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Zusammenfassung

In dieser Doktorarbeit wird der Zusammenhang zwischen den mathematischen Bereichen der
modernen Differentialgeometrie sowie der Topologie und den physikalischen Eigenschaften
niedrigdimensionaler mesoskopischer Systeme erldutert. Insbesondere werden Phdnomene des
holographischen Quantentransportes in Quanten Spin Hall Systemen fernab des thermodyna-
mischen Gleichgewichtes untersucht. Die Quanten Spin Hall Phase ist ein zweidimensionaler,
zeitumkehrsymmetrischer elektrisch isolierender Zustand, dessen charakteristische Eigen-
schaft eindimensionale metallische Randzustédnde sind. Diese im Englischen als “helical edge
states” bezeichneten Randkanéle zeichnen sich dadurch aus, dass Spin und Bewegungsrichtung
der Ladungstréger fest miteinander verkniipft sind und zwei Zusténde mit gleicher Energie
aber unterschiedlicher Bewegungsrichtung stets durch die Symmetrieoperation der Zeitumkehr
zusammenhéngen. Diese Phdnomenologie bedingt einen sogenannten topologischen Schutz
durch Zeitumkehrsymmetrie gegen elastische Einteilchenriickstreuung. Wir beschéftigen
uns mit den Grenzen dieses Schutzes, indem wir inelastische Riickstreuprozesse in Betracht
ziehen, wie sie etwa durch das Wechselspiel von extrinsischer Spin-Bahn Kopplung und Git-
terschwingungen induziert werden koénnen, oder aber indem wir Mehrteilchen-Streuprozesse
untersuchen, welche die Coulomb-Wechselwirkung ermdéglicht. Desweiteren werden Anwen-
dungen aus dem Gebiet der Spintronik vorgeschlagen, welche auf einer dem Quanten Spin
Hall Effekt eigenen Dualitédt zwischen dem Spin und dem Ladungsfreiheitsgrad beruhen.
Diese Dualitét existiert in einem aus zwei Randzustédnden mit entgegengesetzter Helizitéat
zusammengesetzten System, wie etwa durch zwei gegeniiberliegende Rénder einer streifenfor-
migen Probe im Quanten Spin Hall Zustand realisiert.

Konzeptionell gesehen ist der Quanten Spin Hall Zustand das erste experimentell nachge-
wiesene Beispiel eines symmetriegeschiitzten topologischen Zustandes nichtwechselwirkender
Materie, also eines Bandisolators, welcher eine antiunitidre Symmetrie besitzt und sich von
einem trivialen Isolator mit gleicher Symmetrie aber ausschliesslich lokalisierten und daher
voneinander unabhéngigen atomaren Orbitalen topologisch unterscheidet. Im ersten Teil
dieser Dissertation geben wir eine Einfiihrung in die theoretischen Konzepte, welche dem
Forschungsgebiet der nichtwechselwirkenden topologischen Zustidnde zugrunde liegen. In die-
sem Zusammenhang werden die topologischen Invarianten, welche diese neuartigen Zusténde
charakterisieren, als globales Analogon zur lokalen geometrischen Phase dargestellt, welche
mit einer zyklischen adiabatischen Entwicklung eines physikalischen Systems verkniipft ist.
Wiéhrend die ausfithrliche Diskussion der globalen Invarianten einem tieferen Verstdndnis des
Quanten Spin Hall Effektes und damit verwandten physikalischen Phdnomenen dienen soll,
wird die nicht-Abelsche Variante der lokalen geometrischen Phase fiir einen Vorschlag zur
Realisierung von holonomiebasierter Quanteninformationsverarbeitung genutzt. Das Quan-
tenbit der von uns vorgeschlagenen Architektur ist ein in einem Quantenpunkt eingesperrter
Spinfreiheitsgrad.
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Summary

In this PhD thesis, the fingerprints of geometry and topology on low dimensional mesoscopic
systems are investigated. In particular, holographic non-equilibrium transport properties of
the quantum spin Hall phase, a two dimensional time reversal symmetric bulk insulating
phase featuring one dimensional gapless helical edge modes are studied. In these metallic
helical edge states, the spin and the direction of motion of the charge carriers are locked to
each other and counter-propagating states at the same energy are conjugated by time reversal
symmetry. This phenomenology entails a so called topological protection against elastic
single particle backscattering by time reversal symmetry. We investigate the limitations of
this topological protection by studying the influence of inelastic processes as induced by the
interplay of phonons and extrinsic spin orbit interaction and by taking into account multi
electron processes due to electron-electron interaction, respectively. Furthermore, we propose
possible spintronics applications that rely on a spin charge duality that is uniquely associated
with the quantum spin Hall phase. This duality is present in the composite system of two
helical edge states with opposite helicity as realized on the two opposite edges of a quantum
spin Hall sample with ribbon geometry.

More conceptually speaking, the quantum spin Hall phase is the first experimentally
realized example of a symmetry protected topological state of matter, a non-interacting
insulating band structure which preserves an anti-unitary symmetry and is topologically
distinct from a trivial insulator in the same symmetry class with totally localized and hence
independent atomic orbitals. In the first part of this thesis, the reader is provided with a
fairly self-contained introduction into the theoretical concepts underlying the timely research
field of topological states of matter. In this context, the topological invariants characterizing
these novel states are viewed as global analogues of the geometric phase associated with a
cyclic adiabatic evolution. Whereas the detailed discussion of the topological invariants is
necessary to gain deeper insight into the nature of the quantum spin Hall effect and related
physical phenomena, the non-Abelian version of the local geometric phase is employed in a
proposal for holonomic quantum computing with spin qubits in quantum dots.
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Introduction

Throughout the history of science, a main pursuit has been the understanding of nature
via identifying its elementary building blocks and studying their interplay to explain the
phenomenology of composite objects. Nowadays, this line of reasoning is at the heart of
elementary particle physics. For a long time, this approach has been considered the only
fundamental route towards a better understanding of the laws of the universe, rendering
every less microscopic ansatz derivative.

A key incentive to change this way of thinking was provided by P.W. Anderson’s seminal
article "More Is Different" in 1972 [Anderson72]: At every level of complexity, there is
emergent phenomenology due to the interplay of a large number of constituents which is
not readily derived from the microscopic theory of these building blocks. In some sense,
the more microscopic theory can hence be disconnected from the complex phenomenology
of a composite system. In practice, this means that the crucial ingredients guiding the
derivation of an effective theory for a complex system are often times symmetry arguments
and physical input rather than an approximate solution of the microscopic laws governing
the interaction of a few elementary constituents. The standard model of elementary particle
physics for example predicts accurately the experimentally observed interaction of quarks
and leptons through different types of gauge bosons at very high energies. Since all matter a
condensed matter physicist will ever work with is made of these building blocks, one could
naively expect any solid state system to be at least in principle readily derived from these
"fundamental laws". However, in reality, even the mechanism which stably binds three quarks
to a proton is not conclusively understood at the level of these microscopic interactions. From
a more critical point of view, one could hence consider Quantum Electrodynamics (QED),
the microscopic parent theory of condensed matter physics, already as an effective theory
which has not been proven fully consistent with the standard model from first principles.
Even then, the emergence of say a phonon, one of the key ingredients of many phenomena in
solid state physics, could not be readily derived from the two particle Coulomb interaction.
As a matter of fact, a phonon is the fingerprint of the spontaneous breaking of translation
symmetry, a symmetry which is present in QED but is broken when a gas condenses into
a crystalline structure at low temperatures. The acoustic phonons then play the role of
Goldstone bosons, where each branch is associated with a generator of the broken continu-
ous translation symmetry of the crystal that has only a discrete residual translation symmetry.

Another example of emergent behavior is the existence of quasi-particles which are the
microscopic building blocks of an effective low energy theory, but behave fundamentally
different from all elementary particles. In particular, all elementary particles are either
fermions or bosons. In two dimensional condensed matter systems, quasi-particles which are
neither fermions nor bosons, namely so called anyons [Leinaas77] can occur. Thus, there is



Introduction

fundamentally more to condensed matter physics than solving the many body problem from
first principles, because a complex system can be more than a collection of building blocks
the interaction of which is governed by microscopic laws.

From the above motivation, it is evident that identifying possible states of matter which
show interesting novel phenomenology is among the fundamental problems in condensed
matter physics. Until the discovery of the quantum Hall effect of a two dimensional electron
gas subjected to a strong perpendicular magnetic field in 1980 [Klitzing80], it had been
believed that all states of matter can be classified in terms of their broken symmetries which
give rise to characteristic local order parameters. However, this classification fails for the
quantum Hall state which is classified by a global topological invariant [Thouless82) [Niu85].
States with different values of this topological invariant concur in all conventional symme-
tries. Topologically distinct systems cannot be adiabatically, i.e., without closing the bulk
energy gap, deformed into each other as long as their fundamental symmetries are preserved.
This phenomenology is manifestly macroscopic which is also reflected in the fact that the
topological classification becomes mathematically rigorous in the thermodynamic limit.

The main focus of this thesis is precisely on such topological phenomena which go beyond
the mechanism of local order parameters associated with spontaneous symmetry breaking.
Interestingly, these global topological features are not always immediately visible in the
microscopic equations of motion. However, the bulk topology leads to unique finite size effects
at the boundary of a finite sample which has been coined bulk boundary correspondence.
This general mechanism gives rise to peculiar holographic transport properties of topologically
non-trivial systems. Predicting and probing the rich phenomenology of these topological
boundary effects in mesoscopic samples has become one of the most rapidly growing fields in
condensed matter physics in recent years.

More specifically, we concentrate on topological effects which can be constructed at the
level of non-interacting insulating band structures and mean field superconducting models.
In Part [, we discuss the classification and phenomenology of such systems in great detail
working out the close geometrical relation between adiabatic quantum dynamics and band
structure topology. In this context, gapped single particle Hamiltonians are divided into ten
symmetry classes reflecting their behavior under time reversal, particle hole conjugation,
and the combiniation of these two operations. While the mentioned quantum Hall state has
none of these symmetries, the first symmetry protected topologically nontrivial insulator is
the quantum spin Hall state [Kane05al, Kane05bl [Bernevig06al, Konig07] which relies on the
presence of time reversal symmetry. The holographic transport properties of the quantum
spin Hall state are the main subject of the more applied Part [[I] of this thesis.
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In this first part, we introuduce the general concepts which are at the heart of the more
applied discussion presented in Part [[]] of this thesis. Owing to the enormous interest the
rapidly growing field of topological states of matter (TSM) has attracted in recent years,
the main focus of our discussion is to shed some light on the theoretical foundations of
TSM. Starting from the adiabatic theorem of quantum mechanics [Born28|, [Kato50] which
we present from a geometrical perspective in Chapter [T} the concept of TSM is introduced in
Chapter [2| to distinguish gapped many body ground states of non-interacting systems and
mean field superconductors, respectively, regarding their global geometrical features. These
classifying features are topological invariants defined in terms of the adiabatic curvature of
these bulk insulating systems. Having introduced the general notion of TSM we will focus
on the quantum anomalous Hall (QAH) effect [Haldane88]|, the quantum spin Hall (QSH)
effect [Kane05al, Kane05bl [Bernevig06al, [Konig07], and the one dimensional (1D) topological
superconductor (TSC) [Kitaev01] as concrete examples of TSM which will be of particular
relevance for the remainder of this thesis. Furthermore, we outline how interactions and
disorder, which will be to some extend present in any realistic system, can be included into
the theoretical framework of TSM by reformulating the relevant topological invariants in
terms of the single particle Green’s function and by introducing twisted boundary conditions,
respectively. We integrate the field of TSM into a broader context by distinguishing TSM
from the concept of topological order [Wen90|] which has been introduced to study fractional
quantum Hall (FQH) [Stormer83, Laughlin83| [Zee95|] systems. Most of our discussion reviews
recent developments in the field of TSM. However, even this first part contains a substantial
amount of original work which has been done in the context of this PhD project and will be
cited during the discussion.

Finally, in Chapter [3] we introduce the essential elements of non-equilibrium quantum
transport in interacting one dimensional systems which are excessively used in Part [l Many
of those concepts are rather standard tools of condensed matter theory by now and are
hence only briefly reviewed to establish our notation and to systematically refer the reader
not acquainted with quantum transport theory of low dimensional systems to the relevant
references. However, the application of these methods to holographic transport in TSM
entails some intriguing peculiarities which are less known and are hence discussed in greater
detail for the QSH state which will be the main focus of the more applied Part [[I}






Chapter 1

Adiabatic time evolution and geometric
phases

We review the adiabatic theorem of quantum mechanics and discuss the geometric character
of cyclic adiabatic evolutions. We demonstrate how the structure of a classical gauge theory
emerges in this framework. Interestingly, the non-Abelian version of this gauge theory
affords a global gauge invariant formulation [Kato50] which has interesting consequences
as to the experimental observability of its predictions (see Section . Throughout this
chapter, we refer the reader to to the mathematical literature for a rigorous definition of
technical terms from the mathematical fields of differential geometry and topology (see, e.g.,
Refs. [Choquet-Bruhat82] [Kobayashi96, [Nakahara03| [Nash11] for excellent introductions)
which will not be repeated explicitly here for the sake of readability.

1.1 Adiabatic time evolution in quantum mechanics

1.1.1 General outline

The Hamiltonian H(R) of a physical system often times depends on a set of control parameters,
here denoted by R € R. For concreteness, the reader might think of external electric or
magnetic fields which enter the Hamiltonian of a charged particle. In the following, we will
implicitly assume R to have the mathematical structure of a smooth manifold. If we consider
a Hamiltonian H (R(t)) which depends on time via the time dependence of its parameters
R(t), the time dependent Schrodinger equation reads

i%l‘l’(t)) =H(R(1)) [¥(1)), (1.1)

where we have set h = 1. Eq. (1.1]) is formally solved by |U(t)) = U(¢,t0)|¥(t9)) where the
Dyson time evolution operator U(t, ) is defined as

Ul to) = Te g R (1.2)

with the time ordering operator 7. Eq. is in general very hard to solve for an arbitrary
time dependence R(t). In contrast, for a time independent Hamiltonian H(R), Eq.
boils down to U(t, ty) = e~ Ut=t0)H(E) which is readily calculated once the spectral problem
of H(R) is solved.
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The notion of adiabatic time evolution is an intermediate case where the time dependence
of H is sufficiently slow so that the system state |¥(¢)) stays in the eigenspace of the same
instantaneous eigenvalue of the Hamiltonian and its dynamics is determined solely by the
geometrical relation between neighboring instantaneous eigenspaces. In the remainder of
this section, we will explain what sufficiently slow means and what the adiabatic dynamics
in terms of this purely geometric connection looks like. We will use the shorthand notation
H(t) = H(R(t)) unless in cases where suppressing the parameter coordinates R might cause
confusion.

1.1.2 The adiabatic theorem

The gist of the adiabatic assumption can be understood at a very intuitive level: Once
prepared in an instantaneous eigenstate with an eigenvalue which is separated from the
neighboring states by a finite energy gap A, the system can only leave this state via a
transition which costs a finite excitation energy A. A simple way to estimate whether such
a transition is possible is to look at the Fourier transform #(w) of the time dependent
Hamiltonian H(t). If the time dependence of H is made sufficiently slow, H(w) will only
have finite matrix elements for w < A. In this regime the system will stick to the same
instantaneous eigenstate. This behavior is known as the adiabatic assumption.

Proof due to Born and Fock

The latter rather intuitive argument is at the heart of the adiabatic theorem of quantum
mechanics which has been first proven by Born and Fock in 1928 [Born28| for non-degenerate
systems. Let {|n(t))}, be an orthonormal set of instantaneous eigenstates of H(t) with
eigenvalues {E,(t)},,. The exact solution of Eq. can be generally expressed as

£) = ealt)ln(t))e b, (1.3)

where the dynamical phase ¢} (t) = ft ( )dT has been separated from the coefficients
cn(t) for later convenience. Plugging Eq. into Eq. (L.1) yields

d
H) M) o ) om
én = —Cp n‘ Z meg D ()—¢1 (1) (1.4)

The salient consequence of the adiabatic theorem is that the last term in Eq. can be
neglected in the adiabatic limit since its denominator |E, — E,,| > A is finite whereas the
matrix elements of %7—[ become arbitrarily small. More precisely, if we represent the physical
time as t = T's, where s is of order 1 for a change in the Hamiltonian of order A and T is
the large adiabatic timescale, then 4 = L4 Now, 471 (t(s)) is by construction of order A.
The entire last term in Eq. is thus of order T Under these conditionsﬂ Born and Fock

[Born28] showed that the contribution of this second term vanishes in the adiabatic limit

! As a minor technical point, we note that the proof by Born and Fock [Born28] also takes into account level
crossings at isolated points. These slightly more general conditions are not of relevance for our purposes as
we will only discuss fully gapped systems. More recent work by Avron and coworkers [Avron99] reported
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T — oo. Note that this is not a trivial result since the differential equation (|1.4]) is supposed
to be integrated from ¢t = 0 to t ~ T', so that one could naively expect a contribution of order
1 from a coefficient that scales like 1/7". The coefficient of ¢, in the first term on the right
hand side of Eq. (1.4) is purely imaginary since 0 = %(n|n) = (4% (n|)|n) + (n|%|n) and
hence doesn’t change the modulus of ¢, when the differential equation ¢,, = —cn<n\%]n> is
solved as
_ [t A 1n\dr
ealt) = en(to) ¢ JoE (1.5)
Born and Fock [Born28] argue that (n|$\n> = 0 V; amounts to a choice of phase for the
eigenstates and therefore neglect also the first term on the right hand side of Eq. (1.4).

This thesis is mainly concerned with physical phenomena associated with corrections to
this in general unjustified assumption.

Notion of the geometric phase

By the latter assumption, Ref. [Born28| overlooks the potentially nontrivial adiabatic
evolution, known as Berry’s phase [Berry84], associated with a cyclic time dependence of H.
After a period [0,7T] of such a cyclic evolution, Eq. (1.5 yields

ea(T) = cq(0)e™ o (rleimIar (L.6)
T

To understand why the phase factor e Jo can in general not be gauged away, we
remember that the Hamiltonian depends on time via the time dependence R(t) of some
external control parameters. Hence, (n|%|n) = (n|d,|n)R*, where 9, = %. To reveal the
mathematical structure of the latter expression, we define

(n|%|n>d7’

AP (i) = AJR* = —i(n|,|n) R, (1.7)

where AP = Aﬁ” dRM is called Berry’s connection. AP clearly has the structure of a gauge
field: Under the local gauge transformation |n) — ¢|n) with a smooth function R~ &(R),
Berry’s connection transforms like

AB — AB 1 de.

Furthermore, the cyclic evolution defines a loop v : ¢t — R(t), t € [0,7], R(0) = R(T) in the
parameter manifold R. v can be expressed as the boundary of some piece of surface S C R.
Using the theorem of Stokes, we can now calculate

—ifBT(n|C;i_|n)dT:[YAB:/SdAB:/S]-"B, (1.8)

a proof of the adiabatic theorem which, under certain conditions on the level spectrum, works without

any gap condition.
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where in the last step Berry’s curvature F2 = flﬁdR“ A dRY is defined as
ffy = —i ((Oun|0yn) — (Oyn|Oyn)) = 2Im {(Jyn|0,n)}

with the shorthand notation |8,n) = d,|n). Note that FP is a gauge invariant quantity
that is analogous to the field strength tensor in electrodynamics. Defining the Berry phase
associated with the loop v as gpf =/, AB = [ FB we can rewrite Eq. 1' as

en(T) = cn(0)e 7. (1.9)

The manifestly gauge invariant Berry phase 4,05 can have observable consequences due
to interference effects between coherent superpositions that undergo different adiabatic
evolutions. The analogue of this phenomenology due to an ordinary electromagnetic vector
potential is known as the Aharonov-Bohm effect [Aharonov61]. The geometrical reason
why Berry’s connection AP cannot be gauged away all the way along a cyclic adiabatic
evolution is the same as why a vector potential cannot be gauged away along a closed path
that encloses magnetic flux, namely the notion of holonomy on a curved manifold. We will
come back to the concept of holonomy shortly from a more mathematical point of view. For
now we only comment that the Berry phase gpf is a purely geometrical quantity which only
depends on the inner-geometrical relation of the family of states |n (R)) along the loop v and
reflects an abstract notion of curvature in Hilbert space which has been defined as Berry’s
curvature F5.

Proof due to Kato

For a degenerate eigenvalue, Berry’s phase is promoted to a unitary matrix acting on the
corresponding degenerate eigenspace [Wilczek84]. The first proof of the adiabatic theorem of
quantum mechanics that overcomes both the limitation to non-degenerate Hamiltonians and
the assumption of an explicit phase gauge for the instantaneous eigenstates was reported in
the seminal work by Tosio Kato [Kato50] in 1950. We will review Kato’s results briefly for
the reader’s convenience and use his ideas to illustrate the geometrical origin of the adiabatic
phase. The explicit proofs are presented at a very elementary and self contained level in Ref.
[Kato50]. Our notation follows Ref. [Avron89] which is convenient to relate the physical
quantities to elementary concepts of differential geometry.

Let us assume without loss of generality that the system is at time tg = 0 in its instantaneous
ground state |¥((0)) or, more generally, since the ground state might be degenerate, in a
state |¥) satisfying

PO)|¥) = [¥), (1.10)

where P(t) is the projector onto the eigenspace associated with the instantaneous ground
state energy Ep(t) which is defined as

1 dz
) = 2772'?{27—[(25)’

10
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where the complex contour ¢ encloses Ey(t) which is again assumed to be separated from
the spectrum of excitations by a finite energy gap A > 0. To understand the adiabatic
evolution, we are not interested in the dynamical phase ¢p(t) = fg Ey(7)dr. We thus define
a new time evolution operator U(t,0) = e@n )y (t,0). Clearly, U represents the exact time
evolution operator of a system which has the same eigenstates as the original system but
has been subjected to a time dependent energy shift that transforms Eo(t) — Eo(t) = 0 V;.
Kato proved the adiabatic theorem in a very constructive way by writing down explicitly the
generator A of the adiabatic evolution:

A (jt) =-|pP,P|. (1.11)

In the adiabatic limit, Z(¢,0) P(0) was shown [Kato50] to converge against the adiabatic
Kato propagator K, i.e.,

2(t,0)P(0) *Rats imit 4oy oy — o= Jo Al )dT, (1.12)

The adiabatic assumption is now a direct corollary from Eq. (1.12) and can be elegantly
expressed as [Avron&9]

P(#)K(t,0) = K(t,0)P(0), (1.13)

implying that a system, which is prepared in an instantaneous ground state at to = 0, will be
propagated to a state in the subspace of instantaneous ground states at ¢ by virtue of Kato’s
propagator . Note that K is a completely gauge invariant quantity, i.e., independent of the
choice of basis in the possibly degenerate subspace of ground states. The Kato propagator
K(T,0) associated with a cyclic evolution in parameter space thus yields the Berry phase
[Berry84] and its non-Abelian generalization [Wilczek84], respectively. We will call this
general adiabatic phase the geometric phase (GP) in the following. The GP I, representing
the adiabatic evolution along a loop  in parameter space can be expressed in a manifestly
gauge invariant way as

K, =Te 1A (1.14)

Kato’s propagator is the solution of an adiabatic analogue of the Schrédinger equation ([1.1)),
an adiabatic equation of motion that can be written as

(G+4(5))wo) =0 (1.15)

for states satisfying  P(t)|¥(t)) = |¥(t)), i.e., states in the subspace of instantaneous
groundstates. Before closing the section, we give a general and at least numerically always
viable recipe to calculate the Kato propagator K(¢,0). We first discretize the time interval
[0,%] into n steps by defining #; = iL. The discrete version of Eq. for the Kato

n:

11



Chapter 1 Adiabatic time evolution and geometric phases

propagator reads (see Eq. (1.11])

K(ti,0) = K(ti-1,0) = {(P(t:) — P(ti-1)) P(ti-1) — P(t:) (P(t:) — P(ti-1))} ’C(tz’—h(o)- |
1.16

Using P(t;—1)K(t;—1,0) = K(t;—1,0) and P? = P, Eq. (1.16)) can be simplified to
K(ti,0) = P(t;)K(ti—1,0),

which is readily solved by K (t;,0) = Hé’:o P(t;). Taking the continuum limit yields [Simon83,
Wilczek84! [Avron89)

K(t,0) = lim f[ P, (1.17)
=0

which is a valuable formula for the practical calculation of the Kato propagator.

1.2 Geometric interpretation of adiabatic phases

In this section, we analyze the GP from a viewpoint of differential geometry. In particular,
we view the adiabatic time evolution as an abstract notion of parallel transport in Hilbert
space and reveal the GP associated with a cyclic evolution as the phenomenon of holonomy
due to the presence of curvature in the vector bundle of ground state subspaces over the
manifold R of control parameters. Interestingly, Kato’s approach to the problem provides a
gauge invariant, i.e., a global definition of the geometrical entities connection and curvature,
whereas standard gauge theories are defined in terms of a complete set of local gauge fields
along with their transition functions defined in the overlap of their domains. This difference
has an interesting physical ramification: Quantities that are gauge dependent in an ordinary
gauge theory like quantum chromodynamics (QCD) are physical observables in the theory of
adiabatic time evolution. To name a concrete example, only gauge invariant quantities like
the trace of the holonomy, also known as the Wilson loop, are observable in QCD whereas
the holonomy itself, in other words the GP defined in Eq., is a physical observable
in Kato’s theory. This subtle difference has been overlooked in standard literature on this
subject [Zee88, Bohm03] which we interpreted as an incentive to clarify this point below in
greater detail.

1.2.1 Adiabatic time evolution and parallel transport

To get accustomed to parallel transport, we first explain the general concept with the help
of a very elementary example, namely a smooth piece of two dimensional surface embedded
in R? (see Ref. [Kuehnel05] for rigorous definitions). If the surface is flat, there is a trivial
notion of parallel transport of tangent vectors, namely shifting the same vector in the
embedding space from one point to another. However, on a curved surface, this program
is ill-defined, since a tangent vector at one point might be the normal vector at another
point of the surface. Put shortly, a tangent vector can only be transported as parallel

12



1.2 Geometric interpretation of adiabatic phases

as the curvature of the surface admits. On a curved surface, parallel transport along a
curve is thus defined as a vanishing in-plane component of the directional derivative, i.e.,
a vanishing covariant derivative of a vector field along a curve. The normal component
of the directional derivative reflects the rotation of the entire tangent plane in the embed-
ding space and is not an inner-geometric quantity of the surface as a two dimensional manifold.

The analogue of the curved surface in the context of adiabatic time evolution is the
manifold of control parameters R, parameterizing for example external magnetic and electric
fields. The analogue of the tangent plane at each point of the surface is the subspace of
degenerate ground states of the Hamiltonian H(R) at each point R in parameter space. An
adiabatic time dependence of H amounts to traversing a curve ¢t — R(t) in R at adiabatically
slow velocity. A cyclic evolution is uniquely associated with a loop v in R. We will now
explicitly show that the adiabatic equation of motion defines a notion of parallel
transport in the fiber bundle of ground state subspaces over R in a completely analogous
way as the ordinary covariant derivative V on a smooth surface defines parallel transport in
the tangent bundle of the smooth surface. We first note that % = R’”@u is referring to a
particular direction R* in parameter space, which depends on the choice of the adiabatic
time dependence of H. We can get rid of this dependence by rephrasing Eq. as

(d+ A)|T) =0, (1.18)

where A = —[(dP), P] and here as in the following P|¥) = |¥) and the R-dependence
has been dropped for notational convenience. The adiabatic derivative D = d + A takes a
tangent vector, e.g., %, as an argument to boil down to the directional adiabatic derivative

% +A (%) appearing in Eq. (1.15)). For the following analysis the identities P? = P and

P|¥) = |W) are of key importance. It is now elementary algebra to show
P(dP)P = 0. (1.19)

Eq. (1.19) has a simple analogue in elementary geometry: Consider the family of normal
vectors {n(t)}, where t parameterizes a curve on a smooth surface. Then, since 1 = (n|n),
d

we get 0 = 5 (n|n) = 2(n|n), i.e., the change of a unit vector is perpendicular to the unit

vector itself. Using Eq. (1.19)), we immediately derive PA|¥) = 0 and with that
D|¥) = 0 < Pd|¥) = 0. (1.20)

This makes the analogy of our adiabatic derivative D = d + A to the ordinary notion of
parallel transport manifest: |¥) is parallel-transported if the in-plane component of its
derivative vanishes.

Curvature and holonomy

Let us again start with a very simple example of a curved manifold, a two dimensional sphere
5?2, which has constant Gaussian curvature. Parallel-transporting a tangent vector around a
geodesic triangle, say the boundary of an octant of the sphere gives a defect angle which
is proportional to the area of the triangle or, more precisely, the integral of the Gaussian

13



Chapter 1 Adiabatic time evolution and geometric phases

curvature over the enclosed area. This defect angle is called the holonomy of the traversed
closed path. This elementary example suggests that the presence of curvature is in some
sense probed by the concept of holonomy. This intuition is absolutely right. As a matter of
fact, the generalized curvature at a given point x of the base manifold of a fiber bundle is
defined as the holonomy associated with an infinitesimal loop at x. More concretely, the
curvature (2 is usually defined as ,, = [V, V, ] which represents an infinitesimal parallel
transport around a parallelogram in the uv-plane.

In total analogy, we define
Fuv|¥) = [Dy, D] |¥) = P[Py, B,] P|¥), (1.21)

with the shorthand notation P, = 0, P. Restricting the domain of F to states which are in
the projection P, we can rewrite Eq. (1.21]) as the operator identity

F = FudR" A dR” = P[(dP),(dP)] P, (1.22)

where the product of the two differential forms dP in the commutator is to be understood as
the usual exterior A-product.

In the general case of of a non-Abelian adiabatic connection, i.e., if the dimension of P is
larger than 1, we cannot simply use Stokes theorem to reduce the evaluation of Eq.
to a surface integral of F over the surface bounded by <, as has been done in the case of
the Abelian Berry curvature in Eq. . However, the global one to one correspondence
between curvature and holonomy still exists and is the subject of the Ambrose-Singer theorem
[Nakahara03].

Relation between Kato’s and Berry’s language

In order to make contact to the more standard language of gauge theory, we will now express
Kato’s manifestly gauge invariant formulation [Kato50] in local coordinates thereby recovering
Berry’s connection AP [Berry84, [Simon83] and its non-Abelian generalization [Wilczek84],
respectively. For this purpose, let us fix a concrete basis {|a(R))},, R € O C R in
an open subset O of the parameter manifold. We assume the loop v to lie inside of O.
Otherwise we would have to switch the gauge while traversing the loop. We will drop the
R-dependence of |a) right away for notational convenience. The projector P can then be
represented as P = Y |a)(«|. Let us start the cyclic evolution without loss of generality
with |¥(0)) = |a(0)). From Eq. we know that the solution |¥(t)) = K(¢,0)|(0)) of
Eq. (L.15)) satisfies P(t)|¥(t)) = |¥(t)) at every point in time during the cyclic evolution.
Hence, we can represent |¥(¢)) in our gauge as

W) = (BIW)[B) = UklB), (1.23)
B
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1.2 Geometric interpretation of adiabatic phases

where the t-dependence has been dropped for brevity. From Eq. (1.20), we know that
P%\W) = 0 which implies (7]%|\Il) = 0. Plugging this into Eq. 1) yields

d d
%U'ﬁc == %(’Y’dt\ﬁ)(]ﬁi- (1.24)

Redefining AP for the non-Abelian case as a matrix valued gauge field through Afﬁ =
—i(a|0y|B)dR!, Eq. (1.24) is readily solved as

UB(t) = Te ' Jo A" (@,
The representation matrix of the GP associated with the loop v then reads

—i [ AB
UP =Te )47, (1.25)

By construction, Uf is the representation matrix of the GP K, i.e.,
B _
(UF),, = ((0)IK,15(0)),
or, more general, for any point in time along the path
(UP®)

Eq. makes the relation between Kato’s formulation of adiabatic time evolution and
the non-Abelian Berry phase manifest. In contrast to the gauge independence of Kato’s
global connection A, AP behaves like a local connection (see Ref. [Choquet-Bruhat82] for
rigorous mathematical definitions) and depends on the gauge, i.e., on our choice of the family
{la(R))},, of basis states. Under a smooth family of basis transformations {U(R)} acting
on the local coordinates A® transforms like [Choquet-Bruhat82, Nakahara(3]

= (@(OIKE0)[5(0)) (1.20)

AB AP = U APU + U dU (1.27)
resulting in the following gauge dependence of Eq. (|1.25)),
vl - U8 =v"'ulu, (1.28)

which only depends on the basis choice U = U (R(0)) at the starting point of the loop 7.

Inserting our representation P = _,|a)(c| into the gauge independent form of the
curvature, Eq.(1.22), we readily derive

F;ﬁ/,aﬁ = <Oé| [PIM PV} ’/8> = (dAB),ul/,aﬂ + (AB A AB),LLI/,CMﬁJ
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Chapter 1 Adiabatic time evolution and geometric phases

which defines FZ as the usual curvature of a non-Abelian gauge field [Nakahara03], i.e.,
FB =dAP + AB N APB, (1.29)
which transforms under a local gauge transformation U like
FP = U FhU.

1.2.2 Gauge dependence and physical observability

The gauge dependence of the non-Abelian Berry phase Uf (see Eq. 1} has led several
prominent authors [Zee88, [Bohm03| to the conclusion that only gauge independent features
like the trace and the determinant of Uf can have physical meaning. However, working with
Kato’s manifestly gauge invariant formulation, it is understood that the entire GP K, is
experimentally observable. In the remainder of this section we will try to shed some light on
this ostensible controversy.

In gauge theory, it goes without saying that explicitly gauge dependent phenomena are not
immediately physically observable and that only the gauge invariant information resulting
from a calculation performed in a special gauge can be of physical significance. At a formal
level this is a direct consequence of the fact that the Lagrangian of a gauge theory is
constructed in a manifestly gauge invariant way by tracing over the gauge space indices. The
physical reason for this is quite simple: A concrete gauge amounts to a local choice of the
coordinate system in the gauge space. Under a local change of basis, a non-abelian gauge
field A transforms like (see also Eq. (1.27))

A A=U1AU+U YU

where U(x) is a smooth family of basis transformations, with x labeling points in the base
space of the theory, e.g., in Minkowski space. Now, since the gauge space is an internal
degree of freedom, the basis vectors in this space are not associated with physical observables.
This situation is fundamentally changed in Kato’s adiabatic analogue of a gauge theory.
Here, the non-Abelian structure is associated with a degeneracy of the Hamiltonian, e.g.,
Kramers degeneracy in the presence of time reversal symmetry (TRS). For a system in
which spin is a good quantum number, Kramers degeneracy is just spin degeneracy, which
makes the spin the analogue of the gauge degree of freedom in an ordinary gauge theory.
However, the magnetic moment associated with a spin is a physical observable which can be
measured. The basis vectors, e.g., [1), |{) have an objective meaning for the experimentalist
(a magnetic moment that points from the lab-floor to the sky which we call z- direction).
For concreteness, let us assume that we have calculated a GP K, = [1)(}| + [})(1]- The
representation matrix of K, in this basis of S, eigenstates is clearly the Pauli matrix o.
Choosing a different gauge, i.e., a different basis for the gauge degree of freedom at the
starting point of the cyclic adiabatic evolution, we of course would have obtained a different
representation matrix U73 for IC, e.g., 0., had we chosen the basis as eigenstates of S, (see
Eq. ) However, the fact that K, rotates a spin which is initially pointing to the
lab-ceiling upside down is gauge independent physical reality.
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Chapter 2

Topological states of matter

In this chapter, we discuss how insulating ground states can be distinguished by their
topological features that are formulated in terms of their adiabatic curvature F. These
topological features are bulk quantities of the gapped ground state of an infinite system.
Interestingly, the so called bulk boundary correspondence [Halperin82, [Volovik03] generically
leads to experimentally observable boundary effects which are uniquely associated with the
respective bulk topological properties. Very generally speaking, the understanding of TSM
can be divided into two subproblems. First, finding the group that represents the topological
invariant for a class of systems characterized by their fundamental symmetries and spatial
dimension. Second, assigning the value of the topological invariant to a representative of
such a symmetry class, i.e., measuring to which topological equivalence class a given system
belongs. We will address the first problem in Section and the second problem in Section
Furthermore, we discuss generalizations for the practical calculation of the topological
invariants for interacting and disordered systems. In Section we give an accessible
introduction to the phenomenology of TSM establishing the relation between TSM and
adiabatic pumping processes. The purpose of our analysis is not to give a broad overview
over all possible TSM which has been presented from different perspectives in several research
papers [Qi08a}, [Schnyder08|, Kitaev09l Ryul0] and review articles [Hasan10, [Qil1]. We rather
motivate the general concept of topologically classifying band insulators and elaborate on a
few examples in greater detail. Finally, we point out the limitations of our construction by
distinguishing the field of TSM from the phenomenon of topological order [Wen90].

2.1 From geometry to topology

In Section [1.2] we worked out the relation between the GP and the notion of curvature as a
local geometric quantity. The topological invariants introduced in this section are in some
sense global GPs. They measure global properties which cannot be altered by virtue of
local continuous changes of the physical system. Continuous is at this stage of the analysis
synonymous with adiabatic, i.e., happening at energies below the bulk gap. Later on, we
will additionally require local continuous changes to respect the fundamental symmetries of
the physical system, e.g., particle hole symmetry (PHS) or time reversal symmetry (TRS).
We will illustrate some fundamental working principles in the field of TSM with the help of
a minimal toy model for the QAH state.
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Chapter 2 Topological states of matter

2.1.1 Gauss-Bonnet theorem

Let us illustrate the correspondence between local curvature and global topology of a manifold
with the help of the simplest possible example. We consider a two dimensional sphere S? with
radius r. This manifold has a constant Gaussian curvature of kK = %2 The integral of k over
the entire sphere obviously gives 4, independent of r. The Gauss-Bonnet theorem in its
classical form (see, e.g., Ref. [Kuehnel05]) relates precisely this integral of the Gaussian
curvature of a closed smooth two dimensional manifold M to its Euler characteristic x in

the following way:

1

o MEZX(M) (2.1)

Note that x is a purely algebraic quantity which is defined as the number of vertices minus
the number of edges plus the number of faces of a triangulation [Nashll] of M. x is by
construction of simplicial homology [Nashll] a topological invariant which can only be
changed by poking holes into M and gluing the resulting boundaries together so as to create
closed manifolds with different genus. Hence, Eq. nicely demonstrates how the integral
of the local inner-geometric quantity x over the entire manifold yields a topological invariant,
i.e., a global feature of M. Concretely, for our example S2, a triangulation is provided by
continuously deforming the sphere into a tetrahedron. Simple counting of vertices, edges,
and faces yields y(S?) = 4 —6+4 = 2, in agreement with Eq. (2.1). More generally speaking,
e = 5~ is our first encounter with a characteristic class [Milnor74], the so called Euler class of
M, which upon integration over M yields the topological invariant . Similar mathematical
structures will be ubiquitous when it comes to the classification of TSM.

2.1.2 From adiabatic pumping to Chern numbers

We now establish explicitly the relation between adiabatic evolution and TSM by viewing
the integer quantum Hall state [Klitzing80, [Laughlin81] [Thouless82], the archetype of a
TSM as an adiabatic charge pumping process. For pedagogical reasons we discuss the
translation-invariant realization of this phase [Haldane88|, the QAH state. Our analysis
mainly follows Refs. [Zak89, [Fu06]. For concreteness, we choose the two band square lattice
realization of the QAH effect proposed in Ref. [Qi08a]. The Bloch Hamiltonian of this
system with lattice constant a = 1 reads

h(k) = v'(k)oy,

vt =sink®, v? =sink?, v¥ =m+4 — 2cosk® — 2cos kY, (2.2)

where o; are Pauli matrices in some band pseudo spin space. We will come back to this
innocent looking but phenomenologically extremely rich model from various viewpoints in
other parts of this thesis. Let us for now consider a tube of unit circumference and infinite
length (say in z-direction) of this insulator as a 1D system with one filled and one empty
band. For m = —1, this insulator is gapped in its entire Brillouin Zone (BZ). k¥ now plays the
role of a free parameter of our 1D system which we will intermediately call ¢ for reasons that
will become obvious shortly. The charge polarization of the Wannier-function |0) localized at
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2.1 From geometry to topology

x = 0 can be expressed as

7 2w

P(t) = 0@)2(0(t)) = 5 - | Ak upe (8)]0n s (1)),

where |ug=(t)) are the instantaneous Bloch states of the 1D insulator and 9, = %. By
formal analogy to Eq. (1.7), we define AP(9,) = —i(ugs (t)|0x|uges (t)), which yields

2
P(t) = - dk" AP (0,), (2.3)
21 Jo

Next, we thread a flux through our cylindric 1D system in axial direction. Such a flux ¢ can
be generated by applying a vector potential of strength ¢ in the circumferential, i.e., in
the y-direction. Physically, this vector potential just shifts kY by ¢. Hence, adiabatically
threading one quantum of flux 27 through the cylinder amounts to varying ¢ from 0 to 27 in
Eq. . This defines a cyclic adiabatic evolution of the 1D system. We would like to ask
by what amount the polarization P changes upon varying t from ¢y to t;. The instantaneous
BZ of the 1D system has the topology of a circle S'. The 1D BZ at tq minus the k%-circle at
t; can be viewed as the boundary of the cylinder Ty; = S* x [t,1]. Using the theorem of

Stokes we can thus write
2m

27
dk* AP (0,) — /0 dk* AL (0,) = Fa

0 To1

where the Berry curvature ftgw = 2Im {(Qyuy, (t)|0zug, (t))} has been defined. Choosing
to =0, t; = 2m, Ty becomes the torus 72 and the change AP of the charge polarization
during this adiabatic cycle can be expressed as

_ 1 B
AP_—QW/TQ]-' . (2.4)

B

The formal similarity between Eq. and Eq. is striking. As a matter of fact, —%r is
again a characteristic class, the so called first Chern character ch; [Nakahara03] of the U(1)-
bundle of occupied Bloch functions over the 2D (k*, k¥)-BZ. From a viewpoint of algebraic
topology, the integral of chy over the BZ T gives an integer valued topological invariant of
the bundle, the so called first Chern number C;. The physical interpretation of the quantized
adiabatic observable AP as Hall conductivity o, in units of the quantum of conductance

Gy = % = % has been first given by Laughlin [Laughlin81] using a similar adiabatic pumping
argument as the one just presented. Shortly after Laughlin’s explanation, (gé’ as resulting
from a linear response calculation for a non-interacting insulator was analytically shown to

concur with the mentioned Chern number C; [Thouless82) [Avron83), Kohmoto85].

Several comments are in order. We have demonstrated that the Hall conductivity of
an insulator can be viewed as a quantized global GP of its Bloch Hamiltonian, where the
parameter manifold R introduced in Section [I.1]is represented by the BZ of the 2D system.
In Section [1.1.2] we argued that the the local GP associated with a loop  is analogous to a
magnetic flux threading the parameter region that is bounded by v where the role of the
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Figure 2.1: Configuration o.(k) for m = —1 (red) and m = 0.2 (blue).

electromagnetic field-strength tensor is played by Berry’s curvature. Along similar lines,
the first Chern number C; measures the monopole charge of the k-space Berry curvature
appearing in Eq. in the entire BZ. The interchangeability of the time variable of an
adiabatic evolution and the wave vector has been shown by applying an electric field through
adiabatic flux-threading in a cylinder-geometry. Distinguishing periodic 2D insulators without
any symmetry except charge conservation by their first Chern number C; is the first example
of a topological classification, the QAH state characterized by non-vanishing C; is our
first example of a TSM. The topological invariance of C; entails that its value cannot be
changed upon variation of the model parameters without closing the bulk gap of the band
insulator. However, so far, the advertised robustness of this quantized conductivity against
small physical perturbations such as impurities has not been established since we explicitly
assumed translation invariance and a quadratic Hamiltonian. The classification scheme just
presented thus fails to account for interactions and disorder. Hence, C; globally distinguishes
insulating band structures of periodic systems but does not at all explain the robustness
of topological features of a given band structure against the tiniest of physically relevant
perturbations. Interestingly, this additional robustness generically does exist: Physical
properties which stem from topological band structure features of the clean system are
adiabatically protected by the bulk gap and the fundamental symmetries of the disordered
interacting system (see Section . However, there are certain exceptions to this statement,
so called weak TSM, which only exist in the presence of translation-invariance.

Geometric illustration of the topological defect

Following Ref. [BernevigO6a], we illustrate the topologically nontrivial structure of the QAH
toy model . For simplicity, we only consider the corresponding continuum Hamiltonian
characterized by v* — vi, with v! = k% v? = kY, v3 = m + k2. The configurations of the
unit vector 9.(k) are shown in Fig. for a trivial configuration at m = 0.2 and a nontrivial
configuration at m = —1, respectively. For large values of k, 0. always points up. Hence, a
one point compactification of the k-space to a sphere S? can be performed by identifying
k — oo with the north pole of the sphere. It is now clear that the trivial configuration
can be combed smooth into a constant configuration 0.(k) = é,, whereas the nontrivial
configuration looks like a hedgehog on alert which cannot be continuously unwound.
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2.1 From geometry to topology

Explicit calculation of the topological invariant

Let us explicitly calculate C; starting from the definition of the adiabatic curvature F in

Eq. (1.22). Our toy model (2.2) is non-degenerate and we have P(k) = |u_(k))(u—(k)],
with the Bloch state |u_(k)) of the occupied band associated with the lower eigenvalue

e_(k) = —|v(k)|. The matrix structure of the Abelian F is trivial and can be neglected by
identifying F with its matrix element (u_|F|u_). Hence,

Fuv = (u-|[(0pP) , (0yP)] [u—) = 2iIm { {0 u—[d,u-)}.

Using [0, h(K)] = (9,h(K)) implying (ual [0, h] [ug) = (€5 — €a)(alOuug) = (ual (Ouh) [ug),

we explicitly represent F as

(u_| (Ouh) [uy ) (us| (Ovh) Ju_) = (u_| (8yh) [uy)(ui| (Guh) |u_)
(e —€-)?

Fuw = : (2.5)

Due to its usefulness for practical calculations we would like to note that the Abelian
adiabatic curvature of an insulating model with an arbitrary number of occupied states
|uq) end empty states |ug) reads

3 (ua| (Ouh) lug)(ug| (Ovh) [ua) — (ual (Ovh) lug)(us| (Ouh) [ua)
(€5 — €a)? .

Fuw = (2.6)

« occ,3 em

Plugging the general form h = vio; = |v|0‘o; into Eq. (2.5), a straight forward calculation
yields

_ —i
A (A A 11k ~t ~7 ~k
Fu = =0 (0 X 0y) = ?e] 0'0), 0y,

where ©,, = 0,0. The first Chern number C; can now be expressed as

; ijk o
C = /Tz ;i; = ZW . 42k o'k (2.7)
The integer quantization of Eq. can be understood at a very intuitive geometric level.
k +— (k) defines a map from the torus 72 representing the BZ to the unit sphere S? [Qi06].
0 (0 x 0y) is the oriented Jacobian of this map. Hence, C; measures the surface swept out by
© on the sphere in units of 4, i.e., in units of the entire surface of the sphere. To understand
the integer quantization, we need to understand why non-integer fractions of surface cannot
contribute. To this end, let us vary the map ¢ by an infinitesimal k-dependent rotation,

o= (146 (k)R;) 0, (2.8)

where (R;);ir = € are the generators of SO(3) rotations. It is straight forward to show
[Altland10] that C; is invariant under such an infinitesimal deformation. From the elementary
theory of Lie groups it is clear that this manifests the topological invariance of C; as any finite
continuous deformation is generated by a transformation of the form . Geometrically,
the integer quantization can be illustrated as follows: An incomplete cover of the unit

21



Chapter 2 Topological states of matter

sphere looks like a unit sphere with a hole, which is a topologically trivial surface. Upon
continuous variation, such an incomplete configuration can be rolled up to the constant map
to the north pole which sweeps out zero surface without changing the value of C;. From
Fig. it is clear that for m = —1 the unit sphere is covered once by ¥, whereas the
m = 0.2 configuration never reaching the south pole only incompletely covers S?. Plugging
the corresponding functions ¢ into Eq. indeed yields C; =1 for m = —1 and C; = 0 for
m = 0.2, respectively.

2.1.3 Bulk boundary correspondence

The generic experimental fingerprint of a topologically nontrivial band structure in quantum
transport is not the bulk invariant itself but a boundary effect appearing in a finite size
sample which is uniquely associated with the bulk topology. This so called bulk boundary
correspondence has first been explained by Halperin [Halperin82] for the integer quantum
Hall effect. A simple phenomenological argument for the existence of gapless boundary
modes is the following: The bulk topological invariant cannot change without closing the bulk
gap. Hence, at the boundary between a trivial system, e.g., the vacuum, and a nontrivial
QAH insulator, there must be a metallic domain wall. This argument has been formalized
by Volovik [Volovik03|] relating the change in the bulk topological invariant between two
domains to the number of zero modes of the Dirac operator in the domain wall. This in turn
is a special case of the Atiyah-Singer index theorem [Atiyah63], Nakahara03] which can be
considered the mathematical foundation of the bulk boundary correspondence.

We will now explicitly construct the gapless edge modes for our QAH toy model
in the half space geometry = > 0 following a similar analysis as Refs. [Zhou08|, |Qil1]. For
simplicity, we again consider the continuum model h. = vig;. On partial Fourier transform
in y-direction where the system is still translation-invariant, the full Hamiltonian reads

he(k®, k) = Koy + k%o, + (m + ()2 + (k)?) o,

with k% = —id,. The time independent Schrédinger equation h.y) = E1i now defines an
ordinary differential equation (ODE). We consider k, = 0 for simplicity and search for
zeromodes, i.e., we set E = 0. Then, using the ansatz 1) = e’ ¢, the ODE simplifies to

Ap = (m — Aoy

Expanding the solution in terms of the eigenstates ¢+ = ﬁ (1, ii)T of o, we find that a
¢+ solution with parameter X is automatically a ¢_ solution with parameter —\A. Solving
the quadratic equation for ¢; we get A/ = %(—1 + 1+ 4m). Imposing the closed
boundary condition ¥ (0) = 0 along with the normalizability for z > 0, yields the constraint
ReA;/2 < 0 which is satisfied for the ¢ solution precisely for m < 0, i.e., for an inverted band
structure with C; = 1 and cannot be satisfied for the ¢_ solutions. Hence, for m < 0, kY =0,

the zero energy solution reads

o = NP — e Peinyg (29)
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2.1 From geometry to topology

Figure 2.2: Subbands of a QAH ribbon with width 50 sites and m = —1. The two chiral subgap
modes (blue and red) are exponentially localized at the upper and the lower edge, respectively.

where IV is a normalization constant. To illustrate the dispersion of the chiral modes for
kY # 0, we show the spectrum of a finite width QAH insulator in Fig. The crossing
point of the two colored subgap modes represents the zeromodes at kY = 0 at the two edges
of the ribbon which we just obtained by analytical calculation (see Eq. )

With that we have demonstrated the one to one correspondence between the non-trivial
bulk invariant C; of the QAH insulator and the occurrence of subgap chiral edge modes
of a sample of finite size. This bulk boundary correspondence is ubiquitous in the field of
TSM. We will later on relate the nature of the surface states directly to the fundamental
symmetries of the bulk system.

2.1.4 Symmetry protected topological states of matter

The first Chern number classifying the QAH effect in 2D distinguishes insulating systems
which cannot be deformed into each other without closing the insulating gap. This is the
strongest notion of a topological protection. If additional symmetry constraints, e.g., TRS or
PHS, are imposed on a physical system, the notion of topological protection can be somewhat
weakened thereby refining the classification scheme significantly: Two systems can then be
considered topologically distinct if they cannot be continuously deformed into each other
while neither breaking the protecting symmetry nor closing the gap. Systems which are only
non-trivial if certain symmetries are maintained and can be deformed into a trivial system
without closing the gap if these symmetries are broken are called topologically protected
by these symmetries. The QSH state discussed in some detail in Section [2.4.1] is the first
known example of a TSM of this kind: The QSH state is a 2D insulating state which is
topologically protected by TRS. The first Chern number of the QSH state is zero which
implies that this phase is adiabatically connected to a trivial localized insulator without
any hopping. However, such a gapped interpolation crucially relies on the breaking of TRS.
Within the class of TRS preserving insulators, the QSH state and the trivial insulator are
not adiabatically connected. The systematic classification of TSM in the presence of all
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Chapter 2 Topological states of matter

generic additional symmetries is the subject of Section Interestingly, also the nature of
the bulk boundary correspondence reflects the protecting symmetry. A rough but useful rule
of thumb in this context is: If the system preserves TRS with 72 = —1, the edge modes are
helical, i.e., opposite spins have opposite chirality and are degenerate due to the Kramers
theorem. If the system has an emergent PHS as for example a mean field superconductor,
the protected edge modes are Majorana modes. Combination of both symmetries yields
helical Majorana modes.

2.1.5 Local topological quantum phase transitions

From our discussion so far and the explicit calculation of the topological invariant for our
toy model of the QAH state, it is clear that the topology of a band structure is a global
feature which encompasses information about the function k — h(k) everywhere in the
Brillouin zone. However, in reality such a complete information about the physical system
is often times lacking. For example, the theoretical prediction of the QSH state in HgTe
[BernevigO6a] is based on a perturbative k.p calculation which approximates h(k) as a low
order polynomial around the I'-point £ = 0. Without further discussion such an approximation
seems to be inadequate for the investigation of topological features. However, as the authors
of Ref. [Bernevig06a] point out, the gap closing which separates the experimentally observed
[K6nig07] QSH phase from the trivial insulating phase happens at the I'-point and could thus
be correctly described by a local theory. Such a singularity changing the topological invariant
of the system has been coined topological quantum phase transition (TQPT) [Bernevig0O6a].
For our toy model , the TQPT also happens via a gap closing at the I'-point for m — 0.
This singular point where the Chern number C; is not well defined separates the trivial
(C1 = 0) from a non-trivial (C; = 1) QAH phase as is illustrated in Fig. An only locally
valid theory can thus be suitable for the study of topological features under the following
circumstances [Budich12d]: The state to be investigated must be known to concur with a
topologically well understood reference state away from the validity regime of the effective
theory. A possible transition between the reference state and the state of interest must
happen locally at a point within the validity regime of the effective theory. An example
where these conditions are not met is the integer quantum Hall effect with degenerate Landau
levels. In this case, there is no local gap closing point and the wave functions of all occupied
states have to be known to determine the topological invariant [Budich12d]. In Section[2.3.4]
we will see that the topology of an interacting system can even change due to dynamical
fluctuations which affect the frequency dependence of the single particle Green’s function.

2.2 Bulk classification of all possible non-interacting TSM

In this section, we review the general framework for the topological classification of non-
interacting systems. This framework does not provide a recipe how to classify an individual
system, as we characterized the QAH insulator by calculating its first Chern number in
Section [2.1] It rather determines the group of possible topological equivalence classes for
a non-interacting system with given spatial dimension and given fundamental symmetries.
Regarding the QAH state, the result of this procedure would be: A non-interacting 2D
insulator with no fundamental symmetries is characterized by a Z topological invariant. The
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2.2 Bulk classification of all possible non-interacting TSM

calculation of the value of the respective topological invariants for a given representative of a
symmetry class is the subject of Section

The general idea that yields the entire table of TSM is quite simple: In addition to
requiring a bulk insulating gap, physical systems of a given spatial dimension are divided into
10 symmetry classes distinguished by their fundamental symmetries, i.e., TRS, PHS, and
chiral symmetry (CS) [Altland97]. The topological properties of the corresponding Cartan
symmetric spaces of quadratic candidate Hamiltonians determine the group of possible
topologically inequivalent systems. We outline the mathematical structure behind this
general classification scheme in some detail. First, we briefly review the construction of the
ten universality classes [Altland97]. Then, we present the associated topological invariants
for non-interacting systems of arbitrary spatial dimension giving a complete list of all TSM
[RyulQ] that can be distinguished by virtue of this framework. Finally, we discuss in some
detail the origin of characteristic patterns appearing in this table using the framework of
K-Theory along the lines of the pioneering work by Kitaev [Kitaev09).

2.2.1 Cartan-Altland-Zirnbauer symmetry classes

A physical system can have different types of symmetries. An ordinary symmetry [Ryul0]
is characterized by a set of unitary operators representing the symmetry operations that
commute with the Hamiltonian. The influence of such a symmetry on the topological
classification can be eliminated by transforming the Hamiltonian into a block-diagonal form
with symmetry-less blocks. The total system then consists of several uncoupled copies
of symmetry-irreducible subsystems which can be classified individually. In contrast, the
“extremely generic symmetries” [RyulQ] follow from the anti-unitary operations of TRS and
PHS. Involving complex conjugation according to Wigner, they impose certain reality condi-
tions on the system Hamiltonian. In total, the behavior of the system under these operations,
and their combination, the CS operation, defines ten universality classes which we call the
Cartan-Altland-Zirnbauer (CAZ) classes. For disordered systems, these classes correspond
to ten distinct renormalization group (RG) low energy fixed points in random matrix theory
[Altland97]. The spaces of candidate Hamiltonians within these symmetry classes correspond
to the ten symmetric spaces introduced by Cartan in 1926 [Cartan26] defined in terms of
quotients of Lie groups represented in the Hilbert space of the system. For translation-
invariant systems, the imposed reality conditions are inherited by the Bloch Hamiltonian h(k).

In the following, the anti-unitary TRS operation will be denoted by 7T and the anti-unitary
PHS will be denoted by C. The Hamiltonian H of a physical system satisfies these symmetries
if

THT ' =H, (2.10)
and
CHC™' = —H, (2.11)

respectively. According to Wigner’s theorem, these anti-unitary symmetries can be repre-
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sented as a unitary operation times the complex conjugation K. We define 7 =TK, C = CK.
Using the unitarity of T, C' along with % = H' we can rephrase Eqs. (2.1012.11)) as

THIT' =H
CHTC* = _H (2.12)

There are two inequivalent realizations of these anti-unitary operations distinguished by their
square which can be plus identity or minus identity. For example, 72 = +1 for the unfolding
of a particle with integer/half-integer spin, respectively. Clearly, 72 = £1 < TT* = £1 and
C? = 41 & CC* = £1. In total, there are thus nine possible ways for a system to behave
under the two anti-unitary symmetries: each symmetry can be absent, or present with
square plus or minus identity. For eight of these nine combinations, the behavior under the
combination 7 C is fixed. The only exception is the so called unitary class which breaks both
PHS and TRS and can either obey or break their combination, the CS. This class hence
splits into two universality classes which add up to a grand total of ten classes shown in Tab.
For a periodic system, symmetry constraints similar to Eq. hold for the Bloch

Class TRS PHS CS
A (Unitary) 0 0 0
AT (Orthogonal) +1 0 0
AII (Symplectic) -1 0 0
ATIT (Chiral Unitary) 0 0 1
BDI (Chiral Orthogonal) | +1  +1 1
CII (Chiral Symplectic) -1 -1 1
D 0 +1 0
C 0 -1 0
DIII -1 +1 1
CI +1 -1 1

Table 2.1: Table of the CAZ universality classes. 0 denotes the absence of a symmetry. For PHS and
TRS, £1 denotes the square of a present symmetry, the presence of CS is denoted by 1. The last four
classes are Bogoliubov deGennes classes of mean field superconductors where the superconducting
gap plays the role of the insulating gap.

Hamiltonian h(k), namely

ThY (—k)TT = h(k)
ChT (=k)CT = —h(k), (2.13)

where T, C' now denote the representation of the unitary part of the anti-unitary operations
in band space.

For a continuum model, the real space Hamiltonian H(z) is defined through

H= / A2 0 () H ()0 (),
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2.2 Bulk classification of all possible non-interacting TSM

where U is a vector/spinor comprising all internal degrees like spin, particle species, etc. The
k-space on which the Fourier transform H (k) of H(x) is defined does not have the topology
of a torus like the BZ of a periodic system. However, the continuum models one is concerned
with in condensed matter physics are effective low energy/large distance theories. For large
k, H(k) will thus generically have a trivial structure (c.f. Fig. , so that the k-space
can be endowed with the topology of the sphere S by a one point compactification which
maps k — oo to a single point (see Section for an explicit example of this procedure).
The symmetry constraints on H (k) have the same form as those on the Bloch Hamiltonian
h(k) shown in Eq. (2.13). By abuse of notation, we will denote both H(k) and h(k) by h(k).
Nevertheless, we will point out several differences between periodic systems and continuum
models along the way.

2.2.2 Definition of the classification problem for continuum models and
periodic systems

For translation-invariant insulating systems with n occupied and m empty bands and con-
tinuum models with n occupied and m empty fermion species, respectively, the projection
P(k) =30 _1|ua(k)){ua(k)| onto the occupied states is the relevant quantity for the topo-
logical classification. The spectrum of the system is not of interest for adiabatic quantities
as long as a bulk gap between the empty and the occupied states is maintained. We thus
deform the system adiabatically into a flat band insulator, i.e., a system with eigenenergy
e_ = —1 for all occupied states and eigenenergy €, = +1 for all empty states. The eigenstates
are not changed during this deformation. The Hamiltonian of this flat band system then
reads [Qi08a), [Schnyder(§]

Q(F) = (+1) (1 = P(k)) + (=1)P(k) = 1 —2P(k)

Obviously, Q2 = 1, Tr [Q] = m — n. Without further symmetry constraints, @ is an arbitrary
U (n+m) matrix which is defined up to a U(n) x U(m) gauge degree of freedom corresponding
to basis transformations within the subspaces of empty and occupied states, respectively.
Thus, @ is in the symmetric space

Grgmm(C) = Grimn(C) = U(n+ m)/(U(n) x U(m)).

Geometrically, the complex Grassmannian Gy ;(C) is a generalization of the complex projec-
tive plane and is defined as the set of I-dimensional planes through the origin of C*. The
set of topologically different translation-invariant insulators is then given by the group g of
homotopically inequivalent maps k — Q(k) from the BZ T? of a system of spatial dimension
d to the space Gy ym,m(C) of possible Bloch Hamiltonians. For continuum models T is
replaced by S¢ and ¢ is by definition given by

g = T4q (Gn+m,m(c)) ) (2.14)

where the n-th homotopy group 7, of a space is by definition the group of homotopically
inequivalent maps from S¢ to this space. For translation-invariant systems defined on a BZ,
the classification can be more complicated than Eq. (2.14) if the lower homotopy groups
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ms, § = 1,...,d — 1 are nontrivial. For our previous example of the QAH insulator, a
2D translation-invariant state which does not obey any fundamental symmetries, we can
infer from 73 (Gptm,m(C)) = Z, m1 (Gnimm(C)) = 0 that an integer topological invari-
ant must distinguish possible states of matter in this symmetry class, i.e., possible maps
T2 - Grnt+m,m(C). The condition 71 (Gp4m,m(C)) = 0 is necessary because the my classifies
maps from S2, which is only equivalent to the classification of physical maps from T2 if the
fundamental group m; of the target space is trivial. The difference between the base space of
a periodic systems which is a torus and of continuum models which has the topology of a
sphere has interesting physical ramifications: The so called weak topological insulators are
only topologically distinct over a torus but not over a sphere. Physically, this is visible in the
lacking robustness of these TSM which break down with the breaking of translation symmetry.

Requiring further symmetries as appropriate for the other nine CAZ universality classes is
tantamount to imposing symmetry constraints on the allowed maps 7% — Gy ym.m(C), k
Q(k) for translation-invariant systems and S% — Gpim.m(C), k — Q(k) for continuum
models, respectively. The set of topologically distinct physical systems is then still given
by the set of homotopically inequivalent maps within this restricted space, i.e., the space of
maps which cannot be continuously deformed into each other without breaking a symmetry
constraint. For example, for the chiral classes characterized by CS = 1, ) can be brought
into the off diagonal form [Schnyder0g§]

_ (0 ¢

with ¢¢' = 1, which reduces the corresponding target space to U (n). For the chiral uni-
tary class AIIl without further symmetry constraints, the calculation of ¢ amounts to
calculating g = 74 (U(n)) = Z for odd d and g = 74 (U(n)) = 0 for even d, respectively. Addi-
tional symmetries will again impose additional constraints on the map T¢ — U(n), k — q(k).

This procedure rigorously defines the group g of topological equivalence classes for non-
interacting translation-invariant insulators in arbitrary spatial dimension and CAZ univer-
sality class. However, the practical calculation of g can be highly non-trivial and has been
achieved for continuum models via various subtle detours, for example the investigation
of surface nonlinear o-models, in Refs. [Schnyder09, Ryul0]. In the following, we outline
a mathematical brute force solution to the classification problem in terms of K-Theory
which has been originally introduced in the seminal work by Kitaev in 2009 [Kitaev(09].
This method will naturally explain the emergence of weak topological insulators. We will
not assume any prior knowledge on K-Theory. In Tab. we summarize the resulting
groups of topological sectors g for all possible systems [Schnyder(09]. We notice an interesting
diagonal pattern relating subsequent symmetry classes to neighboring spatial dimensions.
Furthermore, the pattern of the two unitary classes shows a periodicity of two in the spatial
dimension. If we had shown the classification for higher spatial dimensions, we would have
observed a periodicity of eight in the spatial dimension for the eight real classes. The
following discussion is dedicated to provide a deeper understanding of these fundamental
patterns as pioneered in Ref. [Kitaev09]. The mentioned periodicities have first been pointed
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2.2 Bulk classification of all possible non-interacting TSM

out in Refs. [Qi08al, [Schnyder(9].

Class | constraint d=1 d=2 d=3 d=14
A none 0 Z 0 Z
AIIT | none on ¢ Z 0 Z 0
Al QT (k) = Q(—k) 0 0 0 Z
BDI | ¢*(k) = q(—k) Z 0 0 0
D QT (K)1y = —Q(—k), m=n Zs Z 0 0
DIII | q(k)T = —q(—k),m = n even Zs Zs Z 0
Al | o, QT (k)(—ioy) = Q(—k), m,n even 0 Zs L3 Z
CIl | ioyq*(k)(—ioy) = q(—k), m=mneven | Z 0 Zs Zs
C QT (k)ty = —Q(=k), m=n 0 Z 0 Ly
CI q(k)T = q(=k),m=n 0 0 Z 0

Table 2.2: Table of all groups g of topological equivalence classes. The first column denotes the CAZ
symmetry class, divided into two unitary classes without anti-unitary symmetry (top) and eight “real”
classes with at least one anti-unitary symmetry (bottom). The second column shows the symmetry
constraints on the flat band maps, where we have chosen the representation 7 = K for 72 = 1,
T =ioyK for T?2=—-1l,aswellasC=1,K forC2=1,C = Ty K for C? = —1. Here, oy denotes
the Pauli matrix in spin space, 7, 7, denote Pauli matrices in the particle hole pseudo spin space of
Bogoliubov deGennes Hilbert spaces. In the last four columns, g is listed for d = 1,...,4.

2.2.3 Topological classification of unitary vector bundles

In order to prepare the reader for the application of K-Theory and motivate its usefulness, we
first formulate the classification problem in the language of fiber bundles. The mathematical
structure of a non-interacting insulator of spatial dimension d is that of a vector bundle
E 5 M. The base manifold M of E is the d dimensional k-space of the system, and the
fiber over a point k given by the (projective) space of occupied states P(k). The gauge group
of the bundle is U(n), where n is the dimension of P. If no further symmetry conditions
are imposed (see class A in Tab. , the question of how many topologically distinct
insulators in a given dimension exist is tantamount to asking how many homotopically
different U(n) vector bundles can be constructed over M. This question can be formally
answered for arbitrary smooth manifolds M as we will outline now. The general idea is the

following. There is a universal Bundle & L X into which every bundle E can be embedded
through a bundle map [NakaharaO3| f : £ — £ such that

[f§=FE, (2.15)

where f: M — X is the map between the base manifolds associated with the bundle map
f . That is to say every bundle can be represented as a pullback bundle [Nakahara(O3] of
the universal bundle £ by virtue of a suitable bundle map f . The key point is now that
homotopically different bundles F are distinguished by homotopically distinct maps f. Thus,
the set of different TSM is the set 7w [M, X] of homotopy classes of maps from the k-space
M to the base manifold X of the universal bundle. X is also called the classifying space of
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U(n) and is given by the Grassmanian G ,,(C) = U(N)/(U(n) x U(N —n)) for sufficiently
large N, i.e., N > [% + n]. To be generic in the dimension of the system d, we take the
inductive limit X = G,,(C*) = limy_y00 GNn(C) = limn_oo U(N)/(U(n) x U(N —n)). We
thus found for the set Vect,, (M, C) of inequivalent U(n) bundles over M the expression

Vect, (M, C) = 7 [M,G,(C™)],

which is known for some rather simple base manifolds. In particular for spheres S%, there
is a trick to calculate Vectn(Sd, C): S? can always be decomposed into two hemispheres
which are individually trivial. The homotopy of a bundle over S¢ is thus determined by
the clutching function f, defined in the overlap S%~! of the two hemispheres, i.e., along the
equator of S. Physically, f. translates a local gauge choice on the upper hemisphere into a
local gauge choice on the lower hemisphere and is thus a function f. : S%~! — U(n). The
group of homotopy classes of such functions is by definition given 7m4_1(U(n)). Interestingly,
for n > d_Tl, these groups are given by

Z, d—1 odd

{0}, d—1 even (2.16)

Vect, (S, C) = mq_1(U(n)) = {

This periodicity of two in (d — 1) is known as the complex Bott periodicity. The physical
meaning of Eq. is the following: In the unitary universality class A, there is an integer
topological invariant in even spatial dimension (QAH in d = 2) and no TSM in odd spatial
dimension.

This classification has two shortcomings. First, it cannot be readily generalized to other
CAZ classes at this simple level. Second, only systems with the same number of occupied
bands n can be compared. However, adding some trivial bands to the system should yield a
system in the same equivalence class. Both shortcomings can be overcome in the framework
of K-Theory [Karoubi78|, [Nash91].

2.2.4 K-Theory approach to a complete classification

K-Theory [Karoubi78| [Nash91] is concerned with vector bundles which have a “sufficiently
large” fiber dimension. This means, that topological defects which can be unwound by just
increasing the fiber dimension are not visible in the resulting classification scheme. This
is physically reasonable, as trivial occupied bands from inner localized shells for example
increase the number of bands as compared to the effective low energy models under investi-
gation. Models of different number of such trivial bands should be comparable in a robust
classification scheme. The use of K-Theory for the classification of TSM has been pioneered
in Refs. [Kane05a, Kane05b] and more systematically been discussed in Ref. [Kitaev(9].

Crash-course in K-Theory

The direct sum of two vector bundles E @ F' is the direct sum of their fibers over each point.
This addition has only a semi-group structure, since E @ G =F & G # F ~ F. A minimal
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counterexample is given by E = T'S?, F = §? x R?. F is clearly trivial, whereas E, the
tangent bundle of S? is well known to be non-trivial. However, adding N S?, the bundle of
normal vectors to S2, to both bundles E, F' we obtain the same trivial bundle S? x R3. This
motivates the concept of stable equivalence

EXFSE®Z"~F®Z", (2.17)

where Z™" = M x K™, K = R, C is the trivial bundle over the fixed base manifold M, which
plays the role of an additive zero as far as stable equivalence is concerned. We denote the
set of K-vector bundles over M by Vg (M) in the following. Note that stably equivalent
bundles can have different fiber dimension, as m # n in general in Eq. . The benefit of
this construction is:

E®G=Fa®G=>EXF (2.18)

This is because for vector bundles on a smooth manifold every bundle can be augmented to
a trivial bundle, i.e.,

Vedu Ge H =2 (2.19)

Eq. (2.18) naturally leads to the notion of a subtraction on Vg (M) by virtue of the
Grothendieck construction: Consider the pairs (E1, E2) € Vg (M) x Vi (M) and define the
equivalence relation

(El,Ez)N(Fl,FQ)@HHFl@EQEBHﬁEl@FQ@H. (220)

Looking at Eq. (2.20)), we can intuitively think of the equivalence class (E1, E2)~ as the
formal difference Fy — Es. We now define the K-group as the quotient

K(M) = (Vk(M) x Vr(M)) [ ~, (2.21)

which identifies all formal differences that are equivalent in the sense of Eq. . Due
to Eq. (2.19), every group element in K (M) can be represented in the form (E,Z™).
However, (E,Z") ~ (E,Z™) for n # m. We define the virtual dimension of (E, F) as
dy = tk(F) — rk(F"), where rk denotes the rank, i.e., the fiber dimension of a vector bun-
dle. By restricting K (M) to elements with d, = 0, we obtain the restricted K-group
K(M) = {g € K(M)|d,(g) =0}. K(M) is isomorphic to the set of stable equivalence
classes of Vg (M). Up to now, the construction has been independent of the field over which
the vector spaces are defined. In the following, we will distinguish the real and complex

K-groups Kgr(M), Kc(M).

A crucial notion in K-Theory which is also our main physical motivation to study it is that
of the stable range. The idea is that at sufficiently large fiber dimension n no “new” bundles
can be discovered by looking at even larger fiber dimension. Sufficiently large in terms of
the dimension d of M means n > nc = d/2 + 1 for the complex case and n > ng = d + 1 for
the real case, respectively. More formally, every bundle £ with n > nx can be expressed as
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a suim
E~F@Z" " (2.22)

of a bundle F' with fiber dimension ngx and a trivial bundle for K = R, C. Since clearly
EXF (see Eq. ), this means that all stable equivalence classes have representatives
in fiber dimension n < ng. Furthermore, a situation like our counterexample above where
we augmented two non-isomorphic bundles by the same trivial bundle N.S? to obtain the
same trivial bundle cannot occur in the stable range. That is to say F' as appearing in Eq.
is uniquely defined up to isomorphism. The stable range hence justifies the approach
of K-theory of ignoring fiber dimension when defining the stable equivalence. The key result
in the stable range which connects K-Theory to our goal of classifying all inequivalent vector
bundles with sufficiently large but arbitrary fiber dimension on equal footing reads [Nash91]

Kg (M) = Vect,,(M, K) = 7 [M,Gn(K®)]  VYosng- (2.23)

The complex Bott periodicity Eq. (2.16) with period pc = 2 has a real analogue concerning
the homotopy groups of O(n) with period pg = 8. This immediately implies in the language
of K-Theory

Ky (84Px) = K (89), K =R,C. (2.24)

We define

K (M) = Kg(SIM), (2.25)

where S is the reduced suspension [Nash91] which for a sphere S* indeed satisfies S.S* = SF+1.
The stronger version of the Bott periodicity in K-Theory now reads [Nash91]

K7 PE(M) = Kgd(M), K =R,C (2.26)
which only for M = S! trivially follows from Eq. (2.24)). Using this periodicity, the definition
of K;{d in Eq. 1) can be formally extended to d € Z.

The Bott clock

From the very basic construction of homotopy groups the following identities for the homotopy
of a topological space X are evident:

ma(X) =7 [Sd, X] S [Ssd—l,x} - [sd—l, QX} ,

where QX denotes the loop space [Nash91] of X, i.e., the space of maps from S' to
X. TIterating this identity gives m4(X) = 7p(2"X) using the complex Bott periodicity
(2:16), we immediately see that counting the connected components mo (U(n)),m (U(n)) =
7o (U (n)) of the unitary group and its first loop space, we can classify all U(n) vector
bundles over S¢ in the stable range, i.e., with n > %l. The real analogue of the Bott periodicity
with period pgr = 8 leads to analogous statements for O(n) bundles over S¢ which depend
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Class | Classifying Space

A Co=U(n+m)/(U(n) xU(m))

AIITl | CL =U(n)

Al Ry =0(n+m)/(0O(n) x O(m))

BDI | Ry =O0(n)
(
(

DIII | Rs = U(2n)/Sp(2n)
AIl | Ry = Sp(n+m)/
CII | Rs = Sp(n)
C Re = Sp(2n)/U(n)
CI R; =U(n)/O(n)

Table 2.3: Table of all classifying spaces Cy, R4 of complex and real K-Theory, respectively. The
first column denotes the CAZ symmetry class. From top to bottom, the next complex/real classifying
space is the loop space of its predecessor, i.e., Cy41 = QCy(mod 2), R,41 = QR,(mod 8)

only on the connected components of O(n) and its first seven loop spaces 2'O(n), i =1,...,7
(see Tab. . This defines a Bott clock with two ticks for the complex case and eight ticks
for the real case, respectively. Interestingly, these ten spaces, for the complex and real case
together, are precisely the ten Cartan symmetric spaces in which the time evolution operators
associated with Hamiltonians in the ten CAZ classes lie. After this observation, only two
points are missing until a complete classification of all TSM of continuum models can be
achieved. The first point is a subtlety related to the interdependence of the two wave vectors
k and —k as shown in Eq. , which makes the real Bott clock tick counter clockwise.
The second point is the inclusion of symmetry constraints into the scheme which leads to
the clockwise ticking Clifford clock (see Eq. below). The combination of both implies
that the topological invariant of a continuum model of dimension d in the CAZ class ¢ only
depends on the difference ¢ — d (mod 8) for the eight real classes and on ¢ — d (mod 2) for
the two complex classes A and AIII, respectively.

Reality and k-space topology

For systems which obey anti-unitary symmetries the real structure of the Hamiltonian
H(x) is most conveniently accounted for in its Majorana representation. H(z) can in this
representation be expressed in terms of a real antisymmetric 2n x 2n-matrix B,

i

Ul (2)H () () 1

By ey, (2.27)

where ¢, ;, i = 1,...,2n are the Majorana operators representing the n fermion species at x.
On Fourier transform, H = [ UTH ¥ can be written as [Kitacv09)]

H = % / A kAT (k)e_gicr (2.28)
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where A is skew hermitian and satisfies
A*(k) = A(—k). (2.29)

Eq. naturally leads to a real vector bundle structure as defined in Ref. [Atiyah60]
for the bundle of eligible A-matrices over the k-space (R?,7), where the involution 7 (see
Ref. [Atiyah60]) is given by k — —k. On one-point compactification, this real k-space
becomes a sphere S¢ = (59, 7) with the same involution [Kitaev09]. Whereas the ordinary
sphere S¢ can be viewed as a reduced suspension S of S41 over the real axis, S can be
understood as the reduced suspension S of S4~! over the imaginary axis. This picture is
algebraically motivated by comparing the involution 7 to the ordinary complex conjugation
which, restricted to the imaginary axis of the complex plane is of the same form. Interestingly,
in the language of definition , S plays the role of an inverse to S [Atiyah66)], Kitaev(09],
ie.,

Kr(M) = Kg*(SM) = Kg(SSM).

This means that the Bott clock over S¢ is reversed as compared to its analogue over S¢.

Real K-theory and the Clifford clock

The main reason for the real construction of Eq. is that the anti-unitary symmetry
constraints yielding the eight real CAZ classes (all except A and AIII) can be distinguished in
terms of anti-commutation relations of the A-matrix with real Clifford generators [Karoubi7§,
Kitaev09]. At a purely algebraic level, these constraints can be transformed so as to be
expressed only in terms of positive Clifford generators [Kitaev09], i.e., generators that square
to plus identity. We call the restricted K-group of a vector bundle of A-matrices over
M that anti-commute with ¢ positive Clifford generators Kﬂ%(/\/l) Interestingly [Karoubi78),
Kitaev09],

KL(M) ~ KgU(M). (2.30)

Eq. defines a Clifford clock that runs in the opposite direction as the S% Bott clock.
This algebraic phenomenon explains the full periodic structure of the table of TSM of
continuum models (see Tab. . The classifying spaces of A-matrices for systems that
anti-commute with ¢ Clifford generators are shown in Tab.

Periodic systems

The classification of periodic systems is much more complicated from a mathematical point
of view. Their base space is the real Brillouin zone T% = (T%,7), where the involution
7 giving rise to the real structure is again given by k — —k. For T% the reduced suspension
does not provide a trivial relation between the K-Theory of different spatial dimension like
5S84 = S for the base space of continuum models. The general calculation of all relevant
K-groups over T? has been reported in Ref. [Kitaev09]. Interestingly, the resulting groups
always contain the respective classification of continuum models in the same symmetry class
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2.3 Calculation of topological invariants of individual systems

as an additive component. Additionally, the topological invariants of weak TSM, i.e., TSM
which are only present in translation-invariant systems, can be inferred. The Clifford clock
defined in Eq. is independent of the base space and hence still applicable. Here, we
only review the general result calculated in Ref. [Kitaev09)

d—1
Kz9(T% ~ Kz%(S%) @ (@ (‘;) KRq(SS)> . (2.31)
s=0

The second term on the right hand side of Eq. entails the notion of so called weak
topological insulators which are obviously due to TSM in lower dimensions. To name the
most prominent example, the Zs invariant characterizing the QSH insulator in d = 2 in the
presence of TRS, CAZ class All, yields a 3Zy topological invariant characterizing the weak
topological insulators with the same symmetry in d = 3.

Lattice systems with disorder

In a continuum model, disorder that is not too short ranged so as to keep the k-space
compactification for large k valid, can be included into the model system without changing
the classification scheme. However, perturbing a translation-invariant lattice system with
disorder also gives its k-space a discrete lattice structure which is not directly amenable to
investigation in the framework of K-Theory which we only defined over smooth base-manifolds.
Ref. [Kitaev09] shows that a Hamiltonian featuring localized states in the energy gap can be
transformed into a gapped Hamiltonian upon renormalization of parameters. The physical
consequence of this statement is that only a mobility gap is needed for the classification of a
TSM and no energy gap in the density of states. Furthermore, Ref. [Kitaev09] argues without
explicit proof that the classification problem of gapped lattice systems without translation
invariance is equivalent to the classification problem of continuum models. This statement
agrees with the physical intuition that the breaking of translation-invariance must remove
the additional structure of weak TSM as described for periodic systems by Eq. (2.31]).

2.3 Calculation of topological invariants of individual systems

In Section we have shown how many different TSM can be expected in a given spatial
dimension and CAZ class. Now, we outline how insulating systems within the same CAZ
class and dimension can be assigned a topological equivalence class in terms of their adiabatic
connection defined in Eq. and their adiabatic curvature defined in Eq. ,
respectively. A complete case by case study in terms of Dirac Hamiltonian representatives
of all universality classes of this problem has been reported in Ref. [Ryul0]. In this thesis,
we outline the general patterns relating the classification of neighboring (see Tab.
universality classes following the analysis in Refs. [Qi08a) [Schnyder08| [Ryul0]. Interestingly,
all topological invariants can be calculated using only complex invariants, namely Chern
numbers and chiral unitary winding numbers. The anti-unitary symmetries are accounted
for by the construction of a dimensional hierarchy in Section [2.3.2] starting from a so called
parent state in each symmetry class for which the complex classification concurs with the
real classification. In Section we show how the topological invariants can be defined for
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disordered systems with the help of twisted boundary conditions. Furthermore, we discuss a
generalization of the non-interacting topological invariants to interacting systems in Section

2.3.4

2.3.1 Systems without anti-unitary symmetries

Chern numbers of unitary vector bundles

Eq. shows that every U(n) bundle E — M can be represented as a pullback
from the universal bundle £ — G,,(C*) by some map bundle map f. Chern classes are
de Rham cohomology classes, i.e., topological invariants [Bott82] that are defined as the
pullback of certain cohomology classes of the classifying space G, (C*). The cohomology
ring H* (G,,(C*>)) consists only of even classes and is generated by the single generator
& € H% (Gn(C*>)), j =1,...,n for every even cohomology group [Sato96]. The Chern
classes ¢; of E are defined as the pullback ¢; = f*¢; from the classifying space by the map
f: M — G,(C*®) associated with the bundle map f . Due to the Chern-Weyl theorem
[NakaharaO3|, Chern classes can be expressed in terms of the curvature, i.e., in our case, the
adiabatic curvature F defined in Eq. of E. Explicitly, the total Chern class ¢ can be
expressed as [Nakahara(3]

c = det (1+Z2];) =14c1(F)+coF).... (2.32)
The determinant is evaluated in gauge space and products of F are understood to be wedge
products. c¢; is the monomial of order j in F. Obviously, ¢; is a 2j-form and can only be
non-vanishing for 25 < d, where d is the dimension of the base manifold M, i.e., the spatial
dimension of the physical system. Another characteristic class which generates all Chern
classes is the Chern character [Nakahara03]

ch = Tr [e57] =1+ chy (F) + chy(F) + ... (2.33)

Due to their importance for later calculations, we explicitly spell out the first two Chern
characters chy = Tr [%} , chy = —#Tr [F A F]. Importantly, for even d = 2p, the integral

C:/Chp
M

yields an integer, the so called p-th Chern number [Choquet-Bruhat82]. These Chern numbers

characterize systems in the unitary symmetry class A which can only be non-trivial in even
spatial dimension (see Tab. [2.2)).

Winding numbers of chiral unitary vector bundles

In Section we have shown that the classifying space for a chiral unitary (AIIl) system is
given by U(n) and that the topological sectors are defined by homotopically distinct maps
k+— q(k) € U(n). Now, we discuss how to assign a given map ¢ to an equivalence class by
calculating its winding number [Redlich84! [Volovik88, [Golterman93] following Ref. [Ryul0].
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2.3 Calculation of topological invariants of individual systems

From Tab. it is clear that only in odd spatial dimension d = 25 — 1 there can be a
non-trivial winding number. We define

g _  (=(G-1Y -1 ;7 \2j—1

Waj—1 = (25 — 1)!(27m')jTr [(q dq) } ’ (2:34)
which has been dubbed winding number density [Ryul0]. Integrating this density over the
odd-dimensional base manifold M representing the k-space of the physical system, we get
the integral winding number v9;_1

. — q
1/2],1 = /M w2j_1, (235)

which is well known to measure the homotopy of the map k +— g(k).

Relation between chiral winding number and Chern Simons form

So far, the relation between the adiabatic connection of a chiral system and its topological
invariant has not been made explicit. Since characteristic classes like Chern characters are
closed 2j-forms, they can locally be expressed as exterior derivatives of a (25 — 1)-forms.
These odd forms are called the Chern Simons forms associated with the even characteristic
class [Chern74 INakahara03]. For the j-th Chern character ch;, which is a 2j form, the
associated Chern Simons form Qg reads [Nakahara(3]

1 i \J 1 1
1(AF) = —— (= dt STr | A, F/ 2.36
QQJ 1("47 t) (] — 1)| (271') /0 I |:A7 t :| ) ( )
where F; = tF + (t* — t)A A A is the curvature of the interpolation tA between the
zero connection and A and STr denotes the symmetrized trace. FExplicitly, we have

Q1= Tr[A], Q3= —gTr [AdA + %Aﬂ.

It is straightforward to show [Ryul0], that in a suitable gauge, the Berry connection of

a chiral bundle yields AP = %qqu, where ¢ € U(n) is again the chiral map characterizing

the system. This is not a pure gauge due to the factor % which entails that the associated

curvature 72 does not vanish. Plugging A” and F? into Eq. (2.36) immediately yields
[Ryul0]

B B 1 q
Qoj-1(A”, F) = 5 W25-1- (2.37)
Eq. (2.37) directly relates the winding number density to the Chern Simons form. We define

the Chern Simons invariant of an odd dimensional system as
CSzj_l :/ Q2j—1 (mOd 1)7
M

where (mod 1) accounts for the fact that [, Q2;_1 has an integer gauge dependence due to
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V=T

U0©>TRS

Figure 2.3: Illustration of the WZW dimensional extension. The circle at v = 0 represents the
physical system. The poles at v = +7 represent the trivial reference system without k-dependence.
The two interpolations are conjugated by an anti-unitary symmetry, here exemplary denoted by TRS.

moj—1(U(n)) = Z for n > j. Looking back at Eq. (2.35), we immediately get
ng,l(mod 2) = 2CSQj,1(mod 2)

We note that the (mod 2) can be dropped if we fix the gauge as described above to
AB = %qdq_l. This establishes the desired relation between the winding number of a chiral
unitary system and its adiabatic curvature.

2.3.2 Dimensional reduction and real symmetry classes

Until now, we have only discussed how to calculate topological invariants of systems in the
complex symmetry classes A and AIII. Interestingly, for some real universality classes, the
classification in the presence of anti-unitary symmetries concurs with the unitary classification
(see Tab. . The first known example of this type is in the symplectic class AIl in
d = 4 which is characterized by the second Chern number of the corresponding complex
bundle [Avron88| Zhang01]. Another example of this kind is the p + ip superconductor in
d = 2 and symmetry class D which is characterized by its first Chern number, i.e., in the
same way as the QAH effect in class A. In odd dimensions similar examples exist for real
chiral classes, e.g., for DIII in d = 3, where the winding number is calculated using Eq.
in the same way as for the chiral unitary class AIII in the same dimension. All the
topological invariants just mentioned are integer invariants. In some universality classes,
these integers can only assume even values (see Tab. . For physically relevant dimensions,
ie.,, d=1,2,3, these exceptions are Cll ind = 1, Cin d = 2, and Cl in d = 3. All other states
where the complex and the real classification concur, can be viewed as parent states of a
dimensional hierarchy within the same symmetry class from which all Zs invariants appearing
in Tab. [2:4] can be obtained by dimensional reduction. This approach was pioneered in the
seminal work by Qi, Hughes, and Zhang [Qi08a].

The general idea is more intuitive if we consider the parent state as a Wess-Zumino-Witten
(WZW) dimensional extension [Witten83, [Wangl0] of the lower dimensional descendants
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2.3 Calculation of topological invariants of individual systems

Class [d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=38
A 0 Z 0 Z 0 Z 0 Z
AlIL | 7 0 Z 0 Z 0 Z 0
Al 0 0 0 27 0 Zo  Zs
BDI 0 0 0 27, 0 Zo Ty
D Zs 0 0 0 27 0 Zs
DIIL | Zy 7 0 0 0 27 0
ATl 0 Zo  Zs 0 0 0 27
CIl | 2z 0 Zy Iy 0 0 0
C 0 27 0 Zo 7o 0 0
CI 0 0 27, 0 Zy 7y 0

Table 2.4: Table of all groups of topological equivalence classes. The first column denotes the
symmetry class, divided into two complex classes without any anti-unitary symmetry (top) and eight
real classes with at least one anti-unitary symmetry (bottom). Chiral classes are denoted by bold
letters. The parent states of dimensional hierarchies are boxed. For all non-chiral boxed states, the
classification concurs with that of class A in the same dimension. For all chiral boxed states, the
classification concurs with that of class AIII in the same dimension. 27 indicates that the topological
integer can only assume even values in some cases. Such states are never parent states.

instead of thinking of a dimensional reduction from the d-dimensional parent state to its
descendants. This works as follows: We fix a localized (d — 1)-dimensional insulator with-
out any hopping that satisfies the required anti-unitary symmetries as a trivial reference
state. This reference state is described by the k-independent Bloch Hamiltonian hg. The
(d — 1)-dimensional physical system of interest is characterized by the Bloch Hamiltonian
h(k). Then, we interpolate by varying the parameter v between the (d — 1)-dimensional
physical system (v = 0) and the trivial state (v = 7) without closing the insulating gap.
However, the intermediate (d — 1)-dimensional system at fixed v # 0,7 might well break
the required anti-unitary symmetries. The crucial step is now to do the interpolation for
v € [0,7] and v € [, 0] in a symmetry conjugated way (see Fig. [2.3)). That is to say, we
require our (d — 1)-dimensional system of interest and the resulting d-dimensional extended
system to be in the same CAZ class. This d-dimensional system is characterized by the Bloch
Hamiltonian h(k,v). The v € [—m,0] and the v € [0, 7] half of the extended k-space then
are not independent of each other but give equal contributions to the integer topological
invariant of the d-dimensional extended system [Qi08a), [Ryul0]. One might now ask to which
extend the resulting integer invariant of the extended system depends on our choice of the
interpolation h(k,v) between h(k) = h(k,v = 0) and hg = h(k,v = 7). To answer this
question, one considers two interpolations h(k,v), lNz(k,v). It is then elementary to show
[Qi08a] that the difference between the integer invariants of these two d-dimensional systems
is an even integer. This implies that a Zs information, namely the parity of the integer
invariant associated with the extended system, is well defined only in terms of the physical
system with spatial dimension (d — 1).

A similar procedure can be repeated a second time to obtain a Zg invariant for a (d —
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2) dimensional second descendant |Qi08a]. From the procedure just sketched, it is obvious
why the exceptional phases which are characterized by an even integer are not parent states
of such a dimensional hierarchy. The generic constructions for all possible classes can be
found in Refs. [Qi08a), Ryul(]. With that, we are provided with a general and fairly explicit
recipe for the practical calculation of the topological invariants for all possible CAZ classes
in all spatial dimensions. We will work out the dimensional extension explicitly in Section
for a model of the 1D TSC state which has recently received enormous attention due to
its experimental relevance.

2.3.3 Bulk invariants of disordered systems and twisted boundary conditions

Our practical calculation of topological invariants so far has been focused on periodic systems
with a BZ, i.e., M = T% and continuum models where the k-space can be compactified
to a sphere, i.e., M = S% As already pointed out in Section the situation is more
complicated for disordered lattice models. Seminal progress along these lines was reported
for the quantum Hall state by Niu et al. in 1985 [Niu85]. These authors use twisted
boundary conditions (TBC) to define the quantized Hall conductivity o, for a 2D system as
a topological invariant only requiring a bulk mobility gap. We briefly review their analysis
and propose the framework of TBC as a general recipe to calculate topological invariants for
disordered systems.

The Hall conductivity o, resulting from a linear response calculation at zero temperature
yields

—2 (0Ha|n) (n|Hy|0)
Ogpy = Im 9
Yy 7;% (En _ E0)2

where |0) is the many body ground state, A is the area of the system, and H; = g?fi. In

the presence of a magnetic field, translation-invariance is defined in terms of the magnetic
translation operator T [Kohmoto85] which concurs with the ordinary translation operator

T(a) = €' in the absence of a magnetic field. TBC now simply mean that a (magnetic)
translation by the system length L; in j-direction gives an additional phase factor e, ¢; is
called the twisting angle in j-direction. Gauging away this additional phase to obtain a wave
function with periodic boundaries amounts to a gauge transformation of the Hamiltonian
which shifts the momentum operator like

—i0; — —i0j + ¢; (2.38)
This demonstrates the close relation between the flux threading arguments employed in

Section and TBC. Using H; = Hg, = [0p,, H] the Hall conductivity can be expressed as
the sensitivity of the ground state wave function to TBC.

2
Ogy = Zlm(6¢zo|6¢y0),
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2.3 Calculation of topological invariants of individual systems

or, defining 0 = L, ¢, ¢ = Ly,
0y = 2Im(940|0,0) = i Fp,,. (2.39)

The main merit of Ref. [Niu85| is to show that this expression actually does not depend on
the value of (0, ) as long as the single particle Green’s function of the system is exponentially
decaying in real space. This condition is met if the Fermi energy lies in a mobility gap.
Hence, a trivial integration can be introduced as follows:

7 21 2 i F
Oy 4712/0 ; ©Fo, o/T2 o oC1 ( )

where Gg = % = % and the integer C; is by definition the first Chern number of the ground

state line bundle over the torus of twisting angles. This construction makes the topological
quantization of the Hall conductivity manifest.

Eq. shows the close relation between momentum and twisting angles. One is thus
tempted to just replace the BZ of each periodic system by the torus of twisting angles for
the corresponding disordered system which is topologically equivalent to a fictitious periodic
system with the physical system as single lattice site [Fu07, Leungl2]. We will proceed
along these lines below but would like to comment briefly on the special role played by the
quantum Hall phase first. Eq. represents the physical observable o, in terms of the
twisting angles. Niu et al. argued rigorously [Niu85] that o, of a bulk insulating system
can actually not depend on the value of these twisting angles which allows them to express
02y as a manifestly quantized topological invariant in Eq. . For a generic TSM, the
topological invariant of the clean system does in general not represent a physical observable.
Furthermore, the integration over the twisting angles will not be trivial, i.e., the function
to be integrated will actually depend on the twisting angles. Employing the picture of a
periodic system with the physical system as a single site is problematic inasmuch as the bulk
boundary correspondence at the “boundary” of a single site is hard to define mathematically
rigorously. In the quantum Hall regime for example, it is well known that in disordered
systems a complicated landscape of localized states and current carrying regions produces the
unchanged topologically quantized Hall conductivity [Halperin82]. However, as opposed to
the clean QAH insulator discussed in Section the edge states of the disordered quantum
Hall state are in general not strictly localized at the boundary.

Replacing the BZ of a translation-invariant system by the torus of twisting angles in the
disordered case yields a well defined topological invariant which adiabatically connects to
the topological invariant of the clean system where the relation

Opi = O, (2.41)

follows from Eq. . This is because from a purely mathematical perspective it cannot
matter which torus we consider as the base space of our system. In this sense, the framework
of TBC is as good as it gets concerning the definition of topological invariants for disordered
systems. The fact that in some symmetry protected topological phases the topological
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invariants are not directly representing physical observables is a not a problem of the
approach of TBC but is a remarkable difference between these TSM and the quantum Hall
state at a more fundamental level.

2.3.4 Taking into account interactions

Up to now, this entire thesis has only been concerned with non-interacting systems. As a
matter of fact, the entire classification scheme discussed in Sec. massively relies on the
prerequisite that the Hamiltonian is a quadratic form in the field operators. The violation
of this classification scheme for systems with two particle interactions has been explicitly
demonstrated in Ref. [Fidkowskil0].

As we are not able to give a general classification of TSM for interacting systems, we search
for an adiabatic continuation of the non-interacting topological invariants to interacting
systems. This procedure does from its outset impose certain adiabaticity constraints on the
interactions that can be taken into account. The topological invariants for non-interacting
systems are defined in terms of the projection P on the occupied single particle states defining
the ground state of the system. The main assumption is thus that the gapped ground state
of the non-interacting system is adiabatically connected to the gapped ground state of the
interacting system. A counter-example of this phenomenology is the fractional quantum Hall
state, where a gap due to non-adiabatic interactions emerges in a system which is gapless
without interactions. However, it is clear that the phase space for low energy interactions will
be much larger in a gapless than in a gapped non-interacting system. We thus generically
expect the classification scheme at hand to be robust against moderate interactions. However,
beyond mean field interactions, the Hamiltonian cannot be expressed as an effective single
particle operator. Hence, we need to find a formulation of the topological invariants that
adiabatically connects to the non-interacting language and is well defined for general gapped
interacting systems. The key to achieving this goal is to look at the single particle Green’s
function G instead of the system Hamiltonian. This approach has been pioneered in the
field of TSM by Qi, Hughes, and Zhang [Qi08a] who formulated a topological field theory
for TSM in the CAZ class AII.

Chern numbers and Green’s function winding numbers

The role model for this construction is again the Hall conductivity o,, of a gapped 2D
system. In Ref. [Redlich84], o,, has been expressed in terms of G' by perturbative expansion
of the effective action of a gauge field A that is coupled to the gapped fermionic system. The
leading contribution stemming from a vacuum polarization diagram yields the Chern Simons
action

Scs = % /dZ.’L'dt e’ A,0,A; = % /A N dA.
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The prefactor o,y in units of the quantum of conductance assumes the form

0wy = 513 / dkdwTr [(GdGY?] (2.42)
where d now denotes the exterior derivative in combined frequency-momentum space and
G is the time ordered Green’s function, or, equivalently as far as the calculation of topological
invariants is concerned, the continuous imaginary frequency Green’s function as used in zero
temperature perturbation theory. An analogous expression has been derived by Volovik using
a semi-classical gradient expansion [Volovik88]. The similarity between Eq. and the
integrand of Eq. is striking. Obviously, Eq. represents 0., as a winding number
in 3D frequency-momentum space. If this construction makes sense, we should by integration
of Eq. over w recover the representation of o, as the first Chern number in the 2D
BZ for the special case of the non-interacting Green’s function Go(w, k) = (iw — h(k))~! .
Due to its importance and generic relevance, we explicitly perform the calculation. For a
gapped band structure the spectrum can be deformed into a gapped flat band spectrum
without changing the Bloch-eigenstates [Qi08a]. The resulting Hamiltonian

h(k) = ECPC(k) + EvPv(k), €y, < 0 < e,

where P, = > occlup)(ugy|, P, Zﬁempty|uk><uk| are the projectors on the occupied and
the empty states, respectlvely, then has the same topology as the original model. For this
topologically equivalent model, the time ordered Green function can be readily expressed as

PK)  P(b)

G(w,k):(cu—|—is,g;n(w)(5—H(k))_l:w_i_i(s_6 T S

In the last expression the sign dependence of the regularization § is suppressed for notational
convenience. In the derivative of G(w, k) with respect to w, this dependence is also neglected
since we do by construction not have zero modes here. Using 9,G~! = 1; 0.G7! =
(ec — €4)0; P, we get

Py) P (0p 1)) (€c — €)”
w+15—en) (W10 — €m)

Opy = lim [ d%kdwe”? Z

3.2 m , N,M = v,C. (2.43)

n,m
Using P, + P. = 1 as well as P, P. = 0, the following identities [Qi08a] are readily derived

Pcaipv - _(6iPC)PU - (8iPU)Pv>
P,0;P, = —P,d;P, = (0;P,) . (2.44)

With the help of these two equations it is obvious that non-vanishing contributions to Eq.
(2.43)) require n # m. For the two relevant terms, the integration over w can be readily
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performed using the residue theorem. We get

Oxy = ﬁ 9 deGVpTI' [Pv(auPU)PC(aﬂPU)] —Tr [Pc(ava)Pv(ava)] -
T

{ v

o . keI [(0,P0) Pe(0, )]

where in the last equality Eq. - 2.44) has again been used. Inserting P, = Y occluf) (ui], P =
> 5empty|uk><ukl into the latter equation it is straight forward to show that

1

Ozy = o Jr koeupTr [0y Py) Pe(0,Py)] =

Z ((On{ui])(G2fui)) = (D2 (uig|)(Onui))) =

« ocC

i dk:ldk:in/ — . 2.4
27T/T2]:12 o T2]: C (2.45)

With that we have shown explicitly that the representation of 0., in terms of the single
particle Green’s function, Eq. , is in the non-interacting case equal to the first Chern
number C; associated with the Bloch Hamiltonian k& — h(k). This result can be readily
generalized to higher even spatial dimensions and higher Chern numbers, respectively. In
Ref. [Golterman93], a perturbative expansion similar to Ref. [Redlich84] has been presented
for fermions coupled to a gauge field in arbitrary even spatial dimension 2n. The resulting
analogue of the Hall conductivity,i.e., the prefactor of the Chern Simons form in (2n + 1)D
(see Eq. (2.36))) can be expressed as [Golterman93|, [Volovik03, [Qi08a]

—r! ol
N, = E B
21 0] = G iyt -/BZXRw r{(GdG )

A similar calculation [Qi08a] to the one just presented shows that N5 [Go] = Ca for the second
Chern number Cy characterizing the TRS preserving (4 + 1)D analogue of the quantum Hall
effect [Zhang01]. Along similar lines it is now straightforward to generally show

(2.46)

Napi1 [Go] =Cr. (2.47)

Eq. makes manifest that we have exactly found what we were looking for, namely a topo-
logical invariant Na,1 [G] that can be formulated for an interacting system and which repro-
duces the non-interacting classification for the free Green’s function Gy of the non-interacting
system. The topological invariance of No,; [G] is clear by analogy with Eq. : Whereas
the winding number v5;_; measures the homotopy of the chiral map k — ¢(k) € U(n) which,
properly normalized, yields an integer due to mo;_1 (U(n)) =7Z, n > j, Eq. measures
the homotopy of G € GL(n 4+ m,C) in the (2r + 1)D frequency-momentum space which is
also integer due to mo, 1 (GL(n+m,C)) =Z, n+m > r.

The dimensional hierarchy for symmetry protected descendants of a parent state which
is characterized by a Chern number (see Section [2.3.2)) can be constructed in a completely
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analogous way for the interacting generalization Na,;1 of the Chern number C, [Wangl0].
The resulting topological invariants for the descendant states have been coined topological
order parameters in Ref. [Wangl0]. Disorder can again be accounted for by imposing TBC
and replacing the k-space of the system by the torus of twisting angles (see Section .

Interacting chiral systems

The integer invariant of chiral unitary systems (class AIII) in odd spatial dimension 2r — 1 is
not a Chern number but a winding number (see Section . For all these systems and
dimensional hierarchies with a chiral parent state, i.e., all chiral TSM (see Tab. , a
similar interacting extension of the definition of the invariants in terms of G(iw, k) has been
reported in Ref. [Gurariell]:

I, [G] = n(r) /

BZ xR,

T [Q (dQ)] (2.48)

where n(r) is a normalization constant, and Q(iw,k) = G~ !(iw)UcuG(iw, k), with the
unitary representation matrix Ucy of the chiral symmetry operation. In the non-interacting
limit, I, reduces to va,—1 as defined in Eq. (2.35) |Gurariell].

Fluctuation driven topological transitions

Thus far, we have shown that for a non-interacting system the integration over w reproduces
the band structure classification scheme formulated in terms of the adiabatic curvature.
However, the additional frequency dependence of the single particle Green’s function can
cause phenomena without non-interacting counterpart. To see this, we represent the single
particle Green’s function of an interacting system as

G(w, k) = (iw — h(k) — Z(w, k)7,

where ¥ is the self-energy of the interacting system. In Ref. [Gurariell], it has been
pointed out, that the value of Na.;1 [G] cannot only change due to gap closings in the
energy spectrum as in the case of the Chern number C,. This is due to the possibility
of poles in the w-dependence of the self-energy which give rise to zeros of the Green’s
function, whereas gap closings correspond to poles of G. From the analytical form of Ny it
is immediately clear that both poles and zeros of G can change the value of N;. More
generally, the G <> G~ symmetry of No,,; makes clear that poles of G can be seen as zeros
of G™1 and vice versa on an equal footing. In Ref. [Wanglla], it has been demonstrated
that the w-dependence of ¥ can change a non-trivial winding number into a trivial one. The
emergence of a topologically nontrivial phase due to dynamical fluctuations which has no
non-interacting counterpart has been presented in Ref. [Budich12c]. We would like to review
this new phenomenology in some detail.

To this end, let us consider a local self energy ¥ = ¥ (k) + Xa(w) consisting of the Hartree
Fock part ¥ (k) and the local dynamical self energy ¥o(w). The latter can be represented as
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a pole expansion [Wangl1b]
So(w) = Vi(iw — P)~V

with a frequency independent Hermitian N x N matrix P, where IV is the number of poles
of ¥2(w) on the imaginary axis. V is an N x n matrix, where n denotes the number of
bands. It has been shown [Wangllb] that N1 of the single particle Green’s function
G(k,w) = (iw+p—h(k) — B(k,w))~! with the single particle Bloch Hamiltonian h(k) can be
calculated by introducing an effective extended (n+ N) x (n+ V) single particle Hamiltonian

H(k) = (h(k) + %(k) —H ‘g) , (2.49)

and then calculating N3 of the single particle Green’s function G(k,w) = (iw — H(k))~'. We
now show that a transition from trivial to nontrivial can in principle be driven by means
of local fluctuations as described by a non-scalar local self energy. While our idea is very
general, let us for concreteness explicitly construct a minimal toy model for such a type of
transition. Consider the two band model of the QAH insulator [Qi08a]

h(k) = v'(k)oy, (2.50)
where v! = sin(k,), v? =sin(ky), v3 = (m + cos(ky) + cos(ky)) and m is a real parameter
which tunes the sign of the band gap. Assuming an interaction which brings about two
poles in the self energy, we make the following ansatz for the parameters V, P of the pole
expansion

V =po,, P= Ao,

which, for the effective extended Hamiltonian, yields

H(k) = (h(k) “"“f) . (2.51)

1Oy A0

For m = —2.5, the two band model is located in its trivial regime. A two dimensional phase
diagram of the single particle Hamiltonian defined in Eq. is shown in Fig. We
find that local fluctuations can drive a system into a topologically nontrivial phase in this
model. Note that 31 (k) = 0 in our case. Hence, exclusively ¥o(w) causes a transition which
has no band structure analogue due to a gap closing in the two band Hamiltonian ,
and is a purely fluctuation-induced phase transition that does not connect to a static mean
field ansatz.

Chern numbers of effective single particle Hamiltonians

Due to its additional w-integration, the practical calculation of N1 can be numerically
very challenging once the single particle Green’s function of the interacting system has been
calculated. A major breakthrough along these lines has been reported in Ref. [Wangl2d].
These authors show using the spectral representation of the Green’s function that one can
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0.0 05 1.0 1.5 2.0
A

Figure 2.4: Phase diagram of the QAH insulator with local fluctuations. m = —2.5 is fixed. The pole
structure of the local self energy encoded in A, u is varied. The Chern numbers C; of the different
phase domains are indicated.

always get rid of the w-dependence of G. We only review the physical results of this analysis.
The both accessible and explicit proof can be found in Ref. [Wangl2d]. The physical
conclusion is as elegant as simple: Instead of calculating Na,;1 we can just calculate the
Chern number C, associated with the fictitious Hamiltonian

h(k) = —G7(0,k), (2.52)

the occupied states of which are just its eigenstates with negative eigenvalues which have
been dubbed R-zeros since they are positive energy eigenstates of G~1(0, k).
Obviously, —Gy (0, k) = h(k) for the non-interacting Green’s function. Hence, h(k), which
has recently been coined topological Hamiltonian [Wangl2b|, adiabatically connects to
h(k) in the non-interacting limit. Note that the possibility of eliminating the w-dependence is
not in contradiction to the relevance of this w-dependence for the topology of the interacting
system. All it shows is that the relevant changes due to a different pole structure of G as a
function of w can be inferred from its value at w = 0. We will use the method of the fictitious
Hamiltonian iL(k) in Section to formulate the topological invariant of an interacting 1D
TSC.

Topological Hamiltonian for chiral interacting systems

Obviously, this classification scheme just presented only pertains to non-chiral systems, the
classification of which can be reduced to the Chern number classifying a unitary bundle
in the same d}mension (see Section . In principle, the construction of the topological
Hamiltonian h(k) can be readily generalized to chiral interacting systems. To see this, we
note that the crucial argument for the construction of the topological Hamiltonian brought

47



Chapter 2 Topological states of matter

forward in Ref. [Wangl2d] is the following: The continuous interpolation
-1
G(iw, k, A) = (1= NG(iw, k) + A [iw + G710, k)

does not contain any singularities or gap closings. Thus, as long as the calculation of a
topological invariant in terms of G (iw, k) is concerned, we can also use G (iw, k) = G (iw, k, A =
1) = [iw + G0, k)]fl. Obviously, G(iw, k) = [iw — ﬁ(k)} ' is the Green’s function of a
fictitious non-interacting system which is governed by the topological Hamiltonian fz(k)
The mere existence of the topological invariant for chiral systems in terms of G(iw, k) as
presented in Ref. [Gurariell] (see also Eq. ([2.48)) hence suffices to argue that one can
equally well investigate the topology of h(k) and its symmetry protected descendants (see
Section instead of directly evaluating Eq. . Since the single particle Green’s
function inherits the fundamental symmetries from the Hamiltonian [Gurariell], h(k) will
also obey these symmetries. In particular, for an interacting system with chiral symmetry,

the topological Hamiltonian can be brought into the flat band off-diagonal form

Mm:@&)%v, (2.53)

where ¢(k) € U(n) for the topologically equivalent flat-band system. This construction
generically defines a topological invariant for the chiral interacting system which adiabatically
concurs with the non-interacting system: The winding number 7 associated with the fictitious
Hamiltonian A(k). A similar construction for a chiral 1D system has been presented in Ref.
[Manmanal2].

Discussion of the topological Hamiltonian and practical consequences

As already mentioned above, our construction cannot be valid for arbitrary interacting
systems. In particular in 1D, the breakdown of the Z classification in the presence of general
interactions has been investigated in Ref. [Fidkowskil(]. However, this problem does not
pertain to the concept of the topological Hamiltonian itself but rather reflects the limited
validity of the adiabatic continuation of the non-interacting invariants in terms of the single
particle Green’s function, i.e., the limited validity of Eq. and Eq. . In the validity
regime of these equations, we have just shown that we can equivalently use the topological
Hamiltonian h(k) = —G~1(0,k) to classify an interacting system in any symmetry class.
This is of enormous practical usefulness for at least two reasons. First, we get rid of the w-
integration appearing in Eq. and Eq. which is cumbersome to evaluate. Second,
the method of dimensional extension, though generally valid, is not always the most conve-
nient way to calculate the topological invariant of a symmetry protected descendant state.
Provided with the formal equivalence between the non-interacting classification problem of
the topological Hamiltonian and the Green’s function topology, we can directly apply all
simplified schemes that have been introduced to directly calculate non-interacting invariants
of symmetry protected states (see, e.g., Refs. [Kitaev0ll [Fu06, [Fu07, Prodanill [Wang12al)
to the topological Hamiltonian. The framework of dimensional extension and Eq. or
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Eq. (2.48) for the parent state are, with the benefit of hindsight, only needed to justify the
validity of the topological Hamiltonian.

Before closing the section, we would like to discuss the role of the bulk boundary corre-
spondence, as introduced for non-interacting systems in Section in the presence of
interactions. In general, interactions can spontaneously break the protecting symmetry of a
symmetry protected TSM (see Section locally at the boundary thus gapping out the
characteristic metallic surface states. Importantly, this spontaneous symmetry breaking at
the gapless surface will typically happen at a lower critical interaction strength than in the
gapped bulk. This is because the gapless surface modes offer more phase space for interac-
tions. A generally valid bulk boundary correspondence is hence absent in the interacting
case. Within the validity regime of Eq. and Eq. for chiral TSM, respectively,
an interacting analogue of the bulk boundary correspondence has been reported in Refs.
[Gurarielll [Essinll]. The main difference to the non-interacting case is that boundary
zero-modes, which represent poles of the Green’s function can be canceled by zeros of the
Green’s function as far as the calculation of topological invariants is concerned. Note that
the Green’s function of a non-interacting system does not have zeros.

2.4 Examples of TSM

Having analyzed the general framework for the classification and identification of TSM in
the last two sections, we now turn to a more phenomenological physical discussion of two
examples of TSM: The QSH state (CAZ class AIIl in 2D) and in particular its holographic
subgap states, will be of great relevance for the more applied Part [[I] of this thesis. The 1D
TSC state (CAZ class D or BDI) is presented in more detail to practically illustrate at an
accessible level virtually all concepts for the calculation of topological invariants that have
been introduced in Section 2.3

2.4.1 The QSH state

The QSH state [Kane05al, [KaneO5bl, [Bernevig06a] is, historically speaking, the first symmetry
protected TSM. By symmetry protected, we here mean that upon breaking of TRS, the QSH
state can be adiabatically deformed to a trivial localized insulator without any hopping (see
Section . The QSH state is a 2D phase which preserves TRS with 72 = —1 and is
thus located in the CAZ class AII (see Tab. . According to Tab. the QSH phase
is characterized by a Zg invariant which has been originally identified in the framework of
K-Theory and explicitly been calculated by Kane and Mele in 2005 [Kane05al, Kane05b].
These authors proposed a realization of the QSH phase in graphene with intrinsic spin orbit
interaction (SOI). However, the bulk gap defining the adiabatic energy scale in this material
system is only of the order 20ueV [Gmitra09] which considerably limits its experimental
relevance. Shortly after this discovery, an experimentally much more promising realization
of the QSH state in HgTe/CdTe quantum wells (QW) was proposed in 2006 by Bernevig,
Hughes, and Zhang [Bernevig06a] and experimentally discovered in 2007 by Koénig et al.
[K6nig07] in the Molenkamp lab at the University of Wirzburg. In this system, the bulk band
gap is tunable via the thickness ¢ of the QW and can assume values of tens of meV [Konig07].
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Figure 2.5: Comparison of the inverted band structure of HgTe (left) and the non-inverted band
structure of CdTe (right) in the bulk (top) and in a QW geometry (bottom) [BernevigO6al.

Basic phenomenology of the QSH state in HgTe/CdTe quantum wells

The guiding idea behind the search for the QSH phase in material systems based on heavy
elements such as Hg is the following: The QSH phase in graphene relies on intrinsic SOI. SOI
in atoms goes with the fourth power of the proton number Z. In the II-VI semiconductor
HgTe, SOI in the valence bands with orbital p-symmetry and the relativistic Darwin term
shifting the conduction band electrons are so strong that the bandgap is inverted. This means
that the hole-like J = % bands with I's symmetry are energetically above the electron-like
J = % bands with I's symmetry. In contrast, the band structure in CdTe is non-inverted
(see Fig. . The heterostructure proposed in Ref. [BernevigO6a] consists of a HgTe QW
sandwiched between two layers of CdTe. For sufficiently large thickness of the HgTe QW,
its effective 2D band structure will be inverted, i.e., the first I's 2D sub-band H1 will be
energetically above the first I'g sub-band E1. For a very thin QW, however, the effective
2D band structure will be inherited from the surrounding CdTe, i.e., it will be non-inverted.
At a critical thickness t. =~ 6.4nm of the QW, the 2D bulk gap closes. This critical Dirac
point has been identified as a TQPT (see Section from a trivially insulating quantum
well for ¢ < t. to the QSH state for ¢t > t. [Bernevig06a]. The topology of this transition
can be understood in a geometrically simple way: Without Rashba SOI and neglecting the
rather weak bulk inversion asymmetry (BIA) term, there is a fixed spin quantization axis
and the QSH effect can be decomposed into two TRS conjugated copies of the QAH state.
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In the E1/ H1 basis of one spin projection the two band model for this QAH insulator reads
[Bernevig06al

h(k) = €pop + diO'i
dt = AK®, d&®> = —AKY, d®* = M — BEk?, ¢y = C — Dk?, (2.54)

where B < 0. Eq. is referred to as the Bernevig-Hughes-Zhang (BHZ) model.
As long as the spectrum remains fully gapped, the gapless part € is irrelevant for the
topological classification of the model. The total Hamiltonian H (k) is given by H(k) =
diag (h(k), h*(—k)) where the diagonal structure is in spin space. The band gap at the
I-point (k = 0) is 2M. At t = t. the gap closing entails M = 0. For negative M, the unit
vector d points in the negative z-direction, for positive M, d points in the positive z-direction
at the I'-point. Hence, the band inversion can be visualized as a pseudo spin flip of the E1/H1
pseudo spin at the I'-point. This spin flip is exactly what distinguishes a non-trivial from a
trivial QAH state since for large k, the —Bk? term dominates and tilts the spin upwards no
matter what sign M has (see Fig. . By comparison with Eq. , we immediately see
that the Chern number Cfr of this QAH block can be expressed as

e = / Foo 8 ddd—s
1 _% o2 + = dr S Wy — l,sgn(%)’

where S? denotes the compactified spherical k-space. It is straightforward to show that the
adiabatic curvature F_ of the TRS conjugated block satisfies F_(—k) = —F4 (k). Thus the
Chern number C; of the conjugated block satisfies C; = —C;. This relation holds generally
for a TRS preserving 2D insulator which has an additional U(1) spin rotation symmetry, i.e.,
a fixed spin quantization axis. Under these conditions the Zo invariant v characterizing the
QSH effect can be expressed as

v = C{ (mod 2) = C; (mod 2). (2.55)

General calculation of the Z; invariant characterizing the QSH state

As already mentioned, Eq. is only valid in the presence of a fixed spin quantization
axis. However, the notion of the QSH state is much more general as it only requires the
presence of TRS with 72 = —1. It is hence of great practical interest to have a general recipe
how to calculate v without the assumption of additional symmetries. Such a calculation has
first been presented in Ref. [Kane05b] and in a more pedagogical way in Ref. [Fu06]. Of
course, we could also use the general framework outlined in Section [2.3] viewing the QSH
state as a second descendant of its 4D parent state, as has been done in Ref. [Qi08a]. For
pedagogical reasons, we would like to review a more recent method due to Prodan [Prodanii]
which has the practical advantage of being manifestly gauge invariant and which makes the
relation to our discussion of adiabatic time evolution in Section manifest.

Let Onp(k) = (ua(k)|T|ug(k)) be the (gauge dependent) representation matrix of the TRS
operation 7 in the subspace of occupied states at wave vector k. We assume a square lattice
with unit lattice constant. The straight line (k*,7) — (k%,—m) is then a closed loop which
we call y;=. We denote by IC,,, the non-Abelian GP associated with = (see Eq. )
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Since TP(k)T ! = P(—k) it is clear that any adiabatic evolution along a not necessarily
closed path in k-space maps to a TRS conjugated evolution by simply mapping k¥ — —k.
With that, we decompose K, into two Kato propagators (see Eq. (1.12))) as

Ko = K (, 00K (0, 1) = K (m, 00T (K** (,0)) ' 7. (2.56)

It is elementary to show [Prodanll] that for the representation matrix (TO(k)),s =
(ua (k)| TO|ug(k)), where O(k) is an arbitrary linear operator, the identity

(TO(K)) o5 = (é(k:)O*(k))aﬁ (2.57)

holds. Plugging Eq. (2.57) into Eq. (2.56|) yields
% ck* 0(1.x kT T N—1/1.x
Ko = KN (m,000(k",0) (K* (7,0)) " 071 (k" ),

where the hat on the Kato propagators indicates representation matrices in an arbitrary
gauge at (k%,0) and (k¥, £n) in which the f-matrices of the TRS operation are represented.
In the following, we are only interested in the gauge independent determinant of the above
expression, i.e.,

. i 2 N .
det {K. | = det {K*"(x,0)}" det {0(k",0) } det {6 (k" 7) } . (2.58)
The two loops connecting the four time reversal invariant momentaA(TRIM) also used for the
classification in Ref. [Fu06] are given by g and 7,. At the TRIM, 6 is antisymmetric so that
its Pfaffian is well defined. Hence, we can take the square-root of Eq. (2.58|) which yields
det {K¥ (x,0)} PE{d(k*,0)} PE{0~1(k*, m) |
det {léw }

For each individual loop, the sign on the right hand side of Eq. (2.59) is arbitrary since it
depends on the branch of the square root which is not fixed. However, the sign of the product

—_
—

a2

=41, k=0, (2.59)

Eo=r is well defined since the branch of 4/det {lﬁw} can be chosen identically for both

loops by interpolating continuously between them [Prodanli]. If this common choice of the
branch is assured, the sign of Zg=, represents the desired generalization of the Zs invariant
defined in Eq. (2.55)) to systems without additional unitary symmetries:

(1) =

The practical calculation of the Kato propagators entering the definition of Zpe, k¥ = 0,7 is
readily achieved at least numerically using Eq. (1.17).

[1]

0= (2.60)
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Bulk boundary correspondence and helical edge states

In Section we explicitly demonstrated the correspondence between the edge states
of the QAH state and its bulk Chern number. The phenomenology of the bulk boundary
correspondence of the QSH state is most conveniently understood if we begin with a rep-
resentative with fixed spin quantization axis. As already mentioned, with this additional
U(1)-symmetry, the QSH phase can be understood as two uncoupled TRS conjugated copies
of the QAH effect. Hence, the bulk boundary correspondence holds for each of the uncoupled
QAH blocks separately. Performing an analysis which is completely analogous to the one
presented in Section for the BHZ model of the QSH effect, we find two chiral edge modes
with opposite chirality and spin polarization which are TRS conjugated to each other. This
characteristic pair of subgap modes has been coined helical edge states [Wu06]. Like the bulk
Chern number of a QAH sample counts the number of chiral edge modes, the Zs invariant
v can also be intuitively understood at the level of the bulk boundary correspondence: An
even number of Kramers pairs can be gapped out by virtue of local scatterers, whereas
an odd number of Kramers pairs is protected by TRS [Wu06), [Fu06l |Qil1]. Looking at Eq.
immediately establishes the one to one correspondence between the bulk topological
invariant v and and the parity of the number of Kramers pairs at the edge. In the absence of
the additional U(1) symmetry, the QSH state cannot simply be represented as two copies of
the QAH state but is still adiabatically connected to such a representation without breaking
TRS. Since a single Kramers pair of subgap modes at the edge cannot be adiabatically
removed from the spectrum of the sample without breaking TRS [Kane05al, [Fu06], the helical
edge modes are still present in this more general situation. However, the Kramers partners
representing the helical pair in general have a spin quantization axis that depends on both
position and energy. This limits the physical observability of the QSH effect: Whereas the
spin Hall conductivity is topologically quantized in the presence of a fixed spin quantization
axis, only a generalized twisted spin [Sugimotol2] is conserved and can be assigned a quan-
tized conductivity in the presence of SOI.

The QSH phase is in principle a promising candidate as to spintronics applications due to
its quantized dissipationless edge conductance. However, thus far not many concrete devices
have been proposed. For example, it is not immediately clear how to build a transistor,
since the QSH phase in a single HgTe well cannot be readily switched on and off by electric
means. Recently, several composite realizations of the QSH phase have been predicted
[Liu08), Michettil2] which resolve this problem: In these setups, the QSH phase and with
that the existence of edge channels can be locally tuned by virtue of a gate voltage.

2.4.2 The Majorana wire

The key feature of a 1D TSC [Kitaev01l [Lutchyn10, (Oreg10}, Beenakker11], also known as the
Majorana wire, is a holographic single Majorana bound state (MBS) associated with each of
its ends which is topologically protected by PHS. The recently proposed realization of the 1D
TSC in an InSb nanowire with strong SOI and proximity induced s-wave superconductivity
[Lutchyn10l |Oreg10] is so far the most promising candidate as to its experimental feasibility.
Very recently, first experimental signatures of MBS have been reported by several experi-
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mental groups [Mourik12) [Deng12| [Das12], however, it should be mentioned that alternative
explanations for robust zero bias resonances not owing to Majorana zeromodes have been
brought forward [Bagrets12) Liul2].

Note that PHS in this class of systems does not imply a true limitation on the band
structure of the normal-conducting spin orbit coupled quantum wire but is emergent from
the Bogoliubov-deGennes (BdG) mean field description of superconductivity. Without addi-
tional symmetries, the 1D TSC generically belongs to the CAZ class D and is characterized
by a Zs topological invariant (see Tab. . An additional chiral symmetry present in
the ideal model systems proposed in Refs. [Lutchynl0, [Oregl0] promotes the Zo invariant
characterizing the presence of an unpaired MBS to a Z invariant [Ryu02] [Tewarill] counting
the number of zeromodes at each edge. However, perturbations modifying the SOI as well as
magnetic impurities can break the chiral symmetry and gap out paired MBS.

In this section, we demonstrate the concepts introduced in Sections [2.3.3] and [2.3.4] to
include disorder and adiabatic interactions into the classification scheme. We present the
Zo-classification of the 1D TSC phase in terms of its single particle Green’s function along
the lines of Section and Ref. [Budichl2e], respectively. In a first step, we work out
explicitly a dimensional extension procedure (see Section for a realization of the
1D TSC in a nanowire with strong SOI and proximity induced s-wave superconductivity
[Lutchynl0l [Oregl0]. This allows us to reduce the topological classification of the 1D TSC
to the calculation of the first Chern number of its parent state, the p 4 ip superconductor in
2D, CAZ class D. As explained in Section [2.3.2] this classification of the parent state concurs
with that of the unitary (CAZ class A) state in 2D, i.e., the QAH state.

This procedure fits into the general classification framework of topological field theory
(TFT) proposed for time reversal invariant topological insulators in Refs. [Qi08a), Wang10]
and allows for a reformulation of the invariant in terms of the single particle Green’s function
(see Section . Upon switching on interactions adiabatically, our classification remains
valid for Luttinger liquid like interactions as was argued in Ref. [Volovik03]. Thereafter,
we employ the recently proposed topological Hamiltonian [Wangl2d] [Wangl2b] (see Section
showing that the interacting invariant can be expressed in terms of the zero frequency
single particle Green’s function of the physical 1D system, which is independent of the
previously introduced extra dimension (see Section for the general framework). Finally,
we demonstrate how a hybrid approach of TBC [Niu85|] (see also Section in the
physical dimension and periodic boundary conditions in the extra dimension can be used
to additionally include disorder at the level of the bulk topological invariant, i.e., without
probing the presence of unpaired MBS, quantized zero bias resonances, or other finite size ef-
fects. The topological invariants of TSC in 2D and 3D have been discussed in Ref. [Wang12¢].
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Model of the 1D TSC

A lattice model of the 1D TSC [Lutchynl0], [Tewarill] can be cast into the form H =
[ UTH g ¥, where the basis is chosen such that ¥ = (¢4, 1), 1/4, wI) In this basis,

H o
Hpac = (510 H6k> .

For the 1D TSC, Hy(k) = &+ Bo,+usin(k)o, is the Hamiltonian of a single channel quantum
wire in the presence of a B-field induced Zeeman splitting and Rashba SOI. The proximity

0 —A
A 0
Introducing the set of Pauli-matrices 7; for the particle hole pseudo spin, the BdG Bloch
Hamiltonian reads

induced s-wave superconducting gap is of the form § = and &, =1 —cosk — u.

Hpac (k) = (& + Boy + usin(k)oy) 7. + AoyTy,. (2.61)
In this representation, the PHS operation has the intuitive form
C=7K, (2.62)

where K denotes complex conjugation. Let us very briefly review the salient physics starting
from the continuum model obtained from Eq. by substituting sin(k) — k, cos(k) —
1— % For B = A = 0 # u, the band structure consists of two particle hole symmetric copies
(emergent from the BAG picture) of the shifted Rashba parabolae. The lattice regularization
in Eq. is introduced to make the topological invariants well defined. A # 0 gaps out
the system in its entire Brillouin zone (BZ). For small k this gap competes with a Zeeman
gap due to B # 0 leading to a band inversion at B? = u? + A%, For B? > u? + A? we have
a TSC with a single MBS associated with each end of a finite wire.

Dimensional extension

Following the general outline in Section we explicitly perform a dimensional extension
introducing an extra coordinate v, thus reducing the topological classification of the non-
interacting model to the analysis of the QAH effect of the extended 2D system. The idea
is quite simple: Our system cannot be deformed into a trivial 1D superconductor without
breaking PHS which provides the topological protection of the TSC phase. However, breaking
this symmetry we can deform the TSC, say upon varying v from 0 to =, into a trivial 1D
superconductor without ever closing the bulk gap of the instantaneous system. As pointed
out in Section [2.3.2] it is crucial to perform the particle hole conjugated interpolation to the
same trivial state for v € [—m, 0] in such a way that the resulting 2D system is 27-periodic
in v. Then, the extended 2D system is again in the CAZ class D and its first Chern number
C1, is well defined up to even integers. This means that a Zg information v = C;(mod 2) is
well defined and only depends on the physical 1D system. It is worth noting that finding
a suitable interpolation is nontrivial and requires some insight into the physical mecha-
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Figure 2.6: 3D plot of the Berry curvature F(k,v) for nontrivial parameters (B = 1.5) (left) and
trivial parameters (B = 0.4) (right). u=A =28 =1, p =0 in both plots.

nisms underlying the model. In the following, we will explicitly present an extension which
works for a generic 1D TSC and can also be used later on for the disordered interacting system.

The guiding physical idea is as follows: Switch on a particle hole breaking gap ~
sin(v)7, which will keep the gap open for v # 0,7 (mod 27). Destroy the band inver-
sion by a term ~ (2 — 2 cos v)o,T, which vanishes for the physical model (v = 0) and will
for sufficiently large 8 produce a trivial superconducting phase for v = 7 where it enhances
the superconducting gap by 45. In summary, the Wess-Zumino-Witten (WZW) [Witten83]
extended Hamiltonian reads

Hwzw (k,v) = Hpag (k) + sin(v) 7, + 5(2 — 2cosv)oyTy,.
Integrating the Berry curvature F of this Hamiltonian over the (k,v) BZ indeed yields

C= - F=0(B*— A% - p?),
27 JBz
valid for parameters close enough to the band inversion that no artificial level crossings which
depend on the details of the lattice regularization occur.

In Fig. 2.6, we compare the Berry curvature of an extension of a nontrivial 1D TSC
with that of a trivial superconducting wire. In the extra dimension v, the modulus of the
curvature is smoothly decaying without any notable difference between the trivial and the
nontrivial case. This is reflected in our derivation below, which shows that the topological
invariant of the translation-invariant system can be defined in terms of its single particle
Green’s function without reference to the extra dimension. Note that this picture changes in
the framework of TBC as introduced to account for the presence of disorder as is discussed
below and shown in Fig. 2.7]

Single particle Green’s function topology

We now consider the possiblity of including interactions into the proposed classification
scheme by generalizing the Chern number of the non-interacting system to a topological
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invariant of the single particle Green’s function in combined frequency-momentum space, as
has been proposed for time reversal invariant topological insulators in 2D and 3D [Wangl0)]
(see also Section [2.3.4)).

In 1D, interactions play a peculiar role generically leading to non-Fermi-liquid behavior.
From a viewpoint of perturbation theory interactions are therefore considered to be non-
adiabatic in 1D, as no meaningful quasiparticles can be defined (see Section . However, it
has been argued [Volovik03] that the Fermi surface properties as described by the momentum
space topology of the single particle Green’s function are still adiabatically connected to
those of the non-interacting system. Hence, the framework discussed Section should be
applicable for this kind of interactions.

Rewritten in terms of the single particle Green’s function G(w,p) of the extended system,
ie., Go(w,p) = (iw — 3"[\;\/2\;\7(110))_1 for the special case of the non-interacting system, the
Zs invariant v reads (see also Eq. (12.46]))

_ —1 —1 —1
=i /B T (6G,'¢6, 66, (mod 2),

where G;l = QLG_l, p = 0,12 = w,k,v. As discussed in Section an invari-
ant of this form can be simplified by introducing a generalized Berry curvature F =
— i R seros (A(D, @|) A d|p, @) associated with the topological Hamiltonian h = —G~1(0,p),
which takes into account the eigenvectors |p, a) of G~1(0,p) with positive eigenvalues, the so
called R-zeros [Wang12d| (see also Section . The Zy invariant then takes the form of a
Chern number, i.e.
_ ! F (mod 2
V= s (mod 2).

As has been shown for the non-interacting case in Ref. [Qi08a], the Zg classification of the
particle hole symmetric 1D system can then be further simplified to

v = 2P(0)(mod 2) = 1 dkA(k) (mod 2), (2.63)

™ Jo

where P(0) is the charge polarization of the physical 1D system and

Ak)y=—=i > (k,aldlk,a)

R—zeros

is the generalized Berry connection restricted to the physical system at v = 0, i.e., at
p = (k,0). Note that this general form does no longer depend on the dimensional extension
procedure and can be calculated once the zero frequency single particle Green’s function
G(0, k) is known. Finally, the Zo-invariant can be practically calculated by formal analogy
to the non-interacting case by calculating the Majorana number [Kitaev01] defined in terms
of the Pfaffian of the topological Hamiltonian & in Majorana representation.
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Chapter 2 Topological states of matter

Disorder and Twisted Boundary Conditions

Our formulation so far has been relying on translation-invariance which implies the existence
of a BZ. This description will thus no longer be applicable in the presence of disorder. To
this end, the concept of TBC has been introduced to topologically classify quantum Hall
systems in the absence of translation-invariance [Niu85]. As long as a bulk mobility gap
is present, the Green’s function is exponentially bounded in real space for energies in this
gap. Under these conditions, Niu et al. [Niu85] showed that the Hall conductivity can be
represented as a constant ground state Berry curvature with the wave vector replaced by
the twisting angles 60, ¢ of the TBC (see also Section . In this formalism, the Hall
conductivity o, reads

. 0o 0o 0t 0o ) . / iFos
zy = 2miG — = 2miG =G , 2.64
Oy = 21 0<<80’8¢> <(9¢)|80> miGoFog 0 ) on (2.64)
where 1y denotes the ground state wave function and Gog = % = % is the quantum of

conductance. In the last equality of Eq. , the independence of Fy4 on the twisting angles
[Niu85] has been used to make the topological quantization of o,, manifest by representing
it as G times the Chern number of the U(1)-bundle over the torus T? of the twisting
angles (0, ). Since in this example, we consider a disordered 1D system, we can without
loss of generality assume translation-invariance in the extra dimension. Integrating over
the momentum v associated with the direction of translational invariance is equivalent to
evaluating Eq. for 8 = 0 for the special case of a system with translational invariance
in z-direction. Within this hybrid approach of twisted boundary conditions in the physical
dimension and v-momentum integration in the extra dimension, the Chern number of the
extended 2D system in the presence of this stripe-like disorder can be expressed as

Ci= | dv| d¢ Foo _ " ay £, 2.65
5 ¢
-7 —7 ™ -7

where F is the Berry curvature on the “mixed” torus defined by the wave vector in v-direction
and the twisting angle ¢ of the TBC imposed in the physical direction. The first equality
sign in Eq. makes the integer quantization of our topological invariant manifest,
whereas the second equality sign follows from the independence of [7_ dv]:"w = Foglg_o of
the twisting angle ¢. The main advantage of Eq. as compared to the general 2D
case (see Eq. ) is that only the eigenstates of a 1D system have to be calculated to
evaluate the topological invariant which is numerically less costly. This program allows
for a topological classification of disordered systems with periodic boundaries, i.e., without
explicitly probing the presence of unpaired MBS. For non-interacting systems with closed
boundary conditions, the influence of disorder on the 1D TSC phase has been studied using
a scattering matrix approach [Akhmerov11l Brouwerllal Brouwerllb].

In Fig. [2.7, we show the mixed Berry curvature ]i"v7¢ om0 for a weakly disordered system

(v =1) in the topologically nontrivial phase and a strongly disordered trivial system (v = 5).
Here, v is the strength of a scalar Gaussian onsite potential. Note that in contrast to the
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2.5 Limitations of the framework of TSM
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Figure 2.7: Plot of the Berry curvature ﬁv,¢’ , for nontrivial parameters (A =0.7, y=u=B =
$=0

B =1, p=0) (purple) and trivial parameters ( A =0.7, y=5, u =B = =1, = 0) (blue). Wire
length 100 sites in both plots.

translation-invariant case (see Eq. ) the topology is determined by the v-dependence
of the mixed Berry curvature. Finally, we would like to point out that even for v = 1, the
onsite potential fluctuations significantly exceed the bulk insulating gap of the 1D TSC. The
disorder-induced transition from nontrivial to trivial takes place at disorder strengths which
are, depending on the other model parameters typically three to five times larger than the
bulk gap which is in agreement with recent results obtained from level spectroscopy of a 1D
TSC with closed boundary conditions [Cook12|]. Note however, that we only consider short
ranged disorder, short ranged as measured by the Fermi wavelength. The wave-function can
self-average on the length scale of the Fermi wavelength which considerably weakens the
effect of disorder on the level spectrum.

2.5 Limitations of the framework of TSM

Before closing the chapter we would like to point out some limitations of the concept of
TSM. The two main aspects that one could see critical in the field of TSM are outlined in
the following.

First, whereas the topologically quantized Hall conductivity in the integer quantum Hall
state, the historical role model of all TSM, is a physical observable, the topological invariants
of symmetry protected TSM like the QSH state (see Section are not directly physically
observable without additional unitary symmetries. The quantum Hall effect can be under-
stood in terms of the spectral flow associated with the threading of a flux tube [Avron90].
Along similar lines, the QSH effect can be understood in terms of a spin charge separation
associated with the threading of a spin flux [Qi08b]. However, this spin flux, as opposed to
an ordinary magnetic flux tube, has no known experimental realization.
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Chapter 2 Topological states of matter

Second, the entire construction and classification of TSM is based on single particle
Hamiltonians. In Section we discussed how adiabatic interactions can be taken into
account and argued that interactions of moderate strength are not likely to destroy the
phenomenology of TSM. In order to position the field of TSM in a broader context, we
would like to point out that there are also phenomena of topological origin which emerge
only due to the presence of interactions. The historically first phenomenon is the % FQH
effect [Stormer83, [Laughlin83] which cannot be adiabatically connected to an insulating
non-interacting state. The non-interacting state is in this case a partially filled Landau level
which provides an enormous density of states at the Fermi energy. In a system with periodic
boundaries, the % FQH has a characteristic v-fold ground state degeneracy. Interestingly,
this simplest FQH state can still be analyzed in the framework of TBC [Niu85]. For more
general FQH systems the concept of topological order has been introduced by Wen [Wen90).
A crucial notion in this framework is the quantum dimension of the topologically ordered
system which can be viewed as the ground state degeneracy of the system on a torus, i.e.,
with periodic boundary conditions. All TSM have quantum dimension one, like a trivial
insulator. From the vantage point of topological order, all states discussed in this chapter are
thus trivial. Recently, the concepts of TSM and topological order have been combined to the
definition of the fractional Chern insulator [Tangll], [Sunill Neupert11] and the fractional
topological insulator [Bernevig0O6bl Levin09, Maciejko10], Swingle11], a translation-invariant
realization of the FQH and its symmetry protected analogues, respectively.
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Chapter 3

Non-equilibrium quantum transport in
interacting 1D systems

This chapter is dedicated to the discussion of some elementary elements of non-equilibrium
quantum transport in interacting 1D systems. We first very briefly review the method of
Abelian bosonization and its application to Tomonaga Luttinger liquids, mainly to establish
our notation. Thereafter, we introduce the Keldysh formalism as the non-equilibrium analogue
of zero-temperature perturbation theory. This formalism is ready made for perturbative
quantum transport calculations at finite bias voltage. Interestingly, this non-equilibrium
theory can be used for finite temperature calculations under fairly general conditions without
a construction that corresponds to the Matsubara formalism in equilibrium perturbation
theory. Since our main application of this transport theory in Part [II| will be dealing with
the helical edge states realized at the boundary of a QSH sample (see Section , we
finally point out some peculiarities of the so called helical Tomonaga Luttinger liquid (hTLL)
[Wu06] representing a single pair of helical edge states in the presence of Coulomb interaction.

3.1 Electron-electron interaction in one spatial dimension

In a system with spatial dimension larger than one, repulsive Coulomb interaction can be
switched on adiabatically in a broad class of systems which leads to the notion of the Fermi
liquid [Landau57]. The quasiparticles of this Fermi liquid have well defined momentum and
are characterized by their effective mass and charge just like electrons in a free Fermi gas
but with renormalized effective parameters. Close to the Fermi surface, the lifetime of these
quasi-particles diverges, which renders them well defined excitations as far as the physics
at sufficiently low energy scales is concerned. In 1D, the phenomenology is fundamentally
changed since no fermionic quasi-particles that adiabatically connect the non-interacting
electrons can be defined [Voit95]. Instead, bosonic electron-hole excitations are the elementary
excitations of the electron gas in 1D. In this section, we outline how this observation can
be used to construct an effective bosonic low energy theory of the interacting fermionic 1D
system, the so called Tomonaga Luttinger liquid (TLL) [Tomonaga50, Luttinger63), Mattis65,
Haldane81], see Refs. [Schonhammer97, [Voit95l von Delft98), [Grabert01, [Giamarchi04] for
excellent review articles and textbooks. The low energy fixed point theory of the TLL remains
quadratic in the bosonic fields and thus exactly solvable in the presence of interactions
[Haldane81]. We first motivate phenomenologically why a bosonic description of a fermionic
system in 1D is possible and thereafter review very briefly the procedure of Abelian algebraic
bosonization.
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

3.1.1 Spatial dimension and transmutation statistics

Let us think of indistinguishable particles as hard balls which cannot penetrate each other.
Since the particles are indistinguishable, the proper configuration space Xy of N indis-
tinguishable particles is a quotient space of the N-fold direct product of the single par-
ticle spaces X modulo the symmetric group Sy of permutations, ie., Xy = XV /SN
[Laidlaw71l, Dowker72, [Leinaas77]. In this space, points which can be obtained by exchang-
ing particle labels are identified. In spatial dimension d = 3 this space for N = 2 has only
two connected components. This can be intuitively understood if one considers that in
the unrestricted configuration space every closed loop of a particle can be contracted to
a point without penetrating the second particle. However, there are loops in X, which
interchange the particle coordinates and are not contractible. This Zs topology of X, with
X = R3 leads to the conclusion that there can only be two types of particles, namely fermions
and bosons in 3D [Laidlaw71l, [Leinaas77]. In 2D, the situation is more complicated. The
difference can again be understood at a very intuitive level: Loops of one particle which have
a different winding number around the position of the other particle cannot be deformed
into each other as long as the two particles cannot penetrate each other. This gives rise
to a configuration space of two indistinguishable particles which has an infinite number of
connected components. As a consequence, there are infinitely many types of particles, so
called anyons, in 2D [Laidlaw71), Leinaas77]. In a 1D world, particles cannot be exchanged
at all without penetrating each other. This illustrates why particles in 1D will behave
collectively and why it should be in principle possible to switch between a fermionic and a
bosonic description of a 1D system of indistinguishable particles.

3.1.2 Bosonization and the Tomonaga Luttinger Liquid

We consider a 1D lattice of spinless free fermions with unit lattice constant and L sites.
Close to the Fermi energy Ep, the spectrum can be linearized. This gives rise to two
branches, with opposite constant slope vg, called the left-moving and the right-moving
branch which are denoted by p = + (see Fig. . As long as only the physical properties
of the model at energies close to the Fermi energy are concerned, this linearization is a
reasonable approximation. When extending the linearized model to states with negative
energy, only inert states that do not affect the low energy physics are added. As already
mentioned, the elementary excitations of the 1D electron gas can be represented as particle
hole excitations which are closely related to the Fourier components of the density operator

pp(a) =D ch(k)ep(k +q), p=+
k

where ¢, (k) is the electronic annihilation operator for a p-mover with wave vector k of the
extended linearized model. These Fourier components satisfy the commutation relations
[Giamarchi0O4]

pqL
[pp(q), pp/(q/ﬂ = gép,p"sqﬁq/ (3.1)
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3.1 Electron-electron interaction in one spatial dimension

Figure 3.1: Spectrum of the free electron gas (brown) with linear approximation around the Fermi
energy Er that is continued to negative energies yielding a branch of right-movers (red) and left-movers
(blue).

which is at the heart of the bosonization procedure. From Eq. (3.1) the construction of the
operators

.| 2w
by = —i ol > 0(pg)pp(q) (3.2)
al =
with the Heaviside step-function 6, that satisfy the bosonic algebra

(b4, bl | = 4

is straight-forward. In Ref. [Haldane81], Haldane proved that the states

o)™
[Ny, Noi{mg} ) = (ql;[o <\/”’2W) [N+, N-)o

form a basis of the Fock space of our linear 1D model. Here, |N4, N_)¢ is the fermionic
ground state of a system with IV, € Z excess p-movers as compared to the Fermi sea. To
represent the entire model in bosonic language we would like to express the fermionic field
operators 1,(x) in terms of the by operators. Obviously, the b, operators conserve the number
of fermions whereas 1, (x) annihilates a fermion. Therefore, we need an operator 7, which
commutes with the b, but changes the number of p-movers by one. Such an operator can be
defined by

1p| Ny N—p) = p™* [N — 1, N_p).

The operators are called Klein factors and obey the algebra,

{np, 77;/} = 20
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

with all other anti-commutators vanishing. We define the so called bosonic phase fields as

( ) p Ze( )eiqxefa‘qVQb

Pp(z) = ——= pg)————

8 V2L Vid 7

where a is a short distance cutoff regularizing the divergence in the commutators of the
bosonic phase fields for equal points in space. The chiral hermitian fields are the linear
combinations

D, (x) = ¢p(x) + &) (2). (3.3)

With these definitions, the fermionic field operator can be represented as (see [GrabertO1]
for a step by step derivation)

¢p($) — ZP eip(kp+27TNp/L)m+\/Hip<I>p(x)7 (34)
ma

where Np is the number operator of the p-moving electrons. The ]\IC” term in the exponent

on the right hand side of Eq. is a ¢ = 0 contribution which can be neglected in the
limit L. — oo. Throughout this thesis, the influence of these so called zero-modes will always
be neglected which we will make manifest by dropping the mentioned 1/L-term from now
on. For |x — 2| > a, the commutator of the chiral hermitian fields reads

@p(0), @y (a')] = P20 (e — o). (3.5)

The chiral hermitian field @), is directly related to the density p,(z) of p-moving electronic
excitations via the relation [Grabert(1]

02 ®p(x) = V/Tpp().
For practical calculations, we will often times use the non-chiral fields

90:(1)++‘I)7a
0=d, —d_. (3.6)

The total density p and the current density j can be readily expressed in terms of these fields
as

pla) = p(a) + p-(@) = —=0sole).
evgp

@) = evp(pi (x) = p-(2)) = TEub. (3.7)

From Eq. (3.5) and Eq. (3.6]) it is immediately clear that II,(x) = —0,6(x) is the conjugate

momentum of ¢, i.e.,

[p(z), Hp(y)] = i0(z — y). (3.8)
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The free Hamiltonian Hg of the non-interacting 1D model with linear dispersion can then be
expressed as

Hy = % _+5 dx [HZ,(:L') + (830(,0(3:))2} .

NIy

The main advantage of this bosonic representation is that the Hamiltonian remains quadratic
if one includes Coulomb interaction into the picture: Forward-scattering terms due to local
Coulomb interaction only renormalize the model parameters and the backscattering term
can in the spinless case be viewed as a Pauli exchange term of the forward scattering (see
[Grabert01] for a more detailed discussion). At this level of rigor, short ranged Coulomb
interaction enters the low energy fixed point theory only through a single parameter g, where
g = 1 is the non-interacting case, g < 1 indicates repulsive interaction, and g > 1 in the
case of attractive interaction. The Hamiltonian Hrry, of the interacting Tomonaga Luttinger
Liquid then reads [Grabert01]

vp [+3 1
Hru = 7F ; dx {Hi@) + 2 (Op())?] . (3.9)

Note that vg here is an effective Fermi velocity which can be renormalized from its bare non-
interacting value when high energy modes that are also affected by the Coulomb interaction
are integrated out to obtain the effective low energy theory [Grabert01]. Using the Heisenberg
equation of motion

atSD =1 [HTLL7 90] = 'UFHSO, (310)

the current operator j defined in Eq. (3.7) can be expressed as

e

ﬁ&ggo(x,t). (3.11)

j(xat) =

3.2 Non-equilibrium perturbation theory

Applying a finite bias voltage can drive a physical system out of thermal equilibrium. Hence,
a non-equilibrium theory is needed in order to describe quantum transport phenomena
beyond the level of linear response theory. In this section, we review the construction of
a non-equilibrium theory which is ready made for transport calculations in helical edge
states. In Section we follow the construction by Schwinger [Schwinger61] and Keldysh
[Keldysh65] to generally formulate a non-equilibrium perturbation theory. In Section
we apply this formalism to the TLL and show how non-equilibrium expectation values of
crucial physical observables like the current operator can be calculated in this framework.
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

3.2.1 From equilibrium to non-equilibrium
Validity of equilibrium zero temperature perturbation theory and its limitations

Assuming that the reader is familiar with equilibrium perturbation theory in many body
physics, we now outline how the absence of thermal equilibrium changes the perturbative
approach. In thermal equilibrium at zero temperature, the time ordered Green’s function
Gr(z, t;2' ') = —i(T (¥(x, )T (z','))) of an interacting many body system with physical
Hamiltonian H = Hy + V can in a broad class of cases be represented as

(O[T (8 (0, —00)tir (=, >w}<x',t'>)|o>
)

Gr(z, t;2/, ') = —i
( ) 015 (—o0,50)[0

) (3.12)
where |0) denotes the unique ground state of the non-interacting system, S(¢,t') denotes the
time evolution operator in the interaction picture, and ; denotes the field operator in the
interaction picture. The key assumptions under which Eq. is valid are the following
ones: If the interaction term is switched on and off adiabatically as V'(t) = lim,_,q+ Velth,
S§(0, —o0) evolves the ground state |0) of the non-interacting system adiabatically into the
ground state of the interacting system. The formal conditions entering this assumption
are the Gell-Mann and Low theorem [Gell-Mann51), Nozieres97] and the Luttinger theorem
[Luttinger60a): The Gell-Mann and Low theorem states that if the adiabatic limit of

[tho) = &%7% exists, it corresponds to an eigenstate of the interacting system with the
ground state energy of the non-interacting system [Nozieres97]. However, this state does
not have to be the ground state of the interacting system. For interactions that can be
represented as a power series, the Luttinger theorem shows that the volume enclosed by
the Fermi surface and for isotropic interaction also the spherical shape of the Fermi surface
[Luttinger60b| are preserved. Under these conditions, [¢) is indeed the interacting ground
state and the adiabatic switching procedure makes sense as the interacting system then has
evolved to its physical ground state by the time the field operators ¥(z, t), 1 (/, ') are acting.
There is one additional assumption entering Eq. ([3.12), namely that S(co, —c0)|0) differs
from |0) only by a phase factor. This amounts to assuming thermal equilibrium at zero
temperature for each point in time since the system is assumed to relax to its non-interacting
ground-state during the adiabatic switching-off of interactions.

The mentioned assumptions of equilibrium zero temperature perturbation theory fail under
the following physical circumstances. First, the interactions might not be representable as a
power series, i.e., the iterative expansion of the full time evolution operator as a von Neumann
series fails to converge or does not represent the time evolution operator. An example for
this scenario is a superconducting ground state consisting of a condensate of Cooper pairs.
This class of problems can only be treated by non-perturbative methods. Second, the von
Neumann series represents the time evolution operator but the physical ground state does
not evolve adiabatically from the non-interacting one. In this case, the Matsubara method
[Matsubarab] which works in thermal equilibrium at arbitrary temperature and does not
rely on an adiabatic switching procedure can be used. The difference between the zero
temperature limit of the Matsubara approach and the above ground state formalism has been
demonstrated by Kohn and Luttinger [Kohn60]. Third, if a system which is coupled to an
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3.2 Non-equilibrium perturbation theory

........ 4

Figure 3.2: Time contour ¢’ and extended time contour ¢. The arrows indicate the time ordering
enacted by the operators 7. and 7, respectively.

external time dependent field is out of thermal equilibrium, it might be dynamically pumped
to a different state than its equilibrium ground state even if the time dependent perturbation
is switched off adiabatically for t — co. Then, S(oc0, —00)|0) differs from |0) by more than a
simple phase factor. This scenario is only problematic in that it precludes the picture of
an instantaneous thermal equilibrium but does not pertain to the perturbative ansatz itself.
Hence, this issue can be overcome by a non-equilibrium construction of perturbation theory
which we review now.

The non-equilibrium construction

We consider a physical system with the Hamiltonian H(t) = Hy + V + F(t), where Hj is
a quadratic non-interacting Hamiltonian, V represents the time independent many body
interactions and F(t) is a coupling induced by a time dependent external field which vanishes
as t - —oo. For t — —o00, the system is assumed to be in a non-interacting thermal state
with density matrix pg = Zioe_ﬂ(HO_”N), where Zy = Tr [e_ﬂ(HO_”N)}. This assumption
amounts to neglecting initial correlations [Rammer86]. The time ordered Green’s function
can then be represented in a straightforward way as [Rammer(7]

G, 52/, ) = =iTr [ poS(=00, t) T (1(2, )Y} (2, ) S (tm, —0)) |, tm = max(t,¥).
(3.13)

Obviously, we can represent the order of operators in Eq. by a generalized time
ordering 7. along the time contour ¢ shown in Fig. Noting that S(,,00)S (00, ty) =1,
we can extend the time contour ¢’ to ¢ (see Fig. which stretches from —oo to oo (forward
branch) and back (backward branch). The external times ¢, ¢ then always lie on the forward
branch of the contour where the ordering operator 7. concurs with the ordinary time-ordering
T. The time-ordered Green’s function can then be represented as

GT('T’ t; J'Ilv t/) = —iIr [pl)% <e_i fc dTHI(T)Q;Z)I (LB, t)¢} (1:/7 t/)):| :
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

Later on, we would like to do perturbation theory which amounts to an expansion of the
time evolution operator on the contour ¢ as a von Neumann series. This expansion will of
course produce operators Hy(7), the time argument of which is integrated over the entire
contour ¢. A straight-forward non-equilibrium generalization of Wick’s theorem [Rammer07]
will then produce contour-ordered pairwise contractions of the field operators appearing in
these H(7). In order to represent the perturbation series in a closed form, we thus introduce
the contour ordered Green’s function

Ge(r1, 71322, 70) = —iTr {Pofz <e_ifchHI(T)¢I($1,71)7/)}(?32,72)” ’

the time arguments 71, 7o of which can lie anywhere on the contour c¢. Obviously, G, concurs
with G if both arguments are located on the forward branch of ¢. Denoting the branches of
¢ by + (forward) and — (backward), G. affords a representation as a 2 x 2 matrix in the so
called Keldysh space of branches:

_(G++ Gio
G. = (G_+ a (3.14)
As already mentioned, G4 = G7. Furthermore G__ = G5 is the anti-time-ordered Green’s

function, G_ (21, 71; 22, 72) = —iTr {POT/J(UCthWT(xz,Tz)}, and

Gi_(x1,1;29,72) =iTr {po?,[ﬂ(ﬂ?z, To) (21, 7'1)}. Note that the extra minus sign in the defi-
nition of G4_ is due to the Grassman algebra that the fermionic field operators satisfy under
the time/contour ordering operator.

By now, we have formulated the non-equilibrium problem in a strikingly similar way to
its equilibrium counterpart. The salient new element in the non-equilibrium theory is the
backward branch of the contour ¢ which allows us to drop any assumptions as to the relation
between the system state at t — —oo and t — oo. This construction comes at a price: The
Green’s function naturally appearing in the perturbation series is the contour ordered Green’s
function GG, which can be represented as a 2 x 2 matrix of Green’s functions with an ordinary
real time argument (see Eq. ) Once this complication has been digested, practical
perturbative calculations work fairly analogous to the ordinary equilibrium case (see Ref.
[Rammer07] for a detailed elementary discussion). Hence, instead of reviewing more details
of the general construction, we would here like to focus on the bosonic non-equilibrium
perturbation theory in the TLL which will be of crucial relevance for Chapter

3.2.2 Keldysh perturbation theory of the Tomonaga Luttinger Liquid

In Section [3.1] we constructed the translation-invariant TLL which is even in the presence of
Coulomb interaction quadratic in the bosonic field operators. A bias voltage can be modeled
[Dolcini05] by adding the following perturbation to the Hamiltonian:

HE(t) = —% / d2E(z, )p(x). (3.15)
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3.2 Non-equilibrium perturbation theory

For our purposes, we can think of the bias term as induced by the gradient of a chemical
potential, i.e., —eF = 9,u¥. The simplest perturbation which makes the TLL non-quadratic
in the bosonic fields is a single impurity with strength A at £ = 0 which is described by the
model Hamiltonian [Kane92al, [Dolcini05]

Hg = \cos(Vamp(z = 0)). (3.16)

Obviously, this perturbation is of infinite order in the bosonic field operator ¢ which precludes
the efficient application of Wick’s theorem in the non-equilibrium perturbative expansion.
Our general strategy will thus be as follows: We first perform a unitary operation thus
representing the bias term Eq. as a shift in the field ¢ appearing in the impurity
Hamiltonian . Using 2 cos(z) = e +e~% we note that the impurity can be represented
as a sum of so called vertex operators, i.e., operators of the form €%, o € R. For the free
expectation value of such an operator, we can use the crucial identity

2 (%)

(€*?)g = T, aeC. (3.17)

However, the current operator (see Eq. (3.7])) is not a vertex operator but is linear in ¢.

We thus need a vertex operator which generates expectation values of ¢, a source term like
e/”% which satisfies —i0 e (e*/ %>’Jw—o = (¢). This naturally leads us to the construction
of a generating functional. a

Let us now follow the program just outlined in more detail. Since our impurity Hamiltonian
Hg will later on in general depend on both ¢ and 0, we generalize the analysis in Ref.
[Dolcini05] meaning that II, = —0,0 is not integrated out. We follow Ref. [Liull] but for
the spinless TLL for simplicity. First, we combine the two bosonic fields to the vector ®" =
(", M7 where 7 is the index in Keldysh space, i.e., n = + on the forward /backward branch
of the contour c. For later convenience, we would like to generalize the bias Hamiltonian
so as to include a generalized chemical potential u? which couples to the dual field 6.
This gives rise to the additional term

HY = \/17? /d:v (8z,u9(:c,t)) 0(z).

Furthermore, we also introduce a source-term J? which generates expectation values of the
dual field #. Let us compactify our notation by the following definitions

(
o= | S0 |
(
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

—\/ 0 (x)

V27#(r)

J(r) = )
(r) —\/gaxu%r)
VB ()
1 -1 0 0
Q)= =r)| o 1 |
0 0 1 1
CT(r,x') CT(rx) Fri(r,r) FTo(r,r)
Clr oy’ Ct(e,x') C (r,Y) F T(r,v') F ~(r,r)
U= ot e) @t () D) D) |
Q *(r,r) Q@ (r,r) D T(r,r') D (r,r)

where r = (z,t), and ¢(r), d(r) are the bosonic fields in the interaction picture, i.e., in the
Heisenberg picture with respect to Hrry, (see Eq. (3.9)). Furthermore,

DM (r,x') = (07(r)8" (r'))o,
F (r,x) = (9"(2)07 (),
QM (x,x') = (07(x)" (¢'))o = (F77(x' )T (315

are the free correlation functions. With the compact definitions above, the generating
functional which is the starting point for all practical calculations can be written as

240) = [ DR e4wo toniaman T 0] i) 319
Z

Here, the superscript T' denotes matrix transpose. Note that the matrix product in the
above equations includes an integration over space and time. In order to separate the free
part of the generating functional from the terms to be treated perturbatively, we apply the
following shift to the vector of boson fields

d=d-A[J], A[J]=iCQTJ,
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3.2 Non-equilibrium perturbation theory

T
and explicitly A[J]| = <A+"P,A_7“",A+’0,A_’6> with

APP[]] = —

V%/dr’ (CR(I‘, r')0,u? (r')

FFR )0’ () + i [ dr'(C ) + e (e 6) ()

i [ (P ) £ e ),

A1) = — \/12? / dr' (Q(r,x') 0, (x')

DR (e, )0l (¢ ) + i / dr'(QK (r,1) + nQA(x, 1)) J* (')

i / dr' (DX (v, v') + nDA(r, v')) JO ().

The generating functional then factorizes as follows

Z[J) = Zo[Jc) Zs]T] (3.20)
where
Zold] = e 37" CT,
and
C=QcCcQ" =
0 CA(r,r") 0 FA(r,r)
Cl(r,x") CX(r,x') FE(r,x) FK(r,r)
0 Q4(r, 1) 0 DA(r, 1)
of(r,x") OF(r,r') DE(r,r') DE(r,r)
with

and similar definitions for the other correlation functions D, F and Q. Zg[J] is given by

D iires i g (% diHsld , i
] = [ D480 t8 S S ] _ o ol g

Next, we need to relate the physical quantities to the generating functional. From Eq.
(3.7), it is clear that we need to calculate expectation values like (¢) and (@) which can be
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

conveniently evaluated from the functional derivatives of the generating functional Z[.J] with
respect to J¥ and J?. A direct calculation shows that

(oo} = 5 400 = ~5 707 S

(3.22)

5Z[J] 1 5Z5[J]]
J=0

e 2 LFJ‘P(r) * Zsl0] 57%(x)

with a similar expression holding for (¢). From Eq. (3.22)), we find that () can be decomposed
into two parts: one is the zero order term coming from Zy[J], and the other one is the
scattering term coming from Zg[J]. Consequently, any physical quantity O can also be
divided into two parts (O) = (Og) + (O). All transport calculations in this thesis will
be based on a perturbative evaluation of Eq. and its analogue for the dual field 0,
respectively.

3.3 Peculiarities of the helical Tomonaga Luttinger Liquid

In this section, we briefly would like to point out some peculiarities of the helical TLL (hTLL)
as realized on the edge of a QSH sample. Our at this stage rather general discussion is
meant to give a short overview over the unique features of the hTLL which motivate the
more detailed transport studies presented in Chapter [5} The hTLL consists of one left and
on right moving channel which have opposite spin polarization. Hence, ignoring the spin
polarization, a single hTLL has the same number of degrees of freedom as the spinless TLL.
However, the counter-propagating states at a given energy are conjugated by TRS, .i.e., they
are so called Kramers partners. This imposes serious constrictions on possible scatterers in
the hTLL as long as TRS is conserved as we will detail in Section If we consider two
hTLLs with opposite helicity, e.g., the two parallel edges of a QSH ribbon, we recover the
degrees of freedom of a spinful TLL (sTLL). In Section we will discuss the phase space
constraints on the Coulomb interaction imposed by the nonlocal nature of this composite
realization of the sTLL.

3.3.1 A composite spinful TLL consisting of two hTLLs
The spinful TLL

We consider a model with linear dispersion as in the construction of the spinless TLL with
the sole difference that there are two species s =1, | for each direction of motion p = =+.
The fermionic operators 1, s(z) can then be represented in terms of bosonic fields in total

analogy to the spinless case, Eq. (3.4):

¢p,s(x) _ 77;,3 ez’p(k:FJr27r](7p,s/L)x+\/ﬂip‘1>p75(m)7 (323)
™a

where ®,, ; are the spinful chiral hermitian fields which are defined by Eq. (3.3)) for each
spin species separately and the 1/L terms will be neglected from now on following the same
argumentation as for the spinless case above. Let us define a non-chiral bosonic field and its
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3.3 Peculiarities of the helical Tomonaga Luttinger Liquid

I . - - * NN NN - - -

Figure 3.3: Composite sTLL consisting of two hTLLs with opposite helicity as realized at the two
parallel edges of a QSH ribbon.

dual also for the spinful case as

Ps = (I)+,s + ®—,87
=B, —D_,. (3.24)

It is often times convenient to work in the so called spin-charge (o-p) basis, where charge
(p) represents the sum of the two spin species and spin (o) represents their difference. This
basis is hence defined by the unitary transformation

1
p = ﬁ(w + 1),
1
Yo = ﬁ(w —®1),
0, = ﬁ(% +6)),
0, = \2(% —0,). (3.25)

In the presence of short ranged Coulomb interaction, the low energy fixed point theory of
the translation-invariant STLL can be written as (see Ref.|Grabert01] for a more detailed
discussion)

1
Hen =0 Y / dx[a 002+ 5 (0:0°) (3.26)
v=p,0 9u

where the interaction parameters g, and g, and with them the associated group velocities
v, = vF/g, and v, = vp/g, for the charge and spin excitations of the sTLL can be different.
This phenomenon is known as spin charge separation in 1D.

The composite sTLL

As already mentioned we can recover the degrees of freedom of an sTLL by considering two
hTLLs with opposite helicity which are realized at two parallel edges of a QSH bar (see Fig.
3.3). For concreteness, we assume that the upper edge features the fields (¢4 4,®_ ) =
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

Figure 3.4: Coulomb-backscattering process that gives a non-quadratic contribution to the sTLL.
Red denotes spin up, blue denotes spin down. Solid lines represent right movers and dashed lines
represent left movers.

(®%, ®% ), whereas the lower edge features the fields (@4 |, ®_ 1) = (®,,®" ). The two edges
u, ! are assumed to have identical interaction strength g and can be represented as two
spinless TLL with the Hamiltonian

vp [°

Hypp, = 9

—00

1
dz {(axeﬂ)z‘ + 30| =l (3.27)

If we ignore the u,l-labels on the bosonic fields, we can rewrite the total Hamiltonian
Hogage = Hyppp, + H}ZITLL of the two independent edges in the language of an STLL as defined
in Eq. (3.26) and find by simple comparison of coefficients [Hou09, [Teo09]

1 1
9e =9, 9s = — = —. (3.28)
Je g

As we will work out in Section this constraint is at the heart of a duality between the
charge and spin degree of freedom which even survives in a non-equilibrium setup.

3.3.2 Peculiarities of a single hTLL

Let us now focus on a single hTLL. Instead of ignoring the spin degree of freedom, one might
ask what kind of interesting consequences the locking between spin and direction of motion
might bring about.

Vanishing Coulomb backscattering

The first point worth mentioning is that the hTLL is in some sense a better TLL than the
ordinary sTLL. Let us explain what we mean by this argument. To derive Eq. (3.26) for
the interacting sTLL, a non-quadratic term stemming from a spin conserving backscattering
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3.3 Peculiarities of the helical Tomonaga Luttinger Liquid

Figure 3.5: Two backscattering trajectories conjugated by TRS. The blue trajectory amounts to a
clockwise spin rotation by m whereas the red trajectory amounts to a counter-clockwise rotation by .

process (see Fig. which has a non-vanishing matrix element in the sTLL needs to be
neglected. This is justified exactly at the low energy fixed-point because the mentioned term
is not relevant in RG sense. However, at finite bias this becomes an approximation. For the
ideal hTLL, neglecting the diagram shown in Fig. [3:4 becomes exact since there is no phase
space for spin-conserving backscattering: States moving in opposite direction always have
opposite spin, whereas the mentioned process involves all four species of the sSTLL. This
argument supports the quantized conductance of the hTLL.

Kramers degeneracy and topological protection

The next peculiarity of the h'TLL is closely related to our discussion of topological protection
by an anti-unitary symmetry (see Section and Section [2.4.1]). The opposite spin of
counter-propagating states precludes a local scalar backscattering term analogous to Eq.
for the h'TLL directly from simple phase space arguments. Interestingly, the robustness
against backscattering is much stronger than this obvious phase space constraint as we
will outline now. In the bulk of a QSH sample, TRS prevents us from deforming the QSH
phase adiabatically into a trivial insulating phase. On the edge, the two counter-propagating
channels forming the hTLL are conjugated to each other by TRS. This implies that the
degenerate pair of counter-propagating states at a given energy are Kramers partners. This
phenomenology entails a new ramification of topological protection as has been discussed in
Refs. [Wu06, [Qil1], namely that elastic single particle backscattering is forbidden as long as
TRS is conserved. Here, we only give an illustrative argument following [Qill] which views
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Chapter 3 Non-equilibrium quantum transport in interacting 1D systems

the protection as a weak anti-localization with perfect efficiency. Let us assume that we put an
impurity that can rotate spin but does preserve TRS in a clean hTLL. Such an imperfection
could be realized by locally induced extrinsic SOI. Fig. shows two backscattering paths
which are conjugated by TRS. Obviously, the two paths differ by a spin rotation of 27 which,
for half-integer fermions, entails a relative phase factor of —1, i.e., destructive interference.
Since all possible trajectories have a conjugated counterpart canceling their contribution,
there is no backscattering provided that the range of the scattering potential is smaller than
the phase coherence length. In Section [5.2] we will discuss this protection more formally and
investigate its limitations in great detail in Sections [5.2
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Chapter 4

All-electric qubit control in heavy hole
quantum dots via non-Abelian geometric
phases

In this chapter, we demonstrate how non-Abelian geometric phases (see Section can be
used to universally process spin qubits [Loss98] in heavy hole quantum dots in the absence of
magnetic fields. An adiabatically time dependent electric quadrupole field is used to perform
any desired single qubit operation by virtue of non-Abelian holonomy. During the proposed
operations, the degeneracy of the time dependent two level system representing the qubit
is not split. Since time reversal symmetry is preserved and hyperfine coupling is known to
be weak in spin qubits based on heavy holes, we expect very long coherence times in the
proposed setup. Our analysis follows closely Ref. [Budich12b]. The theoretical foundations
underlying this application are presented in Chapter We will repeat some of the key
equations to increase the readability of this chapter.

4.1 Motivation

Coherent spin control by all-electric means (without breaking TRS) is among the major
goals of spintronics. One of the reasons why is that the presence of TRS is known to forbid
several dephasing mechanisms, for example, in spin qubits [Loss98], due to the interplay of
electron phonon coupling and Rashba spin orbit coupling [Bulaev05]. In the original work
by Loss and DiVincenzo [Loss98|, the proposed scheme for universal quantum computing
based on spin qubits in quantum dots (QDs) relied on the one hand on all-electric two
qubit operations, but, on the other hand, on single qubit operations based on magnetic
fields or ferromagnetic auxiliary devices that both break TRS. A few years later, electric-
dipole-induced spin resonance (EDSR) has been proposed [Golovach(06] and experimentally
realized [Nowack(07] as a way to process spins electrically in the presence of a static magnetic
field which is still breaking TRS. Rather recently, it has been theoretically shown that in
spin qubits based on carbon nanotube QDs it is indeed possible to accomplish all-electric
single qubit operations using EDSR [Bulaev08|, Klinovajall]. This is possible because the
specific spin orbit interaction in carbon nanotubes provides a way to split spin up and spin
down states in the absence of magnetic fields (zero field splitting). However, spin qubits
based on carbon nanotubes face other problems related to readout and integrability and
it is hence fair to say that all host materials for spin qubits have advantages and disadvantages.
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Chapter 4 All-electric qubit control via non-Abelian geometric phases

Figure 4.1: Schematic of a single particle (red ball) with a HH (pseudo)spin (yellow arrow) in a
J = % valence band QD. The three-dimensional QD is surrounded by 18 gates that allow to generate
an electrostatic potential with quadrupole symmetry in any direction in real space. The red and
green colors on the gates should visualize applied electrostatic potentials with opposite sign that give
rise to the quadrupole field shown in light blue.

In this chapter, we are interested in spin qubits based on heavy hole (HH) QDs. We
show how universal single qubit operations can be performed by all-electric means in the
framework of holonomic quantum computing in these systems. The gist of
holonomic quantum computing is to employ non-Abelian GPs (see Eq. ) to perform
unitary operations on qubits. In our subsequent proposal, the adiabatic evolution in the
presence of a time dependent electric quadrupole field is used as a means to control the
HH qubit (see Fig. for a schematic). For our purposes, HH spin qubits (composed of
J = % states) are the simplest two level system that can be manipulated in the desired
way. However, HH spin qubits are, of course, a very active research area by itself beyond
holonomic quantum computing. Two reasons why HH QDs are promising and interesting
candidates for spin qubits are, for instance, the advanced level of optical control [Gerardot08,
[Eble09, Brunner09, [de Grevell] and the predicted long coherence times [Fischer10].

The topological properties of TRS preserving half integer spin systems have been ana-
lyzed in a series of seminal papers by Avron and coworkers [Avron88| [Avron89]. The case
J= % is of particular interest both from a theoretical and from a more applied point of view.
From the theoretical side, all TRS preserving gapped Hamiltonians are unitarily related
due to an SO(5) symmetry [Avron88) [Avron89] giving rise to an SO(5) Clifford algebra
|[Avron89, [Demler99] which allows for a simple analytical calculation of the adiabatic time
evolution and with that the GP. From the experimental side, the J = % system is naturally

realized in the p-like valence band of many semiconductors where spin orbit coupling iso-
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lates the J = % states from the so called split-off band. Interestingly, the fingerprints of
SU(2) non-Abelian GPs [Kato50, Wilczek84] (see Eq. (1.14])) could also be identified on

several transport properties of this class of semiconducting materials [Arovas98| Murakami04].

The pioneering idea of using non-Abelian holonomy to perform quantum computing tasks
in the J = % system is due to Bernevig and Zhang [Bernevig05] who proposed the electric
Stark effect to process valence band impurities in III-V semiconductors. Their idea works for
the light hole (LH) subspace of the J = % Hilbert space. However, the resulting holonomy
is Abelian on the HH subspace [Zee88] so that the electric Stark-effect cannot be used to
process HH qubits. In contrast, the electric quadrupole fields employed in our proposal allow
for full adiabatic control over the entire J = % Hilbert space. This is a consequence of the
topologically nontrivial structure of the accessible parameter space which becomes manifest
in the nontrivial second Chern number (see Section of the associated SU(2) gauge
theory over the four dimensional parameter space of quadrupole tensors with unit strength
[Avron8&§].

Holonomic quantum computing with dark exciton states [Solinas03] and due to tunable
spin orbit coupling with electron spins in spatially transported quantum dots [San-Jose(8,
Golovachl10], respectively, has been suggested previously. Our idea is conceptually much
simpler. We derive below the time dependent electric quadrupole field that realizes any
desired single qubit operation

U(n,p) = exp (icpn;) (4.1)
on the HH spin qubit. Here, i is a unit vector representing the rotation axis, ¢ is the angle of
the rotation, and & denotes the vector of Pauli matrices acting on the qubit space. Two-qubit
gates can be performed by all-electric means along the lines of Ref. [Loss98]. To perform
universal quantum computing with a device which employs our proposal, initialization and
readout tasks have to be implemented without magnetic fields. All-electric spin pumping and
spin filtering techniques, respectively [Broscol0], can be used to perform these crucial tasks
on the quantum dots without breaking TRS. Alternatively, it is of course also possible to
realize initialization and readout of our qubit in a standard way using static magnetic fields
[Hanson07]. Then, our proposal would still have the advantage that during the computational
steps, the degeneracy of the two-level system is not lifted.

This chapter is organized as follows: In Section we derive the time dependent
quadrupole field associated with an arbitrary single qubit gate and illustrate our results by
discussing an exemplary operation in great detail. In Section we discuss the influence
of several imperfections, which might be present in an experimental setup, on the working
precision of our proposal. By virtue of a detailed numerical calculation, we provide an
estimate of the adiabatic time scale which determines the maximum operating frequency of
single qubit gates showing that the physics we describe is experimentally feasible. Finally, in
Section we sum up our findings.
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Chapter 4 All-electric qubit control via non-Abelian geometric phases

4.2 Qubit control via quadrupole fields

The non-Abelian GP, occurring in a degenerate subspace after an adiabatic cyclic evolution,
is readily expressed once the time-dependent projection P(t) onto this degenerate subspace is
known. In Section it has been discussed that the generator of the adiabatic evolution

reads [Kato50] (see also Eq. (1.11]))

A(2)--[40 r0].

On the basis of this generator, the non-Abelian GP [Wilczek84] (see Section associated
with a loop 7 in parameter space is given by the holonomy (see also Eq. (1.14))

K, =Te 4, (4.2)

where 7 denotes time-ordering. For the Hilbert space of a J = % particle in the presence of
TRS, this holonomy is readily calculated analytically as we explicitly demonstrate below.

The Hamiltonian of a spin % particle coupled to an electric quadrupole field can be written
as [Avron88|
H(Q) = /.97 J;, (4.3)

where J is the angular momentum operator and Q is the quadrupole tensor of the applied
field. Q is a real, symmetric, traceless matrix. The space of such matrices is five dimensional.
An orthonormal basis of this space is given by the matrices {Q,} uo =04 with

(-1 0 0 L (001
Qosz—IO,Qlfooo,
Vo 0 2 V311 0 o
L (000 Lt 0o
Q2_7001)Q3:70_107
V3lo 1 0 3% 0 o
Lo 10
Qs=— 1|1 0 o],
V310 0 0

which satisfy the normalization condition

3
§T1" {QuQV} = Opv-
A general quadrupole field is then of the form z#@Q, and the associated Hamiltonian reads
H(Q) = H(2"Qy) = 2" J;Ql] J; = 2T\,

where the basis Hamiltonians I', = J;Q!.J; obey the SO(5) Clifford algebra [Avron89,
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4.2 Qubit control via quadrupole fields

Demler99]
{Tu,Tu} =20,

As far as the geometric phase associated with a cycle in this parameter space is concerned,
we can confine our interest to quadrupole fields of constant strength, say |x| = 1. (This is
justified because the quadrupole energy is so far the only energy scale of the problem.) Note
that the experimentally relevant scale of |x| defines the splitting between the two Kramers
pairs and therefore the adiabatic operating frequencies of the proposed setup. Due to the
mentioned SO(5) symmetry in the system [Avron88], all possible quadrupole Hamiltonians
H(Q) are unitarily related by a Spin(5) representation of this SO(5) symmetry. The ten
generators of this symmetry group of our family of Hamiltonians are given by [Avron89]

1 .
(Vi) = {5 PaTs) =Lals}  i€0.0,
a<f
where o, 5 € 0,...,4. A cyclic time evolution ¢ — H(t) starting from H(t = 0) = I'g is then
given by a 27w SO(5) rotation in the space of quadrupole fields which is uniquely associated
with a 27 Spin(5) rotation

av
to-

ts H(t) =e , tel0,27],

in Hilbert space, where & is a ten-component unit vector specifying the direction of the
rotation in the Lie algebra of SO(5). We call

1
P = 5 (14 T0)
the projector on the Kramers pair with eigenvalue £|x|. In fact, due to our choice of the
initial Hamiltonian, PofE concurs with the projection on the HH/LH subspaces. Starting
with a HH state [¢(0)) satisfying Py |¢(0)) = |¢(0)), the Kato propagator K(t,0) can be
conveniently expressed as [Simon83, [Wilczek84| [Avron89] (see also Eq. (1.17))

K(t,0) = lim K, (t,0) with
Kn(t,0) = PT(t)PT ((n—l)t) <Pt <2t) Pt <t> Py, (4.4)

n n n

where the time dependent projector on the Kramers pair with positive eigenvalue is given by
Ptt) = et%PJe

av
—t%

Along any such loop 7 in parameter space the adiabatic evolution is readily computed
analytically to yield [Avron89]

K(,0) = % o tFo S (4.5)
The first factor gives 2™ — 1 once the loop is completed. The second factor at t = 27 de-
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fines an SU(2) transformation on the HH subspace which is the desired holonomy K, (see
Eq. ) up to a sign. As has been shown in Section the holonomy associated with a
loop +y is a purely geometrical object. It does not depend on the parameterization, i.e., on
the time-dependent velocity with which the electric field is ramped, as long as the adiabatic
approximation is justified.

We now explicitly construct the direction @ needed to obtain any holonomy as parameterized
in Eq. (4.1). The angle and axis of the rotation can be tuned using the relations

PiToT, P =0, u#0, (4.6)
as well as

PyTyI Py =ioy, Py ThIsP = ioy,
PyTiIo Py = io, (4.7)

where o; are the Pauli matrices on the HH subspace with eigenvalue +|x|. To see this, let us
restrict ourselves to the four generators I'1I',, v # 1 and label them V = I'oI'1, Vi = I'4I'y,
Vo = I'iI'3, V3 = I'1I's. With this restriction, a only has the nonvanishing components

ao, a1, a2, as satisfying Z?:o a? = 1. Using Egs. (4.5H4.7) we get by comparison to Eq. (4.1)

p=2m (%,/Za?) = 27 (1— \/1—a3) e 0,27,
i#£0
(4.8)

Next, we translate the loop associated with the direction & into a time dependent quadrupole
field. To this end, we write the time dependent Hamiltonian H(t) = x#(¢)I', in two different
ways:

rav

H(t) = e 2 2"(0)[ e

av
2

ST I
= (¢Vx(0))" T, (4.9)
Spelling Eq. (4.9) out for infinitesimal transformations and using the independence of
the different Ty, ie., Tr{T,I',} = 6., we obtain the desired real SO(5) generators

Wo, ..., Ws associated with the Spin(5) generators Vp,. .., V3. Explicitly, the SO(5) defining
representation Wy ... W3 of the Spin(5) generators Vj ... V3 reads

0
-1

o

Wy = , W

o O O

o O O O
o O O O O
o O O oo
o O O o o

I

o O O o O
_ o O O O
o O O o O
O O O OO
o O O
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0 0 00O 0 0 00O
0 0 010 0 0 1 0O
Wo=10 0 0 0 O, Ws=]0 -1 0 0 O
0 -1 0 00 0 0 00O
0 0 000 0 0 00O

Now, we can define the time dependent quadrupole field associated with the loop in direction

A

a:
“w taw ®
Q) = 2 ()Qu = (x(0)) Qu, € [0,27],
which needs to be experimentally applied to perform the desired single qubit operation.

Let us give a concrete example. If we were to rotate the HH spin from pointing in z-direction

1 -1
to the w-direction, this would correspond to the operation U(—é,, §) = % ( 11 ) which

is associated with the quadrupole field
o
t( X wo— 3w
Q(t) = (e ( SR 2)80> Q,un te [0,271'],

ie., a= (ap,a1,a2,a3) = (%,0, —%,0) and x(t = 0) = ep = (1,0,0,0,0) in the language of
our general analysis. Indeed, plugging this choice of & into Eq. yields 1 = —é,, ¢ = 7.
A stroboscopic illustration of a possible electrostatic gating scheme realizing this time-
dependent quadrupole field is shown in Fig. For this particular example, we only need
10 of the 18 gates illustrated in Fig. To perform an arbitrary SU(2) transformation 14
of these 18 gates are needed. We could drop, for instance, the four gates that are colored in
red and green in Fig. and still would be able to perform any desired single qubit rotation
on the HH subspace. This is because only two non-commuting generators need to be realized
to represent an arbitrary SU(2) operation as a composite operation.

4.3 Estimation of experimental parameters

Up to now, the energy scale AE = |Q| = |x] (see Eq. (4.3))) has been treated as a free param-
eter. To show that this scale is amenable to state of the art experiments on GaAs quantum
dots, we give a numerical estimate for AFE. To this end, we calculate the HH-LH splitting
AFE associated with an electrostatic potential e®4(7) = Al QF with quadrupole symmetry on
the basis of a Luttinger four-band model for the valence bands of a GaAs/AlGaAs quantum
well [Andreani87, (Chuang91]. Here, 7 denotes the real space position vector and the QDs are
modeled by a parabolic lateral confinement potential defining the dots on a typical length
scale of 50nm. The strength of the potential is determined by the constant A. For a realistic
quadrupole potential e®4 ~ 50meV at a distance r ~ 50nm away from the center of the dot,
we obtain a splitting of AE = 0.57meV, which corresponds to a temperature of 6.6 K and an
adiabatic frequency of w = 0.87THz, respectively (see Section . Therefore, it is easily
possible to stay below this frequency such that the adiabatic evolution is justified and at the
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"V oh ot i ot

(b) x*

Figure 4.2: (a) A 10-gate setup realizing the operation U(—é,, 5) on the HH spin (yellow arrow).
The colors of the schematic gates visualize their time-dependent charge during the loop operation, at
times from left to right and top to bottom, ¢t =0, 7, 7, 3?”, and 27. All charges are normalized to the
charge ¢, of the topmost gate at t = 0. (b) Time-dependence of non-zero components of x during

the operation U(—¢,, 7).
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same time complete the loop much faster than typical dephasing times in HH spin qubits.
(T3 of the order of us has been measured in Ref. [de Grevell].)

In real experiments, there will not only be the (wanted) HH-LH splitting AE induced by
the quadrupole field but also an (unwanted) HH-LH splitting AEj induced by confinement.
For our purposes, the former should be much larger than the latter. We estimate in Section
that often times it is the other way round, i.e. AEjy is much larger than AE which
is a true problem for our proposal. However, by applying mechanical strain, the splitting
of the individual quadruplet subbands on the quantum dot can be engineered significantly
[Andreani87, (Chuang95]. For the parameters used in our model, the confinement induced
splitting AFEj can then be realistically tuned below our estimated value of AE = 0.57meV
(see Section . Hence, strain engineering of the QD is needed to guarantee a reliable
performance of our setup. Additionally, we note that our proposal is robust against unwanted
residual dipole fields, deviations from a quadrupole potential with only [ = 2 contributions,
and deviations from a quadratic confinement potential. The influence of these perturbations
on AFE are carefully analyzed in the Section and shown to be harmless.

4.3.1 Quadrupole induced HH/LH splitting in strained GaAs quantum dots

In this section, we give a quantitative estimate of the HH-LH splitting induced by an electric
quadrupole field on strained GaAs quantum dots. We model a quantum dot using the
effective 2D Hamiltonian of a [001] quantum well [Andreani87] (QW) and add some parabolic
confinement ®q(z,y). This reduces the symmetry to Dyy and therefore, even without a
quadrupole potential, we expect a HH/LH splitting AEy. We account for this by extending
the Hamiltonian H(Q) = JTQJ to

AFEy
_——

H'=H(Q)+ —

with 7, = diag(1, —1, —1,1) and the Hamiltonian is written in the basis

{33> 31> 31> 33>}
2°2/712°2/712° 2/7(2° 2/)°
Without loss of generality, we use a quadrupole potential e®, = %F‘T Qi associated with

the quadrupole tensor of four Coulomb charges +¢q at equal radius R in the (z,y) plane
(corresponding to A\ = ﬁ above),

Leg (L 0 0
“der | VMY
e 0 0 0

Whereas the spectrum of H is E = £|x|, where x is the 5-component vector defined by
the expansion Q = z#@Q),, the spectrum of H’ simplifies for our choice of the quadrupole

potential to
1
E = i?/AEg + 4]x|2. (4.10)
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Chapter 4 All-electric qubit control via non-Abelian geometric phases

We will use this relation to fit |x| as a function of the strength of the quadrupole potential. To

—

obtain an effective Hamiltonian for the QW, we first solve the envelope function f(z) where
z is the direction of growth. In general, the 4-component envelope function f(z) depends on
k= (kz, ky). We simplify the problem by performing a k - p calculation with expansion of

kj around the I' point. The Luttinger Hamiltonian Hp, (k| = 0) is diagonal and for the ith

component f; of f we find

1
Here, m;(z) is the material dependent bulk effective mass, which is mp; for the barrier and
myy,; for the material of the well and band dependent (index ¢). Furthermore, V(2) = Vp in
the barrier and zero otherwise. We use the symmetric ansatz

A;ebi(ztW/2) 2z < —W/2,
fi(z) = Bjcos(kiz) —W/2<2z<W/2,
A& S

where W = 60nm is the QW width, k; = /2m. By, and & = \/Qm 5.:(Vs — E;). Continuity
of fi(z) and m;(z)f!(z) give the secular equation

3/2
1 ; i Z.
ol - <mB> an (,%W mWVB)
k; mw, 2

with ];i\/QmW,iVB = k;.

The Luttinger Hamiltonian for I's bands including corrections due to strain reads

P+@ -S R 0
Hy = — -5t P—-@Q 0 R
RY 0 P-Q S
0 Rt st P+Q
written in the basis { %, %> , ‘%, %> , %, —%> , %, —%>} The strain tensor ¢;; gives the dis-

placement of an atom at unit vector ¢ along unit vector j. We consider only uniaxial strain
with €, = €yy # €22 and €3y = €, = €y, = 0. Then, only P and @ include corrections due
to strain:

P =ton (k2 +k}) + tokzmk. + P,

Q = toya (k2 + k) — 2tok.v2k + Q.

R = toV3(—ya(k} — k) + 2iyskaky),

S = toVB(ks — iky) {13, k:}

88



4.3 Estimation of experimental parameters

with tg = ﬁ and
P, = _av<€:v:c + €yy + 67;2)7

Qe = _g(exa: + €yy — 26zz)
The GaAs/AlAs lattice constants are almost the same (5.65A vs. 5.66A). This is desirable
because one needs rather wide quantum wells and intends to avoid uncontrolled relaxation of
strain. Here, we assume additional strain due to external pressure 7., which can be expressed
in terms of the stiffness tensor C' relating strain and stress. The condition of no transversal
stress 7, = Tyy = 0 gives

€xx — Eyy — e Tzz
0121 + C11C12 — 2C122
.. = Ci + Cr2 .
C% + C11Cra — 2C3, 77

where C1; = 11.88 10°bar, Cio = 5.38 10°bar. [Chuang95] We take the same values for
barrier and QW for the deformation potentials, a, = 1.16eV and b = —1.7¢V. [Chuang95]
The parameter ¢ := Q. will be used as strain control. A pressure of 1kbar gives ( = 2.61meV.
Note that P, is an unimportant overall energy shift.

The effective QW Hamiltonian is obtained by integration over envelope functions f,(2) of
the lowest LH and HH QW subbands,

HEY = [z fi) HLfs(e).

Contributions of higher subbands give quantitative, but not qualitative changes of our
estimates, since strain gives a diagonal correction to H?" and can be used to tune AE.
Together with the in-plane potentials ®;, H2W gives our QD model which is numerically
diagonalized.

For a quantitative estimate of |x|, we use the same parameters as Ref. [Andreani87]: For
GaAs, 71 = 6.85, 70 = 2.1, v3 = 2.9. For AlAs, v = 3.45, 79 = 0.68, v3 = 1.29. The barrier
material is Al;_,Ga, As with v = 0.21 and the Luttinger parameters are obtained by linear
interpolation. The bulk gap difference is AE, = (1.04v + 0.47v2)eV = 0.239eV. We assume
that the valence band shift from well to barrier is —0.4AFE,.

For the in-plane confinement, we use e®; = —0.15eV(r/Rmaz)? where 12 = 22 + 32
e®1(Rpaz) should not exceed AE,. ®; is discretized on a lattice corresponding to L=100
nm side length, so R,,q. = 50nm. By choosing R,,.. and W comparable, we intend to have
about the same level spacing due to in-plane and QW confinement. Then, the confinement
comes closer to the ideal, fully rotationally symmetric confinement.

With this geometry, a value of e®;(Ryq) = —1 €V gives a field strength of 40 meV /nm
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Chapter 4 All-electric qubit control via non-Abelian geometric phases
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Figure 4.3: HH/LH splitting AFEy (in the absence of a quadrupole field) as a function of the strain-
induced subband shift ¢ for a QW thickness W = 60 nm. Evidently, the (unwanted) HH/LH splitting
AFEy can be tuned down to zero by a uniform strain in z direction. The dashed line marks the value
of the typical (wanted) HH/LH splitting AE = 0.57meV due to a quadrupole field as discussed in

Section

at Ry Fig. shows the zero-field splitting AFy as a function of strain, demonstrating
that the confinement induced splitting can be tuned down to zero by means of uniaxial strain.

Fig. shows fits to the dispersion (4.10) in order to obtain the quadrupole induced
splitting |x|. A realistic quadrupole with a maximum potential e®,| of 50meV gives a
quadrupole induced splitting of 2|x| ~ 0.57 meV.

r=50nm

4.3.2 Stability of the quantum dot setup against perturbating potentials

The aim of this section is to analyze the stability of the effective quadrupole Hamiltonian H’
against deviations from a perfect quadrupole potential with [ = 2. These deviations include
external dipole fields and deviations from the quadratic confinement and will be described
as V(r,¢) in the following. The stability of H’ implies the stability of the quadrupole
Hamiltonian H(Q) since a change in the unwanted AEj can be suppressed by adjusting the
strain.

We consider the axial multipole expansion of the in-plane potential V(r, ¢) given by a
distribution of Coulomb charges p(R, ¢'). The QD extension is small against the distance to
the gates, i.e., r < R. We expand the potential in the Legendre Polynomials P,

e

- 2 / / o 1 /
Vro) = g or' [ déPicosto o) [ dRgo(R. 8, (411)

4re —
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AE /meV
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Figure 4.4: HH/LH splitting AE as function of the quadrupole potential @Q,, = max(e®,) at
r = 50nm. The dots are numerical results and the continuous lines fits to the expected dispersion
(4.10) with the quadrupole parameter |x| = 0.00575Q,, (red dashed) and |x| = 0.00565Q,,, (blue
solid). The dashed red line corresponds to a strain energy ¢ = 2meV and the solid blue line to
¢ = 1.9meV.

We continue by expanding the P, as

rlPl(cos(qﬁ —¢') = rl Z oy jcos(j(g —¢')). (4.12)

j=l1-2,..

For the quadrupole symmetry V(r,¢ + 5) = —V(r, ¢) and upon inserting (4.12)) into (4.11J),
the nonzero coefficients oy ; have j = 2,6,10,... and j < [. Similiarly, for the dipole
symmetry V(r,¢+m) = =V (r, ¢), the nonzero coefficients oy ; fullfill j = 1,3,5,... and j <.
Table shows how some characteristic terms in the expansion enter our model.

Let us now summarize the results included in Table I. The [ = 0 term induces an unin-
teresting energy shift. The [ = 1 term could give rise to a linear or quadratic Stark effect.
However, in very good approximation, we may assume that GaAs and AlAs have inversion
symmetry and can be described by a Luttinger Hamiltonian. Since the Luttinger Hamiltonian
Hj, is even under inversion, the lowest bound states have even parity. This excludes the
linear Stark effect by symmetry. Further, as long as we model both the confinement and the
quadrupole potential as quadratic in r, a linear potential will simply shift the center of the
wave function. Thus, the quadratic Stark effect cannot change AF either.

For a numerical estimate of higher-I terms, we model the gates by four Coulomb charges
at r = 50nm. We find that the [ = 3 and [ = 4 terms barely change AF even if the corre-
sponding charge imbalance at the gates is highly overestimated as compared to a realistic
experimental setup, meaning we have chosen them of the order of the quadrupole charges
itself. If quadrupole symmetry of the potential holds, the lowest perturbation term is [ = 6.
This term will change depending on the shape of the gates, but, since it contains a small
parameter (r%/R0), it is negligible.
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=0 Overall shift in energy that does not change AFE.
l=1]rcos¢ Shift of the center of the bound state assuming
that quadrupole and confining potentials ( ®; +
®, ) are quadratic in . AFE unchanged.
1=217r% r’cos2¢ Included in the model as &1 + 4.
1=3]rP= 7"3(% cos ¢ + % cos3¢) | Lowest order that appears in dipole expansion
and can induce quadratic Stark effect.

=41 rtcos4o Deviation from quadrupole symmetry by four
equally charged gates.
r4 cos 2¢ Allowed by quadrupole symmetry leading to the

same effective Hamiltonian H(Q) with J = 2 but
with the induced value AFE only a few percent in
comparison with [ = 2 term. Does not influence
holonomy operations.

rd Correction to the confinement potential, which
removes stability against the [ = 1 perturbation.
1=6 | r%cos6¢ Lowest order perturbation that appears in

quadrupole expansion.

Table 4.1: Characteristic terms of the axial multipole expansion.

Finally, we note that the system is no longer robust against the quadratic Stark effect if the
confinement potential behaves other than r2. We analyze this case in Fig. by changing

the in-plane confinement to e®] = —0.15eV(7/Rnaz)?(1 + %RQQ ). A residual constant
dipole field is modeled by an additional potential e® = —0.025eV z'— cos(¢ — m/3) so that

it is not aligned with the other potentials, and corresponds to a dipole charging being % of
the quadrupole charging. This certainly overestimates the error expected in an experiment.
Nevertheless, as can be seen in Fig. AF is barely affected by this perturbation.

Summarizing, we find that the effective Hamiltonian H(Q) remains valid in good approxi-
mation. In all cases, the quadrupole splitting dominates the other (disturbing) contributions
for realistic parameters.

4.4 Summary and outlook

We have demonstrated that an electric quadrupole field can be used to fully control a HH
qubit without breaking TRS. The adiabatic time scale of our proposal is determined by
the field induced splitting AF between the two Kramers pairs, which we have estimated
for GaAs QDs to be on the order of 0.57meV. The maximum operating frequency of the
device should be significantly below this energy scale to justify the adiabatic assumption
which is understood throughout our analysis. Confinement induced splitting between the
two Kramers pairs in the J = % quadruplet of levels at the relevant energy in the HH
QD impinges on the efficiency of the geometric control over the qubit. The scale of this
splitting for a given quadruplet can be tuned/reduced by applying strain. We note that
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AE /meV

05

04+

S o W A 1Y)
10 20 30 40 50

Figure 4.5: Including a r* correction to the confinement (®/ in the text) allows for the quadratic
Stark effect by a homogeneous electric field. The plot shows the HH/LH splitting AE as function of
the quadrupole potential @, = max (e®4) at r = 50nm with ¢ = 1.9meV and W = 60nm. Blue dots
are without the dipole potential ®5 while red boxes include the ®5, which corresponds to a charging
ratio of 1/3 of a dipole vs. quadruple configuration. This ratio certainly overestimates the error that
we expect in the experimental situation.

exact control over the qubit is still possible as long as the quadrupole energy gap is larger
than the confinement induced splitting. Our proposal is not limited to HH quantum dots in
GaAs quantum wells, but can in principle also be employed to process trapped spin % ions
or HH-like valence band impurities by means of a quadrupole field. The presence of TRS in
combination with suppressed hyperfine coupling in HH systems renders our proposal less
prone to decoherence than non-adiabatic processing schemes relying on the presence of a
Zeeman splitting due to an external magnetic field. Two-qubit gates can be performed by
virtue of electrostatic gates as proposed in Ref. [Loss9§|. All-electric spin pumping and spin
filtering techniques [Broscol0], respectively, can be used to perform initialization and readout
tasks on the quantum dots. Hence, our proposal in principle allows for TRS preserving
universal quantum computing.
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Chapter 5
Transport properties of helical edge states

This chapter is dedicated to the study of non-equilibrium transport properties of the h'TLL.
We employ the theory developed in Chapter [3] to investigate several holographic quantum
transport peculiarities of the QSH state (see Section . In Section we study an sTLL
composed of two h'TLLs (see Section under non-equilibrium conditions and investigate
the fingerprints of several coupling terms between the two hTLLs on the transport properties
in a four terminal setup. In Section we discuss the topological protection against elastic
single electron backscattering (see also Section in the h'TLL in more detail and show
how phonons can induce inelastic backscattering. In contrast, two electron backscattering
due to Coulomb interaction has been known in the literature since the discovery of the hTLL
[Wu06]. However, more recent literature [Strom10] on the microscopic realization of such
interaction induced backscattering terms failed to predict the vanishing of backscattering in
the non-interacting limit. We interpreted this as an incentive to resolve this controversy by
revisiting the problem of Coulomb induced backscattering from an RG perspective which is
the subject of Section

5.1 Charge-spin duality in non-equilibrium transport of helical
liquids

In this section, we study non-equilibrium transport properties of the charge and spin sectors
of two edges of a QSH insulator in a four-terminal configuration following Ref. [Liull]. A
simple duality relation between charge and spin sector is found for two hTLLs (see also
Section connected to non-interacting electron reservoirs. If the hTLLs on opposite
edges are coupled locally or non-locally, the mixing between them yields interesting physics
where spin information can be easily detected by a charge measurement and vice versa.
Particularly, we show how a pure spin density in the absence of charge current can be
generated in a setup that contains two hTLLs and one sTLL in between.

5.1.1 Motivation and outline

An important feature of the hTLL is that spin and momentum are locked to each other (see
Section for a more detailed discussion). Consequently, we can easily manipulate the spin
degree of freedom by electric means in an h'TLL and vice versa. One h'TLL has only half
the degrees of freedom of an sTLL. Thus, two hTLLs, which naturally exist at two opposite
edges of a QSH insulator, can recover the degrees of freedom of a single sTLL (see Section
[3.3.1)). It is well known and has even been experimentally confirmed [Auslaender05] that
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there is spin-charge separation for a 1D sTLL. Therefore, it is natural and interesting to
ask how the spin and the charge sector behave for two uncoupled as well as coupled hTLLs.
In this section, we investigate the non-equilibrium transport properties of two hTLLs in a
four-terminal configuration. The practical calculation follows closely our general outline in
Section with the minor complication that an additional index v labeling the two hTLLs
at the two edges of the QSH sample appears.

Most interestingly, we find a duality relation between the charge and the spin sector of two
hTLLs taking into account the coupling to non-interacting electron reservoirs. As a physical
consequence, there is a simple relation between the charge current and spin polarization
in the dual voltage configurations of two hTLLs. Importantly, the coupling between the
two edges will destroy the simple duality relation. However, we can still manipulate the
charge and the spin sector separately only by electric means. To demonstrate this, we study
different scattering mechanisms between the two hTLLs within the non-equilibrium Keldysh
formalism (see Section and bosonization (see Section [3.1]). Different bias dependences
are found for different scattering mechanisms which can be used to distinguish and identify
them in experiments.

5.1.2 Model and spin-charge duality

We consider a QSH insulator in a four-terminal configuration as shown in Fig. (a). The
two edges are denoted by v = u(l) for the upper (lower) edge. On each edge v, there are
two terminals with chemical potentials p;, (i = 1,2 means left and right lead, respectively).
Two terminals on the same edge are connected by an hTLL of finite length L. As far as the
1/L terms appearing in Eq. are concerned, we still consider L as infinite. The hTLL
states are described by the field operators 1, s where (p,s) = (R, 1) or (L,|) for the upper
edge and (p,s) = (R,]) or (L,?1) for the lower edge. In the middle region of the sample,
the hTLLs at the two edges can mix and different types of coupling mechanisms will be
discussed below.

As discussed in Section [3.3.] there are two possibilities for choosing the basis states of the
composite STLL: (i) the helical edge basis and (ii) the spin-charge basis. For the helical edge
basis, the nonchiral boson field is defined separately for each edge with ¢, ) = ¢r 1)+ P, (1)
at the upper (lower) edge and the corresponding dual field 0,y = ¢r 1) — ¢1,(1)- Here,
¢p,s (p =R, L and s =1, ) is the spinful chiral hermitian field appearing in the bosonization
identity, Eq. . This basis is suitable to study the current at different terminals.
However, when we are interested in spin properties, it is more convenient to introduce the
spin-charge basis, which ignores the u,[ labels and is related to the basis of the spinful
bosonic fields defined in Eq. by Eq. which we repeat here for the reader’s
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convenience.
1
Pp = %(w + 1),
1
Yo = ﬁ(w — %),
0 —(0 +6,),
p— \[ ) 4
0, = —(6+—0
\f( +—0)).
The Hamiltonian can be written as
H = Hy+ Hy + Hy, (51)

where H( describes the hTLLs at two edges, Hy the coupling between the helical liquid and
the leads (see Eq. (3.15))), and H; the scattering region coupling the two hTLLs.

(a)

Junction
region

Spin conserved Spin-flip sTLL
scattering t, scattering tg

Figure 5.1: (a) Schematic of the four-terminal setup. At each edge, there is a conducting channel of
an hTLL (blue line corresponds to spin up; red line to spin down). The two hTLLs are mixed in the
junction region and different types of junctions are analyzed: (b) the short junction with two possible
single particle scattering terms: (i) spin conserving scattering #. and (ii) spin-flip scattering £, and
(¢) the long junction modeled by an sTLL.

The hTLL coupled to electronic reservoirs can be modeled by the so-called g(x)-model
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[Maslov95, [Ponomarenko95, [Safi95] given by

H{; = Q%F /d:v {(89690)2 + 92133) (amSOp)Q] )
15 = 5 [ do| 50007 + (0000 (5:2)

in the spin-charge basis. Here, vp is the Fermi velocity and g(x) is the hTLL interaction
parameter, with g(x) = go < 1 for repulsive interactions within the helical edge located at
|z| < L/2, and g(x) = 1 for the non-interacting fermions in the leads with |z| > L/2. We
assume the same parameters vp and go at the two edges (v = u,l). This is reasonable for
two edges of the same system. The chemical potentials in the leads are naturally taken into
account with the bias Hamiltonian

dx
Hy = \/72? [axﬂp(x)@p + Ozt (7)0s]

where

8pr(o) = _,U/l,p(a)(s(x + L/Q) + H2,p(0)6($ - L/2)

with pip = i + pig and ;e = i — pig (4 = 1,2). Remarkably, p, couples to ¢, while
to couples to 0,. Therefore, the electric voltage can couple to both the charge and the spin
sector of the composite sTLL. This provides us with a means to control the charge sector
and the spin sector separately, in contrast to the usual sSTLL where the electric chemical
potential only couples to the charge sector. Moreover, we discover that there is a duality
relation between the charge sector and the spin sector

©p <> b, 0, < o (5.3)

For Hé‘ (A = p,0), the above duality relation is directly related to the constraint g. = 1/gs
discovered in Ref. [Hou09] before (see also Section [3.3.1). Here, we show that this relation
remains valid even if the system is coupled to non-equilibrium electron reservoirs. Thus, it is
observable in transport properties of the system.

What is the physical consequence of this duality relation? To answer this question, we
investigate the total charge current and the total spin density of the system. The charge

current is given by j, = —e\/%at%, which is the sum of the currents along the two edges

Jp = Ju + Ji, with j,(z) = —ﬁ@twy (see Eq. ) The spin density can be defined as

Po = \/gﬁx%. Combining Eq. (3.25) and dyp, = —vpd.0, (see Eq. (3.10), it is evident
that the spin density can be directly related to the charge current along the two edges by

1 . .
Ps = %(]u _Jl)~

In the absence of mixing between the two edges, our setup describes the transport through
two independent 1D channels. Then, it follows directly from previous work [Maslov95,
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Ponomarenko95, [Safi95] that

62

(jO,l/> = ﬁvua

where —eV,, = p1, — po,,. Thus, the total charge current is (jo,) = %Vp with V, =
Vu+V = —i(m,p — f12,5), while the total spin density is given by (pos) = }L%:VU with
Vo=V, -V, = 7271@(//475 — p12,5). Importantly, it is spin density and not spin current that is
dual to the charge current, which is a direct consequence of the duality relation . Physi-
cally, V, and V,; can be easily generated by two different voltage configurations of the four

terminal setup, as shown in Fig. In Fig.[5.2(a), p1,4+ = p1,— = —poy = —po— = —eVp/2,
which yields V, = Vg and V;, = 0; and in Fig.[5.2(b), p1,+ = po,— = —p1,— = —po 4+ = —eVp/2,

resulting in V, = 0 and V,, = Vj. In these two symmetrical bias configurations, we find
either charge current or spin density but no spin current. This is different for unsymmetrical
bias configurations where charge current and spin density are usually accompanied by spin
current as well.

Thus, in Fig. [5.2(a), there is charge current but no spin density while in Fig. m(b) there
is spin density but no charge current. There is a simple physical picture to understand this
result. For the upper edge, the right mover has spin up and the left mover has spin down,
while for the lower edge the situation is just the other way round. In Fig. [5.2{(a), on both
edges the left movers have a larger chemical potential than the right movers resulting in
total charge current from left to right. However, since now the left movers for the upper
edge and lower edge have opposite spin, the spin density at the two different edges will
cancel each other. A similar analysis can also be applied to the configuration of Fig.[5.2(b),
in which the left movers have higher (lower) Fermi energy than the right movers for the
upper (lower) edge. Since both the left movers at the upper edge and the right movers
at the lower edge have spin up, the spin density will be finite and maximal in this configuration.

Up to now, we have discussed the transport properties of two hTLLs and shown a simple
relation between the charge current and the spin density in two (dual) voltage configurations.
In the following, we would like to take into account a junction structure introducing scattering
between the two hTLLs within a region of finite length d. We consider two different scenarios:
(i) the short junction (SJ) with d < Ap and (ii) the long junction (LJ) with d > Ap, where
Ar is the electron Fermi wave length. For SJ, we can neglect the length of the scattering
region and model it as a quantum point contact, while for LJ, we can regard the scattering
region as a finite length sTLL.

5.1.3 Short junction case

In the following, we concentrate on the experimentally relevant regime 1/2 < go < 1 [Teo09].
Then, all the possible one-particle and two-particle scattering terms will be irrelevant [Teo09].
Hence, we can safely treat the scattering Hamiltonian H; as a perturbation. For the SJ case,
two types of one particle scattering terms, which preserve time reversal symmetry, are taken
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Chapter 5 'Transport properties of helical edge states

Figure 5.2: (a). (I) and (IIT) show band dispersions and chemical potentials of the upper edge
and the lower edge, respectively. (II) illustrates the voltage configuration g4, = p1,; = eV,/2 and
Wow = po; = —eVp/2. (b). Similar to (a) with a different voltage configuration p1 ., = po; = eVj/2
and po = 1, = —eVp/2.

into account (see Fig. b)): the first one is the spin conserving term

Hyy = te(h 4+ (20)¥nt (w0) + 9} | (w0)¥r (20) + hoc.),

and the second one is the spin flip term

Hyy = to($) 1 (20)vr, 1 (20) — ¥}, | (z0)vr.t(w0) + hoc.)
with the junction position xg. In bosonization,

Ht—zthnRs L8 sin (V7Zs) —|—ltsZn’Tn + sin (V)

100



5.1 Charge-spin duality in non-equilibrium transport of helical liquids

with = \/§(<pp + 5p,) and ¥, = 2(p, + vf,). Here, n* is the Klein factor and
fc(s) = . We now perform the perturbative calculation of our four terminal system within
the non- equ1hbr1um Keldysh formalism (see Section E All physical quantities can be
related to the expectation value of boson fields, which can be obtained from the functional
derivatives of the generating function Z[.J] which includes the Hamiltonian and the
additional source term J coupling to the boson field ¢, or 6,. Treatlng H;asa perturbatlon
we can expand any physmal quantity O in powers of {, o(s)s €8s (O> <Oo> <02> up to
second order (see Eq. ( and discussion thereafter).

FFCIJ

The first corrections to (jo,) and (pos) come from one particle scattering and can be
expressed as (jo,p) = > 4 J=s and (P25) = i > vt vJu,, with

)

efQ s
Je ., = / dt me meVot omCs (z0,m0;t)

Jy, = @ / dt Z meimuevotewcg’ (z0,705t)
WV 4 oo g
for the edge v = 4. All the information about the detailed sample configuration is now
included in the correlators C¥ and Cy, which are given by CF = 2(C, + C,) and C =
2(Cs + Dy) + 2v(F5 + Qp) with the correlation functions

Cx = (©apa)0: Da = (020))0,
Fx = (pabr)o, Qr = (Orpr)o, A=p,0

defined in total analogy to Eq. but with an additional spin-charge index A\. We note
that the spin conserving scattering ¢, can only be induced by a charge voltage V, and, hence,
will reduce the total charge current in the voltage configuration of Fig. (a), while the
spin-flip scattering ¢, is only driven by the spin voltage V,, and decreases the spin density
in the configuration of Fig. |5.2(b). For clarity, we further divide the operator Oy into two
parts (Og2) = (Oéo)> + <O§1)>, where (Oéo)> is calculated on the basis of L — oo correlation

functions, while (O§1)> contains all finite length corrections. Then, analytical expressions for
the charge current and the spin density are readily obtained and given by

g0t L
0 ert’r, % +A -1
Gs) = =7y () [V

90+ 55)
o 90t
0 5T
(i) = ———=

S
—— s (Vo) eV, "o !
vpl’ (90 + 9*0)

Here, 7. is the short time cutoff. Both the charge current and the spin density depend in a
power law fashion on the voltage. This coincides with earlier work based on a renormalization
group analysis [Hou09) Teo09, [Strom09, Tanaka09]. Then, for V, = V,,, we find that the
ratio between the charge current and spin density in the two different voltage configurations
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Chapter 5 Transport properties of helical edge states

is
)
(0 0 t
o)/ (hr) = evr 5,
S
which contains the information about the scattering strength for the different types of
scattering. In the finite length case, we use the numerical method of Ref. [Dolcini05] to
evaluate Jz s and Jy,. As shown in Fig. [5.3(a) and (b), the finite length will introduce
oscillations in both the backscattering current and the spin density, which originates from
Fabry-Perot-type interferences of plasmonic excitations [Safi95]. However, since the power

law go + g% — 1 is always larger than 1 for positive g, ( jé?g) (<p§0(),>) will increase rapidly
with V,, (V,;) and dominate the oscillatory corrections for large V), (V;). Hence, finite length

corrections are not very important in this setup.

5.1.4 Long junction case

Now, we consider the opposite limit d > Ap as shown in Fig. [5.1)(c). This case could be
achieved by gradually narrowing the QSH sample into a 1D wire experimentally. In the
following, we analyze finite size effects related to d and assume that L > d, hence L — oo
is a reasonable approximation. For simplicity, we model the LJ as an sTLL described by
H, = Hy + Hyp with Hyy = Hfj) + Hfj, where

v 1
iy = "% [ do|(0.0,° + gg(axgop)?] ,

L[ dw[(0.60)° + (@00 ).

o
HtO

for |z| < d/2. Compared to Eq. , we find that the charge sector remains unchanged
while the interaction parameter of the spin sector varies from 1/gg to 1. This originates
from the SU(2) symmetry of the spin sector of an sTLL. For the charge sector, since the
Hamiltonian remains the same, we see that the interaction between two hTLL will not affect
the charge current (j,) at all. For the spin sector of a 1D sTLL, besides Hyj,, we consider
two additional interaction terms |Gritsev05l Tanaka(9]

Is9

Hipy = /5 dx [gu Cos (\/gtpg) + gsf cos (\/@6?0)} ,

vl

where the g1 | -term is related to spin conserving backscattering d)};wg ﬂ} L,1YR, + h.c. while
the geg-term is related to the spin-flip backscattering process 1/)2 ﬂ)}% YLAYRry + h.c., see
Fig.|5.3(c). These are the most important perturbations in the absence of impurity scattering
which we assume here. Since the g -term conserves spin, it will not influence the spin
density. Thus, we focus on the gs-term below. Up to second order perturbation theory, we
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5.1 Charge-spin duality in non-equilibrium transport of helical liquids
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Figure 5.3: (a) The backscattering current as a function of charge bias V,, generated by the spin
conserving t.-term for the voltage configuration of Fig. a). The blue dashed line corresponds to

the charge current ( jé?;), while the red solid line additionally includes the finite length corrections.

72 g0+
The current unit is W . (b) is similar to (a), except that now we show the spin density

(péob and (p2 ) as a function of the spin bias V,, generated by the spin-flip ¢s-term for the voltage

~ L
21‘/3(71(,%)5'0Jr 90

configuration of Fig. b). The spin density unit is ====——. (c) Possible two particle
backscattering terms: spin conserving backscattering gi | and spin-flip backscattering gs¢. (d) The

voltage dependence of the correction to the spin density (p2 ) due to the two particle spin-flip term

: : s (gerd)? (Tewa) /90 ; _ _ v
gst- The spin density unit is B rrre— In all expressions above, we use wy, = gTFL’ wqg = I,

and go = 0.7.
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Chapter 5 Transport properties of helical edge states

obtain the following correction to the spin density

2 2 rl 1-|R|
(pr.0) = — 1L /O dR /0 drf(r,R),

v
o .
f(T, R) = / dt’ Z mez2meVgt’ eSﬂDg(a:,%t’),
00 —

where r = (z —y)/d and R = (z+y)/d. The above triple integration can be easily evaluated
numerically and the obtained correction to the spin density is shown in Fig. [5.3|(d). To
make analytical progress, we can again divide the obtained spin density into two parts
(p2.0) = ( g)b + (pé?,) with (p(0)> for the infinite d contribution and (pglb accounting for

2,0
finite length corrections. We find that <,o§°),> always dominates over <p§12,> In the limit
eVswg > 1, we obtain
wagkd?m? /90

vrl™(2/g0)

(pL)) ~ —sgn (eVy)

RAT
with Wy = Q}F/d.

It is important to analyze the validity regime of our perturbation theory. Note that for
go < 1, the power law exponent io — 2 will always be larger than 2. Thus, the second
order correction to the spin density (p2 ») will increase faster than the zero order term (pg )
as a function of bias voltage. Evidently, our perturbation theory is only justified when

4
4_3
(wd'rc) (gsfd'rc)2 ’€VO—TC’ 90 < 1.

5.1.5 Summary and outlook

We have analyzed the charge current and the spin density in a four-terminal setup based
on two hTLL coupled to non-interacting electron reservoirs. Different types of scattering
mechanisms between the edges have been taken into account, particularly short junctions
and long junctions. It has been shown that different power law dependencies as a function
of bias voltages applied to the four terminals can be used to distinguish the scattering
mechanisms. A simple duality relation between charge current and spin density has been
discovered. Remarkably, all spin-related observables can be measured by straightforward
charge measurements in the four-terminal configuration. It is interesting to ask the question
whether the spin density in such a setup can also be measured by other means (e.g., as a test
of the model). Taking typical values for vp = 3eV-A and eV, = 5meV, we find that the zero
order spin density is about (pg ) ~ 5.3um~1. This may be detected by state-of-the-art local
Faraday/Kerr rotation [Kato04]. Furthermore, the possibility of applying a spin dependent
bias voltage in the composite sTLL is also interesting in the context of non-equilibrium two
channel Kondo physics. Exact results on the non-equilibrium Kondo cloud in a related setup
have recently been reported in Ref. [Posskel2] demonstrating how such a spin bias can be
used to manipulate spin correlations in a way which is not viable by virtue of a conventional
bias.

In the next two sections, we focus on a single hTLL. We will take a closer look at the
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5.2 Phonon-Induced Backscattering in Helical Edge States

quantized conductance of a single helical edge state mentioned in Section [3.3.2]and investigate
its robustness against phonon-induced and Coulomb interaction induced backscattering,
respectively.

5.2 Phonon-Induced Backscattering in Helical Edge States

A single pair of helical edge states as realized at the boundary of a quantum spin Hall
insulator is known to be robust against elastic single particle backscattering as long as time
reversal symmetry is preserved [Wu06] (see also Section. However, there is no symmetry
preventing inelastic backscattering as brought about by phonons in the presence of Rashba
spin orbit coupling. In this section, we first review the phenomenon of topological protection
by TRS and point out its limitations. We then show that the quantized conductivity of a
single channel of helical Dirac electrons is protected even against the mentioned inelastic
mechanism to leading order. We further demonstrate that this result remains valid when
Coulomb interaction is included in the framework of a helical Tomonaga Luttinger liquid.
Our analysis follows closely the original material published in Ref. [Budichl2a].

5.2.1 Motivation

During recent years, great interest has been attracted by the theoretical prediction [Kane05al,
Bernevig06a] and experimental discovery [Konig07] of the QSH state (see Section[2.4.1)). The
QSH phase is a two dimensional TRS preserving TSM that differs essentially from trivial
atomic insulators by a Z, topological invariant [Kane05b), [Qi11], [Hasan10] (see Section [2.4.1]
for a detailed discussion). Besides the enormous conceptual depth of TSM, the QSH phase
is also considered a promising candidate as to future applications in nanoelectronics. This is
due to its topologically protected transport properties which might be exploited for high
precision spintronics devices operating at low power consumption. Therefore, modeling the
QSH effect under experimentally relevant conditions is crucial to test the practical limitations
of these protected features.

5.2.2 Topological protection against backscattering and its limitations

As far as the robustness of the topological protection is concerned, the QSH effect is
fundamentally different from the integer quantum Hall (IQH) effect. For the TRS breaking
IQH insulator [Klitzing80, [Laughlin81} Thouless82|, the bulk topology leads to a quantization
of conductivity to impressive accuracy. In the IQH regime, edge state transport is chiral,
meaning that the density of states for subgap backscattering vanishes. This excludes such
processes by simple phase space arguments. In contrast, in the TRS preserving QSH phase a
single pair of helical edge states induced by bulk boundary correspondence is supported at
the edge of the QSH bar. This means that both right- and leftmovers exist at a single edge.
However, states of opposite direction of motion are Kramers partners due to TRS. The well
known topological protection of a single pair of helical edge states against backscattering
in this scenario can be mathematically illustrated by the following simple argument [Xu06].
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Chapter 5 Transport properties of helical edge states

Let |¢) and |¢) = T|¢) be Kramers partners. Then, as long as H is a TRS preserving
Hamiltonian

(V[H|p) =(o|H|¢)" = (TO|ITH[p) =
(WIHT|)) = (G| HT?|¢) = —(y|H|9), (5:4)

i.e., the matrix element for scattering between the Kramers partners vanishes. Note that
the argument of protection relies on two fundamental constraints: First, only single
electron processes are considered. Second, since Kramers partners are degenerate states,
it only precludes elastic backscattering. Within the validity of these restrictions extensive
studies of the hTLL [Xu06, Wu06] representing a single pair of helical edge states have shown
that Anderson localization is avoided [Kane05al, Ryul0] in the presence of TRS preserving
disorder and that TRS breaking magnetic impurities can open a gap in these systems
[Maciejko09]. Furthermore, interedge backscattering can occur if the QSH sample is locally
narrowed down to a quantum point contact [Strém09, Teo09, Hou09, Liulll [Schmidt11] (see
also Section or if two QSH bars are brought close to each other [Tanaka09]. In general,
backscattering at a single helical edge requires spin flip processes. In realistic setups, these are
induced by Rashba SOI originating from unavoidable potential fluctuations. Preserving TRS,
Rashba SOI cannot cause single electron elastic backscattering, though. However, relaxing
the single electron processes constraint by additionally including Coulomb interaction, two
electron backscattering processes have been shown to arise in these systems [Strom10]. Such
backscattering terms are well known to be allowed by TRS [Wu06].

Under realistic experimental conditions, finite temperature and bias voltage also imply the
presence of phonons, i.e., inelastic processes that undermine the second constraint for the
validity of the argument . It is thus of crucial importance to investigate the influence
of this dissipative mechanism on the topological protection. Here, we show two important
results of the helical edge states in the presence of two TRS preserving perturbations: Rashba
SOI and electron phonon coupling. First, we demonstrate that in this scenario there is no
strict protection against inelastic single electron backscattering. Second, we find that for
helical Dirac fermions the leading order contribution of this mechanism vanishes, supporting
the protection for practical purposes. We further demonstrate how this additional robustness
fully survives in the presence of Coulomb interaction, i.e., in an hTLL with electron phonon
coupling and Rashba SOI. In a nonequilibrium transport calculation for the hTLL, we take
the electron phonon coupling into account exactly by integrating out the phonons using a
Keldysh contour path integral representation of the generating functional (see Section .
Our analysis is relevant for any realization of the hTLL as a one dimensional system.

5.2.3 Model without Coulomb interaction

We investigate a single pair of helical Dirac fermions coupled linearly to longitudinal acoustic
phonons. The two species of electrons are coupled via Rashba SOI (see Fig. . In most
parts of this work, we will have a sharp impurity-like scattering potential in mind which
brings about momentum transfer on the order of 2k, where kr is the Fermi wave vector.
We represent the helical fermionic fields as a spinor ¥ = (Wg, ¥y )T = (¥4, W_)T. The
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5.2 Phonon-Induced Backscattering in Helical Edge States

Figure 5.4: Pair of helical edge states with two terminals and a Rashba impurity coupling the two
channels. The wavy line illustrates the presence of electron phonon coupling in the system.

free electron Hamiltonian then reads
Hy = /dac\I/T(x)poz\I/(x),

where p = —i0,, is the momentum operator and o, is a Pauli matrix in spin space. The two
most relevant Rashba-terms induced by a spatially dependent electric field in z-direction are

given by [Strom10), Rothel0]

Hr =5 [ ¥ @) ({01(@),} + {as(0),0°)}) 0y ¥ @)

Note that only odd powers of p are allowed by TRS. Electron phonon coupling to the dis-
placement field d of longitudinal acoustic phonons is modeled by the Hamiltonian

Hop = A / Ao (2) 000 (2)0,d(z)
with all dimensionful constants absorbed into A. The free phonon dynamics is governed by

Hy = 5 [ do [(i(@)? + 2@sd(a)].

where c is the acoustic phonon velocity in units of the electronic Fermi velocity and Il is the
conjugate momentum of d. We model the phonons for a strictly 1D system which corresponds
to an in transverse direction perfectly localized edge state. Later on, we will see that our key
results do not critically depend on the details of the phonon model. The total Hamiltonian
of our setup is then given by

H = Hy + H, + Hg + Hep, = Ho + Hy,
where Hy = Hy + H), is the free Hamiltonian whereas H; = Hr + Hep encompasses the
coupling terms.

5.2.4 Inelastic backscattering

We will now demonstrate how the combination of Hr and H., will in principle be able to
cause single electron backscattering at a single edge of a QSH insulator. As observed above,
since Hp is TRS preserving, it cannot cause elastic single electron backscattering. Due to its
offdiagonal structure in spin space it couples opposite spins though. In contrast, He, does not
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mix different spin species but can bring about energy dissipation by virtue of energy transfer
from the electronic degrees of freedom to phonons. Thus, the second order in H; diagrams
shown in Figure which are first order in Hcp, and in Hp cause backscattering at finite bias
(see Fig. if their contribution does not vanish for momentum transfer p; —py ~ 2kp. We

Figure 5.5: Tree diagrams for lowest order backscattering. Dashed line with square represents the
external Rashba potential. Wavy line denotes the phonon propagator.

consider scattering between a right mover |p;") and a left mover [Py + gpn) with an additional
phonon. Up to second order, the corresponding scattering matrix element M;js can be written
as

Myt = (py , gpu| HiGoHrlp]"),

where Gy is the free propagator corresponding to Hy. Interestingly, the lowest order
contribution of the Rashba term linear in momentum associated with «; vanishes due to a
nontrivial destructive quantum interference of the two contributing diagrams which stems
from the linearity of both Hy; and the a1-Rashba term. To show that this is not due to any
fundamental symmetry like TRS, we calculate the same matrix element for the Rashba term
associated with ag which yields

N
2 _ ~2 - _ 7t 5
| Mg|” = {03 (qph +pr — D ) |gpn|
where @s(k) is the Fourier transform of aiz(x). At the level of an analytical Fermi’s golden
rule calculation for a d-shaped Rashba impurity as(x) = asd(z), the backscattering current
Ips at zero temperature can be readily expressed as

Igs = 27Te/dpi+ /dp]? /dqph {ff{D(ef) (1 - fﬁD(er)) | M| 20 (e — € - wph)} , (5.5)

where € = p; —kp and € =—p;— kr denote the initial and the final energy of the scattered
electron, wph = ¢|¢ph| is the phonon frequency and fFiD is the Fermi-Dirac distribution function
associated with the chemical potential 4 of the branch of right movers (+) and left movers
(—), respectively. Using fFiD(e) = 0(p+ — €) at zero temperature, we can readily perform the
integrals occuring in Eq. analytically and obtain

242
azAe o

= 67220 (5.6)

Ips
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5.2 Phonon-Induced Backscattering in Helical Edge States

Figure 5.6: Voltage configuration to pass a spin up current from the left to the right. The bias
V opens an energy window for inelastic phonon scattering.

This contribution will be negligible at low bias V reflecting the irrelevance of the p3-Rashba
term. The importance of this non-vanishing result is that it demonstrates how in principle
inelastic single electron backscattering can occur at finite bias even though the perturbations
Rashba SOI and electron phonon coupling preserve TRS. The lowest order nonvanishing
matrix element for the o; term could be third order in oy which has the same relevance as
ag in renormalization group (RG) sense. Also, quadratic corrections to the linear electronic
dispersion which might become relevant at higher energies can give rise to a; backscattering.

At finite temperature, there will be additional scattering contributions to the current,
e.g., from processes where a phonon is absorbed or where an electron is scattered from a
thermally excited state in the branch with the lower chemical potential to an empty state
below the chemical potential of the other branch. For finite T, we numerically evaluate the
correction AG to the conductance by calculating

_OAI(V,T)

A
¢ ov Vo

where AI contains all perturbative corrections to the current up to second order in H;. In
Fig. we show the temperature dependence of the conductance which scales to convincing
accuracy with the sixth power of T

We would again like to point out that the vanishing matrix element M;; for the o-Rashba
leads to an exactly quantized conductance in the absence of the a3-Rashba term also at
finite temperature. We hence conclude that for the helical edge state without Coulomb
interaction the most relevant inelastic backscattering contributions allowed by TRS and
phase space arguments cancel out. This can be interpreted as an enhanced precision of the
quantized conductivity of the helical edge states at finite temperature/bias going beyond the
topological protection only pertaining to elastic scattering.
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logG

logT

Figure 5.7: Temperature dependence of the conductance G in arbitrary units (red solid). Plot of the
power law ~ T (blue dashed). Logarithmic scale on both axes.

5.2.5 hTLL with Coulomb interaction

Now, we want to investigate whether the observed robustness of the helical Dirac fermions
against inelastic backscattering by virtue of the a;-Rashba SOI term, i.e., the most relevant
TRS preserving term coupling opposite spins, persists in the presence of Coulomb interaction.
In order to account for Coulomb interaction we represent the fermionic degrees of freedom
in terms of an hTLL using the bosonization identity (see also Eq. )

Yt = L nEetVTeEd)
2ma

where 1+ now denote the slowly varying fields with a factor of e F® separated off, a is the

high energy cutoff of the model and ¢, 6 are the bosonic phase field and its dual, respectively.
In the thermodynamic limit, the Klein factors n* obey the algebra of Majorana fermions.
Absorbing a prefactor of % by redefining A, the electron phonon coupling can be represented
as

Hep, = )\/dx(‘)xgo(x) 0-d().

The translation invariant hTLL Hamiltonian reads (see also Eq. (3.9)))

HyrLL = %/dﬂc [Hi(ﬂf) + 912 (@%P(ﬂ?))ﬂ

with the interaction strength parameter g < 1 modeling repulsive Coulomb interaction. The
a1-Rashba Hamiltonian with o4 (z) = ad(x) in bosonized form yields

[ze% + —

Hp = :
R ﬁann

(5.7)

(0:0(x)) cos (\/E(p(l‘)) :

=0
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5.2 Phonon-Induced Backscattering in Helical Edge States

where the dots denote normal ordering.

We want to calculate the average current I(x,t) = —%@(gp(fp, t)) due to an applied bias
V. Such expectation values can be most easily represented for practical calculations in terms
of a generating functional

7

ZJ] = /D((’079’d)eiSo—ifcHR-‘ri%ETchp-‘rﬁJTgo (5.8)

)

where Sy encompasses the electron phonon system without the Rashba impurity, [. denotes
the integral along the Keldysh contour, o3 is a Pauli matrix in Keldysh space, and scalar
products like J” ¢ involve an integration over real space and time. The applied bias is
modeled by E(z,t) along the lines of Ref. [Dolcini0f] (see also Eq. (3.17)).

To make further analytical progress we now integrate out the phonons on the Keldysh
contour. The part of the Lagrangian involving the phonon field d reads

1
La= 5 ((0d)® = @(0:4)) = M9o) (D).
The phonon dependent part of the action can be represented on the Keldysh contour as
1
Sq = 5dTGI;}d + AT o*02p
with the phonon propagator Gpy. Performing the Gaussian integral
/ Dd ¢5a(d:0) — giSaiss(9)

in the rotated Keldysh basis

+ 1 /1 1 +

¥ 14
_ | = —= _|=U
(90) ﬁ(l —1)@) ’

yields for the dissipative action

(8§¢)T01Gph0182<,0, (5.9)

)\2
Sdiss = - ?

0

GR
ph
function in Fourier space is changed to the following dressed version

GA
where 01Gpho1 = ( G%h> By this dissipative action, the inverse free electron Green’s
h

A2k4
pp w2 —c2k?’

(G kw)) = (GZM(k,w)) (5.10)

0P

This result generalizes to the Keldysh formalism a similar imaginary time calculation carried
out in Ref. [Martin95]. The retarded, advanced and Keldysh part of this Green’s function
can be calculated exactly. From now on the free action Sy(ip, #) refers to the effective action
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where the phonons have been integrated out. To calculate the current we basically have to
evaluate

i 621
V2 8J(r) |y

which can be done along the lines of Ref. [Dolcini0f] (see also Section[3.2.2). The equation of
motion dyp = —0,0 (see Eq. inside the free correlators averaged with Sy(ip, #) remains
valid for the free action which is dressed by the phonon dissipation. That is because Sgjss
(see Eq. ) depends only on ¢ and not on its conjugate momentum II, = —0,6 (see Eq.
(3.8)). Using only this property of the electron phonon coupling the current to second order
in a1 1is readily shown to be zero. This proves that our result for the case without Coulomb
interaction persists in the nonequilibrium hTLL.

(p(2)) (5.11)

This result might be understood on more general grounds. The fact that Sy remains
quadratic in IL, = —0,0 means that the following argument first brought forward in
Ref. [Strom10] for an hTLL in equilibrium without electron phonon interaction could be used
for our setup as well: Integrating out II, in the path integral representation of the generating
functional will produce terms proportional to (9;0)2, a () cos(v4my), a? cos(v4mp)? in
the action. While the first contribution is the term well known from the free h'TLL case, the
second one is a pure gauge which can be dropped. The third term can up to a constant be
written as cos(v/16mp) which is a two electron TRS preserving backscattering term [Wu06].
Note that the presence of the source term J” ¢ in Eq. does not affect this argument.
Thus, we have found that the a;-Rashba term cannot lead to a single electron backscattering
term in the presence of any external spin independent dissipation which couples linearly to
the electron density.

One cautious remark is in order: In the non-interacting limit, i.e., for ¢ — 1, the
term o cos(v4mp)? does not seem to vanish which suggests the presence of two-particle
backscattering in the absence of Coulomb interaction. This cannot be true. Since, at this
point, it is not clear to us how the physical thruth can be reconciled with the argument
based on integrating out IL,, the latter should be taken with care. However, this does not
affect at all our previous discussion of phonon-induced backscattering in helical edge states.
We again point out that this result goes beyond the topological protection of the hTLL. It is
due to the quadratic form of Sy in II,, the Luttinger liquid analogue of the linear dispersion
of helical Dirac fermions on which our result without Coulomb interaction relied. Bosonizing
the as-Rashba term implies terms up to third power in 0,60 thus breaking the quadratic
form of Sy in II,. Furthermore mixed terms like (9,¢)(9,0)* will occur which render the
modifications of free Green’s function (see Eq. ) by the presence of phonons important.
These observations are perfectly compatible with our nonvanishing result for single electron
backscattering in the presence of a3 (see Eq.(5.6)).

5.2.6 Summary and outlook

In summary, we have studied helical Dirac fermions in the presence of electron phonon
coupling and Rashba SOI, which both preserve TRS. We have shown that, although TRS
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does not provide a protection against inelastic scattering, the current carried by the helical
states in the presence of a finite bias is not changed to leading order. Furthermore, we have
proven that this result still holds for an hTLL including Coulomb interaction. The linear
dispersion of the helical edge states of a QSH bar has been nicely verified experimentally
[K6nig07] and is an exact feature of the four band model for inverted HgTe/CdTe quantum
wells introduced in Ref. [Bernevig06a]. Therefore, our analysis is not only interesting for the
abstract model of an h'TLL. It supports the robustness of the quantized subgap conductance
of a QSH sample beyond the well known argument of topological protection. Our
results turn out to be not restricted to the coupling to longitudinal acoustic 1D phonons.
In fact, we have shown that any external bath coupling linearly to the electron density
cannot give rise to inelastic single electron backscattering in the presence of linear in k& spin
orbit coupling. In HgTe/CdTe layer structures, external coupling mechanisms, e.g., coupling
to charge puddles in the bulk, are likely to cause phase decoherence which gives rise to
additional backscattering. However, such effects are not intrinsic features of the hTLL
and can in principle be contained by improving the sample quality. In contrast, electron
phonon coupling and Coulomb interaction are intrinsic mechanisms the role of which we
have investigated for a generic realization of the hTLL. The discussed mechanism of phonon-
induced backscattering gives rise to conductance corrections that scale like 76. We already
pointed out that integrating out IL, in the path integral leads to the unphysical result of
non-vanishing backscattering in the limit of vanishing Coulomb interaction. In the following
section, we resolve this controversy by studying the interplay of the a;-Rashba term and
Coulomb interaction from an RG perspective.

5.3 Renormalization group approach for the scattering off a
single Rashba impurity in a helical liquid

The occurrence of two-particle inelastic backscattering has been conjectured in helical edge
states of topological insulators and is expected to alter transport. In this section, by using a
renormalization group approach, we provide a microscopic derivation of this process, in the
presence of a time-reversal invariant Rashba impurity potential. Unlike previous approaches
to the problem, we are able to prove that such an effect only occurs in the presence of
electron-electron interaction. Furthermore, we find that the linear conductance as a function
of temperature exhibits a crossover between two scaling behaviors: T*% for K > 1/2 and
T8K=2 for K < 1/2, with K the Luttinger parameter modeling Coulomb interaction. Here,
we choose a notation which is convenient for our RG analysis and which slightly differs from
our general presentation in Section The relation between the two notations will be
established explicitly below. Our presentation follows closely the analysis of Ref. [Crépinl2].

5.3.1 Motivation

Since the prediction of the quantum spin Hall phase [Kane(O5al KaneO5bh] (see Section
in HgTe quantum wells [Bernevig0O6a], transport measurements on these compounds have
shown evidence of a quantized edge conductance G = 2¢2/h, thereby paving the way
for non-local dissipationless transport in semiconductors at zero external magnetic field

113



Chapter 5 Transport properties of helical edge states

[K6nig07, [Konig08|, Roth09]. In the simplest case of quantum wells with inversion symmetry,
transport occurs through two counter-propagating edge channels that carry opposite spin-
1/2 quantum numbers. Such helical liquids form a new class of 1D quantum liquids in
the sense that they are protected by time-reversal symmetry against single-particle elastic
backscattering [Kane05al, [Xu06, [Wu06] (see also Section . However, deviations from the
quantized conductance arise in various situations, involving either a breaking of time-reversal
symmetry — by a magnetic impurity for instance — or the interplay between a TRS preserving
external potential and a source of inelastic scattering. Inelastic single-particle backscattering
[Budich12al [Schmidt12] and two-particle backscattering [Kane05al, Xu06), [Wu06, [Strom10]
are two examples of the latter. In this section, we focus on two-particle backscattering off
a TRS preserving impurity and report new results regarding the temperature scaling of
conductance corrections. Our purpose is to derive the Hamiltonian for such a process starting
with a minimal model of an interacting helical liquid coupled to a TRS preserving potential.
In particular, we focus on a Rashba spin-orbit potential [Strom10, BudichI2al, which can
originate from fluctuations of an electric field perpendicular to the 2D electron gas [Rothel0],
and acts as a TRS preserving effective magnetic field that couples right and left movers. In
the recent literature, inelastic two-particle backscattering off an impurity was mostly studied
phenomenologically, by postulating the generic form of the Hamiltonian due to symmetry
considerations — namely TRS and Pauli principle [Kane05al Xu06, Wu06, Lezmy12],

Hyp = 72p [(%‘I’L)‘Ifl(aﬂ_)‘l’_] (z0) + Hec., (5.12)

where + designate right and left movers respectively. A straightforward scaling analysis
[Kane92al, [Kane92b] would lead to a temperature dependence of T85~2 for conductance
corrections, with K the Luttinger parameter, implying a 7% behavior in the limit of weak
Coulomb interaction, K ~ 1. These studies, however, do not explain how two-particle
backscattering is generated at the microscopic level. To our knowledge, the only micro-
scopic explanation proposed so far is the one by Strom et al. [Strom10], already based on
Rashba spin-orbit coupling. Their analysis, however, leads to the unphysical conclusion
that these processes are present even in the limit of vanishing Coulomb interaction. Indeed,
without interaction, two-particle backscattering can always be factorized to two uncorrelated
single-particle elastic backscattering processes and does not affect transport. A satisfactory
explanation of the effect is therefore still lacking.

Here, we use a renormalization group (RG) approach to show how two-particle inelastic
backscattering is generated from Rashba spin-orbit coupling and Coulomb interaction. Upon
integrating the flow equations, we are able to demonstrate that the effect only occurs in
the presence of electron-electron interaction. Furthermore, we find a K-dependent crossover
behavior for the temperature scaling of the conductance corrections, namely

(aoT/v)*K if K >1/2,

0G/Go ~ { (aoT /1K~ i 1/4 < K < 1/2, (5-13)

where ag is the inverse bandwidth and v the interaction-renormalized Fermi velocity. Our
analysis demonstrates that, in the limit of weak interactions, two-particle inelastic processes,
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with a scaling of T, are a more important source of scattering than usually anticipated from
phenomenology.

5.3.2 Model

We study an interacting 1D helical liquid in the presence of Rashba spin-orbit coupling. The
Hamiltonian of the system is the sum of three terms, H = Hy + H; + Hp, given by

Hy = /daf Z \IJI](x)(—invF&C - Ep)¥, (z), (5.14)
n==£

H = / / dedz' U ()01 () go(z — )0 _ ()0, (x),

Hp = /dm a(@) [@.0) . — vl (0,9 )] (2) + He.

Here, \Ili(x) and W' (x) are creation operators for right and left moving electrons, respectively.
Both species carry spin-1/2 opposite quantum numbers and hence transform as T\I’L ()T 1=

j:\I/;rF(:U) under time reversal. Hy entails a strictly linear spectrum, with a finite bandwidth,
the size of the bulk band gap. vpg is the Fermi velocity, Er the Fermi energy. Without
loss of generality, we consider in H; only interaction between electrons moving in opposite
directions, since chiral interactions — so-called g4 terms — only renormalize the Fermi velocity.
Finally, Hr describes a linear Rashba spin-orbit potential likely to stem from fluctuations
of a transverse electric field [Strom10l Budich12a]. We emphasize that Hp is, in a helical
liquid, the time-reversal invariant Hamiltonian with the lowest scaling dimension, able to
couple right and left-movers. Nevertheless it has no effect on transport as long as elastic
scattering is concerned [Xu06]. In the following, we consider a point-like impurity, that is,
a(z) = ad(z). We show with a RG calculation how two-particle inelastic backscattering
is generated. First, we carry it out on the fermion partition function before treating the
Coulomb interaction exactly using bosonization.

5.3.3 RG for interacting fermions

Much insight is gained by first treating, at the fermion level, both Coulomb interaction
and the Rashba potential as perturbations to the non-interacting fixed point. We use the
path integral representation of the partition function, Z = [ D\I/*iD\Ilie*S , with an action
S = foﬁ dr [ani [ dx ¥y (z,7)0- W, (z,T) + H(T)], and Uy (z, 1), ¥4 (x,7) Grassmann fields.
We introduce an ultra-violet (UV) cutoff A of the order of half the bulk band gap on the
dispersion relation of both right and left movers as vp|nk — kp| < A, with kr the Fermi
momentum. Following Ref. [Shankar94], we then proceed to integrate out the fields living
on an infinitesimal momentum shell A/s < vp|nk — kr| < A, with s =1+ d¢. As usual in a
1D quantum liquid, interactions contribute an infinite series of diagrams. However, in the
absence of 2kp scattering processes, and the impurity being point-like, go is invariant under
RG transformations. The integration of high energy fields also generates new terms. To
third order perturbation theory, the diagram (b) depicted in Fig. generates an inelastic
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0
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1 ; 3 1
(a) o (b)
2 § 4 2
-— = —— -— -
0 0

Figure 5.8: Examples of diagrams to order o2 (a) and g2a? (b), in the expansion of the partition
function. Partial derivative signs indicate which external lines are differentiated with respect to x.
Full (dashed) arrows are for right (left) movers. Wavy lines are for Coulomb interaction, and grey
balls denote scattering off the impurity.

two-particle backscattering process whose action is of the form

dk; dw;
’ygp/H 5 9 26 (w1 + wy — w3y — wyg) X

(—ihs W3 (3)) W5 (4)(ik2 W (2))¥ (1) +{+ < —}. (5.15)

This is precisely the action one would derive from the Hamiltonian of Eq. in momentum
space. The scaling dimension of 72, is (—3) by power-counting. We take into account the
aforementioned third-order diagram (b) shown in Fig. which is of second order in
the Rashba coupling constant o and of first order in the Coulomb forward scattering gs.
Performing the momentum shell integration on the contribution of this diagram, we obtain
the flow equation

a(l)* g2
vpA 2mvp’

D2

al
where the first term on the right hand side stems from the scaling dimension of vz, and
the second term accounts for the perturbative third order correction. Note that the initial
condition is y2p(¢ = 0) = 0, since two-particle inelastic backscattering is absent from the
bare action. Finally, power counting on the Rashba action yields for «(¢) the flow equation

= —37213([) + (516)

& _ a0, (5.17)

This calculation confirms that inelastic two-particle backscattering off a Rashba impurity is
only generated in the presence of Coulomb interaction, as it disappears altogether as soon as
g2 = 0. We emphasize that to second order in «, diagrams such as (a) in Fig. do not
generate inelastic processes since Matsubara frequencies are conserved independently at each
Rashba scattering vertex; in this example, w; = w3 and ws = w,. Finally, we point out that
g4 (chiral) interactions fail to generate inelastic two-particle backscattering as all diagrams
will be suppressed by the Pauli principle.
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5.3.4 Bosonization

We refine our analysis by treating interactions exactly, through bosonization of the fermion
Hamiltonian. Excitations around the true ground state of the 1D interacting helical liquid
are indeed described by the Tomonaga Luttinger liquid Hamiltonian (see also Eq. (3.9)))

Ho = E/dﬂ? {K(ame)Q + i(ax@)Q ) (5'18)
2 K

where the notation is related to Eq. through the identifications K = g, and v = vp/g.

The present symmetric notation is more convenient for our RG analysis. By using the

bosonization identity, Eq. , the bosonized form of the Rashba Hamiltonian is readily

obtained as [Strom10, Budichl2a] (see also Eq. (5.7))

Hpr =intn~ /dx a(f) <m>K : 0.0(x) (: eT2e@) ; gi2krT . i20(@) e*"%”) : (5.19)
(m)2a \ L
where : ... : indicate normal order with respect to boson operators that annihilate the ground
state of the helical liquid (see Eq. ) Here, n* are again the Klein factors, and a is
a short-distance cutoff and the running scale in the RG approach. For all purposes here,
its bare value ag can readily be identified with A~!, where A is the bandwidth previously
introduced in the fermion RG analysis. The total bosonized Hamiltonian of the system is
H = Ho+ Hi. We perform an RG transformation in real space [Cardy96], which consists in
rescaling first the short distance cutoff, @ — @’ = (1 + df)a, and then the couplings in order
to keep the low-energy form of the Hamiltonian invariant. We rescale the cutoff order by
order in an expansion to order O(a?) of the partition function Z = Tre ?"0{/(3,0), where

~ B 'y
U(p,0) =Tre” Jo dnHr(m) is the time-evolution operator in the interaction representation.
At tree level, we derive the following flow equation for the Rashba coupling

Cji—(; = —Ka((), (5.20)
in which we have introduced the dimensionless variable & = «/(mwva). Bosonization readily
takes into account vertex corrections due to interactions and we recover Eq. in the
limit of weak interactions, K — 1. Two-particle inelastic backscattering is generated as
a second-order perturbation process. Indeed, the expansion to order a? of the partition
function leads to a term

2a\ [P at LA N
o (2 [Man (@00 @:0)0-] 1)
2
o N N N ~
+ 5 [ dndn 0:00) ()81 (2) (@00 )(1)d-(2) + Hee, (5.21)
v|T1—T2|>a
where the UV cutoff is enforced by splitting the double integral over imaginary time into two
parts for which v|1 — 72| < @ and v|1 — 72| > a, respectively. The first line, corresponding
to short time differences ™ ~ 79, contributes an inelastic scattering process. Importantly, in
the limit of vanishing interactions, the first term exactly cancels a similar term generated
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by the cutoff rescaling in the second integral, proving that no two-particle backscattering
occurs without interactions D By writing Eq. (5.21)) in terms of the bosonic fields and after
normal ordering, we obtain

(: 0,0(1) : e2VEe(1) ::) (: 0.0(2) : e2VEe(2) ::)

1 /27 KoK R
- - i2VE (1) i2VE(2)
2(L(y+a)) (y—i—a)Q'e e Pt (5.22)

Note that we have rescaled the bosonic fields according to VKm0 — 0 and \/@ — .
Furthermore, y;(3) = v7y(2) has dimension of a length and we define y = y; — y2. The dots
represent extra terms that have a vanishing expectation value. Keeping the lowest order
term in an operator product expansion, the rescaling of a generates a new coupling, which
we identify with a two-particle inelastic backscattering process. At the end of the RG step,
the time-evolution operator U(B, 0) is corrected by a Hamiltonian

B N 5 vp .
/ drHap(m1) = ﬁ/ dy [e”ﬁw(‘m’y) + H.C.} ,
0 a Jo
where 92, is a dimensionless coupling E| given by
a(l)?
2K

Fop(0) = Aap(0) — 57 (1 = 2K). (5.23)
On the r.h.s of Eq. (5.23), 355 (¢) stands for the true inelastic backscattering processes, which
in the present case, has the bare value ’yijf) (¢ =0) = 0. The second term is the correction
arising from the first integral in Eq. (5.21)). Using Eq. (5.20)), the flow equation for the true
inelastic two-particle backscattering reads

A .
% = (1—4K)FR(0) + (1 - é) (1 2K)a(0)>. (5.24)

In the absence of interactions, K = 1 and ﬁérl‘)(ﬁ) = 0 at any scale ¢, consistently with the

fermionic result of Eq. (5.16]).

5.3.5 Transport

We now apply a small voltage bias V' to the hTLL. The dc conductance G is then obtained
from linear response as the zero-frequency limit of the current-current correlation function
[Kane92al, [Kane92b]. The latter is evaluated in perturbation theory, and because of TRS,
corrections to the quantized conductance G = €2 /h arise only to order O(a*). Equivalently
here, by letting the system flow to a certain scale £ we obtain corrections to the conductance
to order O(33%(£)?) in perturbation theory. Integrating equations and between

!This subtlety of the RG procedure for impurity scattering was first noticed by Giamarchi and Schulz in
their study of Anderson localization in 1D interacting liquids [Giamarchi88], and recently emphasized by
Gornyi et al. [Gornyi07] in their treatment of weak localization.

2Compared to Eq. (5.12)), we have op = y2p/(7?va®)
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Figure 5.9: Flow of 55 as a function of £ = Infa/ag], for K = 0.7. A crossover scale £* separates a
region of linear growth for small ¢ < ¢* from a region of exponential decay at large ¢ > ¢*. The inset
is the same plot on a semi-logarithmic scale. The asymptote is for e~ 2%,

0 and £ we find &(¢) = &(0)e % and

RO (1 ~ ;{) G(0)? [ — 72K (5.25)

which we plot in Fig. for a particular value of K. We find two different asymptotic
behaviors, separated by a crossover scale £* = (2K — 1)~ In[(4K — 1)/(2K)], independent of
@(0), the bare value of the Rashba coupling. For small £ < £*, 35 (€) ~ a(0)2(1 — K—H(1 -
2K )le™ 2Kt while for £ > 0%, %I}; crosses over from

Fop () = —a(0)*(1 — K1) 21
for K >1/2 to
Fap(6) = @(0)*(1 — K~ 1)el! )¢

for K < 1/2. As can be seen from Eq. (5.24), K = 1/2 is an intermediate fixed point
where two-particle inelastic backscattering is not generated, at least not in second order
perturbation theory. Integrating out energy scales between the bare cutoff ag and the thermal
length a(¢) = vf3, we obtain the temperature scaling of Eq. for conductance corrections
to order O(a*), which we repeat here for the reader’s convenience

(aoT [v)*E if K >1/2,
9G/Go { (aoT/v)3E=2 if1/4 < K < 1)2.

119



Chapter 5 Transport properties of helical edge states

Note that this power-law behavior holds for temperatures lower than the crossover tem-
perature T* = (v/ag)e™" and measures the exponential decay of the flow of 'Nyiﬁ)(f) for
£ > (* as exemplary shown for K = 0.7 in Fig. In contrast, for T' > T*, i.e., £ < £*,
these corrections are logarithmically suppressed as T' approaches Ty = v/ay, i.e.,

6G /Gy ~ (aoT /v)*E n%(aoT /v), (5.26)

for all values of K. This behavior reflects the asymptotic temperature dependence of
’712% (£)? in the regime ¢ < ¢* where the flow of ’yizrr‘) (¢) shown in Fig. increases linearly.
Note that for K < 1/4, two-particle backscattering becomes a relevant perturbation and
the Rashba impurity effectively cuts the helical liquid into two separate regions [Kane92al
Kane92bl, [Wu06]. We emphasize that at low temperatures, 7' < 7™, and in the limit of
weak interactions, K ~ 1, we predict corrections to the conductance from two-particle
backscattering off a Rashba impurity that scale as T* instead of T°, as one would naively
predict from the Hamiltonian of Eq. .

5.3.6 Summary and outlook

In summary, we have studied the simplest model of a 1D helical liquid in the presence of
a TRS preserving impurity and electron-electron interactions, that alters transport. Our
approach provides a firm microscopic explanation for the generation of two-particle backscat-
tering in helical liquids and predicts the occurrence of a conductance crossover, which could
not be captured by previous approaches. As current estimates for the Luttinger parameter
in HgTe quantum wells, ranging between K ~ 0.5 and K ~ 1, show a strong dependence
on the geometry of the device [Maciejko09] [Teo09, [Hou09) [Strom10], all regimes presented
here could be of experimental relevance in transport measurements. However, a correct path
integral formulation of the model studied in this section is still an open question that should
definitely be addressed by future work.

It is worth emphasizing the difference with respect to a recent work by Schmidt et
al. [Schmidt12], where a different model for a helical liquid with broken S, symmetry was
analysed. There, Rashba spin-orbit coupling, by imposing a momentum-dependent rotation of
the spin of right and left movers, allows for inelasic single-particle backscattering off a scalar
impurity. These processes contribute a T* correction to the quantized conductance, in the
limit of weak Coulomb repulsion. The fact that in our approach, two-particle backscattering
actually leads to the same temperature dependence is a mere coincidence.
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Chapter 6
Conclusion

The main focus of this thesis was on signatures of geometry and topology in mesoscopic
condensed matter systems which were first investigated from a conceptual perspective and
were then applied to non-equilibrium quantum transport phenomena and quantum infor-
mation processing with spin qubits, respectively. This chapter is intended to provide a
concluding presentation of the main points of our analysis and to give a brief outlook as to
open questions that could be subject of future work.

In Chapter [I, we elucidated the role of differential geometry in the time evolution of
a gapped physical system with an adiabatically time dependent Hamiltonian. A cyclic
adiabatic evolution amounts to a unitary transformation within the eigenspace of a single
energy eigenvalue, the geometric phase. Most interestingly, this geometric phase turns out
to be a physical observable which can be formulated in a manifestly gauge invariant way
which is a key difference as compared to analogous geometric effects in conventional gauge
theories. In Chapter [2] we viewed the topological invariants characterizing topological states
of matter as a global version of the geometric phase where the k-space of the physical
system plays the role of the parameter manifold. Non-interacting insulators and mean field
superconductors were divided into ten symmetry classes and the classification for all symme-
try classes and spatial dimensions was outlined employing the mathematical framework of
K-Theory. Furthermore, the practical calculation of all relevant topological invariants was
discussed and possible generalizations to interacting and disordered systems were presented.
However, the entire notion of topological states of matter is defined for quadratic model
Hamiltonians, which limits the validity of interacting generalizations to systems that can
be adiabatically connected to a non-interacting gapped phase. In order to prepare the
reader for our holographic transport studies in the quantum spin Hall phase in Chapter
some basic perturbative techniques of non-equilibrium quantum transport were introduced
in Chapter [3| along with the bosonized description of the one-dimensional Fermi system
modeling the metallic holographic states of the two dimensional QSH state. In this context,
we emphasized some peculiarities of these so called helical edge states, where the word
helical stands for the locking of spin and direction of motion. The notion of a non-Abelian
geometric phase introduced in Chapter [1| was employed for a proposal realizing holonomic
quantum information processing in Chapter [l The qubit of the studied architecture is given
by a heavy hole subband of a valence band quantum dot which is twofold degenerate in
the presence of time reversal symmetry. This qubit was demonstrated to be controllable by
virtue of adiabatically time dependent electric fields with quadrupole symmetry. In Chapter
we took a closer look at the quantum spin Hall phase using a perturbative non-equilibrium

121



Chapter 6 Conclusion

approach to quantum transport. In particular, the mentioned locking of spin and momentum
of the helical edge states was shown to entail a spin charge duality which remains valid away
from thermal equilibrium. Therefore, both spin and charge properties of a pair of helical
edge states can be inferred from charge transport measurements in a four terminal setup,
a very promising scenario as to future spintronics applications of the quantum spin Hall
insulator. A key feature of a single helical edge state is its quantized conductance which
stems from the protection against elastic single electron backscattering. We pointed out
that an interacting system at finite bias or finite temperature offers loop holes for both
the elasticity and the single particle condition. We investigated inelastic phonon-induced
backscattering in the presence of Rashba spin orbit interaction and found a non-trivial
robustness of the quantized conductance due to a destructive quantum interference. Owing
to two electron backscattering in the presence of both Coulomb interaction and Rashba spin
orbit coupling, we found corrections to the conductance that scale with the fourth power of
temperature in the weakly interacting limit. All in all, our results of Chapter [5| corroborate
the robustness of the peculiar holographic transport properties of the quantum spin Hall phase.

From a conceptual point of view, the entire zoo of topological states of matter can be seen
as conclusively understood in the framework outlined in Chapter [2] of this thesis. However,
there are at least two general routes to be considerably further explored by future research.
First, the precise experimental implications of many topological states of matter have not
been fully understood yet. Whereas in the quantum Hall state, the topological invariant
directly represents a physical observable, namely the Hall conductivity of the sample, the
observability of the topological invariants of several topological states of matter is unknown
or still under active debate (see our discussion in Section . This issue is from our point
of view closely related to the rather limited number of promising proposals for concrete tech-
nological applications based on these novel states of matter. Obviously, successful research
in this direction will be of decisive importance for the long term future of the entire field of
topological states of matter. Second, the influence of interactions and open quantum system
effects on topological states of matter is by no means conclusively understood, let alone an
exhaustive topological classification of interacting or dissipative systems. As a first step along
these lines, a purely dissipation driven topological state has been reported in Ref. [Bardyn12].

On a more concrete note, there are several natural questions arising from our studies
presented in Chapter [4l and Chapter [5], respectively. The quantum information processing
architecture presented in Chapter [4] uses the geometric phase only to perform single qubit
operations. All-holonomic universal quantum computing would require control over degener-
ate subspaces of coupled pairs of heavy hole spin qubits which has not been explored in this
thesis. For a full theoretical understanding of the role of Rashba spin orbit coupling in helical
edge states, a consistent path integral formulation of the problem could be very helpful. As
we pointed out in Section the path integral analysis presented in Ref. [Strom10] is not
careful enough as to the normal ordering of the Rashba Hamiltonian which leads to physical
inconsistencies. A resolution of this issue in path integral language would be elucidating but
has not been achieved in this thesis. Furthermore, we treated the helical edge states as a
pure 1D system throughout this thesis. For a realistic quantum spin Hall insulator, the finite
bulk gap entails the influence of the gapped bulk states on the effective theory of spin orbit
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coupling on the edge. A microscopic modeling of such effects including the crossover to pure
1D behavior in the limit of an infinite bulk gap would be another crucial step towards the
modeling of quantum spin Hall devices under experimentally realistic conditions.
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