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Abstract

Recent studies show that combinations of defined key developmental transcription factors (TFs) can reprogram somatic
cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can
define a cell̀s identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we
show that ectopic expression of the neural TF Neurogenin2 (Ngn2) is sufficient to induce rapid and efficient differentiation of
embryonic stem cells (ESCs) into mature glutamatergic neurons. Ngn2-induced neuronal differentiation did not require any
additional external or internal factors and occurred even under pluripotency-promoting conditions. Differentiated cells
displayed neuron-specific morphology, protein expression, and functional features, most importantly the generation of
action potentials and contacts with hippocampal neurons. Gene expression analyses revealed that Ngn2-induced in vitro
differentiation partially resembled neurogenesis in vivo, as it included specific activation of Ngn2 target genes and
interaction partners. These findings demonstrate that a single gene is sufficient to determine cell fate decisions of
uncommitted stem cells thus giving insights into the role of key developmental genes during lineage commitment.
Furthermore, we present a promising tool to improve directed differentiation strategies for applications in both stem cell
research and regenerative medicine.
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Introduction

During embryogenesis, all cell types of the body arise from a small

pool of stem cells by differentiation – a complex process of defined

sequential steps. Transcription factors (TFs) play an important role

during this process by regulating the specific gene expression

program of the various stages or triggering the transition to the next

step. It has been shown that the ability of such key developmental

genes to influence cell fates can also be operative outside of normal

physiological development. Thus, ectopic expression of three

defined genes can convert pancreatic exocrine cells into ß-cells in

vivo [1]. Similar in vitro experiments report the reprogramming of

somatic cells to a pluripotent state [2,3] or the in vitro conversion of

fibroblasts into neurons by specific combinations of defined TFs [4].

Furthermore, there are reports demonstrating that ectopic expres-

sion of lineage-specific genes can influence lineage decisions of in

vitro differentiating stem cells. For example, ectopic expression of the

neural TFs Sox1 or Sox2 in murine embryonic stem cells (mESCs)

promotes the differentiation towards the neuroectodermal lineage

upon induction of differentiation [5].

All these studies indicate that key developmental genes can define

a cell’s identity outside of their physiological context. However, it is

not clear if this cell fate defining potential depends on additional

external signals or is only operative in certain cell types. Cell fate

conversion by ectopic expression of certain genes in vivo is always

performed on at least partially committed cells. Additionally, such

processes may be influenced by unknown factors of the in vivo

environment. In vitro cell conversion or reprogramming protocols

are also performed with differentiated cells and generally include the

addition of specific culture media components to enhance formation

or survival of the desired cell type. Similarly, in reports describing

directed differentiation of pluripotent stem cells by single defined

TFs, differentiation itself was still induced and promoted by external

signals like embryoid body formation or the addition of specific

differentiation media [5–7].

Thus, until now, cell fate determination by key developmental

TFs always includes the involvement of additional known or

unknown factors. This makes it difficult to evaluate the strength of

the cell fate defining potential of such genes.

Here, we wanted to investigate if a single key developmental

gene is able to determine the cell fate of pluripotent stem cells

without the need for any other external differentiation-inducing or

lineage-promoting signals. We focused on the formation of

neuronal cells types, as this differentiation pathway is of great
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interest for many applications like potential clinical therapy of

neurodegenerative diseases or drug screening. Neuronal differen-

tiation of stem cells also offers a valuable tool to study neurogenesis

in vitro as the development of the mammalian nervous system is

hardly accessible for studies of the in vivo situation. Here, we show

that ectopic expression of the neuronal basic helix-loop-helix

transcription factor Neurogenin2 (Ngn2) is sufficient to induce and

promote neuronal differentiation of mESCs towards the appear-

ance of mature, functional neurons. Ngn2-mediated differentiation

is fast and efficient and occurs even in the presence of external

pluripotency-promoting signals like serum, leukemia inhibitory

factor (LIF), or inhibitors of defined signaling pathways. Further-

more, our results indicate that Ngn2 induces a specific neuronal

differentiation process that is – in certain aspects - reminiscent of

the corresponding in vivo situation.

Materials and Methods

Plasmids
The Ngn2 expression construct was a kind gift from F. Guillemot

and contains the coding sequence of Ngn2 with a N-terminal myc

tag under control of the CMV promoter. As a transfection control,

cells were co-transfected with pEGFP(C1)-Zeo, a vector coding for

a fusion protein of the fluorescent protein EGFP and the zeocin

resistance under control of the CMV promoter. Ratios were

1.5 mg expression vector +0.5 mg pEGFP(C1)-Zeo. Control cells

were transfected with EBFP-N1 (kind gift of R. Campbell,

P. Daugherty, and M. Davidson) instead of the Ngn2 expression

construct.

For generation of the Ngn2 induction constructs the pminiTol2/

MCS vector (kind gift from S. Ekker), that contains the tol2

recognition sites, was modified by inserting a CMV promoter and

a polyA tail resulting in the vector pMTCpA. For generation of

the P2Angn2 construct the EGFP-Zeo coding sequence was

amplified by PCR with primers containing flanking lox sites. PCR

product was inserted in pMTCpA resulting in pMTC-EGFP-Zeo.

Subsequently, the CMV promoter was replaced by ef1a1

promoter resulting in pMTE-EGFP-Zeo. Then, the coding

sequence of Ngn2 was amplified by PCR and inserted in pMTE-

EGFP-Zeo resulting in pMTE-EGFP-Zeo-ngn2. Puromycin resis-

tance gene and 2A sequence were amplified by PCR and cloned

into pMTE-EGFP-Zeo-ngn2 resulting in the final P2Angn2

construct.

For generation of the CreP2Angn2 construct the coding

sequence of CreERT2 linked to a 2A sequence was amplified by

PCR and cloned into pMTE-EGFP-Zeo-P2Angn2.

Cell Culture
Mouse ES cells were a subclone of an established ESC line

originally named E14 [8]. ESCs were grown at 37uC, 5% CO2 on

gelatin coated wells in DMEM with stable glutamine (Invitrogen,

4 mM), 10% FBS, sodium pyruvate (1 mM), non-essential amino

acids (0.1 mM), penicillin/streptomycin, ß-mercaptoethanol

(0.1 mM), and LIF (1000 U/ml). For all experiments in serum-

containing medium, the same batch of fully defined FBS (PAA)

was used. For 2i medium culture conditions, cells were transferred

to Knock-out DMEM (Invitrogen) supplemented with knock-out

serum replacement (Invitrogen), stable glutamine (Invitrogen,

4 mM), penicillin/streptomycin, non-essential amino acids

(0.1 mM), sodium pyruvate (0.1 mM), ß-mercaptoethanol

(0.1 mM), LIF (1000 U/ml), PD0325901 (StemGent, 1 mM), and

CHIR99021 (StemGent, 3 mM).

During all differentiation experiments, medium was changed

every day. If differentiation was performed in the absence of LIF,

cells were transferred to stem cell medium without LIF beginning

from the day of transfection/recombination.

Transfections were performed using the Fugene HD transfec-

tion reagent (Roche) following the manufacturer’s instructions.

Transfection was performed for 24 hours. Total amounts of

transfected DNA were 2 mg per 6-well, 1 mg per 12 well and

0.6 mg per 24 well. Transfection efficiency estimated by expression

of cotransfected fluorescent proteins was about 40–50 percent.

Transiently transfected cells were selected with zeocin (100 mg/ml)

starting at 2 days post transfection (dpt).

For electrophysiology, E14-P2Angn2 cell line was used that

allows induction of Ngn2 expression and the puromycin resistance

gene by addition of Cre recombinase as transducible protein.

For generation of E14-P2Angn2 and E14-CreP2Angn2 cell line,

the tol2 transposase system [9] was used. Cells were transfected

with a construct containing the coding sequence of the tol2

transposase under control of the CMV promoter and the P2Angn2

construct or the CreP2Angn2 construct, respectively, at ratio of

2:1. Subsequently, cells were grown at very low density and

selected with zeocin (100 mg/ml) for 10 days to allow the

formation of single colonies. Single colonies were picked manually

under a microscope, expanded, and checked for correct function

of the induction constructs. For each cell line, one clone was

chosen for further analysis.

For protein transduction, E14-P2Angn2 cells were seeded as

single cell suspension on gelatin coated wells. After cell adhesion,

cells were treated with serum-free stem cell medium containing

2.5 mM TATCre recombinase [10] (kind gift from F. Edenhofer)

for 4 hours. Then, cells were kept in LIF-free, serum-containing

medium.

For induction of Ngn2 expression in E14-CreP2Angn2 cell line,

CreERT recombinase [11] was activated by treating the cells with

4-hydroxytamoxifen (4OHT). 4OHT stock solution (1 mM,

dissolved in 100% ethanol) was diluted 1:1000 in cell culture

medium to a final concentration of 1 mM. Mock cells were treated

with the same volume of 100% ethanol. After 18 hours, medium

was changed for both 4OHT and mock treated cells. Medium

consisted of complete ESC growth medium with and without LIF,

respectively. For combination of medium-based and Ngn2-induced

differentiation, cells were transferred to N2B27 medium (1:1

DMEM/F12 and Neurobasal supplemented with N2, B27 and

penicillin/streptomycin) after 4OHT treatment.

For both E14-P2Angn2 and E14-CreP2Angn2 cell line, puro-

mycin selection was started 2 days post recombination (dpr) at a

concentration of 1 mg/ml and raised to 2 mg/ml 5dpr. Puromycin

selection was continued until the end of the experiments.

For, coculture experiments, E14-CreP2Angn2 cells were seeded

on poly-D-lysine coated coverslips and Ngn2 expression was

induced by treatment with 4OHT. Differentiating cells were

cultured in serum-containing stem cell medium without LIF and

selected with puromycin. Medium was changed every day. 8dpr,

cells were labeled with CellTrackerTM Green CMFDA (Invitro-

gen) according to the manufacturer’s instructions and cultured

together with hippocampal neurons from C57Bl/6 mouse fetuses

at E18 (breeding pairs from Harlan-Winkelmann, Borchen,

Germany) in MEM with 2% B27, 0.22% sodium bicarbonate,

1 mM sodium pyruvate, 2 mM L-glutamine, 1% Penicillin/

Streptomycin, and 0.6% glucose. Cultures were incubated at

37uC under 5% CO2/95% air and 90% humidity for 12 days.

Medium was changed every second day.

RT-PCR
Total RNAs were isolated from cell cultures using the Total

RNA Isolation Reagent (AB Gene). Samples were digested with
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DNAseI (Fermentas) to exclude gDNA contamination followed by

cDNA synthesis (Fermentas).

Polymerase chain reactions from 25 ng cDNA were run with the

following primers: Ef1a1 59- GGTGACAACATGCTGGAGC-

CAAGTG-39, 59-CCCACAGGGACAGTGCCAATGC-39; dcx 59-

CCATTGACGGATCCAGGAAG-39, 59-TCTGGCTTGAGCAC-

TGTTGC-39; math3 59-GCCCAGAGACTGTGGTACTGA-39,

59-AGAGCCCGGTCTTCTCTCTT-39; neuN 59-AGGACTACT-

CCGGCCAGACC-39; 59-TAGTCGTTTGGGCTGCTGCT-39,

endogenous ngn2 59-GACATTCCCGGACACACACC-39, 59-

CTCCTCGTCCTCCTCCTCGT-39; olig2 59-ACAGACCGAGC-

CAACACCAG-39, 59-CGGGCAGAAAAAGATCATCG-39; pax6

59-GAAGCGGAAGCTGCAAAGAA-39, 59-GGAGTGTTGCTG-

GCCTGTCT-39; sox1 59-GCTGCAGTACAGCCCCATCT-39, 59-

GGCTCCGACTTGACCAGAGA-39; vGLUT1 59-CGCTTGT-

TTCTGCCTGTGTG-39, 59-TGGTTAGGCGAGCCTTGAAA-

39; vGLUT2 59-CAATTTAAATCTGGTAAGGCTGG-39, 59-

CCTTCTTCTCAGGCACCTC-39; transient ngn2 59-TCGC-

CCGCTAGCCCCGGGTC-39, 59-CAAGCGGCTTCGGCCAG-

TAACGTTA-39; inducible ngn2 59-GTGCATGACCCGCAA-

GCCCG-39, 59-CTCCTCGTCCTCCTCCTCGT-39; th 59-GG-

CTTCTCTGACCAGGCGTA-39, 59-TCCTCCAGCTGTGGAA-

TGCT-39; gad1 59-GCGCACAGAGACCGACTTCT-39, 59-CTT-

CCATGCCTTCCAGCAAC-39; oct4 59- CACGAGTGGAAAG-

CAACTCA-39, 59- AGATGGTGGTCTGGCTGAAC-39, nanog 59-

AAGTACCTCAGCCTCCAGCA-39, 59- GTGCTGAGCCCT-

TCTGAATC-39; afp 59- CTCAGCGAGGAGAAATGGTC-39, 59-

GGTGATGCATAGCCTCCTGT-39, insulin 59- ATTGTTTCAA-

CATGGCCCTGT -39, 59- CTTGTGGGTCCTCCACTTCAC -

39; myoD1 59- CTACGACACCGCCTACTACAGTGA-39, 59-

CCTCTGCTGCTGCAGTCGATCT-39, PU1 59- CTCCATCA-

GACACCTCCAGGGG-39, 59- CAGCTACAGCAGCTCTATC-

GCC-39.

For positive controls, cDNAs from the following tissues or cell

lines were used: brain for neuroectodermal markers, embryonic

stem cells for pluripotency markers, liver for endodermal markers,

muscle and liver for mesodermal markers.

Quantitative RT-PCR was performed from 25 ng cDNA for 40

cycles with SYBR Green reagents and amplifications were

detected with a Biorad-iCycler. Ef1a1 primers were used for

template normalization. Each reaction was performed in triplicate.

Data from three independent experiments were analysed and the

average value +/2 SD is shown. To evaluate significance,

Student’s t-test was performed.

Immunofluorescence
Immunofluorescence staining was performed as described [12]

using anti-Tuj1 antibody (Novus Biologicals, 1:1000), anti

MAP2ab antibody (Acris Antibodies GmbH, 1:250), anti-Nanog-

antibody (antikoerper-online, 1:1000), anti-Stat3 antibody (Santa

Cruz, 1:1000), anti-vGlut1 antibody (SynapticSystems, 1:1000),

anti-tau antibody (SynapticSystems, 1:1000), anti-NR1 antibody

(Sigma, 1:1000), anti-Synapsin 1 (SynapticSystems, 1:1000), anti-

MAP2 (Chemicon, 1:500), anti-Tuj1 (R&D systems, 1:600), anti-th

(Sigma, 1:500), anti-myc (cell signalling, 1:2000), Hoechst 33258

(Molecular probes), and DAPI (Sigma).

For staining of coculture experiments, 10% normal horse serum

(NHS) instead of 5% BSA was used for blocking.

Quantification Experiments
For all experiments, an equal number of cells were seeded for

Ngn2 and mock treatment.

To determine efficiency of neural differentiation after transient

transfection, Tuj1 positive cells were counted in an area of

15.04 mm2. Data from three independent experiments were

evaluated using Student’s t-test and Figures display mean +/2 SD.

To determine efficiency of neural differentiation in E14-

CreP2Angn2 cells, total cells and Tuj1 positive cells were counted

in an area of 3 mm2. Data from three independent experiments

were evaluated using Student’s t-test and Figures display mean +/

2 SD.

For quantification of Nanog expression 3dpr, total cells and

Nanog positive cells were counted in six to eight representative

stem cell colonies for mock and 4OHT treated cells. Data from

three independent experiments were evaluated using Student’s t-

test and Figures display mean +/2 SD.

Microscopy
Light microscopy was performed using a Leica DMI6000B

inverted microscope. Confocal microscopy was performed using

either a Nikon C1 confocal microscope or a SP5 Confocal

Microscope (Leica). All images were analysed using ImageJ

software.

Electrophysiology
Whole-cell recordings [13] were performed at room tempera-

ture in a bath solution consisting of 125 mM NaCl, 2.5 mM KCl,

2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, pH 7.4. Patch

pipettes were pulled from borosilicate glass capillaries (Kimble

Products, England), and heat-polished to give input resistances of

3–7 MV (pipette resistance, whole-cell). The pipette recording

solution contained 140 mM KCl, 2 mM MgCl2, 0.01 mM CaCl2,

1 mM ethylene-bis(oxyethylenenitrilo) tetraacetate (EGTA),

1 mM Na2ATP, 0.1 mM cyclic AMP, 0.1 mM ATP and 5 mM

HEPES (pH 7.3, adjusted with KOH). Currents were recorded

with an EPC9 (Heka) patch clamp amplifier and low pass-filtered

at 1–2 kHz. Stimulation and data acquisition were controlled by

the PULSE/PULSEFIT software package (Heka) on a Macintosh

computer, and data analysis was performed with IGOR software

(WaveMetrics, Lake Oswego, USA).

Results

Ngn2 is Sufficient to Induce Neuronal Differentiation
Murine ESCs were transiently co-transfected with a myc-tagged

Ngn2 expression construct and GFPzeo, a fusion protein of GFP

and the zeocin resistance protein allowing both visualization and

selection of transfected cells. LIF, which prevents differentiation of

mESCs under standard growth conditions, was withdrawn from

the medium. Apart from LIF removal and zeocin selection, no

other changes to either the medium or growth conditions were

performed. Five days post transfection (dpt), cells with neuronal

morphology could be detected in Ngn2-transfected cultures. These

cells expressed pan-neuronal proteins Tuj1 and Map2ab (Fig.

S1A-D) suggesting the formation of neurons upon Ngn2 transfec-

tion. Immunofluorescence staining using anti-myc-Tag antibody

confirmed that Tuj1+ cells expressed ectopic Ngn2 (Fig. S2A-C).

To investigate the process of differentiation at the molecular

level, we analyzed the gene expression pattern of the Ngn2-

transfected cells 5 and 7dpt and compared it to that of untreated

and mock-transfected ESCs (Fig. S1K). We focused on the typical

pan-neural marker genes Math3, Olig2, and Sox1, which are all

known to be activated early during neuronal development [14–

16]. Furthermore, different studies show that each of these genes

plays an important role during the in vivo development of

functional neurons as loss of function always results in severe

neuronal defects [17–19]. Moreover, expression of the late

neuronal marker genes Dcx and NeuN was analyzed. During

Single Gene Induced Differentiation
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embryonic neurogenesis, Dcx is expressed in migrating early

postmitotic neurons [20,21] and NeuN in terminally differentiated

postmitotic neurons [22]. All investigated genes were clearly

upregulated in the Ngn2-transfected cells and were either not

transcribed or only at background levels in mock-transfected cells.

Furthermore, Ngn2-transfected cells showed a weak induction of

endogenous Ngn2 at both 5 and 7dpt. This expression profile

confirms at a molecular level the induction and progression of

neural differentiation upon Ngn2 transfection.

To determine the efficiency of Ngn2-induced differentiation and

to exclude the possibility of neurons arising due to random

differentiation, we determined the number of Tuj1 positive cells in

a wide field scan of Ngn2-transfected versus mock-transfected cells.

After Ngn2 transfection, a significantly higher number (p = 0.0046

(5dpt), p = 0.0012 (7dpt)) of Tuj1 positive cells was detected

compared to mock-transfected cells (Fig. S1L).

Next, we wanted to investigate if ectopic expression of Ngn2

induces the loss of stem cell identity which is a typical step during

the early phase of differentiation processes. Immunofluorescence

staining for the stem cell marker Nanog [23,24] 3dpt revealed a

loss of Nanog expression specifically in Ngn2-transfected cells (Fig.

S1E-J).

Ngn2-mediated Differentiation is Not Counteracted by
Pluripotency-promoting Signals

Hitherto, the data indicated that transient expression of Ngn2 is

able to induce neuronal differentiation. Next, we wanted to

determine the inductive strength of the signal mediated by Ngn2.

Thus, mESCs were transfected with Ngn2 and, for the full duration

of the following experiments, were kept in adherent culture in

complete ESC medium containing serum and LIF. To confirm the

presence of active LIF signaling, non-transfected mESCs were

treated with conditioned medium from Ngn2-transfected cells and

stained for STAT3, a known effector of LIF signaling [25] (Fig.

S3). The staining showed a clear nuclear localization of STAT3

confirming the presence of active LIF in the medium of Ngn2-

transfected cells.

Surprisingly, even under these pluripotency-supporting condi-

tions, Ngn2-transfected cells adopted a neuronal morphology and

expressed Tuj1 and Map2ab within 5dpt (Fig. 1A-H). Immuno-

fluorescence staining for myc-Tag confirmed that Tuj1 positive

cells expressed ectopic Ngn2 (Fig. S2D-F). Mock-transfected cells

did not show any specific Tuj1 staining and continued to grow in

stem cell like colonies (Fig. 1B, 1D). Quantification of Tuj1

positive cells confirmed that a significantly higher number of

neurons (p = 0.0156 (5dpt), p = 0.0013 (7dpt)) was detected in

Ngn2-transfected cells compared to mock-transfected cells (Fig. 1P).

Moreover, even in the presence of LIF, loss of Nanog expression

was detected specifically in Ngn2-transfected cells (Fig. 1I-N).

Analysis of the gene expression pattern of Ngn2-transfected cells

in LIF-containing medium led to similar results compared to cells

differentiated in the absence of LIF: Early and late neural marker

genes were upregulated (Fig. 1O) except for endogenous Ngn2

which could neither be detected in Ngn2-transfected nor in mock-

transfected cells (data not shown).

Establishment of an Inducible Ngn2 Expression System
for Efficient and Homogenous Neural Differentiation

A differentiation system based on transient transfection has

several disadvantages: Differentiation directly correlates with

transfection efficiency and probably with copy number of

transfected plasmids per individual cell. Furthermore, complete

elimination of non-transfected cells is difficult. To overcome these

problems, we generated a clonal transgenic mESC line (E14-

CreP2Angn2) allowing induction of Ngn2 and subsequent selection

of Ngn2-expressing cells. Upon activation of CreERT by tamoxifen

treatment, GFPzeo expression is replaced by expression of Ngn2

and the puromycin resistance gene (Fig. 2A-E). Thus, by allowing

the generation of a homogenous culture of stem cells expressing

Ngn2 the E14-CreP2Angn2 cell line enables a detailed analysis of

the Ngn2-induced differentiation process.

First, loss of stem cell identity upon Ngn2 induction was analysed

(Fig. 2F, Fig. S4). Three days post recombination (3dpr), Nanog

positive cells represented about 65 percent in control cells in the

presence of LIF. This result is in agreement with previous studies

showing a fluctuation of Nanog expression in mESCs [26].

Induction of Ngn2 expression resulted in a significant decrease of

Nanog positive cells (33 percent). Likewise, in the absence of LIF,

the number of Nanog positive cells was significantly reduced in

Ngn2 expressing cultures compared to control cultures (Fig. 2F,

Fig. S4).

Next, we analysed whether induction of Ngn2 resulted in

neuronal differentiation. Seven dpr, Tuj1 positive cells with

neuronal morphology were detected in both LIF-free and LIF

containing conditions (Fig. 2H, 2I). Tuj1 positive cells represented

about 40 percent of total cells in the absence of LIF and about 16

percent in the presence of LIF (Fig. 2G, Fig. S5A). The lower

percentage observed in the presence of LIF resulted from a higher

number of total cells. Possibly, LIF promoted the higher

proliferation of cells that did not respond to Ngn2 expression by

neuronal differentiation. This interpretation is also supported by

the fact that - in the presence of LIF - differentiating cultures still

contained stem cell-like colonies (Fig. 2H). Immunofluorescence

staining confirmed that these colonies predominately consisted of

Nanog+/Tuj1- cells (Fig. S5B-D). To further determine the fate of

cells that did not form neurons upon Ngn2 induction, the

expression of pluripoteny markers (Nanog, Oct4), mesodermal

(MyoD1, PU.1) and endodermal markers (Afp, Insulin) was analysed

(Fig. S5E). These data revealed that 7dpr both in LIF-free and

LIF-containing conditions, mRNA of pluripotency markers was

still detectable with only a slight downregulation of Nanog in LIF-

free conditions. Meso- and endodermal markers, however, were

not specifically upregulated in 4OHT-treated cultures as it was the

case for neuronal markers (Fig. 3A). This indicates that cells

expressing ectopic Ngn2 either remained in a pluripotent state or

underwent neuronal differentiation.

Next, we wanted to analyse in detail the neuronal differentiation

process occurring in E14-CreP2Angn2 cells. Gene expression

pattern of the resulting neurons differentiated without LIF was

highly similar to that observed in transient transfection experi-

ments. Early and late neuronal marker genes were activated, albeit

Sox1 was not upregulated. Additionally, we detected activation of

the early neural marker Pax6 [27] (Fig. 3A). In the presence of LIF,

E14-CreP2Angn2 derived neurons showed a similar gene expres-

sion pattern with upregulation of Dcx, Math3, NeuN, Olig2, and

Pax6 (Fig. S6).

Quantitative real-time PCR was performed to determine the

expression levels of ectopic and endogenous Ngn2 in both transient

transfection assays and in the inducible cell line. In both setups,

endogenous Ngn2 was virtually not expressed. Expression levels of

ectopic Ngn2 at day 7 were significantly higher in the inducible cell

line compared to transient transfection assays. The presence of

LIF did not influence the levels of ectopic or endogenous Ngn2

(Fig. 3B).

More detailed characterization of differentiated cells showed

that Ngn2-derived neurons stained positive for Tau (Fig. 3C).

Furthermore, expression of vesicular glutamate receptors vGLUT1

Single Gene Induced Differentiation

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38651



Single Gene Induced Differentiation

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e38651



and 2 mRNAs was detected while markers for other neuronal

subtypes like Tyrosine hydroxylase (Th) and Gad1 were not expressed

(Fig. 3G). On protein level, cells were positive for vGLUT1 and

NMDA receptor 1 (NR1) (Fig. 3D-F, 3H-J) indicating the

formation of glutamatergic neurons. In Ngn2-derived neurons

differentiated in the presence of LIF, specific activation of vGLUT2

expression was observed on mRNA level together with a slight

activation of Th (Fig. S6). On protein level, cells stained positive for

vGLUT1 and NR1 (Fig. S7A-F). As a weak induction of Th

mRNA was detectable, we also analysed TH protein expression.

Very rarely, cells weakly expressing TH protein could be detected

(Fig. S7G-I). These data indicate that Ngn2-induced differentiation

preferably results in the appearance of glutamatergic neurons.

However, the formation of other neuronal subtypes like dopami-

nergic neurons in the presence of LIF or of a mixed, artificial

phenotype cannot be completely excluded.

Functional Features of Ngn2-induced Neurons
To test if Ngn2-derived neurons show functional features of

terminally differentiated neurons whole-cell patch-clamp record-

ings were performed. In the voltage-clamp mode voltage-gated

currents typical for terminally differentiated neurons could be

observed. Depolarizing pulses from a holding potential of

270 mV elicited fast-activating transient inward currents typical

for voltage-activated Na+-currents (Nav channels) followed by a

delayed outward current indicative of voltage-activated potassium

currents (Kv channels) (Fig. 4A). In the current-clamp mode

injection of depolarizing current elicited an action potential with a

duration of 5 ms and an amplitude of 105 mV (Fig. 4B).

Next, we wanted to investigate whether Ngn2-induced neurons

can form contacts with primary neurons in co-culture. In co-

culture with primary mouse hippocampal neurons, the E14-

CreP2Angn2 cells expressed the presynaptic marker synapsin-1

and formed morphologically tight contacts with the hippocampal

neurons (Fig. 4C-H).

Ngn2-induced Neuronal Differentiation in Chemically
Defined Media

Hitherto, our findings strongly suggest that Ngn2 is sufficient to

induce a neuronal differentiation process even under pluripotency

promoting signals mediated by the combination of serum and LIF.

To further strengthen this hypothesis, differentiation of E14-

CreP2Angn2 cell line was performed in 2i medium. This

chemically defined stem cell medium contains LIF, knock-out

serum replacement and two small-molecule inhibitors that are able

to maintain pluripotency and self-renewal of ESCs by the

inhibition of defined signaling pathways [28]. Seven days post

4OHT-mediated induction of Ngn2 expression, few Tuj1 positive

neurons could be detected in 4OHT treated cultures. Mock

treated cultures did not contain any Tuj1 positive cells (Fig. S8A,

S8B, S8E, S8F). This indicates that Ngn2 induces neuronal

differentiation also in 2i medium conditions albeit at lower

frequency compared to LIF and serum containing culture

conditions (Fig. S8C, S8D). Thus, one can conclude that the

induction of a neuronal fate by Ngn2 is influenced by media

conditions but does not depend on them. Ngn2-induced neuronal

formation did not require any additional signals nor was it

prevented by contradictory cues. This highlights the strength of

the signal mediated by Ngn2 and suggest that this might be

beneficial in conventional differentiation protocols. To test this

idea, E14-CreP2Angn2 cells were cultivated after Ngn2 induction

in N2B27 medium which is used in many neuronal differentiation

protocols. Immunofluorescence staining for Tuj1 5dpr revealed

that in these culture conditions neuronal cells were more frequent

compared to –LIF conditions. Furthermore, already 5dpr, neurons

cultured in N2B27 showed mature neuronal morphology and

stained positive for Tau and Synapsin (Fig. S9). This indicates that

Ngn2-induced differentiation is accelerated by the presence of a

neuronal differentiation medium.

Discussion

Exact cell fate determination is of crucial importance for correct

embryogenesis. Numerous studies indicate that certain genes are

essential for this process. However, it is still not clear if such genes

can determine cell fate on their own, or they require a specific

environment or auxiliary factors.

Ngn2 Induces Formation of Mature Neurons
In this study, we demonstrate that the bHLH transcription

factor Ngn2 is sufficient to induce efficient and rapid formation of

mature neurons from pluripotent stem cells. These results

indicate that certain genes have the potential to determine the

cell fate choice of totally uncommitted stem cells outside the

normal process of development. Several earlier studies report

that ectopic expression of certain neuronal genes like Ngn1, Ngn2,

or Ascl1 can induce the formation of neural cells from different

cell types [29,30,7,4]. In these studies, ectopic expression of the

fate-inducing genes was accompanied by changes of culture

conditions like e.g. the addition of media components known to

support the formation and survival of neuronal cells. As

especially changes in medium compositions frequently have a

considerable but often immeasurable influence on cellular

processes it is difficult to evaluate the potential of single genes

to determine cell fate decisions. Our findings prove that the cell

fate defining potential of Ngn2 is independent of additional

external or internal signals.

The process of differentiation induced by Ngn2 was confirmed

by morphology, induction of early and late neural marker genes,

expression of neuron-specific proteins, and electrophysiological

activity unique to neurons. Furthermore, Ngn2-derived neurons

formed contacts with hippocampal neurons in co-culture

signifying their ability to interconnect with physiological neuronal

networks. Although more in-depth analyses would be useful to

fully determine the subtype as well as the status of functionality

Figure 1. Induction of neuronal differentiation by transient transfection with Ngn2 in complete stem cell growth medium with LIF.
(A-D) Wide field scans of Tuj1 staining 5 days post transfection (dpt). Dark field view (A, B) showing Tuj1 positive cells in Ngn2-transfected cells (A), but
not in mock-transfected cells (B). Corresponding phase contrast images (C,D) reveal the presence of stem cell like colonies (arrows). Scale bars:
200 mm. (E-H) Close-up views of developing neurons 5dpt expressing Tuj1 (E,F) and Map2ab (G,H). Scale bars: 20 mm. (I-N) Loss of Nanog expression
(arrowheads) 3dpt in Ngn2-transfected (I,K,M), but not in mock-transfected cells (J,L,N). Transfected cells are visualized by expression of cotransfected
GFP (I,J). Scale bars: 20 mm. (O) Gene expression pattern of untreated (ut), Ngn2-transfected (d5+,d7+), and mock-transfected (d5-,d7-) mESCs 5 and
7dpt. b: Brain cDNA. Dashed line indicates grouping of different parts from the same gel. A representative result from three independent experiments
is shown. (P) Tuj1 positive cells in Ngn2-transfected and mock-transfected cells 5 and 7dpt. Absolute numbers are shown as non-differentiating cells
continue proliferating. Therefore, the relative number would not really reflect the increase of neurons upon Ngn2 compared to mock transfection.
Mean numbers +/2 SD of three independent experiments are shown.
doi:10.1371/journal.pone.0038651.g001
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Figure 2. Directed neuronal differentiation using E14-CreP2Angn2 cell line. (A) Inducible construct of E14-CreP2Angn2 cell line and
method of induction. (B-E) Loss of GFP signal in 4OHT treated cells (D,E) 1 day post recombination (dpr) (B,C) Mock treated cells. Scale bars: 20 mm. (F)
Nanog positive cells in mock and 4OHT treated cells 3dpr in the presence and absence of LIF. Columns represent mean +/2SD of three independent
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of the Ngn2-derived neurons, our data prove that Ngn2 induces

the formation of mature and at least partially functional neurons.

Ngn2- induced Differentiation Shows Features of in vivo
Neurogenesis

The gene expression pattern observed after Ngn2 transfection

revealed particularly interesting information regarding the mech-

anism of Ngn2-induced differentiation.

First, the upregulation of Dcx and NeuN indicates the progression

of the differentiation process until the mature neuron stage. Dcx is

a microtubule-associated protein that is transiently expressed in

early postmitotic migrating neurons [21,20]. Like NeuN, it is a

marker for postmitotic neurons. NeuN is a nuclear protein that

can be detected in terminally differentiated neurons throughout

the nervous system [22].

Another important observation is the upregulation of Math3 and

Olig2 during the differentiation process. Math3 is expressed in the

developing nervous system [15] and it has been shown that in vivo

Ngn2 and Math3 are expressed in a temporal sequence with Ngn2

expression preceding that of Math3 [31]. Possibly, Ngn2-mediated

differentiation in vitro follows at least partially its physiological

genetic cascade. It has also been demonstrated that in vivo Math3

augments Ngn2 activity [32]. Thus, one can speculate that in our

in vitro experiment Ngn2 does not induce unspecific neuronal

differentiation, but activates defined differentiation pathways of in

vivo neurogenesis with directed activation of its interaction

partners.

experiments. (G) Numbers of total and Tuj1 positive cells 7dpr in the presence and absence of LIF. Mean numbers +/2 SD of three independent
experiments are shown. (H, I) Tuj1 staining 7dpr of cells grown in the presence (H) or absence (I) of LIF. Nuclei are visualized by Hoechst staining.
Scale bars: 50 mm.
doi:10.1371/journal.pone.0038651.g002

Figure 3. Characterization of differentiation process of E14-CreP2Angn2 cell line in the absence of LIF. (A) Gene expression pattern of
untreated (ut), 4OHT treated (d3+,d7+), and mock treated (d3-,d7-) mESCs 3 and 7dpr. b: Brain cDNA. A representative result from three independent
experiments is shown. (B) Expression levels of ectopic and endogenous Ngn2 after transient transfection and in E14-CreP2Angn2 cell line at day 7 of
differentiation in the presence or absence of LIF. Boxes show mean +/2SD of three independent experiments. *: p,0.01. (C) Expression of neuronal
protein Tau. Scale bar: 20 mm. (G) Expression analyses of neuronal subtype markers vGLUT1, vGLUT2, Gad1, and Th. Dashed lines indicate grouping of
different parts from the same gel. A representative result from three independent experiments is shown. (D-F, H-J) Expression of vGLUT1 protein, and
NMDA receptor 1 (NR1) indicating formation of glutamatergic neurons. Scale bars: 20 mm (D-F), 10 mm (H-J).
doi:10.1371/journal.pone.0038651.g003
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Figure 4. Functionality of Ngn2-derived neurons. (A, B) Whole-cell patch clamp recordings of neurons after Ngn2-induced neuronal
differentiation 10 dpr in Ngn2-inducible cell line. Expression of Ngn2 was induced by delivery of Cre recombinase as transducible protein. (A) Voltage-
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This hypothesis is also supported by the observed upregulation

of Olig2 because Ngn2 and Olig2 have combinatorial roles in the

generation of motor neurons [33,34]. Interestingly, Olig2, together

with the related Olig1, regulates expression of Ngn2 in motor

neurons [35] in vivo. This raises the question how and why Olig2

expression was induced by ectopic Ngn2 expression in our in vitro

experiments.

Similarly, an interesting observation was the upregulation of

Sox1 and Pax6. Sox1 is known to be the earliest marker of neural

precursors and its expression precedes that of Ngn2 in vivo [14].

Pax6 was shown to directly regulate Ngn2 [36,37]. In our study,

both Pax6 and Sox1 were upregulated during Ngn2-induced

differentiation processes, namely Sox1 in transient transfection

assays and Pax6 after induction of Ngn2 in a transgenic cell line.

It is surprising that three upstream genes, Sox1, Pax6, and Olig2,

are activated in a differentiation process based on an inducing

factor which, during physiological differentiation, is located

genetically downstream in the cascade.

One hypothesis explaining this phenomenon would be that

differentiating cells recapitulate the sequence of steps documented

for neurogenesis in vivo, including stages that precede activation of

the here employed inducing factor Ngn2. This idea is supported by

a similar observation reported in another study describing cell

conversion of medakafish spermatogonia into various somatic cell

types by ectopic expression of lineage-specific TFs [38]. In that

study, the activation of genes that in vivo are located upstream of

the inducing factors was also detected for three different processes

of cell fate conversion. Likewise, TF-induced differentiation of

medakafish ESCs into melanocytes included the activation of

upstream marker genes [39]. Thus, the here reported upregulation

of Sox1, Pax6, and Olig2 during Ngn2-mediated differentiation

could be a conserved part of the in vitro differentiation process.

Alternatively, Ngn2-induced differentiation resulted in the

formation of mature Pax6 and Olig2 positive neurons which is

indicated by the increased expression of these genes in later stages

of differentiation (Fig. 3A). This idea is in line with previous

findings demonstrating that Pax6 enhances the differentiation of

neuroepithelial cells into radial glial cells and neurons [40]. Olig2

has also been shown to be expressed in the adult brain albeit only

in a small subpopulation of progenitor cells [41]. This is

contradictory to the assumption that Ngn2 expression led to the

formation of mature neurons. However, it cannot be excluded that

Olig2 has an unknown function in postmitotic neurons that has still

to be determined. Furthermore, in vitro generated neurons exist in

an artificial environment that might induce phenotypical fea-

tures – like an unusual gene expression - that are not displayed by

neurons arising during physiological development.

Nevertheless, the gene expression pattern observed during Ngn2-

mediated differentiation showed some similarities to processes of

in vivo neurogenesis that are marked by Ngn2 expression. These

similarities included the activation of interaction partners and

potential upstream regulators of Ngn2. Furthermore, the prefer-

ence towards the formation of a glutamatergic phenotype is also

reminiscent of in vivo corticogenesis where Ngn1 and Ngn2 specify

glutamatergic cortical neurons [42]. The findings presented here

indicate that Ngn2 alone can activate parts of a genetic cascade in

uncommitted stem cells. Further experiments will be required to

test this idea and to analyse the underlying mechanisms.

Nevertheless, these observations provide a new insight in the role

of key developmental transcription factors in genetic networks.

Ngn2 Breaks Intra- and Extracellular Pluripotency Signals
Another important finding of this study is that Ngn2 is able to

induce and promote differentiation under conditions normally

enhancing pluripotency. Cells were grown in medium with serum,

which is normally omitted during in vitro neuronal differentiation

protocols [43,44] and in the presence of LIF. LIF was initially

considered as a strong factor for the maintenance of pluripotency

[45,46] and has been shown to have an inhibitory effect on neural

determination of stem cells [47]. Other studies, however, report

that LIF enhances the differentiation of ESCs into neural

progenitor cells albeit mainly as a permissive factor [43]. Thus,

the role of LIF during the formation of neural cell types from ESCs

is not definitely clear and probably depends on other environ-

mental factors. In our study, addition of LIF was combined with

conditions normally used to enhance the proliferation of undiffer-

entiated stem cells. Our results prove that even under these

conditions Ngn2 expression leads to the loss of pluripotency

markers like Nanog suggesting that the network maintaining

pluripotency can be overcome by single defined signals. This idea

is also strengthen by the fact that Ngn2-induced neuronal

differentiation did also occur in chemically defined 2i medium.

Thus, although these pluripotency promoting conditions affected

the efficiency of the Ngn2-induced differentiation process, they

were not sufficient to prevent it. This proves that the signal

mediated by Ngn2 does not depend on extracellular cues.

Interestingly, our data indicate that not all cells that express

ectopic Ngn2 differentiate into neuronal cells. Gene and protein

expression analyses suggest that these non-responsive cells are

Nanog and Oct4 positive and –in the presence of LIF – form stem-

cell like colonies. Thus, Ngn2-expressing cells either undergo a

neuronal differentiation process or retain features of pluripotent

stem cells. One possible explanation for this varying responsiveness

to Ngn2 could be the heterogeneity of mESC cultures. Indeed, it

has been shown that mESCs oscillate between various states that

are more or less prone to various differentiation cues

[26,48].These oscillations could influence the ability of mESCs

to undergo a differentiation process upon Ngn2 expression.

Altogether, the here demonstrated potential of Ngn2 to define

cell fate decisions in vitro is in line with the dominant role of Ngn2

during neurogenesis in vivo. During mouse embryogenesis, Ngn2

expression is detected widely in the developing CNS and PNS [49]

and Ngn2 knockout mice exhibit severe neural defects and die

shortly after birth [31]. Interestingly, it has been shown that the

Ngn2-related Ngn1 can specify a neural fate in a non-physiological

context in zebrafish embryos [50]. Although it cannot be excluded

that in that study the effects of Ngn1 were influenced by unknown

factors of the in vivo environment one can assume that Neurogenins

have the ability to define a neuronal identity in non-neuronal cells.

This hypothesis is confirmed by our data demonstrating that Ngn2

can induce and promote a complete neuronal differentiation

process.

clamp recording upon application of depolarizing pulses ranging from 280 mV to +40 mV from a holding potential of 270 mV. Transient Na+ inward
current (also: inset at 220 mV) were followed by sustained K+ outward current (inset: at +40 mV). (B) Current-clamp recording upon injection of a
depolarizing pulse elicits a fast and high-amplitude action potential. (C-H) Contacts of Ngn2-induced neurons with primary hippocampal neurons at
day 12 of co-culture and in total 20dpr. (C) CellTrackerTM Green CMFDA (CT) labeled Ngn2-mESC derived neurons (magenta). (D) Nuclei visualized by
DAPI staining (blue). (E) MAP2 staining (cyan). (F) Synapsin-1 staining (yellow). (G) Overlay of CT, DAPI, and synapsin-1 staining. (H) Overlay of C, D, E,
F. Arrowheads mark the position of CT labeled Ngn2-mESC derived neurons. Scale bars: 20 mm.
doi:10.1371/journal.pone.0038651.g004
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Conclusion
In summary, our data prove that ectopic expression of Ngn2 is

sufficient to induce the formation of mature neurons from stem

cells. This is, to our knowledge, the first study reporting that a

single TF determines the fate of totally uncommitted stem cells

without the need for additional signals and independent of culture

conditions.

TF-induced differentiation therefore constitutes a promising

alternative or expansion to conventional differentiation protocols.

Ngn2-mediated differentiation is fast and robust and furthermore

differs from standard differentiation protocols in the fact that both

induction of differentiation and lineage commitment depend on a

single factor and are totally independent of external signals.

Therefore, this system is less susceptible to variability compared to

approaches depending on several parameters which each can have

unexpected effects. Thus, single gene mediated differentiation

lends itself to a model for differentiation studies that require a very

robust and reproducible differentiation process. Alternatively,

single gene mediated differentiation can be combined with

medium-based strategies to improve rapidness, efficiency, and

the levels of control over the direction of differentiation.

In addition, our findings are a proof of concept for the feasibility

of single gene mediated differentiation. We suggest that this

approach can be extended to generate other cell types if the

appropriate TFs are identified. Indeed, we were recently able to

use this approach for the generation of myoblasts by ectopic

expression of MyoD1 [51]. Importantly, this process could be

combined with the here presented Ngn2-induced differentiation

allowing the formation of neurons and myoblasts in parallel. Thus,

the concept of single gene mediated differentiation enables the

simultaneous generation of unrelated cell types as mixed cultures.

Moreover, the here presented system provides a valuable tool

for studies of neural development, the loss of pluripotency, and

effects of key developmental genes on cell fate decisions.

Supporting Information

Figure S1 Induction of neuronal differentiation by
transient transfection with Ngn2 in the absence of LIF.
(A-D) 5dpt, Ngn2-transfected cells display neuronal morphology

and express neuronal marker proteins like Tuj1 (A,B) and Map2ab

(C,D). (B,D) Overlays of immunofluorescence staining and

Hoechst staining. Scale bars: 20 mm. (E-J) Loss of Nanog

expression (arrowheads) 3dpt in Ngn2-transfected (E,G,I), but not

in mock-transfected cells (F,H,J). Transfected cells are visualized

by expression of cotransfected GFP (E,F). Scale bars: 20 mm. (K)

Gene expression pattern of untreated (ut), Ngn2-transfected (d5+,

d7+), and mock-transfected (d5-, d7-) mESCs 5 and 7dpt. b: Brain

cDNA. Dashed lines indicate grouping of different parts from the

same gel. A representative result from three independent

experiments is shown. (L) Tuj1 positive cells in Ngn2-transfected

and mock-transfected cells 5 and 7dpt. Absolute numbers are

shown as non-differentiating cells continue proliferating. There-

fore, the relative number would not really reflect the increase of

neurons upon Ngn2 compared to mock transfection. Columns

show mean +/2SD of three independent experiments.

(TIF)

Figure S2 Expression of ectopic Ngn2 specifically in
developing neurons differentiated in the absence (A-C)
or the presence (D-E) of LIF. Immunofluorescence staining

for myc-tagged Ngn2 (A, D) and Tuj1 (B, E) in Ngn2-transfected

mESCs 5dpt Overlays (C, F) reveal that neurons express ectopic

Ngn2. Scale bars represent 20 mm.

(TIF)

Figure S3 STAT3 immunofluorescence staining proving
active LIF signaling. (A) Colony of non-transfected mESCs

treated for 24 hours with conditioned medium from Ngn2-

transfected cells. (B) STAT3 staining. (C) Nuclei visualized by

Hoechst staining. (D) Overlay of B and C showing nuclear

localization of STAT3. Scale bars: 20 mm.

(TIF)

Figure S4 Loss of Nanog protein expression in E14-
CreP2Angn2 cells upon induction of Ngn2 expression by
4OHT treatment. 4OHT (D-F) and mock treated cells (A-C)

3dpr in the presence of LIF. 4OHT (J-L) and mock treated cells

(G-I) 3dpr in the absence of LIF. Scale bars: 20 mm.

(TIF)

Figure S5 Neuronal differentiation in E14-CreP2Angn2
cells. (A) Efficiency of neuron formation 7 days post recombina-

tion in the presence (16.7%) and absence of LIF (41.8%). Columns

show mean +/2SD of three independent experiments. (B-D)

ESC-like colonies (arrow) remaining in Ngn2-expressing cultures in

the presence of LIF. Immunofluorescence of E14-CreP2Angn2

cells 7dpr for Nanog (B) and Tuj1 (C). (D) Overlay showing

Nanog+/Tuj1- cells. Scale bars: 50 mm. (E) Expression of non-

ectodermal differentiation and of pluripotency markers in 4OHT

(d7+) treated and mock treated (d7-) E14-CreP2Angn2 cells 7dpr

differentiated in the presence or in the absence of LIF. A

representative result from three independent experiments is

shown. (ut) untreated. (+) positive control.

(TIF)

Figure S6 Neuronal marker expression of E14-Cre-
P2Angn2 derived neurons differentiated in the presence
of LIF. (ut) untreated, (d7+) 4OHT treated, (d7-) mock treated, (b)

Brain cDNA. Dashed lines indicate grouping of different parts

from the same gel. A representative result from three independent

experiments is shown.

(TIF)

Figure S7 Neuronal differentiation of E14-CreP2Angn2
cell line in the presence of LIF. Expression of vGLUT1 (A-C)

and NR1 (D-F) indicating the formation of glutamatergic neurons.

(G-I) Very rarely, cells positive for TH (arrows) could be detected.

Scale bars: 20 mm (A-C), 10 mm (D-F), 50 mm (G-I).

(TIF)

Figure S8 Neuronal differentiation of E14-CreP2Angn2
cells in chemically defined 2i medium. Overlays of Tuj1

and Hoechst staining 7dpr. (A, B) Induction of Ngn2 results in

neuron formation in 2i medium (A, arrowheads) with no neurons

detectable in mock-treated cells (B). (C, D) Ngn2-induced neuron

formation is more efficient in LIF and serum containing medium.

(E, F) Close-up of representative Tuj1 positive neuronal cells

detected 7 days post recombination in 2i medium condition. Scale

bars: 100 mm (A-D), 20 mm (E, F).

(TIF)

Figure S9 Enhanced neuronal differentiation of E14-
CreP2Angn2 cells in neuronal differentiation medium
N2B27. (A, B) Wide field scans of Tuj1 staining of cells

differentiated in LIF-free ESC medium (A) or N2B27 (B) 5dpr.

Images were taken with exposure time and gain settings. Neurons

formed under N2B27 culture conditions are more frequent and

show a more mature phenotype. Scale bars: 200 mm. (C, D) Close-

ups of neurons differentiated in N2B27 medium 5dpr. Cells show

morphology of mature neurons and stain positive for Tau and

Synapsin. Scale bars: 20 mm.

(TIF)
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