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Abstract

Objective: Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage
motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for
motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to
session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we
investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball.

Methods: Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI
spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted
from the auditory oddball were analyzed with respect to predictive power for BCI aptitude.

Results: Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between
accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3
amplitude of the auditory oddball response was not correlated with accuracy.

Conclusions: Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in
an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection.

Significance: Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results
can be generalized to the patient population.
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Introduction

Brain injuries or neurological diseases (e.g. amyotrophic lateral

sclerosis, ALS) can lead to complete motor paralysis. Depending

on the degree of impairment caused by the injury or the

progression of the disease communication can become very

difficult and even impossible. This loss of communicative abilities

can be overcome with interfaces that bypass the need for muscular

control and detect the user’s intentions directly from signals

recorded from the brain. These brain-computer interfaces (BCIs)

are currently not only used for communication but also for

restoration of motor control [1,2,3,4].

In all variations of BCIs a control signal must be recorded from

the user’s brain. Most often this signal is extracted from the

electroencephalogram (EEG). The EEG has the advantage of

reliable, economic and portable recording devices. Disadvantages

are the strong attenuation of the neural signals by the skull and

skin and long preparation times if many EEG electrodes (w32) are

applied. Despite these disadvantages, up to now for working with

severely paralyzed patients EEG, remains the most practical

method.

One commonly used control signal in the EEG is a positive

deflection designated as P300. It is elicited by unexpected stimuli

with variations in latency between 250 and 700 ms on central to

parietal locations [5]. BCIs using the P300 as control signal have

been evaluated extensively with ALS patients in several indepen-

dent studies [6,7,8,9,10,11]. Typically, the user focuses on an

element in a matrix with for example 666 symbols. In one run,

rows and columns of the matrix flash randomly. The user focuses

on the desired item (target) and a P300 is elicited whenever the

target row or column are flashing. This experimental design has
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not only been used for spelling but also for control of internet

browsers [12], painting [13], control of standard assistive devices

[11] and wheelchair control [14]. A negative side effect of using

row and column based flashing patterns is that errors may occur

by selecting a wrong letter in either the correct column or row

which may be compensated by using e.g. a checkerboard based

flashing pattern [15] or online error correction [16].

When considering the applicability of a BCI to enhance or

restore communication it is important to differentiate between

various states of impairment. Particularly, the distinction between

the locked-in state (LIS) and the complete locked-in state (CLIS) is

important when considering the application of a P300 BCI [17].

The ability of the user to control gaze, which is lost in late-stage

ALS and by definition in CLIS, is required by most common

implementations of this BCI, some approaches work around this

[18,19,20]. The limitation of visual P300 BCIs to patients with

functional gaze control is addressed by P300 BCI implementations

that use auditory or tactile instead of visual stimulation. Control of

a visual P300 BCI is possible without direct fixation of the target

but this substantially decreases accuracies [21]. Addtionally, it may

be possible that patients have uncontrollable eye drifts preventing

them from fixating any point in space. It is possible to transfer the

P300 speller to the auditory domain by using defined auditory

stimuli instead of flashing for each row and column. These

auditory stimuli can be either words or sounds [22,23,24]. Another

approach is to reduce the number of possible choices to make

selection faster [8]. Load can be reduced by approaches using very

distinct auditory stimuli instead of words [25,26]. By stimulation

from different spatial directions the number of classes and thus

communication speed can be increased [27,28]. [22] pointed out

differences between the P300 elicited by the visual and the

auditory P300 BCI. The latencies of the P300 elicited by the

auditory BCI were increased compared to the latencies elicited by

the visual P300 BCI. Peak amplitudes were identical but the

maximum peak of the auditory P300 BCI occured on posterior

instead of central electrodes.

Considering that BCIs are currently primarily intended for

patients who are diagnosed with severe diseases that not only lead

to motor impairment but also to reduced attention span it would

be advantageous to be able to quickly choose a suitable BCI and

training strategy that best fits the patients needs [3]. For this

reason reliable predictors of aptitude with a particular BCI are

necessary. Ideally, data for prediction should be collected quickly

and without the active participation of the user. This is particularly

important if the user cannot respond or communicate because of

CLIS. Such a predictor has been presented for sensorimotor

rhythm (SMR) based BCIs [29]. The amplitude of the SMR peak

while the user is resting was used as a neurophysiological predictor

which correlated highly with BCI aptitude in a sample of healthy

individuals (Pearson’s r~0:53). It is important to note that this

predictor was obtained when the participant was not performing

the motor imagery task, and thus the predictor was independent of

any mental strategy applied for later cursor control. Therefore,

and most importantly the data necessary for SMR-BCI aptitude

prediction can be obtained from non-responsive patients.

Furthermore, psychological variables such as the ability to

concentrate and visuo-motor coordination also predicted SMR

BCI aptitude [30]. Likewise, a high correlation has been shown

between BCI aptitude and the hemodynamic response in the

dorsolateral prefrontal cortex, an area known to be involved in

task monitoring [31].

Studies with users of BCIs controlled by regulation of slow

cortical potentials (SCP) demonstrated the predictive power of

accuracy in early sessions for later accuracy [32]. More

specifically, the number of sessions needed to achieve significant

cursor control correlated moderately with the number of sessions

required to achieve criterion level control (above 70%, [33]). The

implicit learning capacity also appeared to influence the ability to

use SCP BCIs [34]. Concerning P300 BCIs, it has recently been

shown that motivation may impact accuracy achieved in a

subsequent BCI session [35]. Due to a ceiling effect in BCI

accuracy (an average accuracy of 99% was achieved by N = 33

participants) the effects of motivation on online accuracy could not

be studied due to a lack of variance, but P300 amplitude was

reduced in the least as compared to the highest motivated

participants. [36] deomonstrated that heart rate variability (HRV)

recorded during a 10 minutes rest period without any task and

EEG recording moderately predicted later P300 BCI performance

in healthy subjects. HRV is a correlate of cortical inhibition and

more globally, of self-regulatory capacity.

Thus, to date no strong predictor of P300-BCI aptitude is

available. In the current study we propose to predict auditory

AND visual P300-BCI aptitude from a single auditory standard

oddball measurement. An auditory as opposed to a visual oddball

was used because it can be applied to patients without gaze

control. The type of auditory oddball used (one rare target tone,

one frequent non-target tone with different physical properties) is

by design in fact more similar to the visual P300 BCI experiment

in which the user attends a single element of the matrix which

flashes infrequently and is dark most of the time than to the

auditory P300 BCI experiment. Thus, there is also an infrequent

target and a frequent target distinguished by physical properties.

In case of the auditory P300 BCI the target and non-targets are

distinguished by attention to the semantic meaning of the target

word whereas the physical properties of targets and non-targets

are more similar. The goal of this study was to determine how

strongly the amplitude and waveform of the P300 elicited by the

auditory standard oddball would correlate with subsequent BCI

aptitude. We recorded an auditory standard oddball session from

each subject, followed by a single visual P300 BCI and auditory

P300 BCI session. Subsequently the amplitude of auditory

standard oddball response was correlated with BCI accuracy.

Methods

Participants
Forty healthy participants (21 male, 19 female, mean age

25.8 years, SD 8.46 years, range 17–58) took part in the study

which was approved by the Ethical Review Board of the Medical

Faculty, University of Tübingen. Each participant was informed

about the purpose of the study and signed informed consent prior

to the experimental session.

Experimental design
The participants were seated in a comfortable chair approxi-

mately 1 m away from a digital computer screen (43 cm diameter).

Conventional headphones were used to present the auditory

stimuli. Participants were cued about the beginning and the end of

a run (see below) by the German word ‘‘Warte . . .’’ (engl.:

‘‘Waiting . . .’’) and ‘‘Zeit abgelaufen!’’ (engl.: ‘‘Time out!’’). The

screen was blank while the auditory oddball was presented,

displayed a visual support matrix (see Figure 1) during the auditory

or flashing rows and columns during the visual P300 BCI

experiment. Figure 2 depicts an overview of all parts of the

experiment.

Prediction P300 Brain-Computer Interface Aptitude

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e53513



Auditory oddball
Auditory stimuli were standard tones (duration 160 ms;

overlapping 517 Hz, 646 Hz and 775 Hz tones) and deviants

(the oddball; duration 160 ms; a 517 Hz tone) with a ratio of 4:1.

The tones were two distinct harmonic oscillations each consisting

of three frequencies instead of pure sine tones. Such complex tones

have been shown to elicit a larger P300 [37]. Stimuli were

presented to the user in sequences of five tones, namely four

standards and a deviant. Each run comprised 20 sequences,

wherein the order of stimuli was randomized. Each run was

repeated three times resulting in a total of 60 deviant and 240

standard tones. A group of three runs will be referred to as a

session. Participants were instructed to count the deviants and

after each run were asked for the number of deviants. The inter-

stimulus interval was set to 800 ms. Thus, one run lasted 96 s. In

between runs participants were asked if they were ready to

continue, and if yes the next run commenced. Altogether the

session lasted 288 s (4 min 48 s). The data (see below) of this

experiment was used to predict the aptitude of the participants in

the following two experiments.

Visual P300 BCI
During the visual P300 BCI experiment participants were

presented with a 565 matrix containing the letters of the latin

alphabet excluding the letter Z to make it compatible to the

auditory P300 BCI experiment [22]. One sequence comprised 10

flashes (one for each row and column) of 80 ms duration followed

by a 160 ms inter-flash interval. To select a letter 15 sequences

were required followed by 2.4 s breaks in which the signal was

classified and the selected letter was presented to the participant.

In total, a single letter selection required 38.4 s. This relativly long

letter selection time is caused by the use of 15 sequences per

selection which were needed to make the visual P300 BCI

comparable to the auditory paradigm. With differing sequence

numbers some of the analysis methods used would not have been

possible. Offline performance was recalculated for each partici-

pant to obtain a measure of individualized performance (see

Section ‘‘Offline performance measure’’). One run comprised

selection of five letters and participants performed 6 runs (30

letters). In the first two runs participants spelled the words BRAIN

and POWER and no feedback of results was provided; this data

was used to train the classifier and participants were grouped into

high aptitude and low aptitude users according to the accuracy

achieved in runs 3 to 6 with feedback (alternating the words

BRAIN and POWER). Accuracy was measured as percentage of

correctly selected letters.

Auditory P300 BCI
The auditory matrix was identical to the visual P300 BCI

described above (see Figure 1). Instead of flashes, auditory stimuli

were presented to the participant. Each row and column was

coded by the number presented at the top of the columns and left

to the rows (see Figure 1). The auditory stimuli were the

corresponding pre-recorded, spoken number. The 565 matrix

with corresponding numbers was displayed on the screen

throughout auditory stimulus presentation, but no flashing of

rows and columns occurred. The stimulus presentation time was

450 ms as in [22] but the inter stimulus interval (ISI) was increased

Figure 1. Visual support matrix displayed on a computer
screen to the participant during the auditory P300-BCI
experiment [22]. The matrix was identical to the visual P300 BCI
matrix. The speakers displayed at the top left corner of the matrix
indicate the auditory presentation of numbers and were not displayed
during the actual experiment.
doi:10.1371/journal.pone.0053513.g001

Figure 2. Every participant was presented with an auditory oddball, and performed a visual and auditory P300 BCI session. For both
visual and auditory P300 BCI online feedback was provided. Performance was reevaluated offline by calculating the number of repetitions per
stimulus the user needed to reach 70% accuracy. This performance measure was correlated with features extracted from the auditory oddball session
to assess whether it can be used to predict BCI aptitude.
doi:10.1371/journal.pone.0053513.g002

Prediction P300 Brain-Computer Interface Aptitude
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from 175 to 550 ms because preliminary results indicated this

would increase accuracy of spelling and higher ISIs would be

needed by patients [38,39,40]. To reduce cognitive load, rows and

columns were sequentially selected: within a sequence first the

rows and then the columns were presented to the participant. As in

the visual P300 BCI experiment each letter selection consisted of

15 sequences with intervals of 2.4 s between each selection. Thus,

time needed for selection of one letter were 150 s. Again the words

BRAIN and POWER were presented three times each with the

first ten letters being used for classifier training without presenting

feedback to the participant. Subsequently, selected letters (20) were

presented to the subject. Again, accuracy was defined as the

percentage of correctly selected letters.

It is not possible to operate the auditory P300 BCI used in this

study (which is based on spoken numbers as stimuli) with speeds

identical to those of the visual P300 BCI. It would also not have

been realistic to operate the visual P300 BCI with ISIs identical to

those of the auditory P300 BCI. Thus, using an identical number

of sequences appeared to be the best way to allow for a certain

measure of comparability. The high number of sequences also

ensured that the point at which 70% accuracy were achieved

could be calculated for most participants.

Data acquisition
All aspects of data collection were controlled by the BCI2000

software system [41]. The EEG was recorded with Ag/AgCl

elctrodes in a 128-channel cap (Easycap GmbH) of which 63 EEG

and 4 electrooculography (EOG) channels were used. The

electrodes were located at the following positions with the channel

number in parentheses: FP1(1), Fpz(2), FP2(3), F7(4), F3(5), Fz(6),

F4(7), F8(8), FT9(9), FT7(10), FC5(11), FC3(12), FC1(13), FCz(14),

FC2(15), FC4(16), FC6(17), FT8(18), FT10(19), T7(20), C5(21),

C3(22), C1(23), Cz(24), C2(25), C4(26), C6(27), T8(28), TP9(29),

TP7(30), CP5(31), CP3(32), CP1(33), CPz(34), CP2(35), CP4(36),

CP6(37), TP8(38), TP10(39), P9(40), P7(41), P5(42), P3(43), P1(44),

Pz(45), P2(46), P4(47), P6(48), P8(49), P10(50), PO7(51), P05(52),

P01(53), POz(54), P06(55), P02(56), PO8(57), O1(58), Oz(59),

O2(60), O9(61), Iz(62), O10(63). The locations of the electrodes

were based on the modified 10–20 system of the American

Electroencephalographic Society [42].

Each channel was referenced to the tip of the nose and

grounded to a position between Fz and Fpz. Eye movement and

blinks were recorded using two vertical EOG channels with

electrodes placed above and below the right eye (superior and

inferior orbital fossa), and two horizontal EOG channels with

electrodes placed at the outer canthi of the eyes. Impedances were

kept below 5 kV. The EEG was recorded using a BrainAmp DC

Amplifier (Brainproducts GmbH), notch-filtered at 50 Hz and

sampled at 500 Hz. The resolution was set to 0:1mV=bit. With this

setting the amplifier samples with a rate of 5 kHz with an internal

low-pass at 1 kHz; such oversampling prevents aliasing. The

decimation to the recording frequency (in this case 500 Hz) is

performed within the Brainvision Recorder software provided by

the amplifier manufacturer. No additional filtering was applied to

the online recording. Data processing, storage and online display

were performed on a conventional PC (Intel Core 2 Quad Q6600

2.40 Ghz, 4 GB RAM, Microsoft Windows XP Professional SP2

32-bit).

Offline processing
The data acquired during presentation of the auditory oddball

were high-pass filtered at 0.5 Hz and then low-pass filtered at

20 Hz using two-way least-squares finite impulse response (FIR)

filtering with a function from the EEGLAB toolbox [43].

The blind source separation (BSS) algorithm AMUSE was used

to isolate and remove ocular artifacts [44,45]. It has been shown to

be superior to higher order statistics BSS algorithms in both speed

and separation performance [46]. For offline analysis the nose

reference was replaced with a common average reference (CAR).

After segmenting the data into individual epochs (0–800 ms), they

were baseline corrected by subtracting from every epoch the mean

amplitudes in the 2100 to 0 ms pre-stimulus interval.

Classification
We used stepwise linear discriminant analysis (SWLDA) for

online and offline classification. This method, an extension of

Fisher’s linear discriminant analysis, is an established classification

method for visual and auditory P300 BCIs [6,22,47,48,49]. The

spatiotemporal features (the channel by sample matrix) of each

trial were smoothed with a moving average filter, with a width of

25 samples, and then decimated by a factor of 25 prior to feature

selection and classification. The algorithm starts with adding the

most significant feature to the model (at least pv0:1, otherwise the

model generation fails). It then iterates across the remaining

features in order of their significance. Each time a feature proves

significant it is added to the model. Addtionally, a backward

stepwise regression is performed to remove features above the

predefined significance threshold (pw0:15). This continues until a

maximum of 60 iterations have been performed or no more

features meet the significance threshold for inclusion (pv0:1).

For online classification of P300 signals the model was applied

to the trials of each row and column separately. The row and the

column which yielded the maximum score after model application

were selected by the classifier. This meant that for classification of

the P300 responses in the BCI no bias term was required.

Offline performance measure
Due to a ceiling effect of online visual P300 BCI performance

(100% accuracy for 28 of 40 participants) the data was reclassified

offline using all six runs of each participant in a leave-one-run-out

cross validation loop. To prevent the reoccurance of ceiling effects

not the overall accuracy after 15 stimulus repetitions was used but

the number of sequences needed to achieve 70% accuracy (the

criterion level of control). The number of repetitions was linearly

interpolated to non-integer numbers.

Information transfer rate
Information transfer rate in BCIs is commonly assessed using

bits/min as defined by [50]. In P300 BCIs on the basis of flashing

matrices this formula is not valid due to unevenly distributed error

probabilities [51]. The probability of selecting a neighbor row or

column is higher than that for selecting more distant rows and

columns. Therefore, it has been suggested to use mutual

information to calculate the information transfer rate [52,53].

All error probabilities were calculated based on the selections of

the 40 participants of this study.

Correlations
For comparisons the group was split at the median of sequences

needed to achieve 70% accuracy and rank correlations were

performed according to [54].

Results

BCI performance
Mean accuracy was 94.5% (SD 14.7, range 35–100, N = 40) for

the visual and 62.9% (SD 38, range 0–100, N = 38) for the

auditory P300-BCI. Two participants had to be excluded from the

Prediction P300 Brain-Computer Interface Aptitude
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auditory P300 BCI study due to technical problems during the

online recording. One of these two participants could be

reclassified offline. Therefore the aptitude prediction for the

auditory P300 BCI is based on N = 39 participants. T-test for

dependent samples proved significant (t76~30:67, pv0.001)

indicating that participants performed worse with auditory

presentation of stimuli.

An ITR of 4.7 bits/min was achieved for the visual P300-BCI

with 15 sequences and of 18.4 bits/min for three sequences offline.

With 0.8 bits/min the performance of the auditory P300-BCI with

15 sequences was lower. The spatial distribution of errors is

visualized in Figure 3.

For each experiment we used median split to form groups of

high and low aptitude users based on the performance calculated

offline, i.e. the number of stimulus repetitions needed to reach

70% accuracy. This measure was calculated for each participant

and experiment (visual or auditory P300 BCI) separately. Auditory

and visual P300 online and offline BCI performance correlated

moderately (online r~0:56, pv0:001; offline r~0:45, pv0:01).

On average 3.41 repetitions (10 seconds, 6 selections/min) were

needed to achieve 70% with the visual P300 BCI whereas 9.01

(92.5 seconds, 0.64 selections/min) were needed with the auditory

P300 BCI. Low aptitude visual P300 BCI users needed 5.10

repetitions (14.6 seconds, 4.1 selections/min) and auditory 12.80

(130.4 seconds, 0.46 selections/min). High aptitude visual P300

BCI users needed 1.73 sequences (6.5 seconds, 9.1 selections/min)

and auditory 4.11 (43.5 seconds, 1.4 selections/min). The

distribution of performance across particpants is shown in

Figure 4. The mean offline accuracy achieved as a function of

stimulus repetitions is shown in Figure 5.

Besides determining the dependency of accuracy on the number

of stimulus repetitions we determined which time segments

provide the best classification accuracy (see Figure 6). The data

was segmented into windows of 50 ms length that were classified

individually. With the visual P300 BCI high aptitude user achieved

best performance (94.83% accuracy) around 300 ms. Low

aptitude users achieved the maximum performance (67.53%

accuracy) in the window around 350 ms. With the auditory P300

BCI performance peaked around 550 ms for both groups. High

aptitude users had an accuracy of 86.55% and low aptitude users

of 33.48%. The visual P300 BCI accuracy dropped to chance level

at around 950 ms whereas the auditory P300 BCI data could be

classified well above chance until about 1700 ms.

Event-related potentials
Figure 7 shows a comparison of the ERPs elicited by the

auditory oddball (A), the visual P300 BCI (B) and the auditory

P300 BCI (C). The top row shows the color-coded differences in

amplitude between target and non-target responses. The auditory

oddball elicited the strongest responses with differences between

targets and non-targets beginning at 100 ms. In response to the

auditory oddball a clear N1-P2-complex can be seen which is not

present in the auditory P300 BCI. The latency of the P300 event-

related potential was much higher and the amplitude lower in the

auditory P300 BCI. The mean P3 amplitude and latency (4:38mV
at 363 ms) did not differ between high (4:34mV at 385 ms) and low

aptitude users (4:44mV at 346 ms; amplitudes t37~{0:11,

p~0:91; and latency: t37~1:29, p~0:21).

In the visual P300 BCI the mean amplitude but not latency

(2:14mV at 309 ms) of high (2:68mV at 297 ms) and of low

(1:60mV at 319 ms) aptitude users differed significantly (amplitude:

t38~4:79, pv0:01; latency: t38~{1:32, p~0:19).

The latencies of the ERPs elicited by the auditory P300 BCI

task have the lowest amplitudes and longest latencies of all

investigated tasks (1:46mV at 508 ms). Again the amplitudes of the

high aptitude users (1:94mV ) differ significantly from those of the

low aptitude users (1:08mV ; t37~2:41, pv0:05). Again, latencies

do not differ between high (516 ms) and low aptitude users

(502 ms; t37~0:33, p~74).

Both the auditory oddball and the auditory P300 BCI elicited

an anterior-negative, posterior-positive distribution of amplitude

differences whereas the visual P300 BCI elicited an anterior-

positive, posterior-negative distribution.

Correlation of auditory oddball response with BCI
performance

The main goal of this experiment was to determine the

predictive power of the auditory oddball on visual and auditory

P300 BCI performance. Figures 8 and 9 depict the correlation

Figure 3. Probability of selecting the target matrix element (center) or a matrix element around the target is color coded on a
logarithmic scale. The x-axis shows how many columns to the left (negative) or to the right (positive) an error occurs. Correspondingly, the y-axis
shows the probabilities for errors for rows above or below the target. Both in the visual P300 BCI (left) and the auditory P300 BCI (right) errors occur
with a much higher probability on the same row or column as the target. This unequal distribution of the error probability was the motivation for
applying mutual information to measure bitrate.
doi:10.1371/journal.pone.0053513.g003

Prediction P300 Brain-Computer Interface Aptitude
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between the auditory oddball ERP amplitude with auditory

(Figure 8) and visual (Figure 9) P300 BCI performance. As noted

in the captions of the figures, lower values in the performance

metric indicate better performance. Therefore, a blue coloring

indicates that higher auditory oddball amplitudes imply better

performance. For both the auditory and the visual P300 BCI an

increased anterior-negative, posterior-positive amplitude of audi-

tory oddball responses between 400 and 600 ms coincided with

high performance (Figure 8 (A) and 9 (A)). In case of the visual

P300 BCI there was also a high correlation between oddball

amplitudes and performance in the 200 and 250 ms time window

(Figure 9 (A)). For both BCI paradigms we could not observe the

strongest correlation in the time window of 250 and 400 ms in

which the P300 occurred. The elements of the matrix with the

strongest positive and negative correlation in Figures 8 (A) and 9

(A) are visualized in Figures 8 (B) and 9 (B). In the auditory BCI

both the highest positive (r~0:48, pv0:01) and highest negative

correlation (r~{0:61, pv0:01) occured at 532 ms on frontal

(FC5) and posterior (PO2) electrodes, respectively. In the visual

BCI the strongest positive correlation occurred in the 200 to

250 ms time window at electrode C2 at 220 ms (r~0:68,

pv0:01). As with the auditory BCI the strongest negative

correlation was found on a posterior electrode (PO7) at 538 ms

(r~{0:57,p~0:01). The auditory oddball amplitude exhibited

correlations with performance of both paradigms resembling the

morphology of an anterior-negative, posterior-positive wave

between 400–600 ms which can be seen in the topographies of

Figures 8 (C) and 9 (C). Additionally, 9 (C) depicts the strong

positive correlation at central electrodes at 220 ms. Based on these

observations, i.e. that an early potential in the N2 time range and a

late potential between 400 and 600 ms correlated with BCI

performance whereas the P300 elicited by the auditory oddball did

not, we performed an individual peak amplitude and latency

detection for each participant and correlated these values with

performance (see Table 1). For each participant the latency of the

P300 was determined first (maximum between 250 and 700 ms at

Cz), then the N200 was defined as the minimal amplitude before

Figure 4. Performance distributions for auditory P300 BCI (left) and visual P300 BCI (right). The median is indicated by a vertical
black line.
doi:10.1371/journal.pone.0053513.g004

Figure 5. The letter selection accuracy is plotted as a function
of the number of stimulus repetitions, i.e. flashes or spoken
row/column numbers. Data from all 63 EEG channels and a time
window of 800 ms was available for the classifier. It can be seen that in
the auditory modality only high aptitude users achieve an error rate
below 20% comparable to the visual modality for all users. Dashed lines:
visual P300 BCI; Continuous lines: auditory P300 BCI.
doi:10.1371/journal.pone.0053513.g005

Figure 6. The letter selection accuracy is plotted as a function
of time. The data was split into non-overlapping 50 ms time bins that
were used to train and test the classifier. Data from all 63 EEG channels
was available for the classifier. For the visual P300 BCI the highest
accuracy occurs in the expected P300 time window. In the auditory BCI
neither the high nor the low aptitude users achieve an accuracy as high
as in the visual P300 BCI. Dashed lines: visual P300 BCI; continuous lines:
auditory P300 BCI.
doi:10.1371/journal.pone.0053513.g006
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the P300 (also at Cz) and finally the late potential was defined as

the maximum amplitude after the P300 (at POz). Average

amplitudes of all three ERP components can be found in

Table 1. The amplitude of the N2 component correlated

significantly with auditory and visual P300 BCI performance,

the amplitude of the P300 correlated with neither and the

amplitude of the late positive component on POz correlated

negatively only with visual P300 BCI performance (see Table 1,

left half). Except the negative correlation between latency of the

P300 component and auditory P300 BCI performance (p = 0.04)

none of the correlations between latency and performance were

significant (see Table 1, right half).

Discussion

We presented P300 BCI performance data from healthy

participants using a visual and an auditory P300 BCI. A standard

oddball measurement lasting less than five minutes was used to

predict the performance of the participants in the BCI application.

The largest differences between high and low aptitude P300 BCI

users in the response to the standard oddball were the amplitude of

the N2 response on Cz and a late postive potential at POz.

Correlation between N2 and performance was r~0:37 (pv0:05)

for the auditory P300 BCI and r~0:47 (pv0:01) for the visual

P300 BCI. Correlation between the late potiential and perfor-

mance was only significant for the visual P300 BCI (r~{0:46;

pv0:01).

BCI Performance
Visual P300 BCI online accuracy of the 40 participants was on

average 94.5%. This level of accuracy is what can be expected

with healthy participants when using the standard visual P300 BCI

and is therefore comparable to that achieved in other studies

[15,22,35,55]. Comparisons between experimental designs are

difficult due to different time intervals, number of sequences and

channel sets. In any case, the ceiling effect is a common

phenomenon. It might therefore be recommendable to use three

repetitions for visual P300 BCI letter selections in studies that

analyze influences on or predictability of performance as we found

this value to lead to an average accuracy of 70% in our sample and

normal distribution of correct response rate. This accuracy is still

sufficiently high for comprehensible spelling while effectively

removing the ceiling effect.

In contrast, with 62.9%, the mean accuracy with the auditory

P300 BCI was considerably lower. Based on previous studies

which indicated that a longer ISI would increase accuracy we used

an ISI of 550 ms instead of 175 ms as was used in initial study with

the auditory P300 BCI designed by [22]. However, online

accuracy levels were comparable to the 65% achieved by [22]

and thus, were not improved by the longer ISI. Due to the

Figure 7. Responses to auditory oddball (A), visual P300 BCI (B) and auditory P300 BCI (C) are shown from left to right. Top row:
average amplitude of the full spatio-temporal feature matrix of the target non-target difference for each experiment. Middle row: time course at Cz
(auditory oddball and visual P300 BCI) and Pz (auditory P300 BCI) of the averaged ERP for targets (continuous lines) and non-targets (dashed lines).
Bottom row: topographic distribution of the target non-target difference at 200, 300 and 400 ms. For the auditory oddball, subjects were split in high
and low aptitude users at the median of the mean performance in the auditory and visual P300 BCI.
doi:10.1371/journal.pone.0053513.g007
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Figure 8. Signed r2 values between auditory oddball amplitudes of all time points and channels with auditory P300 BCI
performance (defined as the number of sequences needed to reach 70% accuracy) are shown in red for positive correlations and in
blue for negative correlations (A). Two elements from the matrix were selected for visualization using scatter plots (B) showing a correlation of

r~0:48(pv0:01) on electrode FC5 and a correlation of r~{0:61(pv0:01) on electrode PO2. Topographic distributions of the signed r2 values are
shown at the bottom (C). Note that due to the use of ‘‘number of sequences needed to reach 70% accuracy’’ as performance measure positive
correlations indicate a decrease in performance with increasing amplitude, whereas negative correlations indicate an increase of performance with
decreasing amplitude.
doi:10.1371/journal.pone.0053513.g008

Figure 9. Signed r2 values between auditory oddball amplitudes of all time points and channels with visual P300 BCI
performance (defined as the number of sequences needed to reach 70% accuracy) are shown in red for positive correlations and in
blue for negative correlations (A). Two elements from the matrix were selected for visualization using scatter plots (B) showing a correlation
between performance and amplitude of r~0:68(pv0:01) on electrode C2 and of r~{0:57(pv0:01) on electrode PO7. Topographic distributions of

the signed r2 values are shown at the bottom (C). Note that due to the use of ‘‘number of sequences needed to reach 70% accuracy’’ as performance
measure positive correlations indicate a decrease in performance with increasing amplitude, whereas negative correlations indicate an increase of
performance with decreasing amplitude.
doi:10.1371/journal.pone.0053513.g009
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decreased selection speed, information transfer rates were much

lower reaching only 0.8 bits/min (compared to 1.54 bits/min in

[22], albeit this was calculated using the formula by [50]).

Nonetheless, our data indicate that increases in information

transfer rate may easily be achieved. For instance, accuracies of

60% are already achieved with nine sequences in the auditory

P300 BCI. Using only nine sequences the information transfer rate

would increase to 1.2 bits/min. Alternatively the ISI could be

decreased to the values used by [22] which would also increase the

information transfer rate to 1.2 bits/min. Compared to the visual

P300 BCI the development of the auditory P300 BCI is in a fairly

early stage. At the time the data of this study was collected (2008)

no other functioning auditory P300 speller system existed. Online

ERP based auditory BCIs with a reduced number of selections

[8,25] were available but we preferred a system comparable to the

visual P300 BCI. Currently a BCI system using spatially

distributed auditory stimuli for target selection appears to be the

most promising path of future development [27].

BCI ERPs
As in the study by [22] we found higher latencies in response to

the target stimuli of the auditory P300 BCI paradigm than of the

visual P300 BCI. This is an effect that was also observed in non-

BCI related ERP studies [56]. As noted by [22] this may be due to

a general increase in the synaptic delays in the auditory cortex as

compared to the visual [57]. On the other hand, it has been shown

that general P300 amplitude and latency depend stronger on other

factors besides stimulus modality, such as stimulus discriminability,

intensity and probability [58,59,60,61]. This is in accordance with

auditory P300 BCI studies using stimuli other than spoken words

which can be discriminated easier and faster. In such studies

auditory and visual P300 latencies have been found to be identical

[62]. Thus, we assume the differences in latency were caused by

differences in stimulus discriminability rather than modality.

Correlation between auditory oddball ERPs and BCI
performance

Figures 8 and 9 provide an overview which ERP components

correlated with BCI performance. In both paradigms a late

component between 400 to 600 ms correlated with performance.

This spatiotemporal distribution fits the characteristics of an

anterior-negative, posterior-positive slow wave [63]. In the visual

P300 BCI a strong positive correlation with performance was

found on frontal electrodes around 200 ms. The spatiotemporal

characteristics of this component indicate this to be the N2 ERP

component [64]. Finally, it is quite surprising that there were no

strong correlations in the time range of 300–400 ms, in which the

P300 ERP component would be expected to correlate with

performance.

When correlating the auditory standard oddball data with the

performance achieved with either the auditory or the visual P300

BCI the strongest differences between low and high aptitude users

were found in a late ERP component that was more negative at

frontal and more positive at occipital and parietal channels for

high as compared to low aptitude users (see Figures 8 and 9). For

the visual P300 BCI this difference was visible on the individual

level. This ERP component constitutes a late positive potential or

anterior-negative, posterior-positive slow wave [63]. An enhance-

ment of anterior-negative, posterior-positive slow wave has been

found in ERPs following tones that require a response (e.g. button

press) compared to ERPs following tones that do not require a

response, rendering them indicative of a higher state of

attentiveness [65]. Slow waves following a warning signal have

also been attributed to be a component of the orienting response

[66]. Similar in morphology and distribution to the orienting

response is the ‘‘reorienting negativity’’ which in contrast has been

observed to be specific to deviant tones and may therefore be

directly applicable to our results [67]. This orienting response

occurred in a time segment of 400–600 ms after stimulus

presentation and was frontocentrally distributed. Therefore the

late ERP component that we found to discriminate high from low

aptitude users may be an indication of successful allocation of

attention to the necessary switches between deviant and standard

tones.

Correlations between N2 amplitude and performance were also

observed. The N2 is not merely a sensory component but is also

involved in cognitive control processes such as response inhibition,

response conflict and error monitoring [64]. The N2 can also be

subdivided into N2a, N2b and as was proposed by [68] and [69]

into N2c components. In contrast to the N2a, the N2b and N2c

components require attention to the stimulus and are accompa-

nied by the elicitation of a P3 component, thus indicating that the

observed N2 component in this work belongs to the N2b or N2c

category. According to [64] the N2b tends to be larger for non-

targets whereas the N2c tends to be larger for targets. As can be

seen in Figure 7 the N2 elicited by the target stimuli (continuous

line) is larger, thus supporting the assumption that the observed

component may be categorized as an N2c. [64] also state that

particularly the frontocentral N2 in response to rare auditory

targets is usually a mixture of MMN, N2b and N2c. Indicative of

at least a contribution by the N2b to the observed N2 component

is its association with the orienting response which was discussed

[70].

Quite unexpectedly, the P300 did not correlate with perfor-

mance. This may in part be due to the fact that our sample

consisted of healthy participants. Only two out of forty were

unable to control the BCI. Thus in this sample a binary predictor

(predicting whether the user is completely unable to control the

BCI or has the potential for at least minimal control of the BCI) of

P300 BCI performance cannot be evaluated. The P300 ERP

component may very well be such a predictor. Possibly the P300

itself may be a better predictor of binary BCI performance than

N2 or late potentials in a sample that includes patients that are

completely unable to control a P300 BCI. Using the P300 ERP

Table 1. Amplitudes, latencies and correlations thereof with BCI performance shown for N200 (minimal amplitude before latency
of P300 on Cz), P300 (maximum between 250 and 700 ms on Cz) and late ERP component (maximum after P300 latency on POz).

Amplitude (mV) R auditory R visual Latency (ms) R auditory R visual

N200 (Cz) 23.25 (SD 2.25) 0.37 (p = 0.02) 0.47 (p,0.01) 229.05 (SD 42.57) 20.22 (p = 0.18) 0.04 (p = 0.81)

P300 (Cz) 4.99 (SD 2.66) 0.04 (p = 0.81) 20.05 (p = 0.75) 378.00 (SD 89.00) 20.32 (p,0.05) 0.07 (p = 0.65)

Late ERP (POz) 3.61 (SD 2.10) 20.26 (p = 0.12) 20.46 (p,0.01) 548.65 (SD 168.55) 0.07 (p = 0.66) 0.19 (p = 0.25)

doi:10.1371/journal.pone.0053513.t001
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component for prediction of performance in a sample of BCI users

with at least minimal potential to control a BCI may be further

confounded by the knowledge that not only the P300 contributes

to BCI performance. Usually time segments from 0 to 800 ms after

stimulus presentation and electrodes on several scalp locations are

used to record the EEG and extract features. Some publications

have addressed the fact that the so-called P300 BCI is more of a

general ERP BCI (see e.g. [71]). In fact the authors report that

about 30% of all BCI users control the P300 BCI using a negative

component around 200 ms. In our sample the N2, probably as a

general indicator of attention, was a better predictor than the

presence or absence of a P300. This is very plausible due to the

fact the the sample consisted of healthy individuals with no known

neurological disorders. We will show in a future study with ALS

patients to what extend this finding is applicable to a patient

population.

Practical application of aptitude prediction
Two approaches to a future screening protocol to determine

P300 aptitude are possible. On an individual level the findings

from this paper, i.e. which ERP components predict aptitude, can

be employed. Once larger datasets of users with known aptitude

become available we would suggest using a data-driven approach

to train classifiers that can predict the performance of future users

based on the existing data. This is the approach we intend to

implement for BCI end-users. The advantage is that a subjective

assessment of the data to predict aptitude will not be required.

One of the disadvantages is that the data needs to be recorded in

an identical manner for each user and that the aforementioned

large database needs to be collected.

The most probable procedure of employing aptitude prediction

methods (a method to describe motor imagery BCI aptitude was

described in [29] and other predictors of P300 BCI performance

such as [36]) would be to assess the patients aptitude for all

available BCI paradigms, say motor imagery and P300 BCIs, and

then proceed to train and acquaint the patient to the paradigm for

which he or she displays the highest level of aptitude. For example

the aptitude prediction would be the basis for an informed decision

about which BCI paradigm to apply. This would reduce

frustration and strain on the patient and his surroundings.

Conclusions

Correlations between individual values of the channel by time

data matrix of the auditory oddball response and BCI perfor-

mance were as high as r~0:68. Correlations between individual

components, e.g the N2 on Cz, were as high as r~0:47. This

proves the strong relationship between auditory oddball ERPs and

subsequent BCI performance. Lack of correlation between the P3

component of the auditory oddball response and BCI performance

supports the observation that P300 BCIs are not solely controlled

by the P3 component but by a variety of ERP components elicited

by the visual or auditory stimuli. Before practical use, it has to be

evaluated whether the results transfer to patients. When attempt-

ing to communicate with non-responsive patients a fast screening

method is of particular interest to quickly determine the most

promising BCI.
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