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Abstract

Background: The etiology of secondary cancer in childhood cancer survivors is largely unclear. Exposure of normal somatic
cells to radiation and/or chemotherapy can damage DNA and if not all DNA lesions are properly fixed, the mis-repair may
lead to pathological consequences. It is plausible to assume that genetic differences, i.e. in the pathways responsible for cell
cycle control and DNA repair, play a critical role in the development of secondary cancer.

Methodology/Findings: To identify factors that may influence the susceptibility for second cancer formation, we recruited
20 individuals who survived a childhood malignancy and then developed a second cancer as well as 20 carefully matched
control individuals with childhood malignancy but without a second cancer. By antibody microarrays, we screened primary
fibroblasts of matched patients for differences in the amount of representative DNA repair-associated proteins. We found
constitutively decreased levels of RAD9A and several other DNA repair proteins in two-cancer patients, compared to one-
cancer patients. The RAD9A protein level increased in response to DNA damage, however to a lesser extent in the two-
cancer patients. Quantification of mRNA expression by real-time RT PCR revealed lower RAD9A mRNA levels in both
untreated and 1 Gy c-irradiated cells of two-cancer patients.

Conclusions/Significance: Collectively, our results support the idea that modulation of RAD9A and other cell cycle arrest
and DNA repair proteins contribute to the risk of developing a second malignancy in childhood cancer patients.
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Introduction

In most cases, cancer is a multifactorial disease caused by

environmental hazards, unhealthy lifestyle and/or genetic factors

[1]. Because children are usually less exposed to an unfavourable

environment or lifestyle than adults, genetic factors are likely to be

a more important [2]. However, only a small proportion (1–10%)

of childhood cancers has a known genetic etiology [3]. It is well

known that irradiation and other DNA damaging agents used for

cancer treatment are able to trigger the formation of leukemia and

other cancers [4,5]. Radiation and/or chemotherapy constitute

risk factors for development of a second malignancy, which cannot

be classified as remission of the primary tumor. Because relatively

few childhood cancer survivors develop a second malignancy [6],

genetic predisposition may be involved.

Cells are constantly exposed to endogenous and exogenous

DNA damaging agents. There are several pathways that monitor

and maintain genome integrity. Cells have multiple checkpoints

that transiently delay cell cycle progression to allow extra time for

DNA repair or induce apoptosis [7,8]. Mutations or aberrant

regulation of genes that control cell cycle checkpoints and DNA

repair play important roles in tumorigenesis [9,10] and are prime

candidates when searching for genes modulating the risk for

secondary cancer. If therapy-induced DNA damage is misre-

paired, this can initiate second tumor development. Genetic

predisposition may lead to increased chromosomal instability after

radiation or chemotherapy [5,11,12]. Only in very rare cases of

second childhood malignancy a genetic instability syndrome such

as Fanconi anaemia, ataxia teleangiectasia or xeroderma pigmen-

tosum has been diagnosed [10]. In most cases, the causes

underlying development of a second cancer remain unknown.

To test the hypothesis that modulations in the expression of cell

cycle control and DNA repair genes are associated with secondary

cancer, we analyzed primary fibroblasts of childhood cancer

patients with a second cancer (2C patients) and carefully matched

controls without a second cancer (1C patients). Skin fibroblasts
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represent a normal somatic cell type. In contrast to blood and

EBV-transformed lymphoblasts, which can be more easily

obtained, primary fibroblasts constitute a homogenous cell

population with intact cell cycle and DNA repair checkpoints.

So far there have been only few studies on primary fibroblasts of

cancer patients. Fibroblasts of breast and thyroid cancer patients

were found to have defective repair and/or cell cycle regulation

[13]. Abnormal gene expression in somatic cells of the unaffected

parents of retinoblastoma patients are also consistent with an

inherited predisposition to cancer development [14].

To identify susceptibility factors for second cancer formation, we

screened various DNA-repair associated genes for constitutive protein

expression differences in 2C versus 1C patients. The DNA damage

checkpoint protein RAD9A was downregulated in both untreated

and irradiated somatic cells of two-cancer patients, compared to one-

cancer patients. Increased constitutive and DNA damage-induced

levels of RAD9A protein and other genomic caretakers may help to

maintain genome stability and prevent second tumor development

after radiation and chemotherapy. RAD9A, which in some papers is

called hRAD9 or simply RAD9, is an interesting candidate, because

it functions in multiple pathways, including DNA repair, cell cycle

checkpoint control and apoptosis and its abnormal expression has

been linked to tumorigenesis [15,16].

Results

Recruitment of patients
Twenty individuals who survived a childhood cancer and then

developed a second cancer were recruited from the German

Childhood Cancer Registery. At least one year must have passed

since diagnosis of the second cancer. Twenty matched cases who

survived a childhood cancer and did not develop a second cancer

were randomly chosen from the Registery. The matching criteria

were same sex, equal primary cancer diagnosis, equal age at first

diagnosis, and same time under observation. Because the primary

tumors of matched one- and two-cancer patients were diagnosed

in the same year, the treatment modalities were largely identical.

All patients were followed up from primary cancer diagnosis to the

time when they were recruited.

The patients had to be alive and at least 18 years of age (legal

age in Germany) to give their informed consent to skin biopsy.

Less than 50% of the contacted two-cancer patients decided to

participate in the study. Because of these inclusion criteria, we

could only recruit a limited number of two-cancer patients

throughout Germany. There is a certain bias in the distribution of

primary and secondary cancers. For example, the most frequent

combination of acute myeloid leukemia after acute lymphoid

leukemia has a very unfavourable prognosis and, therefore, is not

represented. On the other hand, secondary thyroid carcinomas are

overrepresented, because the patients have a good prognosis and

reach adulthood.

Reduced levels of DNA repair-associated proteins in cells
of two-cancer patients

Customized antibody microarrays (for example, see Figure 1)

were used to compare the constitutive expression levels (without

induction of DNA damage) of different DNA repair-associated

proteins in exponentially growing primary fibroblasts of childhood

cancer patients with and without second tumor, respectively. The

19 studied genes (Table 1) were selected, because they are key

players in different DNA repair pathways (i.e. DNA double-strand

break repair, nucleotide excision repair, base excision repair, and

mismatch repair), participating either in signaling of DNA

damage, checkpoint control and/or DNA repair. Mutations in

many of these genes are known to predispose to the development

of cancer.

For each matched (2C vs. 1C) patient pair we determined the

z ratio of triplicate measurements of protein levels (normalized

with log10 transformation and z scores). Six of the 19 tested

proteins, representing different DNA repair pathways, displayed

lower levels in two-cancer patients (Table 1). The box plots in

Figure 2 present the distribution of z ratios for BRCA1 (21.36x;

p = 0.017), DDIT3 (21.27x; p = 0.011), MSH6 (21.16x;

p = 0.021), TP53 (21.18x; p = 0.003), RAD9A (21.38x;

p = 0.040), and RAD51 (21.37x; p = 0.009). The p values were

not corrected for multiple testing and should be considered as

explorative. In order to demonstrate the reliability of our

Figure 1. Representative antibody microarray. Different amounts (approximately 1.5, 1.0 and 0.5 pg) of anti-RAD9A antibody (2 ng/ml) are
spotted in triplicates onto nitrocellulose-coated slides and incubated with fluorescent-labeled nuclear protein extract of untreated fibroblasts from
two-cancer patient 2C-7 and the matched one-cancer patient 1C-7, respectively. Anti-ACTB serves as positive and spotting buffer as negative control.
The measured 2C/1C RAD9A protein ratio is 0.5.
doi:10.1371/journal.pone.0025750.g001
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antibody microarrays, Western blot analysis of RAD9A was

performed on a representative matched pair. The anti-RAD9A

antibody stained the expected 45 kDa band in nuclear protein

extracts, whereas no or only a faint band was seen in cytoplasmic

extracts (Fig. 3). Consistent with the antibody microarray (Fig. 1),

the Western blot showed a lower amount (60%) of RAD9A

protein in the 2C patient, compared to the matched 1C

patient.

The six proteins showing constitutive expression differences

were also quantified in cells at 1 h and 4 h after 1 Gy c-

irradiation. For each patient, we compared the protein levels

measured by antibody microarrays in treated vs. untreated

samples. Two proteins, RAD9A and DDIT3, differed in their

cellular response to DNA damage between 2C and 1C patients.

The box plots in Figure 4 show the z ratios for RAD9A (after

normalization with log10 transformation and z scores) in the 2C

and the 1C group. In both groups the RAD9A protein levels were

elevated after DNA damage. In the one-cancer group, RAD9A

was overexpressed more than twofold at 1 h and 4 h after

irradiation, compared to the constitutive protein level. In the 2C

group, the amount of RAD9A protein increased 1.76- and 1.63-

fold at 1 h and 4 h, respectively, implying a lower induction

(21.44x, p = 0.012 at 4 h) by DNA damage in childhood cancer

patients with a second tumor. Similar to RAD9A, the protein

encoded by the DNA damage inducible transcript DDIT3 was also

found to be increased in irradiated cells (Fig. 3). In 1C patients, the

protein level was elevated 1.40- and 1.96-fold at 1 h and 4 h after

DNA damage, compared to 1.26- and 1.95-fold in the 2C group.

At 1 h after irradiation there was a lower induction (21.13x,

p = 0.019) in the two-cancer group.

Table 1. Constitutive expression differences of DNA repair-
associated proteins in fibroblasts of 2C vs. 1C patients,
measured by antibody microarrays.

Protein Antibody
2C/1C
ratio p value

Fold
change

ACTB (control) Sigma #A5441 0.99 0.575 21.01

ATM Santa Cruz #sc-7230 1.38 0.117 1.38

APEX Novus Biol. #NB100-116 1.08 0.627 1.08

BRCA1 Santa Cruz #sc-1553 0.74 0.017 21.36

BRCA2 Santa Cruz #sc-1817 0.90 0.263 21.11

DDIT3 Santa Cruz #sc-793 0.79 0.011 21.27

ERCC1 Santa Cruz #sc-71072 1.60 0.247 1.60

GADD45 Santa Cruz #sc-793 0.82 0.153 21.23

H2AX Upstate #05-636 1.47 0.100 1.47

Ku86 Santa Cruz #sc-5280 1.23 0.502 1.23

MLH1 Santa Cruz, #sc-582 1.07 0.247 1.07

MSH6 Santa Cruz #sc-1242 0.86 0.021 21.16

PCNA Santa Cruz, #sc-56 0.96 0.232 21.04

PMS1 Santa Cruz #sc-615 0.92 0.709 21.08

PMS2 Santa Cruz #sc-617 0.99 0.737 21.01

RAD9A Abcam #ab13600 0.73 0.040 21.38

RAD51 Abcam #ab63801 0.73 0.009 21.37

RCC1 Santa Cruz sc-1162 0.78 0.263 21.28

TP53 Santa Cruz #sc-100 0.85 0.003 21.18

XPA Santa Cruz #sc-853 0.89 0.115 21.12

doi:10.1371/journal.pone.0025750.t001

Figure 2. Reduced expression of DNA repair-associated
proteins in two-cancer patients. The relative expression levels in
fibroblasts of 2C versus 1C patients are 21.36x (p = 0.017) for BRCA1,
21.27x (p = 0.011) for DDIT3, 21.16x (p = 0.021) for MSH6, 21.18x
(p = 0.003) for TP53, 21.38x (p = 0.040) for RAD9A, and 21.37 (p = 0.009)
for RAD51. Protein expression was measured by antibody microarrays
(normalized by log10 transformation and z scores). Box plots show the
distribution of z ratios in matched 2C vs. 1C patients. The median is
represented by horizontal lines. The bottom of the box indicates the
25th percentile, the top the 75th percentile. The T bars extend from the
boxes to at most 1.5 times the height of the box. Outliers are shown as
open circles.
doi:10.1371/journal.pone.0025750.g002

Figure 3. Western blot showing reduced RAD9A protein levels
in a two-cancer patient. The gel on the left side shows Coomassie
blue staining of nuclear and cytoplasmic protein extracts (30 mg each)
from untreated fibroblasts of two-cancer patient 2C-7 and the matched
one-cancer patient 1C-7. The corresponding gel on the right side is
stained with anti-RAD9A antibody, which recognizes a 45 kDA nuclear
protein. The calculated 2C/1C RAD9A protein ratio is 0.6.
doi:10.1371/journal.pone.0025750.g003
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Reduced RAD9A mRNA expression levels in two-cancer
patients

Because RAD9A protein was most dramatically downregulated

in two-cancer patients, we focussed our further study on this cell

cycle checkpoint and DNA repair protein. We performed

quantitative mRNA expression analyses by real-time RT PCR in

both untreated and irradiated cells. The box plots in Figure 5

present the distribution of expression ratios in 20 matched pairs of

patients. The constitutive RAD9A mRNA levels (without induction

of DNA damage) were significantly lower in two-cancer patients

(22.40x, p = 0.004), compared to one-cancer patients. Between-

group differences were also observed at 1 h (22.54x, p = 0.003),

4 h (22.62x, p = 0.003), and 24 h (22.54x, p = 0.003) after

irradiation. Three matched pairs represent outliers or extreme

outliers in the box plot diagrams, indicating that relative RAD9A

expression levels can considerably vary between patients and are

not always reduced in two-cancer patients. The (extreme) outliers

represent different combinations of primary and secondary cancer.

Because it has been reported that RAD9A expression is

dependent on DNA methylation [17], we determined the

methylation status of the presumed cis-regulatory region by

bisulfite pyrosequencing. Compared to classic bisulfite plasmid

sequencing, bisulfite pyrosequencing can only analyze a limited

number of CpG sites located at the most 30–50 bp 39 from the

sequencing primer, however on the other hand it can much more

exactly (62%) quantify the CpG methylation level. The analyzed

DNA segment, which contains three adjacent CpG sites, was

found to be unmethylated in untreated cells of both 2C and 1C

patients. The range of methylation values was 4–10%, as expected

for a transcriptionally active gene. There was no significant

between-group methylation difference, which could explain the

observed expression difference. Because the density of methylated

CpGs rather than individual sites in a CpG island turn a gene on

or off [18,19], the average methylation of a few CpGs can usually

serve as a representative epigenetic marker for a given cis-

regulatory region.

Chromosome 11q13.1 containing the RAD9A gene is frequently

amplified in a variety of human tumors [17]. To exclude RAD9A

copy number variations between 2C and 1C patients, we

performed high-resolution karyotype analyses with the Affymetrix

GeneChip Genome Wide Human SNP array 6.0 as well as

quantitative real-time PCR. Both methods revealed two copies of

the RAD9A gene in all studied patients.

Discussion

Compared to the enormous efforts to characterize the

transcriptomes and proteomes of tumor cells, there are relatively

Figure 4. Reduced DNA damage response of two-cancer patients. Differential induction of RAD9A (left side) and DDIT (right side) at 1 h and
4 h after 1 Gy c-irradiation in fibroblasts of two-cancer patients (gray boxes) and one-cancer patients (dotted boxes). Protein expression was
measured by antibody microarrays (normalized by log10 transformation and z scores). Box plots show the distribution of z ratios of treated vs.
untreated cells of the same patients. The median is represented by horizontal lines. The bottom of the box indicates the 25th percentile, the top the
75th percentile. The T bars extend from the boxes to at most 1.5 times the height of the box. Outliers are shown as open circles. The DNA-damage
induced increase in the 2C group is lower than that in the 1C group for RAD9A at 4 h after irradiation (21.44x, p = 0.012) and for DDIT3 at 1 h after
irradiation (21.13x, p = 0.019).
doi:10.1371/journal.pone.0025750.g004

Figure 5. Reduced mRNA expression of RAD9A in two-cancer
patients. RAD9A mRNA levels in untreated and irradiated (1 h, 4 h and
24 h after 1 Gy) fibroblasts of two-cancer patients, compared to
matched one-cancer patients. mRNA was quantified by real-time RT
PCR (normalized with the DDCT method and two endogenous control
genes). Box plots show the distribution of expression ratios in matched
2C vs. 1C patients. The median is represented by horizontal lines. The
bottom of the box indicates the 25th percentile, the top the 75th

percentile. The T bars extend from the boxes to at most 1.5 times the
height of the box. Outliers are shown as open circles, extreme outliers
as triangles. Two-cancer patients show reduced RAD9A mRNA levels
without induction of DNA damage (22.40x, p = 0.004) as well as at 1 h
(22.54x, p = 0.003), 4 h (22.62x, p = 0.003), and 24 h (22.54x, p = 0.003)
after irradiation.
doi:10.1371/journal.pone.0025750.g005
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few studies searching for gene expression differences in normal

somatic cells of tumor patients [13,14]. To test the hypothesis that

differences in DNA repair pathways may influence the risk for

developing a second tumor following treatment of childhood

cancer, we compared the constitutive levels of DNA repair-

associated proteins in primary fibroblasts of matched two-cancer

and one-cancer patients. Because we did not expect dramatic

differences but rather subtle modulations in the DNA repair

capacity in two-cancer patients, we did not perform a genome-

wide screen but tested only a limited number of well-known DNA

repair-associated genes using highly sensitive antibody micro-

arrays. The observation that 6 of 19 tested DNA repair-associated

proteins were constitutively downregulated in normal cells of two-

cancer patients promotes the idea that the DNA repair pathways

of two-cancer patients are less capable to handle DNA damage

than those of one-cancer patients. For two proteins we also showed

a lower induction after DNA damage. One gene, RAD9A was

analyzed in more detail. Both constitutive mRNA expression in

exponentially growing fibroblasts as well as DNA-damage induced

expression at different time points after irradiation was lower in

two-cancer patients than in one-cancer patients. In this light,

RAD9A is a good candidate for a factor predisposing to second

cancer. The differential RAD9A expression was not mediated by

DNA methylation or copy number variation.

The RAD9A gene is evolutionarily highly conserved from yeast

to man, which is generally considered a good indicator for

functional significance. It acts in multiple pathways including base

excision, homologous recombination and mismatch repair as well

as cell cycle checkpoint control and apoptosis. Many of its

functions appear to be mediated by the nuclear RAD9A-HUS1-

Rad1 protein complex that resembles PCNA [15,16]. Mouse

Rad92/2 and to a lesser extent Rad9+/2 knockout cells [20] and

human RNAi knockdown cells with reduced RAD9A levels [21]

are sensitive to different types of DNA damage, displaying genome

instability, DNA repair deficiency and altered cell cycle check-

points. Embryonic lethality of the mouse Rad92/2 mutation

indicates that the multiple functions of Rad9A are essential for

embryogenesis and normal development. Mice with targeted

Rad92/2 deletion in keratinocytes are highly susceptible to

genotoxin-induced skin tumor formation [22,23]. Rad92/2

keratinocytes display a higher number of spontaneous and

genotoxin-induced DNA breaks, aberrant cell cycle distribution

and an increased rate of apoptosis. This is consistent with the view

that RAD9A functions as a tumor suppressor in skin and other

tissues by promoting DNA repair in damaged cells and stabilizing

the genome before tumorigenesis occurs. It is interesting to note

that both downregulation and upregulation of RAD9A have been

associated with tumorigenesis. RAD9A overexpression has been

observed in a variety of tumors, including breast [17], lung [24],

thyroid [25], and prostate cancer [26]. This suggests that RAD9A

can also function as an oncogene, most likely by aberrant

transactivation of downstream target genes. In general, the RAD9A

level correlated with tumor size and/or stage. RAD9A belongs to a

growing group of genes with dual roles in cancer. Depending on

the cell type and tissue environment, it can demonstrate either

tumor-promoting or tumor-suppressing activity [15]. The mech-

anisms by which the multifunctional RAD9A protein acts as an

oncogene and a tumor suppressor, respectively are largely

unknown.

Because the number of two-cancer patients being 18 years or

older is relatively small, we could not limit our studied patients to

a specific tumor entity or treatment protocol. The largest

subgroup of primary tumors were lymphoid leukemias (10 cases).

Due to their good prognosis, thyroid carcinomas (6 cases) were

overrepresented as second cancers. Radiation therapy is an

important risk factor for thyroid carcinoma [27]. In this light, it

tempting to speculate that the abundance of RAD9A protein may

modulate the risk for radiation-induced tumors. Future more

comprehensive studies should consider the effects of different

treatment modalities of childhood cancer. However, as outlined

above, recruiting homogenous groups of patients is extremely

challenging. We obtained skin biopsies and blood samples from

all our studied patients. Because many patients were bone-

marrow transplanted, the blood cells were not analyzed.

Fibroblast cultures were established one or more years after

second cancer diagnosis/treatment, which makes it unlikely that

the expression differences between two-cancer versus one-cancer

patients are directly or indirectly influenced by radiation or

chemotherapy. Although it is plausible to assume that cultured

fibroblasts represent the situation in normal body cells, it would

be desirable to also study uncultured cells and/or other tissues.

The number of analyzed patients is relatively small. Never-

theless, our results suggest that the constitutive RAD9A protein

levels as well as the extent of induction after DNA damage vary

between two-cancer and one-childhood cancer patients. We

propose that RAD9A functions as tumor suppressor in skin

fibroblasts and other normal cells of the body and, thus, helps to

prevent second cancer. Analysis of various normal cell types in

larger patient populations, for example adult cancer survivors are

necessary to support a role for RAD9A in DNA damage-induced

carcinogenesis.

Materials and Methods

Patient samples
The German Childhood Cancer Registry has collected almost

completely all childhood cancers in Germany since 1980,

conducting an open-end follow-up with an emphasis on second

neoplasms. With the help of the Registery, we recruited 20 persons

who survived a childhood malignancy and then, unrelated to the

first event, developed a second cancer (2C patients) as well as 20

carefully matched persons [same sex, same primary cancer (ICCC

classification), equal age (61 year) at first diagnosis] who did not

develop a second malignancy (1C patients). Genetic counselling

was offered and informed written content was obtained from all

patients participating in the study, which was approved by the

Ethics Committee of the Medical Association of Rhineland-

Palatinate (No. 837.440.03[4102]).

The mean age at diagnosis of the first tumor was 6.8 years

(range 0–14) in both groups. The primary tumors were acute

myeloid or lymphoid leukemia (11 cases), Hodgkin or Burkitt

lymphoma (5 cases) and other solid tumors (4 cases). The mean

age at second diagnosis in the 2C group was 16.7 years (range 9–

30). The second tumors were myelodysplastic syndrome or

lymphoma (7 cases), thyroid carcinoma (6 cases) and other solid

tumors (7 cases). Second neoplasms were confirmed by experi-

enced clinical oncologists to be no relapses or alternative

manifestations of the primary neoplasm.

Skin biopsies were taken at the earliest one year, usually several

years after second cancer therapy. Primary fibroblast cell cultures

were established from skin biopsies and cultured in minimal

essential medium with Earle’s salts (Invitrogen, Karlsruhe,

Germany), supplemented with 10% fetal bovine serum, vitamins

and antibiotics. Cells (without DNA damage) were harvested from

exponentially growing subconfluent cultures. To induce DNA

repair, subconfluent cultures were exposed to 1 Gy ionizing

radiation using a GammaCell 2000 (Cs137) irradiator. Samples

Modulation of RAD9A Expression in Somatic Cells
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were taken 1 h, 4 h and 24 h after irradiation. Cells were washed

twice with PBS and stored at 280uC until further use.

Western blot and antibody microarray
For nuclear protein extraction cells were resuspended two times

in 500 ml of 10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl,

pH 7.9 and incubated on ice for 10 min. After 10 s centrifugation

at maximum speed the supernatant was discarded. Then the pellet

was resuspended in 100 ml of 20 mM HEPES, 0.42 M NaCl,

1.5 mM MgCl2, 0.2 mM EDTA, 25% glycerol, pH 7.9 and

homogenized using a syringe with gauge needle. After incubation

on ice for 30 min and centrifugation for 30 min at maximum

speed at 4uC, the supernatant containing the nuclear extract was

separated from the cytoplasmic pellet and stored at 280uC. The

protein concentration was measured according to Bradford, using

Roti Quant (Roth, Karlsruhe, Germany).

For Western blot analysis, 30 mg nuclear protein extract were

separated on a 8% SDS-PAGE gel and then transferred to a

Hybond-P membrane (Amersham, Arlington Heights, IL, USA).

The membrane was first blocked with 5% non-fat dry milk

(NFDM) dissolved in Tris-buffered saline (50 mM Tris-Cl, pH 7.5,

150 mM NaCl), 0.1% Tween 20 (TBST). The blots were then

incubated overnight at 4uC with mouse monoclonal anti-RAD9A

antibody, diluted 1:250 (2 mg/ml) in TBS with 5% NFDM. After

washing the blot three times for 5 min with TBST, proteins were

detected with peroxidase-labeled secondary rabbit anti-mouse

antibodies using the BM Chemiluminescence Western Blotting Kit

(Roche Diagnostics, Mannheim, Germany). Band intensities were

quantified with a LAS-3000 (Fujifilm, Düsseldorf, Germany)

luminescent image analyzer. Comassie blue staining was used to

adjust the signal intensities to the amount of protein.

Customized antibody microarrays for quantification of 19

different DNA repair-associated proteins (Table 1) were prepared

by spotting one drop, two drops and/or three drops, each drop

containing approximately 0.5 pg antibody in triplicates onto

nitrocellulose-coated slides (Oncyte, nitrocellulose 16 multi-pad

slides, Grace Bio-Labs, Bend, OR, USA), using a non-contact

array spotter (sciFLEXARRAYER 3, Scienion, Berlin, Germany).

Antibodies against beta-actin (ACTB) served as positive, spotting

buffer as negative control. Slides were stored at 4uC in dry

condition. Nuclear proteins were labeled with an amine reactive

fluorine dye, which forms a covalent amide bond between the

primary amines of proteins. Two micrograms of protein and

0.12 ml fluorescent dye (Dylight 649 NHS Ester, Pierce, Rockford,

USA) were incubated for 1 h at room temperature in the dark.

Then excess fluorescent dye was inactivated by adding 100 mM

glycine to the reaction. Prior to use, antibody microarrays were

covered with 16-pad FAST frame hybridization chambers

(Whatman, Maidstone, UK). Unspecific binding sites were

blocked for 1 h at 4uC with 120 ml PBS containing 4% NFDM

per subarray, followed by three washes with 120 ml PBS each for

10 min. Labelled protein samples were incubated on sub-arrays

overnight at 4uC. Afterwards, the slides were washed two times for

15 min with PBS, 5% Tween 20 and two times for 15 min with

HPLC-grade water. Finally, the slides were dried in a SpeedVac

and scanned with a high-resolution confocal scanner (Affymetrix

array scanner 428 TM, High Wycombe, UK). Slide images were

analyzed using the Spotfinder 3.1.1 software (TM4, Dana Faber

Cancer Institute, Boston, USA). Background subtraction was

performed according to the formula: spot intensity = mean

intensity SP - (sum bkg – sum top25 bkg)/(number of pixelSP -

number of pixel top25 bkg), where SP represents any spot, bkg the

corresponding background and top25 bkg the top 25% of

background pixel.

For statistical analysis of microarray data we performed log10

transformation, z score and z ratio calculations [28]. For between-

group comparisons we used the sign test and, if possible, the

Wilcoxon test (skewness [21,+1]) and box plots as graphics

(PASW statistics 18.0). No adjustment for multiple testing was

performed. The analyses were regarded as explorative, and the p

values of the corresponding tests are presented for descriptive

reasons. The results of these tests can therefore not be considered

as significant at any level.

Quantitative real-time RT PCR
Total RNAs were prepared from treated and untreated

fibroblast cultures using the TRIzol method (Invitrogen). One

microgram of the RNA samples was reversely transcribed into

cDNA using the SuperScript III First-Strand Synthesis System

(Invitrogen). Quantitative real-time RT PCR of RAD9A was

performed with a QuantiTect Primer Assay (Qiagen, Hilden,

Germany) and an Applied Biosystems 7500 Fast Real-Time PCR

system (Life Technologies, Karlsruhe, Germany). Exon-spanning

forward (59-GAGAAGACGGTGGAAAAATG-39) and reverse

(59-GGAAGGACAGGTTGTGAGTC-39) primers were designed

with the Primer3, version 0.4.0 (http://frodo.wi.mit.edu/primer3/)

program. Linearity of amplification was verified by qPCR

standard curve and sequence analysis. RRN18S (Qiagen,

#QT00199367) and TBP (#QT00000721) were used as

endogenous control genes. All reactions were performed in

triplicates. Each 25 ml reaction volume contained 25 ng cDNA

template in 10 ml RNase-free PCR graded water, 2.5 ml 10x

QuantiTect Primer Assay and 12.5 ml 2x QuantiTect SYBR

Green PCR Master Mix (Qiagen). PCR was performed in two

stages with one cycle of 95uC for 15 min (first stage) and 40 cycles

of 94uC for 15 s, 55uC for 30 s, and 72uC for 40 s (second stage).

Relative quantification was carried out with the DDCT method

using the two endogenous control genes and the one-tumor group

as calibrator (2C vs. 1C comparison). To quantify protein

induction after DNA damage, the untreated cells of each patient

were used as calibrator. Group comparisons were performed with

the sign test and box plots. No adjustment for multiple testing was

performed.

Methylation analysis
The methylation status of a 900 bp long CpG island ranging

from the promoter into intron 2 of the RAD9A gene was

determined by bisulfite pyrosequencing. The assays targets three

representative CpG sites in the second intron of this putative cis-

regulatory region [17]. Genomic DNA was isolated with the

QIAamp Mini DNA Kit (Qiagen). Bisulfite conversion of 1 mg

DNA was performed with the EpiTect Bisulfite Kit (Qiagen)

according to the manufacturer’s instructions. RAD9A was

amplified from bisulfite-converted DNA using forward primer

59-GGTTTTTATGGGGAAAGGAGG-39 and biotinylated re-

verse primer 59-CCACAAACCCAACCCTCTAAC-39. Primers

were designed with the Pyrosequencing Assay Design Software

(Biotage, Uppsala, Sweden). Pyrosequencing was performed with

the sequencing primer 59-TTTTATGGGGAAAGGA-39 and the

PyroGold SQA reagent kit (Qiagen) on a PSQ96MA system

(Biotage). Data were analyzed with the Pyro Q-CpG software

(Biotage).

Molecular karyotype analysis
High-resolution screening for microdeletions and duplications

was performed with the Affymetrix GeneChip Genome Wide

Human SNP array 6.0 and the GeneChip Genome Wide SNP Sty

Assay Kit 5.0/6.0, following the protocol developed by the
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manufacturer (Affymetrix, Santa Clara, CA, USA). Data calcula-

tion was performed with Affymetrix Genotyping Console 4.0 and

Chromosome Analysis Suite 1.0.1.

Quantitative real-time PCR with QuantiTect SYBR Green-

based chemistry was used to validate RAD9A copy numbers. PCR

was performed with RAD9A forward primer 59-AGGCT-

GTTCTGCCCTTCTC-39 and reverse primer 59-TGCCT-

CCTCCTCGTGGTA-39 on an ABI 7500 Fast Real-Time PCR

system with one cycle of 95uC for 15 min and 45 cycles of 95uC
for 30 s, 60uC for 60 s and 72uC for 40 s. Copy number

calculation was performed with the DDCT method, using the

RFC3 gene (forward primer 59-AGTAGGTGCTTGGCGGTTC-

39, reverse primer 59-AGTGTAACTTGACCTACATCTT-

CAATG-39) as a reference. All experiments were performed in

triplicates.
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