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Non-laminate Microstructures in Monoclinic-I
Martensite
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Abstract We study the symmetrised rank-one convex hull of monoclinic-I
martensite (a twelve-variant material) in the context of geometrically-linear
elasticity. We construct sets of T3s, which are (non-trivial) symmetrised rank-
one convex hulls of three-tuples of pairwise incompatible strains. Moreover
we construct a five-dimensional continuum of T3s and show that its inter-
section with the boundary of the symmetrised rank-one convex hull is four-
dimensional. We also show that there is another kind of monoclinic-I marten-
site with qualitatively different semi-convex hulls which, so far as we know,
has not been experimentally observed.

Our strategy is to combine understanding of the algebraic structure of
symmetrised rank-one convex cones with knowledge of the faceting structure
of the convex polytope formed by the strains.

1 Introduction

Shape-memory alloys are materials that undergo a diffusionless solid-to-solid
phase transformation due to change of temperature. They are capable of large
macroscopic deformations and recover their original shape upon heating. While
such materials usually form a cubic lattice (austenite) above a critical tem-
perature they develop microstructures at lower temperatures (martensite). In
this article we are interested in the cubic-to-monoclinic-I phase transforma-
tion, which occurs, eg., in NiTi, which is industrially one of the most important
shape-memory alloys. In this case, there are twelve transformation strains, see
Section 5 for details.
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Of interest is the set of all strains that can be recovered upon heating.
In the variational approach to martensite [BJ87] this set is modelled by the
quasiconvex hull (Definition 2.8) of the transformation strains. Unfortunately
the quasiconvex hull of a set is difficult to calculate.

Bhattacharya and Kohn [BK97] consider various phase transformations
(cubic to tetragonal, cubic to trigonal, cubic to orthorhombic and cubic to
monoclinic) in the context of geometrically-linear elasticity and observe that
except for cubic-to-monoclinic martensite the symmetrised quasiconvex hull
coincides with the convex hull. For cubic-to-monoclinic martensite they show
that the symmetrised quasiconvex hull is strictly smaller than the convex hull
and present an inner bound for it.

We aim to find a better approximation of the symmetrised quasiconvex
hull, again in the context of geometrically-linear elasticity. To this end, we are
interested in the symmetrised lamination convex hull and the symmetrised
rank-one convex hull of the transformation strains; these give inner bounds on
the symmetrised quasiconvex hull, see Section 2.3.

Our analysis shows that there are points in the symmetrised rank-one con-
vex hull of monoclinic-I martensite which are attained by non-laminate mi-
crostructures. This suggests (see below) that the symmetrised rank-one convex
hull is strictly larger than the lamination convex hull of the twelve transfor-
mation strains. Since the symmetrised rank-one convex hull is a subset of
the symmetrised quasiconvex hull (Remark 2.9), the strains attained by these
non-laminate microstructures belong to the set of recoverable strains.

Next we give more details on the strategy we use, our results and the
organisation of the paper. Finally we will fix some notation.

Strategy. Our strategy is to exploit firstly, the algebraic structure of sym-
metrised rank-one convex cones, secondly, the faceting structure of the convex
hull of a finite set, and thirdly, the interaction between the two.

That rank-one convex cones are varieties has been exploited to develop al-
gorithms to calculate semi-convex hulls [Kre03,KZC04]. The relevance of con-
vex polytopes to semi-convex hulls (compare Lemma 2.10 with Theorem 2.11)
has been noticed in [Zha06,TZ08] but has not, to our knowledge, been ex-
ploited to determine semi-convex hulls. This paper represents a first attempt
in this direction.

The central idea is the following: Given a finite set whose symmetrised rank-
one convex hull we wish to compute we proceed as follows. First we compute
the symmetrised rank-one convex hulls of all its one-dimensional facets, i.e.,
edges in the language of convex polytopes; this is trivial, cf. (2.2) below. We
use this, together with knowledge of the structure of symmetrised rank-one
convex cones on two-dimensional affine subspaces (Section 3), to determine
the symmetrised rank-one convex hulls of all its two-dimensional facets. We
then repeat this for higher dimensions.

When the finite set we are interested in is the set of transformation strains
of a material capable of a phase transformation from austenite to martensite,
the set lies in the five-dimensional affine plane of strains with constant trace
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and thus the process above terminates when the symmetrised rank-one convex
hull of the five-dimensional facet of the set (which is the convex hull of the
set) is computed.

In this bootstrapping strategy the steps become progressively more difficult
as the dimension increases. Indeed while we can completely implement the
two-dimensional step (Section 3 and [CSc]) and have partial results for the
three-dimensional step [CSb] we have a reason to believe that the steps for
dimension four and five are considerably more difficult than that for steps
two and three: unlike in lower dimensions, the symmetrised rank-one convex
cone in the higher dimensions is an algebraic surface of a polynomial which is
necessarily irreduccible [CSc].

Results. We have three main results:

First we show that there are two kinds of monoclinic-I martensites which
differ qualitatively with regard to the polytope-structure of their convex hulls.
It follows that their semi-convex hulls are qualitatively different as well. Curi-
ously all known monoclinic-I martensites belong to one of these kinds, which
we name monoclinic-Ia (the other being monoclinic-Ib).

The question as to whether T3s (which are non-trivial symmetrised rank-
one convex hulls of 3-tuples of pairwise incompatible strains, which are at-
tained by non-laminate microstructures, see Section 4) can be formed from
the twelve variants of Monoclinic-II martensite is raised in [BFJK94, p863].
There it is shown that this is possible when a certain lattice parameter is
sufficiently small. Here we prove a stronger result: In Section 4 we present
a simple test for T3s (Lemma 4.3) that shows that in fact T3s can form for
all (non-zero) values of the lattice parameter, and that the same is true for
Monoclinic-I martensite as well. This is our second main result.

Our third result is a consequence of this: We show that for Monoclinic-Ia
martensite, the symmetrised rank-one convex hull of the twelve transforma-
tion strains contains a five-dimensional continuum of points which are attained
by non-laminate microstructures. Moreover the intersection of this continuum
with the boundary of the convex hull is four-dimensional. This suggests that
the symmetrised rank-one convex hull of the transformation strains is strictly
larger than the symmetrised lamination convex hull. This would then imply
that the symmetrised quasiconvex envelope of the energy density of this ma-
terial is different from the symmetrised lamination convex envelope. It is well
known that lamination convex envelopes can differ from rank-one convex en-
velopes, cf. [Dac07, Sect. 4], and (in dimensions larger than two) that rank-one
convex envelopes can differ from quasiconvex envelopes [Sve92]. However, in
the context of materials science, all quasiconvex and rank-one convex envelopes
that have been evaluated so far have in fact coincided with lamination con-
vex envelopes; Monoclinic-Ia martensite is the first material for which we now
have a strong indication that they differ.
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Organisation of the paper. In Section 2 we refresh the reader’s memory of some
basic facts and results about strain compatibility, convex sets (in particular,
convex polytopes) and semi-convex functions and sets.

In Section 3 we study the structure of symmetrised rank-one convex cones
on two-dimensional affine subspaces of S3×3c (Lemma 3.1), see below for no-
tation. The results presented here enable the computation of the symmetrised
rank-one convex hull of any finite set in two-dimensional affine subspaces of
S3×3c and the characterisation of those compact sets in these spaces that pos-
sess non-trivial symmetrised rank-one convex hulls; we present some results in
Section 4 but postpone a more extensive discussion to [CSc]. We extend these
results to higher dimensions in [CSb] but Lemma 4.10 and Section 7 provide
a glimpse of the utility of the results in Section 4 even in higher dimensions.

We then turn from abstract results to the specific class of materials of
interest to us, monoclinic-I martensite. After some preliminary observations
in Section 5 on the compatibility and symmetry relations between the twelve
transformation strains of materials in this class we determine, in Section 6, the
facets of the convex hull of the twelve transformation strains of monoclinic-I
martensite (Observations 6.6, 6.8 and 6.7). This leads to the discovery that
there are in fact two kinds of monoclinic-I martensitic materials.

With this foundation behind us, in Section 7 we investigate the (theo-
retical) possibility of non-laminate zero-energy microstructures occurring in
these materials. We construct an open set in the symmetrised rank-one con-
vex hull of the transformation strains for which T3-microstructures are optimal
(Construction 7.5). We then deduce that in monoclinic-Ia martensite this set
intersects the boundary of the convex hull, and thus the boundary of the sym-
metrised rank-one convex hull.

(In Sections 6 and 7 we use Mathematica to simplify computations but
these computations are non-numerical. The Mathematica code that we have
used together with explanatory notes can be found in the electronic supple-
mentary material accompanying this article [CSa].)

We conclude with Section 8 with some questions raised by the preceding
two sections. One of these is whether monoclinic-Ib martensite might have
a larger set of recoverable strains (i.e., quasiconvex hull) than monoclinic-Ia
martensite (modulo appropriate normalisation of the lattice parameters). This
naturally also leads to the question as to whether a material that lies at the
boundary of monoclinic-Ia and monoclinc-Ib martensite might demonstrate
the best behaviour of all.

Notation. In the geometrically linear theory of elasticity, the strains (point-
wise) belong to the space of real symmetric 3 × 3 matrices denoted by S3×3.
We phrase some of our results for real symmetric d× d matrices and then use
the symbol Sd×d. The space of real symmetric d × d matrices whose trace is
an arbitrary (but fixed) constant c is denoted by Sd×dc .

We introduce an inner product 〈·, ·〉 on Sd×d by Sd×d 3 A,B 7→ 〈A,B〉 =
Tr(AB); the norm induced by this inner product is ‖ · ‖.
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For e1, e2 ∈ Sd×d we set

(e1, e2) := {λe1 + (1− λ)e2 | λ ∈ (0, 1)},
[e1, e2] := {λe1 + (1− λ)e2 | λ ∈ [0, 1]}.

By a direction in Sd×d we mean a one-dimensional affine subspace of Sd×d.
We denote the affine span of S ⊂ Sd×d by aff span(S), the relative boundary
of S ⊂ Sd×d by rel ∂S and its relative interior by rel intS.

2 Preliminaries

2.1 Strain compatibility

Definition 2.1 (Strain compatibility) Let e1, e2 ∈ S3×3 and S1, S2 ⊂
S3×3.

1. e1 is compatible with e2 (or e1 and e2 are compatible), e1 9 e2, if there
exist a, b ∈ R3 such that e1 − e2 = 1

2 (a ⊗ b + b ⊗ a), where ⊗ denotes the
dyadic product.

2. e1 is compatible with 0 (or compatible for short) if e1 9 0.
3. e1 is incompatible with e2 (or e1 and e2 are incompatible), e1��9e2, if e1 and
e2 are not compatible.

4. e1 is incompatible with 0 (or incompatible for short) if e1��90.
5. S1 is totally compatible with S2 (or S1 and S2 are totally compatible),
S1 9 S2, if for all e1 ∈ S1 and for all e2 ∈ S2, e1 9 e2.

6. S1 is compatible if S1 9 S1, i.e., if for all e1, e2 ∈ S1, e1 9 e2.
7. S1 is totally incompatible with S2 (or S1 and S2 are totally incompatible),
S1��9S2, if for all e1 ∈ S1 and for all e2 ∈ S2, e1��9e2.

We observe that [e1, e2] is compatible if and only if e1 9 e2. An alternative
term for compatibility is “symmetrised rank-one connectedness”.

In the figures compatible lines are represented by solid lines and incom-
patible lines by dashed lines, cf. eg. Figure 4.1. The following lemma follows
immediately from [Koh91, Lemma 4.1].

Lemma 2.2 (Compatibility in S3×3c ) Let e1, e2 ∈ S3×3c . Then e1 9 e2 iff
det(e1 − e2) = 0.

Definition 2.3 (Compatible cone) Let S ⊂ S3×3c and x ∈ S. The compat-
ible cone in S at x is the set

ΛS,x := {y ∈ S | y 9 x}.

When 0 ∈ S we set ΛS := ΛS,0.

Note that the compatible cone ΛS,x is an affine cone with vertex x in the
linear algebraic sense, i.e., it is closed under multiplication by positive reals.
However, the compatible cone is not geometrically a cone.
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2.2 Convex sets

We recall some elementary definitions and results from convex analysis. For
more details see, eg. [Roc96].

Let E be a subset of a vector space. We denote the convex hull of E by
C(E).

Definition 2.4 (Extreme subsets of convex sets) Let S ⊂ Rd be convex.
Then S′ ⊆ S is an extreme subset of S if S′ is convex and satisfies: If x, y ∈ S
and ∃λ ∈ (0, 1) such that λx+ (1− λ)y ∈ S′, then x, y ∈ S′.

Of special interest to us are convex polytopes which are convex hulls of
finite sets. Definition 2.5 and Remark 2.6 suffice for us. For an introduction
to convex polytopes we refer the reader to, eg. [Bar03,Brø82,Ewa96,Grü03,
Gru07,Zie94].

Definition 2.5 (Vertices, edges and facets of convex polytopes) The
vertices of a convex polytope are its extreme points, its edges are its one-
dimensional extreme subsets and its facets are its extreme subsets with co-
dimension one.

Let E be a finite set. We denote the set of n-dimensional extreme subsets of
C(E) by Fn(E). Thus the set of vertices of C(E) is F0(E), the set of its edges
is F1(E), and the set of facets is Fdim(C(E))−1(E) and Fdim C(E)(E) = {C(E)}.

Remark 2.6 For S ∈ Fn(E), n = 1, . . . ,dim(C(E)), the relative boundary
rel ∂S is a union of elements of Fn−1(E).

2.3 Semi-convex functions and sets

Next we recall some elementary definitions and results about semi-convex func-
tions and sets. For more details see, eg. [Mül99,Dac07]. Since we work in the
context of Sd×d (as opposed to Rd×d) we have appended the qualifier “sym-
metrised” to the various notions of semi-convexity. The qualifier “symmetric”
is also used in the literature.

The term “symmetrised rank-one convex” (Defintion 2.8 below) might be
misleading in that the matrices involved need not be of rank one but rather are
the symmetric parts of rank-one matrices. An alternative name could be “wave-
cone convex”, because the symmetric tensor products form the wave cone of
a second-order linear differential operator whose kernel are the symmetrised
gradients [Tar79,Mur07].

Definition 2.7 (Semi-convex functions)

1. f : Sd×d → R is symmetrised rank-one convex if for all λ ∈ [0, 1]

f(λe1 + (1− λ)e2) 6 λf(e1) + (1− λ)f(e2) ∀e1, e2 ∈ Sd×d with e1 9 e2.
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2. A locally-bounded Borel function f : Sd×d → R is symmetrised quasiconvex
if for an open and bounded set U ⊂ Rd with |∂U | = 0 one has

f(e) 6
1

|U |

∫
U

f(e+Dsϕ) dx ∀ϕ ∈W 1,∞
0 (U,Rd),

whenever the integral on the right hand side exists, where Dsϕ is the
symmetrised gradient of ϕ.

Definition 2.8 (Semi-convex sets) Let E be a compact set in Sd×d.

1. The symmetrised quasiconvex hull of E is defined as

Q(E) := {e ∈ Sd×d | f(e) 6 sup
e′∈E

f(e′) ∀f : Sd×d → R quasiconvex}.

2. The symmetrised rank-one convex hull of E is defined as

R(E) := {e ∈ Sd×d | f(e) 6 sup
e′∈E

f(e′)

∀f : Sd×d → R symmetrised rank-one convex}.

3. The symmetrised lamination convex hull of E, L(E), is the smallest set

Ẽ ⊇ E such that e1, e2 ∈ Ẽ and e1 9 e2 implies that [e1, e2] ⊂ Ẽ.

We note that symmetrised lamination convex hulls can be constructed as
follows: For n ∈ N0, let

L0(E) := E,

Ln+1(E) := {e | ∃e1, e2 ∈ Ln(E), e1 9 e2, e ∈ [e1, e2]} .

Then,

L(E) =
⋃
n∈N0

Ln(E).

Symmetrised rank-one convex hulls also have an alternate characterisation
(cf. eg. [Kre03, Lemma 2.5]):

R(E) := {e ∈ Sd×d | f(e) = 0∀f : Sd×d → [0,∞)

symmetrised rank-one convex with f(E) = {0}}. (2.1)

We shall repeatedly use Remark 2.9 and Lemma 2.10 without explicitly
citing them:

Remark 2.9 L(E) ⊆ R(E) ⊆ Q(E) ⊆ C(E).

Lemma 2.10 ([Bha93, Section 3.4.1, p. 231]) Let E ⊂ Sd×d be finite and
compatible. Then L(E) = C(E).
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In particular,

∀x, y ∈ S3×3c , R({x, y}) =

{
[x, y] if x 9 y,

{x, y} else.
(2.2)

Lemma 2.10 however is too weak for our purposes; we present a sharp
version [Zha06, p.38][TZ08, p.1266]:

Theorem 2.11 Let E ⊂ Sd×d be finite. Then L(E) = C(E) if and only if
every edge of C(E) is compatible, i.e., if and only if

∀e1, e2 ∈ E, e1��9e2 =⇒ [e1, e2] /∈ F1(E).

Proof Necessity. Let [e1, e2] ∈ F1(E) with e1��9e2. We show that (e1, e2) 6⊂
L(E):

Let e ∈ [e1, e2] and e ∈ L(E). Then ∃n ∈ N finite, f1, f2 ∈ Ln(E) such
that e ∈ [f1, f2]. However by extremality of [e1, e2], f1, f2 ∈ [e1, e2]. Applying
the same argument to f1 and f2 we conclude that in fact e ∈ L({e1, e2}) but
from (2.2), L({e1, e2}) = {e1, e2}. Thus e ∈ [e1, e2] and e ∈ L(E) =⇒ e ∈
{e1, e2}.

Sufficiency. Let every edge of C(E) be compatible. We show by induction
that

S ∈ Fn(E) =⇒ S ⊆ Ln(E). (Pn)

for n = 0, 1, . . . ,dim(C(E)). Since (Pdim(C(E))) is the statement that C(E) ⊆
L(E), the result follows from Remark 2.9.

(P0) is trivially true since e ∈ F0 implies e ∈ E and thus e ∈ L0(E); (P1)
is true since every edge of C(E) is compatible by assumption. Now let (Pn) be
true for some fixed n = 1, . . . ,dim(C(E))− 1. We show that (Pn+1) is true:

Let S ∈ Fn+1(E) and e ∈ S. If e ∈ rel ∂S, then e is contained in an element
of Fn(E) (Remark 2.6) and thus, by the inductive hypothesis, e ∈ Ln(E) ⊂
Ln+1(E). We consider the case e ∈ rel intS:

Pick v ∈ F1(E)∩rel ∂S. We view v as a vector in Sd×d. Since S is bounded,
the inclusion

e+ λv ∈ rel ∂S, λ ∈ R,

has two solutions λ− < 0 and λ+ > 0. Note that (e + λ+v) − (e + λ−v) is
parallel to v, which is compatible (by assumption). Thus e+λ±v ∈ Ln(E) (by
(Pn)), e+ λ−v 9 e+ λ+v and

e =
λ+

λ+ − λ−
(e+ λ−v) +

−λ−
λ+ − λ−

(e+ λ+v).

It follows that e ∈ Ln+1(E) and thus S ⊆ Ln+1(E).
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3 The compatible cone in two-dimensional affine subspaces of S3×3
c

Our first task is to characterise, both geometrically (Lemma 3.1) and alge-
braically (Remark 3.7), the symmetrised rank-one convex cone in two-dimensional
affine subspaces of S3×3c .

Lemma 3.1 Let S be a two-dimensional subspace of S3×3c . Then either

1. S contains precisely one, two or three compatible directions, or
2. S is compatible.

Proof Let {e1, e2} be a basis for S. By Lemma 2.2, an arbitrary non-zero
element of S, xe1 + ye2, (x, y) 6= 0, is compatible iff

det(xe1 + ye2) = 0.

This is equivalent to

x3 det(e1) + x2y〈cof(e1), e2〉+ xy2〈e1, cof(e2)〉+ y3 det(e2) = 0, (3.1)

where cof(e) is the cofactor of e:

cof

e11 e12 e13e21 e22 e23
e31 e32 e33


=

 e22e33 − e32e23 − (e21e33 − e31e23) e21e32 − e31e22
− (e12e33 − e32e13) e11e33 − e31e13 − (e11e32 − e31e12)
e12e23 − e22e13 − (e11e23 − e21e13) e11e22 − e21e12

T

.

If the polynomial in (3.1) is the zero-polynomial (i.e., det(e1) = 0, 〈cof(e1), e2〉 =
0 etc.) then S is compatible. Otherwise:

If either det(e1) = 0 or det(e2) = 0 then (3.1) has one or two solutions
(x, y) 6= 0 and thus S contains one or two compatible directions. Assume on
the contrary that both det(e1) and det(e2) 6= 0. Since (x, y) 6= 0, dividing (3.1)
by either x3 or y3 we obtain a polynomial (in either x

y or y
x ) which, being cubic,

has one, two or three distinct real roots. Thus S contains one, two or three
compatible directions.

Corollary 3.2 Let S be a subspace of S3×3c with dim(S) > 1. Then S contains
at least one compatible direction.

The following examples show that each of the possibilities referred to in
Lemma 3.1 can occur:

Example 3.3 (One compatible direction)
The determinant of these matrices is proportional to x(x2 + y2) so the

compatible direction is x = 0:
x 0 0

0 x y
0 y −2x

∣∣∣∣∣∣x, y ∈ R

 .
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The determinant of these matrices is proportional to x3 so the compatible
direction is x = 0: 

y x x
x −y x
x x 0

∣∣∣∣∣∣x, y ∈ R

 .

Example 3.4 (Two compatible directions) The determinant of these matrices
is proportional to xy2 so the two compatible directions are x = 0 and y = 0:

x 0 0
0 −x y
0 y 0

∣∣∣∣∣∣x, y ∈ R

 .

Example 3.5 (Three compatible directions)
The determinant of these matrices is proportional to xy(x+y) so the three

compatible directions are x = 0, y = 0 and x = −y:
x 0 0

0 y 0
0 0 −x− y

∣∣∣∣∣∣x, y ∈ R

 .

The determinant of these matrices is proportional to x(x2 − y2) so the three
compatible directions are x = 0, x = y and x = −y:

−2x 0 0
0 x y
0 y x

∣∣∣∣∣∣x, y ∈ R

 .

Example 3.6 (Compatible (two-dimensional) plane)
0 0 0

0 x y
0 y −x

∣∣∣∣∣∣x, y ∈ R

 ,


0 x y
x 0 0
y 0 0

∣∣∣∣∣∣x, y ∈ R

 .

We note that Lemma 3.1 follows also from the following characterisation
of real homogeneous cubic polynomials in two variables:

Remark 3.7 A homogeneous cubic polynomial on R2 can, by an appropri-
ate choice of basis, be written in precisely one of the five following forms cf.
eg. [Gur64, Sec.23, p.263-6 ],[Wei88] or [Olv99, p.28]:

1. x(x2 + y2),
2. x3,
3. xy2,
4. xy(x+ y) or, equivalently, x(x2 − y2),
5. 0.

The examples above illustrate these possibilities.

Lemma 3.1 shows that from the perspective of symmetrised rank-one con-
vexity there are four kinds of two-dimensional affine subspaces of S3×3c , namely
those for which the compatible cone is
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1. a line,
2. the union of two (distinct) lines,
3. the union of three (distinct) lines, and
4. the subspace itself.

The next step is to investigate compatible hulls in these subspaces. Cases (1)
and (4) are the simplest: In Case (1) compatible hulls are obtained by convex-
ifying in the compatible direction, in Case (4) compatible hulls are identical
to convex hulls.

Cases (2) and (3) are reminiscent of separate convexity in R2 [Tar93,Kre03]:
Symmetrised rank-one convexity is geometrically identical to separate convex-
ity in R2 in Case (2), and is similar to separate convexity in R2 in Case (3).
As an aside, the inclusion-minimal configurations [SJ05] in these situations are
either T3s or T4s as might be expected. Only T3s are relevant to our immediate
purposes so we discuss them in Section 4 and leave the rest for [CSc].

4 T3s

T3s occur when there are precisely three directions in the compatible cone.
Our definition is equivalent/identical to earlier definitions in the literature
such as [BFJK94][p. 855, (3.9) on p. 862 and Fig. 3.1b on p. 856].

Definition 4.1 (T3) Three points e1, e2, e3 ∈ S3×3c form a T3 if

1. They are pairwise incompatible, and
2. There exist e1,1 ∈ (e2, e3), e2,2 ∈ (e3, e1), e3,3 ∈ (e1, e2) such that ei,i 9 ei,
i = 1, 2, 3.

A schematic representation of a T3 is shown in Figure 4.1.

Remark 4.2 Note that span{e1−e1,1}, span{e2−e2,2} and span{e3−e3,3} are
distinct compatible directions. By Lemma 3.1 there are no others. It follows
that e1,1, e2,2 and e3,3 are unique.

Next we show that it is easy to check whether three points form a T3:

Lemma 4.3 Three points e1, e2, e3 ∈ S3×30 form a T3 if and only if

sign det(e1 − e2) = sign det(e2 − e3) = sign det(e3 − e1) 6= 0. (4.1)

Proof Let e1, e2, e3 ∈ S3×30 satisfy (4.1). From Lemma 2.2 it follows immedi-
ately that Definition 4.1(1) is satisfied. Consider the polynomial [0, 1] 3 λ 7→
det((λe1 + (1−λ)e2)− e3). By assumption, this polynomial has opposite signs
at 0 and 1. In conjunction with Lemma 2.2 this implies:

∃λ12 ∈ (0, 1), e3,3:= (λ12e1 + (1− λ12)e2) 9 e3. (4.2a)

Similarly,

∃λ23 ∈ (0, 1), e1,1:= (λ23e2 + (1− λ23)e3) 9 e1, (4.2b)

∃λ31 ∈ (0, 1), e2,2:= (λ31e3 + (1− λ31)e1) 9 e2. (4.2c)
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e2,3

e1,2

e3,3

e3

e2,2

e3,3

e1,1λ23

λ31

e2

λ31

e2,2

e3,1

λ12

e3 λ23 e1,1 e2

e1

e3,1

e1,2e2,3 λ12

e1

Fig. 4.1: Schematic representations of points forming T3s.

This shows that Definition 4.1(2) is satisfied. Thus {e1, e2, e3} forms a T3.
Conversely, assume that {e1, e2, e3} ⊂ S3×30 form a T3. Then, from Defini-

tion 4.1(1), sign det(e1 − e2), sign det(e2 − e3), sign det(e3 − e1) 6= 0. Suppose
it is not the case that sign det(e1 − e2) = sign det(e2 − e3) = sign det(e3 − e1).
Then, relabelling the points if necessary, we have

det(e1 − e3),det(e2 − e3) > 0. (4.3)

Now consider the cubic polynomial R 3 λ 7→ det((λe1 + (1 − λ)e2) − e3). By
assumption there are three compatible directions passing through e3, which
are parallel to [e1, e1,1], [e2, e2,2] and [e3, e3,3]; see Figure 4.1. Thus the cubic
polynomical has three distinct real roots, one in each of (−∞, 0), (0, 1) and
(1,∞). Thus each root is simple; it follows that the polynomial changes sign
around each root.

On the other hand from (4.3) the polynomial is positive at 0 and 1. It
follows that it has one further root in (0, 1), which is a contradiction. We
conclude that sign det(e1 − e2) = sign det(e2 − e3) = sign det(e3 − e1).

Definition 4.4 (Vertices of a T3) Let e1, e2, e3 ∈ S3×3c form a T3 as in
Definition 4.1. Then e1, e2, e3 are referred to as the vertices of this T3.

When e1, e2, e3 ∈ S3×3c form a T3 then their symmetrised rank-one convex
hull R({e1, e2, e3}) is (also) called a T3. The context will make clear whether
“T3” refers to the set of three strains {e1, e2, e3} or to their symmetrised rank-
one convex hull R({e1, e2, e3}).

It is known (cf., e.g., [BFJK94, §3]) that

R({e1, e2, e3}) ⊇ [e1, e1,2] ∪ [e2, e2,3] ∪ [e3, e3,1] ∪ C({e1,2, e2,3, e3,1}), (4.4)

where e1,2, e2,3, e3,1 are the nodes of the T3 (Definition 4.5 below), see Fig-
ure 4.2. However for the convenience of the reader we provide a proof of this
in Proposition 4.9 below.
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e3 e2

e1e1

e3 e2

e2,3

e3,1

e1,2

e2,3e3,1

e1,2

Fig. 4.2: Schematic representations of T3s, i.e. the rank-one convex hull of
three strains forming a T3.

Definition 4.5 (Nodes of a T3) Let e1, e2, e3 ∈ S3×3c form a T3. Let e1,1,
e2,2, e3,3 be as defined in (4.2a)–(4.2c). We define the nodes of the T3 to be
the three points

ei,j := [ei, ei,i] ∩ [ej , ej,j ], i 6= j, i, j = 1, 2, 3

(see Figure 4.1).

From Definition 4.1(2) the nodes of a T3 are pair-wise compatible and ei,j
is compatible with ei and ej .

Later we will encounter symmetric T3s and similar T3s as defined below:

Definition 4.6 (Symmetric T3s) Let e1, e2, e3 ∈ S3×3c form a T3. Let λ12,
λ23, λ31 be as defined in (4.2a)–(4.2c). Then the T3 is symmetric if λ12 =
λ23 = λ31.

The following remark is elementary but we explicitly state it since it arises
frequently in applications (cf. Section 7):

Remark 4.7 Let R ∈ SO(3) such that R3 is the identity. Let e1 ∈ S3×3c ,
e2 := RT e1R and e3 := RT e2R. Then det(e1−e2) = det(e2−e3) = det(e3−e1)
and if this is non-zero then e1, e2, e3 form a symmetric T3.

Definition 4.8 (Similar T3s) Let e1, e2, e3 ∈ S3×3c and e′1, e
′
2, e
′
3 ∈ S3×3c

form T3s. Let λij , λ
′
ij , i 6= j, i, j = 1, 2, 3 be defined as in (4.2).

1. We say that these T3s are similar if, for some permutation σ : {1, 2, 3} →
{1, 2, 3}, λ′12 = λσ(1)σ(2), λ

′
23 = λσ(2)σ(3) and λ′31 = λσ(3)σ(1).

2. Corresponding points in these T3s are points with the same barycentric
coordinates: For µ1, µ2, µ3 ∈ [0, 1],

∑3
i=1 µi = 1, µ1e1 + µ2e2 + µ3e3 and

µ1e
′
σ(1) +µ2e

′
σ(2) +µ3e

′
σ(3) are corresponding points where σ is the permu-

tation in item (1) above.
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We now prove (4.4):

Proposition 4.9 Let e1, e2, e3 ∈ S3×3c form a T3. Then

R({e1, e2, e3}) ⊇ [e1, e1,2] ∪ [e2, e2,3] ∪ [e3, e3,1] ∪ C({e1,2, e2,3, e3,1}). (4.4)

Proof We use the same strategy as [Kre03, Proposition 2.7]. Let e1,2, e2,3, e3,1
be related to e1, e2, e3 as in the left-hand side of Figures 4.1 and 4.2; the proof
in the other case is similar.

Let f be non-negative, symmetrised rank-one convex and vanish on {e1, e2, e3}.
Since e1 9 e1,2, it follows from the convexity of f on [e1, e1,2] that f(e1,2) >
f(e3,1). Similarly, since e2 9 e2,3, it follows that f(e2,3) > f(e1,2). Finally from
e3 9 e3,1 it follows that f(e3,1) > f(e2,3). In other words, f(e2,3) > f(e1,2) >
f(e3,1) > f(e2,3). We conclude that f(e2,3) = f(e1,2) = f(e3,1) = f(e2,3).
But since f(e1) = 0, convexity of f on [e1, e1,2] shows that in fact f(e1,2) =
f(e2,3) = f(e3,1) = 0. From (2.1) we conclude that

[e1, e1,2] ∪ [e2, e2,3] ∪ [e3, e3,1] ⊂ R({e1, e2, e3}).

The last step is to notice that since e1,2, e2,3, e3,1 are pair-wise compatible,
from Lemma 2.10,

C({e1,2, e2,3, e3,1}) ⊂ R({e1, e2, e3}),

which completes the proof.

We end this section by giving an example of the utility of two-dimensional
results in higher dimensions.

Lemma 4.10 (A three-dimensional continuum of T3s) Let e1, e2, e3 ∈
S3×3c form a T3. Let e0 ∈ S3×3c such that ei 9 e0 for i = 1, 2, 3. For λ ∈ R and
i = 1, 2, 3 let

eλi := λe0 + (1− λ)ei.

Then eλ1 , e
λ
2 , e

λ
3 also form a T3 and⋃

λ∈[0,1]

R({eλ1 , eλ2 , eλ3}) ⊆ R({e0, e1, e2, e3}) (4.5)

which, when e0 /∈ aff span{e1, e2, e3}, is a three-dimensional continuum of T3s.

Proof Let λ ∈ (0, 1) and i = 1, 2, 3. Since e09ei it follows that eλi ∈ L({e0, e1, e2, e3}).
Since sign det(eλi −eλj ) = sign det(ei−ej), i, j = 1, 2, 3, it follows that eλ1 , e

λ
2 , e

λ
3

form a T3. The result follows.
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e0

e1 e2

e3

λe0 + (1− λ)e2

λe0 + (1− λ)e3
λe0 + (1− λ)e1

Fig. 4.3: The three-dimensional continuum of T3s described in Lemma 4.10.

5 The transformation strains of Monoclinic-I martensite

In this and the next section we prepare to apply the results of the preceding
sections to monoclinic-I martensite by exploring first the symmetry and the
geometry of this material.

We denote the transformation strains of the twelve variants of cubic-to-
monoclinic-I martensite, listed in Table 5.1, by

e(i) ∈ E := {e(i) | i ∈ I},
I := {1, 2, . . . , 12}

or simply by i ∈ I if the meaning is clear from the context. The transformation
strains involve four lattice parameters α, β, ε and δ. These have been chosen
such that ε > 0 and δ > 0. Typical lattice parameters are listed in Table 5.2.
Note that Tr e = 2α+ β for e ∈ E ; thus E ⊂ S3×32α+ β .

Compatibility. Compatibility and incompatibility between the transformation
strains is of critical importance to us. A simple calculation [CSa, Compatibil-
ity.nb] shows that for e, f ∈ E ,

det(e− f) ∈
{

0,±4ε
(
(α− β)δ + ε2 − δ2

)}
, (5.1)

which gives the compatibility/incompatibility of the strains by Lemma 2.2.
Note that if the material parameters happen to be such that (α − β)δ +

ε2−δ2 = 0 then all strains in E are pairwise compatible. Then by Lemma 2.10,
L(E) = C(E). (In this case the material is able to form many more twins than
usual [PZ98].)

Pairs of compatible and incompatible transformation strains in E are listed
in Table 5.3. Here and henceforth (including in Mathematica calculations) we
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i e(i) i e(i) i e(i) i e(i)

1

α δ ε
δ α ε
ε ε β

 2

 α δ −ε
δ α −ε
−ε −ε β

 3

 α −δ −ε
−δ α ε
−ε ε β

 4

 α −δ ε
−δ α −ε
ε −ε β



5

α ε δ
ε β ε
δ ε α

 6

 α −ε δ
−ε β −ε
δ −ε α

 7

 α −ε −δ
−ε β ε
−δ ε α

 8

 α ε −δ
ε β −ε
−δ −ε α



9

β ε ε
ε α δ
ε δ α

 10

 β −ε −ε
−ε α δ
−ε δ α

 11

 β −ε ε
−ε α −δ
ε −δ α

 12

 β ε −ε
ε α −δ
−ε −δ α


Table 5.1: The transformation strains of the twelve variants of monoclinic-I
martensite, cf. eg. [BK97, Table 1, p. 119].

α β δ ε Reference
NiTi 0.0243 -0.0437 0.0580 0.0427 [OSS71,KS81,HS99]
CuZr 0.0348 0.0229 0.1067 0.0929 [SS98a,SS98b]
TiNiCu 0.0232 -0.0410 0.0532 0.0395 [NSNS90]

Table 5.2: Typical lattice parameters for monoclinic-I martensite, cf. eg. [SB97,
Table 2, p. 5459] and [Bha03, p. 55 and 184].

assume that (α − β)δ + ε2 − δ2 6= 0 and, more generally, that the lattice
parameters are generic. We also assume that α 6= β, the (mathematical) reason
for this will become clear in Section 6. There we will also see that the case
ε = δ is special so we shall specifically consider this possibility.

i det(e(·) − e(i)) = 0 det(e(·) − e(i)) ≷ 0 det(e(·) − e(i)) ≶ 0
1 2, 3, 4, 5, 7, 9, 11 8, 12 6, 10
2 1, 3, 4, 6, 8, 10, 12 5, 9 7, 11
3 1, 2, 4, 5, 7, 10, 12 6, 11 8, 9
4 1, 2, 3, 6, 8, 9, 11 7, 10 5, 12
5 1, 3, 6, 7, 8, 9, 12 4, 11 2, 10
6 2, 4, 5, 7, 8, 10, 11 1, 9 3, 12
7 1, 3, 5, 6, 8, 10, 11 2, 12 4, 9
8 2, 4, 5, 6, 7, 9, 12 3, 10 1, 11
9 1, 4, 5, 8, 10, 11, 12 3, 7 2, 6

10 2, 3, 6, 7, 9, 11, 12 1, 5 4, 8
11 1, 4, 6, 7, 9, 10, 12 2, 8 3, 5
12 2, 3, 5, 8, 9, 10, 11 4, 6 1, 7

Table 5.3: Compatible and incompatible transformation strains [CSa, Compat-
ibility.nb]. The signs in the second and third columns depend on the material
parameters; the sign in the third column is opposite to the one in the second.

Distances. Also of importance is the distance between the transformation
strains [CSa, Distances.nb]:
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Observation 5.1 Every pair of incompatible transformation strains is equidis-
tant: For e, f ∈ E with e��9f ,

‖e− f‖2 = 2(α− β)2 + 4δ2 + 12ε2. (5.2a)

Remark 5.13 sheds more light on this.
However for pairs of compatible transformation strains the situation is

more complex: For e, f ∈ E with e 9 f and e 6= f ,

‖e− f‖2 ∈
{

16ε2, 8(δ2 + ε2), 2(α− β)2 + 4(δ − ε)2, 2(α− β)2 + 4(δ + ε)2
}
.

(5.2b)
Table 5.4 presents the full picture. (See also Remark 5.11.)

We exclude (until Section 8) the special case ε = δ for which, for e, f ∈ E
with e 6= f ,

‖e− f‖2 ∈
{

16ε2, 2(α− β)2, 2(α− β)2 + 16ε2
}
.

Note that in this case, we cannot anymore distinguish between compatible and
incompatible strains on the basis of the distance between them.

i ‖e(·) − e(i)‖2 ‖e(·) − e(i)‖2 ‖e(·) − e(i)‖2 ‖e(·) − e(i)‖2
= 16ε2 = 8(δ2 + ε2) = 2(α− β)2 + 4(δ − ε)2 = 2(α− β)2 + 4(δ + ε)2

1 2 3, 4 5, 9 7, 11
2 1 3, 4 8, 12 6, 10
3 4 1, 2 7, 10 5, 12
4 3 1, 2 6, 11 8, 9
5 6 7, 8 1, 9 3, 12
6 5 7, 8 4, 11 2, 10
7 8 5, 6 3, 10 1, 11
8 7 5, 6 2, 12 4, 9
9 10 11, 12 1, 5 4, 8

10 9 11, 12 3, 7 2, 6
11 12 9, 10 4, 6 1, 7
12 11 9, 10 2, 8 3, 5

Table 5.4: Distances between compatible transformation strains [CSa, Dis-
tances.nb].

Symmetry. Now that we have knowledge of the compatibilities and the dis-
tances between the transformation strains we are ready to analyse the sym-
metry between them:

Definition 5.2 (Symmetry and symmetry group)

1. A map τ : E → E is a symmetry of E if it preserves distance and compati-
bility in E . That is, ∀e, f ∈ E ,

‖e− f‖ = ‖τe− τf‖,
det(e− f) = ±det(τe− τf).

A symmetry group of E is a group of symmetries of E .
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2. Let n ∈ I \{1} and En be a set of subsets of E , all with cardinality n. That
is,

En ⊂ {S ⊂ E | #S = n} .

A map τ : En → En is a symmetry of En if it preserves distance and com-
patibility in En. That is, ∀S ∈ En, ∀e, f ∈ S,

‖e− f‖ = ‖τe− τf‖,
det(e− f) = ±det(τe− τf).

A symmetry group of En is a group of symmetries of En.

There are four sets that are of interest to us here. These are: (i) E itself,
(ii) E29, the set of pairs of compatible transformation strains, (iii) E2

�9
, the set

of pairs of incompatible transformation strains, and (iv) E3
�9

, the set of three-

tuples of incompatible transformation strains:

E29 := {{e, f} | e, f ∈ E , e 6= f, e 9 f} ,

E2
�9

:=
{
{e, f} | e, f ∈ E , e��9f

}
,

E3
�9

:=
{
{e, f, g} | e, f, g ∈ E , e��9f ��9g��9e

}
.

We characterise the symmetry of E and E29 in Lemma 5.10 and those of E2
�9

and

E3
�9

in Lemma 5.12 below. In order to do so we begin with some observations.

For further investigation of these sets see [CSb].

Observation 5.3 (S4 is a symmetry group of E) Since the transformation
strains in E are obtained through a phase transformation from a cubic crystal,
S4, the group of rotational symmetries of a cube, is a symmetry group of E .

This group and its action on E can be generated as follows: Let R1, R2 and
R3 be anticlockwise rotations of π

2 about the coordinate axes:

R1 =

1 0 0
0 0 −1
0 1 0

 , R2 =

 0 0 1
0 1 0
−1 0 0

 , R3 =

0 −1 0
1 0 0
0 0 1

 .

For i = 1, 2, 3, let ri be the map

S3×3 3 e 7→ rie := RieR
T
i . (5.3)

It is immediate that these are distance and determinant (and thus, compati-
bility) preserving: ∀i = 1, 2, 3, ∀e, f ∈ E ,

‖e− f‖ = ‖rie− rif‖, (5.4a)

det(e− f) = det(rie− rif). (5.4b)

Then {r1, r2, r3} generates S4. (In fact any two of r1, r2, r3 generate S4 but it
is convenient to retain all three.) The action of S4 on E is listed, eg. in [HS99,
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i 1 2 3 4 5 6 7 8 9 10 11 12
r1i 6 5 8 7 4 3 2 1 11 12 10 9
r2i 12 11 9 10 8 7 5 6 2 1 3 4
r3i 3 4 2 1 10 9 12 11 7 8 5 6

Table 5.5: The action of r1, r2, r3 on I.

Table 1, p. 2607] but their numbering of the transformation strains is different
from ours.

S4 is isomorphic to a group of permutations on I. We denote this group
too by S4; the images of r1, r2, r3 under this isomorphism are also denoted by
r1, r2, r3. Table 5.5 lists the action of r1, r2, r3 on I [CSa, Symmetry.nb].

Remark 5.4 Since S4 is the group of rotational symmetries of a cube, it is
natural and convenient to identify E (and I) with the edges of a cube as
shown in Figure 5.1. (We could also have identified them with the diagonals
of the faces.) Then r1, r2, r3 are anticlockwise rotations of π

2 along an axis
perpendicular to the face of the cube and passing through its centre.

From Table 5.3 we note that the four edges with which an edge is incom-
patible are precisely the four edges with which it shares a vertex. Thus,

1. The 24 elements of E2
�9

can be identified with the 24 corners of the faces of

a cube, and
2. The 8 elements of E3

�9
can be identified with the 8 corners of a cube.

Our next task is to show that E does not have the reflection symmetries of
a cube. We will accomplish this in Observation 5.9 below.

Definition 5.5 (Inversion) Let r0 be the permutation on I which inter-
changes 1 and 2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, and 11 and 12.

As can be seen from Figure 5.1, r0 is an inversion (reflection through the
centre) of the cube. This immediately shows both that r0 /∈ S4 and that
{r0, r1, r2, r3} generates S4×C2, the group of symmetries of a cube (including
reflections).

Remark 5.6 The permutation r0 corresponds to replacing ε with −ε in the
transformation strains (cf. Table 5.1).

Observation 5.7 Unlike r1, r2 and r3, r0 cannot be identified with a linear
operator on S3×32α+ β .
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Fig. 5.1: The oriented cube representing the symmetries of E [CSa, Symme-
try.nb].

Proof Assume, on the contrary, that there exists L : S3×32α+ β → S
3×3
2α+ β , linear,

such that ∀i ∈ I, Le(i) = e(r0i). Then,

L
(
e(1) + e(2) + e(3) + e(4)

)
= e(1) + e(2) + e(3) + e(4)

=⇒ L

α 0 0
0 α 0
0 0 β

 =

α 0 0
0 α 0
0 0 β

 ,

L
(
e(5) + e(6) + e(7) + e(8)

)
= e(5) + e(6) + e(7) + e(8)

=⇒ L

α 0 0
0 β 0
0 0 α

 =

α 0 0
0 β 0
0 0 α

 ,

L
(
e(9) + e(10) + e(11) + e(12)

)
= e(9) + e(10) + e(11) + e(12)

=⇒ L

β 0 0
0 α 0
0 0 α

 =

β 0 0
0 α 0
0 0 α

 .
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Thus (i) L is an identity on the diagonal components of S3×32α+ β . Moreover

L
(
e(1) + e(3)

)
= e(2) + e(4) =⇒ L

α 0 0
0 α ε
0 ε β

 =

α 0 0
0 α −ε
0 −ε β

 ,

L
(
e(5) + e(8)

)
= e(6) + e(7) =⇒ L

α ε 0
ε β 0
0 0 α

 =

 α −ε 0
−ε β 0
0 0 α

 ,

L
(
e(9) + e(11)

)
= e(10) + e(12) =⇒ L

β 0 ε
0 α 0
ε 0 α

 =

 β 0 −ε
0 α 0
−ε 0 α

 .

Thus (ii) L is a negative of the identity on the off-diagonal components of
S3×32α+ β .

It is easy to check that (i) and (ii) are contradictory, eg. Le(1) = e(2).

Now we address the question of whether r0 is a symmetry of E :

Observation 5.8 (Inversions preserve compatibility) As can be veri-
fied [CSa, Symmetry.nb] from Table 5.3 and (5.1), r0 is compatibility preserv-
ing: ∀e, f ∈ E ,

det(e− f) = −det(r0e− r0f).

Observation 5.9 (Effect of inversions on distance) From Observation 5.1
and Remark 5.6 it follows that r0 is distance-preserving on pairs of incompat-
ible transformation strains. However it is distance-preserving only on some
pairs of compatible transformation strains: For e, f ∈ E ,

‖e−f‖2 = ‖r0e−r0f‖2 ⇐⇒ ‖e−f‖2 6= 2(α−β)2+4(δ±ε)2. (5.5)

This is easy to verify in view of the following: Let e, f ∈ E with e 9 f . Then,

‖e− f‖2 =


16ε2 if e = r0f,

8δ2 + 8ε2 if ∃i ∈ {1, 2, 3}, e = rif,

2(α− β)2 + 4(δ ± ε)2 else.

(5.6)

(The middle case corresponds to parallel edges of the cube that share a face.)

Thus r0 is not a symmetry of E nor is it a symmetry of E29. In the light of

Observation 5.3 we conclude that E and E29 have the rotation symmetries of a
cube but not its reflection symmetries:

Lemma 5.10 S4 is a symmetry group of E and E29, whereas S4 ×C2 is not a

symmetry group of E or E29.

Remark 5.11 From (5.2b) we deduce that the orbits of S4 partition E29 into

four equivalence classes. (Equation (5.6) relates this to the edges of a cube.)
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Observations 5.1, 5.3 and 5.8 show that E2
�9

and E3
�9

have the symmetries of

a cube:

Lemma 5.12 S4 × C2 is a symmetry group of E2
�9

and of E3
�9

.

Remark 5.13 From Remark 5.4(1) it is clear that S4 ×C2 (or indeed S4) acts
transitively on E2

�9
, i.e., the orbit of any element of E2

�9
under S4×C2 equals E2

�9
.

This explains Observation 5.1. Likewise, from Remark 5.4(2) it is clear that
S4 × C2 (or indeed S4) acts transitively on E3

�9
.

6 The convex polytope formed by the transformation strains

In this section we study C(E), the convex hull of E , which is a five-dimensional
polytope [CSa, Dimension.nb], when, as we have assumed, α 6= β (otherwise
it is a three-dimensional polytope). We are interested in the facets of C(E).
However the vertices and edges of C(E) are also of interest and we begin with
them.

For convenience we set Λ = {λ ∈ [0, 1]12,
∑12
i=1 λi = 1}. The following

linear functionals will be helpful in studying C(E):

Definition 6.1 The linear functionals Hi : S3×3 → R, i = 0, 1, 2, 3, are de-
fined by

H0 e = −e12 − e23 − e31,
H1 e = H0 r1e = −e12 + e23 + e31,

H2 e = H0 r2e = e12 − e23 + e31,

H3 e = H0 r3e = e12 + e23 − e31;

and Hij : S3×3 → R, i, j = 1, 2, 3, by

Hij e = eij ,

where eij denotes the (i, j)-component of the matrix e.

For the convenience of the reader we summarise the images of the transforma-
tion strains under the functionals Hi, i = 0, 1, 2, 3, in Table 6.1. We also list
the extremisers of these functionals; note that the extremisers when ε = δ are
the union of the extremisers when ε < δ and when ε > δ.

Vertices. The vertices of C(E) are the transformation strains:

Lemma 6.2 The set of vertices of C(E) is E.

Proof We show this explicitly for e(1), the proof for the other vertices follows
from symmetry.
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i H0 e(i) H1 e(i) H2 e(i) H3 e(i)

1 −δ − 2ε −δ + 2ε δ δ
2 −δ + 2ε −δ − 2ε δ δ
3 δ δ −δ − 2ε −δ + 2ε
4 δ δ −δ + 2ε −δ − 2ε
5 −δ − 2ε δ δ −δ + 2ε
6 −δ + 2ε δ δ −δ − 2ε
7 δ −δ + 2ε −δ − 2ε δ
8 δ −δ − 2ε −δ + 2ε δ
9 −δ − 2ε δ −δ + 2ε δ
10 −δ + 2ε δ −δ − 2ε δ
11 δ −δ + 2ε δ −δ − 2ε
12 δ −δ − 2ε δ −δ + 2ε

i 7→ H0 e(i) i 7→ H1 e(i) i 7→ H2 e(i) i 7→ H3 e(i)

minimisers 1,5,9 2,8,12 3,7,10 4,6,11

Maximisers i 7→ H0 e(i) i 7→ H1 e(i) i 7→ H2 e(i) i 7→ H3 e(i)

When ε < δ 3,4,7,8,11,12 3,4,5,6,9,10 1,2,5,6,11,12 1,2,7,8,9,10
When ε = δ I \ {1, 5, 9} I \ {2, 8, 12} I \ {3, 7, 10} I \ {4, 6, 11}
When ε > δ 2,6,10 1,7,11 4,8,9 3,5,12

Table 6.1: The images of the transformation strains under the linear functionals
Hi, i = 0, 1, 2, 3, along with their extremisers [CSa, Linear Functionals.nb].

Let λ ∈ Λ such that e(1) =
∑12
i=1 λie

(i). Then,

β = H33e
(1) =

12∑
i=1

λiH33e
(i) =

4∑
i=1

λiβ +

12∑
i=5

λiα,

from which we conclude that λi = 0 for i = 5, . . . , 12 and thus e(1) =∑4
i=1 λie

(i). Now, using H0 we obtain

−δ − 2ε = H0e
(1) =

4∑
i=1

λiH0e
(i).

Since ε, δ > 0 it is easy to see (cf. Table 6.1) that λ1 = 1 and λi = 0, i = 2, 3, 4.
We conclude that e(1) is a vertex.

In the interest of brevity in future proofs of extremality of subsets we will
only name the relevant family of four-dimensional hyperplanes, eg. for the
above lemma we would say that this follows from H33 and H0.

Edges. Contrary to what we are used to in two and three dimensions (see
Remark 6.4 below), the convex hull of every pair of vertices is an edge of C(E):

Lemma 6.3 The set of edges of C(E) is {[e, f ] | e, f ∈ E}.
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Henceforth, a compatible edge is the convex hull of a pair of compatible
vertices, and an incompatible edge is the convex hull of a pair of incompatible
vertices.

We prove Lemma 6.3 here except for incompatible edges when ε > δ. In
Remark 6.10 we present a Mathematica-aided proof which is valid for ε 6= δ.

Proof (for compatible edges and, when ε 6 δ, for incompatible edges) By sym-
metry it suffices to prove that the eleven edges [e(1), e(i)], i ∈ I \ {1}, are
extremal.

This is easy to verify for the compatible edges: For example, H33 and H12

show that [e(1), e(2)] is extremal. The proof for the other compatible edges
(with e(1) as a vertex) is similar.

We now turn to the incompatible edges, for example [e(1), e(6)]. Let µ ∈
[0, 1] and λ ∈ Λ such that

µe(1) + (1− µ)e(6) =

12∑
i=1

λie
(i).

Consider first the case ε < δ. Then H11 and H2 show that in fact

µe(1) + (1− µ)e(6) =
∑

i∈{1,2,5,6}

λie
(i).

However dim aff span{e(1), e(2), e(5), e(6)} = 3 [CSa, Dimension Calculations.nb]
and thus
C({e(1), e(2), e(5), e(6)}) is a three-dimensional tetrahedron. It follows that λ5 =
λ2 = 0 and thus [e(1), e(6)] is extremal.

Next consider the case ε = δ. Then H11, H13, H1 and H2 show that in fact

µe(1) + (1− µ)e(6) =
∑

i∈{1,5,6}

λie
(i).

However dim aff span{e(1), e(5), e(6)} = 2 [CSa, Dimension Calculations.nb]
and thus
C({e(1), e(5), e(6)}) is a triangle. It follows that λ5 = 0 and thus [e(1), e(6)] is
extremal.

The extremality of the other incompatible edges (with e(1) as a vertex)
follows from symmetry.

Remark 6.4 In dimensions less than four the only polytopes for which the con-
vex hull of every pair of vertices is an edge are the n-tetrahedra (line segments,
triangles and tetrahedra in dimensions one, two and three, respectively). How-
ever for every n > 3 and every d > n there exists an n-dimensional convex
polytope with d vertices for which the convex hull of every pair of vertices is
extremal. See, eg. [Brø82, Section 13], [Ewa96, Section 3] or [Zie94, Corollary
0.8].
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The facets of C(E). The algorithm we use to determine the facets of C(E) is
as follows [CSa, Faceting.nb]. It assumes that the affine span of the set is
five-dimensional, that the cardinality of the set is small and thus that compu-
tational efficiency is not a consideration.

Algorithm 6.5

1. First we form a set of all four-dimensional tetrahedra with vertices in E as
follows:

(a) Pick all five-tuples from E:

{S ⊂ E | #S = 5}.

(b) Discard those five-tuples whose affine span is not four dimensional:

G1 := {S ⊂ E | #S = 5,dim aff span(S) = 4}.

2. Of these tetrahedra we discard those whose convex hull is not contained in
∂C(E). We do this as follows:

(a) Let G2 = G1.
(b) Pick S ∈ G2.
(c) Translate the origin to some e ∈ S. (The next two steps are carried out

in this co-ordinate system.)
(d) Compute a normal n ∈ S3×32α+ β to aff span(S).
(e) If 〈n, e〉 has the same sign for all e ∈ E\S then C(S) ⊂ ∂C(E). Otherwise

remove S from G2

(f) Repeat steps (2b) to (2e) till all tetrahedra in G2 have been tested.
We now obtain

G2 = {S ⊂ E | #S = 5,dim aff span(S) = 4, C(S) ⊂ ∂C(E)}.

This is the set of all four-dimensional tetrahedra (with vertices in E) whose
union is ∂C(E).

3. The final step is to form the facets of C(E) by judiciously taking unions of
sets in G2 as follows:

(a) Let G3 = G2.
(b) Pick S1, S2 ∈ G3.
(c) If dim aff span(S1∪S2) = 4 then S1 and S2 are parts of the same facet.

In G3, replace S1 and S2 by S1 ∪ S2.
(d) Repeat steps (3b) and (3c) until every union of sets in G3 increases the

dimension, i.e., until it is true that

∀S1, S2 ∈ G3, dim aff span(S1 ∪ S2) = 4 =⇒ S1 = S2. (6.1)

This is the set of all the facets of C(E). Note that it is a set of n-tuples
where n > 5.
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The results of a Mathematica implementation of Algorithm 6.5 are sum-
marised in Observations 6.6, 6.7 and 6.8 below. These reveal that the facet
structure depends on whether ε < δ, ε = δ or ε > δ. All three possibilities
are realisable in that there exist cubic-to-monoclinic-I phase transformations
corresponding to each. (See, e.g., [Bha03, Fig. 4.3 and (4.11) on p. 52–53] for
the relationship between ε, δ and the unit cells of the cubic and monoclinic
lattices.) However, curiously ε < δ for all the monoclinic-I materials of which
we are aware, cf. Table 5.2; we return to this point in Section 8.

In the observations below, each group of facets is the orbit under S4 of any
facet in it [CSa, Facet Symmetry.nb]. Within each group the facets are listed
in lexical order. Facets that occur for both ε < δ and ε > δ are shown in bold
face.

Observation 6.6 (Monoclinic-Ia martensite, ε < δ) When ε < δ, the 25
four-dimensional facets of C(E) consist of the convex hulls of

1. 12 facets with 5 vertices each:

{1, 2, 3, 7, 10}, {1, 2, 4, 6, 11}, {1, 3, 4, 5, 9}, {1, 5, 7, 8, 9},
{1, 5, 9, 11, 12}, {2, 3, 4, 8, 12}, {2, 5, 6, 8, 12}, {2, 8, 9, 10, 12},
{3, 5, 6, 7, 10}, {3, 7, 10, 11, 12}, {4, 6, 7, 8, 11}, {4, 6, 9, 10, 11};

2. 4 pairs of T3s (see Section 7), each facet is invariant under r0:

{1, 2, 5, 6, 11, 12}, {1, 2, 7, 8, 9, 10}, {3, 4, 5, 6, 9, 10}, {3, 4, 7, 8, 11, 12}
(6.2)

3. 6 pairs of pairwise compatible three-tuples:

{1,2,5,8,9,12}, {1,3,5,7,9,10}, {1,4,5,6,9,11},
{2,3,7,8,10,12}, {2,4,6,8,11,12}, {3,4,6,7,10,11};

4. 3 facets with 8 vertices each; each facet is invariant under r0:

{1,2,3,4,5,6,7,8}, {1,2,3,4,9,10,11,12}, {5,6,7,8,9,10,11,12}.
(6.3)

Observation 6.7 (ε = δ) When ε = δ, the 7 four-dimensional facets of C(E)
consist of the convex hulls of

1. 4 facets with 9 vertices each:

{1, 2, 3, 5, 7, 8, 9, 10, 12}, {1, 2, 4, 5, 6, 8, 9, 11, 12},
{1, 3, 4, 5, 6, 7, 9, 10, 11}, {2, 3, 4, 6, 7, 8, 10, 11, 12}; (6.4)

2. 3 facets with 8 vertices each; each facet is invariant under r0:

{1,2,3,4,5,6,7,8}, {1,2,3,4,9,10,11,12}, {5,6,7,8,9,10,11,12}.
(6.3)

Observation 6.8 (Monoclinic-Ib martensite, ε > δ) When ε > δ, the 33
four-dimensional facets of C(E) consist of the convex hulls of
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1. 12 facets which are the images under r0 of the five-vertex facets that occur
when ε < δ:

{1, 2, 3, 5, 12}, {1, 2, 4, 8, 9}, {1, 3, 4, 7, 11}, {1, 5, 6, 7, 11},
{1, 7, 9, 10, 11}, {2, 3, 4, 6, 10}, {2, 6, 7, 8, 10}, {2, 6, 10, 11, 12},
{3, 5, 7, 8, 12}, {3, 5, 9, 10, 12}, {4, 5, 6, 8, 9}, {4, 8, 9, 11, 12};

2. 12 other five vertex facets (together these are invariant under r0):

{1, 3, 5, 9, 12}, {1, 3, 7, 10, 11}, {1, 4, 5, 8, 9}, {1, 4, 6, 7, 11},
{1, 5, 7, 9, 11}, {2, 3, 5, 8, 12}, {2, 3, 6, 7, 10}, {2, 4, 6, 10, 11},
{2, 4, 8, 9, 12}, {2, 6, 8, 10, 12}, {3, 5, 7, 10, 12}, {4, 6, 8, 9, 11};

3. 6 pairs of pairwise compatible three-tuples:

{1,2,5,8,9,12}, {1,3,5,7,9,10}, {1,4,5,6,9,11},
{2,3,7,8,10,12}, {2,4,6,8,11,12}, {3,4,6,7,10,11};

4. 3 facets with 8 vertices each; each facet is invariant under r0:

{1,2,3,4,5,6,7,8}, {1,2,3,4,9,10,11,12}, {5,6,7,8,9,10,11,12}.
(6.3)

Remark 6.9 The extremality of facets that are invariant under r0 can be veri-
fied as in the proof of Lemma 6.2: H11, H22, H33 show that the facets in (6.3)
are extremal. Hi, i = 0, 1, 2, 3, show that pairs of T3s in (6.2) are extremal
since ε < δ implies −δ − 2ε < −δ < δ − 2ε < δ < δ + 2ε.

In addition Hi, i = 0, 1, 2, 3, also show that the facets in (6.4) are extremal,
cf. Table 6.1. For the remaining facets extremality can be verified through a
computation of normals [CSa, Facet Normal.nb].

Remark 6.10 (Proof of Lemma 6.3 when ε 6= δ) Observations 6.6 and 6.8 lead
to a proof of Lemma 6.3 when ε 6= δ: Observe that every edge is shared by at
least four facets. (This is particularly easy to check for the incompatible edges:
Each incompatible edge is contained in precisely one facet from each group.)
It follows that every edge is extremal (cf. eg. [Bar03, Chapter 6] or the other
references listed in Section 2.2).

Remark 6.11 We remark that this phenomenon of polytope facet structure
depending on lattice parameters is not possible for the other martensites (i.e.,
cubic-to-tetragonal, cubic-to-trigonal and cubic-to-orthorhombic) because they
form n-tetrahedra (for n = 2, 3, 5, respectively) and thus their facet structure
is fixed.

7 Non-laminate microstructures in R(E)

In this section we use the results of the preceding sections to derive our central
results about non-laminate microstructures in monoclinic-I martensite. These
include T3 microstructures formed by the strains in E (Section 7.1) and T3
microstructures formed by the nodes of these T3s (Section 7.2).
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7.1 (Level-1) T3s and related microstructures

As mentioned earlier there are precisely eight 3-tuples of pairwise incompatible
vertices (cf. Table 5.3):

E3
�9

=
{
{e(1), e(6), e(12)}, {e(1), e(8), e(10)}, {e(2), e(5), e(11)}, {e(2), e(7), e(9)},

{e(3), e(6), e(9)}, {e(3), e(8), e(11)}, {e(4), e(5), e(10)}, {e(4), e(7), e(12)}
}
.

Since

sign det(e(1) − e(6)) = sign det(e(6) − e(12)) = sign det(e(12) − e(1)) 6= 0

and likewise for the other 3-tuples, cf. Table 5.3, we obtain by Lemma 4.3 that
each of these 3-tuples forms a T3. (See also Remark 5.13.)

Let vi,j,k = {e(i), e(j), e(k)} ∈ E3
�9

. We set

τi,j,k = R(vi,j,k),

T := {τi,j,k | vi,j,k ∈ E3
�9
}.

For τ ∈ T and r ∈ S4×C2 by rτ we mean the T3 formed by the image under
r of the vertices of τ . (The existence of such T3s follows from S4 ×C2 being a
symmetry group of E3

�9
as was shown in Lemma 5.12). The symmetry relations

between the T3s is illustrated in Figure 7.1. As we shall see (Example 7.3
below) each τ ∈ T is specially related to r0τ ; we refer to it as the dual of τ .

Before we proceed further we note that each of these eight T3s is symmetric
(Definition 4.6) and has distinct nodes (Definition 4.5). Moreover all eight T3s
are similar (Definition 4.8):

Lemma 7.1 All T3s in T are similar, and each is symmetric and has distinct
nodes.

Proof The symmetry of each T3 and the similarity of all T3s in T follow from
Remark 5.13.

Now consider the nodes of τ1,8,10. Suppose, on the contrary, that e1,8 =
e8,10 = e10,1. (Here we use the notation of Section 4.) Then, by symmetry, the
nodes coincide with the barycentre of the T3 which is 1

3

(
e(1) + e(8) + e(10)

)
.

However, an elementary calculation shows that this barycentre is incompatible
with e1, e8 and e10 which is a contradiction (cf. Definition 4.1). Thus τ1,8,10
has distinct nodes and by symmetry this is true for all eight T3s.

From Proposition 4.9 and symmetry it follows that the barycentre of each
v ∈ E3

�9
is contained in R(v).

From Observations 6.6 and 6.7, when ε 6 δ, each T3 in T along with its dual
is contained in a facet of C(E). In particular for each τ ∈ T , the symmetrised
rank-one convex hull of τ ∪ r0τ is contained in a facet of C(E) and is thus a
part of the boundary of the symmetrised rank-one convex hull of E :

R(τ ∪ r0τ) ⊂ ∂R(E). (7.1)
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r3

r2

τ1,8,10

τ1,6,12
τ3,6,9

τ3,8,11

τ2,7,9τ4,7,12

τ4,5,10 τ2,5,11

r3

r1r2

τ1,6,12 τ3,6,9

τ2,7,9

τ2,5,11

τ3,8,11

τ4,7,12

τ1,8,10

τ4,5,10

Fig. 7.1: The symmetry of the eight T3s.

Example 7.3 below reveals that R(τ ∪ r0τ) is four dimensional and that
each point in it can be attained by laminates of T3 microstructures. In other
words R(τ ∪ r0τ) contains a four-dimensional set of T3s. Before we show this
we first construct a three-dimensional set of T3s which lies in ∂R(E) when
ε 6 δ.

Example 7.2 (A three-dimensional set of T3s) Let τ ∈ T . From Table 5.3 the
elements of E with which all the vertices of τ are compatible are precisely
the vertices of r0τ . Following the construction introduced in Lemma 4.10, we
construct a three-dimensional set of T3s from τ and (any) one vertex from r0τ .
There are three such continua of T3s, one for each vertex of roτ . Analogously
there are three such sets constructed from r0τ and the vertices of τ .
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Note that this example shows that T3s exist not only in E but also in
L1(E)\E since the vertices of almost all of the T3s so constructed are themselves
attained by a lamination of strains in E . However in the next example the
construction of T3s precedes the construction of laminates:

Example 7.3 (A four-dimensional set of laminates of nodes of T3s) From each
τ ∈ T and its dual we construct a four-dimensional set of laminates of nodes
of T3s. We do this explicitly for τ1,8,10 and its dual τ2,7,9; the construction for
the other pairs is similar.

First we note that each point in one of these T3s is compatible with the
corresponding point (i.e., the point with the same barycentric coordinates) in
its dual. In fact this is true even after a cyclic permutation of the vertices:
∀x, y, z ∈ R,

xe(1)+ye(8)+ze(10) 9xe(2)+ye(9)+ze(7), xe(7)+ye(2)+ze(9), xe(9)+ye(7)+ze(2).

This is immediate from the calculation [CSa, Pair of Level-1 T3s.nb]:

det
(

(xe(1) + ye(8) + ze(10))− (xe(2) + ye(9) + ze(7))
)

= det
(

(xe(1) + ye(8) + ze(10))− (xe(7) + ye(2) + ze(9))
)

= det
(

(xe(1) + ye(8) + ze(10))− (xe(9) + ye(7) + ze(2))
)

= 0.

Thus, in particular, each node of τ1,8,10 is compatible with every node of τ2,7,9
(and vice versa). Since the nodes of a T3 are pair-wise compatible it follows
that these six nodes (i.e. in the notation of Section 4, e1,8, e8,10, e10,1, e2,9,
e9,7 and e7,2) are pair-wise compatible (see Figure 7.2, note that the figure is
schematic; in fact τ and r0τ share the same barycenter). We conclude that:

C({e1,8, e8,10, e10,1, e2,9, e9,7, e7,2}) ⊂ R({e1, e2, e7, e8, e9, e10}).

Each point in this convex hull is attained by a lamination of the nodes of τ1,8,10
and τ2,7,9. A simple Mathematica verification [CSa, Dimension.nb] shows that
this convex hull is four-dimensional. (Thus the maximum depth of lamination
required is also four, cf. proof of Theorem 2.11.)

Note that when ε 6 δ, from (7.1),

C({e1,8, e8,10, e10,1, e2,9, e9,7, e7,2}) ⊂ ∂R(E). (7.2)

7.2 Level-2 T3s and related microstructures

Next we construct new T3s from the nodes of the T3s in T . We refer to the
former T3s as Level-1 T3s and to the new T3s as Level-2 T3s. Level-2 T3s allow
us to construct a five-dimensional set of T3s, see Construction 7.5 below.
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r0τ

τ

Fig. 7.2: Schematic representation of the four-dimensional set of laminates of
nodes of T3s constructed in Example 7.3.

Construction 7.4 Let τ ∈ T and let τ1, τ2, τ3 ∈ T be chosen such that, in
Figure 7.1, the line joining τ and τi is an edge of the cube for i = 1, 2, 3
(thus τi = r±1j τ for some j = 1, 2, 3). Note that the set {τ1, τ2, τ3} is invariant
under any element of S4 that leaves {τ, r0τ} invariant (these are rotations of
2π
3 through the major diagonal formed by τ and r0τ). Let r be an element of

this group (i.e., one of two such rotations). Now let n1 be a node of τ1. Then
n1, rn1, r2n1 form a symmetric T3 with distinct nodes. Similarly for n2, rn2,
r2n2 and n3, rn3, r2n3. This is illustrated in Figure 7.3.

Proof We show that n1, rn1, r2n1 form a T3 explicitly for τ = τ3,8,11, τ1 =
τ1,8,10, τ2 = τ2,5,11 and τ3 = τ3,6,9; the result for the other 3-tuples follows by
symmetry.

Since n1 ∈ τ1,8,10, it has the barycentric representation xe(1)+ye(8)+ze(10)

for some x, y, z ∈ [0, 1] with x + y + z = 1. Then, as can be easily checked
(Table 5.5),

{rn1, r2n1} = {xe(5) + ye(11) + ze(2), xe(9) + ye(3) + ze(6)}.

(Note the order of the vertices.) It can be verified [CSa, Level-2 T3s.nb] that

det
(

(xe(1) + ye(8) + ze(10))− (xe(5) + ye(11) + ze(2))
)

= det
(

(xe(5) + ye(11) + ze(2))− (xe(9) + ye(3) + ze(6))
)

= det
(

(xe(9) + ye(3) + ze(6))− (xe(1) + ye(8) + ze(10))
)

6= 0.

Thus, by Lemma 4.3, Remark 4.7 and (5.3), n1, rn1, r2n1 form a symmetric T3.
(From Remark 4.7 it would have sufficed to check that one of the determinants
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n1

rn1

n2n3

r2n3

r2n2

rn3

rn2

r2n1

Fig. 7.3: Level-2 T3s.

above is non-zero.) To show that the nodes of this T3 are distinct it suffices
to check that the barycentre of the T3 is incompatible with (one of) its nodes
(cf. proof of Lemma 7.1). From [CSa, Level-2 T3s.nb]:

xe(1) + ye(8) + ze(10), xe(5) + ye(11) + ze(2), xe(9) + ye(3) + ze(6)

��9
1

3

(
(xe(1) + ye(8) + ze(10)) + (xe(5) + ye(11) + ze(2)) + (xe(9) + ye(3) + ze(6))

)
.

Which completes the proof.

Since there are eight choices of τ and three choices of n1 for each choice of
τ , by this construction we obtain 24 T3s.

Finally Example 7.3 and Construction 7.4 can be combined to construct
a five-dimensional set of T3s whose vertices are themselves laminates of nodes
of (level-1) T3s.
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Construction 7.5 Let τ ∈ T and let τ1, τ2, τ3 ∈ T and r ∈ S4 be as in Con-
struction 7.4 above. Let n1,i and n′1,i, i = 1, 2, 3 be the nodes of τ1 and its

dual respectively. Pick µi, µ
′
i ∈ [0, 1] such that

∑3
i=1 µi +

∑3
i=1 µ

′
i = 1 and let

p1 =

3∑
i=1

µin1,i +

3∑
i=1

µ′in
′
1,i.

Note that p1 is an element of the four-dimensional set constructed in Exam-
ple 7.3 and thus can be attained by a lamination of n1,i, n

′
1,i, i = 1, 2, 3. We

assert that p1, rp1, r2p1 form a symmetric T3. The union of the T3s as p1
varies yields a five-dimensional set. When ε 6 δ from (7.2), this set intersects
the boundary of the symmetrised rank-one convex hull of E .

Proof A Mathematica calculation [CSa, Level-2 T3s.nb] shows this explicitly
for τ1 = τ1,8,10, τ2 = τ2,5,11 and τ3 = τ3,6,9 (i.e., τ = τ3,8,11), the construction
for the other 3-tuples is similar.

To see that the set of T3s constructed here is five-dimensional, it suffices
to note that p1 is picked from a four-dimensional set which, not being closed
under r, does not contain the T3s formed by p1, rp1, r2p1. It follows that the
union of the T3s (as p1 varies) constructed here is a five-dimensional set.

It is natural at this point to ask whether the nodes of level-2 T3s form
level-3 T3 and, more generally, whether the nodes of level-n T3s from level-
(n + 1) T3s. We postpone these questions to [CSb] and instead conclude by
considering some implications of the results presented here.

8 Conclusions

8.1 Mathematical comments

While we have, in the later half of this paper, focused on monoclinic-I marten-
site, it is clear that our general strategy can, in principle, be applied to any
finite set in S3×3c ; indeed in [CSb] we apply it also to monoclinic-II martensite.
Here we briefly comment on the two main components of our strategy, namely
an understanding of the algebraic structure of symmetrised rank-one convex
cones, and an understanding of the polytope structure of the given set.

The algebraic structure of symmetrised rank-one convex cones. While we have
a complete understanding of symmetrised rank-one convexity in two-dimensions
(Sections 3 and 4, and [CSc]), the algebraic structure of symmetrised rank-one
convex cones is not yet sufficiently well understood in higher dimensions. A
key missing ingredient is a characterisation, in terms of canonical forms, of
real cubic polynomials in several variables. This problem in invariant theory
seems unsolved for three and more variables. The fruitfulness of our approach
in two-dimensions suggests that it might be valuable to more fully explore the
algebraic aspects of symmetrised rank-one convexity.
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When ε < δ we demonstrate the existence of T3s that attain points on the
boundary of C(E), more precisely, that attain points on the four-dimensional
facets of C(E). Though (as a Mathematica calculation [CSa, Facet-T3Pair.nb]
shows the T3s do not belong to the three-dimensional facets (of the four-
dimensional facets) of C(E), we suspect that the symmetrised rank-one convex
hull of monoclinic-I martensite is strictly larger than the lamination hull. If so,
the question arises as to how much larger it is. In terms of dimensions a per-
turbation argument shows that R(E)\L(E) would be at least two-dimensional.
In fact we suspect that it is full (i.e., five) dimensional.

Convex polytopes. Since the convex hull of any finite set is a convex polytope,
it is natural that an attempt to determine the semi-convex hull of a finite sets
takes advantage of the structure of the convex polytopes they generate. This
seems not to have been considered in the literature except for Theorem 2.11.
Lemma 6.3 and Remark 6.4 demonstrate the counter-intuitive behaviour of
high-dimensional polytopes and thus the usefulness of knowledge of the theory
of convex polytopes.

Moreover, when, as in the example of monoclinc-I martensite considered
here, the faceting structure of the polytope depends on the material param-
eters, it might be expected that qualitative features of the semi-convex hulls
and envelopes depend on the material parameters as well. If so, this heightens
the possible utility of these polytopes for evaluating semi-convex hulls and
envelopes.

8.2 Implications for mechanics

Two kinds of monoclinic-I martensite. Curiously, all cubic-to-monoclinic-I ma-
terials that we are aware of are monoclinic-Ia martensites (i.e., those for which
ε < δ), see Table 5.2. It is natural to ask whether monoclinic-I martensite
recovers more strains (modulo appropriate normalisation of the lattice param-
eters) as ε − δ approaches zero (with ε = δ being the ideal), and whether
monoclinic-Ib martensites (i.e., those for which ε > δ) would demonstrate
greater shape memory effect.

Monoclinic-II martensite. We have reason to believe that there are multiple
kinds of monoclinic-II martensite as well. We hope to settle this question
in [CSb].

As can be easily verified (eg. [Bha03]), the compatibility relations between
the twelve transformation strains of monoclinic-II martensite are identical to
those between the twelve transformation strains of monoclinic-I martensite.
Then, with the help of Lemma 4.3, exactly as for monoclinic-I martensite, eight
T3s can be formed from these strains. This positively answers the question
raised in [BFJK94, p863] as to whether T3s can be formed from the twelve
transformation strains of monoclinic-II martensite. Indeed Lemma 4.3 presents
an elementary test by which this question can be answered for any three-tuple
of strains that have the same trace.
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Material λ (α− β)δ + ε2 − δ2
NiTi 0.6830 0.0024

TiNiCu 0.6683 0.0021
CuZr 0.0396 −0.0015

Table 8.1: λ and (α−β)δ+ε2−δ2 for the T3s in T for NiTi, CuZr and TiNiCu.

Special parameters. Throughout this paper, including in the (non-numerical)
Mathematica computations, we have assumed the lattice parameters to be
generic except that we considered the case ε = δ. We did identify one special
case, (α−β)δ+ε2−δ2 = 0, in which all twelve strains of monoclinic-I martensite
are pair-wise compatible.

The question arises as to whether a material recovers more strains as (α−
β)δ + ε2 − δ2 approaches zero. We suggest another parameter of importance,
λ := λ12 = λ23 = λ31 (Definition 4.6) which however appears related to
(α− β)δ + ε2 − δ2 for the three materials considered in Table 8.1.

Our reasoning is that as λ becomes close to either 0 or 1, the nodes of a T3
become closer to its vertices and the energetic penalty for a T3 microstructure
being approximated by a finite-rank laminate becomes smaller. Indeed, instead
of constructing a finite-rank laminate from the three nodes of a T3, it suffices
to move only one of the vertices to a node.

As Table 8.1 shows λ = 0.0396 for CuZr. We hypothesise that for this
material the symmetrised lamination convex hull is very close to the convex
hull and thus the convex hull is a very good approximation to all its semi-
convex hulls. The same would apply to the (semi-)convex envelopes of the
corresponding energy density as well. A similar reasoning might explain the
remarkable closeness between the symmetrised lamination convex hull and the
convex hull for CuAlNi (a monoclinic-II martensite) observed in [GHH07].

Microstructure corresponding to T3s. For monoclinic-I martensite with ε < δ
we have shown that there exists a five-dimensional set of T3s which reaches the
boundary of C(E). This raises the question as to whether the microstructures
experimentally observed for strains in this set are laminate approximations to
T3 microstructures. We wonder too if experimental observations of such mi-
crostructures would provide insight into mechanisms governing microstructure
formation (dynamics) and the role of surface energy.
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