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Abstract. The outcomes of measurements on entangled quantum systems can
be nonlocally correlated. However, while it is easy to write down toy theories
allowing arbitrary nonlocal correlations, those allowed in quantum mechanics
are limited. Quantum correlations cannot, for example, violate a principle known
as macroscopic locality, which implies that they cannot violate Tsirelson’s
bound. This paper shows that there is a connection between the strength of
nonlocal correlations in a physical theory and the structure of the state spaces
of individual systems. This is illustrated by a family of models in which local
state spaces are regular polygons, where a natural analogue of a maximally
entangled state of two systems exists. We characterize the nonlocal correlations
obtainable from such states. The family allows us to study the transition between
classical, quantum and super-quantum correlations by varying only the local
state space. We show that the strength of nonlocal correlations—in particular
whether the maximally entangled state violates Tsirelson’s bound or not—
depends crucially on a simple geometric property of the local state space, known
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as strong self-duality. This result is seen to be a special case of a general
theorem, which states that a broad class of entangled states in probabilistic
theories—including, by extension, all bipartite classical and quantum states—
cannot violate macroscopic locality. Finally, our results show that models exist
that are locally almost indistinguishable from quantum mechanics, but can
nevertheless generate maximally nonlocal correlations.
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1. Introduction

Nonlocality is a key feature of quantum mechanics. By carrying out measurements on separated
systems in an entangled state, one can obtain correlations that are stronger than those of any
local model, as witnessed by the violation of Bell inequalities [1]. On the other hand, sets of
nonlocal correlations are known that are stronger than those of quantum mechanics but that do
not allow for instantaneous signalling. This led Popescu and Rohrlich [2] to raise the question
of why nonlocality seems to be limited in nature.

In recent years, new insights into this question have been gained by the study of the
information theoretic properties of super-quantum correlations. For instance, these correlations
lead to implausible reductions for all communication complexity problems, such that they can
be solved with only constant communication [3–5]. The principle of information causality [6]
is satisfied by quantum correlations, but can be violated if certain super-quantum correlations
are available—similar to the principle of macroscopic locality [7]. Various multi-player games
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Figure 1. Illustration of the state spaces and ray extremal effects of the polygon
models.

have been described, for which super-quantum correlations would provide an advantage over
quantum correlations [8, 9].

The above studies focused on the information theoretic power of correlations without
any reference to the physical theories they emerge from. Recent works revealed interesting
connections between the structure of quantum mechanics and the nonlocal correlations that can
be generated by quantum systems. Barnum et al [10], for example, considered a theory that
is locally equivalent to quantum mechanics, but whose nonlocality is only limited by the no-
signalling principle. Despite this theory being less restrictive than quantum mechanics, the set
of bipartite correlations that can be obtained is identical to that of quantum states. This implies
that, despite the fact that quantum correlations are clearly a global property of joint systems,
their limitation does not result from the lack of joint states, but rather from the structure of the
local state spaces. Meanwhile, Acín et al [11] have shown that this result does not extend to
three or more parties.

In this paper, we show that the connection between local state spaces and the limitation of
bipartite nonlocal correlations is actually a more general phenomenon. In particular, if local state
spaces have a property known as strong self-duality, then the correlations obtainable from maxi-
mally entangled states must be compatible with the principle of macroscopic locality. It follows
that they must also respect Tsirelson’s bound. A precise definition of strong self-duality is given
later, but in the quantum case it corresponds roughly to the fact that the same rank one projector
represents both a pure state and the outcome of a measurement that identifies that state.

By way of illustration, we introduce along the way a family of models, where each model
is defined by the local state space for a single system, and the state space is taken to be a
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regular polygon with n vertices (see figure 1). For two such systems, there is a natural analogue
of a maximally entangled state. The family includes the classical case of two trits (n = 3):
systems generating the super-quantum correlations introduced by Popescu and Rohrlich (n = 4)
and systems producing quantum correlations (n → ∞). Thus the family allows us to study
the transition between these theories, and the bipartite correlations that can be produced by
a maximally entangled state, by modifying only the local state space. For high n the local
state spaces are almost indistinguishable from a quantum system. Nevertheless, it turns out
that these models show dramatically different correlations—and thereby have fundamentally
different information theoretic capabilities—depending on the parity of n. This is explained
by the fact that those with odd n are strongly self-dual, while those with even n only weakly
self-dual.

One way of viewing the polygon models is that moving from n → ∞ to n = 3, there is
a progressive weakening of the superposition principle. A weakened superposition principle
means that states can only be superposed in certain combinations. In a similar spirit, a different
range of models was introduced in [12], with each model defined by a relaxation of the
uncertainty relations of quantum mechanics. Here too, a transition from quantum correlations
to the Popescu–Rohrlich correlations was observed.

This paper is organized as follows. Section 2 gives a brief, not too technical, introduction
to a mathematical formalism in which a very broad range of probabilistic theories can be
expressed, including quantum theory and classical probability theory. Section 3 introduces the
polygon models, and by investigating the properties of bipartite correlations, sheds some light
on the relation between these and the local state space structure. Section 4 returns to the general
case and contains the proof of the main theorem, which establishes a rigorous limit on the
nonlocal correlations obtainable from a broad class of bipartite states in general probabilistic
theories. In particular, states obtainable by norm-preserving local transformations from what
we call inner product states cannot violate the principle of macroscopic locality. Section 5
provides a formal definition of strong and weak self-duality, and discusses consequences of the
main theorem for the correlations in bipartite polygon systems. Section 6 presents a strongly
self-dual system in which a non-maximally entangled state gives rise to correlations that cannot
be obtained from any inner product state. Finally, section 7 discusses some open questions.

2. Operational models

2.1. Systems and measurements

This section describes briefly the framework of generalized probabilistic theories [13], using the
notation and conventions of [14]. The aim is to be able to describe theoretical models other than
the classical and quantum theories, and for these two to be included as special cases.

We start by taking an operational point of view. A state of a system is a mathematical object
that defines the outcome probabilities for all the measurements that can possibly be carried out
on this system. The state space � of a system is the set of states that it can be prepared in.

By defining the operations of summation and multiplication by a real number on states,
we can identify pω1 + (1 − p)ω2 as the probabilistic mixture obtained by preparing ω1 with
probability p and ω2 with probability 1 − p. The state space � is now a convex set, embedded
in a real vector space V . For simplicity, assume that� is compact and finite-dimensional. States
that can be represented by convex combinations of other states are mixed states. The extremal
points of the state space � cannot be written in such a form, and are pure states. For a quantum
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system, for example, � is the set of density operators on a Hilbert space, and the pure states are
the rank one projectors. For a qubit, � is particularly easy to visualize, since it corresponds to
the Bloch ball, with pure states on the surface of the ball. For a (finite-dimensional) classical
system, � is the set of probability distributions over some finite sample space.

A measurement outcome is represented by an effect, that is, a map e :�→ [0, 1], where
e(ω) is the probability of obtaining the outcome e when the measurement is carried out on
a system in the state ω. Probabilities of measurement outcomes should respect probabilistic
mixtures of states, meaning that e[p ω1 + (1 − p) ω2] = p e(ω1)+ (1 − p) e(ω2), i.e. the effects
are affine maps. A special effect is the unit effect u, which is uniquely defined such that u(ω)= 1
for all ω ∈�. The unit effect represents a measurement with a single outcome that is certain to
occur regardless of what the state is. An arbitrary measurement is a set of effects {ei} summing to
the unit effect

∑
i ei = u. This ensures that outcome probabilities of measurements sum to one.

The set of proper effects E(�)= {e : 06 e(ω)6 1∀ω ∈�} is the convex hull of the unit
effect, the zero effect and a set of extremal effects. For a quantum system, if states are density
operators on a Hilbert space, then effects can be identified with positive semidefinite operators
on the Hilbert space, in such a way that outcome probabilities are given by the usual trace rule.
Measurements correspond to positive operator-valued measures. For a classical system, effects
can be identified with fuzzy indicator functions on the sample space, i.e. maps from the sample
space into [0,1].

2.2. Unnormalized states

It is frequently useful to work with unnormalized states. Given a state space � and effect space
E(�), let V be the linear span of �. The linear span of E(�) is then the dual space V ∗. Both
V and V ∗ are real vector spaces. In the case of a quantum system, for example, V is the linear
span of the density operators, which is the set of all Hermitian operators on the corresponding
Hilbert space. Similarly, V ∗ is the linear span of the positive semidefinite operators, which is
also the set of all Hermitian operators.

An unnormalized state is an element of V of the form r ω, with r > 0 and ω ∈�. The set of
all unnormalized states is a cone denoted by V+. Similarly, an unnormalized effect is an element
of V ∗ of the form r e for r > 0 and e ∈ E(�). The set of unnormalized effects is the dual cone
to V+, denoted by V ∗

+ . The cone V+ and the dual cone V ∗

+ are related via

V ∗

+ = {e ∈ V ∗ : e(ω)> 0, ∀ω ∈ V+}. (1)

In the case of a quantum system, both V+ and V ∗

+ can be identified with the set of positive
semidefinite operators on the Hilbert space. In general, a cone V+ can have a very different
structure than its dual cone V ∗

+ , e.g. they may have a different number of extremal rays.

2.3. Bipartite states

Given two systems A and B, an operational model needs to specify the set �AB of available
joint states, in addition to the individual state spaces �A and �B . In general, one can imagine
many weird and wonderful ways in which two systems might combine to form a joint system.
By imposing two quite natural conditions, however, one can narrow down these possibilities
significantly.

The first condition is the no-signalling principle, which says that it should not be possible
to send messages instantaneously by carrying out measurements on the separate parts of a joint
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system. The second is that of local tomography. Given a single system, call a measurement
informationally complete if its outcome probabilities are sufficient to determine uniquely the
state of the system. The principle of local tomography states that if an informationally complete
measurement is carried out separately on each of the subsystems of a composite system, then
the joint outcome probabilities are sufficient to determine uniquely the state of the joint system.

These two conditions together are sufficient to ensure that the linear space V AB in which
the joint state space �AB and the cone of associated unnormalized states are embedded can be
taken to be V A

⊗ V B (see e.g. [14] and the references therein). If simultaneous measurements
are carried out on systems A and B, then the joint probability for outcomes e and f is given by
(e ⊗ f )(ωAB).

It is convenient to define the unit effect of the joint state space as u AB
= u A

⊗ uB such that
a joint state is normalized if

(u A
⊗ uB)(ωAB)= 1, (2)

where u A and uB are the unit effects for systems A and B, respectively. Naturally, probabilities
are positive, so a joint state must satisfy

(eA
⊗ eB)(ωAB)> 0 (3)

for all eA
∈ E(�A), eB

∈ E(�B).

Definition 1. The maximal tensor product of �A and �B , denoted by �A
⊗max�

B , is the set of
all ωAB

∈ V A
⊗ V B such that (2) and (3) are satisfied.

It is easy to check that the no-signalling principle is indeed satisfied for such an �AB .
Consider two measurements on A, corresponding to sets of effects x = {e1, . . . , em} and x ′

=

{e′

1, . . . , e′

n}. The marginal probability for an outcome f of a measurement on B is
m∑

i=1

(ei ⊗ f )(ωAB)= (u A
⊗ f )(ωAB)=

n∑
j=1

(e′

j ⊗ f )(ωAB), (4)

i.e. it is independent of whether x or x ′ is performed on A.
Intuitively, the maximal tensor product is the set of all nonsignalling joint states that can be

written down for two systems, given the individual state spaces �A and �B . A particular theory
or model need not assume that every element of the maximal tensor product is an allowed state
for the joint system. In general, a model will specify a joint state space �AB , which is a subset
of �A

⊗max�
B .

Straightforwardly generalizing the notions well known from quantum theory, one calls a
state a product state if it can be written in the form ωA

⊗ωB for some states ωA
∈�A and

ωB
∈�B . States that can be written as probabilistic mixtures of product states are separable,

whereas states that are not separable are entangled.
This paper mostly considers correlations obtained from product measurements on bipartite

states. The general formalism, however, does not assume that all measurements on composite
systems are product measurements. As in the case of single systems, outcomes of measurements
on a composite system correspond to effects, where these are maps�AB

→ [0, 1]. The set of all
such effects is written E(�AB), and may include entangled, as well as product, effects. However,
E(�A

⊗max�
B) only contains separable effects.

Quantum theory provides a useful example of many of the concepts above. In this case,
�AB is the set of density operators on the Hilbert space H AB

= H A
⊗ H B . Recall that V A
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and V B are real vector spaces of Hermitian operators on H A and H B , respectively. The
set of Hermitian operators on H AB can be identified with V A

⊗ V B , so the joint quantum
states are indeed elements of V A

⊗ V B . The density operators on H AB are a proper subset
of �A

⊗max�
B . Elements of �A

⊗max�
B that are not density operators are (normalized)

entanglement witnesses. An entanglement witness w is locally positive, meaning that for all
product measurements, (eA

⊗ eB)(w)> 0. But w is not a density operator, since there are
entangled measurement outcomes e with e(w) < 0.

3. A family of models

3.1. Polygon systems

This section defines a family of models such that the state spaces� of single systems are regular
polygons with n vertices. It is convenient to represent both states and effects by vectors in R3

such that e(ω) is the usual Euclidean inner product. For fixed n, let � be the convex hull of n
pure states {ωi}, i = 1, . . . , n, with

ωi =


rn cos

(
2π i

n

)
rn sin

(
2π i

n

)
1

 ∈ R3, (5)

where rn =
√

sec(π/n).
The unit effect is

u =

0
0
1

 . (6)

In the case of even n, the set E(�) of all possible measurement outcomes is the convex hull of
the zero effect, the unit effect, and e1, . . . , en, with

ei =
1

2


rn cos

(
(2i − 1)π

n

)
rn sin

(
(2i − 1)π

n

)
1

 . (7)

Let ēi = u − ei ; hence a possible dichotomic measurement is {ei , ēi}. When this measurement
is carried out on a system in the state ω j , the probabilities for the two outcomes are given by
ei ·ω j and ēi ·ω j , and satisfy ei ·ω j + ēi ·ω j = 1. Observe that for even n, ēi = e(i+n/2)mod n.

The case of odd n is slightly different. In this case, define

ei =
1

1 + rn
2


rn cos

(
2π i

n

)
rn sin

(
2π i

n

)
1

 (8)
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Figure 2. State spaces � (blue polygons) and sets of proper effects E(�)
(red polytopes) of the polygon toy theories with n vertices. The case n = 3
corresponds to a classical system, the n = 4 system is capable of generating all
no-signalling correlations. In the limit n → ∞ the state space becomes a disc,
which can be thought of as the equatorial plane of the Bloch ball.

and again let ēi = u − ei , so that a possible dichotomic measurement is {ei , ēi}. This time,
however, ēi does not equal e j for any j . The set E(�) of all possible measurement outcomes is
the convex hull of the zero effect, the unit effect, e1, . . . , en, and ē1, . . . , ēn. As can be seen in
figure 2 in such theories there are effects that are extremal in E(�) (namely the ēi ) but not ray
extremal, i.e. they do not lie on an extremal ray of the cone V ∗

+ . This also happens in quantum
mechanics, but only if the dimension of the Hilbert space is larger than two. For example, the
effect 1− |ψ〉〈ψ | for any rank one projector |ψ〉〈ψ | is then extremal in the set of proper effects,
but not ray extremal.

A two-dimensional (2D) illustration of the state and effect spaces is given in figure 1 and a
3D illustration in figure 2.

The n = 3 case corresponds to a classical system with three pure states. Think of it as
a trit. The three pure states are ω1, ω2 and ω3, and correspond to the three different possible
values of the trit. The state space � is a triangle. A generic point in � is a mixture of the three
pure states and corresponds to a probability distribution over the three trit values. Notice that
in this case, e1 + e2 + e3 = u, hence a possible measurement is a three-outcome measurement
with outcomes e1, e2 and e3. This is the obvious measurement that simply reads off the value of
the trit. Below we shall consider bipartite states of polygon systems. Given two trits, the only
possible joint states are separable, and it is not possible to produce nonlocal correlations. The
case n = 4 corresponds to a single system in a toy theory known as ‘box world’, which has been
discussed elsewhere in the literature (see e.g. [13]). The state space is a square. As shown below,
a notable feature of box world is that given two of these systems, it is possible to construct joint
states that are more nonlocal than quantum states. In fact, an entangled state of two of the n = 4
systems can produce maximally nonlocal correlations known as PR box correlations [2], which
have attracted much attention in the literature [3, 4, 6, 8].

As n → ∞, the state space tends to a disc of radius one. This makes it similar to a
quantum mechanical qubit, whose state space is the Bloch ball. The disc can be thought of
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as the equatorial plane of the Bloch ball. We will refer to this case, somewhat loosely, as the
quantum case.

3.2. Bipartite states of polygon systems

We shall not attempt a complete characterization of the set of all possible nonsignalling states
�A

⊗max�
B for each value of n. Instead, this section describes a particular joint state of two

polygon systems, which is the natural analogue of a maximally entangled state of two qubits.
The next section examines the nonlocal correlations that can be obtained by carrying out
measurements on these maximally entangled polygon systems.

Recall that a joint state is an element of V A
⊗ V B , hence in the case of two polygon

systems, a joint state is an element of R3
⊗R3

= R9. It is convenient to represent the joint state
as a 3 × 3 matrix such that (ei ⊗ e j)(ω

AB) can be calculated by simply left and right multiplying
this matrix with the representations of the effects ei and e j in R3. Define

odd n : φAB
=

1 0 0
0 1 0
0 0 1

 ,

(9)

even n : φAB
=

 cos(π/n) sin(π/n) 0

− sin(π/n) cos(π/n) 0

0 0 1

 .

The state φAB is the natural analogue of a quantum mechanical maximally entangled state
for the following reasons. Firstly, it can be verified (see e.g. [15]) that except for n = 3, φAB is an
entangled pure state, where ‘pure’ means that it is extremal in the maximal tensor product and
hence cannot be written as a mixture of other nonsignalling states. The n = 3 case corresponds
to two classical trits, with φAB the maximally correlated state, i.e. if the trit values are 1,
2, 3, then φAB corresponds to P(11)= P(22)= P(33)= 1/3. Secondly, φAB is constructed
so that if a measurement is carried out on the A system, and outcome ei obtained, then the
updated (or collapsed) state for the B system is ωi . The marginal probability for Alice to obtain
outcome ei is the same for all i . Compare this with the case of two spin-1/2 particles in the state
1/

√
2(|00〉 + |11〉), where |0〉 and |1〉 are the eigenstates of spin-z. If a spin measurement in the

direction Em in the xz-plane is carried out on system A, then the probability of obtaining the up
outcome is 1/2, and if the up outcome is obtained, then the collapsed state of the B system is
spin-up in the direction Em. These quantum predictions are recovered by φAB in the limit n → ∞.

The following sections investigate the nonlocal correlations that can be produced by
carrying out measurements on two systems in the state φAB . For this it is useful to have an
expression for the joint probability of obtaining outcome eA

i on system A and eB
j on system B.

This is easy to calculate from (9). For even n,

(eA
i ⊗ eB

j )(φ
AB)=

1
4(1 + r 2

n cos(αi −β j)), (10)

where αi =
2π i

n and β j =
(2 j−1)π

n , and as before, rn =
√

sec(π/n). For odd n,

(eA
i ⊗ eB

j )(φ
AB)=

1

(1 + r 2
n )

2
(1 + r 2

n cos(αi −β j)), (11)

where αi =
2π i

n and β j =
2π j

n . Note the cosine dependence, which is reminiscent of quantum
mechanical correlations.

New Journal of Physics 13 (2011) 063024 (http://www.njp.org/)

http://www.njp.org/


10

3.3. The Clauser–Horne–Shimony–Holt (CHSH) inequality

One commonly used measure of the degree of nonlocality that a bipartite system exhibits
is the maximal violation of the Clauser–Horne–Shimony–Holt (CHSH) inequality [16]. The
CHSH inequality involves two parties, conventionally called Alice and Bob. Each chooses
between two dichotomic measurements. Let Alice’s choice of measurement be x , and
Bob’s y, with x, y ∈ {0, 1}. Denote the measurement outcomes a, b ∈ {0, 1}. A set of
correlations is characterized by the joint probability distribution P(a, b|x, y). The strength of
the correlations is quantified by the CHSH parameter

S = |E0,0 + E0,1 + E1,0 − E1,1|, (12)

where Ex,y = P(0, 0|x, y)+ P(1, 1|x, y)− P(0, 1|x, y)− P(1, 0|x, y). As CHSH showed,
local correlations must satisfy S 6 2. In quantum mechanics, correlations can violate this
inequality, but must respect Tsirelson’s bound S 6 2

√
2 [17].

By inspection, the algebraic maximum of S is 4, and it is easy to see that it is attained by
the following correlations:

P(a, b|x, y)=

{
1
2 if a ⊕ b = xy,

0 otherwise.
(13)

Here, ⊕ denotes addition modulo 2. These correlations were described by Popescu and
Rohrlich, who pointed out that they are maximally nonlocal but still respect the no-signalling
principle [2]. Since they cannot occur in quantum mechanics, they are imagined to be produced
by a fictitious device, which is often referred to as a PR box. As discussed in the introduction, PR
boxes have been explored in the literature and are known to be particularly powerful for certain
kinds of information theoretic problems, especially communication complexity problems [3–9].

It is interesting to see how the maximal CHSH value obtainable from polygon systems in
the state φAB varies as the number of vertices n of the polygon increases. The n = 4 case is
particularly simple. The optimal choice of measurements to violate the CHSH inequality is

x = 0 : {eA
1 , eA

3 }, x = 1 : {eA
2 , eA

4 }, y = 0 : {eB
2 , eB

4 }, y = 1 : {eB
1 , eB

3 }, (14)

and it can be verified from (10) that the correlations obtained give S = 4. In other words, the
maximally entangled state of two n = 4 systems can act as a PR box. It follows that this state
has the same information theoretic power that PR boxes are known to have.

For general n, assume that Alice’s measurement choices are of the form {eA
i , ēA

i } and Bob’s
of the form {eB

j , ēB
j }. A lengthy but straightforward calculation gives the following analytic

expressions. For even n,

S = r 2
n

∑
x,y=0,1

(−1)xy cos(αx −βy), (15)

where as before, αx =
2π ix

n and βy =
(2 jy−1)π

n . For odd n,

S =
2(

1 + r 2
n

)2

∣∣∣∣∣∣(r 2
n − 1)2 + 2 r 2

n

∑
x,y=0,1

(−1)xy cos(αx −βy)

∣∣∣∣∣∣ , (16)

where αx =
2π ix

n and βy =
2π jy

n . Maximizing these expressions over all possible choices for
the angles αi and β j gives the maximal violation achievable by local measurements on the
maximally entangled state φAB . A detailed analysis of these expressions can be found in
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Figure 3. Maximal CHSH value from the maximally entangled state of two
polygon systems as a function of the number of vertices n. Tsirelson’s bound
(S 6 2

√
2) appears as a natural separation between the cases of even n and

odd n.

appendix A. Figure 3 shows the maximal CHSH value for the maximally entangled state of
polygon systems as a function of n.

The most important feature of figure 3 is that the correlations of even n systems can
always reach or exceed Tsirelson’s bound, while the correlations of odd n systems are always
below Tsirelson’s bound. Thus Tsirelson’s bound appears as a natural separation between the
correlations of these two different kinds of polygon state spaces. Sections 4 and 5 explain this.
Section 4 shows that for odd n, the maximally entangled state φAB belongs to a broad class
of states we call inner product states and that all correlations obtainable from measurements
on inner product states satisfy Tsirelson’s bound. Section 5 goes further and relates this to a
fundamental geometric difference between polygons with even n and odd n. In figure 1, the
difference is seen in the fact that for odd n, the effect cone V ∗

+ coincides with the state cone
V+, whereas for even n, the effect cone is isomorphic to the state cone but rotated through some
angle.

We have only considered correlations obtainable from the maximally entangled state
φAB . In principle, there could be joint states other than the maximally entangled state that
show stronger violations for some Bell inequalities. While this seems unlikely for the CHSH
inequality, other Bell inequalities are known to be maximized by nonmaximally entangled states
in quantum mechanics [18].

3.4. The Braunstein–Caves inequalities

The Braunstein–Caves (or chained) Bell inequalities [19] are similar to the CHSH inequality,
but involve N measurement settings on each system, rather than two. Let Alice’s choice of
measurement be x , and Bob’s y, with x, y ∈ {1, . . . , N }. Let the outcomes be a, b ∈ {0, 1}.
Local correlations satisfy

SN =

∣∣∣∣∣∣
N−1∑
j=1

(E j, j + E j, j+1)+ EN ,N − EN ,1

∣∣∣∣∣∣6 2N − 2, (17)
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where as before Ex,y = P(0, 0|x, y)+ P(1, 1|x, y)− P(0, 1|x, y)− P(1, 0|x, y). In the case
N = 2, this is equivalent to the CHSH inequality, up to relabelling of measurement settings.

The algebraic maximum of SN is 2N . This maximum can be attained by carrying out
measurements on the maximally entangled state of even n polygon systems with n = 2N . This
state is thus tailor-made for violating the Braunstein–Caves Bell inequalities. To see this, let
Alice’s and Bob’s measurement choices be given by

x = i : {eA
i , ēA

i }, i = 1, . . . , N , (18)

y = j : {eB
j , ēB

j }, j = 1, . . . , N , (19)

and note that (i) E j, j = 1 for j = 1, . . . , N , (ii) E j, j+1 = 1 for j = 1, . . . , N − 1 and (iii) EN ,1 =

−1. In the case n → ∞, maximal violation of the Braunstein–Caves inequality is achieved in
the limit of infinitely many settings. This is also true for a quantum mechanical maximally
entangled state, as shown in [20].

In general, given a set of correlations P(a, b|x, y), they can be written as a mixture

P(a, b|x, y)= q PNL(a, b|x, y)+ (1 − q)PL(a, b|x, y), (20)

where 06 q 6 1, PNL(a, b|x, y) is a set of nonlocal correlations and PL(a, b|x, y) a set of
local correlations. Suppose, however, that the correlations P(a, b|x, y) return the maximum
value SN for an appropriate Braunstein–Caves inequality. Then q(SN )+ (1 − q)(SN − 2)> SN ;
hence q = 1. Therefore, the fact that the maximally entangled state of even n polygon systems
returns the maximum value for the appropriate Braunstein–Caves inequality indicates that there
is no local part in the correlations with N = n/2 measurement settings. This was pointed out in
the case of quantum systems in [20, 21]. As a further curiosity, if we did have access to these
systems, they could be used for secure key distribution, using the protocol of [22].

3.5. Distillation

So far, we have only considered correlations that can be produced by measuring a single copy
of a bipartite polygon system. There remains the possibility that stronger correlations could be
produced by carrying out local measurements on multiple bipartite pairs, and locally processing
the data (there is a further possibility, involving entangled measurements across multiple copies
on each side, which we do not discuss).

Consider the bipartite state φAB of two even n polygon systems, and suppose that Alice
and Bob are choosing from the measurements

x = 0 : {eA
1 , ēA

1 }, x = 1 : {eA
2 , ēA

2 }, y = 0 : {eB
1 , ēB

1 }, y = 1 : {eB
2 , ēB

2 }, (21)

with outcomes a, b ∈ {0, 1} as usual. Recall that E j, j = 1 for j = 0, 1 and E0,1 = 1. Equation
(10) also gives E1,0 = 2 cos( 2π

n )− 1. The correlations produced can be written as a probabilistic
combination of maximally nonlocal correlations (equivalent up to relabelling to the PR box
correlations of (13)) and another term that describes local correlations:

Pε(a, b|x, y)= εPPR(a, b|x, y)+ (1 − ε)PL(a, b|x, y). (22)

Here, 06 ε = 1 − cos( 2π
n )6 1, PPR is given by

PPR(a, b|x, y)=

{
1
2 if a ⊕ b = x(y ⊕ 1),

0 otherwise
(23)
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and PL is a set of local correlations given by

PL(a, b|x, y)=

{
1
2 if a ⊕ b = 0,

0 otherwise.
(24)

In [5], it is shown that all correlations of the form (22) with 0< ε < 1 can be distilled into
stronger correlations using a protocol that involves two copies of a bipartite system. Importantly,
this protocol consists only of local processing and does not involve any communication. In the
asymptotic limit of infinitely many copies of a bipartite system, the correlations (22) can be
distilled to PR box correlations by iterating the protocol. Thus for any finite even n, the polygon
systems produce correlations that can be distilled arbitrarily close to PR box correlations (since
ε = 1 − cos(2π

n ) > 0). It is only in the limit n → ∞ (the quantum case) that we get ε = 0 and
thus lose the ability to distill PR box correlations.

The consequence of the above is that polygon systems with even and finite n inherit the
powerful communication properties of PR boxes as long as there are multiple copies of the
maximally entangled state available. For instance, they collapse communication complexity [3],
allow for better than classical nonlocal computation [8], violate information causality [6] and
macroscopic locality [7]. Moreover, since the PR box can be considered as a unit of bipartite
nonlocality [23, 24], it follows that any bipartite no-signalling probability distribution can be
generated from multiple copies of polygon systems with even n. This is particularly surprising
as in practice, an individual polygon system with even and very large n would be very difficult
to distinguish from one with odd n, and also from the quantum case, i.e. the disc that one gets
in the limit n → ∞. These toy theories thus show that practically indistinguishable theories can
have fundamentally different limits to the nonlocal correlations they allow.

For polygon systems with odd and finite n, the situation is dramatically different, as seen
in the next section.

4. Bounds on correlations

For even n polygon systems, the maximally entangled state can produce arbitrarily strong
nonlocal correlations, whereas for odd n polygon systems, the nonlocality is highly constrained.
The maximally entangled state of odd n polygon systems cannot, for example, violate
Tsirelson’s inequality. This section shows that this is a consequence of a much more general
result.

We first introduce a class of bipartite states in general theories, which we call inner product
states. The main theorem establishes a strong constraint on the nonlocal correlations that can
be produced from measurements on inner product states. One consequence is that inner product
states cannot violate Tsirelson’s inequality. The maximally entangled states of odd n polygon
systems are inner product states; hence the theorem explains what was only established by
direct calculation above—that these states do not violate Tsirelson’s inequality. On the other
hand, the maximally entangled states of even n polygon systems are not inner product states;
which is consistent with their producing arbitrary nonsignalling correlations. We also show that
all classical and quantum states are, in terms of nonlocal correlations, no stronger than an inner
product state.

4.1. Inner product states

Recall that a state cone V+ is the set of unnormalized states of a system, and that these span a
vector space V . An effect cone V ∗

+ is the set of unnormalized measurement outcomes, and these
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span the vector space V ∗. Given two systems A and B, if the state cones V A
+ and V B

+ span vector
spaces V A and V B , respectively, then a joint state is an element of V A

⊗ V B .
Call two distinct systems similar if their state spaces are isomorphic. Examples of similar

systems are two quantum mechanical qubits, two classical trits, and two n-vertex polygon
systems. For the rest of this section, assume a bipartite system composed of two similar
subsystems A and B. In this case, the respective state spaces and effect spaces can be identified,
so that V A

= V B
= V , (V A)∗ = (V B)∗ = V ∗, u A

= uB
= u and so on.

Definition 2. A joint state ωAB is symmetric if (e ⊗ f )(ωAB)= ( f ⊗ e)(ωAB) for all
measurement outcomes e, f ∈ V ∗

+ .

Definition 3. A joint state ωAB is an inner product state if ωAB is symmetric, and positive
semidefinite, i.e. (e ⊗ e)(ωAB)> 0∀e ∈ V ∗.

Note that by the definition of a joint state, it is always true that (e ⊗ e)(ωAB)> 0 when
e ∈ V ∗

+ , i.e. when e is a valid effect. This is simply a statement of the fact that measurement
outcome probabilities have to be greater than or equal to zero. The definition requires
something stronger, which is that (e ⊗ e)(ωAB)> 0 for any e in the whole of the vector
space V ∗.

Example 1. Any symmetric product state ωAB
= ω⊗ω is an inner product state.

Example 2. Consider two classical systems, each of which is a nit, taking values {1, . . . , n}.
A joint state is simply a joint probability distribution over nit values. Write the joint state as
a matrix P , where Pi j is the joint probability that A = i and B = j . This is an inner product
state iff the matrix P is symmetric and positive semi-definite. In particular, this includes any
perfectly correlated state of the form

Pi j = 0 if i 6= j,

Pi i = qi , qi > 0,
∑

i

qi = 1.

Example 3. Consider two polygon systems, each corresponding to a state space with n
vertices. Section 3.2 defined an analogue of a maximally entangled state φAB . In the matrix
representation of (9), φAB is an inner product state if and only if the matrix is symmetric and
positive semi-definite. Hence φAB is an inner product state for odd n, whereas for even n, φAB

is not an inner product state.

Example 4. The quantum case is slightly subtle. Given two qubits, the maximally entangled
state

8+
= |8+

〉〈8+
|, |8+

〉 =
1

√
2
(|00〉 + |11〉) (25)

is symmetric but is not an inner product state, since if σy is a Pauli spin matrix, then
(σy ⊗ σy)(8

+)= −1. Consider the operator defined by 8̃= (1⊗ T ) (8+), where T is the linear
map that takes an operator in V B to its transpose with respect to the computational basis. The
new operator 8̃ is not a valid quantum state. It is locally positive but not globally positive and
hence it is not a density operator. But it is in the maximal tensor product of two qubits, and it
is an inner product state. In fact, 8̃ predicts perfect correlation whenever Alice and Bob carry
out measurements in the same direction. However, the two states are equivalent in terms of the
nonlocal correlations they can produce (as was first shown in [10]).

New Journal of Physics 13 (2011) 063024 (http://www.njp.org/)

http://www.njp.org/


15

Theorem 8 below establishes a constraint on the nonlocal correlations that can be obtained
from measurements on an inner product state. It may seem as if the definition of an inner
product state is quite restrictive, given that an inner product state must be symmetric, for
example, and given that the maximally entangled state 8+ of two qubits is not included.
This would diminish the interest of the theorem. However, suppose that a bipartite state ωAB

can be obtained from an inner product state via a transformation of one of its subsystems.
Then any correlations obtained from ωAB could also be obtained from an inner product
state. Hence any restriction on the correlations from inner product states also applies to ωAB .
Formally,

Theorem 4. Consider a joint state ωAB , which can be written in the form ωAB
= (1⊗ τ)(σ AB),

for some τ : V+ → V+ that takes normalized states to normalized states. Any correlations
obtained from measurements on ωAB can also be obtained from measurements on σ AB .

Proof. Define the adjoint map τ † : V ∗

+ → V ∗

+ such that for any effect e ∈ V ∗

+ and any state
ω ∈ V+,

(τ †(e))(ω)= e(τ (ω)). (26)

Since τ takes normalized states to normalized states, τ †(u)= u. Given a measurement
y on system B, with outcomes { f1, . . . , fr}, let y′ be the measurement with outcomes
{τ †( f1), . . . , τ

†( fr)}. Note that from f1 + · · · + fr = u, and τ †(u)= u, it follows that τ †( f1)+
· · · + τ †( fr)= u, as must be the case for y′ to be a valid measurement. Then measurements
x and y on ωAB have the same joint outcome probabilities as measurements x and y′ on
σ AB . Hence, if a particular set of correlations can be obtained by carrying out measurements
on ωAB , those same correlations can be obtained by carrying out different measurements on
σ AB . ut

Further,

Theorem 5. Given two d-dimensional quantum systems, any pure state ρ AB
= |ψ〉〈ψ | can

be written in the form ρ AB
= (1⊗ τ)(ρ̃ AB), where τ : V+ → V+ takes normalized states to

normalized states, and ρ̃ AB is an inner product state.

Proof. Using the Schmidt decomposition, every pure quantum state |ψ〉 can be written in the
form

|ψ〉 =

r∑
i=1

λi |ai〉 ⊗ |bi〉 , (27)

where r is the Schmidt rank, {|ai〉} and {|bi〉} are orthonormal bases and the λi are real and
positive. A unitary transformation U , on system B, which maps {|bi〉} to {|ai〉} gives

|ψ ′
〉 =

r∑
i=1

λi |ai〉 ⊗ |ai〉.

Now let

ρ̃ AB
= (1⊗ T )(|ψ ′

〉〈ψ ′
|),
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where T is the transpose map, acting on the B system, defined with respect to the basis {|ai〉}.
Note that ρ̃ AB is symmetric since for Hermitian operators E and F ,

(E ⊗ F)(ρ̃ AB)= Tr[(E ⊗ F)ρ̃ AB] =

∑
i j

λiλ j E j i Fi j = (F ⊗ E)(ρ̃ AB).

Note also that ρ̃ AB is positive semi-definite since for any Hermitian operator E ,

(E ⊗ E)(ρ̃ AB)= Tr[(E ⊗ E)ρ̃ AB] =

∑
i j

λiλ j E j i Ei j =

∑
i j

λiλ j |E j i |
2 > 0.

Therefore ρ̃ AB is an inner product state. The quantum state ρ AB can be written ρ AB
= (1⊗

τ) (ρ̃ AB), where τ is the transpose map followed by U−1, which proves the theorem. ut

Now any correlations that can be obtained from measurements on a bipartite classical or
quantum system, pure or mixed, can also be obtained from measurements on a pure quantum
state of two d-dimensional systems for some d. This follows from the fact that mixed quantum
states always have a purification on a larger Hilbert space. Combining this observation with
theorems 4 and 5 gives

Theorem 6. Any correlations obtained from measurements on a bipartite, pure or mixed,
classical or quantum system could also be obtained from measurements on an inner product
state.

Hence as far as correlations go, the fact that we consider only inner product states is not
nearly so restrictive as it looks. By extension, the results apply to all classical and quantum
bipartite systems.

4.2. The set Q1

The problem of characterizing correlations that could, in principle, be produced by carrying
out measurements on quantum systems and those that cannot is an interesting one. Tsirelson’s
inequality, which limits the possible violation of the CHSH inequality in quantum theory, was
the first result in this direction. A great deal of progress is made in [25, 26], where the problem
is reduced to the following form. A hierarchy of sets Q1, Q2, . . . is defined, such that each Qk

is a proper subset of the set of all possible bipartite nonsignalling correlations, and each Qk is
strictly contained in its predecessor. For given correlations P(a, b|x, y), and for each k, it is
a semi-definite programming problem to determine whether P(a, b|x, y) is contained in Qk .
Furthermore, a given set of correlations P(a, b|x, y) can be obtained from measurements on
quantum systems if and only if P(a, b|x, y) is contained in Qk for some k. Hence the sets Qk

become smaller as k increases, until in the limit k → ∞ they converge towards the set Q of
quantum correlations.

The set Q1, which is the largest in the hierarchy, is of further significance. In [7] it is shown
that correlations in Q1 satisfy a readily comprehensible physical principle called macroscopic
locality. For a precise description of what this means see [7], but in a nutshell, the principle
states that the coarse-grained statistics of correlation experiments involving a large number of
particles should admit a description by a local hidden variable model. In other words, the set
of microscopic correlations that satisfy the principle of macroscopic locality are those that are
compatible with classical physics in a certain limit in which the number of particle pairs being
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tested is large, and only coarse-grained statistics, rather than settings and outcomes for every
pair, are collected. It is also known that Q1 is closed under wiring [7, 27], in other words, it is not
possible to distill correlations in Q1 to correlations outside Q1 by carrying out measurements on
a number of distinct pairs of systems, and locally manipulating the data. Finally, in the specific
case of binary measurement choices and outcomes, all correlations in Q1 respect Tsirelson’s
bound of 2

√
2 for the CHSH scenario. The main theorem below states that correlations from

measurements on inner product states are contained in the set Q1.
First, we give a formal definition of Q1. Suppose that Alice and Bob share two systems in

a bipartite state, and let Alice choose a measurement x and Bob choose a measurement y. Until
now, when we discussed correlations, Alice’s and Bob’s outcomes were labelled a and b, and
correlations written P(a, b|x, y). For the specific purpose of defining Q1, however, it is more
useful to label the measurement outcomes in such a way that outcomes of distinct measurements
have different labels. Hence let the index i range over all possible outcomes of all of Alice’s
measurement choices. For example, if Alice is choosing from N possible measurements, each of
which has k possible outcomes, then i takes values in {1, . . . , k N }, with i = 1, . . . , k being the
outcomes of the x = 1 measurement, i = k + 1, . . . , 2k the outcomes of the x = 2 measurement
and so on. Let the same conventions apply to Bob’s outcome, which is denoted by j . With a
slight abuse of notation, let x(i) denote the unique measurement choice of Alice for which i is
a possible outcome. Similarly for y( j). Write P(i, j) for the probability of obtaining outcomes
i and j when the measurements x(i) and y( j) are carried out. Let PA(i) denote the marginal
probability for Alice to obtain outcome i when she carries out measurement x(i), and PB( j)
denote the marginal probability for Bob to obtain outcome j when he carries out measurement
y( j).

Definition 7 ([7, 25, 26]). A set of correlations P(i, j) is in Q1 iff there exists a positive semi-
definite matrix γ of the form

γ =


1 EPT

A
EPT

B

EP A Q̃ P̃

EP B P̃T R̃

 , (28)

such that

(i) EP A and EP B are the vectors of probabilities PA(i) and PB( j),

(ii) P̃ is a matrix with elements P̃i j = P(i, j),

(iii) Q̃ and R̃ are sub-matrices with diagonal elements Q̃i i = PA(i) and R̃ j j = PB( j),

(iv) Q̃i i ′ = 0 if i 6= i ′, x(i)= x(i ′),

(v) R̃ j j ′ = 0 if j 6= j ′, y( j)= y( j ′).

In words, the last two conditions state that elements of Q̃ and R̃ corresponding to different
outcomes of the same measurement must be zero. The remaining off-diagonal elements of Q̃
and R̃ can be chosen freely.

4.3. The main theorem

Theorem 8. Consider two similar systems, whose joint state is an inner product state. All
correlations that can be obtained from local measurements lie in Q1.
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Proof. It is sufficient to show that for any set of correlations generated by measurements on
an inner product state, there exists a matrix γ of the form (28), which is symmetric, positive
semi-definite and has the feature that entries in the blocks Q̃ and R̃ corresponding to different
outcomes of the same measurement are zero.

Consider correlations generated by measurements on an inner product state ωAB .
Using the notation introduced in section 4.2, let ei be the effect corresponding to Alice’s
measurement outcome i , and f j the effect corresponding to Bob’s measurement outcome
j . Suppose that i ranges from 1, . . . , n A and j from 1, . . . , nB . Define a vector of effects
g = (u, e1, . . . , en A, f1, . . . , fnB ), and denote the entries g1 = u, g2 = e1, . . . , g1+n A+nB = fnB .
Define the (1 + n A + nB)× (1 + n A + nB) matrix γ̃ such that γ̃kl = (gk ⊗ gl)(ω

AB). From the fact
that ωAB is an inner product state, it follows directly that γ̃ is a symmetric and positive semi-
definite matrix [29].

Now define a matrix γ of the form (28), with γkl = γ̃kl for all k, l except for the following
elements of the sub-matrices Q̃ and R̃:

(i) Q̃i i = PA(i) and R̃ j j = PB( j),

(ii) Q̃i i ′ = 0 if i 6= i ′, x(i)= x(i ′),

(iii) R̃ j j ′ = 0 if j 6= j ′, y( j)= y( j ′).

By construction, γ satisfies conditions (i)–(v) of definition 7, and the symmetry of γ follows
from the symmetry of γ̃ . It remains to be shown that γ is positive semi-definite.

To this end, let δ = γ − γ̃ and note that δ is of the form

δ =


0 · · · 0
... δQ 0̃

0 0̃T δR

 , (29)

where δQ is an n A × n A sub-matrix, δR is an nB × nB sub-matrix, and 0̃ is the n A × nB matrix
with all entries 0. Since both γ and γ̃ are symmetric, δ is also symmetric. We will show that δQ

and δR are positive semi-definite. It follows that δ is positive semi-definite. Since γ = δ + γ̃ , it
follows that γ is also positive semi-definite.

Note that (δQ)i i ′ = 0 for x(i) 6= x(i ′). It follows that δQ is block diagonal, with each
block corresponding to a particular measurement choice of Alice. Consider a particular block,
corresponding to a measurement with, say, r outcomes. It is of the form

M =


e1 ⊗ u − e1 ⊗ e1 −e1 ⊗ e2 · · · −e1 ⊗ er

−e2 ⊗ e1 e2 ⊗ u − e2 ⊗ e2 · · · −e2 ⊗ er

...

−er ⊗ e1 −er ⊗ e2 · · · er ⊗ u − er ⊗ er

 (ωAB). (30)

Using e1 + · · · + er = u, this matrix can be decomposed into a sum of (r 2
− r)/2 matrices

M =

r∑
n=2

n−1∑
m=1

Mmn, (31)
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where all entries of the matrices Mmn are 0, except for

(Mmn)mm = (Mmn)nn = (em ⊗ en)(ω
AB), (32)

(Mmn)mn = (Mmn)nm = −(em ⊗ en)(ω
AB). (33)

Each Mmn is manifestly positive semi-definite; hence M is positive semi-definite. Since each
block of δQ is positive semi-definite, δQ is also positive semi-definite. A similar argument
shows that δR is also positive semi-definite. Therefore, δ and γ are positive semi-definite. This
concludes the proof. ut

Corollary 9. Consider two systems whose joint state is of the form ωAB
= (1⊗ τ)(σ AB), where

τ : V+ → V+ takes normalized states to normalized states and σ AB is an inner product state. All
correlations obtainable from measurements on ωAB lie in Q1.

Proof. This is immediate from theorem 8 and theorem 4. ut

Theorem 6 then implies that all correlations from bipartite classical and quantum states
lie in Q1. This was already known, of course, from [25, 26]. One could view the theorem and
corollary as an independent proof of this fact.

5. Polygons revisited

It has already been observed that given two n-vertex polygon systems, the maximally entangled
state φAB , defined in section 3.2, is an inner product state if and only if n is odd. Theorem 8
states that correlations obtained from measurements on an inner product state lie in the set Q1,
which means in particular that they respect Tsirelson’s bound for the CHSH inequality. This
explains why Tsirelson’s bound is satisfied by the odd n polygon systems, and is consistent
with violation of Tsirelson’s bound by the even n polygon systems.

This section relates these observations to simple geometrical properties of the state spaces
of polygon systems. A quick glance at figures 1 and 2 reveals an obvious difference between
the odd n and even n cases. For odd n, the effect cone V ∗

+ coincides with the state cone V+.
For even n on the other hand, the effect cone is isomorphic to the state cone, but is rotated by
some nonzero angle. This simple observation lies at the heart of why it is only the maximally
entangled states of odd n polygon systems that are inner product states, and hence why it is only
these that must satisfy Tsirelson’s bound.

The fundamental difference between the odd n and even n state spaces can be stated more
formally as follows. First,

Definition 10 (weakly self-dual). A system is weakly self-dual iff the state and effect cones are
isomorphic.

All of the polygon state spaces are weakly self-dual. The isomorphisms are simply the
rotations and improper rotations around the z-axis by (1 + 2k)π/n, k ∈ {0, . . . , n − 1} if n is
even and by 2kπ/n, k ∈ {0, . . . , n − 1} if n is odd.

The odd n polygon state spaces, on the other hand, satisfy a stronger condition, whereby
there are additional restrictions on the isomorphism connecting V ∗

+ and V+.
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Definition 11 (strongly self-dual). A system is strongly self-dual iff there exists an isomorphism
T : V ∗

+ → V+ that is symmetric and positive semi-definite, i.e. f [T (e)] = e[T ( f )] for all e, f ∈

V ∗ and e[T (e)]> 0 for all e ∈ V ∗.

Given the representation of sections 3.1 and 3.2, the identity map is an example of such an
isomorphism. The odd n polygon state spaces are strongly self-dual, but the even n are not.

The concepts of strong and weak self-duality have appeared earlier in the literature, for
example in [28]. Weak self-duality is intimately related to the operational tasks of probabilistic
remote state preparation (steering) and teleportation [15, 28].

Now we can relate these properties of individual systems to the bipartite maximally
entangled state φAB . Notice that given two similar systems, any isomorphism T : V ∗

+ → V+

corresponds to a bipartite state ωAB
T via

(e ⊗ f )(ωAB
T )=

f [T (e)]

u[T (u)]
. (34)

The state defined is normalized by construction and is locally positive since 06
f [T (e)]/u[T (u)]6 1 for all e, f ∈ E(�). Intuitively, ωAB

T is defined so that if Alice carries out
a measurement and obtains outcome e, then Bob’s unnormalized collapsed state, conditioned
on that outcome, is T (e).

In the special case when the individual systems are strongly self-dual and the isomorphism
T has the additional properties required by definition 11, then the induced state ωAB

T is
symmetric and positive semi-definite; hence it is an inner product state. This is the case for the
maximally entangled state φAB of odd n polygon systems, defined in (9), where φAB corresponds
to a map T , which is simply the identity map. It follows that for odd n, correlations from φAB

lie in Q1.
In the case when individual systems are weakly but not strongly self-dual, the maximally

entangled state corresponds to an isomorphism T , but there is no such T with the additional
properties of symmetry and positive semi-definiteness, hence the maximally entangled state is
not an inner product state. This is the case for the maximally entangled state φAB of the even n
polygon systems, defined in (9), where φAB corresponds to a map T , which is a rotation in R3

by π/n. That is why for even n, correlations from φAB need not lie in Q1.

6. Correlations outside of Q1

Correlations obtained from the maximally entangled state of two odd n polygon systems must
be contained in Q1, and this has been seen to be related to the fact that the individual systems
are strongly self-dual. It is natural to ask whether the correlations obtained from any joint state
of strongly self-dual subsystems must also lie in Q1. An explicit counterexample shows that this
is not the case.

Consider a strongly self-dual system with normalized extremal states

ω1 = (1, 0, 1)T, ω2 = (0, 1, 1)T, ω3 = (−1, 0, 1)T,
ω4 = (−1,−1, 1)T, ω5 = (1,−1, 1)T,

and normalized ray extremal effects

e1 =
1
2(1, 0, 1)T, e2 =

1
2(0, 1, 1)T, e3 =

1
2(−1, 0, 1)T,

e4 =
1
3(−1,−1, 1)T, e5 =

1
3(1,−1, 1)T, u = (0, 0, 1)T.

The state space for this system looks something like a house and is depicted in figure 4.
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ω1, e1

ω2, e2

ω3, e3

ω4, e4 ω5, e5

Figure 4. The house-shaped state space is strongly self-dual.

We have explicitly calculated all extremal states in the maximal tensor product of two such
systems. One of these joint states can be written as−1 −

1
4 −

1
2

1
4 −

1
2 −

1
4

1
2 −

1
4 1

 , (35)

where we have used the same representation as a 3 × 3 matrix that was introduced in section 3.2.
This state is extremal in the maximal tensor product, but is not an inner product state. With a
suitable choice of measurements, correlations can be produced that violate Uffink’s quadratic
inequality [30]

(E0,0 + E1,0)
2 + (E0,1 − E1,1)

2 6 4. (36)

In particular, the measurement choices

x = 0 : {e5, u − e5}, x = 1 : {e3, u − e3}, y = 0 : {e2, u − e2}, y = 1 : {e3, u − e3}

(37)

give
(E0,0 + E1,0)

2 + (E0,1 − E1,1)
2
=

17
4 > 4. (38)

However, satisfaction of Uffink’s inequality is known to be a necessary condition for
membership of Q1 [31]; hence these correlations cannot lie in Q1.

Although these correlations violate Uffink’s inequality and lie outside of Q1, they do not
violate Tsirelson’s bound for the CHSH inequality. In fact, we have not been able to find a joint
state of two strongly self-dual subsystems that violates the CHSH inequality beyond Tsirelson’s
bound. This leads us to conjecture that Tsirelson’s bound holds for every theory with strongly
self-dual subsystems.

7. Discussion

One way of viewing the difference between classical and quantum systems is that the structure,
or shape, of the space of possible states of a system is different. For example in the case of
a classical trit, the state space is the space of probability distributions over trit values, which
is geometrically a triangle. In the case of a qubit, the state space is the Bloch ball. This paper
considers a very general setting in which a whole range of probabilistic models can be defined,
with the classical and quantum theories as special cases. There are few constraints on the state
space, except that it is assumed to be convex, and joint systems are assumed to satisfy a no-
signalling principle and a principle of local tomography. The aim is to investigate the nonlocal

New Journal of Physics 13 (2011) 063024 (http://www.njp.org/)

http://www.njp.org/


22

correlations that can be produced by measurements on entangled systems in these models, and
to compare and contrast them with the classical and quantum cases.

The main theorem, with its corollary, states that correlations from a broad class of bipartite
states in probabilistic theories cannot be arbitrarily nonlocal—they are constrained to obey the
principle of macroscopic locality, or equivalently to lie within the set Q1, which means in
particular that they satisfy Tsirelson’s bound for violation of the CHSH inequality. This theorem
extends to all bipartite quantum states, which explains why quantum mechanics cannot violate
macroscopic locality or Tsirelson’s bound.

The paper has also revealed an intimate and intricate relationship between the shape of the
state space for an individual system and the strength of the nonlocal correlations that can be
obtained from two systems in an entangled state. This is illustrated by a family of models, in
each of which the state space for a single system is a regular polygon with n vertices. Given two
such systems, there is an analogue of a maximally entangled state. It turns out that the strength of
nonlocal correlations generated by this state depends dramatically on the parity of the number of
vertices n of the local polygon. If n is even, maximally nonlocal correlations can be generated,
including those that violate macroscopic locality. If n is odd, however, the maximally entangled
state respects macroscopic locality. This is in turn explained by the fact that odd n polygons
have a geometric property known as strong self-duality, while even n polygons do not.

It would be natural to think that all bipartite states of strongly self-dual subsystems would
respect macroscopic locality, but the house-shaped counterexample shows that this is not the
case. An interesting open question, therefore, is the following: what additional property of local
state spaces would ensure that all bipartite states give correlations which respect macroscopic
locality? One suggestion is the constraint that for any ray extremal effect, there is a unique state
on which this effect will occur with certainty. This property is very attractive from a physical
point of view. It allows a natural definition of the post-measurement states of these effects, such
that repeating a measurement reproduces the same outcome. This extra constraint is indeed not
satisfied by the house model, since the effect e1 occurs with certainty for both states ω1 and ω5,
but it is satisfied by odd n polygon models. Another possibility that seems to be plausible is that
strong self-duality, together with the property that all extremal states of the local systems can
be transformed into one another reversibly, might limit the set of possible correlations to those
compatible with macroscopic locality.

Finally, it is worth emphasizing that two theories which have almost identical local state
spaces can lead to dramatically different nonlocal correlations. In particular, given any finite
level of accuracy, it is always possible to find a polygon model with an even and sufficiently large
number of vertices n, which is locally indistinguishable from the quantum-like case, where the
state space is a disc. Nevertheless, while quantum correlations are restricted, any nonsignalling
correlations can be distilled in the former model by using multiple copies of the maximally
entangled state.
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Table A.1. Optimal angles.

α∗

0 α∗

1 β∗

0 β∗

1

Set 1 0 π
2

π
4 −

π
4

Set 2 0 π
2 −

3π
4

3π
4

Table A.2. Analytical expression for the maximal CHSH-violation of polygon
boxes.

x 1α1 1β0 1β1 S

0 0 π
n

π
n 2

√
2

1 −π
2n

−π
4n

π
4n

2

(1+sec( πn ))
2

[
1 + sec

(
π
n

) (
2 cos

(
n+3
4n π

)
+ 6 sin

(
n+1
4n π

)
+ sec

(
π
n

)
− 2

)]
2 π

n
π
2n

−π
2n sec

(
π
n

) [
3 cos( n+2

4n π)+ sin
(

n+6
4n π

)]
3 π

2n
π
4n

−π
4n

−2

(1+sec( πn ))
2

[
1 − sec

(
π
n

) (
6 cos

(
n+1
4n π

)
+ 2 sin

(
n+3
4n π

)
− sec

(
π
n

))]
4 0 0 0 2

√
2 sec(πn )

5 −π
2n

−π
4n

π
4n

−2

(1+sec( πn ))
2

[
1 − sec

(
π
n

) (
6 sin

(
n+1
4n π

)
+ 2 cos

(
n+3
4n π

)
− sec

(
π
n

))]
6 π

n
−π
2n

π
2n sec(πn )

[
cos

(
n+6
4n π

)
+ 3 sin

(
n+2
4n π

)]
7 π

2n
π
4n

−π
4n

2

(1+sec( πn ))
2

[
1 + sec

(
π
n

) (
2 sin

(
n+3
4n π

)
+ 6 cos

(
n+1
4n π

)
+ sec

(
π
n

)
− 2

)]

Appendix. Optimal CHSH value

In the main text, we gave expressions for the maximal CHSH value returned by measurements
on a maximally entangled state of two n-vertex polygon systems. The expression for even n
is given in (15) and that for odd n is given in (16). The choice of angles that maximize these
quantities is not unique. We will see below that we have to take into account two different sets
of optimal angles.

Note that the optimization has been performed without any restriction on the values of the
angles α∗

x and β∗

y . However, due to the polygon structure of our model, only specific angles,
corresponding to extremal effects, are admissible. Thus the optimal CHSH values are obtained
by taking the extremal effects that are closest to the optimal angles. The deviation from the
optimal angles will be called 1α0,1α1,1β0,1β1. Without loss of generality we set 1α0 to
0. A detailed analysis reveals a total of eight classes of deviation angles characterized by the
remainder x = n mod 8 of the division of n by 8. For a free choice of angles both sets in
table A.1 lead to the same maximum value of the CHSH coefficient. Whether the available
extremal effects are closer to the angles of set 1 or set 2, however, depends on the number of
vertices. It turns out that for even n as well as for x ∈ {1, 7} this is the case for set 1, whereas for
x ∈ {3, 5} the smallest derivation can be achieved for set 2. The maximal CHSH value for each
polygon system is given by the following parameters for (15) and (16):

βy = β∗

y +1βy,

αx = α∗

x +1αx .
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The eight classes can clearly be seen in figure 3. The analytic expressions for the maximal
CHSH value as a function of the number of vertices n and the remainder x are given in table A.2.
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