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Zusammenfassung

Diese Arbeit beschäftigt sich mit den quantenmechanischen Aspekten von nanoelektrome-
chanischen Systemen. In nanomechanischen Systemen koppelt ein nahezu makroskopischer
mechanischer Freiheitsgrad an einen elektronischen Freiheitsgrad. Ohne weitere Einschränkun-
gen kann der mechanische Freiheitsgrad mit der fundamentalen Anregung eines harmonischen
Oszillators beschrieben werden. Auf Grund der Größenordnung von beteiligten Längen- und
Energieskalen spielt die Quantenmechanik eine sehr wichtige und nicht zu vernachlässigende
Rolle in der Beschreibung dieser Systeme. In dieser Arbeit untersuchen wir elektrische
Transporteigenschaften in solchen nanomechanischen Elementen, wobei unser Fokus in der
Quantennatur dieser Systeme liegt. Um quantenmechanische Effekte gänzlich zu berücksichti-
gen, verwenden wir Nichtgleichgewichts-Methoden wie zum Beispiel den Keldysh Formalismus.
Wir konzentrieren uns hauptsächlich auf Systeme, in denen der nanomechanische Oszillator
Teil eines Tunnelkontaktes ist. In solchen Anordnungen wird die Tunnelbarriere durch den
Oszillator moduliert, was zur Folge hat, dass auch die elektronischen Transporteigenschaften
beeinflusst werden. Durch Signaturen in Transportgrößen der Elektronik, wie zum Beispiel
des mittleren Tunnel-Stroms oder des Stromrauschens, ist es nun möglich den nanomecha-
nischen Oszillator zu untersuchen und zu charakterisieren. Die Wechselwirkung zwischen
dem mechanischem Freiheitsgrad und anderen Freiheitsgraden ermöglicht es diese anderen
Freiheitsgrade zu charakterisieren. Folglich kann der nanomechanische Oszillator als De-
tektor benutzt werden. In dieser Arbeit zeigen wir, dass der nanomechanische Oszillator
als Detektor für sehr exotische physikalische Freiheitsgrade verwendet werden kann. Diese
exotischen Freiheitsgrade sind sogenannte gebundene Majoranazustände, die kürzlich in
der theoretischen und experimentellen Physik viel Aufsehen erregt haben. Hier spielt die
quantenmechanische Beschreibung des Systems wiederum eine große Rolle. Eines der wich-
tigsten und faszinierendsten Phänomene der Quantenmechanik ist die quantenmechanische
Verschränkung zweier Quantensysteme. Die Verschränkung von quantenmechanischen Syste-
men mit wenigen (diskreten) Freiheitsgraden ist ein theoretisch und experimentell sehr gut
verstandenes Phänomen. Wir untersuchen Verschränkung zwischen zwei makroskopischen
Systemen mit kontinuierlichen Freiheitsgraden in zwei verschiedenen Anordnungen, die es
erlauben zwei nanomechanische Oszillatoren zu verschränken, die nicht direkt miteinander
gekoppelt sind. Schließlich fassen wir unsere Ergebnisse zusammen und diskutieren offene
Fragen und künftige Entwicklungen, die sich mit der Quantennatur nanoelektromechanischer
Systeme beschäftigen.
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Summary

This thesis deals with nanoelectromechanical systems in the quantum regime. Nanoelectrome-
chanical systems are systems where a mechanical degree of freedom of rather macroscopic
size is coupled to an electronic degree of freedom. The mechanical degree of freedom can
without any constraints be modeled as the fundamental mode of a harmonic oscillator. Due
to their size and the energy scales involved in the setting, quantum mechanics plays an
important role in their description. We investigate transport through such nanomechanical
devices where our focus lies on the quantum regime. We use non-equilibrium methods to
fully cover quantum effects in setups where the mechanical oscillator is part of a tunnel
junction. In such setups, the mechanical motion influences the tunneling amplitude and
thereby the transport properties through the device. The electronics in these setups can then
be used to probe and characterize the mechanical oscillator through signatures in transport
quantities such as the average current or the current noise. The interplay between the
mechanical motion and other physical degrees of freedom can also be used to characterize
these other degrees of freedom, i.e., the nanomechanical oscillator can be used as a detector.
In this thesis, we will show that a nanomechanical oscillator can be used as a detector for
rather exotic degrees of freedom, namely Majorana bound states which recently attracted
great interest, theoretically as well as experimentally. Again, the quantum regime plays
an essential role in this topic. One of the major manifestations of quantum mechanics is
entanglement between two quantum systems. Entanglement of quantum systems with few
(discrete) degrees of freedom is a well established and understood subject experimentally as
well as theoretically. Here, we investigate quantum entanglement between two macroscopic
continuous variable systems. We study different setups where it is possible to entangle two
nanomechanical oscillators which are not directly coupled to each other. We conclude with
reviewing the obtained results and discuss open questions and possible future developments
on the quantum aspects of nanomechanical systems.
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Introduction

Introduction to nanoelectromechanical systems
Our everyday world is predominantly governed by the laws of classical mechanics that
describe the motion of macroscopic objects under the influence of forces acting on them.
The basic physical and mathematical laws of classical mechanics were established in 1686
by Sir Isaac Newton who also built upon research done by Johannes Kepler and Galileo
Galilei a hundred years earlier. Also being part of our everyday world but far from our usual
experience is the atomic and subatomic world. For objects as for instance single electrons
and atoms, the theory established by Newton no longer applies but quantum mechanics
sets the laws for the behavior of atomic and subatomic particles and objects. It is intuitive
to assume that there is a separation of length scales. There is the macroscopic and the
atomic regime which are exceptionally well described and tested by the theory of classical
and quantum mechanics, respectively. If we would take a macroscopic object and decrease
its size, we could imagine that at some point its properties and its interaction with other
objects start to differ. This regime is called the mesoscopic regime, an intermediate regime
where system sizes vary from a few atoms to micrometers.

In his famous 1959 talk “There’s plenty of room at the bottom”, Richard Feynman invited
us “[...] to enter a new field of physics.” and talked about “[...] the problem of manipulating
and controlling things at the small scale.” [Feynman60]. This new field of physics envisaged
by Feynman back in 1959, today is no longer just an imagination but the frontier of technical
applications and realizations of theoretical proposals. Micro- and nanotechnology led to a
second industrial revolution with applications ranging from microchips to micromechanical
sensors for, e.g., force, pressure, and acceleration.
We are most interested in mechanical systems on the mesoscopic length scale called

nanoelectromechanical system (NEMS), i.e., these systems are not of atomic size but they
consist of a considerably low number of atoms. Nanomechanical systems are right in the
regime between macroscopic and atomic. Already on the mesoscopic length scale, quantum
mechanics, as we will see, can play a non negligible role. As the name “nanoelectromechanical”
already suggests, we deal with systems that have a mechanical degree of freedom coupled to
an electronic system which could either be used to control and manipulate the mechanical
degree of freedom or be used to gain information on the mechanical degree of freedom.
One might claim that Coulomb’s mechanical torsion balance was the first electromechanical
system used as a practical measurement device to discover the 1/distance2 dependence of
the force between two electrical charges. Nowadays, nanomechanical systems are used as
highly sensitive detectors for, e.g., mass [Yang06, Jensen08, Lassagne08, Chiu08, Naik09]
and force [Mamin01].
Typical geometries of nanoelectromechanical systems include simple beam-like struc-

tures that are either clamped on both ends or just on one end of the beam [Kleckner06,
Flowers-Jacobs07]. Recently, there are also more advanced geometries as drum-like struc-
tures [O’Connell10, Teufel11]. The properties of the mechanical motion depend strongly
on the dimensional parameters as well as the material used for fabrication. These systems
effectively act as a harmonic oscillator when we take the limit of small amplitude oscillations.
Typical beam-like structures are around 1µm long, 20 nm wide and 60 nm thick. The drum
in Ref. [O’Connell10] has a diameter of 60µm. The description of the nanomechanical
resonator depends very much on its geometry and the fabrication material. For nanome-
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Introduction

chanical resonators of cantilever-form or doubly clamped beams, the fundamental flexural
mode corresponds to the fundamental mode of a harmonic oscillator [Cleland02]. In typical
experiments with these kinds of resonators it is usually only the fundamental mode that
is excited. There are also very interesting experiments where the in-plane as well as the
out-of-plane mode of a doubly clamped beam can be excited [Rieger12]. This can lead to
novel effects arising from an interplay between the two modes [Faust12]. In this thesis,
however, we will focus on the case where only one mode is excited.

In order to give a comprehensive introduction to mechanical systems close to the quantum
regime, we briefly want to mention the field of nanooptomechanics. In nanooptomechanics the
interplay between an optical mode and a mechanical mode is being studied. The general setup
of a nanooptomechanical system consists of two mirrors forming an optical cavity where one of
the mirrors is movable. The cavity is now driven with a laser. The laser light induces radiation
pressure acting on the movable mirror and thereby deflecting it. The deflection changes the
length of the optical cavity and therefore the optical mode frequency. This interplay, induced
by the radiation pressure force, leads to an interaction between the photons in the cavity
and the phonons (which are the quantum excitations of the movable mirror). Due to the
exceptional high level of control of laser light and the possibility to produce mirrors of basically
any size, shape, and mass, there are a lot of cutting edge experiments with optomechanical
systems, see for instance Refs. [Kippenberg07, Kippenberg08, Marquardt09, Aspelmeyer10]
for brief introductory reviews on optomechanics.

Nanomechanical systems in the quantum regime

With recent experiments of nanoelectromechanical systems softening the boundary between
the macroscopic and the quantum world, experimentalists as well as theorists are able to
explore this very exciting intermediate regime, where it is possible to see quantum mechanics
work on mesoscopic length scales. It is this intermediate regime that allows us to study
fundamental questions as for instance: What characterizes the boarder classical/quantum?
What causes the quantum to classical transition? How do macroscopic objects behave in the
quantum regime? Is there a macroscopic Schrödinger’s cat state?
In order to give a flavor of state of the art experiments which investigate this regime,

we may mention two of the pioneering experiments. The first experiment was done by
O’Connell et al. [O’Connell10] which brought a mechanical dilatation resonator of size of
the diameter of a human’s hair (∼ 60µm) to its quantum mechanical ground state. The
great challenge in bringing a mesoscopic resonator to its quantum ground states lies in the
need for sufficiently low environmental temperatures Tenv. Freezing out internal thermal
phonons of the device and thereby entering the quantum regime requires environmental
temperatures Tenv � ~Ω/kB where Ω is the oscillator’s resonance frequency. For usual
resonance frequencies of around hundreds of megahertz this prerequisite is very hard to
achieve with standard cryogenic techniques. O’Connell et al. circumvented this problem by
building a high frequency dilatation drum resonator of Ω/2π ≈ 6GHz for which a standard
dilution refrigerator with a base temperature of Tenv ≈ 25mK was sufficient to meet the
condition Tenv � ~Ω/kB. Furthermore, strong coupling to a Josephson phase qubit allowed
for a readout of the oscillator’s state in this experiment.

4
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The second experiment was performed by Teufel et al. [Teufel11] where a nanomechanical
drum (made out of aluminum) of diameter ∼ 10µm was also cooled to is quantum mechanical
ground state. Ground state cooling in this experiment was not done passively as in the
experiment by O’Connell et al. but actively with a technique called sideband cooling which
is similar to the laser cooling technique of atoms.
Not quite in the quantum regime but interesting in its own right due to the kind of

coupling between the mechanical degree of freedom and the electronic degree of freedom, is
the experiment by Flowers-Jacobs et al. [Flowers-Jacobs07]. They showed that the position
power spectrum of a conducting nanomechanical oscillator (fabricated from gold) which
is coupled via an atomic point contact to a metallic lead, is directly related to the finite
frequency current noise spectrum through the atomic point contact. Therefore, simple
transport measurements can be used to characterize the nanomechanical oscillator. The
experimental realization of the doubly clamped nanomechanical beam resonator used in
Ref. [Flowers-Jacobs07] is shown in Fig. 0.1.

to the average current hIi is a resistance R that changes
monotonically with the size of the gap. The APC can then
be regarded as both a transducer and an amplifier of small
displacements dx with an output dhIi ! Gdx, where G !
"1=R#"@R=@x#hIi is the amplifier’s gain.

Only about 100 kHz of an APC’s intrinsically large
bandwidth is typically realized because the necessarily
high resistance APC [14] is shunted by the large cable
capacitance between the device and the remote mea-
surement electronics [15]. We overcome this band-
width limitation by transforming down the resistance of
the APC towards 50 ! with an electrical resonant trans-
former formed out of an inductor L and capacitor C,
inferring the resistance by measuring the on-resonance
(1=2!

!!!!!!!
LC
p

! 430 MHz) reflected microwave voltage
Vref [Fig. 1(b) and 1(c)], where hIi is now the magnitude
of the microwave current passing through the APC. With
this technique, originally implemented in the radio-
frequency single-electron transistor [15], we achieve a
bandwidth of 30 MHz controlled by the quality factor of
the resonant circuit; detection of motion outside of this
band results in a larger contribution to the measurement
noise by the conventional electronics. We choose to oper-

ate the APC amplifier with a 430 MHz resonance fre-
quency because low-noise microwave amplifiers are
readily available at this frequency, and the resonant circuit
can be fabricated from discrete components.

The mechanical system in this experiment is composed
of a doubly clamped nanomechanical beam next to an
atomically sharp point [Fig. 1(a)]. The beam and point
electrode are made entirely out of gold and are fabricated
fused together. An APC is formed between them by creat-
ing a gap using electromigration [16] in the ultrahigh
vacuum present in a 4 K cryostat; despite this precaution,
it is still possible that contaminants in the gap between the
beam and the point play a role in this experiment. The
beam is 5.6-"m long by 220-nm wide by 100-nm thick
resulting in a total beam mass m ! 2:3$ 10%15 kg.

We demonstrate the bandwidth of the APC amplifier by
finding the resonant frequencies of the beam. These reso-
nant modes are detected by sweeping the frequency of an
oscillating 50 pN Lorentz force [Fig. 1(b)] applied to the
beam parallel to the substrate (ŷ direction, [Fig. 2(b)]) and
using the APC amplifier to look for resonances [17]. We
observe five resonance frequencies between !0=2! !
18:4 and 57.2 MHz with a typical quality factor of 5000
[Fig. 2(a)]. An interatomic potential between the gold
atoms comprising the APC modifies the resonance fre-
quencies and mode shapes from those expected for a
doubly clamped beam. While for large static applied forces
there is hysteresis in the beam’s displacement [Fig. 1(c)],
for small displacements from mechanical equilibrium the
net effect of the interatomic potential deflecting the beam
can be modeled as a spring spanning the APC, which
connects the point and the beam. In a finite-element simu-
lation, we adjust the compliance of the spring until the
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FIG. 2 (color online). (a) Measured response amplitude (solid)
and phase (dashed) as a function of drive frequency for three of
the five observed resonant modes measured with the APC
amplifier. (b) Corresponding finite-element simulation of beam
mode shapes (dot corresponds to position of spring used to
model the interatomic potential at the APC; color indicates
displacement from equilibrium position with minimum displace-
ment at the ends of the beam).

 

FIG. 1 (color online). (a) Representative scanning electron
micrograph of the nanomechanical system consisting of a doubly
clamped beam suspended above a GaAs substrate and a trian-
gular electrode fused to the beam center; the APC is formed at
the junction between the electrode and the beam. (b) Simplified
schematic consisting of a displacement measurement shown to
the right of the APC and a drive mechanism (using a Lorentz
force created by passing a current through the beam in the
presence of a 9 T magnetic field) shown to the left. (c) Vref

(thick line) and APC resistance (thin line) versus applied force.

PRL 98, 096804 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
2 MARCH 2007

096804-2

Figure 0.1: Experimental realization of a nanoelectromechanical system. A doubly clamped beam
fabricated out of gold is coupled to a macroscopic detector via an atomic point contact (APC). Due
to the motion of the beam, the tunnel coupling changes with the position of the beam. In this
experiment the gap of the APC is ≈ 1 nm and the amplitude of the resonator’s oscillation is of order
of picometers. Adapted from Ref. [Flowers-Jacobs07].

We can ask, what is the difference between a classical harmonic oscillator and a quantum
harmonic oscillator and what does it make so interesting to study a nanomechanical oscillator
close to the quantum regime?
A classical harmonic oscillator such as a pendulum is a well studied problem in physics.

The total energy of the pendulum being a conserved quantity is the sum of its potential
energy and its kinetic energy. The total energy of a classical harmonic oscillator can take
any value. It could also be zero, meaning that the oscillator performs no motion. We can
describe the classical harmonic oscillator in terms of the commuting quantities x and p, being
the position and momentum of the oscillator, respectively.
For a quantum mechanical harmonic oscillator, things are very different. The two most

prominent differences are that the quantities x and p become non-commuting quantum
mechanical operators x̂ and p̂ and that the energy of the quantum mechanical harmonic
oscillator can no longer take any value. The energy of the quantum harmonic oscillator
becomes quantized in multiples of ~Ω and takes values En = ~Ω(n + 1/2) where n =
0, 1, 2, .... From this we also see that in quantum mechanics the energy of the oscillator
can never be zero. Even at zero temperature the so-called zero-point motion survives,
leading to the zero-point energy of the quantum harmonic oscillator of E0 = ~Ω/2. The
probability of finding the quantum harmonic oscillator in a state with n quanta is given
by p(n) = exp(−n~Ω/kBTenv) [1− exp(−~Ω/kBTenv)]. This equation also dictates us that
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for low environmental temperatures Tenv, the probability of having n = 0 is highest, i.e.,
this reflects the condition for observing quantum effects Tenv � ~Ω/kB which we already
mentioned above.
Now that we know how to bring a nanomechanical device in its quantum ground state

and that very recent experiments also achieved this tremendous task, new possibilities open
up. We can wonder what interesting properties and aspects of quantum theory we envision
to explore with nanomechanical systems in the quantum regime.

The control of nano-sized objects in comparison to controlling single atoms which nowadays
is routinely done, would be an exceptional achievement and could open new doors in
the direction of quantum information processing. Proposals range from superconducting
qubits coupled to nanoelectromechanical oscillators [Cleland04, Geller05] to quantum spin
transducers [Rabl10].
Hybrid systems where the mechanical degree of freedom couples to a different physical

degree of freedom broaden the range of possible applications even more. For instance, a
nanomechanical resonator can couple to a macroscopic spin [Kovalev11]. It can also be
coupled to just a single spin in a nitrogen-vacancy center in diamond [Rabl09]. Here, the
mechanical motion could be used to coherently control the electronic spin degree of freedom
[Hong12] or vice versa, meaning that the mechanical motion can be monitored using the
single spin [Bennett12]. Nanomechanical resonators can even be coupled to a Bose-Einstein
condensate [Treutlein07] or Rydberg atoms [Gao11].

Nanomechanical systems furthermore allow to study manifestations of quantum mechanics
as for instance entanglement, quantum state engineering, and superposition of quantum
mechanical states on a mesoscopic length scale. Possible routes towards entanglement are
given in Refs. [Eisert04, Vitali07b, Bose06, Schmidt10, Ludwig10, Joshi10, Barzanjeh11,
Børkje11].
With nanomechanical systems raising the length scale on which quantum mechanical

effects become visible, they are excellent candidate systems for testing foundations of
quantum mechanics on scales larger than an atom. These systems could also be used to
answer the question where and how the transition from the quantum regime to the classical
regime takes place [Penrose96, Leggett05] and could maybe eliminate the Schrödinger’s cat
paradox [Schrödinger35a]. In Refs. [Katz07, Katz08], this classical to quantum transition is
investigated for driven nonlinear nanomechanical oscillators.

It is exactly the above discussed quantum regime which we aim to study in this thesis in
the context of nanoelectromechanical systems. In Chap. 3, we describe a nanomechanical
resonator in the non-Markovian regime with a focus on possible momentum detection. We
continue in Chap. 4 by showing that a nanomechanical resonator can be used as a detector
for exotic states of matter. Finally, we study in Chap. 5 the generation of non-classical
correlations between two nanomechanical resonators, exploring one of the most fascinating
quantum mechanical phenomena, entanglement, in a mesoscopic regime.
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Chapter 1

The Keldysh diagrammatic technique

When we study transport in mesoscopic systems, we in general have in mind a total system
that consists of a central region (the actual system of interest), leads that are attached to
the central region, and of course a part that couples the central region to the leads. For
reasons of simplicity, we stick to a two terminal device with one central region attached to
two leads. Such a system is most easily described by the Hamiltonian

H = Hleads +Hcen +Htun (1.1)

and schematically depicted in Fig. 1.1. Many transport properties such as the average current
through the system are readily defined with the knowledge of the above Hamiltonian, e.g.,
the current operator I is defined as the change of electrons in, e.g., the left lead

I = d

dt
Nl = i [H,Nl] ,

where Nl counts electrons in the left lead (we set e = ~ = 1). From this point of view,
we already can see that in order to calculate average values of transport quantities, the
Green’s function or propagator will play a central role, cf. Chap. 3 and 4. The knowledge of
the Green’s functions of the underlying Hamiltonian in principle allows us to calculate the
transport properties.
Since in all realistic experiments the current through the system is driven by applying

a bias voltage across the sample, i.e., choosing different chemical potentials for the leads,
and sometimes finite temperature also plays a crucial role, such systems are said to be in a
non-equilibrium state.

In the following, we give a short review of how such systems are treated with what is called
the non-equilibrium Keldysh technique rather than the usual equilibrium Green’s function

Figure 1.1: Schematics of a generic mesoscopic transport setup consisting of a central region of
interest (gray) that is coupled to two non-interacting metallic leads. The coupling is induced via
a tunneling Hamiltonian. The two leads are held at different chemical potentials which drives the
system in the central region out-of-equilibrium.
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Chapter 1 The Keldysh diagrammatic technique

technique which as we will shortly explain, fails for systems out-of-equilibrium.

1.1 Equilibrium Green’s functions

In quantum mechanics, the time dependence of a quantum mechanical system can be treated
within three different pictures. In the Schrödinger picture (denoted by the subscript S), the
complete time dependence is carried by the quantum mechanical states and the quantum
mechanical operators are time-independent. The Heisenberg picture (operators/states without
a subscript) is opposite to the Schrödinger picture, i.e., the states are time-independent and
all time dependence is carried by the operators which evolve according to

O(t) = eiHtOSe
−iHt (1.2)

with H being the system’s Hamiltonian. If the Hamiltonian of the system can be decomposed
into a diagonalizable part H0 and an interaction part V , the interaction picture (denoted by
the subscript I) is the most convenient language. Here, both, the states and the operators
are time-dependent and operators evolve according to

OI(t) = eiH0tOS(t)e−iH0t ,

where the operators in the Schrödinger picture still may have an explicit time dependence
that is not considered in Eq. (1.2). In the interaction picture, the Schrödinger equation

i
∂

∂t
|ψ(t)〉I = VI(t)|ψ(t)〉I (1.3)

dictates the time evolution of the quantum mechanical states. By integrating Eq. (1.3), we
obtain the relation between states at time t and t = 0 given by the time evolution operator

|ψ(t)〉I = U(t)|ψ(0)〉I

with

U(t) = Te−i
∫ t

0 dt
′ VI(t′) .

The time-ordering operator T sorts two arbitrary operators O1 and O2 according to their
time variable in the following way

T [O1(t1)O2(t2)] =


O1(t1)O2(t2) if t1 > t2

±O2(t2)O1(t1) if t2 > t1

: O1(t1)O2(t2) : if t1 = t2

, (1.4)

where the + and − sign is taken for bosonic and fermionic operators, respectively, and the
colons denote normal ordering, meaning that all creation operators have to be moved left of
all annihilation operators.
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1.1 Equilibrium Green’s functions

1.1.1 Time-ordered equilibrium Green’s functions

In equilibrium as well as in non-equilibrium many-body theory, a central goal is the calculation
of real time correlation functions among which the time-ordered Green’s function in the
Heisenberg picture

iG(x, t;x′, t′) =
〈
Tψ(x, t)ψ†(x′, t′)

〉
= Tr

[
ρ̃Tψ(x, t)ψ†(x′, t′)

]
(1.5)

is of major interest and well suited for the purpose of our discussion. Here, the density
matrix ρ̃ is the equilibrium density matrix at zero temperature and given by

ρ̃ = ρ = |GH〉〈GH | (1.6)

with |GH〉 being the ground state of the full Hamiltonian under consideration H = H0 + V .
H0 is a quadratic Hamiltonian and V contains possible interactions. Textbook Feynman-
Dyson perturbation theory [Mahan00] tells us that the time-ordered Green’s function is then
given by

iG(x, t;x′, t′) = 〈G0|TS(∞,−∞)ψI(x, t)ψ†I(x′, t′)|G0〉
〈G0|S(∞,−∞)|G0〉

, (1.7)

where the subscript I denotes operators in the interaction picture with respect to H0, |G0〉
is the ground state of the Hamiltonian H0, and the S-matrix containing the interactions V
is given by

S(∞,−∞) = Te
−i
∫∞
−∞ dt′ VI(t′)

.

Generally speaking, the S-matrix propagates a state from time t′ to time t and is defined as
S(t, t′) = U(t)U †(t′), having the following group like properties

S(t, t) = 1 , (1.8)
S(t, t′) = S†(t′, t) , (1.9)

S(t, t′)S(t′, t′′) = S(t, t′′) . (1.10)

1.1.2 Failure of the equilibrium technique for non-equilibrium states

So far, we did not say anything why in the equilibrium case the Feynman-Dyson technique
allowed us to calculate the time-ordered Green’s function. In the following, we will provide
the missing explanation and along the way show that the equilibrium technique is not
suitable to describe a non-equilibrium state. One might right away ask the question why the
conventional technique fails to describe non-equilibrium situations. The answer is that in
general the density matrix is not a projector on the ground state of the Hamiltonian as in
Eq. (1.6). Because this might not be easy to grasp, we will consider an arbitrary density
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Chapter 1 The Keldysh diagrammatic technique

matrix

ρ̃ = ρ′ =
∑
Γ
pΓ|Γ〉〈Γ|

with |Γ〉 being an arbitrary state and {|Γ〉} forms a complete basis of the corresponding
Hilbert space. We now take this density matrix in order to compute the time-ordered Green’s
function in Eq. (1.5) for a particular state |Γ〉

iGΓ(x, t;x′, t′) = 〈Γ|Tψ(x, t)ψ†(x′, t′)|Γ〉 . (1.11)

The Hamiltonian we consider is given by H(t) = H + h(t) with H being the unperturbed
equilibrium Hamiltonian (which can still contain interactions). h(t) describes the non-
equilibrium perturbation and contains all time dependence. The operators ψ(x, t) transform
to the interaction picture according to

ψI(x, t) = eiHtψ(x)e−iHt ,

and to the Heisenberg picture as

ψ(x, t) = U†(t)ψ(x)U(t) = S(0, t)ψI(x, t)S(t, 0) .

The notation is chosen in such a way that the curly U and S contain the non-equilibrium
perturbation h(t). They are given by

S(t, t′) = eiHtU(t, t′)e−iHt′ = Te−i
∫ t

t′ dt̃ hI(t̃)

with

U(t, t′) = Te−i
∫ t

t′ dt̃H(t̃) ,

and the interaction picture representation of hI(t) reads

hI(t) = eiHth(t)e−iHt .

With all of the above relations we can rewrite Eq. (1.11) in the following way

iGΓ(x, t;x′, t′) = 〈Γ|TS(0, t)ψI(x, t)S(t, 0)S(0, t′)ψ†I(x
′, t′)S(t′, 0)|Γ〉 . (1.12)

The state |Γ〉 in the interaction picture is represented as

|Γ(t)〉I = S(t, 0)|Γ(0)〉I = S(t, 0)|Γ〉 ,

where the last equality sign hold because we chose t = 0 as the time where all three pictures
coincide. With that we can connect |Γ〉 with an interaction picture state at t = ±∞

|Γ〉 = S(0,±∞)|Γ(±∞)〉I ,
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1.1 Equilibrium Green’s functions

which allows us to write Eq. (1.12) as

iGΓ(x, t;x′, t′) = I〈Γ(∞)|TS(∞,−∞)ψI(x, t)ψ†I(x
′, t′)|Γ(−∞)〉I , (1.13)

where we made use of the properties in Eqs. (1.8 - 1.10).
Now, we already see a relation between the zero-temperature equilibrium Green’s function

in Eq. (1.7) and the Green’s function in Eq. (1.13) for an arbitrary quantum state. The above
derivation of the time-ordered Green’s function GΓ(x, t;x′, t′) even holds for a non-equilibrium
situation, however the problem is that we need to know the state in the remote past and
future. In the equilibrium situation, the states |Γ(∞)〉 and |Γ(−∞)〉 have a rather simple
relationship and only differ by a phase which breaks down in a general non-equilibrium
setting.
At this point, it is valuable to recall the various assumptions that are made for the

perturbative treatment to be valid and to review what is called the adiabatic theorem
[Born28] and the Gell-Mann Low theorem [Gell-Mann51]. First, we need to say that if
the time evolution operator has no series representation, the problem is non-perturbative.
In the usual textbooks, the adiabatic theorem is often introduced as the basis of a valid
perturbative treatment of a physical problem. However, it is of importance to remember
that this is not the whole truth, because an adiabatic switching on and off, of interactions
giving rise to phenomena such as BCS 1-superconductivity or the macroscopic ground state
of a Bose-Einstein condensate does not allow for a perturbative treatment of these problems.
An elaborate discussion for perturbation theory to be applicable is that the Fermi surface
when going from the unperturbed system to the interacting one does not change. A very nice
discussion on this rather seldom stated argument is given in Chapter 5 of Ref. [Nozieres64].
Now, assuming that we exclude such perturbations from our discussion we go on with the
adiabatic theorem which is best explained in the original formulation of Born and Fock:
“If we label the states of a quantum system with quantum numbers corresponding to their
energy levels, the adiabatic theorem states, that if the system has initially been in a state
with a well defined quantum number and is then adiabatically perturbed, the transition
probability to a state with a different quantum number is negligibly small. However, the
energy levels after the perturbation can differ by a finite amount.”.

The Gell-Mann Low theorem links eigenstates (any eigenstate not only the ground state)
of the unperturbed Hamiltonian H0 to eigenstates of the interacting Hamiltonian H. In
the equilibrium case, the Gell-Mann Low theorem is applied to the ground state of the
unperturbed Hamiltonian and connects this known ground state to the ground state of
the interacting problem. We will continue in the discussion by considering the adiabatic
switching on and off of the perturbation according to

Hε = H + e−ε|t|h

with ε→ 0+. This ensures that the system stays in an eigenstate (the eigenstate it has been
in, before the interaction was adiabatically switched on) while it becomes interacting. In the
equilibrium situation the state |Γ〉 is chosen to be a non-degenerate ground state |G〉 of the

1BCS stands for Bardeen Cooper Schrieffer who in 1957 established a microscopic theory of superconductivity
[Bardeen57].
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Chapter 1 The Keldysh diagrammatic technique

Hamiltonian H = H + h. The adiabatic theorem then ensures that (the limit ε→ 0 is called
the adiabatic limit)

|Γ(±∞)〉I = lim
ε→0
Sε(±∞, 0)|G〉

are both eigenstates of H and since we have assumed a non-degenerate ground state, the
states at t = ±∞ can only differ by a phase

|Γ(∞)〉I = S(∞,−∞)|Γ(−∞)〉I = eiL|Γ(−∞)〉I .

By setting |G0〉 = |Γ(−∞)〉I , i.e., in the remote past the perturbation is switched off and
we know the ground state |G0〉 of the unperturbed Hamiltonian, we can identify the phase
factor as

eiL = 〈G0|S(∞,−∞)|G0〉 ,

which is exactly the denominator in Eq. (1.7) and therefore drops out. We can conclude that
with the adiabatic theorem, we can use Eq. (1.13) and obtain the conventional equilibrium
Green’s function. Now, it should also be obvious why the conventional equilibrium method
fails for non-equilibrium states: out of equilibrium, the adiabatic theorem is no longer
justified and the states in the remote past and future are no longer related by just a phase.

1.2 The Keldysh contour and non-equilibrium Green’s functions
The cure to the non-equilibrium problem was pioneered and put forward by Schwinger,
Kadanoff and Baym, Keldysh, and Craig [Schwinger61, Kadanoff62, Keldysh65, Craig68]
and consists of avoiding any reference to the state in the asymptotic future and solely base the
expansion on the known state in the remote past. A modern and comprehensive introduction
to the Keldysh technique is given in Ref. [Rammer07].

We start by introducing the following identity in order to get rid of the state in the future

|Γ(∞)〉I = S(∞,−∞)|Γ(−∞)〉I ,

rewinding the time evolution to the remote past and with that we can write the time-ordered
Green’s function as

iGΓ(x, t;x′, t′) = I〈Γ(−∞)|S(−∞,∞)TS(∞,−∞)ψI(x, t)ψ†I(x
′, t′)|Γ(−∞)〉I . (1.14)

We now have a part describing the backward evolution S(−∞,∞) and a part describing
the forward evolution S(∞,−∞) and the time-ordering operator between them, which
prevents us from pushing the backward evolution past it. The crucial step was to introduce
a two-branch contour C and ordering along this contour by the contour-ordering operator
Tc. The Schwinger-Keldysh contour is depicted in Fig. 1.2, it consist of two branches, a
forward branch C+ extending from −∞ to ∞ and a backward branch C− extending from ∞
to −∞. In order to better distinguish times lying on the real time axis and times lying on
the contour, we use t and τ , respectively and define the so-called contour-ordered Green’s
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1.2 The Keldysh contour and non-equilibrium Green’s functions

Figure 1.2: The Schwinger-Keldysh contour.

function G in the Heisenberg picture

iG(x, τ, x′, τ ′) =
〈
Tcψ(x, τ)ψ†(x′, τ ′)

〉
= Tr

[
ρTcψ(x, τ)ψ†(x′, τ ′)

]
.

With the S-matrix defined on the contour by

Sc(−∞,−∞) = Tce
−i
∫
C dτ

′h′I(τ ′) ,

where the integral is along the contour, the Green’s function in Eq. (1.14) in the interaction
picture on the contour can be written as

iGΓ(x, τ ;x′, τ ′) = I〈Γ(−∞)|TcSc(−∞,−∞)ψI(x, t)ψ†I(x
′, t′)|Γ(−∞)〉I .

The full Green’s function on the contour in the interaction picture becomes with the definition
of the density matrix ρ(−∞) = ∑

Γ pΓ|Γ(−∞)〉I I〈Γ(−∞)|

iG(x, τ ;x′, τ ′) = Tr
[
ρ(−∞)TcSc(−∞,−∞)ψI(x, t)ψ†I(x

′, t′)
]
,

where we now have cured the problem of the non-equilibrium case by referring only to the
interaction picture state in the remote past. As Eq. (1.7) in the equilibrium case allows for a
controlled perturbative expansion in the (small) interaction term appearing in the exponent
of the S-matrix, so does the Green’s function G in the non-equilibrium case.

Real time formalism

A last step we have to perform is expressing the contour Green’s function G(x, τ ;x′, τ ′) as
real time Green’s functions G(x, t;x′, t′), where we label times lying on the contour C with τ
and t denote real times. Depending on the locations of the times τ and τ ′ on the contour C,
we get four real time Green’s functions

G(x, τ ;x′, τ ′) =



G++(x, t;x′, t′) = −i
〈
Tψ(x, t)ψ†(x′, t′)

〉
for τ, τ ′ ∈ C+

G−+(x, t;x′, t′) = ±i
〈
ψ†(x′, t′)ψ(x, t)

〉
for τ ∈ C+, τ ′ ∈ C−

G+−(x, t;x′, t′) = −i
〈
ψ(x, t)ψ†(x′, t′)

〉
for τ ∈ C−, τ ′ ∈ C+

G−−(x, t;x′, t′) = −i
〈
T̄ψ(x, t)ψ†(x′, t′)

〉
for τ, τ ′ ∈ C−

.
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Chapter 1 The Keldysh diagrammatic technique

Here, T is the time-ordering operator as defined in Eq. (1.4) and T̄ is the anti-time ordering-
operator bringing the operators in reverse order than the operator T does. A common
notation is to define a matrix containing all four real time Green’s functions

G =
(
G−− G−+

G+− G++

)
,

where the following identities also called Keldysh identities hold

GR = G−− −G−+ = G+− −G++ ,

GA = G−− −G+− = G−+ −G++ ,

GK = G+− +G−+ = G−− +G++ ,

0 = G−− +G++ −G−+ −G+− ,

where GA/R is the advanced/retarded Green’s function and GK is the Keldysh Green’s
function. With the above identities we see that the entries of the Keldysh matrix G are not
independent and we can perform a unitary transformation with

R = 1√
2

(
1 −1
1 1

)
,

in order to obtain

Ĝ = RσzGRT =
(
GR GK

0 GA

)
,

where σz is the third Pauli matrix.

1.3 Non-equilibrium nanoelectromechanical systems in the
quantum regime

Having outlined the general theory of non-equilibrium quantum states, we now want to
sketch why and how we seek to employ this technique in the study of nanoelectromechanical
systems. This section should merely set the stage for Chap. 3 of this thesis, where nanoelec-
tromechanical systems in the quantum regime are studied in detail. In general, the problems
we study are of the generic form described by the Hamiltonian H in Eq. (1.1). For a better
visualization, we show in Fig. 1.3 a schematics of an archetype setup we have in mind. The
central part becomes the nanoelectromechanical oscillator which is considered conducting and
acting as one of the leads. As pointed out in the Introduction, for low oscillation amplitudes
the nanomechanical oscillator is modeled by the fundamental mode of a harmonic oscillator

Hcen = Hosc = p̂2

2m + 1
2mΩ2x̂2 .
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1.3 Non-equilibrium nanoelectromechanical systems in the quantum regime

Figure 1.3: Schematics of an archetype of a NEMS where the tunneling amplitude T (x) is modulated
by the motion of the nanomechanical oscillator. The nanomechanical oscillator itself serves as one of
the leads that in this case is grounded, the other lead is held at bias voltage V . Blue indicates the
conducting region in the setup, where current is flowing.

This resonator is tunnel coupled to a second lead, held at a different chemical potential. The
two leads in the setup are characterized by the Hamiltonian of a non-interacting Fermi liquid

Hleads =
∑
α,k

εkψ
†
α,kψα,k ,

where α = {l, r} for the left or right lead and k are the momenta of electrons in lead α. We
suppress the spin index, since in our analysis it does not play any role. For the coupling
we assume that the average distance between the lead and the nanomechanical resonator is
large compared to the amplitude of oscillations of the resonator. The coupling is then best
described in a tunneling Hamiltonian approach where the tunneling amplitude depends on
the position of the oscillator

Htun =
∑
k

T (x)ψ†l,kψr,k + H.c.

with an energy and momentum independent tunneling amplitude T (x). In general, the
tunneling amplitude T (x) has an exponential dependence on the position of the oscillator

T (x) = t̃e−x/x0 .

In the limit of small oscillation amplitudes, we can expand the exponential function to linear
order

T (x) = t0 + t1x̂ , (1.15)

where we call t0 = t̃ and t1 = −t̃/x0. Note that in Eq. (1.15) we promoted x to the quantum
mechanical operator x̂ indicating that we explicitly treat the oscillator and its influence on
the tunneling quantum mechanical. We will only focus on the regime of small oscillation
amplitudes as this limit is also suggested by, e.g., the experiment in Ref. [Flowers-Jacobs07],
where the oscillation amplitude is of the order of a few picometer and the tunneling gap is
of order of a few nanometer. Therefore, we will later use the tunneling amplitude given in
Eq. (1.15) where tunneling depends only linearly on the position of the oscillator. Note that
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Chapter 1 The Keldysh diagrammatic technique

there are also theoretical studies of NEMS investigating the regime of exponential dependent
tunneling [Smirnov03].

The theoretical studies of nanoelectromechanical systems widely use the Born and Markov
approximations, meaning that the coupling is treated in second order perturbation theory
and that the fermionic bath (represented by the leads) has a correlation time that is small
compared to the time scale of the system given by 1/Ω which then is the dominant time scale
in the problem. Making these assumptions however does not cover the true quantum regime,
where all involved energy scales of the system should be of the same order ~Ω ≈ eV ≈ kBTenv.
The involved energy scales being the oscillator energy (~Ω), the energy scale that is due to
the applied bias (eV ), and an energy scale that is due to a possible coupling to an additional
thermal environment (kBTenv) giving rise to a damping of the mechanical resonator. With
recent experiments approaching the regime ~Ω ≈ eV ≈ kBTenv, it is this very limit we are
interested in. In Chap. 3, we study in detail signatures of the nanomechanical oscillator
in non-equilibrium transport properties such as the finite frequency current noise and the
average tunnel current for an arbitrary hierarchy of energy scales.
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Chapter 2

Master equation techniques

In the previous chapter, we were concerned about how we can analytically treat quantum
transport in nanoelectromechanical systems. The formulation there relied on Green’s func-
tions which are related to transport quantities and can be calculated using the (perturbative)
Keldysh technique. We now want to introduce the notion of open quantum systems which
not only in the realm of NEMS is a noteworthy subject. For open quantum systems, in
contrast to closed systems, the dynamics can in general not be represented by a unitary time
evolution. Instead, if we consider an open quantum system, consisting of a quantum system
with few degrees of freedom that is coupled to a larger quantum system (called reservoir
or bath), and if we are only interested in the dynamics of the smaller quantum system – in
the presence of the bath – its behavior can be described by an equation of motion of the
reduced density matrix ρS = TrB[ρtot]. The general setting of an open quantum system
is schematically shown in Fig. 2.1. The core of an open quantum system approach is the
so-called “master equation” for the system’s reduced density matrix ρS . With the master
equation, the time evolution of the system is then given under the influence of the bath. The

Figure 2.1: Schematics of an open quantum system consisting of a system and a bath part described
by HS and HB , respectively. The coupling between system and bath is mediated via HSB .

Hamiltonian of the total system Htot is given by

Htot = HS +HB +HSB , (2.1)
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Chapter 2 Master equation techniques

where the system of interest and the bath are described by the Hamiltonian HS and HB,
respectively. The coupling between the system and the bath is mediated via the Hamiltonian
HSB. The total system’s density matrix is denoted by ρtot and obeys the von Neumann
equation (we set ~ = 1)

d

dt
ρtot(t) = −i [Htot(t), ρtot(t)] . (2.2)

Later we will use the master equation approach to study NEMS under the influence of a
bath. The bath in our case will be the detector the NEMS couples to which in our setting is
a tunnel junction detector, cf. Fig. 1.3. However, in principle, the detector does not need
to be the only bath the nanomechanical oscillator couples to. In addition to the detector,
it could also couple to another (bosonic) heat bath. Such an additional heat bath can be
modeled within a Caldeira-Leggett model and leads to damping/a finite Q factor 1 of the
nanomechanical oscillator. The effects of the bath on the dynamics of the system crucially
depend on the type of bath, the type of coupling, and on the involved time scales of the
problem.

In the study of NEMS, there are mainly two different types of scenarios we will focus on,
the Markovian and non-Markovian one. What this means will become clearer later, for now,
we will introduce in Sec. 2.1 for a generic system-bath Hamiltonian the master equation
formalism in the weak system-bath coupling (Born) and Markov limit, and in Sec. 2.2 we
will discuss the non-Markovian master equation.

2.1 Markovian master equations

In the following, we review the Born Markov master equation in the spirit of Ref. [Breuer02].
We consider a quantum mechanical system weakly coupled to a reservoir. The total system is
described by the Hamiltonian in Eq. (2.1) and the dynamics is governed by the von Neumann
equation (2.2). In the interaction picture representation with respect to HS +HB, the von
Neumann equation reads

d

dt
ρ̂tot(t) = −i

[
ĤSB(t), ρ̂tot(t)

]
, (2.3)

where operators in the interaction picture carry a hat and

ρ̂tot(t) = U †(t)ρtot(t)U(t) ,
ĤSB(t) = U †(t)HSBU(t) ,

with

U(t) = e−i(HS+HB)t .

1The Q or quality factor is a dimensionless parameter. It is the ratio of the oscillator’s bandwidth and its
resonance frequency. It characterizes the rate at which the oscillator loses energy. High-Q oscillators have
low damping rates.
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2.1 Markovian master equations

By integration of Eq. (2.3) we obtain the von Neumann equation in integral form

ρ̂tot(t)− ρ̂tot(0) = −i
∫ t

0
dt′

[
ĤSB(t′), ρ̂tot(t′)

]
,

which we insert back into Eq. (2.3) in order to obtain

d

dt
ρ̂tot(t) = −i

[
ĤSB(t), ρ̂tot(0)

]
−
∫ t

0
dt′

[
ĤSB(t),

[
ĤSB(t′), ρ̂tot(t′)

]]
. (2.4)

Since we are only interested in the dynamics of the system described by HS under the
influence of the bath, we trace out the bath degrees of freedom in order to obtain the reduced
density matrix of the system ρ̂S

ρ̂S(t) = TrB [ρ̂tot(t)] .

As an initial condition we assume that system and bath are uncorrelated, meaning that the
total density matrix factorizes and is given by the direct product

ρtot(0) = ρS(0)⊗ ρB . (2.5)

Tracing both sides of Eq. (2.4) over the bath then yields

d

dt
ρ̂S(t) = −

∫ t

0
dt′ TrB

{[
ĤSB(t),

[
ĤSB(t′), ρ̂tot(t′)

]]}
,

where we assumed TrB
[
ĤSB(t)ρ̂tot(0)

]
= TrB

[
ĤSB(t)ρS(0)⊗ ρB

]
= 0 which is always true

for the system-bath couplings considered in this thesis. Now, we make use of the weak
coupling approximation by extending Eq. (2.5) to finite times t which in the context of open
quantum systems is known as the Born approximation

ρ̂tot(t) ≈ ρ̂S(t)⊗ ρB .

Within the weak coupling approximation we have made the assumption that the bath’s
density matrix is not influenced by the interaction with the system at any time. The system’s
density matrix however can change significantly under the coupling to the bath. With this,
the equation of motion of the reduced density matrix becomes an integro-differential equation

d

dt
ρ̂S(t) = −

∫ t

0
dt′ TrB

{[
ĤSB(t),

[
ĤSB(t′), ρ̂S(t′)⊗ ρB

]]}
, (2.6)

which is in general only solvable numerically since it is nonlocal in time. The system’s
time evolution also depends explicitly on the history from t′ = 0 to t′ = t. However, by
applying further approximations which take into account the time scales of the problem,
it is possible to arrive at a differential equation for ρ̂S(t) which is considerably easier to
solve. The approximation we will make in the following is oftentimes just called Markov
approximation, but as we will see later the Markov approximation actually consists of two
approximations, better coined first and second Markov approximation.
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The first Markov approximation comprises replacing ρ̂S(t′) with ρ̂S(t) in Eq. (2.6) which
yields a local in time master equation known as the Redfield equation [Redfield57]

d

dt
ρ̂S(t) = −

∫ t

0
dt′ TrB

{[
ĤSB(t),

[
ĤSB(t′), ρ̂S(t)⊗ ρB

]]}
, (2.7)

where only the present state ρ̂S(t) governs the time evolution of the reduced system’s density
matrix. It is said that the system looses its memory on the past. Let us now bring into
play the involved time scales of the problem and see what the first Markov approximation
actually means in terms of them. We therefore introduce correlation functions by writing
the system-bath coupling in a very general form as

HSB =
∑
n

SnEn ,

where the Sn and En are system and bath operators only acting on the Hilbert space of
the system and bath, respectively. The transformation to the interaction picture is straight
forward and yields

ĤSB(t) =
∑
n

Sn(t)En(t)

with Xn(t) = exp(iHXt)Xn exp(−iHXt) where X = {S,E}. With this we can write Eq. (2.7)
as

d

dt
ρ̂S(t) = −

∑
n,m

∫ t

0
dt′

[
Sn(t)Sm(t′)ρ̂S(t)− Sm(t′)ρ̂S(t)Sn(t)

]
TrB

{
En(t)Em(t′)ρB

}
− [Sn(t)ρ̂S(t)Sm(t′)− ρ̂S(t)Sm(t′)Sn(t)

]
TrB

{
Em(t′)En(t)ρB

}
.

Now, we consider the time correlation functions of the bath 〈En(t)Em(t′)〉 which characterize
the overlap/correlation between interactions at time t and t′. As we said earlier, we assume
a large bath that quickly relaxes, i.e., the bath is not influenced by the interaction with
the system. In terms of the correlation functions, this means, that there will be some
correlations during the small time interval t− t′ ≤ τB, where τB is the correlation time of
the bath and depends very much on the type and structure of the bath. For t− t′ > τB the
correlations decrease and finally for t− t′ � τB they become zero, i.e., the time τB sets a
time scale on which some memory of the interactions is kept, even in the master equation in
Eq. (2.7). Going back to Eq. (2.6) we can now argue that the integral is only nonzero for
times t− t′ ≤ τB 2, i.e., the influence of ρ̂S(t′) outside this interval on ˙̂ρS(t) is negligible. If
we now introduce a time scale τr ∼ 1/γ 3 which originates, e.g., from damping characterized
by the damping rate γ, we can argue that the Markov approximation is valid, i.e., that
ρS(t′) ≈ ρS(t) holds, if

τB � 1/γ .

2i.e., between times t′ ≈ t− τB and t′ = t
3τr refers to a characteristic time scale on which ρS(t) changes considerably, meaning that τr can be
associated with a relaxation time of the system
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2.2 Non-Markovian master equations

This is also known as a coarse graining of the time axis, because we are not able to describe
the system’s dynamics on time scales comparable to the bath correlation time τB. This is
what we would call the second Markov approximation because with this we can substitute
t′ → t − t′ and let the upper integration limit in Eq. (2.7) go to infinity. We then obtain
the so-called Born Markov master equation for the reduced system’s density matrix in the
interaction picture

d

dt
ρ̂S(t) = −

∫ ∞
0

dt′ TrB
{[
ĤSB(t),

[
ĤSB(t− t′), ρ̂S(t)⊗ ρB

]]}
,

which in the Schrödinger picture reads

d

dt
ρS(t) = −i [HS , ρS(t)]−

∫ ∞
0

dt′ TrB
{[
HSB,

[
HSB(−t′), ρS(t)⊗ ρB

]]}
.

Since we have made several approximations when deriving the Born Markov master equation,
it is obvious that the regime of validity is limited. For most applications concerning
nanomechanical systems, the Born Markov master equation nevertheless describes the
physics in good accuracy. However, when it comes to memory effects or a special structure
of the reservoir, the Born Markov master equation fails. The regimes where also the bath is
influenced by the time evolution of the system or where the reservoir has a given spectral
density are however among the most interesting ones. We therefore introduce in the following
section the time convolutionless master equation technique which allows us to capture
non-Markovian effects in the time evolution of the reduced system.

2.2 Non-Markovian master equations

Besides the Keldysh formalism which we discussed in Chap. 1 and showed that it is a suitable
method to treat systems out-of-equilibrium, there are also master equation techniques which
cover systems out-of-equilibrium. As we have already seen in the previous chapter, master
equations can either be nonlocal or local in time. The so-called Nakajima-Zwanzig master
equation [Nakajima58, Zwanzig60] is for instance a nonlocal in time master equation, where
the memory kernel depends on the reduced density operator at all previous times. There are
also local in time master equations as the time convolutionless master equation, which is an
exact master equation describing the full dynamics of the reduced system’s density matrix but
is, as said, local in time and therefore easier to treat analytically. The time convolutionless
master equation technique is due to Shibata et al. [Shibata77, Chaturvedi79, Shibata80].
Here, we will focus on the time convolutionless master equation and introduce the subject
along the lines of Ref. [Breuer02]. We will also briefly review the Nakajima-Zwanzig equation
from which the time convolutionless master equation follows more naturally.

As before, the combined system-bath open quantum system is characterized by the density
matrix ρtot and governed by the Hamiltonian H = HS + HB + λHSB, here we explicitly
introduce λ as a small dimensionless expansion parameter. The von Neumann equation in
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Chapter 2 Master equation techniques

the interaction picture (denoted by a hat) with respect to HS +HB is given by

d

dt
ρ̂tot(t) = −iλ

[
ĤSB(t), ρ̂tot(t)

]
≡ λL(t)ρ̂tot(t) , (2.8)

where we defined the Liouville super-operator L(t). The core of the derivation uses projection
super-operators. A first projection operator P projects the density matrix of the system
to the relevant part which then can be used to gain information on the reduced system’s
density matrix ρ̂S . Relevant in this context means that with the relevant part of the density
matrix ρtot, it is possible to calculate the correct quantum mechanical expectation values of
system operators. Here, the projection is just a formal operation equivalent to tracing over
the bath degrees of freedom. A complementary super-operator Q projects on the irrelevant
part of the open system. They are given by

ρ̂tot 7→ P ρ̂tot = TrB {ρ̂tot} ⊗ ρB = ρ̂S ⊗ ρB ,
Qρ̂tot = ρ̂tot − P ρ̂tot .

The super-operator being introduced as projectors have the following properties

P +Q = 1 , (2.9)
P2 = P ,
Q2 = Q ,
PQ = QP = 0 .

The density matrix of the bath can be an arbitrary state of the environment that however
has to be known. In contrast to the Markovian master equation we however do not have to
assume factorizing initial conditions as in Eq. (2.5). The following assumption will greatly
simplify the later derivation

TrB
{
ĤSB(t1)ĤSB(t2)...ĤSB(t2n+1)ρB

}
= 0 ,

which means that all odd moments of the system-bath coupling Hamiltonian with respect to
ρB vanish (n = 0, 1, 2, ...). In super-operator language, this leads to

PL(t1)L(t2)...L2n+1P = 0 . (2.10)

This assumption is however not a requirement for the derivation.
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2.2 Non-Markovian master equations

The Nakajima-Zwanzig master equation

We apply the projection operators P and Q to the von Neumann equation Eq. (2.8), to
obtain

d

dt
P ρ̂tot(t) = λPL(t)ρ̂tot(t) ,

d

dt
Qρ̂tot(t) = λQL(t)ρ̂tot(t) ,

and by inserting the identity Eq. (2.9) we further obtain

d

dt
P ρ̂tot(t) = λPL(t)P ρ̂tot(t) + λPL(t)Qρ̂tot(t) , (2.11)

d

dt
Qρ̂tot(t) = λQL(t)P ρ̂tot(t) + λQL(t)Qρ̂tot(t) . (2.12)

Solving Eq. (2.12) by integrating it once we get

Qρ̂tot(t) = G(t, t0)Qρ̂tot(t0) + λ

∫ t

t0
dt′G(t, t′)QL(t′)P ρ̂tot(t′) , (2.13)

where the propagator G(t, t′) is defined as

G(t, t′) = Teλ
∫ t

t′ dτ QL(τ) (2.14)

with T being the time-ordering operator, ordering super-operators with larger time arguments
chronologically left of those with smaller time arguments. With the help of the solution to
the irrelevant part of the density matrix, we are able to write down the Nakajima-Zwanzig
equation by plugging Eq. (2.13) into Eq. (2.11)

d

dt
P ρ̂tot(t) = λPL(t)G(t, t0)Qρ̂tot(t0) + λPL(t)P ρ̂tot(t)

+ λ2
∫ t

t0
dt′PL(t)G(t, t′)QL(t′)P ρ̂tot(t′) .

Using Eq. (2.10) and defining the memory kernel K(t, t′) = λ2PL(t)G(t, s)QL(t′)P, we can
write the Nakajima-Zwanzig equation as

d

dt
P ρ̂tot(t) = λPL(t)G(t, t0)Qρ̂tot(t0) +

∫ t

t0
dt′K(t, t′)P ρ̂tot(t′) . (2.15)

This equation is an exact master equation for the relevant part of the open quantum system.
Still, Eq. (2.15) might be as hard to solve as the von Neumann equation, but it serves as a
starting point for various perturbative expansions, as for instance expansions in the coupling
constant λ. This simplifies the structure of the Nakajima-Zwanzig equation considerably, but
it nevertheless is a nonlocal in time master equation, cf. the time convolution in the memory
kernel K(t, t′). The purpose of this brief discussion of the Nakajima-Zwanzig equation is
to show how the time convolutionless master equations can be gained from the Nakajima-
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Chapter 2 Master equation techniques

Zwanzig equation. The interested reader might find more details on the Nakajima-Zwanzig
equation and a perturbative expansion of the memory kernel K(t, t′) in Ref. [Breuer02].

The time convolutionless master equation

The time convolutionless master equation technique removes the time convolution of the
memory kernel K(t, t′) in the Nakajima-Zwanzig equation, making the resulting master
equation a local in time one. In order to transform the Nakajima-Zwanzig equation to a
local in time master equation, we have to eliminate the time dependence on the history of
the system which is achieved by introducing a propagator similar to the one in Eq. (2.14)

Ḡ(t, t′) = T̄ e−λ
∫ t

t′ dτL(τ) , (2.16)

where T̄ is the anti-time-ordering operator. The propagator Ḡ(t, t′) in comparison to G(t, t′)
is a backward propagator, describing the inverse of the time evolution of the open system.
With Eq. (2.16) we can write the density matrix at time t′ as

ρ̂tot(t′) = Ḡ(t, t′) [P +Q] ρ̂tot(t) ,

which we plug into Eq. (2.13) to obtain

Qρ̂tot(t) = G(t, t0)Qρ̂tot(t0) + λ

∫ t

t0
dt′G(t, t′)QL(t′)PḠ(t, t′) [P +Q] ρ̂tot(t) . (2.17)

We introduce another super-operator

S(t) = λ

∫ t

t0
dt′G(t, t′)QL(t′)PḠ(t, t′) (2.18)

with the properties

S(t0) = 0 , (2.19)
S(t)|λ=0 = 0 , (2.20)

and rewrite Eq. (2.17) for the irrelevant part as

[1− S(t)]Qρ̂tot(t) = G(t, t0)Qρ̂tot(t0) + S(t)ρ̂tot(t) .

With the properties of S(t) in Eq. (2.19) and (2.20) it possible to invert [1− S(t)] for
moderate couplings λ and small times t− t0, i.e., we get an equation for the irrelevant part
of the density matrix in terms of the relevant part

Qρ̂tot(t) = [1− S(t)]−1G(t, t0)Qρ̂tot(t0) + [1− S(t)]−1 S(t)ρ̂tot(t) . (2.21)
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2.2 Non-Markovian master equations

The time convolutionless master equation is then obtained by Eq. (2.21) together with
Eq. (2.11)

d

dt
P ρ̂tot(t) = K(t)P ρ̂tot(t) + I(t)Qρ̂tot(t0) , (2.22)

where the kernel K(t) is now local in time

K(t) = λPL(t) [1− S(t)]−1 P , (2.23)

and an inhomogeneity I

I(t) = λPL(t) [1− S(t)]−1G(t, t0)Q .

The inhomogeneous part in Eq. (2.22) in the case of factorizing initial conditions ρ̂tot(t0) =
ρ̂S(t0)⊗ ρB will be zero since we have P ρ̂tot(t0) = ρ̂tot(t0) which implies Qρ̂tot(t0) = 0. The
Eq. (2.22) can then be used as a starting point for a perturbative expansion in the coupling
parameter λ. Expanding [1− S(t)]−1 into a geometric series, we write Eq. (2.23) as

K(t) = λ
∞∑
n=0
PL(t)S(t)nP =

∞∑
n=1

λnKn(t) ,

where we now can associate Kn(t) the n-order contribution to the kernel K(t) by expanding
S(t) also in powers of λ

S(t) =
∞∑
n=1

λnSn(t) .

The expansion to second order in λ yields for the memory kernels Kn(t) (here we set t0 = 0)

K1(t) = PL(t)P = 0 ,

K2(t) = PL(t)S1(t)P =
∫ t

0
dt′PL(t)L(t′)P ,

and the time convolutionless master equation in the interaction picture to second order in
the coupling λ becomes

d

dt
ρ̂S(t) = −λ2

∫ t

0
dt′TrB

{[
ĤSB(t),

[
ĤSB(t′), ρ̂S(t)⊗ ρB

]]}
. (2.24)

We can compare Eq. (2.24) with the Redfield equation Eq. (2.7), and notice that they are
actually the same. Later, in Chap. 5 we will discuss where exactly the non-Markovian effects
are contained in the master equation when we want to describe non-Markovian effects in
nanomechanical systems.
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Chapter 2 Master equation techniques

2.3 Nanoelectromechanical systems as open quantum systems
From the perspective of open quantum systems, the actual nanomechanical oscillator is
viewed as the reduced system that is coupled to a mesoscopic conductor (detector) acting as
the reservoir. The electric current through the system is then influenced by the motion of
the oscillator.
If we assume weak coupling between the mechanical and electronic degree of freedom,

the influence of the detector on the mechanical resonator is equivalent to that of an equi-
librium heat bath [Mozyrsky02, Mozyrsky04, Armour04b, Utami04, Clerk04b, Clerk04a,
Blencowe05a, Wabnig05, Blencowe05b, Clerk05]. For a nanomechanical resonator which is
coupled to a quantum/atomic point contact where the tunneling amplitude depends linearly
on the position of the oscillator, the heating and damping effects of the electronic reservoir on
the oscillator were found to be of Caldeira-Leggett form. It is therefore possible to assign an
effective temperature and damping to the resonator which stem from the electronic reservoir.
These studies mainly employ Born Markov master equation techniques, either to gain

information on transport properties or to study effects of the bath on the nanomechanical
resonator. In order to access transport properties such as the average current or the
current noise, a method called, the charge reduced density matrix formalism has to be used
[Clerk04b, Wabnig05, Armour04a]. Non-Markovian effects of a nanomechanical resonator
linearly coupled to a mesoscopic conductor using a master equation approach have been
studied in Ref. [Chen11a].

In nanoelectromechanical setups, there are in principal two reservoirs which we have to be
taken into account. First, there is an external bosonic heat bath that gives rise to damping
and a finite Q-factor of the mechanical mode. This bosonic bath can be described within a
Caldeira-Leggett model. Second, we have a fermionic bath which is due to the electronic
mesoscopic detector. The fermionic bath is of special interest when we study for instance
in Chap. 5 the generation of entanglement. It is described by the bias voltage and the
coupling to the mechanical degree of freedom can be of a form that non-Markovian effects
play a crucial role. The bosonic heat bath which could also serve as a medium to generate
entanglement of two mechanical modes [Liu07, Isar10] is a somehow academic approach for
entanglement generation due to the lack of experimental feasibility. A fermionic bath can
in principle be easily controlled experimentally. Having a fermionic bath at hand, we can
also imagine to engineer certain processes which lead to interesting effects. For instance,
we could use a superconducting lead as a reservoir to which two nanomechanical oscillators
are tunnel coupled. The superconductor serves as a source of Cooper-pairs. The tunneling
electrons of the Cooper-pair spin singlet can then lead to an effective coupling between the
two oscillators cf. Chap. 5.
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Applications of nanoelectromechanical
systems in the quantum regime





Chapter 3

Non-Markovian effects in
nanoelectromechanical systems

The motivation for this chapter of the thesis is to study an experimentally feasible setup in
which the quantum nature of NEMS can be probed by current noise measurements of a tunnel
junction detector. A quantum NEMS can be described by a quantum harmonic oscillator
which is a continuous variable system characterized by two non-commuting operators x̂ and
p̂. The theoretical treatment of NEMS widely uses a Markovian master equation approach
[Clerk04b, Wabnig05, Doiron07, Doiron08] with a few exceptions, for instance, the work by
Wabnig et al. [Wabnig07] and Rastelli et al. [Rastelli10] where a Keldysh perturbation theory
has been employed. Here, we also make use of the Keldysh technique (cf. Chap. 1) because it
allows us to treat the non-equilibrium system fully quantum mechanically. Furthermore, using
the Keldysh technique, we are able to carefully investigate the dynamics of the combined
system for an arbitrary ratio of eV/~Ω, where V is the applied bias of the tunnel junction and
Ω the eigenfrequency of the oscillator. In this sense, we go beyond the Markov approximation
of previous works where these parameters were restricted to the regime eV/~Ω� 1. We also
go beyond the Born approximation by expanding the finite frequency current noise of the
tunnel junction up to fourth order in the tunneling amplitudes. Since we are interested in the
quantum nature of the oscillator, it is important that the environmental temperature Tenv
and the applied bias V of the tunnel junction are not much larger than the eigenfrequency Ω
of the oscillator, cf. Introduction. Otherwise, the oscillator would be heated and low energy
properties inaccessible.

In order to probe the quantum nature of the continuous variable system, it is desirable to
have a detector at hand that can measure expectation values with respect to x̂-dependent
observables, p̂-dependent observables, as well as observables that depend on both x̂ and p̂.
In Ref. [Doiron08], Doiron et al. have proposed a setup which could be used for position
and momentum detection of NEMS. This setup consists of two tunnel junctions forming
an Aharonov-Bohm (AB) loop. There, it is possible to tune the relative phase between
the tunnel amplitudes (where one depends on x̂ and the other one not) via a magnetic
flux penetrating the AB loop, see Fig. 3.1 for the schematic setup. In such a setup, the
symmetrized current noise

Ssym(ω) = 1
2

∫
dteiωt

〈{
∆Î(t),∆Î(0)

}〉
(3.1)

(with the current fluctuation operator ∆Î(t) = Î(t)− 〈Î〉) of the tunnel junction detector
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can either contain information on the oscillator’s position spectrum

Sx(ω) = 1
2

∫
dteiωt 〈{x̂(t), x̂(0)}〉 , (3.2)

then Ssym(ω) ∼ Sx(ω), or the oscillator’s momentum spectrum

Sp(ω) = 1
2

∫
dteiωt 〈{p̂(t), p̂(0)}〉 , (3.3)

then Ssym(ω) ∼ Sp(ω) depending on the flux through the AB loop, see also Eq. (3.23). The
former case has been coined x-detector and the latter case p-detector.The current noise
Ssym(ω) can also contain information on both, the position and the momentum of the
oscillator. We note that Ssym(ω), Sx(ω), and Sp(ω) are properly defined above in Eqs. (3.1)-
(3.3) for a stationary problem. In the non-stationary case, which is also subject of discussion
in this chapter, these quantities do not only depend on a single frequency ω but on one
frequency argument and one time argument instead, see Eq. (3.12) below.

To be more specific, we call an x-detector, a detector that allows to measure expectation
values of the oscillator’s position operator x̂, i.e., 〈x̂〉, 〈x̂x̂〉, etc. Similarly, we call a p-detector,
a detector that allows to measure expectation values of p̂, the oscillator’s momentum operator,
i.e., 〈p̂〉, 〈p̂p̂〉, etc. In Ref. [Doiron08], switching from the x-detector to the p-detector is
then accomplished by tuning the relative phase between the tunnel amplitudes. The main
difficulty of this setup is the need of long coherence times and lengths in the AB loop to
make the switching possible. Here, we show that the AB setup can be avoided. We find that
the current noise of the coupled oscillator-junction system with one tunnel junction only,
already can be used for momentum detection due to the complex nature of the current noise
when the oscillator is in a non-stationary state.

We further investigate the current noise stemming from a stationary oscillator up to fourth
order in the tunneling amplitudes, thereby going beyond the Born approximation. Most
importantly, we extend previous results of Ref. [Doiron08] to the non-Markovian regime
without any restrictions on the relative magnitude of the energy scales eV , ~Ω, and kBTenv.

We show that peaks in the finite frequency current noise at ω = ±Ω (both for the x-detector
and the p-detector) are a fourth order effect. In the Markovian regime, the peaks in the
position detector signal are always much larger than the ones in the momentum detector
signal. This is different in the non-Markovian regime. There, we even find a larger signal
for the momentum detector compared to the position detector, clearly demonstrating that
the non-Markovian regime is the preferred regime to operate the momentum detector. The
detailed understanding of the x-detector and the p-detector allows us to uniquely identify
the quantum state of the oscillator by a finite frequency noise measurement. 1

3.1 Overview of the theoretical model
The system we consider consists of a nanomechanical harmonic oscillator coupled to a biased
tunnel junction. In Ref. [Flowers-Jacobs07] an experimental realization is shown, where

1This chapter of the thesis is built upon the published article in Ref. [Walter11b].
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3.1 Overview of the theoretical model

Figure 3.1: Schematic setup for the realization of a position detector which can be extended by the
parts enclosed in the red dashed box to a momentum detector. The total tunnel amplitude in the case
of the position detector (setup without parts in the red dashed box) is given by just β̄(x̂) = t0 + t1x̂.
In the case of the momentum detector a second tunnel junction β̃ is added which leads to a relative
phase η between t0 and t1 that can be tuned via a magnetic flux Φ penetrating the AB loop. If the
oscillator is in a non-stationary state, already the parts without the elements in the red dashed box
serve as a position as well as a momentum detector.

electrons can tunnel from an atomic point contact (APC) onto a conducting oscillator. The
coupled system is described by the following Hamiltonian

Ĥ = Ĥosc + Ĥres + Ĥtun .

The unperturbed Hamiltonian Ĥ0 = Ĥres + Ĥsoc consists of

Ĥosc = p̂2

2m + 1
2mΩ2x̂2 ,

Ĥres =
∑
l,r

εl ĉ
†
l ĉl + εr ĉ

†
r ĉr ,

where Ĥosc describes the oscillator with x̂ and p̂ being the position and momentum operator
of the oscillator with mass m and frequency Ω, respectively. Ĥres contains the fermionic
reservoirs of the left and right contacts where ĉα (ĉ†α) annihilates (creates) an electron in
reservoir α = l, r and l/r are electron momenta in the left/right lead. The oscillator couples
to the tunnel junction via the tunneling Hamiltonian

Ĥtun =
∑
l,r

β ĉ†l ĉr + H.c. .

Motivated by the experimental setup in Ref. [Flowers-Jacobs07], we take the oscillator
to act as one of the fermionic reservoirs. Therefore, the tunneling gap depends on the
position of the oscillator, modifying the tunneling amplitude of the APC. For small oscillator
displacements x, we assume linear coupling of the oscillator to the tunnel junction with a
tunnel amplitude β1. Hence we obtain β = [β0 + β1 x̂], with β0 being the bare tunneling
amplitude. Here, we allow for complex tunnel amplitudes β0 and β1 as previously discussed
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in Refs. [Doiron08, Schmidt10]. With η we denote the relative phase between the tunnel
amplitudes, i.e., we write β0 = t0 and β1 = t1eiη where t0, t1 ∈ R. A possible experimental
realization of the finite and tunable phase η is discussed in Ref. [Doiron08]. There, it was
shown that by adding a second tunneling junction as shown in Fig. 3.1 and threatening the
resulting loop with a magnetic flux Φ leads to a tunable phase of the tunneling amplitudes.
The tunneling amplitudes of the two junctions in Fig. 3.1 are given by a position dependent
one β̄(x̂) = t0 + t1x̂ and a position independent one β̃. The AB-effect caused by threading
the loop with a flux causes a phase shift of the electronic wave function. This phase shift can
be absorbed in the tunneling amplitudes and the total tunneling amplitude is then given by
βt = β̄(x̂) + β̃ exp(−iΦ/Φ0) with Φ0 = h/e. The position independent parts of the tunneling
amplitude are just related by a constant c ∈ R, i.e., we can write β̃ = ct0. With this the total
tunneling amplitude is given by (up to a global irrelevant phase) βt =

√
1 + c2t0+t1x̂ exp(−iφ)

with φ = arg(1 + c exp(−iΦ/Φ0)). As a consequence the phase φ can be tuned with the flux
Φ. For all practical purposes we use the simplified notation introduced before β = t0 + t1eiηx̂.
This phase η as we will see later gives rise to the possibility to detect the oscillator’s
momentum expectation value

〈
p̂2〉, present in the current noise.

The true non-equilibrium, non-Markovian quantum behavior of the coupled system is the
subject of our interest. Therefore, we make use of the Keldysh formalism for our calculation.
The quantities being accessible in the experiment are for instance the tunnel current and
the current-current correlator, the noise of the tunnel junction. These will also be the
main objects of interest in this chapter. We employ a perturbation theory in the tunnel
Hamiltonian Ĥtun and calculate the noise up to fourth order in the tunneling.
We start with introducing the current operator in a convenient notation, it is given by

Î = −e ddtN̂l, where N̂l = ĉ†l ĉl counts electrons in the left reservoir. We then write the current
operator as

Î = e
[
ĵ0 + x̂ĵ1

]
,

and similarly for the tunnel Hamiltonian

Ĥtun = ĥ0 + x̂ĥ1 ,

with ĵi = i
[
T̂i − T̂ †i

]
and ĥi = T̂i + T̂ †i . The operator T̂i is given by T̂i = ∑

l,r βi ĉ
†
l ĉr with

i ∈ {0, 1}.

Details on the reservoir Green’s functions
The fermionic Green’s functions of the left and right reservoirs (free electron gas) Gl,r, are
given on the Keldysh contour C by Gl,r(t, t′) = −i

〈
Tc ĉl,r(t)ĉ

†
l,r(t′)

〉
. See Fig. 1.2 for the

Keldysh contour C. Here however, the time ordered branch is C− and the anti-time ordered
one is C+. A Fourier transformation of the real time Green’s functions then leads to the
following Green’s functions

Gl,r(ω) =
(
G−−l,r (ω) G−+

l,r (ω)
G+−
l,r (ω) G++

l,r (ω)

)
= 2πiρ0

(
nl,r(ω)− 1/2 nl,r(ω)
nl,r(ω)− 1 nl,r(ω)− 1/2

)
.
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Here we made use of time translation invariance and assumed a constant density of states
in the left and right reservoir ρl = ρr = ρ0. We make the reasonable assumption that the
fermionic bath relaxes much faster than the system into a steady state, justifying that the
fermionic bath correlation functions do not depend on absolute times but only on the time
difference. The applied finite bias µr−µl = eV is included in the Fermi distribution functions

nl = n(ω − eV/2) = [exp(β(ω − eV/2) + 1]−1 ,

nr = n(ω + eV/2) = [exp(β(ω + eV/2) + 1]−1 .

The inverse temperature of electrons in the reservoirs is β = 1/kBT and we use units where
~ = 1. Expectation values of products of the fermionic operators ĥi and ĵi which we will need
for the perturbative expansion can be expressed by the Keldysh Green’s functions Gl,r(t, t′)
as 〈

Tc ĥi(t) ĵj(t′)
〉

0
≡ −i Ḡij(t, t′) = −i

[
βiβ
∗
jGr(t, t′)Gl(t′, t)− β∗i βjGr(t′, t)Gl(t, t′)

]
,〈

Tc ĥi(t) ĥj(t′)
〉

0
≡ Gij(t, t′) =

[
βiβ
∗
jGr(t, t′)Gl(t′, t) + β∗i βjGr(t′, t)Gl(t, t′)

]
,〈

Tc ĵi(t) ĵj(t′)
〉

0
≡ Gij(t, t′) =

[
βiβ
∗
jGr(t, t′)Gl(t′, t) + β∗i βjGr(t′, t)Gl(t, t′)

]
,

where the average is taken with respect to the unperturbed Hamiltonian Ĥ0. The Fourier
transform of the function Gij(t, t′) and Ḡij(t, t′) can be calculated in the usual way, yielding

G−+
ij (ω) = (3.4)

2πρ2
0

{
βi β

∗
j

eV + ω

2

[
−1 + coth

(
β
eV + ω

2

)]
+ β∗i βj

eV − ω
2

[
1 + coth

(
β
eV − ω

2

)]}
,

G+−
ij (ω) = (3.5)

2πρ2
0

{
βi β

∗
j

eV + ω

2

[
1 + coth

(
β
eV + ω

2

)]
+ β∗i βj

eV − ω
2

[
−1 + coth

(
β
eV − ω

2

)]}
,

Ḡ−−ii (ω) =

βi β
∗
i

∫
dω1
2π

[
G−−r (ω1 + ω)G−−l (ω1)−G−−r (ω1)G−−l (ω1 + ω)

]
= 2πρ2

0 βi β
∗
i σ
−(ω, V ) ,

Ḡ++
ii (ω) = Ḡ−−ii (ω) ,

where we defined the functions

σ±(ξ, V ) = eV + ξ

2 coth
(
β
eV + ξ

2

)
± eV − ξ

2 coth
(
β
eV − ξ

2

)
. (3.6)

The functions σ±(ξ, V ) also allow us to distinguish the Markovian from the non-Markovian
regime. For T → 0, we find

σ−(ξ, V ) =
{
sgn(V ) ξ for e|V | > ξ

sgn(V ) e|V | for e|V | < ξ
,
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Chapter 3 Non-Markovian effects in nanoelectromechanical systems

and

σ+(ξ, V ) =
{
e|V | for e|V | > ξ

ξ for e|V | < ξ
,

where T here is the temperature of electrons in the leads. Later, the parameter ξ can be
Ω and therefore the functions σ±(ξ, V ) will depend on the ratio V/Ω, thereby allowing to
distinguish Markovian from non-Markovian.

Details on the oscillator

Since the oscillator modulates the tunneling of electrons and therefore has impact on the
measured average current and current-current correlator, it is important to understand the
significance of the oscillator’s state. We distinguish between an oscillator in a stationary state
and one in a non-stationary state. We justify this differentiation by arguing that for short
times after the measurement, the oscillator will certainly be non-stationary. The dominating
time scale here is the one given by the oscillator itself, 1/Ω, which has to be compared to time
scales on which the damping of the oscillator due to the tunnel junction and the external
heat bath happens. In the non-stationary case, we cannot make use of time translation
invariance in the oscillator’s correlation function D(t, t′) defined in Eq. (3.7). For longer
times however, the assumption of stationarity is justified since the oscillator can equilibrate
with the environment and reach a steady state. The oscillator’s correlation function then
only depends on the time difference t− t′.

We work in the following with the oscillator operators given in the Heisenberg picture as
x̂(t) = x̂ cos(Ωt) + p̂/(mΩ) sin(Ωt) and p̂(t) = p̂ cos(Ωt)− x̂(mΩ) sin(Ωt). We also define the
aforementioned oscillator correlation function D(t, t′) in Keldysh space as

D(t, t′) = −i 〈Tc x̂(t)x̂(t′)
〉
. (3.7)

When we later investigate the second order noise we consider both the stationary situation
and the non-stationary situation. The following relation then is a very useful one

x̂(t+ t′) = x̂(t′) cos(Ωt) + p̂(t′)
mΩ sin(Ωt) . (3.8)

For calculations up to second order in the tunneling, we look at the influence of stationary and
non-stationary oscillator states on the current noise. In fourth order, we restrict ourselves to
the stationary case. Hence, we are interested in a clear definition of the oscillator’s correlation
functions and spectral functions in the stationary case, which will be addressed now.

Oscillator correlation functions in the stationary case

Considering the stationary case, we give useful expressions for the oscillator’s correlation
functions which later on allow us to identify the oscillator’s power spectrum in x denoted by
Sx(ω) and in p denoted by Sp(ω). From Eq. (3.7) the correlation function where t ∈ C+ and
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t′ ∈ C− is given by

iD+−(t, t′) =
〈
x̂(t)x̂(t′)

〉
= 1

2
〈
x̄2

+ cos(Ω(t− t′)) + [p̂, x̂]
mΩ sin(Ω(t− t′)) + x̄2

− cos(Ω(t+ t′)) + {p̂, x̂}
mΩ sin(Ω(t+ t′))

〉
,

and similar for t ∈ C− and t′ ∈ C+

iD−+(t, t′) =
〈
x̂(t′)x̂(t)

〉
= 1

2
〈
x̄2

+ cos(Ω(t− t′))− [p̂, x̂]
mΩ sin(Ω(t− t′)) + x̄2

− cos(Ω(t+ t′)) + {p̂, x̂}
mΩ sin(Ω(t+ t′))

〉
,

where we defined

x̄2
± = x̂2 ± p̂2

m2Ω2 .

Since, here we deal with the stationary case, the expectation values
〈
x̄2
−
〉
and 〈{p, x}〉

appearing as prefactors of functions depending on t+ t′ equal zero which one can easily check
by using any stationary state, e.g., number-states. As one would expect, the correlation
function now is a function of the time difference t− t′ only. The Fourier transform of the
correlation functions then yields

iD+−(ω) = 1
2
〈
x̄2

+R+
γ (ω,Ω) + i [p̂, x̂]

mΩ R−γ (ω,Ω)
〉
,

iD−+(ω) = 1
2
〈
x̄2

+R+
γ (ω,Ω)− i [p̂, x̂]

mΩ R−γ (ω,Ω)
〉
.

Additionally, we introduce the two momentum correlation functions iP+−(t, t′) = 〈p̂(t)p̂(t′)〉
and iP−+(t, t′) = 〈p̂(t′)p̂(t)〉. The same arguments as for iD±∓(t, t′) lead here to the following
Fourier transforms

iP+−(ω) = 1
2
〈
p̄2

+R+
γ (ω,Ω) +mΩi [p̂, x̂]R−γ (ω,Ω)

〉
,

iP−+(ω) = 1
2
〈
p̄2

+R+
γ (ω,Ω)−mΩi [p̂, x̂]R−γ (ω,Ω)

〉
,

where similar to above

p̄2
± = m2Ω2x̂2 ± p̂2 .

We introduce the functions R±γ (ω,Ω) as

R+
γ→0(ω,Ω) = π [δ(ω + Ω) + δ(ω − Ω)] , (3.9)
R−γ→0(ω,Ω) = π [δ(ω − Ω)− δ(ω + Ω)] . (3.10)

The coupling of the oscillator to two environments, namely an external heat bath and the
tunnel junction, being at temperatures Tenv and kBTjunc = eV/2 [Mozyrsky02], respectively,
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Chapter 3 Non-Markovian effects in nanoelectromechanical systems

introduces a damping of the oscillator with damping coefficients γ0 and γ+, respectively. The
oscillator dynamics due to the coupling to the tunnel junction can be calculated by solving a
Dyson equation for the oscillator correlation function D(t, t′) where the self-energy is taken
to lowest non-vanishing order in the tunnel Hamiltonian, i.e., Σ(t, t′) = −i

〈
Tc ĥ1(t)ĥ1(t′)

〉
.

Using the Keldysh technique as done in Refs. [Wabnig07, Clerk04a] the oscillator dynamics
and the damping coefficient γ+ = πρ2

0t
2
1/m can be calculated. The coupling to the external

heat bath can be added phenomenologically, or explicitly as an interaction with a bath of
harmonic oscillators. The total damping then follows as γtot = γ0 + γ+. We can assign an
effective temperature Teff to the oscillator with γtot Teff = γ+ Tjunc + γ0 Tenv 2. This leads
to the general case for R±γ by replacing the δ-functions in Eqs. (3.9, 3.10) by a Lorentzian,
where we include both sources of damping and an oscillator frequency Ω→

√
Ω2 − γ2. For

this damped case we can write for R+
γ (ω,Ω)

R+
γ (ω,Ω) = 2γtot(ω2 + Ω2)

4γ2
totω

2 + (ω2 − Ω2)2 ,

and for R−γ (ω,Ω)

R−γ (ω,Ω) =
4γtot ω

√
Ω2 − γ2

tot

4γ2
totω

2 + (ω2 − Ω2)2 .

We want to stress that we have not made any assumption on the initial time as, e.g., t′ = 0,
allowing us later to study the current noise in the non-stationary case. This concludes our
discussion on the oscillator correlation functions. We now turn to the spectral functions
Sx(ω) and Sp(ω).

The oscillator’s spectra in the stationary case

The symmetrized power spectrum, in general defined as 1
2
∫
dt eiωt

〈
{Υ̂ (t), Υ̂ (t′)}

〉
of the

oscillator quantities Υ̂ = x̂, p̂ is an observable that can be measured by, e.g., current noise
measurements (as discussed below). Both Sx(ω) and Sp(ω) can be measured through the
current noise Ssym(ω). The expressions for these power spectra are given by

Sx(ω) = 1
2

∫
dt eiωt

〈{x̂(t), x̂(t′)}〉 = 1
2
〈
x̄2
〉
R+
γ (ω,Ω) ,

Sp(ω) = 1
2

∫
dt eiωt

〈{p̂(t), p̂(t′)}〉 = 1
2
〈
p̄2
〉
R+
γ (ω,Ω) .

The momentum and position spectrum are related via the relation

Sp(ω) = m2Ω2Sx(ω) .

2In typical experiments carried out in a cryogenic environment, the environmental temperature Tenv and the
electronic temperature T are in a first approximation of the same order, i.e., Tenv ≈ T .
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3.2 Current noise calculations

We can also write down the spectra using the Keldysh Green’s function

DK(ω) = D+−(ω) +D−+(ω)

which yields

Sx(ω) = 1
2 iD

K(ω) ,

Sp(ω) = 1
2m

2Ω2 iDK(ω) .

To further simplify the notation, we introduce

Q(ω) = i

2
[
Υ+−(ω)−Υ−+(ω)

]
= 1

2mΩR
−
γ (ω,Ω) ,

where Υ = D,P which we later use in the fourth order current noise calculation.

3.2 Current noise calculations
Brief overview

In this section, we cover a variety of aspects when dealing with the current noise. For all
different aspects we find expressions for the current noise which are valid for an arbitrary η
and therefore include the x-detector as well as the p-detector.

The first section, Sec. 3.2.1, is dedicated to the current noise in second order perturbation
theory, where we furthermore make the distinction between a stationary harmonic oscillator
and a non-stationary one. Besides the Markovian regime (eV � ~Ω), the Keldysh formalism
also allows us to investigate the non-Markovian regime (eV � ~Ω). The main result in this
section is that the current noise for a non-stationary oscillator can in principle be complex.
In this case, a detectable complex noise would allow for a nearly complete determination of
the oscillator’s covariance matrix σij = Tr [ρ̂ {Υ̂i, Υ̂j}/2], where Υ̂ = (x̂, p̂)T . The covariance
matrix allows for a complete description of the oscillator’s quantum state, cf. Chap. 5.
For the stationary oscillator, we recover a noise that is real and in accordance with the

Wiener-Khinchin theorem. This noise is the well known noise of a bare biased tunnel junction
which shows kinks at |ω| = |V | [Schoelkopf97, Blanter00], modified by the oscillator leading
to kinks at |ω| = |V ± Ω|.

In Sec. 3.2.2, we deal with the noise up to fourth order in the tunneling amplitudes, where
we restrict ourselves to the stationary case. On the one hand, the fourth order contributions
modify the kinks, on the other hand, they give rise to resonances stemming from the oscillator
correlation functions [Clerk04b, Wabnig07, Doiron08].
Importantly, we study the problem over the whole parameter range. Thus, we go, e.g.,

beyond Ref. [Wabnig05] where a Markov approximation was employed and lead to the
constraint Ω � max(kBT, eV ) for the high frequency current noise. Before we introduce
the perturbation theory leading to the noise expression, we want to clarify the term second
and fourth order perturbation theory. When we talk about these two cases we want to
indicate that we expanded the quantities which we calculate to second and forth order in
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Chapter 3 Non-Markovian effects in nanoelectromechanical systems

the tunneling amplitudes. Our results, especially in Sec. 3.2.2 are of higher order than the
actual expansion since we used the oscillator Green’s function Eq. (3.7) which is obtained by
solving the Dyson equation with the proper self-energy as discussed in Sec. 3.1.

General expressions for the current noise and the average current

In general, the expression for the current-current correlator in the Keldysh formalism is given
by

S(τ3, τ4) =
〈
Tc e

−i
∫

c
dτ̃Ĥtun(τ̃)Î(τ3)Î(τ4)

〉
0
−
〈
Î(τ3)

〉
0

〈
Î(τ4)

〉
0
,

where expectation values are taken with respect to the unperturbed Hamiltonian Ĥ0. Since
we consider only the second and fourth order current noise we write

S(τ3, τ4) = S(2)(τ3, τ4) + S(4)(τ3, τ4) ,

where the second order term is given by

S(2)(τ3, τ4) =
〈
Tc Î(τ3)Î(τ4)

〉
0
, (3.11)

and the fourth order term reads

S(4)(τ3, τ4) =− 1
2

∫
c
dτ1dτ2

〈
Tc Ĥtun(τ1)Ĥtun(τ2)Î(τ3)Î(τ4)

〉
0

+
∫
c
dτ1dτ2

〈
Tc Ĥtun(τ1)Î(τ3)

〉
0

〈
TcĤtun(τ2)Î(τ4)

〉
0
.

First, we are going to review the average current in the setup. The general expression for
the average current from which we start employing the perturbation expansion is given by

〈I(t)〉 =
〈
Tc e

−i
∫

c
dτĤtun(τ)Î(t)

〉
0
.

To second order in the tunneling amplitudes, the average current can be calculated by

〈I(t)〉 = −i
∫
c
dτ
〈
Tc Ĥtun(τ)Î(t)

〉
0
,

for which we obtain the following expression in accordance with Ref. [Doiron08]

〈I(t)〉 = 2πρ2
0e
{
t20eV + 2 cos(η)t0t1eV 〈x̂(t)〉+ sin(η)t0t1

〈p̂(t)〉
m

+ t21eV 〈x̂(t)x̂(t)〉 − t21
2mΩσ

−(Ω, V )
}
,

where σ−(Ω, V ) is given in Eq. (3.6).
The current noise we calculate is always the frequency-dependent (and in the non-stationary
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case also time-dependent) symmetrized current noise, defined as

Ssym(ω, t′) = 1
2

∫
dt eiωt

[
S−+(t, t′) + S+−(t, t′)

]
, (3.12)

where for S−+(t, t′), t ∈ C− and t′ ∈ C+ and similar for S+−(t, t′). The debate whether the
symmetrized or unsymmetrized current noise of the detector is accessible in an experiment
has been discussed in Refs. [Lesovik97, Gavish00]. We focus on the symmetrized version
of the current noise, since leading experiments as in Refs. [Schoelkopf97, Flowers-Jacobs07]
showed that the symmetrized current noise is measurable and since the focus of this chapter
lies in the characterization of the nanomechanical resonator.

3.2.1 Current noise to second order in the tunneling amplitudes

We now turn to the calculation of the current noise to second order. With the current
operator Î already being first order in the tunneling amplitudes, the current noise in the
Born approximation is given by the following expression

S(2)ij(t, t′) =
〈
Tc Î(t+ t′)iÎ(t′)j

〉
,

where we used a slightly different definition of the current noise as compared to Eq. (3.11).
This definition will be useful when examining the non-stationary case. Due to this definition
the time dependence on t′ in the symmetrized current noise is only present in the oscillator’s
quantum mechanical expectation values.
The general expression for the current noise to second order in the tunneling amplitudes

in Keldysh space reads

S(2)ij(t, t′) = e2
[
G00(t+ t′, t′) +

〈
x̂(t′)

〉G01(t+ t′, t′)

+
〈
x̂(t+ t′)

〉G10(t+ t′, t′) + iD(t+ t′, t′)G11(t+ t′, t′)
]
. (3.13)

Now, we only make use of time translation invariance in the Gij(t, t′) functions and the
oscillator is taken as non-stationary. The starting point for the calculation is Eq. (3.13),
together with Eqs. (3.7, 3.8) the symmetrized current noise in the non-stationary case can
be written as

S(2)
sym(ω, t′) = e2

2

∫
dt eiωt

{
G−+

00 (t) + G+−
00 (t)

+
〈
x̂(t′)

〉 [G−+
01 (t) + G+−

01 (t)
]

+
〈
x̂(t′)

〉
cos(Ωt)

[
G−+

10 (t) + G−+
10 (t)

]
+〈p̂(t

′)〉
mΩ sin(Ωt)

[
G−+

10 (t) + G+−
10 (t)

]
+
〈
x̂(t′)x̂(t′)

〉
cos(Ωt)

[
G−+

11 (t) + G+−
11 (t)

]
+〈x̂(t′)p̂(t′)〉

mΩ sin(Ωt)G−+
11 (t) + 〈p̂(t

′)x̂(t′)〉
mΩ sin(Ωt)G+−

11 (t)
}
. (3.14)

The further calculation is straightforward by using Eq. (3.4) and (3.5). Finally, the current
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noise S(2)
sym(ω, t′) in Eq. (3.14) can be written as

S(2)
sym(ω, t′) = e2

2
{
G−+

00 (ω) + G+−
00 (ω) +

〈
x̂(t′)

〉 [G−+
01 (ω) + G+−

01 (ω)
]

+ 1
2
〈
x̂(t′)

〉 [G−+
10 (ω + Ω) + G−+

10 (ω − Ω) + G+−
10 (ω + Ω) + G+−

10 (ω − Ω)
]

− i

2mΩ
〈
p̂(t′)

〉 [G−+
10 (ω + Ω)− G−+

10 (ω − Ω) + G+−
10 (ω + Ω)− G+−

10 (ω − Ω)
]

+ 1
2
〈
x̂(t′)x̂(t′)

〉 [G−+
11 (ω + Ω) + G−+

11 (ω − Ω) + G+−
11 (ω + Ω) + G+−

11 (ω − Ω)
]

− i

2mΩ
〈
x̂(t′)p̂(t′)

〉 [G−+
11 (ω + Ω)− G−+

11 (ω − Ω)
]

− i

2mΩ
〈
p̂(t′)x̂(t′)

〉 [G+−
11 (ω + Ω)− G+−

11 (ω − Ω)
] }

.

The final result we obtain for the symmetrized current noise to second order in the tunneling
amplitudes reads

S(2)
sym(ω, t′) = 2πρ2

0e
2
{
t20σ

+(ω, V )

+
〈
x̂(t′)

〉
t0t1 cos(η)

[
σ+(ω, V ) + 1

2
(
σ+(ω + Ω, V ) + σ+(ω − Ω, V )

)]
− 〈x̂(t′)

〉
t0t1i sin(η)

[
σ−(ω, V )− 1

2
(
σ−(ω + Ω, V ) + σ−(ω − Ω, V )

)]
− 〈p̂(t′)〉 t0t12mΩ sin(η)

[
σ−(ω + Ω, V )− σ−(ω − Ω, V )

]
− 〈p̂(t′)〉 t0t12mΩ i cos(η)

[
σ+(ω + Ω, V )− σ+(ω − Ω, V )

]
+
〈
x̂(t′)x̂(t′)

〉 t21
2
[
σ+(ω + Ω, V ) + σ+(ω − Ω, V )

]
− t21

2m

− 〈{x̂(t′), p̂(t′)}〉 i t21
4mΩ

[
σ+(ω + Ω, V )− σ+(ω − Ω, V )

]}
, (3.15)

where we separated the real and imaginary part using the relative phase η between the
tunneling amplitudes.

We want to note the important aspect of the current noise that it possibly can have a
complex valued character which we discuss later. The gained expression is quite lengthy but
provides us with the full quantum mechanical non-equilibrium characteristics of the current
noise in the Markovian as well as in the non-Markovian regime. We made no assumptions
on the state of the oscillator, which now gives us the possibility to identify momentum
properties of the nanomechanical resonator using the current noise spectrum S

(2)
sym(ω, t′). In

the next section, we discuss this new possibility of a p-detector which involves measuring a
complex valued current noise.
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Complex current noise and the p-detector in the non-stationary case

The expression in Eq. (3.15) allows for a comparison with results obtained in Ref. [Doiron08]
where it was possible with a phase of η = π/2 to determine the momentum of the oscillator.
In Ref. [Doiron08], an Aharonov-Bohm setup allows for the tuning of the relative phase η.
The full current noise spectrum there is proportional to the position spectrum Sx(ω) which
is peaked at ω = ±Ω in the case of η = 0 and in the case of η = π/2 is proportional to the
momentum spectrum Sp(ω) also showing peaks at ω = ±Ω. This peaked structure of the
current noise spectrum is a fourth order effect, as we will see and discuss later when dealing
with the fourth order corrections to the current noise.

As one can see from Eq. (3.15), already the second order current noise allows to determine
the expectation value of the oscillator’s momentum and in addition to that of the anticom-
mutator {x̂, p̂}, even if the phase η = 0, i.e., the Aharonov-Bohm setup becomes obsolete in
our case. The signature of the oscillator’s momentum p̂ in our case is however different than
the one in Ref. [Doiron08]. Instead of the peaked structure, we find a kink-like structure
which stems from the fact that we deal with second order perturbation theory.

In order to understand how one can use this to identify the momentum, we have to
understand the meaning of a complex current noise. As stated in Ref. [Dicarlo06] a complex
valued current noise is in principle a measurable quantity. To have a relevant measurable
quantity, we would have to average the time-dependent current noise S(2)

sym(ω, t′) over the
measurement time ∆T . We could do this in the following way

S̄(2)
sym(ω) = 1

∆T

∫ ∆T/2

−∆T/2
dt′S(2)

sym(ω, t′) . (3.16)

Since the time dependence of the current noise is only visible in the expectation values of
the oscillator’s variables, it is important for the actual measurement to consider the time
scales which are involved. If the measurement time ∆T is less than the time scale of the
oscillator (1/Ω), the measured time averaged current noise S̄(2)

sym(ω) will be time-dependent.
If however, the oscillator undergoes multiple oscillation cycles during the measurement time,
the current noise will be time-independent. In this case we could as well take the oscillator
to be in a stationary state. For a damped oscillator the time scales on which the damping
happens have also to be taken into account as mentioned already in Sec. 3.1.

Let us briefly discuss the involved time scales for the experiment in Ref. [Flowers-Jacobs07].
The oscillator with a quality factor of Q0 ≈ 5000 at frequency Ω ≈ 60MHz has a typical
relaxation time scale of τosc ≈ 100µs. For low temperatures the quasiparticle relaxation
rate of the fermionic reservoirs can be estimated by usual Fermi-Liquid theory (1/τres ∼ T 2)
[Nozieres64] which leads for 250mK used in the experiment to a relaxation time scale τres
of order µs. Hence, τres � τosc in Ref. [Flowers-Jacobs07]. Furthermore, the detector in
Ref. [Flowers-Jacobs07] has a high enough resolution of measuring displacements on time
scales less than 10ns in order to dissolve the dynamics of a non-stationary oscillator.
We conclude with remarks on the interesting non-stationary case, where we can also

take η = 0 without losing the information on 〈p̂(t′)〉 and in addition obtain information on
〈{x̂(t′), p̂(t′)}〉. We intend to give an idea of how to access the information on 〈p̂(t′)〉 and
〈{x̂(t′), p̂(t′)}〉 available through the complex current noise. The expectation value of 〈p̂(t′)〉
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with respect to number states or a linear combination of them, will always vanish when
averaging over time according to Eq. (3.16). However, this is different for coherent states
|α〉 = exp(−|α|2/2) ∑∞n=0 α

n/n!|n〉, where we can write α = |α| exp(i δ) with |α| being the
amplitude and δ the phase of the coherent state, respectively. The time averaged expectation
value 〈p̂(t′)〉 with respect to |α〉 yields

〈
p̂(t′)

〉
av =

√
2mΩ 2|α|

Ω∆T sin(δ) sin(Ω∆T/2) ,

and for 〈{x̂(t′), p̂(t′)}〉

〈{x̂(t′), p̂(t′)}〉av = 2|α|2
Ω∆T sin(2δ) sin(Ω∆T ) .

For short measurement times ∆T < 1/Ω we can write

lim
∆T→0

〈
p̂(t′)

〉
av =

√
2mΩ|α| sin(δ) ,

and

lim
∆T→0

〈{x̂(t′), p̂(t′)}〉av = 2|α|2 sin(2δ) .

We separate the current noise S̄(2)
sym(ω) = S̄

(2)
sym,R(ω) + S̄

(2)
sym,I(ω) into real and imaginary

part where we observe that the imaginary part S̄(2)
sym,I(ω) only contains information on the

oscillator’s momentum 〈p̂(t′)〉 and the anticommutator 〈{x̂(t′), p̂(t′)}〉

S̄
(2)
sym,I(ω) = 2πρ2

0e
2
{

1√
2mΩ

t0t1|α| sin(δ)
[
σ+(ω + Ω, V )− σ+(ω − Ω, V )

]
− t21|α|2

2mΩ sin(2δ)
[
σ+(ω + Ω, V )− σ+(ω − Ω, V )

] }
. (3.17)

The phase δ of the coherent state now allows for a determination of the oscillator’s momentum.
For δ = π/2, the signature in the imaginary part of the time averaged noise S̄(2)

sym,I(ω) stems
only from the oscillator’s momentum. The signal in the non-Markovian regime is more
pronounced than in the Markovian regime, see Eq. (3.17).

Current noise in the stationary case

Contrary to the non-stationary case, we now also assume time translation invariance in the
oscillator correlation function, i.e., D(t, t′) = D(t− t′). One can then see that the calculation
in the stationary case goes along the same lines as in the non-stationary case. The only
difference will be that oscillator expectation values are now taken at time t′ = 0, i.e., we
encounter for instance 〈x̂(0)〉 instead of 〈x̂(t′)〉.
When interpreting the result for the stationary case we have to keep the constraints

on oscillator expectation values in mind. These constraints lead to vanishing expectation
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values of the anticommutator 〈{x̂, p̂}〉 and vanishing expectation values for 〈x̂〉 and 〈p̂〉.
The current noise to second order is then equivalent to the ones previously obtained in
Refs. [Wabnig07, Schmidt10], cf. Eq. (C.4) in Ref. [Schmidt10] with γ2 = 〈x〉 = 〈p〉 = 0.

3.2.2 Current noise to fourth order in the tunneling amplitudes

We now turn to the investigation of the fourth order current noise. Since the fourth order
perturbation theory involves a large amount of terms we use a diagrammatic approach. In
the case of the fourth order current noise we restrict ourselves to the stationary case for
simplicity. We start with giving the whole expression for the current noise to fourth order in
the tunneling amplitudes

S(4)(τ3, τ4) = −e
2

2

∫
c
dτ1 dτ2

{
M0,0,0,0(τ1, τ2, τ3, τ4)
+M0,0,0,1(τ1, τ2, τ3, τ4) 〈x̂(τ4)〉+M0,0,1,0(τ1, τ2, τ3, τ4) 〈x̂(τ3)〉
+M0,1,0,0(τ1, τ2, τ3, τ4) 〈x̂(τ2)〉+M1,0,0,0(τ1, τ2, τ3, τ4) 〈x̂(τ1)〉
+M0,0,1,1(τ1, τ2, τ3, τ4) 〈Tc x̂(τ3)x̂(τ4)〉+M0,1,0,1(τ1, τ2, τ3, τ4) 〈Tc x̂(τ2)x̂(τ4)〉
+M0,1,1,0(τ1, τ2, τ3, τ4) 〈Tc x̂(τ2)x̂(τ3)〉+M1,0,0,1(τ1, τ2, τ3, τ4) 〈Tc x̂(τ1)x̂(τ4)〉
+M1,0,1,0(τ1, τ2, τ3, τ4) 〈Tc x̂(τ1)x̂(τ3)〉+M1,1,0,0(τ1, τ2, τ3, τ4) 〈Tc x̂(τ1)x̂(τ2)〉
+M0,1,1,1(τ1, τ2, τ3, τ4) 〈Tc x̂(τ2)x̂(τ3)x̂(τ4)〉+M1,0,1,1(τ1, τ2, τ3, τ4) 〈Tc x̂(τ1)x̂(τ3)x̂(τ4)〉
+M1,1,0,1(τ1, τ2, τ3, τ4) 〈Tc x̂(τ1)x̂(τ2)x̂(τ4)〉+M1,1,1,0(τ1, τ2, τ3, τ4) 〈Tc x̂(τ1)x̂(τ2)x̂(τ3)〉
+M1,1,1,1(τ1, τ2, τ3, τ4) 〈Tc x̂(τ1)x̂(τ2)x̂(τ3)x̂(τ4)〉

}
+
∫
c
dτ1 dτ2

〈
Tc Ĥtun(τ1)Î(τ3)

〉〈
TcĤtun(τ2)Î(τ4)

〉
, (3.18)

where the we introduced

Mi1,i2,i3,i4(τ1, τ2, τ3, τ4) =
〈
Tc ĥi1(τ1)ĥi2(τ2)ĵi3(τ3)ĵi4(τ4)

〉
=
〈
Tc T̂ †i1(τ1)T̂i2(τ2)T̂i3(τ3)T̂ †i4(τ4) + (3↔ 4)− (2↔ 4) + H.c.

〉
. (3.19)

The index ij determines whether we are dealing with the complex tunneling amplitudes β0
or β1, ij ∈ {0, 1}
A first reduction of terms in Eq. (3.18) is done by only focusing on the stationary case.

This allows us to drop terms which are proportional to 〈x̂(t)〉 in Eq. (3.18) and only keep
terms proportional to D(t, t′) and D(t, t′)D(t′′, t′′′). Unlinked diagrams which appear in this
expression are canceled by the Î2 term which is always of the bubble type.

In what follows we give a short explanation of the diagrammatics. It is only necessary to
evaluate the first expectation value in Eq. (3.19) using Wick’s theorem, the other ones follow
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as indicated by (3↔ 4), (2↔ 4) and hermitian conjugation. This first term leads to〈
Tc T̂ †i1(τ1)T̂i2(τ2)T̂i3(τ3)T̂ †i4(τ4)

〉
= β∗i1βi2βi3β

∗
i4 (3.20)

× [Gl(τ1, τ2)Gl(τ4, τ3)−Gl(τ1, τ3)Gl(τ4, τ2)] [Gr(τ2, τ1)Gr(τ3, τ4)−Gr(τ3, τ1)Gr(τ2, τ4)] .

Similar to Ref. [Wabnig07] we use a diagrammatic representation for the expression in
Eq. (3.19). As an example,we show the diagrams emerging from the expression in Eq. (3.20)
in Fig. 3.2 and explain the components of the diagrams. Fermionic Green’s functions of the
reservoirs are represented by solid lines and vertices are depicted by a dot, labeled with a
time variable and a Keldysh index indicating on which branch of the Keldysh contour the
time lies. An integration over internal times τ1 and τ2 is implicit. In addition, we also have
to sum over the two internal Keldysh indices k and l. We recognize that we have to deal

τ4 , j τ1 , k τ2 , l τ3 , i

Gr(τ3, τ4)

Gl(τ4, τ3)

Gr(τ2, τ1)

Gl(τ1, τ2)

+
τ4 , j τ3 , iτ1 , k τ2 , l

Gl(τ1, τ3)Gl(τ4, τ2)

Gr(τ2, τ4) Gr(τ3, τ1)

−

−−
τ1 , k τ2 , l τ3 , iτ4 , j

Gl(τ4, τ3)

Gl(τ1, τ2)

Gr(τ2, τ4) Gr(τ3, τ1)

τ4 , j τ1 , k τ2 , l τ3 , i

Gr(τ3, τ4)

Gr(τ2, τ1)

Gl(τ4, τ2) Gl(τ1, τ3)

Figure 3.2: Diagrammatic representation for Eq. (3.20) where we omitted the factor β∗i1βi2βi3β
∗
i4
,

note that Eq. (3.20) only contains fermionic Green’s functions. Every vertex (black dots) comes with
a contour time τi and a Keldysh index indicating the branch of the contour. Integration (summation)
over internal times (Keldysh indices) is implicit.

with two types of diagrams: diagrams which consist of one closed fermion loop (diagrams in
the lower panel of Fig. 3.2) and diagrams consisting of two closed fermion loops/bubbles
(diagrams in the upper panel of Fig. 3.2). These two different types of diagrams give very
different contributions to the current noise which we will discuss below. We include the
oscillator correlation function D(t, t′) in diagrams by a wiggly line connecting two vertices.
In Fig. 3.3, we give an example of diagrams in frequency space containing one oscillator
correlation function. Here, integration over the two internal frequencies ω1 and ω2 as well
as summation over the internal Keldysh indices k and l is implied. In frequency space,
the difference between the closed loop diagrams in Fig. 3.3(b) and the bubble diagrams in
Fig. 3.3(a) becomes clear: for the closed loop diagrams, the oscillator line always appears
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under integration of an internal frequency, whereas for the bubble diagrams, there is no
integration over the oscillator line. This is the reason for the different kind of contribution
to the current noise of closed loop and bubble diagrams. As we will show below, bubble
diagrams lead to peaks in the current noise, whereas closed loop diagrams lead to the afore
mentioned kinks in the current noise. We reduce the number of diagrams by only keeping

j k l i

Gij
r (ω1 − ω2 + ω)

Glk
r (ω1)

G
jl
l (ω1) Gki

l (ω1 − ω2)

ω

ω
Dkj(ω1)

b)

j ik l

Gik
l (ω2 + ω)G

lj
l (ω1 + ω)

Gjl
r (ω1) Gki

r (ω2)

ω

ω

Dkl(ω)

a)(a) (b)

Figure 3.3: Examples of diagrams containing one oscillator correlation function D. In (a) a bubble
diagram is depicted where the oscillator line is independent of an internal frequency. In (b) we
show a closed loop diagram where the oscillator line always appears under integration of an internal
frequency.

contributions ∼ t20t21 and ∼ t41 which are the only finite contributions in the stationary case.
This allows us to write the current noise S(4)(τ3, τ4) for the further analysis as

S(4)(τ3, τ4) = Ŝ
(4)
D (τ3, τ4) + Š

(4)
D (τ3, τ4) + Ŝ

(4)
DD(τ3, τ4) + Š

(4)
DD(τ3, τ4) ,

where Ŝ includes the bubble diagrams, Š includes closed loop diagrams and D indicates the
number of oscillator lines in the diagrams. The final result we obtain is valid for an arbitrary
relative phase η which goes beyond the result obtained by Wabnig et al. in Ref. [Wabnig07].
This fact allows us to study the p-detector in fourth order perturbation theory.

Results for Ŝ(4)
D (τ3, τ4), Š(4)

D (τ3, τ4), Ŝ(4)
DD(τ3, τ4), and Š(4)

DD(τ3, τ4)

In the following, we sum up the different types of diagrams, bubble type diagrams as well as
closed loop diagrams, both then can be integrated exactly.
First we consider all diagrams containing only one oscillator line, these diagrams are all

proportional to t20 t21 and depend on η. We find for the symmetrized frequency-dependent
current noise

Ŝ
(4)
sym,D(ω) = 4π2e2ρ4

0 t
2
0t

2
1

{

cos(η)2
[
4e2V 2 − 4eV σ−(ω, V ) Q(ω)

Sx(ω)

]
Sx(ω) + sin(η)2

[
ω2 − 2ωσ+(ω, V ) Q(ω)

Sx(ω)

]
Sx(ω)

+1
2
[
DR(ω) +DA(ω)

]
cos(η) sin(η)

[
4eV σ+(ω, V )− 2ωσ−(ω, V )

]}
, (3.21)

which is one of the main results of this section.
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In the case of the closed loop diagrams containing one oscillator line, it is also possible
to sum up all diagrams and integrate them exactly. Since the expression for Š(4)

sym,D(ω) is
rather lengthy, we do not present it here.

We find that the current noise signature of Š(4)
sym,D(ω) is of the kink-like structure similar to

S
(2)
sym,D(ω). In addition to the kinks at |ω| = |V ±Ω| coming from S

(2)
sym,D(ω), Š(4)

sym,D(ω) gives
rise to extra kinks at |ω| = |V | and |ω| = |Ω|. However, these contributions are only minor
modifications to the current noise floor S(2)

sym,D(ω). Experiments as in Ref. [Flowers-Jacobs07]
focus on the current noise near the resonance frequency ω ≈ Ω for which Ŝ(4)

sym,D(ω) is the
most important contribution. Therefore, the discussion of our result will focus on the
contributions stemming from Ŝ

(4)
sym,D(ω). These contributions posses a peaked structure,

since the oscillator correlation functions DR/A(ω) and the spectrum Sx(ω) are peaked around
ω = ±Ω.

The other contributions to the current noise stem from diagrams containing two oscillator
linesD(t, t′). These diagrams are all proportional to β1β

∗
1β1β

∗
1 = t41 and therefore independent

of the relative phase η between t0 and t1. Moreover, these current noise contributions are
small compared to the ones containing only one oscillator line since t41 � t20 t

2
1. We however

are mainly interested in the possibility to detect the oscillator’s momentum which depends
on η, for this reasons and the fact that they are small compared to Ŝ(4)

sym,D(ω) we do not
include them in our discussion. Nevertheless, we state our result which we obtain after
summing up the diagrams

Ŝ
(4)ij
DD (ω) = − e

2

2π

∫
dω1

∑
k,l=±

(kl)
{

Dkl(ω1)Dij(ω1 + ω) Ḡkj11(−ω1) Ḡli11(ω1)
+Dki(ω1)Dlj(ω1 + ω) Ḡkj11(−ω1) Ḡli11(−ω1 − ω)

−Dki(ω1)Dlj(−ω1)Gkl11(−ω1)Gij11(ω1 + ω)
}
. (3.22)

The last integration in Eq. (3.22) can be easily done since the oscillator correlation functions
are peaked at ±Ω. Our result is then in accordance with the one obtained by Wabnig et
al. [Wabnig07], where it is has been shown that these contributions to the current noise are
peaked at ω = −2Ω, 0, 2Ω in contrast to the contributions arising from Eq. (3.21). Similar to
Š

(4)
D (ω), Š(4)

DD(ω) is of the kink-like structure and therefore only modifying the current noise
floor.

Current noise in the Markovian and non-Markovian regime for arbitrary η

We now address the current noise stemming from Ŝ
(4)
sym,D(ω) for arbitrary η and also arbitrary

system parameters. In order to compare our result for the momentum detector with
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Ref. [Doiron08], we investigate Ŝ(4)
sym,D(ω) near the resonance (ω ≈ Ω). We find

Ŝ
(4)
sym,D(ω) ≈ 4π2e2ρ4

0 t
2
0t

2
1

{

4e2V 2 cos(η)2

1− σ−(Ω, V )
4eV mΩ 〈x̄2〉

√
1−

(
γtot
Ω

)2
 Sx(ω)

+ 1
m2 sin(η)2

1− 2σ+(Ω, V )m
〈p̄2〉

√
1−

(
γtot
Ω

)2
 Sp(ω)

+ cos(η) sin(η) 1
m

ω2 − Ω2

4γ2
totΩ2 + (ω2 − Ω2)2

[
4eV σ+(Ω, V )− 2Ωσ−(Ω, V )

]}
, (3.23)

where σ±(ξ, V ) is given in Eq. (3.6) and Sx(ω) and Sp(ω) near resonance are given by

SX(ω) =
2γ2

totΩ2
〈
X̄2
〉

4γ2
totΩ2 + (ω2 − Ω2)2 ,

with X = x, p. The above expression is valid for the Markovian as well as for the non-
Markovian regime. The relevant information about the oscillator can now be gained form
the current noise spectrum.
We take two different ways of evaluating the expectation values

〈
x̄2〉 and 〈p̄2〉. In the

first one we use number-states which lead to expectation values
〈
x̄2〉

n = (2n+ 1)/mΩ and〈
p̄2〉

n = (2n+ 1)mΩ, where n denotes the oscillator’s number of quanta.
Since we also could imagine, as already explained in Sec. 3.1, two equilibrium bathes to

which the oscillator couples, the tunnel junction and an external heat bath, we can assign an
effective temperature Teff to the oscillator which obeys γtot Teff = γ0 Tenv + γ+ Tjunc, where
γtot = γ0 +γ+ is the total damping due to coupling to the junction (γ+) and an external heat
bath (γ0). The external heat bath is at temperature Tenv and the junction’s temperature is
given by Tjunc = eV/2kB . The oscillator’s expectation values in this thermal regime are then
given by

〈
x̄2〉 = 2 kB Teff/mΩ2 and

〈
p̄2〉 = 2mkB Teff.

For both cases, the thermal case and the number-state one, it is convenient scaling
the current noise Ŝ

(4)
sym,D(ω) with eI0 = 2πρ2

0e
2t20σ

+(Ω, V ). We furthermore introduce
dimensionless parameters f1, f2, f3, f4 which are defined in the following way

γtot = Ω
f1
,

γ+ = γtot
f2

= Ω
f1 f2

,

eV = f3 Ω ,

Tenv = f4
eV

kB
.

f1 can be interpreted as an overall quality-factor. The ratio γ0/γ+ = (f2 − 1) leads for
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f2 ∈]1, 2[ to a stronger coupling to the tunnel junction and for f2 > 2 to a stronger coupling
to the external heat bath. The parameter f3 distinguishes the non-Markovian (f3 ∈]0, 1])
from the Markovian regime (f3 � 1). The last parameter f4 quantifies the temperature Tenv
of the external bath with respect to the applied bias V .
We now compare the signal of the position detector

S
(4)
x-det(ω) = Ŝ

(4)
sym,D(ω; η = 0) ,

to the signal of the momentum detector

S
(4)
p-det(ω) = Ŝ

(4)
sym,D(ω; η = π/2) ,

and later their dependencies on the parameters fi at resonance ω ≈ Ω. Assuming a high qual-
ity resonator we take

√
1− γ2

tot/Ω2 ≈ 1 in Eq. (3.23). We call Qx = σ−(Ω, V )/(4eV mΩ
〈
x̄2〉)

quantum corrections to the x-detector current noise, arising from the non-vanishing commuta-
tor [x̂, p̂]. Similarly we call Qp = (2mσ+(Ω, V ))/

〈
p̄2〉 quantum corrections to the p-detector

current noise. We then find

S
(4)
x-det = 4 f2

3
[1−Qx]
[1−Qp]

S
(4)
p-det

and conclude that in the Markovian regime where f3 � 1 the signal of the position detector
is always larger than the signal of the momentum detector. Whereas in the non-Markovian
regime we have a stronger signature of the noise part showing the momentum signature of
the oscillator. In the following, we investigate in more detail the current noise of the x- and
p-detector.

The x-detector

From Eq. (3.23) one can see that for η = 0 mod π we recover the position detector results of
Refs. [Doiron07, Clerk04b, Wabnig07] with peaks in the current noise spectrum at ω = ±Ω.
Since we calculate the symmetrized current-current correlator, the current noise is symmetric
in ω. The sign of the signal is given by the sign of [1−Qx] which for an oscillator in the
thermal regime depends on f2, f3 and f4, while for an oscillator in number-state n it depends
on n and f3 only. We stick to a thermal resonator, noting that as in Ref. [Doiron08] for the
p-detector, here the quantum corrections Qx ∼ 1/f3 can become large (compared to 1) in the
non-Markovian regime where f3 < 1, leading to a sign change. The parameter regimes for a
negative/positive peak in the current noise are depicted in Fig. 3.4(a) as blue/red regions.

The change of sign in the signal, depends on the environment temperature f4 ∼ Tenv, the
coupling to the environments f2 and heavily on the bias voltage and therefore f3. Deep in
the Markovian regime, the sign change is hard to achieve, only if f2 is very large and the bath
temperature Tenv is very low, meaning that heating of the oscillator can be compensated
by strongly coupling to a cold environment. In the non-Markovian regime, the quantum
corrections Qx can become large more easily and due to the lower signal in the non-Markovian
regime for the x-detector, the sign change is more pronounced.

Figures 3.5(a) and 3.5(b) show the current noise spectrum around ω ≈ Ω in the Markovian
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and the non-Markovian regime for different couplings and environment temperatures.
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Figure 3.4: The sign of the current noise peak at ω ≈ Ω for the x-detector (a) and of the p-detector
(b) as a function of f2, f3, f4, where we took f1 →∞. Compared to the x-detector the sign change is
possible for a wider range of parameters f2, f3, f4. Here, blue/red denotes a negative/positive peak in
the current noise.
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Figure 3.5: Current noise signal at ω = Ω in the Markovian regime (a) for different values of f2
and f4 with f1 = 200 and f3 = 50. The current noise shows a peak due to the presence of the
oscillator. In (b), the x-detector current noise signal in the non-Markovian regime for different values
of f2 and f4 with f1 = 200 and f3 = 0.8 is shown. We note that here the signal is weaker than
in the Markovian regime (a). In (b) however, it is possible to see a change of sign of the signal,
depending on the parameters f2, f4. The inset in (b) illustrates this sign change. The noise is scaled
by 2πρ2

0 e
2t20 σ

+(Ω, V ).
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The p-detector

For the cases η = π/2 mod π in Eq. (3.23), the results of the momentum detector as stated
in Ref. [Doiron08] are extended to the non-Markovian regime. Due to the fact that the
quantum corrections Qp are in the first place larger than Qx, the peak in the current noise
spectrum stemming from the oscillator has a negative sign for η = π/2. However, it is also
possible to change the sign by adjusting the parameters f2, f3, f4 on which Qp depends. In
Fig. 3.4(b) we depict the regions with a negative sign blue and the ones with a positive
sign red. Changing the sign of the current noise signal in the p-detector case is easier to
achieve over a wide range of parameters, as compared to the x-detector, even deep in the
Markovian regime (f3 � 1). Figure 3.6 shows a summary of the p-detector current noise in
the Markovian and non-Markovian regime for different parameters f2, f4, respectively.
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Figure 3.6: (a) p-detector current noise in the Markovian regime (f3 = 50) for various parameters
f2, f4 and f1 = 200. (b) Current noise in the non-Markovian regime (f3 = 0.8) for various parameters
f2, f4. In both cases we can easily achieve a sign change in the signal. The noise is scaled by
2πρ2
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Detection of number states

With the expression for the current noise and definitions above it is possible to determine the
occupation number of the oscillator, in a similar fashion to Ref. [Wabnig07]. Equation (3.23)
for the current noise contains position and momentum expectation values of the oscillator
which can be evaluated using (i) number states and (ii) a thermal state. In the case of
number states the gained expression depends on n, the average number of quanta on the
oscillator whereas in the case of a thermal state, it depends on the experimentally adjustable
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parameters fi. Arguing that the current noise signal is the same if 〈X〉n = 〈X〉th, leads to
the following dependance of n on the parameters fi

n = 2f2|f3|f4 − 2|f3|f4 − f2 + |f3|
2f2

. (3.24)

The dependence of n on the adjustable parameters is depicted in Fig. 3.7, where for specific
values of f3 and f4, which can be experimentally adjusted, and fixed values of f1 and f2, the
contour lines show the corresponding number state. In principle, this can serve as a guidance
for experimentalist to put the oscillator in a given state with a mean phonon occupation
number n. By a later noise measurement it could be verified whether the data is consistent
with this specific number state. Moreover, we can in principle fully determine the state of
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Figure 3.7: Number of quanta n on the oscillator in dependence of experimentally adjustable
parameters, for dominant coupling to the external heat bath (a) with f2 = 5 and dominant coupling
to the tunnel junction (b) with f2 = 1.2.

the oscillator via its covariance matrix ‡ by two noise measurements (one with ÷ = 0 and
one where ÷ = fi/2) which adds a second possibility to verify whether Eg. (3.24) serves as
a good guide. Figure 3.7 shows that in the Markovian regime the oscillator is only in its
ground state for low environmental temperatures, since the applied bias voltage is heating the
oscillator. In the non-Markovian regime, we can have a higher environmental temperature
for the oscillator being in its ground state.

3.3 Concluding remarks
We have studied the finite frequency current noise of a tunnel junction coupled to a harmonic
oscillator. Here, we go beyond the Born approximation (because we calculate the noise up to
fourth order in the tunneling amplitude) and beyond the Markov approximation (because we
do not restrict ourselves to the regime eV/~� ∫ 1). For a non-stationary oscillator, we have
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the oscillator via its covariance matrix σ by two noise measurements (one with η = 0 and
one where η = π/2) which adds a second possibility to verify whether Eg. (3.24) serves as
a good guide. Figure 3.7 shows that in the Markovian regime the oscillator is only in its
ground state for low environmental temperatures, since the applied bias voltage is heating the
oscillator. In the non-Markovian regime, we can have a higher environmental temperature
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Chapter 3 Non-Markovian effects in nanoelectromechanical systems

shown that the finite frequency current noise of the detector can be complex. This complex
current noise can be used to obtain information about expectation values depending on x̂
as well as expectation values depending on p̂. The former we call x-detector signal and the
latter p-detector signal.
For the stationary oscillator, the finite frequency current noise is always real. Then, it

is more complicated to get momentum information using a tunnel junction detector. An
Aharonov-Bohm-loop setup is needed for this task. We analyze such a setup in the non-
Markovian regime and thereby show how the x- and the p-signal can be used to determine
the quantum state of the oscillator.

Our analysis is an essential prerequisite to study how the quantum entanglement of NEMS
[Eisert04] can be measured on the basis of tunnel junction detectors.
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Chapter 4

Nanomechanics and new states of matter

In this chapter of the thesis, we will focus on the aspect of nanomechanical systems being
exceptional detection devices. Our aim is to propose a realistic setup which can be used
as a detection scheme for new states of matter, namely Majorana bound states. Majorana
fermions are among the most intriguing features of topological states of matter with prospect
applications for topological quantum computation. However, they are also interesting on
their own right because these particles behave as being their own antiparticle. We propose a
nanomechanical detection scheme for Majorana bound states which have been predicted to
exist at the edges of a one-dimensional topological superconductor. Before we start discussing
the actual setup, we introduce the reader to some basic properties of Majorana fermions and
their emergence in condensed matter systems on a very fundamental and easy to grasp level.

4.1 Basics on Majorana fermions and their potential use for
quantum computation

Majorana fermions

In this section, we want to introduce the Majorana fermion by characterizing it in a more
informal way. In the following section, we want to give a more formal introduction by
briefly reviewing what is called Kitaev’s one-dimensional toy model of a spinless p-wave
superconductor where we see without much mathematics the emergence of Majorana states.
The relativistic description of quantum mechanics for spin-1/2 particles was introduced

in 1928 by Paul Dirac [Dirac28]. The solutions to the Dirac equation are complex fermions
where, for instance, c corresponds to the particle solution and c† to the antiparticle solution.
The particle and antiparticle solution obey fermionic statistics, i.e., we get a sign change
when interchanging two fermions which manifests itself in the anticommutation relation
{ci , c†j} = δij . In 1937, Ettore Majorana found a solution to the Dirac equation which
is real [Majorana37], i.e., the particle solution equals the antiparticle solution γ = γ†, in
contrast to the solutions of the Dirac equation where c 6= c†. The Majorana fermion has the
anticommutation relation {γi , γ†j} = 2δij and in contrast to a Dirac fermion which obeys
c2 = 0 (due to the Pauli exclusion principle) fulfills γ2 = 1. Due to these facts, a Majorana
fermion does not have the usual fermionic statistics but it follows non-Abelian statistics
which makes the Majorana fermion particularly interesting in the field of topological quantum
computation [Nayak08].
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Chapter 4 Nanomechanics and new states of matter

Engineering Majorana bound states in a condensed matter setting
The question now is where can physicist find the Majorana fermion in nature. What particle
manifests itself as its own antiparticle? Already in the early days after Majorana came up
with his solution to the Dirac equation, particle physicists had the neutrino as a candidate
for being a Majorana fermion, but up to date no clear evidence has been found in that
direction. Other than in particle physics where the Majorana fermion would manifest itself
as an elementary particle, things are different in a condensed matter setting. The only
physical particles in condensed matter physics are electrons, atoms, ions, etc. In condensed
matter systems, the Majorana fermion could therefore only manifest itself as an emergent
quasiparticle excitation. In a condensed matter setting, a superconductor would be a natural
candidate system hosting Majorana fermions because there, electrons and holes form an
almost equal superposition. However, in ordinary s-wave superconductors, the spin degree of
freedom prevents the Bogoliubov quasiparticle from being its own antiparticle. Therefore,
we are looking for a superconductor where we get rid of the spin degree of freedom. In 2001,
Kitaev [Kitaev01] introduce a toy model for a one-dimensional spinless p-wave superconductor,
which can host a Majorana state. We will briefly, without too much mathematics revisit this

Figure 4.1: (a) Kitaev’s toy model of a spinless p-wave superconductor. For each site j there is a
fermionic annihilation (creation) operator c (c†). (b) Schematics of the one-dimensional chain when
we apply a basis transformation using Majorana operators. Each physical site j is then represented
by two Majorana operators γAj (dark blue) and γBj (light blue).

toy model. In Fig. 4.1(a) we show a one-dimensional chain of N sites which is governed by
the Hamiltonian introduced by Kitaev

H = −
N∑
j=1

µ

[
c†jcj −

1
2

]
+
N−1∑
j=1

t
[
c†jcj+1 + c†j+1cj

]
+ ∆

[
cjcj+1 + c†j+1c

†
j

]
,

where µ is the chemical potential, t is a nearest neighbor hopping parameter and ∆ is the
strength of the p-wave pairing described by the last term. For simplicity we assume t and ∆
to be real and the same for each site. The operators cj are annihilation operators for spinless
electrons on site j. The main aspects of this toy model are best described by a change of
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4.1 Basics on Majorana fermions and their potential use for quantum computation

basis which is accomplished by introducing two Majorana operators on each site j

γAj = cj + c†j ,

γBj = i(cj − c†j) .

They obey the anticommutation relation {γsi , γs
′
j } = 2δijδss′ and we have [γsi ]† = γsi . In this

basis, the Hamiltonian becomes

H =
N∑
j=1

iµγAj γ
B
j +

N−1∑
j=1

i(t−∆)γBj γAj+1 − i(t+ ∆)γAj γBj+1 . (4.1)

We show in Fig. 4.1(b) a schematics of the transformed Hamiltonian, where the dark and
light blue dots denote the species A and B, respectively. The colored lines in Fig. 4.1(b)
match the three differently colored coupling terms in the transformed Hamiltonian Eq. (4.1).
The parameters µ, t, and ∆ can now be adjusted such that we will see the emergence of two
separated Majorana states at each end of the one-dimensional chain. There are two limiting
cases for the values of the parameters µ, t and ∆ which yield us a trivial solution to the
problem described by the Hamiltonian Eq. (4.1).
The first case we consider is the case ∆ = t = 0. In this case the green and red terms in

Eq. (4.1) vanish and we see that only Majorana states at the same site j, γAj and γBj , pair
with each other. This corresponds to a unique ground state of the problem which corresponds
to the vacuum of the Dirac fermions cj . This phase is schematically shown in Fig. 4.2(a).
For the case µ = 0 and ∆ = −t, depicted in Fig. 4.2(b), subspecies B on site j pairs

with subspecies A on site j + 1. In this scenario we are left with two separated operators
(empty dots in Fig. 4.2(b)) at the ends of the chain at site j = 1 (subspecies A) and j = N
(subspecies B) which no longer appear in the Hamiltonian

H = 2it
N−1∑
j=1

γBj γ
A
j+1 . (4.2)

The states γA1 and γBN are exactly the Majorana operators we are looking for. Kitaev showed

Figure 4.2: Two distinct phases of Kitaev’s model where the Majorana physics becomes obvious. (a)
The Majorana operators on site j pair together forming a ground state with occupation number zero.
(b) Two Majorana operators each at one end of the chain (empty dots) are left unpaired.

that these end states appear as long as |µ| < 2t. The two Majorana operators γA1 ≡ γL and
γBN ≡ γR which are absent from the Hamiltonian Eq. (4.2) can be combined to a single highly
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Chapter 4 Nanomechanics and new states of matter

nonlocal fermionic state f

f = 1
2 (γR − iγL) , (4.3)

with f |0〉 = 0 and f †|0〉 = |1〉. With the two modes γL and γR being absent from the
Hamiltonian in Eq. (4.2), zero energy is needed to occupy the nontrivial fermionic state f
formed by these end states. This nonlocal fermion costs no energy and therefore it produces
a two-fold degenerate ground state. It is important to note that for a general choice of
parameters, i.e., µ 6= 0 and ∆ 6= t but still being in the phase where two unpaired Majorana
states appear at each end of the chain, there is a finite overlap of the modes γL and γR. This
means that the states γL and γR are no longer just described by the operators γA1 and γBN ,
respectively, but they exponentially decay into the bulk of the chain. Additionally, this leads
to a splitting of the degeneracy of the states |0〉 and |1〉 and the Majorana modes at the ends
of the chain are no longer exact zero modes. The splitting depends on the length of the wire
and is approximately given by e−L/ξ0 , where L is the length of the wire and ξ0 the coherence
length of the superconductor which is a typical localization length of the Majorana bound
states.
We learn from Kitaev’s toy model that when we aim to search for Majorana states in

superconductors, we need to get rid of the spin degree of freedom, i.e., ordinary s-wave
superconductivity is not suitable but what we need is p-wave pairing which does not come
about naturally in known systems. Such triplet pairing has been predicted for Sr2RuO4
[Murakawa04, Xia06] but has never been observed in experiments. The ν = 5/2 quantum
Hall state was also predicted to host Majorana quasiparticle excitations [Read00] but again
no experimental evidence of their existence has been found.

In addition to that, various proposals have recently been made on how to generate Majorana
states in a condensed matter setting. Fu and Kane showed that a topological insulator/s-wave
superconductor heterostructure can induce effective p-wave pairing for the surface states of
the topological superconductor [Fu08, Fu09b]. In such a realization, the Majorana states are
bound to the vortices of the superconducting system.

A different and more promising approach was put forward by Lutchyn et. al [Lutchyn10]
and Oreg et. al [Oreg10] which is crudely speaking a realization of Kitaev’s one-dimensional
toy model. The main ingredients to these proposal are a one-dimensional semiconducting
wire with strong spin orbit coupling and an ordinary s-wave superconductor on which the
one-dimensional wire is placed and thereby inherits superconductivity via the proximity
effect. Finally, an external magnetic field has to be applied which can drive the topological
superconductor into a phase where Majorana bound states emerge at each end of the wire.

Signatures of Majorana bound states
Proposed detection schemes for Majorana bound states in condensed matter systems are based
on tunnel setups [Bolech07, Nilsson08, Law09, Flensberg10, Leijnse11b, Liu11b, Golub11b,
Golub11a], interferometer setups [Akhmerov09, Fu09b, Fu10, Liu11a, Strübi11, Béri12], and
the Josephson effect [Fu08, Fu09a, Lutchyn10, vanHeck11].
A measurement of the differential conductance through a topological superconductor

should ideally yield a zero bias peak that is quantized to the value of 2e2/h, the robustness
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4.1 Basics on Majorana fermions and their potential use for quantum computation

of this peak can be tested against the external magnetic field which can drive the topological
superconductor into a phase where the Majorana bound states are present or it can drive
the topological superconductor out of this phase.

The Josephson effect in the presence of Majorana bound states would have a 4π-periodicity
instead of a 2π-periodicity. For more details on the various signatures we refer the reader to
reviews in Refs. [Beenakker11, Alicea12].
The signatures discussed above would just indirectly probe this quasiparticle state that

merely has any properties. Beyond that the striking evidence of the presence of the Majorana
bound states would of course be the verification of their non-Abelian statistics which is an
intrinsic property these states carry.

Experimental evidence

Very recently, several experimental groups which were participating in the hunt for the
Majorana fermion seemed to be successful and claim to have experimental evidence of the
presence of Majorana bound states [Mourik12, Williams12, Deng12, Rokhinson12, Das12].
The majority of these groups reported an emergence of a zero bias peak when the parameters
are such that the topological superconductor is in the phase where Majorana bound states
are predicted to exist. In Ref. [Rokhinson12] the fractional Josephson effect was used as
indicator for Majorana bound states. Although the experiments are a first step towards the
detection of Majorana bound states, it has also been discussed lately, that the zero bias peak
signature is far from being the smoking gun signature. As argued in Refs. [Bagrets12, Liu12],
the emerging zero bias peak, which was used as an indicator for the Majorana bound states
in most of the performed experiments, could also be due to other (disorder-induced) effects.
To sum up, we can say that true qualitative experimental signatures of Majorana fermions
that persist in realistic systems are rather difficult to predict and detect.

Protected Majorana bound states and topological quantum computation

Before we turn to the main subject of this chapter – the detection of Majorana bound states
using a nanomechanical oscillator – we will briefly discuss the issue of topological protected
quantum computation using Majorana bound states. Qubit realizations based on Majorana
bound states have been considered promising candidates for quantum information processing
which is inherently inert to decoherence. It is this statement that we will revisit with an
open quantum system approach. 1
Recently, proposals for topological quantum computing (TQC) with qubits based on

Majorana bound states (MBS) as realized in one-dimensional (1D) topological superconduc-
tors (TSC) have attracted a lot of interest [Kitaev01, Oreg10, Alicea10, Lutchyn10, Sau10,
Alicea11, Hassler10, Hassler11, Leijnse11a, Flensberg11, Martin12]. As we showed above
when discussing Kitaev’s model, these 1D TSC have a bulk superconducting gap and support
a single subgap fermionic state f which is formed by a single delocalized pair of MBS, cf.
Eq. (4.3). The two Majoranas at each end of the TSC (γL and γR) can combine to the

1This section of the thesis is built upon the published article in Ref. [Budich12].
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Chapter 4 Nanomechanics and new states of matter

nontrivial fermionic state f

γR = f † + f ,

γL = −i
(
f † − f

)
.

This class of systems has originally been proposed and topologically classified by Kitaev
[Kitaev01, Kitaev09]. The protected existence of the single pair of MBS is due to a nontrivial
value of the Z2 invariant classifying a 1D bandstructure in the presence of particle hole
symmetry [Kitaev09]. The qubit formed by the two occupation number eigenstates of the
single subgap fermion f has been recently proposed as a candidate for TQC [Alicea11]. We
show that while the existence of a single pair of MBS in a 1D TSC is protected, the coherence
of the associated qubit is as vulnerable as that of an ordinary local fermionic subgap bound
state. We first review the two general remarks in Ref. [Kitaev01] supporting the protection
of this qubit against any local perturbation, a crucial prerequisite for TQC:

• Remark (i):
The qubit is delocalized into the two MBS γL and γR which are spatially separated
by the system length L. Since the overlap of the bound state wave function decays
exponentially with the system length, direct coupling between the two MBS can be
suppressed to exponential accuracy.

• Remark (ii):
Fermion parity, i.e., particle number conservation modulo 2, is a good quantum number
in the superconducting system. Thus, any perturbation containing a single Majorana
operator is forbidden as its action would change the fermion parity of the TSC.

Now, we want to investigate whether these key observations for a closed, non-interacting
TSC still hold in an open quantum system scenario which is the only realistic approach to
describe an actual experimental setup for quantum information processing.

Discussion of Remark (i)

For a system consisting of two entangled spatially separated subsystems, the existence of
states where information about the composite system can be inferred by locally coupling to
one subsystem due to the mutual information of the entangled constituents, has been known
for many decades. Furthermore, ground state entanglement and topological order are in
close correspondence [Levin06, Kitaev06, Chen11b, Fidkowski11]. Several recent proposals
[Semenoff07, Tewari08, Fu10, Bose11] related to teleportation between the two MBS could
demonstrate how a local operation on one side of the system changes the system state
nonlocally even in the limit L→∞ [Semenoff07, Bose11], where the direct overlap and with
that the direct coupling between the end states vanishes. In this sense a vanishing direct
coupling between the two MBS does not imply that the information of the qubit is split into
two independent halves.
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4.1 Basics on Majorana fermions and their potential use for quantum computation

Discussion of Remark (ii)

The susceptibility to decoherence of any candidate system has to be investigated from an
open quantum system point of view since decoherence is the elusion of coherence to a larger
Hilbert space of the combined qubit-environment system. Considering only the isolated
qubit system the absence of decoherence would be a trivial corollary from the unitarity of its
time evolution. From this point of view the practical relevance of remark (ii) is not very
convincing as it only pertains to the TSC representing the qubit as an isolated system. In
presence of an environment which is particle number conserving or at least fermion parity
conserving, the only constraint on the dynamics of the total system is the conservation of
the total fermion parity. Operations like particle tunneling conserve the total fermion parity
but change the parity of each subsystem, the TSC and the environment. Hence, it is not
surprising that several proposals [Bolech07, Tewari08, Law09, Flensberg10, Shivamoggi10,
Fu10, Golub11a, Leijnse11b, Zazunov11, Liu11b, Stanescu11, Walter11a, Bose11] use such
couplings to probe the properties of MBS by tunneling based transport experiments. In
the limit of a large superconducting gap, the only low energy degrees of freedom are the
two degenerate ground states |0〉, |1〉 = f †|0〉 of the wire forming the qubit. Tunneling
between an electron from the environment and this subgap fermion will thus inevitably flip
the information stored in the parity qubit, i.e., lead to σx errors. Unless any fundamental
reason beyond the parity argument by Kitaev can be found that such couplings are weaker
than sources of decoherence in any alternative realization of a qubit, there is no topological
protection against decoherence in the MBS paradigm of a qubit to speak of. Considering
these rather general arguments it is again not surprising, that recently the vulnerability
of the MBS qubit to several concrete mechanisms of decoherence has been demonstrated
[Goldstein11]. In addition to this the decoherence of the Majorana qubit has been put to
test considering quasiparticle poisoning [Rainis12] and noisy gates [Schmidt12].

We now illustrate the fragility of the parity qubit with the help of two minimal toy models
for imperfections which will be present in any realistic experimental setup for topological
quantum computing with qubits based on MBS in 1D TSC. Both toy models are described
by a similar Hamiltonian H = Henv + HMBS + Htun, with Henv being the Hamiltonian of
the environment and HMBS = iξγLγR/2 = ξf †f describing the overlap between MBS at the
left and right edge of the 1D TSC. Htun is a tunnel Hamiltonian coupling the MBS and the
environment and will be specified for each toy model. Note that no orthogonality catastrophe
forces Htun to have a vanishing tunneling matrix element in the thermodynamic limit. This
can be seen by an explicit derivation of the tunneling Hamiltonian as, for instance, done in
Ref. [Flensberg10]. The toy models resemble typical physical situations which are present
in the 1D TSC wire (e.g., adatoms or trapped charges nearby the MBS) or are induced
from the outside to the wire (biased gates near the MBS to manipulate the MBS as, e.g., in
Ref. [Alicea11]).

The first toy model schematically shown in Fig. 4.3 is a single level quantum dot tunnel
coupled to the parity qubit, see also Ref. [Leijnse11b], here without the spin degree of freedom
for simplicity. Such a two level system describes, e.g., a minimal model for trapped charges
nearby the MBS in the wire which is allowed by symmetry, where Henv = εd†d and the dot
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only couples to γR via the following tunnel Hamiltonian

Htun = λ
[
d† − d

]
γR (4.4)

with λ ∈ R. The low energy Hamiltonian H can be conveniently written as a matrix choosing
the basis {|00〉, |10〉, |01〉, |11〉}

H =


0 0 0 λ
0 ε λ 0
0 λ ξ 0
λ 0 0 ε+ ξ


with |ndot nf 〉 and ndot,f ∈ {0, 1} being the occupation number of the single dot level and
the MBS qubit, respectively. In order to investigate decoherence of the parity qubit, we
study the time evolution of the reduced density matrix for the MBS qubit ρf (t) = Trdot[ρ(t)]
which can readily be solved exactly. The time evolution of the density matrix of the full
system reads ρ(t) = e−iHtρ(0)eiHt, where we have set ~ = 1. As an example, we consider
the time evolution of the parity qubit’s occupation number nf for an initially occupied
dot and an empty subgap fermion state for ε = ξ = 0. The MBS qubit performs Rabi
oscillations of full amplitude and is thus totally unstable on the time scale given by the
coupling strength λ. The revivals of the initial state are of course due to the finite number
of environmental degrees of freedom. However, since the precise number of imperfections,
coupling parameters etc. are not experimentally accessible, the reduced state of the qubit
to be finally read out will become totally unpredictable due to this kind of environmental
coupling. Furthermore, the coupling between a trapped charge and the TSC can change

Figure 4.3: TSC tunnel coupled to its environment here represented by a single level dot as toy
model for a surface adatom.

during a braiding operation, and thus lead to unwanted errors. Look, for instance, at the
operations proposed in Ref. [Alicea11]. A trapped charge might be close to one of the arms
of the wire network. If the MBS is located (during an operational step) in that arm it is
coupled to the trapped charge via electron tunneling and if not it does not feel its presence.
Hence, during a braiding operation, the tunnel coupling could be unintentionally turned on
and off. It needs to be analyzed how this kind of error may affect the success of braiding
operations.
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The second model we investigate consists of a 1D TSC tunnel coupled on one end to a
metallic lead which might be realized by a gate or a tip used to implement operations on the
qubit. We assume a very long 1D TSC and therefore concentrate on the MBS at the right
edge. The lead Hamiltonian Henv = ∑

k ε(k)ψ†k,Rψk,R and the coupling is given by

Htun = λR
[
ψ†R(x = 0)− ψR(x = 0)

]
γR , (4.5)

where λR ∈ R and we assume a linear dispersion ε(k) for simplicity. In the following, we
study the spectral function of the MBS at the right edge A(ω) = −2Im

[
GRγRγR

(ω)
]
, where

the retarded Green’s function of the MBS is calculated solving the full non-equilibrium Dyson
equation on the Keldysh contour. For the sake of brevity, and just to make the important
point, we do not go into detail of the calculation. Later in this chapter some more details
on a similar Hamiltonian and the corresponding Green’s functions are given. After Fourier
transforming back to the time domain, we obtain

A(t > 0) = e−4πρ0λ2
Rt ,

where ρ0 is the constant density of states in the metallic lead. The lifetime of the Majorana
bound state is thus determined by the tunnel coupling and the density of states offered for
tunneling by the environment, similarly to any local qubit exposed to tunnel coupling. In
particular, an ordinary local fermionic subgap bound state would behave very similar when
tunnel coupled to its environment. Of course, the spectral weight of our MBS based state
f is delocalized over the two ends of the TSC, but this would only lead to a reduction of the
tunnel coupling by a factor of 1/

√
2 as compared to a local bound state.

Although the Majorana qubit is defined as a nonlocal object, local coupling to a MBS
via a tunnel Hamiltonian as in Eqs. (4.4) and (4.5) is extensively studied in the litera-
ture [Bolech07, Tewari08, Law09, Flensberg10, Shivamoggi10, Fu10, Golub11a, Leijnse11b,
Zazunov11, Liu11b, Stanescu11, Walter11a, Bose11], particularly as a way to detect the
MBS. We would like to point out that such a coupling already contradicts the fundamental
conjecture (ii) which is crucial for TQC in MBS based systems. While the presence of subgap
MBS is topologically protected by particle hole symmetry [Kitaev01, Kitaev09], TQC tasks
with MBS as proposed, for instance, in [Hassler10, Alicea11, Flensberg11, Leijnse11a] are
not protected against decoherence by any fundamental symmetry, in particular not by a
topological one.
To sum up, as far as MBS based qubits are concerned we gave two general reasons why

the protection against decoherence will fail for quite mundane coupling mechanisms. In
particular, there is no fundamental difference in the stability of the fermion parity for a
MBS pair and a local fermionic bound state which is separated from bulk excitations by a
superconducting gap. The topological protection in a 1D TSC thus pertains to the presence
of the single pair of MBS and not to the coherence of the associated qubit. Furthermore,
since braiding operations are in a closed system independent of the local details of the
path traversed by the quasiparticles, the precision of these operations is not sensitive to the
mechanical fine tuning of the control ports of the setup. This feature is of course not related
to the coherence properties of a candidate system for TQC. The usefulness of MBS based
quantum computers will thus be decided by practical aspects of material science rather than
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by fundamental arguments related to nonlocal storing of information: Can particle exchange
be suppressed much more efficiently than other mechanisms leading to decoherence of say
the spin of a trapped ion or a quantum dot or the phase of a flux qubit? Comparing different
approaches on this rather applied level a strong argument supporting many alternative
approaches to quantum computing, see e.g., Refs. [Cirac95, Loss98, Wallraff04], is that their
basic constituents are readily experimentally accessible.

4.2 Overview of the proposed detection setup for Majorana
bound states

We now turn to the main topic of this chapter and introduce our proposal of a nanomechanical
detection scheme for Majorana bound states 2. Our detection scheme aims to reveal the
presence of Majorana bound states hosted in one-dimensional topological superconductors.
The detector makes use of an oscillating electrode, which can be realized using a doubly
clamped metallic beam, tunnel coupled to one edge of the topological superconductor. The
detection scheme we propose is schematically depicted in Fig. 4.4. The left and right edges
of the topological superconductor host two MBS which we call γL and γR. With a Majorana
fermion having half the degrees of freedom of a Dirac fermion, we can expressing two
Majorana fermions γL,R as

γR = c† + c ,

γL = −i(c† − c) ,

where c and c† are the annihilation and creation operators, respectively, of a single Dirac
fermion and satisfy {c†, c} = 1. The Majorana operators also satisfy γL/R = γ†L/R, and the
anticommutation relation {γi, γj} = 2 δij . One of the edges of the topological superconductor,
say the right one, is coupled by tunneling to a movable doubly clamped beam. While this
setup can be technically challenging to realize, one should note that the fabrication of metallic
doubly clamped nanoresonators with very high frequencies and quality factors has been
recently reported [Flowers-Jacobs07, Li08]. The motion of the beam modulates the tunnel
amplitude, such that it depends on the displacement x̂ of the beam. The oscillating electrode
is held at a bias voltage V and the topological superconductor is grounded. We approximate
the tunnel amplitude as linear in the displacement of the beam, t0− txx̂. This approximation
is justified if the oscillation amplitude is small compared to the mean distance between the
beam and the edge of the topological superconductor. The Hamiltonian for the total setup
then given by

H = Hres +Hosc +HMBS +Htun,0 +Htun,x ,

where

Hres =
∑
k

ε(k)ψ†k ψk

2This section of the thesis is built upon the published article in Ref. [Walter11a].
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Figure 4.4: Schematic of the setup. A topological superconductor is assumed to be realized as a 1D
semiconducting wire on top of a grounded s-wave superconductor. The wire can host MBS at its left
(γL) and right (γR) edges. We assume that one of the edges is tunnel coupled to a movable, doubly
clamped beam (at bias voltage V ). The gate electrodes (Vg1–Vg4) can be used to increase or decrease
the overlap ξ of the MBS by changing the effective length L of the topological superconductor.

describes a spinless electron reservoir in the metallic oscillating electrode. Here, we restrict
ourselves to one spin channel only. This is appropriate since the one-dimensional semi-
conducting wire on top of an s-wave superconductor in the presence of a magnetic field
has the same degrees of freedom as a spinless px + ipy superconductor [Fu08, Oreg10]. In
reality, both spins will participate and their signal will add up to the one we calculate below.
Furthermore, we assume a linear dispersion ε(k). Next,

Hosc = p̂2

2m + 1
2mΩ2x̂2

is the usual harmonic oscillator Hamiltonian describing the motion of the beam with an
effective mass m and resonance frequency Ω. The third term

HMBS = i

2ξγLγR

characterizes the overlap between the MBS on the left edge and the right edge of the
topological superconductor [Semenoff07]. Describing these two Majorana fermions as one
Dirac fermion, we can rewrite

HMBS = ξc†c . (4.6)

We recognize that the Hamiltonian HMBS is formally identical to that of a single resonant
level (RL) at energy ξ. However, due to the nonlocal nature of the MBS, the overlap ξ
depends exponentially on the effective length L of the topological superconductor, cf. the
discussion on Kitaev’s toy model above. This distinguishes the MBS Hamiltonian from a RL.
In order to probe the length dependence of ξ, gate electrodes can be installed in proximity to
the topological superconductor [Hassler10, Alicea11], schematically shown in Fig. 4.4. Then,
by applying gate voltages, the effective length L, and thus ξ, can be tuned.
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The bare tunnel Hamiltonian Htun,0 has been introduced for a related setup in [Bolech07]
and the x-dependent term Htun,x is new and due to the oscillating electrode. Assuming that
the tunneling takes place locally at y = 0, both are given by

Htun,0 = t0[ψ†(y = 0)− ψ(y = 0)]γR (4.7)
Htun,x = −txx̂[ψ†(y = 0)− ψ(y = 0)]γR . (4.8)

Note that, due to the form of Htun,0 and Htun,x, the Majorana fermion couples to lead
electrons as well as lead holes. We cast Eq. (4.7) and (4.8) into a form containing Dirac
fermions:

Htun,0 = t0
{[
c†ψ(0) + ψ†(0)c

]
+
[
ψ†(0)c† + cψ(0)

]}
,

Htun,x = −txx̂
{[
c†ψ(0) + ψ†(0)c

]
+
[
ψ†(0)c† + cψ(0)

]}
.

We assume that the lead electrons only couple to γR in Htun,0 and Htun,x, which is justified
if the wire is much longer than the superconducting coherence length ξSC of the s-wave
superconductor, the characteristic localization length of the MBS [Fu08]. Since MBS are
subgap states, we investigate the regime of a large superconducting gap ∆SC, i.e., ρ0t

2
0, ξ, eV �

∆SC, where ρ0 is the density of states of the metallic lead. If the electrode does not oscillate,
the system is described by the quadratic Hamiltonian H0 = Hres +Hosc +HMBS +Htun,0.
In this case, all Green’s functions involving ψ and c operators are known exactly. Since H0
does not conserve fermion numbers, the anomalous Green’s functions do not vanish, e.g.,
〈c(t)c(0)〉0 6= 0. Then, non-equilibrium transport properties like the average current or the
current noise can be determined exactly [Bolech07].

4.3 Current calculation

We shall treat the x-dependence of the tunneling amplitude as a perturbation to the
Hamiltonian H0. This requires that txxzpf

√
2 〈n〉+ 1 � t0, where xzpf = 1/

√
2mΩ is the

amplitude of the zero point fluctuations and 〈n〉 the mean phonon number of the resonator.
We restrict ourselves to second order perturbation theory in Htun,x. Our main focus is the
calculation of the average current and the differential conductance d 〈I〉 /dV . Putting ~ = 1,
the current operator is given by I = −e ∂tN = −ie[H,N ], where N =

∫
dyψ†(y)ψ(y) denotes

the number of fermions in the lead. Using the vector notation ~Ψ =
(
c, c†, ψ(0), ψ†(0)

)
, we

find I = I0 + Ix, where

I0 = −iet0~ΨTB~Ψ ,

Ix = ietxx̂~ΨTB~Ψ .
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4.3 Current calculation

Here, B is a real 4× 4 matrix

B =


0 0 1 0
0 0 1 0
0 0 0 0
−1 −1 0 0

 .

We introduce the fermion Green’s functions on the Keldysh contour

GΨjΨk
(t, t′) ≡ Gjk(t, t′) = −i 〈Tc Ψj(t)Ψk(t′)

〉
0

where j, k ∈ {1, 2, 3, 4} and Tc denotes the time-ordering operator on the Keldysh contour.
Later we will introduce Keldysh indices {−,+} referring to the lower (time-ordered) and
upper (anti-time-ordered) branch of the Keldysh contour, respectively, cf. Fig. 1.2. The
average is taken with respect to the ground state of the unperturbed Hamiltonian H0. For
tx = 0, the time-independent average current can be written as

〈I0〉 = −et02

∫
dω

2π
{

[GKψc†(ω)−GKcψ†(ω)] + [GKψ†c†(ω)−GKψc(ω)]
}
, (4.9)

where

GKΨjΨk
(t, t′) = −i 〈[Ψj(t),Ψk(t′)]

〉
0

is the Keldysh Green’s function, for which in general we have GK(t, t′) = G−+(t, t′) +
G+−(t, t′).

Next, we consider the corrections to this current for small tx. Using a similar matrix
notation allows us to write

Htun,x = −txx̂~ΨTA~Ψ ,

with

A =


0 0 1 0
0 0 1 0
0 0 0 0
1 1 0 0

 .

Introducing the unperturbed oscillator Green’s function on the Keldysh contour

D(t, t′) = −i 〈Tc x̂(t)x̂(t′)
〉

0 ,

the first order correction to the fermion Green’s function can be expressed as (for j, k ∈
{1, 2, 3, 4})

iG
(1)αβ
jk (t, t′) = tx

∫ ∞
−∞

dτ1
∑
γ=±

(−γ)
4∑

m,n=1
ÃmnD

αγ(t, τ1)Gαγjm(t, τ1)Gγβnk(τ1, t
′) ,
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where Ã = A−AT and α, β, γ ∈ {−,+} denote the branches of the Keldysh contour.

We express the second-order correction to the Green’s functions matrix in terms of the
advanced, retarded, and Keldysh components as

G̃jk(t, t′) = U Gjk(t, t′) U† =
(

0 GAjk
GRjk GKjk

)
(t, t′) ,

where the transformation is given by

U = 1√
2

(
1 −1
1 1

)
.

This leads to the following compact form of the second-order correction to the Green’s
functions in the rotated Keldysh space

iG̃(2)
jk (t, t′) = −t2x

∫ ∞
−∞

dτ1 dτ2
[
G̃(t, τ1)ÃΣ̃(τ1, τ2)ÃG̃(τ2, t

′)
]
jk
,

where the effects of the oscillator are contained in the self-energy

Σ̃jk(t, t′) = UΣjk(t, t′)U† = 1
2

(
DAGAjk +DRGRjk +DKGKjk DRGKjk +DKGRjk

DKGAjk +DAGKjk 0

)
(t, t′) .

We will assume that the mechanical oscillator has a very high quality factor, such that the
linewidth of the uncoupled oscillator is small compared to the effective linewidth of the
fermionic level at ξ. With these assumptions, we can use the following advanced, retarded
and Keldysh Green’s functions in Fourier space

DR(ω) = iπ[δ(ω + Ω)− δ(ω − Ω)]/[2mΩ] ,

DK(ω) = −iπ
〈
x̄2
〉

[δ(ω − Ω) + δ(ω + Ω)] ,

DA(ω) = [DR(ω)]∗

with x̄2 = x̂2 + p̂2/(m2Ω2). Finally, the average current including the oscillator can be
written as 〈I〉 = 〈I0〉+ 〈Ix,1〉+ 〈Ix,2〉, where 〈I0〉 is given in Eq. (4.9) and the two remaining
terms are (j ∈ {1, 2})

〈Ix,j〉 = e

2(−t0δ2j + txδ1j)
∫
dω

2π
{

[G(j)K
ψc†

(ω)−G(j)K
cψ†

(ω)] + [G(j)K
ψ†c†

(ω)−G(j)K
ψc (ω)]

}
.

The analytic result for 〈I〉 is too long to be displayed here. We demonstrate in the following
that the average current contains unique information about the MBS which can be most
easily identified in the nonlinear differential conductance d 〈I〉 /dV .
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4.4 Results
Compared to earlier proposals [Bolech07], we have two additional energy scales involved in
the detection scheme: the resonance frequency Ω of the oscillator and its effective temperature
Teff. Both are to some extent experimentally tunable. Assuming that the oscillator is in
a thermal state, one has

〈
x̄2〉

th = 2x2
zpf(2〈n〉 + 1) where 〈n〉 = 1/ [exp(Ω/Teff)− 1] is the

mean phonon number of the oscillator and where we set kB = 1. In the following, we will
discuss the regime where 〈n〉 is small, i.e., comparable to 1. This is challenging to realize
experimentally. Note, however, that for the highest resonance frequencies of the doubly
clamped beams in Ref. [Li08] (∼ 500MHz ), the thermal occupation number could actually
become less than 1 at typical dilution refrigerator temperatures. At higher temperatures
or lower frequencies, one would have to implement additional cooling schemes to bring the
oscillator to the quantum regime.

In our model, we make the assumption that the electronic system is at zero temperature,
Tel = 0. The side peaks in the differential conductance which are due to the oscillator can
be resolved as long as Tel � Ω. If the electronic system and the oscillator are in equilibrium
with the same heat bath, this translates to the requirement 〈n〉 � 1. However, Tel � Ω can
also be fulfilled for larger 〈n〉 if the oscillator is put into an excited state using experimental
techniques as, for instance, done in Ref. [O’Connell10].

4.4.1 Differential conductance without the resonator
For clarity, let us start with the case without the oscillator (tx = 0) and briefly discuss the
dependence of the differential conductance on the length of the topological superconductor
and thus its dependence on ξ. In the case of a finite overlap of the two MBS, the differential
conductance shows two peaks at eV = ±|ξ| which can be seen in Fig. 4.5(a) (see also
Ref. [Stanescu11] for comparison). Both of the peaks have the height 2e2/h 3. Importantly,
for any finite ξ, d 〈I〉 /dV at V = 0 vanishes in our model. This is in stark contrast to the
differential conductance in quantum dots coupled to one superconducting and one normal
metal lead [Domański08]. Hence, it is rather straightforward to distinguish this situation
from the MBS case.
As mentioned above, the Hamiltonian HMBS is formally equivalent to one describing a

spinless resonant level at energy ξ. Therefore, a comparison to a resonant level case is of
pedagogical value. Two resonant levels with energies ±|ξ| might lead to a similar signal in
the differential conductance as in the MBS case. This could, for instance, happen if the
magnetic field destroys the superconductivity in an experimental realization of our proposal.
Increasing the effective length of the wire using the gate electrodes, one can tune ξ close
to zero, which would yield a single peak at V = 0 (not shown in Fig. 4.5). However, this
feature in the differential conductance could also be due to a single RL with energy ξ = 0
and consequently an ordinary bound state might mistakenly be identified as a MBS.

We conclude that tunneling into resonant levels could be hard to distinguish from tunneling
into MBS. However, it is fair to say that a measurement of d 〈I〉 /dV as a function of the
variation of the length of the topological superconductor could yield a strong signature of
MBS, even in the case of static leads. Furthermore, d 〈I〉 /dV = 2e2/h on resonance in the

3Their height will decrease if we couple the lead electrons not only to γR but also to γL.
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MBS case, which might not be the case for tunneling into a RL. Interestingly, we show below
that the oscillating electrode exhibits additional features in the differential conductance,
allowing for an unambiguous identification of MBS.

Figure 4.5: Differential conductance for ξ/Ω = 0.2 in the presence of MBS for the case tx = 0
(without oscillator) as well as for the case tx 6= 0 for different values of 〈n〉. The satellite peaks have
been enlarged for better visibility.

4.4.2 Differential conductance with the resonator
The differential conductance in the presence of the oscillator and its dependence on the
oscillator’s temperature is shown in Figs. 4.5(b) and 4.5(c) for two temperatures corresponding
to 〈n〉 = 0 and 1, respectively. Due to the presence of the oscillator, satellite peaks emerge
at eV = ±|ξ ± Ω|.
In Fig. 4.6, we depict the energetically allowed tunnel processes for 〈n〉 = 0, which

explain the emerging satellite peaks in Fig. 4.5. (Note that for 〈n〉 = 1 more processes
are possible corresponding to the emission of a phonon by the oscillator. These are not
shown in Fig. 4.6.) Evidently, for the conventional processes in Figs. 4.6(a), 4.6(c), and
4.6(e), the superconducting condensate does not play any role. Hence, these processes also
matter for tunneling into a RL where the condensate in Fig. 4.6 would be replaced by a
second lead. The processes in Figs. 4.6(b), 4.6(d), and 4.6(f), on the other hand, rely on the
presence of the superconducting condensate. Importantly, all processes in Figs. 4.6(a) to
4.6(f) contribute together to the rich structure in the d 〈I〉 /dV shown in Fig. 4.5. Increasing
the oscillator’s temperature leads to an increase in the heights of the satellite peaks and
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smoothly transforms a dip at eV = ±|ξ ± Ω| into a peak. This will be further discussed in
Fig. 4.7.

Figure 4.6: Schematic of energetically allowed tunnel processes for an oscillator in the ground state.
Panels (a)-(f) depict the processes stemming from the tunnel terms c†ψ, c†ψ†, a†c†ψ, a†cψ, a†cψ†,
and a†c†ψ†, respectively, where x̂ = a† + a. Black dots (circles) represent electrons (holes) and the
superconducting condensate is depicted as the blue bubble.

As mentioned above, one can argue that in a single RL scenario with level energy ξ = 0,
the signal in the differential conductance could not be clearly distinguished from the one
stemming from MBS. Including the oscillator permits us to unambiguously distinguish the
two cases. Figure 4.7 shows our key result. In that figure, we compare the RL case to
the MBS case, both in the presence of an oscillating tunnel contact. For clarity, we focus
on a region around the resonant frequency Ω of the oscillator and positive bias voltage V .
Importantly, an oscillator in its ground state (〈n〉 = 0) can only absorb a phonon. In the
case of the single RL, the crucial tunnel process near the resonance at eV = Ω (for an
oscillator with 〈n〉 = 0) is depicted in the right inset of Fig. 4.7. We see that this process
only sets in for voltages eV > Ω (at zero temperature) since the state in the right lead has
to be occupied in order to transfer the energy Ω to the oscillator. As a consequence, the
differential conductance is only positive for eV > Ω (shown as a solid black line in Fig. 4.7).
The situation is very different for the MBS case. Here, we have a second crucial tunnel
process depicted in the left inset of Fig. 4.7. Then, the dashed-dotted blue line in Fig. 4.7
illustrates that, for the oscillator in its ground state and MBS present, the d 〈I〉 /dV is
positive for eV < Ω and eV > Ω. This feature is only due to tunneling through the MBS
and clearly separates the RL from the MBS scenario. If we gradually increase 〈n〉 from zero
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to one (where only the two extremes are shown in Fig. 4.7), the dip for 〈n〉 = 0 in the MBS
case transforms smoothly into a peak due to additional processes where the oscillator emits
a phonon.

Figure 4.7: Differential conductance for ξ ' 0 at eV ≈ Ω for a single RL coupled to an oscillator
with 〈n〉 = 0 (solid black line) and 〈n〉 = 1 (dotted gray line). In the former case, the oscillator can
enhance transport only for eV > Ω. This is different in the presence of MBS. Then, an oscillator with
〈n〉 = 0 gives rise to a positive d 〈I〉 /dV for eV > Ω and eV < Ω (dashed-dotted blue line). We also
show in dashed red the d 〈I〉 /dV for 〈n〉 = 1 in the MBS situation. The insets depict the decisive
tunnel processes for the 〈n〉 = 0 case.

The dip at eV = Ω is due to an interference effect between the two participating tunnel
processes which can be understood on the basis of Fermi’s golden rule. To illustrate this, we
choose ξ = 0 and 〈n〉 = 0 and write the system Hamiltonian as H = H̃0 + H̃tun with

H̃0 = Hres +Hosc ,

H̃tun = Htun,0 +Htun,x .

In our initial state, the Fermi sea should be filled up to the chemical potential eV (measured
from ξ = 0). Furthermore the fermionic subgap state c is empty and no phonons are present.
The initial state can then be written as

|i〉 = |0ψ, 0c, 0a〉

with energy Ei = EF , EF being the energy of the filled Fermi sea.
To the lowest order in tx, the leading contribution to d 〈I〉 /dV at eV ≈ Ω is generated by

a combination of the two tunneling processes c†ψ and ψc, where one of them is accompanied
by the creation of a phonon mode.
The current-carrying transport processes we focus on are mediated by the processes

described by c†ψ in combination with ψc (cf. insets in Fig. 4.7). For these transport
processes the final state lacks two electrons in the Fermi sea (at momenta |k|, |k′| < kF ),
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contains one phonon, and an unoccupied subgap state c, i.e., we have for the final state

|f〉 = ψkψk′ |0ψ, 0c, 1a〉

with energy

Ef = EF − ε(k)− ε(k′) + Ω ,

where ε(k) is the single-particle electron energy and the phonon energy is Ω. As usual, the
transition amplitude between the states |i〉 and |f〉, up to second order in H̃tun is given by

Afi = 〈f |H̃tun
1

Ei − H̃0
H̃tun|i〉 ,

and according to Fermi’s golden rule, the transition rate Γ is given by summing over all final
states respecting energy conservation

Γ = 2π
∑
k,k′

|Afi|2δ(Ef − Ei) .

The transition rate Γ is proportional to the current, and therefore dΓ/dV is proportional
to the differential conductance. By evaluating the amplitude Afi and the transition rate
Γ, we find that for the above process, the amplitude Afi vanishes for tunneling particles
with energy close to eV ≈ Ω. This leads to the conclusion that for eV ≈ Ω the differential
conductance vanishes due to an interference effect between the two processes (of order t0tx)
generated by the terms c†ψ(t0 + txa†) and ψc(t0 + txa†) in the tunneling Hamiltonian. This
explains the dip in the differential conductance d 〈I〉 /dV in Fig. 4.7.

4.5 Concluding remarks
To conclude, we have presented a novel idea of coupling Majorana bound states to a sensitive
nanoelectromechanical measurement device. We have shown that a setup where an oscillating,
doubly clamped beam is tunnel coupled to a topological superconductor gives rise to unique
transport signatures based on the interplay between the mechanical excitations and the
Majorana bound state. Therefore, a measurement of the nonlinear differential conductance
provides the necessary information to uniquely identify Majorana bound states. We find that
in the presence of the resonator satellite peaks appear in the differential conductance. We
identify the underlying transport processes giving rise to this rich structure in the differential
conductance. A signature of Majorana bound states has been identified for an oscillator
close to the quantum ground state which can be achieved by cooling a 500MHz resonator
to T ≈ 20mK. This energy scale is well below the large parameter of our model, i.e., the
superconducting gap ∆SC. When we, for instance, take an InAs wire proximity coupled to
an Nb s-wave superconductor, the superconducting gap of Nb ∆Nb

SC ∼ 15K can induce a
superconducting gap of ∆InAs

SC ∼ 1K in the wire [Lutchyn10]. Hence, our predictions are in
principle observable at dilution refrigerator temperatures.
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Chapter 5

Entanglement generation in
nanoelectromechanical systems

Since the early days of quantum mechanics, entanglement has been one of its most fascinating
key elements [Schrödinger35b]. The study of entanglement is not only concerned with
fundamental questions but also with applications, for instance, entangled qubits being
the building blocks for quantum computers. Two of the main questions when studying
entanglement are: How can one generate entanglement in a multipartite system and what is
a good measure for entangled states? For discrete variable multipartite systems with, for
instance, qubits as representatives, the former two questions have been extensively studied
theoretically as well as experimentally [Steane98, Horodecki09, Nielsen00].
Entanglement creation and verification of quantum systems, as for instance, atoms and

photons is a theoretically well understood subject and routinely done experimentally in
various labs [Aspect82, Edamatsu04, Stevenson06]. Entanglement of quantum systems
with constituents being more than just one atom or photon, as for instance, collective spin
ensembles and Josephson qubits, have also been studied recently [Steffen06, Neeley10]. These
kinds of systems are often times discrete variable systems with a finite dimensional Hilbert
space and true quantum systems in the sense that they do not have any classical counterpart.
With the laws of quantum mechanics describing atomic and subatomic systems and the
laws of classical Newtonian mechanics describing macroscopic objects, there must exist a
boundary between the quantum and the classical world. This quantum to classical boundary
is still subject in contemporary physics [Zurek03, Leggett05]. Emerging questions are: What
causes the quantum to classical transition? Where is the limit that causes objects to behave
quantum mechanically and not classically? How macroscopic can an object be to be still
considered quantum? This chapter is motivated by exactly these questions.
The study of entanglement in nanomechanical systems can help to understand these

questions. The generation of entanglement in nanomechanical systems has been a goal for
many years. In the pioneering work [Eisert04], a route towards entanglement in NEMS
was proposed making use of a global non-adiabatic change of the interaction strength in a
one-dimensional chain of nanomechanical oscillators, leading to entanglement of two spatially
well separated oscillators of the chain. This type of entanglement has, however, up to date
not been realized in experiments. Subsequent proposals in (hybrid) nanooptomechanical
systems have suggested to generate entanglement between a moveable mirror of a cavity and
a collective spin ensemble of an atomic medium [Hammerer09], a Bose-Einstein condensate
[Genes08, De Chiara11], the cavity field itself [Vitali07a], or another mirror [Mancini02,
Pirandola06, Pinard07].
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In this chapter, our aim is to investigate the quantum mechanical feature per se, entan-
glement, in a quantum harmonic oscillator that behaves as classically as it gets (in the
sense of the Ehrenfest theorem). We like to study the challenge to generate entanglement
between two nanomechanical oscillators, being representatives of two mesoscopic continuous
variable systems. Before we introduce two fundamentally new schemes towards entanglement
generation in NEMS, we briefly review some basics on entanglement. 1

5.1 Entanglement basics
Still today, entanglement is one of the most counter intuitive, fascinating, intriguing, and
frequently studied elements of quantum mechanics. In fact, there is no classical counterpart
to entanglement. Entanglement can be defined as purely quantum mechanical correlations
between two non-interacting systems. These systems can even be separated in space by quite
some distance. The correlations are of the kind that neither of the participating parties can
be assigned a pure reduced state itself. Rather than being a pure theoretical fact, A. Aspect
et al. [Aspect81] proved with a pioneering experiment the entanglement between two photons
by the violation of Bell’s inequalities [Bell64]. We will only briefly introduce the notion of
entanglement and refer the reader to Ref. [Horodecki09] for a modern and comprehensive
review on entanglement.

We say that two quantum systems, described by a density matrix ρ, are separable if and
only if ρ can be expressed as

ρ =
∑
i

ρi,A ⊗ ρi,B (5.1)

with ∑i pi = 1, and where ρi,A and ρi,B are the density matrices of subsystems A and B,
respectively. In order to test whether a quantum mechanical state is separable or inseparable,
A. Peres [Peres96] introduced an inseparability criterion based on the partial transpose of
the density matrix ρ. For example, partial transposition in the case of the separable state in
Eq. (5.1) with respect to subsystem B means

ρTB =
∑
i

pi ρi,A ⊗ [ρi,B]T .

Since ρ is positive semidefinite, ρTB is also positive semidefinite which already shows the
necessity of the positive partial transpose criterion. P. Horodecki [Horodecki97] showed
that the proposed criterion is necessary and sufficient in the case of 2 × 2 and 2 × 3
dimensional quantum states and still necessary for higher dimensional quantum states.
The degree of entanglement of the state ρ is then quantified by the logarithmic negativity
EN = log2(||ρTB ||1) where the trace-norm of an operator O is defined as ||O||1 = Tr |O|.

Since the systems under investigation in this thesis are continuous variable systems having
an infinite Hilbert space, we will introduce in the following section the main ideas behind
bipartite continuous variable entanglement and briefly review Gaussian states and a suitable
inseparability criterion based on Peres’ positive partial transpose criterion.

1This chapter of the thesis is built upon the pre-print [Walter12]
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Bipartite continuous variable entanglement

Since two nanomechanical oscillators are two continuous variable systems, we will review
entanglement in bipartite continuous variable system. We will focus on the study of multimode
Gaussian states. A Gaussian state is a state with its Wigner function being a normalized
Gaussian distribution. Some of the prominent quantum mechanical Gaussian states are the
vacuum state, squeezed states, or two mode squeezed states. Multimode Gaussian states are
fully characterized by their second moments or the so-called covariance matrix. Here, we
will only treat two-mode Gaussian states, for which the covariance matrix is given by

σij = Tr [ρ {ξi, ξj} /2]

with

ξ = (x̂1, p̂1, x̂2, p̂2)T ,

and ρ being the density matrix of the composite system. The quadrature operators in ξ
satisfy the canonical commutation relations (~ = 1)

[ξi, ξj ] = iJij ,

where J is the simplectic form

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

A consequence of the commutation relations is the uncertainty relation for the covariance
matrix [Simon00, Werner01]

σ + 1
2 iJ ≥ 0 .

This uncertainty relation applies to any physical state, not only to Gaussian ones. Every
two-mode Gaussian covariance matrix can be written in a compact form as

σ =
(

α γ
γT β

)

with α and β being the correlation matrices of subsystem A and B, respectively, and γ
containing correlations between the subsystems. In order to characterize the entanglement,
we need the symplectic eigenvalues λi of σ, as well as the symplectic eigenvalues λ̃i of the
partially transposed covariance matrix

σ̃ = σT1 .
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In short, partial transposition T1 in the case of continuous variable systems described by
quadrature operators x̂i and p̂i, means multiplying −1 to all elements of σ that contain p̂1,
see Refs. [Duan00, Simon00, Vidal02, Pirandola09]. The symplectic eigenvalues λi are easily
obtained as the spectrum of the matrix |iJσ|. In the case of a two-mode Gaussian state the
symplectic eigenvalues of σ and σ̃ are calculated in the following way [Pirandola09]

λ± =

√
∆±

√
∆2 − 4 detσ

2 ,

λ̃± =

√
∆̃±

√
∆̃2 − 4 detσ

2

with

∆ = detα+ detβ + 2 det γ ,
∆̃ = detα+ detβ − 2 det γ .

The positive partial transpose criterion yields that a state described by σ is separable if and
only if

λ̃− ≥ 1/2 .

In order to quantify the entanglement we can make use of the logarithmic negativity

EN = max
{

0,− log2(2λ̃−)
}

which is zero for separable states and nonzero for entangled states.
The criterion of positive partial transposition reviewed here, is applicable to Gaussian

states only. An initially Gaussian state stays Gaussian, if the interaction is linear or at most
bilinear in the operators of the two modes [Schumaker86, Olivares12] which is given for the
types of interactions we consider later.
When we study the entanglement in a particular setup, we will employ an equation of

motion approach for the reduced density matrix of the total system, ρS(t). With the equation
of motion for ρS(t), we can then calculate the equations of motion for expectation values of
arbitrary system operators X (or products of them) by solving

d

dt
〈X(t)〉 = TrS [ρ̇S(t)X] ,

i.e., we can calculate the time dependence of the covariance matrix σ(t) and therefore the
time dependence of the logarithmic negativity EN (t).

5.2 Brief outline of the two proposed setups

We will study entanglement between two nanomechanical oscillators for two different types
of setups. They both have in common that the two oscillators are never directly coupled to
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each other. The oscillators are part of a tunnel junction setup and the coupling between
them is always mediated via common reservoirs. We take into account different types of
reservoirs and therefore will give a brief overview of the proposed schemes.

Fermionic reservoir

The first setup we propose, Setup (A), is depicted in Fig. 5.1. It can be seen as a natural
extension of the experimental realization of one oscillator coupled to a single atomic point
contact [Flowers-Jacobs07]. Setup (A) consists of two nanoelectromechanical oscillators
coupled to a common measurement device/reservoir. Importantly, the oscillators are not
directly coupled to each other (as e.g., in Ref. [Ludwig10]), but only through the electron
reservoirs which act as fermionic baths. The yellow tunnel junctions in Fig. 5.1 are sufficient
to generate an entangled state of the two oscillators. This setup being rather academic serves
us as a model and provides us with new insight into the situation where two nanomechanical
oscillators are effectively coupled through two common fermionic baths. This is a less studied
case compared to the more common situation of coupling two oscillators to a common bosonic
bath, for instance, within a Caldeira-Leggett model [Liu07]. When we discuss this setup in

Figure 5.1: Schematic setup of a bipartite continuous variable quantum system, realized as two
nanoelectromechanical oscillators (green) in a tunnel junction setup which share common fermionic
reservoirs (blue). Yellow lines indicate tunnel junctions that are needed for the generation of
entanglement.

Sec. 5.3 we will see that the reservoir needs to have a finite correlation time. This means,
the reservoir correlation functions must not decay on a time scale that is small compared to
the time scale of the system given by the resonance frequency of the oscillators. Therefore,
we need to investigate the non-Markovian regime of this setup. For a more feasible version
of Setup (A), we now introduce a different setup which relies on the working principle of the
Andreev entangler introduced in Ref. [Recher01].

Andreev entangler

The major drawback of Setup (A) is the assumption that the which-path information of the
tunneling electrons is lost because the common right reservoir cannot spatially distinguish the
electrons. To circumvent this assumption, we now introduce an alternative realization based
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on a superconducting reservoir in the center and two independent normal metal reservoirs
which nonetheless is capable of generating entanglement. This realization, Setup (B), is of an
Andreev entangler type. In its original sense, the Andreev entangler [Recher01] relies on the
splitting of a Cooper-pair which is a spin-singlet. There, the split Cooper-pair from an s-wave
superconductor can coherently tunnel via two different quantum dots into different leads.
Throughout this process, the spin-singlet is preserved. Therefore, the Andreev entangler is
capable of generating nonlocal spin-entangled electrons. In our context of nanomechanical
systems, we use only charge properties of the split Cooper-pair as a mediator for an effective
coupling between the oscillators. We show in Fig. 5.2 what such an Andreev entangler setup
could look like. A superconducting island (orange) serves as a source of Cooper-pairs which
can tunnel onto two different (conducting) nanomechanical oscillators. The process where
the Cooper-pair is split and one electron tunnels to the lower oscillator and the other one
tunnels to the upper oscillator gives rise to an effective coupling between them. With Setup
(B) we bypass the common right reservoir of Setup (A) and the need for long coherence
times. We will study the Andreev entangler in the non-Markovian regime up to second order
in the coupling and in the Markovian regime, where it is possible to formulate a master
equation for the density matrix of the oscillators which is of Lindblad form. We study Setup
(B) in Sec. 5.4.

Figure 5.2: Two nanomechanical oscillators are effectively coupled in an Andreev entangler setup
due to a Cooper-pair that is split. Each of the two electrons of the Cooper-pair is assumed to tunnel
from the superconductor (orange) onto a different oscillator.

Master equation formalism

We will focus on the dynamics of the two oscillators from which we get enough information
to characterize the state of the bipartite continuous variable system, cf. Sec. 5.1. Therefore,
we treat the problem as an open quantum system, cf. Chap. 2. Before we start investigating
each of the proposed scenarios, we will setup an equation of motion for the reduced system
which is of general form in a very compact notation [Paz02]. The Hamiltonian of the problem
is written in the usual system-bath language

H = HB +HS +HSB , (5.2)
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where HS and HB describe the system and bath degrees of freedom, respectively. We write
the system-bath interaction in a general form

HSB =
∑
n

SnEn + S†nE
†
n . (5.3)

Here, Sn and En denote arbitrary operators acting only on the Hilbert space of the system
and bath, respectively. Up to second order in the system-bath coupling HSB, we can then
write for the reduced density matrix of the system ρS(t) = TrB[ρtot(t)] [Paz02]

ρ̇S(t) = −i [HS , ρS(t)]−
∑
n,m

∫ t

0
dt1K

(1)
nm(t, t1)

[
Sn,

[
S†m(t1 − t), ρS(t)

]]
+ H.c.

−
∑
n,m

∫ t

0
dt1K

(2)
nm(t, t1)

[
Sn,

{
S†m(t1 − t), ρS(t)

}]
+ H.c. . (5.4)

The time-dependent kernels K(1/2)
nm (t, t′) which dominate the time evolution of the system,

are given by

K(1)
nm(t, t1) = 1

2
〈{
En(t), E†m(t1)

}〉
, (5.5)

K(2)
nm(t, t1) = 1

2
〈[
En(t), E†m(t1)

]〉
. (5.6)

Up to now, we neither specified the system nor the environment. We first specify the
system and the system-bath coupling. The environment is introduced later when we discuss
the actual setups (A) and (B). One major task for both setups will be the calculation of
the kernels K(1/2)

nm (t, t′) for the given environment. The system we want to study are two
nanomechanical oscillators, described by the Hamiltonian

HS =
∑
n=1,2

p̂2
n

2mn
+ 1

2mnΩ2
nx̂

2
n . (5.7)

Concerning the system-bath coupling, we still use a very general form, only specifying that
the system-bath coupling is mediated via tunneling which is approximated to depend linearly
on the displacement of the oscillator, i.e., we write

HSB =
∑
n=1,2

SnEn + S†nE
†
n , (5.8)

where

Sn = γ0n + γxnx̂n .

With the above and assuming two identical oscillators and symmetric coupling, i.e., Ω1 =
Ω2 = Ω, m1 = m2 = m, we can write the equation of motion of the reduced density matrix,
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Eq. (5.4), as

ρ̇S(t) = −i [HS , ρS(t)]−
∑
n,m

∫ t

0
dτ
{ [
K(1)(τ) +K(1)(−τ)

]
γxnγxm [x̂n, [x̂m(−τ), ρS(t)]]

+
[
K(2)(τ)−K(2)(−τ)

]
γxnγxm [x̂n, {x̂m(−τ), ρS(t)}]

}
.

We can further simplify the equation of motion to

ρ̇S(t) =− i
[
HS + iK(2)

− (t)(x̂1 + x̂2)2, ρS(t)
]

−K(1)
+ (t) [x̂1 + x̂2, [x̂1 + x̂2, ρS(t)]]

+ K̃(1)
+ (t) [x̂1 + x̂2, [p̂1 + p̂2, ρS(t)]]

+ K̃(2)
− (t) [x̂1 + x̂2, {p̂1 + p̂2, ρS(t)}] , (5.9)

where in Eq. (5.9) we defined new time-dependent kernels

K(1)
+ (t) =

∫ t

0
dτ
[
K(1)(τ) +K(1)(−τ)

]
γ̃ cos(Ωτ) , (5.10)

K̃(1)
+ (t) =

∫ t

0
dτ
[
K(1)(τ) +K(1)(−τ)

] γ̃

mΩ sin(Ωτ) , (5.11)

K(2)
− (t) =

∫ t

0
dτ
[
K(2)(τ)−K(2)(−τ)

]
γ̃ cos(Ωτ) , (5.12)

K̃(2)
− (t) =

∫ t

0
dτ
[
K(2)(τ)−K(2)(−τ)

] γ̃

mΩ sin(Ωτ) . (5.13)

In Eqs. (5.10-5.13), γ̃ denotes the tunneling amplitude characterizing the system-bath
coupling, which is different for setups (A) and (B). The equation of motion for ρS(t) contains
four different time-dependent damping and decoherence kernels which we can identify as:

• K1
+(t)

a diffusion term, depending on the environment temperature

• K2
−(t)

a term leading to a renormalization of the oscillator’s frequency, which can be dropped,
or compensated by an appropriate counter term in the equation of motion

• K̃1
+(t)

a second diffusion term, depending on the environment temperature

• K̃2
−(t)

a damping term, being independent of the environment temperature

With this general framework, we will now study both setups in more detail.
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5.3 Coupling via a common fermionic reservoir – Setup (A)
In Setup (A) the two oscillators couple to common fermionic reservoirs with a long coherence
time, cf. Fig. 5.1. Here, the reservoirs correspond to the two leads, described by the
Hamiltonian

HB =
∑
r

εrψ
†
rψr +

∑
l

εlψ
†
lψl .

The system-bath coupling is meditated via a tunneling Hamiltonian

HSB =
∑
l,r

∑
n=1,2

(γ0 + γxx̂n)ψ†lψr + H.c. ,

where for small oscillation amplitudes we approximate the tunneling matrix elements as
linear in the oscillator displacement, and for the sake of simplicity assume all tunneling
amplitudes to be real and take the coupling to be symmetric. From Eq. (5.8) we immediately
see that we can identify the bath operators En as En = ψ†lψr which allows us to calculate
the kernels K(1/2)(t, t1). From now on, we drop the subscript indices of the operators En
because x̂1 and x̂2 couple to the same bath operator.

5.3.1 Calculation of the memory kernels
As we already mentioned, the time evolution of ρS(t) is mainly governed by the memory
kernels of the master equation. Therefore, we take some time to sketch how they are
calculated. We will exemplify the calculation for kernel K(1)(t, t1) and just state the results
for kernel K(2)(t, t1). We start by using the definition Eq. (5.5) for K(1)(t, t1) and plug in
the bath operators E

K(1)(t, t1) = 1
2
∑
r,l,r′,l′

〈
ψ†l (t)ψr(t)ψ

†
r′(t1)ψl′(t1) + ψ†r′(t1)ψl′(t1)ψ†l (t)ψr(t)

〉
= 1

2
∑
r,l,r′,l′

eit(εl−εr)eit1(εr′−εl′ )
〈
ψ†lψrψ

†
r′ψl′ + ψ†r′ψl′ψ

†
lψr

〉
= 1

2
∑
r,l

ei(εl−εr)(t−t1)[n(εl)[1− n(εr)] + n(εr)[1− n(εl)]
]
,

where n(εx) = [eβ(εx−µx) + 1]−1 is the Fermi distribution function with β = 1/kBT . We
transform the sum over r and l into an integral ∑r,l →

∫
dεl
∫
dεrρl(εl)ρr(εr) with an

energy-dependent density of states ρα(εα). We can write for both kernels K(m)(t′, t′′) =
K(m)(t′ − t′′) ≡ K(m)(t) with m = 1, 2

K(m)(t) = 1
2

∫
dεl

∫
dεr ρl(εl)ρr(εr) ei(εl−εr)t[n(εl)[1− n(εr)]− (−1)mn(εr)[1− n(εl)]

]
= 1

2

∫
dεl

∫
dεr J(εl, εr) ei(εl−εr)t[n(εl)[1− n(εr)]− (−1)mn(εr)[1− n(εl)]

]
,

(5.14)
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where in the last step we introduced the spectral function

J(εl, εr) =
∑
k

∑
q

δ(εl − εk)δ(εr − εq) . (5.15)

Due to the fact that the equation of motion for ρS(t) is of second order in HSB, the only
possibility of including non-Markovian effects is by considering an energy-dependent density
of states in the leads. Including non-Markovian effects leads to a finite correlation time in
the leads and is a key ingredient for the entanglement. Non-Markovian effects in reservoirs
and their influence on entanglement of two quantum systems haven been studied also in, for
instance, Refs. [Liu07, Ying-Hua10, Xiao10, Bellomo10]. In order to include non-Markovian
effects (without facing divergencies) we choose a spectral function that introduces a finite
lifetime of quasiparticles in the reservoir. The reservoirs will therefore have a finite and not
negligible correlation time. To account for this finite lifetime of quasiparticles in the leads,
the δ-functions in Eq. (5.15) are smeared out and replaced by Lorentzians of width Lc

J(εl, εr) =
∑
k

∑
q

Lc
(εl − εk)2 + L2

c

Lc
(εr − εq)2 + L2

c

. (5.16)

The largest contribution of each of the independent sums in Eq. (5.16) will come from
energies close to the Fermi level of each lead. We further restrict ourselves to the regime of
low applied bias voltages V < Lc with V = µl − µr. This is just a simplification in order to
keep the number of parameters in the problem as low as possible. With these assumptions,
the energy-dependent spectral function can be approximated as

J(εl, εr) = 1
(εl − εr)2 + L2

c

. (5.17)

Physically, Eq. (5.17) means that an electron with energy εl in the left lead can tunnel into
states of the right lead with energy εr, broadened by Lc [Wingreen94, Zhu05, Liu07, Lee08].
With the spectral function in Eq. (5.17), the time-dependent kernels K1/2

+/−(t) and K̃1/2
+/−(t)

can now be calculated analytically. We continue from Eq. (5.14) using Eq. (5.17) and for
m = 1 we arrive at (we introduce ρ0r = ρ0l = 1/Lc)

K(1)(t) = 1
2

∫
dεl

∫
dεrρ0rρ0l

L2
c

(εl − εr)2 + L2
c

ei(εl−εr)t[n(εl)[1− n(εr)] + n(εr)[1− n(εl)]
]
.

For both kernels K(1)(t) and K(2)(t), one energy-integration can easily performed which
leads to

K(1)(t) = ρ0rρ0l
2

∫
dω

L2
c

(ω + V )2 + L2
c

ei(ω+V )t
[
ω coth

(
βω

2

)]
,

K(2)(t) = ρ0rρ0l
2

∫
dω

L2
c

(ω + V )2 + L2
c

ei(ω+V )t[−ω] .
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With that we can find exact analytical expressions for the kernels K(1/2)
+/− (t) and K̃(1/2)

+/− (t) by
solving the following integrals (α1, α2 ∈ {−1, 1})

L(1)(α1, α2, t) =
∫ t

0
dτK(1)(α1τ)eiα2Ωτ

= ρ0rρ0l
2

∫
dω

iL2
c [1− eit(α1(ω+V )+α2Ω)]

[(ω + V )2 + L2
c ][α1(w + V ) + α2Ω]

[
ω coth

(
βω

2

)]
, (5.18)

L(2)(α1, α2, t) =
∫ t

0
dτK(2)(α1τ)eiα2Ωτ

= ρ0rρ0l
2

∫
dω

iL2
c [1− eit(α1(ω+V )+α2Ω)]

[(ω + V )2 + L2
c ][α1(w + V ) + α2Ω]

[− ω] .
For both functions L(1/2)(α1, α2, t) the integration over ω can be done with the residue
theorem. The integrand of function L(2)(α1, α2, t) has poles at ω1/2 = −V ± iLc and
ω3 = −V − α2/α1Ω. For the integral in Eq. (5.18) we write

coth
(
βω

2

)
=

∞∑
n=−∞

2
β

ω

ω2 + ν2
n

,

where νn are the Matsubara frequencies νn = 2πn/β, i.e., for the integrand in Eq. (5.18) we
have additional poles at ω4/5 = ±iνn. Having solved the integral with the residue theorem,
we are left with an infinite sum over the Matsubara frequencies for which we can also find
an analytical expression. This solution is however, too lengthy to be presented here. Finally,
the kernels K(1/2)

+,− (t) and K̃(1/2)
+/− (t) are given by

K(1)
+ (t) = 1

2γ
2
x

[
L(1)(+,+, t) + L(1)(−,−, t) + L(1)(+,−, t) + L(1)(−,+, t)

]
,

K̃(1)
+ (t) = 1

2i
γ2
x

mΩ
[
L(1)(+,+, t)− L(1)(−,−, t)− L(1)(+,−, t) + L(1)(−,+, t)

]
,

K(2)
− (t) = 1

2γ
2
x

[
L(2)(+,+, t)− L(2)(−,−, t) + L(2)(+,−, t)− L(2)(−,+, t)

]
,

K̃(2)
− (t) = 1

2i
γ2
x

mΩ
[
L(2)(+,+, t) + L(2)(−,−, t)− L(2)(+,−, t)− L(2)(−,+, t)

]
.

5.3.2 Entanglement in the non-Markovian regime

We now investigate the system’s dynamics, where we take the vacuum state as an initial
state, which is Gaussian, allowing us to use the logarithmic negativity EN (t) as a measure
of entanglement. We will study the dependence of the entanglement on the electronic
temperature in the reservoir T , the finite correlation time in the reservoir Lc, and the applied
bias voltage V .

In Fig. 5.3, we show the logarithmic negativity for two finite electronic temperatures and
for each temperature we probe the bias dependence of the logarithmic negativity. First, we
see very little entanglement for high electronic temperatures (as compared to low electronic
temperatures, cf. Fig. 5.4 and 5.5) which also vanishes rather quickly. Furthermore, for very
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Figure 5.3: Logarithmic negativity for finite electronic temperatures. We show EN (t) for T = 10 Ω
(black and orange) and T = Ω (red and blue). High electronic temperatures lead to a fast decay of
the entanglement. The dependence on the bias voltage for high electronic temperatures is negligible.

high electronic temperatures, here we show T = 10 Ω (black and orange lines in Fig. 5.3),
the bias dependence of the logarithmic negativity can be neglected. As soon as T ≈ Ω (red
and blue lines in Fig. 5.3), the bias dependence on the logarithmic dependence gets more
pronounced (red and blue lines in Fig. 5.3), and we see less entanglement for higher V . This
also reflects the fact that the tunnel junction can be assigned with an effective temperature
which is proportional to the applied bias voltage [Mozyrsky02]. We can say that the influence
of the bias voltage in the high temperature regime is negligible since in most cases we have
V < T . A higher temperature of the electronic reservoir (than the effective temperature of
the oscillator) might be hard to achieve in an experimental setup. When aiming to study
this regime, it is necessary to actively cool the nanomechanical resonator to its ground state
by applying techniques as for instance in Ref. [O’Connell10], where a qubit is coupled to the
resonator and excitations can be swapped from the oscillator to the qubit.
For low electronic temperatures, we show in Fig. 5.4 and 5.5 the logarithmic negativity

for γx = 0.4
√
mΩ and γx = 0.1

√
mΩ, respectively, and its dependence on Lc. In both

cases, we clearly see that the initially separable state becomes entangled right after the
interactions have been suddenly switched on. Due to this quench, energy conservation can
be violated for a short time, which is the cause for the entanglement. Experimentally, the
switching in this tunneling setup can be achieved by gates controlling the tunnel coupling
via a resonance. Physically this means, that the rise time of the gates has to be shorter than
1/Ω, the time scale of the oscillators. Typical rise times of electronic gates can be as short
as 60ps [Dovzhenko11]. For an oscillator with a resonance frequency of ∼ 500MHz (which
can be brought into its ground state at low temperatures) these rise times are sufficient to
accomplish the sudden switching. In its subsequent evolution, the entanglement oscillates in
time, before it slowly decays. We find that low bias voltages show an increased logarithmic
negativity compared to high bias voltages (not shown in the figure). When we compare
Figs. 5.4 and 5.5, we find that the entanglement decays faster with an increased coupling
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T = 0, V = 0.1 Ω, and γx = 0.4

√
mΩ.

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

têW

E N
HtL

T=0, V=0.1, gx=0.1

80 85 90 95 100
0

5.¥10-6
0.00001
0.000015
0.00002
0.000025
0.00003

têW

E N
HtL

Lc=0.6

Lc=0.3

Figure 5.5: (Color online) Logarithmic negativity for Lc = 0.3 Ω (red) and Lc = 0.6 Ω (blue). Here,
the temperature T = 0, V = 0.1 Ω, and γx = 0.1

√
mΩ.

parameter γx. For a large coupling γx, the entanglement for small Lc is more pronounced
than for large Lc. However, we see from Fig. 5.5 that entanglement for small Lc decreases
faster compared to entanglement in the case of large Lc. Intuitively, we might guess that a
small Lc is favorable for the time evolution of the entanglement, because a large Lc means a
more rapid loss of coherence in the reservoir (as it is the case for larger coupling, cf. Fig. 5.4).

However, this counter intuitive dependence of EN (t) on the parameter Lc can be understood
with the help of the toy model of two directly coupled harmonic oscillators, described by the
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Hamiltonian

HTM =
∑
i=1,2

p̂2
i

2mi
+ 1

2miΩ2
i x̂

2
i + λx̂1x̂2 .

We will briefly discuss this toy model, firstly, by employing a rotating wave approximation
(RWA), and secondly without the RWA. Within the RWA, only energy conserving processes
are allowed, i.e., we only can swap excitations from one oscillator to the other one. When
taking the vacuum state as an initial state, there won’t be any excitations regarding the
oscillators, which is not favorable for entanglement. To conclude, in the RWA, the two
oscillators in the toy model initially prepared in their ground state won’t get entangled. This
is different for the case when we do not employ the RWA because then, processes which
can violate energy conservation for a short time after the interaction has been suddenly
switched on, are present. To sum up, these processes are favorable for entanglement when
the initial state is the Gaussian vacuum state. This argument can now also be made for
Setup (A). In this case, the processes which favor a violation of energy conservation are the
ones with a large Lc, i.e., for larger Lc the entanglement generated by a sudden switching on
of interactions lasts longer than for smaller Lc.
In summary, we showed that Setup (A) indeed is suitable for generating entanglement

between two indirectly coupled nanomechanical oscillators. We see from the various plots of
the logarithmic negativity that there is a competition of processes favoring entanglement
and processes leading to damping and/or decoherence. Due to the nontrivial dependence
of the symplectic eigenvalue λ̃− on the involved parameters, the dependence of EN (t) on
the parameters can be counter intuitive as we just discussed for Lc. Although this setup is
rather academic, it serves us as a model and provides us with new insight into the situation
where two nanomechanical oscillators are effectively coupled through two common fermionic
baths. This is a less studied case compared to the more established case of coupling two
oscillators to a common bosonic bath, for instance, within a Caldeira-Leggett model [Liu07].
In the next section, we analyze a second possible realization where we circumvent the need
of a common macroscopic reservoir (i.e., the right reservoir in Fig. 5.1).

5.4 Coupling in an Andreev entangler setup – Setup (B)
Since Setup (A) relies on a long coherence time of two macroscopic reservoirs, we introduce
another realization that gives rise to an effective coupling of the two oscillators mediated by
tunneling of a split Cooper-pair. This realization, Setup (B), is of an Andreev entangler type
of setup. The process where a spin-singlet is split in the superconductor and one electron
tunnels to the lower oscillator and the other one tunnels to the upper oscillator gives rise to
an effective coupling between the two nanomechanical oscillators, cf. Fig. 5.6. The major
improvements of Setup (B) over Setup (A) are:

1. the right common reservoir of Setup (A) is now cut into two halves; the resulting two
normal metal leads are entirely independent

2. both normal metal leads see the same tunneling processes; therefore their independence
does not result in which-path information
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3. phase coherence lengths of superconductors are typically much longer than of normal
metals which allows for a larger spatial extend of the center reservoir.

Figure 5.6: Schematics of the process we focus on. A Cooper-pair is split on on the superconducting
island (orange). The two electrons of the Cooper-pair tunnel to different oscillators acting as leads
(blue) which leads to an effective coupling between the two oscillators. The tunneling amplitudes are
defined as Tα = γ0α + γxαx̂α.

Processes where one Cooper-pair tunnels to the upper/lower lead are not taken into account
since they won’t lead to any entanglement, but rather to a background tunneling current. As
for instance described in Ref. [Recher01], such processes are also energetically not favorable
due to interaction effects in the leads and/or tunneling via a dot with a finite charging energy.
Another possibility to favor the tunneling process where a Cooper-pair is split, is to couple
the superconductor to two Luttinger liquid leads as described in Ref. [Recher02]. In NEMS
this could be achieved by modeling the oscillators as one-dimensional nanowires or carbon
nanotubes.

Below, we study the Setup (B) in two different regimes: First, the non-Markovian regime
as we also did for Setup (A), and additionally in the Markovian regime in the limit of low
bias voltages. The non-Markovian regime of Setup (B) is very similar to the non-Markovian
regime of Setup (A). For Setup (B) we will see that the master equation for the reduced
system in the Markovian regime is of Lindblad form which allows us study the system
dynamics on a very intuitive level.

The system is again described by the Hamiltonian in Eq. (5.2) with HS given in Eq. (5.7).
Here, the bath consists of three independent reservoirs, two normal metal leads, and a central
superconducting region. We focus here on transport at energies in the superconducting gap
∆, which is the largest energy scale of the problem. The bath Hamiltonian reads

HB = HI +HU +HD ,

where

Hα =
∑
kσ

εαkb
†
αkσbαkσ ,

HI =
∑
kσ

Ekβ
†
kσβkσ
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with α = U,D. Here, Ek =
√

(εk − µS)2 + ∆2 is the quasiparticle energy and βkσ is the
quasiparticle annihilation operator. The quasiparticle operators are related to electron
annihilation operators through the Bogoliubov transformation

ck↑ = ukβk↑ + vkβ
†
−k↓ ,

c−k↓ = ukβ−k↓ − vkβ
†
k↑ ,

where uk =
√

1/2 + ξk/(2Ek) and vk =
√

1/2− ξk/(2Ek) with ξk = εk − µS . We take the
superconductor to be grounded and each lead to be held at bias voltage V . The system-bath
interaction is mediated by tunneling of a split Cooper-pair, i.e., we want one electron of
the Cooper pair to tunnel to the upper oscillator and the other electron to tunnel to the
lower oscillator. The process we want to focus on is therefore described by the following
Hamiltonian

HSB =
∑
{ki}

TUTDb
†
D−k1↓b

†
Uk2↑cI−k3↓cIk4↑ + TUTDb

†
Dk1↑b

†
U−k2↓cI−k3↓cIk4↑ + H.c. (5.19)

with Tα = γ0α + γxαx̂α. We introduce the following system and bath operators

S0 = γ0Uγ0D ,

S1 = γ0DγxU x̂U ,

S2 = γ0UγxDx̂D ,

S3 = γxUγxDx̂Dx̂U ,

and

E = b†D−k1↓b
†
Uk2↑cI−k3↓cIk4↑ , (5.20)

respectively, which allow us to write the system-bath coupling Hamiltonian in a similar way
as in Eq. (5.8)

HSB =
∑
{ki}

[
S0 + S1 + S2 + S3

][
E + E†

]
.
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5.4.1 Equation of motion and memory kernels in the Andreev entangler setup

The equation of motion for the reduced density matrix can then be written as (note that we
switched from U,D to 1, 2)

ρ̇S(t) =− i
[
HS + iK(2)

− (t)(x̂1 + x̂2)2, ρS(t)
]

−K(1)
+ (t) [x̂1 + x̂2, [x̂1 + x̂2, ρS(t)]]

+ K̃(1)
+ (t) [x̂1 + x̂2, [p̂1 + p̂2, ρS(t)]]

+ K̃(2)
− (t) [x̂1 + x̂2, {p̂1 + p̂2, ρS(t)}]

−K(3,1)
+ (t) [x̂1x̂2, [x̂1x̂2, ρS(t)]]

−K(3,2)
+ (t) [x̂1x̂2, [p̂1p̂2, ρS(t)]]

+K(3,3)
+ (t) [x̂1x̂2, [x̂1p̂2 + x̂2p̂1, ρS(t)]]

−K(3,1)
− (t) [x̂1x̂2, {x̂1x̂2, ρS(t)}]

−K(3,2)
− (t) [x̂1x̂2, {p̂1p̂2, ρS(t)}]

+K(3,3)
− (t) [x̂1x̂2, {x̂1p̂2 + x̂2p̂1, ρS(t)}] . (5.21)

Already at this stage, it is important to comment on the decisive difference between Setup
(A) and (B). The effective Hamiltonian in Eq. (5.19), exhibits two important but different
contributions. The first contribution stems from terms of order γ0γx. These terms are
qualitatively similar to terms of order γx in Setup (A), meaning that to second order in
γx we expect qualitatively the same behavior for the logarithmic negativity. The second
contribution of the effective Hamiltonian is due to terms of order γ2

x which give rise to a direct
coupling between the two oscillators, and are new in the Andreev entangler setup (terms five
to nine in Eq. (5.21)). We will treat these two contributions independently, by focusing on
different regimes where only one of them is dominant. Finally, the time-dependent memory
kernels in Eq. (5.21) are defined as (for simplicity, we again assume symmetric coupling and
identical oscillators)

K(1)
+ (t) =

∫ t

0
dτ
[
K(1)(τ) +K(1)(−τ)

]
γ2

0γ
2
x cos(Ωτ) ,

K̃(1)
+ (t) =

∫ t

0
dτ
[
K(1)(τ) +K(1)(−τ)

] γ2
0γ

2
x

mΩ sin(Ωτ) ,

K(2)
− (t) =

∫ t

0
dτ
[
K(2)(τ)−K(2)(−τ)

]
γ2

0γ
2
x cos(Ωτ) ,

K̃(2)
− (t) =

∫ t

0
dτ
[
K(2)(τ)−K(2)(−τ)

] γ2
0γ

2
x

mΩ sin(Ωτ) ,

K(3,1)
+ (t) =

∫ t

0
dτ
[
K(1)(τ) +K(1)(−τ)

]
γ4
x cos(Ωτ) cos(Ωτ) ,

K(3,2)
+ (t) =

∫ t

0
dτ
[
K(1)(τ) +K(1)(−τ)

] γ4
x

m2Ω2 sin(Ωτ) sin(Ωτ) ,
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K(3,3)
+ (t) =

∫ t

0
dτ
[
K(1)(τ) +K(1)(−τ)

] γ4
x

mΩ cos(Ωτ) sin(Ωτ) ,

K(3,1)
− (t) =

∫ t

0
dτ
[
K(2)(τ)−K(2)(−τ)

]
γ4
x cos(Ωτ) cos(Ωτ) ,

K(3,2)
− (t) =

∫ t

0
dτ
[
K(2)(τ)−K(2)(−τ)

] γ4
x

m2Ω2 sin(Ωτ) sin(Ωτ) ,

K(3,3)
− (t) =

∫ t

0
dτ
[
K(2)(τ)−K(2)(−τ)

] γ4
x

mΩ cos(Ωτ) sin(Ωτ) .

The kernels K(1/2)(t) are given in Eq. (5.5) and (5.6) with E given in Eq. (5.20). The
actual calculation of the kernels for the Andreev entangler setup goes along the same lines
as for Setup (A). Therefore, we only sketch the calculation briefly. The kernels K(m)(t, t′),
(m = 1, 2) in the superconducting case become

K(m)(t, t1) = 1
2
∑
{ki}

e
i(εD

k1
+εU

k2
)(t−t1)

uk3vk3uk4vk4

{
n(εDk1)[1− 2n(Ek3)]n(εUk2)[1− 2n(Ek4)]

− (−1)m[1− n(εDk1)][1− 2n(Ek3)][1− n(εUk2)][1− 2n(Ek4)]
}
, (5.22)

where we introduced the superconducting Green’s functions〈
cI−k↓(t)cIk↑(t′)

〉
= ukvk

〈
β−k↓(t)β†−k↓(t

′)− β†k↑(t′)βk↑(t)
〉

= ukvk
[
eiEk(t−t′)(1− n(Ek))− e−iEk(t−t′)n(Ek)

]
,

and 〈
c†Ik↑(t)c

†
I−k↓(t

′)
〉

= ukvk
[
eiEk(t−t′)(1− n(Ek))− e−iEk(t−t′)n(Ek)

]
.

Now, we proceed along the lines of the calculation we already did in the case of Setup
(A). In Eq. (5.22), we first take the sum over the momenta to an integral and introduce
an energy-dependent density of states for the normal metal leads. Since we only focus on
the regime within the superconducting gap, the density of states in the superconductor is
constant. We furthermore assume zero temperature in the superconductor, therefore no
quasiparticles in the superconductor can be excited, leading to n(Eki

) = 0. For K(m)(t′, t′′) =
K(m)(t′ − t′′) ≡ K(m)(t) we then have

K(m)(t) = 1
2

∫
dεDk1dε

U
k2dεk3dεk4e

i(εD
k1

+εU
k2

)t
uk3vk3uk4vk4J(εDk1 , ε

U
k2)ρSρS×{

n(εDk1)n(εUk2)− (−1)m[1− n(εDk1)][1− n(εUk2)]
}
.

Here, the spectral function J(εDk1
, εUk2

) is the same as for Setup (A) and given in Eq. (5.17).
Both normal metal leads are held at the same chemical potential µ and the superconductor
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is at µS = 0. Next, we write K(m)(t) as

K(m)(t) = ρ̃

2

{∫
dεk3dεk4uk3vk3uk4vk4

}∫
dω

∫
dωDe

i(ω+2µ)t L2
c

(ω + 2µ)2 + L2
c

×
{
n(ωD)n(ω − ωD)− (−1)m[1− n(ωD)][1− n(ω − ωD)]

}
,

where we defined ρ̃ = ρUρDρSρS with ρU = ρU = 1/Lc. We still have to perform the
integration over the momenta of the superconductor. In oder to include the free propagation
of electrons in the superconducting island we now include a factor of 1/Ek in the tunnel
amplitudes. Therefore, we have to evaluate

(∗) =
∫
dεk

ukvk
Ek

=
∫
dεk

∆
E2
k

=
∫ b

a
dεk

∆
(εk − µS)2 + ∆2 = arctan

(
εk − µS

∆

) ∣∣∣b
a
.

Using b→∞ and a→ 0, we get

(∗) =
[
π

2 + arctan(µSC∆ )
]

which for µS = 0 gives just a factor π/2. In the end, we find for K(m)(t)

K(1)(t) = ρ̃

2
π2

4 4
∫
dωei(ω+2µ)t L2

c

(ω + 2µ)2 + L2
c

[
ω coth

(
βω

2

)]
,

K(2)(t) = ρ̃

2
π2

4 4
∫
dωei(ω+2µ)t L2

c

(ω + 2µ)2 + L2
c

[−ω] ,

where the factor 4 is due to the spin. The calculation of the kernels K(1/2)
+/− (t), K̃(1/2)

+/− , K(3,i)
+ (t),

and K(3,i)
− (t) can then be done with the residue theorem as for Setup (A) .

5.4.2 Entanglement in the non-Markovian regime
Here, we will only consider the leading contribution in the master equation Eq. (5.21) which
are terms of order γ2

0γ
2
x (� γ4

x). In Figs. 5.7 and 5.8 we present the results for the logarithmic
negativity EN (t) for Setup (B). From these figures we already see the similarity between
Setup (A) and (B) and conclude that it is possible to entangle two nanomechanical resonators
which are coupled to three independent reservoirs within an Andreev entangler setup.
Similar to Setup (A) we see a faster decay of the entanglement for larger couplings γx. The
dependence on the parameter Lc is analogous to Setup (A) where we explained with the help
of a toy model the counter intuitive behavior of the logarithmic negativity.
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5.4.3 Entanglement in the Markovian regime

As we already mentioned, the master equation for the reduced system’s density matrix has
two distinct contributions, terms of order γ2

0γ
2
x and of order γ4

x. In this section, we want to
focus on terms that are of order γ4

x only because they give rise to a direct coupling between
the two oscillators and are a new element in the Andreev entangler setup. Interestingly, these
terms can even generate entanglement in the Markovian regime. The regime, where they are
the dominant contributions, is the low bias limit, i.e., V � Ω because then it is not possible
to excite the oscillator due to the applied bias. Excitations are still possible due to the
quench stemming from the sudden switching on of the interaction. In addition, we apply the
Markov approximation, meaning we take the wide band limit, Lc →∞ (energy-independent
density of states), and we let the upper integration limit in the expressions for the kernels
K(1/2)

+/− (t), K̃(1/2)
+/− , K(3,i)

+ (t), and K(3,i)
− (t) go to t→∞. With∫ ∞
0

dte±iωt = πδ(ω)± iP 1
ω
,

where P stands for the Cauchy principal value, we can perform the time integration in
the expressions for the kernels K(1/2)

+/− (t), K̃(1/2)
+/− , K(3,i)

+ (t), and K(3,i)
− (t) which then become

time-independent. The resulting master equation in the limit of T → 0 and in the RWA is of
Lindblad form and given by

ρ̇S(t) =− i [HS , ρS(t)] + ρ̃π3γ4
xV

(mΩ)2

[
AρS(t)A− 1

2 {AA, ρS(t)}
]
, (5.23)

where the Lindblad operator A = â†1â2 + â1â
†
2, and ρ̃ = ρUρDρSρS with ρα and ρS being

constant density of states in lead α and the superconductor, respectively. We also introduced
bosonic creation (annihilation) operators â†i (âi ) for both oscillators in the usual way

x̂i = 1√
2miΩi

(âi + â†i )

p̂i = −i
√
miΩi

2 (âi − â†i ) .

As we mentioned earlier, processes which violate energy conservation for a short time are
favorable for entanglement. In Lindblad form, there are no such terms, i.e., if the initial state
of the system would be the vacuum state, we do not expect any entanglement. However, if we
choose a different initial state, things are different. To exemplify the dynamics generated by
the Lindblad operator A for a different initial state, we choose |n1 = 1, n2 = 1〉 with ni being
the occupation number of oscillator i. Due to Eq. (5.23) the dynamics will only generate
states |n1 = 2, n2 = 0〉 and |n1 = 0, n2 = 2〉. The system will stay in this three-dimensional
Hilbert space. The initial state evolves to

p1(t)|1, 1〉+ p2(t) (|2, 0〉+ |0, 2〉) .
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A definite indicator for entanglement in this case is the prefactor p2(t) in front of the Bell
state. Here, we just want to make the point that within the Andreev entangler setup we can
generate an entangled state even in the Markovian regime.

5.5 Concluding remarks
We introduced two setups, where we have shown that it is possible to generate entanglement
between two spatially separated nanoelectromechanical oscillators, even if these two oscillators
are not directly coupled to each other. In Setup (A), the two oscillators are indirectly coupled
via two common fermionic baths which should have a rather long coherence time. With
Setup (B), we introduced an entirely new way of entangling two nanomechanical oscillators in
an electric setup based on the working principle of an Andreev entangler. Here, the coherent
process where a Cooper-pair is split leads to an effective coupling of the two nanomechanical
oscillators. For both setups, the generated entanglement persists over many oscillator periods,
before the system becomes separable again. Further investigations on these kinds of setups
could deal with the question how it might be possible to generate steady state entanglement
of the oscillators, by for instance applying an AC or pulsed bias voltage.
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Summary and outlook

Summary

Since we have in each chapter given a detailed summary and conclusion, we here only mention
the main aspects of the work covered in this thesis.

With recent nanomechanical experiments already being in the quantum regime, the focus
of this thesis was on the quantum regime of nanoelectromechanical systems. We studied
different aspects of the quantum regime, such as non-Markovian effects of a nanomechanical
oscillator coupled to a tunnel junction detector where we employed non-equilibrium methods
to calculate transport properties. Since the electronic degrees of freedom couple to the
mechanical ones, the transport quantities such as the average tunnel current or the current
noise are directly related to the properties of the nanomechanical oscillator, allowing for its
characterization via transport measurements. Furthermore, we presented a novel possibility
to detect new states of matter using a nanomechanical resonator. This naturally could lead
to the application of a nanomechanical oscillator as a detector for other physical degrees of
freedom and make nanomechanical systems even more promising detectors also for other
quantities than just mass and force. Finally, we studied the generation of entanglement
between two mesoscopic resonators in an electric setup. We investigated two different kinds
of setups where the two oscillators are not directly coupled to each other, but an effective
coupling is mediated between them by common electronic reservoirs or by tunneling Cooper-
pairs. If both oscillators are initially in their ground states (a separable state of the composite
system), it is possible by running a current through the device to bring the oscillators into
an entangled state. Since quantum mechanics in general also allows for entanglement of
objects with length scales larger than atomic or subatomic, such studies allow for testing
quantum mechanics on an entirely new length scale. This intermediate regime between
classical and quantum also allows to investigate fundamental questions of quantum theory
and the quantum to classical transition.

Outlook

Nanoelectromechanical systems as we studied in this thesis, i.e., where a rather massive
conducting beam is coupled to a tunnel junction detector, have a major disadvantage which
is the trouble that comes with manufacturing these devices. In my opinion, experimental
realizations comparable to the vibrating membrane in Ref. [Teufel11] are the ones to be
studied in the future since such setups are more flexible with respect to control, read out,
and weak or strong electromechanical coupling of the oscillator to the electronics. Suspended
carbon nanotubes or graphene sheets and ribbons comprise, due to their stiffness, also very
high quality resonators which can be coupled to electronic devices. Moreover, a quantum
dot can be formed on the vibrating carbon nanotube and one could imagine, coupling the
mechanical degree of freedom directly to the occupation number of the dot, or even to the
spin degree of freedom of an electron on the quantum dot.
Future theoretical work which could directly result from the work presented here, is the

need of a feasible detection scheme for the entanglement of the two nanomechanical oscillators
in Chap. 5. As we discussed in Chap. 5 we need information of the second moments of the
conjugate variables x̂i and p̂i, i.e., the covariance matrix. In case of Setup (A) we could
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imagine following a detection scheme similar to the one proposed in Ref. [Schmidt10]. In
this case we would have to add a third tunnel junction to Setup (A), thereby generating
two Aharonov Bohm loops and in turn it would possible to gain information on the position
and momentum (cf. Chap. 3) of the two oscillators. Entanglement can then be verified
by information gained in current noise measurements which can be used to calculate the
logarithmic negativity. In the case of the Andreev entangler such a detection scheme for
entanglement is not feasible. However, it could be possible that a measurement of current
cross-correlation leads to enough information to verify entanglement via an entanglement
witness. If in the case of the Andreev entangler we are not able to fully obtain the covariance
matrix, there are certain bounds that can be used to estimate the amount of entanglement.
For instance we could use the bound EN ≥ max{0,− log2[

〈
(x̂1 − x̂2)2〉 /2 +

〈
(p̂1 + p̂2)2〉 /2]},

where we already see that less information is needed to verify entanglement.
Another unaddressed issue so far is the calculation of the current noise of the nanome-

chanical Majorana bound state detector, cf. Chap. 4. This would of course be a natural
extension since the current noise can be experimentally measured fairly easy and contains
more information than the differential conductance. In this setup, we can also attached
a second oscillating lead left of the topological superconductor which couples to the left
Majorana bound state. The interplay between the two oscillating leads and the tunneling
through the nonlocal Majorana bound state might reveal new transport features of the
Majorana bound state which can be probed with current cross-correlations.

To summarize, due to their enormous potential for technical applications and the possibility
to study fundamental questions of quantum mechanics, the field of nanoelectromechanical
systems will definitively evolve further and we expect more interesting physics to come.
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