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Chapter 1

Introduction

1.1 The Contribution of Multi-Reference Methods to

the Future in Computational Chemistry

The field of computational chemistry is tremendously influenced by trends in chemistry

towards material and biological sciences. Both fields of material science and biological

chemistry are characterized by large assemblies of molecules with complex compositions

in the form of supermolecules or enzymes. The complexity of these systems poses novel

challenging questions to the field of computational chemistry. This challenge is taken and

the successful development of more efficient computational methods and their application

contributes to a more thorough understanding of the factors that control material properties

or enzymatic activities with certain substrates or to determine their mode of action.

The methodological approaches to model enzyme structures and binding sites for sub-

strates is traditionally based on force field methods.[1] These approaches are accurate enough

to give some insights into equilibrium structures and provide a qualitative understanding of

the binding sites, but reliable predictions for reaction profiles or already for the geometrical

structure and the electronic states for many transition-metal containing enzymes are very

difficult to obtain. Therefore well-founded predictions based on reliable theoretical methods

are the challenge of computational chemistry today and in the future.

For enzymes a combination of quantum-mechanical and force field methods can be ap-

1



2 Introduction

Figure 1.1: X-ray structure of a Cytochrome P450 enzyme with camphor as oxidized com-

pound (left-hand side) and the Fe-porphyrine active site of the enzyme (right-hand side).

The structure is available from the Brookhaven Protein Database, PDB code 1DZ9.[24]

plied[2] where the reaction at the active site and the closest surrounding is described by

quantum-mechanical methods (QM part) and the remaining protein is modeled by means

of molecular mechanics (MM part). The approach abbreviated as QM/MM helped substan-

tially to understand enzyme reactions like the mode of action of a Cytochrome P450.[3, 4]

Recent developments for MP2,[5–9] Coupled Cluster[10–13] or DFT[14–17] methods have re-

duced the computational cost for large-scale systems to a linear-dependency allowing the

treatment of systems up to some hundred atoms and up to a few thousand basis functions.

The accessibility of methods treating systems of that size is very appealing and lead to

fruitful studies in many cases.

The accuracy of these methods, however, is intimately connected with the assumption that

a wavefunction, consisting of only one Slater determinant, already represents a very good

approximation, i.e. encompasses the nature of the electronic state under consideration to

80% or more. For many systems, e.g. radicals, diradicals,[18] or transition metal compounds

with open shells,[19–23] this assumption does not hold anymore. Here a one determinant

wavefunction reflects much less of the character of the electronic state and as a consequence,

all methods which base on this single-reference starting point become quite unreliable.

One example of a system that possesses such a difficult electronic structure is the iron-

porphyrine active site in Figure 1.1 oxidizing a camphor substrate. The QM part was
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described by DFT methods although the substantial difficulties with open-shell transition

metals are known.[19–23] For these systems multi-reference methods like multi-reference

configuration interaction (MR-CI) or multi-reference perturbation theory (MR-PT) should

provide more accurate results because they rely on a more thorough theoretical foundation.

At least, such methods are needed to validate approaches that are supposed to be inferior in

their theoretical foundation. Applications of multi-reference methods to systems of that size

which usually do not possess any symmetry constraints have not been applied routinely1

but the development of more efficient algorithms to establish these methods is in steady

progress.

1.2 A Brief Overview on Multi-Reference Methods

The advantage of multi-reference methods is their great flexibility which enable these ap-

proaches to describe reaction paths or excited states very accurately.[28,29] In the beginning

of the field of computational chemistry multi-reference methods like MR-CI focused on the

properties of atomic or small molecular systems. The choice of the systems was originally

limited by the available computer power and restricted to the access to a few ”supercom-

puters”. The nowadays application of multi-reference methods to problems which are of

interest to the experimental chemist or physicist, would have been impossible without the

rapidly growing computational performance at a reasonable cost of ownership and without

the development of new concepts and algorithms to reduce the scaling of the computational

cost without a (significant) sacrifice of accuracy.

One of these algorithms is the selecting MR-CI of Buenker and Peyerimhoff[30, 31] which

was later improved by Hanrath and Engels[32] in form of the DIESEL program package.

In individual selection schemes an estimate of the energy contribution of each configuration

to the total energy is used to select those configurations which are important and enter

the CI routines. The contributions of the neglected space are extrapolated by the com-

puted energy estimates employing perturbational approaches. This ansatz surely requires

a certain experience but reproduces as accurate results as full MR-CI procedures. This

1In this context computations of porphyrine systems are commonly used for ”large-scale” benchmark

computations[25–27] but are usually performed in D2h symmetry, which reduces the computational cost

(integrals and time) by about a factor roughly corresponding to the order of the point group.
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individual selection concept was transferred later by Grimme to a MR-MP2 program.[33]

The experience which is required to use the individual selection methods in a reliable way

originates from the nearly arbitrary composition of the selected interaction space. In the

selected space basically every combination of interacting configurations has to be evaluated

explicitely unless sophisticated data structures to represent the selected configuration spaces

are applied as in the approach of Hanrath and Engels. The full evaluation requires a large

amount of computational time once the selected spaces grow rapidly as for large molecules

but the required effort is reduced by the latter approach.

Another approach to reduce the computational cost of a MR-CI was proposed by Meyer[5, 34]

who internally contracted the reference wavefunction. The interaction space was generated

by annihilation and creation operators on the whole reference wavefunction and not on each

configuration. The internal contraction scheme reduces the computational cost to that of a

single-reference CI treatment, but increases the complexity of the evaluation of interactions

between the spin eigenfunctions. The internally contracted methods are not exact but rep-

resent approximations to the solution of the full problem with negligible errors.[5] Werner

and Knowles also applied a partitioning scheme of the configuration space which is necessary

to achieve an efficient implementation of an integral-direct method. Modified algorithms of

these concepts were also applied to an internally contracted MR-PT2[27] in analogy to the

CASPT2 ansatz of Andersson and Roos.[35–37]

The ansatz of local correlation treatments,[5, 38–41] which was successfully applied for single-

reference post Hartree-Fock methods like MP2,[5–9,42–44] CCSD,[5, 10,11,45,46] or higher Cou-

pled Cluster schemes,[5, 12,13,47] also entered the multi-reference field. Local correlation treat-

ments have their basis in the locality of correlation effects. This means that only a rather

small assembly of orbitals in close neighbourhood is suppossed to contribute significantly to

the correlation energy. This approach therefore requires the use of local instead of canon-

ical orbitals and those orbitals assigned to one assembly is called an orbital domain. The

localization procedure is rather crucial for the performace of the method, because the com-

putational cost for the treatment of one domain possesses the same scaling as the canonical

method. Energy contributions of interactions between different domains are extrapolated

by less expensive methods (MP2 terms in the local Coupled Cluster approach or multipole

approximations for the local MP2). The choice of the domains is therefore substantial for

the computational cost of the local correlation treatment and the reliability of the results.
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Based on these concepts, local MR-PT2[48] and local MR-CI[9, 49] approaches have been

developed. The computational cost was reduced to a certain degree, but a reliable estimate

on the errors coming along with this approximation has not yet been assessed for reaction

paths or for systems with a difficult electronic or a bulky geometrical structure.[50]

1.3 Intensions and Objects of this Work

Beside their significance for the answer on chemical questions, the application of multi-

reference methods on systems with typical multi-reference character is important to evaluate

the scope of single-reference approaches with respect to their capability to describe such

complex systems. The reactivity and electronic structures of three systems representing

typical multi-reference cases were characterized in this project and in each case the reliability

of the computational approaches was assessed. The computations concerning the first system

explore the reactivity of the biologically active Neocarzinostatin chromophore, which is

known as an anti-tumor antibiotics. Compounds like the enyne-ketenes are investigated

to analyse the similarites and differences of related classes of compounds. The role of

the allenic, diradical, and zwitterionic intermediates, which are found in the cyclization of

the enyne-allenes and enyne-ketenes is further investigated for the example of the 1,2,4-

cyclohexatriene compound and its hetero-substituted analogues. The computations were

very successful since the results could answer some open questions and delivered some very

surprising new knowledge about the studied systems.

The experience with various packages like the MOLCAS,[51] MOLPRO[52] or DIESEL[53]

suite of programs, however, showed the limitations for the application of multi-reference per-

turbation theory and multi-reference configuration interaction approaches for large molecules,

which forced the use of simpler approaches. These limitations originate from the integral

handling, the implementations of the interacting space, and memory considerations and

are inherently founded in the design of the algorithms. The computational limits in the

DIESEL package concerning the MR-MP2 and MR-CI parts are mainly attibuted to the

integral handling. The program package was originally designed for small to medium-sized

molecules possessing up to 150 basis functions and requires the accessibility to all MO in-

tegrals in memory. This limits the maximum system size to about 250 basis functions on
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commodity 32 bit hardware. Further on, parallelization was only taken into account for the

selecting MR-CI procedure and implemented for shared-memory computers. The memory

requirements during the iterations to store the coefficient vectors set the limit to systems

which possess up to 100 million configuration state functions.

For large-scale multi-reference computations and in particular for the more efficient MR-

MP2 approach, an improved code was of interest. The major object of this project is to

provide a modern MR-MP2 code applicable to large molecules at a reasonable computational

cost. The idea of local correlation treatments was not considered, because the definition of

orbital domains for complex electronic systems is suppossed to be of the same difficulty to

the user as applying some selection criteria for a truncation of the interaction space.

The requirements for a code capable to perform large-scale MR-MP2 computations define

the scope of this project and are listed below:

1. The program should be applicable to molecules with up to 1000 basis functions and

configuration spaces of up to a few billion configuration state functions.

2. The structure of the program should be designed to easily incorporate extensions to

the code with respect to flexible selection schemes or other methods like MR-CI. The

selection schemes could either employ an individual selection of configurations or a

scheme based on the contributions of particular external orbitals.

3. The integrals should be only used if needed and the specific integral properties of the

MR-MP2 method should be applied to reduce integral storage as much as possible.

4. The large configuration spaces and coefficient vectors should be treated in parallel to

distribute the computational cost.

5. The storage requirements for the vectors in a parallel computation should also be

reduced as much as possible.

6. For large-scale computations the construction of the Hamilton matrix is the most

time-consuming step and should be optimized as much as possible.

An appropriate modification of the DIESEL package with respect to a parallelization

routine for distributed memory systems[54] and improved integral handling was intended
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first, but it turned out that the implementation into the existing package and porting the

C++ sources to recent C++ standard conform compilers would cost as much effort as an

implementation from scratch using some parts of the DIESEL package. Because of this

reason the decision to program a new code from scratch was taken.
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Chapter 2

Multi-Reference Perturbation Theory

The computation of reaction profiles and molecular properties constitutes the major part

of quantum-chemical applications with the intension to gain more insight and a more thor-

ough understanding about certain classes of molecules or reactions. Before the advent of

appropriate functionals in Density Functional Theory (DFT), the most common approaches

to perform these calculations were ab initio methods like Hartree-Fock (HF), second-order

Møller-Plesset perturbation theory (MP2), Configuration Interaction (CI) and the singles

and doubles Coupled Cluster ansatz (CCSD) including perturbative triples (CCSD(T)). The

HF approach is situated at the low end of the methodical hierarchy of ab initio methods and

provides the basis for all post Hartree-Fock theories (e.g. MP2, CI or CCSD(T)). The latter

ones and DFT are preferably used, since the inclusion of electron correlation is necessary

for a reliable description of the desired quantities. To give an impression about the amount

of the electron correlation, its relative value is rather small compared to the total energy.

The Hartree-Fock approach already accounts for 99% of the exact energy, but the energetic

profiles of chemical processes or molecular properties are determined by differences in the

remaining fraction of 1% of the correlation energy. In cases with near-degeneracies single-

determinant based correlation methods and DFT cannot describe the systems correctly and

multi-reference methods have to be employed. Like the MP2 ansatz, the multi-reference

perturbation theory (MR-PT) is the most cost-effective multi-reference approach compared

to multi-reference CI (MR-CI) and multi-reference Coupled Cluster (MR-CC).

Prior to the formulation of the Møller-Plesset perturbation theory and its generalization

9
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to multi-reference wavefunctions, a brief outline1 of Hartree-Fock theory is given to point

out some issues that are relevant for perturbation theories. An overview on other existing

multi-reference perturbation theory approaches finishes the chapter.

2.1 The Hartree-Fock Approach

The Hartree-Fock approach represents the most simple ab initio method to approximate the

solution of the time-independent Schrödinger equation (eq. 2.1) for many-electron systems.

Ĥ|ψ〉 = E|ψ〉 (2.1)

Eq. 2.1 is an eigenvalue equation of the Hamilton operator Ĥ acting on the electronic

wavefunction |ψ〉 and the energy E as the eigenvalue for a specific |ψ〉. For a normalized

wavefunction |ψ〉 the energy expectation value (eq. 2.2) is obtained by projection of eq. 2.1

onto the complex conjugate 〈ψ|.

E = 〈ψ|Ĥ|ψ〉 (2.2)

The most simple approximation for a many-electron wavefunction |ψ〉 that obeys the Pauli

principle is a single Slater determinant ΦSlater (eq. 2.3). In the given example, the spin-

orbitals are ordered row-wise, while the electronic coordinates are ordered column-wise.

ΦSlater =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) · · · φN(1)

φ1(2) φ2(2) · · · φN(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

φ1(N) φ2(N) · · · φN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.3)

The evaluation of the energy expression from eq. 2.2 using the single determinant wavefunc-

tion in eq. 2.3 reduces to sums over a vector h and the Coulomb and Exchange matrices J

and K, respectively2.

1Details about the HF approach can be found in standard quantum-chemistry textbooks.[55, 56]
2Notation: Many-particle operators are denoted in capital letters and single-particle operators in minor

letters. Matrices are given in bold faced letters and their corresponding matrix elements are subscripted
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E =
N∑

i

hi +
N∑

i

N∑

j>i

(Jij −Kij) + Vnn (2.4)

=
N∑

i

hi +
1

2

N∑

i

N∑

j

(Jij −Kij) + Vnn (2.5)

The indices i and j run over the occupied spin-orbitals. Equation 2.5 can also be expressed in

terms of Coulomb and Exchange operators, from which the Fock operator and the Hartree-

Fock equation are derived by a variational procedure with boundary conditions[55, 56] that

minimizes the energy expectation value with respect to variational parameters. The varia-

tional parameters are the molecular orbitals or in case of an LCAO ansatz the coefficients

of the expansion in the atomic orbital basis.[57]

E =
N∑

i

〈φi|ĥi|φi〉+
1

2

N∑

ij

(
〈φj|ĵi|φj〉 − 〈φj|k̂i|φj〉

)
+ Vnn (2.6)

ĵi|φj(2)〉 = 〈φi(1)|r̂−1
12 |φi(1)〉|φj(2)〉 (2.7)

k̂i|φj(2)〉 = 〈φi(1)|r̂−1
12 |φj(1)〉|φi(2)〉 (2.8)

f̂i = ĥi +
N∑

j

(
ĵij − k̂ij

)
(2.9)

The Fock operator f̂i is an effective one-particle operator and is associated with the variation

of the energy but not with the energy itself and only depends on the occupied molecular

orbitals (MO). The variational procedure finally leads to the Hartree-Fock equation, which

represents a pseudo-eigenvalue equation (eq. 2.10) in the basis of canonical molecular orbitals

with the orbital energies ε as eigenvalues.

f̂i|φi〉 = εi|φi〉 (2.10)

εi = 〈φi|f̂i|φi〉 (2.11)

For the discussion of Møller-Plesset perturbation theory (see Section 2.2) it is helpful to

with the respective indices.
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formulate the HF energy in terms of the orbital energies, which are given as the expectation

values of the Fock operator f̂i (eq. 2.11). From eq. 2.5

E =
N∑

i


hi +

1

2

N∑

j

(Jij −Kij)




=
N∑

i


hi +

N∑

j

(Jij −Kij)




︸ ︷︷ ︸
εi

−
N∑

i


1

2

N∑

j

(Jij −Kij)




=
N∑

i

εi −

1

2

N∑

i

N∑

j

(Jij −Kij)


 (2.12)

the total energy E is given as a sum over orbital energies of the occupied MO and the

corrections to the electron-electron interaction which is counted twice because of the Fock

operator.

The spin functions can be integrated out from the spin-orbitals and spatial functions are

obtained, which allow an easier numerical treatment.[56] In the closed-shell case, eq. 2.5 as

well as the Fock operator simplify to the spin-averaged quantities given in eq. 2.13 and 2.14.

f̂i = ĥi + 2
N/2∑

j

(
ĵij − 1

2
k̂ij

)
(2.13)

E = 2
N∑

i

hi + 2
N∑

i

N∑

j

(
Jij − 1

2
Kij

)
+ Vnn (2.14)

The computational treatment directly based on MO is quite cumbersome and was sim-

plified by the introduction of a basis set expansion of the MO into atomic orbitals (AO)

(eq. 2.15). This concept finally leads to the Roothaan-Hall equation and can be found again

in the formulation of the multi-reference perturbation theory (see Section 2.3). Because

of the basis set expansion, the MO integrals are substituted by AO integrals and the MO

coefficients are absorbed into the density matrix Dγδ. Eq. 2.16 and eq. 2.17 are eqivalent,

but given in two different notations. The former one is in the Dirac (physicist’s) notation

(indexing of electrons is 〈1, 2|1, 2〉) and the latter given in Mulliken (chemist’s) notation

((1, 1|2, 2)).

φi =
N∑
α

cαiχi (2.15)
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〈χα|f̂i|χβ〉 = 〈χα|ĥi|χβ〉+ 2
N/2∑

j

〈χα|ĵij − 1

2
k̂ij|χβ〉

= 〈χα|ĥi|χβ〉+ 2
N/2∑

j

(
〈χαφj|χβφj〉 − 1

2
〈χαφj|φjχβ〉

)

= 〈χα|ĥi|χβ〉+ 2
N/2∑

j

AO∑
γ

AO∑

δ

cγjcδj

(
〈χαχγ|χβχδ〉 − 1

2
〈χαχγ|χδχβ〉

)

= 〈χα|ĥi|χβ〉+
AO∑
γ

AO∑

δ

Dγδ

(
〈χαχγ|χβχδ〉 − 1

2
〈χαχγ|χδχβ〉

)
(2.16)

= (χα|ĥi|χβ) +
AO∑
γ

AO∑

δ

Dγδ

(
(χαχβ|χγχδ)− 1

2
(χαχδ|χγχβ)

)
(2.17)

Dγδ = 2
N/2∑

j

cγjcδj (2.18)

2.2 Rayleigh-Schrödinger and Møller-Plesset Pertur-

bation Theory

2.2.1 Rayleigh-Schrödinger Perturbation Theory

The Hartree-Fock ansatz accounts for about 99% of the exact electronic energy of an atom

or a molecule. The remaining part though is crucial for the computation of reaction profiles

as the energies involved in breaking and building bonds are lower than this fraction that

is associated with electron correlation. When comparing relative energies, the errors in

HF partially cancel out, but for many cases methods that encounter electron correlation

are necessary. Starting from the HF ansatz with a single determinant wavefunction, the

consensus in all post Hartree-Fock methods is to augment the wavefunction with additional

Slater determinants3. These determinants are generated by applying a certain excitation

scheme to the HF determinant. With this extended wavefunction one is now able to recover

electron correlation. The degree of the accounted electron correlation and the method how

the multi-determinant problem is solved depends on the excitation scheme and distinguishes

3Spin correctness has to be ensured, so if a spin-free formulation of the method is not possible, the

spin-coupling schemes have to be evaluated explicitely to obtain the matrix elements. This can be done on

the level of determinants but also on the level of Configuration State Functions (CSF), which possess the

correct spin properties.[55, 56]
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the post HF methods from each other.

The formulation of many-body perturbation theory starts from the Fock operator and not

the Hartree-Fock energy, but the treatment of the correlation energy as a perturbation is

rationalized by the previously given assumption, that the reference energy (e.g. HF accounts

for 99% of the exact energy) is a close approximation to the exact energy and the remaining

fraction is small compared to the reference energy. In this approximation, the Hamilton

operator Ĥ consequently can be split up into two parts. The first part represents the

unperturbed Hamitonian Ĥ0 while the second part is the perturbation operator V̂ (eq. 2.19).

The degree of the perturbation is encountered by the perturbation parameter λ, with λ= 0

corresponding to the unperturbed system.

Ĥ = Ĥ0 + V̂ (2.19)

Ĥ = Ĥ0 + λV̂ (2.20)

Ĥ0|Φi〉 = Ei|Φi〉 (2.21)

The solution of the Schrödinger equation in this approximation is facilitated by the require-

ment that the unperturbed system is represented by an eigenvalue equation (eq. 2.21).

(
Ĥ0 + V̂

)
|ψ〉 = E|ψ〉 (2.22)

As the degree of perturbation λ can be increased continuously from 0 to a specific value,

the energy E and the wavefunction |ψ〉 of the system also must change accordingly, and

therefore can be written in a Taylor expansion as in eqn. 2.23 and 2.24 with λ having the

order of the perturbation in the exponent.

E = λ0E0 + λ1E1 + λ2E2 + . . . (2.23)

ψ = λ0ψ0 + λ1ψ1 + λ2ψ2 + . . . (2.24)
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After the Taylor expansion, the wavefunction and also its norm depend on the power of

the parameter λ. It is normalized by intermediate normalization that defines the overlap

of the unperturbed (reference) wavefunction |Φ0〉 with the total wavefunction as 1. The

overlap of the unperturbed wavefunction and the reference wavefunction is 1 and thus the

overlap of the corrections to |ψ〉 with |Φ0〉 is zero. The intermediate normalization facilites

the evaluation of the energy and wavefunctions expressions.

〈ψ|Φ0〉 = 1 (2.25)

〈λ0ψ0 + λ1ψ1 + λ2ψ2 + . . . |Φ0〉 = 1 (2.26)

λ0〈ψ0|Φ0〉+ λ1〈ψ1|Φ0〉+ λ2〈ψ2|Φ0〉+ . . . = 1 (2.27)

〈ψi 6=0|Φ0〉 = 0 (2.28)

With the expansion of the Taylor series in eq. 2.23 and 2.24, the Schrödinger equation 2.22

equals the expression in eq. 2.29. Those terms including all perturbations up to a given order

are grouped together in eq. 2.30 to 2.33.

(
Ĥ0 + V

) (
λ0|ψ0〉+ λ1|ψ1〉+ λ2|ψ2〉+ . . .

)
=

(
λ0E0 + λ1E1 + λ2E2 + . . .

) (
λ0|ψ0〉+ λ1|ψ1〉+ λ2|ψ2〉+ . . .

)
(2.29)

λ0 : Ĥ0|ψ0〉 = E0|ψ0〉 (2.30)

λ1 : Ĥ0|ψ1〉+ V̂ |ψ0〉 = E0|ψ1〉+ E1|ψ0〉 (2.31)

λ2 : Ĥ0|ψ2〉+ V̂ |ψ1〉 = E0|ψ2〉+ E1|ψ1〉+ E2|ψ0〉 (2.32)

λn : Ĥ0|ψn〉+ V̂ |ψn−1〉 =
n∑

i=0

Ei|ψn−i〉 (2.33)

The solution for the nth order correction to the energy is obtained by projecting eq. 2.33

onto 〈Φ0| and using the intermediate normalization and the hermicity of Ĥ0 to simplify the

expression for the evaluation of the energy correction.

〈Φ0|Ĥ0|ψn〉+ 〈Φ0|V̂ |ψn−i〉 = En〈Φ0|ψ0〉+
n−1∑

i=0

Ei〈Φ0|ψn−1〉 (2.34)
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E0〈Φ0|ψn〉+ 〈Φ0|V̂ |ψn−1〉 = En〈Φ0|ψn〉 (2.35)

En = 〈Φ0|V̂ |ψn−1〉 (2.36)

The operators Ĥ0, V̂ and the wavefunction ψ are unspecified so far. Employing the

hermicity of Ĥ0 and the property of the solutions of the unperturbed Schrödinger equation

(eq. 2.21) to form a complete set (eq. 2.37), the first-order correction to the wavefunction

can be expanded into this complete set. The set of equations derived from this procedure

is known as Rayleigh-Schrödinger perturbation theory.

ψ1 =
∑

i

ciΦi (2.37)

The equation for the first-order correction (eq. 2.31) is expanded to eq. 2.39.

(
Ĥ0 − E0

)
|ψ1〉+

(
V̂ − E1

)
|Φ0〉 = 0 (2.38)

(
Ĥ0 − E0

) (∑

i

ci|Φi〉
)

+
(
V̂ − E1

)
|Φ0〉 = 0 (2.39)

The projection of eq. 2.39 onto the reference wavefunction 〈Φ0| yields the first order correc-

tion to the energy (eq. 2.44), which is an average of the perturbation operator V̂ acting on

the unperturbed wavefunction.

∑

i

ci

(
〈Φ0|Ĥ0 − E0|Φi〉

)
+

(
〈Φ0|V̂ − E1|Φ0〉

)
= 0 (2.40)

∑

i

ci〈Φ0|Ĥ0|Φi〉 − E0

∑

i

ci〈Φ0|Φi〉+ 〈Φ0|V̂ |Φ0〉 − E1〈Φ0|Φ0〉 = 0 (2.41)

∑

i

ciEi〈Φ0|Φi〉 − c0E0 + 〈Φ0|V̂ |Φ0〉 − E1 = 0 (2.42)

c0E0 − c0E0 + 〈Φ0|V̂ |Φ0〉 − E1 = 0 (2.43)

E1 = 〈Φ0|V̂ |Φ0〉 (2.44)

The term 〈Φ0|Ĥ0|Φi〉 on the left hand side of eq. 2.41 utilizes the eigenfunction property

of Ĥ0 acting on |Φ0〉 and this equation simplifies to eq. 2.42. The projection onto the

excited states with Φj 6=0 (eq. 2.47) is used to compute the first-order correction |ψ1〉 to the

total wavefunction. Projecting out the reference wavefunction |Φ0〉 ensures the two spaces
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(reference space and excited space) to be orthogonal to each other.

∑

i

ci

(
〈Φj|Ĥ0 − E0|Φi〉

)
+

(
〈Φj|V̂ − E1|Φ0〉

)
= 0 (2.45)

∑

i

ci

(
〈Φj|Ĥ0 − E0|Φi〉

)
= −

(
〈Φj|V̂ − E1|Φ0〉

)
(2.46)

∑

i

ci

(
〈Φj|Ĥ0 − E0|Φi〉

)
= −

(
〈Φj|V̂ |Φ0〉

)
(2.47)

A similar procedure can be applied to derive the equation for the second-order correction

to the energy (eq. 2.48) that is given as

E2 =
∑

i

ci〈Φ0|V̂ |Φi〉 (2.48)

2.2.2 Møller-Plesset Perturbation Theory

The equations for the wavefunction and energy corrections have been provided by the

Rayleigh-Schrödinger perturbation theory, but a suitable choice of Ĥ0 was not specified

so far. In the Møller-Plesset (MP) ansatz[58, 59] that uses the single determinant HF wave-

function as the reference wavefunction |Φ0〉, Ĥ0 is chosen to be the sum of Fock operators

over the occupied molecular orbitals. This partitioning counts the average electron-electron

interaction twice (see eq. 2.12) which has to be compensated by an appropriate choice of

the perturbation operator V̂ (eq. 2.51).

Ĥ0 =
N∑

i=1

f̂i (2.49)

=
N∑

i=1


ĥi +

N∑

j=1

(
ĵij − ĵij

)



=
N∑

i=1

ĥi + 2〈Vee〉 (2.50)

This choice of Ĥ0 gives EMP0 as the sum over orbital energies and by using eq. 2.50 the

energy up to the first-order correction EMP1 is the HF energy. The final MP2 energy is the

sum of the HF energy and the second-order correction (eq. 2.48).
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V̂ = V̂ee − 2〈V̂ee〉 (2.51)

E1 = 〈Φ0|V̂ |Φ0〉
= 〈V̂ee〉 − 2〈V̂ee〉
= −〈V̂ee〉 (2.52)

EMP0 = E0

= 〈Φ0|Ĥ0|Φ0〉

=
N∑

i

〈Φ0|f̂i|Φ0〉

=
N∑

i

εi (2.53)

EMP1 = EMP0 + E1

=
N∑

i=1


εi − 1

2

N∑

j=1

(
ĵij − k̂ij

)



= EHF (2.54)

EMP2 = E0 + E1 + E2

= EHF + E2

= EHF +
∑

i

ci〈Φ0|V̂ |Φi〉 (2.55)

The evaluation of the second-order correction can be simplified by employing the diagonal

structure of the matrix associated with the Fock operator in the basis of canonical MO. The

coefficients for the first-order wavefunction in eq. 2.47 are determined from eq. 2.56. The left

term in eq. 2.57 yields only non-vanishing matrix elements for identical configurations i and

j and reduces the matrix element to Ej. The coefficient cj is evaluated by a matrix element

of the perturbation operator and an energy difference between the expectation values of Ĥ0

of the reference and the excited space wavefunctions.

∑

i

ci

(
〈Φj|Ĥ0 − E0|Φi〉

)
= −

(
〈Φj|V̂ |Φ0〉

)
(2.56)

∑

i

ci〈Φj|Ĥ0|Φi〉
︸ ︷︷ ︸

Ejδij

−E0

∑

i

ci〈Φj|Φi〉
︸ ︷︷ ︸

=cj

= −〈Φj|V̂ |Φ0〉 (2.57)

cjEj − cjE0 = −〈Φj|V̂ |Φ0〉 (2.58)
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cj =
〈Φj|V̂ |Φ0〉
E0 − Ej

(2.59)

The second-order energy correction to the energy (eq. 2.60) is obtained by inserting the

coefficients cj of the first-order correction (eq. 2.59) into the expression for E2 (eq. 2.48).

E2 =
∑

i6=0

〈Φ0|V̂ |Φi〉〈Φi|V̂ |Φ0〉
E0 − Ei

(2.60)

Eq. 2.60 runs over the excited determinants generated from the HF wavefunction. For

MP2, the reference wavefunction and the excited determinants interact directly via the r̂−1
12

operator. The maximum excitation level therefore is limited to single and double excitations.

As shown in eqn. 2.61-2.63 single excitations do not contribute due to zero overlap and the

Brioullin theorem.[55, 56] For the final energy expression only the interactions between the

HF determinant and the doubly excited determinants have to be considered to compute the

MP2 energy.

〈Φ0|V̂ |Φa
i 〉 = 〈Φ0|Ĥ −

N∑

j=1

f̂j|Φa
i 〉 (2.61)

= 〈Φ0|Ĥ|Φa
i 〉 −

N∑

j=1

〈Φ0|f̂j|Φa
i 〉 (2.62)

= 〈Φ0|Ĥ|Φa
i 〉︸ ︷︷ ︸

=0,Brioullin

− εa〈Φ0|Φa
i 〉︸ ︷︷ ︸

=0

(2.63)

The energy denominator in eq. 2.60 can be expressed in terms of expectation values of the

Fock operator and reduces to differences of MO energies. Note that the matrix elements

notation changes from physicists notation to chemists notation from eq. 2.65 to 2.66. The

latter notation is preferred here to simplify the comparison with multi-reference MP2.

E2 =
occ.MO∑

i<j

virt.MO∑

a<b

〈Φ0|V̂ |Φab
ij 〉〈Φ0|V̂ |Φab

ij 〉
E0 − Eab

ij

(2.64)

=
occ.MO∑

i<j

virt.MO∑

a<b

|〈φiφj|φaφb〉 − 〈φiφj|φbφa〉|2
E0 − Eab

ij

(2.65)

=
occ.MO∑

i<j

virt.MO∑

a<b

| (φiφa|φjφb)− (φiφb|φjφa) |2
E0 − Eab

ij

(2.66)
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=
occ.MO∑

i<j

virt.MO∑

a<b

| (φiφa|φjφb)− (φiφb|φjφa) |2∑occ.MO
k 6= a,b 〈φk|f̂k|φk〉 −∑occ.MO

k′ 6= i,j 〈φk′|f̂k′|φk′〉
(2.67)

=
occ.MO∑

i<j

virt.MO∑

a<b

| (φiφa|φjφb)− (φiφb|φjφa) |2
εi + εj − εa − εb

(2.68)

The expression with MO energies simplifies the computation of the energy but is disadvan-

tageous, if some MO become nearly degenerate. Consequently the denominator gets close

to zero and the energy contribution from the few nearly degenerate MO dominates the sum

over all excited determinants and spoils the MP2 energy leading to unphysical results. For

multi-reference cases where near-degeneracies are quite ubiquitous, the MP theory has to

be generalized to remedy this severe problem.

2.3 Generalization to Multi-Reference Møller-Plesset

Perturbation Theory (MR-MP)

The generalization of single-reference Møller-Plesset perturbation theory to multi-reference

wavefunctions employs the same partitioning scheme of the Hamiltonian (eq. 2.19) as for

the single-reference case and also assumes the reference wavefunction to be an eigenfunc-

tion of the unperturbed system (eq. 2.21). The concept to generalize the single-reference

to the multi-reference case is illustrated for the example of the Pulay and Wolinski[60, 61]

perturbation-theory and its closely related variant from Murphy and Messmer.[62] The im-

plementation used in this work is based on the latter formulation.

Since the choice of Ĥ0 is crucial for the convergence of the MP calculation, Ĥ0 should

be chosen to be close to Ĥ but also to be close to diagonal form to facilitate an efficient

computation of the correction terms. In section 2.2 the Ĥ0 operator for the single-reference

case was defined as the sum over one-electron Fock operators f̂ (cf. eq. 2.9) and the Fock

matrix is diagonal in the basis of canonical MO. The Fock operator was partitioned into

the one-electron operator ĥ and the Coulomb and Exchange operators ĵ and k̂, respectively

with the definitions given in eq. 2.7 and 2.8.

Ĥ0 = F̂ =
∑

i

f̂i (2.69)
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f̂ = ĥ + ĵ − k̂ (2.70)

For a given general multi-reference wavefunction (eq. 2.71) the expectation value of the

Fock operator f̂ acting on the multi-reference wavefunction |Φ0〉 is given in eq. 2.73. The

evaluation of the expectation value is determined by the sums over K and L of the Con-

figuration State Functions (CSF) in the reference wavefunction. In contrast to the single-

reference approach, different |ΦK〉 and |ΦL〉 do interact through the effective one-electron

Fock operator and the matrix elements do not vanish for the off-diagonal part of the Fock

matrix.

|Φ0〉 =
∑

K

cK |ΦK〉 (2.71)

〈Φ0|f̂ |Φ0〉 = 〈∑
K

cKΦK |f̂ |
∑

L

cLΦL〉 (2.72)

=
∑

K

∑

L

cKcL〈ΦK |ĥ + ĵ + k̂|ΦL〉

=
∑

K

∑

L

cKcL〈ΦK |ĥ|ΦL〉+

∑

K

∑

L

cKcL〈ΦK |ĵ|ΦL〉 −
∑

K

∑

L

cKcL〈ΦK |k̂|ΦL〉 (2.73)

As a consequence the expectation value for a multi-reference wavefunction is not only com-

puted from the diagonal element, but also has contributions from off-diagonal elements.

The diagonal structure of the Fock matrix in the single reference case has been completely

lost and the full matrix has to be evaluated. Therefore the simple choice for Ĥ0 as the

sum of Fock operators violates the condition in eq. 2.21 and is subject of the modifications

described later.

In analogy to eq. 2.14, the reduction from the expression on the configurational level to

the orbital level yields two generalized Coulomb and Exchange operators, which comprise

the projection of the reference coefficients cK and cL to the MOs (k and l) occupied in the

reference configurations |ΦK〉 and |ΦL〉.
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ĵMR =
∑

K

∑

L

cKcLĵk∈K,l∈L (2.74)

k̂MR =
∑

K

∑

L

cKcLk̂k∈K,l∈L (2.75)

Without proof the evaluation of Fock matrix elements for the multi-reference case from

eq. 2.72 is equivalent to the formulation with generalized Coulomb and Exchange operators

and projects the coefficients of the reference wavefunction into a density matrix Dkl of the

MO that are occupied in the reference wavefunction.

fab = hab +
∑

kl

Dkl

[
(ab|kl)− 1

2
(al|kb)

]
(2.76)

Dkl contains the compressed information of the reference wavefunction and is equivalent

to the HF density matrix, if a HF wavefunction is applied (see eq. 2.17). The Fock ma-

trix elements for the multi-reference case depend on the reference density matrix and the

Coulomb and Exchange integrals with the interacting MO a and b and the MO i and j

in the reference space. The evaluation of the Fock matrix elements for the multi-reference

case requires a sum over integrals multiplied with the corresponding elements of the density

matrix in contrast to a single determinant MP possessing a single value. Interestingly, the

integrals needed by single-reference MP2 are solely of the type (ak|bl) with a and b denoting

virtual MO and k and l MO occupied in the HF wavefunction, while for the generalized

Fock matrix the type of the Coulomb (ab|kl) and the Exchange integrals (al|kb) differ. The

latter type corresponds to single-reference MP2, but the existence of the former necessitates

a somewhat different integral transformation.

In analogy to single-reference MP theory the Fock operator for the many-electron system

can be formulated as the sum over the single-electron Fock operators.

F̂ =
∑

i

f̂i (2.77)

The eigenvalue equation condition and the required orthogonality of the excited to the

reference space cannot be fulfilled, if Ĥ0 is simply set to F̂ . The introduction of projec-

tion operators to the simple choice Ĥ0 = F̂ ensures the orthogonality of the interacting



2.3 Generalization to Multi-Reference Møller-Plesset Perturbation Theory 23

spaces. The projection operators chosen by Pulay and Wolinski[60, 61] (eq. 2.78) ensure the

orthogonality of the reference space and the first-order interacting space. The reference

wavefunction for this MR-MP ansatz was a MCSCF wavefunction from which the excited

space was generated by application of one- and two-electron operators on the whole MC-

SCF reference wavefunction. The partitioning of the interacting spaces is comparable to the

internal contraction scheme applied by Werner and Knowles.[5] This choice of the wavefunc-

tion lets the single excitation space vanish because of the generalized Brioullin theorem but

requires the explicit orthogonalization of the interacting space including double excitations

out of the reference space.

Ĥ0 = P̂0F̂ P̂0 + P̂SF̂ P̂S + P̂DF̂ P̂D + . . . (2.78)

P̂0 = |Φ0〉〈Φ0| (2.79)

P̂S = |∑
K

ΦK〉〈
∑

L

ΦL| (2.80)

P̂D = |∑
O

ΦO〉〈
∑

P

ΦP | (2.81)

Murphy and Messmer[62] used a similar partitioning as Pulay and Wolinski but generated

the excited space by single and double excitations out of the configurations of the reference

wavefunction but not the whole wavefunction itself. The introduction of modified projec-

tion operators for the reference and the single/double excitation space again ensure the

orthogonality condition.

Ĥ0 = P̂0F̂ P̂0 + P̂SDF̂ P̂SD + . . . (2.82)

P̂0 = |Φ0〉〈Φ0| (2.83)

P̂SD = |∑
K

ΦK〉〈
∑

L

ΦL| (2.84)

(2.85)

The action of the projection operators on the reference wavefunction |Φ0〉 and an excited
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space configuration |Φi〉 is illustrated in the following equations, that give an impression on

how the orthogonality of the reference and the first-order interaction space is preserved.

〈Φ0|Ĥ0|Φ0〉 = 〈Φ0|P̂0F̂ P̂0|Φ0〉+ 〈Φ0|P̂SDF̂ P̂SD|Φ0〉+ . . . (2.86)

= 〈Φ0|Φ0〉〈Φ0|F̂ |Φ0〉〈Φ0|Φ0〉+
∑

K

∑

L

〈Φ0|ΦK〉〈ΦK |F̂ |ΦL〉〈ΦL|Φ0〉+ . . .(2.87)

= 〈Φ0|F̂ |Φ0〉 (2.88)

〈Φi|Ĥ0|Φj〉 = 〈Φi|P̂0F̂ P̂0|Φj〉+ 〈Φi|P̂SDF̂ P̂SD|Φj〉+ . . . (2.89)

= 〈Φi|Φ0〉〈Φ0|F̂ |Φ0〉〈Φ0|Φj〉+
∑

K

∑

L

〈Φi|ΦK〉〈ΦK |F̂ |ΦL〉〈ΦL|Φj〉+ . . .(2.90)

= 〈Φi|F̂ |Φj〉 (2.91)

This partitioning scheme ensures the generalized perturbation theory to be equivalent

to the single-reference case once a single-reference wavefunction is applied. The evaluated

energy expressions therefore are identical (eq. 2.95). The only difference is the computation

of the first-order correction |ψ1〉 to the wavefunction that is obtained from the solution of

eq. 2.96.

E0 = 〈Φ0|Ĥ0|Φ0〉 (2.92)

E1 = 〈Φ0|V̂ |Φ0〉 (2.93)

E2 = E1 + 〈Φ0|V̂ |ψ1〉 (2.94)

= E1 +
∑

j

c1
j〈Φ1

j |V̂ |Φ0〉 (2.95)

With the use of projection operators |Φ0〉 can be considered as an eigenfunction of Ĥ0, but

for the CSF generated in the excited space |Φj 6=0〉 and eq. 2.47 has to be solved explicitely for

c1
j (see eq. 2.96) and cannot be evaluated directly as for the single-reference case. Solving of

the large but sparse linear equation system in eq. 2.96 cannot be done with direct methods

anymore but is done with an iterative scheme. The problem can be formulated as the

projection of the matrix A onto the solution vector ~c that is solved if the condition −~I

is fulfilled. A more detailed introduction into the topic of iterative solvers and how the

equation A · ~c = ~I is solved can be found in Chapter 3.
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∑

j

c1
j〈Φ1

i |Ĥ0 − Ê0|Φ1
j〉

︸ ︷︷ ︸
A·~c

= − 〈Φ1
i |V̂ |Φ0〉︸ ︷︷ ︸

=Inhomogenity,~I

(2.96)

The perturbation operator V̂ generally is evaluated by projecting V̂ |Φ0〉 onto 〈Φ1
j | (eq. 2.100)

with V̂ being defined as Ĥ − Ĥ0.

〈Φ1
j |V̂ |Φ0〉 = 〈Φ1

j |Ĥ − Ĥ0|Φ0〉 (2.97)

= 〈Φ1
j |Ĥ|Φ0〉 − 〈Φ1

j |Ĥ0|Φ0〉 (2.98)

= 〈Φ1
j |Ĥ|Φ0〉

−〈Φ1
j |Φ0〉〈Φ0|F̂ |Φ0〉〈Φ0|Φ0〉 (2.99)

+
∑

K

∑

L

〈Φ1
j |ΦK〉〈ΦK |F̂ |ΦL〉〈ΦL|Φ0〉

= 〈Φ1
j |Ĥ|Φ0〉 (2.100)

Employing the orthogonality of the reference and the first-order interacting space intro-

duced by the projection operators, the perturbation operator is the Hamilton operator for

the full system and the expressions for the perturbation energies are given in eq. 2.101 to

2.104.

E0 = 〈Φ0|Ĥ0|Φ0〉 (2.101)

E1 = 〈Φ0|V̂ |Φ0〉 (2.102)

= 〈Φ0|Ĥ|Φ0〉 (2.103)

E2 = E1 +
∑

j

c1
j〈Φ1

j |V̂ |Φ0〉 (2.104)

= E1 +
∑

j

c1
j〈Φ1

j |Ĥ|Φ0〉 (2.105)

The second-order corrrection to the energy is evaluated by multiplying the coefficient vec-

tor of the iteratively solved first-order correction to the wavefunction with the inhomogenity

~I (see eq. 2.96). In contrast to single-reference MP2 the coefficient vector is not computed

directly but is obtained after explicit solution of a sparse linear equation system.
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2.4 Overview on MR-PT Approaches

To put the two multi-reference perturbation theory (MR-PT) approaches that have been

discussed in the last section into a wider context, a brief conceptional outline on various

MR-PT approaches is given. All of these approaches were formulated with the intension

to find the best possible partitioning scheme for MR-PT as the choice of the unperturbed

Hamilton operator in MR-PT is not unique and a balance between accuracy and efficiency

had to be found.[63]

2.4.1 MR-PT Methods Based on MCSCF/CASSCF Wavefunc-

tions

The major part of MR-PT approaches published in literature is based on MCSCF or

CASSCF wavefunctions and belongs to the class ”diagonalize-then-perturb”. The use of

CASSCF wavefunctions is believed to be more advantegous than MCSCF wavefunctions as

they show a better convergence behavior but have the disadvantage to create large pertur-

bation spaces.[64] The most popular ansatz is the CASPT2 method proposed by Kerstin

Andersson[35,36] and briefly described in the following section.

The CASPT2 ansatz describes a method for a single-reference state given by a multi-

configuration CASSCF wavefunction that is assumed to account for all near-degeneracies.

Starting from the CASSCF wavefunction a first-order interacting space is generated that is

block diagonal with respect to the zeroth-order Hamiltonian and non-orthogonal.

The choice of Ĥ0 is made to assure the orthogonality relation of the reference space to

the excited spaces by projection operators (eq. 2.85). This technique was also used for the

approaches of Pulay-Wolinski and Murphy-Messmer.

Ĥ0 = P̂0F̂ P̂0 + P̂KF̂ P̂K + P̂SDF̂ P̂SD + P̂TQ...F̂ P̂TQ... (2.106)

The zeroth-order Hamiltonian is partioned into the occupied reference space of the CASSCF

wavefunction denoted as 0, the space K is the orthogonal complement to the occupied

CASSCF space that generates the CASSCF wavefunction, the interacting space of the sin-

gle and double excitations to the reference wavefunction, and the space with the higher
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excitations which are neglected. The single and double excited space is divided into eight

groups of two internal, three seminternal and three external excitation spaces, which blocks

the Hamilton matrix into 8×8 blocks.

The resulting matrix of the singles and doubles space

〈i|Ĥ0 − Ê0|j〉 (2.107)

is further simplified by the definition that the Fock matrix only includes diagonal terms of

a one-particle operator while the off-diagonal terms are treated in the perturbation. The

interactions between 〈i| and |j〉 thus vanish if they belong to different blocks and a block-

diagonal structure of the Hamilton matrix is obtained. The resulting blocks then can be

easily diagonalized with standard methods. In CASPT2 the choice of the Fock operator can

be modified defining different model Hamiltonians.

The appropriate choice of F̂ is given by

F̂pq σ = âp σ

[
Ĥ, âq σ

]
− âp σ

[
Ĥ, âq σ

]
(2.108)

with a spin-averaged expectation value denoted by

fpq =
1

2

∑
σ

〈0|F̂pq σ|0〉 (2.109)

The evaluation of this term yields the expression for the matrix elements

fpq = hpq +
∑
rs

Drs

[
(pq|rs)− 1

2
(ps|rq)

]
(2.110)

The standard CASPT2 procedure can also be extended to work with state-averaged

CASSCF wavefunctions called multi-state CASPT2.[37]

A similar approach that also employs diagonal Fock matrices was proposed by Hirao,[65]

while also methods with more general Hamiltonians for MCSCF wavefunctions and such

employing the properties of CAS-CI wavefunctions were investigated.[66–68]

A method also employing the Møller-Plesset partitioning scheme was developed by Pu-

lay and Wolinski[60,61] already described in the previous section. They employed projection

operators on a general MCSCF wavefunction generating the perturbation space by exci-

tations acting on the internally contracted wavefunction. Applications of larger molecules
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that employ this ansatz can be found in a recent work of van Lenthe et al.[69] The variant of

Murphy and Messmer[62] replaced the internally contracted MCSCF reference wavefunction

by a Generalized Valence Bond (GVB) wavefunction. The interacting space was generated

by excitations from each of the reference configurations and does not need the orthogonal-

ization steps as it is necessary in the method of Pulay and Wolinski. This approach is also

applicable for any general MCSCF wavefunction without substantial loss in accuracy.

Partitioning schemes different to the previous ones were also employed. Nakano[70, 71]

defines a partitioning of the Hamilton matrix into two orthogonal spaces. The zeroth-order

wavefunctions are state-averaged CASSCF wavefunctions for target states and define the

P space. The complementary eigenfunctions of the CAS-CI Hamiltonian and the CSF

generated from excitations to virtual orbitals span the R space. The Hamilton matrix is

diagonal in the R space and H can be block-diagonalized into the form




HPP HPR

HPR HRR


 (2.111)

Davidson[64] defined a similar partitioning

Hc =




HPP HPR

HPR HRR







cP

cR


 = E




cP

cR


 (2.112)

in which HPP is further partitioned into HP ′P ′ , HP ′P ′′ , HP ′P ′′ , and HP ′′P ′′ . HP ′P ′ con-

tains matrix elements between configurations dominating the reference wavefunction. The

space P ′ is called reduced model space and is perturbed by interacting configurations which

facilitates the blocking of the matrix.

Other partitioning schemes were proposed by Witek, Nakano and Hirao[72] who tried to

improve the zeroth-order energy by constraining the correction of |ψ(n+1)〉 = 0 in the order

n series. The partitioning of the Hamilton operator is not only possible within the Møller-

Plesset or the Ebstein-Nesbet framework, but also partitioning schemes were developed that

mix both approaches.[73, 74]
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2.4.2 Large-Scale Techniques to Improve Performance

The computational efficiency of MR-PT methods compared to MR-CI approaches4 is ad-

vantegous to treat large systems. The bottleneck of the size of the perturbation space re-

mains. Comparing to multi-reference CI methods, similar algorithms to reduce the problem

size have been developed for perturbation theories. The formulation of a MR-PT ansatz

that consequently used the ansatz of internal contractions reduced the size of the multi-

reference problem to that of the single-reference case.[5, 27] A different approach was done

by Grimme[28, 33,75] who adapted the individually selecting approach from the MR-CI[32] to

MR-MP and reduced the computational effort substantially. As multi-reference approaches

cannot be considered as ”black-box” methods, the thresholds used in the indivdually select-

ing ansatz and the necessary extrapolation add an additional degree of freedom for the user

and require an additional amount of experience.

The use of localized orbitals in MR-PT[48] instead of canonical ones reduces the inter-

actions in the Hamilton matrix. This method is considered to be more ”black-box” than

individually selecting procedures, but the choice of the localized orbitals still remains cru-

cial and retaining a balanced descrpition for the potential energy surface is considered to be

similarly or even more difficult.

2.4.3 Methodological Properties

A major issue concerning perturbation theory is the question about size-consistency or size-

extensivity. It was formerly believed, that MR-PT is size-consistent if the reference wave-

function is also size-consistent. It was pointed out by Davidson,[76] that no multi-reference

perturbation theory then can be size-consistent, because no multi-determinant wavefunc-

tion can be an eigenfunction of a Hamiltonian containing only one-particle operators. A

study for the CASPT2 and the MR-MP2 of Pulay and Wolinski showed that the errors

related to size-inconsistency can be safely neglected for practical applications. MR-MP2

can be made size-consistent by imposing a modified projection scheme and a strict orthog-

4The efficiency or MR-CI approaches improved substantially by indidually selecting algorithms trun-

cating the CI space to the most important configurations and extrapolation of the neglected space[32] or

the development of an MR-CI based on localized orbitals in combination with pseudo-spectral integral

evaluation.[9, 49] Note that both approaches base on truncated CI spaces but on a different selection scheme.
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onalization of the interacting spaces onto each other employing a pivoted Householder QR

orthogonalization.[77,78]

The convergence of MR-PT is strongly related to the quality of the reference wavefunction

and the intruder state problem.[79] Approaches to avoid the intruder state problem introduce

shift parameters into the equations of the perturbation series and force the orbital energies to

diverge. These larger orbital energy differences then improve the convergence behavior.[80, 81]

Compared to MR-CI, MR-MP possesses a larger sparsity of the matrix which improves

the efficiency, but MR-MP in contrast is not variational and does not give an upper limit

for the total energy. For practical considerations the variational condition is not considered

to be of major importance anymore.

Many of the various MR-PT approaches were ”proofs of principles” to improve the existing

partitioning schemes and the applications mostly did not exceed test cases and were far away

from real chemical applications. Some other approaches like CASPT2, Pulay-Wolinski, and

Murphy-Messmer probably do not possess the optimum partitioning scheme but can be

applied to chemically relevant problems.



Chapter 3

Iterative Methods for Large Linear

Equation Systems

3.1 Introduction

In many areas of scientific and industrial applications, most of the problems related with

many variable systems are connected to the solution of large matrices. The matrices con-

structed from the equations of these systems can possess eigenpairs of eigenvectors and

eigenvalues or the optimum solution is sought for a certain condition. Especially in quan-

tum chemical applications the computation of eigenvectors and eigenvalues plays a very

important role. Eigenvalue problems have to be solved in the HF procedure diagonalizing

the Fock matrix to yield the MO as eigenvectors and the MO energies as eigenvalues, in

the computation of frequencies or in the computation of excited states in a (MR-)CI pro-

cedure. For the latter application the full diagonalization to yield all of the eigenvectors

is only possible for the smallest systems possessing a few electrons. The paradigm of di-

rect solvers that compute all eigenpairs changed once larger systems were treated and only

the desired eigenvalues and eigenvectors were necessary to be computed. For this purpose

Davidson developed an iterative method related to the Lanczos algorithm (see Section 3.3.3)

that computed desired eigenpairs in a (MR-)CI problem. The basic algorithm[82, 83] was ex-

tended and refined to increase its efficiency and is now widely used in quantum chemical

applications.[84–86]

31
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A second area of numerical algorithms is related with the solution of large linear equa-

tion systems like geometry optimizations, force field algorithms, wavefunction optimization,

non-canonical perturbation theory (e.g. local MP2 or MR-MP2) and many more. Linear

equation systems and eigenvalue problems are different in their conception, but are com-

monly based on finding a vector, that fulfills a certain condition to a matrix, which can be

built for both problems. The basic methods to solve the numerical tasks resemble reach

other very much and originate from the same basic techniques, which are briefly described

in the next sections. Prior to that, the equations for the multi-reference perturbation theory

are given in a matrix form in the following section.

3.2 The Linear Equation System in MRMP

The present work mainly deals with improved algorithms for a multi-reference perturbation

theory and focuses on the algorithmic details to obtain the solution vector.

∑

j

c1
j〈Φ1

i |Ĥ0 − Ê0|Φ1
j〉

︸ ︷︷ ︸
A·~x

= −〈Φ1
i |V̂ |ψ0〉︸ ︷︷ ︸
~b

(3.1)

The main equation (eq. 3.1, see also eq. 2.96) to solve the first-order correction to the

wavefunction represents a set of linear equations. The general structure of such a system is

best described as

A · ~̃x = ~b (3.2)

with the Hamilton matrix A, the solution vector ~̃x and the inhomogenity ~b. The solution

vector ~x is formally obtained by inverting the matrix A.

~̃x = A−1 · b (3.3)

The matrix A is sparse because Ĥ0 represents a one-electron operator but usually is

very large for chemically interesting molecules (dimension of about 106 to 109). The direct

inversion of A using Gauss elimination[78, 87] or single value decomposition (SVD)[78, 87] is

feasible for medium-sized matrices, but impractical for large and sparse matrices, since

these techniques manipulate the rows and columns of the matrix and spoil the sparsity. The

direct access to the needed matrix elements during the manipulation requires the matrix to
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be stored in memory, a condition that can be only fulfilled for small systems. The loss of

the sparsity in the course of the manipulation reinforces this problem. Therefore iterative

techniques have to be applied which do not change the matrix, but iteratively improve an

approximated trial vector ~x to minimize the difference to the optimum solution vector ~̃x.[87]

3.3 General Approximation Techniques

The iterative methods can be divided into classic techniques which employ matrix parti-

tioning and subspace methods that are based on projection approaches.

3.3.1 Classic Iteration Schemes

By definition[87] the iterative scheme to solve A~x = ~b is given as

M~xn = ~b + S~xn−1 (3.4)

which employs the partition of A into

A = M− S (3.5)

and yields

M~xn = ~b−A~xn−1 −M~xn−1 (3.6)

If M is non-singular and using the definition of the residual vector ~r (eq,. 3.7) one gets

eq. 3.8.

~rn = ~b−A~xn (3.7)

~xn = M−1~rn−1 + ~xn−1 (3.8)

After the evaluation of eq. 3.8, which requires the matrix M to be easily inverted, the

residual ~rn is computed for the next iteration step.

The partition scheme of A now defines the different iterative schemes of Gauss-Seidel[78,87]

and Jacobi.[78, 87]
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Jacobi MJacobi = D SJacobi = −(L + U) (3.9)

Gauss− Seidel MGS = D + L SGS = −U (3.10)

with the matrix diagonal denoted as D, the strict lower triangle L and the strict upper

triangle U.

3.3.2 General Projection Methods

More elaborate techniques than these classic iteration schemes utilizing matrix partitioning

are projection methods. Projection techniques onto K and L, which are defined as subspaces

of the space spanned by the matrix A, find an approximate solution ~̃x that belongs to K
by imposing the condition that the new residual vector is orthogonal to L (eq. 3.11 and

3.12).[87, 88]

~̃x ∈ K (3.11)

~b−A~̃x⊥L (3.12)

The vector ~̃x can be written as ~̃x = ~x + δ with δ ∈ K and the equation of the residual

becomes

0 = ~b−A~̃x (3.13)

= ~b−A (~x + δ)⊥L
= ~r0 −Aδ⊥L

~r0 −Aδ ⊥ L (3.14)

which defines the approximate solution. The matrix is projected onto the residual in each

step and a new orthogonal residual that leads to a new trial vector is created for the next

iteration step. A new enlarged subspace is also built. Note that for the two subspaces K
and L being identical, the projection method is equivalent to the Gauss-Seidel procedure.[88]

3.3.3 Krylov Subspace Methods

The most commonly used subspace methods are derived from the Krylov subspace method[87,88]

in which the subspace of the matrix A and the vector ~r is defined to be
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Km (A, ~r0) = span
{
~r0,A~r0,A

2~r0, . . . ,A
m−1~r0

}
(3.15)

The approximation to the solution ~̃x obtained from the Krylov subspace is of the form

A−1~b ≈ ~xm = ~r0 + qm−1 (A)~r0 (3.16)

and gives an approximation for the inversion of A with a certain polynomial q of degree

m−1. For the simplest case of ~x0 = 0 and ~r0 = ~b0−A ~̃x0, the exact solution is approximated

by this polynomial.

A−1~b ≈ qm−1 (A)~b (3.17)

The Krylov subspace method is applicable to any matrix. More specialized derivatives are

the Arnoldi method that is optimal for non-symmetric matrices and the Lanczos method

that is formulated for symmetric matrices.[88]

3.4 The Method of Conjugate Gradients

3.4.1 Methodic Background and Algorithm

The method of Conjugate Gradients[78, 88,89] is a well known iterative technique for positive-

definite sparse linear equation systems involving Hermitian matrices. Basically, it is an

orthogonal projection technique onto the Krylov subspace Km (A, ~r0), which can be consid-

ered as a derivative of the Lanczos method.

For the functional Q given in eq. 3.18 the solution ~̃x (eq. 3.19) of the linear equation

system represents its minimum.[89]

Q =
1

2
~xTA~x−~bT~x (3.18)

~̃x = A−1~b (3.19)
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The idea to determine the minimum of Q starts from an approximate solution vector ~x k

and a vector ~p k defining a search direction. For the iterative procedure

~xk+1 = ~x k + αk~p
k (3.20)

with the real value αk is determined to fulfill the condition

Q
(
~x k+1

)
= Q

(
~x k + αk~p

k
)

= minQ
(
~x k + αk~p

k
)

(3.21)

The vectors ~p k are conjugate to A and fulfill the orthogonality relation

(~x,A~y) = ~xTA~y = δxy (3.22)

if ~x 6= ~y. The vectors ~p are linearly independent.[89] Furthermore it can be shown, that the

residual vectors ~r are orthogonal to each other (eq. 3.23).

(
~r k, ~r j

)
=

(
~r k

)T · ~r j = 0 (3.23)

For the calculation of αk it is necessary to derive a formula for the residual ~r k+1 in the next

iteration step.

~r k+1 = A~x k+1 −~b (3.24)

= A
(
~x k + α~p k

)
−~b

=
(
A~x k −~b

)
+ αkA~p k

= ~r k + αA~p k (3.25)

With eq. 3.25 αk can now be calculated. The projection of ~r k onto eq. 3.25 from the

right-hand side and solving for αk becomes

(
~r k+1, ~r k

)

︸ ︷︷ ︸
=0

=
(
~r k, ~r k

)
+ αk

(
A~p k, ~r k

)
(3.26)

αk = −
(
~r k, ~r k

)

(A~p k, ~r k)
(3.27)

The new search direction is defined by the projection method to

~p k+1 = ~r k+1 + βk~p
k (3.28)
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The denominator in eq. 3.27 can be rewritten using eq. 3.28 and employing the conjugacy

relation eq. 3.22 to

(
A~p k, ~r k

)
=

(
A~p k, ~p k − βk−1~p

k−1
)

(3.29)

=
(
A~p k, ~p k

)
− βk−1

(
A~p k, ~p k−1

)

︸ ︷︷ ︸
=0

(3.30)

=
(
A~p k, ~p k

)
(3.31)

The optimization parameter αk finally is expressed as

αk = −
(
~r k, ~r k

)

(A~p k, ~p k)
(3.32)

The scaling parameter for the new search direction is derived from eq. 3.28 by projection

with A~p k from the right.

(
~p k+1,A~p k

)

︸ ︷︷ ︸
=0

=
(
~r k+1,A~p k

)
+ βk

(
~p k,A~p k

)
(3.33)

βk = −
(
~r k+1,A~p k

)

(~p k,A~p k)
(3.34)

βk is further simplified by solving eq. 3.25 to A~p k, inserting this equation into the nomi-

nator of the preliminary form of βk (eq. 3.34) and finally substituting αk by eq. 3.32.

βk = − 1

αk

(
~r k+1, ~r k+1 − ~r k

)

(A~p k, ~p k)
(3.35)

= − 1

αk

(
~r k+1, ~r k+1

)

(A~p k, ~p k)

=

(
A~p k, ~p k

)

(~r k, ~r k)

(
~r k+1, ~r k+1

)

(A~p k, ~p k)

=

(
~r k+1, ~r k+1

)

(~r k, ~r k)
(3.36)

The algorithm for the Conjugate Gradient method can now be formulated

• Choose start vector ~x0

• ~p0 = ~r0 = A~x0 −~b

• (γ0)
2 = (~r0, ~r0)
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• For k = 0, 1, . . .

1. ~z k = A~p k

2. αk = − γ2
k

(~p k,~z k)

3. ~x k+1 = ~x k + αk~p
k

4. ~r k+1 = ~r k + αk~z
k

5. (γk+1)
2 =

(
~r k+1, ~r k+1

)

6. βk = (γk+1)
2

(γk)2
; if γk+1 ≤ ε stop

7. ~p k+1 = ~r k+1 + βk~p
k

3.4.2 Preconditioning Techniques

The application of the Conjugate Gradient method given in its basic formulation is possible

for sparse linear equation systems characterized by symmetric positive-definite matrices, but

it is not recommended since the convergence behavior changes substantially with the matrix

structure and the method looses its robustness. The best matrix condition to achieve fast

convergence is a matrix that is close to the unit matrix. This disadvantage can be overcome

if preconditioners are introduced, that manipulate the matrix A before the first step in

the Conjugate Gradient algorithm and therefore enhance the efficiency of the algorithm by

reducing the necessary iterations to achieve convergence.

The concept of the manipulation of the linear equation system by preconditioners is il-

lustrated in the following set of equations leading to a modified algorithm. The original

matrix equation is expanded by the unit matrix, which is then replaced by the resolved

identity STS−T . In the next step, the matrix S is multiplied from the left and a similarity

transformed set of equations is built.

A~x = ~b

ASTS−T~x = ~b

SAST
︸ ︷︷ ︸

=Â

S−T~x︸ ︷︷ ︸
=~̂x

= S~b︸︷︷︸
=

~̂
b

The transformed matrix Â and the vectors ~̂x and
~̂
b can be applied to the Conjugate Gradient

method, but a more efficient algorithm can be deduced from the original one that avoids an
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explicit computation of Â = STAS−T and
~̂
b = S~b.[89]

The algorithm for the Preconditioned Conjugate Gradient method can be formulated as

• Choose start vector ~x0

• ~r0 = A~x0 −~b

• M~̂r0 = ~r0; i.e. ~̂r0 = M−1~r0

• ~p0 = ~̂r0

• (γ0)
2 =

(
~̂r0, ~r0

)

• For k = 0, 1, . . .

1. ~z k = A~p k

2. αk = − γ2
k

(~p k,~z k)

3. ~x k+1 = ~x k + αk~p
k

4. ~r k+1 = ~r k + αk~z
k

5. Solve M~̂r
k+1

= ~r k+1 for ~r k+1 ⇒ ~̂r
l+1

= M−1~̂r
k+1

6. (γk+1)
2 =

(
~̂r

k+1
, ~r k+1

)

7. βk = (γk+1)
2

(γk)2
; If γk+1 ≤ ε stop

8. ~p k+1 = ~̂r
k+1

+ βk~p
k

For M = I, the algorithm equals the unpreconditioned form. The main problem that still

exists is solving the equation M~̂r
k+1

= ~r k+1. The matrix M also should transform the

matrix A close to the identity matrix for an optimal convergence behavior. The simplest

choice for a preconditioning matrix M is the matrix containing the main diagonal of A.

This matrix can be easily inverted and is readily accessible since the explicit construction

of an additional preconditioner matrix is unnecessary and improves the convergence be-

havior. Other techniques to construct preconditioner matrices are the incomplete Cholesky

decompostion[88,89] and domain decomposition methods.[89]
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3.4.3 Parallelization

The Conjugate Gradient method can be easily parallelized. The degree of parallelization

mainly depends on the efficiency of a parallel matrix vector product to form ~z k = A · ~p k.

The vector updates of ~x k+1, ~r k+1 and ~p k+1 can be done parallelly without any interprocess

communication. The scalar products to calculate αk and βk are partially computed on each

node and then summed up to the final value.

• Choose start vector ~x0

• ~p0 = ~r0 = A~x0 −~b

• (γ0)
2 = (~r0, ~r0)

• For k = 0, 1, . . .

1. Compute ~z k = A~p k in parallel. Redistribute the solution to all nodes.

2. Compute partial scalar product
(
~p k, ~z k

)
in parallel and collect to αk = − γ2

k

(~p k,~z k)
.

Distribute αk to all nodes.

3. Compute ~x k+1 = ~x k + αk~p
k in parallel.

4. Compute ~r k+1 = ~r k + αk~z
k in parallel.

5. Compute parts of (γk+1)
2 =

(
~r k+1, ~r k+1

)
parallel and collect; If γk+1 ≤ ε stop

6. βk = (γk+1)
2

(γk)2
is also computed in parallel mode and send to all nodes.

7. Compute ~p k+1 = ~r k+1 + βk~p
k in parallel.

8. Exchange components of ~p k+1 between all nodes.



Chapter 4

Concepts and Algorithm for

Large-Scale MR-MP2 Computations

4.1 Basic Concepts

The iterative scheme in a MR-MP2 procedure to obtain the first-order correction to the

wavefunction and finally the second-order energy require the repeated use of the Hamilton

matrix, which is identical in each iteration step. The reference wavefunction in combina-

tion with the externals orbitals governs the matrix dimension and the size of the solution

vector. The representation of the reference wavefunction and the total wave function is

either possible with Slater determinants or with Configuration State Functions (CSF). A

configuration, from which a set of CSF is generated, is a scheme of occupied orbitals and

can be also regarded as a linear space spanned by Slater determinants with all possible

combinations of α and β spin in the open-shell orbitals.[90] The usage of CSF instead of

Slater determinants reduces the size of the Hamilton matrix (see Section 4.2.1). Without

any further simplifications the number of matrix elements in the Hamilton matrix scales

quadratically with the number of CSF or Slater determinants.

For large systems the dimension of the hermitian Hamilton matrix exceeds the main mem-

ory capacities of the largest computers and the fastest scheme in which the matrix is kept

in the main memory and used in each iteration for the multiplication with converging trial

vectors has to be abandoned. Comparing the CPU performance of nowadays computers

41
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with disc-based storage devices, disc storage is disadvanteous and it is more efficient to con-

struct the Hamilton matrix incrementally in each iteration and to multiply the generated

matrix elements directly with the required part of the trial vector.

The two main concepts that did come up with direct methods were the integral-driven

approach for which the evaluation of the matrix elements is controlled by the present inte-

grals[5] and a configuration-driven approach.[90] The integral-driven scheme starts from a set

of integrals and evaluates all matrix elements connected to these integrals independent from

their position in the matrix. In the configuration-driven approach the start addresses of the

coefficients of the trial vector are easier to determine from the position of the interacting

configurations. Both approaches take advantage of sorted interacting spaces discussed in

Section 4.3 but the configuration-driven approach was preferred for this MR-MP2 project to

facilitate parallelization and the efficient construction of the Hamilton matrix. The efficient

construction of the Hamilton matrix is crucial for the performance of the method since the

most time-consuming step in the scheme is the combined generation of H0 and the multi-

plication of the matrix elements with the trial vector. The amount of memory needed to

store the necessary integrals for the iterative part of the MR-MP2 procedure is negligible

as will be pointed out later in this chapter.

An efficient computation of the Hamilton matrix requires elaborate schemes, which reduce

the overhead of computing matrix elements that vanish by symmetry or by virtue of the

operator properties and also an efficient computation of the matrix elements themselves.

For the computation of the matrix elements the Symmetric Group Approach was chosen,

which was already successfully applied in the DIESEL program package.[53, 54] An analysis

of the structure of the Hamilton matrix on various levels and the classification of interactions

between pairs of configurations illustrate the concepts to reduce the computational cost for

the built of the Hamilton matrix in a MR-MP2 procedure.
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4.2 The Computation of Matrix Elements in the Sym-

metric Group Approach (SGA)

4.2.1 The Symmetric Group Approach and Characterization of

Interactions

4.2.1.1 The SGA Framework

The framework used in this work to represent matrix elements of the Hamilton matrix is the

same as in the MR-CI approaches implemented by Volker Pless and Michael Hanrath[54,91]

and bases on the SGA.[92,93] The Symmetric Group is an abelian group of permutations,

that can be used to construct the antisymmetric spin eigenfunctions for a given multiplicity

S, that are eigenfunctions to the Ŝ2 and the Ŝz operators. These eigenfunctions are used

to build up Configuration State Functions (CSF) from configurations. Configurations are

schemes of orbital occupations and do not represent a mathematical object in the sense

that it can be used to compute matrix elements. The CSF for a given configuration are

computed from the spatial part of the wavefunction multiplied by the spin eigenfunctions.

The degree of degeneracy fSGA
S,ν of a certain configuration for a given multiplicity 2S +1 and

number of unpaired electrons ν is given as

fSGA
S,ν =




ν

1
2
ν − S


−




ν

1
2
ν − S − 1


 (4.1)

In the formalism of the SGA a CSF is expressed as

ΦSGA
n = Â

n∏

j=1

φMO
n(j) (~rj) ·ΘS,M

k (ω1, . . . , ωn) (4.2)

with the antisymmetrizing operator Â, the occupied MO φMO
n(j) and the spin eigenfunctions

ΘS,M
k . The spin eigenfunctions ΘS,M

k depend on the total spin S with the 〈Ŝ2〉 eigenvalue

S(S +1), the 〈Ŝz〉 eigenvalue M , and the degeneracy index k. The spin eigenfunctions ΘS,M
k

can be generated as linear combinations of products of primitive spin functions Ω. They

need not to be explicitely generated but can be evaluated by more efficient schemes like

Young-Tableaux.[92]
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ΘS,M
k =

∑

i

γi

∏

j

Ω (ωj) (4.3)

The computation of matrix elements[93] between two CSF ΦSGA
n and ΦSGA

m can be computed

as

〈ΦSGA
n |Ĥ|ΦSGA

m 〉 =
1

n!

∑

P∈Sn

(−1)P

·
〈

n∏

j=1

φMO
n(j) (~rj)|ĤP̂ |

m∏

j=1

φMO
m(j) (~rj)

〉

︸ ︷︷ ︸
spatial part

·
〈
ΘS,M

l (ω1, . . . , ωn) |P̂ |ΘS,M
k (ω1, . . . , ωn)

〉

︸ ︷︷ ︸
spin part Ukl

(4.4)

with P ∈ Sn denoting all n possible permutations of the permutation operator P̂ amongst

the open-shell MO Sn. As seen from eq. 4.4, the computation of a matrix element in the

SGA is completely separated into a spatial part and a spin part. Matrix elements between

the spin parts of two configurations with a certain degree of degeneracy constitute a matrix

of coupling coefficients Ukl between the corresponding CSF called representation matrix U.

The matrix elements could also be evaluated by linear combinations of Slater determinants

that represent eigenfunctions to the Ŝ2 and the Ŝz operator (Table CI). However, the use of

CSF in the SGA framework instead of Slater determinants is advantageous as the number

spin eigenfunctions in the SGA and therefore the size of the Hamilton matrix is smaller

than the number of Slater determinants that have to linearly combined (compare eq. 4.1

and eq. 4.5).

fSlater
S,ν =




ν

1
2
ν − S


 (4.5)

In the SGA the spin functions are generated first and then antisymmetrized afterwards,

while linear combinations of Slater determinants are proceeded the other way round.
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4.2.1.2 Interaction Schemes

The computation of matrix elements in the form of eq. 4.4 depends on a sum over n! permu-

tations described by a permutator that brings two configurations into maximum alignment

(line-up permutation). Each interaction between two configurations can be described by a

permutation operator, but the assignment of the permutation operators to the interaction

classes is not unique. A simpler classification scheme like the Slater rules is more desirable

and it was shown[91] that the representation matrices computed in the framework of the

SGA can be assigned to the labels of the Table CI procedure.[94–96]

The Table CI classifies the interactions between two configurations into various cases

characterized by the labels ∆K, P , Q, R, Ql and Qr. This classification originates from the

integration of the spin part and the antisymmetrization of the spatial and the spin part.

1. ∆K ∈ {−2,−1, 0, 1, 2} gives the difference in the number of open shells between two

configurations |φR〉 and |φL〉.

2. P ∈ {1, . . . , 5} characterizes the type of the required integrals.

3. R ∈ {1, . . . , 6} codes the number and the position of closed-shell orbitals with respect

to the interacting open-shell orbitals.

4. Qr and Ql with any integer number represent the positions (pi) of the singly occupied

interacting orbitals ns in a configuration and are computed according to

Qr, Ql = 1 +
ns∑

i=1




pi − 1

ns − i + 1




These labels generate 15 major interaction classes for interactions between two configu-

rations. In some of these classes finer interaction classes related to the interacting orbitals

and required integrals can be distinguished. The unique classification of two interacting

configurations is denoted in the following as a Table CI case.[91] The configuration with the

same or a larger number of open shells is denoted as |φµ〉 and the other one as |φλ〉.
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Table 4.1: Table CI cases taken from the Ph.D. thesis of

Volker Pless,[91] Table 3.2. The first configuration is |µ〉, the

second one |λ〉. Note that in each configuration the order of

the orbitals is a < b < c < d.

Table Case Configurations Integrals ∆K P R

1
c2

a2
(ca|ca) 0 4 1

2
b1c2

a1b2
(cb|ca) 0 2 1

3
c2

a1b1
(cb|ca) 1 2 2

4
a2b2

a1b1c2
(cb|ca) 1 2 1

5
c1d1

a1b1
(db|ca), (da|cb) 1 2 1

6
c1d1a2b2

a1b1
(db|ca), (da|cb) 0 1 6

7a
c1d1a2

a1b1c2
(dc|ba), (db|ca) 0 1 2

7b
c1d1b2

a1b1c2
(dc|ba), (da|cb) 0 1 3

7c
c1d1a2

a1b1d2
(dc|ba), (da|cb) 0 1 5

7d
c1d1b2

a1b1c2
(dc|ba), (db|ca) 0 1 5

8a
d1a2

a1b1c1
(dc|ba), (db|ca) 1 1 4

8b
d1b2

a1b1c1
(dc|ba), (da|cb) 1 1 5

8c
d1c2

a1b1c1
(dc|ba), (da|cb) 1 1 6

9a
d1b2c2

a1b1c1d2
(dc|ba), (db|ca) 1 1 1
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9b
d1a2c2

a1b1c1d2
(dc|ba), (da|cb) 1 1 2

9c
d1a2b2

a1b1c1d2
(db|ca), (da|cb) 1 1 3

10a
a2b2

a1b1c1d1
(db|ca), (da|cb) 2 1 1

10b
a2c2

a1b1c1d1
(dc|ba), (da|cb) 2 1 2

10c
a2d2

a1b1c1d1
(dc|ba), (db|ca) 2 1 3

10d
b2c2

a1b1c1d1
(dc|ba), (db|ca) 2 1 4

10e
b2d2

a1b1c1d1
(dc|ba), (da|cb) 2 1 5

10f
c2d2

a1b1c1d1
(db|ca), (da|cb) 2 1 6

11
c1

a1
0 3 1

12
a1c2

c1a2
0 3 2

13a
a2

a1b1
1 3 1

13b
b2

a1b1
1 3 2

14 0 5 1

The labels of a Table CI Case can be determined by means of difference configurations

that are represented by a common part of two interacting configurations, a second part with

missing orbitals in |φL〉 and a third part with missing orbitals in |φR〉.

The given example illustrates the concept of a difference configuration created from the

two interacting configurations |φR〉 and |φL〉.
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|φL〉 = |a2b1c2d1〉
|φR〉 = |a2b1c1d2〉

common part : |a2b1〉
missing in |φL〉 : |c1d2〉
missing in |φR〉 : |c2d1〉

The position of the interacting open shells pi are

missing in |φL〉 : (1)

missing in |φR〉 : (1)

and the excitation order is computed to be a single excitation.

|c1d2〉 → |c2d1〉

The determination of the Table CI Case can be done very efficiently from the scheme in

Figure 4.1[54] and requires only a maximum of three orbital comparisons for the Ĥ operator.

For the Ĥ0 operator in the case of a MR-MP2 treatment this scheme further simplifies to a

maximum of only one orbital comparison (Figure 4.2) and increases the efficiency to create

the Table CI labels that characterize the representation matrices.

4.2.2 Explicit Computation of Matrix Elements

4.2.2.1 Matrix Elements for a Two-Particle Operator (Ĥ)

The computation of the spatial part of the matrix elements for a two-particle Hamilton

operator H|λ〉,|µ〉 (with the two interacting configurations |φλ〉 and |φµ〉) is needed in the

computation of the inhomogenity (see eq 2.96). Open-shell orbitals that are common in

both configurations are denoted as Si, while doubly occupied orbitals common in |λ〉 and

|µ〉 are denoted as Di and their corresponding numbers as ns and nd. Interacting orbitals are

given in minor letters a, b, c and d. Uns
S are the representation matrices of the permutation
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Figure 4.1: Scheme to determine the Table CI cases according to Michael Hanrath.[54]

operator concerning (ai) (transposition) and P̂ s
q of the line-up permutation in the open-shell

orbitals.
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µ(ns),µ(nd), λ(ns), λ(nd)

1, 1, 1, 1 12

13a

13b

11

14

1, 0, 1, 0

0, 0, 0, 0

µ(D1) == λ(S1)0, 1, 2, 0

true

false

Figure 4.2: Scheme to determine the Table CI cases for an effective one-particle operator.

1. Identical configurations (diagonal elements, case 14):

H|λ〉,|µ〉 =
[ ∑ns

i=1(Si|Si)

+
∑nd

i=1 (2 · (Di|Di) + (DiDi|DiDi))

+2
∑ns

i=1

∑nd
j=1(SiSi|DjDj) + 4

∑nd
i=1

∑nd
j=i+1(DiDi|DjDj)

−∑ns
i=1

∑nd
j=1(SiDj|DjSi)− 2

∑nd
i=1

∑nd
j=i+1(DiDj|DjDi)

+
∑ns

i=1

∑ns
j=i+1(SiSi|SjSj)

]
· 1

+
∑ns−1

j=1

∑ns
i=j+1(SiSj|SjSi) ·Uns

S ((ij))

(4.6)

2. Three cases can be distinguished for single excitations with the interacting orbitals a

and b. The common part in all cases is given as I:

I =
[
(a|b)

+
∑ns

i=1(ab|SiSi)

+
∑nd

i=1 (2 · (ab|DiDi)− (aDi|Dib))
]

(4.7)

(a) Case 11 [b ↔ a]

H|λ〉,|µ〉 =
[
I

+
∑ns

i=1(aSi|Sib) ·Uns
S

(
(S

|λ〉)
1 i)

) ]
·Uns

S

(
P̂ s

q

) (4.8)

(b) Case 12 [ab2 ↔ a2b]

H|λ〉,|µ〉 =
[
I − (ab|aa)− (ab|bb)

+
∑ns

i=1(aSi|Sib) · [1 + Uns
S ((ai))]

]
·Uns

S

(
P̂ s

q

) (4.9)

(c) Case 13 [a2 ↔ ab] or [b2 ↔ ab]

H|λ〉,|µ〉 =
[
I + (ab|aa)

+
∑ns

i=1(aSi|Sib)] ·Uns
S ((ai))

]
·Uns

S

(
P̂ s

q

) (4.10)



4.2 The Computation of Matrix Elements in the Symmetric Group Approach 51

3. Double excitation (cases 1-10):

H|λ〉,|µ〉 =
[
a|λ〉,|λ〉(ab|cd) + A|λ〉,|λ〉(ad|cb)

]
·Uns

S

(
P̂ s

q

)
(4.11)

4.2.2.2 Matrix Elements for an Effective One-Particle Operator (Ĥ0)

The rules of the SGA are also applied to compute the matrix elements for effective one-

particle operators like the Ĥ0 operator in MR-MP2 but the computation of the matrix

elements simplifies substantially compared to a two-particle operator. For the computation

of the matrix elements of the H0 matrix the form of the Ĥ0 operator in terms of the many-

electron Fock operator in eq. 4.12 is recalled. The matrix elements for f̂l are given in

eq. 4.13 (see also (eq. 2.77 and 2.76 in Section 2.3). The projection operators in Ĥ0 are

already applied by the restriction that the interacting configurations belong uniquely to the

first-order interacting space from which the reference space is excluded.

F̂ =
∑

l

f̂l (4.12)

fab = hab +
∑

ij

Dij

[
(ab|ij)− 1

2
(aj|ib)

]
(4.13)

The effective one-particle operator restricts the maximum excitation level between two

configurations to one (Table CI cases 11-14) and only the effective one-electron integrals

in eq. 4.6 - 4.10 are involved. The matrix elements generally can be computed as a sum

over the one-electron Fock operators f̂l and the corresponding matrix elements that connect

the two configurations |λ〉 and |µ〉 via the interacting orbitals 〈φa
|λ〉| denoted as a and |φb

|µ〉〉
which is denoted as b.

〈λ|Ĥ0|µ〉 = 〈λ|F̂ |µ〉 (4.14)

= 〈λ|
#elec∑

l

f̂l|µ〉 (4.15)

The application of eq. 4.15 on eq. 4.13 allows to derive explicit formulas for the matrix

elements.
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1. Identical configurations (diagonal elements, Table CI case no. 14)

H0,|λ〉,|µ〉 =
[∑MO∈|λ〉

a

(
haa +

∑
ij Dij

[
(aa|ij)− 1

2
(aj|ia)

])]
· 1 (4.16)

2. Single excitations (Table CI cases 11 to 13)

H0,|λ〉,|µ〉 =
[(

hab +
∑

ij Dij

[
(ab|ij)− 1

2
(aj|ib)

])]
·Uns

S

(
P̂ s

q

)
(4.17)

Matrix elements between identical configurations are evaluated as a sum of the Fock matrix

elements over all occupied orbitals multiplied with the identity matrix. The major part of

matrix elements between two configurations that differ in one orbital are expressed by a

single term connecting these two orbitals multiplied with the representation matrix of the

Coulomb part.

4.3 Levels of Configuration Treatment

Summarizing the preceding section, the evaluation of individual matrix elements of a Hamil-

ton matrix in this work bases on Configuration State Functions (CSF). The CSF are gen-

erated from configurations, which simply denote orbital occupation schemes and represent

the spatial part of the CSF. They are obtained by multiplication of the integrals connected

to the configuration with appropriate spin eigenfunctions of the Ŝ2 and the Ŝz operators.

The construction of all CSF for a given multiplicity and configuration leads to a set of CSF.

The interaction between two sets of CSF representing a block of matrix elements could be

regarded as the interaction between the configurations the CSF are generated from and a

corresponding block of coupling coefficients betweeen the spin parts. The configurations are

created by excitation operators acting onto the configurations of the reference wavefunctions.

The classification of two interacting configurations and the evaluation of the spin-coupling

matrices are crucial for an efficient implementation.

4.3.1 Internal-External Separation

A full evaluation of the Hamilton matrix requires the comparison of all possible configura-

tions generated from the reference space. The number of comparisons then scales quadrat-
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ically with the number of configurations. Only configurations that are connected to each

other by less than a double excitation in the case of Ĥ0 and less than a triple excitation for

Ĥ contribute non-zero matrix elements to the matrix.

For reasonable basis sets the number of external orbitals usually exceeds the number

of occupied orbitals in the reference space by about an order of magnitude. Bunches of

configurations can be sorted into groups that only differ in the external orbitals but possess

a common rest of orbitals occupied in the reference space. Once sets of configurations are

sorted in this way the common rest with internal orbitals of a configuration denoted as

internal rest can be separated from the external part. A set of configurations can then

be constructed by appending a series of external configuration rests to an internal part.

The internal-external separation of configurations allows a prelimimary classification of the

excitation scheme on the much smaller internal level and decides about whether a block of

matrix elements contributes non-zero elements. If pairs of internal configurations differ by

a double excitation for Ĥ0 or a higher excitation for Ĥ, the complete block of all external

configurations belonging to an internal rests yields matrix elements of zero and the external

interactions need not to be evaluated explicitely. This separation reduces the quadratic

dependency of the number of configurations.

The internal configurations are created by application of creation and annihilation oper-

ators on the reference configurations and the external configurations by creation operators

on the vacuum.

Excitation level Configuration Space

0 |λRef〉 [internal]

1 a∗|λRef〉 [internal-1]

2 a∗b∗|λRef〉 [internal-2]
...

...

a,b ∈ MOint and k,l ∈ MOint + MOext

The internal-external separation was used in the DIESEL[53,54] package and was shown

that the quadratic scaling reduces to approximately 1.5 to 1.6 depending on the reference

space. For large-size molecules or large reference spaces with many occupied orbitals in

the reference configurations the number of [internal-x] configuration grows quite large and

the cost to compare the internal rests gets significant. This separation scheme can be
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improved by an additional separation of the internal space that further reduces the number

of compared configurations.

4.3.2 Inactive-Active-External Separation

A partitioning scheme which is superior to the internal-external separation is obtained if

all orbitals doubly occupied in all reference configurations are separated from those with

possess varying occupation numbers. The part of the configuration with all common orbitals

doubly occupied will be denoted as inactive, while the remaining rest will be denoted as

active.[5] For a set of arbitrary reference configurations this is illustrated in the next scheme.

Reference Configuration Inactive-Part Active-Part

|a2b2c2d2e2f 2i2j2〉 |i2j2〉
|a2b2c2d2e2f 2j2k2〉 |j2k2〉
|a2b2c2d2e2f 2i2j1k1〉 |a2 − f 2〉 |i2j1k1〉
|a2b2c2d2e2f 2i1j2k1〉 |i1j2k1〉
|a2b2c2d2e2f 2i1j1k2〉 |i1j1k2〉

The set of inactive configurations needed to construct the interacting space ([inactive-x],

x=0,1,2) are created by application of annihilation operators to an inactive configuration

|λinactive〉 which is common for all reference configurations.

Excitation level Configuration Space

0 |λinactive〉 [inactive]

1 a∗|λinactive〉 [inactive-1]

2 a∗b∗|λinactive〉 [inactive-2]
...

...

a,b ∈ MOinactive

The generated [inactive] subsets can either be represented in the natural way of occupied

orbitals for which the size of the configuration depends on the number of occupied orbitals

or in terms of holes limited to a number up to the maximum allowed excitation order. The

cost to compare two configurations scales linearly with number of occupied orbitals and

the representation in terms of holes decreases the computational cost substantially. This
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is proven by some example computations given in Table 4.2 which show that the effort for

computing the inactive interactions scales much more favorable with the number of inactive

orbitals in the two compared inactive configurations if they are implemented in terms of

holes. The computational time still scales quadratically with the number of [inactive-x]

configurations, if all [inactive-x] interactions are evaluated. Further improvements that

reduce the number of configuration comparisons are presented later.

Table 4.2: Efficiency of computing [inactive-x]/[inactive-x’] interactions in particle or hole

representation for a set of four molecules A to B taken from a simple comparison of the

interactions in a H0 matrix. Timings were taken on a Dual Athlon MP 1200 MHz compiled

with Intel C++ V 7.1 and MPICH 1.2.5.

Molecule #inactive MO #[inactive-1] #[inactive-2] t(Particle)[s] t(Hole)[s] Factor

A 22 22 231 38 7 5.4

B 35 35 595 340 41 8.3

C 51 51 1275 2100 180 11.7

D 83 83 3403 22000 1300 16.9

The configuration rests belonging to the active space are created in the same way as the

internal configuration rests in the previous section. In the following scheme a and x are

creation and annihilation operators acting on the orbitals in the active space. The active

part of the reference configurations will be denoted as Ref.

[active±x’] Configuration
...

...

+2
∏n

i=1

∏n+2
k=1 a∗i x

†
k|λRef〉

+1
∏n

i=1

∏n+1
k=1 a∗i x

†
k|λRef〉

0
∏n

i=1

∏n
k=1 a∗i x

†
k|λRef〉

-1
∏n

i=1

∏n−1
k=1 a∗i x

†
k|λRef〉

-2
∏n

i=1

∏n
k=1−2a∗i x

†
k|λRef〉

...
...

The created active and inactive configurations are not stored in an arbitrary manner

but sorted into sets that obey the rules to create adjacent entries of similarly structured

configurations.
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1. The configuration rests are divided into subsets according to the number of electrons

and the resulting irreducible representation.

2. Inside such a subset, configurations with less open shells precede the ones with more

open shells.

3. Within this subset, the next sorting criterion is the position of the open-shell orbitals.

4. Finally, configurations with identical open-shell orbitals are sorted according to the

position of the closed-shell orbitals.

The configurations spanning the internal space of a MR-CI-SD and MR-MP2 are obtained

by appropriate combinations of inactive ([inactive-x’]) and active ([active±y’]) configuration

rests given in Table 4.3. The construction of the internal rests imposes the restriction that

all generated internal configurations do not exceed an excitation order n (n = 2 for MR-MP2

and MR-CI-SD) with respect to the reference configurations.

Table 4.3: Possible combinations of [inactive-x’] and [active±y’] restricted to the maximum

of a double excitation between the created configurations and the reference space. [ref]

denotes the set of active parts of the reference configurations.

[internal-x] [inactive-x’]/[active±y’]

[internal]

[inactive] / [active]a

[inactive− 1] / [active + 1]b

[inactive− 2] / [ref + 2]

[internal-1]

[inactive] / [active− 1]

[inactive− 1] / [active]b

[inactive− 2] / [ref + 1]

[internal-2]

[inactive] / [ref − 2]

[inactive− 1] / [ref − 1]

[inactive− 2] / [ref]

a [active] 6⊂ [ref] in MR-MP2; including single

and double excitations from [ref].
b [active] includes [ref] and single excitations

inside the active reference space.
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The splitting of the internal rest into an inactive and an active part allows an efficient

evaluation of the interactions for the internal rests. On the level of the sets of [inactive-x]

configurations, interactions can be classified quite simply. If the interactions on this level

already exceed the maximum excitation order then the complete block of active rests and the

corresponding external configurations for each of the active parts yields only zero matrix-

elements. The selection of surviving interactions already at the inactive-level reduces the

computation cost and improves the scaling significantly.

In the inactive-active separation scheme, the usually larger inactive configuration rest is

split off and the efficiency concerning the comparison between two active configurations is

improved compared to internal rests.

In the same way as the internal-external separation generates sets of external configurations

that are appended to the internal rests, the inactive-active separation introduces a similar

but even finer structure of the configuration space similarly. Each [inactive-x] configuration

is appended by a particular set of active rests to yield a certain category of [internal-y]

configurations (Table 4.3), with y denoting the number of missing electrons. The recurrence

of the active rests for all existing inactive configurations in a certain inactive set can be

utilized to avoid the computation of each interaction in the active space as the sets of active

configurations with other active parts form interaction patterns that repeat for each inactive

interaction. These patterns have to be computed once for a particular set and can be used

throughout the whole calculation reducing the effort of configuration comparisons to simple

input-output procedures during the major part of computation in the iterative steps.

4.3.3 Patterns

The recurring sequences of core and active interactions are treated with patterns for which

the interactions at a certain level (inactive, active, or external) are precomputed and the

non-vanishing entries are stored. The storage scheme includes the difference configuration as

it enters the determination of the table case and therefore the representation matrices in the

SGA. It basically represents the excitation order between the two interacting configurations

as well as the interacting orbitals that determine the integrals which enter the computation

of matrix elements. The excitation order of a configuration rest is a criterion on the existence
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and non-existence of non-zero matrix elements and also influences the interacting orbitals.

In this scheme the excitation order and the interacting orbitals are computed with each

difference configuration and stored in the pattern.

The patterns are used directly to incrementally build up the full interaction between

two configurations from the core, active, and external interactions. The implementation is

based on difference configurations (see Section 4.2.1) which are the basic objects for the

computation of matrix elements.

One difficulty in the use of patterns comes along with addressing of the coefficient vector

needed for the matrix-vector multiplication. In a full evaluation of e.g. active interactions,

the interaction is classified and once it vanishes, the new offset for the coefficient address is

computed from the active interaction and the corresponding external rests. The number of

open shells determines the manifold of the spin eigenfunctions and is the quantity needed

to address the coefficient vector correctly. In the patterns discussed above the information

about the incremental offsets connected with the vanishing interactions cannot be stored,

as the offsets do not solely depend on the entries in the pattern (e.g. interactions between

active configurations) but also on the external rests that are missing in the pattern. The

recovery of this information is implemented with configuration indices for all configurations

occuring in the pattern and their number of open shells. The position entry is necessary

to compute the ”distance” between two pattern elements and the number of open shells

for each of the neglected entries in combination with the number of corresponding external

configurations is used to compute the address of the coefficient vector. The computational

effort to obtain the new offsets is negligible compared to the computation of a difference

configuration and increases the efficiency of the algorithm compared to a full treatment.

4.4 Matrix Structure of H0 and Inhomogenity

4.4.1 Inhomogenity

The inhomogenity vector ~I represents the projection of the diagonalized reference wavefunc-

tion |Φ0〉 onto the interaction space (left-hand side of Figure 4.3). The columns in Figure 4.3

denote the configurations of the multi-configurational reference wavefunction (|Φi
0〉) while
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the rows represent the configurations of the interacting space. The matrix elements between

two individual interacting configurations are evaluated by means of the SGA. The numbers

of comparisons between two configurations grow rapidly for increasing interacting spaces

and reference wavefunctions. The reference configurations determine the size of the inter-

acting space in conjunction with the number of external MO and the number of comparisons

is N|Φ1
k
〉 ×N ref

|Φi
0〉

if no advantage of the structure is taken1.
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Figure 4.3: Structure of the MR-MP inhomogenity vector. The left-hand side represents an

internal-external separation of the inhomogenity. The space of the reference configurations is

excluded from the interacting space. The inactive-active partitioning of the internal regions

(internal-2 depicted in the center) further refines the interaction classes. The right-hand

side depicts the interactions of the active rests for three arbitrary inactive parts. Vanishing

blocks of matrix elements are denoted in black.

An efficient scheme to reduce the computational cost of the evaluation of ~I first utilizes

the internal-external separation already introduced at the beginning of this chapter. This

first level is classified according to the number of external MO in the configurations of

the interacting space and groups configurations together that possess a similar structure.

Each internal region is further divided into a inactive regime and the corresponding active

part of the respective internal rests (center of Figure 4.3). Each inactive configuration in a

particular inactive regime (here: [inactive-1]) is appended with a set of active rests (right-

1For a MR-MP2 corrected selecting MR-CI the computation of the inhomogenity is expensive. The

computational cost increases with the size of the selected CI wavefunction as it represents the reference

wavefunction for the inhomogenity.[54]
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hand of Figure 4.3) that finally corresponds to a set of internal configurations. To exploit

the splitting into a inactive and an active part, the internal rests are sorted according to

identical inactive parts which generates a repeating sequence of active configuration rests. In

the cases of [internal-1] and [internal-2] spaces, a set of external configurations is appended

to the internal parts.

The use of matrix patterns presented in Section 4.3.3 for the classification of interactions

on the active level allows to determine those entries with vanishing contributions at a very

early level. The time-consuming comparison of configurations is thus avoided. This aspect,

that plays a minor role in case of [internal] configurations, becomes significant once whole

columns of external configurations are appended to each [internal-x] rest and vanishing

matrix elements are recognized already on the active level of configuration treatment.

4.4.2 The MR-MP-H0 matrix

4.4.2.1 General Structure

The hermitian H0 matrix (Figure 4.4) encounters the interacting configurations generated

from the reference space. It can be divided by means of the internal-external separation into

three regions (Figure 4.4, I) characterized by the number of annihilated electrons x denoted

as [internal-x] and the corresponding external configurations. The reference space is excluded

from the interacting space. The regions inside the H0 matrix are listed in Table 4.4. In the

H0 matrix interactions between two configurations connected to each other by more than

a single excitation vanish, since in contrast to Ĥ of the inhomogenity, Ĥ0 represents an

effective one-electron operator. Consequently, the matrix block [internal]/[internal-2] (C in

Figure 4.4, I and in Table 4.4) is zero by virtue of this property. In the following discussion

only the upper triangular part of the hermitian submatrices are regarded.2.

Each internal region is further split up (Figure 4.4, II) into 3×3 inactive regions ([inactive],

[inactive-1] and [inactive-2] interacting with each other). The submatrices of the inactive

configuration sets are symmetric for internal regions with the same number of electrons (A,

D, and F) but non-symmetric if the numbers of electrons differ in the internal rests. The

2The multiplication of the matrix elements of the lower and the upper triangle with the corresponding

parts of the coefficient vector are excecuted simultaneously.
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Figure 4.4: Structure of the MR-MP-H0 matrix.
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Table 4.4: Regions in the MR-MP-H0 matrix according to Figure 4.4 (I).

Region [Internal-x] [Internal-x’] External External’ minimum excitation level

A Internal Internal - - 0

B Internal Internal-1 - |a1〉 1

C Internal Internal-2 - |a2〉, |a1b1〉 2

D Internal-1 Internal-1 |a1〉 |a1〉 0

E Internal-1 Internal-2 |a1〉 |a2〉, |a1b1〉 1

F Internal-2 Internal-2 |a2〉, |a1b1〉 |a2〉, |a1b1〉 0

analyis of interactions of large parts of the matrix on the coarse-grain inactive level is the

basis for an efficient evaluation of the finer interaction structures of the active and external

configurations in the sparse H0 matrix.

Table 4.5: Structure of the matrix blocks inside the MR-MP

H0 matrix. Identical internal configurations are excluded.
a Not treated in stored patterns but implemented directly

with orbitals.

[Internal-y] [Internal-x] [Inact.-y’] [Inact.-x’] Inact.-Struct. Active-Struct. Ext. Struct.

Internal Internal Inact. Inact. Single Pattern -

Internal Internal Inact. Inact.-1 Row Pattern -

Internal Internal Inact. Inact.-2 - - -

Internal Internal Inact.-1 Inact.-1 All Pattern/Diag. -

Internal Internal Inact.-1 Inact.-2 Pattern Pattern -

Internal Internal Inact.-2 Inact.-2 Pattern Pattern/Diag. -

Internal Internal-1 Inact. Inact. Single Pattern Row

Internal Internal-1 Inact. Inact.-1 Row Pattern Row

Internal Internal-1 Inact. Inact.-2 - - -

Internal Internal-1 Inact.-1 Inact. - - -

Internal Internal-1 Inact.-1 Inact.-1 Diag. Pattern Row

Internal Internal-1 Inact.-1 Inact.-2 Pattern Diag. Row

Internal Internal-1 Inact.-2 Inact. - - -

Internal Internal-1 Inact.-2 Inact.-1 - - -

Internal Internal-1 Inact.-2 Inact.-2 Pattern Diag. Row

Internal-1 Internal-1 Inact. Inact. Single Pattern Diag.



4.4 Matrix Structure of H0 and Inhomogenity 63

Internal-1 Internal-1 Inact. Inact.-1 Row Pattern Diag.

Internal-1 Internal-1 Inact. Inact.-2 - - -

Internal-1 Internal-1 Inact.-1 Inact.-1 All Pattern/Diag. Diag.

Internal-1 Internal-1 Inact.-1 Inact.-2 Pattern Pattern Diag.

Internal-1 Internal-1 Inact.-2 Inact.-2 Pattern Pattern/Diag. Diag.

Internal-1 Internal-2 Inact. Inact. Single Pattern Patterna

Internal-1 Internal-2 Inact. Inact.-1 Row Pattern Patterna

Internal-1 Internal-2 Inact. Inact.-2 - - -

Internal-1 Internal-2 Inact.-1 Inact. - - -

Internal-1 Internal-2 Inact.-1 Inact.-1 Diag. Pattern Patterna

Internal-1 Internal-2 Inact.-1 Inact.-2 Pattern Pattern Patterna

Internal-1 Internal-2 Inact.-2 Inact. - - -

Internal-1 Internal-2 Inact.-2 Inact.-1 - - -

Internal-1 Internal-2 Inact.-2 Inact.-2 Diag. Pattern Patterna

Internal-2 Internal-2 Inact. Inact. Single Pattern Diag.

Internal-2 Internal-2 Inact. Inact.-1 Row Pattern Diag.

Internal-2 Internal-2 Inact. Inact.-2 - - -

Internal-2 Internal-2 Inact.-1 Inact.-1 All Pattern/Diag. Diag.

Internal-2 Internal-2 Inact.-1 Inact.-2 Pattern Pattern Diag.

Internal-2 Internal-2 Inact.-2 Inact.-2 Pattern Pattern/Diag. Diag.

Generally, all interactions between two inactive configurations that correspond to a higher

excitation than a single excitation give zero matrix elements ([inactive]/[inactive-2], block

c in Figure 4.4, II). The inactive-active separation possesses an additional useful feature

that allows a simple decision which sets of inactive configurations interact to contribute

non-zero matrix elements. Do both sets of inactive configurations are used to build up

configurations of same internal spaces (internal, internal-1, and internal-2), all interactions

have a possibility to exist. If the inactive sets are associated with different internal regions (B

and E in Figure 4.4, I), the number of electrons in the inactive configurations decides about

the existence of whole matrix blocks. Two inactive sets constituting the rows ([inactive-y])

and the columns ([inactive-x]) of a certain submatrix can only contribute to non-zero matrix

elements if the number of electrons in [inactive-y] is larger or equal the number of electrons

in [inactive-x] (y≤x). These blocks in regions B an E (Figure 4.4, I) correspond to the labels

a, b, d, e, and f in the upper triangle of Figure 4.4, II. If y>x (less electrons in [inactive-
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y] than in [inactive-x]) the complete block including active and external configuration rest

vanishes (b and c in the lower triangle of Figure 4.4, II; compare also with Table 4.5).

A simple example to illustrate this feature is given in equation 4.18 for the interac-

tion of two configurations of the type [internal]/[internal-1]. The configuration of [in-

ternal] is constructed from [inactive-2][active+2] and the one of [internal-1] of [inactive-

1][active][external]. Orbitals up to c are inactive orbitals, m, n and o denote active orbitals

and x denotes an external orbital appended to the [internal-1] configurations.

〈a2b1c1
︸ ︷︷ ︸
inactive

m2n2o2
︸ ︷︷ ︸

active

|Ĥ0| a2b2c1
︸ ︷︷ ︸
inactive

m2n1o1
︸ ︷︷ ︸

active

x1
︸︷︷︸
ext.

〉 = 〈b1n2o2|Ĥ0|b2n1o1x1〉 (4.18)

The active rests that are necessary to build up a configuration of certain internal character

differ by at least a double excitation and therefore the whole inactive-blocks vanishes.

The structure of the matrix was so far created by virtue of the properties of the inactive-

active partitioning. If the molecule of interest possesses symmetry, the symmetry properties

of the configuration rests have to be considered (Figure 4.4, III). Each inactive region of

a certain internal submatrix (Figure 4.4, II) is further blocked according to the irreducible

representations of the point group.

Two interacting inactive configurations belonging to different irreducible representations

are connected by at least a single excitation because the interacting orbitals possess a differ-

ent symmetry. The condition for the full configurations (inactive+active+external part) to

be of identical symmetry forces the active or external parts to belong to different irreducible

representations to compensate for the different inactive symmetries. The excitation order

between the two active or external rests again has to at least one. Therefore, blocks of inac-

tive configuration sets that belong to different irreducible representations (IrRep. 1/IrRep.

2 in Figure 4.4, III) vanish.

Up to the present considerations, the H0 matrix is blocked by the internal-external separa-

tion, the inactive-active partitioning and the symmetry considerations at the inactive-level.

The next level (Figure 4.4, IV) which introduces an even finer structure considers sets of

inactive configurations which belong to the same irreducible representation of the point

group. The interaction between configuration rests without an excitation out of the inactive

orbitals ([inactive]/[inactive]) is trivial as the [inactive] set only consists of a single config-

uration and belongs to the totally symmetric irreducible representation of the point group.
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Does an [inactive-1] set interacts with itself (block d in Figure 4.4, II), all interactions be-

tween configurations of this set contribute to non-vanishing contributions since they can

only differ by a single excitation and therefore the interaction depends on the active and/or

external configuration rests. Interactions of two sets of the type [inactive-2]/[inactive-2]

(block d in Figure 4.4, II) are depicted schematically in Figure 4.4, III. For each of the

interactions between two inactive configurations an appropriate interaction scheme exists.

If two identical inactive configurations interact, the final contribution is determined by the

active and external rests. Only active configurations have to be considered with less than a

double excitation between each other. Active rests connected by a single excitation have to

possess identical external rests. Only if the active rests are identical the external rests can

differ in one MO which then about the interaction.

If two inactive configurations are connected by a single excitation, non-zero matrix el-

ements are only found if the active and the external rests that belong to the respective

configurations are identical. This classification of interactions already reduces the effort to

evaluate the H0 matrix but the efficiency still can be improved especially if large molecules

are considered. The number of [inactive-1] configurations scales linearly and the number of

[inactive-2] scales quadratically with the number of occupied MO. A substantial saving is

achieved if the patterns of [inactive-2]/[inactive-2] interactions are precomputed prior to the

evaluation of the H0 matrix and used to access the inactive matrix blocks directly, so that

it is possible to avoid any cost arising from non-interacting inactive configurations. The

same procedure is also done for the active interactions in analogy to the computation of

the inhomogenity. The previously mentioned possible diagonal structure of blocks of active

configurations is a special case of a pattern structure and can be easily coded in a general

way.

The interactions discussed so far take place at the internal level. The external interactions

for each pair of interacting internal configuration rests (Figure 4.4, V) represent the last

level before the computation of the matrix elements (Figure 4.4, VI).

The interactions on the external configuration level depend on the excitation order between

the internal configuration rests. If the number of electrons in the internal rests (inactive

and active) are the same and the internal excitation order equals one, the non-vanishing

contribution of the external configurations is reduced to a diagonal in the external matrix
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block. This kind of external interaction contributes the major part of the sparsity of the

Hamilton matrix and the spatial part of the matrix elements is determined by the inter-

nal rest alone. Two other kinds of external submatrices are less trivial to evaluate. The

external interactions for identical internal configurations allow single excitations in the ex-

ternal configurations and cause a more dense interaction pattern. Matrix blocks belonging

to [internal-1]/[internal-2] are also more difficult to evaluate as a more complicated structure

exists (see Section 4.4.2.2). The use of patterns to evaluate these external interactions effi-

ciently is disadvantageous as the number of externals rapidly grows with the basis set size.

For this reason a direct implementation of the external interactions was preferred. For each

internal interaction a block of representation matrix elements exists that finally constitutes

the matrix elements of the H0 matrix.

4.4.2.2 Direct Implementation of External Configuration Interactions

The interactions between external configurations contribute the major part of the compu-

ational work in the construction of the H0 matrix. The occuring interactions are more

restricted than for the active level and of the same complexity as the inactive interactions.

If two internal configuration parts are connected to each other by a single excitation, both

external configuration rests have to be the same to yield non-vanishing matrix elements.

In a matrix representation these configurations represent diagonal entries in the external

submatrix. Two identical internal configuration rests allow the external configurations to

differ by a single excitation to yield non-vanishing matrix elements. Basically, this would

require the full evaluation of all interactions between each pair of external configurations.

This situation holds for matrix blocks that consist of configurations with only one exter-

nal orbital, but not for interacting external configurations rests with two occupied external

orbitals. For these external rests the number of double excitations exceeds the number of

single excitations and a full evaluation reduces the computational efficiency. An analogous

situation is also found for interactions between the [internal-1] and [internal-2] configuration

spaces. The two external configuration rests, one with a single external orbital and the other

with two occupied external orbitals, can only contribute to non-vanishing matrix elements

if one orbital is identical in both rests.

The patterns as they are used for the inactive and active levels to locate the positions of the
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interacting configurations are not preferrably applied since the required prototypes of the

external submatrices commonly extend the storage limits in main memory. If the computed

molecule belongs to a higher-order point group than C1, patterns for each combination of

the irreducible representation had to be evaluated and efficiently accessed. An approach

to avoid the explicit computation of all interactions or to apply the memory-consuming

alternative of patterns is the direct implementation of the non-vanishing interactions in the

external submatrix. This approach certainly utilizes the limited possibilities of interactions

(one or two occupied external orbitals) present in a MR-MP2 ansatz.
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Figure 4.5: Interactions between two-electron external configurations in the totally sym-

metric irreducible representation occuring for identical internal configurations. a-f denote

external orbitals.

The direct implementation of the external contributions is supposed to come along with a

minimal computational effort that only addresses those configurations that actually interact

but requires the explicit classification of the occurring interactions. This classification also

has to consider the various irreducible representations and can be done once the configu-
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rations are sorted by their external orbitals in a particular but non-unique scheme. In this

work, configurations that consist of only one external orbital are sorted with respect to the

irreducible representation they belong to and the orbital number while configurations with

two occupied external orbitals are sorted in a manner presented in the first line given in

Figure 4.5. The ordered set starts with closed-shell configurations followed by the ones with

two singly occupied external orbitals. The submatrix in Figure 4.5 represents the external

interactions in the totally symmetric irreducible representation for two identical internal

rests. These blocks are located along the main diagonal of the hermitian H0 matrix and

thus only the upper triangle part is considered.

This submatrix starts with the block of the external configurations a2 to f 2 that do not

interact with each other because they represent a double excitation. However, they interact

with the open-shell configurations a1b1 (denoted ab) to ef . The open-shell configurations are

ordered in the following scheme. First the external orbital at the beginning of an irreducible

representation (a) is set, then the remaining higher orbitals (b to f) in this representation

are added to build the configurations and the sequence is continued with the next orbital b.

Based on this ordering the interactions of the closed-shell configuration on the left-hand

side (|ΦL〉) and the open-shell configurations on the right-hand side (|ΦR〉) are reduced to

two simple rules. If the orbital of the closed-shell configuration |ΦL〉 and the first orbital

in the open-shell configuration |ΦR〉 is the same then a set of contiguous matrix elements

in one row is present (b2/(bc, bd, be, and bf in the second line of Figure 4.5). If the second

orbital of the open-shell configuration |ΦR〉 and the MO in |ΦL〉 are identical, then a single

entry results (b2/ab). The entries represent the interacting orbitals that enter the matrix

element computation with the orbital on the left-hand side superscripted to the orbital on

the right-hand side. The number of elements in this part of the submatrix is computed to

#ext.×(#ext.-1) An algorithm that determines the position of the respective elements is

given in Listing 4.1.

The positions of the single entries depend on the position of the second orbital in the open-

shell configuration. The first loop iterates over all irreducible representations of the point

group (not shown in Figure 4.5 for the sake of simplicity) to encompass all combinations

of orbitals that contribute to the totally symmetric irreducible representation. For each

MO on the left-hand side (moL1) the corresponding row is now treated. First the matrix
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elements are computed for the current position (starts at position 0 for the first entry) and

then the number of single entries is determined from the position of moL1 alone.

Listing 4.1: Part I of the algorithm to compute the interacting between two-electron exter-

nal configurations in the totally symmetric irreducible representation occuring for identical

internal configurations. Closed-shell configurations in |ΦL〉.

// 1. closed shell left/ 2 open shells right

for (IrRep = group.begin(); IrRep < group.end(); IrRep++)
{ mos = get external mos(IrRep);
// loop over closed-shells on left side;

for (moL1 = mos.begin(); moL1 = mos.end(); moL1++)
{ // Gaps preceed contiguous part in one row!

number of gaps = pos(moL1) - 1;
moR1 := mos.begin();
moR2 = moL1;
for (count = 0; count < number of gaps; count++)
{ // calculate matrix elements from interacting MO L1, R1 and R2!

MRMPH0MatElements(tablecase,interactingMO(L1,L2=L1,R1,R2));
offset = tmp offset + ( pos(moR2) - pos(moR1) - 1 ) ∗ (spineigen);
// calculate new offset

tmp offset += (mos.size() - pos(moR1)) ∗ (spineigen);
moR1++;

}
// create (e.g. |b2> -> |bc>)

moR1 = moL1;
moR2 = moR1 + 1;
for (moR2; moR2 = mos.end(); moR2++)
{ // Calculate matrix elements from interacting MO L1, L2, R1 and R2!

MRMPH0MatElements(tablecase,interactingMO(L1,L2,R1,R2));
// calculate new offset

offset += (spineigen);
}

}
}

The offset for the next entry is now computed by the position of the MO moR1 and moR2

and the number of spin eigenfunctions (spineigen). In this loop also the starting position

for the contiguous part of the row is computed. The interacting MO are set again and a loop

from moR2 = moL1 + 1 to the highest MO treats the remaining interacting configurations.

The number of non-vanishing entries per row in this submatrix equals the number or orbitals

in the irreducible representation.

The structure of the interactions between two external open-shell configurations is also
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shown in Figure 4.5. This part of the submatrix consists of small triangular blocks if the

first orbitals in both configurations |ΦL〉 and |ΦR〉 are the same and a pattern in analogy

to the closed-shell/open-shell case exists if these differ. Listing 4.2 shows the corresponding

part of the algorithm.

Listing 4.2: Part II of the algorithm to compute the interacting between two-electron exter-

nal configurations in the totally symmetric irreducible representation occuring for identical

internal configurations. Open-shell configurations in |ΦL〉.

// 2. 2 open shell left/ 2 open shells right

// Get initial offset from previous part

for (IrRep = group.begin(); Irrep = group.end(); IrRep++)
{ mos = get external mos(IrRep);

// set initial MO (e.g. |ab>)

moL1 = mos.begin();
moL2 = moL1;
moL2++;
// Build prototype difference configuration of 2 open shells / 2 open shells

// Set configuration on the right: (e.g. |ac>)

// Loop over open shells on left side;

for (moL1 = mos.begin(); moL1 = mos.end(); moL1++)
{ for (moL2 = moL1+1; moL2 = mos.end(); moL2++)
{ // increment |ab> to |ac>

offset += (spineigen);
// Do contigous part of row before gaps->contary to closed/2 open

for (moR2 = moR1+1) -> mos.end())
{ // Calculate matrix elements from interacting MO L1, L2, R1 and R2!

MRMPH0MatElements(tablecase,interactingMO(L1,L2,R1,R2));
// calc new offset

offset += (spineigen);
}
int number of gaps = pos(moL2) - pos(moL1) - 1;
moR1 = moL1 + 1;
moR2 = moL2 ;
for (count = 0; count < number of gaps; count++)
{
// see previous procedure

}
// do contiguous part

if (moL2 < lastMO) // if L2 is last mo -> no gapless block exists

{ moR1 = moL2;
moR2 = moR1;
moR2++; // -> (build e.g. |bc> in row of |b2>

for (moR2; moR2 = mos.end(); moR2++)
{
// as done previously

}



4.4 Matrix Structure of H0 and Inhomogenity 71

}
}

}
}

A pattern for external configurations in the other irreducible representation than the

totally symmetric one can also be derived. Now all combinations between orbitals of the

corresponding irreducible representation that result in the desired representation have to be

treated. In the example in Figure 4.6 only orbitals of two irreducible representations are

given for simplicity (orbitals a− f and i− l).
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Figure 4.6: Matrix entries between two-electron external configurations in a non-totally

symmetric irreducible representation occuring for identical internal configurations.

Triangular matrix blocks are present for identical first orbitals but once the first orbital

differs, matrix entries only survive if they possess an identical second MO and a diagonal

structure of the submatrix with identical interacting MO is found. The algorithm to compute

the positions of the interacting external configurations is given in Listing 4.3.
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Listing 4.3: Algorithm to compute the interaction between two-electron external configu-

rations in a non-totally symmetric irreducible representation occuring for identical internal

configurations.

for (IrRep1 = group.begin(); IrRep1 = group.end(); IrRep1++)
{ mosL = get external mos(IrRep1);

IrRep2 = group.getProduct(externalsymm,IrRep1);
if (IrRep2 > Irep11)
{ mosR = get external mos(IrRep2);
// do loop over 1st mo left // all in irrep1

for (moL1 = mosL.begin(); moL1 = mosL.end(); moL1++)
{ for (moL2 = mosr.begin(); moL2 = mosR.end(); moL2++)

moR = mosL.begin();
moR2 = moL2;
// do line in triangle

for (moR2; moR2 = mosR.end(); moR2++)
// do sparse part!

// distance between single elements is number of entries(ir2);

// number is of entries(IrRep1) - pos(moL1)

// Calculate matrix elements from interacting MO L1, L2, R1 and R2!

MRMPH0MatElements(tablecase,interactingMO(L1,L2,R1,R2));
// calc new offset

offset += (spineigen);
}
for(gaps = pos(moL1)+1; gaps = mosL.size(); gaps++)
{ moR1++;
// calc new offset

offset = tmp offset + (pos(moL2)-1) ∗
(∗spineigen)(internal openshellsL + 2);

tmp offset += mosR.size() ∗ (∗spineigen)(internal openshellsL + 2);
// Calculate matrix elements from interacting MO L1, L2, R1 and R2!

MRMPH0MatElements(tablecase,interactingMO(L1,L2,R1,R2));
}

}
}

}
}

If the external parts of two configurations belong to two different irreducible representa-

tions of the point group, the full configurations must differ by a double excitation. The

first excitation arises from the different irreducible representation of two interacting exter-

nal orbitals. The second excitation must occur in the internal part (inactive or active)

since the symmetry of both full configurations must be the same. These external blocks of

configurations vanish.

A slightly different situation arises if the external rests of the interacting configuration sets
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[internal-1]/[internal-2] are regarded. For these external submatrices rectangular blocks ex-

ist depending on the possible combinations of irreducible representations. For the [internal-

1]a1/[internal-2]a1b1 part with a and b denoting external orbitals, three cases can be dis-

tinguished. The first case (Figure 4.7) summarizes the arising interactions, if the external

configuration rests belong to the totally symmetric irreducible representation. The algo-

rithm is identical to the one in Figure 4.5.

����� ��� �����
	 � ��� ��� ��� ��	 � �
� ��� 	�� � � 	 ��	
�
�
�
�
	


 � �

 � �

 � �

 � �

 � �


 � ��
 � ��
 � ��
 � �

 � � 
 � ��
 � ��
 � �

 � � 
 � � 
 � ��
 � �

 � � 
 � ��
 � ��
 � �

 � � 
 � ��
 � ��
 � �

Figure 4.7: Matrix entries of external configurations in [internal-1]/[internal-2] matrix

blocks. The external part of the [internal-2] set belongs to the totally symmetric irreducible

representation.
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Figure 4.8: Matrix entries of external configurations in [internal-1]/[internal-2] matrix

blocks. The external part of the [internal-2] configuration set belongs to the non-totally

symmetric irreducible representation. The singly occupied MO in |ΦL〉 belong to the same

irreducible representation as the first MO in |ΦR〉.
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Figure 4.9: Matrix entries of external configurations in [internal-1]/[internal-2] matrix

blocks. The external part of the [internal-2] configuration set belongs to the non-totally

symmetric irreducible representation. The singly occupied MO in |ΦL〉 belong to the same

irreducible representation as the second MO in |ΦR〉.
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The second case and the third case are depicted in Figures 4.8 and 4.9. The configurations

|ΦR〉 belong to the non-totally symmetric irreducible representation and if the occupied or-

bital in the configuration on the left-hand side is identical to the first one in the configuration

on the right-hand side (|ΦR〉 in Figure 4.8) then a band structure of the sparse submatrix

exists. If the second orbital in |ΦR〉 is the same as the orbital in |ΦL〉, then the structure

changes to a diagonal for each orbital block of the submatrix. The number of non-vanishing

matrix entries is computed to nMO(IrRep1) ·nMO(IrRep2). The algorithm for both cases is given

in Listing 4.4

Listing 4.4: Algorithm to address non-vanishing matrix entries of external configurations

in [internal-1]/[internal-2] matrix blocks. The [internal-2] set belongs to the non-totally

symmetric irreducible representation.

// calc start of ext1/ext2

mosL = get external mos(extSymmL);
moL1 = mosL.begin();

for (IrRep1 = group.begin(); IrRep1 = group.end(); IrRep1++)
{ IrRep2 = group.getProduct(extSymmL,IrRep1);

// one set of mos on right-hand side equals mosL; otherwise excitation order is

> 1!

mosR1 = get external mos(IrRep1);
mosR2 = get external mos(IrRep2);
if (IrRep2 > Irep11)
{ moR1 = mosR1.begin();
moR2 = mosR2.begin();
if (extSymmL == symm(moR1)) // band structure

{ // do loop over 1st mo left // all in irrep1

for (moL = mosL.begin(); moL = mosL.end(); moL++)
{ // do bands

tmp offset += (pos(moL) - 1)∗ mosR1.size() ∗ (spineigen);
for (moR1; moR1 = mosR.end(); moR1++);
{ // calc offset

offset += (spineigen);
// Calculate matrix elements from interacting MO L1, L2, R1 and R2!

MRMPH0MatElements(tablecase,interactingMO(L1,L2,R1,R2));
}

}
}
else if (extSymmL == symm(moR2)) // diagonal structure

{ for (moL = mosL.begin(); moL = mosL.end(); moL++)
{ for (moR1 = mosR1.begin(); moR1 = mosR1.end(), moR1++)
{ // do single entries
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tmp offset += (pos(moR1) - 1)∗ (spineigen);
offset = tmp offset + mosR1.size()∗ (spineigen);
for (moR2 = mosR2.begin(); moR2 = mosR2.end(); moR2++)
{ // use multiple offset from temp offset;

// Calculate matrix elements from interacting MO L1, L2, R1 and R2!

MRMPH0MatElements(tablecase,interactingMO(L1,L2,R1,R2));
}

}
// calc new offset of next row

}
}

}
}

The given structures of the external submatrices were used to derive algorithms that

determine the interacting configurations and their positions to compute the matrix elements

with non-zero contributions. The algorithms described here in pseudo-code represent a

model in which only the non-vanishing external interactions are evaluated. The implemented

model builds up the interaction directly from the external orbitals, without going the detour

of creating the interacting external configurations and computing the interaction.

4.5 Integral Handling

The integrals needed for a MR-MP2 computation can be gathered from eqn.4.19 (see also

eq. 2.96) and 4.22 (eq. 2.76).

∑

j

c1
j〈Φ1

i |Ĥ0 − Ê0|Φ1
j〉 = − 〈Φ1

i |Ĥ|ψ0〉︸ ︷︷ ︸
Inhomogenity

(4.19)

The integrals needed to compute the inhomogenity arise from interactions of the type

〈Φ1
i |Ĥ|Φ0〉 = 〈ab|kl〉 − 〈ab|lk〉 (4.20)

= (ak|bl)− (al|bk) (4.21)

with a and b denoting internal and external orbitals and k and l representing internal orbitals

only. Eq. 4.20 is given in physicist’s notation and eq. 4.21 given in chemist’s notation.

The Coulomb and Exchange integrals are of the same type (all, internal|all, internal) and

correspond to the single-reference MP2 integrals, except for an increased number of internal

and a decreased number of external orbitals.
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The integrals needed on the left-hand side of eq. 4.19 are given in eq. 4.22 and are of the

type (all, all|internal, internal) for the Coulomb and (all, internal|internal, all) for the

Exchange part.

fab = hab +
∑

kl

Dkl

[
(ab|kl)− 1

2
(al|kb)

]
(4.22)

The appearing Coulomb part in eq. 4.22 rules out the use of the programs which per-

form a standard MP2 integral transformation but requires a 4-index transformation of the

type (all, all|all, internal). The storage requirement of the four-index integrals can be re-

duced if only integrals of the type (int, int|int, int), (ext, int|int, int), (ext, ext|int, int), and

(ext, int|ext, int) are stored. The permutational symmetry of the integrals has already been

considered. The four-index integrals are required for the evaluation of the inhomogenity,

which is computed once, stored and used to compute the second-order correction to the

energy. The four-index integrals are therefore only needed once and can be deleted after

the computation of the inhomogenity. The matrix elements needed in the iterative steps

concerning Ĥ0 (left-hand side of eq. 4.19) are computed from effective one-electron integrals

which are reduced by contracting of the four-index integrals in conjunction with the density

matrix Dkl.

A more compact way of integral handling is based on the use of three-index (RI) integrals

instead of four-index integrals. RI integrals of the type (ab|aux) recover the full four-index

quantity by a scalar product of the (ab|aux) vector with the dimension of the auxiliary basis

functions aux and reduce the storage requirements. The orbitals a and b denote all internal

and external orbitals and a separated storage like for the four-index integrals scheme does

not have significant advantages.

Two different schemes to evaluate the four-index integrals from the RI integrals are pos-

sible. The four-index integrals can be constructed and stored prior to the computation of

the inhomogenity in the first step of the iterative procedure and then used throughout the

computation or the integrals can be generated from the RI integrals on the fly each time a

four-index integral is needed. Storage of the necessary four-index integrals is only advanta-

geous for medium-size systems (about 300 basis functions) and requires a substantial amount

of disc-space for large molecules and the storage in main memory is not feasible. The gen-

eration of the four-index integrals from RI integrals on the fly seems to be time-consuming
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but with nowadays CPU speeds the reconstruction of the integrals does not cost as much as

reading the integrals from disc-based IO-devices. The second approach is more advantegous

since not all four-index integrals are needed and the iterative process requires only effective

one-electron integrals. However, both of the two methods are implemented in the program

ot ensure compatibility with existing integral codes (MOLCAS and TURBOMOLE).

The expression of the Fock matrix elements in MR-MP2 (eq. 4.22) shows fab to depend

only on the orbitals a and b but not directly on the full four-index integrals. The four-

index integrals together with the two-index integrals can be absorbed into effective one-

electron integrals of type (a|b). The contraction requires the reference space dependent

density matrix and the four-index integrals connected with the orbitals a and b and all

internal orbitals k and l. The spatial parts of the matrix elements are computed from the

reduced one-electron integrals as needed in case of non-diagonal interactions and sums over

all occupied orbitals in case of diagonal interactions. The scheme was already implemented

in the DIESEL package but not yet published. In the iterative procedure the four-index

integrals or the RI integrals are not necessary anymore and can be removed.

4.6 Parallelization Scheme

4.6.1 Parallelization Models

Parallelization distributes the cost of a computation on more than one CPU and reduces the

over-all time from starting a calculation to receiving the result. The parallelization models

are determined by the system architecture. Multi-CPU computers that access the same

main memory address space (Symmetric Multi Processing, SMP) and those having a unique

address space for each CPU (Distributed Memory) differ substantially in their architecture

and different parallelization concepts have to be applied. Parallelization on multi-processor

computers with distributed memory, which are much more cost-efficient than those with

shared-memory, is only effective if the time a part of the computation needs on one CPU

of the parallel environment is at least a magnitude larger than the exchange of the data

needed on each CPU. For SMP systems the parallelization is done with threads. Threads are

child processes started by a mother process, but do not have the administration overhead of
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stand-alone processes3. Threads and processes have either access to an indivual part of the

shared-memory or access the same (shared) data. The implementation can be done manually

with system calls (e.g. fork) or bases on more elaborate extensions of some compilers like

OpenMP.[97–99] A third architecture that is becoming quite popular at the moment (AMD

Opteron) is called Non Uniform Memory Architecture, NUMA. Each processor accesses

an assigned part of the memory but also has some slower access to the memory of the

other processors (e.g. Hypertransport). NUMA and the Distributed Memory architectures

require parallelization models which minimize communication. The communication times of

NUMA systems are much shorter than for cluster networks but need a manually optimized

parallelization scheme for optimum performance too.

The model for SMP architectures cannot be applied to distributed memory systems (one

computer or a cluster of individual computers connected via a fast network interface) be-

cause the data transfer from a memory part of one node to another is not possible without

any further levels of communication. The transportation of data can either be done with em-

ulated shared-memory environments like Global Arrays or PVM (Parallel Virtual Machine)

or directly bases on interprocess communication on different nodes like the MPI (Message-

Passing Interface).[100–102] MPI requires an explicit implementation of the data structures

but allows a low-level parallelization. The distributed memory models can also be applied for

SMP or NUMA systems but might loose some efficiency caused by communication overhead.

For SMP systems parallelization models like OpenMP (see Listing 4.5) the compiler gets

information on how the data in the memory has to be treated and how a block has to be

parallelized. Shared data in the main memory is accessible for all threads while private

data is only accessible for the threads that owns that particular data. The structure of a

sequential program is kept, added with single compiler directives for the parallelization.

Listing 4.5: OpenMP program for a parallel matrix-vector multiplication. The memory

occupied by the matrix and the vectors x and y, respectively are shared in the memory.

#include <omp.h>
// set number of threads

void omp set num threads(int nthreads);

3In Linux kernels up to release 2.4 threads are implemented as POSIX threads which actually are stand-

alone processes. From kernel 2.6 on, the threading libraries do support real threads.
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void do matrix vector multiplication()
{
vector<double> x, y;
// begin parallel region

#pragma omp parallel private(j, k, nthreads, myid) default(shared)
{ nthreads = omp get num threads();
myid = omp get thread num();
// do parallel loop

for (k = 0; j < N; k++)
{ double d = 0.0;
for(j = 0; k < N; j++)
d = matrix[k][j] ∗ y[j];

x[k] = d;
}

} // end of parallel region

}
In Message-Passing environments the data has to be exchanged explicitely at the cost of

a more complicated program logic. The advantage of MPI still is the portability to other

platforms and a high control on the data structures to reduce communication overhead. An

example program that illustrates the basics of MPI is given in Listing 4.6.

Listing 4.6: Basic MPI Program to illustrate the main concept of interprocess communica-

tion. Every sent data necessarily requires a corresponding receiving procedure. The given

example for a matrix-vector multiplication is not the optimal code but illustrates the basic

ideas.

#include "mpi.h"
#include <mpi++.h>
MPI::Init(argc, argv); // initialize MPI

MPI::Status status; // get MPI status

int numprocs = MPI::COMM WORLD.Get size(); // number of processors

int myid = MPI::COMM WORLD.Get rank(); // id: 0=master; 1-... = slaves;

vector<double> tmp, x, y;
if (myid == master) // master part

{ // BroadCast to all slaves (1)

MPI::COMM WORLD.Bcast(&N, 1, MPI::INT, master);
MPI::COMM WORLD.Bcast(&(∗matrix),N∗N,MPI::DOUBLE,master);
// send part of y to specific slave (2)

MPI::COMM WORLD.Send(&(∗y), length, MPI::DOUBLE, destination, tag);
//receive part of x result from slave(3)

MPI::COMM WORLD.Recv(&(∗tmp), length,
MPI::DOUBLE, MPI::ANY SOURCE,
MPI::ANY TAG, status);

// ... reduce to final x[k]

x[k] += tmp[k];
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}
else // slave part

{ // Receive BroadCast (1’)

MPI::COMM WORLD.Bcast(&N,1,MPI::INT,master);
MPI::COMM WORLD.Bcast(&(∗matrix),N∗N,MPI::DOUBLE,master);
// receive from a certain node (here: master) (2’)

MPI::COMM WORLD.Recv(&(∗y), length,
MPI::DOUBLE, MPI::ANY SOURCE,
MPI::ANY TAG, status);

// ... do something with data, e.g. partial matrix-vector multiplication

for (k=offset; k < partN; k++)
for (j=offset; j < partN; j++)
tmp[k] += matrix[k][j] ∗ y[j];

//send result back to master (3’)

MPI::COMM WORLD.Send(&(∗tmp), length, MPI::DOUBLE, master, tag);
}

MPI::COMM WORLD.Barrier();
MPI::Finalize();

The program flow expresses the so-called master-worker scheme (see Figure 4.10). The

master distributes the main work among the workers and collects the returned results.

Control of data exchange is done via a central instance of the master, which basically is

a process to distribute the data and to control the computational flow with insignificant

computational load.

4.6.2 Message-Passing Based Parallelization of MR-MP2

The computational bottlenecks in a MR-MP2 computation are the computational cost to

compute the H0 matrix and the matrix-vector product with the trial vector during the

iterations. For large-scale computations the dimensions of the matrix and the trial vector

are of about one billion or more. Parallelization in a MR-MP2 procedure is advantegous

for the computation of the inhomogenity and the matrix-vector multiplication of the H0

matrix elements with the coefficient vector.

The parallelization scheme of the MR-MP2 program encounters only those blocks at the

inactive level that are non-zero and distributes the parts of the coefficient vector that is

needed for the matrix-vector multiplication. The inhomogenity and the H0 are divided into

blocks that correspond to the maximum dimension of a vector to be stored in memory. Only

those blocks of inactive configurations are distributed to the workers that contribute non-zero

entries on this level. The division employs the inactive patterns described earlier to exclude
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Figure 4.10: Master-Worker scheme for a parallelized matrix-vector multiplication in a MR-

MP2 procedure.

the treatment of empty blocks. The treatment of empty blocks increases the communication

overhead (evaluation of the subblocks with only vanishing entries; eventually requesting the

appropriate coefficients, ...) with no actual computational effort. The blocking scheme treats

same regions in one block (e.g. [inactive], [inactive-1], [inactive-2]) and also groups inactive

difference configurations in the same irreducible representation together. The distribution

scheme for the inhomogenity is given in Listing 4.7. The (much more complicated) scheme

for H0 is not given.

With the dynamical distribution of the coefficient vectors only the required parts of the

vector are sent to the workers where the appropriate part of the matrix elements are con-

structed and the matrix-vector multiplication is handled. The applied scheme utilizes fast

sequential routines that consume a large share of the computational time but blocks the

problem into smaller submatrices whose corresponding coefficients can be handled in mem-

ory. Disc storage of the coefficient vectors on each worker thus can be avoided.
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Listing 4.7: Parallelization scheme for the computation of the inhomogenity.

#include "Inhomogenity.h"
#include "Pattern.h"
InhomogenityMPIBlocking()
{

vector<int> blocked:
// 0: empty

// 1: internal-x1

// 2: core-x1 // -> -1 -> intern-extern separation

// 3: irrep1

// 4: core1 start

// 5: core1 end

// 6: CSFStart1

// 7: Delta CSF1

for (internal1 = 0; internal1 <= mrspace->getExcitationOrder(); internal1++)
{
code[1] = internal1;
for (core1 = 0; core1 <= mrspace->getExcitationOrder(); core1++)
{
code[2] = core1;
for (irrep1 = 1; irrep1 <= mrspace->getGroupOrder(); irrep1++)
{
code[3] = irrep1;
counter1 = 1;
if (mrspace->getCoreIndex(core1,irrep1,0) > 0)
{
finish = 0;
firstindex1 = mrspace->getCoreIndex(core1,irrep1,counter1);
lastindex1 = firstindex1;
probeindex1 = 0;
while (!finish)
{ // get previous CSF = start of new one

start1 = mrspace->getCSFStart(internal1,firstindex1-1);
lastindex1 = mrspace->getCoreIndex(core1,irrep1,counter1);
deltaCSF1 = mrspace->getCSFStart(internal1,lastindex1) - start1;

if (lastindex1 < mrspace->getCoreIndex(core1,irrep1,0))
probeindex1 = mrspace->getCSFStart(internal1,

mrspace->getCoreIndex(core1,irrep1,counter1+1));
// CSF number too large in the next pass -> send and start with next

block

if (probeindex1 - start1 > vectormem)
{ code[4] = firstindex1;
code[5] = lastindex1;
code[6] = start1;
code[7] = deltaCSF1;
firstindex1 = mrspace->getCoreIndex(core1,irrep1,counter1+1);
for (int i = 0; i < infolength; i++)
blocked.push back(code[i]);

}
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// fits into 1 block

if (counter1 == mrspace->getCoreIndex(core1,irrep1,0))
{ code[4] = firstindex1;
code[5] = lastindex1;
code[6] = start1;
code[7] = deltaCSF1;
for (int i = 0; i < infolength; i++)
blocked.push back(code[i]);

finish = 1;
}
counter1++;

}
}

}
}

}
return blocked;

}
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Chapter 5

The DIESEL-MP Program

5.1 Object-Oriented Design and Implementation in C++

Object-oriented programming languages like the commonly used C++ or Java emphasize

the data structure in form of objects in contrast to procedural or modular programming

languages (Fortran, C and many more). For each kind of objects, which are defined as

classes, methods that act on instances of the objects1 are attributed. The main idea of

this concept arises from the rather natural consideration that each object (e.g. a human

being) possesses certain natural methods like eating, sleeping, walking, or swimming while

other classes possess different ones (e.g. birds possess the ”method” flying). The advantage

of object-oriented languages basically comes from the opportunity to abstract the common

features of two classes (e.g. birds also eat, sleep or might swim) to a base class from which

the data structure and the methods of all other more specialized classes can be inherited.

The class design allows a great flexibility of the code and provides a program architecture

that can easily be extended to other methods. The MR-MP2 program could be easily

converted to a MRCI program as the basic classes for both programs are comparable.

From possible object-oriented programming languages, C++ was chosen for the imple-

mentation of the MR-MP2 code, as the object-oriented design eases well-maintainable and

extentable codes. C++ further produces faster binaries compared to Java but also allows

the mixing of different languages (C, Fortran) for special routines. The need of a parallel

1The allocated object of a class is called an instance of an object.

85
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implementation also restricted the choice of language to Fortran, C or C++ particularly in

the context of the parallel Message-Passing Interface (MPI) environment. The basic classes

needed for a MR-MP2 are now discussed in detail and the program flow is presented.

5.1.1 Class Diagram for a MR-MP2 Procedure
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Figure 5.1: Class Diagram for a MR-MP2 procedure.
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The basic classes for a MR-MP2 procedure which can also be generally applied to any

multi-reference method are illustrated in Figure 5.1. The central part of the program are

the classes that are used to build up the multi-reference space. The multi-reference space

consists of configurations handled in the class Configuration and is stored in an object of

the class MRSpaceContainer. Both classes depend on the representation of the molecular

orbitals and therefore template implementations were chosen to ensure that the class not

only works for MO represented by integer numbers but also for different types (e.g. complex

orbitals). Symmetry operations for abelian groups are considered in the class IrRep, which

also belongs to this complex of classes.

A second complex of classes handles the storage of the required integrals. Both of the

mentioned complexes are needed for the implementation of the Hamilton matrices which can

be generally regarded as matrices with elements depending on the interaction of operators

(a two-electron operator in HMatrix or Inhomogenity or an effective one-electron operator

in the case of H0Matrix). These complexes are not features of object-oriented languages but

are grouped together to assist a logical structure of the code.

The elements of these operator matrices are provided from the complex of classes used to

compute the Hamilton matrix elements. The implementation of the matrix element classes

were partially taken from the DIESEL-MR-CI and MR-MP2 codes of Michael Hanrath[53,54]

but were thoroughly ported from the GNU 2.9x compiler series to the ANSI conform GNU

3.x and the Intel compiler. The Fortran routines[91] for the computation of the represen-

tation matrices in the SGA framework were left unchanged and used for this program.

The classes DiffConf, TableCase, H0TableCase and TableKey were completely modified

to work with recent C++ compilers. The classes that explicitely compute the matrix ele-

ments (HMatElements and MRMPH0MatElements) were orginally designed for an individually

selecting MR-CI and not optimal for a treatment of the full multi-reference space. The

concerned methods were overloaded (several methods with same names but different sig-

natures) to better account for the changing requirements in the course of matrix element

computation (identical configurations, single excitations with differing internal MO or with

differing external MO, etc.). These requirements are also reflected in the class DiffConf

that computes the difference configurations (see Section 4.2.1).

The Hamilton matrices are finally instantiated from the class Conjugate Gradients whose
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methods perform the interative process to obtain the first-order correction of the MR-MP2

wavefunction. In an MR-CI this class would be replaced by a class Davidson[82, 84,85] but

the structure of the basic class design is kept. The ConjugateGradients class is used by

the Driver and MRMP2 classes that control the program flow (input, restarts, final output,

etc.). Before the program flow of the implemented MR-MP2 procedure is discussed, the

basic classes for the configuration handling and setting up the multi-reference space are

presented in some more detail in the following section.

5.1.2 C++ Implementation of Basic Classes in a MR-MP2

5.1.2.1 Class Configuration

Listing 5.8: Interface of the class Configuration. The implementation is neglected for the

sake of simplicity.

template <class MOType>
class Configuration
{

public:
Configuration();
Configuration(const Configuration&); // copy-constructor

Configuration(const string&); // create conf from string input

~Configuration(); //destructor

// ----------------------------- base functions ------------------------- //

Configuration& create(MOType mo); // create one electron

Configuration& annihilate(MOType mo); // annihilate one electron

int getNumberOfOpenShells() const;
int getNumberOfClosedShells() const;
MOType getOpenShell(int index) const;
MOType getClosedShell(int index) const;

#ifdef MPIPARALLEL
void MPIsend(int destination);
void MPIreceive(int source);

#endif
// ----------------------------- operators ----------------------------- //

Configuration<MOType> operator+(const Configuration<MOType>&);
Configuration<MOType> operator-(const Configuration<MOType>&);

Configuration& operator++(int); // iterator

ostream& operator<<(ostream&);
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private:
vector<MOType> open;
vector<MOType> closed;

void sort(); // from Sedgewick

void quicksort(vector<MOType>& orbs, int l, int r); // from Sedgewick

};
// ------------------------ comparing operators ------------------------ //

// operator ==

inline bool operator==(const Configuration<MOType>& a, const
Configuration<MOType>& b);
// operator <

inline bool operator<(const Configuration<MOType>& a, const
Configuration<MOType>& b);

The basic object for the computation of matrix elements is the configuration. The class

exists of two dynamically allocated arrays for the open-shell and the closed-shell orbitals,

respectively. In the DIESEL package configurations are implemented as fixed arrays and

the dimensions were hard-coded during the compilation. Arrays with fixed dimensions are

processed on the stack and not on the heap. Both represent a different processing of data in

memory with the stack being better performant concerning memory access than the heap.

In the DIESEL-MP program configurations with up to several hundred occupied orbitals

should be treated and the slightly slower, but more flexible dynamic arrays were chosen.

The memory overhead of fixed arrays with too large dimensions is thus avoided.

An efficient treatment of configurations (adding and substracting configurations, creating

and annihilating orbitals) is facilitated by sorted entries of orbitals. For this purpose a

quicksort routine[103] was implemented. The performance of dynamic arrays is about 20%

increased over the more natural representation employing sets. Operators to add and to

substract configurations are implemented with regard to the calculation of difference con-

figurations. Comparing operators are used to sort the configurations once inserted into sets

of configurations. These sets are used to ensure that a configuration exists only once in

the multi-reference space and provides an ordered scheme of all inserted configurations (see

Section 4.3).

5.1.2.2 Class DiffConf

The difference configuration (compare Section 4.2.1) is employed to determine the Table CI

labels (see class TableCase) and is set up on the configuration class. The data structure
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is represented by three configurations and the relative position of the open-shell orbitals

(see Section 4.2.1). The maximum number of open shells is hard-coded to 20, because the

size of a representation matrix for 20 open shells has a dimension of about 10000. Each

representation matrix would thus require about 400 MB of memory which is far beyond a

reasonable size. The construction of a difference configuration can be done with the basic

method calc or can be built directly (build). The latter procedure is used for the efficient

implementation of the external configuration parts (see Section 4.4.2.2).

Listing 5.9: Class DiffConf to handle difference configurations that are the basis for the

computation of the matrix elements in the SGA framework and are used to determine the

Table CI case (class TableCase).

class DiffConf
{

public:
DiffConf(); // default constructor

DiffConf(const Configuration<MOType> & core);
DiffConf(Configuration<MOType>&, Configuration<MOType>&);
~DiffConf(); // default destructor

// ----------------------------- functions ----------------------------- //

void calc(const Configuration<MOType>&, const Configuration<MOType>&);
// set DiffConf directly (needed for direct evaluation of externals)

void build(MOType mo same1, MOType mo same2,
MOType mo left1, MOType mo left2,
MOType mo right1, MOType mo right2);

const Configuration<MOType>& getSame() const ;
const Configuration<MOType>& getFrom() const ; // DiffConf L

const Configuration<MOType>& getTo() const; // DiffConf M

UINT32 getKey(bool&); // return key for TableCase

int calcExcitationOrder();
void calcInteractingMO(MOType ∗interacting mo);

// ----------------------------- operators ----------------------------- //

ostream& operator<<(ostream&);
// for istream for Patterns

friend istream& operator>>(istream& strm, DiffConf& diff);

// add two DiffConfs; result is ∗this! faster than operator+

void add(DiffConf&, DiffConf&);
DiffConf operator+(DiffConf&); // add two DiffConfs

private:
Configuration<MOType> same;
Configuration<MOType> diffL;
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Configuration<MOType> diffM;
int posL[MAXOPEN];
int posM[MAXOPEN];

bool switchSides;
int excitationLevel;
Configuration<MOType> core; // default core conf

void calcPosOpenShells();
};

Get methods for the individual parts of the difference configurations are used for the

matrix element computation, the correct assignment of the required integrals and for the

determination of the Table CI cases. The correct assignment of integrals for the computation

of the inhomogenity and the H0 matrix can also be directly determined by an analysis of

interacting MO in the difference configuration and the excitation level. These features are

widely used in conjunction with the patterns to build up the matrices.

5.1.2.3 Table CI Cases

The difference configurations are the basis for the classification of Table CI Cases. The class

TableCase analyzes the Table CI case(see Table 4.1) for a difference configuration and sets

the appropriate indices of the needed integrals. The determination follows the scheme given

in Figure 4.1.

Listing 5.10: Class TableCase to determine the Table CI cases based on difference configu-

rations. For the H0 matrix a more efficient version exists (class H0TableCase).

class TableCase
{
public:
TableCase();
TableCase(BinomialCoefficient ∗);
TableCase(int openShells, int dK, int P, int R, int qR, int qL);
~TableCase();

// -------------------------------- functions --------------------------- //

void calc(DiffConf& dc);

const char∗ getName() const;
int getNumberOfMoreOpenShells() const;
int getdK() const;
int getP() const;
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int getR() const;
int getqR() const;
int getqL() const;

const CbExIntegralIndex& getCbExIndex() const;
TwoElectronIntegralIndex getTwoElectronIntegralIndex() const;

private:
BinomialCoefficient ∗binom; // used to calc qR and qL

int openShells; // #(open shells) in conf. of higher super category

int dK; // difference between supercategories ("delta K")

int P; // type of integrals

int R; // classification of interaction

int qR; // class. of interacting open shells in "right" conf.

int qL; // class. of interacting open shells in "left" conf.

CbExIntegralIndex CbExIndex; // index for integrals

void calcQ(const DiffConf & dc);
int calcQFromPos(const int ∗ipos, int npos);

};
The Table CI Cases for the H0 matrix concern only single excitations. This much sim-

pler scheme (Figure 4.2) is also implemented in the class H0TableCase that improves the

efficiency building up the H0 matrix.

5.1.2.4 Class MRSpaceContainer

The main container used to store the configurations, indices and start values of CSF for

the matrix-vector multiplication is implemented in the class MRSpaceContainer. This con-

tainer generates configuration spaces for full configurations, internal-external separated and

core-active-external configurations. The different spaces of MR-CI (including the reference

wavefunction) and of MR-MP2 (excluding the reference wavefunction) were also considered

in the implementation.

Listing 5.11: Storage class for the multi-reference space depending on the configuration level

and the employed method.

class MRSpaceContainer
{

public:
MRSpaceContainer();
MRSpaceContainer(const string mode, const string method);
MRSpaceContainer( const string mode, const string method,
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MOContainer<MOType,IrrepType> mos,
int electrons, int symmetry, int multiplicity,
int excitationOrder, ConfigurationSet refs);

~MRSpaceContainer();
//---------------------------------------------------------------------------//

// internal: internal-x; core: core-x;

// irrep: IrRep x; pos: position in array ([0] = #entries)

Configuration<MOType>& getCore(int internal, int irrep, int pos) const;
Configuration<MOType>& getRef(int pos) const;
Configuration<MOType>& getActive(int internal,int core,

int irrep, int pos) const;
Configuration<MOType>& getExternal(int internal, int irrep, int pos) const;

int getCSFStart(int internal, int index) const;
int getNumberOfCSF() const; // total CSF;

int getSymmetry() const;
int getMultiplicity() const;
int getConfigurationLevel() const;

//---------------------------------------------------------------------------//

enum ConfigurationLevel { Full,Intern,CoreActive,CoreActiveHole };
enum Method { MRMP2,MRCI };

//---------------------------------------------------------------------------//

#ifdef MPIPARALLEL
void MPIsend(int destination);
void MPIreceive(int source);

#endif
//---------------------------------------------------------------------------//

private:
ConfigurationLevel treatment;
Method method;
ConfigurationSet refs;
Irrep irrep;
int groupOrder, multiplicity, symmetry, index, totalCSFs, externalMOs;

// indexed containers for Configuration storage

Configuration<MOType> ∗core;
Configuration<MOType> ∗active; // also for full and internal configurations

Configuration<MOType> ∗refactive;
Configuration<MOType> ∗external;

int ∗∗∗indexCore, ∗∗∗∗indexActive, ∗∗∗indexExternal, ∗indexRef;
int ∗∗CSFCoreIndex, ∗CSFActiveIndex;

//---------------------------------------------------------------------------//

void calcCSFStart();

void createExternalConfs(MRTreeInternExtern∗ externTree);
void insertCoreConfs(MRTreeCoreActive∗ coreTree);
void insertActiveConfs(MRTreeConf∗ tree);

};
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5.1.3 MR-MP2 Program Flow

The flow of the MR-MP2 program (Figure 5.2) consists of seven major steps implemented

in the classes Driver and MRMP2. The first step reads the input data used to control the

program (reference configurations, multiplicity, desired roots, irreducible representations,

provided memory, etc.). In the next step the one-electron and two-electron integrals are

read and stored either in memory or on disc.
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Figure 5.2: Flow for a MR-MP2 program.

The coefficients of the reference wavefunction are the elements of the eigenvector obtained

by a diagonalization of the reference matrix built from the reference configurations. The

eigenvalue from the diagonalization is the first-order correction to the energy E1 (eq. 2.102).

The density matrix obtained from the reference matrix is used to contract the two-electron

integrals into the effective one-electron integrals (eq 2.76), object of class MRFockMatrix).

The zero-order energy E0 (eq. 2.101) is computed by summing up the matrix elements of

the H0 matrix spanned by the reference configurations.
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In the Conjugate Gradient class, the H0 matrix is initialized and the inhomogenity is

evaluated. After the evaluation of the inhomgenity, the two-electron integrals are not needed

anymore and deallocated. The iterative steps to obtain the final solution vector for the first-

order correction of the wavefunction are done with the Conjugate Gradient method. This

solution vector is then multiplied with the inhomogenity to yield the second-order correction

to the energy E2 (eq. 2.104).

5.1.4 Provision for Possible Extensions

The object-oriented implementation facilitates an easy extension of modified algorithms like

the incorporation of selection schemes to reduce the dimension of the solution vectors and

the Hamilton matrix. The selection schemes may be based on an individual selection of

configurations sor an orbital selection of the external MO.

In the case of an individual selection the energy contributions of the H0 matrix elements

along the main diagonal are evaluated and configurations below an individually chosen

threshold do not enter the interaction space. The reduced interaction space is solved em-

ploying the standard Conjugate Gradient procedure and the energy contributions of the

neglected configurations are used to extrapolate the energy of the reduced space to that

of the full interaction space. The use of an individual interaction scheme requires lists of

external configurations for each internal configuration rest. The class MRSpaceContainer is

already prepared for this feature.

A different scheme, that leaves the logic structure of the H0 matrix intact, applies the

selection of only the external orbitals discarding certain external orbitals completely from

the interaction space. In analogy to the previous scheme, the energy contributions of the

configurations along the main diagonal of the H0 matrix are used and are attributed to

the external orbitals. If the sum of energy contributions for a particular external orbital

exceeds a user-specified threshold then the orbital is considered in the interaction space.

The energy contributions of the neglected configurations are again used to extrapolate the

energy from the iteratively solved reduced MR-MP2 computation to the full MR-MP2 space.

This scheme does not spoil the structure of the external interactions (see Section 4.4.2.2) as

these only depend on the relative position of the external orbitals.
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The design of the basic classes also allows an efficient implementation of a MR-CI pro-

cedure with or without the selection schemes described above. The external interactions

could also be implemented directly, but the interactions get more complicated as not only

single excitations contribute to non-zero matrix elements but also double excitations. The

number of distinguished external matrix blocks exceeds the number present in a MR-MP2,

with some being characterized by the same pattern of non-vanishing matrix elements.

5.2 Interfaces to TURBOMOLE and MOLCAS

The DIESEL-MP program possesses interfaces to two commercial quantum-chemical codes.

The first interface utilizes the integrals from the MOLCAS suite of programs[51] and origi-

nates from Michael Hanrath written for the DIESEL[53] package. The integrals are stored

as four-index integrals in single precision and stored on disc limiting the maximum number

of basis functions to a dimension of about 200.

Larger systems can be treated by the RI[104–106] interface developed by Stefan Grimme and

provided with the TURBOMOLE source code.[107] This interface was adapted in conjunc-

tion with Svetlana Stepanenko to the latest version of the TURBOMOLE package and

saves the one-electron and the two-electron three-index RI integrals on disc. The large file

support enables the use of integral files up to 1000 basis functions. This limit comes intrin-

sically from restrictions in the TURBOMOLE since all orbitals have to be set occupied in

the course of the RI transformation using the RI-MP2 module.

The current limit of the RI integral transformation can be overcome if an orbital dependent

selection scheme is combined with a modified integral transformation. For a given reference

wavefunction the integrals needed for the evaluation of the main diagonal elements are of

the type (all, all|internal, internal)), with the first two integral indices restricted to be

the same. The second type of integrals, which are needed to compute the inhomogenity

vector, are identical to those necessary in the RI-MP2 method with the orbitals of the

multi-reference wavefunction entering the RI-MP2 integral transformation. In the next step

the external orbitals can be selected by their energy contributions of the diagonal elements

and the selected external orbitals enter a modified integral transformation, in which only

those selected orbitals are considered.
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5.3 Hardware Considerations

5.3.1 System Architecture

The DIESEL-MP program is designed for large-scale MR-MP2 parallel computations on

commodity hardware clusters like the HOMER PC cluster in the Institute of Organic

Chemistry at the University of Würzburg. The crucial issues concerning good performance

are interprocess communication and storage requirements as well in memory as on hard-

disc. The parallel algorithm is designed such that the interprocess communication is kept

at a reasonable level limiting the storage requirements on the computing nodes (workers).

The master has to compensate for that but in modern cluster architectures with master

nodes that are equipped with large memory and hard-discs this distribution policy does not

become a problem.

The nowadays developments in hardware technology with increasing CPU performance for

low-cost 32 bit architectures and the slow but steady establishment of medium-price 64 bit

systems (AMD Opteron) are reflected in the implementation of the program. For 32 bit and

64 bit architectures the program can be compiled with the GNU 3.2 or later compiler suites

(32 bit on Intel and AMD platforms, 64 bit on HP ALPHA, AMD Opteron and many more)

or the Intel compilers (32 bit on Intel or AMD platforms or 64 bit on Itanium systems).

Both compiler suites show comparable performance for the DIESEL-MP program.

5.3.2 Parallel Requirements

The parallel implementation allows the simultaneous distribution of the matrix parts and

excecution of the matrix-vector multiplications. For this step the distribution of the co-

efficient vectors is crucial for the performance. One possibility is the distribution of the

complete vector among all workers which then have access to all vector elements. This

requires large disc spaces on all nodes as not only the original vector, but also the parts of

the newly formed vectors after the matrix-vector multiplication have to be stored. In one

iteration step the vector (in a dimension of 108 to 109 entries or about 800 MB to 8 GB)

has to be sent to all workers, stored and the new vector with the same storage requirement

allocated. On state-of-the-art 32 bit systems the memory is limited to 2 GB per process
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and the vectors are hardly kept in memory, but have to be stored on disc. The new vector

for the next iteration step has to be contracted from all the partial vectors on the master

node and distributed again amongst all workers. The send and receive processes of the

vectors cause system load via the network interface and for a matrix-vector multiplication

no computational work can be done during the transmission processes. In the time span

the master collects the result vectors and contracts them to a new trial vector the workers

are idle and computational efficiency is lost. Therefore this approach is not perfect.

The network transfer performance of current Gigabit networks is of the same order as the

IO performance of mass market hard-disc and the difference between writing data to or

reading data from disc is comparable to network transfers of smaller parts of the vectors

needed at a certain worker node. Therefore this scheme was implemented in the current

code as it does not require any vector storage on the worker nodes. The parallel distribution

scheme presented in Section 4.6 is governed by the size of the vector dimension which

depends on the memory on the workers. The maximum vector size is controlled by the

user’s input. The idle time of the workers is reduced by a an efficient storage handling of

the needed vector parts. The master reads a bunch of required coefficients, sends them to a

worker and and immediately prefetches the set for the next parallel block. Once the master

receives the result vector from the worker, the next vector is sent and the result vector is

stored afterwards. The time for reading and writing the coefficient vectors is done while the

workers perform the matrix-vector multiplication.

A test computation with one worker node and a medium-sized molecule of about 42

correlated electrons, 150 basis functions and 16 inactive and 9 active orbitals forming a

multi-reference space dimension of 67 million CSF (about 512 MB disc storage needed for

each vector) requires only about 800 MB of memory storage alltogether in contrast to the 1.6

GB needed by the MR-MP2 program in the DIESEL package. In the DIESEL MR-MP2

program the solution vectors are stored in memory. This distribution scheme thus can be

applied for large-scale computations. The performance of the program is comparable to the

DIESEL program package. Significantly larger tests systems, for which the new program

is designed for, cannot be handled with old DIESEL package.



Chapter 6

Applications of Multi-Reference

Methods for Complex Electronic

Systems

Multi-reference methods like MR-CI and MR-PT do not belong to the standard methods

commonly used in computational chemistry to study reactivities and reaction mechanisms

of compounds interesting to the experimentally working chemist. Their most severe disad-

vantage from most user’s point of view is the missing black box character, which requires a

distinct experience with the methods and a certain caution to interpret the results. Despite

this apparent disadvantage they are necessary for diradical species and offer a deep insight

into problems that would be never achieved with methods like DFT or MP2. The obtained

results helped to get experience about the capabilities and limitations of the latter methods

for difficult cases.

In this chapter three projects are presented, which, if they were independently regarded,

do not seem to be related to each other, except for diradical intermediates occuring in

all of the three. The first project studies the Neocarzinostatin chromophore (NCS) which

is a representative for an entire class of biologically active anti-tumor antibiotics. The

structural feautures that are essential for its efficacy now can be understood.[108] Its efficacy

is governed by the structural element of a monocyclic enyne[3]-cumulene that is unusual

for natural products. The occurence of this and similar compounds, however, initiated the

99
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search for model systems that allowed the basic understanding of the reaction mechanism

and contributed to the discovery of new classes of compounds with potential efficacy. One

example that shows a broad spectrum in its reactivity and regioselectivity is the presented

class of the non-natural and short-lived enyne-ketenes.[109] These compounds indeed show

a large variety of intermediates with different electronic structures that are difficult to

predict. The same electronic structures as they are present for these intermediates can

also be found for cyclic allenes derived from the isobenzene 1,2,4-cyclohexatriene. A model

that first establishes systematic predictions on the occurence and the stability of the possible

electronic states is proposed in the third project.[110]

6.1 The Chemistry of Neocarzinostatin

6.1.1 A Brief Story about Neocarzinostatin and Related Model

Compounds

Neocarzinostatin (NCS)[111,112] is an antibiotic 1:1 complex of a protein component called

the NCS apoprotein and a chromophore first isolated in 1965 by Ishida[113] from Strepto-

myces carzinostaticus Var. F-41 (Figure 6.1). After it was possible to separate both parts,

it was quickly recognized that the major biological activity was caused by the NCS chro-

mophore, while the apoprotein has an important role for the stabilization and transport of

the chromophore. The structure of the NCS chromophore having a bicyclo[7.3.0]dodecadiyne

framework was elucidated in 1985 by Edo and coworkers.[114] This work gained attention

as in the year 1987 two other novel natural product families, Calicheamicin and Esperam-

icin,[115] with enediyne-moieties were discovered. Two years later Dynemicin A followed.

This section briefly reviews the basic role of the Neocarzinostatin chromophore to develop

new anti-tumor antibiotics with improved efficacy and summarizes the approaches with var-

ious model compounds. The structural features than govern the efficacy are presented in

Section 6.1.2.

The combination of the fascinating molecular structure of the active chromophore with

the high biological efficacy raised the interest of numerous chemists and biologists. The

apoprotein serves as a stabilizer and carrier of the NCS chromophore to the DNA. After
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Figure 6.1: X-ray structure of Neocarzinostatin[116] from two different views. The apoprotein

is represented as ribbons and the chromophore is shown in ball and stick representation.

The Protein Database entry is 1NCO.
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Figure 6.2: Mode of action of the NCS chromophore

the apoprotein is split off, the naphtobenzoate rest (ArCO2 in Figure 6.2) is believed to

intercalate in the DNA strand and the bicyclododecadiyne moiety is supposed to be located

in the minor groove of the DNA (see Figure 6.3).[111] The mode of action of the NCS chro-
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mophore as sketched in Figure 6.2 was first proposed by Myers in 1987.[117] The elucidated

structure agrees with the results from a set of cyclization experiments after nucleophilic

attack of a thiol[117,118] causing the enediyne to rearrange to the unstable enyne-cumulene

system.[119] The enyne-cumulene system readily reacts in a cyclization process to form a

diradical species that abstracts two hydrogens from the C5′ centers of adenine and thymine

(Figure 6.3). This hydrogen abstraction is responsible for the DNA cleavage and finally

leads to cytolysis.[120,121] The nature of the intermediate was under debate and an alterna-

tive mechanism via a zwitterionic intermediate was proposed[122] but ruled out.[119,121,123,124]

Comparing NCS with Esperamicin, Calicheamicin and Dynemicin A the modes of action

of NCS and these ene-diynes are alike except the preceeding rearrangement reaction to the

enyne[3]cumulene1. The mode of action is determined by the chromophore serving as a sort

of ”warhead” that is carried specifically to its target and a ”trigger” initiating the formation

of the DNA cleaving diradicals.

Figure 6.3: b-DNA double strand as target for the NCS chromophore. The NCS chro-

mophore is bound to the minor groove, while the naphtyl moiety is believed to intercalate

in the DNA. Hydrogens are abstracted from adenine and thymine.

1The ene-diynes also readily form cyclic diradicals in the manner of the Bergman reaction[125,126] dis-

covered years before the isolation and characterization of these natural products. It is interesting to note

that before the discovery of this new class of natural products no proposal of diradicals serving as DNA

cleaving agents was made.
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Figure 6.4: Model systems and related compounds derived from the NCS chromophore that

were used in experimental and computational studies.

The unusual features and the high efficacy of NCS inspired research on related compounds.

To achieve a profound understanding of the mechanism and trying to improve the efficacy

of these new antitumor antibiotics, model systems (Figure 6.4) derived from the NCS chro-

mophore were studied. Myers[127] and Saito[128] independently synthesized the first model

compound for the NCS chromophore, Z-1,2,4-heptatriene-6-yne (A in Figure 6.4), that es-

sentially contains the bond motifs of NCS. The class of enyne-allenes was chosen since it

is had an easier synthetic access than the enyne-cumulenes.[129–132] A reacts in a thermally

induced cyclization reaction yielding toluene as the final product. This novel cyclization

showed DNA cleaving activity like the NCS chromophore and had the same regioselectivity

as NCS. Trapping experiments and the determination of the thermochemistry established

the α,3-didehydrotoluene diradical as the key intermediate formed in the course of the cy-
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clization (Figure 6.5).[127,128,133–137] This cyclization reaction, mimicking the mode of action

of NCS, was finally named after Myers and Saito and is later referred as Myers-Saito reac-

tion. The results obtained from the simple model compound A contributed substantially

to the understanding of the cyclization mode of the NCS chromophore, which was unkown

at the beginning of the studies. A model compound very similar to A was introduced by

Moore, who investigated the reactivity of an isoelectronic enyne-ketene B. The short-lived

enyne-ketene also possessed DNA cleaving features, indicating a similar cyclization mecha-

nism. This mechanism will be adressed in Section 6.2.

H
H

H
H

H

H

H

H

HH

Solvent

Figure 6.5: Mechanism of the thermal cyclization reaction of Z-1,2,4-heptatriene-6-yne pro-

posed by Myers and Saito that mimics the mode of action of the NCS chromophore

After the proposal of the mode of action of NCS, the experiments of Myers and Saito

influenced other groups who tried to utilize the enyne-allene moiety to get synthetic ac-

cess to biologically active compounds being as effective or superior to NCS. In the group

of Schmittel a series of experiments was made that investigated the thermal cyclizations

of substituted enyne-allenes (C in Figure 6.4).[138] For synthetic reasons benzannulated

compounds were employed. Surprisingly, the cyclization of enyne-allenes having sterically

demanding (R1=tBu) or aromatic (R1=p-Toluene) substituents yielded not the Myers-Saito

product but a five-membered ring instead of a six-membered ring2. Computations showed

that the Myers-Saito pathway is thermodynamically preferred, but the bulky substituents

favor a more compact transition state that yields the Schmittel products in the kinetically

controlled reaction (Figure 6.6).[139] The same regioselectivity is found for enyne-allenes em-

bedded in a nine- or ten-membered ring (see F).[140,141] The effect of benzannulation on the

thermodynamics and the reaction barriers with a more distinct preference for the Schmittel

and not the Myers-Saito was also explored.[142–145]

Ring size effects generally influence the cyclization modes of the enyne-allenes as was

2It is interesting to note, that in the review of Wang[137] one example of an enyne-ketene is given that

shows a product distribution of six- and five-membered rings in the case of a phenyl substituent at the

alkyne terminus.
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Figure 6.6: Alternative regioselectivities in the thermal cyclization reaction of substituted

Z-1,2,4-heptatriene-6-ynes.

shown in a combined experimental and theoretical study for compounds of type H.[146] With

a cyclohexene or cyclopentene unit attached to the enyne-allene system, the Schmittel route

yielding the fulvene was found but if a cyclopentene ring was attached to the enyne-allene

the opposite regioselectivity (Myers-Saito mode) was observed (Figure 6.7).
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Figure 6.7: Ring strain affects the regioselectivity of the cyclization

The proposed reaction mechanism of the Myers-Saito reaction of A via the α, 3-didehydro-

toluene diradical was supported by computational findings.[147–149] For the Myers-Saito

reaction also zwitterionic and allene intermediates were proposed.[150] Alike the Myers-Saito

route, the Schmittel reaction was also predicted to proceed via a diradical intermediate, if A

(R1=H) is regarded,[147,148] but can change with the substituent R1. For the benzannulated
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system C with R1 =Ph the mechanism via the diradical route preferring the Schmittel

product is predicted, while for R1=tBu both the diradical route as well as a concerted ene-

reaction are predicted to be equal.[151] The Schmittel reaction is also shifted away from the

diradical reaction mechanism if strong electron-donating substituents as NH2 are present

and a reaction mechanism preferring carbenic intermediates is predicted to occur.[139]

The structural units (enyne-allene moiety, the nine-membered monocycle, and the cy-

clopentene annulation), which have been described so far for the enyne-allenes, represent

the same structural subunits that constitute the NCS chromophore. Bridging the enyne-

cumulene G[152] by a methylene group yields the cyclic enyne-[3]-cumulene I. For I, Cramer

computed the reaction energy of the cyclization and the stability of the diradical trying to

get more insight into the thermodynamic factors, the role of the diradical intermediate of the

cyclization, and to compare it with the Myers-Saito reaction.[153] The cyclopentene moiety

is found in the open-chain enyne-cumulene J that can be thought of being derived from G

or H. J is an important step towards the total synthesis of the NCS chromophore for which

new methods for an efficient synthesis had to be developed.[154–157] Finally the compound

K that is related closest to the NCS chromophore was synthesized by Takahashi.[158] It

contains all important structural features except for substituents at the bicyclic framework.

Keeping the mode of action of the NCS chromophore in mind, these studies contributed

to a basic understanding of the factors that control the regioselectivity of the Myers-Saito

and Schmittel cyclization and provided the basis for an understanding of the efficacy of the

NCS chromophore which is presented in the next section.

6.1.2 Which Structural Elements Are Relevant for the Efficacy of

Neocarzinostatin?[108]

While the general course of the mode of action is clarified, it remains still unclear which

structural elements are relevant for the high efficacy of NCS. Based on high-level ab initio

computations3, new insight into this topic, which is of great interest for the development of

3The computational details for obtaining the results are described in the following. The geometric

parameters of all stationary points were optimized by employing analytical energy gradients within the

density functional theory (DFT) framework as implemented in Gaussian98.[159] For the DFT calculations the

B3LYP[160,161] functional in connection with a 6-31G(d)[162] basis set was employed using a spin and space
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Figure 6.8: Reaction pathway of the NCS chromophore leading to the experimentally con-

firmed intermediate 3.

new antitumor antibiotics, is presented. First the six-membered ring cyclization depicted

in Figure 6.8 between C3 and C7 (see Figure 6.9 for the labelling of the centers), found in

unrestricted approach. All stationary points were analyzed by computed harmonic frequencies at the same

level of theory. Vibrational, thermal and entropy corrections at 298 K were also computed at the B3LYP/6-

31G(d) level of theory. To estimate solvent effects, the COSMO model[163] in combination with the B3LYP

level of theory was employed by using the standard values for water. Transition state energies were obtained

by single-point computations employing the more reliable closed-shell coupled cluster (CCSD(T)) approach

in conjunction with a cc-pVDZ[164] basis set. These computations were performed with the MOLPRO

2000.1 and 2002.1 packages[52,165] The reliability of the CCSD(T) approach was validated by using the T1

diagnostics. Reaction energies have been computed by using a multi-reference configuration interaction

approach in connection with a Davidson estimate of quadruple excitations (MR-CI+Q) employing a cc-

pVDZ basis set as implemented in the DIESEL-MR-CI package.[32] The reference space of the individually

selecting MR-CI consisted of up to 27 configuration state functions (CSF) generating a configuration space

of up to 223 · 106 CSF. The secular equations to solve were up to the order of 2 · 106.
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the mode of action of NCS is compared to the alternative five-membered ring cyclization

between the C2 and C7 centers. The latter yields the intermediate 4 instead of 3. Formally

both species represent diradicals. For a nine-membered monocyclic enyne-allene, a model

compound for the chromophore of NCS (2), this alternative route was predicted to be

kinetically preferred to the six-membered ring cyclization.[140] From a comparison of both

cyclization modes a new model concerning the tasks of the substituents present in 2 arises.

To test this model, the influences of the substituents and the solvent on the kinetics of

both cyclization modes are discussed. Finally, the capability of the arising diradicals for

the subsequent hydrogen abstraction leading to the final DNA cleavage is studied. These

investigations provide new insights into the subtle effects that nature uses to obtain powerful

antitumor antibiotics. Valuable improvements of these substances can be deduced, since

some of the factors that limit the efficacy become clear.

Table 6.1: Transition states of both possible cyclization modes. All values are in kcal·mol−1.

Method C2 − C7 cyclization a) C3 − C7 cyclization b)

∆E=| ∆G=| ∆E=| ∆G=|

5 UB3LYP/6-31G(d) +18.6 +17.6 +21.1 +20.8

CCSD(T)/cc-pVDZ +13.8 +16.5

6 UB3LYP/6-31G(d) +31.9 +31.9 +22.2 +23.0

CCSD(T)/cc-pVDZ +29.7 +20.1

7 UB3LYP/6-31G(d) +22.8 +21.4 +22.2 +21.9

CCSD(T)/cc-pVDZ +22.2 +22.2

8 UB3LYP/6-31G(d) +19.5 +18.3 +21.6 +20.7

CCSD(T)/cc-pVDZ +16.1 +18.3

a) For 6: C3 − C7 cyclization. b) For 6: C3 − C8 cyclization.

Initial insight into the topics previously mentioned can be taken from Table 6.1, which

summarizes the computed activation barriers of the six-membered C3 − C7 and of the five-

membered C2 − C7 ring cyclization for various model compounds that are depicted in Fig-

ure 6.9. The CCSD(T) computations4 represent the most reliable approach for the transition

4Note that in most cases the CCSD(T) approach represents a more reliable method than DFT. While

both methods agree nicely in the ∆E=| values for the open-chain compound 6, larger differences are found

for the monocyclic systems 5 and 8. However, while both methods give different absolute reaction energies,

the correct trends are already obtained with DFT.
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Figure 6.9: Model compounds to investigate the structural effects of the NCS chromophore

on the efficacy.

states, since they possess a closed-shell electronic structure as the reactants. At this level

of theory the C2 − C7 cyclization for the parent ring system of the NCS chromophore (5,

Figure 6.9) is predicted to be kinetically preferred to the C3−C7 cyclization (∆E=|(C2−C7)

= 14 kcal ·mol−1 vs. ∆E=|(C3−C7) = 17 kcal ·mol−1), which was found to be the only mode

of action in NCS.[112] The values computed in this work agree nicely with those calculated

by Cramer and Squires employing the BD(T) method.[153] Compared to 5, the open-chain

compound 6 posesses a considerably smaller activation barrier for the C3 − C7 than the

C2 −C7 cyclization (∆E=|(C2 −C7) = 30 kcal ·mol−1 vs. ∆E=|(C3 −C7) = 20 kcal ·mol−1).

The comparison between 5 and 6 shows that the shift in the regioselectivity is induced

by the ring strain present in 5. It also indicates that this ring strain is important for the
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efficacy of 2 since it reduces the activation energy of both cyclization modes considerably.

5b represents a diradical with a fixed distance of 3.55 Å between the two radical centers.

One can imagine that such a fixed distance is also important for the efficacy of the double

hydrogen abstraction in the final step of the mode of action of NCS. However, since for

NCS only the C3 − C7 cyclization is found, the substituents present in 2 must shift the

regioselectivity from the C2 − C7 to the C3 − C7 cyclization.

Information on the importance of substituents for the control of the regioselectivity can

also be taken from Table 6.1. The cyclopentene ring in 7 seems to be important for the

control of the regioselectivity, since the induced strain increases the activation energy of the

C2 − C7 cyclization more than that of the C2 − C7 cyclization. A similar trend was found

experimentally for enyne-allenes (see Section 6.1.1).[146,166] In contrast, the OH substituent

at C4 (8) increases both activation barriers by about the same amount (2 kcal ·mol−1) and

therefore does not affect the regioselectivity of the cyclization. However, the substituent

completely changes the reaction path of the C2 − C7 cyclization. Along with the ring

closure between C2 and C7 the ring opens between C4 and C5 leading to the final product

8a. In contrast, the C3 − C7 cyclization still proceeds via a diradical route.

Solvent effects were computed with the COSMO model on the B3LYP/6-31G(d) level

of theory.[163] Polar solvents also favor the C3 − C7 cyclization to some extent, since the

activation energy of the C3−C7 cyclization for 5 and 7 is lowered by approximately 0.5 kcal·
mol−1, while the activation energy of the C2−C7 cyclization is increased by about the same

amount. Besides the activation energies, also the reaction energies have to be taken into

account for the regioselectivity. The reaction energies given in Table 6.2 show that for the

systems considered in this study the C3 − C7 cyclization is thermodynamically favored.

Multi-reference CI computations could only be performed for model system 5 because of

the inherent limits in the DIESEL package. The highly endothermic heat of reaction for

5a is slightly lower than the activation energy and the reverse reaction possesses almost

no barrier. The C2 − C7 cyclization thus is likely to be in an equilibrium preferring the

reactant.

These findings suggest that one of the major tasks of the substituents present in the

chromophore of NCS is to prevent the five-membered ring cyclization. A possible reason

for the control of the regioselectivity can be seen from the computed reaction energies and
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Table 6.2: Heats of reaction for both cyclization modes and singlet-triplet gaps ES−T for the

corresponding intermediates. All values are in kcal ·mol−1.

Method 5a 5b 6a 6b 7a 7b

UB3LYP/6-31G(d) +17.3 +0.8 +16.4 -8.5 +22.2 +2.0

MR-CI+Q/cc-pVDZ +12.0 -3.7 n.a. n.a. n.a. n.a.

ES−T(UB3LYP/6-31G(d)) +11.9 +4.5 -3.4 +1.3 +13.0 +4.4

the singlet-triplet gap ES−T of both intermediates (Table 6.2)5. The intermediate of the

C2 − C7 cyclization 5a lies energetically so high that its lifetime is considerably limited

by the reverse reaction, which possesses nearly no activation barrier. Additionally, the

computed ES−T value of about 12 kcal ·mol−1 indicates that 5a does not have a distinctive

diradical character. In contrast, 5b lies energetically well below the reactant and represents

a true diradical (ES−T around 4 kcal · mol−1). The differences concerning lifetime and

diradical character indicate that an efficient hydrogen abstraction, which is the important

final step in the mode of action of NCS, will only be possible with 5b. A similar observation

is found for 7, showing that this behavior seems to represent a general motif for bicyclic

enyne-cumulene compounds. The small singlet-triplet gap of the acyclic enyne-cumulene

6a indicates that the ring strain of the cyclic enyne-cumulene system is responsible for the

larger values obtained for 5a and 7a. Consequently, we expect enyne-cumulene systems in

which the C2 − C7 cyclization is not suppressed to be less efficient antitumor antibiotics.

These investigations show that the chromophore of NCS represents a fascinating example

for natural products in which a subtle balance of various influences leads to the desired

result. While the monocyclic enyne-cumulene moiety seems to be important to provide a

diradical with a fixed distance between both radical centers and a low activation barrier for

the cyclization process, the substituents present in 2 are necessary to prevent the competing

C2 − C7 cyclization.

As the effects of the substituents, which have been discussed so far for the NCS chro-

mophore and the family of the enyne-allenes (see Section 6.1.1), govern the reactivities

(regioselectivity and the nature of the intermediates), the question is of interest whether the

substituent effects are specific for this class of compounds or if general rules are existent.

5For 5b the computed values for the singlet-triplet splitting agree nicely with those computed at the

BD(T) level of theory.[153]
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For this purpose, the reactivity of the class of enyne-ketenes is investigated, which can be

considered to be hetero-analogues of the enyne-allenes.

6.2 On the Regioselectivity of the Cyclization of Enyne-

Ketenes: A Computational Investigation and Com-

parison with the Myers-Saito and Schmittel Reac-

tion[109]

6.2.1 Introduction
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Figure 6.10: Moore reaction yielding quinones.

The Moore cyclization of enyne-ketenes[137,167–170] yielding quinones via phenoxy diradi-

cals (see Figure 6.10) belongs to the family of diradical cyclization reactions such as the

Bergman reaction of ene-diynes,[125,126] the cyclization of enyne-cumulenes,[112] and the

Myers-Saito reaction of enyne-allenes[127,128] together with its regioalternative Schmittel cy-

clization.[138,171–173]

The Bergman and the Myers-Saito reactions were awarded with substantial interest, be-

cause they represent the basis of the antitumor efficacy of ene-diynes and enyne-allenes.

The Moore cyclization did not gain as much attention as the formerly mentioned Bergman

or Myers-Saito cyclizations, although its DNA strand cleavage ability.

As indicated in Figure 6.11, the cyclization of enyne-ketenes possesses two reaction modes.[137]

The first mode is the so-called Moore reaction (Figure 6.11, lower pathway). It forms the

new bond between C2 and C7. For this reaction pathway, several intermediates have to be

considered. In addition to the diradical route leading to the intermediate 9c, the reaction

could also yield the cyclic allene 9d or a zwitterionic intermediate 9e. In addition to the



6.2 On the Regioselectivity of the Cyclization of Enyne-Ketenes 113

H

O

O

H

O

H

H

O

H

O

H

O

1
2

7
8

6

3
4

5

1
2

7

8

6

34

5

1

2

7
86

3
4

5

1
2

7

8

6

3
4

5

1

2

7
86

3
4

5

1

2

7
86

3
4

5

9a 9b

9c 9d 9e

9

Figure 6.11: Possible reaction routes for 9 and diradical (9a, 9c), carbenelike (9b), and

allenic (9e) intermediates. The zwitterionic species 9e represents the transition state for

the inversion of the allene.

C2 − C7 cyclization, a five-membered ring between C2 and C6 (Figure 6.11, upper path)

can be formed via the diradical pathway, yielding the σ, π-diradical 9a or the carbenelike

intermediate 9b.

The mechanisms of both cyclization modes of the enyne-ketenes were unclear, but as the

Moore cyclization of enyne-ketenes can be regarded as a heteroanalogue Myers-Saito reac-

tion of enyne-allenes, both the six- and the five-membered ring cyclizations were expected

to react via a diradical route.[137] However, the differences in the electronic structure of

the enyne-allenes and the enyne-ketenes could lead to an energetic preference of the other

intermediates. Such a preference was recently seen for the cyclic allenes, where substitution

effects reversed the energetic ordering of the diradical and the zwitterionic species.[174,175]

To answer the open questions, the present work investigates the course of both cyclization

modes for the model compounds depicted in Figure 6.12. For this instance, all stationary

points of both reaction paths were computed and characterized6. To study whether a general

6Geometric parameters of all stationary points were optimized employing analytic energy gradients within

the Density Functional Theory (DFT) framework as implemented in Gaussian98.[159] For the DFT calcu-

lations, the BLYP and B3LYP[160,161] functionals in connection with a 6-31G(d), 6-311G(d),[162] and a

cc-pVDZ[164] basis set was employed using a spin and space unrestricted ansatz. All stationary points

were analyzed by computed harmonic frequencies on the same level of theory and tested for wave func-

tion instabilities.[176,177] Vibrational, thermal, and entropy corrections at 298 K were computed on the

B3LYP/6-31G(d) level of theory.

Transition state energies of 9 were also obtained by single point computations employing the more reli-

able closed shell Coupled Cluster (CCSD and CCSD(T)) ansatz[10,178,179] in conjunction with a cc-pVDZ
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motif exists for the family of reactions discussed above, relations between enyne-ketenes and

enyne-allene compounds are also investigated.
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Figure 6.12: Model compounds used in this study.

6.2.2 Investigation of the Parent System

The cyclization of enyne-ketenes in principle possesses two possible regioalternatives. One

mode of cyclization is a formation of the five-membered ring between C2 and C6 (see Fig-

ure 6.11, upper path) on a diradical pathway yielding the σ, π-diradical 9a or the carbenelike

species 9b. The second mode, known as the Moore reaction, forms the new bond between

C2 and C7 (see Figure 6.11, lower pathway). Possible intermediates for this reaction mode

are the diradical (9c), the cyclic allene (9d), and the zwitterion (9e). Various computa-

tional studies prove DFT to be in principle appropriate to treat reactions including diradical

intermediates.[140,147,181,182] This finding is helpful since multi-reference methods for open-

shell and Coupled Cluster calculations for closed-shell species are only applicable to smaller

systems, leaving the computationally less demanding DFT to be the only opportunity to

treat systems including all substituents present in the experimentally handled compound.

Nevertheless, the results of these computational studies show that a validation is necessary

basis set to evaluate the DFT calculations. These computations were peformed with the MOLPRO 2000.1

package.[165] The reliability of the Coupled Cluster ansatz was validated using the T1 diagnostics.

Reaction energies for 9 have been computed using a multi-reference configuration interaction ansatz in

connection with a Davidson estimate of quadruple excitations (MR-CI+Q) as implemented in the DIESEL-

MR-CI package,[32] as well as the CASPT2 implementation of the MOLCAS program package.[51] These

computations based on CASSCF(10,10) wave functions employing a cc-pVDZ basis set and Widmarks ano-

l basis set[180] in a (8s4p) → [3s1p] contraction for hydrogen and a (14s9p4d) → [4s3p2d] contraction for

carbon and oxygen. The contraction schemes were taken from the basis set library of the MOLCAS program

package. This basis set will be denoted as VTZP. The reference space of the individually selecting MR-CI

consisted of up to 15 configuration state functions (CSF) generating a configuration space of up to 108 CSF.

The secular equations to solve were up to the order of 107.
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because various pitfalls are known for systems with complicated electronic structure. Addi-

tionally, it cannot be predicted which functional gives the most accurate values for a given

class of compounds. For the cyclization of the parent system 9, such a validation can be

taken from Tables 6.3-6.5. Table 6.3 shows the computed activation energies for the reaction

routes from 9 to 9a (C2−C6 cyclization) and to 9c-9e (C2−C7 cyclization). The computed

geometric parameters can be taken from Table 6.4. Table 6.5 contains the reaction energies.

Table 6.3: Computed barriers of activation for model system 9. All values are in kcal·mol−1.

Method C2 − C6 cyclization C2 − C7 cyclization

∆E=| ∆H=|
298 ∆G=|

298 ∆E=| ∆H=|
298 ∆G=|

298

B3LYP/6-31G(d) +41.2 +39.4 +41.4 +13.3 +12.1 +13.6

B3LYP/6-311G(d) +45.6 +43.7 +45.8 +16.7 +15.6 +17.8

BLYP/6-31G(d) +30.6 +29.1 +31.1 +9.6 +8.7 +10.5

CCSD/cc-pVDZ//B3LYP/6-31G(d) +48.0 +23.7

CCSD/cc-pVDZ//BLYP/6-31G(d) +45.5 +22.4

CCSD(T)/cc-pVDZ//B3LYP/6-31G(d) +41.3 +17.6

CCSD(T)/cc-pVDZ//BLYP/6-31G(d) +36.2 +16.9

It is noted, that larger basis sets for the CCSD and CCSD(T) computations

were not possible at the time of publication due to numerical limits.

Table 6.4: Selected geometric parameters for 9 and the TS for the C2 − C6 cyclization a).

9 TS C2 − C6 cyclization

Parameter B3LYP BLYP B3LYP BLYP

d(C2 − C6) 301 304 169 176

d(O1 − C2) 117 118 120 121

d(C6 − C7) 121 123 131 129

6 (O1 − C2 − C3) 174 174 121 124

6 (C6 − C7 − H8) 179 179 133 142

a) Distances are given in pm and angles in degrees.

The transition states (TS) of the C2−C6 cyclization to 9a and of the C2−C7 cyclization

to 9c possess almost closed-shell character with only minor spin contamination which allows

the use of CCSD and CCSD(T) to validate DFT employing the B3LYP and BLYP function-

als. The activation energy for the C2 − C6 cyclization using B3LYP/6-31G(d) is predicted
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to be 41.2 kcal ·mol−1 with a slight thermodynamic correction to the Gibbs free energy of

41.4 kcal ·mol−1. It agrees perfectly with the CCSD(T) energy based on the same geometry

of 41.3 kcal ·mol−1. With respect to CCSD(T), B3LYP/6-31G(d) underestimates the barrier

height of the alternative reaction (C2−C7 cyclization) by about 4 kcal·mol−1 (13.3 kcal·mol−1

vs. 17.6 kcal · mol−1). Corrections to the Gibbs free energy do not change the barrier of

activation significantly (∆G=|
298 = 13.6 kcal ·mol−1 compared to ∆E=| = 13.3 kcal ·mol−1).

CCSD yields the same qualitative picture as CCSD(T) but predicts slightly increased barri-

ers of activation for both the C2−C6 and C2−C7 cyclizations. The BLYP functional seems

not to be appropriate to desribe the reaction modes. The computed barriers are much lower

that the CCSD(T) counterparts (30.6 kcal ·mol−1 vs. 41.2 kcal ·mol−1). Additionally, the

computed geometries point to much more productlike transition states (Table 6.4).

Due to the strong change in the electronic structure along the reaction path, the computa-

tion of the reaction energies (9 → 9a, 9 → 9c-9e) is quite demanding. Some intermediates

represent diradicals and multi-reference methods have to be employed. The quality of the

DFT ansatz was also assessed. For the C2 − C6 cyclization (9 → 9a), B3LYP/cc-pVDZ

predicts the reaction energy to be 25 kcal · mol−1. This value lies between the values ob-

tained with CASPT2/cc-pVDZ (23 kcal·mol−1) or the MR-CI+Q/cc-pVDZ (27 kcal·mol−1),

underlining again the applicability of the B3LYP functional in the present context. Improv-

ing the basis set from VDZ to VTZ leads only to small changes in the computed reaction

energies if the CASPT2 and the MR-CI+Q approach is employed. Interestingly, the DFT

approach possesses a stronger basis set dependency than the more sophisticated approaches.

Similar to the enyne-allenes,[150] the diradical 9c and the allene structure 9d of the C2−C7

cyclization are found to be very close in energy, whereas the zwitterionic structure 9e lies

much higher in energy. The most reliable values are presumably given by the MR-CI+Q

approach in combination with the VTZP basis set. The deviation of the CASPT2 ansatz

to the MR-CI results is very small. While the difference between 9c and 9d is computed to

be 5-6 kcal ·mol−1, the energy difference between 9c and 9e is about 16 kcal ·mol−1. While

the B3LYP functional agrees nicely with the more sophisticated approaches, the BLYP

functional again deviates by computing 9d to represent the most stable intermediate of the

C2 − C7 cyclization.
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Summarizing our evaluation, in the present system, B3LYP is applicable to locate accurate

transition structures and reaction energies. As found in other examples, BLYP seems to be

inadequate. As expected, the CASSCF and the MP2 approaches lead to completely wrong

results showing that both static and dynamical correlation effects have to be accounted for.

Our computations show that for the parent system 9, the Moore reaction (C2 − C7 cy-

clization) is kinetically and thermodynamically strongly favored with respect to the C2−C6

cyclization. In comparison to Z-1,2,4-heptatriene-6-yne which represents the parent system

of enyne-allenes, 9 possesses a much higher activation energy for the C2 − C6 cyclization

(41 kcal ·mol−1 vs. 31 kcal ·mol−1) while the barrier for the C2 −C7 cyclization is reduced

(13.3 kcal · mol−1 vs. 24.0 kcal · mol−1). This behavior may arise from a diminished elec-

tron density in the enyne-ketene compared to the enyne-allene which favors the C2 − C7

cyclization and stipulates the C2−C6 cyclization. Both enyne-ketene cyclizations are more

endothermic by about 10 kcal · mol−1 than their counterparts in the enyne-allenes. While

∆RG298 of the C2−C6 cyclization is predicted to be 27 kcal·mol−1 for the enyne-ketene 9a, a

value of about 13 kcal ·mol−1[139] is found for the enyne-allenes. For the C2−C7 cyclization,

the corresponding numbers are about 6 kcal ·mol−1 and -11 kcal ·mol−1, respectively7.

6.2.3 Influence of the substituents

From the structural similarity between enyne-allenes and enyne-ketenes, a comparable re-

action scope can be expected. Indeed, although 9 reacts in a C2−C7 cyclization leading to

1,4-benzoquinone, for the phenyl-substituted enyne-ketene 11 (see also Figure 6.13), Moore

and co-workers found that the product of the competing five-membered C2−C6 cyclization

represents the major product (46% yield vs. 21%).[170]

This regioselectivity resembles the regioselectivity found for enyne-allene systems[139] but is

less pronounced. For an understanding of differences and similarities between these two com-

pound classes, the reaction barriers for various model compounds were computed (Table 6.6).

If the hydrogen of the enyne terminus in the parent compound 9 is replaced by a phenyl

group (10), the activation barrier for the C2−C6 cyclization (∆G=|
298 = 28.7 kcal ·mol−1) de-

creases by about 13 kcal·mol−1 compared to the parent system 9 (∆G=|
298 = 41.4 kcal·mol−1).

7MR-CI+Q computations employing a cc-pVTZ basis set neglecting the set of f-functions on carbon.[175]
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Figure 6.13: Experimental regioselectivity of 11.

This reduction of the free energy of activation for the C2−C6 cyclization of 10 is more pro-

nounced than in the enyne-allene compound for which Ph substitution diminished ∆G=|
298

only from 31.4 kcal ·mol−1 to 28.7 kcal ·mol−1. The increase of the reaction barrier for the

C2−C7 cyclization of 10 by about 6 kcal ·mol−1 (13.6 kcal ·mol−1 for 9 vs. 19.8 kcal ·mol−1

for 10) is of the same order of magnitude as was computed for the corresponding enyne-

allenes (∆G=|
298 = 24.0 kcal ·mol−1 to 29.8 kcal ·mol−1). Although the influence of the phenyl

group is considerably larger for the enyne-ketenes than for the enyne-allenes, 10 prefers the

Moore reaction by about 10 kcal ·mol−1 over the C2 − C6 cyclization. This prediction also

holds, if it is considered that the B3LYP approach seems to underestimate the barrier of

the C2−C7 cyclization by about 4 kcal ·mol−1, while the barrier of the C2−C6 cyclization

seems to be predicted in a better accord with higher level CCSD(T) computations.

The switch from the C2 − C7 to the C2 − C6 cyclization is found, if the OH and OMe

substituents being present in the experimentally studied compound, are taken into account

(11). These oxygen-containing substituents further decrease the free energy of activation for

the C2−C6 cyclization from ∆G=|
298 = 28.7 kcal ·mol−1 (10) to ∆G=|

298 = +18.7 kcal ·mol−1

(11) while ∆G=|
298 for the C2 − C7 cyclization raises slightly from 19.8 kcal ·mol−1 (10) to

21.9 kcal ·mol−1 (11), leading to a preference of the C2−C6 cyclization and explaining the

experimentally found regioselectivity.

The influence of the phenyl group on the reaction barriers of both cyclization modes is

much stronger than that found for the enyne-allenes but is not sufficient to induce the shift

from the C2−C7 to the C2−C6 cyclization. As already mentioned above, this difference from

the enyne-allene systems is a consequence of the much higher C2 − C6 cyclization barrier
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Table 6.6: Activation barriers for substituted enyne-ketenes 9 - 13 at the B3LYP/6-31G(d)

level of theorya).

C2 − C6 cyclization C2 − C7 cyclization

System ∆E=| ∆H=|
298 ∆G=|

298 ∆E=| ∆H=|
298 ∆G=|

298

9

H

O
+41.2 +39.4 +41.4 +13.3 +12.1 +13.6

10

Ph

O
+28.1 +26.4 +28.7 +18.8 +17.3 +19.8

11

Ph

O
HO

MeO
OMe

+18.9 +17.4 +18.7 +20.7 +19.2 +21.9

12

NH2

O
+8.8 +7.6 +10.2 +11.4 +10.4 +13.5

13

NO2

O
+27.8 +25.8 +27.4 +16.9 +15.4 +17.5

a) All energies are given in kcal ·mol−1.

found for the parent system 9 which in turn may result from the presumably diminished

electron density in the enyne-ketene. The shift from the C2 − C7 to C2 − C6 cyclization

takes place if the lower electron density is compensated by the additional donor groups OH

and OMe which reduce the barrier of the C2 − C6 cyclization and increase the barrier of

the C2 − C7 cyclization. This is in line with the finding of Brunette and Lipton[144] that

oxyanion substitution significantly accelerates the C2 − C6 cyclization in enyne-allenes.

To investigate similarities and differences between enyne-allenes and enyne-ketenes in more

detail, we also studied the influence of strong electron-donating substituents (NH2 in 12)

and of electron-withdrawing substituents (NO2 in 13). For enyne-allenes both substituents

preferred the C2−C6 cyclization but possessed a carbenelike instead of a diradical interme-

diate.[139,175]

Compared to the parent compound 9 (∆G=|
298 = 41.4 kcal ·mol−1), the amino-substituted

enyne-ketene 12 possesses a dramatically lower free energy of activation (∆G=|
298 = 10.2 kcal·

mol−1) for the C2 − C6 cyclization. In contrast, the activation barrier for the C2 − C7

cyclization remains almost constant at about 13.5 kcal · mol−1. In agreement with the
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Table 6.7: ∆RG298 for intermediates representing local minima of enyne-ketenes 9 - 13

computed at the B3LYP/6-31G(d) level of theorya).

Intermediate

System a b c d

9

H

O
+24.8 +4.8 +9.6

10

Ph

O
+17.7 +9.6 +15.0

11

Ph

O
HO

MeO
OMe

+0.5 -4.2 +2.7

12

NH2

O
+5.8 -4.5 +4.4

13

NO2

O
+18.4 +3.5 +7.2

a) All energies are given in kcal ·mol−1. a - d correspond

to the intermediates denoted in Figure 6.11.

O

H

O

H2N

O

O2N

NH2

π

σ

Figure 6.14: Orbital scheme for the effect of electron-donating and electron-withdrawing

substituents on diradicals.

enyne-allene analogue, the NH2 substituent leads to a preference of the C2−C6 cyclization,

but for the enyne-allene the activation barriers were found to be significantly higher (∆G=|
298

= 17.8 kcal ·mol−1 for the C2−C6 cyclization and ∆G=|
298 = 22.7 kcal ·mol−1 for the C2−C7
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cyclization).[139] If the electron-donating amino group is replaced by the strong electron-

withdrawing nitro substituent, the activation barrier for the C2 − C6 cyclization decreases

from 41.4 kcal ·mol−1 (9) to 27.4 kcal ·mol−1 (13). This change is insufficient to switch the

regioselectivity of the reaction as the increase in the free energy of activation ∆G=|
298 for the

C2 − C7 cyclization by about 3-4 kcal ·mol−1 to 17.5 kcal ·mol−1 (13) is too low.

Both the electron-donating NH2 and the electron-withdrawing NO2 lower the activation

barriers and lead to carbenelike intermediates for the C2 − C6 cyclization, i.e. change the

reaction mechanism. The reaction energies are given in Table 6.7. While 9a was shown

to represent a σ, π-diradical, for 12 a carbenelike intermediate is found which possesses

a lone-pair σ-orbital centered at the carbon atom in α-position to the NH2 substituent.

Figure 6.14 sketches the results obtained from an NBO analysis.[183] The preference for the

carbene structure over the diradical can be explained by π-conjugation due to the planar

NH2 substituent. This interaction lowers the π-orbital and leads to doubly occupied σ and

π orbitals (see Figure 6.14). Consequently, in contrast to 9-11, the C2 − C6 cyclization

of 12 has to be looked upon as a carbenelike reaction mechanism. In contrast, the main

intermediate for the Moore reaction still remains a diradical. It is predicted to lie below the

cyclic allene by about 9.0 kcal ·mol−1.

Also the C2−C6 intermediate of 13 possesses a carbenelike electronic structure; the reasons

are different however. As indicated by NBO analyses, the NO2 substituent lowers the σ-

orbital by its strong electron-withdrawing effect. As a consequence, the energetic difference

between the σ- and π-orbital is enlarged, leading to a double occupancy of the σ-orbital.

Similar effects are also found for the enyne-allene.[175]

6.2.4 Summary

In this section, the Moore (C2−C7) cyclization and its regioalternative C2−C6 cyclization

were investigated. While the parent system 9 is studied with DFT and high-level ab initio

methods (MR-CI+Q, CASPT2, CCSD(T)) to validate the less reliable approaches, the

substituent effects are included on the DFT level of theory. To study similarities to the

other diradical reactions discussed previously, the present results are compared to diradical

cyclizations of enyne-allenes.
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For the parent system 9, the C2 − C7 cyclization is kinetically and thermodynamically

strictly favored with respect to the C2−C6 cyclization (∆G=|
298 = 41 kcal ·mol−1 vs. ∆G=|

298

= 18 kcal ·mol−1 and ∆RG298 = 3 kcal ·mol−1 vs. ∆RG298 = 26 kcal ·mol−1). The C2−C7

cyclization proceeds via the diradical intermediate 9c which is computed to be 5 kcal ·mol−1

more stable than the cyclic allene 9d and 13 kcal·mol−1 lower in energy than the zwitterionic

state 9e.

The main difference between 9 and the parent system of the enyne-allenes (Z-1,2,4-

heptatriene-6-yne) is the barrier to the C2−C6 cyclization (41 kcal·mol−1 for 9, 31 kcal·mol−1

for Z-1,2,4-heptatriene-6-yne). Furthermore, both possible cyclization modes for the enyne-

ketene are more endothermic than those for the enyne-allene. Both may originate from the

diminished electron density in the enyne-ketene compared to the enyne-allene which seems

to favor the C2 − C7 cyclization and disfavors the C2 − C6 cyclization.

Substituent effects are more pronounced for the enyne-ketenes than for the enyne-allenes.

For example, the reaction barrier for the C2 −C6 cyclization decreases by 13 kcal ·mol−1 if

the hydrogen of the alkyne terminus is substituted by a phenyl group. For the enyne-allene,

the barrier decreases by only 3 kcal ·mol−1. However, due to the strong difference found for

the parent system 9, the shift from the C2 −C7 to the C2 −C6 cyclization only takes place

if additional OH and OMe substituents (11) are present.

The findings about the influence of strong electron-donating or -withdrawing substituents

underline the strong similarities between enyne-ketenes and enyne-allenes. Both NH2 (12)

and NO2 (13) at the alkyne terminus lead to carbenelike intermediates instead of diradicals,

but the reasons are different, however.

A model to predict the electronic structure of the intermediates that might occur in the

course of the Moore reaction is presented in the next section and derived from a series of

cyclic allenes.
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6.3 A Comprehensive Model for the Electronic Struc-

ture of 1,2,4-Cyclohexatriene and Related Com-

pounds[110]

6.3.1 Introduction

Trends in the periodic table of elements and the concepts related with them have become

the foundation of nowadays chemists thinking. Due to their simplicity and flexibility they

represent powerful tools to explain variations in chemical structure and reactivity. How-

ever, quite often such trends are hidden behind the complexity of the properties and the

structures of the various members belonging to a class of molecules. One example is the

class of six-membered cyclic allenes represented in Figure 6.15, which recently gathered

much interest as intermediates in the cyclization of 1,3-diene-5-ynes,[184] the rearrangement

of carbenes[185–188] or as heterobenzene isomers.[189–191] Their complexity is expressed in the

chemical properties that, being dependent on the fragment X, range from those of strained

allenes (X = CH2)
[174,189,192,193] to those of zwitterionic systems (X = NH).[185,186,190] For

X = O the chemical behavior varies between both extremes depending on whether the six-

membered ring or its benzo-derivative is studied.[174,194] Systems with heteroatoms from the

third row were also investigated to some extent. The role of a cyclic allene with X = S formed

by rearrangement of a sulfur-substituted cyclopropylidene was investigated by Shevlin et

al.[186,187] Regitz et al. isolated a bulky substituted diphosphaisobenzene, which possesses

substantial allene character.[191] This finding was supported by quantum chemical com-

putations.[191] Taking into account the rather similar composition of the compounds, the

variations in their chemical nature are unexpected.
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Figure 6.15: Possible electronic structures of cyclic allenes (a - d). The denotation of the

planar zwitterionic species c and d will be used to reflect the reversed polarity compared to

each other.
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Figure 6.16: Orbital diagram for strain-induced orbital splitting of the allene.[195]

As shown previously,[174,193] an explanation for the variations in the electronic structure

can only be obtained, if, aside from the electronic structure at equilibrium geometry, also the

electronic characters of the low lying electronic states at the planar geometry are included

into the consideration. The orbital diagram from which these electronic states can be derived

(see Figure 6.15) is depicted in Figure 6.16 8. The ring strain affects the allene moiety to that

extent as it deviates from linearity and the bonding planes of the termini are arranged no

longer perpendicular as in the parent allene C3H4. For twisted ring geometries the character

of an allene is maintained (Figure 6.15, structure a) However, as it is shown in Figure 6.16,

originally proposed by Johnson[195] for saturated ring systems, geometric constraints lift the

degeneracy of the π and π∗ orbitals (depicted on the left hand side of Figure 6.16), and a set

of 3 π orbitals and 1 σ orbital is obtained. The three lowest lying electronic states at planar

geometry are obtained from the occupation pattern of these orbitals. The diradical state b

originates from double occupation of the π orbital and single occupation of the σ and π∗

orbitals. Pairing of the latter two electrons in the σ orbital then leads to the zwitterion c

possessing a formally negatively charged central carbon atom (C2 depicted in Figure 6.15)

and a formal positive charge in the π system of the allene moiety. In the following all states

with this formal charge distribution will be abbreviated as state c. If the occupation of the

σ orbital and the π∗ orbital of c is switched, a second zwitterion with reversed polarity (d)

is obtained.

In the present work the known considerations about the chemical nature of cyclic allenes

8The discussion of the orbital diagram for a planar allene fragment can be found in [195].
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are extended by analyzing variations within the series X = BH (14), CH2 (15), NH (16), and

O (17), and the series of the higher homologues with X=AlH (18), SiH2 (19), PH (20,21),

and S (22). With these data, which were obtained by high-level ab initio computations of

the low lying electronic states, a comprehensive molecular orbital model is proposed in which

the orbitals of the fragments (allenic unit, ethylene moiety and fragment X) are successively

combined to the orbitals of the entire system. This model fully explains the variations

depending on the fragment X and shows their relationships to trends in the periodic table

of elements. The model also reveals an unexpected connection between the class of cyclic

allenes and the phenylanion (X = CH−). Finally, it is analyzed whether a model based on

simple orbital energies actually contains all important aspects or if more subtle interactions

also have to be considered (e.g. geometry relaxation, electron correlation)

6.3.2 Assessment of Theoretical Methods

A reliable computation of energy differences between species that possess a distinctly dif-

ferent electronic structure (closed-shell vs. open-shell) is quite demanding. In the present

work, the chemical interpretation of the results crucially depends on a balanced descrip-

tion of the two closed-shell states (allene and zwitterion) and the one open-shell diradical

state9. To assess the quality of several theoretical approaches, the methods (U)B3LYP,

9For a reliable description of systems which possess diradical character, a multi-reference treatment is

essential in most cases. Since the planar diradical species are significant for the understanding of the chem-

istry of cyclic allenes,[174,193] relative electronic energies of all species were computed at the Multi-Reference

Configuration Interaction (MR-CI) and the CASPT2 level of theory employing (U)B3LYP geometries. Or-

bitals for the CASPT2 and MR-CI approaches were obtained by CASSCF calculations using the MOLCAS

5.0 package.[51] A balanced description of the active spaces in the CASSCF procedure chosen for all com-

pounds consisted of the two highest lying occupied π orbitals (a′′) with the corresponding number of virtual

orbitals and an appropriate number of σ-orbitals (a′) including the occupied σ-orbital at C2. This choice

ensures that the allene includes the same σ-orbitals in the active space as the planar species. With this

ansatz [6,6] (X = CH−, NH2+), [8,8] (X = BH, BH2−, CH2, NH, O, AlH, PH, S) and [10,10] (X = SiH2, PH

with an additional phosphorus in the ring) CASSCF spaces resulted. For the diradical 1A states of both

phosphorus containing compounds the orbitals for the MR-CI computations were taken from the 3A instead

of a 1A CASSCF calculation. Test computations indicated that the use of these orbitals is appropriate as

the error in the MR-CI+Q computations employing optimized triplet orbitals instead of optimized singlet

orbitals for the open-shell singlet wavefunction is within the expected error bar for this method of about

1-2 kcal ·mol−1. All CASSCF and CASPT2 single-point computations were performed with the MOLCAS
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CCSD(T), CASPT2 and MR-CI+Q were employed. (U)B3LYP and CCSD(T) represent

single-reference approaches, while CASPT2 and MR-CI+Q are multi-reference methods.

The data of the (U)B3LYP, CASPT2, MR-CI+Q and CCSD(T) computations are provided

in Table 6.8.

MR-CI+Q, CASPT2 and (U)B3LYP used in this work agree quite well on the energy

separation of the states. The energy difference regarding the zwitterion with respect to

the allene structure a agrees well for MR-CI+Q and CCSD(T) (deviation of maximum

2 kcal ·mol−1). As the CCSD(T) ansatz should be the most reliable for well-behaved closed-

5.0 package.[51]

The MR-CI approach used in this study is based on a direct individually selecting MR-CI algorithm[32] that

computes the MR-CI energy for a reduced dimension of the CI eigenvalue problem while the contributions

of the neglected configuration state functions (CSF) were taken into account by the Buenker-Peyerimhoff

extrapolation scheme.[30, 31] The influence of quadruple excitations was estimated by the normalized form

of the Davidson correction.[196] These calculations abbreviated as MR-CI+Q were performed with the

DIESEL-CI program package.[53] The reference spaces of the individually selecting MR-CI computations

were determined iteratively and consisted of up to nine reference configuration state functions, from which

a configuration space of up to 47 · 106 CSF was generated. The number of secular equations to be solved

in the reduced CI problem was up to the order of 12 · 106. The ano-l[180,197] basis set of triple-ζ quality

in a 5s3p1d contraction for the atoms of the second and the third row and a 3s1p contraction scheme for

hydrogen was used for all CASSCF, CASPT2 and MR-CI+Q calculations.

CCSD(T) computations for the energy differences between the allene and the zwitterion were done with

the MOLPRO package.[52] For these computations Dunnings cc-pVTZ[164] basis set with d-functions omitted

for the hydrogen atoms was employed and is denoted as cc-pVTZ(f/p).

The geometric parameters of the stationary points were optimized using analytical gradients of the density

functional theory (DFT) utilizing the B3 exchange expression[160,198,199] in combination with the correlation

functional by Lee, Yang, and Parr (LYP)[161] and Dunning’s cc-pVDZ[164] basis set. This approach was found

to give more appropriate geometries for a post Hartree-Fock treatment than the CASSCF method.[174,193]

The singlet diradical species were optimized using broken-spin symmetry determinants in the unrestricted

ansatz (〈S2〉 approximately 1), while the planar and the non-planar closed-shell species were computed within

a restricted approach. The minima were optimized without symmetry constraints while the geometries of

the planar singlet species were determined in Cs symmetry. If C1 and Cs optimized geometries were identical

the latter were used for the subsequent computations. The planar species of the phosphorus systems were

optimized constraining the dihedral angle of the allene moiety to 0◦ as the full Cs symmetry because of the

sp3 hybridized phosphorus center could not be retained. The nature of the various stationary points was

analyzed by calculation of the DFT harmonic frequencies. Vibrational analyses were also utilized at the

(U)B3LYP level to determine the thermal corrections to ∆G298. All DFT calculations were performed with

the Gaussian98 program package.[159]
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Table 6.8: Energies of the electronic states of 1,2,4-cyclohexatriene and its hetero analogues

as indicated in Figure 6.15a).

B3LYPb) CASPT2c) MR-CI+Qd) CCSD(T)e)

X diradical zwitterion diradical zwitterion diradical zwitterion zwitterion

BH (14f) +11 +1 +11 +1 +11 +2 +1

CH2 (15g) +3 +23 +10 +33 +10 +29 +29

NH (16g,h) +22 0 +22 0 +24 0 n.a.

O (17g) +16 +1 +15 +4 +18 +3 +2

AlH (18f) +16 +5 +16 +7 +18 +7 +7

SiH2 (19f,i) +10 +21 +12 +26 +13 +28 +26

PH (20g) +8 +14 n.a. n.a. +12 +16 +15

PH (21g) +16 +22 n.a. n.a. +21 +21 +22

S (22g) +9 +7 +11 +8 +14 +10 +10
a) All values are given in kcal ·mol−1 with respect to the allene structure except for

16.

b) (U)B3LYP/cc-pVDZ//(U)B3LYP/cc-pVDZ

c) CASPT2/ano-l//(U)B3LYP/cc-pVDZ

d) MR-CI+Q/cc-pVDZ//(U)B3LYP/cc-pVDZ

e) CCSD(T)/cc-pVTZ(f/p)//(U)B3LYP/cc-pVDZ

f) zwitterion d, see Figure 6.15

g) zwitterion c, see Figure 6.15

h) zwitterion is ground state

i) zwitterion c is 49 kcal ·mol−1 higher than allene a

shell systems, this agreement validates the reliability of the MR-CI+Q computations for the

allenes and zwitterionic states. CASPT2 shows a slightly inferior performance concerning

the energy differences to the zwitterions. (e.g. 33 kcal ·mol−1 vs. 29 kcal ·mol−1 (CCSD(T),

MR-CI+Q) for 15 or +4 kcal ·mol−1 vs. +2 kcal ·mol−1 (CCSD(T)) and +3 kcal ·mol−1

(MR-CI+Q) for 17), while it predicts comparable energies for the diradical states compared

with MR-CI+Q (e.g. 10 kcal · mol−1 for CASPT2 and MR-CI+Q for 15, but a slightly

underestimated value of 15 kcal · mol−1 compared to 18 kcal · mol−1 obtained with MR-

CI+Q for X=O). (U)B3LYP does well for the zwitterionic and the diradical states except for
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X = CH2, for which both the zwitterion and the diradical are substantially underestimated

(3 kcal ·mol−1 for the zwitterion and 23 kcal ·mol−1 for the diradical).

From this assessment the MR-CI+Q approach is likely to be the most appropriate to

provide a comparative and uniform basis for the discussion of all systems. For this purpose

also the computations for the known systems were redone in this work and the MR-CI+Q

energies presented here deviate slightly (1 to 2 kcal·mol−1) from previous publications.[174,193]

6.3.3 Results
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Figure 6.17: Energies and characters of the electronic states of 1,2,4-cyclohexatriene and its

hetero analogues.

The influence of X on the electronic structure of the cyclic allenes can be taken from

Figure 6.17 which summarizes the computed MR-CI+Q data of the present work. Some

geometric parameters are presented in Table 6.9. Figure 6.17 gives the energetic positions
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of the low lying electronic states at planar ring geometry with respect to the allene struc-

tures which possess puckered ring geometries. In addition to the parent compound 1,2,4-

cyclohexatriene and systems with one heteroatom, the parent system of the experimentally

synthesized diphosphaisobenzene of Regitz[191] was also studied to evaluate the influence of

the second phosphorus center in the ring system.

Figure 6.17 and Table 6.9 show that in the minimum10 most compounds represent strained

allenes with a more or less twisted ring geometry. The second lowest lying species (diradical

of zwitterion) represents a transition state for the racemization of the allene. While most

systems agree in this respect, the planarisation energies strongly depend on the fragment X.

For X = BH (14) and X = O (17) these energies are very small (2-3 kcal ·mol−1) while it

vanishes for the isopyridine 16 (X = NH), which hence prefers a zwitterionic ground state

(16c, see Figures 6.15 and 6.16) as equilibrium structure[185–187,190,193] The planarisation

energy amounts 10 kcal · mol−1 for X = CH2 (15). The planarisation energies correlate

with the dihedral angle of the allene moiety H1 −C1 −C3 −H3, which is a measure for the

distortion relative to an unstrained allene possessing a value of 90◦. For X = CH2 (15a),

which possesses the largest planarisation energy for the second row systems, the dihedral

angle (see Table 6.9) deviates from the optimum by only 10◦. For X = BH (1a). For X = BH

(14a) and X = O (4a), that both possess a smaller barrier, this difference increases to 32◦

and 49◦, respectively.

The planarisation energy rises on going from second to third row fragments X, e.g. from

X = BH (14) to X = AlH (18) from 2 kcal · mol−1 to 10 kcal · mol−1. This increase in

the energy difference is accompanied by a larger diameter of the six-membered monocycle

containing third row elements with respect to the second row systems. The diameter rises

according to Table 6.9, since the X−C1 bond length increases e.g. from 160 pm for X = BH

(14) to 201 pm in X = AlH (18) and a similar change is obvious for the X− C5 distance.

Aside from the planarisation energies also the sequences of the electronic states at planar

geometry depend on the fragment X. While the diradical state is favored over the zwitterionic

one for 14, 19, and 20, the reverse order is found for 14, 16, 17, 18, and 22. The energy of

10The term minimum is used in the context with reference to isomers that have the same connectivity

as the structure of the cyclic allenes and represents a local rather than a global minimum on the potential

energy surface in most cases considered. The global minima of the C6H6 and C5H6N families, for example,

to which 15 (X = CH2) or 16 (X = NH), respectively belong, are surely the benzene and the pyridine.
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the diradical and the zwitterionic state are not distinguishable for the phosphorus compound

21. The additional phosphorus center in the ring (21 vs. 20) destabilizes the diradical state

by 9 kcal·mol−1 while the zwitterionic state is destabilized by 5 kcal·mol−1. The energy gaps

between zwitterionic and diradical states range for second row fragments X from 9 kcal·mol−1

in 14 to 24 kcal·mol−1 in 17. No systematic variation in the gaps are found when the second

and the third row systems are compared with each other. For instance, X = AlH (18) has

a slightly larger energy gap (11 kcal ·mol−1) than X = BH (14, 9 kcal ·mol−1) but on going

from X = O (17) to X = S (22) the difference between zwitterion and diradical is reduced

from 15 kcal ·mol−1 to 4 kcal ·mol−1.

The situation is even more complex as the character of the zwitterionic states also depends

on X. The electronic structure of the zwitterionic states of the oxygen (17) and the nitrogen

(16) systems is characterized by a formally positively charged ring and a negatively charged

central ”allene” carbon atom (Figure 6.15, electronic structure c).[174,193] For the zwitte-

rionic state of X = CH2 the same polarity was found.[174] Concerning X = BH (14) the

computations predict a reversed polarity, which corresponds to the zwitterionic state d in

Figure 6.15. The opposite formal polarity of the zwitterions of 14 and 16 is nicely mirrored

in the computed dipole moments (B3LYP level of theory). The dipole moment of 14d is

predicted to be 1.9 D with a direction that points through the molecular center towards C2.

This direction of the dipole moment is in line with a formally negatively charged ring and a

positively charged central ”allene” carbon atom. The dipole moment of 16c has a value of

5.5 D and points into the opposite direction reflecting the reverse polarity of the zwitterion

(see Figure 6.15). The polarity of the zwitterionic states of the second row systems and

that of their third row homologues are the same with an interesting exception found for

X = SiH2.

In contrast to the geometric parameters of the allenes a, which correlate with the varying

planarisation energies, a similar relationship between the trends in the geometric param-

eters described above and the varying sequences of the planar states is not obvious (see

Figure 6.17 and Table 6.9). As found for the allene structure as well as for the states at

planar geometries, the X − C1 distances of the various compounds decrease systematically

from B to O (e.g. 157 pm in 14b to 140 pm in 17b) and also from Al to S (e.g. 197 pm in

18b to 178 pm in 22b). The same sequencees are found for the corresponding X−C5 bond

length. While these parameters are expected to depend on X, all other parameters vary less
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Table 6.9: Geometric parameters of stationary points a).

System d(C1-C2) d(C2-C3) d(X-C1) d(X-C5) 6 (C1-C2-C3) 6 (H1-C1-C3-H3)

14a 130 135 160 152 152 68

14b 136 140 157 156 128 0

14d 129 136 162 150 155 0

15a 133 134 152 153 131 100

15b 135 140 152 150 128 0

15c 140 143 149 148 110 0

16b 136 139 142 139 128 0

16c 140 142 137 135 111 0

17a 136 139 139 134 116 51

17b 135 139 140 138 127 0

17c 138 142 138 133 111 0

18a 130 134 201 194 158 89

18b 135 141 197 196 137 0

18d 127 136 209 190 162 0

19a 132 133 190 192 150 101

19b 135 140 189 188 134 0

19d 128 135 200 185 160 0

20a 132 133 185 184 144 94

20b 135 139 184 181 133 0

20c 134 140 185 175 130 0

22a 134 135 178 176 132 83

22b 135 139 178 176 132 0

22c 139 142 177 170 115 0
a) Distances are given in pm and angles in degrees. The denotation of the species

and the atomic centers can be taken from Figure 6.15 and Figure 6.17.

with X but depend on the state under consideration. For the diradical states of all systems

(second and third row) the C1 − C2 and the C2 − C3 distances are computed to be around

135 pm and 140 pm, respectively. In the zwitterionic states c these parameters are 138-140

pm (C1 − C2) and 140-142 pm (C2 − C3) with the exception of 20c having a considerably

smaller C1−C2 distance of 134 pm and a C2−C3 bond length of 140 pm. The zwitterionic
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states d, which show a reversed polarity, possess bond lengths around 128 pm and 136 pm

for C1 − C2 and C2 − C3, respectively. The most characteristic parameter to describe the

structural differences between the zwitterionic states c and d and the diradical state b is

the bond angle C1 − C2 − C3 of the allene moiety. For all systems with fragments X from

the second row, the C1−C2−C3 angle of the zwitterionic state c is nearly constant around

111◦ while the only zwitterionic state with reversed polarity (X = BH, 14d) is predicted

to be 155◦. The diradical states b possess bond angles around 128◦. A similar trend also

exists for the third row systems. The zwitterions 18d and 19d (X = AlH and SiH2) possess

similar bond angles C1 − C2 − C3 of 160◦ and 162◦, respectively, while for X = PH (20c)

and X = S (22c) this angle is significantly smaller (130◦ for X=PH and 115◦ for X = S).
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Figure 6.18: Schematic orbital diagram based on the main three bond moieties (allene,

ethylene and X). The left-hand side (allene fragment) corresponds to the Figure 6.16.[195]

Linear combination of the allene and the ethylene fragment extends the orbital scheme to

set A in which fragment X has no contribution. Interaction of A with fragment X generates

the orbital set B on the right-hand side.

6.3.4 Discussion

A general model that explains the varying planarisation energies and the sequence of the

states at planar geometry can be obtained from an orbital diagram (Figure 6.18) that
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builds up the molecular orbitals of the entire system at planar geometry from the orbitals

of the fragments (allene moiety, ethylene unit and fragment X). In analogy to Figure 6.16,

the orbitals of the allene form a can be obtained from the orbitals at planar geometry

by relaxation to the lower molecular symmetry of the allene. The diagram starts from

the orbitals of the allene moiety given by Johnson[195] (the left hand side of Figure 6.18,

see also Figure 6.16 for comparison), which are first combined with the π orbitals of the

ethylene fragment leading to orbital set A. The positive and negative linear combination

of the bonding π orbital of the allene fragment with the bonding π orbital of the ethylene

moiety yield two low lying π orbitals denoted as π1 and π2. In this model the nonbonding

σ orbital remains unchanged. The next π orbital (π3) arises from the linear combination of

the non-bonding orbital of the allene fragment and the anti-bonding orbital of the ethylene

moiety. Higher lying orbitals are not relevant for this problem. The combination of the

orbitals of the allene and the ethylene moiety in Figure 6.18 (orbital set A), is already

sufficient to explain the properties of X = CH2 (15), SiH2 (19), and X=PH (20,21), as

X cannot interact with the π system. One bonding orbital of X = CH2 or SiH2 had the

correct symmetry (negative linear combination of CH or SiH orbitals) but they represent

C-H or Si-H σ bonds which do not interact sufficiently with the π system in orbital set A

(Figure 6.18). For X=PH no interaction of the lone pair of the phosphorus atom with the

π system occurs since the sp3 hybridization is energetically strongly favored over the sp2

hybridization.

The relevant states for 15 and 19-21 arise from the occupation pattern of the σ orbital and

the π3 orbital, which are quite close in energy. For the diradical species b (cf. Figure 6.15)

one electron occupies the π3 and one the σ orbital at the C2 center. The two zwitterionic

states with reversed polarity result if either the σ (c) or π3 orbital (d) is doubly occupied.

The polarities correspond to those of the states discussed by Johnson.[195] Within orbital

set A the energy difference between b and c is mainly governed by the energy difference

between the π3 and the σ orbital on one hand and the spin pairing energy on the other.

Since π3 and σ are close in energy, the diradical state should be preferred relative to the

zwitterion. For X = CH2 (15) and PH (20,21) the σ orbital is slightly lower in energy

than the π3 orbital so that the occupation pattern is σ2π0
3 and zwitterions of type c are

found. Surprisingly, the zwitterionic state of X = SiH2 (19), which is about as high in

energy as the zwitterionic state of the carbon system 15, is described by the occupation
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pattern π2
3σ

0 and consequently possesses a reversed polarity. This finding can be related

to the silicon β-effect. It comprises hyperconjugation effects which stabilize a positively

charged carbocationic center in β position to a silicon center.[200] Due to this effect the

zwitterionic state possessing an unoccupied σ orbital is stabilized since only this occupation

pattern conserves a positively charged C2 center in β-position to the silicon center. Indeed,

it is found that for the lowest zwitterionic state of the Si system the above mentioned

hyperconjugation effects destabilize the σ orbital with respect to the π3 orbital to that

extent that the energetic sequence of both is reversed and the latter gets doubly occupied

while the former remains empty. It is interesting to note that this effect only arises for the

zwitterionic state. In the diradical state both π and σ orbitals are energetically very close to

each other, but possess the sequence (σ below π) found in all other systems. A zwitterionic

state with the normal occupation pattern (σ2π0
3) also exists for 19 but is much higher in

energy (approx. 54 kcal ·mol−1 with respect to the allene form).

While the explanation of the trends for systems 15 and 19-21 is already possible utilizing

orbital set A, it is not sufficient for the systems with X = BH, NH, O, AlH, and S, because

their fragments X can interact due to their pz orbitals. The corresponding orbital scheme

leading to orbital set B (right-hand side of Figure 6.18) is an extension of the previously

discussed set A and includes its interaction with the pz orbitals of the fragment X. The

new π system now possesses four π orbitals that are relevant for this model. The orbitals

π′1, π′2, and π′3, which are constructed from linear combinations of the former π1, π2, and

π3 orbitals with the pz orbital, are stabilized with respect to the latter and lie below the

σ orbital. Within a one-electron picture the σ′ orbital is not affected. The next π orbital

(π′4) is destabilized with respect to the former π3 so that the energy gap to the σ′ orbital is

increased in comparison to the energy difference between the former π3 and the σ orbital.

The degree of interaction between the π orbitals π1, π2, and π3 and the pz orbital of X is

relevant for the stabilization of π′1, π′2, and π′3 and the destabilization of π′4. As a consequence

it determines the order of the electronic states at planar geometry. The degree of orbital

interaction depends on the radial extension of the pz orbital as well as on its energy. These

properties are mainly governed by the heteroatom in the fragment X and correlate with its

electronegativity. The interplay between this interaction and the previously discussed strain

in the allene moiety also determines the varying planarisation energies.

The order of the electronic states at planar geometries is first addressed. For all systems
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with an appropriate pz orbital at the fragment X (14, 16, 17, 18, 22) the interaction

between this pz orbital and the π system of orbital set A leads to an energy gap between

the σ′ orbital and the π′4 orbital, which is larger than the gap between the former σ and

π3. The larger gap favors a double occupation of the σ′ orbital, so that the zwitterionic

state is preferred with respect to the diradical one. The energy gap between both states

is dominated by the degree of interaction. The interaction is strongest for X = NH which

also possesses the largest gap (24 kcal · mol−1) of all systems in Figure 6.17. The weaker

interaction for X = O is expressed by a reduced gap of 15 kcal · mol−1, which is further

reduced to 4 kcal · mol−1, if X = S is regarded. This finding is in line with the chemical

experience about the π donor capability of the heteroatoms. The fragments X = BH and

AlH also possess pz orbitals which interact with the π system of the carbon framework,

so that the same orbital diagram as it has been described for X = NH, O, and S is valid.

However, the former systems differ from the latter ones as to the number of electrons. Due

to their electron deficiency B and Al both cannot contribute any electron to the π system.

Therefore only the six electrons contributed from the allene and the ethylene moiety are

distributed amongst the three π′ orbitals and the σ′ orbital. Since the three π′ orbitals are

lower in energy, they are occupied while the σ′ orbital stays empty. As a consequence the

resulting zwitterionic state has the same polarity as found for the zwitterionic state d defined

in Figure 6.15. It has to be kept in mind, that the reasons for the polarity (Figure 6.15:

doubly occupied π∗; here: empty π∗ and σ orbital) are different.

The orbital occupation patterns also explain the geometric differences between the zwit-

terionic and diradical states. The bond angle C1 − C2 − C3 was found to be the most

characteristic parameter to describe the structural differences between the electronic states.

The values in Table 6.9 in combination with the occupation pattern of the states show that

this angle correlates with the occupation of the σ orbital. For the zwitterionic states with

a polarity as c (double occupation of σ) the angle is around 111◦, while for zwitterionic

states with a polarity like d (empty σ) the angle varies from 155◦ to 162◦. For the diradical

states b (singly occupied σ) it was computed to be around 128◦. This shows that the angle

depends on the spatial extent needed by the empty, the singly or the doubly occupied σ

orbital. This is in accordance with the VSEPR model.

To explain the planarisation energy and the related electronic structure of the minimum,

the stabilization effects resulting from the orbital interaction between the pz orbital of X and
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the π system in orbital set A have to be compared with the opposed strain introduced in the

allene moiety. In the planar structure the interaction between the various orbitals but also

the strain in the allene moiety can be expected to have a maximum. On going to the allene

structure the strain decreases but also the strengths of the interactions are expected to get

smaller. So if the pz orbital and the π system in orbital set A interact strongly, a planar

structure arises since the strain effects are overcompensated. If the orbital interactions are

weaker, the strain effects are dominant and a twisted ring results. The interplay between

both effects determines the planarisation energy. For X = NH (16) the degree of interaction

in the zwitterion overcompensates the strain in the allene moiety and establishes the planar

zwitterion as the minimum. The degree of interaction is reduced for X = O, because of

the smaller π donor capability of O with respect to N. As a result the stabilization of c

is decreased with respect to X = NH and consequently the allene is slightly favored over

the zwitterion.[174,193] For X = BH the planarisation energy is similar to the value found

for X = O. The question to what extent the different number of electrons of both systems

influences the barrier will be addressed later.

The increase in the planarisation energy going from the second to the third row elements

results from the larger diameter of the monocycles allowing a better release of the strain

effects. A decreased interaction between the 3pz orbitals of the third row heteroatom X

and the π system in orbital set A could also be responsible for the higher planarisation

energy. A reduced interaction, however, would also lead to a smaller energy gap between

the zwitterionic and the biradical states. The gap indeed decreases going from X = O to

S (15 kcal · mol−1 to 4 kcal · mol−1) but stays nearly constant if X = BH (9 kcal · mol−1)

is compared to X = AlH (11 kcal · mol−1). Consequently, an expected increase in the

planarisation energy for both pairs results from somewhat more subtle reasons.

The orbital diagram also explains the differences between the phosphorus containing sys-

tems 20 and 21. The additional phosphorus center hampers the delocalization in the π

system of orbital set A, so that both, the diradical and the zwitterionic state, are stabilized

with respect to the allene structure. This should also hold for other substitutions of the

C4 − H group since the carbon center enables an optimal delocalization.

The model based on the interplay between the strain in the allene moiety and the sta-

bilization effects introduced by the orbital interaction of the fragment orbitals works very
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Figure 6.19: Order of the electronic states of the doubly negatively charged system 142−,

the phenlyanion 15− and the protonated isopyridine 16+.

well for neutral species so that the question arises whether this model can also be ex-

tended to charged species. The computed values for three isoelectronic second row systems

(X = BH2−, X = CH−, X = NH+
2 ), obtained with the MR-CI+Q approach, are summarized

in Figure 6.19. Within this model the isobenzene (X = CH2) and isopyridine (X = NH)

systems are the two prototypes, since they are representatives for the different degrees of

interactions and the resulting orbital schemes. Deprotonation of the first at the fragment

X = CH2 converts the isobenzene to the phenyl anion 15− (X = CH−).[201,202] In contrast

to 15, 15− obviously possesses an occupied pz orbital that can perfectly conjugate with the

π system of orbital set A (see Figure 6.18). Consequently, this orbital model predicts 15−

(X = CH−) to possess a ground state that corresponds to the zwitterionic11 state c. Its

stabilization is expected to be even stronger with respect to the diradical state than that of

16 (X=NH). These predictions are confirmed by the MR-CI+Q computations which predict

a planar equilibrium geometry with a closed-shell electronic structure and a diradical state

lying +47 kcal · mol−1 higher in energy than the ground state. This proves the distinctly

stronger interaction in the π system in comparison to 16 (X = NH) which possesses a gap

of +24 kcal ·mol−1. From the description it is obvious that 15− behaves like 16 (X = NH)

and not as his neutral precursor 15 (X = CH2).

Analogous to the change in the electronic structure of the pair 15/15−, protonation of

11In charged species the term zwitterion is not strictly defined. In the present study, this term is used for

the states with an electronic structure that resembles the zwitterionic states of the neutral species (see also

Figures 6.15 and 6.16).
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isopyridine (16) to 16+(X = NH+
2 ) also leads to a change in the electronic structure. In this

pair, the delocalization found in the π system of 16 is destroyed due to the protonation.

The computations indeed predict for X = NH+
2 an allene species having a twisted ring as

the equilibrium structure instead of the planar zwitterionic ground state c which is found

for X = NH. The computed planarisation energy is rather small (2 kcal · mol−1) but

at the planar structure the computations predict the diradical state to be preferred over

”zwitterionic” one by 22 kcal ·mol−1, which is in difference to X=NH. This shows that the

chemical nature of 16+ is very similar to that of 15 but is distinctly different to that of

16. This difference explains experimental findings obtained by Christl et al. who found

that a 1-aza-2,3-cyclohexadiene behaves completely different whether it has a three or four

coordinated nitrogen center.[203]

The doubly charged anion of 14, 142− (X = BH2−) is isoelectronic to 16. The MR-CI+Q

computations predict that, in analogy to 16, 142− possesses a planar equilibrium structure

and a ”zwitterionic” ground state. The energy gap to the diradical state is much smaller

than for X = NH. This may result from the stronger charge concentration in the ring. In

the diradical state, the charge is more distributed over the whole molecule.

This qualitative model, which explains the varying planarisation energy and the order of

the electronic states at planar structure, is based on orbital energies, while the influence

of the geometry, which varies considerably from state to state, and many-electron effects

are not taken into account. The question arises to what extent these effects influence the

picture. An answer to this question is given in Table 6.10 which depicts the energy differences

between the zwitterionic and diradical states of X = CH2, X = CH−, NH and O at various

levels of theory. The levels of theory used, reach from simple orbital considerations to the

computed MR-CI+Q energies at optimized geometries. The latter were taken as reference

(last line of Table 6.10).

The first level that can be used to estimate the energy differences between zwitterionic

and diradical states, is based on the orbital energy differences (επ∗ − εσ). For X = NH and

X = O this simple approach reproduces the correct order of the states but overestimates

the energy differences substantially by a constant value of about 70 kcal ·mol−1 (X = NH:

97 kcal ·mol−1 vs. 25 kcal ·mol−1, X = O: 87 kcal ·mol−1 vs. 14 kcal ·mol−1). For X = CH2

the correct order (diradical state below zwitterionic state) cannot be described since spin
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Table 6.10: Analysis of the orbital, geometric and many-electron contributions to the energy

difference between b and c a).

X = CH2 X = CH− X = NH X = O

επ∗ − εσ
b) +62 +127 +97 +87

Edet
σπ∗(c)− Edet

σ2 (c)c) -3 +70 +36 +23

Edet
σπ∗(b)− Edet

σ2 (c)c) -20 +51 +22 +11

ECI(b)− ECI(c) -15 +51 +25 +14
a) All energy differences are given in kcal · mol−1. Geometries,

that were taken for the calculation (diradical b and zwitterion

c), are denoted in brackets. Orbital energies were taken from

CASSCF/cc-pVDZ computations. CI energies are obtained from

MR-CI+Q/ano-l//(U)B3LYP/cc-pVDZ computations and energy

expectation values were calculated with the DIESEL package[53]

utilizing a cc-pVDZ basis set at (U)B3LYP/cc-pVDZ geometries.

Note that the CI results in both basis sets are comparable.

b) Differences of orbital energies were computed with the orbitals

of the 1A′′ state at zwitterionic geometries. Orbital corresponding

orbital energy differences obtained for diradical geometries are 35

to 43 kcal ·mol−1 lower in energy, i.e. all trends are kept.

c) Edet corresponds to the energy expectation value of the

main configuration state function (CSF) for each individual

state. The main configuration for the zwitterionic state is

|...(19a′′2)(20a′′2)(21a′2)〉 and |...(19a′′2)(20a′′2)(21a′1)(22a′′1)〉 for

the diradical state, respectively. In Cs symmetry the orbitals of the

irreducible representation a′ correspond to σ orbitals while those of

a′′ correspond to π orbitals.

pairing effects can only be considered if many-electron effects are taken into account.

The term Edet
σπ∗(c)−Edet

σ2 (c) includes many-electron effects in a comparable manner as the

Hartree-Fock approach12 but neglects effects from geometry relaxation (equivalent to the

12This procedure is comparable to the restricted Hartree-Fock level, which includes many electron effects in

an averaged manner.[56, 57] The difference between the restricted Hartree-Fock ansatz and the computation

of Edet are the orbitals. In this study orbitals are used that were optimized for the diradical state, while
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vertical excitation energy). This level describes the order of the electronic states for X = CH2

already correctly (-3 kcal · mol−1). For X = NH and X = O the computed differences

between the diradical and the zwitterionic state are uniformly overestimated with respect

to the MR-CI+Q values by only about 10 kcal ·mol−1 (36 kcal ·mol−1 and 23 kcal ·mol−1).

If the geometric differences between the diradical state b and the zwitterionic state c are

also considered, the relative energies Edet
σπ∗(b)−Edet

σ2 (c) deviate only by 3 to 5 kcal ·mol−1 to

the MR-CI+Q results that also contain electron correlation effects. The small influence of

correlation effects is astonishing since open-shell species are compared to closed-shell species.

6.3.5 Summary

Strained cyclic allenes containing heteroatoms of the second and third row exhibit strong

variations in their chemical properties depending on the heteroatomic fragment. In this

study, a comprehensive model that explains all these variations including the parent com-

pound 1,2,4-cyclohexatriene is presented. It is based on an orbital diagram in which the

orbitals of the fragments (allene moiety, ethylene unit and fragment X) are successively

combined to build up the molecular orbitals of the entire system. The variations in the

order of the electronic states and the planarisation energy which are both crucial for the

reactivity of such compounds[174,193] are explained by the interplay between the stabilization

depending on the degree of orbital interaction and the strain effects in the allene moiety.

The model is found to be valid for all experimentally known species and its predictions

are in agreement with results obtained from MR-CI+Q computations which were employed

to characterize still unknown compounds. Apart from neutral species, the model is also

applicable to charged systems. The consideration of 15− (X = CH−) reveals an unexpected

relation between strained cyclic allenes and the phenyl anion. Comparing X = NH with

X = NH+
2 the model also answers the open question why three and four coordinated 1-aza-

2,3-cyclohexadienes and 1-aza-2,3,5-cyclohexatrienes show different chemical reactivity. In

addition, the present work investigates how the various factors (orbital energies, geometry

relaxation, many electron and correlation effects) influence the various properties. It is

shown that orbital energy differences already describe all trends correctly. For quantitative

Hartree-Fock uses orbitals optimized for each state. The choice of the diradical orbitals is necessary to

ensure a balanced description of both the σ-type orbitals (σ/σ′) and the lowest unoccupied π-type orbital

(π3/π′4)
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predictions, the different geometries of the various states and the many electron effects are

essential while the remaining electron correlation is less important. This shows that qual-

itative predictions for an unknown species can be made if its orbital energies, which are

already accessible by simple DFT calculations, are compared to the orbital energies of the

system with X=NH. For quantitative predictions, however, more sophisticated approaches

are necessary.
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Summary

This work encompasses two parts. The first part focuses on the characterization of systems,

which complex electronic structures require the application of multi-reference methods. In

the second part, algorithms for a Møller-Plesset perturbation theory (MR-MP2) program,

designed to perform large-scale computations, were developed and implemented.

The Hartree-Fock method recovers about 99% of the exact energy of a system, however,

the effect of electron correlation, is essential to describe chemical processes. The standard

ab initio methods of todays theoretical chemistry (second-order Møller-Plesset perturbation

theory, Coupled Cluster, ...), which encompass electron correlation, employ the Hartree-

Fock wavefunction as starting point, i.e. distinguish one Slater determinant as reference

and are therefore called single-reference approaches. Density Functional Theory uses a

somewhat different ansatz, but also represents a single-reference method. Approaches that

start from more than one reference (multi-reference) allow a much greater flexibility and

accuracy. These approaches are essential for the understanding of the reactivity and the

properties of systems with complex electronic and structural features, because the commonly

applied single-reference methods are quite unreliable. In the present work three systems were

characterized, which were of interest for biologically oriented chemists as well as physical

organic chemists.

The anti-tumor efficacy of the natural product Neocarzinostatin (Figure 7.1) is based

on the formation of diradicals and causes DNA cleavage by hydrogen abstraction from

adenine and thymine. Computations on model systems performed in the present work, which

143
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Figure 7.1: Reaction mode of the enyne-cumulene system of the Neocarzinostatin chro-

mophore.

considered the main structural motifs of the Neocarzinostatin chromophore, indicated that

the observed mode of action is the most efficient one. Although there is no kinetic preferrence

for the formation of the intermediate of the C3 − C7 cyclization mode or the C2 − C7

cyclization (Figure 7.1), the reaction via the C3−C7 cyclization route is thermodynamically

favored. The distinct endothermicity of the C2−C7 cyclization results in a small barrier for

the reverse reaction and the equilibrium is supposed to prefer the reactant. The reaction

then can occur quantitively via the C3 − C7 route. It was even more important that the

computations presented in this work also offered an explanation why nature ”tailored”

the reaction of the Neocarzinostatin chromophore that way. The computed singlet-triplet

splitting of the intermediates, which expresses their diradical character, correlates with the

hydrogen-abstraction ability. The intermediate formed in the C3 −C7 cyclization possesses

a more pronounced diradical character than the intermediate of the C2 − C7 pathway, so

that only the intermediate of the C3 − C7 cyclization is able to abstract hydrogens from

adenine or thymine which finally causes cytolyis.

The discovery that diradicals occur in biological processes and that molecules with highly

unsaturated bonds play a role in biochemistry, led to the development of new compounds

with related structural motifs (Figure 7.2). One example of compounds related to Neocarzi-
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nostatin are the enyne-allenes and the hetero-anlogue class of enyne-ketenes (Figure 7.2).

Both were expected to possess similar reactivities and in this work, their similarities and

differences were investigated. Generally, the reactivities are indeed very similar, if the re-

duced electron density introduced by the ketene moiety with respect to the allene moiety is

compensated by appropriate substituents.
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Figure 7.2: Structural relationships between enyne-allenes, enyne-ketenes and cyclic allenes.

In the course of the reaction not only the discussed diradical intermediates can be formed.

Others isomeric species, like cyclic allenes and zwitterions, are close in energy to the di-

radicals and their formation via different reaction paths is possible. This work shows,

that the preference for a particular electronic structure (allene, diradical, or zwitterion)

is governed by the substituent attached to the enyne-ketene framework. The systematic

influence of substituents on the preferred electronic structure was evaluated for the class

of cyclic allenes substituted in the ring with fragments of the second and third period of

the periodic table of elements. For these compounds a comprehensive model on the basis

of orbital considerations is proposed. This model explains the experimentally found and/or

computed variations on a qualitative level, but also provides a simple tool to predict the

electronic structure of unknown compounds. Additionally, the factors influencing the energy

differences between the zwitterionic and the diradical states (orbital contributions, geometric

considerations, higher-order effects) were analyzed quantitatively on different levels of theory

and interpreted.

The presented examples contributed significantly to the understanding of the reactivity
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and electronic structure of typical multi-reference cases but also showed up the limits inher-

ently existing in the currently available programs with respect to the size of the molecules.

This experience motivated the second topic of the present work in which an improved

MR-MP2 code was developed. The MR-MP2 approach represents the most efficient multi-

reference ansatz. The criterions of an efficient MR-MP2 code encompass a couple of issues.

First, an efficient evaluation of the Hamilton matrix is crucial to reduce the computational

cost and an intelligent parallelization scheme can be used to further reduce the overall wall

time of the computation. As the third feature, the program is supposed to incorporate

is a flexible infrastructure with implementations of interfaces to commonly used quantum-

chemical programs and a substantial flexibility to extend and to improve the code.

The efficient construction of the Hamilton matrix represents the most crucial part for

the calculations because the major fraction of computational cost is consumed in this step.

The considered matrices are of the dimension of up to 1010, but are characterized by an

tremendous sparsity (99%to 99.999%). An efficient recognition of non-vanishing matrix ele-

ments is therefore crucial for a well-performing code. Additionally, the effort to recognize

the vanishing blocks of matrix elements has to be as small as possible to ensure that the

computational cost is spent on the evaluation of the non-vanishing matrix elements and

not on the vanishing ones. For this purpose the configurations are partitioned employing

a three-fold separation into inactive (orbitals are doubly occupied in all reference configu-

rations), active (differently occupied orbitals in the reference configurations), and external

(orbitals not present in the reference configurations) configuration rests. This division blocks

the Hamilton matrix and the inhomogenity and the smaller blocked matrices are treated

separately. In these submatrices the structure of even finer interaction classes can be effi-

ciently exploited. Large parts of the H0 matrix and the inhomogenity can be excluded from

the computational procedure, because the separation scheme forces the matrix elements to

vanish by virtue of the maximum allowed level of excitation.

The partioning scheme of the configuration space further allows to enhance the efficiency

of the matrix evaluation. In the surviving submatrices a three-level structure exists. The

basic level is characterized by the interactions of the inactive configuration rests. For each

two interacting inactive configuration rests, sets of active rests exist that also possess a

well-defined interaction pattern. Setting up on the active level, the same situation holds
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for the external configuration rests. Once at a certain level (e.g. inactive) an interaction is

computed to vanish, all interaction blocks on the following levels need not to be computed

since the matrix elements associated with this matrix block are zero. This scheme allows

the early recognition of vanishing blocks of matrix elements. Further on, by explicitely

sorting the sets of configuration rests, the interactions at each level represent repeating

patterns. These patterns in principal can be precomputed, stored and accessed in each

step of the computation. The computed patterns not only contain the position of the

non-vanishing interacting configurations but also the characterization of the interactions

including excitation order and interacting orbitals.

The evaluation of the interactions at the inactive level, for which the inactive configuration

rests are supposed to consist of the majority of occupied orbitals, is not performed in the

natural representation of electrons but with inverted configuration rests characterizing the

interaction with holes. Since the number of holes is magnitudes smaller than the number of

occupied orbitals a significant speed-up is achieved. The use of patterns in the actual process

of building the Hamilton matrix guarantees that only those interactions are considered,

which contribute non-vanishing matrix elements.

The implementation of a comparable algorithm for the external interactions is impos-

sible because of the too large memory consumption due to the large number of external

orbitals. Therefore, a direct scheme utilizing the limited number of possibilities of occurring

interactions between the external orbitals was employed. Algorithms for these few different

external interaction schemes, which depend of the excitation level of the internal configu-

ration rests and the position of the previously mentioned submatrices, were deduced and

implemented. The implementation is completely done without constructing the external

configuration rests, but directly sets up the difference configurations needed for the evalu-

ation of the matrix elements. This algorithm is computationally much less expensive than

the full evaluation of external configurations and does not need any storage requirements as

pattern schemes.

Simultaneous to an efficient implementation of the Hamilton matrix, the parallelization

of the MR-MP2 procedure reduces the overall wall time. For this reason emphasis was

put on an efficient and well-balanced parallelization. The parallelization scheme employed

in the DIESEL-MP program is controlled by the amount of allocatable memory and is
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based on the inactive patterns to distribute only the non-vanishing matrix blocks. The

implemented parallelization scheme requires a significantly smaller amount of memory than

the existing MR-MP2 procedure in the DIESEL package and thus makes large-scale parallel

computations feasible. Parallelization causes a certain communication overhead compared

to a serial code and the performance of the current program and the old MR-MP2 procedure

in the DIESEL program suite are comparable for small test systems (40 electrons, 150 basis

functions, 16 inactive and 9 active orbitals). Comparisons for larger systems, for which the

new program is designed for, were not possible because of the limitations in the old DIESEL

program package.

The infrastructure of the code was designed to be as flexible as possible. The class structure

of the DIESEL-MP program is implemented to perform a full MR-MP2 computation but

also to incorporate flexible selection schemes. These schemes can either employ an individual

selection of configurations or a scheme based on the contributions of particular external

orbitals. Basic classes that are needed for an MR-CI approach are also present and can be

easily used to implement an efficient MR-CI procedure.

The integral handling was a weak point in the old MR-MP2 code implemented in the

DIESEL package. The implemented integral interface of the new program to the TUR-

BOMOLE suite possesses a couple of advantages. The integrals generated by a RI integral

transformation in conjunction with the on-the-fly generation of the required four-index-

integrals from the three-index RI integrals consume less storage resources than the conven-

tional four-index-integrals. The integrals are needed only once for the computation of the

inhomogenity vector and the contraction to an effective one-electron multi-reference Fock

matrix. For the iterative process, the H0 matrix is constructed from the effective Fock

matrix and the RI integrals are no longer needed. This means that the transformation from

the RI-integrals to the four-index integrals has only to be performed once and does not

represent the bottleneck of the computation. The orbitals for the integral transformation

can be taken from Hartree-Fock, Local-Hartree-Fock, or gradient-corrected density func-

tionals. This offers the flexibility to use appropriate orbitals for computations of reactions

paths and excited states. The possibility of the implemented TURBOMOLE interface to

easily incorporate the DIESEL-MP program into existing QM/MM environments like the

CHEMSHELL[204] package offers the perspective to treat systems like enzymes accurately.
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Zusammenfassung

Die vorliegende Arbeit untergliedert sich in zwei Teile. Der erste Teil beinhaltet die Charak-

terisierung von Molekülen, deren komplexe elektronische Struktur Multireferenz-Methoden

erfordern. Im zweiten Teil werden Algorithmen für die Behandlung großer Systeme mittels

der Multireferenz-Møller-Plesset-Störungstheorie (MR-MP2) entwickelt und implementiert.

Die Hartree-Fock Methode erfasst etwa 99% der Gesamtenergie eines Systems, jedoch zeigt

es sich, daß die von ihr nicht berücksichtigten Korrelationseffekte von essentieller Bedeu-

tung für die Beschreibung chemischer Reaktionen sind. Die heutigen ab initio Standard-

methoden der Theoretischen Chemie, die die Elektronenkorrelation berücksichtigen (Møller-

Plesset-Störungstheorie zweiter Ordnung, Coupled Cluster, ...), basieren auf der Hartree-

Fock Wellenfunktion, d.h. sie zeichnen eine Slater-Determinante als Referenz aus und wer-

den daher als Einreferenzmethoden bezeichnet. Die Dichtefunktionaltheorie besitzt einen

etwas anderen Ansatzpunkt, stellt aber ebenfalls eine Einreferenzmethode dar. Ansätze, die

von mehreren Referenzen aus starten (Multireferenz) ermöglichen eine wesentliche größere

Flexibilität und erreichen damit eine höhere Genauigkeit.

Sie sind für das Verständnis der Reaktivität und der Eigenschaften von Systemen mit

komplexen elektronischen und strukturellen Eigenschaften notwendig, da die standardmäßig

verwendeten Eindeterminantenansätze für diese Systeme sehr unzuverlässig sind. In dieser

Arbeit wurden Systeme charakterisiert, deren Verständnis sowohl für physikalisch-organisch

als auch für bioorganisch arbeitende Chemiker von großer Bedeutung ist.

Die Wirkung des natürlich vorkommenden Antitumor-Antibiotikums Neocarzinostatin

149
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Abbildung 8.1: Reaktionsschema des Neocarzinostatin-Chromophors.

beruht auf der Bildung von diradikalischen Intermediaten (Abbildung 8.1), die durch Ab-

straktion von Wasserstoffatomen des Adenins und Thymins DNS-Spaltungen hervorrufen.

Die in dieser Arbeit durchgeführten Berechnungen an Modellsystemen, welche die dominieren-

den strukturellen Motive des Neocarzinostatin-Chromophors beinhalten, legen nahe, daß der

beobachtete Reaktionsweg der C3−C7-Cyclisierung (siehe Abbildung 8.1) auch der Effizien-

teste ist. Obwohl die C3 − C7-Cyclisierung gegenüber dem alternativen Reaktionsweg der

C2−C7-Cyclisierung kinetisch nicht favorisiert ist, ist der Reaktionsverlauf über die C3−C7-

Cyclisierung thermodynamisch bevorzugt. Die starke Endothermie der C2−C7-Cyclisierung

bedingt eine sehr kleine Aktivierungsbarriere für die Rückreaktion und es ist davon auszuge-

hen, daß das Gleichgewicht der C2−C7-Cyclisierung auf der Seite des Reaktanden liegt und

die Reaktion vollständig über die C3 − C7-Cyclisierung abläuft.

Viel eindrucksvoller als die Verifizierung des ablaufenden Reaktionsweges der C3 − C7-

Cyclisierung ist die, durch Berechnungen erhaltene Erklärung, warum die Reaktion des

Neocarzinostatin-Chromophors von der Natur gerade auf diese Weise ”maßgeschneidert”

worden ist. Sie resultiert aus der berechneten Singulett-Triplett-Aufspaltung der Interme-

diate, die den diradikalischen Charakter des Systems wiedergibt und korreliert mit der Ab-

straktionsfähigkeit für Wasserstoffatome. Das Intermediat der C3−C7-Cyclisierung besitzt

einen deutlich ausgeprägteren diradikalischen Charakter als das der C2 − C7-Cyclisierung,
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sodaß einzig allein das Intermediat der C3−C7-Cyclisierung in der Lage ist Wasserstoffatome

von Adenin und Thymin zu abstrahieren und die Cytolyse einzuleiten.

Die Entdeckung, daß Diradikale in biologischen Prozessen eine Rolle spielen führte zur

Entwicklung neuer Verbindungen mit verwandten Strukturmotiven (Abbildung 8.2). Ein

Beispiel zu dem Neocarzinostatin-Chromophor verwandte Verbindungen sind Eninallene

und die heteroanalogen Eninketene (Abbildung 8.2). Für beide Verbindungsklassen sind

ähnliche Reaktivitäten zu erwarten und die Gemeinsamkeiten und Unterschiede bezüglich

der Reaktivität wurden im Rahmen dieser Arbeit untersucht. Es konnte gezeigt werden,

daß die Reaktivität der beiden Klassen im Allgemeinen sehr ähnlich ist, falls die, durch

die Keteneinheit verursachte, verminderte Elektronendichte durch geeignete Substituenten

ausgeglichen wird.
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Abbildung 8.2: Strukturverwandtschaft zwischen Eninallenen, Eninketenen und cyclischen

Allenen.

Im Verlauf der Cyclisierungsreaktionen können nicht nur die diskutierten diradikalischen

Intermediate gebildet werden sondern auch andere Isomere wie cyclische Allene und Zwitter-

ionen, die energetisch so nahe liegen, daß sie über andere Reaktionspfade ebenfalls auftreten

können. Diese Arbeit zeigt deutlich, daß die energetisch bevorzugte elektronische Struktur

(Allen, Diradikal oder Zwitterion) von den Substituenten am Eninketen-Grundgerüst be-

stimmt wird. Der systematische Einfluß von Substituenten auf die bevorzugte elektronische

Struktur wurde für die Verbindungen der cyclischen Allene evaluiert, bei denen im sechs-

gliedrigen Ring eine Position durch Fragmente von Elementen aus der zweiten oder dritten
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Periode ersetzt wurden. Für diese Verbindungen wurde ein Modell vorgeschlagen, das die

experimentell gefundenen oder berechneten Variationen qualitativ erklären kann, aber auch

eine einfache Möglichkeit eröffnet die elektronische Struktur unbekannter Verbindungen

vorherzusagen. Weiterhin wurden Faktoren, die die Energiedifferenzen zwischen zwitterio-

nischen und diradikalischen Zuständen bestimmen (Orbitalbeiträge, geometrische Faktoren,

Effekte höherer Ordnung) auf verschiedenen theoretischen Niveaus quantitativ analysiert

und gewichtet.

Die vorgestellten Beispiele tragen zum Verständnis der Reaktivität und der elektronischen

Struktur von typischen Multireferenz-Systemen bei, zeigen aber auch noch die Grenzen der

aktuell verfügbaren Programme im Hinblick auf große Moleküle auf.

Diese Limitierung der existierenden Programme war die Motivation für das zweite Projekt

im Rahmen dieser Arbeit, das sich mit der Entwicklung eines Multireferenz-Møller-Plesset-

Störungstheorie (MR-MP2) Programmes beschäftigt. Ihm Rahmen der Multireferenz-ab

initio-Verfahren stellt der MR-MP2-Ansatz das Verfahren dar, welches den geringsten Auf-

wand benötigt. Für ein solches MR-MP2-Programm bestehen die Anforderungen aus fol-

genden Punkten. Zum einen ist eine effiziente Berechnung der Hamiltonmatrix nötig, um

die Rechenzeit auf ein vernünftiges Maß zu reduzieren, die durch geschickte Parallelisierung

weiter verringert werden kann. Eine flexible Infrastruktur des Programmcodes ist der dritte

Aspekt, der Beachtung fand. Dies beinhaltet die Implementierung von Schnittstellen zu

quantenchemischen Standardprogrammen und ein offenes Design des Quellcodes, das es

erlaubt das Programm auf einfache Art und Weise zu erweitern und zu verbessern.

Der effiziente Aufbau der Hamiltonmatrix stellt im Hinblick auf die Rechnungen den

wichtigsten Teil dar, da hier der größte Anteil der Rechenleistung erbracht werden muß.

Die betrachteten Matrizen besitzen Dimensionen in der Größenordnung von 1010, sind aber

mit sehr vielen Elementen besetzt, die gleich Null sind (etwa 99%−99.999%). Für einen

effizienten Programmcode ist daher eine schnelle Erkennung der verschwindenden Blöcke

von Matrixelementen bei minimalem Rechenaufwand wesentlich, um sicherzustellen, daß

die Rechenzeit durch die Berechnung der nicht-verschwindenden Matrixelemente bestimmt

wird. Die Minimierung des Aufwandes zur Bestimmung der verschwindenden Matrixele-

mente wurde durch eine dreifache Unterteilung der Konfigurationen in inaktive (aus Or-

bitalen, die in allen Referenzkonfigurationen doppelt besetzt sind), aktive (verschiedene
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Besetzung in den Referenzkonfigurationen) und externe (in Referenzkonfigurationen unbe-

setzt) Konfigurationsreste erreicht. Diese Unterteilung führt zu einer blockweisen Aufteilung

sowohl der H0-Matrix als auch der Inhomogenität, bei der die einzelnen Matrixblöcke ge-

trennt voneinander behandelt werden können. Innerhalb dieser Matrizen existiert wiederum

eine Struktur feingliedriger Wechselwirkungsklassen, die effizient ausgenutzt werden können.

Aufgrund der vorgenommmen Aufteilung können große Teile der H0-Matrix bzw. der Inho-

mogenität von der Berechnung ausgeschlossen werden, da verschwindende Matrixelemente

sofort erkannt werden (Überschreitung der maximal zulässigen Anregungsstufe).

Die in dieser Arbeit verwendete Aufteilung des Konfigurationsraumes erlaubt zusätzlich

auch eine Behandlung der nicht-verschwindenden Untermatrizen auf drei Ebenen. Auf

unterster Ebene stehen die Wechselwirkungen zweier inaktiver Konfigurationsreste. Für

jede Kombination aus zwei inaktiven Resten existiert eine Menge von aktiven Resten, die

ebenfalls ein wohl-definiertes Wechselwirkungsmuster besitzen. Aufbauend auf die Ebene

der aktiven Konfigurationsreste findet man die gleiche Situation für die externen Anteile.

Wird nun auf einer Ebene (z.B. inaktiv) eine Wechselwirkung zu Null bestimmt, müssen

alle nachfolgenden Ebenen nicht mehr durchlaufen werden, da die zugehörigen Matrixele-

mente verschwinden. Dies bedeutet, daß die Unterteilung auch hier das frühzeitige Erken-

nen verschwindender Matrixelemente ermöglicht. Weiterhin können durch eine geschickte

Sortierung der Konfigurationsmenge die Wechselwirkungen durch sich wiederholende Muster

charakterisiert werden. Auf diese Muster, die im Voraus berechnet und abgespeichert wer-

den, wird in jedem Iterationsschritt zugegriffen. Die implementierten Muster speichern

nicht nur Informationen über die Positionen der nicht-verschwindenden wechselwirkenden

Konfigurationen ab, sondern auch deren Charakterisierung in Form der auftretenden Anre-

gungsstufe und der wechselwirkenden Orbitale.Die Berechnung der Wechselwirkungen auf

der Ebene der inaktiven Konfigurationsreste, für die die Anzahl der besetzten Orbitale

in einer Konfiguration am Größten ist, erfolgt nicht in Form der natürlichen Darstellung

als besetzte Orbitale, sondern in der invertierten Form, bei der fehlende Elektronen als

Löcher berücksichtigt werden. Da die Anzahl der auftretenden Löcher um Größenordnungen

kleiner ist als die der besetzten Orbitale, wird eine signifikante Beschleunigung bei der

Berechnung der inaktiv-Wechselwirkungen erreicht. Die Ausnutzung der Muster ermöglicht

es für den Aufbau der Hamilton-Matrix nur die wechselwirkenden Konfigurationsreste zu

berücksichtigen, die zu nicht-verschwindenden Matrixelementen beitragen.
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Die Implementierung eines vergleichbaren Algorithmus für die Wechselwirkungen der ex-

ternen Konfigurationsreste ist aufgrund des immensen Speicherbedarfs, der durch die große

Anzahl der externen Orbitale entsteht, nicht möglich. Daher wurden Algorithmen für ein di-

rektes Verfahren, welches die eingeschränkten Möglichkeiten der externen Wechselwirkungen

ausnutzt, abgeleitet und implementiert. Diese Algorithmen unterscheiden verschiedene Fälle

bezüglich der Position der Matrixblöcke in der Hamilton-Matrix und der Anregungsstufe

auf interner Ebene. Die Wechselwirkungen wurden nicht mit Hilfe der externen Konfigu-

rationsreste berechnet, die wiederum aus den externen Orbitalen aufgebaut werden, son-

dern direkt aus den auftretenden Orbitalen. Dieses Verfahren ist weniger aufwendig als die

Berechnung auf Konfigurationsebene und benötigt nur minimalen Speicher verglichen mit

einem auf Muster basierenden Verfahren.

Neben einer effizienten Implementierung der Hamilton-Matrix reduziert die Parallelisierung

des MR-MP2-Verfahrens die Gesamtrechenzeit. Das im neuen MR-MP2-Program (DIESEL-

MP) verwendete Schema richtet sich nach der Menge an verfügbarem Hauptspeicher und

beruht auf den Mustern der nicht-verschwindenden inaktiven Konfigurationsreste. Die im-

plementierte Parallelisierung benötigt einen beträchtlich kleineren Hauptspeicherbedarf als

das alte DIESEL Programmpaket und erlaubt so die Berechnung größerer Moleküle. Par-

allelisierung erzeugt jedoch verglichen mit einem seriellen Code einen gewissen Kommunika-

tionsaufwand. Die Geschwindigkeit des neuen Programmes auf einem Knoten, ist bei kleinen

Testsystemen (42 korrelierte Elektronen, 150 Basisfunktionen, 16 inaktive und 9 aktive Or-

bitale) vergleichbar zum MR-MP2-Programmcode im DIESEL. Vergleiche mit größeren

Systemen, für die das Programm ausgelegt ist, waren aufgrund der Beschränkungen im

alten DIESEL nicht möglich.

Die Infrastruktur des Programms wurde so konzipiert, daß eine möglichst große Flexi-

bilität im Hinblick auf zukünftige Erweiterungen möglich ist. Die Struktur der Klassen

des DIESEL-MP-Programmes ermöglicht ein volles MR-MP2-Verfahren, erlaubt aber auch

eine einfache Einbeziehung von Selektionsschemata, die sowohl auf individuellen oder orbital-

basierten Ansätzen aufbauen. Die vorhandene Klassenstruktur kann ebenfalls für ein MR-

CI-Verfahren verwendet werden.

Den Schwachpunkt des MR-MP2-Algorithmus im alten DIESEL-Programmpaket stellte

die Behandlung der Integrale dar. Die implementierte Integralschnittstelle des neuen
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DIESEL-MP zum TURBOMOLE-Programmpaket besitzt eine Reihe von Vorteilen. Zum

einen wird der Speicherplatz der Zwei-Elektronen-Integrale durch die Verwendung von RI-

Integralen und einer ”on-the-fly”-Generierung der vollständigen Vier-Index-Integrale deut-

lich reduziert. Weiterhin werden die RI-Integrale lediglich einmal zur Berechnung der In-

homogenität und der Kontraktion zu effektiven Ein-Elektronen-Integralen benötigt. Im

iterativen Prozess sind die RI-Integrale nicht mehr notwendig. Die Transformation der

RI- zu Vier-Index-Integralen wird demnach nur einmal durchgeführt und stellt nicht den

geschwindigkeitsbestimmenden Schritt im Verfahren dar. Die Möglichkeit verschiedene Or-

bitale (Hartree-Fock, Lokales-Hartree-Fock oder gradienten-korrigierte Dichtefunktionale)

für die Integraltransformation zu verwenden stellt einen weiteren Vorteil des Interfaces zum

TURBOMOLE Programm dar. Die Möglichkeit durch dieses Interface das DIESEL-MP-

Programm einfach in bestehende QM/MM Umgebungen wie z.B. das CHEMSHELL[204]

einzubinden, eröffnet die Perspektive der genauen Behandlung von realen System wie En-

zymen.
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[37] J. Finley, P.-Å. Malmquist, B. O. Roos, L. Serrano-Andrés, Chem. Phys. Lett. 1998,

288, 299.

[38] P. Pulay, Chem. Phys. Lett. 1983, 100, 151.

[39] S. Saebø, P. Pulay, Chem. Phys. Lett. 1985, 113, 13.

[40] P. Pulay, S. Saebø, Theor. Chim. Acta 1986, 69, 357.

[41] S. Saebø, P. Pulay, J. Chem. Phys. 1987, 86, 914.

[42] P. Y. Ayala, G. E. Scuseria, J. Chem. Phys. 1999, 110, 3660.

[43] M. S. Lee, P. E. Maslen, M. Head-Gordon, J. Chem. Phys. 2000, 112, 3592.

[44] R. A. Friesner, R. B. Murphy, M. D. Beachy, M. N. Ringnalda, W. T. Pollard, B. D.

Dunietz, Y. Cao, J. Phys. Chem. A 1999, 103, 1913.

[45] C. Hampel, H.-J. Werner, J. Chem. Phys. 1996, 104, 6286.
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Malmquist, P. Neogràdy, J. Olsen, B. O. Roos, A. J. Sadlej, M. Schtz, B. Schim-

melpfennig, L. Seijo, L. Serrano-Andr’es, P. E. M. Siegbahn, J. St̊alring, T. Thorsteins-

son, V. Veryazov, P.-O. Widmark, MOLCAS5, 2000, Lund University, Sweden.

[52] MOLPRO is a package of ab initio programs designed by H.-J. Werner and P. J.

Knowles, Version 2002.1, R. D. Amos, A. Bernhardsson, A. Berning, P. Celani,

D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer,

P. J. Knowles, T. Korona, R. A. Lindh, W. Lloyd, S. J. McNicholas, F. R. Manby,

W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz,
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