elongated secondary germ tube; agt, 

conidium with a swollen appressorial germ tube; app, fully differentiated conidium with a mature 

lobed and septated (sept) appressorium; aberr, burst, dead conidia. Values are given as mean ± SD of 

five independent experiments. ns, nonsignificant differences (P ≥ 0.05, Mann–Whitney U-test) within 

a developmental category. 
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Coating glass slides with the Formvar®/n-hexacosane mixture resulted in 

distinctly reduced germination rates of c. 30%, whereas the differentiation rates 

were at best c. 4% with only 1% of the conidia forming appressoria, demonstrating 

the largely noninductive character of this Formvar®/n-alkane mixture (Table 1). In 

all Formvar®/n-alkane glass slide experiments, the percentage of dead, burst 

conidia was, at most, 1%. 

In order to assay single wax constituents varying in chain length and 

compound class for their germination- and differentiation-promoting capabilities, 

Formvar®-only solutions and Formvar®/n-hexacosane mixtures were supplemented 

with the respective substance and subjected to inoculation bioassays with B. 

graminis conidia. 

Even- and noneven-numbered n-alkanes as hydrophobic carrier substances 

in the Formvar® solution resulted in similar rates as with Formvar®/n-hexacosane, 

showing no specific induction of germination or differentiation (Table 1). The 

majority of conidia (c. 70%) remained in the nongerminated stage, whereas c. 20% 

of the conidia aborted their prepenetration development with the formation of a 

single primary germ tube. 

Despite their low surface hydrophobicity, glass slides coated with 

Formvar®/n-hexacosanol (7 × 10−4 mol l−1) showed significantly increased 

germination and differentiation rates compared with the other tested n-alkanols, 

which were not capable of distinctly promoting fungal differentiation. In addition to 

the c. 20% that were differentiated, the proportion of conidia with a formed 

secondary germ tube also increased, demonstrating that the presence of n-

hexacosanol was capable of inducing the development of c. 40% of the conidia 

beyond the primary germ tube stage. Among the glass slides coated with a mixture 

of Formvar®/n-hexacosane/n-alkanol, only those supplemented with the C26-

alkanol n-hexacosanol (7 × 10−5 mol l−1 
n-hexacosanol) exhibited a significantly 

increased germination and appressorial germ tube formation, whereas 

appressorium formation remained unaffected. 

The applied commercially available alkyl-esters (C40–C44) – with or without n-

hexacosane in the dipping solution – did not result in a pronounced promotion of 

fungal germination and differentiation, although the proportions of conidia with an 

appressorial germ tube were distinctly higher when compared with the data from 

the n-alkane series. The assayed even-numbered fatty acids that are constituents of 

wheat and barley leaf wax resulted in differentiation rates of, at best, c. 6%, 

whereas c. 75% of the conidia remained nongerminated. 
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Table 1 B. graminis f.sp. hordei development on Formvar
®
 coated glass slides supplemented with 

different non-aldehyde compounds occurring in barley and wheat leaf wax and corresponding 

surface contact angles.  

Percentage of conidia 
Substratum 

ng pgt sgt agt app 

Contact 
angle (deg) 

0.5% Formvar® 22 ± 8A 9 ± 4a 6 ± 4A 4 ± 3A 3 ± 2A 70 ± 3 

0.5% Formvar® + 7 10-4  mol l-1 n-hexacosane 73 ± 3B 18 ± 2b 2 ± 1A 3 ± 1B 1 ± 1B 114 ± 1 

0.5% Formvar®  membrane on 2% agarose  42 ± 3C 28 ± 4c 7 ± 2A 12 ± 3B 9 ± 3B nd 

Concentration mol l-1 Chain length       

Alkanes       

24 71 ± 4a 20 ± 2a 2 ± 2a 2 ± 1a 1 ± 1a 113 ± 1 
25 74 ± 3a 16 ± 1a 3 ± 1a 3 ± 1a 1 ± 1a 113 ± 1 
26 73 ± 3a 17 ± 1a 2 ± 1a 3 ± 1a 1 ± 1a 113 ± 1 
27 74 ± 4a 17 ± 3a 2 ± 1a 3 ± 1a 1 ± 1a 112 ± 1 
28 72 ± 4a 18 ± 3a 2 ± 1a 4 ± 1a 1 ± 1a 112 ± 1 
29 73 ± 3a 17 ± 2a 2 ± 1a 3 ± 1a 2 ± 1a 112 ± 1 
30 75 ± 2a 15 ± 2a 2 ± 1a 2 ± 1a 2 ± 1a 108 ± 1 
31 69 ± 4a 19 ± 1a 4 ± 1a 4 ± 1a 1 ± 1a 110 ± 4 

7 × 10-4 

33 76 ± 3a 16 ± 3a 2 ± 1a 3 ± 1a 1 ± 1a 108 ± 1 

Primary alcohols       
20 76 ± 3ab 14 ± 2a 3 ± 2a 3 ± 1a 1 ± 1a 115 ± 1 
22 73 ± 1abc 17 ± 2ab 2 ± 1a 3 ± 1a 1 ± 1a 114 ± 1 
24 68 ± 4bc 22 ± 3b 3 ± 1a 3 ± 2a 1 ± 1a 114 ± 1 
26 67 ± 5c 18 ± 4ab 4 ± 3a 9 ± 2b 2 ± 1a 114 ± 1 
27 80 ± 4a 14 ± 3a 2 ± 1a 3 ± 1a 1 ± 1a 115 ± 1 
28 82 ± 4a 13 ± 3a 1 ± 1a 3 ± 3a 1 ± 1a 115 ± 1 

7 × 10-5(4) 
 

30 77 ± 5a 16 ± 6ab 3 ± 1a 3 ± 1a 1 ± 1a 115 ± 1 
20 80 ± 4a 14 ± 3a 1 ± 1a 1 ± 1a 1 ± 1a 51 ± 8 
22 68 ± 3b 25 ± 4b 2 ± 1a 1 ± 1a 1 ± 1a 33 ± 8 
24 68 ± 3b 27 ± 3bc 1 ± 1a 1 ± 1a 1 ± 1a 37 ± 10 
26 27 ± 4c 31 ± 4b 17 ± 4b 17 ± 4b 4 ± 3b 44 ± 3 
27 76 ± 3a 21 ± 2ac 1 ± 1a 1 ± 1a 1 ± 1a 51 ± 2 
28 79 ± 3a 17 ± 1a 2 ± 2a 2 ± 2a 1 ± 1a 62 ± 3 

7 × 10-4 

30 77 ± 5a 16 ± 5a 3 ± 1a 3 ± 2a 1 ± 1ab 89 ± 2 

Alkyl esters       

40(1) 71 ± 4ab 20 ± 5ab 2 ± 1a 5 ± 3a 1 ± 1a 114 ± 1 
42(2) 67 ± 4b 23 ± 5b 2 ± 2a 7 ± 1a 1 ± 1a 113 ± 1 

7 × 10-5(4) 

44(3) 75 ± 2ac 14 ± 2ac 1 ± 2a 8 ± 3a 1 ± 1a 114 ± 1 
40(1) 76 ± 3a 14 ± 4a 2 ± 3a 6 ± 1a 1 ± 1a 113 ± 1 
42(2) 69 ± 5a 18 ± 3a 4 ± 3a 7 ± 1a 1 ± 1a 113 ± 1 

7 × 10-4 

44(3) 70 ± 4a 17 ± 2a 3 ± 2a 9 ± 5a 1 ± 1a 114 ± 1 

Fatty acids       

20 69 ± 5a 21 ± 5ab 4 ± 3ab 5 ± 1a 1 ± 1a 114 ± 1 
22 68 ± 3a 22 ± 2a 5 ± 2a 4 ± 2a 1 ± 1a 114 ±1 
24 69 ± 4a 19 ± 2ab 4 ± 1ab 5 ± 2a 1 ± 1a 113 ± 1 
26 74 ± 2ab 19  ± 2ab 2 ± 1ab 3 ± 1a 1 ± 1a 113 ± 1 

7 × 10-5(4) 
 

28 77 ± 4b 15 ± 2b 1 ± 2b 4 ± 1a 1 ± 1a 113 ± 1  
20 75 ± 5a 18 ± 3a 3 ± 2a 3 ± 2a 1 ± 1a 68 ± 2 
22 73 ± 2a 20 ± 1a 2 ± 1a 4 ± 2a 1 ± 1a 72 ± 3 
24 79 ± 3a 17 ± 3ab 1 ± 1a 2 ± 1a 1 ± 1a 73 ± 3 
26 72 ± 7a  16 ± 5ab 4 ± 3a 4 ± 1a 2 ± 1a 82 ± 5 

7 × 10-4 
 

28 79 ± 2a 11 ± 4b 2 ± 1a 3 ± 1a 2 ± 1a 80 ± 9 

  
(1)

Arachidic acid arachidyl ester. 
(2)

Arachidic acid behenyl ester. 
(3)

Behenic acid behenyl ester. 
(4)

Supplemented with n-hexacosane to a final concentration of 7 × 10
−4

 mol l
−1

. Values are means       

± SD of five independent experiments. Different letters within a column, with the same 

concentration and same compound class, indicate significant differences (P < 0.05) determined in a 

one-way ANOVA followed by a Tukey post hoc test. The same superscript letter type (upper and 

lowercase, italic/bold/underlined) within a column and the same concentration indicates the dataset 

used for the respective one-way ANOVA. Prepenetration developmental stages of B. graminis 

conidia: ng, nongerminated conidium without a germ tube; pgt, germinated conidium with a primary 

germ tube formed; sgt, conidium with an additionally formed and elongated secondary germ tube; 

agt, conidium with a swollen appressorial germ tube; app, fully differentiated conidium with a 
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mature lobed and septated (sept) appressorium. Values resulting in differentiation rates (agt + app) 

≥ 20% are highlighted in bold. nd, not determined. 

__________________________________________________________________________________ 

 

Barley leaf wax stimulates in vitro prepenetration processes of B. graminis even in 

the presence of fatty acids 

Because of the significantly elevated fatty acid content in the leaf cuticular wax of 

the barley mutant cer-yj.667 and the reduced appressorium formation rates of B. 

graminis conidia on leaves of that mutant (Zabka et al., 2008), one might speculate 

that free fatty acids could function as inhibitors of B. graminis differentiation. To 

further investigate this assumption, isolated barley leaf wax was spiked with 10% 

(w/w) of a fatty acid (C20–C28) into the Formvar® dipping solution. This treatment, 

however, resulted in only minor, nonsignificant changes with respect to 

germination and differentiation when compared with the Formvar®/barley wax-

only glass slides (Figure 4). 
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Figure 4  Blumeria graminis f. sp. hordei development on glass slides coated with Formvar®/barley 

leaf wax (480 μg barley wax ml
−1

 dipping solution) or Formvar®/barley leaf wax supplemented with 

10% (w/w) of even-numbered fatty acids with chain lengths ranging from C20 to C28 and the 

corresponding glass slide contact angles. Values are given as the means of five independent 

experiments. A Mann–Whitney U-test was performed comparing each developmental category with 

the respective category of the wax control. No significant differences were found (P ≥ 0.05). 

Prepenetration developmental stages of B. graminis conidia: ng, nongerminated conidium without a 

germ tube; pgt, germinated conidium with a primary germ tube formed; sgt, conidium with an 

additionally formed and elongated secondary germ tube; agt, conidium with a swollen appressorial 

germ tube; app, fully differentiated conidium with a mature lobed and septated (sept) appressorium; 

aberr, burst, dead conidia. 

 

Very-long-chain aldehydes promote in vitro prepenetration processes in a dose- 

and chain length-dependent manner 

In order to assay the qualitative and quantitative effects of very-long-chain 

aldehydes on powdery mildew prepenetration processes, glass slides covered with a 

Formvar®/n-hexacosane mixture, which had been supplemented with different 

quantities of single very-long-chain aldehydes (C22–C30) before coating, were 
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inoculated with B. graminis conidia (Tables 2 and 3). All of the tested aldehydes 

were capable of distinctly promoting B. graminis prepenetration processes. n-

Hexacosanal was, by far, the most effective molecule tested. In the treatment with 

the lowest aldehyde proportion (7 × 10−8 mol l−1 aldehyde in the dipping solution), 

only n-hexacosanal had a significant positive impact on the germination and 

differentiation of B. graminis f. sp. hordei conidia (Table 2). In this treatment, n-

docosanal, n-tetracosanal, n-octacosanal and n-triacontanal showed no significant 

differences from the otherwise largely inert alkane n-hexacosane with respect to 

germination and the formation of differentiated infection structures (secondary 

germ tube, appressorial germ tube and appressorium). A significant increase in 

germination and differentiation rates was found for n-tetracosanal and n-

octacosanal in the treatment with a 10-fold increased amount of aldehydes. A 10-

fold increase in the n-hexacosanal content led to an approximate doubling of the 

appressorium formation rate of B. graminis f. sp. hordei. However, only slight 

changes occurred on further increasing the n-hexacosanal proportion to 7 × 10−5 

mol l−1. Likewise, the presence of the other aldehydes led to an increase in 

appressorium formation, but only at elevated contents (7 × 10−6 and 7 × 10−5 

mol l−1). In comparison with n-hexacosanal, the other tested aldehydes exhibited a 

gradual decrease in their differentiation-inducing capabilities with both decreasing 

and increasing chain lengths. With 20 ± 2% only, the treatment with the largest 

quantities of n-hexacosanal (7 × 10−5 mol l−1) approached the rate of appressorium 

formation found for barley leaf wax supplemented to Formvar® resin (22 ± 4%) 

(Figure 3b). Hence, the maximum rates of appressorium formation on these coated 

glass slides were significantly lower (P = 0.008) than on native leaf surfaces. 

Nevertheless, on Formvar®/n-hexacosane/n-hexacosanal-coated glass slides, as well 

as on the native leaf surfaces, 80–90% of the inoculated conidia differentiated a 

swollen appressorial germ tube or a fully mature appressorium. 

Conidia of the wheat powdery mildew B. graminis f. sp. tritici generally 

showed a stronger response to the presence of very-long-chain aldehydes than did 

B. graminis f. sp. hordei (Table 3). However, n-hexacosanal was still the most 

effective aldehyde, particularly in the treatment with the lowest aldehyde amounts, 

where conidia of B. graminis f. sp. tritici formed 12% mature appressoria, whereas 

only 5% of the inoculated B. graminis f. sp. hordei conidia reached this advanced 

stage of prepenetration. At this low concentration, n-octacosanal – the most 

prevalent aldehyde of wheat leaf wax – significantly increased the differentiation of 

appressorial germ tubes and appressoria of B. graminis f. sp. tritici. In contrast with 

the barley powdery mildew, B. graminis f. sp. tritici showed no significant 

differences with respect to the formation of appressorial germ tubes and 

appressoria in the presence of n-octacosanal or n-hexacosanal in the 7 × 10−6 and 

7 × 10−5 mol l−1 aldehyde treatments (Table 3). Blumeria graminis f. sp. tritici 
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exhibited a distinct shift towards elevated germination and differentiation 

capabilities in the presence of the longer chain aldehydes n-octacosanal and            

n-triacontanal, when compared with the barley powdery mildew fungus. Despite 

significant differences regarding surface contact angles, glass slides sprayed with 

isolated leaf wax or respective mixtures of n-hexacosane supplemented with 

different amounts of very-long-chain aldehydes in the absence of Formvar® 

exhibited very similar results to those obtained using the Formvar®-based in vitro 

system (Figure 5, Supporting Information Table S1). However, Formvar®/barley leaf 

wax-coated slides exhibited a significantly lower percentage of desiccated and burst 

conidia than did wax-sprayed glass slides (Figure 5). 
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Figure 5  Blumeria graminis f. sp. tritici development on glass slides coated with Formvar® resin 

supplemented with barley leaf wax (black bars) and leaf wax-sprayed glass slides (gray bars). 

Prepenetration developmental stages of B. graminis conidia: ng, nongerminated conidium without a 

germ tube; pgt, germinated conidium with a primary germ tube formed; sgt, conidium with an 

additionally formed and elongated secondary germ tube; agt, conidium with a swollen appressorial 

germ tube; app, fully differentiated conidium with a mature lobed and septated (sept) appressorium; 

aberr, burst, dead conidia. *Significant differences (P < 0.05); ns, nonsignificant differences (P ≥ 0.05; 

Mann–Whitney U-test). 
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Table 2 B. graminis f.sp. hordei development on Formvar®/n-hexacosane coated glass slides 

supplemented with very-long chain aldehydes (7 x10
-8

 to 7 x10
-5

 mol l
-1

 in the slide dipping solution) 

and corresponding surface contact angles. 
Percentage of conidia 

Substratum 
ng pgt sgt agt app 

Contact 
angle (deg) 

0.5% Formvar® 22 ± 8A 9 ± 4a 6 ± 4A 4 ± 3A 3 ± 2A 70 ± 3 

0.5% Formvar® + 7 × 10-4  mol l-1 n-hexacosane 73 ± 3B 18 ± 2b 2 ± 1A 3 ± 1B 1 ± 1B 114 ± 1 

0.5% Formvar® membrane on 2% agarose 42 ± 3C 28 ± 4c 7 ± 2A 12 ± 3B 9 ± 3B nd 

Concentration mol l-1 Aldehyde       

n-docosanal (C22) 73 ± 4a 16 ± 1a 4 ± 2a 7 ± 3a 1 ± 1a 114 ± 1 
n-tetracosanal (C24) 70 ± 4a 16 ± 2a 5 ± 2a 8 ± 2a 1 ± 1a 114 ± 1 
n-hexacosanal (C26) 45 ± 7b 18 ± 3a 12 ± 3b 20 ± 5b 5 ± 1b 114 ± 1 
n-octacosanal (C28) 65 ± 2a 18 ± 1a 7 ± 2a 9 ± 2a 1 ± 1a 114 ± 1 

7 × 10-8 

n-triacontanal (C30) 67 ± 6a 19 ± 4a 6 ± 1a 8 ± 3a 1 ± 1a 114 ± 1 
n-docosanal (C22) 69 ± 2a 17 ± 1ab 5 ± 1a 8 ± 2a 1 ± 1a 114 ± 1 
n-tetracosanal (C24) 56 ± 2b 16 ± 2ab 8 ± 2a 16 ± 3b 2 ± 1a 114 ± 1 
n-hexacosanal (C26) 22 ± 5c 12 ± 2b 17 ± 5b 37 ± 6c 10 ± 2b 114 ± 1 
n-octacosanal (C28) 36 ± 2d 18 ± 3a 14 ± 3b 26 ± 4d 6 ± 2b 114 ± 1 

7 × 10-7 

n-triacontanal (C30) 66 ± 6a 18 ± 3a 5 ± 2a 10 ± 2ab 1 ± 1a 114 ± 1 
n-docosanal (C22) 36 ± 5a 26 ± 4a 14 ± 4ab 20 ± 4a 5 ± 1a 114 ± 1 
n-tetracosanal (C24) 19 ± 6b 9 ± 3b 19 ± 3b 41 ± 2b 10 ± 2b 114 ± 1 
n-hexacosanal (C26) 12 ± 6b 4 ± 2b 17 ± 5ab 49 ± 3c 17 ± 2c 114 ± 1 
n-octacosanal (C28) 13 ± 1b 6 ± 2b 16 ± 2ab 50 ± 3c 14 ± 3c 114 ± 1 

7 × 10-6 

n-triacontanal (C30) 38 ± 2a 18 ± 3c 11 ± 2a 27 ± 3d 6 ± 1a 114 ± 1 
n-docosanal (C22) 12 ± 3ab 11 ± 2a 26 ± 5a 39 ± 5a 11 ± 2a 114 ± 1 
n-tetracosanal (C24) 14 ± 6ab 4 ± 1b 15 ± 2b 50 ± 4bd 16 ± 2bc 114 ± 1 
n-hexacosanal (C26) 9 ± 4b 4 ± 1b 12 ± 4b 54 ± 3bc 20 ± 2d 113 ± 1 
n-octacosanal (C28) 9 ± 3b 3 ± 1b 11 ± 2b 58 ± 3c 18 ± 1cd 114 ± 1 

7 × 10-5 

n-triacontanal (C30) 18 ± 4a 8 ± 1a 14 ± 2b 45 ± 1ad 13 ± 1ab 114 ± 1   

  
Values are means ± SD of five independent experiments. Different letters within a column and the 

same concentration indicate significant differences (P < 0.05) determined in a one-way ANOVA 

followed by a Tukey post hoc test. The same superscript letter type (upper and lowercase, 

italic/bold/underlined) within a column and the same concentration indicates the dataset used for 

the respective one-way ANOVA. Prepenetration developmental stages of B. graminis conidia: ng, 

nongerminated conidium without a germ tube; pgt, germinated conidium with a primary germ tube 

formed; sgt, conidium with an additionally formed and elongated secondary germ tube; agt, 

conidium with a swollen appressorial germ tube; app, fully differentiated conidium with a mature 

lobed and septated (sept) appressorium. Values resulting in differentiation rates (agt + app) ≥ 20% 

are highlighted in bold. nd, not determined. 
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Table 3  Blumeria graminis f. sp. tritici development on Formvar®/n-hexacosane-coated glass slides 

supplemented with very-long-chain aldehydes (7 × 10
−8

 to 7 × 10
−5

 mol l
−1

 in the slide dipping 

solution), and corresponding surface contact angles. 
Percentage of conidia 

Substratum 
ng pgt sgt agt app 

Contact 
angle (deg) 

0.5% Formvar® 22 ± 8A 9 ± 4a 6 ± 4A 4 ± 3A 3 ± 2A 70 ± 3 

0.5% Formvar® + 7 × 10-4  mol l-1 n-hexacosane 73 ± 3B 18 ± 2b 2 ± 1A 3 ± 1B 1 ± 1B 114 ± 1 

0.5% Formvar® membrane on 2% agarose 42 ± 3C 28 ± 4c 7 ± 2A 12 ± 3B 9 ± 3B nd 

Concentration mol l-1 Aldehyde       

n-docosanal (C22) 66 ± 4a 27 ± 3a 3 ± 1a 4 ± 1a 1 ± 1a 114 ± 1 
n-tetracosanal (C24) 69 ± 5a 22 ± 3a 2 ± 1a 6 ± 1a 1 ± 1a 114 ± 1 
n-hexacosanal (C26) 22 ± 6b 21 ± 3a 9 ± 1b 36 ± 6b 12 ± 2b 114 ± 1 
n-octacosanal (C28) 41 ± 6c 31 ± 3b 6 ± 2c 16 ± 4c 5 ± 2c 114 ± 1 

7 × 10-8 

n-triacontanal (C30) 61 ± 4a 23 ± 2a 5 ± 2a 9 ± 3a 2 ± 1a 114 ± 1 
n-docosanal (C22) 57 ± 6a 34 ± 5ad 3 ± 1a 5 ± 2a 1 ± 1a 114 ± 1 
n-tetracosanal (C24) 51 ± 7a 25 ± 4bd 5 ± 2a 13 ± 4b 6 ± 2b 114 ± 1 
n-hexacosanal (C26) 11 ± 3b 9 ± 4c 12 ± 2b 47 ± 7c 19 ± 2c 114 ± 1 
n-octacosanal (C28) 17 ± 2b 18 ± 3b 12 ± 2b 36 ± 4d 16 ± 3c 114 ± 1 

7 × 10-7 

n-triacontanal (C30) 40 ± 3c 29 ± 2d 7 ± 2c 19 ± 5b 5 ± 2b 114 ± 1 
n-docosanal (C22) 29 ± 4a 45 ± 4a 10 ± 3a 10 ± 3a 6 ± 2a 114 ± 1 
n-tetracosanal (C24) 17 ± 4b 14 ± 6b 15 ± 2b 40 ± 7b 14 ± 4b 114 ± 1 
n-hexacosanal (C26) 9 ± 2bc 4 ± 3c 9 ± 1a 54 ± 4c 22 ± 2c 114 ± 1 
n-octacosanal (C28) 7 ± 1c 5 ± 1c 16 ± 4b 47 ± 2bc 24 ± 1c 114 ± 1 

7 × 10-6 

n-triacontanal (C30) 14 ± 5bc 17 ± 4b 15 ± 4b 38 ± 11b 15 ± 2b 114 ± 1 
n-docosanal (C22) 24 ± 5a 22 ± 4a 16 ± 3a 27 ± 6a 12 ± 1a 114 ± 1 
n-tetracosanal (C24) 12 ± 4b 6 ± 1b 13 ± 3ac 46 ± 3b 23 ± 3b 114 ± 1 
n-hexacosanal (C26) 7 ± 3b 2 ± 1b 10 ± 3bc 51 ± 6b 28 ± 5b 113 ± 1 
n-octacosanal (C28) 6 ± 1b 3 ± 2b 7 ± 2b 56 ± 3b 27 ± 3b 114 ± 1 

7 × 10-5 

n-triacontanal (C30) 7 ± 3b 6 ± 3b 14 ± 4ac 48 ± 8b 24 ± 1b 114 ± 1   

  
Values are means ± SD of five independent experiments. Different letters within a column and the 

same concentration indicate significant differences (P < 0.05) determined in a one-way ANOVA 

followed by a Tukey post hoc test. The same superscript letter type (upper and lowercase, 

italic/bold/underlined) within a column and the same concentration indicates the dataset used for 

the respective one-way ANOVA. Prepenetration developmental stages of B. graminis conidia: ng, 

nongerminated conidium without a germ tube; pgt, germinated conidium with a primary germ tube 

formed; sgt, conidium with an additionally formed and elongated secondary germ tube; agt, 

conidium with a swollen appressorial germ tube; app, fully differentiated conidium with a mature 

lobed and septated (sept) appressorium. Values resulting in differentiation rates (agt + app) ≥ 20% 

are highlighted in bold. nd, not determined. 
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Fatty acids do not inhibit the stimulation of B. graminis prepenetration processes 

by the C26-aldehyde n-hexacosanal in vitro 

To demonstrate the germination- and differentiation-inducing activities of a single 

aldehyde wax compound, even in the presence of putative inhibitory fatty acids, 

Formvar®/n-hexacosane/fatty acid/n-hexacosanal-coated glass slides (7 × 10−6 

mol l−1 aldehyde in the dipping solution) were subjected to inoculation with B. 

graminis (Figure 6). Irrespective of which fatty acid was applied, the addition of n-

hexacosanal resulted in a significant increase in germination and differentiation 

rates when compared with the Formvar®/n-hexacosane/fatty acid-only treatments 

(Table 1), and reached similar values as on Formvar®/barley wax-coated glass slides. 

The slight differences between Formvar®/n-hexacosane/fatty acid/n-hexacosanal 

treatments and the Formvar®/barley wax treatment were all non-significant. 
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Figure 6  Blumeria graminis f. sp. hordei development on glass slides coated with Formvar®/barley 

leaf wax (480 μg barley wax ml
−1

 dipping solution) or Formvar®/n-hexacosane/fatty acid (7 × 10
−5

 

mol l
−1

 of a C20–C28 fatty acid) supplemented with 7 × 10
−6

 mol l
−1 

n-hexacosanal with the indicated 

contact angles. Prepenetration developmental stages of B. graminis conidia: ng, nongerminated 

conidium without a germ tube; pgt, germinated conidium with a primary germ tube formed; sgt, 

conidium with an additionally formed and elongated secondary germ tube; agt, conidium with a 

swollen appressorial germ tube; app, fully differentiated conidium with a mature lobed and septated 

(sept) appressorium; aberr, burst, dead conidia. A Mann–Whitney U-test was performed comparing 

each developmental category with the respective category of the wax control. No significant 

differences were found (P ≥ 0.05). 

 

2.5 Discussion 

Cuticular waxes are well known to exert important general functions in the interplay 

of plants with their environment. (Müller & Riederer, 2005; Nawrath, 2006). This 

key adaptation in the evolution of plants (Raven & Edwards, 2004; Riederer, 2006) 

has been shown to affect plant–microbe interactions in several ways. Hence, the 

cuticle can be considered as a reservoir of signals telling phytopathogenic fungi that 

they have found an appropriate host to infect (Raffaele et al., 2009). Cuticular wax 



Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain 
length-dependent manner 

 

32 

components, as well as cutin monomers, probably released by cutinases secreted 

by the conidium of B. graminis, have been shown to induce appressorium formation 

(Francis et al., 1996; Tsuba et al., 2002; Zabka et al., 2008). 

Apparently, B. graminis does not recognize all components present in the 

leaf wax, and therefore quite subtle differences in chemistry may have a relatively 

large effect (Carver & Gurr, 2006). The C26-aldehyde (n-hexacosanal) present in 

barley leaf wax is known to induce differentiation of the secondary germ tube to a 

mature appressorium, whereas the C30-aldehyde (n-triacontanal) is far less effective 

(Tsuba et al., 2002). The alcohol analogs of these molecules are even less inductive 

(Tsuba et al., 2002; Zabka et al., 2008). Because of this clear-cut, cuticle-derived, 

chemical signaling, B. graminis appeared to be a suitable object for studying in vitro 

the action of different cuticular signals in triggering conidial germination and 

infection structure differentiation. 

 

2.5.1 Prepenetration processes on wheat and barley leaves 

Several earlier studies on the prepenetration stages of powdery mildew infection 

have found that fungal behavior is very similar on compatible and noncompatible 

grain hosts (Kunoh et al., 1977; Willems, 2003). Therefore, it was not surprising that 

B. graminis f. sp. hordei conidia germinated and differentiated almost identically on 

the wheat and barley cultivars studied, as did the conidia of B. graminis f. sp. tritici – 

irrespective of differences concerning surface hydrophobicity and their assignment 

as incompatible nonhost or compatible host. 

The differences found for the cuticular wax composition of secondary leaves 

of the assayed wheat and barley cv Winnetou and Bonus – primarily a shift in chain 

length for alcohols, aldehydes, fatty acids and esters – were generally in accordance 

with previous studies (von Wettstein–Knowles, 1971; Giese, 1975; Bianchi et al., 

1980; Baum et al., 1989; Zabka et al., 2008). Hence, the differences in wheat and 

barley leaf wax composition are apparently not sufficient to significantly affect the 

prepenetration processes of B. graminis. 

 

2.5.2 The Formvar® resin-based in vitro system 

The assessment of the biological activity of water-insoluble components of the 

epicuticular wax layer on the prepenetration processes of B. graminis is technically 

difficult, as coating of an artificial surface with isolated leaf waxes by simply 

evaporating the organic solvent results in an irregular distribution of the wax, even 

with uncoated regions, and therefore leads to highly variable results (Reisige et al., 

2006). Spraying chloroform-dissolved cuticular wax extracts onto hydrophilic glass 

slides, however, results in more homogeneous surfaces, providing distinctly 
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reproducible experimental data (Zabka et al., 2008; Ringelmann et al., 2009). 

Nonetheless, we developed a Formvar® resin-based surface coating procedure that 

leads to the deposition of a homogeneous layer on a hydrophilic glass surface 

providing highly uniform surface contact angles. Formvar® resin has been shown 

not to negatively affect the growth of powdery mildew germ tubes, and even to 

promote B. graminis differentiation at a moderate level (Kobayashi et al., 1991; 

Kobayashi & Hakuno, 2003). This substance, in combination with the noninductive 

and more hydrophobic C26-alkane n-hexacosane, appeared to be ideally suited for 

the establishment of a bioassay to characterize growth and developmental effects 

of specific wax components on the prepenetration processes of B. graminis. 

The surface topology and physical structure of epicuticular waxes are known 

to play, at best, a minor role in conidial surface recognition processes leading to 

appressorium formation in B. graminis (Carver & Thomas, 1990; Rubiales et al., 

2001; Zabka et al., 2008; Ringelmann et al., 2009). A high density of epicuticular 

crystalline waxes is positively correlated with a high surface hydrophobicity 

(Holloway, 1970; Beattie & Marcell, 2002), which is commonly assessed by 

measuring the contact angle of a sessile water droplet on the respective surface. 

The hydrophobic property of smooth layers of waxes depends on their 

chemical constitution and, almost certainly, on the orientation of constituent 

molecules in the solid state (Holloway, 1970). The Formvar®/n-

hexacosane/aldehyde-coated glass slides had an average contact angle of 114°, 

which is slightly above the proposed maximum value of 110° representing a smooth 

wax surface (Holloway, 1970). Thus, an apparently marginal microroughness of the 

assayed surfaces must be responsible for their slightly higher contact angles 

(Holloway, 1970). However, more importantly, the contact angles were far above 

the c. 80° required for n-hexacosanal to trigger effectively the conidial 

prepenetration processes (Zabka et al., 2008). The slight reduction of the contact 

angles on supplementing the 0.5% Formvar® solution with isolated barley or wheat 

leaf waxes might be attributable to the presence of large proportions of more polar 

and hence less hydrophobic n-alkanols in the isolated leaf wax fractions (Holloway, 

1970). Contact angles are reduced even more when more polar alkanols or fatty 

acids are supplemented to the 0.5% Formvar® dipping solution. 

The small protrusions with a slab- to plate-like outer appearance that 

appeared on the coated glass slides when extracted wheat or barley leaf wax was 

added to the 0.5% Formvar® solution might be the result of extracted plant wax 

recrystallization, although this did not further increase the surface hydrophobicity. 

In particular, the very-long-chain alkanol constituents of the wax are known to 

recrystallize as platelets on nonpolar surfaces (Koch et al., 2006). 

Generally, when compared with native leaf surfaces, glass slides coated with 

Formvar®/n-hexacosane/isolated leaf wax showed a slightly decreased germination 
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of B. graminis conidia, but, more prominently, a distinct decrease in the formation 

of mature appressoria, whereas the majority of the conidia remained in the 

appressorial germ tube stage. This difference could be explained by additional 

factors other than the wax composition and surface hydrophobicity involved in 

triggering appressorial differentiation present on barley epidermal surfaces (Carver 

et al., 1996). However, the application of Formvar®-coated slides proved to be more 

efficient than using wax-sprayed glass surfaces for inoculation with B. graminis 

conidia. Formvar®/n-hexacosane-coated slides exhibited a significantly lower 

percentage of desiccated and broken conidia than did wax-sprayed glass slides. This 

improvement might be a consequence of the more uniformly coated surface. 

The very-long-chain aldehydes accounted for c. 2% of the total wax extracts. 

Almost identical differentiation results on Formvar® surfaces spiked with leaf wax or 

n-hexacosane/n-hexacosanal (7 × 10−5 mol l−1 aldehyde treatment) endorse the 

notion that the Formvar®-based coating system constitutes an effective tool for 

assessing the effects of single wax components on the prepenetration processes of 

surface-penetrating plant pathogenic fungi. 

 

2.5.3 Very-long-chain alkanes, alkanols, alkyl este rs, fatty acids and 
the prepenetration processes 

Among the assayed substances and substance classes, neither very-long-chain 

alkanes nor alkyl esters or fatty acids distinctly promoted the germination and/or 

differentiation of B. graminis conidia. The results of the present study therefore do 

not confirm very recent data suggesting a strong germination- and differentiation-

promoting capability of C24 and C25 alkanes on B. graminis conidia (Feng et al., 

2009). However, in our hands, the most prominent barley leaf wax constituent n-

hexacosanol resulted in significantly increased germination and differentiation 

rates, whereas the other n-alkanols remained essentially inert. The promoting 

effect, which is in full accordance with our previous study (Zabka et al., 2008), was 

distinctly weakened when the concentration of the C26-alkanol in the dipping 

solution was reduced to one tenth of the initial value, however, in the presence of 

the otherwise largely inert n-hexacosane, resulting in considerably higher contact 

angles. Hence, the present data suggest a dependence on concentration and chain 

length for the conidial germination- and differentiation-inducing activity of n-

hexacosanol, even though an additional impact of a low surface hydrophobicity 

cannot be excluded. 

The barley wax mutant cer-yj.667 shows a significantly elevated fatty acid 

content of the leaf cuticular wax in combination with reduced appressorium 

formation rates on its leaf surfaces – particularly after removal of the epicuticular 

waxes (Zabka et al., 2008). This led to the assumption that fatty acids might function 
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as inhibitors of B. graminis differentiation. However, our present data demonstrate 

that a fatty acid, even at a proportion of 10% with respect to the wax in the coating 

mixture, does not inhibit the in vitro germination and differentiation induced by 

isolated barley wax or synthetic n-hexacosanal. 

The applied commercially available alkyl-esters did not result in a 

pronounced promotion of fungal germination and differentiation. As the naturally 

occurring primary alkanol-containing esters in barley and wheat leaf wax are 

characterized by hexacosanol (75%) or octacosanol (79%) as the predominant 

alcohol moiety and C16, C18, C20, C22 and C24 as the major esterified fatty acids 

(Tulloch & Weenink, 1969; Giese, 1975), the applied alkyl-esters constitute only a 

minor fraction among the naturally occurring alkyl esters. Therefore, it cannot be 

excluded that other alkyl esters might nevertheless be capable of triggering 

germination and/or differentiation. 

 

2.5.4 Very-long-chain aldehydes and B. graminis prepenetration 
processes 

Knowledge about the specific function(s) exerted by very-long-chain aldehydes, as 

typical components of the outermost protective sheathing of the plant, is scarce. 

Only with respect to organismic interactions have some different tasks and roles for 

very-long-chain aldehydes been reported: The C28-aldehyde octacosanal, for 

example, is known to act as an ovipositional stimulator for the Hessian fly 

(Mayetiola destructor) on wheat (Morris et al., 2000), and is involved in host plant 

recognition and infection structure differentiation in the wheat stem rust fungus 

Puccinia graminis (Reisige et al., 2006). These studies underline the relevance of 

very-long-chain aldehydes as cuticular signals in different pathogen–plant 

interactions. 

Very-long-chain aldehydes as common wax constituents in many plant 

species are known to occur as monomers or in a polymeric state (Lamberton & 

Redcliffe, 1960). Epicuticular waxes on the leaf surfaces of sugar cane, rice and 

Nepenthes pitchers are, to some extent, insoluble at room temperature, whereas 

hot chloroform dissolves them and releases higher proportions of very-long-chain 

aldehydes (Haas et al., 2001; Riedel et al., 2003). Hence, the extraction of very-long-

chain aldehydes by dipping leaves in chloroform at room temperature might result 

in an underestimation of the real aldehyde content, as some proportion could exist 

in an insoluble polymeric form. However, our data on wheat and barley are in 

accordance with previous studies (von Wettstein–Knowles, 1971; Giese, 1975; 

Bianchi et al., 1980; Baum et al., 1989; Zabka et al., 2008). 

Among the aldehydes present in the cuticular wax layers of wheat and 

barley leaves, the C26-aldehyde n-hexacosanal, closely followed by the C28-aldehyde 
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n-octacosanal, were the most effective molecules capable of promoting B. graminis 

prepenetration development. Depending on the amount of the C30-aldehyde n-

triacontanal present, rates of appressorium formation accounted for c. 10–50% of 

the values obtained with n-hexacosanal. These results are therefore in accordance 

with a previous study, although no explicit data concerning the amount of applied 

aldehydes is given (Tsuba et al., 2002). 

n-Hexacosanal is the main aldehyde component of barley leaf wax, whereas 

n-octacosanal is the most prevalent aldehyde constituent of wheat leaf wax (von 

Wettstein–Knowles, 1971; Bianchi et al., 1980; Baum et al., 1989; Tsuba et al., 

2002). As both plants are infected by a host-specific forma specialis of B. graminis, 

we also aimed to determine whether B. graminis f. sp. tritici might have specifically 

adapted to the distinct wax aldehyde spectrum of its specific host since the 

evolutionary divergence between the different formae speciales of grass powdery 

mildew (Wyand & Brown, 2003). Interestingly, the preference for n-hexacosanal 

was almost the same for barley and wheat powdery mildew. However, B. graminis 

f. sp. tritici showed a somewhat stronger response to n-octacosanal than did f. sp. 

hordei. This minor effect could be interpreted as a possible result of gradual 

adaptation to its specific host – although, so far, no distinct evidence for co-

evolution between B. graminis ff. spp. and their specific hosts has been found 

(Wyand & Brown, 2003; Inuma et al., 2007). Alternatively, this slight preference 

shift could simply be an isolate-specific trait that remains to be determined. 

The complete absence of the most inductive n-hexacosanal from the abaxial 

leaf epicuticular waxes of ryegrass (Lolium perenne) results in drastically reduced 

B. graminis differentiation and infection rates on the abaxial leaf surface (Carver et 

al., 1990; Ringelmann et al., 2009). In combination with a distinctly reduced surface 

hydrophobicity, this specific feature widely protects the abaxial leaf surface of 

L. perenne from powdery mildew attack, which demonstrates and emphasizes the 

biological relevance of very-long-chain aldehydes in the powdery mildew–grass 

interaction. 

To our knowledge, there are only two other known examples in which plant 

pathogenic fungi are known to exhibit a chain-length dependence with respect to 

appressorium formation triggered by constituents of the plant cuticle: the plant-

pathogenic Colletotrichum gloeosporioides has a significant preference for very-

long-chain primary alkanols (C24–C32), representing c. 5% of the cuticular wax of its 

host plant avocado (Podila et al., 1993), and the rice blast fungus Magnaporthe 

grisea favors C16 and C18 cutin constituents for appressorium induction (Gilbert et 

al., 1996). 

In addition to the apparent relevance of the presence of a terminal carbonyl 

group for most effectively triggering germination and appressorium formation in B. 

graminis (Tsuba et al., 2002; Zabka et al., 2008; Ringelmann et al., 2009), the 
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concentration-dependent preference for very-long-chain aldehydes with chain 

lengths of C26 and C28 may suggest a protein with a size-selective hydrophobic patch 

or pocket to be involved in the perception of foliar surface chemistry. The weaker 

but still significant effect of the C26-alkanol n-hexacosanol on fungal germination 

and differentiation underlines the relevance of chain length in combination with a 

hydroxyl or carbonyl head group of the inductive compound. 

It has been speculated that fungal hydrophobins, such as MPG1 from M. 

grisea (Beckerman & Ebbole, 1996), known for their capability to form a 

hydrophobic coating on a surface, or other fungal surface-active proteins involved 

in hydrophobic surface sensing could play an important role in host recognition and 

pathogenesis via an interaction with fungal cutinase (Skamnioti & Gurr, 2008). This 

proposed interaction also seems plausible for B. graminis, as surface hydrophobicity 

and surface chemistry have been shown to share a distinct interdependence (Zabka 

et al., 2008; Ringelmann et al., 2009). Very recently, a secreted lipase (Lip1) from B. 

graminis was shown to possess lipolytic activity, releasing alkanes and alkanols from 

the leaf surface (Feng et al., 2009). However, without considering the role of surface 

hydrophobicity, very-long-chain alkanes were reported to be the most efficient cues 

for appressorium formation released by Lip1 (Feng et al., 2009). A strong 

differentiation-inducing capability of very-long-chain alkanes and alkanols is not 

confirmed by the present or previous studies on B. graminis differentiation (Tsuba 

et al., 2002; Zabka et al., 2008). 

As anionic low-molecular-weight compounds can be taken up by the conidia 

of B. graminis before the formation of the primary germ tube (Nielsen et al., 2000), 

the uptake of very-long-chain aldehydes or derivatives thereof might be involved in 

promoting germination and appressorium formation. However, it remains to be 

elucidated by which mechanism(s)/principle(s) plant pathogenic fungi are capable 

of solubilizing, binding, discriminating and perceiving very-long-chain aliphatic 

epicuticular wax constituents. Shedding further light on the signaling function(s) of 

cuticle-derived compounds and on the associated mechanism(s) is a major future 

challenge in the field of plant–pathogen interactions. 
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2.7 Supporting information 

 

Table S1 B. graminis f.sp. hordei development on glass slides sprayed with n-hexacosane 

supplemented with very-long-chain aldehydes (7 × 10
-8

 to 7 × 10
-5

 mol l
-1

 in the spraying solution) 

and the corresponding surface contact angles. 

Substratum Percentage of conidia 

Concentration 
mol l -1 Aldehyde ng pgt sgt agt app 

Contact 
angle (deg) 

n-docosanal (C22) 57 ± 6a 26 ± 6a 6 ± 2a 8 ± 1a 2 ± 1a 102 ± 4 
n-tetracosanal (C24) 52 ± 2a 29 ± 4a 7 ± 1ab 8 ± 3a 1 ± 1a 107 ± 3 
n-hexacosanal (C26) 15 ± 3b 36 ± 8a 11 ± 2b 19 ± 4b 7 ± 3b 95 ± 8 
n-octacosanal (C28) 42 ± 10a 36 ± 4a 6 ± 4a 5 ± 4a 1 ± 1a 82 ± 11 

7 × 10-8 

n-triacontanal (C30) 43 ± 8a 34 ± 8a 7 ± 1ab 8 ± 5a 3 ± 1ab 99 ± 6 
n-docosanal (C22) 47 ± 4a 30 ± 5a 6 ± 2a 12 ± 3ab 4 ± 2a 107 ± 4 
n-tetracosanal (C24) 31 ± 5b 28 ± 3ad 12 ± 1bc 19 ± 4ab 6 ± 3a 111 ± 1 
n-hexacosanal (C26) 9 ± 3c 12 ± 3c 20 ± 4b 33 ± 4c 13 ± 6b 98 ± 5 
n-octacosanal (C28) 25 ± 5b 21 ± 3ad 15 ± 4bc 24 ± 4b 5 ± 1a 93 ± 7 

7 ×·10-7 

n-triacontanal (C30) 29 ± 7b 39 ± 5b 10 ± 3ac 13 ± 3a 3 ± 1a 96 ± 6 
n-docosanal (C22) 38 ± 6a 27 ± 2a 9 ± 3a 21 ± 3a 5 ± 3a 111 ± 1 
n-tetracosanal (C24) 21 ± 3b 22 ± 2a 17 ± 2bc 31 ± 4b 8 ± 2a 111 ± 1 
n-hexacosanal (C26) 8 ± 3c 6 ± 4b 21 ± 4c 40 ± 5c 18 ± 5b 110 ± 2 
n-octacosanal (C28) 13 ± 4bc 10 ± 3b 15 ± 4ab 50 ± 2d 10 ± 2a 111 ± 2 

7 ×·10-6 

n-triacontanal (C30) 20 ± 5b 22 ± 3a 15 ± 3ab 33 ± 3bc 8 ± 2a 114 ± 2 
n-docosanal (C22) 13 ± 2a 18 ± 3a 21 ± 3a 38 ± 2a 9 ± 4a 111 ± 1 
n-tetracosanal (C24) 11 ± 2a 13 ± 2a 21 ± 4a 42 ± 3ab 12 ± 2abc 103 ± 3 
n-hexacosanal (C26) 6 ± 3a 5 ± 2b 16 ± 1ab 42 ± 5ab 25 ± 7c 107 ± 7 
n-octacosanal (C28) 9 ± 2a 7 ± 2b 14 ± 2b 49 ± 5b 19 ± 6bc 112 ± 2 

7 ×·10-5 

n-triacontanal (C30) 12 ± 4a 14 ± 3a 12 ± 1b 45 ± 3ab 15 ± 2abc 109 ± 3 

  

Values are means ± SD of five independent experiments. Different letters within a column and the 

same aldehyde concentration indicate significant differences (P < 0.05) determined in a one-way 

ANOVA followed by a Tukey post hoc test. Abbreviations of the developmental categories are given 

in the legend of Figure 3. Values resulting in differentiation rates (agt + app) ≥ 20% are highlighted in 

bold. 
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3.1 Abstract 

 

Conidial germination and differentiation, the so-called prepenetration processes, of 

the barley powdery mildew fungus (Blumeria graminis f.sp. hordei) are triggered in 

vitro by very-long-chain aldehydes, minor constituents of barley leaf wax. However, 

until now it has not been demonstrated that these cuticle-derived molecules also 

play a significant role in the initiation and promotion of the fungal prepenetration 

processes in vivo, on the surface of a living plant leaf. In the maize (Zea mays) wax 

mutant glossy11, which is completely devoid of cuticular very-long-chain aldehydes, 

germination and appressorial differentiation of B. graminis were strongly impeded. 

Spraying the mutant leaf surface with aldehyde-containing wild-type wax or pure n-

hexacosanal (C26-aldehyde) fully restored fungal prepenetration, whereas maize 

wild-type leaf surfaces coated with n-docosanoic acid exhibited reduced conidial 

germination rates of 23%, and only 5% of the conidia differentiated infection 

structures. In vitro studies were performed to further corroborate the extensive 

prevention of fungal germination and differentiation in response to artificial 

surfaces coated with aldehyde-deficient maize wax. Because of its phenotype 

affecting the B. graminis prepenetration processes, the glossy11 mutation of maize 

may become a valuable molecular target and genetic tool that could provide a 

means of developing basal powdery mildew resistance in the globally important 

crops wheat and barley. 
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3.2 Introduction 

The plant cuticle is a protective sheathing produced by epidermal cells of aerial 

plant organs. Besides its central role in preventing non-stomatal water loss, the 

plant cuticle is also involved in protection against UV-radiation, reduction of 

deposition of dust and pollen, plant defence against fungal and bacterial pathogens, 

and participation in a variety of plant-insect interactions (Post-Beittenmiller, 1996). 

The cuticle provides the first barrier that fungi must overcome in order to gain 

access to the plant tissue, but it also provides chemical and physical cues that are 

necessary for the development of essential infection structures for many fungal 

pathogens (Carver & Gurr, 2006; Raffaele et al., 2009). The cuticle is composed of 

two major types of lipids: the core structural cutin polymer mainly consisting of 

hydroxyl- and epoxy-C16 and C18 fatty acids, and the cuticular waxes, mostly 

comprised of aliphatic very-long-chain fatty acid (VLCFA) derivatives (e.g. primary 

and secondary alcohols, aldehydes, esters, ketones, alkanes) and often variable 

amounts of cyclic compounds such as triterpenoids and phenylpropanoids (Jetter et 

al., 2006). The cuticular waxes can be divided into two spatially and sometimes 

chemically distinct layers: the intracuticular waxes embedded in the cutin matrix 

and the epicuticular waxes coating the surface. Hence, the first contact between an 

airborne pathogen and its host plant frequently takes place in an environment 

dominated by the presence of leaf cuticular waxes. 

The obligate biotrophic ascomycete Blumeria graminis is one of the most 

destructive foliar pathogens of members of the Poaceae subfamily Pooideae, and 

therefore of the economically important cereals wheat and barley (Jørgensen, 1988; 

Murray & Brennan, 2010). Shortly after landing on a host plant surface, the wind-

dispersed asexual conidia of B. graminis germinate and form a primary germ tube 

that attaches to the leaf surface and forms a short peg penetrating the cuticle 

(Edwards, 2002; Yamaoka et al., 2006). Subsequently, a secondary germ tube 

elongates swells and differentiates into an appressorial germ tube, which matures 

and becomes a lobed, apical appressorium with a penetration peg formed to pierce 

both host cuticle and epidermal cell wall. These so-called prepenetration processes 

of B. graminis development are completed about 12–15 h after inoculation (Zhang 

et al., 2005). 

Several studies have demonstrated that, unlike wax crystal structure or 

surface topology, plant cuticular waxes can play important roles in chemically 

triggering germination and differentiation of the powdery mildew fungus B. 

graminis (Carver et al., 1990; Tsuba et al., 2002; Zabka et al., 2008; Feng et al., 
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2009; Ringelmann et al., 2009; Hansjakob et al., 2010). Specifically very-long-chain 

aldehydes, present in many cuticular plant waxes, have turned out to be of 

particular significance for the B. graminis prepenetration processes. In vitro, even-

numbered very-long-chain aldehydes (C22–C30) promote germination and 

differentiation of powdery mildew conidia in a dose and chain-length dependent 

manner (Hansjakob et al., 2010). However, besides the chemical composition of a 

leaf surface, a multitude of environmental factors, such as surface hydrophobicity 

or atmospheric humidity, can significantly affect conidial prepenetration processes 

(Carver et al., 1990; Zabka et al., 2008; Ringelmann et al., 2009). Therefore, despite 

evidence from in vitro studies, clear-cut proof for the crucial role of very-long-chain 

aldehydes in the initiation and promotion of B. graminis prepenetration processes 

on natural leaf surfaces is still lacking. To the authors’ knowledge, a B. graminis host 

plant leaf surface completely devoid of very-long-chain aldehydes does not exist, or 

has not been characterized so far. However, the complete absence of very-long-

chain aldehydes from the cuticular wax of the glossy11 (gl11) wax mutant of the 

non-host Poaceae Zea mays (Sprague, 1938) has been demonstrated (Avato et al., 

1985). Therefore, this mutant appeared to be ideally suited to investigate the 

relevance of very-long-chain aldehydes for the successful initiation and promotion 

of B. graminis prepenetration processes. Germination and differentiation of B. 

graminis conidia were assayed on leaves of the aldehyde deficient gl11 mutant, on 

the aldehyde surplus mutant gl5 (Bianchi et al., 1978), and on two non-glossy wild-

type maize cultivars. In vitro as well as in vivo wax and/or aldehyde 

supplementation experiments were performed to elaborate and highlight the 

significant roles of these cuticle-derived signalling compounds in the successful 

initiation of B. graminis prepenetration processes. 

 

3.3 Materials and Methods 

Plant and pathogen material 

Kernels of non-glossy Zea mays cv. Lambada (Pioneer Hi-Bred International) and 

C836B (wild-type), and of the glossy lines 428A (homozygous for the gl5 mutation) 

and 215B (homozygous for the gl11 mutation) (Maize Genetics COOP Stock Center) 

were sown in plastic pots (9 cm diameter) in standard potting soil (Type ED73; 

SteuderComp) and cultivated in growth chambers (AR-36L; CLF Plant Climatics) with 

300 μmol m−2 s−1 light intensity in a 16/8 h photoperiod (26/20°C) at 70% relative 

humidity. For wax analysis and studies on B. graminis prepenetration processes, 

second and third leaves of maize plants at the four leaf stage were used. 

Blumeria graminis f.sp. hordei (isolate CC1; originally obtained from Tim Carver, 

IGER, Aberystwyth, UK) was propagated on its host barley (Hordeum vulgare cv. 

Bonus) in a 16/8 h photoperiod (22/18°C) at 70% relative humidity until white 
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pustules became visible. In order to ensure uniform age and viability of conidia, 

colony-bearing leaves were shaken 1 day before conidia were required for 

experimentation. This treatment dislodged older conidia and promoted the 

formation of fresh conidia that were then available for subsequent assays. 

 

Cuticular wax analysis 

Total cuticular leaf wax extracts of second and third leaves (n = 5) were prepared by 

dipping the entire leaves, apart from cut edges, for 1·5 min into 30 mL of 

chloroform (99%; Carl Roth). Prior to solvent evaporation under a flow of nitrogen 

at 50°C, 5 μg of n-tetracosane (99%; Sigma Aldrich) was added to the extracts as 

internal standard. For gas chromatography (GC) analysis, hydroxyl groups were 

transformed into the corresponding trimethylsilyl derivates by reaction with bis-

N,O-trimethylsilyltrifluoroacetamide (Machery-Nagel) in pyridine for 30 min at 70°C. 

Quantitative analysis was performed using capillary GC (6850; Agilent Technologies) 

and flame ionization detector; qualitative analysis was studied with mass 

spectrometric detection (m/z 50–750, MSD 5973; Agilent Technologies) under the 

same GC conditions (6890; Agilent Technologies). GC was carried out with on-

column injection (30 m × 0·32 mm inner diameter, DB-1, df 0·1 μm; J&W Scientific, 

Agilent Technologies). Oven temperature was programmed for 2 min at 50°C, 40°C 

min−1 to 200°C, 2 min at 200°C, 3°C min−1 to 320°C, 30 min at 320°C and He carrier 

gas inlet pressure was programmed for 5 min at 50 kPa, 3 kPa min−1 to 150 kPa, and 

30 min at 150 kPa. Wax components were identified by comparison of their mass 

spectra with those of authentic standards and literature data (MSD ChemStation 

software package). For quantification of wax compounds GC was performed under 

the same conditions as described above with a flame ionization detector, but with 

H2 as carrier gas programmed for 5 min at 5 kPa, 3 kPa min−1 to 50 kPa, and 30 min 

at 50 kPa. 

 

Characterization of plant surfaces 

Surface hydrophobicity was determined by measuring contact angles of sessile 6 μL 

droplets of distilled water (contact angle system OCA 15, software system SCA20; 

Dataphysics Instruments). In each case 50 measurements were performed on five 

independent surface samples. 

For visualization of wax crystal structures, pieces of leaves were lyophilized 

at −52°C for 5 h at 5 Pa (Christ Alpha 1–2), mounted on aluminium holders and 

sputter coated with gold palladium (Bal-Tec SC005, 25 mA, 300 s; Balzers). 

Specimens were examined by SEM (Zeiss DSM 962, 15 KV; Zeiss). The sputtering 

conditions, depositing an alloy layer with a thickness of approximately 20 nm on the 

tissue samples, were optimized for the acceleration voltage used in the SEM. 

Coating of glass slides and manipulation of maize leaf surfaces 
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Histobond® glass slides (Marienfeld) were coated using a 0·5% Formvar® 

resin (Polyvinyl formal, CAS 63450-15-7; Applichem) solution in chloroform, 

supplemented with total leaf wax extract or pure n-hexacosanal adjusted to 250 μg 

mL−1 in the dipping solution. If applicable, wax extracts were spiked with 2% (w/w) 

of pure n-hexacosanal (Hansjakob et al., 2010). This Formvar® resin-based in vitro 

system provides highly homogeneous hydrophobic surfaces that exhibit essentially 

uniform contact angles. It permits the specific analysis of the effects of bioactive 

lipophilic extracts or single wax constituents on the prepenetration processes of B. 

graminis, excluding secondary effects due to variations in surface hydrophobicity 

(Hansjakob et al., 2010). The wax coverage of each of the coated glass slides 

amounted to 0·6 μg cm−2. Surface contact angles of coated glass slides were 

determined as described above. 

Adaxial surfaces of detached second and third leaves were sprayed with 

total leaf wax extracts adjusted to 380 μg mL−1 in chloroform (99%; Carl Roth) or 

solutions (10 mg mL−1) of pure n-docosane, n-docosanol, n-docosanoic acid, 

docosanoic acid docosanoyl ester (C44-alkyl ester) (99%; Sigma Aldrich), n-

hexacosanal (C26-aldehyde) or combinations thereof in chloroform using a glass 

chromatography sprayer from a distance of approximately 30 cm. Control leaves 

were sprayed with an equal volume of chloroform only. The amount of the wax 

coating deposited on the leaf surfaces was determined by dipping the sprayed 

leaves into 30 mL of chloroform and subsequently quantified by GC analysis as 

described in the previous section. The spraying experiments were repeated three 

times independently. 

 

Studies on B. graminis prepenetration processes 

Adaxial surfaces of detached maize leaves or glass slides were fixed at the 

base of a settling tower. Conidia from infected barley leaves were blown into the 

tower by pressurized air to ensure even distribution at a density of approximately 

20 conidia mm−2. Leaves and artificial surfaces were incubated for 16 h in darkness 

at 20°C on moist filter paper in a sealed glass Petri dish to maintain a relative 

humidity of at least 90%. 

For microscopic analysis, leaves were initially bleached on filter paper 

moistened with ethanol:acetic acid (3:1, v/v) and were then transferred to filter 

paper soaked with fixation solution (lactic acid:glyercol:water (1:1:1, v/v/v)) for 5 h 

(Lyngkjær & Carver, 1999). To visualize the fungal structures leaf surfaces were 

stained with droplets of 0·05% (w/v) trypan blue (Merck) in acetic 

acid:glycerol:water (1:1:1, v/v/v) for 30 min. Developmental stages of conidia 

inoculated onto artificial glass slide surfaces were observed directly without prior 

staining. In total 2500 conidia were analysed for each surface in five independent 

experiments with 500 conidia per repetition. Individual conidia were analysed by 
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light microscopy (Leica DMR). Micrographs were acquired with a digital camera 

(Zeiss Axio Cam MRc) and Axio Vision software package 4·8·1 (Zeiss). Analysis was 

undertaken to determine whether the conidia had not germinated (ng), had formed 

only a primary germ tube (pgt), a secondary non-swollen germ tube (sgt), a swollen, 

secondary appressorial germ tube (agt) or a fully differentiated hooked 

appressorium with a septum (app). Additionally, the amount of conidia apparently 

damaged during incubation was recorded. Only single, well separated conidia were 

evaluated at each observation to exclude possible inhibitory effects due to 

crowding. 

 

Statistical analysis 

The basis for statistical analyses was n = 5 independent experiments, where n = 1 

represents 500 examined conidia. Significant differences (P < 0·05) between 

multiple datasets were tested by one-way anova followed by Tukey HSD post hoc 

test. In case of significant differences (P < 0·05; Levene test) of homogeneity the 

data were transformed. The analyses were performed with STATISTICA 8 (StatSoft). 

 

3.4 Results 

3.4.1 Cuticular leaf wax coverage and composition 

The non-glossy maize lines C836B and cv. Lambada had almost identical cuticular 

wax coverages of about 8 μg cm−2 whereas the glossy lines 215B, homozygous for 

the gl11 mutation, and 428A, homozygous for the gl5 mutation, showed distinctly 

reduced wax accumulations of only 1·3 ± 0·3 and 4 ± 2 μg cm−2, respectively. When 

compared to the non-glossy lines, the maize line 215B exhibited a complete 

absence of very-long-chain aldehydes and of fatty acids, with distinctly increased 

levels of alkyl esters, particularly of molecules with chain lengths ranging from C40 to 

C48 (Figure 1). In addition, this mutant line showed a slight reduction in the relative 

proportion of its most prominent wax constituent n-dotriacontanol (C32-alkanol), a 

constituent which was also dominant (up to 75%) in the cuticular waxes of the non-

glossy lines C836B and Lambada. The maize line 428A exhibited greatly elevated 

levels of very-long-chain aldehydes. In this glossy mutant the C32 aldehyde n-

dotriacontanal accounted for up to 60% of the wax constituents, whilst the 

proportion of n-dotriacontanol was reduced to roughly 15%. The different maize 

lines assayed displayed only minor differences in the relative proportion of n-alkane 

constituents. However, the gl11 mutant showed slightly increased overall 

proportions of n-alkanes ranging from C27 to C37 whereas in Lambada and 428A, n-

hentriacontane (C31 alkane) formed the most prominent n-alkane constituent. 

Roughly 5% of the maize wax constituents were not identified. 
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Figure 1 Relative composition (%) of total leaf wax from (a)  Zea mays line C836B, (b) cv. Lambada, 

(c) glossy mutant line 215B (homozygous for the gl11 mutation) and (d) line 428A (homozygous for 

the gl5 mutation). Carbon chain lengths are indicated for each chemical compound class. n.i., not 

identified. Data are given as the mean of five repetitions ± SD. 

 

3.4.2 Leaf surface wettability and wax crystal stru cture 

The mutant lines 215B and 428A showed distinctly reduced surface contact angles 

of 123 ± 4° and 144 ± 5°, respectively, whereas the non-glossy maize cv. Lambada 

and C836B exhibited superhydrophobic surfaces with contact angles of 156 ± 5° to 

167 ± 6°. The differences in wax composition and leaf surface hydrophobicity of 

maize non-glossy and glossy-mutant cuticular waxes were reflected by different 

epicuticular wax crystal morphologies (Figure 2). The adaxial epicuticular wax layer 

of cv. Lambada leaves was characterized by abundant wax crystal platelets, 

approximately 1–1·5 μm in length. However, line C836B exhibited smaller platelets 

that barely exceeded a length of 1 μm. For both lines the smooth surface of the 

epicuticular wax film was visible only in comparably small areas as the crystals 

formed a dense and relatively thick network (Figure 2a,b). Unlike the wild-type, the 

aldehyde surplus line 428A exhibited a flaky mixture of smaller and larger platelets 

(1·3–2·0 μm in length) that sparsely protruded from a matrix of apparently 

horizontally oriented and more or less coalesced platelets (Figure 2c). Line 215B 
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exhibited single, irregularly scattered wax bodies, smaller (0·2–0·8 μm in length) 

and much less abundant than the platelets on non-glossy leaves (Figure 2d). 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

CA=156 ± 5° CA=167 ± 6° CA=144 ± 5°

CA=123 ± 4° CA=137 ± 5° CA=132 ± 4°

CA=148 ± 5° CA=154 ± 11° CA=146 ± 5°

5 µm 5 µm 5 µm

5 µm5 µm5 µm

5 µm

5 µm 5 µm 5 µm

5 µm5 µm

(k) (l)

CA=105 ± 9°CA=112 ± 7°CA=134 ± 5°
 

Figure 2 Scanning electron microscopy micrographs of maize leaf surfaces. Native adaxial leaf 

surfaces of (a) Zea mays cv. Lambada, (b) C836B, (c) glossy mutants 428A (gl5) and (d) 215B (gl11). 

Adaxial leaf surfaces of Zea mays cv. Lambada sprayed with (e) chloroform only, (f) n-docosane, (g) 

n-docosanol or (h) n-docosanoic acid, (i) docosanoic acid docosanoyl ester [C44-alkyl ester] and (j) n-

hexacosanal. Adaxial leaf surfaces of glossy mutant 215B (gl11) sprayed either with (k) chloroform 

only or with (l) total leaf wax extract from C836B. Contact angles (CA) ± SD are indicated at the 

bottom of each micrograph. 

In order to demonstrate the significance of the cuticular leaf wax composition of the 

different maize lines in the in vivo studies, in vitro bioassays using glass slides 

coated with Formvar® resin supplemented with the respective leaf wax extracts 

were performed (Figure 3c). Despite a general reduction in germination and 

differentiation (agt + app), the results obtained from the in vitro glass slide assays 

almost fully reflected the differences in fungal germination and differentiation seen 

on the different adaxial maize leaf surfaces (Figure 3b). Surface contact angles of 
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Formvar®/wax coated glass slides were generally lower than those of detached 

maize leaves and did not reflect the leaf surface wettability of the different maize 

lines (Table 1). The surface contact angles of all coated glass slide surfaces ranged 

from 91 ± 2° for the C836B wax coating up to 102 ± 4° for wax coating of the gl11 

mutant line 215B. 
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Figure 3 (a) Prepenetration stages of  Blumeria graminis conidia on maize leaf surfaces: non-

germinated conidium (ng), conidium with only a primary germ tube (pgt), conidium with a secondary 

elongated germ tube (sgt), conidium with a swollen appressorial germ tube (agt), fully differentiated 

conidium with a lobed appressorium (app) and a septum (arrow). Development of B. graminis 

conidia on (b) adaxial leaf surfaces of different maize lines and (c) on glass slides covered with 

Formvar® resin supplemented with the corresponding total leaf wax extracts from Zea mays cv. 

Lambada (grey bars), C836B (black bars), glossy mutant lines 428A (gl5, white bars) and 215B (gl11, 

striated bars). Data are given as the mean (n = 5) ± SD. Different letters within a developmental 

category in (b) and (c) indicate significant differences (P < 0·05) determined in a one-way ANOVA 

followed by a Tukey post hoc test. 
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Table 1 Contact angles of glass slides coated with total leaf wax extracts and/or n-hexacosanal 

Wax extract/wax constituent Contact angle  
(°) ± SD 

C836B 91 ± 2 
Lambada 99 ± 2 
215B (gl11) 102 ± 4 
215B (gl11) + 2%n-hexacosanal 102 ± 2 
428A (gl5) 95 ± 2 
n-hexacosanal 101 ± 1 
  

 

3.4.3 Masking of the gl11 phenotype 

As the mutation responsible for the gl11 phenotype has not yet been identified, a 

molecular complementation was not feasible. Therefore, spraying wax extracts or 

single wax constituents onto living maize leaves was chosen as an appropriate 

methodology of surface manipulation in order to modify the chemical surface 

characteristics in a reasonable manner. Spraying aldehyde-containing maize leaf 

wax extracts onto the surface of the gl11 mutant line 215B that is fully devoid of 

very-long-chain aldehydes was intended to override the gl11 phenotype concerning 

the distinct impediment of B. graminis germination and differentiation (Figure 4a). 

Spraying chloroform only onto the leaf surfaces of cv. Lambada and 215B (gl11) 

distinctly modified the epicuticular leaf surface structures, resulting in eroded and 

coalesced wax crystals (Figure 2e,k). This modification resulted in reduced surface 

contact angles. However, the chloroform treatment alone had no significant effects 

on the subsequent prepenetration processes of B. graminis, hence the procedure 

was generally regarded as being applicable. Spraying leaves of 215B with a wax 

extract from leaves of C836B resulted in almost smooth leaf surfaces devoid of any 

protruding wax platelets, a nearly doubled total wax coverage of 2·8 ± 0·4 μg cm−2, 

and in contact angles of only 105 ± 9° (Figure 2l). The B. graminis germination rates 

on these leaves (Figure 4a) approximated those on untreated C836B leaves (Figure 

3b), resulting in about 90% of germinated conidia. Most strikingly, the 

differentiation rate (agt + app) of about 80% fully matched the one on leaves of 

C836B (Figure 3b). Spraying 215B and cv. Lambada leaves with the C26-aldehyde n-

hexacosanal, a potent inducer of B. graminis prepenetration processes (Hansjakob 

et al., 2010), led to total wax coverage of 4 ± 0·9 and 19 ± 6 μg cm−2, respectively, 

and surfaces exhibiting scaly, horizontally oriented platelets (shown for cv. Lambada 

in Figure 2j). Irrespective of plant genotype, this treatment resulted in distinctly 

increased germination and differentiation rates when compared to native 215B and 

cv. Lambada leaves (Figure 4b). 
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Figure 4  Development of Blumeria graminis conidia on (a) adaxial leaf surfaces of maize line 215B 

(gl11) and (b) cv. Lambada. Leaves were sprayed with solutions of C836B wax (grey bars) or n-

hexacosanal (white bars) in chloroform, with chloroform only (control treatment, shaded bars) or 

untreated (black bars). Data are given as the mean (n = 5) ± SD. Different letters within a 

developmental category indicate significant differences (P < 0·05) determined in a one-way ANOVA 

followed by a Tukey post hoc test. 

 

3.4.4 Mimicking of the gl11 phenotype 

Spraying the largely inert alkane n-docosane (C22 alkane) onto leaves of maize cv. 

Lambada (a germination and differentiation supportive surface) resulted in a total 

wax coverage of 132 ± 11 μg cm−2, and surfaces with a crustaceous outer 

appearance, exhibiting a network of large horizontally and vertically protruding wax 

plates (Figure 2f). Inoculation of these surfaces led to substantially reduced fungal 

germination and differentiation rates (Figure 5a). Only 50% of the inoculated 

conidia germinated on the treated leaf surfaces while the proportion of 

differentiated conidia decreased to values below 30%. Spraying cv. Lambada leaves 

with n-docosanol (C22 alkanol) or n-docosanoic acid (C22 fatty acid) led to total wax 

coverage of 58 ± 7 and 127 ± 7 μg cm−2, respectively. Both treatments resulted in 

surfaces exhibiting large rounded platelets (2–4 μm in length) causing surface 

contact angles of roughly 150° (Figure 2g,h). Inoculation of these modified leaf 

surfaces resulted in a further significant reduction in germination and 
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differentiation rates. The treatment with n-docosanoic acid resulted in a 

germination rate of 23%, while only about 5% of the inoculated conidia 

differentiated infection structures (Figure 5a). Spraying adaxial cv. Lambada leaf 

surfaces with a C44-alkyl ester (docosanoic acid docosanoyl ester) led to total wax 

coverage of 56 μg cm−2, and surfaces exhibiting rounded and somewhat coalescent 

platelets of 1–3 μm in length (Figure 2i). This treatment resulted in a drastic 

increase in the proportions of non-germinated conidia and in differentiation rates 

that accounted for <10% of the inoculated conidia (Figure 5b). However, spraying 

line 215B adaxial leaf surfaces with the C44-alkyl ester resulted in only a slight 

further decrease of fungal differentiation rates (Figure 5c). In combination with 2% 

n-hexacosanal, the gl11 phenotype mimicking effect of the C44-alkyl ester was 

completely neutralized on sprayed leaf surfaces of cv. Lambada (58 ± 10 μg cm−2 

total wax coverage) with nearly identical germination and differentiation rates as on 

native leaves (Figure 5b). 
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Figure 5 Development of Blumeria graminis conidia on adaxial Zea mays cv. Lambada and 215B 

(gl11) leaf surfaces sprayed with different single wax constituents dissolved in chloroform. (a) 

Development of conidia on cv. Lambada leaves: native leaves (black bars), leaves sprayed with 

chloroform only (shaded bars), leaves sprayed with n-docosane (grey bars), n-docosanol (striated 

bars) or n-docosanoic acid (white bars). (b) Development of conidia on cv. Lambada leaves: native 

leaves (black bars), leaves sprayed with chloroform only (shaded bars), leaves sprayed with a C44-

alkyl ester [docosanoic acid docosanoyl ester] (grey bars) and sprayed with a mixture of the C44-alkyl 

ester with 2% n-hexacosanal (white bars). (c) Development of conidia on leaves of 215B (gl11): 

native leaves (black bars), leaves sprayed with chloroform only (shaded bars), leaves sprayed with a 

C44-alkyl ester [docosanoic acid docosanoyl ester] (white bars). Data are given as the mean (n = 5) ± 

SD. Different letters within a developmental category indicate significant differences (P < 0·05) 

determined in a one-way ANOVA followed by a Tukey post hoc test. 
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3.4.5 Supplementing gl11 wax with n-hexacosanal 

Spiking leaf wax extracts from the gl11 mutant maize line 215B with 2% n-

hexacosanal resulted in vitro in similar proportions of non-germinated conidia as 

with leaf wax extracts from C836B (Figure 6) or cv. Lambada (Figure 3c). The 

treatment with n-hexacosanal led to a significant reduction in the proportions of 

conidia in the primary and secondary germ tube stages of development and even 

out-performed the C836B wax with respect to appressorial germ tube and 

appressorium formation, but had no significant impact on surface contact angles 

(Table 1). Formvar® glass slides supplemented with pure n-hexacosanal exhibited a 

slight increase in the proportion of appressorial germ tubes when compared with 

slides coated with C836B wax or a mixture of 215B wax with 2% n-hexacosanal 

(Figure 6). 

 

ng pgt sgt agt app

P
er

ce
nt

ag
e

of
co

ni
di

a

0

10

20

30

40

50

60

70

80

a

b

a
a

a

b

a

c

a
a
b

b

a
a

b

c
c

a
a

b

c

C836B
215B
215B + 2% n-hexacosanal
N-hexacosanal

 

Figure 6  Development of Blumeria graminis conidia on glass slides coated with Formvar® resin 

supplemented with extracted wax from C836B (black bars) or 215B (gl11, grey bars), with 215B wax 

spiked with 2% n-hexacosanal (white bars) or with pure n-hexacosanal only (striated bars). Data are 

given as the mean (n = 5) ± SD. Different letters within a developmental category indicate significant 

differences (P < 0·05) determined in a one-way ANOVA followed by a Tukey post hoc test. 

 

3.5 Discussion 

Several loci in maize, the Glossy or Gl loci, have been found to affect the quantity 

and/or the composition of cuticular waxes on the surface of seedling leaves 

(Neuffer et al., 1997). While the gl5 mutant has been described as predominantly 

containing very-long-chain aldehydes in its cuticular waxes (Bianchi et al., 1978), the 

gl11 mutant was characterized as completely lacking them (Avato et al., 1985). As 

several very-long-chain aldehyde molecules were demonstrated to act as potent 

inducers of the B. graminis prepenetration processes (Tsuba et al., 2002; Zabka et 

al., 2008; Ringelmann et al., 2009; Hansjakob et al., 2010), the above mentioned 

very-long-chain aldehyde deficient and surplus glossy mutants of maize were used 

to explicitly test the relevance of the presence of very-long-chain aldehydes for the 
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initiation of B. graminis prepenetration processes in vivo, on surfaces of living plant 

leaves. 

The two non-glossy lines C836B and cv. Lambada showed very similar overall 

cuticular wax compositions, as in other non-glossy wild-type lines (Bianchi & 

Salamini, 1975; Avato et al., 1985). As expected, the cuticular wax of the gl11 

mutant line 215B was completely devoid of very-long-chain aldehydes although, 

with about 23% the proportion of alkyl esters, this deficiency was not as 

pronounced as previously described (Avato et al., 1985). In addition, the cuticular 

wax of line 215B contained no free fatty acids, whereas the gl11 mutant in the 

inbred WF9 genetic background assayed by Avato et al. (1985) had 5% free fatty 

acids. The substantial reduction in the proportion of primary alkanols described for 

the gl11 mutation in the WF9 genetic background was not seen with line 215B. The 

gl5 mutation in the WF9 genetic background accumulated 83·5% very-long-chain 

aldehydes and only 8·7% primary alkanols as constituents of the cuticular leaf wax 

(Bianchi et al., 1978). However, the 428A mutant line used in the present study 

showed a very-long-chain aldehyde proportion of only 65% and a primary alkanol 

proportion of 13%. These deviations from the initial descriptions of the gl11 and gl5 

wax compositional phenotype may be attributable to different genetic backgrounds 

and culture conditions. 

Surface hydrophobicity and the presence of very-long-chain aldehydes are 

substantially responsible for providing initial cues promoting B. graminis 

prepenetration processes (Zabka et al., 2008). The contact angles of the native and 

modified maize leaf surfaces and of the artificial glass slide surfaces used in the 

present study were all above the critical value of 80°, therefore permitting the 

effective promotion of B. graminis prepenetration processes in the presence of 

very-long-chain aldehydes (Zabka et al., 2008; Ringelmann et al., 2009). 

The results of the in vivo and in vitro inoculation experiments unequivocally 

corroborate the importance of very-long-chain aldehydes for the successful 

initiation of the barley powdery mildew prepenetration processes. The aldehyde-

deficient gl11 mutant line 215B showed a dramatic reduction of conidial 

germination and differentiation when compared to aldehyde-containing leaf 

surfaces of other maize lines. However, the differentiation on the gl11 mutant was 

still higher than one might have expected from the lack of very-long-chain 

aldehydes in its cuticular wax (Hansjakob et al., 2010). This suggests that other, 

probably still unidentified, constituents of the maize leaf wax might also contribute 

to the stimulation of B. graminis prepenetration processes. However, such 

compounds remain to be identified and their active principle elucidated. Despite its 

drastically increased very-long-chain aldehyde content, the native leaf surfaces or 

glass slides coated with gl5 wax extracts were only slightly more inductive than the 

non-glossy lines C836B or cv. Lambada. This indicates that when the aldehyde 
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proportion in the wax exceeds a certain threshold no additional stimulation of 

prepenetration can be achieved by further increasing the amount or proportion of 

very-long-chain aldehydes, which is fully in accordance with previous data 

(Hansjakob et al., 2010). However, on the non-host maize leaves the proportion of 

fully mature appressoria was approximately only half of that found on host barley 

leaves (Hansjakob et al., 2010). In contrast, rates of appressorial germ tube and 

appressorium formation on wax-coated glass slides were comparable between 

maize and barley leaf wax extracts, indicating that factor(s) other than wax 

composition might be involved. 

The importance of chemical leaf surface features for the establishment of B. 

graminis suggests that interference with cuticular wax chemistry will disrupt 

pathogen development and consequently reduce infestation. Research on a variety 

of film-forming polymer agents that coat the leaf surface has demonstrated that 

coating leaf surfaces with such compounds can indeed lead to reductions in B. 

graminis infection (Sutherland & Walters, 2002; Walters, 2006). Likewise, it has 

been hypothesized here that an inductive very-long-chain aldehyde-containing 

maize wax overlay could mask the gl11 phenotype of the 215B maize leaf surface 

with respect to restoration of germination and differentiation behaviour. In fact, 

spraying 215B leaves with wax from C836B resulted in substantially increased 

germination and differentiation rates, demonstrating that the modified wax 

composition of the leaf surface was responsible for that restorative effect. This 

effect was further corroborated by spraying 215B and cv. Lambada leaves with pure 

n-hexacosanal, which resulted in even higher B. graminis germination and 

differentiation rates. Likewise, adding 2% of the C26-aldehyde n-hexacosanal to 

extracted wax of line 215B led to even higher in vitro differentiation rates than with 

the C836B wax alone. From these experiments one may conclude that in the case of 

maize leaves and maize wax the presence of very-long-chain aldehydes contributes 

up to 70% to the success of conidial differentiation, thereby underlining the 

importance of these compounds for the prepenetration processes and 

consequently for fungal infection in a compatible fungus/host interaction. 

The reverse experiment, coating the naturally inductive leaf surfaces of cv. 

Lambada with different non-inductive wax constituents (Hansjakob et al., 2010), 

resulted in a B. graminis developmental phenotype that greatly resembled that of 

line 215B, exhibiting substantially decreased germination and differentiation rates. 

The fact that the presence of only 2% n-hexacosanal in combination with the non-

inductive C44-alkyl ester was fully sufficient to revert the induction masking effect of 

the C44-alkyl ester on naturally inductive leaf surfaces suggests that the substantial 

proportion of alkyl esters present in the aldehyde-deficient wax of line 215B may 

not be primarily responsible for the gl11 prepenetration defective phenotype. 
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The significant differences in in vitro germination and differentiation rates among 

the C22 molecules of different substance classes could be explained by a 

miscellaneous molecular orientation of the distinct compounds on the sprayed leaf 

surface (Holloway, 1970), resulting in putatively non-homogeneously coated leaf 

surface sections that could permit differential access to the inducing aldehyde 

compounds below the artificial wax coating. In field trials, a water stable emulsion 

with n-dodecanol as the major component has been demonstrated to substantially 

reduce infestation of powdery mildew on wheat (Han, 1990). However, the extent 

to which this compound might exert an aldehyde-masking effect on sprayed wheat 

leaf surfaces remains speculative. 

Interestingly, the wax phenotype of the aldehyde surplus mutant line 428A 

(gl5) exhibiting horizontally oriented platelets strongly resembled the artificially 

modified leaf surfaces of cv. Lambada sprayed with n-hexacosanal. Likewise, the 

barley eceriferum (cer) wax mutant cer-yp.949 showing a significantly reduced 

proportion of primary alkanols, down to nearly 50%, in combination with a 5-fold 

increase of very-long-chain aldehydes in its cuticular wax, also exhibited horizontally 

oriented epicuticular wax platelets (data not shown). 

It has been shown for wax constituent recrystallization that substrate 

polarity influences the spatial orientation of the molecule layer adhering first on the 

substrate (Koch et al., 2006). Wax crystals preferentially grew in a horizontal (polar 

substrate) or vertical (non-polar substrate) direction. Hence differences in the 

polarity of the cuticle proper might explain why coating the 215B leaf surface with 

extracted leaf wax from C836B resulted in a smooth horizontally orientated wax 

layer, while covering the natural wax crystals of cv. Lambada with n-docosane, n-

docosanol, n-docosanoic acid or the C44-alkyl ester resulted in fairly different wax 

crystal morphologies. In general, wax platelet morphologies based on or modified 

by alkane, aldehyde, ester, ketone secondary alkanol and fatty acid constituents are 

comparatively poorly defined with only weak discrimination between plate 

morphological variants or their chemical basis (Jeffree, 2006). Nevertheless, the 

different amounts of wax and of wax constituents applied to the respective leaf 

surfaces might have also contributed to the generation of the highly divergent 

epicuticular wax crystal morphologies. However, from previous studies it is known 

that presence or absence of epicuticular wax crystals on the leaf surface and 

modifications of the wax crystal morphology can at best exert minor effects on the 

prepenetration processes of B. graminis (Carver & Thomas, 1990; Zabka et al., 

2008). 

To the authors’ knowledge, this is the first study that demonstrates the in 

vivo relevance of the presence of cuticle-derived very-long-chain aldehydes for the 

prepenetration processes of the barley powdery mildew fungus B. graminis. So far, 

the mutation responsible for the gl11 phenotype has not been identified, although 
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its locus has been mapped to chromosome 2 (Krakowsky et al., 2006). This is the 

only known mutation from a member of the Poaceae that is devoid of very-long-

chain aldehyde cuticular wax constituents. The molecular identity and the exact 

role(s) of an assumed Gl11 gene product remain to be elucidated. Nevertheless, this 

well-known mutation that exhibits a unique wax compositional phenotype resulting 

in substantial disruption of B. graminis prepenetration processes could be 

investigated in subsequent studies aimed at its molecular identification and in 

unravelling the maize wax biosynthetic pathways in general. The glossy 11 mutant 

of maize also offers the rare chance to study the biological relevance of aldehydes 

as typical cuticular wax constituents of a multitude of plant species and may open 

avenues for establishing potentially more durable resistance mechanisms in other 

crop plants such as wheat and barley to specialized fungal pathogens (Niks & 

Rubiales, 2002). 
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4.1 Abstract 

Conidial germination and differentiation - the so-called prepenetration processes - 

of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are essential 

prerequisites for facilitating penetration of the host cuticle. Although the cell cycle 

is known to be pivotal to cellular differentiation in several phytopathogenic fungi 

there is as yet no information available concerning the relationship between cell 

cycle and infection structure development in the obligate biotroph B. graminis. The 

timing of specific developmental events with respect to nuclear division and 

morphogenesis was followed on artificial and host leaf surfaces by DAPI (4′,6-

diamidino-2-phenylindole) staining in combination with a pharmacological approach 

applying specific cell cycle inhibitors. It was found that the uninucleate conidia 

germinated and then underwent a single round of mitosis five to six hours after 

inoculation. During primary germ tube formation the nucleus frequently migrated 

close to the site of primary germ tube emergence. This nuclear repositioning was 

distinctly promoted by very-long-chain aldehydes that are common host cuticular 

wax constituents known to induce conidial differentiation. The subsequent 

morphogenesis of the appressorial germ tube preceded mitosis that was spatially 

uncoupled from subsequent cytokinesis. Blocking of S-phase with hydroxyurea did 

not inhibit formation of the appressorial germ tube but prevented cytokinesis and 
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appressorium maturation. Benomyl treatment that arrests the cell cycle in mitosis 

inhibited nuclear separation, cytokinesis and formation of mature appressoria. 

Thus, we conclude that a completed mitosis is not a prerequisite for the formation 

and swelling of the appressorial germ tube, which normally provides the destination 

for one of the daughter nuclei, while appressorium maturation depends on mitosis. 

 

4.2 Introduction 

The obligate biotrophic ascomycete B. graminis is one of the most destructive foliar 

pathogens of grain (Jørgensen, 1988; Murray and Brennan, 2010). B. graminis 

conidia must complete a specific set of developmental stages on the host surface 

before they can penetrate into host tissue: shortly after landing on a host plant 

surface, the wind-dispersed asexual conidia of B. graminis germinate by forming an 

aseptate, primary germ tube that attaches to the leaf surface and forms a short peg 

penetrating the cuticle but only touching the plant cell wall. This primary germ tube 

is most likely involved in the absorption of water and solutes from the plant cell wall 

(Edwards, 2002; Yamaoka et al. 2006). Subsequently, a secondary germ tube 

elongates, swells and differentiates into the appressorial germ tube, which matures 

and becomes a septate, lobed apical appressorium with a penetration peg formed 

to pierce both host cuticle and cell wall. These prepenetration processes of fungal 

development are completed about 12–15 h after inoculation.  

The prepenetration processes are a crucial stage in the fungal life cycle. 

Therefore, fungi have evolved mechanisms to ensure that conidia will respond to 

specific signals that are indicative of favourable growth conditions. In B. graminis, 

germination and differentiation of infection structures can be induced by plant-

derived substances or signals, such as contact with a solid hydrophobic surface 

and/or presence of host cuticle constituents (Francis et al. 1996; Tsuba et al. 2002; 

Zabka et al. 2008). Plant cuticular waxes are known to play important roles in 

triggering germination and differentiation of the grass powdery mildew B. graminis 

(Carver et al. 1990; Tsuba et al. 2002; Zabka et al. 2008; Ringelmann et al. 2009; 

Feng et al. 2009; Hansjakob et al. 2010; Hansjakob et al. 2011). Very-long-chain 

aldehydes – present in many cuticular plant waxes – have turned out to be of 

particular significance for the B. graminis prepenetration processes. Presence of 

very-long chain aldehydes considerably promotes germination and differentiation 

of powdery mildew conidia in a dose and chain-length dependent manner 

(Hansjakob et al. 2010; Hansjakob et al. 2011). Besides the chemical composition of 

a leaf surface a multitude of environmental factors can significantly affect conidial 

germination and subsequent differentiation (Carver et al. 1990; Ringelmann et al. 

2009).  
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In many plant pathogenic fungi the short period of growth on the plant 

surface during prepenetration is characterized by a tight coupling of morphogenesis 

and cell cycle progression. Infectious dikaryotic hyphae of the basidomycetous smut 

fungus Ustilago maydis are arrested in the G2 phase of the cell cycle (Banuett, 1992). 

Only after appressorium formation and host cuticle penetration the cell cycle arrest 

is released resulting in proliferation of the fungus in the host tissue (Banuett and 

Hershkowitz, 1994). A similar cell cycle arrest is also present in rust fungi such as 

Uromyces appendiculatus (Kwon and Hoch, 1991). In the rice blast fungus 

Magnaporthe oryzae, the completion of mitosis in the germ tube is considered a 

prerequisite for appressorium morphogenesis (Veneault-Fourrey et al. 2006; 

Saunders et al. 2010a, 2010b). Shortly after germination a single round of nuclear 

division takes place in M. oryzae conidia. One of the daughter nuclei moves to the 

tip of the germ tube, where the appressorium is formed, while the other migrates 

back into the conidial cell. Mitosis and nuclear migration precede cytokinesis, which 

is required for appressorium differentiation. By contrast, the differentiation of 

infection structures including appressoria in the anthracnose fungus Colletotrichum 

gloeosporioides can occur without previous mitosis and nuclear division (Nesher et 

al. 2008). 

Until now its obligate biotrophy, the lack of a stable transformation system 

and its susceptibility to free water during prepenetration have vastly hindered the 

cytological analysis of nuclear division during the essential phase of infection 

structure formation of B. graminis (Manners and Hossain 1963; Sivapalan 1994; 

Iwamoto et al. 2002; Zhang et al. 2005). By using a distinct nuclear staining 

procedure the present study investigated the timing of specific developmental 

events on artificial and host leaf surfaces as well as the association of nuclear 

division and morphogenesis during B. graminis prepenetration processes by 

applying a pharmacological approach. Application of an improved in vitro system - 

based on a Formvar® membrane containing differentiation inducing host wax - 

allowed the application of various cell cycle inhibitors omitting a possible 

interference with enzymatic activities and/or chemical properties of the otherwise 

underlying plant tissue. 

 

4.3 Material and Methods 

Pathogen and plant material 

Barley (Hordeum vulgare L. cv. Stendal, IG Pflanzenzucht, Munich, Germany) was 

sown in plastic pots (diameter 9 cm) filled with standard potting soil (Typ ED73; 

SteuderComp, Schermbeck, Germany) and kept in growth chambers with 300 µmol 

photons m-2 s-1 light intensity in a 16 h : 8 h photoperiod at 22°C : 18°C and 70% 

relative humidity.  



Chapter 4 

 

59 

Blumeria graminis (DC.) Speer f. sp. hordei Em. Marchal (isolate CC1, 

obtained from Tim Carver, Institute of Grassland and Environmental Research (IGER, 

Aberystwyth, UK) was propagated on its host plant H. vulgare until distinct white 

powdery pustules appeared. One day before conidia were required for 

experimentation, spore-bearing leaves were shaken to remove older conidia so that 

freshly emerged conidia were available for subsequent assays. 

 

Preparation of epidermal strips and artificial surfaces 

In order to facilitate the microscopic analysis of the prepenetration processes of B. 

graminis f.sp. hordei on its natural host surface, abaxial epidermal strips from 

primary leaves of 12 day old barley plants were used. For that purpose the 

epidermal cell layers were carefully stripped off using a scalpel and fine forceps and 

immediately transferred to Petri dishes containing 20 ml of flotation buffer (10 mM 

Tris/Cl, pH 8, 1 mM CaCl2).  

For in vitro prepenetration studies, total leaf wax extracts of secondary 

leaves of 14 d old barley plants were prepared in chloroform and sprayed onto glass 

slides (Elka, Sondheim, Germany) using a glass chromatography sprayer (Zabka et 

al., 2008). The wax coated glass slides were stored for at least 16 hours at room 

temperature, to ensure complete solvent evaporation. As surface hydrophobicity is 

known to play an important role for the initiation of B. graminis prepenetration 

processes the contact angles of 1-µl droplets of distilled water deposited on the 

coated glass surfaces were determined (contact angle system OCA 15, software 

system SCA20; Dataphysics Instruments, Filderstadt, Germany). A total of 20 

measurements on each of at least five independent surface samples were 

performed. Only glass slides exhibiting contact angles above 100° were subjected to 

further experimentation.  

For cell cycle inhibitor studies on the host plant surface, epidermal strips of 

primary leaves of 12 d old barley plants were placed in a plastic Petri dish onto 0.5% 

Bacto-Agar (10 mM Tris/Cl, pH 8, 1 mM CaCl2), supplemented with the 

corresponding cell cycle inhibitor, or as control, with an equivalent volume of the 

solvent, only. 

In order to investigate B. graminis haustoria development we used adaxial 

epidermal cell layers of 12 day old barley coleoptiles as these - after fungal 

penetration - more effectively support fungal development than stripped barley leaf 

epidermal tissues (Bushnell et al. 1967). Coleoptile epidermal cell layers, prepared 

according to Bushnell et al. (1967), were floated with their adaxial side up on 0.2 ml 

buffer (10 mM Tris/Cl, pH 8.0, 1 mM CaCl2) on microscope glass slides. The buffer 

was supplemented with the corresponding cell cycle inhibitor, or as control, with an 

equivalent volume of the solvent, only. 
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For in vitro cell cycle inhibitor studies standard microscopy glass slides (Elka, 

Sondheim, Germany) were dipped into a solution of 1% (w/v) Polyvinylpyrrolidone 

40 (PVP40) (Sigma Aldrich) and dried completely for 24 hours at room temperature. 

The PVP-coated slides were then dipped into a 0.5% Formvar® (Polyvinyl formal, 

CAS 63450-15-7, Applichem) solution in chloroform supplemented with total barley 

leaf wax extract (500 µg ml-1) and dried for 16 hours at room temperature 

(Hansjakob et al., 2010). The edges of the slides were then carefully scratched with 

fine sandpaper and the slides were slowly immersed in distilled water in an angle of 

about 45°. This treatment led to solubilisation of the PVP40 coating and the 

subsequent release of Formvar®/wax membranes floating on the water surface. 

One side of a glass slide was covered with 665 µl of 1% Bacto water agar 

(supplemented with inhibitor substance or solvent only) and was submersed below 

the floating membrane. The agar-covered slide was carefully pulled out again in a 

45° angle, resulting in the transfer of a Formvar®/wax membrane onto the agar 

surface. Excess water was dabbed off by gently touching the edges of the slide with 

a paper towel. 

Epidermal strips with their adaxial surface up, wax-coated glass slides and 

Formvar®/wax membranes were fixed at the base of a settling tower. Conidia from 

infected barley leaves were blown into the tower using pressurized air to ensure 

their even distribution at a density of approximately 2 x 103 conidia cm-2. Artificial 

surfaces and epidermal strips were kept in a humid atmosphere with wet filter 

paper applied underneath to achieve a relative humidity of at least 90%. The 

samples were incubated in darkness at 20°C. 

 

Inhibitors 

Hydroxyurea (HU) (Sigma Aldrich) was prepared as 1 M stock solution in ddH2O and 

was used to inhibit S-phase at a final concentration of 500 mM for in vitro 

experiments and 100 mM for studies on the host plant surface. Benomyl (Sigma 

Aldrich) was prepared as 17 mM stock solution in Dimethylformamide (DMF) to 

inhibit cytokinesis of nuclei at a final concentration of 170 µM.  Lantrunculin A 

(LatA) (Calbiochem) was prepared as 1 mM stock solution in dimethyl sulfoxide 

(DMSO) to inhibit microtubule polymerization at a working concentration of 50 µM. 

Cycloheximide (Sigma Aldrich) was purchased as 1 mg ml-1 stock solution in DMSO 

and was used at a final concentration of 50 µg ml-1 to inhibit protein biosynthesis. 

The appropriate amount of inhibitor substance was added to the Bacto agar after 

cooling to approximately 50°C. In each experiment an equivalent volume of the 

corresponding solvent was added to the agar as control. 
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Post-incubation processing of artificial surfaces and epidermal strips 

After incubation the Formvar®/wax membranes were carefully re-floated on 

distilled water by submerging the wax membrane agar glass slide stack into water at 

an acute angle of approximately 10° to prevent displacement of conidia. The 

floating Formvar®/wax membranes were then carefully transferred onto positively 

charged glass slides (Menzel Superfrost Plus, Braunschweig, Germany) ensuring the 

firm electrostatic attraction of the membranes.  

Leaf epidermal strips were carefully transferred from the agar onto plastic 

foils. Glass slides and foils with the leaf epidermal strips were flash frozen for 15 

min in a beaker immersed in liquid nitrogen to prevent direct contact of the liquid 

nitrogen with the samples and subsequently lyophilized for 1.5 h at 5 Pa and -52°C 

(Christ Alpha 1-2). Studies on moisture relations in powdery mildews have shown 

that free water is inhibitory to B. graminis germination (Manners & Hossain, 1963; 

Sivapalan 1994). During prepenetration conidia are extremely sensitive towards the 

presence of free water, resulting in burst conidia. Therefore, the lyophilization step 

was a necessary prerequisite for the analysis of number and position of nuclei in B. 

graminis conidia during prepenetration. 

 

DAPI staining 

Lyophilized samples were covered with several droplets of freshly prepared staining 

solution (50 mM Tris/malic acid, pH 5.2; 20 mg ml-1 PVP40; 0.4% TritonX-100 (v/v); 

15% (v/v) Glycerol; 4% formaldehyde (v/v); 0.6 µg ml-1 4′,6-Diamidin-2-phenylindol) 

and were incubated with a coverslip at 4°C for 30 min prior to observation. 

 

Light and epifluorescence microscopy 

Microscopic analysis was performed to determine whether conidia subjected to 

different surfaces and treatments had remained non germinated (ng), had formed a 

primary germ tube only (pgt), a secondary non-swollen germ tube (sgt), a swollen 

secondary germ tube (agt) or a fully differentiated hooked appressorium with 

septum (app). Additionally, position and number of nuclei were recorded for each 

conidium. 250 conidia were observed in at least three independent replications for 

each treatment and time point. In addition, the quality of fungal conidia was 

verified by detecting the loss rate of those apparently damaged or desiccated 

during the inoculation procedure. Only single, well-separated conidia were counted 

to eliminate the possibility of inhibition as a result of crowding. 

Microscopic analysis was performed with an epifluorescence microscope 

(Leica DMR) with excitation and emission wavelength of 355-425 nm and 455 nm, 

respectively. Micrographs were taken using a digital camera (Zeiss AxioCam MRc) 

and processed with AxioVison 4.8 software package. 
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4.4 Results 

4.4.1 Spatiotemporal behaviour of B. graminis nuclei during 
prepenetration 

To investigate the processes of cell and nuclear division during B. graminis 

prepenetration we first analyzed nuclear behaviour on epidermal strips of primary 

barley leaves within a 10 hours period following inoculation (Tab. 1). The 

ungerminated conidia were always uninucleate and the vast majority of the nuclei 

(99%) resided in a more or less central position within the conidium (Fig. 1a). After 

2 h, 90 % of the conidia had germinated by forming a short aseptate primary germ 

tube (Fig. 1b; Tab. 1). In 85% of the germinated conidia the nucleus had moved 

close to the site of primary germ tube emergence (Supplementary Table 1, Fig. 1b). 

After 4 h 70% of the conidia had started to form a non-swollen secondary germ 

tube (Tab. 1; Fig. 1c) and in 90% of the conidia in this stage the nucleus had 

migrated close to the site of secondary germ tube emergence (Supplementary 

Table 1). Five hours post inoculation 58% of the inoculated conidia had 

differentiated a swollen appressorial germ tube (Tab. 1) and 87% of these conidia 

were still uninucleate (Fig. 1d). However, 5.5 h post inoculation already 71% of the 

conidia were in the appressorial germ tube stage (Tab. 1) of which then 41% 

exhibited two separate nuclei close to the site of emergence of the appressorial 

germ tube (Supplementary Table 1, Fig. 1e). Half an hour later, 37% of the conidia 

showed a fully mature appressorium with the typical apical hook and the 

characteristic septum. In each of these conidia one of the daughter nuclei had 

migrated into the newly formed appressorial cell (Fig. 1f; Supplementary Table 1). 

After 7 hours 70% of the inoculated conidia had formed a mature appressorium. 

The frequencies of the distinct fungal developmental stages at 8 and 10 hours after 

inoculation were not recorded, as, according to previous prepenetration studies 

(Hansjakob et al., 2010) a further significant increase in the frequencies of 

differentiated conidia could not be expected. 

 

 

Figure 1 Development, nuclear division and cytokinesis of DAPI-stained Blumeria graminis f.sp. 

hordei conidia during prepenetration on a host plant surface. Conidia were inoculated on abaxial 

barley leaf epidermal strips and incubated for up to six hours post inoculation (hpi). (a) Conidium 

directly after inoculation; (b) emergence of the primary germ tube and migration of the nucleus to 
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the site of pgt emergence (2 hpi); (c) secondary germ tube formation and migration of nucleus to the 

site of sgt emergence (4 hpi); (d) appressorial germ tube formation, showing the nucleus in proximity 

to the site of agt emergence (5 hpi); (e) appressorial germ tube formation and nuclear division in 

proximity to the agt (5.5 hpi); (f) appressorium formation and migration of one nucleus towards the 

apex of the agt and subsequent septum formation (6 hpi). The arrow points to the septum between 

appressorium and conidium.. 

__________________________________________________________________________________ 

 

 

 

Table 1 Development of Blumeria graminis f.sp. hordei conidia on barley wax coated glass slides and 

on epidermal strips 0 – 10 hpi. 
Developmental stage

ng pgt sgt agt app
Substratum

Wax coated
glass slide

Epidermal
strip

Wax coated
glass slide

Epidermal
strip

Wax coated
glass slide

Epidermal
strip

Wax coated
glass slide

Epidermal
strip

Wax coated
glass slide

Epidermal
strip

hpi

Percentage of conidia (± SD)
0 100 100 0 0 0 0 0 0 0 0

2 29 (± 5) 7 (± 3) 70 (± 5) 90 (± 2) 0 3 (± 1) 0 0 0 0

4 19 (± 3) 3 (± 2) 66 (± 2) 21 (± 4) 15 (± 1) 70 (± 6) 0 6 (± 3) 0 0

4.5 12 (± 5) 6 (± 1) 61 (± 5) 15 (± 1) 24 (± 6) 38 (± 5) 3 (± 2) 41 (± 5) 0 0
5 14 (± 3) 5 (± 1) 54 (± 3) 12 (± 2) 21 (± 3) 23 (± 3) 7 (± 2) 58 (± 6) 4 (± 3) 0
5.5 12 (± 3) 6 (± 1) 43 (± 9) 10 (± 3) 32 (± 7) 10 (± 3) 9 (± 3) 71 (± 3) 3 (± 3) 2 (± 3)
6 15 (± 2) 6 (± 2) 55 (± 5) 7 (± 3) 16 (± 5) 6 (± 1) 11 (± 4) 33 (± 2) 4 (± 2) 3 7 (± 2)

6.5 20 (± 2) n/d 51 (± 2) n/d 10 (± 1) n/d 5 (± 2) n/d 14 (± 3) n/d

7 15 (± 4) 7 (± 2) 46 (± 6) 7 (± 2) 19 (± 5) 5 (± 1) 8 (± 3) 8 (± 1) 12 (± 4) 70 (± 3)

8 15 (± 4) n/d 50 (± 6) n/d 10 (± 4) n/d 6 (± 2) n/d 19 (± 7) n/d

10 19 (± 3) n/d 42 (± 9) n/d 9 (± 2) n/d 9 (± 2) n/d 20 (± 9) n/d

 
n/d: not done; ng: non germinated; pgt: primary germ tube only; sgt: non-swollen secondary germ 

tube only; agt: appressorial germ tube; app: fully differentiated appressorium with a septum 

 

On wax-sprayed glass slides (Fig. 2) the development of B. graminis conidia followed 

almost the same time schedule as on leaf epidermal strips even though the overall 

frequencies of germination and differentiation were significantly decreased (Tab. 1). 

On leaf epidermal strips70% of the conidia formed a mature appressorium while 

only 20% reached this developmental stage on the wax sprayed glass slides 

10 hours after inoculation. Generally, the development of conidia on wax coated 

glass slides was slightly retarded and more asynchronous. On epidermal strips the 

formation of secondary germ tubes peaked at 4 hours after inoculation whereas on 

wax-sprayed glass slides the maximum value occurred after 5.5 hours. Likewise, the 

maximum values for appressorium formation (20%) were attained one hour later 

than on epidermal strips. 
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Figure 2 Development, nuclear division and cytokinesis of DAPI-stained Blumeria graminis conidia 

during prepenetration in vitro. Glass slides were sprayed with barley leaf wax extract and incubated 

for up to seven hours post inoculation (hpi). (a) Conidium immediately after inoculation; (b) 

emergence of the primary germ tube and migration of the nucleus to the site of  pgt emergence (2 

hpi); (c) secondary germ tube formation and migration of nucleus to the site of sgt emergence (4 

hpi); (d) appressorial germ tube formation and nuclear division in proximity to the agt (5.5 hpi); (e) 

migration of one nucleus towards the apex of the agt (6 hpi); (f) appressorium formation and 

cytokinesis (7 hpi). The arrow points to the septum between the conidium and appressorium. Scale 

bar represents 25 µm. 

 

 The application of leaf epidermal strips, however, might pose technical 

difficulties in pharmacological studies. For example, in experiments in which conidia 

on the barley epidermis are treated with pharmacological agents from underneath, 

the epidermal cells may alter the chemical in some way or may prevent it from 

coming into contact with the germling (Kinane et al. 2000). In order to circumvent 

such obstacles we developed an improved Formvar®/wax/agar system that resulted 

in substantially increased rates of appressorium formation of up to 70% and 

moreover allowed investigating the effects of water soluble pharmacological agents 

(Fig. 3). Supplementing the underlying water agar with 50 μg ml-1 cycloheximide 

demonstrated that the Formvar®/wax membrane is indeed permeable for solutes, 

as fungal development was strongly affected upon exposure with this potent 

inhibitor of protein biosynthesis. Less than 5% of the conidia showed the formation 

of an appressorium or an appressorial germ tube. The presence of DMSO had no 

significant effects. 
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Figure 3 Development of Blumeria graminis f.sp. hordei conidia on different artificial substrata and 

on epidermal strips after 16 hpi. Prepenetration processes on glass slides covered with Formvar
®
 

resin supplemented with barley leaf wax extract (shaded bars), on Formvar
®
/barley leaf wax 

membranes on 1% water agar as control (black bars), on Formvar
®
/barley leaf wax membranes on 

1% water agar DMSO control (white bars), on Formvar
®
/ barley leaf wax membranes on 1% water 

agar supplemented with 50 µg ml
-1

 cycloheximide solved in DMSO (striated bars) and on epidermal 

strips placed on 0.5% agar (grey bars). Prepenetration developmental stages: ng, non-germinated 

conidium without a germ tube; pgt, germinated conidium with primary germ tube formed; sgt, 

conidium with additionally elongated secondary germ tube; agt, conidium with a swollen elongated 

secondary germ tube; app, fully differentiated conidium with a mature lobed and septated 

appressorium. Values are given as mean ±SD of five independent experiments. Different letters 

within a developmental category indicate significant differences (P < 0.05) determined in a one-way 

ANOVA followed by a Tukey post hoc test. 

 

 

4.4.2 The presence of very-long-chain aldehydes aff ects nuclear 
migration in B. graminis conidia 

Previous investigations have demonstrated that very-long-chain aldehydes 

considerably promote germination and differentiation of B. graminis conidia. In 

order to find out whether the absence of very-long-chain aldehydes would affect 

the early nuclear behaviour, conidia were incubated on Formvar®-coated glass 

slides supplemented with the non-promoting C26-alkane n-hexacosane (Hansjakob 

et al. 2010). 280 On Formvar slides supplemented with very-long-chain aldehyde 

containing barley leaf wax extract or with the C26-aldehyde n-hexacosanal more 

than 80% of the conidia developed a primary germ tube at 2 h post inoculation 

while on Formvar® slides supplemented with n-hexacosane only 24% had formed a 

primary germ tube (Tab. 2; Supplementary Figure 1). Almost 90% of the germinated 

conidia on aldehyde containing surfaces showed the migration of the nucleus from 

a central position close to the site of primary germ tube emergence, whereas only 

20% of the germinated conidia on Formvar®/n-hexacosane slides showed this 

migration (Tab. 3; Supplementary Figure 1). The nuclei of all conidia that were non-

germinated at 2 h post inoculation on Formvar®/n-hexacosane slides occupied a 
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rather central position in the conidium, whereas around 15% of the nuclei of non-

germinated conidia on very-long-chain aldehyde containing surfaces had a position 

close to one of the conidial poles (Tab. 3; Supplementary Figure 1). At 16 h post 

inoculation only 7% of the conidia on n-hexacosane were differentiated while more 

than 80% showed the formation of an appressorial germ tube or of an 

appressorium on very-long-chain aldehyde containing surfaces (Supplementary 

Table 4). However, the appressorium bearing conidia on n-hexacosane exhibited the 

same nuclear positioning as in presence of very-long-chain aldehydes 

(Supplementary Table 5). Thus, absence of very-long-chain aldehydes results in a 

modified fungal behaviour in the first two hours after inoculation. 

 

Table 2 Development of Blumeria graminis f.sp. hordei conidia on Formvar®-coated glass slides 

supplemented with extracted barley leaf wax or wax constituents at 2 h post inoculation. 

Developmental stage 

ng pgt sgt agt app Substratum 

Percentage of conidia (± SD)  

Barley leaf wax 16 (± 1) 84 (± 1) 0 0 0 

2% (n/n) n-hexacosanal 17 (± 2) 83 (± 2) 0 0 0 

N-hexacosane 76 (± 4) 24 (± 4) 0 0 0 

  

ng: non germinated; pgt: primary germ tube only; sgt: non-swollen secondary germ tube only; agt: 

appressorial germ tube; app: fully differentiated appressorium with a septum 

 

Table 3 Positions of nuclei in conidia of the corresponding developmental stages on Formvar
®
 coated 

glass slides supplemented with barley leaf wax or wax constituents at 2 h post inoculation. (Data are 

given in %). 

Developmental stage 

ng pgt 

Position of nuclei Substratum 

    

Barley leaf wax extract 87 13 89 11 

2% (n/n) n-hexacosanal 85 15 87 13 

N-hexacosane 100 0 20 80 

  

ng: non germinated; pgt: primary germ tube only 
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4.4.3 Spatial uncoupling of nuclear division and cy tokinesis 

On native and artificial surfaces nuclear division always occurred in the primordial 

conidium close to the site of secondary germ tube emergence, 5 to 6 h after 

inoculation (Figs. 1 and 2). Within the following 30 to 60 min one of the two 

resulting daughter nuclei moved towards the swollen hyphal tip of the appressorial 

germ tube, while the other remained within the primordial conidium. The 

subsequent cytokinesis occurred within the proximal third of the appressorial germ 

tube approximately at the midpoint between the two daughter nuclei, 6 to 7 h after 

inoculation. Hence, during appressorium differentiation, nuclear division and 

cytokinesis were spatially separated and the transit of the nucleus to the tip of the 

appressorial germ tube always preceded cytokinesis and appressorium maturation. 

 

4.4.4 Cell cycle and morphogenesis 

The link between cell cycle and morphogenesis was investigated using cell cycle 

inhibitors in combination with the improved Formvar®/wax/agar in vitro system. In 

order to test the possible effect of polar growth prevention on the cell cycle, we 

treated conidia with latrunculin A (LatA), which disrupts actin polymerization 

(Spector et al. 1983). LatA treatment only slightly affected the formation of the 

primary germ tube, but it strongly inhibited the development of the appressorial 

germ tube (Fig 4b). Consequently, 77% of the conidia remained in the uninucleate 

primary germ tube stage, whereas only 7% exhibited nuclear division and formed a 

mature appressorium (Tab. 4). Without LatA, however, 76% of the conidia formed a 

mature appressorium and only 2% remained in the primary germ tube stage. 

 Hydroxyurea (HU), frequently used as a cell cycle inhibitor, causes an 

immediate inhibition of DNA synthesis by acting as a ribonucleotide reductase 

inhibitor without interfering with the synthesis of ribonucleic acid or of protein. HU-

treated conidia formed a primary germ tube and as expected, most of the nuclei did 

not divide, thus indicating that the cell cycle was arrested (Fig. 4d). Despite the lack 

of nuclear division, 80% of the conidia formed an appressorial germ tube that 

reached the same size as developed by untreated conidia (Fig. 4d; Tab. 4). 

Nevertheless, 9% of the conidia passed through nuclear division and differentiated 

an appressorium. Thus, treatment with 500 mM HU widely prevented nuclear 

division in the conidia but had almost no effect on germination and formation of the 

appressorial germ tube. Most of the conidia treated with benomyl, which causes 

disassembly of the microtubule cytoskeleton, thereby arresting the cell cycle in 

mitosis and hence blocking nuclei separation (Bergen and Morris, 1983), also 

formed primary germ tubes and swollen appressorial germ tubes before growth 
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was arrested. 81% of the conidia formed an appressorial germ tube, while only 2% 

exhibited nuclear division and differentiated a septate appressorium (Tab. 4). In 

96% of the conidia in the appressorial germ tube stage only one nucleus was 

observed positioned within the proximal third of the appressorial germ tube 

indicating the inhibition of nuclear separation, but apparently not of nuclear 

migration (Fig.4f; Supplementary Table 2). Thus, inhibition of nuclear division may 

prevent subsequent cytokinesis and formation of mature appressoria. 

 

Table 4 Development of Blumeria graminis f.sp. hordei conidia on Formvar®/wax membranes in 

presence of cell cycle inhibitors at 16 hpi. 

Developmental stage

ng pgt sgt agt appInhibitor

Percentage of conidia (± SD)

LatA 14 (± 7) 77 (± 6) 1 (± 1) 1 (± 1) 7 (± 7)
LatA control 5 (± 2) 2 (± 2) 2 (± 2) 17 (± 7) 76 (± 4)
HU 6 (± 2) 5 (± 4) 4 (± 2) 80 (± 5) 9 (± 2)
HU control 9 (± 3) 3 (± 4) 2 (± 2) 19 (± 5) 69 (± 5)
Benomyl 6 (± 2) 6 (± 2) 5 (± 3) 81 (± 6) 2 (± 3)
Benomyl control 3 (± 2) 3 (± 3) 0 (± 0) 25 (± 9) 69 (± 8)

 

ng: non germinated; pgt: primary germ tube only; sgt: non-swollen secondary germ tube only; agt: 

appressorial germ tube; app: fully differentiated appressorium with a septum 

 

 
 

Figure 4 Effects of cell cycle inhibitors on morphogenesis and nuclear division of Blumeria graminis 

f.sp. hordei conidia in vitro. Formvar®/wax membranes were placed on 1% agar containing the 

respective supplements, inoculated with conidia and then incubated for 16 h. (a) LatA solvent 
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control (DMSO); (b) 50 µM LatA; (c) HU solvent control (H20); (d) 500 mM HU; (e) benomyl solvent 

control (DMF); (f) 170 µM benomyl. Conidia were stained with DAPI. Arrows point to the septum 

between appressorium cells and conidium. Scale bar represents 20 µm. 

____________________________________________________________________ 

 

In vitro, LatA prevented the polarized growth of the appressorial germ tube after 

formation of the primary germ tube (Fig. 4). Hence, as LatA was expected not to 

result in the formation of infection structures, it was omitted from the subsequent 

experiments with leaf epidermal strips. However, the results for HU and benomyl 

were further corroborated by experiments using barley leaf epidermal strips placed 

on 0.5% agar supplemented with the respective cell cycle blocker (Fig. 5; Tab. 5). 

Incubation of the conidia on epidermal strips in the presence of only 100 mM HU or 

170 μM benomyl resulted in roughly the same distribution of developmental stage 

frequencies (Tab. 5) as obtained with the Formvar®/wax/agar in vitro system 

(Tab. 4). As expected, the control treatments showed distinctly higher percentages 

of differentiated conidia, while the frequencies of non-germinated conidia 

remained constant throughout the different treatments. In accordance with the 

results from the Formvar®/wax/agar in vitro system, treatments with HU or 

benomyl resulted in prevention of nuclear division and of cytokinesis but not of 

appressorial germ tube formation (Fig. 5; Tab. 5). The presence of DMF or DMSO 

had no effect in these treatments. (Tables 4 and 5). 

 

Table 5 Development of Blumeria graminis f.sp. hordei conidia on epidermal strips in presence of cell 

cycle inhibitors at 16 hpi. 

Developmental stage

ng pgt sgt agt appInhibitor

Percentage of conidia (± SD)

HU 6 (± 4) 4 (± 1) 2 (± 2) 80 (± 8) 10 (± 8)
HU control 6 (± 3) 4 (± 2) 3 (± 2) 5 (± 3) 84 (± 6)
Benomyl 7 (± 2) 7 (± 5) 7 (± 0) 86 (± 6) 0
Benomyl control 8 (± 1) 5 (± 2) 2 (± 2) 4 (± 2) 84 (± 3)

 

ng: non germinated; pgt: primary germ tube only; sgt: non-swollen secondary germ tube only; agt: 

appressorial germ tube; app: fully differentiated appressorium with a septum 
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Figure 5 Effects of cell cycle inhibitors on morphogenesis and nuclear division of Blumeria graminis 

f.sp. hordei conidia stained with DAPI on a host plant surface. Barley epidermal strips were placed on 

0.5% agar containing the respective supplements, inoculated with conidia and then incubated for 16 

h. (a) HU solvent control (H20); (b) 100 mM HU; (c) benomyl solvent control (DMF); (d) 170 µM 

benomyl. Arrows point to the septum between appressorium cell and conidium. Scale bar represents 

20 µm 

 

 In order to find out whether conidia affected by the applied cell cycle 

inhibitors were still capable of infecting their hosts, we used adaxial epidermal 

strips of barley coleoptiles (Bushnell et al. 1967). In the HU control treatment 83% 

of the inoculated conidia differentiated an appressorial germ tube (agt) or a mature 

appressorium (app) at 18 h post inoculation, but only 14% of the conidia formed a 

haustorium (Tab. 6). The benomyl control treatment exhibited 70% differentiated 

conidia and 9% formed a haustorium, whereas the application of 25 mM HU or 

170 μM benomyl resulted in a distinct decrease in the number of differentiated 

conidia to 47 and 39%, respectively. The cell cycle inhibitor treatments completely 

inhibited the formation of haustoria in barley coleoptile epidermis cells. 

 

Table 6 Differentiation of Blumeria graminis f.sp. hordei conidia and formation of haustoria on 

adaxial coleoptile epidermal strips in presence of cell cycle inhibitors at 18 h post inoculation. 

Developmental stage 

 Differentiated (agt + app) haustorium Inhibitor 

Percentage of conidia (± SD) 

HU (50 mM) 24 (± 7) 0 

HU (25 mM) 47 (± 9) 0 

HU control 83 (± 5)  14 (± 6) 

Benomyl (170 µM) 39 (± 8) 0 

Benomyl control  70 (± 4) 9 (± 5) 

  

agt: appressorial germ tube; app: fully differentiated appressorium with a septum 
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4.5 Discussion 

In many plant pathogenic fungi, the capability to cause disease relies on the ability 

to elaborate specialized infection structures that enable direct penetration of the 

plant cuticle (Tucker and Talbot, 2001). The coordination of cell cycle progression 

and morphogenesis during prepenetration is of particular importance for the 

pathogenicity of several hemibiotrophic plant pathogenic fungi (Veneault-Fourrey 

et al. 2006; Nesher et al. 2008; Saunders et al. 2010a, 2010b). However, there is at 

present almost no information available on nuclear division and cytokinesis during 

the prepenetration processes of the obligately biotrophic grass powdery mildew 

fungus B. graminis. Therefore, the present study aimed at investigating the 

spatiotemporal course of events concerning nuclear division and cytokinesis during 

germination and appressorium formation of this agriculturally important cereal 

pathogen. We and others have shown that - among additional factors - the 

presence of very-long-chain aldehydes in the host cuticular wax is of major 

importance for the initiation of conidial germination and efficient differentiation of 

infection structures (Tsuba et al. 2002; Hansjakob et al. 2010; Hansjakob et 

al. 2011). However, how these signals are connected to the developmental biology 

of B. graminis as it undergoes the characteristic morphogenetic transitions to form 

appressoria remains largely unclear.  

One major goal of the present study was to visualize and characterize the 

timing of events regarding nuclear behaviour in germinating and differentiating B. 

graminis conidia. In order to bypass the extreme sensitivity of living grass powdery 

mildew conidia to the presence of free water we developed a nuclear staining 

protocol based on lyophilisation of the conidia and subsequent DAPI staining of the 

nuclei. For the first time this enabled us to follow the nuclear behaviour in 

prepenetration stage B. graminis conidia. Unfortunately, the applied protocol did 

not support a live imaging approach due to its technical specifications. 

Nevertheless, the resulting data clearly show that - on differentiation inducing 

native and artificial surfaces - uninucleate B. graminis conidia germinate and then 

undergo a single round of mitosis, which is completed 5 to 6 h post inoculation 

(Fig. 6).  
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Figure 6 Summarizing model depicting cell cycle and morphogenesis during B. graminis 

prepenetration. Surface signals induce germination of a resting uninucleate conidium. The nucleus 

then migrates from the centre of the conidium towards the site of emergence of the primary germ 

tube (2 h). When the secondary germ tube starts to be formed, the nucleus is relocated in proximity 

to the site of secondary germ tube emergence (4 h). The secondary germ tube swells and develops 

into the appressorial germ tube (5 h), before mitosis occurs in the conidium (5.5 h). After nuclear 

division the appressorium cell further matures and the septum is formed between the two cells (6h). 

LatA treatment prevents emergence of the secondary germ tube and further cell proliferation. HU 

does not prevent emergence and differentiation of the secondary germ tube into the appressorial 

germ tube, but inhibits appressorium formation. Benomyl does not suppress the development of 

appressorial germ tube formation, but prevents maturation of the appressorium.  

 

 

Our results with artificial surfaces lacking very-long-chain aldehydes suggest 

that the nuclear migration during primary germ tube formation, which directs the 

nucleus towards the site of primary germ tube emergence is strongly promoted by 

the presence of very-long-chain aldehydes. Nuclear migration during the 

prepenetration phase is also observed in other pathogenic fungi. Similarly, the 

single nucleus in the conidium of the the entomopathogenic ascomycete 

Metarhizium anisopliae usually moves to a position close to the developing germ 

tube before the first mitotic division (St. Leger et al. 1989). When M. oryzae conidia 

are in contact with a hydrophobic inductive surface a nucleus migrates into the 

developing germ tube where subsequently mitosis occurs (Veneault-Fourrey et al. 

2006). The nuclear migration in B. graminis conidia during primary germ tube 

formation might be a comparatively early and microscopically visible manifestation 

of fungal response(s) to its host indicating the perception of physicochemical 

stimulants triggering or promoting germination and differentiation of infection 
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structures. It, however, remains to be determined, whether this nuclear 

repositioning might indicate a possible re-entry of the conidium into the cell cycle. 

In B. graminis the nuclear division preceding formation of a mature 

appressorium always occurred within the primordial conidium close to the site of 

secondary germ tube emergence and not within the appressorial germ tube as in M. 

oryzae and C. gloeosporioides (Nesher et al. 2008; Saunders et al. 2010b). In B. 

graminis, the movement of a nucleus from the conidium into the appressorial germ 

tube had been briefly mentioned already, however, without referring to the 

previous mitosis (McKeen 1972a). Cytokinesis, marked by the formation of a distinct 

septum in the appressorial germ tube of B. graminis, occurred at the midpoint 

between the daughter nuclei in the proximal third of the appressorial germ tube, 

about one hour later, 6 to 7 h after inoculation. The formation of a septum to 

separate the differentiated appressorium cell from the conidium is likely to be 

essential for the generation of the turgor pressure built up during cuticle 

penetration (Pryce-Jones et al. 1999; Iwamoto et al. 2007). Nuclear separation and 

migration of one daughter nucleus into the swollen appressorial germ tube always 

preceded cytokinesis and hence final differentiation of the appressorium. A similar 

developmental pattern showing a spatial uncoupling of nuclear division and 

cytokinesis was recently demonstrated for appressorium formation in the 

hemibiotrophic plant pathogen M. oryzae (Saunders et al. 2010a, 2010b), whereas 

in the anthracnose fungus C. gloeosporioides nuclear division and cytokinesis were 

shown to be spatially coupled during appressorium formation (Nesher et al. 2008). 

Our results strongly indicate that in B. graminis the site of appressorial septation is 

spatially separated from the previous nuclear division. This feature is not observed 

in hyphae and generative cells of B. graminis (McKeen, 1972b). 

With our improved Formvar®/wax/agar system it was now possible to 

analyse the effects of water-soluble compounds/pharmaceuticals on the 

prepenetration processes of B. graminis, omitting the possible interference with 

enzymatic activities and/or chemical properties of living plant tissue. This improved 

in vitro system resulted in even higher frequencies of fully differentiated conidia 

than reported for a comparable system based on differentiation inducing cellulose 

membranes (Kobayashi et al. 1991; Kinane et al. 2000). Our system even 

approached almost those values recorded for appressorium differentiation on 

epidermal strips and on native barley leaves (Hansjakob et al. 2010). As the primary 

germ tube is supposed to play an important role in water uptake from the host 

during prepenetration (Carver and Bushnell 1983), it is tempting to speculate that 

supporting the Formvar®/wax membrane with a layer of water agar could result in 

an improved water supply to serve the needs of the germlings and hence in more 

vital germlings that more frequently complete the differentiation of infection 

structures. This, however, remains to be demonstrated. 
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In order to investigate the importance of the cell cycle progression for 

appressorium development, we applied different water soluble cell cycle inhibitors 

to our improved in vitro system: the DNA synthesis inhibitor hydroxyurea (HU) that 

blocks cell cycle in the S-phase (Bachewich et al. 2005), the inhibitor of actin 

polymerization latrunculin A (LatA) that leads to cell cycle arrest at the G2-phase 

(Rupeš et al. 2001), and benomyl that causes disassembly of the microtubule 

cytoskeleton, arresting the cell cycle in mitosis and preventing separation of nuclei 

(Bergen and Morris 1983; Spector et al. 1983; Li and Murray 1991). However, since 

the first contact between conidia and cell cycle inhibitors takes place after 

inoculation onto the Formvar®/wax surface, we cannot simply deduce when the 

pharmaceutical compounds enter the cell and when they start affecting their target 

processes.  

In presence of LatA the largely unimpaired formation of the short primary 

germ tube that emerges potentially prior to the disruption of actin polymerization 

might be due to a delay in the uptake of that compound. The inhibition of the 

subsequent polarized growth of the appressorial germ tube indicates that LatA 

exerts its effects at least after approximately 2 h, while effects of HU and benomyl 

treatment become apparent after about 5 to 5.5 h after inoculation (Fig. 6). After 

addition of HU to germinating conidia of M. oryzae they predominantly arrest 

development with undifferentiated germ tubes, whereas benomyl treatment still 

allows the formation of swollen germ tube tips (Veneault-Fourrey et al. 2006; 

Saunders et al. 2010). In contrast to M. oryzae germ tubes of HU-treated conidia of 

C. gloeosporioides reach the same size as germ tubes of untreated spores and form 

similar numbers of fully developed appressoria (Nesher et al. 2008). In Candida 

albicans, Treatment with HU or with nocodazole, which depolymerizes 

microtubules and locks cells in mitosis, results in cells that continue to elongate 

despite their inability to divide (Bachewich et al. 2005; Berman, 2006). In B. 

graminis, however, HU and benomyl treatment did not result in failure of 

appressorial germ tube formation but in failure to form fully developed appressoria. 

Interestingly, benomyl treatment resulted in migration of the unseparated nuclei 

into the appressorial germ tube to a position where septation would have occurred. 

Incompletely separated daughter nuclei as a result of benomyl treatment have also 

been described for the necrotrophic fungal pathogen Botrytis cinerea (Richmond 

and Phillips, 1975). As benomyl also affects cytoplasmic microtubules the effects on 

morphogenesis may not be directly related to nuclear division, but could be due to 

cytoplasmic events. 

Our results obtained with coleoptile epidermal strips subjected to cell cycle 

inhibitors may suggest that only fully mature B. graminis appressoria are capable of 

host penetration, subsequent haustorium formation and consequently infection. 

However, we generally cannot exclude a possible interference with enzymatic 
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activities and/or specific properties of the coleoptile epidermis cells. In contrast to 

the situation on leaf epidermal strips and on Formvar®/wax membranes the 

percentage of differentiated conidia was distinctly reduced upon exposure to HU or 

benomyl which demonstrates that the type and/or condition of underlying tissue 

can modify the fungal response towards these chemical agents. 

 

4.6 Conclusions 

Nuclear migration during formation of the primary germ tube is strongly promoted 

by the presence of very-long-chain aldehydes, which further corroborates the 

germination inducing effect of these stimulants (Zabka et al. 2008). Moreover, we 

conclude that a completed mitosis is not a prerequisite for the formation and 

swelling of the appressorial germ tube, which normally provides the destination for 

one of the daughter nuclei, while appressorium maturation depends on mitosis and 

subsequent cytokinesis. Taken together our results suggest that in B. graminis, like 

in M. oryzae (Veneault-Fourrey et al. 2006), mitosis and subsequent cytokinesis 

serve as preconditions for appressorium maturation, host cuticle penetration and 

thus for pathogenicity. In C. gloeosporioides, however, all stages of pathogenic 

germination, including appressoria formation, are independent of mitosis (Nesher 

et al. 2008). Comparable to early events in M. oryzae one could propose that in 

germinating B. graminis conidia the entry of the cell cycle into S-phase might lead to 

the initiation of appressorial germ tube development, which remains independent 

of mitosis or subsequent cytokinesis (Saunders et al., 2010a, 2010b). Likewise, the 

spatial uncoupling of nuclear division and cytokinesis might be specifically 

associated with the morphogenetic program for appressorium differentiation in B. 

graminis. Interfering with early processes of plant infection appears to be one of 

the most promising means of controlling fungal plant pathogens. For example, 

conditional mutation of the SEPTATION-ASSOCIATED1 (SEP1) gene in M. oryzae 

prevented the rice blast fungus from causing disease. This mutation perturbed the 

spatial regulation of septation and prevented the development of infection-

competent appressoria (Saunders et al., 2010b). In the case of B. graminis a more 

profound understanding of the fungal development during prepenetration might 

prove essential particularly for future studies e.g. focussing on specific 

transcriptional or enzymatic properties of the appressorial cell. Due to presently 

lacking efficient mutagenesis and transformation protocols and its obligate 

biotrophy it remains a challenging task to gain more detailed knowledge and a 

deeper understanding of the processes and events in this crucial stage of barley 

powdery mildew development. 
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Table S2 Positioning of nuclei in conidia of the corresponding developmental stages 16 hpi in presence of 

latrunculin A (LatA), hydroxyurea (HU) and benomyl in vitro. (Data are given in %) 

Inhibitor Developmental 
stage  

Position of 
nuclei LatA HU  benomyl 

 
 

93 
 

72 
 

56 
ng  

  7 28 44 

 
 79 

 
45 

 
57 

pgt  

 
21 55 43 

sgt  

 

100 100 100 

 

 

 

100 

 

100 

 

4 

agt 

 

 

 0  0  96 

app  

 

 100  100  100 

  
ng: non germinated; pgt: primary germ tube only; sgt: non-swollen secondary germ tube only; agt: appressorial 

germ tube; app: fully differentiated appressorium with a septum 
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Table S3 Conditions of nuclei in percent in agt stage conidia 16 hpi in presence of hydroxyurea (HU) 

and benomyl on barley epidermal strips. (Data are given in %) 

 

Inhibitor 
Developmental 

stage Position of nuclei 
HU  benomyl  

 

 100 100 

 

 

n/a 

 

5 agt 

 

 

 n/a   95 

  
n/a not applicable, n/a not applicable; agt: appressorial germ tube 

 

 

 

Table S 4 Development of Blumeria graminis f.sp. hordei conidia on Formvar®-coated glass slides 

supplemented with wax constituents at 16 hpi. 

Developmental stage 

ng pgt sgt agt app Substratum 

Percentage of conidia (± SD)  

Barley leaf wax 9 (± 4) 4 (± 1) 6 (± 2) 52 (± 5) 29  (± 4) 
2% (n/n) n-hexacosanal 5 (± 2) 4 (± 1) 4 (± 1) 50 (± 6) 37 (±  6) 
N-hexacosane 66 (± 3) 21 (± 4) 6 (± 3) 4 (± 1) 3 (± 1) 
  

 

ng: non germinated; pgt: primary germ tube only; sgt: non-swollen secondary germ tube only; agt: 

appressorial germ tube; app: fully differentiated appressorium with a septum 
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ng: non germinated; pgt: primary germ tube only; sgt: non-swollen secondary germ tube only; agt: 

appressorial germ tube; app: fully differentiated appressorium with a septum 

 



Chapter 4 

 

81 

 
 

Figure S1 Effects of different substrata on morphogenesis and nuclear division of Blumeria graminis 

f.sp. hordei conidia stained with DAPI in vitro. Glass slides were coated with Formvar® resin 

supplemented with inducing and non-inducing cuticular wax constituents. (a) Fully differentiated 

conidium on 2% (n/n) n-hexacosanal and (b) non-germinated conidium on n-hexacosane at 16 hpi; 

conidia with primary germ tubes at 2hpi on (c) 2% (n/n) n-hexacosanal and (d) on n-hexacosane. 

Arrow points to the septum between appressorium cell and conidium. Scale bar represents 20 µm. 
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5 Surface dependent gene expression of barley 

powdery mildew fungus Blumeria graminis f.sp. 

hordei during the prepenetration processes 

 

 

5.1 Introduction 

Blumeria graminis f.sp. hordei is an obligate biotrophic plant pathogen that causes 

powdery mildew disease on barley and requires a living host to complete its life 

cycle (Bélanger, 2002). After landing on the host plant the asexual conidia follow a 

highly ordered synchronous morphogenetic development (Edwards, 2002; Green et 

al., 2002). Immediately after contact with the plant surface a primary germ tube is 

formed that attaches to the surface and penetrates only the cuticle (Yamaoka et al., 

2006). Later a secondary germ tube emerges, which elongates and forms a swollen 

and hooked appressorium. Underneath the appressorium, a penetration peg is 

formed that breaks the cuticle and the plant cell wall by enzymatic activities in 

combination with high turgor pressure (Francis et al., 1996; Pryce-Jones et al., 

1999).  

 Host cuticular waxes have the capabilities to induce germination and 

differentiation of B. graminis conidia (Tsuba et al., 2002; Zabka et al., 2008; 

Ringelmann et al., 2009). In vitro very-long-chain aldehydes with chain lengths 

between C22 to C30 were able to promote conidia germination and differentiation in 

a dose and chain-length dependent manner (Chapter 2). In vivo, the absence of 

very-long-chain aldehydes in the cuticular wax strongly impedes germination and 

differentiation of B. graminis conidia (Chapter 3). Additionally, cutin monomers and 

cellulose films stimulated the differentiation process in a host free artificial system 

(Kobayashi et al., 1991; Francis et al., 1996). The initiation of the morphogenetic 

development is a highly ordered sequence and a crucial step in the fate of the 

conidium, which is accompanied by changes in cellular metabolism (Both et al., 

2005ab). Early germination and differentiation of B. graminis conidia are regulated 

by cAMP dependent protein kinase A (PKA) signalling pathway, which responds to 

plant derived surface properties (Hall et al., 1999; Hall & Gurr, 2000; Kinane et al., 

2000). Several studies with B.graminis on the transcriptional level were performed 

in order to trace metabolic changes during the life cycle and the expression of 

virulence determinants using SAGE (serial analysis of gene expression) or cDNA 

microarrays. (Thomas et al., 2001; Thomas et al., 2002; Grell et al., 2003; Both et al, 

2005ab). These experimental approaches are suitable for studying global gene 
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expression profiles and do not necessarily consider low expressed genes. 

B. graminis was sampled at different pre- and postpenetrative developmental 

stages by lifting the fungal conidia or hyphae with cellulose acetate from native leaf 

surfaces (Zhang et al., 2005). So far, no studies were performed that considered 

changes in B. graminis gene expression according to an important signal molecule 

of cuticular wax, such as n-hexacosanal (Chapter 2, 3; Tsuba et al., 2002; Zabka et 

al., 2008; Ringelmann et al., 2009). 

In order to identify transcripts that are upregulated in response to contact 

with inducing cuticular wax constituents, a strategy based on suppression 

subtractive hybridization of cDNA (SSH) was chosen (Diatchenko et al., 1996). The 

SSH approach is a powerful tool to compare two populations of mRNA, whereas low 

and high abundant differentially expressed transcripts are efficiently enriched and 

selectively amplified. The Formvar® resin based in vitro system provides a stable 

experimental platform for generation of two RNA populations of B. graminis conidia 

that were subtracted from each other. The RNA was derived from conidia 

inoculated on a surface coated with the inductive very-long-chain aldehyde n-

hexacosanal and the non-inductive alkane n-hexacosane, respectively. The analysis 

of differentially expressed sequences might identify putative genes, which are 

induced in response to n-hexacosanal and may have a critical role in the 

differentiation of B. graminis conidia. Otherwise, the SSH-based experimental 

approach helps to identify genes, which are involved in perception of plant surface 

properties or those which are involved in intracellular signal transduction pathways. 

Among several candidate clones an upregulated transcript was identified and 

its expression was confirmed by quantitative real time PCR (RT-qPCR). This putative 

novel n-hexacosanal responsive gene was cloned by 3’ and 5’ RACE and showed no 

homologies to genes of known function in fungal development and pathogenicity. 

However, a multitude of related transcripts were identified in EST databases that 

are expressed during all developmental stages. Searching the genome of B. graminis 

f.sp. hordei DH14 revealed a large set of homologous sequences related to the 

aldehyde responsive transcript. These findings probably suggest a unique role of a 

larger set of genes, which are expressed during the pathogenic development of B. 

graminis. 

 

5.2 Material and Methods 

Plant and pathogen material 

Hordeum vulgare L. cv. Bonus (obtained from the Nordic Gene Bank, Alnarp, 

Sweden) was sown in plastic pots (9 cm diameter) filled with standard potting soil 

(Typ ED73; SteuderComp, Schermbeck). The seedlings were kept in growth 
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chambers with 300 µmol photons m-2 s-1 light intensity in a 16 h/8 h light/dark 

period at 22°C/18°C and 70% relative humidity. 

Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal (isolate, CC1 

originally obtained from Tim Carver, Institute of Grassland and Environmental 

Research, Aberystwyth, UK) was propagated on its host barley under the same 

conditions as described above until white powdery pustules developed. One day 

before conidia were required for experiments leaves were shaken to remove older 

conidia so that freshly emerged conidia were available for the experiments. 

 

Coating of glass slides 

Histobond glass slides (Marienfeld, Lauda-Königshofen) were cleaned with 

Deconex® 11 UNIVERSAL detergent (Applichem, Darmstadt), rinsed with deionized 

water, immersed in isopropanol and were finally rinsed again in water. The air dried 

slides were coated using a 0.5% Formvar® resin solution (Polyvinyl formal, CAS 

63450-15-7, Applichem) in chloroform supplemented with 6.8 × 10-4 mol l-1 n-

hexacosane or in combination with 5% (n/n) of n-hexacosanal and were dried over 

night. The Formvar® resin based in vitro system provides highly homogenous 

hydrophobic surfaces with uniform contact angles. The n-hexacosane coated 

surfaces were chosen, since it does not exhibit an inductive effect on the 

differentiation processes of Blumeria graminis, whereas the n-hexacosanal coated 

surface significantly triggers the prepenetration processes of B. graminis 

(Chapter 2). 

 

Kinetics of fungal prepenetration processes 

In order to study the kinetics of conidia germination and differentiation, glass slides 

covered with Formvar®/n-hexacosane or n-hexacosanal were fixed at the base of a 

settling tower. Conidia from infected barley leaves were blown into the tower by 

pressurized air to ensure an even distribution at a density of approximately 20 

conidia mm-2. After seven minutes, one glass slide was transferred into a plastic 

Petri dish with a moist filter paper for each sampling time point and was sealed with 

Parafilm“M”® to maintain a relative humidity of at least 90%. The slides were 

incubated at 20°C in darkness. Of each time point, the developmental stages of 100 

conidia were observed by light microscopy (Leica DMR, Wetzlar). It was determined 

whether the conidia had not germinated (ng), had formed only primary germ tube 

(pgt), a secondary non-swollen germ tube (agt) or a fully differentiated hooked 

appressorium with a septum (app). Only well separated conidia were evaluated to 

exclude possible inhibitory effects due to crowding. The experiments were repeated 

three times independently. 
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RNA isolation 

Adaxial sides of detached leaves of barley (H. vulgare cv. Bonus) or glass slides 

coated with Formvar®/n-hexacosane or n-hexacosanal were inoculated in a settling 

tower with pressurized air at a density of 50 conidia mm-2 to provide enough 

biological material for the subsequent nucleic acid isolation. After allowing the 

conidia to rest for seven minutes, the glass slides or leaves were incubated for 15 

minutes in a sealed glass Petri dish on moist filter paper in darkness at 20°C. After 

incubation the inoculated surfaces were painted with 5% (w/v) cellulose acetate 

(Roth, Karlsruhe) in acetone. The acetone treatment leads to a fast desiccation of 

the conidia and conservation of the nucleic acids (Both et al., 2005). After complete 

evaporation of the solvent the cellulose acetate foils were stripped carefully with 

forceps and were frozen in liquid nitrogen. For each extraction 24 cellulose acetate 

strips were pooled from the same surfaces and stored at -80°C until used. 

 The frozen cellulose acetate strips were carefully ground in liquid nitrogen 

with sea sand (Merck, Darmstadt). After adding 10 ml freshly prepared nucleic acid 

extraction buffer (50 mM Tris/Cl, pH 9; 150 mM NaCl; 5 mM EDTA pH 9; 5% SDS) the 

grinding was continued until the buffer was completely thawed. The suspension 

was transferred to reaction tubes and centrifuged twice for 5 min at full speed 

(5417C, Eppendorf, Hamburg) at room temperature to clear the suspension of 

debris. The supernatant was transferred to fresh reaction tubes and an equivalent 

volume of phenol/chloroform/isoamyl alcohol (Roti PCI, 24:24:1, Roth, Karlsruhe) 

was added. The tubes were carefully inverted for 2 min and the phases were 

separated by centrifugation at full speed at 4°C for 15 min (5415R, Eppendorf, 

Hamburg). The upper phase was recovered, an equivalent volume of chloroform 

isoamyl alcohol (24:1, v/v) was added and the tubes were inverted for 2 min. The 

phases were again separated by centrifugation and the nucleic acids of the 

supernatant were precipitated with 0.1 volumes of 3 M sodium acetate (pH 5.2) and 

2.5 volumes of absolute ethanol (Applichem, Darmstadt) at -20°C over night. The 

precipitate was recovered by centrifugation at full speed (at 4°C) and the pellet was 

washed twice with 80% ethanol. The pellets were dried in the SpeedVac® (Thermo 

Fisher Scientific, Schwerte) for 10 min at 35 mbar and resuspended in 10 µl diethyl 

pyrocarbonate (DEPC) treated double deionized water (ddH2O). The resuspended 

pellets were pooled and the genomic DNA was digested with DNAseI according to 

the manufacturers protocol in the reaction tube (Qiagen, Hilden).  

The total RNA used for the suppression subtractive hybridization was 

purified after the DNAseI digestion with RNeasy® Plant Mini Kit (Qiagen, Hilden) 

according to the manufacturers protocol and was eluted in 15 µl of RNAse free 

ddH2O. The RNA used for quantitative reverse transcription polymerase chain 

reaction (RT-qPCR) was purified with PCI and chloroform/isoamylalcohol and was 
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recovered after the DNAseI digestion with 3 M sodium acetate and ethanol as 

described above. The pellets were resuspended in 12 µl DEPC treated ddH2O. 

 

RNA quality control 

The concentrations of total RNA in the preparations were determined with a 

Nanodrop spectral photometer (Peqlab, Erlangen). The integrity of RNA used for 

SSH library construction was confirmed with the ExperionTM system (BioRad, 

München) according to the manufacturers protocol (Figure 1).  

The integrity of total RNA used as template for the quantitative reverse 

transcription polymerase chain reaction (RT-qPCR) was confirmed by denaturing 

agarose gel electrophoresis. For one gel of 100 ml 1.7% (w/v) of agarose (Peq Gold 

Universal agarose; Peqlab, Erlangen) was boiled in deionized water and diluted with 

10 x MOPS buffer (0.4 M 3-[N-morpholino] propanesulfonic acid; 0.1 M sodium 

acetate; 10 mM EDTA, pH 7.0) and 7% (v/v) formaldehyde (Applichem, Darmstadt). 

One µl total RNA was diluted with 5 µl DEPC treated ddH2O and 5 µl RNA loading 

buffer (Crystal 2x RNA loading buffer with ethidium bromide; Bioline, Luckenwalde). 

Samples were denatured in a thermoblock for 5 min at 65°C and chilled on ice for 

5 min. The electrophoresis was performed in 1 x MOPS buffer at 120 volts for 30 

min. The gel was visualized and documented in a GelDoc EQ station in combination 

with Quantity One 1-D analysis software (Biorad, München). 

 

1 2 3 4 5 6M

6000

4000
3000
2000
1500
1000

500

200

50

bp

 

Figure 1 Experion
TM

 system simulated picture of gel electrophoresis of B. graminis total RNA used for 

suppression subtractive hybridization. Single RNA preparations were pooled and 500 pg of RNA was 

loaded. Lane (M) Experion
TM

 RNA ladder (Biroad, München), lane (1) and (3) are RNA preparations 

from conidia incubated on n-hexacosanal coated surfaces (548 ng µl
-1

 and 262 ng µl
-1

); lane (2) and 

(4) are RNA preparations from conidia incubated on n-hexacosane coated surfaces (250 ng µl
-1

 and 

263 ng µl
-1

). In lane (5) a positive control was loaded (RNA preparation of Arabidopsis leaves; M. 

Baumann), lane (6) water control. 

 

The mechanism of suppression subtractive hybridization (SSH) 

The first step in the SSH procedure is a full length cDNA synthesis of both RNA 

populations and, subsequently, an endonucleolytic digestion with RsaI. The tester 

cDNA (n-hexacosanal) is divided in two portions and each is ligated with two 
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different cDNA adaptors, which only attaches to the 5’ end of the cDNA, since the 

ends of the adaptors are dephosphorylated. During the first hybridization the driver 

cDNA (n-hexacosane) is added in excess to each adaptor-ligated tester cDNA. The 

DNA strands are denatured by heat and the formation of hybrid molecules is 

possible, when a specific sequence was expressed in the tester and the driver cDNA 

population (Figure 2, molecule type c). Hence, these DNA molecules are not 

available any more for the second hybridization step when both tester portions are 

pooled, whereas the remaining single stranded cDNA sequences with different 

adaptors can form hybrids (Figure 2, molecule type e). Single stranded molecules 

and homodimers with the same adaptors (Figure 2, molecule types a, b, and d) are 

not any more available for hybridization. For further enrichment of tester hybrids 

with different adaptors, freshly denatured driver is added, without prior denaturing 

the previously formed hybrids. After filling in the ends of the adaptors by DNA 

polymerase, the differentially expressed tester hybrids (Figure 2, molecule type e) 

have different primer binding sites on their 5’ and 3’ ends, allowing only an 

exponential amplification of the hybrid molecules during the suppression PCR step. 

For further amplification of hybrid molecules and reduction of background a second 

nested PCR step is performed. For the reverse subtraction, the n-hexacosane cDNA 

is used as tester and the n-hexacosanal cDNA as driver, which enriches sequences 

that were differentially expressed in conidia inoculated on the n-hexacosane 

surface. 

Tester cDNA
+ Adaptor 1

Tester cDNA
+ Adaptor 2R

Driver cDNA
in excess

1. Adaptor ligation

2. First hybridization

3. Second hybridization

4. Fill in the ends

a, d no amplification

bb’ no amplification

c linear amplification

5. Suppression PCR

5’

5’

3’

3’

exponential amplification

a

b

c

d

a

b

c

d

a

b

c

d

e

a

b

c

a, b, c, d

e

+

Fresh driver cDNA

 
 

Figure 2 Mechanism of the suppression subtractive hybridization. For forward subtraction tester 

cDNA is derived from the inductive n-hexacosanal and driver cDNA from the non-inductive n-

hexacosane coated surface. For details see text. 

 



Surface dependent gene expression of barley powdery mildew fungus Blumeria graminis f.sp. hordei during the 
prepenetration processes 

 

88 

Synthesis and amplification of cDNA 

For first strand synthesis, the SMARTTM PCR cDNA synthesis kit (Clontech, Saint-

Germain-en-Laye, France) was used according to the manufacturers protocol, which 

generates a double stranded full length cDNA out of total RNA due to the switching 

mechanism at 5’ end of RNA template (SMART). The Moloney Murine leukemia 

virus reverse transcriptase (MMLV-RT) used for reverse transcription provides a 

terminal transferase activity, which incorporates a stretch of dCTPs at the 5’ end of 

the newly synthesized cDNA strand. These dCTPs overhangs form hybrids with the 

SMARTTM oligonucleotide, which serves as primer for the second strand synthesis. 

 For SMARTTM-cDNA synthesis 1 µg total RNA was adjusted to a total volume 

of 3 µl with DEPC ddH2O. Each 5 µl reaction contained 1 µl of 

3’SMART ORF Primer II A (10 µM), 1 µl of SMART II A oligonucleotide (10 µM) and 

was incubated at 72°C for 2 min (Mastercycler gradient, Eppendorf, Hamburg). After 

the reaction was chilled for 2 min in an ice bath, 2 µl of 5 x first strand buffer, 1 µl 

DTT (20 mM), 1 µl 50 x dNTP mix (10 mM) and 1 µl PowerScriptTM reverse 

transcriptase (TaKaRa Bio, Otsu, Shiga, Japan) were added. The samples were 

incubated at 42°C for 1 h, and filled up to a final volume of 50 µl with TE-buffer (10 

mM Tris/Cl; 1 mM EDTA, pH 7). The reaction was terminated at 72°C for 7 min and 

the SMARTTM cDNA was stored at      -20°C. Prior to amplification of the SMARTTM-

cDNA by long distance PCR (LD-PCR), the appropriate number of cycles for the 

amplification step was determined. The SMARTTM cDNA was diluted 1:10 with 

ddH2O and 3 µl were added to 30 µl of a PCR mastermix [10 x Advantage® 2 PCR 

buffer; 2 µl 50 x dNTP mix (10 mM); 2 µl 5’ PCR-primer II A (12 µM); 2 µl 50 x 

Advantage® 2 Polymerase mix (Clontech Saint-Germain-en-Laye, France)]. The 

reaction was incubated at 95°C for 1 min as initial denaturation, 15-21 cycles at 

95°C for 1 min, 65°C for 30 s and an elongation at 68°C for 6 min. The samples were 

stored on ice and 10 µl of each reaction was separated on a 1% agarose gel 

(Figure 3). According to the gel electrophoresis, 19 cycles were determined as 

optimum, since the reactions were still in the exponential amplification phase, 

whereas with 21 cycles the plateau phase of the PCR reaction was already reached. 

For each cDNA population (n-hexacosanal and n-hexacosane) six reactions, each 

with a total volume of 100 µl, were amplified with the cycle sequence described 

above. 
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M

15 18 21 15 18 21

Cycles

n-hexacosanal n-hexacosane

3000

1000

500

bp
M

3000

1000

500

n-hexacosanal n-hexacosane(a) (b)
bp

1 2 4 5 63 1 2 4 5 63

Reactions  

Figure 3 Long-distance PCR for amplification of SMART
TM

-cDNA. Test PCR for determination of 

optimum cycle number (a) and PCR for amplification of SMART
TM

-cDNA with the optimum 19 cycles 

(b). 

 

RsaI digestion and adaptor ligation 

The LD-PCR products were pooled and purified with the QIAquick PCR-Purification 

Kit (Qiagen, Hilden) according to the manufacturers protocol. The purified PCR-

products were digested with RsaI (25 U, Clontech, Saint-Germain-en-Laye, France), 

43.5 µl LD-PCR product, 5 µl 10 x RsaI restriction buffer at 37°C for 1.5 h. After 

digestion the reactions were pooled to one fraction for each surface. For control 

purposes 5 µl from each reaction step were separated on a 1.5% agarose gel 

(Figure 4). 

 
(a) (b)Pool

after LD-PCR
after

purification RsaI

Pool
after LD-PCR

after
purification RsaIM M

3000

1000

500

3000

1000

500

bp bp

 

Figure 4 Controls of LD-PCR purification and of RsaI endonuclease digestion of cDNA from conidia 

incubated on Formvar®/n-hexacosanal (a) or n-hexacosane (b) coated glass slides. LD-PCR products 

were pooled and purified with QIAquick PCR purification kit. The three purified fractions were again 

pooled and digested with RsaI.  

 

The remaining 145 µl of the RsaI digest were inverted in an equal volume of 

phenol/chloroform/isoamyl alcohol (Roti PCI, 24:24:1, Roth, Karlsruhe) for 2 min. 

After phase separation at full speed for 15 min at 4°C (5415R, Eppendorf, Hamburg), 

the upper phase was purified with an equal volume of chloroform/isoamylalcohol 

(24:1 v/v). The aqueous phase was precipitated with 0.1 volumes of 3 M sodium 

acetate (pH 5.2) and 2.5 volumes of 100% ethanol at -20°C overnight. The 

precipitate was recovered by centrifugation at full speed and 4°C for 20 min (5415R, 



Surface dependent gene expression of barley powdery mildew fungus Blumeria graminis f.sp. hordei during the 
prepenetration processes 

 

90 

Eppendorf, Hamburg), washed twice with 80% ethanol and dried in the vacuum 

centrifuge (10 min, 35 mbar). Finally, the pellet was resuspended in 6 µl ddH2O.  

 The concentration of the RsaI digested double stranded cDNA was adjusted 

to 300 ng µl-1 with ddH2O. For forward and reverse subtraction the following tester 

adapter ligation reactions were set up, whereas the nomenclature of the PCR-

selectTM cDNA subtraction kit user manual (Clontech; Saint-Germain-en-Laye, 

France) was retained. 

Forward subtraction 

Tester 1-1 Tester 1-2 

2 µl RsaI digested cDNA (n-hexacosanal) 2 µl cDNA RsaI digested (n-hexacosanal) 

2 µl Adaptor 1 2 µl Adaptor 2R 

6 µl Mastermix 6 µl Mastermix 

 
Reverse subtraction 

Tester 2-1 Tester 2-2 

2 µl RsaI digested cDNA (n-hexacosane) 2 µl RsaI digested cDNA (n-hexacosane) 

2 µl Adaptor 1 2 µl Adaptor 2R 

6 µl Mastermix 6 µl Mastermix 

 

The Mastermix contained for five reactions 15 µl ddH2O, 10 µl 5 × ligation buffer, 

and 5 µl T4 DNA-Ligase. The reactions were incubated at 16°C in a thermocycler 

(Mastercycler gradient; Eppendorf, Hamburg) over night. The enzyme was heat 

inactivated at 72°C for 5 min and the addition of 1 µl of 20 × EDTA/Glycogen-Mix 

(Clontech; Saint-Germain-en-Laye, France). 

 

Hybridizations and amplification of subtracted cDNA 

In the following two hybridization steps, the driver cDNA was added in excess to 

each adapter ligated tester cDNA.  

 

(a) First hybridization 

For the first hybridizations the following reactions were set up: 

Hybridization H1 H2 

RsaI-digested driver cDNA (n-hexacosane) 1.5 µl 1.5 µl 

Adaptor 1-ligated tester 1-1 1.5 µl - 

Adaptor 2-ligated tester 1-2 - 1.5 µl 

4 × Hybridization buffer 1.0 µl 1.0 µl 

 

Hybridization H3 H4 

RsaI-digested driver cDNA (n-hexacosanal) 1.5 µl 1.5 µl 

Adaptor 1-ligated tester 2-1 1.5 µl - 

Adaptor 2-ligated tester 2-2 - 1.5 µl 

4 × Hybridization buffer 1.0 µl 1.0 µl 

 

The reactions were denatured at 98°C in a thermocycler (Mastercycler gradient; 

Eppendorf, Hamburg) for 1.5 min and incubated for 8 h at 68°C. 
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(b) Second hybridization 

For the second hybridization the samples of the first hybridization reactions were 

mixed (H1+H2 and H3+H4) and freshly denatured driver cDNA was added to enrich 

differentially expressed sequences. One µl driver cDNA and 1 µl of 4 × Hybridization 

buffer were filled up to a final volume of 4 µl with ddH2O. One µl of this mixture was 

covered with mineral oil and denatured at 98°C for 1.5 min. The products of the first 

hybridizations (H2 or H4) were drawn up into a 10 µl pipette tip. Then a small 

amount of air and freshly denatured driver was drawn up. The air bubble in the tip 

prevents mixing of tester and driver before the next step. Then the content of the 

pipette tip was transferred to the first hybridization sample. The reaction was 

incubated at 68°C over night and was terminated by adding 200 µl dilution buffer. 

 

(c) Suppression PCR 

To selectively enrich differentially expressed cDNA sequences, two consecutive PCR 

reactions were necessary. For the suppression PCR 2.5 µl of 10 × Advantage® 2 PCR-

buffer, 0.5 µl dNTPs (10 mM), 1 µl PCR-primer 1 (10 µM), 0.5 µl 50 × Advantage® 2 

polymerase mix (Clontech; Saint-Germain-en-Laye, France) were at first incubated 

in a final volume of 24 µl for 5 min at 75°C in a thermocycler to fill up the adaptors.  

Subsequently the suppression PCR was continued immediately (initial denaturation 

at 94°C for 30 s; 27 cycles 66°C for 30s, 72°C for 1.5 min). 

 The products of the first PCR were diluted 1:10 with ddH2O and the nested-

PCR for amplification of the differentially expressed sequences was performed. For 

the nested PCR 1 µl of diluted suppression PCR product, 2.5 µl 10 x Advantage® 2 

PCR buffer, 0.5 µl dNTPs (10 mM), 1 µl nested PCR primer 1 (10 µM), 1 µl nested 

PCR primer 2R, 50 x Advantage® 2 polymerase mix (Clontech; Saint-Germain-en-

Laye, France) were filled up to 24 µl with ddH2O. The suppression PCR included an 

initial denaturation at 94°C for 30 s followed by 10 cycles at 68°C for 30 s and 72°C 

for 1.5 min. The final products of the suppression and the nested PCR show an 

enrichment of DNA sequences in the range between 500 and 1000 bp (H1 and H3) 

compared to the unsubtracted controls (Figure 5). Additionally the control 

suppression and nested PCR reaction of the PCR-SelectTM cDNA subtraction kit was 

treated analogously. 
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Figure 5 Control of first PCR (suppression PCR) and nested PCR after hybridization steps. Forward 

subtraction (H1), reverse subtraction (H3), unsubtracted forward control (C1), unsubtracted reverse 

control (C2) and control subtraction of SSH kit (Clontech) (K).  

 

Establishment of cDNA libraries 

The nested PCR products were ligated to pGEM®-T Easy (Promega, Madison, WI, 

USA). The ligation reactions (5 µl 2 × rapid ligation buffer, 1 µl PCR product, 1 µl T4 

DNA ligase, 2 µl ddH2O) were incubated for 16 h at 4°C. Escherichia coli JM 109 

highly competent cells (New England Biolabs, Frankfurt a. M.) were thawed on ice 

for 10 min and 2 µl of the ligation reaction was added and incubated for 30 min on 

ice. After a heat shock at 42°C for 45 s the transformation reactions were chilled on 

ice for 5 min. After addition of 900 µl prewarmed (37°C) SOC medium, the cells 

were incubated for 1.5 h at 37°C under shaking at 180 rpm. From 1:10 and 1:100 

dilutions in SOC medium, 100 µl were streaked onto lysogeny broth Isopropyl β-D-1-

thiogalactopyranoside/ampicilline/5-bromo-4-chloro-indolyl-β-D-galactopyranoside 

(LB-IPTG/ampicilline/X-Gal) plates. The plates were incubated over night at 37°C. 

Single colonies were stored in Hogness–Freezing (100 µg ml-1 ampicilline) medium 

at -80°C. 

 

SOC medium (for 100 ml): 2 g Tryptone, 0.5 g Yeast extract, 1 ml 1 M NaCl, 0.25 ml 1M KCl. 

Final volume 97 ml with deionized H2O. After autoclaving (121°C, 20 min) 1 ml of sterile filtered 2 M 

Mg
2+

-solution (MgCl2 · 6 H20 and MgSO4 · 7 H20) and 1 ml sterile filtered 2 M Glucose were added 

and filled up to 100 ml with sterile deionized H2O. 

 

LB-IPTG/ampiclilline/XGal plates (for 1 l): 10 g Tryptone, 5 g Yeast extract 5 g NaCl, 15 g Agar 

After autoclaving (121°C, 20 min) and cooling to approximately 50°C, 100 µg ml
-1

 ampicilline, 0.3 mM 

IPTG and 80 µg ml
-1

 X-Gal were added. 

 

10 × Hogness-Freezing Medium (HFM) (for 100 ml): HFM-solution 1 (80 ml): 62.2 g 87 % (v/v) 

glycerine, 0.5 g sodium citrate dihydrat, 0.9 g (NH4)2SO4, 0.1 g MgSO4 · 7 H2O. HFM-solution 2 

(20 ml): 6.3 g K2HPO4 · 3 H2O, 1.8 g KH2PO4. Final volume 20 ml with deionized H2O. After autoclaving 

(121°C, 20 min) the HFM-solutions 1 and 2 were pooled. For 1 × HFM the 10 × HFM solution was 

diluted with LB-liquid broth.  

 

LB liquid broth (for 1 l): 10 g Tryptone, 0.5 g Yeast extract, 5 g NaCl. After autoclaving (121°C, 20 min) 

and cooling to approximately 50°C, 100 µg ml
-1

 ampicilline were added. 
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Isolation of plasmids and sequencing 

Liquid cultures of E. coli were incubated in LB liquid medium (100 µg ml-1 

ampicilline) at 37°C and 200 rpm for 16 h. The plasmids were isolated with peqGold-

Plasmid-Kit (Peqlab, Erlangen) according to the manufacturers protocol. The 

plasmids were sequenced with the dideoxy nucleotide method according to Sanger 

(1977) using standard sequencing primer SP6 (5’-ATTTAGGTGACACTATAG-3’) or T7 

(5’-TAATACGACTCACTATAGGG-3’) (initial denaturation at 95°C for 5 min, 34 cycles 

of denaturation at 95�C for 1 min, primer annealing at 54°C for 30 s following 

elongation at 72°C for 1.5 min) using an ABI Prism® sequencer. 

 

Agarose gel electrophoresis 

Agarose (Peq Gold Universal agarose; Peqlab, Erlangen) gels were prepared at 1% - 

2% (w/v) concentrations with 0.1 µg ml-1 of ethidumbromide (Applichem, 

Darmstadt) according to the DNA fragment lengths to be separated in Tris-acetate-

EDTA buffer (40 mM Tris-acetate, 1 mM EDTA-Na2, pH 8). The samples were spiked 

with 6 x DNA loading buffer (40% w/v sucrose, 0.25% w/v bromphenol blue). For 

fragment size estimation 5 µg of a standard DNA ladder was loaded (100 bp plus or 

1 kb ladder [Genecraft, Köln], 50 bp O’GeneRulerTM [Fermentas, St. Leon-Rot]). The 

electrophoresis was performed at 90V. Visualisation and documentation were done 

with a GelDoc EQ station in combination with Quantity One 1-D analysis software 

(BioRad, München) 

 

Reverse Northern analysis with digoxigenine labelled SMART
TM

-cDNA 

For screening of differentially expressed sequences, a filter hybridization assay with 

digoxigenine labelled total cDNA, derived from conidia incubated for 22 min on n-

hexacosanal or n-hexacosane coated glass slides was performed. 

 

(a) Synthesis of cDNA probes 

For the labelling reaction 3 µl of the unsubtracted SMARTTM-cDNA, 5 µl 

10 x Biotherm PCR buffer (Genecraft, Köln), 2.5 µl 10 x DIG probe synthesis mix, 

2.5 µl 10 x dNTP mix (Roche, Mannheim), PCR primer II A (Clontech; Saint-Germain-

en-Laye, France) 1 µl BioThermBio™ Taq DNA Polymerase and 35 µl ddH2O were 

incubated in a thermocycler (Mastercycler gradient, Eppendorf) for 2 min at 95°C 

followed by 21 cycles for 30s at 95°C, 20s at 65°C and 6 min at 72°C. 

To equilibrate the n-hexacosanal and n-hexacosane probes, 5 µl were 

separated on a 1.2% (w/v) agarose gel and the relative quantities were determined 

with the Quantity one software suite (BioRad, München). The labelling efficiency 

was determined according to the DIG Application Manual for Filter Hybridization 

(2009) Chapter 3, pp. 23-25. 
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(b) Immobilization of nucleic acids  

The PCR products were transferred with a vacuum dot-blot apparatus onto a 

positively charged nylon membrane (Roche, Mannheim). First the membrane was 

equilibrated in ddH2O for 1 min. Then the membrane and the blotting paper 

(GB 002, Schleicher und Schuell, Dassel) were incubated in 20 x SSC (3 M NaCl, 

300 mM sodium citrate, pH 7.0) for 15 min. Each well of the blotting apparatus was 

rinsed twice with 20 x SSC. Four µl of each PCR product were diluted with 96 µl 

ddH2O and denatured for 10 min at 95°C. The samples were chilled on ice and 

spotted under vacuum in duplicates onto the nylon membrane. The nucleic acids 

were cross-linked with 120 mJ UV-light (Vilber Lourmat, BLX 254; La Vallee Cedeux, 

France). 

 

(c) Hybridization 

The membranes were sealed in hybridization bags (Roche, Mannheim) and 

incubated with 4 ml of Dig Easy Hyb-Buffer (Roche, Mannheim) at 40°C for 2 h in a 

water bath. Four µl of the n-hexacosanal probe and 2.8 µl of the n-hexacosane 

probe were denatured in a total volume of 50 µl in ddH2O at 95° for 10 min and 

chilled immediately in an ice bath for 5 min. The denatured probes were diluted 

with 1 ml of preheated (40°C) Dig Easy Hyb-Buffer and transferred to the bags after 

discarding the prehybridization buffer. The hybridization was carried out over night 

at 40°C. The membranes were washed twice for 10 min in 2 x wash solution 

(2 × SSC, 0.1% SDS) and twice in 0.5 x wash solution at 68°C for 15 min. Prior to 

signal detection the washed membranes were equibrilated in detection buffer 

(0.1 M Tris-HCl; 0.1 M NaCl, pH 9.5) 

 

(d) Detection 

The hybridization signals were detected with a chemiluminescence assay (Roche, 

Mannheim) according to the manufacturers protocol (Dig Application Manual for 

Filter Hybridization (2009), Chapter 4 pp. 115-127; Roche, Mannheim). A complex of 

anti-digoxigenine antibodies and an alkaline phosphatase (anti-digoxigenine-AP; 

Roche, Mannheim) bind to DIG labelled hybridization probes. When the substrate 

Disodium 3-(4-methoxyspiro {1,2-dioxetane-3,2'-(5'-chloro)tricyclo 

[3.3.1.13,7]decan}-4-yl)phenyl phosphate (CSPD) (Roche, Mannheim) was added 

(diluted 1:100 in detection buffer) a chemiluminescence signal is detectable on a 

chemiluminescence film (Roche, Mannheim). The films were developed for 1 min 

(developer diluted 1:5 in ddH2O, Kodak, Stuttgart), rinsed in ddH2O and were finally 

fixed for 1 min in a fixing bath (fixer diluted 1:5 in ddH2O, Kodak, Stuttgart). 

According to the density of the chemiluminescence signal, the exposure time was 

adjusted in order to avoid saturated signal intensities and background signal. 
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Oligonucleotides 

Gene specific primers were designed using Primer3 (version 0.4.0) (Rozen & 

Skaletsky, 2000). Primers used for quantitative reverse transcription PCR were 

designed according to Udvardi et al. (2008) using the following design criteria: Tm 

60 ± 1°C, 40-60% GC content, length 18-25 bp and product length 60-150 bp.  

 

Polymerase chain reaction (PCR) 

The inserts of the plasmids were amplified by PCR prior to immobilization on the 

nylon membrane. A 20 µl reaction contained 5 ng of plasmid, 2.5 µl 10 x reaction 

buffer, 0.5 µl Nested primer 1, 0.5 µl Nested primer 2R; (Clontech, Saint-Germain-

en-Laye, France) 0.15 µl BioTherm™ Taq DNA polymerase (Genecraft, Köln). The 

thermocycler (Mastercycler gradient, Eppendorf, Hamburg) was programmed for 

2 min at 95°C followed by 36 cycles for 15 s at 95°C, 30 s at 66°C, 5 min at 72°C and 

72°C at 5 min. 

 

Quantitative reverse transcription PCR (RT-qPCR) 

The expression patterns of differentially expressed sequences identified by reverse 

Northern blot analysis were confirmed by RT-qPCR. Total RNA was extracted from B. 

graminis conidia inoculated on four different surfaces as described in the section 

“RNA isolation” 22 min after inoculation: glass slides covered with Formvar®/n-

hexacosane, Formvar®/n-hexacosanal, Formvar®/barley leaf wax and from barley 

leaves. For first strand synthesis of cDNA, 5 µg of total RNA in solution were mixed 

with 1 µl oligo(dT)20 primer (50 µM) (Invitrogen, Karlsruhe), 1 µl dNTP mix (10 mM) 

(Genecraft, Köln) and filled up to 20 µl with DEPC treated ddH2O. The mixture was 

incubated at 65°C for 5 minutes in a thermocycler (Mastercycler gradient, 

Eppendorf, Hamburg) and chilled on ice for 1 min. After adding 4 µl 5 x first-strand 

buffer, 1 µl 0.1 M DTT, 1 µl RNaseOUTTM and 1 µl SuperScriptTM III reverse 

transcriptase (Invitrogen, Karlsruhe), the reaction mixture was incubated at 50°C for 

60 min. The enzyme was inactivated at 70°C for 15 min.  

 For a single RT-qPCR reaction, 10 µl KAPATM FAST qPCR MasterMix (2x) 

Universal (Peqlab, Erlangen), 200 nM to 500 nM forward and reverse gene specific 

primer and 19 ng cDNA template were filled up to 20 µl with ddH2O. The reaction 

was incubated in a real-time thermocycler (C1000TM with CFX96TM Real-Time 

System, BioRad, München) with the following program: 3 min at 95°C; 40 cycles: 

10 s at 95°C, 30 s at 60°C.  

 For determination of the primer efficiency 1 µg of cDNA derived from 

conidia inoculated on all tested surfaces were pooled. A RT-qPCR reaction was 

performed with different amounts of template cDNA (20 ng, 10 ng, 2 ng and 0.2 ng) 

in a 20 µl reaction with different primer concentrations (150 nM – 500 nM). 

Additionally a no-template control reaction was performed. A standard curve was 
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generated with BioRadTM CFX Manager Software and the efficiencies were 

calculated. According to Bustin et al. (2009) reactions were optimized for 

efficiencies between 90-110% and R2>0.980. Additionally, a melt curve analysis 

ranging from 60°C to 95°C (increment 0.5°C) and a gelelectrophoretic analysis (2% 

agarose gel) of the PCR products were performed, to ensure a single PCR product 

was amplified. 

 The RT-qPCR experiments were normalized using the histone H3 transcript 

as reference gene, since it is constantly expressed during different developmental 

stages (Both et al. 2005a). All RT-qPCR reactions were performed in three technical 

replicates and were repeated two times biologically to confirm the expression data. 

The expression levels were calculated according to the 2-ΔΔCq
 method (Livak & 

Schmittgen, 2001), whereas the expression levels of the non inductive n-

hexacosane surface were set to 1. The expression levels of the n-hexacosanal 

surface, barley leaf wax surface and barley leaves were calculated as n-fold 

induction of the n-hexacosane expression levels  

 

5’ and 3’ Rapid amplification of cDNA ends 

In order to obtain cDNA from a mRNA template, from which only partially internal 

sequence information was available, a 5’ and 3’ RACE (5’ and 3’ Rapid amplification 

of cDNA ends) was performed (5’/3’ RACE Kit 2nd Generation, Roche, Mannheim). 

The cDNA amplification for 5’ and 3’ RACE was set up with total RNA from conidia 

incubated on Formvar®/n-hexacosanal coated surface for 22 min. For a 20 µl 

5’ RACE reaction 4 µl of cDNA synthesis buffer, 2 µl dNTP mix, 1 µl gene specific 

primer Nes1a (5’-CATCCGTCCAAAATCGAAAT-3’; 12.5 µM), 2 µg total RNA and 1 µl 

Transcriptor reverse transcriptase were used. The reaction was incubated at 50°C 

for 60 min and terminated at 80°C for 5 min. The first strand cDNA was purified 

according to the manufacturers protocol with the High Pure PCR Purification Kit 

(Roche, Mannheim). For the homopolymeric A-tailing reaction, 19 µl of the purified 

cDNA sample, 2.5 µl reaction buffer (10 x), 2.5 µl dATP (2 mM) were incubated at 

94°C for 3 min. After adding of 1 µl terminal transferase (80 U µl-1) the reaction was 

incubated at 37°C for 30 min and terminated at 70°C for 10 min. 

For the first nested PCR, 5 µl of dA-tailed cDNA, 1 µl Oligo dT-anchor primer, 

1.25 µl gene specific primer LIIH1(1)C1_L (5’-CCTGCCCGTCTATCCAAATA-3’; 10 µM), 

1 µl dNTP mix, 1 µl Advantage® 2 polymerase mix (Clontech, Saint-Germain-en-Laye, 

France), 5 µl 10 x Advantage® 2 PCR buffer were filled up to 50 µl with ddH2O. The 

thermocycler program (Mastercycler gradient, Eppendorf, Hamburg) started at 94°C 

for 2 min followed by 10 cycles at 94°C for 15 s, 60°C for 30 s and 68°C for 40 s; 25 

cycles: 94°C for 15 s, 60°C for 30 s and 68°C for 6 min; finally 68°C for 7 min. A 

second nested PCR was set up in a total volume of 50 µl with 1 µl of 1:20 diluted 

first PCR product, 1 µl PCR anchor primer, 1.25 µl gene specific primer Hexar_nes3 
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(5’-TTCACATACTGTGGGCGTGTA-3’; 10 µM), 1 µl dNTP mix, 1 µl Advantage® 2 

polymerase mix (Clontech) and 5 x Advantage® 2 PCR buffer. A touchdown PCR 

from 68°C to 60°C annealing temperature was performed with the following cycling 

conditions: 95°C for 2 min; 5 cycles: 95°C for 30 s and 68°C for 3 min; 5 cycles: 95°C 

for 30 s, 66°C for 30 s and 68°C for 3 min; 5 cycles: 95°C for 30 s, 64°C for 30 s and 

68°C for 3 min; 25 cycles: 95°C for 30 s, 60°C for 30 s, 68°C for 3 min and a final 

elongation step at 70°C for 10 min. 

For the 3’ RACE first strand cDNA synthesis 4 µl cDNA synthesis buffer, 2 µl 

dNTP mix, 1 µl oligo dT-anchor primer, 2 µg total RNA and 1 µl Transcriptor reverse 

transcriptase (Roche, Mannheim) were filled up to 20 µl with DEPC treated ddH2O. 

The reaction was incubated at 55°C for 60 min and terminated at 85°C for 5 min. For 

PCR amplification 1 µl of first strand cDNA, 1 µl PCR anchor primer, 1.25 µl gene 

specific primer LIIH1(1)C1_R (5’-TTGCTGGAAGCAAACTGTTG-3’; 10 µM), 1 µl dNTP 

mix, 1 µl Advantage® 2 Polymerase and 5 µl Advantage® 2 PCR buffer (10 x) were 

filled up to 50 µl. For amplification a touchdown PCR was performed with the 

following cycling conditions: 95°C for 2 min; 5 cycles: 95°C for 30 s and 68°C for 

3 min; 5 cycles: 95°C for 30 s, 66°C for 30 s and 68°C for 3 min; 5 cycles: 95°C for 

30 s, 64°C for 30 s and 68°C for 3 min; 35 cycles: 95°C for 30 s, 60°C for 30 s, 68°C for 

3 min and a final elongation step at 70°C for 10 min. 

 The DNA fragments were gel purified from a 1.2% agarose gel using 

NucleoSpin® Gel and PCR clean up kit (Machery Nagel, Düren) according to the 

manufacturers protocol. The purified PCR fragments were ligated to pGEM®-T 

vector (Promega, Madison, WI, USA) according to the manufacturers instructions. 

Heat competent E. coli NEB 5-alpha (New England Biolabs, Frankfurt a. M.) were 

transformed with the plasmids as described in the section “Establishment of cDNA 

library”. 

 

Sequence analysis 

For identification and trimming of vector sequences, the data retrieved from 

sequencing was analyzed with VecSreen (Altschul et al., 1997) using default 

settings. For determination of putative functional homologies, the sequences were 

subjected to a BLASTN search (database: nucleotide collection [nr/nt]; Zhang et al., 

2000), using the discontiguous megablast program, which is optimized for cross 

species comparisons and a BLASTX search (database: non-redundant protein 

sequences [nr]; Altschul et al., 1997). Additionally a BLASTN search was performed 

in the est_others database to identify homologous expressed sequence tags (ESTs) 

of Blumeria graminis during different developmental stages or growth conditions. 

Hits, which had an expectation value (E-value) larger than 10-10 were rejected. 

The sequences obtained with 5’/3’ RACE procedure were aligned using 

BioEdit (Version 7.0.9.0; Hall, 1999) and ORFs were detected with Vector NTI 
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(Advance version 9.0; Invitrogen, Karlsruhe). BLAST searches within the genome of 

B. graminis f.sp. hordei DH14 were performed using the megablast program of the 

BluGen sequencing project (www.blugen.org; Spanu et al., 2010). 

 Putative ORFs were analyzed with Prosite to identify functional domains 

(Sigrist et al., 2002, 2010) and, additionally, a BLASTP search (search set: non-

redundant protein sequences) was performed to identify putative conserved 

sequences that are functionally annotated (Altschul et al., 1997, 2005). Putative 

signal sequences were identified with SignalP 4.0 (Nielsen et al., 1997; Petersen et 

al., 2011). 

 

5.3 Results 

5.3.1 Kinetics of B. graminis conidia development 

Initially, B. graminis conidia development was determined on n-hexacosanal and n-

hexacosane coated surfaces, since that process is individual for each substrate and 

the incubation conditions. The time point for RNA extraction was determined when 

conidia germination begins but differentiation has not started. For determination of 

the RNA sampling time point, the development of B. graminis conidia was 

determined on glass slides coated with inductive Formvar®/n-hexacosanal and non-

inductive Formvar®/n-hexacosane during a period of 16 hours. On the inductive n-

hexacosanal surface, within 30 min about 40% of the conidia developed a primary 

germ tube (pgt) and after approximately 6.5 h the maximum germination rate of 

90% was achieved (Figure 6a). The first differentiated conidia occurred after 4.5 hpi 

(10% agt). The rate increased to approximately 20% after 8.5 hpi and reached, after 

a second phase of rapid increase (9 hpi), its plateau of 50%. The amount of conidia 

with mature appressoria increased up to about 20% after 10 hpi. In comparison to 

the non-inductive n-hexacosane coated surface, about 10% of the conidia 

developed a primary germ tube after 1 hour, whereas the maximum germination 

rate of 20% was reached after 90 min and did not further increase over the 

observed period of 16 h (Figure 6b). The overall differentiation rate on the n-

hexacosane coated surface was below 10% and the rate of mature appressoria was 

under 2% after 16 hpi. 

Since a significant increase of pgt stage conidia was visible at 30 min after 

inoculation 22 min post inoculation was selected as RNA extraction time point. The 

22 min incubation time was a combination of 7 min in the settling tower, where the 

conidia were descending on the surfaces and 15 min of incubation on the surfaces. 

This procedure allowed the earliest possible sampling time point, at which 

successful surface recognition was assumed, supported by reports of increased 

cAMP levels and PKA activity 15 min after inoculation on an inductive substratum 

(Kinane et al, 2000). 
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Figure 6 Development of Blumeria graminis conidia on Formvar®/n-hexacosanal (a) and Formvar®/n-

hexacosane (b) coated glass slides. Percentage of germinated conidia (filled circles), conidia with 

appressorial germ tubes (open circles) and conidia with mature appressoria (filled triangles). Data 

are given as mean ± SD (n=3). 

 

5.3.2 Library screening for differentially expresse d transcripts by 
reverse Northern blot analysis 

By forward and reverse subtraction, two SSH cDNA clone libraries were constructed. 

The forward cDNA clone library contains transcripts, which were putatively 

differentially expressed in B. graminis conidia in response to contact with the 

inductive Formvar®/n-hexacosanal coated surface and is subsequently referred as 

n-hexacosanal SSH cDNA clone library. The SSH cDNA clone library constructed by 

reverse subtraction harbours transcripts that were differentially expressed in 

conidia in response to contact with Formvar®/n-hexacosane coated glass slides and 

is referred as n-hexacosane SSH cDNA clone library. The n-hexacosanal SSH cDNA 

clone library contained 768 clones, whereas 136 clones were screened by reverse 

Northern blot analysis, which revealed 26 candidate sequences that were 

upregulated more than 2-fold. The n-hexacosane SSH cDNA clone library contained 

576 clones, of which 104 were screened by reverse Northern blot and 21 candidates 

revealed to be upregulated more than 2-fold. The subtraction efficiencies were 21% 

for the n-hexacosanal and 20% for the n-hexacosane SSH cDNA clone library, 

respectively. All candidate clones were sequenced and a BLAST search analysis was 

performed (Table 1 & 2). 

 For clones of the n-hexacosanal SSH cDNA library showing the strongest 

induction in the screening [LibIIH1(1)C1, LibIH1(3)B2 and LibIIH1(1)H6] no 

homologies to functional genes or proteins were found. However, putatively 

homologous sequences for the clones LibIIH1(1)C1 and LibIIH1(3)B2 with highly 

supportive E values and query coverage are expressed 3 dpi and 5 dpi on barley 

leaves in epiphytic mycelium of B. graminis f.sp. hordei DH14. Clones with 

expression levels that were upregulated between 3 and 9-fold may encode putative 
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proteins of unknown function, whereas the sequence of clone LibIIH1(1)C3 might 

code for a pyruvate kinase. The expression levels of clones, which were induced 

about 2-fold, are possibly encoding for hypothetical proteins of unknown function. 

Homologous sequences of the clones LibIIH1(2)G2 and LibII H1(1)C10 were found to 

be expressed in infected barley tissue and in resting B. graminis conidia, 

respectively. 

 Clones of the n-hexacosane SSH cDNA library, which were upregulated 

between 14- and 22-fold showed no homologies to genes and proteins of known 

functions, but putatively homologous sequences were identified to be expressed in 

infected barley, wheat or Lolium multiflorum tissue. The sequences of the clones 

LibIIH2(2)E1 and LibIIH3(1)B8 match upstream a SNGH type hydrolase and are 

expressed on infected Hordeum vulgare leaf epidermis 6 and 24 hours post 

inoculation. The sequence of clone LibIIH3(1)D7 might encode for a putative 

virulence effector and clone LibIIH3(2) might harbour a transcript, which encodes 

for a GTPase activator-protein. 
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Table 1 BLAST search results of sequences from clones of the n-hexacosanal SSH cDNA clone library. 

Clone n-fold induction 1 Homolgy (accession) E value Maximum identity Query coverage BLAST, search set

LibIIH1(1)C1 12 No hits blastn, nr; blastx, nr
3dpi  Blumeria graminis  f. sp. hordei  DH14 cDNA clone 
000000254041_D17 3', mRNA sequence. (GT063810) 3,00E -100 78% 70% blastn, est others

LibIH1(3)B2 12 No hits blastn, nr; blastx, nr
 5dpi Blumeria graminis  f. sp. hordei  DH14 cDNA clone 
000000888650_L19 5', mRNA sequence (GT059371) 4,00E-107 98% 85% blastn, est others

LibIIH1(1)H6 10 Hypothetical protein Botryotinia fuckeliana  (XP_001552234) 5,00E-13 71% 24% blastx, nr

LibIIH1(2)G9 9 Sclerotinia sclerotiorum  1980 hypothetical protein (SS1G_07000) partial mRNA 
(XM_001591504) 1,00E-37 73% 34% blastn, nr
20hpi Blumeria graminis  f. sp. horde i DH14 cDNA clone 000000787942_A15 5', 
mRNA sequence (GT066210) 0 97% 47% blastn, est others

LibIIH1(2)G3 5 No hits blastn, nr, est 
others; blastx

LibIIH1(1)H9 5 hypothetical protein Botryotinia fuckeliana  (XP_001548142) 3,00E-60 67% 92% blastx, nr
Hordeum vulgare  cDNA clone HO10D05 3-PRIME, mRNA sequence 
(CK568491) 1,00E-159 94% 84% blastn, est others

LibIIH1(1)H4 4 Blumeria graminis  bkr1 gene for PKA regulatory subunit (AJ304829) 2,00E-144 97% 86% blastn, nr
Hordeum vulgare  cDNA clone HO22N13 5-PRIME, mRNA sequence 
(DN181946) 5,00E-101 93% 72% blastn, est others

LibIIH1(1)C3 4 Pyruvate kinase Sclerotinia sclerotiorum  1980 (XP_001594760) 7,00E-122 87% 83% blastx, nr
Hordeum vulgare  cDNA clone HO03H11 3-PRIME, mRNA sequence 
(CK566404) 0 100% 86% blastn, est others

LibIH1(3)B11 4 Blumeria graminis  f. sp. tritici clone Bgt_BACs_1f12_12c21; 27091 
bp at 3' side flanking hypothetical protein (HQ4371 60) 8,00E-33 91% 87% blastn, nr
Hordeum vulgare  cDNA clone HO27D01 5-PRIME, mRNA sequence 
(DN180511) 1,00E-29 67% 58% blastn, est others

LibIH1(2)E9 4 No hits blastn, nr, est others; 
blastx

LibIIH1(4)F7 3 No hits blastn, nr, est others; 
blastx

LibIIH1(3)D7 3 Ribosomal protein S3 Phialocephala subalpina (YP_004733050)
6,00E-24 54% 49% blastx, nr

3dpi Blumeria graminis  f. sp. hordei  DH14 cDNA clone 
000048636641_H20 5', mRNA sequence (GT063670) 0 99% 94 % blastn, est others

LibIIH1(3)D6 3 Hypothetical protein Sclerotinia sclerotiorum  1980 (XP_001590999)
3,00E-43 61% 73% blastx, nr

LibIIH1(3)B5 3 No hits blastn, nr, est others; 
blastx

LibIIH1(3)B12 3 Conserved hypothetical protein Talaromyces stipitatus  ATCC 10500 
(XP_002483427) 2,00E-39 54% 60% blastx, nr
5dpi Blumeria graminis  f. sp. hordei  DH14 cDNA clone 000001049568_B1 5', 
mRNA sequence (GT058184) 0 98% 93% blastn, est others

LibIIH1(2)B9 3 No hits
Blumeria graminis  f. sp. hordei  cDNA clone C00736, mRNA sequence 
(AW788827) 6,00E-59 99% 20% blastn, est others

LibIIH1(1)H8 3 No hits blastn, nr, est others; 
blastx

LibIIH1(1)C2 3 No hits blastn, nr, est 
others; blastx

LibIH1(2)E1 3 Chitinase Hypocrea jecorina  (DAA05855) 2,00E-49 69% 63% blastx, nr
Triticum aestivum  cDNA clone wlm96.pk0014.d6 5' end, mRNA sequence 
(CA683292) 1,00E-137 87% 68% blastn, est others

LibIIH1(3)F2 2 tRNA (adenine-N(1)-)-methyltransferase Aspergillus niger  CBS 513.88 
(XP_001389248) 7,00E-33 41% 66% blastx, nr
Cleistothecia Blumeria graminis  f. sp. hordei  DH14 cDNA clone 
000001061105_I6 3', mRNA sequence (GT065953) 7,00E-122 95% 41% blastn, est others

LibIIH1(3)B7 2 hypothetical protein BC1G_07095 Botryotinia fuckeliana  (XP_001554507) 8,00E-71 71% 94% blastx, nr

LibIIH1(2)G2 2 hypothetical protein SMAC_02535 Sordaria macrospora (XP_003352100) 1,00E-32 62% 47% blastx, nr
Hordeum vulgare  cDNA clone HO16L09 3-PRIME, mRNA sequence 
(DN189803) 0 87% 76% blastn, est others

LibIIH1(1)C10 2 60s Acidic ribosomal protein Glomerella graminicola 2,00E-27 75% 63% blastx, nr
Conidia Blumeria graminis  f. sp. hordei  DH14 cDNA clone 000000910913_J9 
5', mRNA sequence (GT061534) 0 97% 89% blastn, est others

LibIH1(3)B9 2 No hits blastn, nr; blastx, nr
Blumeria graminis  f. sp. hordei cDNA clone D01302, mRNA sequence 
(AW792633) 3,00E-171 97% 52% blastn, est others

LibIH1(2)E8 2 No hits blastn, nr; blastx, nr
Appressorium stage EST library of Blumeria graminis  f.sp. hordei mRNA 
sequence (BM361443) 6,00E-104 94% 34% blastn, est others

LibIH1(2)E5 2 hypothetical protein SS1G_08876 Sclerotinia sclerotiorum  1980 
(XP_001590112) 9,00E-117 72% 96% blastx, nr
Hordeum vulgare  cDNA clone HO10J12 5-PRIME, mRNA sequence 
(CD055906) 3,00E-126 92% 45% blastn, est others

 
1
 Induction calculated according to the signal intensities of reverse Northern blot analysis. Clones 

depicted in bold were analyzed by RT-qPCR. 
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Table 2 BLAST search results of sequences from clones of the n-hexacosane SSH cDNA clone library. 

Clone n-fold induction 1 Homolgy (accession) E value Maximum identity Query coverage BLAST, search set

LibIIH3(1)D8 22 Blumeria graminis  genes for ITS1, 5.8S rRNA, ITS2, 28S rRNA, isolate: 
MUMH1722 (AB273555) 7,00E-118 84% 99% blastn, nr
20hpi Blumeria graminis  f. sp. hordei  DH14 cDNA clone 000000787942_N1 5', 
mRNA sequence (GT066191) 5,00E-119 99% 84% blastn, est others

LibIIH3(2)A2 22 hypothetical protein SS1G_14306 Sclerotinia sclerotiorum  1980 
(XP_001584693) 1,00E-92 86% 86% blastx, nr
Triticum aestivum  cDNA clone infected with Blumeria graminis  (CJ955117) 0 87% 88% blastn, est others

LibIIH3(1)G3 18 No hits blastn, nr; blastx, nr
Lolium multiflorum  cDNA clone SL010G03-5, mRNA sequence, Powdery mildew 
infected (AU250362) 2,00E-104 80% 55% blastn, est others

LibIIH3(1)G2 18 No hits blastn, nr; blastx, nr
Blumeria graminis  f. sp. hordei cDNA clone C00458, mRNA sequence 
(AW788454) 4,00E-113 99% 85% blastn, est others

LibIIH3(2)E9 14 hypothetical protein Sclerotinia sclerotiorum  1980 (XP_001588310) 2,00E-30 70% 58% blastx, nr
Blumeria graminis  f. sp. hordei cDNA clone C00065, mRNA sequence 
(AW787904) 4,00E-46 95% 26% blastn, est others

LibIIH3(1)D7 9 Blumeria graminis  f. sp. hordei , putative virulence effector-like mRNA 
(GQ470878) 3,00E-49 75% 60% blastn, nr
Avena barbata  leaf, grown under high rainfall, mRNA (GR329431) 6,00E-51 78% 50% blastn, est others

LibIIH3(1)D5 7 Hypothetical protein FG10871.1 Gibberella zeae  PH-1 (XP_391047) 4,00E-14 34% 67% blastx, nr

LibIIH3(2)E1 5 Blumeria graminis  f. sp. tritici  clone Bgt_BAC_2p10, 684bp upstream SNGH-
hydrolase type esterase (HQ437159) 4,00E-124 86% 95% blastn, nr
Hordeum vulgare  leaf epidermis, 6 and 24 hpi with Blumeria graminis 
(CK567626) 0 97% 95% blastn, est others

LibIIH3(2)G9 4 Blumeria graminis  f. sp. Hordei, ATPase assembly protein 11, trehalose 
phosphate synthase (EU098096) 2,00E-14 84% 41% blastn, nr
3dpi Blumeria graminis  f. sp. hordei  DH14 cDNA clone 000000940014_I11 5', 
mRNA sequence (GT064571) 1,00E-54 99% 62% blastn, est others

LibIIH3(2)A1 3 No hits blastn, nr, est others; 
blastx, nr

LibIIH3(1)D4 3 No hits blastn, nr; blastx, nr
3dpi Blumeria graminis  f. sp. hordei  DH14 cDNA clone 000048636641_G4 5', 
mRNA sequence (GT063798) 2,00E-107 97% 52% blastn, est others

LibIIH3(2)E10 3 No hits blastn, nr, est others; 
blastx, nr

LibIIH3(2)G7 3 GTPase-activator protein for Ras-like GTPase Glomerella graminicola 
(EFQ31703) 4,00E-51 89% 89% blastx, nr

LibIIH3(3)C1 3 No hits blastn, nr; blastx, nr
Blumeria graminis f. sp. hordei cDNA clone C00621, mRNA sequence 
(AW788669) 7,00E-85 98% 70% blastn, est others

LibIIH3(3)C3 3 hypothetical protein Botryotinia fuckeliana  B05.10 (XP_001553189) 5,00E-72 97% 93% blastx, nr
Hordeum vulgare  leaf epidermis, 6 and 24 hpi with Blumeria graminis 
(DN182876) 6,00E-177 94% 91% blastn, est others

LibIIH3(2)A9 2 No hits blastn, nr, est others; 
blastx, nr

LibIIH3(1)G1 2 No hits blastn, nr; blastx, nr
Conidia Blumeria graminis  f. sp. hordei  DH14 cDNA clone 000000910613_B20 
5', mRNA sequence (GT062570) 4,00E-111 99% 42% blastn, est others

LibIIH3(1)G5 2 No hits blastn, nr, est others; 
blastx, nr

LibIIH3(1)B8 2 Blumeria graminis  f. sp. tritici clone Bgt_BAC_2p10,  741 bp upstream SNGH-
hydrolase type esterase 2,00E-116 78% 87% blastn, nr
Hordeum vulgare  leaf epidermis, 6 and 24 hpi with Blumeria graminis 
(CK567626) 0 93% 88% blastn, est others

LibIIH3(1)D11 2 hypothetical protein Sclerotinia sclerotiorum  1980 (XP_001594435) 5,00E-78 82% 64% blastx, nr
Cleistothecia Blumeria graminis  f. sp. hordei  DH14 cDNA clone 
000001036805_M8 5', mRNA sequence (GT065927) 6,00E-155 99% 41% blastn, est others

LibIIH3(1)B6 2 No hits blastn, nr; blastx, nr
Hordeum vulgare  leaf epidermis, 6 and 24 hpi with Blumeria graminis 
(DN183660) 9,00E-62 91% 32% blastn, est others

 
1
 Induction calculated according to the signal intensities of reverse Northern blot analysis. 

 

5.3.3 Confirmation of differentially expressed tran scripts by RT-qPCR 

The expression profiles of ten transcripts identified in the n-hexacosanal SSH cDNA 

clone library were determined for conidia inoculated on barley leaves, on Formvar® 

coated surfaces supplemented with barley leaf wax extract, n-hexacosanal and n-

hexacosane. The sampling time point for the RNA extraction was 22 min after 

inoculation, the same as for the SSH cDNA clone library construction. The PCR-

efficiencies of all designed oligonucleotides ranged between 88% and 112% 

(Table 3). 
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Table 3 Oligonucleotides used for RT-qPCR expression analysis according to selected clones of the n-

hexacosanal SSH cDNA library and reference gene. 

Clone Oligonucleotide name Sequence 5' to 3' Tm (°C)
Amplicon 
length (bp) Efficiency Slope R2

Final 
concentration 
(nM)

LibIIH1(1)C1 LIIH1(1)C1_L CCTGCCCGTCTATCCAAATA 60 61 90% -3.292 1.000 500
LIIH1(1)C1_R TTGCTGGAAGCAAACTGTTG 60

LibIH1(3)B2 LIH1(3)B2_L TGGAAATGTGCATCACGAAT 60 75 99% -3.348 0.994 150
LIH1(3)B2_R TTCAGACTTTCCCAGCGTCT 60

LibIIH1(1)H6 LIIH1(1)H6_L GCGTGAAGCTGTCCGATAAT 60 115 112% -3.049 0.998 150
LIIH1(1)H6_R CACTCTCAAGGGGCTACCAG 60

LibIIH1(2)G3 LIIH1(2)G3_L GTCGATGGAAACTCGCATTC 61 130 104% -3.224 0.996 200
LIIH1(2)G3_R TTTGGTGTCGAGCCATACTG 60

LibIIH1(1)H9 LIIH1(1)H9_L CGCTGTTGATCCTGGTAGGT 60 150 107% -3.148 0.998 150
LIIH1(1)H9_R CCGAATAATAATGGGCATGG 60

LibIH1(3)B11 LIIH1(3)B11_L AGTCGGAGCAACTGCTTGAT 60 146 103% -3.263 0.996 200
LIIH1(3)B11_R CGAATCGAAATCGAGGGTAA 60

LibIIH1(3)D7 LIIH1(3)D7_L CTCAACCCCTGCCTCTTCTT 61 118 98% -3.361 0.999 200
LIIH1(3)D7_R GTTGGCAAGTCAAGCCATCT 60

LibIIH1(3)D6 LIIH1(3)D6_L TGCTTCATCTAGCCTGCTCA 59 119 99% -3.356 1.000 200
LIIH1(3)D6_R TAAAGCAGCAAAGTGCATGG 60

LibIIH1(1)C12 LIIH1(1)C2_L CGCGTGAAGGATGGTTAGTT 60 92 112% -3.052 0.996 200
LIIH1(1)C2_R GCCAGCTATCGTTTCAAAGC 60

LibIH1(2)E5 LI(H1(2)E5_L GAGACTCCGCCTCAAAAGTG 60 68 88% -3.661 0.986 200
LI(H1(2)E5_R TTGAATCGAAACCCAAGGTC 60

Reference gene Oligonucleotide name Sequence 5' to 3' Tm (°C)
Amplicon 
length (bp) Efficiency Slope R2

Final 
concentration 
(nM)

Histone H3 His_f CTCGTCTCACTATTCGAGG 60 110 101% -3.292 1.000 250
His_r TCCGTGTCGTCGTTACTA 60  

 

The relative expression levels from conidia inoculated on inductive surfaces (n-

hexacosanal, barley leaf wax extract and barley leaves) are given as n-fold 

expression of the non-inductive n-hexacosane coated surface (Figure 7). From 

transcripts that showed the highest signal intensities in the reverse Northern blot 

analysis, only one clone was confirmed with a more than 2-fold relative transcript 

abundance in the RT-qPCR. LibIIH1(1)C1 had a 3-fold elevated relative expression on 

the n-hexacosanal surface, compared to the non-inductive n-hexacosane coated 

surface (Figure 7a). The expression levels were also increased on wax coated glass 

slides (30-fold induction) and on barley leaves (25-fold induction). On barley leaf 

wax coated glass slides, the expression levels of LibIIH1(1)H6 (Figure 7c) and 

LibIIH1(2)E5 (Figure 7 j) were 2-fold and 3-fold increased, respectively. However, no 

differences were detected between the n-hexacosanal and n-hexacosane coated 

surfaces. The transcript level of LibIIH1(3)D6 (Figure 7h) was not different between 

the n-hexacosane and n-hexacosanal coated surfaces. Nevertheless, the analysis 

revealed a 13- and 9-fold increase on slides coated with barley leaf wax extract and 

on leaves, respectively. The transcript levels according to six clones (LibIIH1(3)B2, 

LibIIH1(2)G3, LibIIH1(1)H9, LibIIH1(3)B11, LibIIH1(3)D7, LibIIH1(1)C2), which were 

identified in the reverse Northern blot analysis showed no significantly increased 

relative transcript abundances on the n-hexacosanal coated glass slides and the 

other tested inductive surfaces compared to the non-inductive n-hexacosane 

surface (Figure 7b, d, e, f, g, i). 

 Due to the RsaI digest of the cDNA during the SSH cDNA library construction, 

the clones harbour only fragments of the corresponding transcripts. To obtain 

further sequence information of the fragment cloned in LibIIH1(1)C1, which was 

differentially expressed on n-hexacosanal coated glass slides, a 3’ and 5’ RACE 

reaction was performed and the cloned cDNA was named transcript A1. 
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Figure 7 Relative expression levels of selected transcripts identified in the n-hexacosanal SSH cDNA 

clone library. Relative expression levels (2
-ΔΔCq

) were determined by RT-qPCR. Values are given as n-

fold expression of conidia inoculated on Formvar® coated glass slides supplemented with either n-

hexacosanal (Ald), total barley leaf wax extract (Wax) or on barley leaves (Leaf), compared to the 

expression levels on non-inductive Formvar®/n-hexacosane (Hex) coated glass slides. The values are 

given as mean ± SE of three technical replications. The RT-qPCR was repeated twice with 

independent biologically samples with similar results. 
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5.3.4 Cloning of transcript A1 

To obtain a full length cDNA sequence of LibIIH1(1)C1, 5’ and 3’ RACE were 

performed. For the 5’ RACE, gene specific primer Hexar_nes1b, LIIH1(1)C1_L and 

Hexar_nes3 were designed according to the sequence information of LibIIH1(1)C1. 

These primers were used in three consecutive nested PCR reactions in order to 

amplify the full length 5’ end of transcript A1 from total RNA of conidia incubated 

for 22 min on Formvar®/n-hexacosanal coated glass slides. For amplification of the 

full length 3’ end of transcript A1, the gene specific oligonucleotide LibIIH1(1)C1_R 

was used in combination with an oligo(dT) anchor primer. According to the 

overlapping regions of the 5’ and 3’ RACE sequences the cDNA sequence of 

transcript A1 was deduced to have a length of 1495 bp (Figure 8; Appendix Figure 

9-1). The 3’ end of transcript A1 is 100% identical with the 661 bp long sequence 

obtained for LibIIH1(1)C1. 

 The sequence of transcript A1 is highly conserved and was identified in the 

genome of the sequenced B. graminis f.sp. hordei strain DH14 on contig 00320 on 

the minus strand (megablast, E-value 4.59E-124; Appendix Figure 9-2). According to 

the alignment with the genomic sequence of B. graminis f.sp. hordei strain DH14, 

transcript A1 of B. graminis f.sp. hordei strain CC1 has an insertion of 19 bp length 

located between 869 bp and 888 bp (Figure 8). When the cDNA sequence of 

transcript A1 was compared with B. graminis f.sp. hordei DH14 genomic sequence 

information, it does not possess an intron, which has to be confirmed by cloning the 

corresponding genomic sequence of B. graminis f.sp. hordei strain CC1. A BLASTN 

and BLASTX search using transcript A1 as query did not reveal homologous 

sequences that are functionally annotated. In the sequence of transcript A1 four 

putative open reading frames (ORFs) with a start- and stop codon were identified 

and the depicted amino acid sequences were subjected to further analyses in order 

to obtain possible biochemical functions (Figure 9). The BLASTP analysis of all four 

ORFs did not reveal any hits of putative functional proteins (E-value > 1). Further 

analyses with Prosite on the ExPAsy bioinformatics resource portal for identification 

of putative functional regions or domains in the sequences of the four putative 

ORFs did not reveal any hits. The putative proteins also seem not be secreted 

peptides, since SignalP analyses were negative and hydrophobic domains at the N-

terminal site were not identified. 
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Figure 8 cDNA sequence of transcript A1 cloned by 5’ and 3’ RACE from B. graminis f.sp. hordei strain 

CC1. Position of primers and putative open reading frames (ORF) are indicated. The black box 

indicates a 19 bp insertion compared to the genomic sequence of B. graminis f.sp. hordei DH14. 

 

>ORF1 (614-799 bp) 

vsftnlggiilpvpstvkfrntkriglrandpllptnsishhqqgqfwpslnksasttllq 

 

>ORF2 (702-799 bp) 

mirysqliqyltinkdnsgqasislqvqpyfndhssrqvslwpqmactytptvceytpqyvntrpqyvntiagskllrenladeyldrrag 

 

>ORF3 (974-1135 bp) 

vmqtmhtileevifrfldgcgqveqcalhdlvceragdridavmagwcgyvss 

 

>ORF4 (1048-1461 bp) 

mcatrlglrtcrrpyrrrhgwmvrlcivlaglpsrvwiartpiplemrvrrlefgktplhfsrrsytrmtkarsdnqrflnfplvgargggqtiprrqt

ylvvafaneiqsitvsddqgviqyvytslitphsqiae 

 

Figure 9 Amino acid sequences of predicted open reading frames (ORF) in the cDNA of transcript A1. 

 

The amino acid sequences of the four putative ORFs were used as BLAST queries 

searching in the genome of B. graminis f.sp. hordei DH14 and the nucleotide 

database of NCBI (Tables 4 & 5). For ORF 1-3 only one hit was indentified in the 

genome in the same region where transcript A1 was matching to (E value <1.00E-

25). In contrast, for ORF4 110 hits in diverse regions in the genome were identified 

(E value <1.00E-25). The matching regions in the genome are annotated as 

repetitive elements. Additionally, a homologous sequence was identified in the 

genome of B. graminis f.sp. tritici (E value 8.00E-24). Homologous sequences of 

transcript A1 are expressed during all different developmental stages (Table 6 & 7). 

Considering only data of the BluGen sequencing project, sequences related to 

transcript A1 may not be expressed in conidia and 20 hpi, but related transcripts 

appear quite frequently in cleistothecia (E value 1.26E-110), in B.graminis 3 dpi (E 

value 3.60E-111) and in infected epidermis (E value 8.48E-94). However, 

homologous transcripts of A1 were identified in conidia, which were directly 

collected from infected barley (E value <3E-94;Table 7) when the BLAST search was 

performed on the NCBI platform. 
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Table 4 BLAST search results in the genome of B. graminis f.sp. hordei DH14 using the open reading 

frames of transcript A1 as query. 

ORF Hits Contig Annotation E value1 Max Score Total Score BLAST, search set

ORF1 1 hit contig 000320 repetetive 3.83E-29 124 124 tblastn, Bgh DH14 Genome_v3

ORF2 1 hit contig 000320 repetetive 1.54E-33 138 138 tblastn, Bgh DH14 Genome_v3

ORF3 1 hit contig 000320 repetetive 
region

1.00E-25 276 276 tblastn, Bgh DH14 Genome_v3

ORF4 110 hits various contigs repetetive 
region

<1.00E-25 645-206 1162-747 tblastn, Bgh DH14 Genome_v3

 
1
E value cut off >1.00E-25 

 

 

Table 5 BLAST search results on NCBI using the open reading frames (ORF) of transcript A1 as query. 

ORF Accession Description E value1 Maximum identity Qery coverage BLAST, search set

ORF1 - - >1E-10 - - tblastn, nr

ORF2 - - >1E-10 - - tblastn, nr

ORF3 - - >1E-10 - - tblastn, nr

ORF4 HQ437160.1 Blumeria graminis  f. sp. tritici  clone Bgt_BACs 8.00E-24 62% 100% tblastn, nr

 
1
E value cut off >1.00E-10 

 

 

Table 6 ESTs identified by BLAST search in the BluGen sequencing project database using transcript 

A1 as query according to developmental stages. 
Developmental stage BluGen Hit ID of best hit Annotation E value Max Score Total Score BLAST, search set

Cleistothecia 000000761712L09 B.graminis hordeii EST (Cleistothecia library) 1.26E-110 440 440 blastn, ESTs

Conidia no hits blastn, ESTs

20 hpi no hits blastn, ESTs

3 dpi 000001702902F20 B.graminis hordeii  EST (3 dpi library) 3.60E-111 442 442 blastn, ESTs

6 dpi no hits blastn, ESTs

Infected Epidermis 000000837572D11 B.graminis hordeii  EST (Infected barley epidermis library) 8.48E-94 378 378 blastn, ESTs

 
 

 

Table 7 ESTs identified by BLAST search in the NCBI database using A1 as query according to 

developmental stages. 

Developmental stage Accession Description E value Maximum Identity Query Coverage BLAST, search set

Cleistothecia GT065902 Cleistothecia Blumeria graminis  f. sp. hordei DH14 cDNA clone 
000001061805_F23 3', mRNA sequence

1.00E-92 78% 30% blastn, est others

Conidia GT062479 Conidia Blumeria graminis  f. sp. hordei  DH14 cDNA clone 
000000761512_G16 3', mRNA sequence

3.00E-94 78% 30% blastn, est others

3 dpi GT063810 AGENCOURT_103666662 DH14 3dpi Blumeria graminis  f. sp. 
hordei  DH14 cDNA clone 000000254041_D17 3', mRNA 
sequence

1.00E-92 78% 30% blastn, est others

5 dpi GT059401 AGENCOURT_103765786 DH14 5dpi Blumeria graminis  f. sp. 
hordei  DH14 cDNA clone 000001049568_K3 5', mRNA 
sequence

1.00E-91 76% 34% blastn, est others

Infected Epidermis CK565684 HO01C08w HO Hordeum vulgare  cDNA clone HO01C08 3-
PRIME, mRNA sequence

5.00E-84 77% 29% blastn, est others

 

 

5.4 Discussion 

The development of B. graminis conidia and the early differentiation processes have 

been characterized in detail on the morphological and cytological level on inductive 

artificial and native host and non-host surfaces (Chapter 2-4). However, molecular 

biological data about genes, which are induced upon contact with the most 
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inductive wax component, the very-long-chain aldehyde n-hexacosanal, were not 

available until now. Therefore, two SSH cDNA clone libraries were constructed with 

cDNA from conidia that were inoculated on Formvar® resin coated glass slides 

supplemented with the inductive n-hexacosanal or with the non-inductive n-

hexacosane. The n-hexacosanal SSH cDNA clone library comprised 768 clones, from 

which 26 clones were differentially expressed in an initial screening, bearing 

putative n-hexacosanal dependent induced transcripts. The n-hexacosane SSH cDNA 

clone library contained 576 clones and the screening revealed 21 candidate cDNA 

clones. The subtraction efficiencies according to the initial screening were about 

20% for the n-hexacosanal and the n-hexacosane SSH cDNA clone library. The 

subtraction efficiencies range from 5% to 95%, whereas the efficiencies are at lower 

levels, the less differentially expressed sequences exist in both RNA populations 

(Diatchenko et al., 1996, 1998). The candidates of both libraries were sequenced 

and the relative expression levels of ten selected clones of the n-hexacosanal SSH 

cDNA library were confirmed by RT-qPCR on barley leaves and in vitro on Formvar® 

resin coated glass slides supplemented with n-hexacosane, n-hexacosanal or barley 

leaf wax extract 22 min after inoculation. The expression patterns of the n-

hexacosane SSH cDNA clone library were not investigated by RT-qPCR, since the key 

aspect at this stage of the study was the identification of n-hexacosanal dependent 

regulated genes. 

 The time point of the library construction was 22 min after inoculation on n-

hexacosanal coated glass slides, when the early differentiation has not started, but 

an initial surface contact took place. About 15 min after inoculation, prior to a 

visible pgt emergence, B. graminis conidia respond with increased cAMP levels and 

protein kinase A activity, which trigger downstream signal transduction pathways 

during further development (Kinane et al, 2000). On n-hexacosanal coated glass 

slides the first primary germ tubes were visible after 30 min, similar as on barley 

leaves (Both et al., 2005a). The onset for early conidia differentiation on the 

Formvar® in vitro system was after 4-5 hours, when the first appressorial germ 

tubes emerged, which is comparable with the developmental progress on barley 

leaves (Both et al., 2005a). The first fully differentiated B. graminis conidia in the agt 

stage were observed 9-10 hpi, as on barley epidermal strips or barley leaves, where 

all conidia are fully differentiated at this time point (Chapter 4; Both et al., 2005a). 

In general, the obtained overall differentiation rates were lower on the Formvar® 

resin based in vitro systems than on barley leaves as substratum (Chapter 2 & 3). 

Similar differentiation rates of B. graminis conidia were achieved with the Formvar® 

resin based wax membranes on water agar and on barley epidermal strips 

(Chapter 4). However, whether the RNA extraction in comparable quantities and 

quality is possible with this in vitro system still has to be elucidated. 
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 The classification of the sequenced clones according to the BLAST analyses 

was similar in both libraries. About 42% of the clones did not reveal functionally 

putative homologous hits in genomic and proteomic databases and roughly 20% of 

these differentially expressed cDNA sequences were not present in B. graminis EST 

databases, which were constructed during different developmental stages of this 

fungus. Generally, most of the transcripts of the n-hexacosanal (65%) and 

n-hexacosane (66%) SSH cDNA library revealed hits of putatively homologous 

transcripts with high sequence similarities (E value <1.00E-50), expressed during 

different phases of B. graminis asexual life cycle. These sequences might encode for 

essential conserved proteins, which are necessary for establishment and 

perpetuation of the biotrophic lifestyle of B. graminis and are expressed after 

contact with the host surface. About one fifth of the cloned sequences were 

annotated as hypothetical fungal proteins. Transcripts that are assigned to the 

primary metabolism, like glycolysis or the pentose phosphate pathway were very 

rare in the n-hexacosanal SSH cDNA clone library, which indicates an efficient 

subtraction of ubiquitously expressed sequences. The relative expression of 

enzymes, which belong to primary metabolism are initially low expressed in 

ungerminated conidia, increases when the early differentiation of B. graminis 

conidia is completed and peaks between 4 and 8 hpi (Both et al., 2005a). A single 

clone of the n-hexacosanal SSH cDNA library, LibIIH1(1)C3, putatively carries a 

transcript encoding for a glycolytic enzyme assigned as a pyruvate kinase. The 

hybridization signal of the putative pyruvate kinase is 4-fold upregulated on the 

inductive n-hexacosanal coated surface. The expression of pyruvate kinase peaks in 

B. graminis conidia on barley leaves 8 hpi (Both et al., 2005a), but finding this 

transcript in the n-hexacosanal SSH cDNA library might indicate that the increased 

synthesis of specific glycolytic enzymes is induced immediately after contact with 

the inductive very-long-chain aldehyde n-hexacosanal. However, this result has to 

be confirmed by RT-qPCR, but the focus in this study was drawn towards putative 

novel genes, which might show a correlation with the early surface recognition 

process. 

The expression levels of ten out of 21 differentially expressed transcripts of 

the n-hexacosanal SSH cDNA library were monitored by RT-qPCR, where the 

transcript of clone LibIIH1(1)C1 was verified with a 3-fold higher relative transcript 

abundance on n-hexacosanal coated glass slides. The relative expression levels on 

wax coated glass slides and on barley leaves were about 10-fold higher in 

comparison to n-hexacosanal coated slides. Since a dramatically increased 

expression level of LibIIH1(1)C1 occurs on barley leaves and in vitro on barley wax 

extract, it is very likely that an additional compound in the leaf cuticular wax might 

be responsible for this effect. The primary alcohol n-hexacosanol could be 

responsible for this effect, since it was able to significantly enhance conidia 
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germination and differentiation in vitro and is the most prevalent primary alcohol in 

barley cuticular wax (Chapter 2; Zabka et al., 2008). The impact of n-hexacosanol on 

the expression of LibIIH1(1)C1 still has to be elucidated by RT-qPCR. This effect 

could also be a response to unidentified wax constituents or a cumulative effect 

based on the whole wax blend. The surface micromorphology is considered to have 

no impact on the morphogenesis of B. graminis conidia (Carver & Thomas, 1990; 

Rubiales; et al., 2001; Zabka et al., 2008; Ringelmann et al., 2009). However, it 

cannot be excluded that the surface structure and topology has an impact on gene 

expression. The epicuticular wax of barley leaves typically possess crystalline 

platelets. The Formvar®/wax coated slides have also plate like protrusions, even 

though they are larger and less densely distributed than barley wax crystals are. In 

contrast, Formvar®/n-hexacosanal coated slides have a smoother surface with less 

pronounced protrusions. The enhanced humidity or increased water availability on 

barley leaves can be excluded as a stimulating factor, since the relative transcript 

levels on leaves and barley wax extract are generally the same. Nevertheless, the 

water availability might have an impact on the transcription levels at later stages, 

during secondary germ tube swelling and appressorium formation. 

The cDNA was cloned by 5’ and 3’ RACE and named hexacosanal responsive 

transcript A1. Transcript A1 is a 1495 bp long cDNA with four putative open reading 

frames (ORFs). Bioinformatic analyses could not identify possible functional 

homologies according to the cDNA sequence information. However, a homologous 

sequence of ORF4 on transcript A1 was identified in BAC libraries of B. graminis f.sp. 

tritici (E value 8.00E-24). For ORF4 about 110 hits of related sequences were 

identified in the genome of B. graminis f.sp. hordei DH14 (E value <1.00E-25), 

whereas only one hit was found for the other three putative ORFs (E value <1.00E-

25). The corresponding regions in the genome of B. graminis f.sp. hordei DH14 are 

annotated as repetitive elements. More than 64% of the genome of B. graminis is 

annotated as transposable elements (Spanu et al., 2010), but possibly these regions 

do contain genes, which are very specific for B. graminis and encode for proteins 

that are necessary during conidial development. Possibly, transcript A1 is one 

potential transcript of a larger gene family, which is expressed according to 

different developmental stages, external plant derived signals or environmental 

conditions. This idea could explain the finding of a multitude of homologous ESTs at 

all developmental stages in B. graminis EST databases. 

B. graminis is an obligate biotrophic fungus and methods for a stable 

targeted mutagenesis of single genes and appropriate selection markers are not 

available yet. Hence, other experimental strategies were developed, which 

circumvent these limitations. Recently, a novel reverse genetic approach was 

developed, based on the expression of fungal antisense RNA by the host plant, 

which led to decreased transcript abundance in B. graminis (Nowara et al., 2010). 
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Barley and wheat epidermal cells were transformed by biolistic bombardment with 

an RNAi silencing vector carrying an antisense construct in order to reduce the 

overall expression of the fungal effector protein Avr10 (Avirulence 10), which led to 

decreased infestation with B. graminis. Another successfully applied strategy for 

studying the impact of B. graminis genes on pathogenic development was the 

overexpression of B. graminis f.sp. tritici CYP51, encoding a lanosterol 14 α-

demethylase, in the closely related necrotrophic fungus Botrytis cinerea (Yan et al., 

2012). The expression of Bgh CYP51 tagged with GFP was successfully translated 

and the transformants showed a reduced sensitivity towards 14 α-demethylase 

inhibitor based fungicides, suggesting that this heterologus expression system is 

generally suitable for functional studies of B. graminis genes. A further strategy for 

investigating the impact of obligate biotrophic fungi genes is based on the 

complementation of deletion strains, obtained in non-obligate biotrophic fungi with 

the corresponding homologous B. graminis sequence information. The 

Magnaporthe grisea ΔcpkA null mutant is non-pathogenic due to a delayed and 

incomplete appressorium formation (Bindslev et al., 2001). PKA-c encodes for 

subunit of protein kinase A signalling pathway. The differentiation of germinating B. 

graminis conidia relies on PKA dependent signalling cascades. A homologous 

sequence of PKA-c (Bgh Bka1) was identified in an EST library of germinating conidia 

(Hall et al., 1999). The complementation of Magnaporthe grisea ΔcpkA with Bgh 

Bka1 could fully restore the pathogenicity of ΔcpkA Magnaporthe conidia (Bindslev 

et al, 2001), which implicates that functional studies are possible with this 

experimental approach in the case of conserved virulence pathways. In the case of 

transcript A1 an overexpression approach would be eventually the most promising 

strategy to study a putative phenotype, since no homologous genes of transcript A1 

were identified in other fungi. 

Well described specific B. graminis gene families that are expressed in affected 

barley tissue and were associated with pathogenicity are Egh7 and Egh16, from 

which several homologous were identified in the genome of B. graminis (Egh16H) 

(Justesen et al., 1996; Thomas et al., 2002; Grell et al., 2003). The roles of Egh16 are 

not clear, but the expression levels of Egh16H1 and Egh16H4 are upregulated in 

germinating conidia in vitro. These genes also showed a high expression level during 

appressorium and haustorium formation on the host plant, compared to later 

stages, when colony formation was active (Grell et al., 2003). Variants of Egh16 

exist in a variety of pathogenic fungi with necrotrophic, hemi-biotrophic and 

biotrophic lifestyles. In Magnaporthe grisea knock-out mutants of GAS1 and GAS2, 

which are Egh16 orthologous showed reduced penetration and lesion rates (Xue et 

al., 2002). Neither sequences were identified in the n-hexacosanal nor in the n-

hexacosane SSH cDNA library that credit to the expression of Egh16H 22 minutes 

after inoculation. This is in accordance with the finding that Egh16 plays a role 
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during later stages of conidia development and haustorium formation. In contrast 

to a previously constructed SSH cDNA library 4 hpi, where sequences were enriched 

in response to inductive barley leaf wax extract, Egh16H1 and other isoforms were 

identified (Liebrich, 2008). The expression of putative Egh16H1 precursor was 

monitored by semi quantitative RT-PCR over a period of 8 hpi on glass slides 

covered with barley leaf wax extract (Reisberg, 2009). The expression of Egh16H1 

was hardly detectable in conidia of conidiophores and in those that had three 

minutes contact with barley leaf wax in vitro. After 2 h of incubation the expression 

of the putative Egh16H1 was dramatically increased and maintained constant over 

8 hpi. 

 The SSH technique is a fast and efficient method for the identification of 

differentially expressed sequences and any information about the putative 

differentially expressed sequences is not necessary (Diatchenko et al., 1998). An 

essential prerequisite for obtaining a SSH cDNA clone library are several micrograms 

of high quality total or poly(A) RNA from two RNA populations. In the case of 

Blumeria graminis the Formvar® based in vitro system served as an ideal platform 

providing different chemical surface characteristics, for the generation of total RNA 

from conidia in sufficient amounts. The homogeneity of the surface coating, 

reproducible contact angles and layer quantities largely exclude experimental 

variabilities, in contrast to glass slides sprayed with cuticular waxes or single wax 

constituents (Zabka et al., 2008). This system and the presented experimental 

strategy turned out to be a suitable approach for the identification of putative 

genes that are expressed upon contact with n-hexacosanal or other cuticular wax 

constituents or mixtures of them. Pursuing detailed expression kinetics and 

construction of additional SSH cDNA libraries at later developmental stages might 

amend the understanding of surface dependent expressed genes during early 

pathogenesis of B. graminis. 
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6 Summarizing discussion 

6.1 The Formvar ® resin based in vitro system in comparison with 
other in vitro systems and native leaf surfaces 

6.1.1 Contact angles 

The coating of artificial surfaces with lipophilic compounds and total cuticular wax 

mixtures for in vitro bioassays is associated with several technical difficulties. 

Cuticular waxes are usually extracted in organic solvents (Jetter et al., 2006). The 

application of single droplets of a wax extract and the subsequent evaporation of 

the solvent, results in an irregular distribution of the wax compounds and in 

uncoated regions. This leads to variable results in bioassays investigating the 

germination and early developmental processes of phytopathogenic fungi. Coating 

of glass slides with lipophilic constituents and wax extracts for fungal bioassays 

using the Langmuir Schaefer technique results in a single, homogenous layer of 

chemical compounds, at which the polar head groups point to the air when the 

lipophilic compounds are transferred to glass slides (Reisige et al., 2006). However, 

the need of sophisticated technical equipment is disadvantageous for high 

throughput assays. When blends of waxes and single wax compounds dissolved in 

chloroform are sprayed with a glass chromatographic sprayer, distinctly 

reproducible experimental data are obtained (Zabka et al., 2008). Yet, the varying 

amounts deposited on the glass slides made it impossible to clearly distinguish 

between the influence of cuticular wax chemistry, absolute quantity and surface 

hydrophobicity on B. graminis conidia development (Zabka et al., 2008; Ringelmann 

et al., 2009).  

The wettability of leaf surfaces is determined by the chemical constitution, 

the orientation of constituent molecules in the solid state and the surface 

roughness (Holloway, 1970). The wettability of leaf and artificial surfaces is 

measured as contact angle between the surface and the plane of a tangent to the 

surface of a water droplet (Shepherd & Griffiths, 2006). Hydrophilic surfaces 

typically have contact angles ≤ 90°, when the contact angle ranges between > 90° 

and ≤ 120° the surface is termed hydrophobic. Contact angles between > 120° and 

< 180° are typical for superhydrophobic surfaces. The higher the contact angle of a 

surface is the lesser is the wettability. The wettability of surfaces may also be 

influenced by the acidity of carboxylic acids present at the superficial interface 

(Knoll & Schreiber, 1998). 

Spraying glass slides with n–hexacosane exclusively, resulted in contact 

angles of approximately 90° – 110°, whereas the amounts deposited on the glass 

slides varied strongly from 2 – 15 µg cm-2 (Appendix Figure 9-3a). This effect was 
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less pronounced when barley cuticular leaf wax extract, which is a complex mixture 

of lipophilic constituents, was sprayed on the glass slides. The contact angles were 

consistently about 108°, whereas the surface coating was ranging between            

1 – 7 µg cm-2 (Appendix Figure 9-3b). When spraying dilutions of very-long-chain 

aldehydes, which were adjusted to a final concentration of 7 × 10-5 mol l-1 with n-

hexacosane in the range of 0.01% (n/n) to 10% (n/n), it became obvious that the 

contact angle depends on different parameters like quality and quantity of the 

deposited compounds (Appendix Figure 9-4). At concentrations between 

0.01% (n/n) – 0.1% (n/n) the contact angles were below 100° when the surface 

coatings were less than 5 µg cm-2. Increased aldehyde concentrations up to 1% (n/n) 

and 10% (n/n) led to contact angles mainly above 110°, even when the surface 

coatings were below 5 µg cm-2. When the very-long-chain aldehyde n-hexacosanal 

was sprayed on glass slides only, a contact angle above 80° was necessary to 

promote the germination and differentiation processes of B. graminis (Zabka et al., 

2008). This critical contact angle may mainly be attributed to the fact that spraying 

lipophilic constituents on glass slides results in an inhomogeneous or patchy coating 

on the surface, leading to decreased contact angles. An increased absolute amount 

above 1 µg cm-2 deposited on the glass surfaces led to an increased overall surface 

hydrophobicity, which was not further raised by elevated amounts of n-hexacosanol 

or n-hexacosanal (Zabka et al., 2008). When mixtures of very-long-chain aldehydes 

and n-hexacosane were sprayed on glass slides the contact angles remained static 

at surface coatings that were larger than 5 µg cm-2 (Appendix Figure 9-4), which is 

accordance with Zabka et al. (2008). 

To avoid the previously described variabilities in surface quality, a Formvar® 

resin based in vitro system was developed that provides a homogenous layer with 

consistent quantities deposited on a glass surface, and thus highly reproducible 

contact angles. The Formvar® coated surfaces supplemented with barley or wheat 

leaf wax extracts had contact angles in the range between 108° and 110°. This is in 

accordance with the properties of a smooth wax surface that has a contact angle of 

approximately 110° (Holloway, 1970). Glass slides coated with Formvar® containing 

maize leaf wax extracts had slightly decreased contact angles between 91° and 99°. 

It is known that hydrophobic properties of wax layers depend on the chemical 

constitution, which determines the micromorphology (Holloway, 1970). Hence, the 

slight reduction of surface hydrophobicity might be explained by quantitative 

alterations in n-alkanols, alkanes, fatty acids and alkyl esters of maize leaf wax 

compared to that of wheat and barley. The overall contact angles were decreased 

significantly, when glass slides were coated with polar wax constituents solely, such 

as primary alcohols or very-long-chain fatty acids. The addition of different wax 

constituents to the n-hexacosane, like very-long-chain aldehydes, primary alcohols, 
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very-long-chain fatty acids and wax esters up to a molar ratio of 10% did not further 

influence the contact angles. 

Glass slides coated with Formvar® resin in combination with complex 

cuticular waxes or single wax constituents showed a typical surface microstructure. 

When extracted wheat or barley leaf waxes were added to the 0.5% Formvar® resin 

solution, a regular pattern of small protrusions with a plate-like appearance were 

visible on scanning electron micrographs. The protrusions were much less 

pronounced when the slides were coated with Formvar® resin and n-hexacosane or 

with mixtures of n-hexacosane and n-hexacosanal. In vitro primary alcohols form 

horizontally orientated platelets on non-polar surfaces (Koch et al., 2006). Thus, the 

cuticular waxes of barley and wheat may form horizontal platelets on a non-polar 

glass slide by mainly consisting of polar primary alcohols. In contrast, when glass 

slides were coated with a polyvinylpyrrolidone (PVP) layer prior to dipping into the 

Formvar® solution supplemented with extracted barley leaf wax, a layer without 

regularly distributed plate-like shaped protrusions was formed (Appendix Figure 

9-6a). The PVP polymer film provides a more polar substratum for the Formvar® 

coating than glass, since PVP is partially loaded due to the resonance effect 

between the nitrogen and oxygen residue of the functional vinylpyrrolidone moiety 

(Prause, 2003). Hence, here the waxes are embedded into a more polar 

environment compared to the in vitro system consisting of glass and Formvar® resin 

only. This may lead to an altered microstructure due to modified spatial orientation 

of the wax constituents. 

 

6.1.2 Effects on B. graminis conidia 

When B. graminis conidia were allowed to germinate on a thin membranous film of 

Formvar® resin on water agar, the emergence and growth of germ tubes was not 

inhibited (Kobayashi et al., 1991). The same behaviour of B. graminis conidia was 

observed on glass slides coated with a thin Formvar® film only, but 90% of the 

differentiated conidia (agt + app) were desiccated after 16 hours of incubation 

(Chapter 2). Desiccated conidia were not turgid and the surfaces appeared wrinkled 

by visual inspection under the light microscope. The surface hydrophobicity of the 

Formvar® coated glass slides was relatively low (contact angle 70°), which is below 

the critical value reported to be necessary for successful differentiation of B. 

graminis conidia on an inductive surface (Zabka et al., 2008). Likewise, the absence 

of water supply in terms of an agarose block beneath the Formvar® might lead to 

desiccation of the conidia. Additionally, the low surface hydrophobicity of the 

substratum could be disruptive for germ tube growth, since barely leaves usually 

provide a hydrophobic surface (Zabka et al., 2008; Chapter 2). The surface of B. 

graminis conidia itself converts from a hydrophobic to hydrophilic state by release 
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of the conidial exudate during germination and differentiation (Nicholson et al., 

1993). The hydrophilicity of the substratum at the infection site is increased by the 

conidial exudate in order to convert the naturally hydrophobic leaf surface, which is 

considered as an important event for successful conidia maturation (Nicholsen et 

al., 1993). Therefore, after increasing the surface hydrophobicity by addition of 

cuticular waxes or the alkane n-hexacosane to the 0.5% Formvar® solution (contact 

angles > 100°), conidia in the agt and app stage were never desiccated in great 

quantities. This experimental setup finally allowed the establishment of a stable 

bioassay for studying the impact of single wax components and foliar waxes on the 

prepenetration processes of B. graminis. 

 In comparison with native leaf surfaces, glass slides coated with Formvar® 

resin supplemented with barley or wheat leaf wax extracts, showed decreased 

germination and differentiation rates. While on Formvar®/wax coated glass slides 

six times more conidia remained in the appressorial germ tube stage, the amount of 

conidia that formed mature appressoria was four times smaller than on native leaf 

surfaces. The germination and differentiation rates of conidia inoculated on glass 

slides sprayed with barley leaf wax or on Formvar®/barley leaf wax coated glass 

slides did not differ significantly. Advantageously, the amount of desiccated and 

broken conidia was significantly reduced on the Formvar®/wax coated slides. This 

might be a consequence of the uniform coating, even though very low amounts of 

wax was deposited on the surface (0.5 µg cm-2) Hence, the Formvar® resin based 

coating provides highly reproducible surface qualities and thus supplies a reliable 

experimental setup for bioassays compared to the spraying method. The surface 

topology and the physical microstructure are not essential cues and play a minor 

role in the surface recognition process of B. graminis conidia for germination and 

the development of mature infection structures (Carver & Thomas, 1990; Rubiales; 

et al., 2001; Zabka et al., 2008; Ringelmann et al., 2009) With improvements of the 

Formvar® resin based in vitro system further increased appressorium formation 

rates of B. graminis conidia were achieved. A Formvar® membrane containing the 

inducing barley leaf wax in combination with a layer of water agar underneath led 

to appressorium formation rates up to 70%, which was almost as high as on barley 

epidermal strips, where appressorium formation rates of >70% – 80% were 

achieved. In comparison with epidermal strips, the appressorium formation rates of 

B. graminis conidia were larger than 80% on native leaves, 16 h after incubation. 

The appressorium formation rates obtained with the Formvar®/wax 

membrane/agar system were higher than reported for similar setups based on 

inductive cellulose membranes, which might be a consequence of providing 

additionally inducing cuticular waxes (Kobayashi et al., 1991; Kinane et al., 2000). 

The primary germ tube of B. graminis conidia may take up water from the host 

plants apoplast during the prepenetration phase (Carver & Bushnell, 1983). The 
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Formvar®/wax membrane is estimated to be about 200 nm in thickness (Appendix 

Figure 9-6b), possibly thin enough to be penetrated by the primary germ tube, 

which could lead to an improved water supply. The putative increased water uptake 

of B. graminis conidia might be beneficial for the establishment of an increased 

turgor in the appressorium cell, which is a prerequisite for mature appressoria 

(Pryce-Jones et al., 1999). 

The Formvar®/wax membrane system also allows the application of 

hydrophilic compounds or bioactive pharmaceuticals, but without immersion of 

conidia in aqueous solutions. Free water impedes the germination process of B. 

graminis conidia and leads to conidial burst when aqueous solutions are applied 

during the early differentiation stages (Manners & Hossian, 1963; Sivapalan, 1994, 

Bindslev et al., 2001). The advantage of an in vitro system that permits the 

additional application of water soluble compounds makes bioassays possible, which 

exclude possible interferences of the plants metabolism. The integration of 

additional cuticle derived factors could further increase the appressorium formation 

rates of B. graminis conidia in the Formvar® wax membrane/agar system of 

maximal 70%, similarly high as on barley leaves (>80%). This could be achieved by 

supplementing cutin monomers to the wax membrane that were reported to 

induce appressorium formation in vitro and are presumably released by secreted 

cutinases (Francis et al., 1996) or by addition of apoplastic organic compounds like 

carbohydrates. According to the experiments of this study 70% of B. graminis 

conidia differentiation (50% agt + 20% app) is triggered by leaf cuticular waxes. The 

appressorium formation rate is further increased to 60-70% when water is 

available, e.g. from an agarose block or from the leaf. 

 

6.2 The impact of cuticular wax constituents on B. graminis 
prepenetration processes 

6.2.1 Very-long-chain aldehydes in vitro 

Very-long-chain aldehydes are common constituents of epi- and intracuticular 

waxes in many plant species (Post-Beittenmiller, 1996). The chain length 

distributions of very-long-chain aldehydes differed in the analyzed Poaceae species, 

which served as an ideal basis for in vivo and in vitro assays for studying 

prepenetration processes of B. graminis f.sp. hordei and f.sp. tritici. The very-long-

chain aldehyde n-hexacosanal is the most prevalent aldehyde component of 

cuticular barley leaf wax (von Wettstein-Knowles, 1971; Giese, 1976; Baum et al., 

1989; Tsuba et al., 2002), whereas the main aldehyde component of wheat leaf wax 

is n-octacosanal (Tulloch & Hoffmann, 1973; Bianchi et al., 1980). Quantitative 

analyses of barley and wheat leaf waxes revealed a relative amount of very-long-

chain aldehydes of approximately 2%. The absolute amounts of cuticular leaf wax 
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coverage were between 8–11 µg cm-2, which is consistent with previously published 

data (von Wettstein-Knowles, 1971; Bianchi et al., 1980; Zabka et al., 2008). Beside 

n-hexacosanal and n-octacosanal, the cuticular leaf waxes of barley and wheat 

contain n-tetracosanal (C24), n-triacontanal (C30) and n-dotriacontanal (C32). Studies, 

where authors had the theory that very-long-chain aldehydes in general might have 

a substantial impact on the prepenetration processes of B. graminis were previously 

published (Tsuba et al., 2002; Zabka et al., 2008; Ringelmann et al., 2009)  

In order to asses the impact of cuticular aldehydes on the prepenetration 

processes of B. graminis f.sp. hordei, glass slides were covered with a Formvar®/n-

hexacosane mixture, which was spiked with different quantities of single, chemically 

synthesized very-long-chain aldehydes (C22-C30). Thereby, n-hexacosanal (C26) and n-

octacosanal (C28) were most effective in promoting germination and differentiation 

of B. graminis conidia. N-hexacosanal significantly increased the appressorium 

formation rates at a very low concentration of 0.01% (n/n) in the dipping solution. 

Shorter and longer chain aldehydes, like n-docosanal (C22), n-tetracosanal (C24) and 

n-triacontanal (C30) significantly enhanced the appressorium formation rates only at 

concentrations, which were two orders of magnitude higher. The appressorium 

formation rate at 10% (n/n) of n-triacontanal in the dipping solution was 65% 

compared to the value for n-hexacosanal at the same concentration. When pure n-

hexacosanal was offered as substratum in previous in vitro studies, similar 

appressorium formation rates were observed (68%), but a detailed quantification 

was not provided (Tsuba et al., 2002). At concentrations of 10% (n/n) and 1% (n/n) 

of very-long-chain aldehydes in the dipping solutions, the appressorium formation 

rates were increasing in a chain-length dependent manner compared to n-

hexacosanal (C26) according to the following succession: C22<<C24<C26>C28>>C30. 

When the proportions of aldehydes were further decreased in the dipping solutions 

to 0.1% (n/n) and 0.01% (n/n), only n-hexacosanal and n-octacosanal had a 

significant impact on appressoria formation. Lower differentiation rates of B. 

graminis conidia were also observed when n-triacontanal was offered as 

substratum compared to the rates obtained with n-hexacosanal (Tsuba et al., 2002). 

The minimum proportion of very-long-chain aldehydes that has to be 

present in surface waxes, in order to significantly increase in vitro appressoria 

differentiation compared to the control, was determined at 1% (n/n) for the chain 

lengths C22, C24 and C30. The very-long-chain aldehydes n-hexacosanal and n-

octacosanal are already capable to significantly enhance appressoria formation at 

proportions of 0.1% (n/n) in the wax coverage. Only n-hexacosanal is as potent that 

it can induce condida differentiation at proportions of 0.01% (n/n). At proportions 

between 1% (n/n) and 10% (n/n) very-long-chain aldehydes are able to induce 

differentiation rates as they are observed on barley wax extracts, irrespective of 

their chain lengths. This range reflects the amount of very-long-chain aldehydes, as 
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they occur in cuticular waxes on leaves of Poaceae. These findings also apply in the 

same manner to B. graminis f.sp. tritici. 

 

6.2.2 Host-pathogen co-evolution 

The host plants barley and wheat are infested by host-specific formae specialis of B. 

graminis. The waxes of barley and wheat have a species specific very-long-chain 

aldehyde distribution. Hordeum vulgare and Triticum aestivum have diverged from 

their last common ancestor 12 million years ago (Chalupska et al., 2008; SanMiguel 

et al., 2002). A comparative sequence analysis of B. graminis f.sp. hordei and B. 

graminis f.sp. tritici based on conserved non-gene coding regions of two unlinked 

loci revealed that both fungi diverged approximately 10 million years ago, which 

supports the idea of host-pathogen co-evolution (Oberhaensli et al., 2011). To 

asses, whether B. graminis f.sp. hordei and B. graminis f.sp. tritici have adapted to 

the aldehyde spectrum of their corresponding hosts, the germination and 

differentiation inducing capabilities of chemically synthesized very-long-chain 

aldehydes (C22-C30) were also tested for B.graminis f.sp. tritici in vitro. However, the 

most inducing very-long-chain aldehydes were n-hexacosanal (C26) followed by n-

octacosanal for both fungi. Furthermore, the shorter and longer chain aldehydes 

(C22, C24 and C30) were able to enhance germination rates and appressoria formation 

of B. graminis f.sp. tritici conidia in the same concentration and chain-length 

dependent manner, as observed for conidia of B. graminis f.sp. hordei. These 

findings indicate that certain adaptations to specific aldehyde profiles of barley and 

wheat wax as inducing signals during the prepenetration processes is very unlikely. 

These results seem coherent in the light of other phylogenetic analyses of B. 

graminis f.sp. hordei and f.sp. tritici, which do not support a co-evolution between 

the hosts and its powdery mildews. Based on ITS sequence comparisons the 

mildews B. graminis f.sp. hordei and B. graminis f.sp. tritici diverged about 4.6 

million years ago (Inuma et al., 2007). Wyand & Brown (2003) included rye and oat 

powdery mildews in the phylogenetic tree calculation based on rDNA ITS and β-

tubulin genes, suggesting a recent divergence of about 14,000 years for cereal 

mildews, which is too short for a host-pathogen co-evolution. 

 

6.2.3 Primary alcohols, alkyl esters and fatty acid s in vitro 

Very-long-chain aldehydes are minor constituents of barley and wheat leaf wax and 

represent only 2% - 4% of total cuticular waxes (Tulloch & Hoffmann, 1973; Zabka et 

al., 2008). The most prevalent compound class are primary alcohols, which make up 

to 80% of the total cuticular wax. About 10% of the wax consists of alkyl esters, 2% 

n-alkanes and 1% very-long-chain fatty acids. The non-aldehyde wax constituents 
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were assayed at two different concentrations. Glass slides were covered with 

Formvar® dipping solutions supplemented with primary alcohols (C20-C30), alkyl 

esters (C40-C44) and fatty acids (C20-C28), respectively. Additionally, 10% (n/n) 

dilutions of the same compound classes were adjusted with n-hexacosane in the 

dipping solutions in equimolar proportions. Glass slides covered with alkanes 

exclusively (C24-C33) were prepared with dipping solutions of 6.8 × 10-4 mol l-1, only. 

In all experiments, solely the C26 primary alcohol n-hexacosanol was able to induce 

significantly increased germination and differentiation rates (27% ng; 17% agt; 5% 

app) of B.graminis f.sp. hordei conidia, when the substrate was offered purely. The 

differentiation inducing effect of n-hexacosanol of about 20% is fully in accordance 

with Zabka et al. (2008), who applied n-hexacosanol by spraying onto glass slides. 

The inducing effect on the agt formation rates of B. graminis f.sp. hordei conidia 

were reduced to 9%, when n-hexacosanol was assayed in a mixture with 

n-hexacosane, but the rate of appressorium formation was not significantly 

increased, compared to the control. The impact of primary alcohols was also 

determined for B. graminis f.sp. tritici conidia, where a similar behaviour was 

observed. Only pure n-hexacosanol was capable of increasing germination and 

appressorium germ tube formation of B. graminis f.sp. tritici conidia (Appendix, 

Table 9-2) and not the most prominent primary alcohol n-octacosanol of wheat 

wax. The differentiation rates were generally larger for all tested substance classes 

compared to the rates of B. graminis f.sp. hordei conidia, which might be a strain 

specific effect. The assayed alkanes were not capable of promoting germination and 

differentiation of B. graminis f.sp. hordei conidia, too. These results are 

contradictory to the findings of Feng et al. (2009), who reported that the alkanes n-

tetracosane (C24) and n-pentacosane (C25), presumably released by a secreted 

cuticular wax liquefying esterase, stimulate germination and differentiation of 

B.graminis f.sp. tritici conidia. Conidia of B. graminis f.sp. tritici did not respond with 

elevated germination and differentiation rates on Formvar®/alkane (C24-C33) 

covered glass slides (Appendix, Table 9-2).  

 

6.2.4 Very-long-chain fatty acids do not inhibit ge rmination and 
differentiation 

The differentiation rate of B. graminis f.sp. hordei conidia was decreased to 70% on 

leaves of the barley mutant cer-yj.667 after epicuticular waxes were mechanically 

removed. The mutant has an increased level of very-long-chain fatty acids to 4% in 

its cuticular wax compared to less than 0.5% in the wildtype (Zabka et al., 2008). 

Furthermore, the alkyl ester content of the maize mutant 215B was distinctly 

increased to approximately 24% compared to 12% in the wild type. Therefore, the 

question arose, whether the elevated amount of very-long-chain fatty acids or alkyl 
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esters in the cuticular waxes inhibits the differentiation of B. graminis conidia. Glass 

slides were covered with dipping solutions containing either inducing barley leaf 

wax, or 1% n-hexacosanal and additionally very-long-chain fatty acids at a 

concentration of 10% (C20-C28). The tested fatty acids did neither inhibit 

germination, nor influence the differentiation rates of B.graminis conidia in vitro, 

which were induced by barley leaf wax or n-hexacosanal. The alkyl esters are mainly 

esterified C16, C18, C20, C22 or C24 very-long-chain fatty acids and n-hexacosanol in 

barley or n-octacosanol in wheat, respectively (Tulloch & Weenik, 1969; Giese, 

1975). The tested alkyl esters were esters of C20 fatty acid and C20 alcohol, of C20 

fatty acid and C22 alcohol or C22 fatty acid and alcohol, which occur only in traces in 

the cuticular waxes of barley and wheat. In vitro, none of the applied alkyl esters 

were capable of significantly inducing germination and differentiation of B. graminis 

f.sp. hordei conidia. When wildtype maize leaves were sprayed with alkyl esters, the 

differentiation rates of B. graminis conidia were below 10%, similar as in vitro, on 

surfaces coated with alkyl esters. By addition of 2% n-hexacosanal to the alkyl ester 

spraying solution, the appressorium formation rates increased to 50%, which is 

comparable to those on barley leaves. Therefore, an inhibitory effect on B. graminis 

conidia germination and differentiation, due to fatty acids or alkyl esters, which are 

present in cuticular waxes, is not the case. The observed decreased differentiation 

rates on leaves of barley mutant cer-yj.667 are a result of the non-inducing 

properties of fatty acids and alkyl esters and not due to an inhibition. The data 

suggest that the identified compound classes of cuticular waxes on Poaceae leaves 

generally do not contain inhibitory compounds. Nevertheless, the existence of 

cuticular derived compounds that inhibit B. graminis conidia development cannot 

be excluded, but so far experimental evidence that supports this assumption, is not 

available. 

 

6.2.5 Very-long-chain aldehydes in vivo 

In order to asses the impact of very-long-chain aldehydes on the prepenetration 

processes of B. graminis on living plant leaves, inoculation experiments were 

performed with glossy mutants of maize. The non-host Zea mays was used for the 

experiments, since no barley mutants were available completely lacking very-long-

chain aldehydes. The aldehyde fraction of maize leaf wax consists mainly of n-

dotriacontanal (C32) (Bianchi & Salamini, 1975; Bianchi et al., 1978; Avato et al., 

1985). The absolute amount of cuticular waxes for the wildtype Zea mays lines 

Lambada and C836B, used in this study were about 8 µg cm-2 and the relative 

amounts of very-long-chain aldehydes accounted to 8%. The assayed maize glossy 

mutants gl11 (215B) and gl5 (428A) had a reduced cuticular wax coverage of 

1.3 µg cm-2and 4 µg cm-2, respectively. The mutant line 215B (gl11) has a reduced 
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pool of acyl precursors, which leads to reduced flux into the decarbonylation 

pathway. Thus, the saturation level of the aldehyde forming reductase might not be 

achieved, which leads to a lack of aldehydes in the cuticular waxes (Avato et al., 

1985). The glossy mutant line 428A (gl5) has a block in the fatty acyl reduction, 

which results in an increased aldehyde content and a decreased primary alcohol 

content (Bianchi et al., 1978). The total cuticular wax of the 428A (gl5) line used in 

this study, had an increased amount of about 20% of very-long-chain aldehydes, 

compared to the wild type.  

 The germination and differentiation rates of B. graminis conidia were 

drastically reduced on leaves of the very-long-chain aldehyde deficient gl11 mutant 

line 215B, compared to the wildtype lines and the gl5 mutant line 428A, which all 

contain very-long-chain aldehydes in their cuticular waxes. Nevertheless, on leaf 

surfaces as well as on wax extracts applied by the in vitro Formvar® system, the 

differentiation rates caused by 215B wax were about 30% and therefore much 

higher than the expected value for a very-long-chain aldehyde deficient surface 

according to the in vitro studies with non-inducing wax compounds, such as alkanes 

or primary alcohols (about 10% agt+app; Chapter 2). Probably, unidentified 

cuticular constituents of the maize leaf may induce the increased differentiation 

rate, which still has to be elucidated. Furthermore, n-hexacosanol in maize cuticular 

leaf wax might be responsible for the increased differentiation rates as it was 

observed in vitro. However, the amounts of n-hexacosanol in maize leaf waxes are 

very low. Conidia inoculated on native leaf surfaces of the gl5 mutant line 428A or 

on glass slides coated with Formvar®/428A wax extract, which consists of about 

60% of very-long-chain aldehydes, showed only slightly increased germination and 

differentiation rates compared to wildtype maize leaves or glass slides covered with 

wildtype maize leaf wax extracts. This indicates that a certain proportion of very-

long-chain aldehydes is sufficient to trigger the maximum amount of conidia 

differentiation. When the proportion is further increased above 10%, no further 

conidial differentiation is achieved. This behaviour was also observed, when 

chemically synthesized very-long-chain aldehydes were offered in a mixture with n-

hexacosane (Chapter 2) or when pure n-hexacosanal was used as substratum (Tsuba 

et al., 2002; Zabka et al., 2008; Chapter 3). 

 

6.2.6 Mimicking of leaf wax phenotypes 

 To demonstrate that the wax chemistry is mainly responsible for the 

observed decreased germination and differentiation rates of B. graminis conidia on 

the gl11 mutant line 215B, leaves were sprayed with wax from wildtype line C836B 

or with pure n-hexacosanal. Generally, coating leaves with film forming substances 

led to a reduction of B. graminis infestation (Sutherland & Walters, 2002; Walters, 
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2006). Spraying the gl11 mutant line 215B with wildtype C836B leaf wax led to 

germination and differentiation rates as they were observed for untreated C836B 

leaves (40% agt and 40% app). Hence, the presence of very-long-chain aldehydes in 

the leaf wax was sufficient to fully restore conidia differentiation. Spraying wild-

type C836B leaves with pure chemically synthesized n-hexacosanal even led to a 

significantly enhanced appressoria formation of 70%, which is almost the same 

value that was obtained when the conidia were inoculated on barley leaves (70%-

80% app). Adding 2% (w/w) of n-hexacosanal to extracted gl11 mutant line 215B 

wax extract in vitro, led to the same differentiation rates of B. graminis conidia as in 

experiments with barley leaf wax extract as substratum. This clearly demonstrates 

that providing n-hexacosanal or generally very-long-chain aldehydes in the cuticular 

wax in vivo is fully sufficient to promote conidia differentiation at high levels. 

The non-inductive effects of primary alcohols, very-long-chain fatty acids 

and n-alkanes that were observed in vitro were also tested in experiments in vivo. 

Wildtype leaves of Zea mays cv Lambada were sprayed with the alkane n-docosane, 

the primary alcohol n-docosanol or the C44 alkyl ester behenic acid behenyl ester in 

order mask the inductive effect of very-long-chain aldehydes in the cuticular wax. 

All tested substances were able to reduce the germination and differentiation rates 

significantly. This effect was fully reverted by addition 2% of the very-long-chain 

aldehyde n-hexacosanal to the spraying solution of C44 alkyl ester.  

These experiments strongly suggest that modified cuticular waxes of leaves, 

where very-long-chain aldehydes of the native leaf wax are masked, do not 

stimulate the prepenetration processes of B. graminis conidia. The findings about 

the behaviour of B. graminis conidia on waxes that provide very-long-chain 

aldehydes and those that provide other cuticular wax compound classes, clearly 

demonstrated that very-long-chain aldehydes are necessary and absolutely 

sufficient to induce the prepenetration processes in vitro and in vivo. 

 Growing of crop plants, which are devoid of very-long-chain aldehydes, 

could offer a new possibility of a durable resistance mechanism towards B. 

graminis. Recently it was demonstrated that cuticular leaf wax of Medicago 

truncatula, which had a drastically reduced amount of primary alcohols, lead to 

decreased appressoria formation in the rust fungi Phakospora pachyrhizi and 

Puccina emaculata (Uppalapati et al., 2012). A similar non-specific resistance 

mechanism towards B. graminis based on altered cuticular wax composition could 

be achieved by introduction of the Gl11 phenotype into barley and wheat. 

However, wax biosynthesis of maize is not fully understood. Furthermore, the gene 

product of Gl11 is not yet identified and cloned, but the locus is mapped in maize to 

chromosome 2 (Krakowsky et al., 2006). 
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6.3 Cuticular waxes and cutin provide chemical sign als for 
phytopathogenic fungi 

Phytopathogenic fungi need to penetrate the host plant tissue for successful 

parasitism. For directly penetrating the plant, phytopathogenic fungi have evolved 

specialized infection structures, the appressoria (Mendgen et al., 1996; Tucker & 

Talbot et al., 2001). The morphogenetic development of fungal spores on the plant 

surface, which finally leads to the appressorium formation, is triggered by physical 

and chemical signals provided by the plant cuticle (Table 6-1).  

Considering own work and previous studies on the impact of cuticular waxes 

on prepenetration processes, three chemical compound classes trigger germination 

and differentiation of phytopathogenic fungal spores: very-long-chain aldehydes, 

primary alcohols and n-alkanes. Conidia of the obligate biotrophic ascomycete 

Blumeria graminis form significantly increased rates of appressoria in response to 

very-long-chain aldehydes in a dose and chain length dependent manner in vitro 

(Chapter 2). The very-long-chain aldehydes are also responsible for promoting the 

development of appressoria in vivo on leaf surfaces. When cuticular waxes are 

completely devoid of very-long-chain aldehydes, the germination and 

differentiation rates are significantly decreased compared to leaves, which contain 

very-long-chain aldehydes (Chapter 3). The urediniospores of the wheat stem rust 

fungus Puccinia graminis f.sp. tritici are able to form appressoria on glass slides 

covered with the very-long-chain aldehyde n-octacosanal, the main aldehyde 

present in wheat leaf wax (Reisige et al., 2006). Alkanes were also reported to 

significantly induce conidia differentiation of B. graminis f.sp. tritici (Feng et al., 

2009). The primary alcohol n-hexacosanol is also capable of triggering germination 

and appressorium formation in B. graminis and the pea powdery mildew Erysiphe 

pisi (Chapter 2; Gniwotta et al., 2005). The primary alcohols n-octacosanol and n-

triacontanol induce appressoria in the hemi-biotrophic rice blast fungus 

Magnaporthe oryzae, the rust fungi Phakospora pachyrhizi and Puccina emaculata 

(Uppalapati et al., 2012). Beside cuticular wax constituents also physical properties 

alone trigger conidia differentiation in M. oryzae, like high surface hydrophobicity 

and surface hardness (Jelitto et al., 1994; Lee & Dean 1994; Xiao et al., 1994). 

Surface hydrophobicity and a physical contact stimulus are also important for B. 

graminis conidia, since these cues determine the emergence site of the primary 

germ tube (Carver & Ingerson 1987). Several n-alkanols with chain lengths between 

C22 and C32 trigger the appressorium formation of the anthracnose fungus 

Colletotrichum gloeosporioides (Podila et al, 1993). Conidia of the necrotrophic grey 

mould ascomycete Botrytis cinerea may invade the plant tissue by direct 

penetration of cuticle and cell wall, but also through wounds and natural openings 

(Doehlemann et al., 2006). Generally, conidial germination is stimulated by 

fructose. However, in absence of nutrients conidia of C. gloeosporioides germinate 
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on glass slides covered with tomato or apple fruit wax (Doehlemann et al., 2006). 

Cutin monomers like hydroxy fatty acids, presumably released by fungal enzymatic 

activities also stimulate conidia differentiation in B. graminis (Francis et al., 1996), 

M. oryzae (Gilbert et al., 1996) and in the basidiomycete Ustilago maydis (Mendoza-

Mendoza et al., 2009). 

An attempt, to identify fungal sensors that may recognize plant cuticular 

surface signals was published in a comprehensive study by Liu et al. (2011) using the 

M. oryzae – rice pathosystem. Two proteins were identified that are involved in 

surface sensing during conidia germination and differentiation. MoMsb2 is involved 

in sensing surface hydrophobicity and cutin monomers, whereas MoSho1 is 

involved in sensing rice leaf waxes. MoMsb2 shares homologies to yeast Msb2, 

which is a surface mucin protein that is necessary for filamentous growth and 

MgMsho1 shares homologies with a yeast membrane sensor that is involved in 

osmoregulation. Double mutants of Mosho1 and Momsb2 were less efficiently able 

to form appressoria in vitro on glass surfaces coated with either n-octacosanol or n-

triacontanol, the main alcohols present in rice leaf cuticular wax. When the cutin 

monomers 1,16 hexadecanediol or cis-9-octadecen-1-ol were added to the conidia 

suspension incubated on glass slides, Mosho1 mutants formed germ tubes and 

appressoria efficiently, but not in the Momsb2 and Mosho1/Momsb2 double 

mutants. Another transmembrane protein family, Mopth11 is also involved in 

surface sensing (DeZwaan et al., 1999). Pth11 is needed for the activation of 

appressoria differentiation in response to inductive surface cues, such as the cutin 

monomer 1,16-hexadecanediol in combination with surface hydrophobicity. The 

application of exogenous cAMP is able to restore the defects of Mopth11 mutants, 

such as appressorium formation and establishment of pathogenicity in planta due 

to the activation of downstream protein kinase C (DeZwaan et al., 1999). The 

involvement of several proteins, which respond to the same inductive cues, leads to 

the assumption that surface sensing mechanisms are redundant in M. oryzae. 

Downstream cAMP dependent protein kinase A (PKA) signalling is also of 

importance for germination and differentiation in B. graminis conidia in response to 

exogenous inducing surfaces, like cellulose membranes and barley epidermis (Hall 

et al., 1999). Measurements of cAMP contents in B.graminis conidia revealed a 

biphasic increase of endogenous cAMP 14 min and 4 h after inoculation (Hall & 

Gurr, 2000; Kinane et al., 2000). 
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6.4 Morphogenesis and cell cycle are linked during B. graminis 
prepenetration processes 

6.4.1 Mitosis and the prepenetration processes 

Fungal conidia are resting reproductive structures, which only germinate under 

appropriate inductive conditions (Tucker & Talbot, 2001). In the case of plant 

pathogenic fungi, germination and early differentiation are stimulated by plant 

derived physical and chemical signals. Chemical signals that trigger B. graminis 

conidia germination and further differentiation are very-long-chain aldehydes of the 

host plant cuticular wax (Tsuba et al., 2002; Zabka et al., 2008; Ringelmann et al., 

2009; Chapter 2 & 3) and cutin monomers (Francis et al., 1996). Prior to host plant 
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penetration, conidia have to undergo sequential events on the plant surface during 

the prepenetration phase, like activation of cellular metabolism, a period of polar 

hyphal growth associated with cell divisions and subsequently a switch from polar 

growth to appressorium differentiation. The successful coordination of replication, 

mitosis and finally cytokinesis is known for being a prerequisite during pathogenic 

development in the hemi-biotrophic plant pathogenic rice blast Magnaporthe 

oryzae and the anthracnose fungus Colletotrichum gloeosporioides (Nesher et al. 

2008; Saunders et al. 2010ab).  

 Chapter 4 provides a detailed study about the temporal development of B. 

graminis during the prepenetration phase in vitro, on glass slides sprayed with 

barley leaf wax extract and in vivo, on barley leaf epidermal strips. Furthermore it 

was investigated, to which extent mitosis and morphogenesis is synchronized 

during appressoria formation in B. graminis. Resting B. graminis conidia exhibited a 

single nucleus in the centre of the cell. First, the nucleus was always translocated to 

the emergence site of the primary germ tube and later to the emergence site of the 

secondary germ tube. After swelling of the secondary germ tube, mitosis occurred 

between 5 and 5.5 hours post inoculation. On epidermal strips mitosis was never 

observed prior to appressorial germ tube formation, whereas on wax covered glass 

slides, mitosis was observed before and after swelling of the secondary germ tube. 

After six to seven hours one of the daughter nuclei migrated into the appressorium 

germ tube and a septum was formed. The separation of the two nuclei always 

occurred in the primordial conidium, prior to cytokinesis. Nuclear translocations of 

developing B. graminis conidia were already reported by Mc Keen et al. (1972a), but 

without describing the preceding mitosis. The spatial uncoupling of nuclear division 

and cytokinesis was also reported for M. oryzae (Saunders et al., 2010b), whereas in 

the fungus C. gloeosporioides, nuclear division and cytokinesis are coupled and 

occurs after primary hypha formation during the appressorium formation (Nesher 

et al., 2008). Conidia of C. gloeosporioides germinate in response to primary 

alcohols of cuticular waxes and hard hydrophobic surfaces (Podila et al., 1993). The 

uninucleate conidium undergoes a first round of mitosis followed by germ tube 

growth (Nesher et al., 2008). During germ tube elongation, two rounds of mitotic 

divisions occur, prior to appressorium formation. The detailed observations of 

nuclei during the prepenetration phase of B. graminis, suggest a synchronisation 

between morphogenesis and mitosis. On barley leaves the coordination between 

mitosis and morphogenesis was much higher, which may lead to the assumption 

that leaf derived signals or more favourable growth conditions may be responsible 

for maintenance of synchrony. 

 



Summarizing discussion 

 

128 

6.4.2 Inhibition of cell cycle 

The eukaryotic cell cycle is highly regulated and entry in different phases is 

controlled by cell cycle checkpoints (Elledge, 1996). The coupling of infection 

structure development and cell cycle progression was investigated in detail for the 

rice blast fungus M. oryzae (Saunders et al., 2010a). Mitosis is necessary for 

appressorium formation and subsequent autophagic cell death in the primordial 

conidium is a prerequisite for disease establishment (Venault-Fourrey et al., 2006). 

Studies with DNA replication deficient mutants of M. oryzae demonstrated that the 

checkpoint for entry into S-phase is critical for initiation of appressorium formation 

(Saunders et al., 2010a). Hence, the recognition of inductive cues in M. oryzae, such 

as surface hydrophobicity, surface hardness, cutin monomers, cuticular waxes and 

absence of nutrients must occur early after contact with the plant surface, which 

leads to a rapid S-phase entry (Saunders et al, 2010a). Furthermore, the transition 

of G1/S-phase checkpoint is sufficient for appressorium development at later 

stages. Conidia of M. oryzae defective in formation of anaphase promoting complex 

(bim1
F1763*), which results in unseparated nuclei, developed fully melanized mature 

appressoria, but were unable to cause rice blast disease (Saunders et al., 2010a).  

To investigate, whether mitosis is necessary for the appressorium 

differentiation in B. graminis, different chemical cell cycle inhibitors were applied, 

since generating conditional mutants of B. graminis is not yet possible. In this study 

the DNA synthesis inhibitor hydroxyurea (HU) was applied in order to interrupt S-

phase, which inhibits the enzyme ribonucleotid reductase. Blocking DNA synthesis 

in M. oryzae with HU resulted in germ tube growth, but no further differentiation 

occurred and mitosis was inhibited (Saunders et al., 2010a). HU treated B. graminis 

conidia developed to the appressorium germ tube stage, possessing a single nucleus 

in the conidium. Blocking the cell cycle of C. gloeosporioides with HU prevented the 

first mitosis, but germ tube growth was not inhibited, similarly as it was observed 

for B. graminis conidia. Chemically induced cell cycle arrest during mitosis leads to 

continued growth of hyphae, although cellular division is impossible (Bachewich et 

al. 2005; Berman, 2006). However, HU treated conidia of C. gloeosporioides were 

able to form fully mature appressoria on plant onion epidermal cells (Nesher et al., 

2008), which was never observed for B. graminis conidia incubated on barley 

epidermal strips. 

In order to block M-phase benomyl was applied, which causes disassembly 

of microtubule cytoskeleton and prevents the separation of daughter nuclei (Bergen 

and Morris 1983; Spector et al. 1983; Li & Murray 1991). In this case, conidia of B. 

graminis developed until to the appressorial germ tube stage, whereas the 

undivided nucleus moved into the appressorial germ tube, approximately to the 

position where the septum usually is formed. When C. gloeosporioides conidia were 

treated with benomyl, only a short germ tube emerged and no further development 
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was observed (Nesher et al., 2008). In order to chemically inhibit the hyphal polar 

growth, conidia were treated with latrunculin A (LatA), which disrupts actin filament 

polymerization that finally prevents entry into M-phase (Rupeš et al. 2001). B. 

graminis conidia treated with LatA developed a primary germ tube, ceased further 

development of hyphae and remained uninucleate. Conidia of C. gloeosporioides 

did not enter in mitosis, too and developed no germ tube (Nesher et al., 2008). B. 

graminis conidia were still able to develop their primary germ tubes, maybe 

because the water soluble inhibitors are taken up over the primary germ tube after 

contact with the surface. The primary germ tube remains in the apoplast and may 

possibly be able to take up water and small molecules (Carver & Bushnell, 1983; 

Nielsen et al., 2000). The pgt emerges relatively fast after contact with an inductive 

surface (<30 min, Chapter 5), probably before LatA reaches its target in the cell. 

Generally, the chemical approach applied for B. graminis does not allow to 

determine clearly, whether the cell cycle transition points are connected to the 

pathogenetic developmental program during the prepenetration processes, as it is 

possible with specific mutants (Saunders et al, 2010ab). Furthermore, the time 

point when the chemicals enter the cell cannot be determined exactly, because the 

contact with the inhibitors takes place after inoculation on the Formvar® wax 

membrane or the epidermal strips, since they are not directly applied in aqueous 

solutions. Therefore, it is not clear when the chemicals start to affect the 

biochemical process within the cell and whether cell cycle checkpoints are 

successfully passed or not. But nevertheless, the data suggest that complete DNA 

replication and mitosis are necessary prerequisites for appressorium formation, but 

not for the appressorium germ tube elongation and swelling. Hence, the 

morphogenetic development is independent of DNA replication and mitosis. 

However, as soon as inducing cuticular waxes or n-hexacosanal are sensed by the 

conidium, the morphogenetic development is triggered. As a consequence 

morphogenesis, replication, mitosis and cytokinesis follow, which are necessary for 

appressorium formation. Whether cuticular waxes are able to influence the cell 

cycle directly as a signal remains to be elucidated, but seems unlikely according to 

the present data, obtained so far. However, the presence of n-hexacosanal and 

barley cuticular wax induced the nuclear movement to the site of primary germ 

tube emergence, indicating cytological responses to cuticular waxes. Later during 

further development the nucleus migrated to the secondary germ tube. Nuclear 

migration during conidial development to the emergence site of the germ tube 

prior to mitosis was also described for the entomopathogenic ascomycete 

Metarhizium anisopliae (St. Leger et al., 1989). 
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6.5 Identification of genes expressed in response t o n-hexacosanal 
during the prepenetration processes of  B. graminis  

Plant surfaces are covered with a membranous layer - the cuticle, which is 

composed of cutin, intra- and extracuticular waxes (Jetter et al., 2000). Conidia of B. 

graminis start to germinate rapidly upon contact with plant surfaces and follow a 

sequential morphogenesis, which results in formation of mature appressoria that 

are a prerequisite for host plant infestation (Tucker & Talbot 2001). Hence, the first 

contact of the conidium with the host plant surface takes place in an environment 

mainly dominated by cuticular waxes. Cuticular wax constituents that mainly trigger 

germination and differentiation of B. graminis conidia, in a dose and chain length 

dependent manner, are very-long-chain aldehydes (Chapter 2 & 3). The initial 

surface recognition may lead to the expression of genes, which are involved in 

regulating morphogenesis and the establishment of appressoria. Chapter 5 

presented a strategy to identify potential candidate genes, which are specifically 

induced by B. graminis conidia after contact with inducing wax constituents. 

Very-long-chain aldehydes occur with 2-4% in the cuticular wax of barley and 

wheat leaves, whereas the most inductive aldehyde is n-hexacosanal (1% in barley 

leaf wax). In order to identify genes that are induced by n-hexacosanal, an 

experimental approach based on suppression subtractive hybridization (SSH) was 

conducted. As non-inductive surface glass slides were coated with the alkane n-

hexacosane (Chapter 2). In order to provide an inductive surface n-hexaocsane was 

supplemented with the very-long-chain aldehyde n-hexacosanal. The release of 

single conidia from the conidiophores, the transition to the stimulated airborne 

state and subsequently landing on a surface are critical events, which occur prior to 

substratum recognition (Carver et al., 1996). Generally, comparisons of gene 

expression, and also proteomics, were usually done with conidia of different 

developmental stages, in comparison with conidia that were directly harvested 

from the conidiophores of barley leaves (Both et al., 2005ab; Bindschedler et al., 

2009, 2011). The inoculation process on the non-inductive surface is a crucial step in 

the experimental procedure, because these conidia are also released from the 

conidiophores and have contact to a hydrophobic surface. This treatment enhanced 

the chance to exclude an enrichment of transcripts in the n-hexacosanal cDNA 

library that are induced by the process of conidia release or contact with a 

hydrophobic surface. Consequently, neither the n-hexacosanal, nor the n-

hexacosane cDNA library contained an appreciable number of clones that carried 

transcripts related to cellular primary metabolism, although metabolic genes 

quantitatively constitute most of the transcripts in B. graminis conidia (Both et al., 

2005a). 

In the n-hexacosanal SSH cDNA library a transcript was confirmed by RT-qPCR 

that was 3-fold increased on Formvar® n-hexacosanal coated surfaces and 20-fold 
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induced on waxed coated surfaces and on barley leaves in comparison with n-

hexacosane coated surfaces 22 min after inoculation. The cDNA sequence was 

cloned by 3’ and 5’ RACE (random amplification of cDNA ends) and named aldehyde 

responsive transcript A1. The cloned cDNA is 1495 bp in length and four putative 

open reading frames (ORFs) were identified. Bioinformatic analyses did not reveal 

any putative functions or functional domains within the sequences. Nevertheless, 

110 putatively homologous sequences of transcript A1 were found in the genome of 

B. graminis f.sp. hordei DH14 (E value <1.00E-25; Max score 625-206; Total Score 

1162-747) and a multitude of homologous ESTs are expressed during all 

developmental stages (E value ≤5.00E-84; Maximum Identity ≥77%; Query coverage 

≥29%). The corresponding genomic regions of the hits in B. graminis f.sp. hordei 

DH14 are annotated as repetitive elements. Additionally, a related sequence of 

transcript A1 was found in the genome of B. graminis f.sp. tritici (Accession 

HQ437160.1; E value 8E-24; Maximum identity 62%; Query coverage 100%). These 

findings lead to the hypothesis that transcript A1 might be a member of a group of 

genes that is expressed during the life cycle of B. graminis. However, the initial 

attempt of this part of the work, the identification of transcripts that are 

upregulated in expression in response to the most inductive very-long-chain 

aldehyde n-hexacosanal, was attained successfully. So far, the question about the 

function of the cloned transcript and whether a novel gene was identified, which is 

critical for B. graminis differentiation during the prepenetration, still has to be 

elucidated. However, it was demonstrated that indeed transcripts or putative genes 

do exist, which are stronger expressed in response to cuticular wax components.  

It was demonstrated that the relative expression of transcript A1 is increased 

on barley leaves and on barley leaf wax extract, indicating that in vitro systems 

which provide the wax fraction are suitable tools for the identification of candidate 

genes that are responding to cuticular waxes. To address the question, whether the 

identified putative gene is characteristic for certain developmental stages, detailed 

expression analyses of transcript A1 on different inducing and non-inducing 

substrata could provide more information concerning the relevance during the 

prepenetration processes. Critical time points for further RT-qPCR analyses are after 

2 hours post inoculation when conidia are germinated, after 6 hours when the 

appressoria maturation begins and after 9 hours when mature appressoria are 

formed (Chapter 5). Additionally, single cell expression analyses of single conidia of 

different developmental stages separated by laser dissection could give more 

detailed insights into the expression levels of individual cells (Chapter 4). By 

cellulose acetate stripping conidia are harvested of heterogeneous developmental 

stages. Single cells obtained by laser microdissection may provide sufficient 

amounts of RNA for RT-qPCR experiments (Kehr, 2003). The knockout of a 

homologous n-hexacosanal responsive transcript A1 related gene in pathogenic 
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fungi is not possible, since candidate genes of transcript A1 in any other fungi, 

beside B. graminis were not detected (Chapter 5). The knockout of the putative A1 

gene in B. graminis is not yet possible due to the obligate biotrophy of the fungus 

and the lack of a stable transformation system. The overexpression of B. graminis 

genes in the related phytopathogenic fungus Botrytis cinerea might be a possibility 

to study a potential phenotype of the putative A1 gene (Yan et al., 2012). However, 

further screening of the SSH cDNA library will be necessary to identify further 

candidate cDNA sequences that have to be confirmed by RT-qPCR. 

In this work a strategy identifying differentially expressed genes was followed. 

However, an approach for identification of different proteomic profiles of conidia 

inoculated on different substrata could lead to the identification of proteins that are 

involved in substratum recognition or in the prepenetration processes. Previous 

studies could obtain sufficient amounts of protein from the extracellular matrix of 

conidia that were inoculated on cellulose membranes (Nicholsen et al., 1988). The 

proteins were still enzymatic active. Protein preparations of fungal mycelium can be 

obtained by the cellulose acetate stripping method (Bindschdler et al., 2009). B. 

graminis conidia can also be harvested in sufficient amounts from artificial surfaces 

and from barley leaves (Chapter 5). The amount of protein that can be isolated from 

B. graminis conidia is sufficient for proteomic analyses (Noir et al., 2009). 
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8 Abbreviations 

 

aberr aberrant  

agt appressorial germ tube 

app appressorium 

Bgh Blumeria graminis f.sp. hordei 

Bgt Blumeria graminis f.sp. tritici 

BLAST basic local alignment search tool 

BSTFA N,O-Bis(trimethylsilyl)trifluoroacetamide 

cDNA copy DNA 

CoA Coenzyme A 

CoASH free Coenzyme A 

cv cultivar 

DAPI 4',6-diamidino-2-phenylindole 

deg degree 

DIG digoxigenine 

DMF dimethylformamide 

DMSO dimethylsufoxide 

DNA desoxyribonucleic acid 

DTT dithiothreitol 

EST expressed sequence tag 

f.sp. forma specialis 

G1/S-phase gap1/DNA synthesis phase 

g gravity 

h hour 

hpi hours post inoculation 

HU hydroxyurea 

kPa Kilo Pascal 

LatA Lantrunculin A 

LB lysogeny broth 

Mb megabases 

M-pahse mitosis phase 

min minute 

mJ millijoule 

pg primary germ tube 

RACE random amplification of cDNA ends 

RNA riobonucleic acid 

RNAi RNA interference 

RT reverse transcription 

s second 

SD standard deviation 

sgt seconary germ tube 

SMART switching mechanism at 5' end of RNA template 

S-phase DNA synthesis phase 

SSH suppression subtractive hybridization 

VLC very-long-chain 

X-Gal bromo-chloro-indolyl-galactopyranoside 

 

 



Appendix 

 

150 

9 Appendix 

 

 
>Bgh aldehyde responsive (direct) 1495bp 
AACTCATCCTTTCGCTCCCAAGGGAGATCAGAATTTGTCACTTGGGTGATGTGACCATAGAGGAAATGGG 
GGAGAAGCATGGCATCTGGAACACAAGTAAAGCTCCTCTAATTTTGATTTTAGGTGTGCTATTTCCTATT 
CATGAGAAGAGAAGGTAGTGTGAAGGTGATCTAATGTAGAGATGTAAGGAGTGGATTGGCCGCGAAGAGG 
AGGATATCAGAGACAGGCAGAGACTATATGCTGACGTGCACGTACCATATGTACGCACGTCATCTTTCCT 
AGGGTCAGGGTTAGGCGAGGCCGTAATCTGTTCCCTTTTTGTCGTAACATGCGGATAGAGTGAGTTGGGC 
TGTGGGATAAATCACCGGACCCCCCGGCTGGCTCCATCAGTCCTGTGCCTAAAGCGGTCATGGAGCTTTA 
GATAGGACTTTAACAAATACAAACAAACGCCTTAACCAGCCTAACACCCTTACTTGTCTTGTCTTTGTGG 
AGTGGTAACCTACTGTCCATAGAATACACTAGTGTTATGAAAGAGCTCGAAGATTTATTAATGTGCTAGG 
TAGTTACTAATCATATACTGTTACAAAGTACAAACACTAAACACCTATGCATCGTGTCCTTTACGAACCT 
GGGAGGAATTATTCTCCCAGTGCCGAGTACAGTCAAATTTCGTAATACCAAACGAATTGGCCTACGAGCC 
AATGATCCGCTACTCCCAACTAATTCAATATCTCACCATCAACAAGGACAATTCTGGCCAAGCCTCAATA 
AGTCTGCAAGTACAACCTTACTTCAATGACCACTCCTCTCGTCAAGTCAGTCTCTGGCCCCAGATGGCCT 
GCACATACACGCCCACAGTATGTGAATACACGCCCCAGTATGTGAACACACGCCCACAGTATGTGAATAC 
CATTGCTGGAAGCAAACTGTTGCGCGAAAATCTTGCAGACGAATATTTGGATAGACGGGCAGGGTGATGC 
AGACGATGCATACAATTTTGGAAGAGGTTATATTTCGATTTTTGGACGGATGTGGTCAAGTTGAGCAATG 
TGCGCTACACGACTTGGTTTGCGAACGTGCAGGCGACCGTATAGACGCCGTCATGGCTGGATGGTGCGGT 
TATGTATCGTCTTAGCCGGTCTTCCAAGTAGAGTCTGGATAGCCAGGACACCTATCCCGCTCGAGATGAG 
AGTTCGCAGGTTAGAGTTCGGCAAAACACCTCTACATTTCTCGCGCCGCTCGTATACACGGATGACGAAG 
GCACGCTCGGACAATCAAAGGTTTTTAAACTTTCCTTTGGTGGGCGCTCGCGGAGGGGGGCAGACCATTC 
CACGTAGGCAAACATACCTTGTAGTGGCATTTGCGAATGAAATCCAGAGTATAACTGTCTCTGACGACCA 
AGGAGTCATCCAATATGTATACACATCACTGATCACGCCTCATAGCCAGATTGCTGAATAAACATTGAAT 
AATTTAAATAAAAAAAATAATCTCG  
Figure 9-1 cDNA sequence of aldehyde responsive transcript A1, cloned by 5’ and 3’ RACE. 
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Score = 1583 bits (857),  Expect = 0.0 
 Identities = 866/870 (99%), Gaps = 2/870 (0%) 
 Strand=Plus/Minus 
 
Hexar1 1      AACTCATCCTTTCGCTCCCAAGGGAGATCAGAATTTGTCACTTGGGTGATGTGACCATAG  60 
              ||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12863  AACTCATCC-TTCGCTCCCAAGGGAGATCAGAATTTGTCACTTGGGTGATGTGACCATAG  12805 
 
Hexar1 61     AGGAAATGGGGGAGAAGCATGGCATCTGGAACACAAGTAAAGCTCCTCTAATTTTGATTT  120 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12804  AGGAAATGGGGGAGAAGCATGGCATCTGGAACACAAGTAAAGCTCCTCTAATTTTGATTT  12745 
 
Hexar1 121    TAGGTGTGCTATTTCCTATTCATGAGAAGAGAAGGTAGTGTGAAGGTGATCTAATGTAGA  180 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12744  TAGGTGTGCTATTTCCTATTCATGAGAAGAGAAGGTAGTGTGAAGGTGATCTAATGTAGA  12685 
 
Hexar1 181    GATGTAAGGAGTGGATTGGCCGCGAAGAGGAGGATATCAGAGACAGGCAGAGACTATATG  240 
              ||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12684  GATTTAAGGAGTGGATTGGCCGCGAAGAGGAGGATATCAGAGACAGGCAGAGACTATATG  12625 
 
Hexar1 241    CTGACGTGCACGTACCATATGTACGCACGTCATCTTTCCTAGGGTCAGGGTTAGGCGAGG  300 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12624  CTGACGTGCACGTACCATATGTACGCACGTCATCTTTCCTAGGGTCAGGGTTAGGCGAGG  12565 
 
Hexar1 301    CCGTAATCTGTTCCCTTTTTGTCGTAACATGCGGATAGAGTGAGTTGGGCTGTGGGATAA  360 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12564  CCGTAATCTGTTCCCTTTTTGTCGTAACATGCGGATAGAGTGAGTTGGGCTGTGGGATAA  12505 
 
Hexar1 361    ATCACCGGACCCCCCGGCTGGCTCCATCAGTCCTGTGCCTAAAGCGGTCATGGAGCTTTA  420 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12504  ATCACCGGACCCCCCGGCTGGCTCCATCAGTCCTGTGCCTAAAGCGGTCATGGAGCTTTA  12445 
 
Hexar1 421    GATAGGACTTTAACAAATACAAACAAACGCCTTAACCAGCCTAACACCCTTACTTGTCTT  480 
              ||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12444  GATAGGACTTTCACAAATACAAACAAACGCCTTAACCAGCCTAACACCCTTACTTGTCTT  12385 
 
Hexar1 481    GTCTTTGTGGAGTGGTAACCTACTGTCCATAGAATACACTAGTGTTATGAAAGAGCTCGA  540 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12384  GTCTTTGTGGAGTGGTAACCTACTGTCCATAGAATACACTAGTGTTATGAAAGAGCTCGA  12325 
 
Hexar1 541    AGATTTATTAATGTGCTAGGTAGTTACTAATCATATACTGTTACAAAGTACAAACACTAA  600 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12324  AGATTTATTAATGTGCTAGGTAGTTACTAATCATATACTGTTACAAAGTACAAACACTAA  12265 
 
Hexar1 601    ACACCTATGCATCGTGTCCTTTACGAACCTGGGAGGAATTATTCTCCCAGTGCCGAGTAC  660 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12264  ACACCTATGCATCGTGTCCTTTACGAACCTGGGAGGAATTATTCTCCCAGTGCCGAGTAC  12205 
 
Hexar1 661    AGTCAAATTTCGTAATACCAAACGAATTGGCCTACGAGCCAATGATCCGCTACTCCCAAC  720 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12204  AGTCAAATTTCGTAATACCAAACGAATTGGCCTACGAGCCAATGATCCGCTACTCCCAAC  12145 
 
Hexar1 721    TAATTCAATATCTCACCATCAACAAGGACAATTCTGGCCAAGCCTCAATAAGTCTGCAAG  780 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12144  TAATTCAATATCTCACCATCAACAAGGACAATTCTGGCCAAGCCTCAATAAGTCTGCAAG  12085 
 
Hexar1 781    TACAACCTTACTTCAATGACCACTCCTCTCGTCAAGTCAGTCTCTGGCCCCAGATGGCCT  840 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  12084  TACAACCTTACTTCAATGACCACTCCTCTCGTCAAGTCAGTCTCTGGCCCCAGATGGCCT  12025 
 
Hexar1 841    GCACATACACGCCCACA-GTATGTGAATAC  869 
              ||||||||||||||||| |||||||||||| 
Bgh14  12024  GCACATACACGCCCACAAGTATGTGAATAC  11995  

 

continued on next page 
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Score = 1090 bits (590),  Expect = 0.0 
 Identities = 603/609 (99%), Gaps = 2/609 (0%) 
 Strand=Plus/Minus 
 
Hexar1 888    ACACGCCCAC-AGTATGTGAATACCA-TTGCTGGAAGCAAACTGTTGCGCGAAAATCTTG  945 
              |||||||||| ||||||||||||||| ||||||||||||||||||||||||||||||||| 
Bgh14  12018  ACACGCCCACAAGTATGTGAATACCATTTGCTGGAAGCAAACTGTTGCGCGAAAATCTTG  11959 
 
Hexar1 946    CAGACGAATATTTGGATAGACGGGCAGGGTGATGCAGACGATGCATACAATTTTGGAAGA  1005 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  11958  CAGACGAATATTTGGATAGACGGGCAGGGTGATGCAGACGATGCATACAATTTTGGAAGA  11899 
 
Hexar1 1006   GGTTATATTTCGATTTTTGGACGGATGTGGTCAAGTTGAGCAATGTGCGCTACACGACTT  1065 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  11898  GGTTATATTTCGATTTTTGGACGGATGTGGTCAAGTTGAGCAATGTGCGCTACACGACTT  11839 
 
Hexar1 1066   GGTTTGCGAACGTGCAGGCGACCGTATAGACGCCGTCATGGCTGGATGGTGCGGTTATGT  1125 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  11838  GGTTTGCGAACGTGCAGGCGACCGTATAGACGCCGTCATGGCTGGATGGTGCGGTTATGT  11779 
 
Hexar1 1126   ATCGTCTTAGCCGGTCTTCCAAGTAGAGTCTGGATAGCCAGGACACCTATCCCGCTCGAG  1185 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  11778  ATCGTCTTAGCCGGTCTTCCAAGTAGAGTCTGGATAGCCAGGACACCTATCCCGCTCGAG  11719 
 
Hexar1  1186   ATGAGAGTTCGCAGGTTAGAGTTCGGCAAAACACCTCTACATTTCTCGCGCCGCTCGTAT  1245 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  11718  ATGAGAGTTCGCAGGTTAGAGTTCGGCAAAACACCTCTACATTTCTCGCGCCGCTCGTAT  11659 
 
Hexar1 1246   ACACGGATGACGAAGGCACGCTCGGACAATCAAAGGTTTTTAAACTTTCCTTTGGTGGGC  1305 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||| 
Bgh14  11658  ACACGGATGACGAAGGCACGCTCGGACAATCAAAGGTTTTTAAACTTTCCTTTGATGGGC  11599 
 
Hexar1 1306   GCTCGCGGAGGGGGGCAGACCATTCCACGTAGGCAAACATACCTTGTAGTGGCATTTGCG  1365 
              |||||||||||||||||||||||||||||||||||||||||||||| ||||  ||||||| 
Bgh14  11598  GCTCGCGGAGGGGGGCAGACCATTCCACGTAGGCAAACATACCTTGCAGTGATATTTGCG  11539 
 
Hexar1 1366   AATGAAATCCAGAGTATAACTGTCTCTGACGACCAAGGAGTCATCCAATATGTATACACA  1425 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  11538  AATGAAATCCAGAGTATAACTGTCTCTGACGACCAAGGAGTCATCCAATATGTATACACA  11479 
 
Hexar1 1426   TCACTGATCACGCCTCATAGCCAGATTGCTGAATAAACATTGAATAATTTAAATaaaaaa  1485 
              |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Bgh14  11478  TCACTGATCACGCCTCATAGCCAGATTGCTGAATAAACATTGAATAATTTAAATAAAAAA  11419 
 
Hexar1 1486   aaTAATCTC  1494 
              ||||||||| 
Bgh14  11418  AATAATCTC  11410  

Figure 9-2 Alignment of the aldehyde responisve transcript A1 cloned from B. graminis f.sp. hordei 

strain CC1 conidia with the genome sequence of Blumeria graminis f.sp. hordei strain DH14. 
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Sequences of n-hexacosanal SSH cDNA library clones 

>LibIIH1(1)C1_SP6_661bp 
CGAGCGGCCGCCCGGGCAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCTTAAATTATTCAATGT 
TTATTCAGCAATCTGGCTATGAGGCGTGATCAGTGATGTGTATACATATTGGATGACTCCTTGGTCGTCA 
GAAACAGTTATACTCTGGATTTCATTCGCAAATGCCACTACAAGGTATGTTTGCCTTCGTGGAATGGTCT 
GCCCCCCTCCGCGAGCGCCCACCAAAGGAAAGTTTAAAAACCTTTGATTGTCCGAGCGTGCCTTCGTCAT 
CCGTGTATACGAGCGGCGCGAGAAATGTAAAGGTGTTTTGCCGAACTCTAACCTGCGAACTCTCATCTCG 
AGCGGGATAGGTGTCCTGGCTATCCAAACTCTACTTGGAAGACCGGCTAAAACGATACATAACCGCACCA 
TCCAGCCATGACGGCGTCTATACGGTCGCCTGCACGTTCGCAAACCAAGTCGTGTAGCGCACATTGCTCA 
ACTTGACCACATCCGTCCAAAATCGAAATATAACCTCTTCCAAATTGTATGCATCGTCTGCATCACCCCT 
GCCCGTCTATCCAAATATTCGTCTGCAAGATTTTCGCGCAACAGTTTGCTTCCAGCAAATGGTATTCACA 
TACTGTGGGCGTGTATGTGCAGCCCATTGGC 
 
>LibIH1(3)B11_SP6_647bp 
AGCGGCCGCCCGGGCAGGTACCCCAAAGTCGAAAACATTCGAAGGAATATGAGTCCCAGCATGCCAACCT 
GTGAGCTCTTCACTCGCTCGTCCCACGTCCCGGCTGCCTGTCTTCCCTCCAGATTTGAAGCCCCCATAGA 
CCAAGACCTGAGTTTTGAAGATTCTAACTTATTTCCTCTTTGCGGATATACATGGCGTTGAAAATTTGAT 
AGTGGGTGGTGACGGGTAATAAATGAGGCAGGTTCCCACTTGCAGTCGGAGCAACTGCTTGATCGATTGA 
TGAGGCGAGGTAGTGTGAGGTAAGATGGCGTTAAAGGACTCGCGTGAGATTGGCAAGACCAATATTGATG 
AGAGGTCGTCGGTTGTTGATATGTTTATTTTACCCTCGATTTCGATTCGGATATGCTTCTCTGTGGCTAT 
CTCAGATATGTAGAGCTTACTGAGCATCTACGCCGTCACCACTGCAAGGTGGAGATTTCGACTCGGCCAG 
CAAGATTTCGAGAGATTGGAAGAAGTGCTACAACAATTTTTGTTTGTTTTTTTGGATATGAACATGCTAG 
GCAATTAGCCCCCACCGCACCCCTATTGAAGCTTGAGCACGAGTGGGGCCGGGCTGGATCAGGTTAACCA 
CCTGTGAAACCAACCGC 
 

>LibIIH1(1)H6_SP6_739bp 
AGCGTGGTCGCGGCCGAGGTACTAGCAGCTGTGTCGCACCAGCTCAGAAGTAAGATACTCATTAGACTGA 
CATCTTTTGGAAATGTAACCAAAACGAACCACGCGCCTAACAAGTACAGAGCCAGAAACTAGGCCCTTAT 
CCTTACGACCAGCATATCTTTGCAGATGAGAAGAAAATTCTGATTCGGTAGACTTTGTAGGTTGAACTGA 
AACAATCACATGACTCGAAAGGTATGAAATTCTGGCGACAGCTTCCTCAGGAGTCCGAATTTTAAATTGA 
GTAGAGGCCATGATAAAAGAAATACGGGACTTGAGATGCGAGCCCCAACAAAACTTTGAAACCCCAAATA 
ACTATTTAGTTCTCCTGAAATGACAAGGTTGCAGGAGAGAATGTGAATAAGTGTTATCATGGTCTGATTA 
ATGTTGTTCTTGTTGTCCCGATAGGATCTTGTATAGTCCGCAAGCGTGAAGCTGTCCGATAATTGTTTCG 
CTTGTGAGAATAGACACATAACGTTTTTGCTAACAGTGCACGCACTGGTGGATGAAGCGGTCGGATCTCT 
GGTAGCCCCTTGAGAGTGGTTACTATAGAAGACATTGAATTCCTCTGTTCCCACAACTGTTGTTCATTGG 
ATTCTATTGCTACCGAGTTAAAGACAACTAGCAATCTGGCCCCTCCCTGGTCTAGGCAACTTTGTACCTG 
CCCGGCGGCCGTCAAACAAATTCCAGGGCCGCCATGGAG 
 

>LibIIH1(2)G9_SP6_918bp 
AGCGTGGTCGCGGCCGAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAGTAAGCAACCATTCATT 
CTTCCACAATACCCTAGATCGAAAACACACCGTATCGATACTAGAGCTCTAGCATAAAGTATCAAGTGAG 
TTGTTCAAGCGTTAGTTATGATTCAGCAAAAGCTTTGTTAATACCCAGGCTTGAGTGGGATACCCTCCGG 
AATATCGGATTAAATTCTGCAATATATTCCAAAGTTATAGATGTTCGTATACACTGATAAAAATCAAGAG 
GCCATCTTTTTACTGGGACCATATTCATCGAACACAAGATTCGCAAGGGTTCCCACAGAATTTTCTTTAG 
TTGACTTTCAGCTTAAATTGGCGCTGGGAATAAAACTTAAAGTGGAATTAAGTCGTATATTAATGTCAAG 
ATGTATACCAAGAGAGAGATTACACAGTAGCCAACCAGTAGATATAGAAACAATTCAATAACTCTTCGTA 
AGGCCAGCTACGCAGCGACCAGTATTTTGCCCATTTAGAACTAGTTTCTAACTAGGTAGAAATTCGAAGT 
ATCCACATTAGTAGTCTGTGTAAATTCATGATAACTTGCCTTCTGCTCTAGCCTCTTTAACTTGATCAAA 
GACTTTGAGCATTTTCCTGCGAGCCCGAGCGCATTAACCCCACGATCTTCCAAAGCTTTGTCATCTAGCT 
CGATAAGCTCTGTCCACTTCATGTCCTTAAGGTTCTCTGTGGATTTGTGAAGCCTGAACTCCTCAGCCAC 
CTAGGGATATCCTGGAAGGAGAAAGGGTCGGTTGGATCCTCTGGAGCCTTGGGCTACCCGGTTACACGTG 
GAGAACGACCTCGAACCAATCACTTGGATCAGAGAGGTAGCCTTCATGTCCTCTGGATGCGGATCGTCCC 
ATACGGTA 
 
>LibIIH1(1)H9_SP6_439bp 
TCGAGCGGCCGCCCGGGCAGGTACGTAGTTAATAGCTGTGGCGCTAATAATTTGGTAGCGAACTCGCTGT 
TGATCCTGGTAGGTGTCCATTTTAGCTCGCACCTTGAAAGTATAAACTTTACAATTAGCCATCTCGAAGA 
GCTTTTCTGAAGCCGGCGGGTCATTTTCCTTGAGCTCCATTAACTTGTTCGCATCCATGCCCATTATTAT 
TCGGCCTACATCGTCAAAGCAGTTCAACCAAAGCAGGCCCGTATGATCAGTAACGTTTAATGACAAAATG 
TAGCGATACTCAGGGCAAGGATGACTGACGTCACATTTCTCACAGCGCCAGCTCCCATCTCCCATATCAT 
TGATCTTCTTGTTGCAGCCTTCTGTCCGACAAGCTGGATACGAAGGATTATCTTGTTTGATACCCGCGTA 
CCTCGGCCGCGACCACGCT 
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>LibIIH1(1)H4_346bp 
TCGAGCGGCCGCCCGGGCAGGTACGCGGGGGATAAGGTCAATCCTACTTTTAACAATAAGCCCCTGAAAA 
AGTTTGCAGGCGATAGAGCCACAAATACACCATTACAAGCGTTCAAATTAGGTGCCTCGGACGGGTTTCC 
AGAACACTACGGGATGGGAAGAAGGACTTCAGTGTCTGCTGAATCTTTGAACCCAACTGCATCATCAAAC 
GAGAGCTGGACACCTCCATATCACCGCAAGACACCCGAACAGCTTGAAAGACTAAAAAAGTCCATTTCCG 
GAAATTTCCTCTTCAATCATCTGGATGACGAACAAAGTGCTCAAGTACCTCGGCCGCGACCACGCT 
 

>LibIIH1(1)C3_SP6_736bp 
AGCGTGGTCGCGGCCGAGGTACATAGCGCTTACTATTGCGCCTTTTGATTTACAGATTCTTCGCAAAGAT 
GGAATCTCGACTTTTTGCTTACATCAAATACCAATCCAGTCGCAGTTTATTCCAAGTTGCCAAGCCCTAG 
ATTTTCCTCTGCTTTAATAACTCGAAGCGTGTTGGTATTACCCATTCCGCCTTTCCATCCCTGGACCACG 
ACTACAGTCTCACCCTCTGCTAAGACCTTGAGTTTCATGGCTTCCACTATAGCCCATCTAATTCGGCGAT 
CGACATCTTCCTGCCAGTTAACGTGGGAGAAGTCTGGCTTTACCTCAGGAAAGAGGAAGGGGTAGACTCC 
ACGATACAAATGACCGTATCGAGAGGCATTAGCGTTCCGAGTGACCATAAAGATGGGGCAAACTGGTCTA 
TACTTCGAGAGTAGACGGGCGCTCAAACCGCTTGTCGAAAGCACAATAATTCCACCCGCGTTCATATCAA 
GAGAAGCTCGCACAGCAGCCATTGCGCATGATTCAGTGATGCTGACAGGTCGTTCAACTAGGCTACATAG 
CTCCTCAAAGTGGGAGACATATGCAATCGAGTTCTCAGCCTTCAAGCATGTTTCATGCATTTCGCTGACA 
GCCTCGTTTGGGTAGTTACCTTTGGCAGTTTCTCCTGATAGCATGACACAGTCAGCACCATCGCTGACAG 
CATTTCCAACGTCGCTAATTTCAGCACGGGTTGGAC 

 

>LibIH1(3)B11_SP6_647bp 
AGCGGCCGCCCGGGCAGGTACCCCAAAGTCGAAAACATTCGAAGGAATATGAGTCCCAGCATGCCAACCT 
GTGAGCTCTTCACTCGCTCGTCCCACGTCCCGGCTGCCTGTCTTCCCTCCAGATTTGAAGCCCCCATAGA 
CCAAGACCTGAGTTTTGAAGATTCTAACTTATTTCCTCTTTGCGGATATACATGGCGTTGAAAATTTGAT 
AGTGGGTGGTGACGGGTAATAAATGAGGCAGGTTCCCACTTGCAGTCGGAGCAACTGCTTGATCGATTGA 
TGAGGCGAGGTAGTGTGAGGTAAGATGGCGTTAAAGGACTCGCGTGAGATTGGCAAGACCAATATTGATG 
AGAGGTCGTCGGTTGTTGATATGTTTATTTTACCCTCGATTTCGATTCGGATATGCTTCTCTGTGGCTAT 
CTCAGATATGTAGAGCTTACTGAGCATCTACGCCGTCACCACTGCAAGGTGGAGATTTCGACTCGGCCAG 
CAAGATTTCGAGAGATTGGAAGAAGTGCTACAACAATTTTTGTTTGTTTTTTTGGATATGAACATGCTAG 
GCAATTAGCCCCCACCGCACCCCTATTGAAGCTTGAGCACGAGTGGGGCCGGGCTGGATCAGGTTAACCA 
CCTGTGAAACCAACCGC 
 
>LibIH1(2)E9_SP6_334bp 
AGCGTGGTCGCGGCCGAGGTACCTCCAAAAACTGGAGTTGAAGCAGCGCAAGTAATAGCTAAACAAGAAC 
CTGTCACCCAACCTAGCGTAAAAATTGAAGCACCGTTTAGTCAAAGTGGGCAAAATGGTGGTGATATTGA 
GCAGACATTCAAAGATGAACGCGATCTAGTCAGCGAAGTCGAGTTTAACCTGAACAGTAGCGCAGTCGGT 
AATTGTTTTGATTCATCAGTAGACGCTCACGGGCCTGGGATTAAAGAAGATGGGTAAGAAAGCATTTAAT 
TTTTTCCTTTTACACACTGTTATAATCAGAGTACCTGCCCGGGCGGCCGCTCGA 
 
>LibIIH1(4)F7_SP6_477bp 
AGCGTGGTCGCGGCCGAGGTACAAGAAGTCCCATCTTGACCGACGGGTAGACTGCCAGTCGATCCTAATC 
CAAAGATTGATGTTCTTCTTCCTAGTTTTTTTTTTAATTTCTTGCTACTTTCTTCGGTGAGTCCAGTATC 
TTGCTCGGTATTTATCTGAGTGAGGCCAGCTAAAGAGCCTCGTGAAAAAAGGTTGAGGCTCTTCCGCCGG 
CCCCCTGTTGTTTCTTTAACTGAAGGCGCCATTGCAGCTCTCACAATTGATATCACTAAATTTTTGTTTT 
GATCTGAGAGCTAGAGATTATATGGAAATCAACTATGAAGGGAGATCATCGCCGGACCTGTGCGTTATGA 
ACAAGTGAACAAAGATAAAGATAGGCCTGGAGATAGATAAGTTAGTAGATTCTAATTTCGCTGTCGACCA 
CGTAGACTGTTGAATTTGATAAACAATCCCCGCGTACCTGCCCGGGCGGCCGCTCGA 
 

>LibIIH1(3)D6_SP6_662bp 
AGCGTGGTCGCGGCCGAGGTACGCGGGGAAGACGTGGAAACGATACTGTTAAAATGCCTGGACTTGATGG 
ATCTAGACGATAGCCTCAATCCGCCTCGCTATAATTTAAAGAGATCCTCTGGTCAGACGATGCTTCATCT 
AGCCTGCTCACTAGGGCTTTATCGCTTCGTCGCCGCTCTTTTGGCGCGAGGAGCTAATCCAGAACCGGTC 
GATAAAGGTGGTTTCACCCCCATGCACTTTGCTGCTTTACATAACCATCATCAAATTCTTAAGAGACTTA 
TTCTTTGTGGTGCCACCCCAAATATTTATAGCCTACAGGGATACACTCCAGCTGATTTGACATCGTCCCT 
GGAACTACTCCAGACTGTGTGCCATACTGAACAGACATTTAGAAGACGAAGTGGAATGTTTCAGAAGGAC 
AGGAGGAATAGTTCATTATCCCTTAAATCATATGAACGGCCTGAATTCGTCTCATCTCATCCCAATTTTG 
AGACAAATGAGAATAGCGGCACTGACAGCGAGTATGAAGACAGTGATGTAGATTCATCGCAAAAAGGAGG 
TTTCTGGATGAAACAAAAATAATCTCCCGAGGGGCCCTAGCGAGCAGAAATTTCATATGACCTTGAAACA 
CTAGATCCTGTGTTGGATAGCTGGAAGGCCAT 
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>LibIIH1(3)B5_SP6_621bp 
AGCGTGGTCGCGGCCGAGGTACGCGGGGATCGAATCTAGTGTATCGGGCTCAGATTGTTTAGGCTCATCG 
TATTCGACAAAAACTTTATGACGTCCCATCACGACTATTGGTAGACCATGCGACGCTGGCCAGCGCACAC 
AATAGATTGTCTCGCCTAATCGAGAGACCACTTCACACCTCTGAGAAATAGCAATGTTTTGCAGTAATTC 
ACGGAGATTAAAGACCGATTATACTCGAAGCGTTAACCAGCAAATACACCAATGTAGATGGTCCTTGATC 
ACTTGGCTATAGAAGAGACATACTCTTGAGATAGTTGCTCCAGAGCTTTACCCCGAGAAAGGCCTGCGGC 
ATGTTCTCACTGTAGAGCGGCTGCAGATGAATTATAGATACGCCAAGTCTATTTGCAGAAATGATCAACA 
CGTCTTGATAAAACAGACATCATAAAAACGCCAAATTCGTATCTCATTCAGCTGTTGAACTGCATTCATG 
GCCGTCAATTTTCGCATCAATGGGGAGCCCGAGCCGCACCTTCTGTGCCGCGACGGTGAGTTTGATGGGT 
GAGACTTGTCGTGTGCTCCGGCTCCGGGCTACAAACAGTACCTGCCCGGGCGGCCGCTCGA 
 
>LibIIH1(3)B12_SP6_666bp 
TCGAGCGGCCGCCCGGGCAGGTACTGGTTGTGTTCACGCGCGTGGGATTTTGGGCACCACAGGGGTGGTT 
TTCGCGACATTTACTTTGACACTCTGGGTTACCACCGCATCCAGCAACACACTGGTTTCCGAATTCCTGA 
CACATGAAGAATGGCAACGTTTGTGAGTATTCGCTGGAATTGGGAGACTGTCCACTCTCACAGACACAAT 
TGAATGTCAAGCTTTTAGGATCGCAAGTATTGGATAAAGTGGTGCTCGATTGTCCGGGCAACTGGAGACA 
AAGCAAAGGGCATGAGGTAGTCTGAGTAGAACACCATGAACCCCTCAGAGATGAAGGCACGCTTGCCGGG 
TCTATGTAGTAACTAGCCTGACAAGATACTCTGATTGATAGCAGTGCCACAACTTGGATTAATCCCCACA 
TCATCTGCATGATTAATATTGGAATATTGAGTTTAGGAAAGGTGAGTTTGATTCAGGCGACTTCGGACGA 
AGAGAGAGTTCCTAACTTGATGAACCTTCGAGTTCTTGAAACGGACGGATGGCCTTTGGAGTTCAGAGTG 
AAATAGAAGTTTGCGCACCGCTCAGTTAAGTTGCCCAATAGCGAAAAAGTGGTTTAGCGAGAGTGGTAAA 
TGAAAAAATGTCTGGAGGTTGAAGATGGGGGCGAAA 
 
>LibIIH1(2)B9_SP6_658bp 
TTCGAGCGGCCGCCCGGGCAGGTACGATTAGTCTGATGTAGCATAGACGATCCCACCGATTTTTTGAAAA 
TCATTCGCTCATTGACTATCTAGAAATCTCAAGGCTACATTCATAACGCTCATCCTCTAACTCCAATCTT 
GCAGGTCAACCACTGGTCAACTTTGGGTATCGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTCTTTTTTT 
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTAACCGGTACATTTGGTT 
TGTTTTTTTTAAAAACAATATTTTAAAAACCTTTAATTGAGAGGTTTTCCCCCACAAAAGGGGATTAAAA 
AAAACAATTTTTTTTCCCACAAAAAATATTTTTTCCTACCTCCCCCTTTGAACCCTTCCGGCCAATTTTT 
TCTTTTGGATTACAAGCAGCTAAATTCCCAATTTTTTTCCCCGGCCCCCGCCCCCCCAAATAAAATCCCC 
CCCCCCCCATGGGGGGCGGGGAACATCCAACTTGGGCCCCATTTCCCCCATGGGGGGGCGGTAACAAATC 
CCTGGGCCGCGTTTTAAAACTCGGGGGGGGGAAAACCTGGGCTTACCCACTTTAACCCCTGAGAAATCCC 
CTTTTCCACTGGGGAAAACCAAAGGCCC 
 
>LibIIH1(1)H8_SP6_309bp 
TAGCGTGGTCGCGGCCGAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAAAGTGAAAGGTTT 
GCAAGTGCCCTGATTATCTGTGTAGTGTTTTGAGAAAAAACAAATATGATTAGTCAATGATGGGTGGTCA 
TTTTCAACAATACATTTCCATCAGAGAATCGCAAAGATTGGGGGGGTTGGGGAATTCATCTCTTCAGCGT 
CTTTTGGTTCTCGGCATCCTTAACAAGTTTCATACCTGAGACCACTAAACCTTTTCGCTTCCTTACAGTG 
TCCATGTACCTGCCCGGGCGGCCGCTCGA 
 
>LibIIH1(1)C2_SP6_470bp 
AGCGTGGTCGCGGCCGAGGTACGCGGGGGTCATCTTCCCGCGTGAAGGATGGTTAGTTCCCATGAGTCGG 
GCCAAACTTCGGATGGACGCGTTGAGATAATCGGGGATTTGCTTTGAAACGATAGCTGGCCACACTTTCT 
TAAAGCTCCGACCTGGATAATGAAGCTCCATGAGGCATCGAGAGACGGCTGATTGCTGGTTGACTACCGC 
CGGCAATTATTTCCATGAAACAAACTAATTATTTTATGGAATGATCTGTGGAGTCCCTAAAGACTTCATC 
GGCCAGGTTCTCTTGTCGGGATCAATCTTTTGCCGTTGTGACGGATTCGCTGAAACAATCTTAGAGATGA 
ACAACTGTGCTCTGGAAACAAACATTAAATGCATAGTATCCAATCTCTGATACAGGATCCGTACAGAAAG 
CAATTCAAACGGCATCTTATGCTTTAGTACCTGCCCGGGCGGCCGCTCGA 
 
>LibIH1(2)E1_SP6_615bp 
AGCGTGGTCGCGGCCGAGGTACATTCCTAGAGCTTTGGTTGCAACACACCCGTATTTGATGGTCATTGGA 
ATTTACGTTTGTATTTAGGATCCGAGTTTGAGCAGAGGTAGATGATTGAAAGAATATCACCACGGTCTAT 
GGTGTCTGAAACTTGTTCCTTAAATTTTCAAATTTAGATGCCGGGTATTCGAGACAGTTGTTACGACGGT 
CTATATGTTGCAAATTATTGACCACTGCTCGTATTAAACTTTGCTCTCCGAGTCCATCTGCGGAACTTTC 
CCACCACATAGCACCGCCTAGACCCTCCCTCTTGATCCACTTGGCTTTTTCAATACCCATGAAAATATTA 
TCATATGAGATGAGCTTCCTTGTGGCCGGATTATAACTGTAGGTAGCTTGTGCGAACTCGTCGTATAGCT 
CTTTTGACCCAGGAAGGGGTAATACTTTGTAGTCAAAGATTCCATTTTCCCAGGATCCCTCTGCAAGACC 
GAGATATGACTTTCCAAGACCGTCGGTATTCTCAAATGCCCGGCCGTAGAGTGGCATACCGAGAACAATT 
CTAGAAGGGCAAACACCCTGGCTGACGTAGTACCTGCCCGGGCGGCCGCTCGAAA 
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>LibIIH1(3)F2_SP6_751bp 
AGCGTGGTCGCGGCCGAGGTACGCGGGGAACAATATTATGACCATCATTGCGTGATGGGATCCTCAATGA 
CCCGAACCCGATTTGTTTGGCGTCTTGGGTCTTTTTCTGGACCGTTGCTTCCCATTTCCTATCGTCAATT 
TTGTTCAAGAGACATAGTCCAGGAGAACGATATTGTCGCACTAAAGTCCACTGCAAATGCTACCGCCGAA 
ATTATCCTTACACGACCACTACAACCCGGGAACACCGTAAGTTATAAAAAGTTAAAGAACATCATCCGCC 
ACGAATCTCTCATAGGTAAACATATTCGCCAGGTTGTTCGAGCTCGGAATGGCAATCAATATACAATATT 
TCGACCAACATTAGGCGAATACACAGACAACTCTCCTCGACTCGTTACTCCAATTTATTCTCAAGACACC 
AACCTAATAGTCTCTCTACTAGATCTGCATCCTACTGTCCCAGGCATTCCTAGCGAAAGGTTAGAAATCT 
TCGAAGCTGGGACAGGCCATGGTGCTTTAACTCTTTGTCTTGCCAGGGCTGTCCACGCCGCCAATAGTGC 
ACCACCAGAAATACCTGCTGGAATCTCAGCCAACACTGCCCAGGAGCCCGTGAATGAATCATATGAAACA 
TGGCGCTCACAGCGACGAGCAATAATACACAGCCTTGATATAGACGAGAAACGTTCTCGCCATGCAGCTG 
CGAACATAAAAAATTCAGAAATGGAATGTACCTGCCCGGGCGGCCGCTCGA 
 
 
>LibIIH1(3)B7_SP6_546bp 
TAGCGTGGTCGCGGCCGAGGTACAACGGCCTTCCGGCTTCTCTCGTCCGACAGATGACCTATTCCACCAC 
CCGATTTGGCATGTATGAGTCTCTCAAGTCAAACCTATCGCCCCATGGCACCCCTATGACCCACTTACTA 
GCTATTGCCTCTATCTCTGGCTTCGTCGGCGGTATCGTGGGAAATCCGGCGGACGTGTTGAATGTGCGTA 
TGCAGCACGATACAGCCCTCCCAGTGAGCGAAAGGCGAAACTACAGGAGCGCACTAGATGGCCTATTACG 
AATGAAAAGAGAGGAAGGTTGGAAGAGTCTTTACAAGGGTGTATGGCCGAATAGTCTCAGGGCCATGCTC 
ATGACTGCTTCTCAGTTAGCCTCATATGACGGCTTTAAGCAGGCGCTCATGGCACATACCCCCCTCGAGG 
ATAGTCTTACTACCCATTTCTCTGCTTCCCTTTTAGCAGGCTTTGTTGCTACGACCGTATGTAGTCCGAT 
CGATGTCATTAAGACACGGATCATGAGTTCTAGTACCTGCCCGGGCGGCCGCTCGA 
 
>LibIIH1(2)G2_SP6_859bp 
TTCGAGCGGCCGCCCGGGCAGGTACCTTTCAAAAGATACTAGTGTGGCTCAGTATAATCTTCTCGTGTAT 
GGGTTCTGTAGGACTCATTATGTTAAGCATTTATGACACTATAAGTCACCCCGAAATACACGATATATTT 
TTAGCTTTATTCATCTCAGGATACATAATCAGCGCTTTCATGATTTGCTGCGAGTATCAACGCCTTTCTT 
ACCAAAATCATGAATACCGAATGCTTGGCACCTCCTTTTGGTTGAAGTTAGCATTTACGGTGATAGAACT 
ATTCGTGGCAATAGCTTTTGCCTATGTCAGTCGGATAAAAAAATTATAATAAAGCAGCCATCATTGAATG 
GACACTCGCCTTTATATTTACTCTTTACGTTTATTCATTTTTCTTAGACCTTTTTCCGGCTGCCCGACGA 
GGTTCTGAACTCCCATGTGGGAGAGGCGCACCTGATGAAGTAGTCGGAATCCGCATCGGGAATAACCCGA 
GAGCAAATGCGCTAAAGATAAGACTTCAGCATAATCTGGCACGTGATAATCAGGCTGAGACAGGTATGTT 
ATAAACTGTCGGAAGTGGCACGAAGTCCGACGAAACAGTCAGTTATTGACGAAAGGCTGAGTGGCTAGCT 
GGTTATGGTCCTTGGTTTCGTGAGTAAGTTGATTATTTAAAATAATTAAATTGAAGTAACGCAAAAAAAA 
AAAAAAAAAAGTACCTCGGCCGCGACACCTATCAATCCGCGCCGCATGCGCCGGACATGCGACGTCGGCC 
ATTCCCTATGTGAGTCGATTACATTACTGGCCGCGTTTACACGTCTGACTGGAAACCTGCGTACCACTAA 
TCCCTGGACAATCCCCTTT 
 
>LibIIH1(1)C10_SP6_516bp 
CGTGGTCGCGGCCGAGGTACTTTTTTTTTTTTTTTTTTTTCAAAATGAAACTAGAAAAAATTTTCGACTT 
CTAATCAAAGAGACCAAAGCCCATATCTTCATCTGACTCTTCTTTTTCTTCTTCCTTTTCTTCTTCTTTC 
TTATCTTCCTCGACAGCTGCGCCCGCAAATACTCCGCCAGACGTTGGAGCGGCTGCAGCACCTCCACCGG 
ATCCAACGTTAAGTAGCAGTTCTTTGACGTCCTTGCCTTCAAGCGCCTTTGCAAAAAGGCTAGACCATAT 
AGGCTCTACATAAACAATTCCAGCAGCCTTAATGAGAGTCTGTAATTAATCGGCAGTGATTTCAAGTCCG 
TCGTCGGAAAGGATCAAAGCAGCATAGGAAACAGCGGGTTCAGCGGTCGACATTTTGATTAGTGAAAGGA 
AATTAGTCAAGATGAACAGGGTATTTGTTGGTTTTGGTTTTGGGAATTCAAAAAATATGTGTTCCCGCGT 
ACCTGCCCGGGCGGCCGCTCAAAATC 
 
>LibIH1(3)B9_SP6_708bp 
TTCGAGCGGCCGCCCGGGCAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTATGAGAGAAGAGTTTTCCA 
TAGTCTATTTGGAAGCGAAGATCAAAAAACTGGGATGAGGGCTTTTGTGGAGAAAAAAAAGCCTCACTGG 
AGCCACAGGTAGATATCATAAGAACCTAAAAGCGTCAAATTATCTCTGTTCCTATTGCCATAGGCCTCAA 
GTCCCTATAACATCTGCAAATGATGCGGTTCTATAAAATTGACAAAAGCCTTGTGTTACCGCCATAAACA 
TTTTCCTGCAGACAATTAATTCATACGCCTTTTTCTTTTCATTTTTAAATCATTAAGTGCCTACTGACGC 
CTTTTTCTCATCTTACTGATAAGAACCCTTGTGGTGATAGATTATAGTATATATTTCTTGGCCAATCTTT 
ATTCTAAAGTATGCGGTGGGTCAGTGATAGTAGGCATTTTATCTTCAAAATCAGATGCTGCTTGTGACTC 
TAAAGCAAAATTGAATACAGATGAGGCATCACCGTAGCCAAACAAACCAGCTGTAGTGCTTGCAGGGAAA 
AAGTAGATAATACGGAAAAGCTGTTGGCTTATCAGGCAGCCAAACCATCCAGGTGTCTCACAAGTAGAAG 
TTGTCGTTGTCACTCTACTAGTGGGTGTTTCTGCAGGATTAGCCGTTGTAATATCAAGACAGCCCCACCA 
TCCAGGAG 
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>LibIH1(2)E8_SP6_732bp 
TCGAGCGGCCGCGCCGGGCAGGTACGCGGGGGAGTAGACGTGGAGTATTTCCTCTTTTCATAGCCATAGG 
ATTCGGAGTAATAAATGGAATATGGGCTTTTGGGCCAGCACTCAAGGAGGGGCAATCGCAAGCACATGAT 
ATCAGTAAATCAATTTATCCATCACCTCCATCTAAAGACTTCAACAGCAAGACAACATCACACTCAGATT 
TACAACACGAATCTAATCATCAGAATGATGAACCTTCCAAAATAAGGCACGACACGCTCCAGTCGACTAA 
TGATCAGCATGACAAAAAATGGCATCTCCGAAAGAAGATTTTGTGGTGAAATCAAATAATAATTGAAAAA 
AACTTTTATCAACAAAAGAGAGTATACGATCTATAACCTTTTCACTTGAGCTAAATACGACAAAAATCTA 
TGTATTAGTCGCAAAAAATCAATTTATCTTTGGGTATGCGTAAAGCAGCCATTTATTCAACTCGATTAAA 
TTTTTTATTAAAGATGTTCCTGGAGAGCTCTACCGTTTCGAAAAAATGTCATGGAGATGTTCAAGTAATT 
TTAAATTTCTAAATTTTTTAGGCTGCCATACTTTTTCATTCTAACACGGTCTCTATCTTATTTATATTAT 
AGATATTAGGGATCTATTATGCCTCTCTTTTTGAAATAAGAGGTCAAACATTTTTTCATGAAGGAATTTT 
ATTATTTAACAAAATTTTTAAGAAAAGGATCC 
 
>LibIH1(2)E5_SP6_699bp 
AGCGTGGTCGCGGCCGAGGTACTGCCATTTTTCAACCGGGGACCTTCAGGTCTTAAAAACTGACCCCGAA 
GCAAGGGGCATTGACGTTCGTCAGAAGTTTATGGACCTTCACAAAAAGCACTATTCAGCCAATCGTATGA 
AACTTGTTATCCTGGGAATGGAGTCTTTAGATACATTACAGTCTTGGGCGGTAGAATTATTCGCCGAAAT 
TAGAAACAAGAACTTGCCGCAAAATCGCTGGGAGGATGAAAAGCCATACAGAGAAGAAGATCTGATGATG 
CAGTGTTTTTCAAAACCTGTTATGGACTCAAGGCAAATGGAACTTATATTTCCATTTATTGATGAAGAGT 
TCTTATATGAGACTCAGCCAAGCCGTTACCTCAGTCATCTAATAGGACATGAGGGGCCGGGAAGCATAAT 
GGCATGCATTAAATCAAAGGGTTGGGCGAATTCTCTAAGCGCAGGTGCATATCCACTATGTCCAGGGACG 
CCAGGTATCTTCAACTGCCAAATAAGGCTCACTGAAGAAGGATTAAAAAACTACCGAGAAATTGTTCAAA 
TATTCTTTCAGTATGTTTCTCTTTTGCGTGAGACTCCGCCTCAAAAGTGGATTTTCCAAGAACAAGCTGG 
TCTAGCAGACCTTGGGTTTCGATTCAAGCAAAAACTCCCAGCAAGGCCGATTAACAGCAAAATAAGCGC 
 

Sequences of n-hexacosane SSH cDNA libray clones 

>LibIIH3(1)D8_SP6_288bp 
TCGAGCGGCCGCCCGGGCAGGTACGCGGGGTTGACCTCGAATCAGGTAGGGATACCCGCTGAACTTAAGC 
ATATCAATAAGCGGAGGAAAAGAAACCAACAGGGATTACCTCAGTAACGGCGAGTGAAGCGGTAACAGCT 
CAAATTTGAAATCTGGTTCGGTTACGGGCCCGAGTTGTAATTTGTAGAAGATGCTTTGGTAATGAGTCCG 
GCCTAAGTTCCTTGGAACAGGACGTCATAGAGGGTGAGAACCCCGTATGCGGCCGAGTACCTCGGCCGCG 
ACCACGCT 

 
>LibIIH3(2)A2_SP6_836bp 
TCGAGCGGCCGCCCGGGCAGGTACTGACGTGTCAATATGTGTTGCACCAGCCTCGAGAGCGCAATGTGCA 
TTGGCGATAGCACACCCAGTGTCGTTGTGGAAATGTGTTTCAATATCACAGCTTACAACGCCTCTAAGAG 
TCCTGATAAGATCGTAAACTTGTCGTGGCGAGGCACAGCCTACGGTGTCAGCGATACCTACCCGGTTGAC 
ACCTATTCTATCTACAGTCGAATATATGGTAAGTAGATCAACGAGATTTGAGCGGAATGAGTCTTCGCTA 
GAAAATCTGATCTCAATGTTGTGAGACTTGACAAAATTGATTACTTCGATGGCTGTATTAGTTATGTAGG 
TCATATCCTTTCCGTGGGAGTGTTCCATTAAGTAAGAAGACGTGCCAATAACAACATCTCTGTTATGTAT 
TAGATCCATCCTGGTGAATTAGCGAAAGTTGACCTACACTCCATCGACTCCAGTTTGCACGGCTATTCTG 
GCATCATCCATATGGCAGCGGATGTGTGTGAGAATCTAAGTTGAAGTCATTAGGGGCACAGCTGATTAAG 
AGCTAGACTGCTGACTTTTGCTTTCAGACCAAGCTTACATATTGCCTCACAGTCGGCTCTTGACTGCTCA 
GATGCAGCGGGCGATGTTAACTCAATCTACGATATGAAAATTAGCCTTATATTTTTAACGTTAGGTGTTT 
ATTTTGTTACATAATCAACGCCGAACTCATCGAGAGCTTTGGCAATCTCTATTTTTTCTCCGTATCAAGA 
AGCATTTGCGAATTGCTCGCCTCCCTTACCGTACATTAGCTTGGTTTCGGTTCTGTAATTGGAATA 
 
>LibIIH3(1)G3_SP6_782bp 
AGCGTGGTCGCGGCCGAGGTACTGTGGCATTCTTTCGTCATGATTTTAACTAGGGTTAGGAATCATGATA 
GTTAACCCGTTGAACCGGTCTATTAAAGAACTACCATCCCTTTCCTCGGTTGGCATATGTCAACAAGTAT 
TTTATTTGTGACTAAAGCCTAACTTCTGTTTTCCCTCATTTATTTACCTAACGACGCTAAAGCATACTAT 
TTTGCGCCTCGCACCCTTCACGCGACTCTACCCAACTTGAAGTTAAGACCATAATTGAAATGGGAGTCTC 
ACAGGACTCCTCCAGACCTATCATGGCGTCCATTCCTTCGTCACGAATCAATTCCAACGGCTCCAGCACA 
TTCATTGCCAAGTCCTCTGTTCATTCAAGCATCTACTCTTCCTCCACCCATCATGAATTTTCCGAGATTG 
AAGCAAGGGGGCTAATCTTGGAAATAAGCAACTGGCCACTTTTTATTCGTCCCATCAGAATTAAAACTCT 
AATCCCTTCGCAAATTAGCATTGGGCGCTAAGCTCAGCGAGCATTACCATGGAAAACGATAGGGCAAGAC 
GCTGAGATGCCCGTGCTCTTCCATAACACCCGTACCTATAGAATTTGGTTGTTGTGGGACGAACAGTGGG 
CATTTCCCCGTCCTGCCCGGCGGCCGCTTTAATCTATTCCCGGGCCGCATGGCGGCAGGATCAGCGCGTG 
GGGCCATTTGCCCTTTACGGGGTCGATTCGTTTAGGGTTTCGTTTACACGGCTGACGGGGAACCCTGGGT 
AACCGGTAATCG 
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>LibIIH3(1)G2_SP6_274bp 
AGCGTGGTCGCGGCCGAGGTACTTTATCCGATGACAGCCCCGATTCTACGCAAGCCTTCCCTATTACTCA 
AATTACAATAAAAGCACAAAAGATTTGGTTTCTATGTTAAAGAATCCTAGAAATACAAGCCAGTAATTGA 
CACCCCTTCTATTTGCCCATCTTATATTTTCAGTAGTTTTTTCGCGAAATTCTCGACTAGAGTTTCATTA 
GGGAAAGATAGGTCTTCCAAGCCCTGAGCATAGGGTGTAGGTACCTGCCCGGGCGGCCGCTCGA 
 
>LibIIH3(2)E9_SP6_455bp 
AGCGTGGTCGCGGCCGAGGTACTTTTTTTTTTTTTTTTTTTGTGCGTGTGTGTGTGTTTATTGTCCTATA 
AAGTCTGCGACTATGTAAGAACATGTAGGTCCTTTCTGCCTACAGGCCGGGAGTATCTATGCCTCGGGTA 
GTGTACTTCTTTACAATCTTTTCTTCGCCCTCACTGGGTACGTCGGGAAACTTGATACGCAGCCATTTTA 
GCTCCTTGAATGAGGGCCGAAAGTCGTGTCCCCATTCTGATATGCAATGGGCTTCATCAACAGCTATTCT 
TGCCAGCTCTCGATGTTCATACACTATTTGAAGGTGTTTTCGGAAAGTCTCTGTCACACACTGCTCAAGA 
GTTACATAAAGGAGACGAGTGTGGGGATGTCCAGTTTCTAGATCACGGAGTAGACGTTGCCTCTCATCGT 
AACTAGCCCGCGTACCTGCCCGGGCGGCCGCTCGA 

 
>LibIIH3(1)D7_SP6_520bp 
TCGAGCGGCCGCCCGGGCAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGATTTAATAATACGT 
GCCTTTAAAATTCTAAATAAATTTAATTTGTGTCCTGGCTGTAAAGAGACTTTCTACAATTAACTTTTAA 
TTTACACCAATATCAAGACAGTATTGGGTAACTGAAAACTGTCGTGAAAGCATGTTGGTCTTTTTTTTGA 
TTTTTTAATCCAACGATCCCCAGCTAAAGTTCTATGTCCACTATGGGTGCAGGGCCCTTGAAGCCGGGAG 
TAGTTCCTGGAATTTTTCCTCCCGCCTAACTCGTTCCAACCTCATGAACCGCTGAACAAGGGGTAACTGA 
TTAAACAGAAACGAAAAACTTCCAATATCAATACCACTCCCAAAGACAGAAGATCCCTCCATGCTGGAAT 
CGAACAGTGCCCTCCTCAAACATTCCGCCGTCCGGACACCTTCTAAATGAAAATTTACTCAATCTCCACT 
GTGAGCAAGAGGTGGGTTAGCAGGGCCTTT 

 
>LibIIH3(1)D5_SP6_603bp 
AGCGTGGTCGCGGCCGAGGTACAAGCATTGTCGCAAATTCCGAGGGATCTGAAAATGGATCGGAACCTTC 
TAATCGTGCTCGTGCAGAACTGGAGCTCTCTAGGGCATTTGTTGCTAGGTATCTTATATCAAGAATACTG 
CTTCTTGTAACACCACTCTTCTTCGCGCCTAGTTTCGCAAGCATGCCCAAAATACGCTGCGTGAAACCTT 
CACTGACCCTATCCTCACTTCCTAGGGCAATAATCTGGTCTACTGTTGTAGCCTCTGATCCATCTTCACA 
AAATTGACTAGTTCCAAATACGGGTTTCCATAGCCTCTCTGCTTCCGACGAAGTAGAGTAGCGATTTTGT 
TTGAAGGCTTGTCTACCTGCTGGTAAATGCCTGCTCAATAGTTTACGCAATGAGTTTTGGACTGATACAA 
CGCTAGATGGTGTCATAGGACATAACGTTAATATCTTACAGCCTGTTGCACTATTATGCGGGCTATTCGG 
GGGTGGAGTATGAGAAGGCGTTGGAGGATCATGTTTTCCATTAGGCATAAGGAGCGGGTCATGACAGGAA 
TAGAATAATTCGTCATATTGTACCTGCCCGGGCGGCCGCTCGA 

 
>LibIIH3(2)E1_SP6_497bp 
TTCGAGCGGCCGCCCGGGCAGGTACACACTAAGAGGAGCCGTTATCCCGTCATTATCTCCCCTCTCCAGC 
CAACGAAACGATGGTCATTTGCGGGTGTGTAGCTGCAGGGAAAAGTCTCAAAAACCACTGGGTGCGGGGC 
TCTCCTATGACGAAGAGGCCGGCCAGCCGGGCGCAGCAGACCTGTGTATACCTAAGAGCGTCATTCAACC 
TTCCTAGCCTCCTCCTTCCTCTTTTCCTGATTCATGCCGCAGGACAAATCGAAGATCGTGAAAGGATGTC 
AGAAAAGTCTTGGTCGAGAGTGACTGTCGTGAAGGAGCCTAGCCTAGCATCCAAAAGTCGTTACGGACCT 
GGGGTCGTCGGGTAACTCATGTATTTCATATGCCCTCCTGGCTAGTAGATTCGGAAGTATAGATTAGAAG 
GGACAATATTTTTGACGAGTCGAAATCTGCTTGTCTTGAAGGCGGAAAGGTCTTTTACTTTGCTTTCGTG 
GACTTTT 

 
>LibIIH3(2)G9_SP6_199bp 
AGCGTGGTCGCGGCCGAGGTACAAAAGCTCAGAAACCGAGGGGATCTCTACTACGATTGTCTTCTAAAAA 
TTATTAGAGTTCGTAGACACATGCATGCGCTATGACTTCGCAGTTGGACTTGCAAATGAAATCCGAGGCA 
TGAATGTTGTTCTTGTATACTGAGTAATCATTTCTGTACCTGCCCGGGCGGCCGCTCGA 

 
>LibIIH3(2)A1_SP6_369bp 
AGCGTGGTCGCGGCCGAGGTACTTTCATCATTCTCAAATCTCGGTCTGCATCTCCCGTATCTAAGCAATA 
AACCTTTTCCATCGTCAAATCATTCACATTGTGCCTCTGCCTTCTCAACGCTCCACGTGAATTCTGTAGA 
CATCAATCCTTTTAGAGCCACGTCTTTCTTTTCTTCTAGTGACAATGTTGTTCCTAGGCCGTTCAATTCG 
CCGAACTTTTTTACAATGCCGTTTAGAGCTGATAATAAAGTAGCATTATCGCGCTCCATCTTGCATATTC 
GAGAATCTAGATCTCGGTCCTTTGGAAGCTGTGCTCGAGGTCTCCGCTCTTGACGACGTGAACCAGTACC 
TGCCCGGGCGGCCGCTCGA 
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>LibIIH3(1)D4_SP6_437bp 
TCGAGCGGCCGCCCGGGCAGGTACTACTTTCTCGTCCACGTTTAACACAACCTTCACTAACACCATCAAT 
ACCACCTCCTCTATTCCCTCACTCATCTTAATTCCACCTCGCACCCCTAATCCAAGCTCACAGCAACCTC 
TCAAAATCTGCACCTTCACCCCACCCCTCCCTCCCCTCCCCCTGAGTACTTTTTTTTTTTTTTTTTTTTT 
TTTTTACATTGGAGATGCAGGTTTATATTAAAGATAAATTGAAATTAGATTAGTGAAGGTGATGTGTGAG 
CCGCCCTAATCGGGCTTATTCACGACTTAATCTCATCCGTTGAGGATATCCTGCCTATATCATGTCCATG 
AGAGTTATTAAATCGCCCATCACCACTCCAGTGACGGGCCTAGATATTTTAACGAGTATCATAGAGTACC 
TCGGCCGCGACCACGCT 

 
>LibIIH3(2)E10_SP6_631bp 
TAGCGTGGTCGCGGCCGAGGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTCTCTTGTAATGAATTATCA 
AATTTATGTAGACATTACATCTAACCGTTGCTTACCATAATTTATTGCGAATTCAAACACCAAAGCCTTC 
ACTAGTTTCCTGCAGCTTTATCCTTCAGCCAACTCTTCATATCATCTGCATTTGCTCGTAGCCATTCCAA 
TTTCTTTCTGCTTTTCCGACATCCAGCTCGTGTCTATCTCAGGAGATTTTGAAGCTTCCGGAACAGCAGC 
TGTTTCGTGAAGCTCAGTGGCTGAAATTTTTGGTATTTCGGTAGAGGAAGACATTGATCCACTAGAGGTA 
GGCATCTCAAAGCTAGGAATAGACTGAGTTAGCGTCATCGAAGCTGACACTAATTCTGGGTTGAATTTCA 
TAGATTTATTATCCTCTGAGCCGTTTTGGTGGGTTGGAACTAATGGTAAGCGCATTGTGCCATTGTTAGG 
TAGAGGTTCTAAGCCTAAAGTGTCCAAATTATGTTATAGACCTCGATATTTTGGAATGGCTCTAAAATAC 
TGTTCGGTACTTTACAAAATCATTATCCATGTCATGGTCGGCTAGGGTGTACCTGCCCGGGCGGCCGCTC 
G 

 
>LibIIH3(2)G7_SP6_431bp 
TTCGAGCGGCCGCCCGGGCAGGTACTTCCTTTTCGTCAGGCTTCGAATCTGTTTACAGATCCATCTAATG 
CCATAAGGCGTCTCCTCTAGTCCTTCGATGATGGTAGTGAGAAAGCTGTTGGCAATCTCCATCAGCATTT 
TCAGGCGCGGTGTGATGATCTCTTGGACCTGCATGTTTTCTGCAGCTTGCTCTGCCGTCACACCCTTAGG 
AAGCGACACTGGAAGATCTCCAGCATCTTGTTCTATCTGGTCGACCATGCGCTCATAGATCTTGAGAGGG 
TTAATCTCCAAATCAAGCTTTCAGCTCGATCAAGGCATTAATACGATCTGCGAGGACGGTTTTAAGGTAA 
CTCTGGCCTGGACCTCGTCGGGTATAGGTAGTCATCATGCGAGAGACGGGCGTGCCCGCGTACCTCGGCC 
GCGACCACGCT 
 
>LibIIH3(3)C1_SP6_260bp 
TTGATTAGCGTGGTCGCGGCCGAGGTACTGTGTCAAATTATAGATATTACATGTATCAGTTTGATTTGAA 
ACAATTATCACAGATGGTTCCGATAACCCAATAACGTTACTCTATCCTTTATCATTTTAGAGAGCTTACC 
AAAACTAAAATATAGCTCCCTAACTTTCCAAACTCCCACCCAGGTCATAATTTCAATTTTGAGGAATTGA 
GCCGCTTATTGTCTTATGCCATTCACCCGGAACATGCATCTCATCACTTG 
 
>LibIIH3(3)C3_SP6_440bp 
TCGAGCGGCCGCCCGGGCAGGTACCGGGCGGTCCCTGAATAAGGCTCAGAGGTTTCTGAAGAACACTCTT 
TACTGCACTTATCTGACTGCTATTTAGTTCTGGAAGGCCAGGAACGCTGAATTTTTTAGGCATTTGGATC 
TTCATGGGAGCCGCAGCGACCTCATGGCCTAAAAGTTTGTGGAAAATGTAACCCGAAACGCTCATCTCGT 
CTACAGCAAATGTCTTCATCGCGAATTGCATGCGATCGTAGGATGTGGCTTTCCAGACATAATCGGCAGA 
GAAATTATGAGTGCATTCAGTAGGGACTGATTTATCACTTCCAACTTTACGAAGTTCTATAGTGACCTCG 
TCGGACTGATTGTTTGGAATTTTGACGACGTAGCCTACACCCTCCCAAACCGGTCGCAGTTCTCCTTTGT 
ACCTCGGCCGCGACCACGCT 

 
>LibIIH3(2)A9_SP6_236bp 
TTCGAGCGGCCGCCCGGGCAGGTACTGATCAGACTCGTTTTGACCAAACGTAGTGCGAGCTGGAGTTGCT 
TGATCTAAACGATAGGAGCGTGATCCTAACGTAGAGCCGTGCATTGGCTGGGGTGAGGTAGGTGAGGGTT 
GGCTTGGTGAGAGGTGCCCGGGCGAGATAGCTCCGTTATAATTAGAGGCTGAGAGGTGTGAGGAAGATAG 
CAAGGTACCTCGGCCGCGACCACGCT 

 
>LibIIH3(1)G1_SP6_556bp 
GCGTGGTCGCGGCCGAGGTACAGTTTGTGGGGAATTGATATAGGAGGAGAAATCATCTTTATTACCAGAC 
ACGTGGAAGTCTGCTGCTGTATCTAGCTGATATACAGGTTTATCTTCTAATTTATCTAACGATAGAATTT 
GTTTTCTTTTCCCCCCTTTTTGTTCCTTATACGCTTTCTTTTTCTTCCGGCAATCTTCTTCTTTGTGGCC 
AGCAATATCACAATAGTTGCATTTAAAGGTATTGTGAGGCTTCTTTGCATGTGATTTGTGGTCACTCGGT 
GGTGCCCACTCAAGGCATTCTGAAAGAATCTCGTCGAAGGAAAAATTGCGACAGCGGTGAGAGAGTTCTG 
GGTGGATGTTGGAGATTCGATCTAGAAGTACTTGTGGCCGCGAGTAAGACATAGCCGTAGTTCTCGTCAA 
GGATGATGGTCGTCATGTTGGGAGCCTGGATGAATGTCGAAATAATGAGGAATGTTCGGGCGAATGGTTC 
GGCTTCGGCAGGCGTTATATGGGGATGATTTATTTCCCCCGCGTACCTGCCCGGGCGGCCGCTCGA 
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>LibIIH3(1)G5_SP6_289bp 
TCGAGCGGCCGCCCGGGCAGGTACATCTAAAATCTGATCAACACGTGATAATGTAGATCTTTTCAGGATC 
CACATATATGTGGATCCCATACCTGAGCTGTCCTCAGCTCACAAAAAATATACTTGCATCGCCATATATA 
TATAAAATATTTACAGTCTAACGGCGAATACTTATGACCTGATCCAACCTTGAACTAGTAATTTCTGGCT 
GCAATAGCGTAGGCTTCTCACCAGATTTCCTTGTCGAAATTTCGCTGGTAATAATTTTGTACCTCGGCCG 
CGACCACGC 

 
>LibIIH3(1)B8_SP6_568bp 
TCGAGCGGCCGCCCGGGCAGGTACTCCCTCCTATACCTCCTTCATGATTTCTTTCCAGCAGTAATACCCC 
TACAGGTCTTCATTCGGGAACAAACTAAAAGGAGCCGTTATCCCGTCATTATCTCCCCTCTCCAGACAAC 
GAAACGATGGCCATTTACGGGTGTGTAGCTGCAGGGAAAGTCTCAAAAACCACTGGGTGCGGGGCTCTCC 
TATGACGAAGAGGCCGGCCAGCCGGGCGCAGCAGACCTGTGTATACCTAAGAGCGTCTCTCAACCTTCCT 
AGCCTCCTCCTTCCTCTTTTCCTGATTCATGCCGCAGGATAAACCGAAGATCGTGAAAGGATGTCAGAAA 
AGTCTTGGTCGAGAGTGACTGCCGTGAAGGAGCCTAGCCTAGCATTCAAAAGTCGTTACGGACGTGGGGT 
CGTCGGGTAACTCATGTATTTCAGATGCCCTCCAGGCTAGTAGATTCGGATGTAAAGATTAGAAGAGACA 
ATATTATAGACGAGTCGAAATCTGCTTTTCTTGAAAAAAAAAAAAAAAAAAAAAAAGTACCTCGGCCGCG 
ACCACGCT 

 
>LibIIH3(1)D11_SP6_755bp 
ATTGGTCGCCTGCAGGCGGCCGCGAATTACTAGTGATTAGCGTGGTCGCGGCCGAGGTGCCTTGGAGGAG 
ATGGCAAAGACCTTTAACTGTGGAATTGGCATGGTCGCTGTTGTGAGCGTGGAGAAGCTCGAATCAGTAG 
TTCAAGCTTTTGAATTGGCTGGAGAGACAGTTTACCGTATAGGATACTTAATACCGCGTACATTAACGCC 
GTGAGCGTTCTTGAAATGGCGAATAGCAGCTCCGACAGCCGTCTCAAGTTGCACAATTGAAACATCGGAC 
TCGCCCTTTTTATCAGCAGGAATAGTCTTGTTGTTAGGGATAATTTCCATTTCGAGTTCATTTCTCTCAA 
CTATGCGCTTTACTGCCTTGAGGTTCAGCCAAATGTTGTTGGTATTGAAATATTTAAACTTCTTTATGGA 
TTTAAATTCATTGGTATGTTCCTTTGGAACTTGAGCAATCTCTAGTAGACGAACCGATCCATTATAGTCG 
ATGATTGTTCCACCCTTTACATCAGCCTTAGTTTTATCAGTCAATTCCATGATATATTCAGCATCAGTTT 
CAACCCTGTGTTGAAGGATGCGAAGATCCCCGACGGCCCAAGGTTATCGACACTCGATAAAAACAGGATC 
TCACCCCGCGCTCATCAATTTGTCAAGAGTTCCAAATTGTAGTGATTTAAATACTAACCTGTCCTGAAGT 
ACATAAAATAAGTAATTGTCCATTTGGGACTGAAGAAAGTCCTTAAATCGGGGAG 
 
>LibIIH3(1)B6_SP6_535bp 
GCGGCCGCCCGGGCAGGTACGCGGGGACATTCACTGGAATCAAGCTCACCCAAGTCTCTCATTACCACAA 
ATCTAGATAGTGATCTATCAAATGCTATAGCATCAACACCTAATTCTCAAAATCATCTGTGCCATATAAC 
GCTCTTTTTATTTAAGTATGAAATTTTCTGGCATTCTTTCCAGTTGTGGTGGTGCTGTACGCGGGAGCCA 
AAAAAGGGAAAGAAAGATAAGTCGGAAAAAAAGGCAGCCCGCAAAGCCAGACAAAATGGAAGCAATGAGG 
CAGACGATAAAGATAATGGCAGTGGAAGTGATCAAAATTCAGAGATAAGATTGAACGAGAATGGAGACAA 
TTCAGTTCAAGCAGCTAGCGACGATGAGCTTACTCGCAGAGGAAAACCAGGTAACGATGATTTGGTAGAT 
GACGACAAAGATAACGAATGGACTGTTGACATGTCGGTTGAGGCTATACGAGCTCGTCAACAACAATTAT 
CTGATGATCTAAAGCAAAAGCTAGTACCTCGGCCGCGACCACGCT 
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Quantification of cuticular waxes and single wax constituents sprayed on glass 

slides 

 

Single wax constituents or mixtures of wax constituents and barley leaf wax extracts 

were sprayed with a glass chromatographic sprayer onto Histobond® (Marienfeld, 

Lauda-Königshofen) glass slides. Of each batch five glass slides were washed off 

with chloroform and the amount was quantified by gas chromatography. 

Additionally the surface hydrophobicity was measured (Figure 9-3 and Figure 9-4). 

For the experiments with B. graminis conidia only glass slides with a contact angle 

larger than 90° were used.  
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Figure 9-3 Quantifications of coatings and contact angles of glass slides sprayed with n-hexacosane 

and (a) barley leaf wax extract (b). Each data point corresponds to the quantification of one glass 

slide. Value of the contact angle for each glass slide is given as the mean ± SD (n=20 measurements). 
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Figure 9-4 Coating of glass slides sprayed with different concentrations of aldehyde/n-hexacosane 

mixtures and the corresponding contact angles. Each data point corresponds to the quantification of 

one glass slide. Value of the contact angle for each glass slide is given as mean ± SD (n=20 

measurements). 
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Quantification of cuticular waxes and wax constituents transferred by Formvar® 

resin based dipping solutions to glass slides 

 

For estimation of the amount transferred to one glass slide, dipping solutions with 

0.5% Formvar® resin (w/v) were prepared with different concentrations of the 

chloroform soluble reference dye Sudan III (M=278.32 g mol-1; Sigma Aldrich, 

Steinheim). The absorption of Sudan III was measured photometrically at the 

wavelength of maximum absorption of 511 nm (Nanodrop, Peqlab, Erlangen) in a 

quartz cuvette. First a standardization curve with Sudan III only was generated 

(Figure 9-5a). Then different dipping solutions with different Sudan III 

concentrations were prepared. The total concentrations in each dipping solution 

were 6.8 × 10-4 mol l-1 (=190 µg ml-1) and were adjusted with n-hexacosane when    

5.1 × 10-4 mol l-1 (=142 µg ml-1), 3.4 × 10-4 mol l-1 (=95 µg ml-1), 1.7 × 10-4 mol l-1 

(=47 µg ml-1) and 6.8 × 10-5 mol l-1 (=19 µg ml-1) of Sudan III were used in a dilution 

series (Figure 9-5b, x-axis). Ten glass slides were covered with each dipping solution 

of the dilution series and were subsequently washed off in 2.5 ml chloroform. To 

estimate the amount of Sudan III transferred by one dip onto the slide in ng cm-2, 

the concentrations of Sudan III in the dipping solutions were plotted against the 

coatings calculated according to equitation (1). According to equitation (2) the 

amounts transferred by one dip were calculated for all chemical compound classes 

and dilutions used in this study. Equitation (3) and (4) indicate the calculations for 

preparation of equimolar dilutions. Table 9-1 gives a detailed overview of the 

concentrations and absolute amounts of all dipping solutions according to their 

chemical compound class that were prepared in this study. 
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Figure 9-5 Standardization curve for Sudan III (a) and calculated amount of Sudan III transferred by a 

single dip onto a glass slide (b). The maximum Sudan III concentration in the dipping solution was 

6.8 10
-4

 mol l
-1

 (= 190 µg ml
-1

). 
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Equitation for calculation of transferred amount of Sudan III per square centimeter 

in dependence of Sudan III concentration in the dipping solution 

 

A

VE
B Wnm

Sudan

⋅+⋅
=

)0002.00089.0( 511
      (1) 

 

BSudan: Coating (mg cm
-2

) 

E511nm: Extinction at 511 nm 

Vw: Volume of Solvent = 2.5 ml 

A: Surface of glass slide, both sides = 27.5 cm
-2 

 

Equitation for calculation of transferred amount per square centimeter of a single 

compound in the dipping solution. 

 

0198.00024.0 +⋅= cB         (2) 

 

B: Coating µg cm
-2

 

c: Concentration of compound in the dipping solution (µg ml
-1

) 

 

Equitation for calculation of dipping solutions-dilutions. 

 

totalcompcompcomp VMP
l

mol
m ⋅⋅⋅⋅= −4108.6       (3) 

 

totalHexcompHex VMP
l

mol

l

mol
m ⋅⋅⋅⋅−⋅= −− )108.6(108.6 44     (4) 

 

mcomp: Mass of single compound (g) 

mHex: Mass of n-hexacosane in the mixture (g) 

Pcomp: Molar ratio of the compound  

Mcomp: Molecular weight of compound (g mol
-1

) 

MHex: Molecular weight of n-hexacosane (g mol
-1

) 

Vtotal: total volume of dipping solution (ml) 
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Figure 9-6 Scanning electron micrograph pictures of Formvar® wax membrane. A microscopic glass 

slide (Elka, Sondheim) was dipped in 1% (w/v) PVP40 solution and was subsequently dipped after 

drying in a 0.5% Formvar® resin solution in chloroform supplemented with total barley leaf wax 

extract (500 µg ml
-1

). The membrane was floated on a water surface, transferred onto 1% Bacto 

water agar and was incubated for 16 hours at 20°C in darkness. The contact angle of the membrane 

on the water agar was 102 ± 7°. After incubation the membrane was transferred onto a positively 

charged glass slide (Menzel Superfrost Plus, Brauschweig) was freeze dried and subjected to SEM. 

The specimens were photographed at a rotation angle of 0° (a) 22° (b) to visualize the edge of the 

Formvar® wax membrane. The membrane is about 200 nm in thickness. 



Appendix 

 

166 

 

Table 9-1 Concentrations of the dipping solutions used for preparation of Formvar® coated glass 

slides with equimolar amounts of single wax constituents. 

Concentration 
Concentration 
n-hexacosane 

Total concentration 
Compound class 

Chain 
length 

(µg ml-1) (mol l-1) (µg ml-1) (mol l-1) (µg ml-1) (mol l-1) 

24 230 230 
25 240 240 
26 250 250 
27 260 260 
28 270 270 
29 280 280 
30 290 290 
31 300 300 

Alkanes 

33 310 

6.8 × 10-4 0 0 

310 

6.8 × 10-4 

20 20 225  245 
22 22 225  247 
24 24 225  249 
26 26 225 6.1 × 10-4 251 
27 27 225  252 
28 28 225  253 
30 30 

6.8 ×10 -5 

225  255 

6.8 × 10-4 

20 203 203 
22 222 222 
24 242 242 
26 261 261 
27 271 271 
28 280 280 

Primary alcohols 

30 300 

6.8 × 10-4 0 0 

300 

6.8 × 10-4 

40 40 225  265 
42 42 225 6.1 × 10-4 267 
44 44 

6.8 ×10-5 
225  269 

6.8 × 10-4 

40 404 404 
42 424 424 

Alkyl esters 

44 443 
6.8 × 10-4 0 0 

443 
6.8 × 10-4 

20 22 225  247 
22 23 225  248 
24 25 225 6.1 × 10-4 250 
26 27 225  252 
28 29 

6.8 ×10 -5 

225  254 

6.8 × 10-4 

20 215 215 
22 232 232 
24 251 251 
26 271 271 

Fatty acids 

28 290 

6.8 × 10-4 0 0 

290 

6.8 × 10-4 

22 0,02 250  250 
24 0,02 250  250 
26 0,03 250 6.1 × 10-4 250 
28 0,03 250  250 
30 0,03 

6,8 × 10-8 

250  250 

6.8 × 10-4 

22 0,22 250  250 
24 0,24 250  250 
26 0,3 250 6.1 × 10-4 250 
28 0,3 250  250 
30 0,3 

6.8 × 10-7 

250  250 

6.8 × 10-4 

22 2,2 248  250 
24 2,4 247  250 
26 2,6 248 6.1 × 10-4 250 
28 2,8 248  250 
30 3 

6.8 × 10-6 

248  250 

6.8 × 10-4 

22 22 225  247 
24 24 225  249 
26 26 225 6.1 × 10-4 251 
28 28 225  253 

Aldehydes 

30 30 

6.8 × 10-5 

225  255 

6.8 × 10-4 
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Table 9-2 Development of Blumeria graminis f.sp. tritici conidia on Formvar® coated glass slides 

supplemented with alkanes or primary alcohols 
Percentage of conidia  

Substratum 
ng  pgt sgt agt app 

Contact 
angle 
(deg) 

Wax (Triticum aestivum) 7 ± 3 4 ± 2 9 ± 1 56 ± 3 23 ± 3 110 ± 1 
7 × 10-4  mol l-1 n-hexacosane 62 ± 5 25 ± 4 3 ± 1 9 ± 3 1 ± 1 114 ± 1 

Concentration 
 mol l -1 Chain length       

Alkanes       

24 59 ± 3a 30 ± 4a 3 ± 1a 7 ± 2a 1 ± 1a 114 ± 1 
26 62 ± 5a 25 ± 4a 3 ± 1a 9 ± 3a 1 ± 1a 113 ± 1 
28 52 ± 5a 28 ± 4a 4 ± 1a 13 ± 5a 2 ± 2a 113 ± 1 

7 × 10-4 

30 61 ± 8a 23 ± 4a 4 ± 2a 11 ± 5a 1 ± 1a 113 ± 1 

Primary alcohols       
20 58 ± 4a 30 ± 3a 2 ± 1a 2 ± 1a 2 ± 2a 114 ± 1 
22 58 ± 5a 29 ± 4a 2 ± 1a 4 ± 2ab 3 ± 3a 113 ± 1 
24 58 ± 4a 31 ± 5a 1 ± 1a 3 ± 1a 2 ± 1a 113 ± 1 
26 46 ± 10a 29 ± 2a 4 ± 2a 8 ± 3b 8 ± 6a 113 ± 1 
27 55 ± 3a 30 ± 3a 2 ± 1a 5 ± 2ab 4 ± 2a 113 ± 1 
28 57 ± 6a 28 ± 3a 2 ± 1a 4 ± 2ab 3 ± 1a 114 ± 1 

7 × 10-5 † 
 

30 58 ± 5a 27 ± 5a 2 ± 1a 5 ± 2ab 3 ± 1a 113 ± 1 
20 59 ± 3ab 34 ± 2ab 1 ± 1ab 2 ± 2ab 1 ± 1a 49 ± 3 
22 56 ± 8ab 35 ± 6ab 1 ± 1ab 2 ± 1ab 2 ± 1a 31 ± 6 
24 61 ± 2ab 32 ± 3ab 1 ± 1a 1 ± 1a 1 ± 1a 38 ± 3 
26 34 ± 12c 47 ± 8c 3 ± 1b 5 ± 2b 3 ± 2a 39 ± 4 
27 45 ± 4bc 41 ± 2bc 2 ± 1ab 3 ± 2ab 2 ± 3a 51 ± 4 
28 56 ± 5ab 35 ± 4ab 1 ± 1ab 1 ± 1ab 1 ± 1a 61 ± 2 

7 × 10-4 
 

30 57 ± 5a 28 ± 5a 2 ± 1ab 4 ± 2ab 2 ± 1a 86 ± 1 

  
† Supplemented with n-hexacosane to a final concentration of 7 × 10

-4
 mol l

-1
. 

Values are means ±SD of five independent experiments. Different letters within a column, with the 

same concentration and same compound class, indicate significant differences (P < 0.05) determined 

in a one-way ANOVA followed by a Tukey post hoc test. 
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