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1 Introduction

Content distribution is one of the most important services of the Internet. Its
applications range from pure file-sharing to video-on-demand and live streaming
or Internet protocol television (IPTV). The rising popularity of these applications,
and their increasing demand for transmission capacity [87], e.g., due to high-
definition video content, put a high load on the network infrastructure of the
Internet.

As a consequence, the problem arises how these demands can efficiently be
handled. Three main stakeholders are involved in this process, each with different
notions of an efficient distribution process. Internet users expect fast and reliable
access to the desired content. Content providers have similar objectives since the
consumers of the content, i.e., the users, are their direct customers. However,
they rather try to limit their capital and operational expenditures such as costs
for content servers and bandwidth. Finally, Internet service providers (ISPs) are
responsible for delivering the content to end users. Their aim is to provide high-
speed and resilient network access, but at the same time network load and inter-
connection cost to other ISPs should be kept small.

A promising and widely used solution for efficient content distribution are
overlay networks based on the peer-to-peer (P2P) paradigm. This method saves
costs for content providers since users support the distribution process by upload-
ing pieces of the already downloaded content to other users. This reduces load on
content servers considerably or renders such servers unnecessary. In recent years,
BitTorrent networks have been the most popular overlays for that purpose and
have been responsible for a large share of the total Internet traffic [71]. There-

fore, in this monograph we investigate traffic optimization techniques for overlay



1 Introduction

networks on the example of BitTorrent, which is widely used for file-sharing and
serves also as a basis for video transmission overlays.

Today’s content distribution overlays and in particular BitTorrent suffer from
the problem that they are underlay-agnostic, i.e., they are not aware of the phys-
ical network infrastructure. In contrast, they build a logical overlay network on
top of it. The routing of traffic demands is determined within the overlay network
and ignores the properties of the physical network infrastructure. This leads to an
inefficient usage of the physical underlay network of the ISPs [51, 54, 66]. For
the concrete example of BitTorrent this implies that the BitTorrent software run-
ning on the computers of the users (also called peers) determines the other peers
for the actual data exchange. Since this decision does not take into account the
physical network infrastructure, two peers located in the networks of different
ISPs might exchange data although in the network of both ISPs other peers might
be present and able to serve the same piece of data. This results in unnecessary

inter-ISP traffic and increases inter-connection cost of some ISPs.

This problem is severe in particular for small or medium-sized ISPs since
the Internet is a hierarchical network of ISPs. Smaller (lower tier) ISPs typi-
cally pay larger (higher tier) ISPs for connecting them to the rest of the Internet.
For this inter-connection service the larger ISP charges the smaller one based
on the volume of the inter-ISP traffic, i.e., traffic that was forwarded from and
to the rest of the Internet. Consequently, smaller ISPs can save inter-connection
costs if they manage to reduce their inter-ISP traffic. As a result, traffic opti-
mization techniques for overlay networks are useful for lower tier ISPs to pre-
vent inter-connection costs due to unnecessary inter-ISP traffic. However, perfor-
mance degradations experienced by the end users, e.g., low transmission speeds,
should be avoided since unsatisfied users are likely to switch to competitor ISPs.

Two types of traffic optimization mechanisms are currently discussed and in-
vestigated. The first one is called locality-awareness. This solution equips the
overlay nodes, i.e, peers, with knowledge about the underlying network topology
so that they can preferentially exchange data with other peers in the network of

the same ISP. Two such locality-awareness mechanisms for BitTorrent networks



are biased neighbor selection [51] and biased unchoking [17]. The efficiency of
these solutions consequently depends on the existence of other peers within the
same ISP.

The other prominent solution to reduce inter-ISP traffic of content distribution
overlays is caching. To this end, an ISP provides an additional entity — a cache
— in its network that stores a copy of popular files. Requests for parts of those
files can then be served by the cache and do not need to be downloaded from
outside the network of this ISP. The idea is well-known from web traffic [31,
32,37]. However, overlay networks exhibit significant differences to normal web
pages. For example, overlay nodes fetch different parts of the same file from
different locations (multi-source download). Therefore, caching algorithms have
to be revisited and their performance needs to be evaluated with respect to the
changed circumstances.

The objectives of this monograph can be summarized as follows. The first
goal is to provide a thorough understanding of the nature of today’s overlay net-
works using the popular example of BitTorrent. This knowledge permits to define
scenarios of practical relevance for the performance evaluation of traffic opti-
mization techniques in overlay networks. Furthermore, we use this knowledge
to estimate the optimization potential of locality-awareness at Internet scale. An
additional objective is to investigate and optimize the performance of caching as
a traffic optimization technique by proposing enhancements and new algorithms
or giving recommendations for suitable configurations. A detailed description of
the scientific contribution in this monograph is given in the following.
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1.1 Scientific Contribution

This section summarizes the contribution of this monograph to the field of traffic
optimization in P2P-based overlay networks. It gives an overview of the content
of the studies and explains their relations.

Figure 1.1 classifies the publications according to the investigated topic on the
y-axis and the investigation methodology on the x-axis. The investigated topics
consist of caching and locality-awareness, which are the two main approaches to
traffic optimization in overlay networks. The methodologies comprise real-world
Internet measurements, experiments in controlled environments, simulations and
analytical modeling. Some studies cover only a single aspect and methodology
while others overlap different areas in both dimensions. This means that a sin-
gle subject is investigated using different methodologies or a study comprises

caching and locality-awareness mechanisms at the same time.

The first major contribution presented in this monograph is a comprehensive
characterization of overlay networks which are currently used in the Internet.
We study the nature of BitTorrent swarms — the most popular overlay networks
in today’s Internet — in a large measurement campaign. Based on the measure-
ment results, we model the characteristics of BitTorrent networks by providing
statistical distributions, e.g., for the number of users per swarm or the size of
the exchanged file. In addition, we investigate how peers are distributed over the
different ISPs in the Internet. This knowledge is used to define scenarios for per-
formance evaluation of both locality-awareness and caching in the other studies.
This is valuable information to ensure that performance results are obtained in
scenarios of practical relevance. Furthermore, we derive the Internet-wide opti-
mization potential of locality-awareness mechanisms based on this data, cf. [5].
This estimation shows that locality-awareness can save a large fraction inter-ISP
traffic because most of the BitTorrent peers participate in the distribution of a
moderate number of popular files. There, a large number of opportunities exist
to save inter-ISP traffic by sharing these file with other peers from the same ISP.

Since this study uses both real-world measurements and modeling, it is not only
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FIGURE 1.1: Cartography of scientific contributions of the author on traffic optimization in overlay
networks. The content of references in bold is presented in this monograph.

located in the right part of Figure 1.1, but also in the left one.

The second major contribution presented in this monograph considers caching
of overlay traffic as a means to reduce inter-ISP traffic. In a first step, we provide
a two-dimensional Markov model of the impact of a cache on a single BitTorrent-
based overlay network and validate the model via simulations and experiments
with real BitTorrent clients, cf. [8, 19]. The investigation shows that the upload
capacity of the cache has a considerable impact on inter-ISP traffic savings and
that the same amount of upload capacity can reduce more inter-ISP traffic in some
swarms than in others. It is even possible under certain conditions that increasing
the upload capacity of the cache leads to more outgoing inter-ISP traffic. This is
counter-intuitive, but it can be explained by the fact that peers which are fed by
the cache can serve other peers outside their ISP better. Therefore, we argue that

the cache upload capacity needs to be actively managed in multi-swarm scenarios
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to maximize the traffic savings and we consequently propose different allocation
policies of the cache upload capacity and evaluate the performance, cf. [23, 24,
29]. Our simulations show that an appropriate allocation policy can reduce inter-
ISP traffic savings by up to 50 % more than the demand-driven allocation for the
same upload capacity of the cache.

Beyond this monograph, the contribution to the field of traffic optimiza-
tion in P2P-based overlay networks comprises a number of studies on locality-
awareness. In [26], the BitTorrent measurements [5] are combined with the Inter-
net topology obtained from caida.org [92]. This study shows that almost no peers
are located in very large (tier-1) ISPs. Furthermore, it considers different im-
plementation options of locality-awareness and studies which ISPs could benefit
most from them. The remaining studies investigate the performance of locality-
awareness by means of mathematical modeling, simulations, and experiments in
controlled environments such as G-Lab [60] or Planet-Lab [58]. In the area of
locality-awareness, we propose a new mechanism called biased unchoking and
evaluated its performance via simulations [6, 17,20]. The results show that it is a
powerful complement to biased neighbor selection, which is proposed and evalu-
ated in literature, e.g., [51,54]. Besides the studies on pure file-sharing networks,
video streaming overlays are also investigated since video traffic is expected to
dominate the total Internet traffic in the near future [87]. Therefore, a cooperative
traffic management approach for these overlays for video streaming is proposed

and evaluated in [10].

1.2 Qutline of Thesis

The remainder of this monograph is structured as follows. Chapter 2 provides a
detailed explanation of the functionality of overlay networks using the popular
example BitTorrent. Furthermore, it introduces the problem of inter-ISP traffic
caused by overlay networks. Finally, it describes the two prominent solutions for
traffic optimization in overlay networks and reviews related work.

In Chapter 3 we study the nature of overlay networks in today’s Internet. To
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this end, we present the results of our large scale measurement project. We in-
vestigate for example the number of users per swarm and their distribution in the
Internet. This also allows us to derive an estimate of the optimization potential
of locality-awareness in today’s Internet. Finally, we provide a statistical char-
acterization of BitTorrent networks that can be used as input for performance
evaluation of traffic optimization mechanisms.

Chapter 4 studies overlay caches as a means to reduce inter-ISP traffic. We
first investigate the impact of caches on the swarm dynamics for the example of
BitTorrent. Subsequently, we estimate the amount of inter-ISP traffic that can be
saved by caching. Results from simulations and experiments in controlled envi-
ronments are shown to assess the accuracy of the estimates. Finally, we extend
the scenario to multiple swarms and investigate policies for the allocation of the
cache upload capacity. Chapter 5 summarizes this work and draws conclusions.






2 Content Distribution Overlays
and Traffic Optimization

The inherent drawback of client-server architectures for content distribution is
their limited scalability. If a large number of users download data simultaneously
from the same server, congestion is likely to occur on the server since its network
transmission capacity is shared among all users. As a consequence, the time to
complete the download increases [35].

The most popular solution to this problem in today’s Internet are overlay net-
works which work according to the P2P principle. Such networks create a logical
structure on top of the physical network topology. The users, who are often called
peers, help in the data distribution process by offering a part of their upload ca-
pacity. Therefore, the available upload capacity increases with the number of
peers which exchange a given file, which speeds up the distribution process com-
pared to pure client-server architectures. As a consequence, such networks are
widely used in the Internet and responsible for a large fraction of the total Inter-
net traffic [71, 87]. Hence, traffic optimization in overlay networks is important
to achieve an efficient distribution process both from the perspective of the ISPs
and of the users downloading the content.

This chapter gives background information on P2P-based content distribution
and traffic optimization. Furthermore, it reviews related studies and explains how
the content of this monograph extends previous work. The chapter is divided
into three sections. First, it describes the functionality of BitTorrent-based con-
tent distribution overlays in Section 2.1 and presents measurement studies of live

BitTorrent swarms. Second, the problem of the large amount of inter-ISP traffic
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which is generated by such content distribution overlays is introduced in Sec-
tion 2.2. For that purpose, we give a short overview on inter-domain routing and
the ISP hierarchy in the Internet. Finally, the chapter explains mechanisms to de-
crease the inter-ISP traffic of P2P overlays. Such mechanisms are currently under
discussion in the IETF and studied in the research community. They can be di-
vided into the two categories locality-awareness and caching. Both approaches

are presented in Section 2.3 and related studies are reviewed.

2.1 Content Distribution Overlays in the Internet

Although other protocols for content distribution exist, this study focuses on
BitTorrent-based networks since they have been the most popular ones in re-
cent years and generated the largest share of Internet traffic [71]. Therefore,
this section starts with an overview of the BitTorrent functionality. Afterwards,
it presents studies on measurements of live BitTorrent networks and analytical

performance models of BitTorrent.

2.1.1 BitTorrent and its Mechanisms

BitTorrent networks form a separate, mesh-based overlay for every file which is
exchanged within the network. Such an overlay is called a swarm in BitTorrent
terminology and comprises all peers that participate in the exchange of a given
file. Peers which already have the entire file are called seeders. They participate
only by uploading it to other peers. Peers which do not yet have the entire file
are leechers. An overview of the key components and mechanisms of BitTorrent
is given in Figure 2.1. In [40] and [50], a more comprehensive description of the
BitTorrent protocol can be found. We focus on the most important aspects and on
typical configurations in the following.

To facilitate that leechers can contribute their upload capacity to the distri-
bution process of the file, the file is split in smaller parts called chunks, which

are in turn split into a number of blocks. As soon as a leecher has a complete
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Swarm:
All peers exchanging
the same file

Request

Random subset
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Tracker
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ving Neighbor set of P:

All peers that P knows

FIGURE 2.1: Key components and mechanisms of BitTorrent.

chunk, it can upload it to other leechers. In addition, a leecher can download dif-
ferent parts of the file concurrently from a number of peers. This feature is called
multi-source download.

If a new peer wants to join an existing swarm, it contacts the tracker, a central
entity that keeps track of all peers participating in a swarm. The tracker returns
a list of active peers in the swarm. Typically, this list contains around 50 to 100
peers, but the concrete number depends on the configuration of the tracker. The
new peer uses these addresses to establish contacts to other peers in the swarm.
If another peer accepts the contact request then both peers add each other to their
neighbor set and exchange information about the chunks they already have by
sending a bitfield message. If peer A has chunks which peer B still needs then
peer B is interested in peer A and sends an interested message to peer A. As a
consequence, every peer in the swarm knows which neighbors want to download
data from it.

To decide which neighbor actually receives data, the peers employ the choke
algorithm. This algorithm determines the active set of a peer, which contains all
peers that are currently receiving data from this peer. The choke algorithm has

different modes for leechers and seeders. In leecher mode, i.e., when the peer

11
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itself wants to download from others, the peer uploads to those k interested peers
from which it receives data at the highest download rate. Typically, k£ has small
values, for example 3 or 4. The selection process is repeated every 10 seconds
in the default configuration. In BitTorrent terminology, the peers in the active set
are called unchoked peers whereas the rest of the neighbors is choked by the
peers. This strategy is called tit-for-tat and provides an incentive so that every
leecher contributes upload capacity to the distribution process. Otherwise, it is
unlikely that other leechers unchoke it if the load in the swarm is high, i.e., if the
number of leechers is large compared to the seeders. In addition to these 3 or 4
regular unchoke slots, an optimistic unchoke slot exists. Every 30 seconds the
peer assigns this slot to a randomly chosen interested neighbor. The intention is
to test if other peers might provide better download speeds and to bootstrap those
leechers which do not yet have a complete chunk to share and cannot upload any
data.

In seeder mode, the peer has already the complete file. Therefore, the down-
load speed from other peers is no longer a reasonable metric to determine the
active set of this peer. In this mode, different implementations of the choke al-
gorithm exist. For example, the seeder can unchoke those peers to which it has
the best upload speed. This maximizes the upload utilization of the seeder, but it
might also promote free-riding since some peers can download the entire file very
fast and then leave the swarm. Another option is that seeders choose the leechers
in their neighbor set in a round robin manner. For that purpose, they randomly
select a choked leecher every 30 seconds (like for the optimistic unchoke) and
unchoke it. In addition, they choke the unchoked peer which has received data
for the longest time. This leads to a more balanced distribution of the upload ca-
pacity of the seeder among the leechers, but it can reduce the upload speed of the
seeder since some peers might not be able to download the content fast enough.

When a peer completes the download of a chunk, it informs its neighbors about
this fact by sending a have message. However, in some implementations such
messages are only sent to the neighbors which do not yet have the just finished

chunk. The rationale for this have message suppression is that neighbors which

12
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already have this chunk will not change their interested status in the considered
peer due to the newly completed chunk. This feature is intended to reduce the

overhead caused by frequent have messages.

Unchoked peers can specify which chunks they want to download when they
are unchoked. The corresponding algorithm is called chunk selection and it is
guided by a set of policies. The most important policy is the rarest first policy.
This policy makes the peer select that chunk for download which has the lowest
number of copies within the neighbor set of the peer. In this way, it balances the
number of copies of every chunk within the swarm and avoids that some chunks
are very rare. The latter situation can lead to problems if the peers which have
those rare chunks leave the swarm since the other peers cannot complete the

download of the file any more.

The tracker is the only central component in a BitTorrent network. It keeps
track of the peers in the swarm and sends possible contacts to requesting peers.
In practice, there are also tracker-less swarms. In these swarms, peers exchange
information about other peers in the swarm via the peer exchange protocol (PEX)
that is specified in [63]. This has the advantage that no central component is
required in the network. Still, at least one peer has to be known in order to join

such a tracker-less swarm.

All this functionality of BitTorrent describes only how files can be shared
within a swarm. However, it is not part of the BitTorrent protocol to provide
access control or means to search for a given content. For that purpose, so-called
torrent index servers exist. These servers contain meta-information about a large
number of shared files, and the files are typically grouped by their content such
as movies, music or software. From these servers, users can download a .torrent
file, which contains information such as the address of the tracker, the size of the
file and check sums of all chunks of the file. This permits that peers can easily

verify the integrity of data received by other peers.

13
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2.1.2 Measurements of Live BitTorrent Swarms

Chapter 3 presents results of a large measurement campaign of live BitTorrent
swarms. Therefore, this section reviews related studies and discusses in which
respect our work differs.

A survey on how to measure live BitTorrent networks in the Internet is given in
[83] and a comprehensive overview on the entire BitTorrent ecosystem including
all its components such as different torrent index servers and the popularity of
different client implementations can be found in [78]. Other measurement studies
[73, 88] investigate the incentives to publish content in BitTorrent-based content
distribution networks.

In addition, a number of studies [77, 80, 82] measure live BitTorrent swarms
and use their results as input for performance evaluations without a comprehen-
sive presentation and discussion of the measurement results. Some results about
the distribution of BitTorrent peers among autonomous systems (ASes) can be
found in [72, 81], but it is not the main focus of these papers. In contrast, Chap-
ter 3 is intended to provide input for other performance studies of BitTorrent and
in particular for mechanisms which reduce inter-ISP traffic. For that purpose, a
large variety of aspects is considered such as time dynamics, distribution of file
sizes and peculiarities of swarms sharing regional content. Furthermore, statisti-

cal characterizations of these parameters are provided.

The authors of [42] follow the lifetime of one particular swarm (a Linux Red-
hat 9 distribution of size 1.77 GB) for 5 months in 2003 to analyze the per-
formance of the BitTorrent distribution mechanism. To this end, they obtain the
tracker log, which contains the peer population over time and upload/download
statistics. The peer population clearly exhibits a flash-crowd behavior in the first
few days with up to 4500 concurrent peers, but it decreases rapidly and stays
below 500 peers after one month. Additionally, the authors investigate the ses-
sion durations during the first 5 days and provide a geographical analysis of the
peers in the swarm by mapping the IP addresses contained in the tracker log to

countries. In contrast to this study, Chapter 3 is not intended to investigate the per-
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formance of BitTorrent, but to characterize the nature of real BitTorrent swarms.
Therefore, it considers a large number of different swarms from different index
servers and provides statistics, e.g., on the distribution of file sizes and peers over
ASes.

The work in [49] is more closely related to Chapter 3 since the presented mea-
surements are explicitly intended to provide input for mathematical modeling of
BitTorrent swarms. Like in Chapter 3 of this monograph, the authors consider a
large number of swarms and obtain statistics from different torrent index servers.
They analyze the arrival and departure process of the peers and study the session
durations. They observe typical flash-crowd behaviors shortly after the birth of
new torrents and argue that Poisson processes are not suitable to model the ar-
rival of peers over the lifetime of an entire swarm. In a similar way, live BitTorrent
swarms are studied in [47]. There, the authors observe that the availability of files
in BitTorrent becomes poor quickly since the peer arrival rate often decreases ex-
ponentially after a short popular phase of the torrent. Furthermore, Guo et al. [47]
build a graph-based multi-torrent model and study the inter-torrent collaboration.
The work of Chapter 3 extends these two studies in the following way. First, it in-
vestigates additional properties of the measured swarm such as the AS affiliation
of the peers, which is important to evaluate the performance traffic optimization
mechanisms, and whether the peer population exhibits diurnal patterns. Further-
more, it provides statistical characterizations these properties, which can be used

as input for performance evaluations.

In [86], the authors investigate the download characteristics and the popular-
ity of files in BitTorrent networks. They compare these metrics observed in a
university campus with the ones in the global Internet. To this end, they mea-
sure the communication of peers inside the campus network with trackers. In
addition, they track the torrent index server mininova.org and contact the track-
ers listed there to obtain the swarm statistics. Their main observations are that
campus users typically download larger files than the average user and that files
become popular on campus network earlier than at a global scale. Furthermore,

most swarms experience their peak popularity not directly after their birth but
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several weeks later. While popularity of files is also one of the metrics studied in
Chapter 3 of this monograph, the authors of [86] do not study the distribution of

peers over ASes, which is a major aspect in Chapter 3.

2.1.3 Analytical Performance Models of BitTorrent

Since we provide an analytical model to investigate the impact of caches on
BitTorrent-like P2P networks in Chapter 4, we shortly review related studies on
analytical models of P2P networks in the following.

A very tight relation to the work presented in Chapter 4 have the analytical
models of the system dynamics in BitTorrent systems [43,45]. In [45] the authors
investigate the service capacity of P2P networks. They divide the evolution of
the average throughput of such a network into two phases. The first one is the
exponential growth of throughput, where every completed download provides
a new source for the content. This transient phase is modeled by a branching
process. The second phase describes the state of steady throughput, where some
sources disappear while new ones are created. This phase is analyzed via a two-
dimensional Markov chain model. The authors validate their analytical results by
traces obtained from live BitTorrent swarms.

The fluid model presented in [43] is inspired by the Markov chain model
of [45]. However, it is a deterministic model and it is used to study the system
dynamics in a BitTorrent swarm, i.e., the evolution of the number of seeders and
leechers, via a system of two coupled differential equations. The authors pro-
vide closed form solutions for the average number of seeders and leechers in the
steady state by differentiating the two cases whether the upload capacity or the
download capacity of the peers is the limiting factor in the system. In Chapter 4
we use this model and extend it to capture the impact of caching on the system
dynamics of the swarm. In addition to the fluid model, the authors of [43] propose
a Gaussian approximation to study the variability of the number of seeders and
leechers around the mean value predicted by the deterministic fluid model. They

validate their results with experiments in a local and in an Internet-wide setup.
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The work in [46] also extends the fluid model of [43], but in another direction.
It introduces classes of peers with different upload rates and evaluates how the
allocation of upload capacity between these classes affects the performance of
the system. The effects of churn and the download completion ratio are studied
with an analytical model in [53]. Finally, Rimac et al. [64] use a fluid model
to dimension the server capacity in an hybrid P2P content distribution network.
Unlike these studies, we use our analytical model in Chapter 4 to evaluate the

performance of caches in BitTorrent-like content distribution overlays.

2.2 Problem of Inter-ISP Traffic

In this section, we motivate the importance of optimizing the traffic in overlay
networks for content distribution. To this end, we report findings from studies
which measure and predict the amount of such traffic in the Internet. Afterwards,
the section explains relations between ISPs and commonly used charging models.

Finally, it describes the need for traffic optimization.

2.2.1 Traffic of Content Distribution Overlays

Overlays for content distribution are one of the major sources of Internet traffic.
In recent years, they generated about 40 to 70 % of the total Internet traffic de-
pending on the considered continent [71]. The highest fraction was observed in
Eastern Europe at a value of slightly below 70 %. These numbers are based on
traffic measurements which covered around 850000 Internet users and more than
1200 TB of traffic in the years 2008/20009.

More recent numbers are provided in the Cisco Visual Networking Index:
Forecast and Methodology, 2011-2016 [87] published in May 2012. Their ap-
proach to forecast the traffic composition in the near future comprises five steps:
First, the number of Internet users are estimated based on information received
from external analysts. Second, the application adoption is estimated, i.e., the

popularity of certain applications. The third step is to estimate the minutes of use
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for each application type. Those can then be transformed to bitrates, which lead
in the end to the traffic estimate.

According to this study [87], the largest amount of consumer Internet traffic
today is owed to P2P-based content distribution overlays. In 2011, the total con-
sumer Internet traffic worldwide accounted for more than 20 exabytes per month.
P2P file transfer accounted for a share of around 22 %, i.e., for around 4.6 ex-
abytes per month. The authors expect that the absolute volume of this P2P traffic
will increase at a compound annual growth rate of about 8 % until it reaches 10
exabyte per month in 2016. As a consequence, such P2P-based content distribu-
tion overlays will remain a significant source of Internet traffic in the near future,
although other types of traffic such as video transmission (real-time or video-on-
demand) will grow faster than P2P traffic. However, one has to keep in mind that
content distribution overlays and the respective mechanisms can also be used for
these purposes, which is explicitly not taken into account in [87]. This might in-
crease the fraction of consumer Internet traffic which is guided by P2P content
distribution mechanisms even further in the future.

2.2.2 ISP Relations and Charging Models

The Internet of today consists of a large number of autonomous systems (ASes)
operated by many different companies called Internet service providers [34].
These ASes are interconnected at Internet exchange points. All ASes run the Bor-
der Gateway Protocol (BGP) to determine the path between two hosts in different
ASes. However, besides the physical interconnections, commercial relations exist
between ISPs, which determine the BGP configurations, i.e., which ISP forwards
data of which other ISP to the rest of the Internet.

These relations are often confidential and complex, but can be simplified and
classified in three groups: provider-to-customer (p2c), peer-to-peer (p2p)' and
sibling-to-sibling (s2s), cf. [38,55]. In the following we describe these relations

!The term peer-to-peer might be a bit misleading in the context of this monograph since it is used for
the relation of two ISPs and for the distribution paradigm. To avoid confusion, we rigorously use p2p
relation for the ISP relation and P2P network for the distribution network in this section.
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and explain the structure of the Internet in a simplified form. This description
does not capture all details, but it is still sufficient to illustrate the qualitative

impact of inter-ISP traffic on the different types of ISP.

The p2c relation is a direct relation between two ISPs. In this relation, the
provider (ISP A) provides Internet transit to its customer (ISP B), i.e., ISP A
connects ISP B to the Internet. That means that ISP A forwards traffic from ISP
B (and the customers of ISP B) to the rest of the Internet and traffic from the
rest of the Internet to ISP B (and to the customers of ISP B). As a financial
compensation ISP B pays ISP A for the transit service. This payment is typically
based in some way on the traffic volume, but the actual charging model may
vary. A popular charging model is the 95th-percentile model. Here, the rate of
the exchanged traffic is monitored in time slots of five minutes and the price is
calculated at the end of the accounting period, typically one month. The customer
then has to pay for a data rate which is large enough so that it is not exceeded in
95 % of the time slots.

ISPs of similar size often agree on a p2p relation. That means that ISP A
forwards traffic originating in ISP B or in the customers of B to destinations
located within ISP A or the customers of A. This exchanged traffic is normally
not charged by the ISPs but is expected to be balanced, i.e., both ISPs should
sent roughly the same amount of such traffic. The s2s relation between two ISPs
means that they both provide transit, i.e., Internet connectivity for each other.
Such relations can for example be used for connection backup in case that another

transit provider fails.

These relations lead to hierarchical structure of the Internet with a number of
tier 1 ISPs at the top. These tier 1 ISPs have no providers and are interconnected
with each other using p2p relations. Below them, a number of tier 2 ISPs exist.
These are typically of smaller size and are customers of a set of tier I ISPs. Even

smaller ISPs are grouped into the category of tier 3 ISPs.
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2.2.3 The Need for Traffic Optimization

As stated above, P2P-based overlays for content distribution contribute a large
fraction to the total Internet traffic. As a consequence, the first reason to optimize
such traffic is to improve the network efficiency and to reduce the load in the net-
work. Furthermore, the end users of these networks might also benefit from traffic
optimization, for example through faster downloads. Finally, there are financial
reasons to optimize the traffic of content distribution overlays, in particular to
reduce inter-ISP traffic.

For tier 1 ISPs, increased inter-ISP traffic is a potential source of revenues.
However, ISPs of smaller size have to pay their providers for Internet transit.
Therefore, such ISPs have a financial incentive to reduce inter-ISP traffic. From
a theoretical point of view, it might also be more profitable for a tier 2 ISP that
the peers located in its network exchange more traffic with peers within its cus-
tomer ISPs so that less traffic is routed to its provider ISPs. The feasibility of
such optimization mechanisms might however be limited and such sophisticated
scenarios are out of scope of this study. An evaluation of the potential of these
selfish strategies can be found in [26]. Within this monograph, the focus of traffic

optimization is exclusively on the reduction of inter-ISP traffic.

2.3 Approaches to Traffic Optimization

Due to the expensive nature of inter-ISP traffic especially for small and medium-
sized ISPs the research community has put considerable efforts into the investiga-
tion of mechanisms to mitigate this problem. These mechanisms can be grouped
into the two categories locality-awareness and caching.

Locality-awareness represents a class of mechanisms which equip the partic-
ipants of the overlay network, i.e., the peers, with information about the under-
lying physical network topology. This facilitates that network topology informa-
tion can be taken into account to determine the actual data exchange procedures

within the overlay. In this way, the overlay network can optimize its distribu-
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tion process according to the physical network topology, which is expected to
decrease inter-ISP traffic significantly. Implementations of such mechanisms for
BitTorrent and other content distribution overlays are under discussion in the
IETF working group on application layer traffic optimization (ALTO) [62]. As
a consequence, such proposals are also called ALTO mechanisms. Section 2.3.1
explains the concept in detail, presents proposals for concrete implementations
and reviews related evaluation studies.

The concept of caching is not specific to content distribution overlays, it has
already been applied for several years to web traffic [31, 32,37]. The goals of
web traffic caching are to reduce server load and decrease the required network
bandwidth. For that purpose, proxy caches which are closer to the user serve
requests on behalf of the original web server. However, caching is not limited
to web traffic, it is also applied by ISPs for P2P-based content distribution net-
works [39, 48]. Some commercial products such as PeerApp’s UltraBand [90]
and OverSi’s OverCache P2P [75] have already been available on the market for
some years. In Section 2.3.2 we give an overview on caching techniques for P2P
traffic, review related studies and describe how the work presented in Chapter 4
differs from them.

2.3.1 Locality-Awareness

In most of today’s overlay networks for content distribution the actual data ex-
change is exclusively determined by overlay metrics. Among them are for exam-
ple the availability of a specific piece of content, but also the current transmis-
sion speed between two participants or fairness metrics such as the sharing ratio,
which represents the relation between the amount of uploaded and downloaded
data. Since the data exchange is mostly guided by such information, it might lead
to inefficiencies from the network perspective, i.e., from the view point of the
ISP.

Locality-awareness tries to address this problem by incorporating network

topology information in the process which determines the data flow within the
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overlay. The aim is that peers which are located close to each other in the physical
network preferentially exchange data with each other. Most proposals to imple-
ment this idea in the current Internet require a form of localization service, which
provides access to topology information to the overlay network. Furthermore,
different proposals exist about which information should be accessible by the
overlay network since ISPs typically do not want to disclose their actual network
topology. In addition, the algorithms of the overlay network need to be adapted
to take into account network information. In the remainder of this section we
discuss these issues in detail and explain proposals taken from literature.

Localization Services

One of the earliest proposals for a localization service is presented in [54]. In this
work Aggarwal et al. investigate an oracle service, which is provided by the ISP.
Peers can send a list of possible sources for the content they desire to this oracle
and the oracle orders the list according to the ISPs preferences. For example,
the oracle can rank the peers based on their AS affiliations, the number of AS
hops or the distance to the edge of the AS of the requesting peer. Furthermore,
geographical information can be included in the ranking process or performance
information such as available bandwidth or congestion in case the oracle has
access to such information.

In this way, the use of an oracle service facilitates that the ISP can influence
the traffic exchange in the overlay network, which was not possible before. In
addition, this process is not only expected to improve the ability of the ISP to
do traffic engineering of its overlay traffic, but also to improve the performance
experienced by the peers in the overlay network in terms of low latency and high
throughput [54]. Since the oracle service only ranks candidate peers based on cer-
tain metrics, it does not need to disclose concrete information about the physical
network topology of the ISP. This permits that the ISP can guide the peer selec-
tion process in the overlay network without revealing confidential information
about its network topology. Nevertheless, some form of reverse engineering of

such information might be possible if the oracle is asked to rank a large number
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specifically targeted candidate lists of peers.

The authors of [54] investigate the performance of the oracle by graph based
simulations, simulations of the Gnutella protocol [41] and testbed experiments
with a modified version of Gnutella client [79]. They show that graph proper-
ties of the overlay network are not adversely impacted by the use of the oracle
service. In addition, it increases the intra-AS localization of the overlay traffic
significantly.

Another form of localization service proposed by Xie et al. [66] is the iTracker.
In fact, the authors propose an entire architecture called provider portal for ap-
plications (P4P) which is not only targeted at content distribution overlays, but
the study uses these overlays to illustrate and investigate the P4P architecture.
The iTracker can be queried by peers or application trackers, but the evaluation
in this work focuses on the case that the iTracker only communicates with the
application trackers. For this communication, the iTracker has defined interfaces
of which the most important one is the p-distance interface. It allows applications
to query the iTracker about the “cost” of the path between two end points. This
p-distance can be based on current status of the network, preferences of the ISP
regarding traffic engineering or the distance of the two end points. The authors
provide an example how to calculate the p-distance to minimize the maximum
link utilization in the network of the ISP and explain how this problem can be
decomposed so that a distributed solution on a number of iTrackers is possible.

For scalability and privacy reasons, every IP address is associated with an
opaque ID (PID), which can serve as an aggregation node. A PID can for exam-
ple be a point-of-presence (PoP) in the network of the ISP and aggregate all IP
addresses connected to this PoP. The iTracker computes the p-distance p;; be-
tween two PIDs ¢ and j and communicates the result to the application. However,
other definitions of a PID are also possible. This permits to tune the PIDs be-
tween fine- and coarse-grained localization information. In general, fine-grained
localization might facilitate better optimization algorithms, but it faces scalabil-
ity problems at the iTracker and exhibits a very detailed view on the network of

the ISP, which probably contradicts privacy policies of the ISP. This type of com-
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munication is currently under standardization in the ALTO working group of the
IETF [85].

For the evaluation of the P4P architecture, the authors modify a number of
P2P protocols including BitTorrent to communicate with the iTracker and to in-
corporate the p-distance in the peer selection process. The modified version of the
tracker selects the neighbors for a requesting peer in three steps. First, up to 70 %
of the m neighbors are selected from the same PID if available. Second, neigh-
bors from the same AS are selected so that the total number of selected neighbors
does not exceed 80 %. Finally, neighbors from other ASes are selected. The last
two steps are determined by the p-distance. This modification is a form of biased
neighbor selection, which is discussed later in this section in more detail.

To quantify the performance, simulation studies are performed as well as
Planet-Lab [58] based Internet experiments. The studied performance metrics are
(1) the completion time (time to download the file), (2) the bandwidth distance
product (BDP, average number of backbone links that a unit of P2P traffic tra-
verses), (3) the P2P traffic on top of the most utilized link and (4) the charging
volume (according to 95th percentile charging model). The investigations show
that all these metrics can be reduced considerably by the use of the P4P architec-
ture compared to the legacy application peer selection in simulations and in the
Internet experiments.

Choffness et al. [59] propose a localization service that does not rely on ad-
ditional infrastructure like for example an iTracker or an oracle. Instead, they
propose to use the existing infrastructure of content distribution networks (CDN)
such as Akamai [84] in the following way. CDNs maintain a large number of
servers around the world to serve content to end users at a high performance. To
dynamically select a server that is close to the end user and to permit load balanc-
ing within the CDN, it uses the domain name system (DNS). The user requests
the content at a static hostname, but this hostname can be resolved to different IP
addresses depending on the geographic location of the users.

Choffness et al. provide a plug-in called Ono for the popular BitTorrent client
Vuze that exploits this fact in the following way. It repeatedly queries the Akamai
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DNS servers for a number of hostnames and saves the redirection ratios to dif-
ferent IP addresses. To judge how close another candidate peer is, Ono compares
the redirection ratios of itself and the other peer using the cosine similarity. If the
redirection behavior is similar, those peers preferentially exchange traffic.

In their evaluation, the authors show that the CDN redirection behavior is in
fact a good predictor of short paths between peers in terms of AS and IP hops
and of high performance in terms of high throughput and low latency. However, a
considerable fraction of peers in a swarm need to be Ono-enabled since only those
peers can exchange information about the redirection behavior. That means that
Ono peers cannot determine the proximity of non-Ono peers. As a consequence,
Piatek et al. argue based on Planet-Lab experiments that the impact of Ono is
small in practice [70].

The topology-aware BitTorrent (TopBT) client [77] goes one step further in not
relying on the CDN infrastructure. It tries to obtain all information about network
proximity from the network itself by operating system commands such as ping
and traceroute for latency and IP hops. For the AS affiliations and the number of
AS hops, it downloads prefix-AS mappings and BGP routing table dumps from
public databases such as RoutesViews, RIPE NCC and China CERNET.

Overlay Modifications to Incorporate Localization

To increase the locality of P2P traffic from content distribution overlays it is
not only required to provide information about the physical network topology to
the overlay network. In addition, it is also necessary that the overlay networks
incorporate this information in the mechanisms that guide the traffic exchange
process within the overlay. In the following we present possible modifications of
the BitTorrent protocol which take into account topology information.

An early proposal by Bindal et al. [51] is to bias the neighbor selection of
BitTorrent so that it contains a large fraction of peers from the same AS. To
implement this behavior in practice, the authors propose two strategies. The first
one is to modify the overlay software. If the tracker has access to AS affiliations

of the peers, it can select the appropriate set of candidate peers when it is asked
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FIGURE 2.2: Biased neighbor selection. The tracker has information about the AS affiliation of the
peers and returns lists of possible neighbors that preferentially include peers from the same AS as the
requesting peer.

for possible neighbors by a new peer joining the swarm. This process is illustrated
in Figure 2.2. The other option mentioned in [51] is to use deep packet inspection
(DPI). In this way the ISPs can keep track of peers within their network and
intercept requests of new peers to the tracker to replace the peer list with peers

from the same AS.

Bindal et al. investigate the performance of biased neighbor selection via sim-
ulations of the modified BitTorrent protocol. They simulate a BitTorrent network
with 700 peers, which are equally distributed among 14 ASes. They investigate
the impact of the fraction of local peers in the neighborhood, the impact of the
so-called university nodes and the one of bandwidth throttling by ISPs. Perfor-
mance metrics are the download time of the peers and the traffic redundancy, i.e.,
the amount of data downloaded from peers in remote ASes divided by the file
size. The simulations show that bandwidth throttling reduces traffic redundancy
but increases the download time at the same time. In contrast, biased neighbor se-
lection permits to reduce traffic redundancy even more without a negative impact
on the download time, even if all but one neighbor are from the same AS as the

requesting peer. Furthermore, biased neighbor selection is in particular helpful
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FIGURE 2.3: Biased unchoking. In BitTorrent, a random neighbor is chosen for the optimistic unchoke
slot. In contrast, biased unchoking selects a random neighbor from the same AS for this slot.

for the peers to avoid the bandwidth bottleneck if the ISP throttles connections
leaving its AS.

However, the neighbor selection mechanism is not the only option to bias the
traffic exchange in the overlay. The actual traffic exchange in BitTorrent is deter-
mined by the choke algorithm, which decides to which neighbor a peer uploads
data. As a consequence, the choke algorithm is also suitable to increase the local-
ity of BitTorrent traffic. The corresponding concept is called biased unchoking
and is proposed in [17]. Since it does not rely on a particular neighbor selection
mechanism, it can be used as a complementary mechanisms to biased neighbor
selection.

With biased unchoking, only the selection of the peer for the optimistic un-
choke slot is changed. The regular unchoke slots, which are allocated according
to the tit-for-tat policy in the leecher mode, are not modified to keep the sharing
incentives of BitTorrent untouched. In the default BitTorrent algorithm, a ran-
dom, choked and interested neighbor is chosen for the optimistic unchoke slot.
In contrast, biased unchoking selects a random, choked and interested neighbor
from the same AS with a probability p, where p = 1 is used in the evaluation
in [17]. This process is illustrated in Figure 2.3.

The performance evaluation in [17] is based on simulations with homogeneous
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peer distributions over ASes. The authors investigate the impact of the number of
peers per AS and the impact of bandwidth throttling by the ISPs, like in [51]. In
addition, they study the performance when biased unchoking is used in combi-
nation with biased neighbor selection. The simulations show that this combina-
tion is in particular effective both to reduce inter-ISP traffic and to mitigate the
negative effects of bandwidth throttling for the peers. The reason is that biased
neighbor selection achieves that many neighbors of the peers are from the same
AS and biased unchoking facilitates that these neighbors are used for the actual
traffic exchange.

The study in [22] investigates the performance of biased neighbor selection
and biased unchoking when the bias is based on metrics derived from BGP pref-
erences of the ISPs. This approach is also suggested in [66]. The evaluation shows
that it can also reduce inter-ISP traffic considerably compared to the default Bit-
Torrent case.

Performance Evaluation Studies

The localization of overlay traffic has received considerable attention in the re-
search community during recent years. Therefore, a number of studies exist
which evaluate the performance of these proposals under different scenarios and
by different means. In the following, we summarize these studies. Finally, this
section describes how this monograph differs from them.

The seminal study of Karagiannis et al. [48] investigates the potential of traffic
localization in P2P overlay networks based on BitTorrent tracker logs and pay-
load packet traces. They study the hit ratios (files, bytes and pieces that have al-
ready been downloaded in the respective ISP) and the peer overlap in time since
only concurrent peers in the same AS can exchange data. The measurements
show that around 10 % of the files are downloaded by at least 2 peers simulta-
neously within the monitored ISP and this is the case for 30 to 70 % of the trace
time depending on the considered file. Using the traces they simulate different
content distribution scenarios including client/server, random P2P, locality-aware

P2P and caching. The results show that random P2P consumes considerably more
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inter-ISP traffic than client/server, but locality-aware can mitigate this negative
effect and reduce inter-ISP traffic.

Similarly, a set of studies [6,20,80,81] extend the above presented evaluations
of biased neighbor selection [51] and biased unchoking [17] to more realistic
scenarios derived from real-world traces. The studies [6,20] use a simplified form
of the distribution of peers over ASes proposed in Section 3.3 to define realistic
scenarios. In these scenarios, they discover the effect that biased unchoking can
lead to unbalanced download times, i.e., some peers can download faster than
others depending on their AS affiliations. In addition, countermeasures for that
problem are proposed and evaluated.

Blond et al. [80] also base their scenario definition on real-world tracker traces.
For that purpose, they crawl 200,000 torrents spread among more than 9,500
ASes. Using experiments in controlled environments with real BitTorrent clients,
they investigate the two questions (1) how far locality can be pushed and (2)
how large is the reduction of traffic by locality at the scale of the Internet. For
that purpose, they experiment with homogeneous and skewed, real-world dis-
tributions of peers over ASes. The authors propose improvements to traditional
locality mechanisms and show that their locality mechanisms could have saved
40 % of the total traffic generated by the swarms contained in their measurement
trace without a negative impact on the download time.

Cuevas et al. [81] also base their evaluations on tracker traces of more than
40,000 swarms. By mathematical modeling they derive upper and lower bounds
for the inter-ISP traffic reduction across hundreds of ISPs. In addition, they inves-
tigate three different locality policies, which they also implement in the Mainline
BitTorrent client and test by connecting to live swarms with the modified client.
Finally, they highlight the fact that the win-win situation of end users and ISP is
given in many torrents, although a few unlocalizable torrents exist with only very
few peers in the same AS, where locality is either not possible or harmful for the
user experience.

The work contained in this monograph differs from the aforementioned stud-

ies on localization services, overlay modifications and the respective performance
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evaluations in the fact that it does not propose and evaluate concrete localization
services for content distribution overlays. Instead, it provides a comprehensive
measurement study of the nature of BitTorrent swarms in the current Internet
in Chapter 3. This is intended as a basis for performance evaluation of local-
ization services and overlay modifications. For that purpose, this chapter also
presents statistical characterizations, which serve as input for simulations and
scenario definitions. In addition, this monograph investigates the performance of
P2P caching as an alternative means to reduce inter-ISP traffic in Chapter 4. This
is not considered in the aforementioned studies. Literature related to caching is
reviewed in the following.

2.3.2 Caching

Caching of P2P traffic has been a hot research topic in recent years and several
studies exist which are related to the work that is presented in Chapter 4 of this
monograph. In the remainder of this section we explain the basic concept, de-
scribe the content of related studies and discuss the differences to the work in
Chapter 4 of this monograph.

Caching of P2P traffic is inspired by traditional caching of web traffic. The
basic idea is that the ISP provides a cache in its network, which stores content
that is requested multiple times. Consequently, all requests to that content can be
served by the cache and the content does not need to be downloaded from remote
locations. This reduces incoming inter-ISP traffic. This process is illustrated in
Figure 2.4. Different types of implementation are possible for this concept, but
this basic design holds for all of them. For example, in some implementations
the peers are aware of that requests are served by the cache. Furthermore, dif-
ferent ways exist of how and whether peers are informed of possible caches. In
Section 4.1, we present the different types and their functionality in more detail.

The earliest works on caching of P2P traffic [39,48] focus on the achievable
cache hit ratios, i.e., how often the cache can serve a request to a given content.

The aims of Leibowitz et al. [39] are to measure the characteristics of P2P traffic,
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FIGURE 2.4: Caching of P2P traffic. The cache stores popular content and serves requests of the peers
within the network of the ISP. This avoids that this data needs to be downloaded from remote peers and
decreases incoming inter-ISP traffic. Depending on the cache design peers can still download other parts
from remote locations (dashed arrows), which is not considered in related studies.

to compare it to http traffic and to investigate whether P2P traffic can be cached.
For that purpose, they transparently collected the P2P traffic at a major Israeli
ISP for a duration of one month. They observe that wide majority of P2P traffic
is caused by the download of movie files and that around 20 % of the downloaded
files account for 80 % of the total P2P traffic. This finding from the year 2002 is
in line with the results that we present in Chapter 3, although the typical size
of the files has changed since then from around 5 MB to several hundred MB in
2009.

In addition, Leibowitz et al. investigate the theoretical caching potential and
the empirical performance of a caching mechanism. The theoretical investigation
is based on replays of the measured trace where the most popular files are identi-
fied and the theoretical byte hit rate is calculated depending on the available disk
space. The results show that the achievable byte hit ratio can reach up to 67 %,
i.e., this fraction of traffic could have been saved by using a cache. Furthermore,
only 200 GB of disk space are required to achieve a byte hit ratio of 60 %. In their
empirical validation using the implemented caching algorithm in the network of
the ISP, they measure a byte hit rate of 50 %.
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The aforementioned study [48] by Karagiannis et al. does not only consider
locality-aware P2P content distribution but also caching of P2P traffic. In their
study, they consider three payload packet traces from an ISP in the year 2004
with a duration slightly longer than one day. They report possible savings of
a perfect caching infrastructure, where each involved ISP installs a cache with

unlimited disk storage, of about 90 % compared to a pure client server model.

Since disk storage of the cache is not unlimited in practice, the efficiency of
different cache eviction policies is studied in [44] for the FastTrack file-sharing
protocol based on the same traces as used in [39]. Cache eviction or replacement
policies are used by the cache to decide which content should be removed from
the disk to store new content if the disk storage is exhausted. Such policies can
operate both on file level, i.e., only entire files can be replaced, or on range level,
i.e., certain ranges of a file can be replaced. The policies investigated in [44]
comprise policies such as least recently used (LRU), least frequently used (LFU),
minimum size (MINS), least sent bytes (LSB) and some more sophisticated ones.
Their results show that the eviction policies have a large impact on achievable hit
ratio of the cache and that the hit ratio can reach up to 80 %. Finally, the LSB
policy performed best in their evaluations when entire files are replaced.

Hefeeda and Saleh [61] build on [44] and design and evaluate an improved
caching algorithm termed proportional partial caching. This algorithm is based
on segmentation and admits new files and evicts old files only partially. The
algorithm 1is inspired by the nature of the object popularity distribution which
the authors measured during a period of nine months in the Gnutella P2P net-
work. The investigation of this trace shows that the object popularity follows a
Mandelbrot-Zipf distribution. In contrast to the Zipf distribution, which is used
to model the popularity of web objects, the Mandelbrot-Zipf distribution has an
additional parameter and a flattened head. This permits that this distribution fits
well the popularity of P2P objects, where the most popular objects are not as
often requested as predicted by a pure Zipf distribution (cf. [44,61]).

The facts (1) that the set of popular objects is not limited to a very small

number of files and (2) that most files are very large make replacement policies
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ineffective. This is in particular true for caches which store complete files upon
the first request. Therefore, the idea of proportional partial caching is to partially
admit new files to the disk storage of the cache and to increase the portion of the
file if more requests to this file occur. The evaluation of this mechanisms using the
Gnutella traces shows that this algorithm outperforms the ones presented in [44].

The work presented in [82] investigates how different ISPs can cooperate in
caching P2P content and to which degree this increases traffic savings. Cooper-
ation means here that the cache of an ISP serves not only requests of the peers
within its network but also requests of peers in cooperating ISPs. The study uses
game theory to model cooperative caching as n-person non cooperative game.
The author shows that a pure strategy Nash equilibrium exists. In addition, he
proposes two algorithms to solve the game and investigates the potential bene-
fits for the ISP via trace-driven simulations on a real AS topology of northern
Europe.

The focus of the aforementioned works was mostly on the achievable cache hit
ratios [39,48], on the efficiency of different cache eviction policies [44, 48, 61]
or on cooperation algorithms between ISPs. All of them used trace-driven simu-
lation in order to assess the performance of the studied algorithm. The traces are
measured in networks of ISPs or taken from popular file-sharing servers. For their
evaluations most of these studies assume that (1) peers inside the ISP download
all content available at the cache exclusively from there and (2) do not change
their uploading behavior due to the data received from the cache, which are both
typical assumptions for trace-driven evaluations. In contrast to these studies, we
do not rely on these two assumptions in Chapter 4 of this monograph. Instead, we
study the efficiency of caches in BitTorrent-like P2P networks under the assump-
tion that all required files are available at the cache. We develop a model of the
impact of caches on the peer population and derive the inter-ISP traffic based on
the peer population in the different ISPs. This shows that these two effects have
an important impact on inter-ISP traffic. As a consequence, the work presented

in Chapter 4 is complementary to the aforementioned studies [39,44,48,61,82].
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3 Overlay Networks in Today’s
Internet: Measurements and
Characterizations

The performance evaluation of traffic optimization techniques in overlay net-
works requires a thorough knowledge of the nature of current overlay networks.
Such knowledge is helpful to define scenarios, models, and parameters for perfor-
mance evaluations that reflect the characteristics of real-world overlay networks.
In this way, it ensures that performance results give meaningful insights for real-
world scenarios.

The most popular overlay network for content distribution today is BitTorrent.
It is also responsible for a large fraction of intra- and inter-ISP traffic in the Inter-
net [71]. Therefore, we use it as an example overlay network in this chapter and
investigate the properties of today’s BitTorrent networks. To this end, we perform
a large-scale measurement study of live BitTorrent swarms and derive important
characteristics relevant for traffic optimization in overlay networks. The mea-
surement results comprise a comprehensive set of swarms for different types of
content listed at the index servers mininova' and piratebay.> We have measured
the swarm size as well as the swarm dynamics in terms of number of leechers
and seeders, and the distribution of peers over ASes per swarm. We have also
analyzed the details of individual swarms to understand content clustering, e.g.,
the availability of certain content in specific regions only. The measurements have

! http://www.mininova.org/
2http://thel.)iralebay.se/
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been performed from June 2008 to May 2009 using the PlanetLab [58] and G-Lab
experimental facilities [60]. Some additional measurement results are provided in
our technical report [68]. Based on these measurements and an additional pub-
lic data set, we derive characterizations of the swarm size, the distribution of the
peers over ASes, the fraction of peers in the largest AS, and the size of the shared
files. In addition, we present multivariate correlation matrices of these parame-
ters to show to which degree these values depend on each other. In particular, our
characterization of BitTorrent swarms reflects that peers are not homogeneously
distributed among ASes, but most of the peers are located in a small number of
top ASes. Furthermore, quantitative results on the skewness of the peer distribu-
tion based on the measurements are provided.

The measurement results and the characterizations serve as input for the per-
formance evaluation of traffic optimization in overlay networks to gain insights
into the behavior of proposed solutions for traffic optimization in overlay net-
works under real-world conditions. Therefore, we use them in Chapter 4 to in-
vestigate the optimization potential of different caching strategies in BitTorrent
networks. In addition, our measurement results show the composition of a large
set of swarms observed in the Internet, which can be used to assess the over-
all gain of a proposed solution if the gain achieved in some typical scenarios is
known. In particular, they show that 80 % of the BitTorrent peers are located in
20 % of the swarms. Finally, a deeper understanding of AS-level properties of
real BitTorrent swarms helps in refining current proposals and in designing new
mechanisms.

The content of this chapter is mainly taken from [5]. Its remainder is orga-
nized as follows. We explain the measurement setup in Section 3.1 and provide
the measurement results in Section 3.2. Based on these results, we present the
corresponding statistical characterizations for BitTorrent swarms in Section 3.3.

Finally, Section 3.4 summarizes this chapter.
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3.1 Setup of Overlay Measurements

The measurement setup described in this section aims at gathering data about
live BitTorrent swarms. The data serves as input to derive characterizations of
the parameters relevant to traffic optimization in overlay networks in Section 3.2.

3.1.1 Conducted Measurements

To gain a more diverse view on the characteristics of existing swarm types than
in the literature, we chose specific sets of swarms to measure. These are defined
by a number of selection criteria which help to define a number of swarm classes.
In contrast to [72], we do not only analyze swarms found on one index and only
distributing videos. Instead, we expand the insights gained from observing these
swarms to other classes of swarms as well. According to a certain selection crite-
rion and the desired type of content, the . torrent files are downloaded from a
torrent index. As selection criteria, we consider (a) all available torrents, (b) the
most popular torrents in terms of number of peers in the swarm, and (c) the most
recent files which have been published in the last 24 hours. As type of content,
we distinguish between (1) music files, (2) TV series, (3) movies, (4) so-called
“regional” movies which are in a certain language (German, Spanish, French,
Italian, Dutch), and (5) all media independent of the type of content. These types
are based on the user classifications at the torrent index servers. The considered
torrent index servers cover the currently most popular ones in the Internet, (i)
PirateBay, (ii) Mininova, and (iii) Demonoid [78]. Here, the criteria (a)(3) and
(a)(4) correspond to the class of swarms evaluated in [72]. Thus, we additionally
consider other content types and indexes as well as specific subsets of swarms.
Table 3.1 summarizes the measurement experiments conducted over the pe-
riod from June 2008 to May 2009. Each measurement experiment is assigned a
unique identifier ID, which is used when describing the measurement results. In
particular, we measure in each experiment the swarm size, the swarm dynamics,
and the distribution of peers over ASes (’peer-dist.”). In order to measure the total

number N of peers in a swarm and their corresponding ASes, we contacted the
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tracker and requested a list of peers. As a result, the number of seeders S and
leechers L, and a set of k different IP addresses of peers are returned.

Since a tracker typically returns £ = 50 IP addresses for a single request,
we used a large number of machines with BitTorrent clients running on each of
them. They contact the tracker simultaneously in order to get the IP addresses
from all peers in the swarm at a single point in time, i.e. a snapshot of the swarm.
In particular, several requests are sent within 5 minutes from all 219 nodes in
PlanetLab and 153 nodes in G-Lab, respectively, until N = S + L different IP
addresses are obtained. Then, the IP addresses are mapped to the origin AS us-
ing the RIPE database®. This measurement method is referred to as distributed
monitoring in the remainder of the paper. However, for measuring the swarm
size only, it is sufficient to monitor the tracker (denoted as ’tracker monitored’
in Table 3.1 for setups Pop and 24h) or to parse the website of the torrent in-
dex ("website parsed’), as done in experiment TV. Additionally, we consider a
publicly available data set from Khirman [69] with measurement results of the
swarm sizes of torrents on different torrent index servers (KP1i, KDe, and KM1i).
With all three techniques (' website parsed’, "tracker monitored’, and ’distributed
monitoring’) we can measure the swarm size. The distribution of peers over ASes
can only be measured in those experiments where we used distributed monitoring
of the tracker (cf. columns ’techniques’ and ’observed’ in Table 3.1) which is an
extension of the method ’tracker monitored’.

To study the time dynamics of a swarm, several samples of the swarm size
and the distribution of peers over ASes are captured over a longer period of time
which is denoted as “xx samples every yy hours” instead of “snapshot” in the
column “measurement per swarm” in Table 3.1. In that case, for example the av-
erage swarm size over this period of time is given, which may result in a decimal
number, while a snapshot of a swarm always returns an integer value.

The different data sets describe the BitTorrent swarms under consideration
with a different level of detail (Table 3.1). For example, the distribution of peers
over ASes is only studied for the experiments performed in April 2009, i.e., Grp,

3RIPE NCC, http://www.ripe.net/data- tools/stats/ris/riswhois
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Mov, Mus, Reqg and Ele. The reason is that we started with a rather basic tech-
nique (’website parsed’) in June 2008 and improved it during the course of this
work. Therefore, we are not able to present the distribution of peers over ASes
for the experiments TV, Pop, and 24h, and this information is also not contained
in the data sets KPi, KDe, and KMi we took from [69]. Furthermore, data about
the change in the number of peers over time is only available for the experiments
TV, Grp, and Ele. This is partially owed to feasibility reasons, in particular for
the Mov and Mus experiments the number of swarms was too high to take hun-
dreds of samples of the swarm via distributed monitoring. While one needs to be
aware of the aforementioned issues when interpreting the data, we suppose that
their impact on the presented results is small and that the measurements remain
comparable. For example, we will show for the Mov and Mus data sets that the
IP addresses obtained via distributed monitoring are in good accordance with the
number of peers obtained by tracker monitoring (cf. Figure 3.1).

Some BitTorrent swarms exist without a tracker and are therefore called
tracker-less. In these swarms the peers exchange the addresses of other peers
in the swarm among each other using the peer exchange (PEX) protocol [63] or
the Kademlia DHTs built into uTorrent and Vuze. Since it is not possible to mon-
itor those torrents with the aforementioned techniques, tracker-less torrents are
not considered in this study.

3.1.2 Distributed Monitoring of a Tracker

The distributed monitoring of a BitTorrent tracker for obtaining the distribution
of peers over ASes relies on experimental facilities, like PlanetLab [58] or G-Lab
[60], with a large number of nodes. They are controlled by a central unit C' which
is located at the University of Wuerzburg in our measurements. C' has established
connections to the used PlanetLab and G-Lab nodes 2. C'is responsible for the
distribution of the . torrent files to these monitoring nodes 2, the initialization
of the monitoring on 2 and the collection of the created result files from (2.

The monitoring on each node itself is realized with a python script that queries
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TABLE 3.1: Overview on conducted measurement setups.

ID torrent selection type of meas. per #torrents | technique observed meas. date
index criteria content swarm
TV PirateBay all available vV 96 samples 63,867 website parsed swarm Jun. 2008
series over 36 size
hours
Pop PirateBay most popular movies snapshot 4,463 tracker moni- swarm Mar. 2009
tored size
24h PirateBay last 24 hours all media snapshot 1,048 tracker moni- swarm Mar. 2009
tored size
Grp Mininova groups w.r.t. movies 440 samples 16 distributed swarm Apr. 2009
size & lan- over 88 monitoring size and
guage hours peer-dist.
Mov Mininova all available movies snapshot 126,050 distributed swarm Apr. 2009
monitoring size and
peer-dist.
Mus Mininova all available music snapshot 135,679 | distributed swarm Apr. 2009
monitoring size and
peer-dist.
Reg PirateBay top 30 regional snapshot 120 distributed swarm May 2009
movies monitoring size and
peer-dist.
KP1i PirateBay all available all media snapshot 1,682,355 data taken swarm Mar. 2009
from [69] size
KDe Demonoid | community all media snapshot 11,759 data taken swarm Mar. 2009
selected titles from [69] size
KMi Mininova legal torrents all media snapshot 4,514 data taken swarm Mar. 2009
promotion from [69] size
Ele open movie “Elephants Dream” 8,640 samples| 1 distributed swarm Apr. 2009
over 24 monitoring size and
hours peer-dist.
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a tracker n times every t seconds. In our measurements, ¢ is set to 15 seconds
to avoid overloading the tracker, while n is chosen according to IV, using the
analysis described below.

In the following, we derive the number Y of required monitoring nodes in
order to obtain all IP addresses of N peers in a swarm. Upon each request, the
tracker returns a subset of k& = 50 peers which are randomly chosen from all N
peers. Denote by X the number of times the tracker has to be contacted to get
N different IP addresses. The derivation of X is known as the coupon collector’s
problem [56]. [52] derives an exact solution which is given in the following.

Let P(j,7) denote the probability to observe j different IPs after the i-th
tracker response. It is P(j,7) = 1 for 5 < k and ¢ > 0 since the first tracker
response returns k different IPs. It is P(j,7) = 0 for j > min (¢k, N), since
a maximum of ¢k different IPs are retrieved after the i-th tracker response and
there are only IV different IPs. This allows to recursively compute P(7, %) for all
other cases according to

R A R
P(ji)= ) 2 P(j—m,i— 1), (3.1
m=0 k )
which simply considers the number of possibilities to obtain £ — m old and m
new IPs, normalized by the number of possibilities for £ different IPs of a tracker
response. As a result, we obtain the distribution X of the number of required
tracker responses to get all N IPs which is P(X = i) = P(N,1).
An upper bound of the average number of required tracker responses E[X] =
Py zIIVD(N ,1) can be approximated [56] using the harmonic number hy =
f lle dz,

0 1—=z

N - hy
k )

which is exact for k& = 1. For example, to get a snapshot of the distribution of

E[X] ~ (3.2)

peers over ASes of a swarm with N = 20, 000 peers, around n = 20 requests
have to be sent from each of the 219 used PlanetLab nodes. This takes n - t =

5 minutes. The computation of the number of tracker requests allows to estimate
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the required number of monitoring nodes and to adjust appropriately the param-
eters t and n if a time frame of 5 minutes is allowed for capturing the snapshot.

However, it has to be noted that Equation 3.2 only returns the average number
of required tracker responses. Checking the percentage of missing IP addresses
in our measurements, we observed that only for a small number of swarms some
IP addresses are missing. In particular, we checked the percentage of missing IP
addresses when observing the distribution of peers over ASes of a swarm which
we did for the data sets Mus, Mov, Reg, Grp, and Ele. Figure 3.1 shows the
cumulative distribution function (CDF) of the percentage of missing IP addresses
when measuring the distribution of peers over ASes for the movies (Mov) and
music files (Mus). For 97.5 % of all movies (Mov) and more than 98.5 % of all
music files (Mus), all IP addresses in the swarm were captured. For the Reg data
set, which contains 120 swarms, all IP addresses are available for 118 swarms
and in the Grp data set we have them for all swarms. A reason for missing IPs is
the fact that peers may go offline during the measurement interval of 5 minutes.
This has no effect on the numerical values or on the conclusions.

To conclude this section, we describe as a side note one peculiarity we discov-
ered during our measurement study. In our measurements, we found one swarm
(Ele) for which we discovered only 10 % of the peers. In particular, the tracker
returned a swarm size of 400,000 peers, however, we only observed 30,000 IP ad-
dresses. We used 219 PlanetLab nodes and requested the tracker every 10 seconds
from each machine over 24 hours. Thus, we received more than one million
tracker responses with 50 IPs. In that case, we should observe at least around
375,000 different IPs.

There are two possible reasons for this observation. The first one is that
the tracker always returns the same IP addresses. This could be the case when
locality-awareness mechanisms are implemented by the tracker. However, this
is not the case here; the nodes in PlanetLab are distributed world-wide. Thus,
it seems reasonable that the random generator or the function which returns a
random subset of all peers is wrongly implemented.

The second possible explanation is that the tracker returns wrong information
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about the number of seeders and leechers in the swarm. Since this tracker hosts
only a single file (E1le), we cannot check this hypothesis using other swarms
hosted at the same tracker. Still, the second explanation seems more likely to
be the case, but we cannot prove it without investigating the source code of this
tracker. In both cases, the question arises how an ALTO mechanism can reliably

monitor swarms for badly implemented trackers.

3.2 Measurements of Real-World BitTorrent
Swarms

In this section, we describe the results of the measurements. We focus on obser-
vations where previous studies provide only a general impression or where the
results for specific swarm types contradict the accepted knowledge. In particu-
lar, we are interested in the characteristics of the swarm size and its temporal
development. Additionally, we consider the distribution of peers over ASes and
over different countries, the clustering of peers in ASes and the correlation be-
tween the number of peers in an AS and its AS degree since these parameters are

assumed to have important implications for the viability of locality promoting
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mechanisms. Finally, we report our findings on content that is popular only in
specific geographic regions and summarize our main findings as well as limita-

tions of this study.

3.2.1 Population Sizes in Swarms

First we take a look at the size of the measured swarms. For this purpose, we
analyzed the seeder and leecher population of swarms for different content types,
e.g., movies, TV shows and music files, which are registered at different BitTor-
rent index websites.

Figure 3.2 shows the observed swarm sizes for the data sets TV, Pop, 24h,
Mov, Mus, KPi, KDe and KMi. The distribution of the number of peers is sim-
ilar for all data sets except for the 24h and Pop set. An explanation for this
divergence is the fact that these two sets feature swarms with specific character-
istics due to the popularity of the shared content. While the Pop set of swarms
contains swarms with highly sought content by definition, it is a reasonable as-
sumption that the recently added files of the 24h set are also more popular than
the average since users are interested in new content which is available for the
first time.

The according data for all measurements is given in Table 3.2. It contains the
statistics for the total number of observed swarms, the mean value p and coeffi-
cient of variation c,qr of their sizes in terms of number of peers, the skewness,
kurtosis and maximum of the swarm size distribution as well as the 95th per-
centile go5 both as an absolute value and normalized by the mean swarm size.
Finally, the fraction of swarms 7go that contain 80% of the peers and the corre-
lation C'(.S, L) between the number of seeders and leechers in all swarms of the
whole data set is shown.

The first observation we make is that the swarm size depends on the shared
content. This is in line with the observations for video file swarms from [72].
The swarms which distribute movies are the largest on average whereas smaller

music files are shared by less peers on average. This can be attributed to the
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fact that larger files take longer to download, leading to a longer online time of
peers and therefore a higher population in the swarm. This should be offset by
the resulting additional upload bandwidth offered to the swarm. However, it can
be shown analytically, e.g., by adapting the analysis of [43], that download times
do increase in such swarms. A further reason for the larger swarm sizes could be
that movie content is more popular than music.

The skewness* and the kurtosis of the swarm sizes provide further insights into
the distribution of the number of peers in the different data sets. They character-
ize to which degree some very large swarms are contained in the data sets. The
column g5 in Table 3.2 contains the 95th percentile, which also characterizes
the distribution of the swarm sizes. In particular, it shows the swarm size which
is reached or exceeded by 5 % of the swarms in the data set.

Regarding the different data sets, the coefficient of variation of the swarm size
is in the same range, with the exception of the Khirman set [69] of PirateBay
swarms (KP1). This set also differs significantly in terms of skewness, kurtosis
and maximum swarm size. Although we cannot judge the source of this discrep-
ancy with our data and the other data sets from Khirman, we still observe that
at least the 95th percentile normalized by the mean value is comparable to the
corresponding values for the other data sets.

Another general observation is that the Pareto principle holds for most of the
evaluated data sets: the mgo value, i.e., the fraction of top swarms that contain
80 % of all peers in all swarms of the set, is around 0.2 for all sets except the top
movies and the Khirman data for the Mininova and Demonoid sites. This means
that 80 % of the peers belong to 20 % of the swarms. It is plausible that the most
popular content as covered by the Pop data set do not show this Pareto property,
since the different files here are equally popular and represent only a very specific
part of the total shared content.

Finally, there is a strong correlation C(.S, L) between the number of seed-

“To calculate skewness and kurtosis of a set of n samples z1, . . ., Tp, we transform the samples to
T, —T

z; = , where Z is the average and s is the standard deviation of the samples x;. Skewness
and kurtosis are then defined as the third and forth empirical moment of the samples z;, respectively,

where the j-th empirical moment is m; = % Sy

J
z;.
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ers and the number of leechers in a swarm. This is intuitively clear since more
leechers mean a larger number of potential seeders, and swarms with only a few

seeders are normally not popular due to long download times.

From these observations we draw some conclusions on how they could im-
pact a locality-aware mechanism. The type of shared content has an impact on
the swarm size and therefore potentially on the effectiveness of different local-
ity promoting solutions. We will see in the next sections that this is also true for
the topological characteristics of a swarm, which also depend on the shared con-
tent. In general, the swarm size distribution is heterogeneous with a Pareto-like
distribution of the total peer population on the different swarms. Also, recently
released and popular content leads to much larger swarms in comparison to the

average values.

In addition, there is a significant amount of rather small swarms containing
less than 40 peers. With typical BitTorrent client parameters, each peer in such
a swarm will know all other peers because it tries to have at least 40 neighbors.
The result is thus a fully meshed swarm. Consequently, accepted solutions using
Biased Neighbor Selection (BNS) as introduced in [51], where peers close in the
topology are preferred as neighbors, will probably have a low impact on these

swarms since there is no choice to be made in the neighbor selection.

On the other hand, the share of traffic that can be influenced by targeting only
the comparably few top swarms, including new and popular content, is significant
(around 80 %, the corresponding estimation is presented in Section 3.2.4). The
effort to do so is possibly much lower than when trying to cover all or at least most
of the swarms because algorithms do not need to cope with special characteristics
of small swarms. To optimize the monitoring of swarms, in order to find these
candidate swarms, it might help to just keep track of the seeder population since
it is strongly correlated to the number of leechers and thus the total population
of a swarm. These statements are not meant to be true in general and for every
mechanism, they rather show examples how the data provided in this section can

be important for the assessment of locality-aware mechanisms.

47



3 Overlay Networks in Today’s Internet: Measurements and Characterizations

3.2.2 Time-Dynamics within a Swarm

In this section, we investigate in which way the population of a swarm varies over
time. The evolution of BitTorrent swarm populations during the whole life time
of a swarm has already been analyzed in literature, e.g., in [42] or [47]. However,
we focus here on a shorter time scale and investigate how fast the population
typically grows or diminishes during our measurement period lasting 36 hours.
In addition, we analyze which fraction of swarms is subject to diurnal fluctuations
and how pronounced these fluctuations are.

For this section, we focus on the data set TV since this contains more than
60,000 swarms and their temporal evolution. In order to illustrate some examples,
we also consider the Grp data set. However, this set contains only 16 swarms and
is therefore less suitable for statistical analysis. For all other data sets we do not
have measurements about the temporal evolution of the swarm sizes.

Increasing, Constant, and Decreasing Swarms

While it may be efficient to promote locality in a swarm that was measured as
being large at a given time instant, it may be less efficient when the swarm shrinks
quickly after that snapshot. To gain insights into the time-dependent behavior of
swarms, we measured 96 samples of the swarm sizes n;(s), ¢« € {1,96} for
every swarm s of the data set TV. The samples were equally distributed over 36
hours. For all swarms, we calculate the average swarm size u(s), the standard
deviation o (), and the coefficient of variation cyar(s) of the 96 samples n;(s).
In addition, we define the span of a swarm during the measurement period as
A(s) = max;(n;(s)) —min; (n;(s)). This metric represents the largest variation
of the swarm population we observed in terms of peers. We call all swarms s
with A(s) = 0 constant swarms. The remaining swarms are increasing if their
minimum value n; has a lower index ¢ than their maximum value. Otherwise, we
denote them as decreasing.

‘We make the following observations in the data set TV: All three groups (con-

stant, increasing, and decreasing) contain almost the same fraction of swarms
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(33.81 %, 32.88 %, and 33.31 %, respectively). However, the constant swarms
are all very small (cf. Figure 3.3). In addition, there is no significant difference
between the CDFs of the sizes of increasing and decreasing swarms which is rea-
sonable since the fact that a swarm is growing or shrinking is not correlated with
its current size.

Figure 3.4 shows CDFs for the span A(s) of the swarms normalized by the
average swarm size over the 36 hour time period. We observe that for only
10 % of the swarms their span is below 60 % of their average size and for 50 %
of the swarms it is higher than the average swarm size. Furthermore, the span
A(s) < 2 - u(s) for almost all decreasing swarms and A(s) < 5 - u(s) for
almost all increasing swarms. This difference can be explained by flash-crowd
arrivals in some new and very popular swarms which lead to a large increase
in peer populations. In summary, we conclude that — already in a time frame of
36 hours, which is rather small compared to the lifetime of a swarm — the swarm
populations can vary heavily. It is important to keep that in mind if parameter set-
tings of locality-aware mechanisms need to be adjusted based on current swarm
populations.

Next, we study how the time dynamics correlate with the swarm sizes, i.e.,
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TABLE 3.3: Coefficients of correlation p of the average swarm size j4(s) and the variation (A(s), o(s),
and c(s)) for increasing and decreasing swarms.

l [ p(u(s), A(s)) [ p(u(s),a(s) T pluls),c(s)) |

[ increasing swarms [ 0.695 [ 0.668 [ —0.038 |

| decreasing swarms [ 0.672 | 0.653 | —0.060 |

whether large swarms are subject to large variations or not. To this end, we cal-
culate the coefficient of correlation p of the average swarm size to three values
representing the variation: the span A(s), the standard deviation o(s) and the
coefficient of variation c(s) (cf. Table 3.3). We observe that the span A(s) and
the standard deviation o (s) is strongly correlated to the average swarm size for
increasing and decreasing swarms (p > 0.65). However, these correlations van-
ish if we take the coefficient of variation c(s) instead of the standard deviation
o (s). That means that larger swarms tend to have larger variations of the swarm
population which is not very surprising. However, the variation normalized by
the average size u(s), i.e., the relative change in the swarm population is not
correlated with the swarm size. Hence, large swarms do not grow or shrink dis-

proportionally fast.

Finally, we illustrate the correlation between the average swarm size u(s) and
the coefficient of variation c(s) of the swarm size with a scatter plot in Fig-
ure 3.5 for the swarms of the TV data set, sorted by swarm size. The coeffi-
cient of variation ¢(s) for most of the swarms s is between 0 and 1, on average
it is 0.2795. In addition, we observe a set of swarms (around 1 % of the mea-
sured swarms) where c(s) is very close to 1. The reason for this result are fre-
quent jumps of the swarm size (reported at the PirateBay website) between 0
and the actual swarm size which we attribute to an error in this website. How-
ever, this should have only a minor impact on our results since only 1 % of the
TV data set shows this behavior and the TV data set is the only one we mea-
sured by parsing the website (cf. Table 3.1). In order to show that the pecu-
liar shape of the scatter plot is not owed to chance, we present a short math-

ematical derivation for the theoretical minimum of the coefficient of variation
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c(s). Since we capture R = 96 samples of the size of a swarm s for the TV
experiment, the minimum standard deviation o(s) for a given average swarm
size pu(s) € [a;a + 1] is obtained when we measure k times a size of a and
R — k times a size of a + 1 (for a € N). Thus, it is u(s) = M
and o(s) = \/W — u(s)? = £+/(R — k)k which explains the

shape of the theoretical minimum for the measurements.

Diurnal Fluctuations

Now we take a closer look at the fluctuations. The evolution of the size of four
example swarms, which are taken from the set summarized in Table 3.5, is de-
picted in Figure 3.6. The selection of these swarms allows us to show principal
differences between swarms even if they share the same type of content. Here,
the swarm population over time is shown, with the base unit of the y-axis being
10° peers.

We observe that there are variations in the population of each swarm, as well
as quantitative and qualitative differences in these variations between the swarms.

While swarm D), which is sharing a movie in English, shows only small changes
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in its peer population, the size of swarm C) exhibits a periodic behavior. We at-
tribute this to the fact that in this swarm, a movie in Spanish is distributed. In
order to check how many peers of that swarm are located in Spain we use the
GeolP service of MaxMind [89] to map the IP addresses to countries. In fact,
more than 94 % of the peers are from Spain and only about 2 % from South Amer-
ica. Therefore, the swarm population increases during the daytime in this region
and decreases again afterwards. Swarm G), sharing a German movie, shows a
similar characteristic. The fluctuations are not as clearly visible as for swarm C),
but in relation to the average swarm size, the population of swarm G) fluctuates
to roughly the same degree as swarm C).

The development of the peer population of swarm B) is a superposition of a
continually increasing popularity and a 24 hour cycle like for swarms C) and G).
While swarm D) distributes content that seems not to be preferred regionally, the
movie shared in swarm B) seems to be more popular in a specific part of the
world.

‘We now want to determine the amount of swarms that show a diurnal behavior
similar to swarms B), C) and G), in order to judge the relevance of this effect

for the performance evaluation of locality-awareness mechanisms. To that end,

52



3.2 Measurements of Real-World BitTorrent Swarms

we use a method called periodicity transform which automatically detects peri-
odicities for a given data set. In particular, we rely on the M -best’ algorithm as
introduced in [36] that returns a list of the M = 10 best periodicities. From the
M best periodicities that are {7; : 1 < ¢ < M} we calculate the autocorrelation
pi at lag 7; and select the best period of duration 75, with maximum, positive au-
tocorrelation pg, i.e. k = arg (max{p; : 1 < i < M}). We also tried the other
methods described in [36], but the M -best algorithm delivered the best results in
finding periodicities of around 24 h.

Figure 3.7 shows the CDF of the length of the *best” period for the number of
seeders, the number of leechers, and the entire swarm size for the TV data set. It
can be seen that the three different curves show a similar behavior. In particular,
the curves for the number of leechers and seeders are almost identical, showing
that the leechers mainly determine the diurnal behavior. Furthermore, we observe
that roughly for 60 % of the swarms the ’best’ period is between 21 h and 27 h.
There is no discontinuity in the CDF at 24 h since the M -best analysis is not
able to completely ignore all other effects changing peer populations such as
increasing or decreasing popularity of the content or flash-crowd arrivals.

Figure 3.8 shows the autocorrelation px to the best period of duration 7.
Again, the three different curves are quite similar. We observe that from the
swarms in the TV data set only 8.36 % show a strong correlation pr > 0.7.
As a summary of the time-dynamics analysis, we see that for roughly 5.7 % of
the swarms a day-night behavior can be observed. To be more precise, for these
swarms the autocorrelation is larger than 0.7 for the best period, while the dura-
tion of the period is about 1 day, i.e. between 21 hours and 27 hours.

3.2.3 Distribution of Peers over ASes

One important performance indicator for locality-aware mechanisms, typically
used in related studies [17,20,51,80], is the amount of inter-ISP traffic which can
be saved by their application. In such investigations, the distribution of peers over

ASes can play a major role for the potential savings [20, 80]. As a consequence,
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ing to their size, cf. Table 3.4.

we consider in this section statistics on the number of ASes which contain peers
participating in the same swarm and on the average number of peers located in
one AS. For this purpose, we use the Mov and Mus data sets since they contain
a large number of swarms together with the IP addresses of the peers so that we
can map them to ASes. The distribution of peers over ASes of swarms sharing
regional content (Reg data set) is presented in Section 3.2.7.

We present the CDFs for the average number of peers per AS for swarms of
the Mov data set in Figure 3.9. Note that the x-axis is scaled logarithmically.
The swarms are grouped according to their average size as shown in Table 3.4
together with the relative size of each group. We observe that for an increasing
mean swarm size, the average number of peers per AS grows. However, this
value is still small even for the largest swarms. This is in line with literature

[70,72,80, 81]. Considering the Mus data set leads to the same conclusions. In

TABLE 3.4: Percentage of swarms grouped according to their size for movie files (Mov).
[ swarm size [] 10;25[ [ [25;50[ | [50;100[ [ [100;500[ | [500; Ie3[ | [le3; ool |
[ fraction of swarms || 0.8580 [ 0.0703 | 0.0294 | 0.0347 | 0.0040 [ 0.0036 |
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fact, the average number of peers per AS is even smaller for these swarms. The
concrete numbers corresponding to Table 3.4 and Figure 3.9 can be found in our
technical report [68]. In Section 3.2.6, where we analyze the distribution of peers
over countries, we show CDFs also for the maximum number of peers per AS
(ct. Figure 3.16).

Another important characteristic of a swarm is the absolute number of ASes
because swarms that are distributed over fewer ASes but with more peers per AS
can likely utilize locality promotion mechanisms more efficiently. To this end,
we consider the movie files (Mov) as well as the music files (Mus). Figure 3.10
shows the CDF of the number of ASes per swarm for both data sets. Since there
are more peers involved in swarms offering movie contents, there are also more
different ASes involved than in swarms providing music files. On average, there
are 65 % more ASes involved in movie swarms than in music swarms. In par-
ticular, if the CDF of the number of ASes for movie swarms is normalized by a
factor of 1.65, it is nearly identical to the CDF for music swarms. The maximum
number of observed ASes is 1,744 for movie swarms and 809 for music swarms,
respectively. We will explore the distribution of peers over ASes in more depth
in Section 3.3 where we provide a model for the probability that a peer belongs
to a certain AS.

3.2.4 AS Clustering of Peers

A fundamental pre-condition of keeping BitTorrent traffic within a given AS is
that several peers sharing the same file are present in that AS. Therefore, we
study in this section which fraction of swarms actually have the possibility to
exchange data with local neighbors. To that end, we count the number of peers in
every swarm which are located in an AS with at least o peers of the swarm. To
obtain the AS clustering of peers J, of a swarm, we normalize this number by
the swarm size. In other words, 0, represents the fraction of peers in the swarm
having at least o — 1 other peers of the same swarm in their AS. In Figure 3.11 we
show CDFs of the AS clustering for v € {3,4,5}. We observe that in roughly
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89 % of the Mus swarms no AS exists where at least 3 peers are present (03 = 0)
and only in about 3.5 % of the swarms the majority of peers (03 = 0.5) can
be clustered in their ASes. Considering the movie files (Mov), the probability to
find clusters of peers within an AS is higher since these swarms are larger. Still,
in about 88 % of the movie swarms there is no AS with at least 5 peers. Thus,
locality-awareness will only be useful in a rather small fraction of the swarms.
However, this statement does not fully address the question about which fraction

of the total BitTorrent traffic can be influenced by locality-awareness.

To answer this question, we first study the total amount of traffic produced by
the swarms in the Mus and Mov data set. For that purpose, we take the number of
peers in a swarm as an indicator of how much traffic a swarm produces in relation
the other swarms and assume that peer access capacities are not correlated with
the swarm sizes. Therefore, they can be neglected in our simple approximation.
Figure 3.12 presents the cumulative estimates ("music traffic Tp’, *movie traffic
Tv’) for the top = % of the largest swarms normalized by the total amount of traf-
fic. The figure reveals that 10 % of the swarms of the Mov data set contain 80 %
of the peers and are consequently responsible for the same fraction of the total
traffic according to the aforementioned assumptions. If we weight the number of
peers in a swarm with the size of the exchanged file (’traffic T’, legend: *with
file sizes’) to estimate the amount of traffic, we obtain almost the same results as
for taking just the number of peers ("w/o file sizes’). This is in particular true for
the movie traffic. For the music files the difference is small.

Next, we develop a very simple and optimistic approximation for the poten-
tial of locality-awareness. This approximation is based on the results for the AS
clustering d,. For each swarm, we calculate J2, i.e., the fraction of peers in the
swarm which are not the sole peer in their AS. We assume an ideal locality al-
gorithm which achieves that those peers produce no inter-ISP traffic and neglect
which peers are seeders and leechers and possible performance degradations for
simplicity reasons. Then, J2 is the fraction of ’potentially local traffic’ of that
swarm. This value weighted by the total resulting traffic of the swarm for the

music and movie files is presented in Figure 3.12. The figure shows that it has al-
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most no impact on this approximation whether we take into account the file sizes
(CLy’) ornot (" Lo’) for the calculation of the total traffic a swarm produces. Fur-
thermore, the figure confirms our finding that locality-awareness is only useful in
a small subset of all swarms. However, it shows in addition that the potential sav-
ings of inter-ISP traffic are quite larger in the big swarms which are responsible
for the vast majority of BitTorrent traffic. Therefore, the overall optimization po-
tential of locality-awareness is about 65 % for the movie files (Mov) and roughly
40 % for the music files (Mus). In other words, around 35 % (60 %) of the over-
all movie (music) traffic is produced by peers which are the only one in the AS.
Therefore, no locality-awareness mechanism can avoid this inter-ISP traffic. In
summary, we conclude from this section that the overall optimization potential
for locality-awareness is large even if the mechanisms will only be useful in the

top 20 % of the swarms.

3.2.5 Relation of Number of Peers and AS Degree

In this section we investigate to which degree the size of an AS is correlated

with the number of peers it contains. For that purpose, we study two metrics
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representing the “size” of an AS: the AS rank and the AS degree. Both metrics
are provided by CAIDA [92]. The AS degree is defined as the number of ASes to
which a given AS is connected. Like in [38] we use the AS degree as an indicator
for the size of the AS. To obtain the AS rank of a given AS, CAIDA basically
orders all ASes according to their size and defines the AS rank of a given AS as
its index in this ordered list. For this investigation we use the Mus and Mov data
set since these contain large numbers of swarms and their distribution of peers
over ASes.

First, we check the correlation between the total number of peers per AS and
the size of the AS. To this end, we calculate the total number of peers in a given
AS as the sum of the number of peers in this AS of all swarms in the data set.
Then, we correlate the total number of peers per AS with the AS degree and the
AS rank obtained from CAIDA. This calculation shows that the total number of
peers in an AS is neither correlated to the AS rank nor to the AS degree. The
concrete values for the correlation to the AS rank are —0.0962 and —0.0834
for the Mus and Mov data set, respectively. The corresponding values for the
correlation to the AS degree are 0.1492 (Mus) and 0.1020 (Mov).

Next, we calculate the correlation of the number of peers per AS with the
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corresponding AS degree for each swarm. That means, we get one correlation
coefficient for each swarm in the data set and plot CDFs of this value for the
100 and 10,000 largest swarms (cf. Figure 3.13). Although some swarms exist
in the top 10,000 swarms of both data sets where the correlation is high, most
of the swarms do not have this strong correlation. In particular, these swarms are
not among the 100 largest swarms. Therefore, we conclude that within a given
swarm it is quite unlikely that the number of peers per AS is correlated with
the AS degree. A possible explanation for that rather unexpected result is that
there is a large number of ASes in every swarm which contain only 1 or 2 peers.
Still, these ASes may have a high AS degree which leads to low values for the
correlation.

To avoid this influence of the large number of ASes with only a few peers, we
now focus on the top AS of every swarm. In this way, we limit our investigation to
those ASes with a large number of peers. In Figure 3.14 we calculate the number
of peers in the top ASes of the x largest swarms and correlate these x numbers
to the corresponding AS degree and AS rank. We observe that the correlation
with the AS degree is stronger than the one with the AS rank. Furthermore, the
correlation decreases when we increase X, i.e., when we take into account more
swarms. In particular, the correlation of the AS degree and the number of peers
in the top AS of the 100 largest swarms (Mus) is close to 1. That means, for the
ASes where the number of peers is large, this number is correlated to the AS
degree.

3.2.6 Alternative Metric for Locality: Country Codes

While AS affiliations are a popular metric describing which peers are nearby,
other metrics such as the number of IP- or AS-hops, similarity of CDN redirection
behavior [59], or geographic proximity can also be used for that purpose. In this
section we investigate in which way the results of the previous section are affected
if we use a different criterion than the AS affiliation. For feasibility reasons we

select the geographic proximity out of the aforementioned example metrics and
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map every IP address to a country code using the MaxMind GeolP service [89].

First, we compare the number of peers per AS to the number of peers per
country. For that purpose, we calculate the average number of peers per AS and
per country for every swarm (Mus and Mov) and show CDFs over all swarms in
Figure 3.15. We observe that the number of peers per country is higher than per
AS. For the Mus data set the mean number of peers per country (averaged over
all swarms) is about 2.3 times higher than the mean number of peers per AS. For
the Mov data set the same relation is about 6.2. This seems reasonable since most
countries contain several ASes. Figure 3.16 is similar to Figure 3.15 but presents
the maximum number of peers per AS and per country instead of the average
numbers. That means that we select from each swarm that AS and that country
with the highest number of peers. Again, we observe that the number of peers
per AS is lower than per country. Second, we investigate the number of countries
per swarm in analogy to Figure 3.10, which is based on the AS affiliations. The
corresponding figure for the country codes is very similar to Figure 3.10, and we
therefore omit it. The only difference is the one already observed in Figure 3.15
that there are on average more peers per country than per AS.

Hence, using country codes instead of AS affiliations leads to a coarser clas-
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sification of peers and consequently higher numbers of peers in the same class.
Therefore, keeping traffic local in a given country should be easier since it is

more likely to find local neighbors than in the same AS.

3.2.7 Characteristics of Regional Swarms

We have already seen the effect regional content has on the evolution of the
swarm size over time. We now take a closer look at the topological characteristics
of swarms sharing this content. These swarms are contained in the data sets Reg
and Grp. The Grp data set comprises 16 example swarms of different average
sizes distributing movies in German, Spanish, Chinese or English (cf. Table 3.5).
For these swarms, we analyze the number of ASes and the top AS fraction of the
swarm, i.e., the maximum number of peers in an AS of that swarm normalized by
the swarm size (cf. Figure 3.17). In this figure, the swarm size (given in Table 3.5)
is indicated by different colors on a logarithmic scale. Swarms sharing regional
content have a high top AS fraction (20 to 50 %) and are spread over comparably
few ASes. In contrast, swarms sharing internationally interesting content, i.e., in
English, have a small top AS fraction (below 10 %) and are spread over more
ASes.

Swarm D is an exception here. It shows the highest skewness in terms of num-
ber of peers per AS compared to the other swarms. In particular, 30 % of the peers
belong to the same AS with the AS number 30058. A closer look reveals that the
company responsible for this AS offers its customers to rent dedicated or virtual

servers located in this AS. This permits a single customer to run a large number

TABLE 3.5: Individually measured swarms over time (Grp) using the following notion: ID) average
swarm size & language.

A)21351EN | B)17,170EN | C€)4,550SP | D) 3,182 EN
E) 1,390 SP F) 972 GE G)832GE | H)626GE
1) 579 SP 1) 479 EN K)473GE | L)351GE
M) 289 GE N) 258 EN 0) 217 SP P) 81 CN
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ble 3.5).

of peers on different virtual nodes which could be used to insert fake peers in the
swarm in order to disturb the distribution process. This might be an explanation
of the high fraction of peers in swarm D in AS 30058.

Next, we move from the Grp data set with 16 example swarms to the Reg
data set containing 120 swarms exchanging regional movies observed at the index
server PirateBay.org in May 2009. This set is more suitable for statistical analysis
since the number of swarms is higher and the swarms are not selected by hand as
it is the case for Grp. The fact that users are interested in regional content leads
to a high top AS fraction, which is the relative number of peers in a swarm’s top
AS. This is especially true for Spanish content, see Figure 3.18. Here, the top
AS of each swarm in the Reg set is used for comparison, i.e., the AS containing
most peers from a swarm. In this graph, a CDF of the relative share of peers that
are located in these ASes is plotted for swarms with Dutch, French, Italian and
Spanish content.

While in all cases there are at least 10 % of the total swarm population in the
top AS, this share is between 40 and 48 % for the Spanish content, implying a
high degree of peer grouping. To judge whether this phenomenon only exists for

a single AS, we evaluated also the second to fifth largest ASes of the swarms in
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the Reg data set, cf. Figure 3.19. It appears that the top AS of a swarm contains
significantly more peers than the other ASes, although these are still holding
around 5 % of the total swarm population.

We affirm this result by comparing the kurtosis, i.e., the fourth moment of a
distribution that indicates statistical peaks, of the number of peers per AS for the
swarms in the Reg, the Mus and Mov sets. The results are shown in form of a
CDF in Figure 3.20.

The regional swarms show a much higher kurtosis than the two larger and
more general sets. This leads us to the conclusion that the concentration of a
larger fraction of the swarm in the same AS is much more common in regional
swarms. This means that the regional interest in a shared file can play a significant
role in the suitability of the according swarm for locality promotion, something
previously underestimated. In particular, the high kurtosis values for a certain
fraction of swarms providing music or movie files in Figure 3.20 indicates that
this phenomenon of regional interests with many peers in the top AS can be

observed for any kind of content.
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3.2.8 Summary of Measurement Results

From the results presented above, we make the following main observations for
the characterization of BitTorrent swarms and their distribution in the Internet.

Considering the swarm statistics according to the offered content (i.e., TV
shows, movies and music) we observe that the larger the offered content is in
terms of data volume, the larger the average and maximum number of peers is
in such a swarm, as already shown in less detail in [72]. Additionally, our results
show that the distribution of peers among the swarms follows the Pareto principle
for the different measurement sets (1), (4) and (5), which contain random files.
This means that 80 % of all peers belong roughly to the top 20 % swarms for all
media types. The Pareto principle cannot be observed for measurement sets (2),
(3), and (6) since we only consider popular or recently published content there.
These recently published torrents are highly popular. This is reasonable since

users are typically interested in new contents, recently broadcasted movies etc.

We studied the distribution of peers over ASes of the swarms and showed that
the average number of peers per AS is small for most of the swarms. However,
the distribution of peers over ASes is skewed so that a high fraction of the peers
is contained in the few top ASes of the swarm. Previous studies, e.g., [20, 80],
revealed that this can have a strong impact on the performance of traffic opti-
mizations schemes, especially for swarms sharing regional content, where the
skewness in the peer distribution is higher. Hence, quantitative characterizations
(cf. Section 3.3) of the distribution of peers over ASes are required for a mean-

ingful performance evaluation of traffic optimization schemes.

In addition, our measurements show that the fraction of swarms with ASes
where more than 5 peers are located in at least one AS is quite small. Neverthe-
less, the optimization potential of locality-aware mechanisms remains high since
peers in the large swarms, which produce the majority of the traffic, can be clus-
tered in their AS. As a consequence, it would be an option to concentrate traffic
optimization efforts on the relatively low number of swarms with larger content

and high popularity because the potential gains are much higher than for small
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swarms. Not only does a larger content lead to more traffic, but also the possibil-
ities for locality promotion are more numerous in larger swarms, where there are

more peers in one AS in general.

When the classification of peers is done on the basis of the country code in-
stead of the AS affiliation, we observe that more peers are in the same class and
therefore it is easier to keep traffic within that class of peers. Finally, the mea-
surements reveal that for a very small number of swarms (which are not the large

ones) the number of peers in an AS is correlated to the AS degree.

3.2.9 Limitations of the Measurement Study

There are some limitations of our measurement study. We describe them here so
that they can be taken into account when using our results. First, we studied only
swarms which use a tracker to request an initial set of peers and no tracker-less
swarms. Second, our measurements rely on the assumption that the information
obtained from the websites and the trackers is correct. Furthermore, we did not
try to contact the peers we received from the trackers. Therefore, it is possi-
ble that some company inserted fake peers in order to disturb the distribution
progress which would result in a smaller number of peers actively participating
in a swarm than the one we measured. Third, we used different measurement
methods for different data sets because we refined our measurement techniques
during the course of this work. This has two consequences: (1) not all types of
data are available for all data sets (namely the distribution of peers over ASes
and measurements over time) and (2) the results might be influenced by the used
measurement technique. Overall, we argue that these limitations have only a mi-
nor impact on the presented results. To support this we cross-checked the results
using all data sets for which the corresponding type of measurement was avail-
able, provided explanations of differing results, and compared our results to the

ones described in literature.
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3.3 Statistical Characterizations of BitTorrent
Swarms

Based on the measurements presented in Section 3.2 we develop a set of charac-
terizations for BitTorrent swarms which can be used for performance evaluations
of locality-awareness solutions for BitTorrent. Namely, we model the distribution
of peers of a single swarm over ASes and fit the swarm population, the number
of ASes over which a swarm is distributed, the fraction of the swarm located in
the top AS, and the size of the shared file with stochastic distributions for the data
sets Mus, Mov, and Reg. Finally, we present the correlation of these values as
multivariate correlation matrices.

3.3.1 Power-Law of the Distribution of Peers over ASes

As we have seen from the measurement results presented in Section 3.2, one key
aspect for modelling BitTorrent swarms is the skewed peer distribution. In this
section, we present a simple model which returns the probability P (k) that a peer
belongs to the k-th largest AS within a swarm consisting of n different ASes. In
particular, we investigate whether the peer distribution among the different ASes
follows a power-law, i.e.,

P(k)=a/k’ +c. (3.3)

Therefore, we consider all swarms J,, consisting of exactly n different ASes
from Mus and the Mov data set, respectively. For each swarm ¢ € J,,, we measure
the ratio P;(k) of peers belonging to the k-th largest AS in swarm ¢ for k =

1,2,--- ,n. Then, we compute the average ratio IS(k) over all swarms, yielding
at 1
P(k)= = > Pi(k). (3.4)
[9n] i€0n

Figure 3.21 shows the measured ratio ﬁz(k) of peers belonging to the k-th

largest AS within a swarm consisting of n = 40 different ASes. All swarms
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FIGURE 3.21: Comparison of the measured ratio ~ FIGURE 3.22: Goodness-of-fit between the mea-
P (k) and the theoretical probability P (k). surement data and the power-law model, cf. Equa-
tion 3.5.

consisting of exactly n different ASes are considered from the Mus data set.
The observed ratio é(k) is then compared with the power-law model func-
tion as defined in Equation 3.3. The parameters a, b, ¢ of this function are re-
trieved by means of non-linear regression. We used the optimization toolbox
of Matlab to find an optimal fitting function for the given measurement data.
Optimal in this case means to find the unknown parameters a, b, ¢ in Equa-
tion 3.3 such that the mean squared error is minimized. As a result, we obtain
P(k) = 0.0769/k°-3°*® 1 0.0134 which is plotted as solid curve. Figure 3.21
indicates that the power-law describes quite well the peer distribution among
ASes.

The goodness-of-fit for the model function P(k) is expressed by means of
the coefficient of determination R?. A value close to one means a perfect match
between the model function and the measured data. For the measurements given
in Figure 3.21 and the obtained model function, the coefficient of determination

is R? = 0.978035 indicating the good match in a statistical way. In our case, the
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coefficient of determination can be computed as follows

S (Pw) - Po)”
S (P —1/n)"

R?=1 (3.5)

In the following, we have computed the optimal parameters of the power-law
function as defined in Equation 3.3 for all swarms consisting of exactly n dif-
ferent ASes. Again, the coefficient of determination R? is used to measure the
goodness-of-fit. Figure 3.22 shows a scatter plot of the number n of different
ASes in a swarm vs. R? for the Mus data set. The maximum number of observed
ASes is 1,744 for movie swarms and 809 for music swarms. As we can see, the
match between the measurement data and the power-law model function is very
good and the coefficient of determination is above 0.9. In [68], the power-law de-
scribing the distribution of peers over ASes of BitTorrent swarms was also shown
for the Mov data set. In order to provide a model for BitTorrent swarms, the file
size, the size of a swarm, and the number of ASes per swarm is required in ad-
dition to the parameters of the power-law model. This will be discussed in the

following.

3.3.2 Additional Parameters of BitTorrent Swarms

In order to provide input for the evaluation of locality-awareness mechanisms un-
der more realistic conditions, we introduce statistical characterizations for music
files, movie files, and files of regional interest based on the measurements for the
Mus, Mov, and Reg data sets, respectively. The considered features of BitTor-
rent swarms relevant for traffic optimization comprise (a) the size of a swarm,
(b) the number of ASes per swarm, (c) the top AS fraction, and (d) the size of the
provided file in the swarm.

Tables 3.6, 3.7, and 3.8 show the distribution model of these features f, the
mean value p(f), the coefficient of variation ¢(f), and the corresponding model

parameters. For the Mov and Mu s data sets, we excluded swarms with less than 10
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TABLE 3.6: Characterizations for music swarms with at least 10 peers.

feature f [ () [ c(f) | model [ model parameters [ R |
swarm size 46.15 2.66 log-normal pn=3.18 o= 0.89 0.96
#ASs per swarm 28.31 1.39 log-normal n=2.97 o=0.74 0.98
top AS fraction 0.13 0.65 log-normal n=—2.19 o =0.54 1.00
file size 218.04 2.05 log-normal pn=4.53 o =1.40 0.97

TABLE 3.7: Characterizations for movie swarms with at least 10 peers.

feature f [ w(f) [ c(f) [ model model parameters [ RZ ]
swarm size 85.34 5.64 log-normal pn = 3.42 o =1.06 0.97
#ASs per swarm 33.67 1.95 log-normal n=3.01 o =0.86 0.98
top AS fraction 0.18 0.84 log-normal pn = —1.98 o =0.75 1.00
file size 887.05 | 0.76 Gamma a=1.91 b=463.3 | 0.86
file size (impr.) 975.74 0.97 Weibull A = 985.97 k =1.03 0.99

TABLE 3.8: Characterizations for regional swarms with at least 1 peers.

feature f [ w(f) [ c(f) [ model model parameters [ RZ ]
swarm size 1350.86 1.39 log-normal pn = 6.60 o =1.04 0.92
#ASs per swarm 77.45 0.54 Gamma a = 3.58 b = 21.65 1.00
top AS fraction 0.31 0.38 Gamma a=6.17 b =0.05 0.97
file size 1367.81 0.81 log-normal p = 7.00 o = 0.60 0.83

peers from our consideration since most of the BitTorrent users (around 80 %, cf.
Figure 3.2) do not belong to these swarms and locality-awareness is expected to
have only a very small impact in these swarms (cf. Section 3.2.4). The Reg data
set does not contain those small swarms and we therefore included all swarms
from this set in the characterizations. Using the measurement data, the maximum
likelihood estimates of the parameters for the different model distributions were
calculated. The goodness-of-fit (gof) of the model distribution and the measure-
ment data is expressed by the coefficient of determination R? which takes values
from 0 to 1. A value of R? = 1 shows that the model function and the measure-
ment data are identical. Thus, we can see a very good match between the mea-
surement data and the model functions. An exception is the size of movie files
(Mov) and regional files which only have a gof of R? = 0.86 and R? = 0.83,
respectively. This can be explained by the fact that the distributions of these file

sizes show a strong peak. In particular, 45.85 % of all movie files have a size be-
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TABLE 3.9: Multivariate correlation matrix for music swarms with at least 10 peers.
#peers #ASs top AS file size
#peers 1.0000 0.9100 -0.1364 -0.0048
#ASs 0.9100 1.0000 -0.2979 -0.0071
top AS -0.1364 -0.2979 1.0000 0.0129
file size -0.0048 -0.0071 0.0129 1.0000

TABLE 3.10: Multivariate correlation matrix for movie swarms with at least 10 peers.
#peers #ASs top AS file size
#peers 1.0000 0.8281 -0.0084 0.0043
#ASs 0.8281 1.0000 -0.2160 -0.0000
top AS -0.0084 -0.2160 1.0000 0.0086
file size 0.0043 -0.0000 0.0086 1.0000

TABLE 3.11: Multivariate correlation matrix for regional swarms with at least 1 peer.
#peers #ASs top AS file size
#peers 1.0000 0.6102 0.5744 -0.0707
#ASs 0.6102 1.0000 0.0450 0.1259
top AS 0.5744 0.0450 1.0000 -0.2670
filesize | -0.0707 | 0.1259 | -0.2670 1.0000

tween 650 MB and 750 MB which corresponds to the size of a regular compact
disc. In addition, about 8.46 % of the swarms have a file size between 1350 MB
and 1450 MB. Fitting only the file sizes of the remaining 53.31 % of the swarm
gives significantly higher gof of 0.99 (’file size (impr.)’ in Table 3.7). This is
very similar for the Reg data set. 51.65 % of the swarms have a file size between
650 MB and 750 MB and 23.08 % of them are between 1350 MB and 1450 MB.
The number of the remaining swarms is too low to provide a meaningful fitting
and we therefore suggest to use the corresponding values of the movie files.
However, as we have outlined in Section 3.2, there is a strong correlation be-
tween some of the features of BitTorrent swarms. Tables 3.9, 3.10, and 3.11 show
the multivariate correlation matrix for music, movie, and regional files, respec-
tively. We observe a strong correlation (> 0.8 for Mus and Mov, and > 0.6 for
Reg) between the number of peers in a swarm and the number of different ASes.
In order to generate a random BitTorrent swarm based on this model, approx-

imate methods for sampling correlated random variables from partially specified
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distributions can be used which are well known in literature, e.g. [33]. For these
approximations, the information from the tables presented in the section can be

used, respectively.

3.4 Lessons Learned

In this chapter we measure and characterize real-life BitTorrent swarms. The re-
sults can serve as input for the design and assessment of traffic optimization tech-
niques as presented in the following chapter or currently discussed in the ALTO
working group [62] of the IETF. Still, they are of a generic nature and there-
fore not limited to this purpose. A core part of our investigation is the result of
a large-scale measurement campaign, where a comprehensive set of swarms has
been investigated using a distributed tracker monitoring system. Measurements
include swarm size distributions, ratio of seeder and leecher populations, time
dynamics within a swarm, the distribution of peers over ASes and over countries
of swarms, and characteristics of swarms with a certain content or region focus.
We show that real-life BitTorrent swarm distributions are highly skewed and that
this is in particular true for regional swarms.

On the one hand, more than 90 % of the observed ASes contain less than 10
peers and the average number of peers per AS is below 2 peers for 99 % of the
swarms with a very high variation leading to many single peer ASes. On the other
hand, most of the peers (about 80 %) belong to the top 20 % of the swarms. There-
fore, we argue that there is a large optimization potential for locality-awareness
since these large swarms are (1) responsible for the majority of the BitTorrent
traffic and (2) especially suitable for locality-aware mechanisms. For this reason,
we specify a simple AS swarm characterization for music, movie, and regional
files provided in BitTorrent swarms that takes into account the swarm size, the
number of different ASes per swarm, the top AS fraction, and the file size. These
measurement results and the provided characterizations enable researchers to de-
sign algorithms as well as simulation studies and experiments for ALTO solutions
based on real-world characteristics of BitTorrent swarms.
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4 Performance Evaluation of
Caching Strategies in Overlay
Networks

One technique that is commonly used by ISPs to decrease their transit traffic is
caching. With caching, the ISPs store some of the contents within their network
and users can obtain copies of this content from the cache instead of fetching it
from remote locations, which results in transit traffic for the ISP. This concept
is known, e.g., from web contents, but it is also applied to content distribution
overlay networks [61].

Since P2P-based file-sharing systems are one of the major sources of Internet
traffic, we investigate them in this chapter and consider again the popular con-
tent distribution overlay for file-sharing BitTorrent. For this system P2P caches
are already commercially available, e.g., PeerApp’s UltraBand [90] and OverSi’s
OverCache P2P [75]. These solutions follow fundamentally different design prin-
ciples, yet all of them promise substantial savings in terms of inter-ISP traffic.

The question we address in this chapter is how one can assess the efficiency
of P2P caches that follow different design principles in terms of decreasing the
inter-ISP traffic, without actually deploying them. To answer this question we
develop a fluid model of the system dynamics of BitTorrent-like file-sharing sys-
tems that incorporates the effects of P2P caches. We consider the case of a single
and of multiple ISPs, and provide a closed-form solution for the equilibrium sys-
tem state as a function of the cache capacities installed at the different ISPs. We

show that under certain conditions a system with two ISPs is sufficient to model
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swarms spread over multiple ISPs. We develop a simple model of inter-ISP traf-
fic, and use the model to illustrate that one cannot accurately assess the impact
of caches on the amount of inter-ISP traffic without considering the effects of the
caches on the peer dynamics. We also show that, contrary to intuition, caches can
under certain conditions increase the amount of outgoing transit traffic of an ISP.
To avoid this phenomenon, we propose a proximity-aware peer selection scheme
and evaluate its impact on the cache efficiency. We validate the analytical results
via extensive simulations and provide experimental results with real BitTorrent
clients to support our results. For the definition of the validation scenarios and
for the numerical results we rely on the insights gained from the large-scale mea-
surement study presented in Chapter 3 of this monograph. This ensures that the
chosen parameters reflect the nature of live BitTorrent networks in the Internet.

Our model is inspired by the fluid model of BitTorrent-like P2P systems pre-
sented in [43]. In that study the authors use the fluid model to derive the average
number of peers in the system and to study the service capacity and the effective-
ness of file-sharing in such networks. We extend this model in two ways. First,
we include the effects of caching in the fluid model of [43]. Second, we provide a
simple means to analyze the amount of inter-ISP traffic in scenarios with multiple
ISPs. In addition, we show that a given amount of cache upload capacity can lead
to different amounts of traffic savings when allocated to different swarms.

Based on this finding we investigate whether ISPs should manage the up-
load capacity of their caches and actively allocate more upload capacity to cer-
tain swarms than to others. To this end, we simulate multi-swarm scenarios and
present an allocation policy that can increase inter-ISP traffic savings consider-
ably compared to the demand-driven allocation, i.e., if the upload capacity of the
cache is not actively managed by the ISP.

Large parts of this chapter are taken from [8]. In addition, the chapter contains
material from [23] and some results from [24,29]. The chapter is organized as
follows. Section 4.1 briefly describes the different P2P cache designs and our
network model. We develop the fluid model of the effects of caches on the system

dynamics in Section 4.2, and illustrate its importance in predicting the ISP transit
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traffic in Section 4.3. We describe and evaluate a scheme to improve the cache
efficiency in Section 4.4 and investigate allocation policies for the cache upload
capacity in multi-swarm scenarios in Section 4.5. Finally, Section 4.6 summarizes

this chapter and presents the lessons learned.

4.1 Background and System Description

In this section we present the different types of P2P caches. In addition, we de-
scribe our system model of BitTorrent and the ISP level network topology.

4.1.1 Taxonomy of P2P Caches

Caches for P2P traffic can be grouped into three main categories: transparent
caches, ISP managed Ultrapeers, and ISP managed Caches. In the following, we
give a short description of these categories.

Transparent Caches

To the first category belong the so-called transparent caches. A transparent cache
involves deep-packet-inspection (DPI), i.e., the requests for data sent by a local
peer (within the ISP) to an external peer are intercepted, and if the requested data
is available in the cache, the data is sent to the local peer from the cache. Hence, a
transparent cache decreases the amount of incoming transit traffic. The cache also
maintains the connection with the external peer. PeerApp’s UltraBand family of
caches falls into this category.

Ideally, a transparent cache should upload data to local peers at the same rate
at which the external peers would upload the data, this way the ISP does not
promote the distribution of illegal contents, and is hence not legally liable. If the
cache uploads data at the appropriate rate, then its effect on the outgoing transit
traffic of the ISP is negligible. In the rest of the paper the term transparent cache
will refer to a transparent cache that uploads at the appropriate rate, i.e., it does

not contribute additional upload capacity to the P2P system.
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ISP Managed Ultrapeers

To the second category belong the caches that appear as high capacity peers to
regular peers. These caches do not involve DPI, but they serve only requests of
leechers in the network of the ISP that provides the cache. Regular peers are not
aware of the fact that these caches are provided by the ISP, and consequently
whether a local leecher downloads data from such a cache depends on the neigh-
bor selection algorithms of the P2P protocols. This category of caches inherently
increases the upload capacity in the P2P system. We refer to these caches as ISP
managed Ultrapeers (ImU). OverSi’s OverCache P2P falls into this category.

ISP Managed Caches

To the third category belong the caches that are known to the peers via some in-
formation exchange with the ISP. Protocols for obtaining such information were
proposed for BitTorrent [63], and resource discovery (e.g., cache discovery) is
considered for standardization in the IETF Application Layer Traffic Optimiza-
tion (ALTO) [62] and DECoupled Application Data Enroute (DECADE) [74]
working groups. Since peers are aware of the caches, they can prioritize down-
loading from these caches over downloading from external peers. Just like the
ImUs these caches serve only requests of leechers in the network of the ISP that
provides the cache, and they introduce additional upload capacity in the P2P sys-
tem. We refer to these caches as ISP managed Caches (ImC). We are not aware
of any deployments of ImC caches due to the lack of localization and resource
discovery services in the Internet.

4.1.2 System and Network Model

We consider a BitTorrent-like file-sharing system spread over several ISPs. The
ISPs are in the lower layers of the ISP hierarchy, and are hence interested in de-
creasing their transit traffic. Our focus in this work is on the amount of incoming

and outgoing transit traffic of these ISPs, so we can adopt a simple abstraction
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of the real Internet topology without limiting the validity of our results. In this
simple abstraction each ISP is connected to the other ISPs via a global transit net-
work, which only delivers the traffic. This abstraction does not capture the actual
routes of the traffic between the ISPs, but the routes can be neglected due to our

focus on traffic volumes.

The BitTorrent system we consider consists of a single swarm in which the
peers are located in a set Z = {1,..., I} of ISPs. Every ISP can install a cache
to decrease its transit traffic. If installed in ISP ¢, the cache provides an upload
capacity of k; to the swarm. This abstraction of a P2P cache is novel, but is
easy to justify: whatever data is uploaded from the cache does not have to be
uploaded from a peer and hence the cache provides additional upload capacity to

the swarm.

Initially, the swarm consists only of the initial seed and the caches. Peers arrive
in the network of ISP ¢ according to a Poisson process with rate ;. While over
the lifetime of a swarm (e.g., in the order of months or years) the peer arrival
process is not homogeneous, over short periods the peer arrival process can be
reasonably approximated by a Poisson process [47], as it can be considered the
superposition of a large number of renewal processes [30]. Leechers abort the
download at rate 6, that is, the longer it takes to download a content the higher
the probability that a peer would abort the download. Seeds leave the swarm at
rate -, i.e., peers stay for 1/~ time on average after becoming a seed. Similar
assumptions were used in most analytical studies for modeling P2P file-sharing
systems (e.g., [43,57]).

Peers have upload capacity p and download capacity ¢, and we consider the
practically relevant case of ¢ > u. We denote by n € [0, 1] the probability
that a leecher can utilize its capacity to upload to some other leecher, and we
refer to it as the effectiveness of file-sharing [43]. In the mathematical model we
assume without loss of generality that the file size is 1, so that u,c and k; are
normalized to the file size. For the sake of simplicity, we assume homogeneous

peer capacities. Table 4.1 summarizes the notation used in this chapter.
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TABLE 4.1: Frequently used notation.
Parameter | Definition

I,1 Set and number of ISPs, respectively
Ki Cache upload capacity in ISP %

A Arrival rate in ISP ¢

0 Abort rate of leechers

ol Departure rate of seeds

n Effectiveness of file sharing

m Peer upload capacity

c Peer download capacity

zi(t) Number of leechers in ISP ¢ at time ¢
yi(t) Number of seeds in ISP 7 at time ¢
p! Incoming transit traffic in ISP ¢

o9 Outgoing transit traffic in ISP ¢

4.2 System Dynamics with Caching

In the following we develop a fluid model of a BitTorrent-like file-sharing system
spread over several ISPs. Our goal is to capture the effects of caches on the system
dynamics and ultimately on the amount of traffic exchanged between the ISPs.
We consider two types of caches, InmU and ImC, and use transparent caches as a
baseline for comparison. Our model builds on the model developed in [43], and
we use the same notations as much as possible.

We denote by x;(¢) and y;(t) the number of leechers and the number of seeds
in ISP ¢ at time ¢, respectively. The rate at which leechers can obtain data is
limited by the available upload rate in the system and by their download rate. The
upload rate U;(x,y, k) available to leechers in ISP i is a function of the number
of leechers, the number of seeds and the cache upload rate in the different ISPs,
where x = (z1,...,21),y = (y1,...,yr) and K = (K1,...,kr). The exact
form of U; depends on the cache bandwidth allocation policies followed by the

ISPs and the neighbor selection policies of the peers. Together with the constraint
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of the download rate, the rate at which leechers obtain data in ISP 7 is given by
min(czi,U;(x,y, k)). Following the assumptions used in [43] on the arrivals,
aborts, and departures we get that the evolution of the mean number of leechers

and seeds in ISP ¢ can be described by a system of coupled differential equations

dil'i (t)

7t = X\ —O0z;i(t) — min{cz:(t),Ui(x,y,k)} 4.1)
dydiiit) = min{cx;:(t),Ui(x,y,k)} — vy (t). 4.2)

We are interested in the steady-state of the system, i.e., when the rate of change

of the number of leechers and seeds is zero

dei(t) _ dya(t)
dt — dt

=0 i=1,...,1. 4.3)

In the following we consider various scenarios and develop closed form solutions
for the steady-state number of leechers and seeds. The results we develop in this
section depend only on the available upload rate in the system, hence we do not
have to distinguish between the different kinds of non-transparent caches (ImU
and ImC). We will, however, distinguish between the three types of caches in
Section 4.3 when estimating the transit traffic between the ISPs.

4.2.1 The Case of a Single System

Let us first consider the case of a single system (Z = {1}). This scenario allows
us to understand the aggregate effect of caches on the system dynamics. For sim-
plicity we omit the subscript ¢ in the rest of this subsection. This scenario differs
from the one considered in [43] in that the available upload rate is increased by
the cache’s upload rate. The available upload rate is the sum of the upload rate of

the leechers, the seeds and that of the installed cache, and can be expressed as

Uz, y, k) = p(nz +y) + k. (4.4
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Substituting this into Equations 4.1 and 4.2 we get for the steady-state

0
0 = min{cz, p(nz +7) + K} — 7y (4.6)

A — 0T — min{czT, p(nT +7) + K} 4.5)

Let us first consider the download-rate-limited case, when the available upload
rate exceeds the maximum download rate of the leechers, i.e., ¢cZ < u(nT+7) +
k. It is easy to see that in this case the presence of caches does not affect the

steady-state number of leechers and seeds. Hence, they are the same as in [43]

_ A
_ A
At (4.8)

The condition under which the download rate is the limit is however different
from that in [43]. Given the expressions for the steady-state number of leechers
(Equation 4.7) and seeds (Equation 4.8) it is

Mely = i) — ynp}
K> Y . (4.9)

Next, we consider the upload-rate-limited case, when the maximum download
rate of the leechers exceeds the available upload rate, i.e., cT > u(nT + 7) + k.

Here we get
A K
T = - (4.10)
v(i+3) wm(+7)
A K0
y = + ) (4.11)
y(I+5) ey (1+7)
where % = %}(i - %) Again, given the steady-state number of leechers (Equa-

tion 4.10) and seeds (Equation 4.11) we can express the condition under which
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the upload rate is the limit

o < Melv = n) —ymu}
- Y(0+¢) ’

(4.12)

Note that since the cache upload rate is non-negative it must be that v > p,
which implies that » > 0 for an upload-rate-limited system. If v < p then the
system has to be download-rate-limited. From Equations 4.10 and 4.11 we draw
the following conclusions.

e For k = 0 the results coincide with those in [43], as expected.

e For x > 0 the number of leechers is always lower than without a cache in
steady-state. The effect of the cache decreases as the peers’ upload rates
and the effectiveness of file sharing increase because of the cache’s dimin-
ishing contribution to the upload rate.

o Interestingly, the steady-state number of seeds is insensitive to the cache’s
upload rate if peers never abort downloads (¢ = 0), but for 6 > 0 the
number of seeds increases with . The increase is inversely proportional to
the peers’ upload rates and the effectiveness of file sharing. Consequently,
when 6 > 0, installing a cache increases the available upload rate more
than the cache’s upload rate itself through an increased number of seeds
by a factor of 0/ny (1 + %) This phenomenon is explained by the fact
that due to the increased upload capacity, leechers become seeds faster

and hence the number of aborting leechers decreases.

e If 6/~ > 1 then the number of peers in the system increases linearly
with the amount of cache capacity installed. For 6/ < 1 the contrary is
true, while for 6/ = 1 the decrease in the number of leechers equals the
increase in the number of seeds.
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4.2.2 The Case of Multiple Systems

Let us consider now how installing a cache affects the system dynamics when
peers are located in several ISPs. We make the reasonable assumption that the
cache operated by ISP ¢ only serves leechers in ISP 7, but seeds and leechers
upload and download data to and from all peers.

The upload rate available to leechers in ISP ¢ has now three sources: the cache
provided by ISP ¢ and the leechers and seeds in all ISPs. The cache upload rate
in ISP ¢ is k;. The total upload rate from leechers and seeds in the system is

(> ez Tj + 2 ez Yj)- Since this upload rate is shared among all } ° ;

JjE zZ
leechers, the total upload rate available to the x; leechers in ISP ¢ is

Ui(x,y,k) = <77$1 + Zyjz ]) + Ki. (4.13)
JET

JjET

We provide analytical results for two scenarios, when all ISPs are upload-rate-
limited (i.e., cx; > U;(x,y, k)), and when all ISPs are download-rate-limited.

In the case when the system is upload-rate-limited in all ISPs, we can substitute
U;(x,y, k) into Equations 4.1 and 4.2 for every ¢ € Z and solve the system of
equations to get the steady-state number of leechers and seeds

Ai Ki
T = - — Ai(x,y, 4.14
(e R (e R .
)\i Hie 9
yi = + + 7A’L XaYaK; ) (4’15)
YA+Z) ey (1+2) ( )

where
ZjEI (Nikj — KiAz)

ny (1 + %) (Z,jez (N — "fj)) .

From Equations 4.14 and 4.15 we can obtain the following insights:

(4.16)

Ai(x,y, k) =

e Increasing the cache upload rate «; leads to a decrease of the number

of leechers in ISP ¢ independent of the arrival intensities and the cache
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upload rates in the other ISPs. At the same time it can increase the num-
ber of seeds. The changing ratio of leechers and seeds affects the amount
of transit traffic, which we will quantify in Section 4.3. To verify that
Equation 4.14 is a monotonically decreasing function of x; in an upload-
rate-limited system, we evaluate the first and second derivatives of Equa-
tion 4.14 w.r.t. k;. Equation 4.14 has two extrema (minimum and maxi-
mum) if and only if >, _;(A; — ;) > 0. The minimum is reached at
ki < Ai +25;(Aj — Kj), but at this value Z; < 0, and the system
can not be in the upload-rate-limited regime. The maximum is reached
for ki > Ai + >2,;(Aj — ;). which can not be in the upload-rate-
limited regime either. Hence, as we increase &, the number of leechers
decreases until we reach the download-rate-limited regime. A similar rea-
soning holds for Equation 4.15.

e Ai(x,y,k) given in Equation 4.16 is a function of 3,7\ ;; A; and
2 jer\ (i) fs- Hence Ai(x,y, k) and consequently 3; and Z; only de-
pend on the sum of the arrival intensities and the sum of the cache upload
rates in the other ISPs but not on their individual values.

e Since ), 7 Ai(x,y,x) = 0, we have that } . . T; = T as given in
Equation 4.10 and }, _, ¥, = ¥ as given in Equation 4.11. That is, the
total number of leechers and seeds in all ISPs only depends on the ag-
gregate peer arrival intensity and the aggregate amount of cache upload

rate.

In Section 4.2.3 we show simulation and experimental results to verify these an-
alytical results.

Let us consider now when the system is download-rate-limited in ISP ¢ (i.e.,

cx; < U;(%x,y, K)). Then the steady-state number of leechers and seeds in ISP ¢
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is given by
Ai
T, = 4.17
c(1+ %) ( )
Ai
Yy, = —F. (4.18)
! v(1+2)

In this case the number of leechers and seeds is not directly influenced by the
cache upload rate «; of ISP i. Nevertheless, whether the system in ISP ¢ is
download-rate-limited depends on the cache upload rate «; of ISP 4, the num-
ber of leechers in the other ISPs and hence indirectly on the cache upload rates
in the other ISPs.

4.2.3 Model Validation

In this section we validate the model via simulations and experiments with real
BitTorrent clients. The simulations allow us to verify the accuracy of the ana-
lytical model and the validity of our conclusions based on the model for a wide
range of system parameters. The experiments, even though smaller in scale than
the simulations, allow us to verify the accuracy of both the model and the simula-
tion results for a limited set of system parameters. Before presenting the numer-
ical results in Section 4.2.3, we briefly describe our simulation and experiment

setups.

Simulation Setup

We implemented the BitTorrent protocol in the ProtoPeer [65, 67] framework.
The implementation includes the piece selection mechanism, the management of
the neighbor set, and the choke algorithm. Furthermore, it covers the message
exchange between the peers as well as between the peers and the tracker. For
scalability reasons, we use the flow-based network model provided by ProtoPeer.
Our implementation is publicly available as a library for ProtoPeer [65].

The size of the shared file is 150 MB which corresponds to a movie or TV
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show of about half an hour duration in medium quality. Peers join the swarm at a
rate of 6.6 per minute and their upload and download capacities are 1 Mbit/s and
16 Mbit/s, respectively. These are typical values for relatively well-provisioned
home user Internet access connections in Europe. Normalizing by the file size,
these upload and download capacities are equivalent to ¢ = 0.05 and ¢ = 0.8
for the analytical model. Each peer is associated with one ISP and we use this
association to calculate the inter-ISP traffic. Each simulation run corresponds to
8 hours, and we discard an initial 2 hours warm-up period. The initial seed leaves
the swarm after 1 hour, so it has no influence on the swarm in the steady-state.
This setup results in an average number of 3200 peers for each simulation run
and swarms with around 120 peers concurrently online in the small scenario.
Such swarm sizes are typical for swarms sharing movies according to the mea-
surements presented in Section 3.2.1 of this monograph.

The ImUs are implemented as normal BitTorrent clients, but they only upload
data to peers in the same ISP. We do not simulate ImCs as their behavior is not
yet clear (i.e., it is not known what algorithms they would use to select leechers
to upload to). The presented simulation results are the averages of 20 simulation
runs, and we show confidence intervals at a 95%-confidence level.

If not stated otherwise, in the remainder of this study, peers have an average
seeding time of 10 minutes, i.e., v = 0.1. Leechers abort the download with
intensity & = 0.01, i.e., on average a leecher waits for 100 minutes until it leaves
the swarm if the file is not yet downloaded. For the upload and download rates we
use ¢ = 0.05 and ¢ = 0.8, respectively. All these variables have the dimension
min~!, we however omit them for the sake of clarity. For the effectiveness of file
sharing we use n = 0.9 in the model, i.e., close to 1 as shown in [43].

Experiment Setup

All measurements are performed in the experimental facility of the German-Lab
(G-Lab) project [60]. This experimental facility is distributed over 5 universities
in Germany. It consists of 152 nodes running Planet-Lab [58] software (version

4.2.1), the operating system of all nodes is Linux (Fedora Core 8, x86_64). G-
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Lab provides a controlled environment in which reproducible experiments can be
performed. In contrast to Internet-wide experiments (e.g., on Planet-lab), packet
loss rates and latencies between the nodes are very low. However, Rao et al.
[76] showed that these parameters have only a marginal impact on BitTorrent
performance, and consequently our results are representative for Internet-wide
scenarios.

‘We use the standard BitTorrent client (version 4.4.0-7-fc8) of the Fedora Linux
distribution and limit the access speeds of each BitTorrent client on application
layer. We use the same arrival, departure and abort behavior for experiments as
for the simulations to make them easily comparable. We grouped the nodes of the
experimental facility into “virtual” ISPs and calculated the amount of inter-ISP
traffic according to the source and the destination of the exchanged messages be-
tween the peers. We repeated all experiments 5 times and show 95%-confidence
intervals.

The size of the shared file is 7.031 MB and we adjusted the upload capacity of
the peers to 6 KB/s so that the normalized upload rate equals that of the simula-
tions u = 0.05. This reduces the amount of exchanged data in the experimental
facility by more than 95% while keeping the results comparable.

Simulation and Experimental Validation

We start with the validation of the observation that the system dynamics in ISP ¢
depend only on the aggregate arrival intensity and the aggregate cache upload rate
in the rest of the ISPs. Then, we show results from simulations and experiments
for varying cache capacities and compare them to the model.

For the validation we consider a tagged ISP, ISP 1, and the rest of the Inter-
net, which consists of a number I* of ISPs. Hence, the total number of ISPs
considered is I = I™ + 1. We set the upload capacity of the cache in ISP 1 to
k1 = 0.1 and the arrival rate to Ay = 0.6 and vary the number of the other
ISPs I € {1, 5,10, 20}. Peers join the other ISPs with an aggregate arrival rate
A* = 6 and the aggregate cache upload rate in the other ISPs is x*. Note that

the cache upload rates k1 and k™ are normalized to the size of the shared file
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(cf. Section 4.1.2) and their dimension is min "' to be consistent with the upload
and download rates of the peers defined at the end of the simulation setup in this
section. The peer arrival intensities and the cache upload capacities are equal in
the other ISPs, i.e., for i # 1 we use k; = k*/I" and \; = \*/I".

We show results from simulations for the number of leechers in ISP 1 =1 and
in the whole swarm 7 in Figure 4.1. The figure shows that for a given aggregate
cache capacity x* the number of ISPs /™ has no significant impact on the num-
ber of leechers in ISP 1 and in the whole swarm. The simulation results match
the values predicted from the model quite well, within 10% accuracy, except for
k* = 2. For k* = 2 we observe up to 30% difference between the simulation
and the analytical results, and we also observe that the number of ISPs I™ has
an effect on the number of leechers. The reason is that for k* = 2 the system
is oscillating between a download-rate-limited and an upload-rate-limited state.
Therefore, some of the upload capacity of the caches remains unused in periods
when the system is download-rate-limited. The oscillation depends on the arrival
process of the peers which is stochastic. Consequently, a system which is upload-
rate-limited on average can switch to a download-rate-limited system for some
time. However, the equations for the steady-state of the model do not account for
those fluctuations and that can lead to inaccuracies for parameter settings where
the system is not clearly download or upload-rate-limited.

We verified the above two hypotheses also for the number of seeds and for
different arrival rates in non-tagged ISPs \*, but we omit the figures. The simu-
lation results confirm the conclusions we drew from the mathematical model: the
system dynamics in ISP ¢ only depend on the aggregate cache capacity x* and
the aggregate arrival intensity A* of the rest of the ISPs. Therefore, in the rest of
the paper we focus on a scenario with two ISPs termed ISP 1 and ISP 2 where
ISP 2 represents “the rest of the world”. If not stated differently, we set A1 = 0.6
and A2 = 6 so that 10 times more peers join the swarm in ISP 2 than in ISP 1.
Furthermore, ISP 2 does not use a cache, i.e. k2 = 0.

In order to further validate the model, we consider the dependency of the sys-

tem dynamics on the cache capacity 1 of ISP 1. We performed simulations and
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FIGURE 4.1: Average number of leechers Z1 in ISP 1 (top) and in the whole swarm T (bottom) for
different numbers of other ISPs I and aggregate cache capacities ™ in “the rest of the world”. A1 =
0.6, k1 = 0.1, \" = 6.

experiments with different values of x1, and measured the number of leechers
and seeds. In Figure 4.2(a) we compare the number of leechers obtained using
the analytical model, the simulations, and the experiments. The figure shows the
number of leechers Z; in ISP ¢ as a function of the cache upload capapcity <1 in
ISP 1 normalized by the number of leechers T; |, o in the case of no caching.
Consequently, for k1 = 0 all results are equal to 1. The figure confirms that the
model provides accurate results, in particular for small cache capacities. How-
ever, the simulations show that the number of leechers 1 in ISP 1 is significantly
higher than predicted by the model for x1 = 0.5. The reason for this mismatch
is the same as explained above, i.e., a system which is on average upload-rate-
limited can get download-rate-limited for a period of time if only very few leech-
ers are online. However, almost all swarms we observe in practice are clearly
upload-rate-limited, and for upload-rate-limited systems the model provides very
accurate results.
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FIGURE 4.2: Normalized number of leechers ?‘570 and seeds 7
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upload capacity 1 of ISP 1. The figures show the number of leechers ; and seeds %; in ISP 7 divided

by the corresponding values for the case without caching (% |, =0 and ¥; |, =0)-
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We conclude the validation of the system dynamics with simulation results for
larger swarms. To this end, we increase the arrival rates to A1 = 3 and A2 = 30
which leads to swarm sizes of about 600 peers concurrently online. We simulate
three scenarios: i) homogeneous peer upload and downloads speeds; ii) hetero-
geneous peer upload speeds, and iii) heterogeneous peer upload and download
speeds. For the homogeneous scenario, we keep the default upload and down-
load capacities (Section 4.2.3) for all peers. For the two heterogeneous scenarios
we create groups of slow, medium, and fast peers and assign every new peer to
one of the groups with probabilities (0.4, 0.5, 0.1), respectively. In the scenario
with heterogeneous upload speeds, we use upload speeds of (0.0125,0.05,0.2)
for these groups and keep the same download speed as in the homogeneous sce-
nario. In the scenario with heterogeneous upload and download speeds we use
download speeds of (0.2,0.8,3.2) in addition. Using these parameters the av-
erage access speeds are the same in the homogeneous and in the heterogeneous

scenarios.

The results are shown in Figure 4.2(b). The difference between the scenarios
with homogeneous and with heterogeneous upload speeds is negligible, which
indicates that the model is accurate for swarms where peers have heterogeneous
upload speeds, as long as the average access speeds per ISP are the same. We
also note that in comparison to Figure 4.2(a) the number of leechers in the sim-
ulations is significantly closer to the analytical results. The better match between
the analytical and the simulation results is due to the higher number of peers,
as the oscillations of the system between the upload and download-rate-limited
state are less prevalent. However, for the scenario with heterogeneous upload and
download speeds the number of leechers in ISP 1 obtained from the simulations
is about 20% higher than predicted by the model. The reason is that most of the
slow peers reach their download limit already for small cache capacities 1, and
a further increase of k1 does not reduce their download time and their number in

the system.
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4.2.4 Numerical Results

The validation presented above allows us to consider two ISPs when evaluating
the effects of the cache upload rate x; of ISP ¢ on the system dynamics in ISP .
In the following we will use such a simple scenario to evaluate the effects of the
cache upload rate on the number of leechers and seeds in the system.

Figure 4.2(c) shows the normalized number of leechers and seeds in steady-
state in both ISPs for two values of the arrival intensity in ISP 2. Like in Fig-
ures 4.2(a) and 4.2(b), all values are normalized with the values obtained in the
case without caching, i.e., k1 = 0. For the case of equal arrival intensities in the
two ISPs (A1 = \2) the effect of the cache capacity on the number of peers in
the system is significant in both ISPs. For the case when A2 > A; the effect of
the cache upload rate on ISP 1 is just slightly smaller. In both cases we can ob-
serve the cache upload rate at which ISP 1 becomes download-rate-limited, i.e.,
above which rate the number of leechers and seeds in the ISP does not change.
The proportional decrease of the number of leechers is bigger than that of the
number of seeds, which might lead to an unwanted effect of the introduction of
a cache: more seeds in ISP 1 will upload to leechers in ISP 2 thereby increasing
the outgoing traffic of ISP 1. In the following section we investigate under what

conditions this unwanted effect can be observed.

4.3 The Impact of Caching on Transit Traffic

To illustrate the importance of the effect of the cache upload rate on the system
dynamics, in this section we develop a simple model of the transit traffic of the
ISPs and use the model to give analytical and numerical results.

Ideally, one would expect that by installing upload rate «; ISP 4 can decrease
its incoming transit traffic p! by at least ;. This would be the case for traditional
Web caching, for example. For the case of P2P let us consider the decrease of the
incoming transit traffic p! if ISP i installed a transparent cache. The transparent

cache serves requests that would generate incoming transit traffic, hence a cache
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upload rate of x; decreases the amount of incoming traffic p! by ;. Requests are
typically much smaller than the replies that contain the actual data, so the effect
of the transparent cache on the amount of outgoing transit traffic p¢ is minimal.
An alternative expectation can be that if ISP ¢ installs cache upload rate x; then

it decreases its total transit traffic p! + p$ by at least &;.

4.3.1 A Simple Model of Transit Traffic

Estimating the amount of transit traffic generated by a set of peers in an ISP
is difficult in general, because the effects of the neighbor selection algorithms
(e.g., choking/unchoking in BitTorrent), of the inter-ISP delays and bandwidth
bottlenecks are hard to model. The model we describe in the following does not
take into account such details, but it provides a way to quantify the effects of the
cache upload rate on the amount of transit traffic. More accurate models of the
data exchange between peers might give quantitatively different results, but our
simulations and experiments show that this simple model captures many of the
most important factors.

The approximation we derive in the following is based on two assumptions.

Assumption 1. (Competition) Leechers compete with each other for the available
upload rate as long as they would be able to download at a higher rate.

Assumption 2. (Proportionality) Given a single byte downloaded in ISP i, the
distribution of its sources is proportional to the amount of upload rate exposed to
the leechers in ISP 7.

To simplify the notation, we define the publicly available upload rate in ISP ¢
as the available upload rate located in ISP ¢ that can be used by leechers in any
ISP, and denote it by u! . For the scenario considered in this section this quantity
is given by the upload rate of the leechers and the seeds u! = p(nz; + vi).
Similarly, we define the locally available upload rate in ISP ¢ as the upload rate
that is only available to leechers in ISP <. For the considered scenario this quantity

is given by the upload rate of the cache, ul' = k.
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Let us first consider the ISP managed Ultrapeer (ImU). The ImU appears as
an arbitrary peer to the leechers in ISP i. The leechers in ISP ¢ demand data at a
total rate of cz;. The demand is directed to the locally available upload rate ur
of ISP ¢ and to the publicly available upload rate > y uf of all ISPs. The leechers
demand from the locally available upload rate with a probability proportional to
its value u”, i.e., with probability u’ /(3 5 f +uf). The rest they demand from
the publicly available upload rate, so the rate D¢ that leechers in ISP 4 demand

from the publicly available upload rate can be expressed as

L
Di=eri[1—- =% ). 4.19
cx ( Ejuf‘*‘uiL) 4.19)

Consider now the ISP managed cache (ImC). The leechers demand by pref-
erence from the ImC, hence their total demand is decreased by the cache capac-
ity k. If the ImC can serve the demand then no publicly available upload rate
is demanded by the leechers in ISP i. Otherwise, the leechers demand publicly
available upload rate with a probability proportional to the amount of publicly

available upload rate, at a rate of

L
Df = 0, e — ki) [1— g ). 420
maz(0, cx; — K;) ( Zj uf i — (4.20)

Since ul = k;, leechers in ISP i demand from the publicly available upload rate

what cannot by served by the ImC.

If the system is download-rate-limited then the leechers receive the demanded
rate. If the system is upload-rate-limited then the received rate of the leechers in
ISP ¢ is proportional to the total publicly available upload rate divided by the total
demanded rate

d
>, DS

The rate that the leechers receive can originate from any ISP, and it is hard to

P
LU
D! = Dlmin (1, 2 ) ) @.21)
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4 Performance Evaluation of Caching Strategies in Overlay Networks

provide an accurate estimate of the share of the traffic that would originate from
outside the ISP, as factors such as the available bandwidth between ISPs and the
end-to-end delays influence the download process. Applying Assumption 2 again

we get the following estimate for the incoming transit traffic of ISP .

Proposition 1. Under Assumptions 1 and 2 the estimated incoming transit traffic

of ISP i is
I ul
pi=D; [1- : . (4.22)
Xjuy

where D; is defined in Equations 4.19-4.21.

We estimate the outgoing transit traffic based on the incoming transit traffic
estimates and by using Assumption 2, i.e., the amount of traffic that ISP ¢ uploads
to ISP j is proportional to the ratio of the publicly available upload rate in ISP ¢
and the aggregate publicly available upload rate outside ISP j.

Proposition 2. Under Assumptions 1 and 2 the estimated outgoing transit traffic
of ISP 1 is
I Uf

o
pi =D PP (4.23)
G#i ’ Zk#j ukp

In the following we use these simple estimates to quantify the effects of the

cache upload rate on the incoming and outgoing transit traffic of the ISPs.

4.3.2 Asymptotic Results of Cache Efficiency

Motivated by the results of Section 4.2.2 we consider the case of two ISPs, a
tagged ISP (¢ = 1) and the rest of the ISPs represented by ISP ¢ = 2, (Z =
{1,2}). We analyze the effects of the cache upload rate «; installed by ISP 1
on the amount of traffic exchanged between the two ISPs in the limiting case
when A2 — oo and in an upload-rate-limited system. For A2 sufficiently large if

uyn < c(y — w) then the system is upload-rate-limited (see Equation 4.12).
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Proposition 3. In an upload-rate-limited system the asymptotic transit traffic
savings of ISP 1 achieved by the ImU are

. 1 I K1

Allgloo (P1loi=0 —p1) = @ (4.24)
. o o0 o K1 _ HR1

Jim (o1 fwi=0 —pr) = a+9 (4.25)

Proof. For an upload-rate-limited system and small cache upload rates «; we

T

share

can give an upper bound on the incoming transit traffic in ISP ¢ as S
of the total upload rate from leechers and seeds in all other ISPs j # 1, i.e.,
> j#i uf ’
ol = inx Sl (4.26)
JET T 4
Substituting this expression into Equation 4.23 we get an upper bound on the

outgoing transit traffic intensity

O Ti P
o =1- =2 |ul. (4.27)
( 2 jez % )

Let us now substitute Equations 4.14 and 4.15 into Equations 4.26 and 4.27.
By increasing the peer arrival rate in ISP 2 to infinity we get Equations 4.24
and 4.25. O

Both Equations 4.24 and 4.25 are independent of the cache upload rate ko
in ISP 2, and the arrival intensity in ISP 1. We also note that since v > 0 we
have 1 + g > 1, so that the incoming transit traffic gain is always less than the
cache upload rate installed by the ISP. The same is true for the outgoing transit
traffic gain. The sum of the gains can however exceed the cache upload rate. We
conclude that a transparent cache is preferable over an ImU for an ISP whose
transit traffic costs are only a function of the amount of incoming transit traffic.
Nevertheless, an ImU might be preferable if the ISP is charged based on the

maximum of the incoming and the outgoing transit traffic.
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For the ImC we can formulate a similar result.

Proposition 4. In an upload-rate-limited system the asymptotic transit traffic
savings of ISP 1 achieved by the ImC are

: I I SN K1 kipm

im (prlwi=o —p1) = ) e oo (4.28)
. o (@] o K1 _ Hk1

im  (prls=o —pr) = 0+9 4 (4.29)

Proof. Consider the upper bound for the incoming transit traffic

u?, (4.30)

and substitute this into Equation 4.23 to get the upper bound on the outgoing
transit traffic

0 =1 ET R )P 4.31)

D jer €T — Kj
We substitute Equations 4.14 and 4.15 into Equations 4.30 and 4.31 and increase
the arrival rate in ISP 2 to infinity to get Equations 4.28 and 4.29. O

Again, the expressions are independent of 2, and the arrival intensity in ISP 1.
Depending on the value of the rightmost term of Equation 4.28 the efficiency of
the cache upload rate for ImC can exceed 1. Consequently, an ImC can outper-
form a transparent cache in terms of the decrease of the incoming transit traffic.
Comparing Equation 4.24 to Equation 4.28 we observe that the bound for the
gain in terms of incoming transit traffic is higher for the ImC than for the ImU
(because v > p for an upload-rate-limited system). An intuitive explanation for
the superioririty of the ImC is that its upload rate is better utilized because leech-
ers download from the ImC by preference. Comparing Equation 4.25 to Equa-
tion 4.29 we observe, however, that the bounds for the gain in terms of outgoing
transit traffic are equal for the ImU and for the ImC.
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FIGURE 4.3: Normalized transit traffic savings for ISP 1 vs. its cache upload capacity 1. The incoming

transit traffic savings (p{ [ry=0 — p{) are normalized by the incoming transit traffic without caching,

p{ | i1 =0. The values for the outgoing transit traffic savings are calculated similarly, i.e., (plo [k1=0—
Oy, 0

P1 )/Pl |n1:0-

4.3.3 Model Validation

Before analyzing the effects of the caches on the amount of transit traffic we
show simulation and experiment results to validate the simple model of transit
traffic. We use the same scenarios as for the validation of the system dynamics
(cf. Section 4.2.3) and consider the transit traffic savings, i.e., the difference of the
transit traffic without and with caching. We distinguish between incoming transit
traffic savings p{|~1:0 — p! and outgoing transit traffic savings p10|,$1:0 — 9.
Figures 4.3(a) and 4.3(b) show the incoming and outgoing transit traffic savings
normalized by the corresponding transit traffic values without caching, p! [y =0
and p10|K1:o respectively. Consequently, the values in these figures can also be
interpreted as the fraction of incoming and outgoing transit traffic that can be
saved by installing a cache with upload capacity x;.

The simulations and experiments confirm that the model provides accurate
estimates of the transit traffic as long as the system is clearly download-rate-

limited (Figure 4.3(a)). However, for values of 1 close to the transition between
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an upload-rate-limited system and a download-rate-limited system the difference
between the model and the simulation results gets bigger, up to 25%. Further in-
creasing 1 the analytical and simulation results get closer as the system becomes
dominantly download-rate-limited. The reason is again that due to the changing
peer population there are some periods of time when the system is download-rate-
limited although it is upload-rate-limited on average. When the peer population is
small, the cache can not use its total upload capacity and leechers obtain a larger
fraction of the file from other peers.

Like in Section 4.2.3, we carry out simulations for a larger swarm (A1 = 3,
A2 = 30) with homogeneous and with heterogeneous peer access speeds. The
transit traffic savings for these scenarios are presented in Figure 4.3(b). Again,
we conclude that the model is more accurate for larger peer populations and that
there is hardly any difference between the results for homogeneous and for het-
erogeneous peer upload speeds. The model overestimates the incoming transit
traffic savings for the scenario with heterogeneous peer upload and download
speeds. The reason is that the model underestimates the number of leechers x1
for this scenario (cf. Figure 4.2(b)), which has a big impact on the incoming
transit traffic.

4.3.4 Numerical Results and Insights

In the following, we show numerical results based on the simple model of the
transit traffic and show that an accurate model of the system dynamics is nec-
essary when investigating the impact of caches on the transit traffic. We present
non-normalized transit traffic values in order to be able to show the asymptotic
results.

Numerical Results

Figure 4.4(a) shows the savings in terms of incoming transit traffic as a function
of the cache upload rate s, for ISP 1. The parameters are the same as the ones

used for Figure 4.2(c). For ImU the decrease of the incoming transit traffic is
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FIGURE 4.4: Analytical results for transit traffic savings of ISP 1 vs. its cache upload capacity x1.

always below the amount of cache upload rate used, while for ImC it is equal.
The asymptotic bounds are rather tight both for ImU and for ImC until the system
becomes download-rate-limited. Once the system is download-rate-limited, the
increase of the cache upload rate has only a minor effect on the incoming transit
traffic.

There is a big difference in the efficiency of the caches for different values of
the arrival rate A2 in ISP 2. The decrease of the incoming transit traffic is less
than 50% of the cache upload rate for A\; = Ao, while it is close to the asymp-
totic limit for A2 = 60. The inefficiency of the cache to decrease the incoming
transit traffic for swarms for which a significant portion of the peers is in the ISP
shows that ISPs might have to actively manage the cache upload rates between
the different swarms to maximize the cache efficiency. Based on this result, we
develop a cache upload capacity allocation policy that prioritizes swarms with a
small fraction of peers inside the ISP with the cache in Section 4.5. Furthermore,
we evaluate its efficiency via simulations of multi-swarm scenarios and show that
it can outperform the default, demand-driven policy, i.e, if the upload capacity of

the cache is not actively managed.
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Figure 4.4(b) shows the savings in terms of outgoing transit traffic as a function
of the cache upload rate ~;. The parameters are the same as the ones used for
Figure 4.2(c). Surprisingly, we observe that the outgoing transit traffic increases
slightly for low values of x1. The increase of the outgoing transit traffic is in fact
a result of the increase of the number of seeds and the decrease of the number
of leechers in ISP 1. The changes in the number of the peers and cache upload
rate results in an indirect feeding of the leechers in ISP 2. This phenomenon is
the reason for the low efficiency in decreasing the outgoing transit traffic even for
A2 = 60. The asymptotic bounds are rather tight both for ImU and for ImC.

These results suggest that a transparent cache is rather efficient in terms of
decreasing the incoming transit traffic compared to an ImU. With the availability
of localization services the deployment of ImC can become possible, which can
improve the efficiency of non-transparent peer-to-peer caches.

Fluid Modeling vs. Static Overlay

Our simple model of transit traffic is of course not accurate and complex enough
to predict the amount of transit traffic in a complex, heterogeneous network, but
it can serve to compare the amount of transit traffic if one considers the effects of
caches on the system dynamics and if one does not consider them.

Figure 4.5 shows the mismatch of the estimate of the transit traffic savings if
one did not use the fluid model described in Section 4.2 to model the change of
the number of peers as a function of the cache upload rate, but used the number
of peers without a cache to estimate the transit traffic as a function of the cache
upload rate using Equations 4.22 and 4.23. The figure shows that one underesti-
mates the decrease of the incoming transit traffic by almost up to a factor of 20
if one does not consider the change of the number of peers. At the same time
one overestimates the decrease of the outgoing transit traffic by up to a factor of
10. The actual ratios depend on the considered scenario, but in general, the error

introduced by not modeling the change of the number of peers can be substantial.
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4.4 Improving the Cache Efficiency

In the previous sections we showed two controversial effects of caching. First,
under certain scenarios the upload rate provided by the cache is not entirely used
to decrease the transit traffic of the ISP. Second, under certain scenarios the cache
upload rate can lead to an increase of the ISP’s outgoing traffic contrary to the
expectations. In the following we investigate how restricted neighbor selection
(RNS) could help to avoid these effects. The idea behind RNS is to prevent seeds
from indirectly relaying the cache’s upload rate to external leechers. To achieve
this, the seeds follow a proximity-aware upload policy: they only upload to local
leechers as long as there are any. Leechers may still upload to remote peers.
This simple scheme ensures that small swarms scattered over several ISPs do not

starve in the presence of seeds.

In the following we first describe a possible implementation of RNS in
BitTorrent-based P2P systems. Then, we adapt our model of the system dynam-
ics and the transit traffic to RNS and validate it via simulations and experiments.
Finally, we investigate how such a simple scheme could improve the cache’s ef-

ficiency.
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4.4.1 Implementation of RNS in BitTorrent

In BitTorrent the so-called choke algorithm determines to which other peers a
peer uploads data. A possible implementation of RNS could change this algo-
rithm in a way such that a seed prefers local leechers over remote leechers. The
required information whether another peer is local or remote can be obtained us-
ing ISP provided localization services developed in the IETF Application Layer
Traffic Optimization (ALTO) working group [62]. Another source for this infor-
mation are public databases such as [91].

Nevertheless, if peers know only a randomly selected, small subset (e.g.,
around 50 peers in some BitTorrent implementations) of all peers in the swarm,
it might happen that a seed has no direct connection to local leechers even if
local leechers are present in the swarm. In this case the seed would upload to re-
mote leechers which leads to inter-ISP traffic. To avoid this situation, we modify
the BitTorrent clients so that seeds keep track of the number of local leechers in
their neighbor set. If this number reaches 0, they contact the tracker to obtain ad-
dresses of more local leechers. For this purpose, the tracker needs to know the AS
affiliations of the peers. A tracker supporting such a mechanism is for example
the so-called iTracker which is proposed and investigated in [66]. This scheme
ensures that the data delivery from the seeds to the leechers is kept as local as

possible.

4.4.2 System Dynamics under RNS

In the following we develop a fluid model of the system dynamics for RNS.
We use the same notation as in Section 4.2.2. We keep the assumptions that the
cache operated by ISP 7 only serves leechers in ISP 4, and that leechers upload
and download data to and from all peers (i.e., they are proximity unaware), but
impose the limitation that seeds only upload to local leechers.

The upload rate available to leechers in ISP ¢ has three sources: the cache
provided by ISP ¢, the leechers in all ISPs and the seeds /ocal to ISP 7. The cache
upload rate in ISP ¢ is x;. The upload rate from the local seeds is py;. The total

102



4.4 Improving the Cache Efficiency

upload rate from leechers in the system is p(n > jez x;). Since the upload rate
from the leechers is shared among all Zj <z ¥; leechers, the total upload rate
available to the z; leechers in ISP i is U; (x,y, k) = u(nz; + y;) + .. Note that
this expression of U;(x,y, ) is the same as that for the single system studied in
Section 4.2.1. Consequently, the number of leechers and seeds in the ISPs is the
same as if the ISPs were isolated.

When the system in ISP 7 is upload-rate-limited (i.e., cz; > U;(X,y, K)) we

have
Ai Ki
T = _ 432
Y () Ry ey 32
7, = Ay w8 (4.33)

YA+Z) ey (14 3)

When the system is download-rate-limited the number of leechers and seeds is
the same as without restricted neighbor selection, i.e., given by Equations 4.17
and 4.18, respectively. We observe that with restricted neighbor selection the sys-
tem dynamic in ISP ¢ is not influenced by the cache upload rates of the other
ISPs. Using the steady-state number of leechers and seeds the condition for the
system to be upload-rate-limited in ISP i is

o Adely — ) — vl

i < ~0+ o) , (4.34)

identical to that of the single system case. Whether the system is upload or
download-rate-limited depends only on the cache upload rate x; of ISP 3.

4.4.3 Transit Traffic Estimates under RNS

We can obtain the transit traffic estimates for the case of restricted neighbor se-
lection by defining the publicly available upload rate in ISP 4 as the upload rate
of the leechers ul’ = p(nx;), and by defining the locally available upload rate as

the sum of the upload rates of the seeds and the cache upload rate uX = juy; + k..
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With these definitions of the available upload rates we can use Equations 4.19-
4.23 to approximate the incoming and the outgoing transit traffic in the ISPs.

We can derive an asymptotic upper bound for the outgoing transit traffic for the
case of restricted neighbor selection similar to the one in Section 4.3.2. Following
the same steps, but substituting Equations 4.32 and 4.33 into Equation 4.27, for
the case of the ImU we get

. K
lim (pf |y =0 — p) = —— (4.35)

e (1+D)
Comparing Equation 4.35 to Equation 4.25 we observe an increase of the bound
of the outgoing transit traffic gain due to the restriction of the neighbor selection
of the seeds. The condition 1 + % > 1 still holds however, so that the outgoing
transit traffic gains are less than the installed cache upload rate.
For the case of the ImC we substitute Equations 4.32 and 4.33 into Equa-
tion 4.31, and get

. o) oy _ K1
Aim (o1 =0 —pr) = a+oy (4.36)
Comparing Equation 4.29 to Equation 4.36 we observe that the rightmost term
disappears, and hence the upper bound of the outgoing transit traffic gain is

higher.

4.4.4 Model Validation

In order to validate the model for RNS, we use the same scenarios as for the
unrestricted neighbor selection (cf. Section 4.2.3). The change of the number of
leechers is shown in Figure 4.6. Figure 4.6(a) is analogue to Figure 4.2(a) and
compares results obtained from the simulations and the experiments for the sce-
nario with A1 = 0.6 and A2 = 6. The simulation and experimental results con-
firm that the model accurately captures the impact of the cache on the number of

leechers in ISP 1 as long as the cache capacity is small. However, in the range of
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upload capacity 1 of ISP 1 for the restricted neighbor selection.

k1 € 0.2, 0.4] the model underestimates the number of leechers in ISP 1 consid-
erably. The reason is that sometimes no leecher exists in ISP 1. As a consequence,
the cache capacity cannot be fully utilized in this scenario which is neglected by
our model. According to the simulations, no leecher is present in ISP 1 for around
14% of the steady-state simulation time in case of k1 = 0.4 and the utilization
of the cache upload capacity is about 76%. The experiment with k1 = 0.4 shows
that this effect can also be observed using real BitTorrent clients. In addition, the
number of leechers in ISP 2 observed in simulation and experiments remains al-
most constant regardless of the cache capacity 1 in ISP 1. The slight decrease
can be explained by the fact that sometimes seeds in ISP 1 upload to ISP 2 since
no leechers are present in ISP 1.

Figure 4.6(b) corresponds to Figure 4.2(b) and presents the results for a larger
swarm (A1 = 3, A2 = 30) with homogeneous and heterogeneous access band-
width as introduced in Section 4.2.3. As for the case with the unrestricted neigh-
bor selection, the simulation results show that the accuracy of our model is higher

for larger swarms. Furthermore, heterogeneous access bandwidths have only a
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FIGURE 4.7: Normalized transit traffic savings for ISP 1 vs. its cache upload capacity 1 in case of
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small impact on the number of leechers in ISP 1 and no impact on leechers in
ISP 2.

In order to validate our model of the inter-ISP traffic, we consider the normal-
ized transit traffic savings in analogy to Section 4.3.3. In Figure 4.7(a), we com-
pare the results obtained from the model, the simulations, and the experiments.
While the model predicts that the normalized savings in incoming and outgoing
traffic are very similar, the simulation results and the experiments show that the
normalized savings in incoming traffic are higher than those in outgoing traffic.
The reason is that seeds in ISP 1 upload to ISP 2 when no leechers are present
in ISP 1 whereas the model assumes that the whole upload capacity of seeds is
used for local leechers. Therefore, we simulate an additional peer behavior where
seeds never upload to remote leechers. The corresponding savings in outgoing
traffic (labeled “Outgoing (strict rns)” in Figure 4.7(a)) are significantly closer
to the predictions by the model. However, this peer behavior can lead to starva-

tion in swarms scattered over several ISPs and is therefore unlikely to be used in
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practice. For small and large cache capacities, the model provides accurate pre-
dictions of the incoming traffic savings. The overestimation of the traffic savings
for k1 € [0.2,0.5] is owed to the underestimation of the number of leechers ex-
plained above since this number mainly determines the amount of transit traffic.
As for the unrestricted neighbor selection, the accuracy of the model for transit
traffic increases considerably for larger swarms (cf. Figure 4.7(b)). Furthermore,
the simulations of the scenarios with homogeneous access capacities of the peers,
with heterogeneous upload capacities, and with heterogeneous upload and down-
load capacities lead to similar results. Therefore, we conclude that heterogeneity
of access capacities has only a minor impact on transit traffic savings under these
circumstances.

4.4.5 Numerical Results and Insights

We first consider the system dynamics with RNS. In Figure 4.8(a), the number of
leechers and seeds for RNS is shown as a function of the cache upload capacity
k1. As already pointed out, the number of peers in ISP 2 and their arrival rate has
no impact on the system dynamics in ISP 1. Furthermore, the number of peers
in ISP 2 is not influenced by the cache capacity 1 of ISP 1. As a consequence,
the normalized number of seeds and leechers in ISP 2 remains constant at a value
of 1. Finally, we observe that less cache capacity «i is required to reach the
download-rate-limited state due to the RNS policy.

Figure 4.8(b) shows the incoming transit traffic savings of ISP 1 for RNS ob-
tained from the model. Comparing the figure to Figure 4.4(a) we observe that
incoming transit traffic savings are higher with RNS than without it for Ao = 60.
While the savings in terms of incoming transit traffic are about as large as the
cache capacity for the unrestricted neighbor selection, they are almost doubled
with RNS for the ImU and the ImC. In contrast, the traffic savings with RNS are
slightly below the ones without RNS for A2 = A\; = 0.6. However, this does not
mean that RNS leads to more incoming transit traffic. It can be explained by the

fact that seeds do not upload to remote leechers when RNS is applied even when
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no cache is used (k1 = 0). Therefore, the incoming transit traffic pf |1, =0 with
RNS is already considerably lower than without it even when no cache is used.
Hence, the savings in incoming transit traffic achieved by the additional cache
capacity can be smaller than with unrestricted neighbor selection, although the
incoming transit traffic for a given cache capacity with RNS is lower than with-
out RNS for any value of 1. The outgoing transit traffic savings of ISP 1 ob-
tained from the model are shown in Figure 4.8(c) for the case with RNS. Again,
we present non-normalized transit traffic savings to show the asymptotic limits.
Comparing the figure to Figure 4.4(b) we observe that restricting the neighbor
selection of seeds eliminates the unwanted increase of the outgoing transit traffic.
In general, the outgoing transit traffic savings increase as an effect of RNS both
for ImU and ImC.

4.5 Outlook on Multi-Swarm Scenarios

As shown above, it is not straightforward to assess the impact of caches on the
amount of inter-ISP traffic: the influence of the cache on the swarm dynamics and
the peer selection mechanisms need to be taken into account to assess the actual
benefit. As a consequence, the same cache upload capacity allocated to different
swarms can lead to different savings in terms of transit traffic depending on the
swarm parameters. Since the savings in terms of transit traffic is a function of the
swarm parameters, it is important to understand whether the amount of transit
traffic can be decreased by actively allocating the cache upload capacity to the
peers in the swarms that coexist in an ISP’s network.

Therefore, we study different types of allocation policies in this section. First,
we give a precise formulation of the upload capacity allocation problem. Af-
terwards, we describe a set of allocation policies. Finally, we evaluate the per-
formance of these policies via simulations. The content of this section is taken

from [23] with some modifications and extension from [24,29].
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4.5.1 Cache Upload Capacity Allocation Problem

We consider a scenario with a set Z = {1,2,...,I} of I ISPs and a set S of
swarms. Each ISP ¢ € 7 operates a cache with upload capacity x;. We denote
the cache capacity allocation of ISP 4 by the vector K; = (K 1,. .., K; s), with
> ses Kis < k. It is known that the cache upload capacity K, allocated to
swarm s has an impact on the transit traffic of ISP ¢ (cf. Section 4.3). It is, how-
ever, not well understood how the cache capacity allocation K; between swarm
affects the amount of transit traffic of ISP ¢. Our goal is to answer this question.

4.5.2 Cache Capacity Allocation Policies

In order to evaluate whether cache upload capacity allocation can lead to a de-
crease of the inter-ISP traffic, we consider various policies that ISPs could imple-

ment to allocate the available cache upload capacity among the swarms.

Demand-driven Allocation

The baseline cache capacity allocation policy we consider is when the cache ca-
pacity is not actively managed by the ISP. The cache serves the requests of the
peers according to a first in first out service discipline. As the request rate can
exceed the maximum service rate of the cache, the cache is equipped with a drop
tail queue in which requests can be stored until they get served. The cache ca-
pacity allocated to a swarm s is approximately proportional to the demand that
the leechers of swarm s in ISP ¢ put on the cache. Consequently, we refer to this
baseline policy as the demand-driven policy.

Priority-Based Policies

Intuitively, if cache capacity allocation is to lead to decreased transit traffic com-
pared to the demand-driven policy, then there must be some swarm s whose tran-
sit traffic decreases faster as a function of the amount of cache capacity K; s

than that of the other swarms. If there is such a swarm s then the cache capacity
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K s allocated to it should be increased until the marginal gain of allocating more
cache capacity to it equals to the marginal gain of the other swarms. Neverthe-
less, finding the optimal allocation this way is difficult in practice, because the
marginal gain of allocating more cache capacity to a swarm is hard to measure.

To approximate the theoretically optimal policy we consider policies that use
priorities to allocate the cache capacity between the swarms. The cache serves
the requests of peers using non-preemptive priority scheduling. Various ways are
possible for assigning priorities to swarms. In our case, we choose the following
priority assignment: to calculate the priority of a swarm s we take the ratio r of
the number of leechers x; s in ISP 7 to the total number of peers in s outside
ISP 7 and assign the highest priority to the swarm with the smallest ratio r. As a
consequence, we call this scheme smallest-ratio priority. The motivation of this
policy focuses on the incoming traffic savings since these tend to be significantly
large than the outgoing savings.

Leechers in swarms with a small ratio r are likely to download data from a
remote peer. This is in particular the case under Assumption 2, which states that
the distribution of sources over ISPs for a single byte downloaded is proportional
to the amount of upload capacity exposed to the downloading peer. In contrast,
the amount of traffic that a leecher downloads from a remote peer is smaller if
only a small fraction of the peers in this swarm is located outside of ISP 1, i.e.,
in a swarm with a high ratio r. Hence, we argue that the prioritizing swarms
with small ratios 7 in the allocation of the cache upload capacity is a reasonable

measure to increase transit traffic savings.

Policies Based on Per-Swarm Capacity Limits

As a comparison for the smallest-ratio priority and the demand-driven policy
we consider policies that reserve a fraction of the cache capacity to individ-
ual swarms. Such policies were evaluated in [24]. Three capacity reservation
schemes are considered there. The first scheme reserves the same amount of
cache capacity to all swarms, referred to as uniform capacity reservation. The

second and third schemes reserve capacity to swarm s proportional to the ratio of
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local and external number of peers in the swarm, analogous to the priority-based
policy. In our evaluations in [24] we showed, that capacity limits can reduce tran-
sit traffic, but they tend to waste a part of the upload capacity of the cache. The
reason is that upload capacity allocated to a certain swarm cannot be consumed
by other swarms even if this swarms is not able to use all the allocated upload ca-
pacity. Since this is different with priority-based policies, we consider only those

in the remainder in this section.

4.5.3 Performance of Allocation Policies

Our performance evaluation is based on simulations. For the evaluation we con-
sider a BitTorrent system consisting of |S| = 12 swarms. Motivated by the results
in Section 4.2.2, we consider a network topology consisting of two ISPs, called
ISP 1 and ISP 2. Peers arrive to swarm s in ISP ¢ according to a Poisson process
with rate \; s. After downloading the file, they remain in the swarm for an expo-
nentially distributed seeding time. The aggregate arrival rate A of the peers in all
swarms is 0.5 s~* in all scenarios, ISP 1 uses a cache with an upload capacity
k1 = 30 Mbit/s. No caches are located in ISP 2.

We implemented the cache capacity allocation policies in the ProtoPeer simu-
lator, which we also used preceding part of this chapter. We are first interested in
understanding under which conditions allocation policies have an impact on the
amount of transit traffic. For that purpose, we define three scenarios with different
distributions of the peers over the swarms and ISPs and measure the transit traffic
savings in incoming and outgoing direction, i.e., the fraction of transit traffic that
can be saved by installing a cache as compared to the case without a cache.

In the first scenario the peers are distributed uniformly between swarms, i.e.,
As = D>, Ais = A/|S], but the arrival intensity to ISP 2 is ten times higher
than that to ISP 1 (scenario called uniform,1:10). The transit traffic savings for
the demand-driven and the smallest-ratio priority policies are presented in Fig-
ure 4.9. We observe that cache capacity allocation does not make a difference

for this scenario. The same is true for the second set of columns, results ob-
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tained for a scenario where the arrival intensities A follow a Zipf-distribution,
i.e., when some swarms are more popular than others (scenario called zipf,1:10).
We only observe a difference in terms of the transit traffic savings in the third
set of columns. These results correspond again to a uniform distribution of peers
over swarms, i.e., As = >, Ai,s = A/|S|. However, in this scenario there are
two symmetric swarms (with respect to their distribution over ISP 1 and ISP 2,
i.e,, A1,s = A2,5), and ten asymmetric swarms where the arrival intensities are
distributed 1:10 over ISP 1 and ISP 2 (scenario called uniform,1:1+1:10). This
means for the asymmetric swarms that A2 s = 10 - A1 s.

The results show that the smallest-ratio priority policy performs best; it out-
performs the demand-driven policy by almost 30 percent in incoming direction
and by almost 50 percent in outgoing direction. The reason is that when the ratio
of local leechers is low, peers are likely to download data from peers in other
ISPs. Therefore, they should be prioritized by caches. These results indicate that
upload capacity allocation is an efficient means of improving the efficiency of
P2P caches.

In addition, we investigate the impact of the upload capacity 1 of the cache
in ISP 1 in this third scenario with the ten asymmetric swarms. To this end, we

vary k1 from O to 100 Mbit/s and measure the incoming and outgoing transit
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traffic savings for the demand-driven and the smallest-ratio priority allocation.
The results are shown in Figure 4.10. We observe that up to 80 percent of the
incoming transit traffic can be saved and up to 30 percent of outgoing transit
traffic. In both directions the smallest-ratio priority policy clearly outperforms
the demand-driven allocation. In particular for medium cache upload capacities
k1 = 30 Mbit/s or k1 = 50 Mbit/s, there is a considerable difference in transit
traffic savings comparing the two different allocations. For larger cache upload
capacities this difference diminishes since nearly all peers can download data at
full speed. This decreases the impact of prioritization.

These simulations show that actively managing the upload capacity of a cache
can increase transit traffic savings for ISPs. For that purpose, the smallest-ratio
priority policy is a reasonable policy since it leads significantly larger traffic sav-
ings compared to demand-driven allocation in the considered scenarios. The de-
scribed motivation for the smallest-ratio priority allocation suggests that this is
also the case for a wide range of other scenarios and when popularity of swarms
or their distribution among ISPs change over time. A more comprehensive evalu-
ation of upload capacity allocation policies can be found in [29]. This paper also
includes a formulation of this problem as a Markov decision process and presents
results from Planet-Lab experiments validating the simulation results.

4.6 Lessons Learned

In this chapter we start with single-swarm scenarios of BitTorrent-like peer-to-
peer systems and investigate the impact of caches on the inter-ISP traffic. To
this end, we develop a simple fluid model of the effects of caches on the system
dynamics and show using the model how the caches installed in an ISP affect
the system-wide and the local peer-dynamics. Furthermore, we describe a simple
model of inter-ISP traffic and use the model to illustrate that the major impact of
caches on the transit traffic is via the system dynamics. Hence, one can not neglect
the effects of caches on the system dynamics. We provide asymptotic bounds on

the efficiency of caches, and give a comparison of the efficiency of caches under
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our modeling assumptions. We show that caches can sometimes lead to increased
outgoing transit traffic, depending on the portion of the peers within the ISP.

In addition, we describe a restricted neighbor selection policy, extended the
fluid model to capture its effect on the system dynamics, and show that it can
avoid the increase of the outgoing transit traffic due to caching. Our analytical
results also show that ISP managed Caches would in general be superior to trans-
parent caches and to ISP managed Ultrapeers in terms of decreasing the transit
traffic, except for very small torrents when the difference is negligible. We val-
idate the insights obtained via the fluid model by simulations and experiments
with real BitTorrent clients. While the quantitative results on the inter-ISP traffic
depend on the traffic model, we expect that the qualitative results would hold for
other traffic models.

Finally, we zoom our focus to multi-swarm scenarios and investigate whether
ISPs can decrease their inter-ISP traffic by actively managing the upload capacity
of their caches, i.e., allocating more upload capacity to some swarms than to
other ones. This investigation is motivated by the fact that the same amount of
cache upload capacity leads to different amounts of traffic savings depending on
the swarm parameters. For this purpose, we present the smallest-ratio priority
policy and show via simulations that this policy can outperform the demand-
driven allocation in the investigated scenarios by up to 50 percent. Therefore,
we conclude that an active management of the upload capacity of a cache is
important to reduce transit traffic for ISPs.
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5 Conclusion

Overlay networks based on the P2P paradigm are an efficient means to dis-
tribute content in the Internet. They are more scalable compared to the traditional
client/server architecture since users who download a specific content also con-
tribute upload capacity to the distribution process. As a consequence, the avail-
able upload capacity scales with the demand in the system. This is in particu-
lar appealing for content providers since they can reduce their distribution costs
through the use of the upload capacity of their customers.

However, the distribution process within the overlay networks is mostly un-
aware of the underlying physical network topology and of network boundaries
between different ISPs. Therefore, the distribution process might be less efficient
from the point of view of the ISP. For example, several users in the overlay net-
work who are all located in the physical network of the same ISP might download
identical content from other users located in different parts of the world instead
of sharing this content between each other. This behavior leads to a considerable
amount of inter-ISP traffic, which is costly for small and medium-sized ISPs.
In addition, such traffic is often unnecessary in the sense that it can be avoided
without degrading the user perceived performance if users in the same ISP pref-
erentially share content among each other. Due to the high popularity of such
overlay networks, this is a severe cost factor for many ISPs today.

As a consequence, the research community and standardization bodies are try-
ing to optimize the traffic patterns resulting from P2P based overlay networks for
content distribution. The main goal is to reduce the amount of inter-ISP traffic
without degrading the user experience. For that purpose, two basic approaches

are under discussion. The first one is locality-awareness. This concept equips
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overlay participants with knowledge about the physical network topology so that
they can preferentially exchange data with others that are close in the physical
network. The other approach is caching. This means that the ISP in the example
mentioned above saves a copy of the requested content in a cache when the con-
tent is downloaded the first time in its network. All subsequent requests to this

content within the network of this ISP can then be answered by the cache.

In this monograph, we study the performance of caching techniques in over-
lays for content distribution. As example of an overlay network we choose BitTor-
rent, which is currently the most popular overlay for that purpose. We first inves-
tigate the structure of overlay networks in today’s Internet and use the resulting
characterization to estimate the optimization potential of locality-awareness in
the current Internet. Second, we model the impact of caching on BitTorrent-like
P2P networks and derive estimates for the reduction of inter-ISP traffic. Based on
the insights gained from the model we develop allocation policies for the upload

capacity of the cache which improve the traffic savings.

The investigation of the nature of current overlay networks presented in Chap-
ter 3 is based on a large scale measurement study, which comprises a large num-
ber of swarms from different torrent index servers. To obtain the peers partic-
ipating in the swarms, we implement a distributed tracker monitoring system.
The measurement results contain information about the size of the networks, i.e.,
number of peers per swarm, and its change over time, the size of the shared files
and the distribution of peers over ASes. In addition, we study characteristics of
swarms sharing regional content and provide separate statistics for different types

of content, i.e., music or movie files.

From these measurements we derive statistical characterizations of BitTorrent
swarms. This is an important contribution to the research community and the
standardization process because it permits to define realistic scenarios for the
performance evaluation of traffic optimization mechanisms for these networks. In
this way, it guarantees that evaluation results are obtained in real-world scenarios.
Furthermore, we use our measurement results to make the following conclusions

about the optimization potential of locality-awareness. In most of the swarms,
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the average number of peers per AS is below 2, which suggests that locality-
awareness cannot be effective in saving inter-ISP traffic. However, we observe in
addition that most of the BitTorrent peers are located in a small number of very
large swarms. In fact, about 80 % of all peers participate in the top 20 % of the
swarms. In these swarms, several ASes exist with a large number of peers per AS
so that locality-awareness can achieve high inter-ISP traffic reductions of up to
42 % or 66 % of the total BitTorrent traffic, depending on which data set of the

measurements we use, the one of music or the one of movie files, respectively.

In Chapter 4 we study caching as a means to reduce inter-ISP traffic resulting
from BitTorrent networks. For that purpose, we take a deterministic fluid model
of the number of leechers and seeders in a single swarm from literature and adapt
it to capture the impact of caches. We then study how caches change those num-
bers and derive an estimate of the inter-ISP traffic that can be saved by using
a cache. The estimates of the model are compared to simulations and experi-
ments in controlled environment to assess the accuracy of the model.Therefore,
our model is highly relevant for ISPs since it allows them to dimension their
caches and to compare the cost of caches in terms of capital and operational
expenditures to the expected financial savings due to inter-ISP traffic traffic re-

duction.

One of the major insights that we gain from the model is that the same amount
of upload capacity of the cache results in different amounts of traffic savings
when allocated to different swarms. This means that the characteristics of the
swarms determine the efficiency of the cache. Motivated by this fact, we develop
allocation policies for the upload capacity of the cache and investigate their per-
formance in multi-swarm scenarios. Our simulations show that the cache should
preferentially serve requests of peers in swarms which have a large share of peers
outside the ISP providing the cache. This is plausible since those peers tend to
download most of the content from remote locations. This strategy can increase
the savings in inter-ISP traffic by up to 50 % in our scenarios compared to a
demand-driven upload allocation. This is a very promising result for ISPs since it

paves the way to further reduce inter-ISP traffic and inter-connection costs with-
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out provisioning more resources in terms of cache upload capacity.

In this respect, the work presented in this monograph improves the under-
standing of overlay networks for content distribution and it represents an impor-
tant step towards further optimization possibilities in the future. During the next
years the importance of video-on-demand and real-time video is expected to grow
and it will soon surpass the one of pure file-sharing. The insights developed in
this monograph serve as useful basis to design and evaluate content distribution
mechanisms in the future Internet since the fundamental concepts, i.e., to dis-
tribute increasing amounts of data to a large number of users in an efficient way,
hold for file-sharing as well as for video services.
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