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2. Prüfer:

3. Prüfer:
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Abstract

The superconducting properties of complex materials like the recently dis-
covered iron-pnictides or strontium-ruthenate are often governed by multi-
orbital effects. In order to unravel the superconductivity of those materials,
we develop a multi-orbital implementation of the functional renormalization
group and study the pairing states of several characteristic material systems.

Starting with the iron-pnictides, we find competing spin-fluctuation chan-
nels that become attractive if the superconducting gap changes sign between
the nested portions of the Fermi surface. Depending on material details like
doping or pnictogen height, these spin fluctuations then give rise to s±-wave
pairing with or without gap nodes and, in some cases, also change the sym-
metry to d-wave. Near the transition from nodal s±-wave to d-wave pairing,
we predict the occurrence of a time-reversal symmetry-broken (s+id)-pairing
state which avoids gap nodes and is therefore energetically favored.

We further study the electronic instabilities of doped graphene, another
fascinating material which has recently become accessible and which can
effectively be regarded as multi-orbital system. Here, the hexagonal lattice
structure assures the degeneracy of two d-wave pairing channels, and the
system then realizes a chiral (d + id)-pairing state in a wide doping range
around van-Hove filling. In addition, we also find spin-triplet pairing as well
as an exotic spin-density wave phase which both become leading if the long-
ranged hopping or interaction parameters are slightly modified, for example,
by choosing different substrate materials.

Finally, we consider the superconducting state of strontium-ruthenate, a
possible candidate for chiral spin-triplet pairing with fascinating properties
like the existence of half-quantum vortices obeying non-Abelian statistics.
Using a microscopic three orbital description including spin-orbit coupling,
we demonstrate that ferromagnetic fluctuations are still sufficient to induce
this ẑ(px ± ipy)-pairing state. The resulting superconducting gap reveals
strong anisotropies on the dxy-dominated Fermi-surface pocket and nearly
vanishes on the other remaining two pockets.





Kurzfassung

Die supraleitenden Eigenschaften von komplexen Materialsystemen, wie den
erst kürzlich entdeckten Eisen-Pniktiden oder den Strontium-Ruthenaten,
sind oftmals durch das Zusammenspiel vieler elektronischer Orbitale be-
stimmt. Um die Supraleitung in derartigen Systemen besser zu verste-
hen, entwickeln wir in dieser Arbeit eine Multi-Orbital-Implementierung der
funktionalen Renormierungsgruppe und untersuchen die Elektronenpaarung
in verschiedenen charakteristischen Materialverbindungen.

In den Eisen-Pniktiden finden wir hierbei mehrere Spinfluktuationskanäle,
die eine Elektronenpaarung hervorrufen, sofern die Paarwellenfunktion einen
Vorzeichenwechsel zwischen den verschiedenen genesteten Bereichen der Fer-
mifläche aufweist. Abhängig von den spezifischen Materialeigenschaften, wie
der Dotierung oder der Position des Pniktogenatoms, führen diese Spinfluk-
tuationen dann zu s±-wellenartiger Paarung mit durchgängiger Energielücke
oder mit Knoten auf der Fermifläche. In manchen Fällen wird zudem auch
d-wellenartige Paarung induziert, die in der Nähe des Übergangs zur s±-
Symmetrie einen gemischten (s + id)-Zustand mit gebrochener Zeitinver-
sionssymmetrie aufweist. Diese neuartige Phase zeigt faszinierende Eigen-
schaften, wie zum Beispiel das spontane Entstehen von Supraströmen am
Probenrand und um nichtmagnetische Störstellen. Auf Grund der durch-
gängigen Energielücke ist dieser (s+ id)-Zustand energetisch begünstigt.

Im Folgenden untersuchen wir zudem auch die elektronischen Instabilitä-
ten eines weiteren außergewöhnlichen Materials – dotiertes Graphen. Diese
rein zweidimensionale Kohlenstoffverbindung ist schon seit mehreren Jahren
im Fokus der Festkörperforschung und wurde mittlerweile auch durch neuar-
tige experimentelle Verfahren dotiert, ohne die zugrundeliegende hexag-
onale Gittersturktur merklich zu stören. Eine theoretische Beschreibung
dieses Systems erfordert die Berücksichtigung zweier nicht-equivalenter Git-
terplätze, was wiederum effektiv als Zwei-Orbital-System aufgefasst wer-
den kann. Durch die besondere Symmetrie der hexagonalen Gitterstruktur
sind beide d-wellenartigen Paarungskanäle entartet und ähnlich der (s+ id)-
Paarung in den Pniktiden finden wir hier eine chirale (d + id)-Paarung in
einem weiten Dotierungsbereich um van-Hove Füllung. Des Weiteren iden-
tifizieren wir Spin-Triplet-Paarung und eine exotische Form der Spindichte-
welle, welche beide durch leichte Veränderung der langreichweitigen Hüpfam-
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plituden und Wechselwirkungensparameter realisiert werden können.
Als drittes Beispiel betrachten wir die Supraleitung in dem Strontium-

Ruthenat Sr2RuO4. Die Besonderheit dieser Materialverbindung liegt in der
möglichen Realisierung einer chiralen Spin-Triplet Paarung, die wiederum
faszinierende Eigenschaften wie die Existenz von halbganzzahligen Fluss-
vortizes mit nicht-Abelscher Vertauschungsstatistik aufweisen würde. Mit-
tels eines mikroskopischen Drei-Orbital-Modells und der Berücksichtigung
von Spin-Bahn-Kopplung finden wir hierbei, dass moderate ferromagnetis-
che Spinfluktuationen immer noch ausreichen, um diesen speziellen Paar-
ungszustand anzutreiben. Die berechnete Energielücke zeigt im Weiteren
sehr starke Anisotropien auf dem dxy-Orbital-dominierten Bereich der Fer-
mifläche und verschwindet nahezu vollständig auf den anderen beiden Fer-
miflächen.
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Chapter 1

Introduction

The phenomenon of superconductivity is still one of the most fascinating
manifestations of quantum physics on a macroscopic scale. Upon cooling be-
low a characteristic transition temperature Tc, superconductivity occurs in
certain materials and implies the complete vanishing of electrical resistance
as well as an expulsion of internal magnetic fields. The potential applications
of this phenomenon are truly amazing, ranging from electric power gener-
ation and distribution to levitated transport systems and superconducting
electronics. Unfortunately, a widespread and commercial usage of these tech-
nologies is obstructed by the extremely low transition temperatures. For this
reason, the discovery of the cuprate materials [1] in the late eighties with
an unprecedented Tc above the nitrogen boiling point caused great interest
and rekindled the dream of room-temperature superconductivity. However,
after more than two decades of intense research, the highest available Tc
is still far from room temperature, and a comprehensive understanding of
the cuprates has not yet been accomplished. Another breakthrough then
followed in 2008 when high-Tc superconductivity was found in the material
class of iron-pnictides [2]. Although the transition temperatures there were
not as high as in the cuprates, the huge variety of compounds as well as
the complex interplay of magnetism, crystal structure and superconductiv-
ity triggered an enormous interest within the condensed matter community.
In particular, the diversity of different compounds opened new possibilities
to study high-Tc superconductivity and also promised new compounds with
tailored properties for technical applications.

Today, our basic understanding of superconductivity still relies on the
celebrated work of Bardeen, Cooper and Schrieffer (BCS) [3]. According
to their BCS theory, pairs of electrons with zero total momentum condense
into a collective quantum state that appears insensitive to any kind of dis-
ruptions which usually cause electrical resistance. However, whereas the
condensation of electron pairs is at the heart of each superconductor, the
mechanism responsible for pairing as well as the form of the pair wave func-
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tion depend on the particular material compound. For example, in the first
superconductors, considered by BCS, a weak attractive interaction based
on quantized lattice deformations (phonons) induces the condensation of
electron pairs with zero total angular momentum and spin-singlet structure.
Beside this conventional pairing, other mechanisms with more exotic pair
wave functions of spin-triplet or higher angular momentum structure were
proposed in certain other superconductors. Analogous to the orbitals in a
hydrogen atom, the pairing states are often termed as s-wave, p-wave and
so on, although rotational symmetry in a crystal is broken, and the form of
the associated pair wave functions attains the above orbital structure only
near the gamma-point of the Brillouin zone (continuum limit). In order to
determine the pairing symmetry of a superconductor, various experimental
methods have been developed throughout the years and identified a d-wave
pairing state in the cuprates. Nevertheless, although the pairing symmetry
in the cuprates narrowed down the possible mechanisms, the precise origin
of high-Tc superconductivity in the cuprates remains unsolved.

In this thesis, we start with an investigation of superconductivity in the
iron-pnictides. At the first glance, the cuprates and the iron-pnictides ap-
pear quite similar: both reveal a magnetically ordered ground state in their
undoped parent compounds and both become superconducting upon doping.
In addition, cuprates and iron-pnictides are both layered systems and dis-
play an electronic structure that is mainly determined by unfilled d-orbitals.
However, there are also crucial differences. For example, in the undoped
cuprates, the effective one-band description actually implies a metallic state,
but the system instead shows a Mott-insulating behavior due to strong lo-
cal Coulomb interactions. At the same time, the iron-pnictides with only
weak to moderate interactions require a multi-orbital description and feature
semi-metallic behavior. It is currently believed that much of the anomalous
properties of the cuprates, for example the poorly understood pseudogap
phase, originate from the stronger Coulomb interaction and are probably
not apparent in the iron-pnictides. For this reason, the complexity of the
iron-pnictides arises primarily from the involved multi-orbital physics and
not so much from strong interaction effects. In this thesis, we therefore ap-
ply the method of functional renormalization group (RG) which, on the one
hand, enables an unbiased investigation of weakly to moderately correlated
materials and also allows to capture the full complexity of a multi-orbital
problem.

In Chapter 2, we introduce the functional RG as a theoretical tool for
analyzing the electronic instabilities of multi-orbital systems. In particular,
we discuss the derivation of the underlying flow equations, the necessary
approximations, as well as the use of symmetries to reduce the numerical
effort.

In Chapter 3, we review some basic properties of superconductivity in
general and discuss certain experimental methods to determine the pair
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wave function in a given superconductor. In addition, we also derive a self-
contained symmetry classification of superconducting order on different lat-
tices with and without spin-orbit coupling. This scheme is then extended to
general crystal structures and also to general particle-particle and particle-
hole condensates.

In Chapter 4, we start with a brief summary on the most relevant struc-
tural, magnetic and superconducting properties of iron-pnictides. In the
following, we then study the pairing symmetries as well as the underlying
pairing mechanisms of various iron-pnictide compounds. Here, we demon-
strate how the multi-pocket Fermi surface and the multi-orbital interactions
drive different competing spin-fluctuation channels. These competing fluc-
tuations then give rise to s±-wave pairing with or without gap nodes and
even lead to d-wave superconductivity. Based on this understanding, we
propose different possibilities to influence the competing pairing channels
and also to realize a new time-reversal symmetry broken (s + id)-pairing
state. Besides the pairing state of the iron-pnictides, we also explore the
magnetically ordered state as well as other subleading ordering tendencies.

The developed multi-orbital version of the functional RG likewise applies
to material systems with non-equivalent lattice sites. In Chapter 5, we there-
fore consider the electronic instabilities of graphene, the two-dimensional
analog of graphite. Using certain dopants or electrolytic gating, graphene
can nowadays be doped up to van-Hove filling without causing too much
disorder in the underlying lattice structure. During that chapter, we de-
scribe a variety of fascinating phases that could possibly be realized in doped
graphene. The prevailing one is the chiral (d + id) superconducting phase
with quantized values in certain response functions reflecting the topological
nature of this pairing state. In addition, we also demonstrate how longer-
ranged Coulomb interactions can lead to spin-triplet pairing or to an exotic
spin-density wave phase. This is of particular interest, as the longer-ranged
interactions can be tuned by different substrate materials.

In Chapter 6, we address another multi-orbital problem, the supercon-
ducting state of strontium-ruthenate Sr2RuO4 (SRO). Although being iso-
structural to the cuprates, SRO turned out to be quite different and possibly
realizes a chiral (p + ip)-pairing state. However, despite a large number of
theoretical studies in this field, the pairing mechanism in SRO as well as the
detailed gap symmetry are still under debate. For this reason, we start with
a microscopic three-orbital description and explore the competing orders by
means of functional RG. We illustrate how moderate ferromagnetic fluctu-
ations are still sufficient to drive p-wave pairing, and we demonstrate that
the (p + ip)-pairing is energetically favored due to the effect of spin-orbit
coupling. In addition, we also compare the calculated superconducting gap
with recent experiments and investigate the effect of doping, for example by
replacing strontium with lanthanum. Finally, in Chapter 7, we summarize
the key findings and methodical progress developed in this thesis.





Chapter 2

Functional Renormalization
Group

Interacting electron systems commonly display a huge variety of fascinating
phenomena such as superconductivity, magnetic ordering or the formation
of exotic quantum liquids. These phenomena usually emerge at scales far
below the bare energy scale of the microscopic Hamiltonian (see Fig. 2.1a).
In order to interpolate between those scales, it appears natural to treat
degrees of freedom with different energy scales successively, descending from
high to low energies. Using a functional-integral formulation of the partition
function, this idea can be implemented by integrating out high-energy modes
step by step and by adjusting the action accordingly. This procedure then
generates a one-parameter family of actions which interpolates between the
microscopic theory at high energies and an effective low-energy description
(see Fig. 2.1b). At the same time, infrared singularities which signal an
instability of the normal state are approached in a controlled way. In fact,
the required partial integration of modes can almost never be performed in
an exact way, and one has to resort to approximate treatments. Yet, for
an infinitesimal mode elimination, the resulting change of the action can be
expressed in a formally exact flow equation. In a similar way, the functional
renormalization group rephrases the process of mode elimination in terms
of an exact flow equation for certain generating functionals. The benefit of
this flow equation lies, on the one hand, in its transparent approximation
schemes and also in its flexibility concerning the choice of flow parameters
or the choice of alternative generating functionals.

Starting with a general derivation of the functional flow equations at the
beginning of this chapter, we discuss the effect of various flow parameters as
well as the implications of symmetry and the necessity of approximations.
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(a) (b)

Figure 2.1: (a) Important energy scales in high-Tc cuprate superconductors. (b) Flow
of the effective action, starting at ΓΛinit = Sbare for large values of Λ and approaching
the full effective action at Λ = 0. Different trajectories correspond to distinct choices of
the flow parameter.

2.1 Functional Flow Equations

In the following section, we introduce the concept of generating functionals
and the notion of functional flow equations. In particular, we define the
so-called effective action as a generating functional of the one-particle irre-
ducible (1PI) vertex functions and derive its corresponding flow equation.
Using certain approximation schemes for an efficient numerical treatment,
the 1PI flow equation then serves as the main computational tool throughout
the following work.

As a starting point, we consider an interacting fermion system described
by the action

S(ψ,ψ) = −
∫
k,k′

Qk,k′ψkψk′ +

∫
k1,k2,k′1,k

′
2

Uk1,k2,k′1,k
′
2
ψk1

ψk2
ψk′1ψk′2 (2.1)

with Grassmann fields ψ,ψ, the inverse bare propagator

Qk,k′ = δkk′ ·
(
G0
k

)−1
= δkk′ · (ik0 − ξb(k)), (2.2)

and some two-particle interaction U . We further employed the notation of
k = (k0,k, σ, b) including fermionic Matsubara frequencies k0, momenta k
as well as internal degrees of freedom like spin projections σ or band indices
b. The dispersion ξb(k) in (2.2) then characterizes the one-particle energy
as a function of momentum k and band index b. In addition, the integral

∫
k

contains integration and summation over each entry in k and also includes
prefactors like temperature and volume.

Based on the action S(ψ,ψ) in (2.1), we can infer thermodynamic quan-
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tities like the grand-canonical partition function

Z =

∫
D(ψ,ψ)e−S(ψ,ψ) (2.3)

or the imaginary-time ordered Green functions

Gk1,...,kn;k′1,...,k
′
n

=
1

Z

∫
D(ψ,ψ)e−S(ψ,ψ)ψk1 . . . ψknψk′n . . . ψk′1 , (2.4)

just by choosing the appropriate functional averages. It is further convenient
to define the generating functional

W [η, η] =

∫
D(ψ,ψ)e−S(ψ,ψ)+(η,ψ)+(ψ,η) (2.5)

with source terms

(η, ψ) :=

∫
k
ηkψk, (ψ, η) :=

∫
k
ψkηk

such that (2.4) can be rephrased by derivatives of W [η, η] with respect to the
fields η and η. Taking the logarithm of (2.5), one obtains another generating
functional

G[η, η] = − ln (W [η, η]) (2.6)

which, again by functional differentiation, provides the connected n-particle
Green functions

G
c(2n)
k1,...,kn;k′1,...,k

′
n

= −
〈
ψk1 . . . ψknψk′n . . . ψk′1

〉
c

(2.7)

= (−1)n
∂2nG[η, η]

∂ηk1
. . . ∂ηkn∂ηk′n . . . ∂ηk′1

∣∣∣∣∣
η=η=0

.

Note that the (−1)n factor here results from the commutation of ∂/∂η with
the field ψ in the source term of (2.5).

During the next paragraph, we want to derive an exact flow equation for
the generating functional in (2.6). The essential idea here is to circumvent
the direct integration in G by constructing a one-parameter family of gen-
erating functionals GΛ that interpolates between a solvable starting point
at large values of Λ and the full functional at Λ = 0. One possibility to
construct this one-parameter dependence is by replacing Q → QΛ in the
bare action (2.1) such that

QΛ
k,k′ ∼

{
Qk,k′ , for Λ→ 0

∞, for Λ→∞
. (2.8)
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As a consequence, the generating functional GΛ fulfills the required boundary
conditions of

GΛ ∼

{
G, for Λ→ 0

0, for Λ→∞
, (2.9)

where the trivial case GΛ→∞ = 0 results from the infinite mass term in
(2.8), which freezes out all particle propagation. In order to approach pos-
sible singularities in a controlled way, we further require that the parameter
dependence of QΛ regularizes infrared divergences, which in turn may arise
from the unbound propagator at zero frequencies and at Fermi-surface mo-
menta. The extrapolation of GΛ from large values of Λ down to Λ = 0 can
then be considered as an initial value problem, which is nothing but the
searched for flow equation. We can thus rephrase the functional integration
of Eq. (2.6) into a formally exact differential equation:

∂ΛGΛ[η, η] = −eGΛ[η,η]∂Λe
−GΛ[η,η]

= −eGΛ[η,η]

∫
D(ψ,ψ)

(
ψ, Q̇Λψ

)
e−S(ψ,ψ)+(η,ψ)+(ψ,η)

= eG
Λ[η,η]

(
∂η, Q̇

Λ∂η

)
e−G

Λ[η,η] (2.10)

= eG
Λ[η,η]

(∫
k,k′

∂ηkQ̇
Λ
kk′∂ηk′e

−GΛ[η,η]

)
=

∫
k,k′

{(
−∂ηkG

Λ[η, η]
)
Q̇Λ
kk′
(
−∂ηk′G[η, η]

)
+ Q̇Λ

kk′
(
−∂ηk∂ηk′G[η, η]

)}
=
((
∂ηGΛ[η, η]

)
, Q̇Λ (∂ηG[η, η])

)
+ tr

(
Q̇Λ (∂η∂ηG[η, η])

)
. (2.11)

Using the Taylor expanded functional GΛ in the above flow equation, this
provides an infinite hierarchy of differential equations for the respective Tay-
lor coefficients, the connected Green functions Gc(2n). Yet, the connected
Green functions Gc(2n) contain tree-like diagrams of 1PI vertex functions,
and the corresponding isolated propagators can lead to technical problems
within the flow equations [4]. In addition, the trivial initial condition of
GΛ→∞ = 0 also appears to be unfavorable as it absorbs any informations
about the original system.

It is therefore more convenient to derive a flow equation for the 1PI
vertex generating functional or effective action ΓΛ, which is determined by
the Legendre transformation of GΛ:

ΓΛ[ζ, ζ] = GΛ[η, η] + (ηΛ, ζ) + (ζ, ηΛ). (2.12)

Here, the conjugate fields ζ, ζ are defined as

ζ = −∂G
Λ

∂η
, ζ =

∂GΛ

∂η
, (2.13)
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and it is also important to note that ηΛ, ηΛ are actually Λ-dependent func-
tions of ζ and ζ due to (2.13). The 1PI vertex functions can then be obtained
by computing derivatives with respect to the conjugate fields

γ
Λ(2n)
k1,...,kn;k′1,...,k

′
n

=
∂2nΓΛ[ζ, ζ]

∂ζk1
. . . ∂ζkn∂ζk′n . . . ∂ζk′1

∣∣∣∣∣
ζ=ζ=0

. (2.14)

In order to derive the corresponding flow equation for the effective action
ΓΛ, we first note that (2.12) implies the following reciprocity relation for the
second derivatives ΓΛ and GΛ:

∂2ΓΛ[ζ, ζ] =
(
∂2GΛ[η, η]

)−1
(2.15)

with

∂2ΓΛ[ζ, ζ] =

 ∂2ΓΛ

∂ζk1
∂ζk′

1

∂2ΓΛ

∂ζk1
∂ζk′

1
∂2ΓΛ

∂ζk1
∂ζk′

1

∂2ΓΛ

∂ζk1
∂ζk′

1

 (2.16)

∂2GΛ[η, η] =

− ∂2GΛ

∂ηk′
1
∂ηk1

∂2GΛ

∂ηk′
1
∂ηk1

∂2GΛ

∂ηk′
1
∂ηk1

− ∂2GΛ

∂ηk′
1
∂ηk1

 .

For the lowest order Taylor expansion, this then yields

γ
Λ(2)
k;k′ =

(
G

Λ(2)
k;k′

)−1
= QΛ

k,k′ − ΣΛ
k,k′ , (2.17)

and, for higher order terms, all connected Green functions are obtained
by summing tree-like diagrams of 1PI vertex functions with equal or lower
order [5]. Using the reciprocity relation (2.15) as well as (2.11), we can now
determine the flow equation for the effective action ΓΛ:

∂ΛΓΛ[ζ, ζ] =∂ΛG[ηΛ, ηΛ] + (∂Λη
Λ, ζ) + (ζ, ∂Λη

Λ)

= ∂ΛG[ηΛ, ηΛ]
∣∣
ηΛ,ηΛ fixed

(2.11)
=
((
∂ηGΛ

)
, Q̇Λ (∂ηG)

)
+ tr

(
Q̇Λ (∂η∂ηG)

)
(2.15)

= −
(
ζ, Q̇Λζ

)
− tr

(
Q̇Λ
((
∂2ΓΛ[ζ, ζ]

)−1
)

11

)
(2.18)

=−
(
ζ, Q̇Λζ

)
− 1

2
tr
(
Q̇Λ

(
∂2ΓΛ[ζ, ζ]

)−1
)
. (2.19)

Here, the notation (· · · )11 relates to the (1, 1)-element of the matrix ∂2ΓΛ

given in Eq. (2.16), and the bold quantity Q̇Λ in (2.19) denotes

Q̇Λ = diag(Q̇Λ,−Q̇ΛT ).
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Unlike the flow equation for the generating functional GΛ, the one in (2.19)
reveals a nontrivial initial condition of ΓΛ→∞ = S, with S denoting the
bare action in (2.1). The complete solution of (2.19) would then describe
the evolution from the bare action towards the full effective action and
would hence provide all 1PI vertex functions as well as the connected Green
functions in a tree like series.

Unfortunately, the direct solution of the functional flow equation (2.19)
is only possible for a very small number of systems. However, as one is
primarily interested in a few number of 1PI vertex functions, it is therefore
convenient to expand both sides in powers of the fields and to calculate the
flow only for certain 1PI vertex functions. For this purpose, we first rewrite
the effective action in a series of fields

ΓΛ[ζ, ζ] =

∞∑
m=0

A(2m)Λ[ζ, ζ] (2.20)

with

A(2m)Λ[ζ, ζ] =
(−1)m

(m!)2

∫
k1,...,km
k′
1
,...,k′m

γ
(2m)Λ
k′1,...,k

′
m;k1,...,km

ζk′1 . . . ζk′mζkm . . . ζk1 .

In order to obtain a similar series expansion for the inverse
(
∂2ΓΛ[ζ, ζ]

)−1

on the right-hand side of (2.19), we first introduce the matrix

UΛ[ζ, ζ] = ∂2ΓΛ[ζ, ζ]
∣∣
ζ=ζ=0

− ∂2ΓΛ[ζ, ζ]

together with its series expansion

UΛ[ζ, ζ] = −
∞∑
m=2

∂2A(2m)Λ[ζ, ζ]. (2.21)

Now, by making use of ∂2ΓΛ
∣∣
ζ=ζ=0

=
(
GΛ
)−1

from (2.17), the inverse(
∂2ΓΛ

)−1
is given by the following geometric series

(
∂2ΓΛ[ζ, ζ]

)−1
=
((
GΛ
)−1 −UΛ[ζ, ζ]

)−1

=
(
1−GΛUΛ[ζ, ζ]

)−1
GΛ (2.22)

=
(
1 +GΛUΛ[ζ, ζ] +GΛUΛ[ζ, ζ]GΛUΛ[ζ, ζ] + . . .

)
GΛ.

We then insert (2.22) into the right-hand side of the flow equation (2.19)
which gives rise to

∂ΛΓΛ[ζ, ζ] =−
(
ζ, Q̇Λζ

)
− 1

2
tr
(
Q̇Λ

(
1 +GΛUΛ +GΛUΛGΛUΛ + . . .

)
GΛ
)

=−
(
ζ, Q̇Λζ

)
− tr

(
Q̇ΛGΓ

)
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+
1

2
tr
(
SΛ
(
UΛ +UΛGΛUΛ + . . .

))
. (2.23)

Here, it is important to note that we exploited the cyclic invariance of the
trace and also defined the so-called single-scale propagator

SΛ = diag
(
SΛ,−SΛT

)
= −GΛQ̇ΛGΛ

with

SΛ = −GΛQ̇ΛGΛ =
d

dΛ
GΛ
∣∣
ΣΛ fixed

.

The trace term in (2.23) further reveals the one-loop structure of the formally
exact flow equation. Inserting the two series expansions of ΓΛ in (2.20) and
U in (2.21) into (2.23), we obtain a system of differential equations for the
coefficients A(2m)Λ:

d

dΛ
A(0)Λ =− tr

(
Q̇ΛGΓ

)
d

dΛ
A(2)Λ =− 1

2
tr
(
SΛ∂2A(4)Λ

)
−
(
ζ, Q̇Λζ

)
d

dΛ
A(4)Λ =− 1

2
tr
(
SΛ∂2A(6)Λ

)
+

1

2
tr
(
SΛ∂2A(4)ΛGΛ∂2A(4)Λ

)
d

dΛ
A(6)Λ =− 1

2
tr
(
SΛ∂2A(8)Λ

)
+ . . . .

At this, the first equation corresponds to the flow of the grand-canonical
potential. It also turns out that the flow equation for a given A(2m)Λ always
contains the next order term A(2m+2)Λ in a tadpole-like diagram. In a
next step, we compare the field-independent coefficients in each of these
equations and obtain an infinite hierarchy of flow equations for the 1PI
vertex functions, of which the first two read as

d

dΛ
ΣΛ
k′1,k1

=
∑
q;q′

SΛ
q,q′γ

(4)Λ
k′1,q

′;k1,q
(2.24)

d

dΛ
γ

(4)Λ
k′1,k

′
2;k1,k2

=−
∑
q,q′

SΛ
q,q′γ

(6)Λ
k′1,k

′
2,q
′;k1,k2,q

(2.25)

+
∑
k,k′
q,q′

GΛ
k,k′S

Λ
q,q′ ×

{
γ

(4)Λ
k′1,k

′
2;k,q

γ
(4)Λ
k′,q′;k1,k2

−
[
γ

(4)Λ
k′1,q

′;k1,k
γ

(4)Λ
k′,k′2;q,k2

+ (k ↔ q, k′ ↔ q′)
]

+
[
γ

(4)Λ
k′2,q

′;k1,k
γ

(4)Λ
k′,k′1;q,k2

+ (k ↔ q, k′ ↔ q′)
]}

.

Note that in (2.24), we further employed γ(2)Λ = QΛ−ΣΛ in order to derive
a flow equation for the self-energy ΣΛ. In a graphical representation, these
flow equations are shown in Fig. 2.2, where slashed and full lines correspond
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Figure 2.2: Flow equations for the first two 1PI vertex functions in (2.24) and (2.25).
Slashed and full internal lines represent the single-scale SΛ and full propagators GΛ.

to single-scale SΛ and full propagator GΛ, respectively. For a numerical
implementation and an application to realistic material compounds, we fur-
ther have to justify the truncation of this infinite hierarchy to a manageable
system of flow equations. In addition to that, we need to specify the flow
parameter dependence in the quadratic part QΛ which was left unspecified
in the definition of (2.8).

2.2 Flow Parameters

In the preceding section, we derived flow equations for the effective action
and for the associated 1PI vertex functions. The starting point here was
the quadratic part of the underlying action which was equipped with an
additional parameter dependence in order to interpolate between the bare
theory and the full effective action. We further required that this parameter
dependence also regularizes infrared singularities which may arise from the
unbounded propagator at zero frequency and at Fermi surface momenta.
The integration contained in the trace of (2.19) then becomes finite, and a
potential singularity can be approached in a controlled way.

One possible choice of flow parameter is implemented in the so-called
cutoff schemes where the inverse quadratic part reads as

(
QΛ
k,k′
)−1

=
(
G0Λ
k

)
=

θΛ
ε (k0,k)

ik0 − ξb(k)
. (2.26)

Here, θΛ
ε (k0,k) indicates a cutoff function either in frequency θΛ

ε (k0,k) =
Θε(|k0| − Λ) or in momentum space θΛ

ε (k0,k) = Θε(|ξb(k)| − Λ) with Θε

denoting a step function of finite width ε shown in Fig. 2.3a. The full
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(a)
FS

(b)

Figure 2.3: (a) Cutoff function Θε (full line) and corresponding scale-derivative ∂ΛΘε

(dashed line). (b) Momentum shells (gray) representing the finite support of the single-
scale propagator SΛ at an energy scale Λ away from the Fermi surface (blue).

propagator in (2.17) is then given by

GΛ(k0,k) =
θΛ
ε (k0,k)

ik0 − ξb(k)− θΛ
ε (k0,k)ΣΛ(k0,k)

, (2.27)

and the corresponding single-scale propagator SΛ = −GΛQ̇ΛGΛ reads as

SΛ(k0,k) =
∂Λθ

Λ
ε (k0,k)

[ik0 − ξb(k)− θΛ
ε (k0,k)ΣΛ(k0,k)]2

, (2.28)

with a finite support near the Λ-energy shells as depicted in Fig. 2.3b.
Using the above cutoff scheme, we obtain an implementation similar to

Wilson’s original idea of integrating out momentum modes shell by shell.
For example, if we start with a momentum cutoff Λ greater than the band-
width, all fluctuations are completely suppressed due to (2.27), and the
initial value of the effective action equals the bare action in Eq. (2.1). Fol-
lowing the trajectory of ΓΛ to lower scales, the calculation of ∂ΛΓΛ comprises
a trace over the single-scale propagator SΛ whose support is restricted to
the momentum shells of Fig. 2.3b. For this reason, the calculation of ΓΛ

with a decreasing cutoff-scale Λ then integrates out momentum modes shell
by shell and implements Wilson’s picture of viewing the physical system at
different length scales. Although these cutoff schemes provide a very intu-
itive understanding of renormalization they also involve serious drawbacks.
One is the violation of Ward identities at any finite cutoff value [6, 7], and
the other is the non-uniform treatment of particle-hole processes within the
momentum-cutoff scheme. In order to explain this latter issue, we first write
down the one-loop particle-hole fluctuations arising in simple perturbation
theory

χp−h(k, q) =
nF (ξb(k))− nF (ξb(k + q))

ξb(k)− ξb(k + q)
. (2.29)
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During the flow, these contributions are taken into account successively
within the trace

tr
(
SΛUΛGΛUΛ

)
∼ tr

(
χp−h(k, q) · ∂Λ(θΛ

ε (k)θΛ
ε (k+ q)) · . . .

)
. (2.30)

Note that we neglected frequency dependences and self-energy insertions in
(2.30) for notational clarity. If we now consider particle-hole fluctuations
with vanishing momentum transfer, which means χp−h(k, q → 0), it turns
out that the only nonzero contribution in (2.29) comes from modes k in
a small energy region (∼ T ) around the Fermi surface. However, due to
the cutoff function θΛ

ε (k), these modes are not taken into account until
Λ ≈ T . On the other hand, particle-hole fluctuations with large momentum
transfer are already taken into account right from the beginning. The cutoff-
scheme therefore treats particle-hole fluctuations in a non-uniform way, and
it may happen that other channels already indicate a singularity at cutoff
values Λ > T , whereas the small q particle-hole fluctuations have not yet
contributed.

In order to avoid this issue, we can exploit the flexibility in the parame-
ter dependence of ΓΛ and regard the temperature itself as flow parameter.
However, we first have to shift the temperature dependences towards the
quadratic part of the action (2.1), and we therefore write out all tempera-
ture prefactors

S(ψ,ψ) = −T
∫
k,k′

Qk,k′ψkψk′ + T 3

∫
k1,k2,k′1,k

′
2

Uk1,k2,k′1,k
′
2
ψk1

ψk2
ψk′1ψk′2

and rescale its field variables according to

ψk = T−3/4φk, ψk = T−3/4φk. (2.31)

In the rescaled action, all temperature dependences now occur only within
the quadratic part

S(φ, φ) = −T−1/2

∫
k,k′

Qk,k′φkφk′ +

∫
k1,k2,k′1,k

′
2

Uk1,k2,k′1,k
′
2
φk1

φk2
φk′1φk′2 ,

and we can then follow the same arguments as in the cutoff case and regard
the temperature T itself as flow parameter. Here, it turns out that for tem-
peratures in the order of the bandwidth W , all perturbative corrections to
the vertex functions are suppressed with a negative power of T [8], and we
obtain the required boundary condition of ΓT∼W = S. In addition to that,
the temperature also serves as an infrared regulator similar to the momen-
tum or frequency cutoff as it shifts Matsubara frequencies k0 = (2n+ 1)πT
away from zero and hence cuts out the singularities of the bare propagator(

Q̃Tk,k′
)−1

=
(
G̃0T
k

)
=

T 1/2

ik0 − ξb(k)
. (2.32)
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It is further important to note that all objects in the rescaled fields φ, φ
are highlighted with a tilde, and, to obtain the m-particle Green and vertex
functions back in the original fields ψ,ψ, we have to unscale these functions
with a factor of T−3m/2 and T 3m/2, respectively.

The temperature flow scheme can now be implemented in a similar way
as the cutoff version. We start again with the bare theory for temperatures
in the order of the bandwidth ΓTinit∼W = S and then follow the trajectory
ΓT to lower values of T . The difference between both schemes consists in
the distinct scale derivatives ∂Λ and ∂T , which in the temperature flow case
involves the T−dependent Green function

G̃T (k0,k) =
T 1/2

ik0 − ξb(k)− T 1/2Σ̃T (k0,k)

and the single-scale propagator

S̃T (k0,k) = −1

2

T−1/2 [ik0 + ξb(k)][
ik0 − ξb(k)− T 1/2Σ̃T (k0,k)

]2 . (2.33)

Using these propagators, the particle-hole contributions contained in the
trace (2.23) are given by

tr
(
SΛUΛGΛUΛ

)
∼ tr

(
∂Tχ

p−h · . . .
)

(2.34)

and now involve the temperature derivative ∂Tχ
p−h instead of a cutoff func-

tion. The broader support of ∂Tχ
p−h then does not distinguish between

large and small momentum transfer and, therefore, the temperature flow
allows a uniform treatment of all particle-hole fluctuations. In addition to
that, Ward identities derived in Sec. 2.4 are also respected in the tempera-
ture flow [9], at least in the full hierarchy of differential equations. For these
reasons, the temperature flow is more favorable than the cutoff-schemes
although the intuitive picture of eliminating short-wavelength fluctuations
and obtaining the properties on a coarse-grained scale is lost here. Another
cutoff-free scheme is provided by the so-called interaction flow [10] which
simply multiplies the quadratic part of the action with a parameter 1/g. By
rescaling the fields, one can show that this corresponds to a substitution of
the interacting part U → g2U . The interaction flow therefore interpolates
between the noninteracting theory at g = 0 and the original one at g = 1.

As we have seen in this section, the functional flow equations enable a
certain flexibility in the choice of flow parameters, which can be exploited to
prove the robustness of the results or to justify certain approximations. The
most common implementations involve cutoff-schemes in frequency [11, 12]
and momentum-space [13], the addressed temperature scheme [8] and also
the interaction flow [10].
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2.3 Symmetry Properties of the Functional Flow
Equations

A given physical system usually features certain symmetries as for example
translational or rotational invariance. According to Noether’s theorem, each
of these continuous symmetries also entails some kind of conservation law.
In the following section, we will hence demonstrate how this symmetry re-
sult simplifies the flow equation hierarchy and also provides useful relations
between the different n-point vertex functions.

For this purpose, we first introduce a general symmetry transformation
as an invertible mapping of fields

ψk 7→
∫
k′
Mk,k′ψk′ , ψk 7→

∫
k′
Mk,k′ψk′ (2.35)

which leaves the action S(ψ,ψ) as well as the functional-integral measure
D(ψ,ψ) invariant:

S(M · ψ,M · ψ) = S(ψ,ψ) (2.36)

D(M · ψ,M · ψ) = D(ψ,ψ).

At this, we used the shortened notation of M · ψ and M · ψ to denote
the mappings of (2.35). Note also that the very general representation of a
symmetry transformation in (2.35) comprises space-time as well as internal
symmetries and will be specified by various examples during the later dis-
cussion. In order to derive the transformation behavior of the 1PI vertex
functions and therefore to simplify the flow equations, we first determine
the transformation properties of the generating functional G[η, η] for the
connected Green functions. Using the symmetry requirements (2.36), we
obtain

G[η, η] = − ln

∫
D(ψ,ψ)e−S(ψ,ψ)+(η,ψ)+(ψ,η) (2.37)

= − ln

∫
D(M · ψ,M · ψ)e−S(M·ψ,M·ψ)+(η,M·ψ)+(M·ψ,η)

= − ln

∫
D(ψ,ψ)e−S(ψ,ψ)+(η,ψ)+(M·ψ,η)

= − ln

∫
D(ψ,ψ)e−S(ψ,ψ)+(MT ·η,ψ)+(ψ,MT ·η)

= G[MT · η,MT · η],

and the transformation behavior of the source fields ζ, ζ in the effective
action Γ[ζ, ζ] of (2.12) then reads as

ζ(MT · η,MT · η) = −∂G[MT · η,MT · η]

∂ (MT · η)
= − ∂G[η, η]

∂ (MT · η)
= (M)−1 · ζ(η, η)
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ζ(MT · η,MT · η) =
∂G[MT · η,MT · η]

∂
(
MT · η

) =
∂G[η, η]

∂
(
MT · η

) = (M)−1 · ζ(η, η).

Applying this result, we can easily infer the effect of (2.35) on the effective
action Γ:

Γ[ζ, ζ] 7→ Γ[(M)−1ζ, (M)−1ζ] (2.38)

= G[MT
η,MT η] + (MT η, (M)−1ζ) + ((M)−1ζ,MT

η)

= Γ[ζ, ζ],

where we made use of the following relation

(MT · η, (M)−1 · ζ) =

∫
k

(
MT · η

)
k

(
(M)−1 · ζ)

)
k

=

∫
k,l,m

(
MT

)
kl

(M)−1
kmηlξm

=

∫
k,l,m

(M)lk (M)−1
kmηlξm = (η, ζ) .

From (2.38) it is then apparent that the effective action Γ remains invariant
under all symmetry transformations of the underlying physical system:

Γ[M · ζ,M · ζ] = Γ[ζ, ζ]. (2.39)

Expanding both sides in powers of the fields, we obtain the following relation
for the 1PI vertex functions

γ
(2m)
k′1,...,k

′
m;k1,...,km

=

∫
q′
1
,...,q′m

q1,...,qm

Mk′1q
′
1
· · ·Mk′mq

′
m
Mk1q1 · · ·Mkmqm ·γ

(2m)
q′1,...,q

′
m;q1,...,qm

.

(2.40)
Since we are mainly interested in solid-state compounds with an underlying
periodic crystal lattice, we now assume translational symmetry under x 7→
x+ a, which then translates into

ψk 7→ eik·aψk, ψk 7→ e−ik·aψk. (2.41)

Employing the symmetry relation (2.40), we then end up with

γ
(2m)
k′1,...,k

′
m;k1,...,km

= ei(k1+...+km−k′1−k′m)·a · γ(2m)
k′1,...,k

′
m;k1,...,km

, (2.42)

which in turn implies that all non-vanishing 1PI vertex functions conserve
momentum up to a reciprocal lattice vector.

Besides translational symmetry, a periodic crystal lattice also exhibits
point group symmetries which, by definition, leave one space point fixed
and therefore constitute a subgroup of the orthogonal group O(n) with n
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denoting the dimensionality of the lattice. If we now consider a point-
group transformation x 7→ Rx with R ∈ O(n), its effect in k-space is given
by k 7→ RTk = (k0, R

Tk, σ), following from the duality definition of the
reciprocal lattice. Accordingly, the fields transform as

ψk 7→ ψRT k, ψk 7→ ψRT k, (2.43)

and, due to (2.40), the 1PI vertex functions remain invariant under all point-
group symmetries:

γ
(2m)
k′1,...,k

′
m;k1,...,km

= γ
(2m)

RT k′1,...,R
T k′m;RT k1,...,RT km

. (2.44)

Another important symmetry describes the invariance under time-reversal
t → −t. This operation is known to be peculiar as it must have an antiu-
nitary representation in the space of quantum states. Otherwise, as each
symmetry has to be represented either as an unitary or an antiunitary op-
erator according Wigner’s fundamental theorem, time-reversal would be a
unitary operation which runs into fundamental problems. Time-reversal can
therefore be shown to act on a spin one-half state as

Θ = −iτ2K, (2.45)

where K denotes complex-conjugation and τ2 labels the Pauli-matrix σy.
Under the action of time-reversal (2.45), the fields then transform as

ψkσ 7→ sign(σ)ψTk, ψkσ 7→ sign(σ)ψTk, (2.46)

with Tk = (k0,−k,−σ) and sign(↑↓) = ±1 according to the matrix −iτ2.
The corresponding effect on the 1PI vertex function now reads as

γ
(2m)
k′1,...,k

′
m;k1,...,km

= sign(σ′1) · · · sign(σm)γ
(2m)
Rkm,...,Rk1;Rk′m,...,Rk

′
1
, (2.47)

and the effect of other discrete symmetries like spatial reflection can be
derived in a similar fashion.

In addition to these discrete transformations, the underlying system also
features certain continuous symmetries as for example the spin-rotational
invariance or a global U(1) phase freedom. The corresponding representa-
tions of these continuous symmetries can be parametrized, at least locally,
by some real parameters s1, . . . , sn such that

M(s1 = 0, . . . , sn = 0) = 1, (2.48)

and the associated generators can be defined as

Tj = −i ∂M(s1, . . . , sn)

∂sj

∣∣∣∣
s1=...=sn=0

, T j = −i ∂M(s1, . . . , sn)

∂sj

∣∣∣∣
s1=...=sn=0

.

(2.49)
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Now, by using the invariance of the effective action in (2.39), we obtain the
following relation

0 =
∂

∂sj
Γ[ζ, ζ] =

(
∂Γ[M · ζ,M · ζ]

∂(M · ζ)
,
∂(M · ζ)

∂sj

)
+

(
∂Γ[M · ζ,M · ζ]

∂(M · ζ)
,
∂(M · ζ)

∂sj

)

=

(
∂Γ[ζ, ζ]

∂ζ
, (iTj) · ζ

)
+

(
∂Γ[ζ, ζ]

∂ζ
, (iT j) · ζ

)
. (2.50)

In the next step, we demonstrate how this symmetry constraint restricts the
form of the 1PI vertex functions.

As an example, we therefore consider the case of a global U(1) phase
transformation,

ψk 7→ eisψk, ψk 7→ e−isψk, (2.51)

which apparently presents a symmetry of the underlying action (2.1). Com-
puting the generators of this symmetry group according to (2.49), one finds
that

T = −i ∂e
is

∂s

∣∣∣∣
s=0

= 1, T = −i ∂e
−is

∂s

∣∣∣∣
s=0

= −1 (2.52)

and, using (2.50), we end up with∫
k

(
ζk

∂

∂ζk
− ζk

∂

∂ζk

)
Γ[ζ, ζ] = 0. (2.53)

If we now expand the generating functionals in fields, the only nonzero 1PI
vertex functions in (2.53) are those which corresponds to monomials with
an equal number of ζ- and ζ-fields. Note that we already assumed such a
form in the expansion (2.20), which is now justified in hindsight with the
global U(1) phase symmetry of the bare action.

As another example, we consider the invariance under spin rotation
which, in the spin one-half representation, reads as(

ψ
k̃,↑

ψ
k̃,↓

)
7→ eiτ ·s

(
ψ
k̃,↑
ψ
k̃,↓

)
,

(
ψ
k̃,↑

ψ
k̃,↓

)
7→ e−iτ

∗·s

(
ψ
k̃,↑

ψ
k̃,↓

)
(2.54)

with τ1,2,3 denoting the usual Pauli-matrices. Together with the associated
generators

Ti = τ i, T i = −
(
τ i
)∗

i = 1, 2, 3, (2.55)

the symmetry restriction (2.50) reads as∫
k̃,σ,σ′

(
τ iσσ′ζk̃σ

∂

∂ζ
k̃σ′
−
(
τ i
)∗
σσ′

ζ
k̃σ

∂

∂ζ
k̃σ′

)
Γ[ζ, ζ] = 0. (2.56)
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Here, we explicitly wrote out the spin projection σ and defined the new
index k̃ as containing all remaining degrees of freedom besides σ. Using the
i = 3 component of (2.56) as well as the U(1) symmetry constraint of (2.53),
we then obtain ∫

k̃

(
ζ
k̃σ

∂

∂ζ
k̃σ

− ζ
k̃σ

∂

∂ζ
k̃σ

)
Γ[ζ, ζ] = 0, (2.57)

which restricts an expansion of Γ[ζ, ζ] to consist of monomials with an equal
number of ζ

k̃σ
- and ζ

k̃σ
-fields. Therefore, the number of particles with a

given spin projection is individually conserved, and we can write the fully
spin-dependent 1PI vertex functions as

γ
(2m)Λ
k′1,...,k

′
m;k1,...,km

=γ
(2m)Λ

k̃′1σ
′
1,...,k̃

′
mσ
′
m;k̃1σ1,...,k̃mσm

=−
∑
p∈πm

sgn(p) · Ṽ (2m)Λ
σ′1,...,σ

′
m

(k̃′1, . . . , k̃
′
m; k̃p(1), . . . , k̃p(m))

× δσ′1σp(1)
· · · δσ′mσp(m)

. (2.58)

Here, the spin-conserving function Ṽ
(2m)Λ
σ′1,...,σ

′
m

depends only on the spin projec-

tion of the outgoing particles, and it is important to note that the definition
of Ṽ (2m)Λ is not unique and sometimes occurs with a different sign in the
literature. Up to now, we only implemented the i = 3 constraint of (2.56)
which is equivalent to spin-rotational invariance around the z-axes. Making
use of the full SU(2)-invariance, one can even show that Ṽ (2m) is indepen-
dent of σ′1, . . . , σ

′
m [5], and we define the coupling functions

V
(2m)

k̃′1,...,k̃
′
m;k̃1,...,k̃m

= Ṽ
(2m)
σ′1,...,σ

′
m

(k̃′1, . . . , k̃
′
m; k̃1, . . . , k̃m) (2.59)

with V (2m) being independent of any spin projection. The first two vertex
functions in (2.58) therefore read as

γ
(2)

k̃′1σ
′
1;k̃1σ1

= Q
k̃′1,k̃1

− Σ
k̃′1;k̃1

= V
(2)

k̃′1;k̃1
(2.60)

γ
(4)

k̃′1σ
′
1,k̃
′
2σ
′
2;k̃1σ1,k̃2σ2

= −D · V (4)

k̃′1,k̃
′
2;k̃1,k̃2

+ E · V (4)

k̃′1,k̃
′
2;k̃2,k̃1

, (2.61)

where we made use of (2.17) in Eq. (2.60) and applied the following notations
of D = δσ′1σ1

δσ′2σ2
, E = δσ′1σ2

δσ′2σ1
in (2.61). In order to simplify the flow

equations for the 1PI vertex functions, we can now insert (2.60) and (2.61)
into (2.24) and (2.25), and, by comparing the coefficient of D, we then obtain
the following spin-independent flow equations for the first two terms

d

dΛ
Σ

(2)Λ

k̃′1;k̃1
=
∑
q̃,q̃′

SΛ
q̃,q̃′

{
V

(4)Λ

k̃′1,q̃
′;q̃,k̃1

− 2V
(4)Λ

k̃′1,q̃
′;k̃1,q̃

}
(2.62)
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d

dΛ
V

(4)Λ

k̃′1,k̃
′
2;k̃1,k̃2

=
∑
k̃,k̃′
q̃,q̃′

GΛ
k̃,k̃′

SΛ
q̃,q̃′

{
V

(4)Λ

k̃′1,k̃
′
2;k̃,q̃

V
(4)Λ

k̃′,q̃′;k̃1,k̃2
(2.63)

V
(4)Λ

k̃′2,q̃
′;k̃,k̃1

V
(4)Λ

k̃′,k̃′1;k̃2,q̃
− 2V

(4)Λ

k̃′1,q̃
′;k̃1,k̃

V
(4)Λ

k̃′,k̃′2;q̃,k̃2
+ V

(4)Λ

k̃′1,q̃
′;k̃1,k̃

V
(4)Λ

k̃′,k̃′2;k̃2,q̃

+V
(4)Λ

k̃′1,q̃
′;k̃,k̃1

V
(4)Λ

k̃′,k̃′2;q̃,k̃2
+ (k̃ ↔ q̃, k̃′ ↔ q̃′)

}
.

A diagrammatic expression of the flow equations in (2.62) and (2.63) is
further pictured in Fig. 2.4. Due to the spin independence, the complexity
of the flow equations reduces by a factor of 2n for each of the n-point vertex
functions. If the underlying system further shows translational symmetry
or an invariance under certain point-group transformations, we can apply
(2.42) and (2.44), which further lowers the computational effort. Note that
the latter symmetry relations of (2.42) and (2.44) were derived for the full
vertex functions γ(2m) but do also hold for the spin-independent coupling
functions V (2m) defined in (2.58). The influence of the neglected term V (6)

in the flow equation for V (4) will be discussed in Sec. 2.5 of this chapter.

=

=

Figure 2.4: First two terms in the infinite hierarchy of flow equations for the coupling
functions V (2m). Slashed and full internal lines represent the single-scale SΛ and full
propagators GΛ.
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2.4 Ward Identities

In the last section, we discussed the effect of symmetry on vertex functions
and utilized these insights to reduce the complexity of the corresponding
flow equations. Instead of looking at the implications of symmetry on a
given vertex function γ2m, we now want to derive exact relations between
the different m-point vertex functions, also known as Ward identities. For
this purpose, we consider a typical action such as

S(ψ,ψ) = −(ψ,Qψ) + Vint(ψ,ψ), (2.64)

to which we apply an infinitesimal field transformation

ψ′ = ψ − T · ψ, ψ
′
= ψ − ψ · T (2.65)

characterized by some generators T, T . The only restriction we require here
is that (2.65) does neither change Vint nor the functional integration measure
D(ψ,ψ). Besides these two conditions, the field transformation in (2.65)
can be chosen arbitrarily, and the following arguments do not depend on its
precise form. Note that, for the sake of clarity, we used the same shortened
matrix-vector like notation as in Sec. 2.1. If we then perform (2.65), the
action changes only in the quadratic part and hence gives rise to

S(ψ
′
, ψ′) = S(ψ,ψ) +

(
ψ,∆Qψ

)
, (2.66)

with an additional quadratic term ∆Q defined by

∆Q = QT + TQ. (2.67)

Due to the invariance of the functional integration measure, we further ob-
tain∫

D(ψ,ψ)e−S(ψ,ψ)+(η,ψ)+(ψ,η) =

∫
D(ψ

′
, ψ′)e−S(ψ

′
,ψ′)+(η,ψ′)+(ψ

′
,η)

=

∫
D(ψ,ψ)e−S(ψ,ψ)+(η,ψ)+(ψ,η)

[
1−

(
ψ,∆Qψ

)
+ (η, T · ψ) +

(
ψ, T · η

)]
,

(2.68)

where we relabeled the fields (ψ,ψ)→ (ψ
′
, ψ′) and applied (2.66). Subtract-

ing the left hand side of (2.68) and employing the definition of the generating
functional W [η, η] in (2.5), we derive the following identity

0 =

∫
D(ψ,ψ)e−S(ψ,ψ)+(η,ψ)+(ψ,η)

[(
ψ,∆Qψ

)
+ (η, T · ψ)−

(
T · η, ψ

)]
=
{

(∂η,∆Q∂η) + (η, T · ∂η) +
(
T · η, ∂η

)}
W [η, η]. (2.69)

Now, starting from this result, we can generate exact relations between the
m-point and (m+ 2)-point Green functions, just by taking the appropriate
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functional derivatives ∂/∂η, ∂/∂η and by setting η = η = 0 afterwards.
However, as we are mainly dealing with flow equations for the 1PI vertex
functions, we now want derive Ward identities between the different m-point
1PI vertex functions. We therefore insert W = e−G into (2.69), which equals
the definition of the generating functional for the connected Green functions
G in (2.7), and multiply with eG from the right:

0 = eG[η,η] (∂η,∆Q∂η) e
−G[η,η] − (η, T · ∂η)G[η, η]−

(
T · η, ∂η

)
G[η, η].

(2.70)

What is striking here is that the first term in (2.70) has exactly the same
form as the flow equation (2.10), only with Q̇Λ replaced by ∆Q. Due to this
similarity, we can simply apply the calculation steps leading from the flow
equation for GΛ in (2.10) to the one for the effective action ΓΛ in (2.18).
The resulting expression then reads as

0 =
(
ζ,∆Qζ

)
+ tr

(
∆Q

((
∂2Γ[ζ, ζ]

)−1
)

11

)
(2.71)

− (T · ζ, ∂ζ) Γ[ζ, ζ]−
(
ζ, T · ∂ζ

)
Γ[ζ, ζ]

and hence generates all Ward identities for the 1PI vertex functions.
Now, after this general discussion, we want to apply (2.71) and derive the

Ward identities associated with a U(1) phase transformation in the one-band
Hubbard model

S(ψ,ψ) = −
∫
k
ψkQk,kψk + U

∫
k1,k2,k′1,k

′
2

ψk1
ψk2

ψk′1ψk′2 . (2.72)

Here, the quadratic part is given by Qk,k = ik0−ξ(k) with a dispersion rela-
tion ξ(k) and the condensed notation of k = (k0,k) introduced in (2.1). We
now consider the space-time dependent field transformations ψ′r = eiα(r)ψ′r,

ψ
′
r = e−iα(r)ψr which, in its infinitesimal form, read as

ψ′r = ψr + iα(r)ψr, ψ
′
r = ψr − iα(r)ψr. (2.73)

Note that we switched here from frequency- and momentum-dependent fields
to its space-time representation with r = (τ, r) including imaginary-time τ
and spatial coordinates r. The transformation in (2.73) then describes a
local U(1) phase transformation and, by switching back to frequency and
momentum space, the same transformation is given by the convolution

ψ′k = ψk + i

∫
q
α(−q)ψk+q, ψ

′
k = ψk − i

∫
q
α(−q)ψk−q. (2.74)

The corresponding generators therefore read as

Tkk′ = i

∫
q
α(−q)δk′,k+q, T kk′ = −i

∫
q
α(−q)δk,k′−q. (2.75)
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=

Figure 2.5: U(1)-Ward identities for the 1PI vertex functions. The right-hand side
equals the flow equation for γ(2n) with a replaced single-scale propagator SΛ, and the left
hand side shows the sum of differences of γ(2n) functions with q subtracted (added) in the
i-th outgoing (ingoing) leg.

Using (2.71) and taking the functional derivative with respect to α(−q), we
obtain the following identity∫
k

∂Γ

∂ζk
ζk+q −

∂Γ

∂ζk+q

ζk =

∫
k

[Qk,k −Qk+q,k+q]
[((

∂2Γ
)−1

k+q,k

)
11

+ ζkζk+q

]
.

(2.76)

Starting from this latter expression, we can now generate all orders of Ward
identities just by expanding in powers ζ, ζ and by comparing coefficients. In
the n-th order Ward identity, i.e. in the identity for the coefficients of order
O((ζζ)n), the right-hand side of (2.76) generates all diagrams of the flow
equation in Fig. 2.2 but with a modified single-scale propagator

Skk′ = Gk,k · [Qk,k −Qk+q,k+q] ·Gk+q,k+q · δk′,k+q. (2.77)

Here, G denotes the full propagator and Q is the quadratic part of the action
(2.72). The left-hand side of the n-th order Ward identity then simply
consists of a sum over n differences where γ(2n) with q added to the i-th
ingoing leg is subtracted from γ(2n) with −q added to the i-th outgoing leg.
The pictorial representation of all expansion orders of (2.76) is shown in
Fig. 2.5. For the first order Ward identity, we therefore obtain the following
exact relation between the 2-point 1PI vertex function or self-energy Σ and
the 4-point 1PI vertex function γ(4):

Σw,w − Σw+q,w+q =

∫
k

[Qk,k −Qk+q,k+q] γ
(4)
w,k+q;w+q,kGk+q,k+qGk,k. (2.78)

Note that this statement is based on the very general assumption that both
the functional integration measure and the non-quadratic part of the action
remain invariant under the infinitesimal field-transformation (2.65). Within
the functional RG approach, we equipped the quadratic part of the action
with some parameter dependence Qk,k → QΛ

k,k in order to extrapolate from
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a solvable model at large values of Λ to the original full model at Λ→ 0. As
this introduced Λ-dependence only changes the quadratic part of the action,
the requirements for (2.78) remain valid and equation (2.78) holds on all
scales Λ. Yet, if one truncates the infinite hierarchy of flow equations, for
example by setting γ(2n) = 0 for all n > 2, the second order Ward identity
is no longer fulfilled as this would also include finite contributions from γ(6).
Even the first order Ward identity (2.78) is then violated by terms in the
order of O((γ(4))3) as shown by Katanin [6]. Here, it was shown that the
case of q = (q0,0, σ) in (2.78) leads to

∂w0ΣΛ
w,w = −

∫
k
γ

(4)Λ
w,k;k,w

(
GΛ
k

)2
=

∫
k̃

{
V

(4)Λ

w̃,k̃;k̃,w̃
− 2V

(4)Λ

w̃,k̃;w̃,k̃

}(
GΛ
k̃

)2
, (2.79)

where, assuming spin-rotational invariance, the spin sum was already per-
formed with the notation of (2.61) and the Λ dependence was introduced.
Now, if (2.79) is fulfilled, the Λ-derivative of the right-side should equal the
w0-derivative of the flow equation ∂ΛΣΛ

w,w due to ∂Λ∂w0ΣΛ
w,w = ∂w0∂ΛΣΛ

w,w.
This latter equation and therefore the Ward identity (2.79) does not hold if
the hierarchy of flow-equations is truncated with γ(2n) = 0 for all n > 2 as
shown in [6]. Including certain terms from the neglected γ(6) contribution to
γ(4), Katanin showed that this improves the fulfillment of (2.79) to correction
terms in the order of O((γ(4))4). A simplified version of this scheme, known
as Katanin truncation, which replaces the single-scale propagator SΛ by the
total derivative dGΛ/dΛ, still leads to an essential improvement [14,15] and,
for example, recovers dressed RPA.

2.5 Truncating the Hierarchy of Flow Equations

In order to justify the dropping of the six-point 1PI vertex function γ(6)

in the truncation of (2.63), we follow the argumentation of Salmhofer et
al. [16]. Assuming weak to moderate two-particle interactions and γ(6) = 0
at bare level, one can easily show that for high energy scales, where γ(4)

is still relatively small, the contributions of γ(6) are likewise small as they
involve only higher order terms of γ(4). At intermediate scales, a phase-space
argument for sufficiently smooth and curved Fermi-surfaces then proves that
the contribution of γ(6) remains small even though the scale dependent γ(4)

is no longer small. Only at low energy scales, where γ(4) starts to diverge, the
decreasing phase-space cannot suppress the contribution of γ(6), and the flow
has to be stopped. The remaining modes must then be treated with different
approaches, for example, by using mean-field analysis or more sophisticated
methods. For a more detailed discussion we refer to the following two articles
[9, 16].
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2.6 Renormalized Mean-Field Analysis

At sufficiently low energy scales Λ, the four-point function γ(4)Λ starts to
diverge and thus signals a possible onset of spontaneous symmetry breaking.
According to the previous discussion, the flow has to be stopped before that
critical energy scale Λc as the applied truncation of the flow-equation hier-
archy is no longer justified. Although it is in principle possible to continue
the flow into the symmetry broken phase and to account for order-parameter
fluctuations, these techniques have only been worked out for simplified mod-
els and are currently too demanding for an investigation of complex multi-
orbital systems with competing ordering channels.

In this thesis, we therefore resort to a mean-field treatment of an ef-
fective theory obtained at low-energy scales. Similar to the implementa-
tion presented by Reiss et al. [17], the flow is stopped at an energy scale
ΛMF & Λc, and the renormalized interaction part is decoupled into its lead-
ing mean-field channels. For the moment, we assume that the most leading
low-energy correlations appear exclusively within the pairing channel, i.e.

γ(4)ΛMF (k1, k2; k3, k4) ≈ V pair
s1,...,s4(k1,k3)δk2,−k1δk4,−k3 , (2.80)

with V pair
s1,...,s4(k1,k3) = γ(4)ΛMF (k1s1,−k1s2;k3s3,−k3s4). Note that this

latter assumption can of course be easily extended to additional correlation
channels, which then merely increase the number of mean-fields during the
calculation. The effective low-energy theory taken from the functional RG
is then given by the following reduced Hamiltonian

HΛ =
∑
ks

ξ(k)c†kscks +
1

2N

∑
s1,...,s4

∑
k,q

V pair
s1,...,s4(k, q)c†−ks1c

†
ks2
cqs3c−qs4 .

(2.81)
It is well-known that mean-field theory gives an exact solution of these re-
duced types of Hamiltonians in the thermodynamic limit [18]. We therefore
replace the quartic interaction part by

c†−ks1c
†
ks2
cqs3c−qs4 = 〈c†−ks1c

†
ks2
〉cqs3c−qs4 + c†−ks1c

†
ks2
〈cqs3c−qs4〉

− 〈c†−ks1c
†
ks2
〉〈cqs3c−qs4〉

+
(
c†−ks1c

†
ks2
− 〈c†−ks1c

†
ks2
〉
)(

cqs3c−qs4 − 〈cqs3c−qs4〉
)

(2.82)

and perform the usual mean-field approximation of neglecting order-parameter
fluctuations in the last line of (2.82). Introducing the following two param-
eters

∆k,ss′ = − 1

N

∑
k′,σσ′

V pair
s′,s,σ,σ′(k,k

′)〈ck′σc−k′σ′〉
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∆∗k,ss′ = − 1

N

∑
k′,σσ′

V pair
σ′,σ,s,s′(k

′,k)〈c†−k′σ′c
†
k′σ〉

=
1

N

∑
k′,σσ′

V pair
σ′,σ,s′,s(k

′,−k)〈c†−k′σ′c
†
k′σ〉,

the Hamiltonian in (2.81) then reads as

HΛ =
∑
ks

ξ(k)c†kscks +
1

2

∑
k,s1s2

∆k,s1s2c
†
ks1
c†−ks2 −

1

2

∑
q,s3s4

∆∗−q,s4s3c−qs4cqs3 +K

=
1

2

∑
k

C†k

(
ξ(k)σ0 ∆̂k

∆̂†k −ξ(−k)σ0

)
Ck +

∑
k

ξ(k) +K, (2.83)

with σ0 denoting the two-dimensional unit matrix and ∆̂k, C†k given by

∆̂k =

(
∆k,↑↑ ∆k,↑↓
∆k,↓↑ ∆k,↓↓

)
, C†k =

(
c†k↑ c†k↓ c−k↑ c−k↓

)
. (2.84)

Note that in (2.83), we also made use of ∆̂†k = (∆̂T
k )∗ = −(∆̂−k)∗ and

introduced the c-number term K determined by

K = − 1

2N

∑
s1,...,s4

∑
k,q

V pair
s1,...,s4(k, q)〈c†−ks1c

†
ks2
〉〈cqs3c−qs4〉. (2.85)

Assuming a unitary pairing state, which means that ∆̂k∆̂†k is proportional
to the unit matrix (see Sigrist and Ueda [19] for details), we can diagonalize
the quadratic Hamiltonian (2.83):

HMF =
1

2

∑
k

C†k

(
ξ(k)σ0 ∆̂k

∆̂†k −ξ(−k)σ0

)
Ck +

∑
k

ξ(k) +K (2.86)

=
1

2

∑
k

C†kUk

(
Ekσ0 0

0 −Ekσ0

)
U †kCk +

∑
k

ξ(k) +K

=
∑
ks

Ekα
†
ksαks −

∑
k

Ek +
∑
k

ξ(k) +K. (2.87)

Here, the two twofold degenerate eigenvalues λ1,2 = ±Ek were obtained

by using det

(
A B
C D

)
= det(AD − BC) for commuting two-dimensional

matrices C,D, which then yields the associated energy spectrum

Ek =

√
ξ2
k + tr(∆̂k∆̂†k)/2. (2.88)
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The unitary matrix Uk in (2.87) can likewise be identified as

Uk =

(
ûk v̂k
v̂∗−k û∗−k

)
=

1√
2Ek(Ek + ξk)

(
σ0(Ek + ξk) −∆̂k

∆̂†k σ0(Ek + ξk)

)
(2.89)

and determines the quasi-particle excitations α†ks, αks mixing particle and
hole states:

αks =
∑
s′

u∗k,ss′cks′ + v−kss′c
†
−ks′ . (2.90)

In matrix-vector notation, (2.90) can also be written as(
α†k↑ α†k↓ α−k↑ α−k↓

)
=
(
c†k↑ c†k↓ c−k↑ c−k↓

)
Uk. (2.91)

The grand canonical potential of (2.87) can be easily expressed as

Ω = −T
∑
ks

ln
(

1 + e−βEk

)
−
∑
k

Ek +
∑
k

ξ(k) +K, (2.92)

and the calculation of a stationary point in Ω turns out to be equivalent to
the self-consistent gap equation:

0 =
∂Ω

∂〈c†−ks1c
†
ks2
〉
⇐⇒ ∆k,s2s1 = − 1

N

∑
q,s′s

V pair
s1s2s′s

(k, q)
∆q,s′s

2E(q)
tanh

(
E(q)

2T

)
.

(2.93)
In order to evaluate Ω in a stationary point and to compare the free energies
of different gap solutions, we apply (2.93) and obtain the following expression
for the free energy in a stationary solution

Ωstat =− T
∑
ks

ln
(

1 + e−βE(k)
)

+
1

2

∑
k,s1s2

∆†k,s2s1∆k,s2s1

2E(k)
tanh

(
E(k)

2T

)
+
∑
k

ξ(k)−
∑
k

E(k). (2.94)

During the later analysis, we then take V pair from the functional RG at a
scale ΛMF and minimize the grand-canonical potential (2.92). This in turn
can be achieved by locating the stationary points of Ω using (2.93) and by
comparing the associated free energies via (2.94). Note that this combined
functional RG and mean-field approach goes far beyond conventional mean-
field studies as the functional RG takes into account all fluctuations down
to an energy scale ΛMF & Λc. For a reasonable estimate, we can also
consider the linear gap-equation as a first-order expansion of (2.93) in ∆̂k,
which becomes exact in the vicinity of the superconducting transition. The
self-consistent gap equation then reads as

∆k,s2s1 = − 1

N

∑
q,s′s

V pair
s1s2s′s

(k, q)
∆q,s′s

2ξ(q)
tanh

(
ξ(q)

2T

)
+O(∆2)
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=
1

λ

∑
s′s

〈V pair
s1s2s′s

(k, q)∆q,s′s〉q∈FS +O(∆2) (2.95)

with a constant λ being equivalent to [19]:

1

λ
= −N0

∫ Λc

0
dξ

tanh
(
ξ(q)
2T

)
ξ(q)

= −N0 ln(1.13Λc/T ). (2.96)

In linear order, the gap-equation (2.95) therefore reduces to an eigenvalue
problem in the form of

λ∆k,s2s1 =
∑
s′s

〈V pair
s1s2s′s

(k, q)∆q,s′s〉q∈FS , (2.97)

and the gap ∆ of largest negative eigenvalue λ determines the transition
temperature Tc through

Tc = 1.13Λce
1/(N0λ) ≤ 1.13Λc. (2.98)

During the later discussion, we will usually compare the flow of eigenvalues
in order to identify the favored type of order. From (2.98) it is also apparent
that the critical energy scale Λc already gives an upper bound for Tc. At
T = 0, we can further apply (2.94) to determine the ground-state energy [20]:

ΩT=0 =
1

2

∑
k,s

(ξ(k)− E(k)) +
1

4

∑
k

tr
(

∆†k∆k

)
E(k)

≈ −N0tr〈(∆†k∆k)〉k∈FS . (2.99)

Here, (2.99) implies that gap zeros tend to be unfavorable due to a lower
condensation energy.





Chapter 3

Unconventional
Superconductivity

According to Landau’s theory of phase transitions, different states of matter
can be understood from the perspective of spontaneous symmetry breaking.
Here, the symmetry of the ground-state is spontaneously reduced below a
certain critical temperature, and the system develops some kind of additional
order. As a consequence, one can find a field variable which acquires a finite
expectation value, known as order parameter.

In this chapter, we study the symmetry classification of the supercon-
ducting order on different lattice systems and review some of the current
experimental methods to identify the detailed type of pairing order. Based
on the superconducting case, we then extend this classification to general
particle-particle and particle-hole condensates in arbitrary lattice systems.
In addition, we also discuss the influence of spin-orbit coupling on this sym-
metry classification, which is in turn required for the study of strontium
ruthenate in Chapter 6.

3.1 Symmetry Classification of Superconducting
Order

In order to classify the superconducting order, we first have a look at the
ground-state wave function of the mean-field Hamiltonian (2.87):

HMF =
∑
ks

Ekα
†
ksαks −

∑
k

Ek +
∑
k

ξ(k) +K.

Due to the positive-definiteness of Ek, the ground-state of HMF can be
easily derived as a state which is annihilated by all αks, i.e.

|BCS〉 =
∏
k

αk↑αk↓α−k↓α−k↑|0〉,
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and which obviously constitutes an eigenstate of HMF with a ground-state
energy E0 =

∑
k(ξ(k) − Ek) + K. If we now insert the definition (2.90) of

the Bogoliubov quasi-particles, the ground-state can be written as

|BCS〉 = c
∏
k

(
1 + akc

†
−k↑c

†
k↓ + bkc

†
−k↓c

†
k↑ + a′kc

†
−k↑c

†
k↑ + b′kc

†
−k↓c

†
k↓ (3.1)

+ckc
†
−k↑c

†
−k↓c

†
k↑c
†
k↓

)
|0〉

with a normalization factor c, and the remaining parameters defined by(
a′k ak
b′k bk

)
= −v̂kû−1

k = ∆̂k/(Ek + ξk), ck = akb
′
k − a′kbk. (3.2)

Using the shortened notation of φαβ(k) = −(v̂kû
−1
k )αβ, the ground-state

|BCS〉 now appears as a coherent superposition of Cooper-pairs

|BCS〉 =c · exp

(∑
k

φαβ(k)c†−kαc
†
kβ

)
|0〉, (3.3)

where each pair is characterized by one and the same wave function φαβ(k).
This, by the way, illustrates that all pairs condensed into the same state,
similar to the superfluid phase of interacting bosons. Note that the pair wave
function φαβ in (3.3) can also be expressed as ground-state expectation value
with respect to |BCS〉:

φαβ(k) = 〈c†−kαc
†
kβ〉.

It is further apparent that the global U(1)-phase transformation

c† → eiγ/2c†, c→ eiγ/2c (3.4)

is broken in |BCS〉 as this changes the phase of the pair wave function φαβ →
eiγφαβ and leads to different ground-states |BCS′〉 (see [21] for a detailed
discussion). The corresponding one-parametric manifold of different ground-
states further suggests the existence of low-energy excitations, the associated
Goldstone bosons, which in turn are absorbed by the electromagnetic field
and give rise to the characteristic Meissner effect of charged superfluids.

Besides this U(1)-phase symmetry, the ground-state can also break addi-
tional symmetries of the underlying Hamiltonian, as for example rotational
symmetries in spatial- and spin-space, depending on the detailed form of
the Cooper-pair wave function φαβ(k). The different two-particle bound-
states of equal binding energy apparently form an irreducible representation
of the underlying symmetry group. According to a fundamental theorem of
Schur, the eigenvalues of the Casimir operators in this symmetry group can
be used to classify the different irreducible representations. For example, in
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the hydrogen atom, the squared angular-momentum operator L2 presents a
Casimir invariant with eigenvalues ~l(l+1), and, for a given principal quan-
tum number n, all states with the same angular momentum l also have the
same energy and transform in a (2l+ 1)-dimensional irreducible representa-
tion. Actually, the energy spectrum in the hydrogen atom only depends on
the quantum number n due the peculiarity of a 1/r-potential and the result-
ing larger symmetry equivalent to the four-dimensional rotation group [22].

Coming back to the superconducting order and assuming rotational sym-
metry in spin- and spatial-coordinates, the pair wave function φαβ(k)ls for a
given angular-momentum and spin quantum-number l and s can be written
as a superposition of the (2l + 1) · (2s+ 1) basis functions cslYlmlχsms :

φαβ(k)ls = 〈c†−kαc
†
kβ〉 =

s∑
ms=−s

l∑
ml=−l

amlmscsl(|k|)Ylml(k̂)χsms(α, β). (3.5)

Here, Ylml labels spherical harmonics, csl(|k|) carries the radial dependence,
and χsms denotes the total spin-singlet and triplet configurations:

χ1ms(α, β) =


σ+
αγεγβ for ms = 1

σ3
αγεγβ for ms = 0

σ−αγεγβ for ms = −1

, χ00(α, β) = εαβ. (3.6)

Note that in (3.6) we used the Pauli-matrices σ+ = σ1 + iσ2, σ− = σ1− iσ2

and σ3 as well as the antisymmetric tensor εαβ and an implicit summation
over the index γ. For a given radial dependence csl(|k|) and quantum num-
bers l,s, all pair-wave functions within the (2l + 1) · (2s + 1)-dimensional
representation (3.5) have the same binding energy by symmetry and, conse-
quently, lead to the same transition temperature Tc. The remaining labelsml

and ms denote the quantum numbers of the projected angular-momentum
and spin. Using the vector notation of σ̃ = (σ+, σ3, σ−), we can further
rewrite (3.5) in the following compact way for spin-singlet and triplet pair-
ing orders

φαβ(k)l0 = 〈c†−kαc
†
kβ〉 = Φ(k)εαβ

φαβ(k)l1 = 〈c†−kαc
†
kβ〉 =

(
~Φ(k) · σ̃

)
αγ
εγβ (3.7)

with Φ(k) and the components of Φ(k) transforming in an irreducible rep-
resentation of the underlying space-group. Apparently, for l 6= 0 and s 6= 0,
the pair wave function φαβ(k)ls and the associated ground-state of (3.3)
break rotational symmetry in spatial- and spin-coordinates. For example,
in the superfluid A-phase and A1-phase of He3, the pair wave functions read
as

A-phase: φαβ(k) = Y11(k)σ3
αγεγβ ⇐⇒ (k̂x + ik̂y)(| ↑↓〉+ | ↓↑〉) (3.8)
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A1-phase: φαβ(k) = Y11(k)σ+
αγεγβ ⇐⇒ (k̂x + ik̂y)| ↑↑〉,

and, due to l = s = 1 in both states, the rotational symmetries in spatial-
and spin-coordinates are broken. In addition, the finite quantum numbers
ml = 1, ms = 0 in the A-phase and ml = 1, ms = 1 in the A1-phase both
lead to the breaking of time-reversal symmetry. A two-dimensional lattice
representation of the A-phase in (3.8) will further be discussed in the context
of ruthenates (see Chap. 6).

Another peculiarity of the pair wave function φαβ(k)ls = 〈c†−kαc
†
kβ〉 arises

from the required antisymmetry under particle exchange. As it is well
known, this exchange symmetry restricts Ylm to be odd (even) for spin-triplet
(spin-singlet) pairing which is, by the way, not required in the particle-hole
condensates discussed below. Yet, before we generalize this symmetry char-
acterization, we first note that the gap-function ∆̂k in (3.2) transforms in
the same way as the pair wave function φαβ(k). The associated spin-singlet

and triplet contribution of ∆̂k can therefore be separated into

s = 0 : ∆̂k = δ0
0(k)(| ↑↓〉 − | ↓↑〉)

=

(
0 δ0

0(k)
−δ0

0(k) 0

)
= iσyψ(k) (3.9)

s = 1 : ∆̂k = δ1
−1(k)| ↓↓〉+ δ1

0(k)(| ↑↓〉+ | ↓↑〉) + δ1
1(k)| ↑↑〉

=

(
δ1

1(k) δ1
0(k)

δ1
0(k) δ1

−1(k)

)
= i (d(k) · σ)σy, (3.10)

with even ψ(k) and odd d(k) basis functions similar to (3.5). The matrices
σ1,2,3 in (3.9) and (3.10) as well as its formal vector notation σ are again
determined by Pauli-matrices, and the so-called d-vector is defined by

d1(k) =
1

2
(δ1
−1(k)− δ1

1(k))

d2(k) =
1

2i
(δ1
−1(k) + δ1

1(k))

d3(k) = δ1
0(k).

The advantage of the d-vector notation here lies in its transparent transfor-
mation behavior as the spin-one representation of the spin rotation simply
transforms d(k) as an axial vector. This in turn means that under spin
rotation gs we have

gsd(k) = D+(gs)d(k)

with a three-dimensional rotation matrix D+(gs). The (+) here means that,
if we fix the k-dependence, the vector d remains invariant under space in-
version which then accounts for the notion of an axial vector. On the other
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hand, the k-dependence of d(k) must of course be odd under space inver-
sion. This is a very important statement for the later discussion of spin-orbit
effects, which then couples the rotation in spin and coordinate space.

transformation singlet s = 0 triplet s = 1

space inversion Iψ(k) = ψ(−k) Id(k) = −d(−k)

time inversion Kψ(k) = ψ∗(k) Kd(k) = d∗(k)

spin rotation gsψ(k) = ψ(k) gsd(k) = D+(gs)d(k)

point group gpψ(k) = ψ(D−(gp)k) gpd(k) = d(D−(gp)k)

Table 3.1: Transformation behavior of the singlet ψ(k) and triplet d(k) gap functions
under space inversion I, time inversion K, spin rotation gs and point-group gp operations.

In the following table, we summarize the transformation behavior of the
superconducting gap function. Here, the sign in the representation matrices
D±(g) denotes the transformation behavior under space inversion with k
transforming as a vector and d as an axial-vector. Further details on the
symmetry classification can be found in the review article of Sigrist et al. [19]
and in the textbook of Mineev [20]. In the following section, we will shortly
address the classification of general particle-particle and particle-hole order-
parameter fields.

3.2 Particle-Particle and Particle-Hole Condensates

After we classified the superconducting order in terms of irreducible rep-
resentations of the underlying symmetry group, we can also extend this
analysis to general particle-particle φ = 〈c†c†〉 and particle-hole φ = 〈c†c〉
like order-parameter fields. Applying Landau’s approach of expanding the
free energy in polynomials of the order-parameter field φ, i.e.

F [φ] ∝ (T − Tc)φ2 + uφ4 + . . . ,

it is immediately apparent that the fields φ of same Tc form an irreducible
representation of the normal-state symmetry group. Using the same nota-
tion as in (3.7), with σ̃ = (σ+, σ3, σ−) and the antisymmetric tensor εαβ,
the particle-particle like order-parameter fields are characterized by

〈c†−kαc
†
k+Qβ〉 = ΦQ(k)εαβ

〈c†−kαc
†
k+Qβ〉 =

(
~ΦQ(k) · σ̃

)
αγ
εγβ. (3.11)

Here, we also allowed for a nonzero center-of-mass momentum Q which
leads to an additional breaking of translational symmetry and is commonly
known as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [23]. Analogous
to the spin-singlet and triplet particle-particle fields in (3.11), we can like-
wise decompose the particle-hole fields into irreducible representations of
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(a) (b) (c) (d)

Figure 3.1: Different examples of particle-hole condensates with finite angular momen-
tum on the square lattice. (a) Singlet d-density wave phase with alternating plaquette
currents, (b) triplet d-density wave phase with alternating currents of spin-up (full-lined
arrows) and spin-down (dashed-line arrows). (c) Alternating currents along the vertical
bonds and (d) Peierls state with enhanced (thick lines) and reduced (thin lines) hopping
amplitudes. (a) and (c) break time-reversal symmetry, (a)-(d) break the C4v point-group
symmetry as well as translational symmetry, (b) breaks also spin-rotational symmetry.

the spin-rotation group and obtain the analogous spin-singlet and triplet
order-parameter fields

〈c†kαck+Qβ〉 = ΦQ(k)δαβ

〈c†kαck+Qβ〉 =
(
~ΦQ(k) · σ

)
αβ
. (3.12)

Here, δαβ indicates the Kronecker delta and σ is given by σ = (σ1, σ2, σ3)
with the usual Pauli-matrices σ1,2,3. Note that the singlet and triplet con-
tributions in (3.11) and (3.12) are quite different due to the distinct trans-
formation behavior of particle- and hole-operators under spin rotation. On
the other hand, the k-dependent parts ΦQ(k) and ~ΦQ(k) transform in both
particle-particle and particle-hole cases as irreducible representations of the
space group which leaves Q invariant modulo reciprocal lattice vectors. In
Fig. 3.1, we illustrate four examples of unconventional (non s-wave) particle-
hole condensates on the square lattice. The corresponding order-parameter
fields for (a)-(d) read as follows:

Q = (π, π), S = 0, L ∼ dx2−y2 : 〈c†kαck+(π,π)β〉 ∝ (cos(kx)− cos(ky))δαβ

Q = (π, π), S = 1, L ∼ dx2−y2 : 〈c†kαck+(π,π)β〉 ∝ (cos(kx)− cos(ky))(n · σ)αβ

Q = (π, 0), S = 0, L ∼ py : 〈c†kαck+(π,0)β〉 ∝ sin(ky)δαβ

Q = (π, 0), S = 0, L ∼ px : 〈c†kαck+(π,0)β〉 ∝ sin(kx)δαβ.

Note that the usual charge- and spin-density waves of ordering vector Q are
similarly described by an s-wave particle-hole condensate in the spin-singlet
and triplet channel, respectively. For a detailed description of the experi-
mental signatures and the excitation spectrum in unconventional particle-
hole condensates we refer to the articles of Nayak et al. [24] and Garcia-
Aldea [25].
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During the next section, we illustrate how to derive the irreducible rep-
resentations of a given lattice symmetry and how to calculate all associated
basis functions ΦQ(k) and ~ΦQ(k). This in turn provides a complete char-
acterization of two-particle like order-parameter fields on a given lattice,
and the classification of more complicated order-parameters containing more
than two operators can be accomplished in a similar fashion.

E: identity operation

Cn: rotation through 2π/n with n = 1, 2, 3, 4, 6
the axis of highest n is called principle

σv: vertical reflection plane - passing through
the origin and the principle axis

σd: special case of σv but also bisecting the angle between
two two-fold rotational axes perpendicular to the principal axis

σh: horizontal reflection plane - passing through
the origin and perpendicular to the principle axis.

Sn: rotation through 2π/n followed by a reflection in the plane
perpendicular to the axis of rotation

Table 3.2: Symmetry operations of point groups in Schoenflies notation.

3.3 Elements of Representations Theory

In the following section, we want to recap the basic notions of representation
theory in order to calculate the above basis functions ΦQ(k) and ~ΦQ(k) for
different lattice systems. However, to begin, we start with the definition
of an abstract group consisting of a set of elements G together with some
operation ◦ acting on that set.

Definition (Group)

A group G = (G, ◦) consists of a set G and an operation ◦ such that:

1) For all a, b ∈ G, the result a ◦ b is also in G

2) The operation ◦ is associative, i.e. a ◦ (b ◦ c) = (a ◦ b) ◦ c holds for all
elements a, b, c ∈ G

3) There exists a unit element such that a ◦ e = e ◦ a = a for a ∈ G
4) For each a ∈ G, there exists an inverse element a−1 ∈ G such that

a ◦ a−1 = a−1 ◦ a = e.

As an example, we consider the set of transformations which map a given
lattice into itself by leaving one point fixed. This point does not necessarily
has to be a lattice point, and the corresponding transformations are com-
monly termed as point groups. The elements in these point groups typically
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consist of lattice transformations like the one shown in Tab. 3.2. Note that
the last two operations of Tab. 3.2 are contained in the first four in case of a
two-dimensional lattice structure. As a useful example, which will be taken
up in Chap. 5 and Chap. 6, we depicted the point-groups for the square-
and hexagonal-lattice structures in Fig. 3.2. Here C−1

3,4,6 denote the inverse
elements of C3,4,6, and all other elements equal their own inverse. Another
definition which is essential when discussing representation theory is the
notion of conjugate elements and classes given in the following.

Figure 3.2: Point group elements of the square-lattice C4v (left) and hexagonal-lattice
structure C6v (right).

Conjugate Elements and Classes in a Group

1) Two elements a, b of the group G = (G, ◦) are conjugate, written a ∼ b,
if and only if there is another element x ∈ G such that b = x ◦ a ◦ x−1.

2) A class is the entirety of conjugate elements.

In order to calculate the classes of a given group, one can simply compute
all conjugate elements for each group element. At this, it turns out that the
group C4v and C6v consist of 5 and, respectively, 6 different classes written
down below

C4v : {E}, {C2}, 2C4 = {C4, C
−1
4 }, 2σv = {σ1

v , σ
2
v}, 2σd := {σ1

d, σ
2
d}

C6v : {E}, {C2}, 2C3 = {C3, C
−1
3 }, 2C6 = {C6, C

−1
6 },

3σv = {σ1
v , σ

2
v , σ

3
v}, 3σd := {σ1

d, σ
2
d, σ

3
d}. (3.13)

Later, it will turn out that the number of classes in a group equals the
number of irreducible representations, but, before that, we want to review
the basic concepts of representation theory. The idea here is to avoid the
calculation with abstract group elements and to represent each element by
objects that are more convenient to deal with, for example linear operators
in the form of square matrices. Besides that, representation theory often
allows to make statements about degeneracies in energy spectra or enables
to determine matrix elements without explicit integration. For this reason,
we summarize the following notions required for later discussions.
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Representation of a Group

A group R = (R, ·) is a representation of another group G = (G, ◦) if there
is a one-to-one mapping M : G 7→ R such that M(a ◦ b) = M(a) ·M(b) for
all a, b in G. In all cases considered here, R is a set of n-dimensional square
matrices, and “·” denotes the usual matrix multiplication. In the following,
we use the abbreviation Γ to denote a representation of a group G.

1) If the representation Γ consists of (n × n)-matrices, it is termed n-
dimensional.

2) Two n-dimensional representations Γ1,Γ2 of a group G are equivalent,
if there is a regular (n× n)-matrix U such that N(a) = U ·M(a) ·U−1

for all elements a in G. Here, N(a) and M(a) denote the matrices
assigned to a in the representations Γ1 and Γ2, respectively.

3) A representation Γ is denoted as reducible if it is equivalent in terms of
(2) to a representation where all matrices have a common block struc-

ture M(a) =
(M1(a) 0

0 M2(a)

)
. If this is not possible, the representation

is denoted as irreducible.

Two immediate consequences follow from this definition. First, the repre-
sentation matrix of the unit element e is always given by a unit matrix,
and, secondly, each group has a trivial representation provided by assigning
M(g) = 1 to all group elements g ∈ G. In order to determine all irre-
ducible representations of a given group or to figure out whether a given
representation is reducible, we need the following concept of characters.

The Usage of Characters

The character of a group element g in a representation Γi is determined by
the trace χi(g) = tr(D(g)) of its representing matrix D(g).

1) The dimension ni of a representation Γi is given by the character of
the identity map e, i.e. ni = χi(e).

2) The number of classes nc in a given group equals the number of (in-
equivalent) irreducible representations.

3) The characters χi of a representation Γi are equivalent for all elements
in the same class, and, since there are as many classes as (inequivalent)
irreducible representations, we can arrange all characters in a (nc×nc)-
character table:

G C1 · · · Cnc
Γ1 χ1(C1) · · · χ1(Cnc)
...

...
...

Γnc χnc(C1) · · · χnc(Cnc)
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4) There are two very elegant orthogonality relations which allow to com-
pute such character tables. The first one states that the scalar product
of two columns gives

nc∑
i=1

χi(Cq)χ∗i (Cq′) = δqq′N/hq, (3.14)

with N denoting the number of elements in the entire group, and hq
labeling the number of elements in class Cq. The second relation pro-
vides a similar relation for the weighted scalar product of two rows in
the character table:

nc∑
q=1

hqχi(Cq)χ∗j (Cq) = δijN. (3.15)

It is now an easy task to determine the character tables for the two point
groups C4v and C6v. Applying (3.14) to the classes Cq = C′q = {e} and using
χi(e) = ni, we obtain

C4v : n2
1 + n2

2 + n2
3 + n2

4 + n2
5 = 8

C6v : n2
1 + n2

2 + n2
3 + n2

4 + n2
5 + n2

6 = 12

as the group C4v (C6v) consists of 8 (12) group elements and 5 (6) classes.
This in turn implies that C4v has one two-dimensional and four one-dimensional
irreducible representations, whereas C6v reveals two two-dimensional and
four one-dimensional representations. Therefore, the first columns of the
character tables in Fig. 3.3 are already determined, and, as each group has
a trivial representation with M(g) = 1 for all g ∈ G, one has in addition one

C4v E C2 2C4 2σv 2σd
A1 1 1 1 1 1

A2 1 1 1 -1 -1

B1 1 1 -1 1 -1

B2 1 1 -1 -1 1

E1 2 -2 0 0 0

C6v E C2 2C3 2C6 3σv 3σd
A1 1 1 1 1 1 1

A2 1 1 1 1 -1 -1

B1 1 -1 1 -1 1 -1

B2 1 -1 1 -1 -1 1

E1 2 -2 -1 1 0 0

E2 2 2 -1 -1 0 0

Figure 3.3: Character tables for the two point groups C4v (left) and C6v (right). The dif-
ferent rows denote the different irreducible representations, the columns label the various
classes in each group (see Eq. (3.13)).

trivial row in each character table (see Fig. 3.3). Using the orthogonality of
columns and rows according to Eq. (3.14) and (3.15), we can also determine
the remaining entries of the character tables illustrated in Fig. 3.3.

In order to decide whether a given representation of a group G is irre-
ducible, one simply has to compute its characters and see whether these
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coincide with a row in the associated character table. If this is not the
case, the representation is reducible and there is an equivalent representa-
tion where all matrices Mred(g) are of the same block structure. Each of
these blocks then forms an irreducible representation of the group G, and
we can write Mred(g) as a direct sum

Mred(g) = c1M1(g)⊕ c2M2(g)⊕ · · · cncMnc(g) (3.16)

for all g in G with

ci =
1

N

nc∑
q=1

hqχred(g)χ∗q(g).

The character table therefore allows an efficient way of fully reducing a given
representation, and, for example, gives information on crystal field splittings
as the irreducible representations of the full rotation group operating on
the atomic states is reducible in the lower symmetry subgroup of a crystal
structure. This then leads to a splitting of the former degenerate states
according to (3.16) with ci non-degenerate levels which transform with Mi.

Moreover, if we have the character tables for two different groups G and
K, we can easily write down the character table for the direct product G⊗K:

χG⊗Kij (gk) = χG1
i (g)χG2

j (k). (3.17)

From this, we can then derive the character tables for D4h = C4v ⊗ CI
or Cnh = Cn ⊗ CI , where CI is the group consisting only of the identity
map and of the space inversion (x, y, z) → (−x,−y,−z). As an example,
we determine the character table of the tetragonal symmetry group D4h in
Tab. 3.3.

3.3.1 Basis Functions for Irreducible Representations

As discussed in Sec. 3.2, the particle-particle φ = 〈c†c†〉 and particle-hole
φ = 〈c†c〉 like order-parameter fields can be classified in terms of irreducible

C4v E C2 2C4 2σv 2σd
A1 1 1 1 1 1

A2 1 1 1 -1 -1

B1 1 1 -1 1 -1

B2 1 1 -1 -1 1

E1 2 -2 0 0 0

CI E I

A1 1 1

A2 1 -1

Figure 3.4: Tetragonal symmetry (left) with one four-fold and four two-fold rotational
axes as well as the character tables for the two point groups CI (middle) and C4v (right).
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D4h E C2 2C4 2σv 2σd I C2I 2C4I 2σvI 2σdI

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 -1 -1 1 1 1 -1 -1

B1g 1 1 -1 1 -1 1 1 -1 1 -1

B2g 1 1 -1 -1 1 1 1 -1 -1 1

Eg 2 -2 0 0 0 2 -2 0 0 0

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1

B1u 1 1 -1 1 -1 -1 -1 1 -1 1

B2u 1 1 -1 -1 1 -1 -1 1 1 -1

Eu 2 -2 0 0 0 -2 2 0 0 0

Table 3.3: Character table for the tetragonal symmetry group D4h = C4v⊗CI calculated
by multiplying the character tables in Fig. 3.4 according to Eq. (3.17). In the literature
one often uses the following equivalent notations σh = C2I, 2S4 = 2C4I, C′2 = 2σvI and
C′′2 = 2σdI. Note that the additional rotational axes C′2 and C′′2 are depicted in Fig. 3.4.

representations of the underlying symmetry group. Separating off the spin
part from φ, we obtained the following contributions of total spin S = 1 and
total spin S = 0:

〈c†−kαc
†
k+Qβ〉 = ΦQ(k)εαβ, 〈c†kαck+Qβ〉 = ΦQ(k)δαβ

〈c†−kαc
†
k+Qβ〉 =

(
~ΦQ(k) · σ̃

)
αγ
εγβ, 〈c†kαck+Qβ〉 =

(
~ΦQ(k) · σ

)
αβ

with ΦQ and the components of ~ΦQ transforming in the irreducible rep-
resentation of the space-group that leaves Q invariant (modulo reciprocal
lattice vectors). In the following section, we want to demonstrate how to
compute all possible basis functions ΦQ and ~ΦQ in a systematic way.
First of all, we note that the transformation behavior under lattice transla-
tion T is already determined by the center-of-mass momentum Q, i.e.

TφQ(k) = eiQrφQ(k),

and it is therefore sufficient to derive the basis functions only for the lattice
point-group that leaves Q invariant modulo reciprocal lattice vectors. For
this purpose, we consider the real-space representation

φ(r1, r2) =
∑
k

φQ(k) exp(ik(r1 − r2)),

with φQ(k) used in place of ΦQ and in place of the components of ~ΦQ. In
order to construct wave functions φ(r1, r2) that transform as an irreducible
representation of the point-group, we make use of a fundamental projection
theorem stating that the operator

P(Γi) =
∑
g

χ∗i (g)g (3.18)
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Figure 3.5: Projection method for the nearest-neighbor basis functions φ(ri, rj) on the
square lattice with C4v symmetry. Starting with a nearest-neighbor bond (a), we obtain
the bond structure in (b) with indicated color coding, and, if we assign the complex-
conjugated characters according to Table 3.3, we end up with the real-space functions
φ(ri, rj) in (c). The black and red numbers in the representation E1 of (c) correspond to
the two required basis functions.

projects out the contribution which transforms in the i-th irreducible rep-
resentation Γi. Here, the sum runs over all point-group operations g with
the corresponding complex-conjugate characters χ∗i (g). Let us now apply
this result to the simplest case of a square lattice with point-group C4v and
project out the contributions in Γi from the trial wave function given by

φstart(ri, rj) = 1δi,i+x. (3.19)

The trial wave function φstart is apparently nonzero only for nearest-neighbor
bonds in x-direction as indicated in Fig. 3.5a. Using the characters of
Tab. 3.3, we then apply the projection operator (3.18) to φstart and obtain
the following nearest-neighbor basis function for the trivial representation
A1:

P(A1)φstart = χ∗i (E)δi,i+x + χ∗i (C2)δi,i−x + χ∗i (C4)δi,i+y + χ∗i (C
−1
4 )δi,i−y

+ χ∗i (σ
1
v)δi,i+x + χ∗i (σ

2
v)δi,i−x + χ∗i (σ

2
d)δi,i+y + χ∗i (σ

1
d)δi,i−y

= 2δi,i+x + 2δi,i−x + 2δi,i+y + 2δi,i−y. (3.20)

Repeating this procedure with the characters of the 4 other representations
A2, B1, B2 and E2 (see Tab. 3.3), we obtain the remaining basis functions
as depicted in Fig. 3.5c. Here, it turns out that the basis function in B2 and
A2 vanish for nearest-neighbor bonds. In the case of the two dimensional
representation E1, a single basis function is not sufficient, and we have to
apply the projection to another linear independent trial wave functions, for
example φstart(ri, rj) = 1δi,i+y, which then provides the two black and red
colored wave functions of Fig. 3.5:

φE1
1 (ri, rj) = δi,i+x − δi,i−x, φE1

2 (ri, rj) = δi,i+y − δi,i−y.

Iterating this process for longer-ranged bonds and transforming back to k-
space, we obtain a complete set of basis functions shown below for up to
fourth nearest-neighbors:

φA1(k) : cos(kx) + cos(ky), cos(kx) cos(ky), cos(2kx) + cos(2ky),
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cos(kx) cos(2ky) + cos(2kx) cos(ky), . . .

φA2(k) : 0, 0, 0, sin(kx) sin(2ky)− sin(2kx) sin(ky), . . .

φB1(k) : cos(kx)− cos(ky), 0, cos(2kx)− cos(2ky),

cos(2kx) cos(ky)− cos(kx) cos(2ky), . . .

φB2(k) : 0, sin(kx) sin(ky), 0, sin(2kx) sin(ky) + sin(kx) sin(2ky), . . .

φE1
1 (k) : sin(kx), sin(kx + ky), sin(2kx), sin(2kx + ky), . . .

φE1
2 (k) : sin(ky), sin(−kx + ky), sin(2ky), sin(−kx + 2ky), . . . .

The above basis functions hold for all particle-particle and particle-hole like
order-parameter fields on the square lattice where the center-of-mass mo-
mentum Q is also invariant under C4v, as it is the case for Q = (0, 0) and
Q = (π, π). On the other hand, for Q = (0, π), we have to use the char-
acters of the C2v group since the rotated momentum Q = (π, 0) cannot be
connected through reciprocal lattice vectors. It is further important to note
that in the particle-particle case, the exchange symmetry requires the spin
part of the E1 representation to be of spin-triplet type, whereas all other
representations have to be of spin-singlet structure.

The described projection scheme of course works out for all kind of lat-
tice geometries, and for the triangular lattice we then obtain the following
nearest-neighbor basis functions (see Fig. 3.6):
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Figure 3.6: Nearest-neighbor basis functions as in Fig. 3.5 for the triangular lattice with
C6v symmetry.

φA1(k) : cos((kx +
√

3ky)/2) + cos((kx −
√

3ky)/2) + cos(kx/2), . . .

φA2(k) : 0, . . .

φB1(k) : sin(kx/2)(1− 2 cos(
√

3ky/2)), . . .

φE1
1 (k) : − 2 cos(kx/2) cos(

√
3ky/2) + 2 sin(kx), . . .

φE1
2 (k) : 3 cos(kx/2) cos(

√
3ky/2) + sin(kx/2) sin(

√
3ky/2)− sin(kx), . . .

φE2
1 (k) : 2 cos(kx)− cos((kx +

√
3ky)/2)− cos((kx −

√
3ky)/2), . . .

φE2
2 (k) : − cos(kx) + 2 cos((kx +

√
3ky)/2)− cos((kx −

√
3ky)/2) . . . .
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In multi-orbital or multi-sublattice systems, the above symmetry classifica-
tion is more intricate since here the orbital or lattice degrees of freedom itself
transform under point-group operations. For instance, in the honeycomb lat-
tice with a C6v point-group symmetry, sublattice A is mapped to B under
π/3-rotation, and the characterizing symmetry of the order-parameter field
apparently depends on its internal orbital structure. For the intra-orbital
case 〈c†−kAαc

†
kAβ〉 and 〈c†−kBαc

†
kBβ〉, we depicted the nearest-neighbor pair-

ing amplitudes in Fig. 3.7c. Here, it is important to note that the A1, B1

as well as A2, B2 and E1, E2 representations only differ by a relative sign
between the two different sublattices. In addition, it also turns out that the
spin structure in E1, E2 is not determined and therefore contains both a
spin-singlet and triplet representation as indicated by the upper and lower
signs in Fig. 3.7c.
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Figure 3.7: Projection method to obtain the nearest-neighbor pairing wave functions
φAA(ri, rj) and φBB(ri, rj) on the honeycomb lattice. Upper and lower signs in E1, E2

denote the corresponding spin-singlet and spin-triplet realizations. The representations
A1, B1 as well as A2, B2 and E1, E2 in (c) only differ by a relative sign between the two
sublattices A (left) and B (right).

3.4 Spin-Orbit Coupling

In the following section, we study the effect of spin-orbit coupling on the
symmetry classification of particle-particle and particle-hole like order-pa-
rameter fields. In an intuitive description, the atomic spin-orbit coupling
arises from the moving electrons that effectively perceive a magnetic field
B within the positively charged ion environment. The coupling between B-
field in the rest frame of the electrons and their intrinsic spin S then leads
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to the coupling term

HLS = −µ ·B ∼ S · (v ×E) ∼ S · (v × r
r

) ∼ L · S. (3.21)

If HLS is taken into account, the generators L and S of rotation in spatial-
and spin-coordinates do no longer commute with the Hamiltonian, and the
corresponding individual symmetries are broken. However, the sum of both
J = L+ S still commutes with the Hamiltonian and generates a combined
rotation in spin and coordinate space. Therefore, each rotation in coordinate
space must also rotate the spin in order to present a symmetry of our theory.
On the other hand, the spin-orbit coupling (3.21) respects both time- (K)
and space-inversion (I) symmetry, and the one-particle spectrum is still
fourfold degenerate with eigenstates |k, a〉, |k, b〉 and |−k, a〉, |−k, b〉. Here,
the labeling a, b does not corresponds to definite spin-projections but instead
describes superpositions of both spin-states:

|k, a〉 = uk,a(k)|k, ↑〉+ vk,a|k, ↓〉
|k, b〉 = uk,b(k)|k, ↑〉+ vk,b|k, ↓〉.

It is further important to note that the labeling a, b was ascribed arbitrarily
but can be chosen in way that both states |k, a〉, |k, b〉 have a similar trans-
formation behavior as the original states |k, ↑〉, |k, ↓〉. Therefore, we start
with a minimal subset of k-points not related by symmetries and define
(↑−→ a, ↓−→ b) by adiabatically switching on the spin-orbit coupling [26].
Then, we simply define the remaining ones according to

| − k, b〉 = K|k, a〉, | − k, a〉 = I|k, a〉 |k, b〉 = KI|k, a〉 (3.22)

and

gp|k, γ〉 =
∑
γ′

(D+
1/2(gp))γγ′ · |D−(gp)k, γ

′〉 γ, γ′ = a or b. (3.23)

Here, D−(gp) and D+
1/2(gp) denote the k-space and spin one-half repre-

sentations of the point-group operation gp. Up to the linking of rotation
in spatial- and spin-coordinates, the transformation properties (3.22) and
(3.23) are formally identical to the case of vanishing spin-orbit coupling.
Similar to the classification of particle-particle and particle-hole condensates
in Sec. 3.2, the order-parameter fields in the new so-called pseudospin basis
|k, a〉 = c†ka|0〉, |k, b〉 = c†kb|0〉 can likewise be decomposed into spin-singlet
and spin-triplet parts

〈c†−kac
†
k+Qb〉 = ΦQ(k)εab, 〈c†kack+Qb〉 = ΦQ(k)δab

〈c†−kac
†
k+Qb〉 =

(
~ΦQ(k) · σ̃

)
ac
εcb 〈c†kack+Qb〉 =

(
~ΦQ(k) · σ

)
ab
.
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The difference here consists in the transformation behavior of the triplet
basis function ~ΦQ(k) which, according to (3.23), transforms in a spin-one
representation of the respective point-group element gp. Therefore, in the
case of spin-orbit coupling, the transformation gp not only affects the indi-

vidual entries of ~ΦQ but also rotates the vector itself.

In the superconducting case, the gap-function ∆̂k in (3.2) transforms in

the same way as φab(k)ls = 〈c†−kac
†
kb〉. The associated pseudospin-singlet

and triplet contributions of ∆̂k can therefore be separated into

even parity : ∆̂k = δ0
0(k)(|ab〉 − |ba〉)

=

(
0 δ0

0(k)
−δ0

0(k) 0

)
= iσyψ(k) (3.24)

odd parity : ∆̂k = δ1
−1(k)|bb〉+ δ1

0(k)(|ab〉+ |ba〉) + δ1
1(k)|aa〉

=

(
δ1

1(k) δ1
0(k)

δ1
0(k) δ1

−1(k)

)
= i (d(k) · σ)σy, (3.25)

which is again formally identical to the case of vanishing spin-orbit cou-
pling in (3.9) and (3.10). In addition, the transformation behavior of the
gap-functions is also similar to the one of Tab. 3.1, up to the combined trans-
formation of spin- and spatial-coordinates under point-group operations. On

transformation even parity odd parity

space inversion Iψ(k) = ψ(−k) Id(k) = −d(−k)

time inversion Kψ(k) = ψ∗(k) Kd(k) = d∗(k)

point group gpψ(k) = ψ(D−(gp)k) gpd(k) = D+(gp)d(D−(gp)k)

Table 3.4: Transformation behavior of the pseudospin singlet and triplet gap function.

the other hand, without spin-orbit coupling all entries in the d-vector gap
function could be chosen independently and, in an m-dimensional represen-
tation of a point-group Γ, one then obtains a 3m-fold degeneracy of possible
gap symmetries, all having the same Tc by symmetry. Yet, if spin-rotational
symmetry is broken due to spin-orbit coupling, the d-vector also rotates
under point-group operations and the degeneracy is lifted. As an example,
which will be of relevance in Chap. 6, we consider the p-wave pairing on the
square lattice (C4v) with a non-negligible spin-orbit coupling. As apparent
from the character table in (3.1), the d-vector transforms as an axial vector
which means d ∼ (E1⊕A2) (see Tab. 3.3), and the entries for p-wave pairing
transform itself in the E1 representation. Altogether, the complete d-vector
transforms in the following reduced product representation

E1 ⊗ (E1 ⊕A2) = A1 ⊕A2 ⊕B1 ⊕B2 ⊕ E1, (3.26)
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and the former six-dimensional degeneracy now splits in four one- and one
two-dimensional irreducible representation. Note that the identity (3.26)
can be easily determined by applying the results (3.16) in the introductory
section on representation theory or by looking up the product tables of C4v.
In the nearest-neighbor realization, we then obtain the following table shown
in Tab. 3.5, and, by using exactly the same procedure as in section 3.3, we

no spin-orbit with spin-orbit coupling

dA1(k) = x̂ sin(kx) + ŷ sin(ky)
d1(k) = x̂ sin(kx),d2(k) = x̂ sin(ky) dA2(k) = x̂ sin(ky)− ŷ sin(kx)
d3(k) = ŷ sin(kx),d4(k) = ŷ sin(ky) dB1(k) = x̂ sin(kx)− ŷ sin(ky)
d5(k) = ẑ sin(kx),d6(k) = ẑ sin(ky) dB2(k) = x̂ sin(ky) + ŷ sin(kx)

dE1
1 (k) = ẑ sin(kx),dE1

2 (k) = ẑ sin(kx)

Table 3.5: Next-nearest neighbor p-wave gap symmetries on the square lattice with
the d-vector lying in the linear span of the three unit-vectors x̂, ŷ, ẑ. By switching
on the spin-orbit coupling, the six-dimensional degeneracy is lifted to four one- and one
two-dimensional representations.

can also derive the superconducting form factors for all other representa-
tions. In the pseudospin-singlet case the form factors or gap functions in a
specific representation of the underlying lattice remain the same as in (3.19)
and (3.20). However, for triplet-pairing one has to start with an arbitrary
vector instead of a scalar and project out the contribution that transforms
in the required representation:

dstart(i, j) = x̂ =⇒ d(i, j) =
∑
g∈G

χ∗i (g)D+(g)x̂.

Here, the sum runs over all elements in the point-group and χ∗i (g) again
denotes the complex-conjugate of the corresponding character in the i-th
irreducible representation. The initial vector then transforms as an axial
vector which is indicated by the matrix D+(g), i.e. it transforms like a vector
but with an additional sign for any type of reflection. Of course, one has to
be aware that one does not end up with the trivial form d(i, j) = 0 which
would require a different starting point. Transforming back to k-space we
then obtain the gap form-factors shown in Tab. 3.5 for the nearest-neighbor
case.

3.5 Probing the Pairing Symmetry

In the following section, we discuss various experimental methods to identify
the pairing symmetry and to trace back to the underlying pairing mecha-
nism. Of course, there is a huge number of highly sophisticated experiments
in this field, and we therefore give only a rough overview in order to compare
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our later results with recent experimental findings. In general, one can dis-
tinguish between the following types of experiments, of which the mentioned
ones are described in more detail below:

• experimental methods that indicate the spin structure of the Cooper
pairs (Knight-shift measurements)

• methods that provide informations on the one-particle excitation spec-
trum (ARPES, specific heat measurements, NMR)

• experimental probes that resolve the phase difference in ∆k between
certain k-points (SQUID measurements, quasi-particle interference,
neutron scattering).

Specific heat measurements:

The specific heat C indicates the variation of internal energy U as a func-
tion of temperature T , i.e. C = ∂U/∂T . Commonly, a solid-state system
exhibits various contributions to the specific heat related to the various exci-
tation possibilities as for example by phonons, electrons or collective modes.
However, we are mainly interested in the electronic contributions as the
electronic one-particle spectrum E(k) is most directly affected through the
opening of a superconducting gap. If one then calculates the internal-energy
contribution of the quasi-particle excitations as a function of temperature,
one obtains the following expression for the specific heat at low temperatures
T � Tc [20]:

CS =
∑
k,s

E(k)
∂

∂T
(nF (E(k))) ∝


e−∆0/T fully gapped

T 2, T 3 line/point nodes

T gapless

.

Hence, the low-temperature behavior of the specific heat provides valuable
informations on the existence of nodes and also its dimensionality. In order
to locate the position of the nodes or gap minima, one can further apply
an additional magnetic field and study the specific heat as function of field
direction. The idea here is the following: if the magnetic-field penetrates
through the superconducting sample via vortices, there is a supercurrent
of condensate orbiting each vortex in a perpendicular plane. Due to this
supercurrent of velocity vs, the quasi-particle spectrum in this region is
Doppler-shifted [27]:

E(k)→ E(k) + k · vs.

Therefore, the magnetic field allows to shift the quasi-particle spectrum at
certain k-points and, thus, enables to draw conclusions on the position of
nodes and gap minima. Of course, this is only a simplified semiclassical view
to a very intricate phenomena, but it already provides a basic understanding
of the idea behind angle-resolved specific heat measurements [28].
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Nuclear Magnetic Resonance (NMR):

A second experimental method which provides informations on the quasi-
particle spectrum of the superconducting state is the nuclear magnetic res-
onance (NMR). Here, an external magnetic field splits the nuclear energy
levels, and an additional high-frequency field excites these nuclear states to
higher energy levels. After switching off this high-frequency field, the elec-
trons in the sample interact with the nuclei and enable its relaxation back
to the original state. The corresponding relaxation-time T1 then measures
the efficiency of the energy transfer from the nuclei to the electrons and pro-
vides valuable insights into the electronic properties of the sample. Another
quantity also accessible in NMR experiments is the so-called Knight shift K
describing the variation of the nuclear level-splitting due to an interaction
with the electronic environment. From both quantities, the relaxation time
T1 and the Knight-shift K, one can trace back to the nature of the pairing
state. At the same time, the NMR method bears several useful advantages
as it really measures the bulk properties of the system and does neither
rely on the sample size nor requires sample contacts. On the other hand,
due to the Meissner effect, it may be problematic to achieve relatively high
magnetic fields which penetrate the sample and which do not destroy super-
conductivity.

In order to derive a formal expression of the relaxation time T1 and the
Knight-Shift K, we now follow the calculation of T. Moriya in [29]. Here,
one starts with a hyperfine-coupling term Hnf ∼ I · S of the nuclear I and
electron spin S and determines the transition rate via:

Wn→n′ ∼
∑
ee′

p(e)|〈n′e′|Hnf |en〉|2δ(Ee + En − Ee′ − En′).

Here, 〈n′e′| denotes the combined many-body state of electrons and nuclei.
As the transition rate Wn→n′ contains a spin S squared term, the relaxation-
time T1 then has the following form containing the spin susceptibility χ:

1

T1
= Wn→n′ ∼ T

∑
q

Imχ(q, ω)

ω
∼
∫
dE

(
dnF (E)

dE

)
N(E)2 (3.27)

T�Tc∝


e−∆0/T fully gapped

T 3, T 5 line/point nodes

T gapless

. (3.28)

One of the most prominent features in the relaxation-rate measurements
is the so-called Hebel-Schlichter peak [30] which describes a cusp in 1/T1

directly at the superconducting transition. This behavior can in turn be
explained very well by (3.27) and the coherence peak in the density of states
of an isotropically gapped superconductor [3].
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For the discussion of the Knight shift measurements, we first note that the
level-splitting ∆ω of an isolated nucleus is proportional to the applied field
strength ∆ω = γH. Within the electronic environment, the splitting ∆ω is
then modified by the so-called Knight-shift K which is proportional to the
paramagnetic susceptibility of the electrons χ(q = 0, ω = 0). However, in
the superconducting state, there is a crucial difference between spin-triplet
and spin-singlet pairs as the latter are totally oblivious to magnetic-fields
and do not contribute to the spin-susceptibility. On the other hand, in a
spin-triplet superconductor, the Cooper-pairs can be polarized if their spin
is not restricted to lie perpendicular to the applied field H, which is in turn
equivalent to d ‖ H. Therefore, the temperature dependent Knight-shift
reads as

K(T ) ∼ 2µ2
BN0 ·

{
1 for d(k) ⊥ H∫
dE ∂nF (E)

∂E N(E) for singlet pairing or d(k) ‖ H

and thus reveals the spin state of the paired electrons.

Angle-resolved photoemission spectroscopy (ARPES):

One of the most direct methods to probe the momentum and energy de-
pendent electronic spectrum is the so-called angle-resolved photoemission
spectroscopy (ARPES). Here, one measures the kinetic-energy and angu-
lar distribution of photoemitted electrons from a solid-state system, which
then provides informations on the electronic dispersion within the sample.
In a formal description of the photoemission process, one approximates the
transition-probability by Fermi’s golden rule:

wfi ∝ |〈ΨN
f |A · p|ΨN

i 〉|2δ(ENf − ENi − hν), (3.29)

where we already employed the so-called dipole approach (∇ ·A = 0) and
neglected the quadratic term A2 contained in the original kinetic term (H ∝
(p + eA)2). In Eq. (3.29), the initial- and final-states of the N -electron
system are denoted by ΨN

i and ΨN
f with the respective energies ENf and

ENi . The energy of the incident photon is further given by Eph = hν. Under
certain assumptions (see Damascelli et al. [31] for details), we can express the
initial- and final-states in (3.29) by the following antisymmetrized product

ΨN
i = φki ΨN−1

i

ΨN
f = φkfΨN−1

f = φkf
∑
m

ΨN−1
m , (3.30)

with φkf describing the photoemitted electron and φki the one-electron state
inside the sample. Note that in (3.30), we expanded the remaining (N − 1)-
particle part in energy eigenstates and, by using the standard definition for



52 Unconventional Superconductivity

sample

mirror plane

+
+

-

-

Figure 3.8: Experimental setup to extract the electronic dispersion of one-particle states
with even (A in-plane) and odd (A normal to the mirror plane) reflection symmetry with
respect to a mirror plane of the sample. In order to extract the parity of the electronic
states, both incident photon and emitted electron have to lie within that mirror plane.

the spectral-function A(k, ω) (see e.g. [32]), the ARPES intensity at T = 0
reads as

I(k, ω) =
∑
fi

wfi =
∑
fi

|〈φki |A · p|φkf 〉|2
∑
m

|〈ΨN−1
i |ΨN−1

m 〉|2δ(ENf − ENi − hν)

=
∑
fi

|〈φki |A · p|φkf 〉|2
∑
m

|〈ΨN−1
m |ck|ΨN

i 〉|2δ(ω − EN−1
m + ENi )

=
∑
fi

|Mfi(k)|2A(k, ω) (3.31)

with matrix elements Mfi(k) = 〈φki |A ·p|φkf 〉. Measuring the kinetic-energy
and angular distribution of the emitted electrons I(k, ω), one can therefore
trace back to the k- and ω-resolved spectral density A(k, ω) and with that
also to the superconducting gap. Despite the relatively small superconduct-
ing gap amplitude of a few meV , this is still possible by using state-of-the-art
ARPES techniques with energy resolutions of ∆E ≈ 2meV . Moreover, by
varying the photon polarization, one can also derive the orbital content of
the electronic band structure, which is in turn essential for the correct mod-
eling of multi-orbital systems. For this purpose, the incident photon and
the emitted electron have to lie within a mirror plane of the sample (see
Fig. 3.8). Then, in order to measure a finite ARPES intensity I(k, ω), the
matrix element Mfi(k) in (3.31) has to be even with respect to that mirror
plane. Moreover, as an odd final state φkf of the photoelectron would be
zero on the entire mirror plane, it is also required to be of even symme-
try. Therefore, φki and A · p must have the same parity under mirror plane
reflection in order to guarantee the evenness of the entire matrix element
Mfi(k) = 〈φki |A · p|φkf 〉. For example, if φki is even (odd), A has to lie
within (normal to) the mirror plane. Thus, by changing the polarization of
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the incident photon beam, one can extract the reflection properties of the
one-particle state φki , which is in turn characterized by the orbital content
of the electronic band structure. For details on that symmetry analysis in
the context of iron-based superconductors, we refer to Brouet et al. [33].

In order to measure the out-of-plane electronic dispersion, one should
also mention that the momentum k⊥ perpendicular to the sample surface is
apparently not conserved, and one needs additional informations (see [31])
to deduce the k⊥-dependent electronic band structure.

Phase-sensitive probes (SQUID devices and π-junctions):

The experiments discussed in the previous sections were only sensitive to the
magnitude of the superconducting gap or to the mere existence of gap nodes.
However, without resolving the gap phase it is not possible to unambiguously
determine the complex gap function and to pin down the underlying pairing
mechanism. In the following, we want to review some of the experimental
techniques which also allow for a direct observation of the gap-phase, the so-
called phase-sensitive probes. One of the first implementation was realized
by the so-called SQUID devices of Wollman et al. [34], which resolved the
directional-dependent sign-change in the dx2−y2-pairing state of the cuprate
YBCO. Here, a conventional superconductor is linked to YBCO by means
of two Josephson junctions 1, 2 such that the corresponding loop encircles a
magnetic flux Φ as depicted in Fig. 3.9. By varying the flux Φ, the maximal
dissipationless current ISc (critical current) through the device features a
characteristic interference pattern, from which the relative phase difference
of the superconducting gap can be inferred. In a quantitative description
one assumes that the resulting supercurrent along a closed path C deep
inside the superconducting device vanishes [35] and, by integrating along
such a curve C, one obtains the following relation between the gap phase φ
and the magnetic flux Φ:

0 =

∮
C
j·ds ∝

∮
C
{∇φ− 2eA}·ds = (∆φ1+δφ−∆φ2+2nπ)−2π

Φ

Φ0
. (3.32)

Here, ∆φi=1,2 denotes the jump in the gap phase across the corresponding
Josephson junction, δφ is the intrinsic phase difference within the light-
gray part of Fig. 3.9, and the additional 2nπ term accounts for the allowed
phase-winding in a multiple connected superconductor. Then, the total su-
percurrent ISc running through the SQUID device is given by the sum of
tunneling currents across each junction which, according to the DC Joseph-
son effect [36], is determined by the corresponding phase jumps ∆φi:

I(∆φ1,∆φ2) = Ic1 sin(∆φ1) + Ic2 sin(∆φ2).
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Figure 3.9: SQUID devices for resolving the phase differences in the complex gap function
of a dx2−y2 -wave (a) and s±-wave (b) superconductor (light-gray). At this, a second, con-
ventional (s-wave) superconductor (dark-gray) is linked via the two Josephson-junctions
1, 2 such that the corresponding loop encircles a magnetic flux Φ. The current running
through this device is indicated by the two arrows.

Assuming further a symmetric device with equal critical junction currents
Ic1 = Ic2 = Ic, one ends up with

I(∆φ1,∆φ2) = 2Ic sin

(
∆φ1 + ∆φ2

2

)
cos

(
∆φ1 −∆φ2

2

)
= I0 cos

(
π

Φ

Φ0
− δφ

2
− nπ

)
, (3.33)

and the critical-current ISc = max I(∆φ1,∆φ2) therefore shows a (δφ/2)-
shifted interference pattern as a function of the flux Φ. For example, at
zero flux the critical current is ISc = 0 for a dx2−y2-wave superconductor
(δφ = π) and ISc = ±I0 for an s-wave (δφ = 0) superconducting state.
Therefore, by applying a bias current through the SQUID and measuring
its maximal value until a finite voltage occurs, one can clearly distinguish
between an anisotropic s-wave and a sign-changing dx2−y2-pairing state.
Similar measurements in different geometries were performed by Wollman
et al. [34, 37] and strongly pointed to a dx2−y2-wave pairing state in the
cuprates.

For the recently discovered pnictide superconductors there exist similar
proposals [38] although here the sign-change of the most prominent candi-
date, the s±-wave pairing state, occurs between the hole pockets at (0, 0) and
electron pockets at (π, π) (see Fig. 3.9b) and is therefore not accessible by
real-space transformations. However, it is possible here to employ different
tunnel-barriers, for example a thin (specular) one at which all k-directions
contribute according to an average of Fermi-velocity and electronic density-
of-states (DOS) or a thick barrier which suppresses k-directions that do not
lie parallel to the barrier normal. Then, as depicted in the experimental
setup of Fig. 3.9b, the thick barrier (1) only transfers Cooper-pairs located
at the hole pockets (red), and the thin one (2) mainly provides Cooper-pairs
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Figure 3.10: Two suggested π-junctions for detecting the sign-change in the proposed
s±-wave pairing state of iron pnictides. Setup (a) consists of a polycrystalline pnictide
(gray) in contact with a conventional s-wave superconductor (black) [45–47], and (b) shows
a trilayer device [48] with a single-crystal pnictide superconductor in between.

from the electron pockets (blue) as the mentioned average of Fermi-velocity
and DOS is higher there. This in turn would realize the same interference
of Cooper-pair wave functions with a π-phase shift as in the cuprate case
of Fig. 3.9a. Unfortunately, these type of experiments did not yet provide
conclusive indications of the s±-pairing symmetry in the pnictides due to
difficulties in the junction fabrication. On the other hand, similar experi-
ments were used to ruled out pure d-wave or p-wave pairing orders in certain
compounds [39,40].

Another instructive experiment for resolving the relative gap phase de-
tects the occurrence of half-integer flux quantization in so-called π-junctions.
As we noted before, the tunneling current of a single Josephson-junction
reads as I = Ic sin(∆φ) [36], and the phase shift ∆φ across the junction
adjusts according to the applied current I. So when there is no current
passing the junction I = 0, the phase shift ∆φ is either zero or π, which is
then denoted as 0- or π-junction [41,42], respectively. If a superconducting
loop then contains an odd number of π-junctions, the phase flux relation
of Eq. (3.32) requires a half-integer flux quantization Φ = (n + 1/2)Φ0 as
opposed to the usual integer quantization Φ = nΦ0. In the ground-state
n = 0, the π-loop then shows a spontaneous flux of Φ = (1/2)Φ0 which was
verified by Tsui et al. [43, 44] in a tricrystal ring of YBCO and therefore
provided an unambiguous evidence for dx2−y2-wave pairing. In the pnictide
superconductors there exist similar proposals for π-junction devices as for
example suggested by Chen et al. [45, 46]. Here, a polycrystalline pnictide
sample as shown in Fig. 3.10a is connected with a conventional superconduc-
tor. If the two contact barriers are relatively thick such that the tunneling
occurs momentum dependently, there is also a finite probability that the
contacted crystallites form a π-loop, of course, provided that the gap func-
tion really shows a sign-change and is not just of anisotropic s-wave form.
The resulting half-integer flux was subsequently measured by Chen et al. [47]



56 Unconventional Superconductivity

for NdFeAsO0.88F0.12 connected with a Nb-loop which strongly supports a
sign-changing superconducting gap. On the other hand, SQUID measure-
ments of Hicks et al. [49] in the same compound further pointed out that
there is no directional sign-change ruling out d- and p-wave pairing. Other
proposed π-junctions like the one in Fig. 3.10b and others [50] could not yet
resolve this sign-change partly due to the lack of large single crystals or due
to surface degradation.

Coherence factors in quasi-particle interference and neutron scattering:

Another experimental approach for resolving the gap phase exploits the
so-called coherence factors of physical response functions within the su-
perconducting regime. In order to illustrate this point, we consider some
one-particle operator such as spin or charge which is typically described by

Â =
∑
ks,k′s′

Aks,k′s′c
†
ksck′s′ =

1

2

∑
ks,k′s′

Aks,k′s′
(
c†ksck′s′ ± c

†
−k′−s′c−k−s

)
.

(3.34)
The sign ± in (3.34) refers to the even and odd behavior of Aks,k′s′ under
time-reversal. If we now enter the superconducting phase, the effect on the
corresponding response function is determined by the modified one-particle

spectrum (ξk → Ek =
√
ξ2
k + |∆k|2) and also by the particle-hole mixing

in the new quasi-particle excitations α†, α (see Sec. 2.6). This latter effect
is then considered in the so-called coherence factors which, in contrast to
the spectrum Ek, also contain informations on the gap phase. In order to
investigate this point, we use the Bogoliubov-transformed operators (2.91)

c†ks = ukα
†
ks − sgn(s)vkα−k,−s

ck′s′ = uk′αk′,s′ − sgn(s′)vk′α
†
−k′−s′ (3.35)

and rewrite (3.34) in terms of α†, α. Note that in (3.35), we used the notation
of ûk = σ0uk as well as v̂k = −iσ2vk and also assumed spin-singlet pairing
for the sake of clarity. Following the calculation described explicitly in the
textbooks of Tinkham [51] and Schrieffer [52], this then leads to

Â =
∑
ks,k′s′

Aks,k′s′
{

(uk′uk ± vk′vk)α†ksαk′,s′+

1

2

(
(ukvk′ ± vkuk′)sgn(s′)α†ksα

†
−k′−s + h.c

)}
. (3.36)

The external perturbation in an experiment hence consists of quasi-particle/
quasi-hole (α†α) as well as of quasi-particle/quasi-hole-pair (α†α†/αα) ex-
citations weighted with the coherence factors uk, vk. These latter terms
include the gap function as seen from (2.89), and we now discuss two exper-
iments in which the effect of coherence factors is directly observable.
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The first one is the scanning tunneling microscopy (STM). Here, the
sample is voltage-biased with respect to a conducting tip and, by measur-
ing the resulting tunneling current along the sample surface, one obtains
informations on the local density of states n(r, ω). In a sample without any
impurities or defects, this local density of states (LDOS) would be rather fea-
tureless due to translational invariance. However, by introducing a certain
amount of disorder, the quasi-particles scatter off these defects and interfere
with each other. The resulting LDOS modulation can be transformed to
q-space and, in a first-order approximation [53–55], reads as

n(q, ω) ∝
∑
k

n0(k, ω)n0(k+q, ω)×


(ukuk+q + vkvk+q)(ukvk+q + vkuk+q)

(ukuk+q + vkvk+q)
2

(ukuk+q − vkvk+q)
2,

(3.37)
where the subscript “0” denotes the density of states in the absence of scat-
tering, and the three coherence terms are for vortex, magnetic and potential
scattering (from top to bottom). In the cuprate and pnictide superconduc-
tors the joint density of states n0(k, ω)n0(k+q, ω) is dominated by just a few
wavevectors, and, as the coherence factor for vortex scattering (top in (3.37))
can be shown to be proportional to (∆k + ∆k+q), the peaks for gap-sign
preserving (reversing) scatterings are enhanced (suppressed) by an applied
magnetic field. In the corresponding experiments, Hanaguri et al. [56, 57]
and Hoffman et al. [58] identified sign-changes in the superconducting gap
of cuprates and pnictides that are consistent with the theoretical predicted
pairing symmetries of d-wave and s±-wave, respectively.

A similar coherence effect is also observed in inelastic neutron scattering
(INS) experiments. Here, the scattering cross section is proportional to the
imaginary part of the spin-spin response function. For low temperatures and
relatively large excitation energies one can show that quasi-electron/quasi-
hole pair-excitations dominate Imχ(q, ω) [59,60] which in turn involves the
following coherence factor (see Eq. (3.36)):

(ukvk+q − vkuk+q)
2 =

1

2

(
1−

∆k∆k+q

EkEk+q

)
. (3.38)

If the superconducting gap would not feature a sign-change between the
two wavevectors k and k + Q, i.e. ∆k+Q = ∆k, the corresponding factor
in (3.38) would cancel the magnetic resonance at wavevector Q. Again
both the cuprates [60, 61] and pnictides [62–64] show resonance peaks in
the neutron-scattering cross section below Tc, which in turn provides strong
evidence for a sign-changing superconducting gap.





Chapter 4

Superconductivity in
Iron-Based Compounds

4.1 Introduction

In 2006, while searching for transparent semiconductors, Kamihara et al. [65]
found superconductivity in LaFePO with a transition temperature (Tc) of 4K.
Although iron seemed incompatible with superconductivity due to its strong
local magnetic moments, its discovery was by no means exceptional as
the first iron-containing superconductors were already known since the late
fifties [66]. However, only two years later, in 2008, the same group reported
another compound (LaFeAsO), characterized by alternating layers of iron-
arsenic and lanthanum-oxygen, which revealed superconductivity upon re-
placing oxygen with fluorine. Soon afterwards, it also turned out that many
other materials based on either iron-arsenic or iron-phosphorus layers be-
come superconducting as well. During the last three years, this structural
variety then gave rise to many hundreds of new iron-based superconductors
(FeSCs) with transition temperatures of up to 56K [67]. For the first time,
high-Tc superconductivity seemed not to be limited to the cuprates, and the
discovery of FeSCs triggered an enormous interest within the condensed-
matter community.

In addition to its remarkably high Tc’s, the FeSCs also revealed interest-
ing similarities and differences to the cuprates. For example, both material
classes feature a close proximity of magnetic and superconducting order,
which could in turn point to a common magnetically induced pairing mech-
anism. On the other hand, the structure of the magnetic ordering is quite
different in both materials. In the cuprates, the antiferromagnetism is of
Néel-type and evolves from localized charge carriers, whereas the FeSCs
show a stripe-like antiferromagnetism resulting from an instability of the
moving electrons. Another important distinction between cuprates and
FeSCs concerns the effective Coulomb repulsion and correlation effects of
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Figure 4.1: (a) The four classes of FeSCs consisting of iron-pnictide (1111, 122, 111) and
iron-chalcogen (11) layers. The additional filling layers contain rare-earth oxygen (1111),
alkaline-earth (122) and alkali (111) elements. (b) Characteristic trilayer structure con-
sisting of an iron square-lattice with pnictogen (chalcogen) atoms alternately protruding
above and below the iron plane.

the low-energy electrons. Here, the correlations in the undoped cuprates
appear much stronger and lead to a Mott-insulating behavior, while the
FeSCs remain semi-metallic with only weak to moderate correlations. The
weaker correlation effects in FeSCs are also consistent with the fact that the
low-energy electrons of the cuprates reside in one single d-orbital, whereas
the ones of the FeSCs are distributed among all five orbitals.

In the following chapter, we investigate the superconducting state as
well as the underlying pairing mechanism of FeSCs. For this purpose, we
apply the functional RG which, on the one hand, captures the full multi-
orbital complexity of FeSCs and, on the other hand, is also very well suited
for studying materials of moderate electronic correlations. Understanding
the superconductivity of FeSCs might then point the way to new material
variants with even higher Tc’s and might also lead to broader insights into
superconductivity in general. However, before we start with the functional
RG study, we shortly summarize the most essential structural and electronic
properties of FeSCs in the following three sections.
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4.1.1 Structural and Normal-State Properties

The class of FeSCs by now includes hundreds of different materials. It is
therefore common to distinguish between the following major groups, termed
after the stoichiometries of their undoped compounds: 1111 (LaFeAsO),
122 (BaFe2As2), 111 (LiFeAs) and 11 (FeSe). As pictured in Fig. 4.1, the
structural characteristic of all these compounds consists of an iron square
lattice in between two checkerboard lattices of either pnictogen (As,P) or
chalcogen (Se,Te,S) atoms. According to these two element groups, the
FeSCs are often assigned as iron-pnictides or iron-chalcogenides.

The additional filling-planes between the iron-pnictogen layers contain
rare-earth oxygen (1111), alkaline-earth (122) and alkali (111) elements, or
are completely absent as in the iron-chalcogenides (11). Nevertheless, su-
perconductivity also occurs in this simplest 11 family with Tc = 27K [68],
suggesting that the relevant physics most likely takes places within the iron-
chalcogen and iron-pnictogen layers. The same conclusion can also be drawn
from the electronic structure of FeSCs. Here, it turns out that the low-energy
sector (< 2eV ) is mainly governed by iron d-states with only small contribu-
tions from the energetically higher-lying pnictogen/chalcogen p-states. Yet,
as opposed to the cuprates, the low-energy electrons in the FeSCs distribute
among all five d-orbitals which in turn results from a closer iron packing
in edge-sharing tetrahedrons. In addition, the hopping amplitude between
different iron-layers turns out to be small but still leads to non-negligible
effects in some of the FeSCs. Taken together, the relevant electrons in the
FeSCs are more delocalized than in the cuprates and effectively give rise to
smaller electronic correlations effects. In this context, it is also interesting
to note that the calculated band structure [69–72] agrees very well with the
one determined by ARPES [73, 73–75] and quantum oscillation measure-
ments [76,77], which can in turn be interpreted as another evidence for the
weaker correlation effects in FeSCs.

The band structure of the iron d-electrons in FeSCs then features ten
bands according to the five d-orbitals on each of the two non-equivalent
iron sites within the unit-cell. In Fig. 4.2a, we depicted the two-iron unit-
cell as well as the corresponding Fermi-surface with hole-like pockets (blue)
around the Γ-point and electron-like pockets (green) at the M -point. Here,
it is important to note that the existence of the dashed pocket depends in
a sensitive way on material details like the pnictogen height, whereas the
other four pockets appear quite generically in most of the FeSCs. In order to
unfold the band structure to the larger Brillouin zone of a one-iron unit cell,
one exploits the so-called glide-mirror group (translation plus z → −z) under
which all iron sites become equivalent [33,78]. This unfolding then provides
the Fermi-surface pictured in Fig. 4.2b. Note that the difference between
these two band-structure representations becomes purely geometrical for
vanishing pnictogen or chalcogen potentials. In this case, (b) is obtained
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Figure 4.2: (a) Fermi-surface topology of a generic FeSCs represented in the folded
Brillouin-zone (BZ), which corresponds to the two Fe-atom unit-cell shown in the inset
(light-gray). (b) Fermi-surface topology shown in the unfolded BZ associated with the
one Fe-atom containing unit-cell depicted in the inset (light-gray). (c) Schematic phase-
diagram for FeSCs including the paramagnetic phase with a tetragonal crystal structure,
the structural transition to an orthorhombic crystal structure (yellow), the striped anti-
ferromagnetic order (red) as well as the superconducting phase (cyan).

from (c) by shifting all bands into the smaller (dashed) Brillouin zone. If not
stated differently, we will only use the one-iron unit cell and its associated
unfolded Brillouin zone.

In the undoped FeSCs, the electronic filling of the iron d-orbitals amounts
to six electrons per iron site, according to its Fe2+ valence state.

4.1.2 Structural Transition and Antiferromagnetic State

Most of the undoped iron-pnictides develop a striped antiferromagnetic or-
der (AFM) at about 150K. Here, the magnetic moments align parallel to
the iron layer and form alternating ferromagnetic stripes along one of the
two crystalline axis (see Fig. 4.2c). The two possible magnetic phases are
then characterized by ordering vectors Q1 = (0, π) and Q2 = (π, 0), con-
sistent with the Fermi-surface nesting of hole- and electron-like pockets. It
seems by now generally accepted that the magnetic ordering results from a
spin-density wave (SDW) instability associated with this Fermi-surface nest-
ing. Usually, the SDW formation then leads to a band backfolding into the
reduced Brillouin zone and gives rise to a gap opening at the corresponding
band crossings. However, in the iron-pnictides, the multi-orbital nature of
the electronic states gives rise to symmetry protected Dirac-nodes within
the SDW phase [79,80] and thus implies a semimetallic behavior.
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As apparent from the phase diagram in Fig. 4.2c, there is also a struc-
tural phase transition from tetragonal (TT) to orthorhombic (OT), which
closely follows the magnetic transition line. Within the orthorhombic phase,
the degeneracy between the Q1 = (0, π) and Q2 = (π, 0) magnetic ordering
is lifted, and the magnetic moments order ferromagnetically along the con-
tracted and antiferromagnetically along the extended axis. Depending on
the particular compound, the magnetic phase is either preceded by (1111)
or occurs simultaneously (122) to the structural transition. In most cases,
the simultaneous transition into the structurally and magnetically ordered
phase turns out to be of first order, whereas the separated transition can be
either of first or second order. On the other hand, the structural transition
is completely absent in the FeSCs that show no magnetic ordering at all
(LaFePO [81], LiFeAs [82] and LiFeP [83]).

In order to explain the interplay of structural and magnetic degrees of
freedom, Fernandes et al. [84] proposed a so-called nematic scenario. Here,
the magnetic and structural orders are preceded by an intermediate phase
which first breaks the twofold degeneracy of Q1 = (0, π) and Q2 = (π, 0)
magnetic fluctuations (〈S2

Q1
〉 6= 〈S2

Q2
〉) but still respects spin-rotational sym-

metry (〈SQ1〉 = 〈SQ2〉 = 0). As a consequence, the breaking of rotational
symmetry in this nematic phase then induces the orthorhombic lattice dis-
tortion and also selects one of the two magnetic orderings. Several implica-
tions of this nematic scenario have been detected experimentally, and, for a
detailed discussion of the rich phenomenology, we refer to the following two
articles [84,85] and references therein.

It is also important to note that some of the iron-chalcogenides (11) re-
veal a different magnetic ordering pattern, although its electronic properties
are quite similar to the one in iron-pnictides. The magnetic moments here
are rotated by π/4 and have a doubled real-space period compared to the
striped antiferromagnet in Fig. 4.2c. Interestingly, the ordering vector here
is determined by Q3 = (π/2, π/2) and does not correspond to a Fermi-
surface nesting [86, 87]. A possible explanation for this striking behavior
is given by Paul et al. [88] who calculated the corrections due to magneto-
elastic couplings and found strong enhancement of the magnetic fluctuations
at Q3.

4.1.3 Superconducting State

In both iron-pnictides and iron-chalcogenides, the superconductivity can be
induced either by chemical doping or by external pressure [89]. Although
chemical doping is more convenient, the pressure induced method is also
appealing as it allows to study different phases in one and the same sample
without comparing different fabricated crystals. In most FeSCs, the super-
conducting phase then appears in close vicinity to the magnetically ordered
state (see Fig. 4.2c), which possibly suggests a common spin-fluctuation
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Figure 4.3: Nodeless (a1) and nodal (a2) s±-wave gap in the unfolded (one Fe unit-cell)
Brillouin zone as well as its lowest-order real-space representation (inset). In (b), the
dx2−y2 -wave gap is plotted for comparison. Red and blue springs in the insets denote
attractive and repulsive pair interactions.

based pairing mechanism. At this, the rigid magnetic ordering softens and
provides a kind of polarizable background, which in turn enables the media-
tion of pairing. The spin-fluctuation based pairing is therefore most effective
in the vicinity away from the magnetically ordered state.

Additionly, the pairing mechanism also affects the symmetry of the su-
perconducting gap (pair wave function) as the spin-fluctuations of order-
ing momentum Q only induce pairing if the gap changes sign between Q-
connected portions of the Fermi-surface. In the FeSCs, this then implies
a sign-change of the superconducting gap between hole- and electron-like
pockets [90]. The corresponding pairing symmetry is commonly denoted as
s±-wave since the superconducting gap reveals sign changes but breaks no
additional point-group symmetries (see Fig. 4.3a).

Other pairing mechanisms based on the polarizability of the pnictogen
or chalcogen ions [91], orbital-fluctuations [92] or on the Hund’s rule cou-
pling [93, 94] were also proposed in the beginning, but mostly turned out
to be inconsistent with various experiments. In particular, conventional
phonon-based pairing was ruled out right from the beginning as the cal-
culated electron-phonon coupling turned out too small [95] to account for
the high Tc’s in FeSCs. Nevertheless, it was pointed out by Yildrim [96]
that phonons could provide an indirect contribution to superconductivity
via spin-lattice coupling.

The pairing symmetry and pairing mechanism of FeSCs have also been
the focus of numerous experimental works. Even though, the pairing state
is not fully understood, several important indications could be obtained
during the last three years (see [97] for a detailed review). For exam-
ple, nuclear magnetic resonance (NMR) measurements reported a vanishing
Knight-shift [98, 99] in all crystallographic directions which in turn points
to spin-singlet pairing. Other experimental findings like the spin-resonance
in neutron-scattering [62–64] or the quasi-particle interference pattern ob-
served in scanning tunneling (STM) experiments [57] suggest a sign-changing
pair wave function that is consistent with an s±-wave gap. In addition,
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Josephson interference experiments make the d-wave pairing (see Fig. 4.3b)
unlikely [39, 49] and rather support an s±-wave scenario [47]. Usually, the
s±-wave gap was assumed to be fully gapped and a number of experiments
reporting gap nodes seemed to be at odds with such an s±-wave pairing
state. However, it is by now understood that the existence of nodes in an
s±-wave gap (see Fig. 4.3a2) depends on details of the multi-orbital band
structure and may vary between different FeSC compounds.

From that perspective, it was really striking that angular-resolved pho-
toemission spectroscopy (ARPES) consistently reported a full gap [73–75,
100,101] and never revealed significant gap-anisotropies or gap nodes which
are, one the other hand, clearly seen in the cuprate d-wave gap [31]. A
possible explanation for this disagreement between bulk and surface probes
was provided by Kemper et al. [102], who pointed out the existence of an
additional pocket in the surface band structure, which in turn stabilizes a
full superconducting gap.

4.2 Electronic Correlations and the Pairing Mech-
anism of FeSCs

In the following section, we analyze the pairing mechanism and the associ-
ated pairing symmetry of FeSCs. In particular, we demonstrate how anti-
ferromagnetic fluctuations drive the pairing instability and also promote a
number of other competing ordering tendencies.

4.2.1 Microscopic Model Description

In order to explore the FeSCs on a theoretical basis, it is important to start
with an appropriate model description that captures the essential properties
in a kind of minimal Hamiltonian. Soon after the first discovery of high-
Tc superconductivity in the FeSCs, a number of effective models based on
two [103] or three [93] of the five iron d-orbitals were proposed. Yet, each
of these models revealed certain shortcomings in describing the low-energy
band structure, as for example discussed by Graser et al. [104]. For this
reason, we consider a five-orbital model suggested by Kuroki et al. [71] which
provides an almost perfect agreement to the low-energy sector of the band
structure. The resulting tight-binding description is then given by

H0 =
∑
k,s

5∑
a,b=1

c†kasKab(k)ckbs, (4.1)

where c†kas, ckas denote the creation and annihilation operators of an electron
with momentum k, spin projection s and orbital character a. Note that this
model here was constructed for LaFeAsO1−xFx and neglects out-of-plane
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Figure 4.4: Band structure (a) and Fermi-surface topology (b) of LaOFeAs in the
unfolded (one iron per unit-cell) Brillouin zone. The colors denote the leading orbital
content. (Inset: Brillouin zone and orbital color-coding).

hopping terms along the z-axis. As the class of 1111 compounds generally
shows a strongly two-dimensional behavior, this approximation is valid but
may be inappropriate for other FeSCs. The corresponding band structure
for the undoped case with n = 6.0 electrons per Fe-site is then plotted in
Fig. 4.4, together with its associated Fermi-surface. Here, it is important
to note that the presence of a hole-like pocket at (π, π) strongly depends on
the level of doping and on the detailed material composition. The remaining
four pockets, on the other hand, appear quite generically in most of the
FeSCs. In Fig. 4.4, we also depicted the leading orbital contributions of the
corresponding Bloch states.

A minimal interaction part Hint considered in the context of FeSCs in-
cludes the intra- and inter-orbital repulsion U1 and U2, as well as the Hund’s
rule coupling JH and the pair-hopping term Jpair:

Hint =
∑
i

U1

∑
a

nia↑nia↓ + U2

∑
a<b,s,s′

niasnibs′

+JH
∑
a<b

∑
s,s′

c†iasc
†
ibs′cias′cibs + Jpair

∑
a<b

(
c†ia↑c

†
ia↓cib↓cib↑ + h.c.

).
The electron density of spin s in orbital a and at site i is, as usual, denoted
by nias = c†iascias. It is further important to note that the interaction param-
eters are actually orbital dependent and can be computed via first-principle
methods like constrained RPA [72]. The same first-principle approach then
also provides parameter values for longer-ranged interaction terms. Al-
though, both of these more precise informations can be easily included in
the functional RG, we first start out with an onsite term only and choose the
orbital independent values of U1 = 4.0, U2 = 2.0, JH = Jpair = 0.7eV . Note
that the often required condition of U1 = U2+2JH and Jpair = JH , following
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from rotational symmetry [105], only holds for the bare values and not for
the renormalized ones determined by constrained RPA [72]. Here, the inter-
action parameters already include for example screening from high-energy
bands, which then may violate the above sum-rule.

4.2.2 From Orbital- to Band-Representation

For an efficient solution of the functional flow equations, it is convenient to
choose an appropriate one-particle basis which diagonalizes the quadratic
part H0. The corresponding unitary transformation is then given by

ckas =

5∑
m=1

uam(k)γkms, (4.2)

and the total Hamiltonian Htot = H0 +Hint in this new band basis reads as

Htotal =
∑
k,s

5∑
m=1

γ†kmsEm(k)γkms (4.3)

+
∑

k1,...k4
s,s′

∑
m1,...,m4

V0(k1m1,k2m2,k3m3,k4m4)γ†k1m1s
γ†k2m2s′

γk3m3s
γk4m4s′

.

Here, the fourth momentum k4 is determined by momentum conservation
k4 = k3 +k2−k3, and the eigenvalues Em(k) provide the band structure de-
picted in Fig. 4.4. It is also important to note that the orbital content of the
m-th band at momentum k is characterized by the matrix elements uam(k),
whose dominant part determines the leading orbital content in Fig. 4.4. In
addition, the explicit form of the coupling function now reads as

V0(k1m1,k2m2,k3m3,k4m4) =U1

∑
a

u∗am1
(k1)u∗am2

(k2)uam3(k3)uam4(k4)

+U2

∑
a,b

u∗am1
(k1)u∗bm2

(k2)uam3(k3)ubm4(k4)

+JH

∑
a,b

u∗am1
(k1)u∗bm2

(k2)ubm3(k3)uam4(k4)

+Jpair

∑
a,b

u∗am1
(k1)u∗am2

(k2)ubm3(k3)ubm4(k4) (4.4)

and again reveals that the matrix elements uam(k) cause a pronounced mo-
mentum dependence already at bare level (see Fig. 4.6(a1)). As the columns
of the unitary matrix U(k) = (uaw(k)) correspond to eigenvectors of the ma-

trix Kab(k) in (4.1), the elements uaw(k) have a local U(1) phase freedom.
It is convenient here to require a smooth behavior of the matrix elements
uaw(k), which would otherwise generate discontinuous sign-changes in the
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(b2) (b3)

(a) = - 2+ + +

(b1)

Figure 4.5: (a) Flow equation of the 4-point function (dashed line) according to
Eq. (2.63). Full internal lines denote free propagators, slashed lines indicate single-scale
propagators as defined in (2.33) for the cutoff- and in (2.28) for the temperature-scheme.
(b1-b3) Patching scheme depicted by the black partitioning of the Brillouin zone for each
band that intersects the Fermi-level. The colors again denote the leading orbital content
of the Fermi-pockets with an equivalent color coding as in Fig. 4.4b.

resulting gap functions. All smooth choices of the matrix elements then lead
to exactly the same results, and the emergent U(1) phase freedom hence rep-
resents equivalent descriptions of the same physics.

4.2.3 Functional RG Implementation

In the following section, we describe the numerical implementation of the
functional RG as well as its application to the Hamiltonian in (4.3). As
discussed in Chap. 2, the starting point consists of the exact hierarchy of
flow equations in (2.24) for the one-particle irreducible vertex functions.
Restricting to the 4-point function V Λ, we then obtain the flow equation
depicted in Fig. 4.5a, where we applied the widely used approximation of
discarding the 6-point function as well as the self-energy feedback to V Λ.
Both types of approximations can be justified for sufficiently small bare
interactions [9] since these two terms only generate contributions of third
order in V Λ. For curved and smooth Fermi-surfaces, as it is the case in
almost all FeSCs, these approximations are valid up to a scale where the
4-point vertex is very large and the flow has to be stopped (see Sec. 2.5). In
order to solve this differential equation numerically, we first divide up the
Brillouin zone into patches for each band that intersects the Fermi level (see
Fig. 4.5b). Since the leading part of the 4-point function is located at the
Fermi surface and at zero frequency [106,107], we neglect all bands that are
clearly away from the Fermi-level and compute the 4-point function only at
frequency zero and at the Fermi-surface points {ksF }. For momenta k away



4.2 Electronic Correlations and the Pairing Mechanism of FeSCs 69

from the Fermi-surface we then approximate

V Λ(k1m1,k2m2,k3m3,k4m4) ≈
V Λ(πF (k1)m1, πF (k2)m2, πF (k3)m3, πF (k4)m4),

where πF (ki) denotes the projection of ki within the same patch onto the
corresponding Fermi-surface point ksF . In the following, we will also employ
the condensed notation of k = (ksF ,m

s) since each ksF is associated to a fixed
band index ms in the above patching scheme. As the 4-point function V Λ

equals the bare interaction part (4.4) at large energy scales Λ in the order
of the bandwidth W , i.e.

V Λ≈W (k1, k2, k3, k4) = V0(k1, k2, k3, k4),

the flow equation shown in Fig. 4.4a reduces to a well-defined initial value
problem. Using standard procedures for the integration of differential equa-
tions, we then follow the flow of V Λ down to low energy scales Λ. An
illustration of a characteristic flow is then shown in Fig. 4.6, where we de-
picted V Λ(k1, k2, k3, k4) for five different energy scales (decreasing from (a1)
to (a5)) as a function of k1, k2 with k3 fixed and k4 determined by momentum
conservation. A detailed discussion will then follow in Sec. 4.2.5.

4.2.4 Channel Decoupling and Order Parameters

In order to infer the favored type of order, we also decompose the 4-point
function V Λ into the following channels

Hint =
∑

k1,...,k4

∑
ss′

V Λ(k1, k2, k3, k4)γ†k1s
γ†k2s′

γk3s
γk4s′

(4.5)

=
∑
k1,k2

WΛ,SDW (k1, k2)~S†k1,Q
~Sk2,Q

+
∑
k1,k2

WΛ,CDW (k1, k2)n†k1,Q
nk2,Q

+
∑
k1,k2

WΛ,F I(k1, k2)~S†k1,0
~Sk2,0

+
∑
k1,k2

WΛ,P I(k1, k2)n†k1,0
nk2,0

+
∑
k1,k2

WΛ,SCs(k1, k2)p†k1,s
pk2,s

+
∑
k1,k2

WΛ,SCt(k1, k2)p†k1,t
pk2,p

(4.6)

+ . . .

with the composite operators defined by

~Sk,Q =
1

2

∑
ss′

γ†k+Qs~σss′γks′ ,
~Sk,0 =

1

2

∑
ss′

γ†ks~σss′γks′

nk,Q =
∑
s

γ†k+Qsγks, nk,0 =
∑
s

γ†ksγks (4.7)

pk,s =
1√
2

(
γk↑γ−k↓ − γk↓γ−k↑

)
, pk,t =

1√
2

(
γk↑γ−k↓ + γk↓γ−k↑

)
.
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Comparing the coefficients of (4.5) and (4.6), one then obtains the following
relations between the 4-point function V Λ and the channel couplings WΛ,ch

for spin-density wave (ch = SDW ), charge-density wave (ch = CDW ),
ferromagnetic (ch = FI), Pomeranchuk (ch = PI), spin-singlet (SCs) and
spin-triplet pairing (SCt) orders:

WΛ,SDW (k1, k2) = −2V Λ(k1, k2 +Q, k2, k1 +Q)

WΛ,CDW (k1, k2) = −1

2
V Λ(k1, k2 +Q, k2, k1 +Q) + V Λ(k1 +Q, k2, k1, k2 +Q)

WΛ,F I(k1, k2) = −2V Λ(k1, k2, k2, k1) (4.8)

WΛ,P I(k1, k2) = −2V Λ(k1, k2, k2, k1) + V Λ(k1, k2, k1, k2)

WΛ,SCs(k1, k2) = V Λ(k1,−k1, k2,−k2) + V Λ(−k1, k1, k2,−k2)

WΛ,SCt(k1, k2) = V Λ(k1,−k1, k2,−k2)− V Λ(−k1, k1, k2,−k2).

In case of spin-rotational symmetry, the other two (Sz = ±1) spin-triplet
pairing channels (SCt) are equivalent to the one with Sz = 0 presented
above. It is important to note here that the channel couplings WΛ,ch(k1, k2)
can be regarded as hermitian operators due to the self-adjointness of Hint.
For this reason, we can expand the channel-couplings WΛ,ch(k1, k2) into
eigenmodes f chi (k1):

WΛ,ch(k1, k2) =
∑
i

wchi (Λ)f chi (k1)∗f chi (k2), (4.9)

where f chi (k1) transforms in an irreducible representation of the symmetry
group of WΛ,ch(k1, k2). For the case of zero momentum transfer (ch =
SCs, SCt, FI, PI) this symmetry group includes the full point group of the
underlying lattice, whereas for nonzero momentum transfer (ch = SDW ,
CDW ) it only includes an associated subgroup which leaves the ordering
vector Q invariant up to reciprocal lattice vectors. In the case of FeSCs, the
two-dimensional iron plane has a C4v lattice symmetry, and the eigenmodes
f chi with (ch = SCs, SCt, PI, FI) transform as an irreducible representation
of C4v, whereas f chi for (ch = SDW,CDW ) with ordering momentum Q =
(0, π) transform as an irreducible representation of C2v. The most diverging
eigenvalue wchi (Λ) as a function of energy scale Λ then signals an ordering
tendency characterized by the associated order parameter

Ochi =
∑
k

f chi (k)〈Ôchk 〉. (4.10)

At this, Ôchk denotes the respective composite operators defined in (4.7),
and the corresponding eigenmode f chi (k) reveals further informations on the
real-space ordering pattern as well as on the one-particle spectrum within
the symmetry broken phase. This in turn becomes apparent if we only



4.2 Electronic Correlations and the Pairing Mechanism of FeSCs 71

consider the leading correlation channel WΛ,ch(k1, k2) within a low-energy
description:

HΛ
eff = H0 +

∑
k1,k2

WΛ,ch(k1, k2)Ôch†k1
Ôchk2

≈ H0 +
∑
k1,k2

wch1 (Λ)f ch1 (k1)∗f ch1 (k2)Ôch†k1
Ôchk2

(4.11)

mf
= H0 + wch1 (Λ)

∑
k

{
Och1 f

ch
1 (k)∗Ôch†k +Och∗1 f ch1 (k)Ôchk

}
. (4.12)

The k-dependent gap opening (SCs, SCt, CDW , SDW ) or shift (PI, FI)
in the one-particle spectrum is then directly determined by the eigenmode
f ch1 (k). Note that in (4.11), we only considered the leading eigenmode con-
tribution as indicated by the subscript “1”, and (4.12) involves a mean-field
decoupling which in turn becomes exact in the thermodynamic limit [18].
In the following, we will often use the term form factor for f chi (k), which is
also common in the literature. In order to determine the real-space pattern
of the preferred ordering channel, we transform the order parameter (4.10)
from band- and k-space back to its real-space and orbital representation

Och =
∑
k

f ch(k)〈Ôchk 〉 =
∑
ij,ab

f̃ chab (ri − rj)〈c(†)
iasc

(†)
jbs′〉. (4.13)

Here, the relation between the two form factors f ch(k) and f̃ chab (ri − rj) is
often not transparent due to the matrix elements uaw(k) occurring in the
transformation back to orbital representation. Below, we will demonstrate
this effect by calculating the real-space and orbital-based Cooper-pair wave
function.

4.2.5 Flow to Strong Coupling

Following the flow of the full 4-point function V Λ in Fig. 4.6a, we observe
several features which can now be related to the different channel couplings
WΛ,ch derived in the previous section. Therefore, we first note that Fig. 4.6a
displays V Λ(k1, k2, k3, k4) at different energy scales Λ as a function of k1, k2

with k3 fixed to position 71 (see Fig. 4.6b) and k4 determined by momen-
tum conservation. Now, using the identity (4.6) for the different channel
couplings, one can easily verify that the vertical features (k2 = k3 + Q)
correspond to the spin-density wave channel, the diagonals (k2 = −k1) to
the pairing channel and the horizontals (k1 = k3 +Q) to the charge-density
wave channel, though with a different sign as in the spin-density wave case.
The positions of the vertical and horizontal features then determine the re-
spective ordering momentum Q, and the ferromagnetic and Pomeranchuk
channels are associated with the Q = (0, 0) spin- and charge-density waves.
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Figure 4.6: (a) V Λ(k1, k2, k3, k4) as a function of k1, k2 with k3 fixed and k4 determined
by momentum conservation, plotted at five different values of Λ (decreasing from (a1)
to (a5)). The numbers 1-80 correspond to positions on the Fermi-surface as indicated
in (b). Since k3 was fixed at position 71 in all (a1)-(a5), the vertical features (v1)-(v4)
in the SDW channel correspond to the ordering momenta depicted in (b). The leading
antiferromagnetic fluctuations (v1),(v2) drive an s±-wave pairing instability (diagonal
features (d1),(d2)) with a sign-change between electron- and hole-pockets. The effect
of the other two (v3), (v4) will be discussed later. (b) Numbering of the Fermi-surface
positions and s±-wave gap.

From (4.8) one can further check that the singlet-pairing channel requires the
same sign in the upper (d1) and lower (d2) diagonals of Fig. 4.6a, whereas
the triplet-pairing channel favors a relative sign change. In addition, the in-
ternal sign structure of each channel reflects the leading eigenmode of (4.9)
and hence provides informations on the gap symmetry and on the real-space
ordering pattern.

4.2.6 Antiferromagnetically Driven Pairing Mechanism

Now, as we identified different physical channels in the 4-point function V Λ,
we can monitor which type of long-range order is preferred and which type
of fluctuations serve as a driving force for others. Starting with the initial in-
teraction shown in Fig. 4.6a, we again notice that the bare interaction shows
a pronounced k-dependence resulting from the matrix elements ubm(k) in
(4.4). This initial sign structure can then be rediscovered in the arising SDW
fluctuations and will later render the SDW phase gapless. Upon lowering
the energy scale Λ from (a1) to (a5) in Fig. 4.6a, these SDW fluctuations
become more and more pronounced with the two strongest features (v1)
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and (v2) corresponding to an ordering momentum Q = (π, 0). Of course,
as we do not break lattice symmetries, the same features associated with
Q = (0, π) are equally strong and appear if the position of the fixed k3 is
rotated by π/2. The other subdominant SDW fluctuations (v3) and (v4)
will have a decisive influence on the anisotropy of the superconducting gap,
as will be discussed below.

From the flow pictures (a3) and (a4) it is further apparent that the SDW
features (v1,v2) trigger a repulsive inter-pocket pair-scattering (k,−k) →
(q,−q). During the flow, such pair-scatterings from the electron- to the
hole-pockets (inter-pocket) grow stronger (red), whereas the pair-scatterings
within the electron-pockets (intra-pocket) weaken and eventually become
attractive (blue). At even lower scales, the attractive intra-pocket and the
repulsive inter-pocket pair-scatterings are similarly strong in absolute val-
ues. Therefore, in order to compensate for the repulsive inter-pocket pair-
scattering, the associated gap function changes sign between the hole- and
electron-pockets. This reasoning is most clearly seen from the coupling
WΛ,SCs in the singlet-pairing channel displaying the following structure

WΛ,SCs(k, q) ∼
( )
−1hh 1he h-pocks

1eh −1ee e-pocks

h-pocks e-pocks

due to the attractive intra-pocket and repulsive inter-pocket pair-scatterings.
The eigenmode associated to the leading eigenvalue of WΛ,SCs then equals
fSCsi (k) = (1h − 1e)T and therefore implies a sign-change between the
hole- and electron-like pockets. The corresponding pairing symmetry is com-
monly termed s±-wave as it features sign-changes but, on the other hand,
transforms trivially under all point-group actions. In fact, the detailed gap
structure is more intricate as the subdominant SDW fluctuations (v3, v4)
also favor sign changes in the superconducting gap between the indicated
positions of Fig. 4.6b. However, whereas the SDW channel (v3) reinforces
the s±-wave tendency, (v4) frustrates the sign change between the electron-
and hole-like pockets, which in turn leads to pronounced gap anisotropies
and even nodes on the electron-pockets (see Fig. 4.6b). For a more precise
discussion on this interplay of different competing spin-fluctuations, we refer
to Sec. 4.3 and 4.5 or to the article of Hanke et al. [120].

The phenomenology described above is also consistent with a two-patch
RG analysis presented by Chubukov et al. [108], where the inter-patch scat-
tering g3 grows positive and pushes the intra-patch scattering g4 through
zero until both diverge with different sign. However, in our functional RG
analysis we take into account the full wavevector dependence around the
Fermi surface and we also incorporate the full complexity of a realistic model
description. This in turn allows a much more differentiated analysis of the
competing phases in FeSCs, which will presented in the following sections.
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Figure 4.7: Flow of the most leading eigenvalues wchi (Λ) at n = 6.00 and n = 6.10
electron filling for the spin-density wave (SDW), singlet pairing (sSC,dSC), ferromagnetic
(FI), Pomeranchuk (PI) and charge-density wave (CDW) channels. For the singlet pairing
case, we depicted the two leading eigenvalues, of which the first leading one corresponds
to s±-wave and the second leading one to dx2−y2 -wave order, as will turn out from the
associated eigenmodes in Fig. 4.8. The charge- and spin-density wave channels correspond
to ordering vectors (π, 0) and (0, π), which are both degenerate by symmetry.

4.2.7 Channel Flow and Form Factors

In order to develop a broader understanding of the competing phases in
FeSCs, we now apply the eigenmode expansion (4.9) and study the flow of
the most leading eigenvalues wchi (Λ). In addition, we also investigate the
form factors f chi which tell us about the symmetry of the associated order
parameter. From the eigenvalue flow in Fig. 4.7, it then turns out that the
striped antiferromagnetic phase (SDW) with ordering momentum Q = (0, π)
or Q = (π, 0) is preferred at an electron filling of n = 6.00 (undoped). On
the other hand, spin-singlet pairing is favored at n = 6.10 with a critical
energy scale Λc ≈ Tc that is one order of magnitude lower than in the SDW
case at n = 6.00. A closer look to the corresponding form factors in Fig. 4.8
then reveals that the superconducting phase is of s±-wave symmetry (sSC)
with a characteristic sign-change between hole- and electron-pockets and
with a pronounced anisotropy at X. In the absence of the Fermi-pocket at
M , these anisotropies can even lead to nodes (zeros) in the superconducting
gap, as will be discussed in Sec. 4.3. The form factor of the SDW phase
instead shows a clear nodal behavior which is protected by symmetry [79]
due to the transformation behavior of the matrix-elements uam(k) in (4.2).
However, the real-space order in orbital basis is still of s-wave type with a
striped-antiferromagnetic pattern as shown in the (SDW) inset of Fig. 4.8.
All these results, including the one of a nodal SDW phase, are in accordance
with the overall experimental picture.

In addition, our results also suggest a significant tendency towards dx2−y2-
wave pairing as indicated by the subleading eigenvalue (dSC) in Fig. 4.7.
This near degeneracy of s±- and dx2−y2-wave pairing channel can further
lead to interesting new phases, as for example a time-reversal symmetry
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PICDW

Figure 4.8: Form factors fch(k) of the leading eigenvalues plotted along the different
Fermi-surfaces according to the numbering of Fig. 4.6b. The insets show the nearest-
neighbor representation of the corresponding orders. Singlet s±-wave (sSC) and dx2−y2 -
wave (dSC) pairing orders depicted by its nearest-neighbor wave function, striped antifer-
romagnetic (SDW) and ferromagnetic (FI) order indicated by blue arrows, Peierls ordering
(p-wave CDW) represented by enhanced bond hoppings (olive) and s±-wave Pomeranchuk
phase leading to a uniform shift of the hopping parameters (purple lines).

broken (s + id)-pairing state discussed in Sec. 4.5 or an extended dx2−y2-
wave pairing state presented in Sec. 4.4. Other ordering tendencies like the
Pomeranchuk instability (PI), spin-triplet pairing (not shown) and charge-
density wave (CDW) channels remain small throughout the entire flow. The
ferromagnetic channel (FM), though very pronounced at the beginning, de-
creases significantly towards low-energy scales.

In order to analyze the influence of the orbital make-up in the electronic
states, we also neglect all matrix elements uam(k) in the bare interaction
(4.4) and simply use V0(k1, k2, k3, k4) = U as a starting point of our func-
tional RG implementation. The resulting form factors are then given by
the gray lines of Fig. 4.8 and reveal a considerable deviation compared to
the ones determined from the correct microscopic interaction. Even though
the s±-wave pairing symmetry is correctly reproduced, it completely fails to
resolve the gap-anisotropies and also predicts a wrong nodeless SDW gap.
Therefore, one should carefully interpret the outcomes for such effective in-
teractions which disregard the full complexity of a microscopic multi-orbital
interaction.

4.2.8 Real-Space Ordering

In the following section, we uncover the real-space and orbital structure of
the different ordering tendencies in FeSCs. For this purpose, we first invert
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(a1) (a2) (b1) (b2)

Figure 4.9: Form factors f̃SCsab (k) (red points) and harmonic-fit (black lines) for the
intra-orbital pairing in the dX2−Y 2 -orbital (a1) and dXZ-orbital (b1). (a2,b2) Corre-

sponding pair wave functions f̃SCsaa (d) in dependence of the relative distance d = ri − rj
plotted in units of the lattice constant. The pair wave function for the electrons in orbital
dY Z is obtained by 90 degrees rotation of the one for dXZ . Note that the dXZ-orbital here
points to the next-nearest neighbor site.

the transformation from orbital- to band-basis by using

γkms =

5∑
a=1

u∗am(k)ckas, (4.14)

and we then rewrite the order parameters (4.10) in terms of c†kas, ckas. For
the spin-singlet pairing case, this gives rise to

OSCs =
∑
k

fSCs(k)〈γk↑γ−k↓ − γk↓γ−k↑〉

=
∑
k,ab

fSCs(k)u∗am(k)u∗bm(−k)〈cka↑c−kb↓ − cka↓c−kb↑〉

=
∑
ij,ab

f̃SCsab (ri − rj)〈cia↑cjb↓ − cia↓cjb↑〉,

where we defined the real-space and orbital-based form factor

f̃SCsab (ri − rj) =
∑
k

eik(ri−rj)fSCs(k)u∗am(k)u∗bm(−k).

Note here that the k-sum in the last two expressions includes the sum-
mation over momenta k and associated band-indices m. According to
the discussion in Sec. 3.1, f̃SCsab can be interpreted as a wave function of
two paired electrons in orbital a and b. In Fig. 4.9, we then pictured
f̃SCsab (k) = fSCs(k)u∗am(k)u∗bm(−k) (red points) for the leading intra-orbital
pairing a = b between electrons in the dX2−Y 2-orbital (a1) and dXZ-orbital
(b1) along the Fermi-surface. The case of dY Z intra-orbital pairing sim-
ply follows from the one of dXZ by π/2-rotation, and the pairing between
orbitals other than dXZ , dY Z and dX2−Y 2 is strongly suppressed as these
three contribute by far the largest values in uam(k). In addition, the pair-
ing between different orbitals is also not favored simply because k and −k
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share the same orbital weights by symmetry. After that, we further apply a
harmonics fit (black lines), which leads to the real-space pair wave functions
fSCsab (ri − rj). As the total Cooper-pair momentum is zero, the real-space
pairing function features the same translational invariance as the underlying
lattice, and we therefore depicted fSCsab (d) in Fig. 4.8(a2,b2) as a function of
the relative distance d = ri−rj . Here, it becomes apparent that the matrix
elements uam(k) of (4.14) obscure the relation between the form factors in
Fig. 4.8 and its corresponding real-space ordering pattern. This is, by the
way, also the reason why the (π, 0)/(0, π)-SDW gap shows a nodal behavior
although its real-space ordering is of conventional structure.

Unlike the spin-density phase, the leading charge-density wave channel
shows a px/py-wave real-space structure for the ordering momenta (π, 0),
(0, π) which cannot be ascribed to charge modulations but characterizes a
Peierls ordering as shown in the (CDW) inset of Fig. 4.8. Here, certain
hopping amplitudes are weakened (thin lines) or enhanced (thick lines), and
the corresponding order parameter turns out to be imaginary due to

OCDW∗ =
∑
i,a,s

(−1)ix〈c†iasci+xas − c
†
iasci−xas〉

∗

=
∑
i,a,s

(−1)ix〈c†i+xascias − c
†
i−xascias〉 = −OCDW .

Note that the real-space patterns displayed in the insets of Fig. 4.8 only
represent the nearest-neighbor representation compatible with the symmetry
in each channel. Similar to the pair wave function in Fig. 4.9, there are in
general also sizeable contributions from higher harmonics.

The real-space form factors of the leading ferromagnetic and Pomer-
anchuk channels both reveal an s-wave structure in band- and orbital space
and its nearest-neighbor representations are shown in the respective insets.
Actually, the s-wave Pomeranchuk phase does not break any symmetries
and just corresponds to a uniform shift in the hopping-parameters. Other
so-called nematic ordering channels with Q = (0, 0) and non s-wave form
factors, which only break point-group symmetries, are subleading but still
close to its s-wave representatives.

4.3 Why Some FeSCs Are Nodal While Others
Are Nodeless

In the following section, we address the issue of nodes in the superconducting
gap of FeSCs. In particular, we analyse why some FeSCs appear nodal while
others are nodeless, despite their similar electronic properties. For example,
in the 1111 representative LaFeAsO, a majority of experiments point to the
existence of nodeless isotropic gaps [73, 109] on the hole-like Fermi surface
(FS) and also nodeless gaps on the electron-like FS, albeit with a larger gap
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Figure 4.10: Band structure of LaOFeAs (a1) and LaOFeP (a2) plotted in colors
according to its leading orbital content (Inset: Brillouin Zone and orbital color-coding).
The dashed horizontal lines denote the Fermi level for the respective undoped compounds.
Here, the major difference between (a1) and (a2) is the dX2−Y 2 -orbital dominated band,
indicated by the arrow, which crosses the Fermi level in (a1), but not in (a2). Being
still away from the Fermi level, the d3Z2−R2 -orbital dominated band is shifted up in (a1)
compared to (a2). (b) Pnictogen height hp and position of the iron dX2−Y 2 -orbital.

anisotropy [99, 110–113]. On the other hand, in LaFePO, a clear majority
of experiments support a nodal gap behavior [114, 115]. This difference is
even more puzzling, since both materials display similar FS pockets at the
X- and Γ-point of the Brillouin zone, as pointed out in an ARPES study of
Lu et al. [116].

In what follows, we offer an explanation for the difference between the
superconducting gaps in As- and P-based compounds. As it was noted by
Kuroki et al. [117], the key difference between these two materials consists
in a modified pnictogen hight, i.e. the distance measured from the pnictogen
to the iron plane (see Fig. 4.10b), which then mainly affects the spread of
the iron dX2−Y 2-orbital. Therefore, the appearance of an additional hole-
pocket at the M -point of mainly dX2−Y 2-orbital weight is very sensitive to
the pnictogen height and, as we will illustrate now, causes a nodal or node-
less pairing gap. The following results are published in:
R. Thomale, C. Platt, W. Hanke, B. Andrei Bernevig, Mechanism for Ex-
plaining Differences in the Order Parameters of FeAs-Based and FeP-based
Pnictide Superconductors, Phys. Rev. Lett. 106, 187003 (2011).

As a starting point, we use a two-dimensional tight-binding model devel-
oped by Kuroki et al. [71] to describe the band structure of the 1111-type
iron-based superconductors:

H0 =
∑
k,s

5∑
a,b=1

c†kasKab(k)ckas.

Here, c†kas, ckas denote the electron creation and annihilation operators, a, b
represent the five iron d-orbitals and s the spin projection. While the main
electronic structure of P-based and As-based compounds is very similar,
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there are certain important differences. Figure 4.10 shows the band structure
of LaOFeAs and LaOFeP, where the latter is obtained by adjusting the
parameters in [71] according to the changed pnictogen height from As to
P [117]. In the vicinity of the Fermi surface, the most notable difference
is the presence or absence of a broad dX2−Y 2-orbital dominated band at
M = (π, π), in agreement with ARPES data. To account for this difference,
we use a 5 pocket scenario for the As-based and a 4 pocket scenario for the
P-based compounds. The interactions in this model are given by

Hint =
∑
i

U1

∑
a

nia↑nia↓ + U2

∑
a<b,s,s′

ni,asnibs′

+JH
∑
a<b

∑
s,s′

c†iasc
†
ibs′cias′cibs + Jpair

∑
a<b

(
c†ia↑c

†
ia↓cib↓cib↑ + h.c.

),
where nias denotes the density operator in orbital a at site i and with spin
projection s. Here, we consider intra- and inter-orbital interactions U1 and
U2 as well as the Hund’s coupling JH and the pair-hopping term Jpair. In
what follows, we choose a physical interaction setting dominated by intra-
orbital coupling, U1 > U2 > JH ∼ Jpair, and assume U1 = 3.5eV, U2 =
2.0eV, JH = Jpair = 0.7eV [118]. It is also important to note that, even
though the interaction scales are relatively high, the bare interaction scale,
taking into account the different orbital weights in (4.4), does not exceed
2eV , whereas the kinetic bandwidth amounts to 5eV . Actually, this is still a
rather simplified picture as the interaction parameters would in general also
depend on the different orbitals. However, for the two scenarios represen-
tative for As- and P-based compounds, we checked that the main features
are stable under variation of these parameters. From the band structure
point of view, it should also be noted that the d3Z2−R2-orbital dominated
band moves towards the Fermi level for the P-based compound (Fig. 4.10).
However, this band only plays a marginal role since no other relevant band
shares the d3Z2−R2-orbital content, and any scattering to other bands is
therefore governed by subleading inter-orbital interactions.

Using the method of functional RG, as described in the previous sections
and also in Chap. 2, we study how the renormalized interaction described
by the 4-point function V Λ:

V Λ(k1, k2, k3, k4)γ†k1m1s
γ†k2m2s′

γk3m3s
γk4m4s′

(4.15)

evolves under integrating out high-energy fermionic modes. Here, the flow
parameter is an infrared cutoff Λ approaching the Fermi surface, and we also
checked the validity of our results by implementing the temperature-flow
scheme described in Sec. 2.2. We further employed the condensed notation
of ki = (ki,mi) including momenta ki and band indices mi. The label s, s′
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in (4.15) is again used for the spin projection. Note that in (4.15), we also
applied the transformation from orbital- to band-basis (ckas → γkms) as
discussed in Sec. 4.2.2. For a given instability characterized by some finite
expectation value of a fermion bilinear 〈Ôchk 〉 6= 0, the effective interaction
vertex V Λ(k1, k2, k3, k4) in the particular ordering channel can be written in

shorthand notation as
∑

k,pW
Λ,ch(k, p)Ôch†k Ôchp . Accordingly, the coupling

WΛ,SCs(k, p) in the singlet-pairing channel with Ôchp ∼ (γp↑γ−p↓−γp↓γ−p↑)
can be decomposed into different eigenmode contributions (see Sec. 4.2.4)

WΛ,SCs(k, p) =
∑
i

wSCsi (Λ)fSCsi (k)∗fSCsi (p), (4.16)

where i is a symmetry index, and the leading instability of this channel
corresponds to the eigenvalue wSCsi (Λ) first diverging under the flow of Λ.
The associated form factor fSCsi (p) then tells us about the pairing symmetry
and gap structure. In the functional RG, this quantity fSCsi (p) is computed
along the discretized Fermi surface (see Fig. 4.11a and Fig. 4.12a), and
the flow of the leading eigenvalues wSCsi (Λ) is plotted in Fig. 4.11e and
Fig. 4.12e.

4.3.1 As-Based Compounds

For the As-based setting, we find that the s±-wave pairing instability, giv-
ing rise to different gap signs on electron- and hole-pockets, is the leading
instability of the model at moderate doping. The setup resembles the situ-
ation studied in [118], which, as an additional check, we also studied with
a more detailed tight-binding structure beyond 5th next-nearest neighbors.
We also find a nodeless s±-wave pairing instability. In addition, we can
identify the hole-pocket at the M -point to play a major role in contributing
to the fully gapped s±-wave pairing (Fig. 4.11). In particular, we study the
orbital content in detail and analyze how the pairing instability distributes
over the different orbitals (Fig. 4.11d). For this purpose, we consider the
4-point function in orbital space

V Λ,orb
c,d→a,b(k1,k2,k3,k4) =

5∑
n1,...,n4=1

V Λ(k1, k2, k3, k4)u∗an1
(k1)u∗bn2

(k2)ucn3(k3)udn4(k4), (4.17)

where the u-coefficients relate the band- and orbital-basis, and also charac-
terize the orbital components of the different bands. The matrix shown in
Fig. 4.11d then gives the leading eigenvalue contributions of

WΛ,SCs
ab (k,p) = V Λ,orb

a,a→b,b(k,−k, q,−q) + V Λ,orb
a,a→b,b(−k,k, q,−q)

i.e. in the spin-singlet Cooper channel of (4.17) where we constrain ourselves
to the dominant processes of intra-orbital pairing (a, a)→ (b, b). As above,
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Figure 4.11: Five pocket scenario for LaFeAsO. a) Leading pairing form factor fSCs(k)
versus patching indices (momenta) shown in b). The gap on the outer hole-pocket at Γ is
smaller than of the inner hole-pocket and of the same order as the M pocket gap. The gap
on the electron-pockets is very anisotropic but nodeless and of opposite sign from the hole-
pocket gap. c1)-c3) Orbital weight distribution on the different pockets (not shown is the
outer hole-pocket at Γ, which is similar to c2) rotated by π/2 assuring orthogonality of the
band vectors). Dashed lines indicate most relevant scattering contributions for the domi-
nating U1 intra-orbital interaction. d) Leading orbital pairing eigenvalues wSCsi,ab (Λc) from
Eq. (4.17): dXZ,Y Z and dX2−Y 2 scattering dominates. e) Flow of the leading eigenvalues
(charge density wave (CDW), Pomeranchuk instability (PI), spin-density wave SDW, and
spin-singlet superconductivity SC). The leading instability appears in the s±-wave pairing
channel at Λc ≈ 0.03eV , d-wave pairing and SDW diverge closely (hardly distinguishable
on the log scale).

we decomposeWΛ,SCs
ab into different eigenmodes

∑
iw

SCs
i,ab (Λ)f̃SCsi,ab (k)∗f̃SCsi,ab (p),

where the leading eigenvalues at Λc for different (a, b) are given in Fig. 4.11d
and Fig. 4.12d. Intra-orbital scatterings between the dXZ- or dY Z-orbital
dominated parts of the electron- and hole-pockets are most important (see
Fig. 4.11). They favor an s±-wave pairing instability, as was also found
in [118]. However, the leading eigenvalue in the As scenario comes from the
diagonal part of the dX2−Y 2-orbital. Pointing in the direction of the Γ↔ X
path, the electron-pocket has a high concentration of the dX2−Y 2-orbital.
This part of the electron-pocket then scatters strongly with the hole-pocket
at the M -point, which is dominated by the dX2−Y 2-orbital band. The intra-
orbital repulsion related to this scattering prefers an s±-wave pairing be-
tween the hole-pocket at M and the electron-pockets, which reinforces the
already present s±-wave tendency between the Γ hole-pockets and the X,
(X ′) electron-pockets. Assuming that U1 is the dominant interaction, the
three hole-pockets display a gap of identical sign: two Γ-pockets which are
not nested with each other have the same gap sign and are of different or-
bital content than the hole-pockets at the M -point. However, the electron-
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pockets contain contributions from all three relevant d-orbitals. Therefore,
the electron-pockets scatter strongly through U1 with all three hole-pockets,
which enhances the s±-wave character of the gap.

So, in summary of the As scenario, having the superconducting state
orthogonal to the repulsive interaction [119] induced by the presence of the
additional M -pocket further increases the s±-wave gap between hole- and
electron-pockets. The hole-pocket at M is also responsible for the strong
SDW signal (4.11) as the nesting wavevector M ↔ X equals the one between
Γ↔ X.

4.3.2 P-Based Compounds

In the P-based compounds, the physical picture changes even qualitatively.
As shown in Fig. 4.12, we find a nodal s±-wave scenario for the P-based
compounds, with lower critical divergence scale Λc ∼ Tc and less SDW-
fluctuations. The absence of the M hole-pocket removes the intra-orbital
scattering to the electron-pockets. This gives way to previously subleading
scattering channels such as, in particular, the pair scattering between the
dX2−Y 2-dominated parts of the electron-pockets, but also pair scatterings
from the hole-pockets at Γ to the electron-pockets. The former acts between
the k-points of the gap function on the electron-pockets given by the peaks
and the valleys (Fig. 4.12a) increasing the anisotropy and eventually giving
them different signs, thus creating a nodal state. Even if the d3Z2−R3-orbital
dominated band at the M -point (Fig. 4.10a2) were shifted to the Fermi
level, the situation remains nearly unchanged as this pocket does not share
its orbital content with any other pocket, and hence interactions driven by
U1 are suppressed.

To further substantiate our conclusion, we perform a large sweep in pa-
rameter space to resolve the evolution of the superconducting form factor
upon varying the interaction parameters. The corresponding results can be
found in [120]. From the ab initio data stated before, we get U1/U2 ≈ 1.5,
U1/JH = U1/Jpair ≈ 6.5. As such, the parameter regime of the As-based
and P-based compounds lies in the regime of applicability of our theory and
our findings are consistent with experiment: in the P-based compounds, we
find (i) a lower divergence scale and, hence, lower Tc compared to As-based
compounds, (ii) significantly enhanced low-energy density of states in the
(hence nodal) superconducting phase, and (iii) reduced SDW-fluctuations,
which, even at pronounced nesting, are insufficient to drive the system to
a leading magnetic instability [114–116]. The absence of the hole-pocket at
the M -point also manifests itself in the orbital decomposition of the pairing
instability (Fig. 4.12d); the diagonal contribution of the dX2−Y 2-orbital, in
comparison to the one of the dXZ,Y Z-orbital, is reduced.

In summary, we find that the broad band at the unfolded M -point plays
the major role in explaining the drastic change of superconducting prop-
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Figure 4.12: Four pocket scenario for LaOFeP. a) Leading s±-wave pairing form factor
as a function of Fermi-surface positions given in b); the dX2−Y 2 -dominated hole-pocket
at M is absent, and the hole-pockets at Γ are gapped and isotropic. The electron-pockets
show strong anisotropy, being nodal near the Γ ↔ X(X ′) axes. c) Relevant pair scat-
terings between different electron-pockets (orbital weights of the pockets are shown in
(c1)-(c3)). d) The orbital decomposition of the pairing instability: large dXZ,Y Z and less
relevant dX2−Y 2 contribution. e) Flow of the leading instability eigenvalues (notation as
in Fig. 4.11e); Λc ≈ 0.002eV is smaller than in Fig. 4.11.

erties from the As-based to the P-based 1111 compounds, rendering the
former nodeless and the latter nodal. The nodes that appear in the P-based
compounds are mainly driven by anisotropy of the electron-pockets. Other
compounds such as the 111 representatives LiFeAs and LiFeP display a sim-
ilar phenomenology of nodal and nodeless pairing (see Sec. 4.6), which has
probably the same origin as in the 1111 compounds studied here.

4.4 Exotic d-wave Pairing in Strongly Hole-Doped
KxBa1−xFe2As2

In the preceding section, we found that the existence of nodes in the s±-
wave pairing state of FeSCs is not required by symmetry, but may develop
as a compromise between two competing fluctuation channels. Here, the
node position was not fixed by symmetry and occurred somewhere near
the Γ ↔ X axes on the electron-pockets. It therefore came as a surprise
when nodal superconductivity was reported in a strongly hole-doped 122
compound KFe2As2 [121–125] where ARPES measurements [126] clearly
showed that the two electron-pockets had nearly vanished. In addition,
the superconducting transition temperature of Tc = 3K was rather low
compared to the moderately doped K0.4Ba0.6Fe2As2 with Tc = 38K [127],
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where all experiments indicate a nodeless superconducting gap [73,109,113,
127–130]. For this reason, there must be a nodal to nodeless transition or
even a change of the pairing symmetry in between these doping regions.

In the following section, we provide a detailed picture of how the super-
conducting phase evolves under hole doping in KxBa1−xFe2As2. Here, we
find that the nodal pairing phase observed for x = 1 is of (extended) d-wave
type. Details of this work can be found in:
R. Thomale, C. Platt, W. Hanke, J. Hu, and B. A. Bernevig, Exotic d-wave
Superconducting State of Strongly Hole-Doped KxBa1−xFe2As2, Phys. Rev.
Lett. 107, 117001 (2011).

We now focus on studying KxBa1−xFe2As2 starting at the optimally
doped case around x = 0.4 and increasing the hole doping up to x = 1.0
in KFe2As2. At this, we use an effective 5-band tight-binding model devel-
oped by Graser et al. [131] to describe the band structure of the 122-type
iron-based superconductors (see Fig. 4.13):

H0 =
∑
k,s

5∑
a,b=1

c†kasKab(k)ckas. (4.18)

Here, c†kas, ckas denote the creation and annihilation operators, a, b the five
Fe d-orbitals and s the spin index. As seen in Fig. 4.13 and Fig. 4.14, for
moderate hole doping, the conventional five pocket scenario with electron-
pockets at X = (π, 0, 0) and M = (π, π, 0) emerges. For larger hole doping,
the electron-pockets vanish and only small disconnected lobe features are
found around X (Fig. 4.14c). The kinetic model then reduces to the effective
three-hole-pocket scenario shown in Fig. 4.14c. Other details of the 122 band
structure are currently still under debate, with unresolved questions about
the Fermi-surface topology at the Z = (0, 0, π) point in the three dimensional
Brillouin zone and the importance of integrating over the full range along
kz. However, as many of these details mostly affect the electron-pocket
anisotropies, they are irrelevant for our proposed pairing mechanism: as we
always consider a rather largely hole-doped regime, the electron-pockets can
be assumed relatively small – even disappearing in the most interesting case,
i.e. that of full hole doping. We, therefore, particularize to the kz = 0 cut
of (4.18) in the following, and also omit the lobe features at large hole doping
within the RG calculations. To test our assumption of the irrelevance of the
kz dispersion to our results, we have made several other cuts at different
kz and confirmed that our results do not change qualitatively. We cannot
ultimately exclude that the lobes may influence the system due to the fact
that our Brillouin zone patching scheme is not fully adequate for such small
Fermi surface features. Still, within our formalism, we find that the lobes are
negligible in the RG flow. A schematic picture of the Fermi-surface topology
is given in Fig. 4.13a. Here, the hole-pockets at Γ mainly have dxz- and dyz-
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Figure 4.13: (a) Schematic plot of the unfolded Fermi-surface together with the domi-
nant orbital weights. Patches along the pockets are enumerated counterclockwise, starting
at each pocket with the patch indicated by a dot. The number of patches with electron-
pockets is 80, and without it decreases to 48. (b) The kz = 0 slice of the 122 band
structure given in [131].

orbital content, while the hole-pocket at M consists of dxy-orbital weight.
When present, the electron-pockets consist of dxz- and dyz-orbital weight.
Exceeding a certain size, the front tip along Γ − X also has an important
dxy-orbital weight on the electron-pockets. We use the conventional onsite
orbital model for the interactions, i.e.

Hint =
∑
i

U1

∑
a

nia↑nia↓ + U2

∑
a<b,s,s′

niasnibs′

+JH
∑
a<b

∑
s,s′

c†iasc
†
ibs′cias′cibs + Jpair

∑
a<b

(
c†ia↑c

†
ia↓cib↓cib↑ + h.c.

),
where nias denotes the density operator of orbital a at site i and of spin s.
We consider intra- and inter-orbital interactions U1 and U2 as well as the
Hund’s coupling JH and the pair-hopping term Jpair. The corresponding
parameter values are chosen close to the ones obtained by constrained RPA
calculations [132]: U1 > U2 > JH ∼ Jpair, and set U1 = 3.0eV, U2 =
2.0eV, JH = Jpair = 0.6eV . While there are variations of these parameters
for different classes of pnictides, the values of the parameters are all in the
same range, and we have confirmed that variations of 20-30% do not change
the picture qualitatively. As a tendency, a comparably large absolute value
of U1 needs to be kept to trigger the pairing instability, where increasing U2

also helps to increase the critical cutoff scale and, thus, Tc.
Using the multi-band functional RG as described in the previous sections,

we study the evolution of the renormalized interaction described by the 4-
point function under integrating out high-energy fermionic modes. The
diverging channels of this 4-point function under the flow to the Fermi-
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Figure 4.14: Representative scenarios of the Fermi-surface (unfolded BZ) and eigenvalue
flows for the electron concentration per iron n = 5.913 (a), n = 5.663 (b), and n = 5.346
in (c). The hole doping of our model calculation in (c), while exceeding the experimen-
tal setup nel = 5.5, best matches the FS profile from ARPES [126]. The dominant and
subdominant scatterings in the Cooper channel are highlighted in (a1)-(c1) by full and
dashed arrows. The color contours along the FS label the dominant orbital weights (inset
(a1)). The leading eigenvalue flow of the ordering channel for different Fermi instabilities
(charge-density wave (CDW), Pomeranchuk (PI), spin-density wave (SDW) and super-
conductivity (SC)) are plotted in (a2)-(c2) versus the momentum cutoff Λ. For (a) and
(b) we find s±-wave pairing as the leading Fermi instability. For (c) we observe a leading
d-wave pairing instability.

surface then signal the nature of the instability, and the corresponding Λc

serves as an upper bound for the transition temperature Tc. The Cooper
channel of the 4-point function further provides the different pairing form
factors - the dominant order parameter having the largest eigenvalue [118,
133–135]. In Fig. 4.14, the leading eigenvalues for different instabilities are
plotted against Λ for different fillings between moderately hole-doped from
the left to strongly hole-doped to the right. We find that for all scenarios
the leading instability is in the Cooper channel.

For the moderately doped case, the electron-pockets are of similar size
as the hole-pockets. Figure 4.14 (a1) shows the Fermi-surface structure as
well as the dominant (full line) and subdominant scattering (dashed arrow)
processes in the Cooper channel. The two major components are given by
Γ ↔ X as well as M ↔ X scatterings. They are particularly important
for the front tips of the electron-pockets since these parts can scatter to M
via dominant U1 interaction due to an identical orbital content. The spin-
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density wave (SDW) fluctuations are strong, signaling the proximity to the
leading magnetic instability scenario of the undoped model (Fig. 4.14 (a2)).

For the intermediate regime, between moderate and strong hole doping,
the electron-pockets are already very small (Fig. 4.14 (b1)). The nesting to
the hole-pocket is absent, and the SDW fluctuations are strongly reduced. In
addition, the SDW fluctuations become less concentrated in the (π, 0)/(0, π)
or (π, π) channel, and spread into various incommensurate sectors [136].
The dxy-orbital weight on the electron-pocket is reduced, and the M ↔ X
scattering becomes subdominant. The main pair scattering is along Γ↔ X.
As a consequence, s±-wave pairing is still the leading instability, where the
form factor and its decomposition into orbital scattering contributions are
shown in Fig. 4.15(b1,b2): the largest gap is found for the inner hole-pocket
at Γ, followed by the outer hole-pocket and the hole-pocket at M , where the
electron-pockets show anisotropic gaps. The orbital decomposition confirms
the previous discussion of the dominant scattering contribution, in that the
largest weight resides at intra- and inter-orbital scattering of the dxz- and
dyz-orbital. However, we already observe that, due to the lack of SDW
fluctuations supporting the pairing channel, the critical divergence scale is
decreased (Fig. 4.14 (a2)-(c2)). In particular, while still subdominant, we
can already see the d-wave pairing evolving as the second-highest eigenvalue
in the Cooper channel. When the electron-pockets are still present, the form
factor (not shown here) closely resembles the extended d-wave type involving
hole- and electron-pockets [133].

At strong hole doping, the electron-pockets are absent, and the hole-
pockets are very large. The flow in Fig. 4.14(c2) shows no instability up
to small cutoff scales Λ where we find a leading instability in the Cooper
channel. Its form factor and orbital scattering decomposition is shown
in Fig. 4.15(c1,c2). We observe an extended d-wave instability on the
three hole-pockets, with nodes located along the main diagonals in the Bril-
louin zones (see Fig. 4.15a). A harmonic analysis of the order parameter
yields a large contribution of cos(2kx) − cos(2ky) type and a subdominant
cos(kx) − cos(ky) component, i.e. the form factor is most accurately char-
acterized by (cos kx + cos ky)(cos kx − cos ky). The dominant scattering is
intra-pocket scattering on the large M hole-pocket, followed by inter-orbital
dxy to dxz,yz scattering between M ↔ Γ. While the magnetic fluctuations
are generally weak in this regime, the dominant contribution is now given
by (π, π) SDW fluctuations as opposed to (π, 0)/(π, 0) for smaller hole dop-
ing. For strong hole doping, the hole-pocket at M is large enough to induce
higher harmonic d-wave pairing through intra-pocket scattering between the
dxy-orbitals as confirmed by the large value of dxy−dxy pairing Fig. 4.15(c2).
Via scattering to the other pockets, the superconductivity is likewise induced
there, however, with smaller amplitude than for the M -pocket Fig. 4.15(c1).
As opposed to conventional first harmonic d-wave pairing, there is no sign
change between the extended d-wave form factor on the M -pocket and the
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Figure 4.15: (a) Qualitative phase-diagram of KxBa1−xFe2As2 as a function of dop-
ing x with the two determined pairing symmetries depicted in the insets. (b1,c1) Cor-
responding form factors of the leading pairing instability according to the scenarios in
Fig. 4.14(b,c). The numbering in (b1,c1) denotes the position on the Fermi-pockets ac-
cording to Fig. 4.13a. (b2,c2) Eigenvalues of the orbital decomposition of the supercon-
ducting form factor in (b1,c2). Here, the ratio of the values label the relative importance
of the orbital scattering channel V (a, a → b, b)ca↑ca↓c

†
b↓c
†
b↑. In the strongly hole-doped

case, we find an extended d-wave form factor with nodal points located along the main
diagonal of the Brillouin zone shown in the right inset of (a).

Γ-pocket according to cos(2kx) − cos(2ky) in Fig. 4.15. This picture of a
k-space proximity effect from the M -pocket to the Γ-pockets is substanti-
ated by our checks with calculations involving the M -pocket only, where we
see a similar evolution of a pairing instability (the divergence is lower, as
the inter-orbital scatterings in the 3-pocket scenario help to renormalize the
repulsive Coulomb interactions). This matches the orbital decomposition of
the superconducting form factor in Fig. 4.15(c2), showing dominant intra-
orbital scattering of the dxy-orbital. As apparent from the ARPES data, the
nodal character of the superconducting phase in KFe2As2 cannot originate
from possible nodes on the electron-pockets (which are gapped out at these
doping levels), but must be due to nodes on the hole-pockets. It is then clear
that the order parameter cannot be s±-wave as it does not tend to allow for
an anisotropy that would drive the hole-pockets nodal. The d-wave instabil-
ity which we find for the strongly hole-doped regime provides an explanation
for the general experimental evidence, while the detailed gap structure cer-
tainly deserves further investigation [137]. Electron-phonon coupling may
change the picture slightly quantitatively, but not qualitatively, as the nodal
features, tentatively linked to the d-wave symmetry, are unambiguously ob-
served in experiment. Pnictogen height variations as a function of doping
may change the precise value of Tc, and would be important to be studied
in general from first principles. Finally, it would be interesting to analyze
the transition from s±-wave to the d-wave pairing as a function of doping.
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4.5 Pairing State with Broken Time-Reversal Sym-
metry

From the results presented in the previous sections, it became apparent
that the multi-pocket Fermi surfaces of FeSCs lead to a complex interplay
among pairing interactions, pairing symmetries and Fermi-surface topology.
Whereas a repulsive interaction between hole- and electron-pockets gives
rise to the s±-wave pairing state, the interaction between the two electron-
pockets and, as it was the case in the strongly hole-doped KxBa1−xFe2As2,
the interaction within the hole-pockets both favor d-wave pairing. As these
two pairing symmetries cannot be satisfied simultaneously (see Fig. 4.16a),
the system may develop a mixed (s+ id)-pairing state, which then strikes a
compromise between the two competing pairing symmetries. Of course, this
compromise is only worthwhile if the frustration between the two pairing
tendencies is sufficiently strong. The resulting (s + id)-pairing state then
obviously breaks time-reversal symmetry (see Sec. 3.1) and shows interesting
experimental signatures [138].

Using a combined approach of functional RG and mean-field analysis, we
identify the microscopic parameter regime for the (s + id)-state, which in
turn provides a useful “guiding principle” for an experimental realization of
this fascinating pairing state. Details of this work can be found in:
C. Platt, R. Thomale, C. Honerkamp, S. C. Zhang, and Werner Hanke,
Mechanism for a Pairing State with Time-Reversal Symmetry Breaking in
Iron-Based Superconductors, Phys. Rev. B 85, 180502(R) (2012)

In principle, there are various experimentally tunable parameters to drive
the competition between s±-wave and d-wave pairing in FeSCs, giving the
opportunity to start from both limits.

In KxBa1−xFe2As2, the Fermi surface topology can be chosen as a paradig-
matic setup for s±-wave, consisting of hole-pockets at Γ = (0, 0) and M =
(π, π), as well as two electron-pockets at X = (π, 0)/(0, π) for optimal dop-
ing x ' 0.4. Upon increasing x, however, the electron-pockets decrease,
and have nearly disappeared for x = 1 as shown in Fig. 4.16, which has
been suggested to host a d-wave pairing symmetry (see Sec. 4.4). In this
system, it is hence plausible that an (s + id)-pairing state can be realized
for intermediate values of x.

In the chalcogenide KxFe2−ySe2, the electron-pockets at the X-points
dominate, and, for a situation seemingly inverse to KFe2As2, a d-wave pair-
ing symmetry may likewise be expected [139, 140]. It should be noted that
the actual pairing symmetry in the chalcogenides is far from settled, as a
strong coupling perspective may likewise suggest s±-wave pairing [141]. By
tuning doping or other possible parameters affecting the band structure such
as pressure, one possibly induces a pocket at the Γ-point, increasing the ten-
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(b)(a) (c)

Figure 4.16: (a) The two competing pairing symmetries in FeSCs. Frustrating the
d-wave limits of KxBa1−xFe2As2 (b) and KxFe2−ySe2 (c). Upon doping or differently in-
duced band structure effects, electron-pockets appear (dashed red) in (b) and a hole-pocket
appears (dashed red) in (c), which then populate the q ∼ (π, 0)/(0, π) scattering channels
and enhance the s±-wave pairing symmetry. This leads to frustration and provides the
background for (s+ id)-pairing.

dency towards s±-wave pairing (see Fig. 4.16). In this case, one could also
expect an (s+ id)-pairing state. By systematically tuning the Fermi-pocket
topologies, one can compare the predicted pairing symmetries with experi-
ments, starting from compound settings with a suspected d-wave symmetry
(see Fig. 4.16).

In the following, we rather intend to start from an s±-wave pairing state
instead, and address how we can enhance the competitiveness of the d-
wave symmetry to drive the system into the (s + id) regime. The reason
for this is two-fold. First, the s±-wave pairing symmetry is much more
generic for the different classes of FeSCs. Second, as we will see below, we
find the most promising setup to be located on the electron doped side of
pnictides, where high-quality samples have already been grown for different
families. We hence believe that this regime may be the experimentally
most accessible scenario at the present stage, which is why we explicate
it in detail. In this paper, we investigate the microscopic mechanism of
the (s + id)-pairing state by means of a functional RG analysis of a five
band model. We systematically vary the doping level and the strength of
intra-orbital interaction, which determine the ratio between the electron-
hole pocket and the electron-electron pocket mediated pairing interactions.
In this microscopic investigation, we find that the (s+ id)-pairing state can
be realized in the intermediate electron-doped regime, given that we also
adjust the pnictogen height parameter of the system appropriately.

We start from a representative 5-band model for the pnictides obtained
from LDA-type calculations [71]. The same model has also been considered
in Sec. 4.3 as a starting point for explaining the difference between the
isovalent P-based and As-based 1111 compounds [134]. The LDA “non-
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interacting” part is given by

H0 =
∑
k,s

5∑
a,b=1

c†kasKab(k)ckbs. (4.19)

Here, c†kas, ckas denote the electron creation and annihilation operators, a, b
the iron d-orbitals and s the spin indices. In addition, the matrix Kab(k)
is characterized by the orbital (i.e. maximally-localized Wannier function)
matrix-elements of the Kohn-Sham Hamiltonian. The corresponding band
structure then features electron-pockets at X and hole-pockets at Γ, which
is the typical situation in FeSCs (see Fig. 4.17) for sufficient electron dop-
ing. The many-body interaction part is given by the intra- and inter-orbital
interactions U1 and U2, as well as the Hund’s coupling JH and the pair
hopping Jpair:

Hint =
∑
i

U1

∑
a

nia↑nia↓ + U2

∑
a<b,s,s′

niasnibs′ (4.20)

+JH
∑
a<b

∑
s,s′

c†iasc
†
ibs′cias′cibs + Jpair

∑
a<b

(
c†ia↑c

†
ia↓cib↓cib↑ + h.c.

),
where nias denote the density operators at site i of spin s and orbital
a. Typical interaction settings are dominated by intra-orbital coupling,
U1 > U2 > JH ∼ Jpair. In the multi-band functional RG (see Sec. 4.2),
one starts from the bare many-body interaction (4.20) in the Hamilto-
nian. The pairing is dynamically generated by systematically integrat-
ing out the high-energy degrees of freedom including all important fluc-
tuations on equal footing. This differs from the RPA which takes right
from the outset a magnetically driven spin-fluctuation type of pairing in-
teraction. For a given instability characterized by some finite expecta-
tion value of a fermion bilinear 〈Ôchk 〉 6= 0, the effective interaction ver-
tex V Λ(k1, k2, k3, k4) in the particular ordering channel can be written in

shorthand notation as
∑

k,pW
Λ,ch(k, p)Ôch†k Ôchp . Accordingly, the effective

interaction WΛ,SCs(k, p) in the singlet-pairing channel can be decomposed
into different eigenmode contributions (see Sec. 4.2.4)

WΛ,SCs(k, p) =
∑
i

wSCsi (Λ)fSCsi (k)∗fSCsi (p), (4.21)

where i is a symmetry index, and the leading instability of that channel
corresponds to the eigenvalue wSCsi (Λ) first diverging under the flow of Λ.
The associated form factor fSCsi (p) then tells us about the pairing sym-
metry and gap structure. In the functional RG, from the final Cooper
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Figure 4.17: Competing pairing orders and s±-wave pairing form factors for
U1(dX2−Y 2) = U∗ = 2.5eV (a) and U1(dX2−Y 2) = 1.6U∗ (b) at the electron doped
filling of n = 6.13. RG channel flow (a1,b1) and s±-wave gap form factor (a2,b2). s±/d-
wave transition from (a) to (b): increasing U1(dX2−Y 2) enhances the gap anisotropy of
the s±-wave form factor on the electron-pockets (k-patching: points 33-64 see (a3)) shown
in (a2,b2) until the extended dx2−y2 -wave pairing becomes competitive. The d-wave form
factor (not shown) does not change from (a) to (b). (a3,b3) Interactions mediated by U1,
inducing s±-wave pairing tendency (Γ↔ X) and competing dx2−y2 -wave pairing symme-
try due to (X ↔ X). (c) Variation of the pnictogen height hp mostly affects the spread
of the dX2−Y 2 -orbital and therefore U1(dX2−Y 2), as it is oriented to the planar projection
of the pnictogen.

channel in the effective interaction vertex, this quantity fSCsi (p) is com-
puted along the discretized Fermi surfaces as shown in Fig. 4.17(a3), and
the flow of the leading eigenvalues wSCsi (Λ) are plotted in Figs. 4.17(a1)
and (b1). The interaction parameters are kept fixed at the representative
setup U1 = 2.5eV, U2 = 2.2eV, JH = 1.2eV, Jpair = 0.2eV . Note that the
value of U1 on the dX2−Y 2-orbital is varied as explicitly stated in Figs. 4.17
and 4.18. The relatively large bare value of JH is motivated partly by re-
cent findings, in particular, for a sizable Hund’s rule coupling [142, 143].
Furthermore, as a parameter trend, larger JH and smaller Jpair tends to
prefer the (s + id)-phase in the electron-doped regime for rather moderate
values of the intra-orbital coupling U1 (see Fig. 4.18).

The situation in Fig. 4.17 is representative for moderate electron doping
and interaction scales of FeSCs, where the Γ ↔ X pair scattering between
the hole-pockets at Γ and the electron-pockets at X dominates. Already
from the BCS gap equation, a finite momentum transfer can induce pairing
only when the wavevector of such an interaction connects regions on one
Fermi surface (such as in the cuprate case), or regions on different Fermi
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surfaces (such as in the pnictide case), which have opposite signs of the
superconducting order-parameter. This corresponds to putting the elec-
tron pairs in an anisotropic wave function such as sign-reversing s±-wave in
Fig. 4.17a, where the wave vector (π, 0) in the unfolded Brillouin zone con-
nects hole- and electron-pockets with a sign-changing s±-wave gap [90,108].
However, in the functional RG calculation of Fig. 4.17b with increased U1

interaction on the dX2−Y 2-orbital, a green arrow for X ↔ X scattering in-
dicates additional interactions that become similarly important as the (π, 0)
channel. This increased U1 can be tuned by the pnictogen height as ex-
plained below and frustrates the previous “pure” s±-wave limit (Γ ↔ X).
The system then strikes a compromise [120] by enhancing the anisotropy of
the s±-wave form factor (denoted by fSCss± (k) in Fig. 4.17) on the electron-
pockets at X. Throughout this variation of parameters, the sign-changing
d-wave form factor (not shown) remains nearly unchanged, providing nodes
on the hole-pockets and gaps on the electron-pockets as they do not intersect
with the nodal d-wave lines kx = ±ky in the Brillouin zone. This is because
the d-wave-driving X ↔ X scattering is hardly affected by this change of
parameters. Instead, the s±-wave form factor changes significantly and ad-
justs the momentum dependence of the gap, i.e. its anisotropy, so as to
minimize the effect of the Coulomb repulsion (Fig. 4.17).

We now have all ingredients to tune the pairing symmetry from s±-wave
to extended dx2−y2-wave, and, eventually, into the time-reversal symmetry
broken (s+id)-phase. In most of the FeSCs, the tendency towards s±-pairing
occurs slightly more pronounced than the competing extended dx2−y2-wave
pairing, and, at first glance, the resulting frustration appears to be too small
for causing (s + id)-pairing. Therefore, in order to increase frustration, we
somehow have to enhance the pair-scattering between the electron-pockets
at X which then promotes the subleading dx2−y2-wave channel. As shown
in a-priori determinations of the interaction parameters in (4.20), expressed
in terms of orbital matrix elements, the pnictogen height hp (measured from
the iron-plane as pictured in Fig. 4.17c) has a substantial influence on the
intra-orbital interaction U1 between dX2−Y 2-Wannier orbitals [72], which can
be either modified by isovalent doping or pressure. By increasing hp, the
Wannier functions in this orbital are further localized, causing an increase
of U1(dX2−Y 2). In Fig. 4.17b, we have already used this fact to demon-
strate that, for moderate electron doping (13%), large values of this matrix
element drive the pairing instability from s±-wave to extended dx2−y2-wave
symmetry. Note that in the situation where we expect (s + id)-pairing to
occur, both the d-wave and the s±-wave exhibit nodal features in the form
factor.

For this general scenario, we present our predictions for time-reversal
symmetry breaking in the schematic phase diagram of Fig. 4.18. Here,
we plotted the leading s±-wave, dx2−y2-wave and finally the (s+ id)-pairing
solutions as a function of U1(dX2−Y 2), and electron doping. For this purpose,
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Figure 4.18: Preferred pairing symmetry as a function of electron doping and intra-
orbital Coulomb interaction U1(dX2−Y 2). The results are obtained by minimizing the
mean-field free energy of the effective theory taken from functional RG at Λ ≈ 0.001eV .
For 27% electron doping, the (s + id)-pairing state occurs at U1(dX2−Y 2) = 3eV , which
is comparable to the intra-orbital repulsion in the remaining orbitals of U1 = 2.5eV .

we used our functional RG result as a starting point for a renormalized mean-
field analysis [17]. In this combined approach, the one-loop flow is stopped at
a scale Λ which is small compared to the bandwidth, but still safely above the
scale Λc, where the 2-particle vertex diverges. In this range, the particular
choice of the cutoff Λ does not significantly influence the results of Fig. 4.18.
The renormalized coupling function V Λ(k1, k2, k3, k4) is then taken as an
input for the mean-field treatment of the remaining modes (see Sec. 2.6).
As shown in Fig. 4.17, the regime of s±/d-wave pairing competition features
a single-channel pairing instability without other competing (e.g. magnetic)
instabilities and, therefore, justifies

V Λ(k1, k2, k3, k4) ≈WSCs(k1, k3)δk2,−k1δk4,−k3 , (4.22)

with WSCs(k1, k3) = V Λ(k1,−k1, k3,−k3). The effective theory for quasi-
particles near the Fermi surface (|ξ(k)| < Λ) is modeled by the reduced
Hamiltonian

HΛ =
∑
ks

ξ(k)c†kscks +
1

N

∑
k,q

WSCs(k, q)c†k↑c
†
−k↓c−q↓cq↑, (4.23)

where ξ(k) is taken as the bare dispersion due to only weak band renor-
malization effects. The mean-field solution of this reduced Hamiltonian is
obtained as in BCS theory, by solving the self-consistent gap-equation and
calculating the corresponding grand potential (see Eq. (2.94)):

Ωstat = −
∑
k

|∆k|2 + 2ξ(k)2

2
√
ξ(k)2 + |∆k|2

+
∑
k

ξ(k). (4.24)
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Within a reasonable range of parameters for the electron-doped FeSCs, we
then find a regime favoring (s+ id)-pairing due to

Ωstat
s+id < Ωstat

s± ,Ωstat
d .

The system hence prefers to evolve into a time-reversal symmetry broken
pairing state. This is intuitive from the viewpoint of condensation energy in
the superconducting phase. While both s±-wave and d-wave possess nodal
features individually, the combination (s + id) allows to avoid these nodes
which then stabilizes the condensate.

Note that the phase regime investigated by us is only a lower bound for
the possible existence of (s+ id)-pairing which may even be larger. This is
because the functional RG setup at present only allows us to obtain the lead-
ing pairing instability at some finite Λc, while the (s+id)-phase may well set
in below Λc. This would manifest itself as a change of the superconducting
phase as a function of temperature in experiment.

In summary, we have presented a microscopic analysis, based on a-priori
electronic structure determinations and a combination of the functional RG
with a mean-field treatment of the remaining low-energy states, to derive a
kind of “guiding principle” for a possible (s+ id)-pairing state in the FeSCs.
For the case of increased electron doping and pnictogen height, we have
illustrated how this drives the system into an (s + id)-pairing state. Aside
from this example, other regimes in the FeSCs likewise promise a possible
realization of an (s+ id)-state, such as hole-doped (K,Ba)-122 interpolating
between the s±-wave limit (x ∼ 0.4) and d-wave limit (x ∼ 1) as well as
possibly the chalcogenides KxFe2−ySe2.

4.6 Superconductivity in LiFeAs

Soon after the synthesis of the 1111 and 122 pnictides, LiFeAs as a rep-
resentative of the 111 family, has been detected with a superconducting
phase at Tc ∼ 18K [82, 144]. Unlike most of the other FeSCs, LiFeAs be-
comes superconducting without the need of doping or pressure and shows
neither a structural transition nor the usual spin-density wave order. This,
together with the report of a nonvanishing Knight-shift in some of the sam-
ples [145] and an observed fishtail effect [146] lead to an early proposal of
a triplet pairing state in LiFeAs. In addition, ARPES measurements [147]
pointed out the proximity to a van-Hove singularity, which was then taken
up in an RPA calculation of Brydon et al. who started with a three-band
ARPES fit and predicted a ferromagnetic fluctuation induced triplet pairing
state ∆̂ ∼ ẑ(px + ipy), similar to the one proposed for strontium ruthen-
ate (see Chap. 6). The possible realization of such a chiral pairing state in
LiFeAs with a relatively high Tc of 18K, opposed to strontium ruthenate
with Tc = 1.5K, was therefore very appealing. However, after one year, a
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growing number of experiments found evidence for antiferromagnetic fluc-
tuations, as for example in NMR measurements [148] and neutron scatter-
ing [149], which in addition also reported a magnetic resonance and hence
provided strong indications for a usual s±-wave pairing. On the other hand,
it seems commonly accepted that the superconducting gap is nodeless as
confirmed by a large body of experimental results like NMR [150], specific
heat [151], ARPES [152] and penetration depth measurements [153, 154],
which is however consistent with both s±-wave and (p+ ip)-pairing.

In order to explore these different ordering tendencies, we apply a com-
bined approach of density functional theory (DFT) and functional RG (fRG)
which connects a precise ab initio description with the unbiased analysis
of functional RG. At this, the DFT description provides a band structure
matching ARPES [147] and quantum oscillation measurements, [77] with a
nontrivial kz-dependence. In addition, DFT also enables to compute the
orbital dependent interaction parameters. Both of these model informa-
tions are essential to explain the interesting properties of LiFeAs. Using the
combined DFT+fRG approach, we find that, despite the presence of strong
ferromagnetic fluctuations, LiFeAs features a nodeless s±-wave pairing state
similar to the one in LaFeAsO. Interestingly, its phosphorus based realiza-
tion LiFeP (111) exhibits nodal superconductivity, which is reminiscent of
the nodeless/nodal behavior in LaFeAsO/LaFePO, discussed in Sec. 4.3.
Therefore, upon closer inspection, LiFeAs does not appear to be much dif-
ferent from other FeSCs. Details of this work can be found in:
C. Platt, R. Thomale, and W. Hanke, Superconducting state of the iron pnic-
tide LiFeAs: A combined density-functional and functional-renormalization-
group study, Phys. Rev. B 84, 235121 (2011)

We again start with the construction of an ab-initio effective Hamiltonian
for LiFeAs. As an input to our functional RG calculations, we employ
data from a recent work of Miyake et al. [72], where details of the ab-initio
procedure can be found. The first step is a conventional band-structure
calculation in the framework of LDA. From there, “target bands” are chosen
around EF, which define the band complex and the corresponding orbitals,
in our case the five d-orbitals of the iron-3d electrons. Simultaneously, the
maximally localized Wannier functions (MLWF) are extracted, which, via
their matrix elements of the Kohn-Sham Hamiltonian HKS , determine the
transfer integrals tmn(~R)

tmn(~R) = 〈φm~0|HKS |φn~R〉. (4.25)

Here, φn~R(~r) denotes the MLWF centered at site ~R for the n-th orbital. The
one-body Hamiltonian part is then given by

H0 =
∑
i,j,σ

∑
m,n

tmn(~Ri − ~Rj)a
σ
in
†aσin ,
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where aσin
† (aσin ) denote the creation (annihilation) operators of the cor-

responding MLWF with spin σ. In the second step, effective interaction
parameters are extracted in terms of MLWF-matrix elements [72]. A par-
tially screened Coulomb interaction at zero frequency W (~r, ~r′;ω = 0) is
calculated in the so-called cRPA, i.e. with the constraint that for the “high-
energy” non-target bands RPA screening is employed [155]. Note, that the
Coulomb interactions Umn(~R) = 〈φm~0φm~0|W |φn~Rφn~R〉 and exchange inter-

actions Jmn(~R) = 〈φm~0φn~0|W |φn~Rφm~R〉 are orbital dependent, comprising
the interaction Hamiltonian:

HI =
1

2

∑
σδ

∑
ij

∑
nm

{
Umn(~Ri − ~Rj)a

σ†
ina

ρ†
jma

ρ
jma

σ
in

+ Jmn(~Ri − ~Rj)
(
aσ†ina

ρ†
jma

ρ
ina

σ
jm + aσ†ina

ρ†
ina

ρ
jma

σ
jm

)}
. (4.26)

One challenging problem of the “down-folding” is that, for entangled bands,
it is not clear a priori how to “cut out” the d-subspace of the iron-orbitals,
and how to unambiguously distinguish the screening channels within the
d-space from the total screening. For a practical solution of this problem
see again [155] and references therein.

The final data of the ab-initio calculations consisting of band structure,
Fermi surfaces, and bare interaction parameters are summarized in Fig. 4.19.
The 111 compounds have a relevant dispersion orthogonal to the FeAs layers
(Fig. 4.19a) for which we consider both the kz = 0 and kz = π cut. The main
features of the z-dispersion are the change of orbital weight along the Fermi
surface as well as the absence of the small second hole-pocket at Γ for kz = π.
As seen from the interaction matrix, e.g. the intra-orbital interactions (with
comparably high absolute interaction scales up to 3.85 eV ) differ by more
than 30% between different orbitals, stressing the need to consider fully
orbital-dependent parameters.

It is further important to note that we start from the DFT and not
from a full quasi-particle and Green functions description which would em-
ploy the type of interactions accounted for in our plaquette diagrams of
the 4-point function VΛ(k1n1,k2n2,k3n3,k4n4), but would also include the
renormalization of the single-particle Green function (2-point function) due
to self-energy effects [13]. While this has not yet been accomplished for the
iron pnictides due to conceptual reasons in certain approaches and techni-
cal difficulties in others such as our RG, one can provide several arguments
supporting the DFT as a reasonable starting point: it is a well-established
fact that the DFT-type of calculations employing HKS (Eq. 4.25), e.g. in
an LDA-version, produce rather reliable Fermi surfaces in comparison with
experiments such as ARPES. Obviously, this is crucial for RG treatments
flowing towards the infrared limit at the Fermi surface. In addition, it is also
known from existing quasi-particle calculations in various solids [156, 157]
that one can get accurate results for electronic single-particle excitations by
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Figure 4.19: Summary of the ab-initio input on LiFeAs for the DFT-fRG. (a) Three
dimensional Fermi surface with visible dispersive features along kz. 5-orbital band struc-
ture and Fermi surfaces for (b) kz = 0 cut of the bands (Brillouin zone patches from 1
to 160) and (c) kz = π cut (Brillouin zone patches from 161 to 288), corresponding to
the patching in the insets of Fig. 4.20. The red dashed lines denote the 3-band model
used in [158]. Brillouin zone patches and dominant orbital weights are indicated along
the Fermi surfaces. (d) Orbital dependent interaction matrix Uab as obtained from cRPA
calculations [72].

using the DFT (LDA) Bloch- or Wannier-functions in lowest order. This is
because the wave functions are essentially determined from the largest term
in the single-particle Hamiltonian being the Hartree potential. Therefore,
the interaction part of our Hamiltonian (Eq. 4.26) which is extracted from
DFT-Wannier functions should, in principle, also be rather accurate.

Using multi-band functional RG, high-energy electronic excitations (ε >
Λ) are recursively integrated out, arriving at an effective low-energy inter-
action or 4-point vertex function V Λ(k1, k2, k3, k4). Here, ki = (ki, ni) is a
condensed notation with n1, . . . n4 labeling the different (in our case five)
bands of the band complex considered and k1 to k4 denoting the incom-
ing and outgoing momenta. When the infrared cutoff Λ approaches the
Fermi surface, a diverging renormalized 4-point function then signals a cor-
responding instability towards a symmetry-broken phase, with Λc serving
as an upper bound for the transition temperature Tc. In addition, we also
employ a temperature-flow scheme and compare it to the results obtained
by the conventional cutoff-flow functional RG [8]. At each renormalization
iteration, one sums over the five one-loop diagrams [13, 107, 159], i.e. over
the Cooper, spin-density wave (SDW), screening and vertex-correction chan-
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Figure 4.20: Functional RG temperature flow for LiFeAs. The form factors for nodal
spin density wave (SDW) (red) and ferromagnetic (FM) fluctuations (green) are shown
in the left and right inset. At Λ ∼ 0.01eV , the SDW becomes competitive to FM. The
triplet SC (blue) channel is irrelevant and does hardly evolve under the flow. The main
instability resides in the singlet SC channel, with s±-wave (black crosses) dominating
the d-wave solution (filled black circles). The s±-wave type form factor is displayed in
Fig. 4.21.

nels to arrive at the renormalized vertex function. Technical details of our
functional RG procedure can be found in Chap. 2 or in [118,133,134]. Due
to practical limitations, approximations are made, such as the neglect of the
frequency dependence of the 4-point vertex function V Λ and projecting the
external momenta k1, . . .k3 onto the Fermi surface (with k4 being deter-
mined from momentum conservation). For a given instability characterized
by the condensation of a fermion bilinear 〈Ôchk 〉 6= 0 (the most important ex-

ample of which is the singlet-pairing instability ÔSCsk = (ck↑c−k↓ − ck↓c−k↑)
for LiFeAs), the 4-point function in the particular ordering channel can be

written as Σk,pW
Λ,SCs(k, p)ÔSCs†k ÔSCsp . It can be decomposed into differ-

ent eigenmode contributions WΛ,SCs(k, p) =
∑

iw
SCs
i (Λ)fSCsi (k)∗fSCsi (p)

where i is a symmetry index. The leading instability of a given channel
corresponds to the eigenvalue wSCs1 (Λ) first diverging under the flow of Λ.
The associated eigenmode fSCs1 (k) is the superconducting form factor which
tells us about the pairing symmetry and gap structure. For all different or-
dering channels, the form factors are computed along the discretized Fermi
surfaces. (Shown are the ferromagnetic (FM) and spin density wave (SDW)
form factor in the insets of Fig. 4.20 as well as the singlet pairing form factor
in Fig. 4.21.)

The flow of these leading eigenvalues is summarized in Fig. 4.20. We
find that, for high cutoffs (temperatures), the FM fluctuations are domi-
nant in correspondence to previous studies [158]. By removing the small
hole-pocket at Γ, we checked that it is, indeed, the main resource for FM
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Figure 4.21: Leading superconducting form factor along the cuts for kz = 0 (a) and
kz = πa/c (b). The dominant orbital weights for the different patches are indicated by
color. The form factor shows multi-gap nodeless anisotropic s±-wave pairing order.

fluctuations. At intermediate scales, however, we see in Fig. 4.20 that the
collinear SDW fluctuations, driven by hole- to electron-pocket scattering
along (π, 0) and (0, π), become competitive and finally seed an s±-wave
pairing instability. The same result is identically obtained both for the cut-
off and the temperature flow parameter formulation. The latter is more
adequate to track FM fluctuations. From there, the vertex flow can be un-
derstood along the lines of other pnictide families [118, 134]. These results
for the functional RG flow can be physically interpreted by looking at a
simplified 2-pocket scenario containing the small hole-pocket at the Γ-point
as well as the electron-pocket at X. In the RG treatment of such a 2-pocket
scenario [108,120], one generally finds that the intra-pocket repulsive part of
the Coulomb interaction dominates over the repulsive inter-pocket scatter-
ing. The reason is that the small q-screening in the intra-pocket term is less
effective than the large q-screening in the inter-pocket processes. This holds
in the particle-particle as well as the particle-hole channels and is the reason
why the small q, i.e. ferromagnetic fluctuations, dominate at and around the
initial “high-energy” scale. As discussed in Refs. [120] and [108], however,
in the RG the intra-pocket repulsive part of the Coulomb interaction in the
pairing channel is renormalized in the flow, eventually even changing its sign
to become attractive. Yet, the pairing flow is dominated by the repulsive
inter-pocket pair scattering with wavevector (π, 0) connecting the electron-
and hole-pocket. Thus, in RG, the pairing wave function is optimized in
the sense that it gives the largest negative pairing eigenvalue for s±-wave
pairing.

The form factor of the pairing instability for LiFeAs is plotted in Fig. 4.21
along the kz = 0 and kz = π cuts. The kz = 0 cut in Fig. 4.21a looks typical
as for other FeSCs and displays an s±-wave form factor changing sign be-
tween hole- and electron-like pockets with strong anisotropy features along
the electron-pockets. As indicated by the dominant orbital weights along
the different patches, we find from Fig. 4.21 that the form factor can be
well understood in a scenario where the superconducting form factor seeks



4.7 Summary and Outlook 101

to minimize intra-orbital repulsion, which is the most relevant interaction
scale [120]. For kz = π, the largest hole-pocket gap is given by the M pocket
as it can scatter to the electron-pockets at X through intra-orbital interac-
tions. Since the orbital weight for these pockets is uniformly of dX2−Y 2-type,
the form factor anisotropies on the electron-pockets are rather small.

In summary, we have introduced the DFT-fRG formalism to describe
Fermi surface instabilities by taking into account a-priori DFT (LDA) band
parameters and orbital-dependent interactions, providing a low-energy de-
scription in an unbiased fashion. We have applied the DFT-fRG to LiFeAs
and find the leading pairing instability to be of s±-wave type. Our results
of a nodeless superconducting gap are confirmed e.g. by very recent high-
precision measurements of the magnetic penetration depth in clean single
crystals of LiFeAs [160], which are consistent with previous experimental
studies [150–154]. Within functional RG, the FM fluctuations at “high tem-
peratures” are overcome by SDW fluctuations in the effective low-energy
sector. These findings are further supported by recent inelastic neutron scat-
tering experiments [149] which reveal a similar pairing mechanism in LiFeAs
as in other FeSCs and do not feature any evidence for spin-triplet p-wave
superconductivity. Still, LiFeAs provides an interesting and, in particular,
experimentally accessible arena to investigate the interplay of ferromagnetic,
antiferromagnetic, and superconducting fluctuations.

4.7 Summary and Outlook

Besides its exceptionally high transition-temperatures of up to 56K, the
newly discovered class of FeSCs also attracted great interest due to their
variety of different compounds. In order to gain deeper insights into the
mechanism of high-Tc superconductivity, it is therefore promising to under-
stand the similarities and distinctions between those different compounds.
For this purpose, we applied the functional RG approach and studied the
pairing symmetry as well as the underlying mechanism in different material
representatives of the FeSCs.

The findings presented here reveal that the pairing in FeSCs is gener-
ally driven by antiferromagnetic fluctuations which in turn result from a
nested multi-pocket Fermi surface. As the mediated pairing becomes most
effective if the superconducting gap changes sign between the nested Fermi-
surface portions, the leading spin-fluctuation mode between the hole- and
electron-like pockets then gives rise to the s±-wave pairing symmetry. How-
ever, the multi-pocket Fermi-surface as well as the multi-orbital structure
of the low-lying states complicate this picture and also lead to other spin-
fluctuation modes which favor competing pairing states with, for example,
d-wave symmetry. Depending on this interplay of different spin-fluctuation
channels, the s±-wave pairing state either appears nodeless or nodal, and
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may even change its symmetry to d-wave. At the same time, the transition
temperature decreases if there are several competing pairing orders.

In the preceding sections, we used the functional RG to verify this pic-
ture in a microscopic model description, and we demonstrated how mate-
rial specific properties like the pnictogen height or the doping level affect
this interplay of different spin-fluctuation channels. For example, we ex-
plained why the smaller pnictogen height in LaFePO compared to LaFeAsO
causes a transition from nodeless to nodal s±-wave pairing with considerably
smaller Tc. The same phenomenology of a nodeless and nodal s±-wave pair-
ing also occurs in the 111 compounds, as was shown in the calculation for
LiFeAs. We further studied the doping dependence of the pairing symmetry
in Ba1−xKxFe2As2 and found a transition from s±-wave to d-wave pairing.
Finally, we also explored the conditions for a time-reversal symmetry broken
(s + id)-pairing state by means of a combined approach of functional RG
and mean-field analysis.



Chapter 5

Competing Instabilites in
Doped Graphene

5.1 Introduction

Since the first fabrication of graphene in 2004 by Novoselov and Geim [161],
this fascinating material attracted great interest and generated valuable
insights for fundamental science as well as future applications. At the
same time, the structure of graphene is fairly simple and consists of carbon
atoms arranged in a hexagonal (honeycomb) lattice structure as pictured
in Fig. 5.1a. Although its layered analog graphite is known for centuries
and is used in any lead pencil, the isolation and detection of a single atomic
graphite sheet was for a long time not considered possible. In fact, graphene
was the first truly two-dimensional crystalline structure which could be pro-
duced and investigated in experiment. In 2010, Novoselov and Geim were
therefore honored with the Nobel Prize for their decisive contributions to
this development.

Besides its remarkable mechanical features, graphene mainly aroused in-
terest due to its unique electronic properties [162], like the room-temperature
quantum Hall effect or the realization of Klein tunneling. Most of these ex-
ceptional properties can in turn be ascribed to the close resemblance between
the Hamiltonian of graphene and that of massless, relativistic particles. In
particular, this similarity is reflected in the respective low-energy spectrum
showing linear dispersing bands (see Fig. 5.1b) as well as a vanishing den-
sity of states at the Fermi-level. The role of electronic interactions in this
semi-metallic environment is on the other hand far from trivial. For exam-
ple, Meng et al. [163] reported that graphene may host an exotic spin-liquid
phase at moderate local interactions right before antiferromagnetic order
sets in at higher interaction values. In addition, Raghu et al. [164] pointed
out that longer-ranged interactions in graphene can also generate topological
Mott phases displaying quantum Hall and quantum spin Hall like behavior.
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Figure 5.1: (a) Lattice structure of graphene together with the two atomic unit-cell

(gray) and the three nearest-neighbor bonds ~ai, ~bi, ~ci. Band structure of graphene for
t1 = 2.8, t2 = 0.7, t3 = 0.02eV within the hexagonal Brillouin zone (black) as well as the
zoomed-in Dirac-cone.

Yet, all these non-trivial phases require a minimum interaction strength as
the vanishing density of states at the Fermi-level would otherwise suppress
any kind of weak-coupling instability. This behavior of course changes if we
vary the carrier density away from the intrinsic half-filled case (x = 1/2).
Note that x here is defined by x = nel/2 with nel denoting the number of
electrons per site. According to Fig. 5.2c, the density of states then increases
away from half-filling and thus allows for electronic instabilities at arbitrary
small interactions. This is, by the way, naturally fulfilled in bilayer graphen
which features quadratic rather than linear band-crossings and which there-
fore displays a number of fascinating weak-coupling instabilities [165,166].

Doping the single-layer graphene away from half-filling, the Fermi level
approaches one of the two van-Hove singularities (VHS) at x = 3/8 and x =
5/8. Here, the diverging density of states as well as the near-nested Fermi-
surface (see Fig. 5.3a) suggest a variety of competing many-body phases
with relatively high transition temperatures. Experimentally, this regime
has recently become accessible by chemical doping [167] and electrolytic
gating [168], which both induce nearly no disorder in the underlying lattice
structure. Using ARPES measurements, McChesney et al. [167] probed the
band structure of such highly doped graphene and indeed found extended
saddle points at the Fermi-level as well as a nearly nested Fermi-surface.

Motivated by these experimental findings, we study the competing many-
body instabilities in doped graphene and predict a rich phase diagram in-
cluding topological superconductivity, an exotic spin-order as well as spin-
triplet pairing. Although there have been different proposals about super-
conductivity [169, 170] and magnetic ordering [171] in doped graphene, the
competition between these different phases as well as the dependence on
the system parameters is poorly understood. For this reason, we apply the
method of functional RG which allows an unbiased investigation of the dif-
ferent many-body phases and, at the same time, also enables to include the
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full band structure details as well as longer-ranged interactions. Here, the
effect of longer-ranged interactions is in turn crucial for a correct model
description away from the exact VHS and is also essential for a directed
adjustment of certain system parameters through dielectric substrates. The
following results are published in:
M. Kiesel, C. Platt, W. Hanke, D. A. Abanin, R. Thomale, Competing
many-body instabilities and unconventional superconductivity in graphene,
Phys. Rev. B 86, 020507(R) (2012).

5.2 Model and Implementation

As the low energy band structure of graphene is mainly determined by the π-
band complex, a convenient starting point consists of a tight-binding model
for one single pz-orbital at each lattice site. The corresponding Hamiltonian
including up to third nearest-neighbor hopping is then given by

H0 =
[
t1
∑
〈i,j〉,σ

c†i,σcj,σ + t2
∑
〈〈i,j〉〉,σ

c†i,σcj,σ + t3
∑

〈〈〈i,j〉〉〉,σ

c†i,σcj,σ + h.c.
]
− µn,

where n =
∑

i,σ ni,σ =
∑

i,σ c
†
i,σci,σ labels the electron density and c†i,σ, ci,σ

denote the creation and annihilation operator of an electron with spin σ at
site i. According to [162], the hopping parameters are determined by t1 =
2.8, t2 = 0.1, t3 = 0.07eV . As the unit-cell of graphene contains two atoms
A,B (see Fig. 5.1a), the Hamiltonian H0 in momentum-space representation
can then be written as

H0 =
∑
kσ

(
c†kA,σ c†kB,σ

)( A(k)− µ B(k) + iC(k)
B(k)− iC(k) A(k)− µ

)(
ckAσ
ckBσ

)
, (5.1)

with the following abbreviations

A(k) = 2t2
∑

j=1,2,3

cos(k ·~bj)

B(k) = 2t1
∑

j=1,2,3

cos(k · ~aj) + 2t3
∑

j=1,2,3

cos(k · ~cj)

C(k) = 2t1
∑

j=1,2,3

sin(k · ~aj) + 2t3
∑

j=1,2,3

sin(k · ~cj)

and bond vectors ~ai, ~bi, ~ci (see Fig. 5.1a):

~a1 = (1, 0), ~b1 = (0,
√

3), ~c1 = (−2, 0)

~a2 = (−1/2,
√

3/2), ~b2 = (3/2,−
√

3/2), ~c2 = (−1,
√

3)
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Figure 5.2: (a) Band structure of graphene for t1 = 2.8, t2 = t3 = 0eV (red) and
t1 = 2.8, t2 = 0.1, t3 = 0.07eV (black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a)) with 96 patches used in the implementation
of the functional RG as well as the (partial) nesting vectors. (c) Density of states for both
band structures in (a). The inset shows the position shift of Fermi surface nesting (dashed
vertical lines) versus the VHS peak.

~a3 = (−1/2,−
√

3/2), ~b3 = (−3/2,−
√

3/2), ~c3 = (−1,−
√

3).

The resulting band structure shown in Fig. 5.2a then consists of two bands

E1,2(k) = ±
√
B(k)2 + C(k)2 +A(k)− µ,

which can be easily verified by diagonalizing (5.1). Most of the previous
studies on undoped graphene focused on the linear dispersing part near the
two inequivalent (not connected through reciprocal-lattice vectors) momenta
q = K,K ′. Here, the band structure is given by

E1,2(q + δq) = ±vF |δq|+A− µ, (5.2)

resembling the spectrum of a massless Dirac particle as already mentioned in
the introductory part. It is further interesting to note that any diagonal part
(∝ I) in the Hamiltonian H0 of (5.1) only shifts the Dirac-like cone in energy
and thereby eliminates particle-hole symmetry. In order to open up a gap
(E ∼ ±vF

√
δq +m2), the diagonals of H0 must involve different signs. This

requirement can for example be achieved by a staggered sublattice potential
(mσz) with σz = ±1 for the different sublattices or by a spatially varying
magnetic field with zero net flux (mτzσz), where τz = ±1 describes the
states at K and K ′. Here, the former term only breaks inversion symmetry
and leads to a trivial insulator, whereas the latter term breaks time-reversal
symmetry and gives rise to a quantum Hall insulator as pointed out by
Haldane [172]. Another way of opening a gap in (5.2) is to use two copies of
the Haldane term with reversed magnetic fields for the two different spins
which then fulfills time-reversal symmetry. The resulting term then equals
an intrinsic spin-orbit coupling (mszτzσz) with sz = ±1 for different spins
and leads to the quantum spin Hall insulator as worked out by Kane and
Mele [173].
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Coming back to the doped case, we find that the band structure features
two van-Hove singularities (VHS) at x = 3/8 and x = 5/8 as mentioned in
the introductory part (see Fig. 5.2c). Constraining ourselves to the electron-
doped case, the x = 5/8 electron-like Fermi surface is shown in Fig. 5.2b.
As depicted, this is the regime of largely enhanced density of states which
we investigate in the following. For t2 = t3 = 0 (red curve in Fig. 5.2),
the VHS coincides with the partial nesting of different sections of the Fermi
surface with Q = (0, 2π/

√
3), (π, π/

√
3), and (π,−π/

√
3). For a realistic

band structure estimate with finite t2 and t3 [162] (black curve in Fig. 5.2),
this gives a relevant shift of the perfect nesting position versus the VHS and
affects the many-body phase found there. We assume Coulomb interactions
represented by a long range Hubbard Hamiltonian [174]

Hint = U0

∑
i

ni,↑ni,↓ +
1

2
U1

∑
〈i,j〉,σ,σ′

ni,σnj,σ′ +
1

2
U2

∑
〈〈i,j〉〉,σ,σ′

ni,σnj,σ′ , (5.3)

where U0,1,2 parametrizes the Coulomb repulsion scale from onsite to second
nearest-neighbor interactions. At the VHS, we assume perfect screening and
consider U0 only, while away from the VHS, we investigate the phenomenol-
ogy of taking U1 and U2 into consideration. The typical scale of the effective
U0 has been found to be U0 = 10eV < W [174], where W ∼ 17eV is the
kinetic bandwidth. Using the above model description, we then employ the
functional RG and study how the renormalized interaction evolves under
integrating out high-energy fermionic modes. The renormalized interaction
at an energy scale Λ then reads as V Λ(k1; k2, k3, k4)γ†k1s

γ†k2s′
γk3s

γk4s′
, where

the flow parameter Λ is given by the temperature and k1 to k4 label the
incoming and outgoing momenta as well as the associated band indices. It
is important to note that we consider the Hamiltonian in band rather than
orbital representation similar to the calculations presented in the previous
chapter. Within the numerical treatment, the k’s are discretized to take on
the values representing the different patches of the Brillouin zone as shown
in Fig. 5.2b for a 96 patching scheme. We checked for selected representative
scenarios that our results are converged against supercomputer simulations
with 192 patch resolution. The starting conditions of the RG are then given
by the bare interactions at an energy scale in the order of the bandwidth.
Following the flow of the 4-point function V Λ(k1; k2, k3, k4) down to low en-
ergies, the diverging channels then signal the nature of the instability. The
corresponding Λc as a function of some given system parameter such as dop-
ing gives the same qualitative behavior as Tc. At an energy scale Λ where
the leading instability starts to diverge, we further decompose the different
channels such as the superconducting one SC or the spin-density wave chan-
nel SDW into different eigenmode contributions and obtain the form factors
associated with the different instabilities as discussed in Sec. 4.2.4.
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Figure 5.3: Schematic phase diagram displaying the critical instability scale Λc ∼ Tc
as a function of doping. At the van Hove singularity (VHS, light shaded (orange) area),
(d + id)-pairing competes with the spin-density wave (SDW) channel (left flow picture:
dominant (d + id)-pairing instability for U0 = 10eV and the band structure in [167]).
Away from the VHS (dark shaded (blue) area), Λc drops and whether the (d + id) or
f -wave pairing instability is preferred depends on the long-rangedness of the interaction
(right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

5.3 Phase Diagram of Doped Graphene

In Fig. 5.3, we now present the phase diagram of doped graphene for realis-
tic microscopic model parameters [167, 174]. Near the van-Hove singularity
(orange-shaded area in Fig. 5.3), the density of states is so large that a local
Hubbard description is appropriate. Here, we find the (d+ id)-pairing insta-
bility to be dominant for U0 ∼ 10eV , whereas a spin-density wave (SDW)
phase becomes leading only for very large scales U0 > 18eV . If we, on the
other hand, slightly change the band structure parameters such that the
shift between Fermi-surface nesting and van-Hove singularity gets reduced
(see inset of Fig. 5.2c), the nesting becomes better and the SDW channel en-
hances. In particular for t1 only, where the Fermi-surface nesting coincides
with the diverging density of state, the SDW phase wins for U0 > 8.5eV . As
we move away from the van-Hove singularity (blue-shaded area in Fig. 5.3),
details of the band structure become less relevant. In addition, the critical
instability scale Λc drops stronger towards the Dirac point than away from
it which is mainly due to the smaller density of states (see inset of Fig. 5.2b).
As the SDW fluctuations are weakened away from van-Hove filling, the pair-
ing channels become more dominant. Again assuming rather local Coulomb
interactions (U1/U0 < 0.4), we find that the system still favors the (d+ id)-
pairing state. However, allowing for longer-ranged Hubbard interactions,
the picture changes and charge-density wave (CDW) fluctuations are com-
parable to the SDW. In this case, the spin-singlet pairing channel, which is
biased by the SDW fluctuations, weakens and the spin-triplet f -wave pairing
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now becomes competitive. During the next sections, we will further discuss
the characteristic properties of each individual phase.

5.3.1 Chiral (d+ id)-Pairing Phase

We first start out with an analysis of the pairing phase at van-Hove fill-
ing. Here, the strongly enhanced density of states justifies a local Hubbard
description and we hence restrict ourselves to the onsite repulsion term of
Hint with U0 = 10eV . Applying the functional RG, we then find the leading
instability to occur in the pairing channel with two degenerate eigenval-
ues. The corresponding gap form factors can be fit to the following lattice
harmonics

dx2−y2(k) = 2 cos(
√

3ky)− cos[(
√

3ky − 3kx)/2]− cos[(
√

3ky + 3kx)/2]

dxy(k) = cos[(
√

3ky − 3kx)/2]− cos[(
√

3ky + 3kx)/2]

and are plotted in Fig. 5.4(a,b) together with their respective real-space
representations. As the lattice structure of graphene is characterized by a
C6v symmetry, each gap form factor must transform in one of the six irre-
ducible representations of this group. Using the character table of C6v, as
derived in Tab. 3.3, it is now easy to verify that dx2−y2 and dxy transform
in the two-dimensional representation E2. This in turn implies that all su-
perpositions dx2−y2 + eiθdxy must have the same transition temperatures by
symmetry but do not necessarily display the same free energies. In order
to figure out the superposition of lowest free energy, we therefore optimize
the corresponding mean-field free energy. The resulting gap function is then
depicted in Fig. 5.4c and corresponds to the fully gapped superposition of
∆̂k = dx2−y2(k) + idxy(k). This is, by the way, rather generic in a situation
of degenerate nodal gap form factors as the complex superposition allows
the system to avoid gap nodes. An amazingly simple proof for this state-
ment can also be found in [175]. Apparently, the resulting (d + id)-pairing
state breaks time-reversal symmetry as well as the reflection symmetry with
respect to one spatial coordinate (parity). In the literature, a superconduc-
tor with broken time-reversal symmetry and parity is commonly denoted as
chiral and it is well known that chiral superconductors with a full bulk gap
can be characterized by a topological invariant N [176]. In the following
paragraph, we will shortly explain the meaning of this topological charac-
terization before we move on to the discussion of the remaining phases.

In terms of Landau’s famous symmetry-breaking theory, different phases
of matter can be distinguished according to its symmetries. Although this
principle is very successful in describing most of the traditional phases, there
are also prominent examples like the quantum Hall state where this de-
scription fails. For this reason, a new classification based on topology is
required. One possible characterization in bulk-gapped states with broken
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Figure 5.4: The dx2−y2 -wave (a) and dxy-wave (b) form factors (black) for U0 = 10eV at
van-Hove filling, together with an analytical fit (red) given in the text and a corresponding
real-space representation (inset). All form factors are plotted along the Fermi surface with
patch indices defined in Fig. 5.2b. (c) The gap profile of (d+ id) along the Fermi surface
(actual connection to experimental energy scale can still vary by a global factor) and its
real-space representation (inset) showing a 4π phase winding.

time-reversal symmetry is given by the so-called Chern number N which
then provides an alternative classification beyond Landau’s approach. Sim-
ilar to the equivalence of the integer valued Euler characteristic of a mani-
fold and its integrated curvature, this Chern number is also integer valued
and equals an integrated Berry curvature. A small continuous variation of
the Hamiltonian (manifold) can therefore never change the Chern number
(Euler-characteristic) which is in this sense a topological invariant. The only
possible way to change this invariant is by closing the bulk gap or, in case
of the Euler-characteristic, to vary the number of holes in the manifold. A
transparent way of calculating the Chern number in case of a chiral supercon-
ductor is to determine the phase winding of the complex gap ∆̂k = |∆̂k|eiφ(k)

along the Fermi-surface [175,177]:

N =
1

2π

∮
FS
∇kφ(k)dk. (5.4)

From the real-space gap structure pictured in Fig. 5.4c, it is then apparent
that the (d + id)-pairing state is characterized by Chern number N = 2,
whereas its time-reversed partner d− id has N = −2. Experimentally, this
topological invariant manifests itself in quantized values of certain response
functions or in the occurrence of chiral Majorana modes at a vortex core and
at sample edges. The number of these zero modes is then directly related to
the Chern number N [176, 178]. It is also important to note that the case
of a single Majorana mode in a vortex core is of special interest as this zero
mode obeys non-Abelian statistics [179–182] and its zero energy position
is protected by particle-hole symmetry. This is for example the case in a
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Figure 5.5: The dx2−y2 -wave (a) and dxy-wave (b) form factors (black) plotted as in
Fig. 5.4 away from van-Hove filling at x = 0.65. Here, we used the longer-ranged inter-
action parameters U0 = 10eV , U1 = 4.5eV and U2 = 1.5eV to account for a reduced
screening. As a consequence, the real-space pairing distance increases in order to avoid
the longer-ranged Coulomb repulsion.

spinless (p+ ip)-superconductor with N = 1 [183].
After this excursion on topological phases, we will now return to the

discussion of doped graphene. Here, the nontrivial topology of the (d +
id)-pairing state leads, for example, to quantized values of the spin and
heat analogous of the Hall conductivity [179, 184, 185]. In addition, Sato et
al. [186] pointed out that the addition of Rashba spin-orbit coupling and
Zeeman field in a (d + id)-superconductor effectively realizes the spinless
(p+ip)-pairing state and therefore leads to the same non-Abelian properties.

Away from van-Hove filling, the screening is expected to decrease away
from van-Hove level, and we consider the longer-ranged interactions U0 =
10eV , U1 = 4.5eV and U2 = 1.5eV . In this case, the (d + id)-pairing
phase remains energetically preferred but features longer-ranged real-space
pairings, as can be seen from the insets of Fig. 5.4 and Fig. 5.5. This
behavior can in turn be understood as a way to avoid the longer-ranged
Coulomb repulsion by means of an increased Cooper-pair distance. The
resulting gap form factors here can be fit by the following higher harmonic
d-wave functions

dx2−y2(k) = 2 cos(3kx)− cos[(3
√

3ky − 3kx)/2]− cos[(3
√

3ky + 3kx)/2]

dxy(k) = cos[(3
√

3ky − 3kx)/2]− cos[(3
√

3ky + 3kx)/2]

and are depicted in Fig. 5.5. Interestingly, the additional nodes in the gap
form factors also lead to a shift in the phase winding from 4π to 8π indicating
a topological transition from Chern number 2 to 4.
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The expected experimental evidence for the (d+ id)-pairing state would
hence be a nodeless gap detectable through transport measurements as well
as a Knight-shift drop below Tc due to spin-singlet pairing. In addition, the
nontrivial topology of (d + id)-pairing manifests itself in a quantized spin
(σsxy) and thermal (κxy/T ) Hall conductivity. A minor caveat is given by the
role of impurities which may spoil the symmetry between the two d-wave
solutions and which could lead to a nodal gap beyond sufficient impurity
concentration [187].

5.3.2 Spin-Triplet Pairing

Besides the (d + id)-pairing, it is also interesting to analyze the sublead-
ing spin-triplet pairing channel [188] which becomes competitive for longer-
ranged Coulomb interaction. We therefore determine the corresponding gap
form factors at the representative filling of x = 0.65 and consider two differ-
ent interaction parameter settings. The latter dependence is of particular
interest as there are different proposals of tuning these interaction parame-
ters by means of dielectric substrates. For U0 = 10eV , U1 = 5eV , we then
obtain the gap form factor shown in Fig. 5.6(a2), which can be fit to the
lattice harmonic

fB1(k) = sin(
√

3ky)− 2 sin(
√

3ky/2) cos(3kx/2),

and which transforms in the one-dimensional B1 representation of C6v. Op-
posed to the (d + id)-pairing phase, this so-called f -wave pairing state has
a nodal gap as can be seen from Fig. 5.6(a3). A similar situation occurs for
longer-ranged interactions given by U0 = 10eV , U1 = 5eV , U2 = 3eV . Here,
the gap form factor is plotted in Fig. 5.6(b2) and can be fit to the B2 lattice
harmonic

fB2(k) = sin(3kx)− 2 sin(3kx/2) cos(3
√

3ky/2).

Comparing the corresponding real-space pairing structures of fB1 and fB2

in Fig. 5.6(a1,b1), one again finds that the Cooper-pair distance increases in
order to avoid the longer-ranged Coulomb interaction. This then leads to a
change of the node position as apparent from Fig. 5.6(b2,b3). The position
of the nodes would hence indicate the Cooper-pair distance associated with
the long-range properties of the Coulomb interaction. It is important to note
that we cannot make any statements on the spin-structure of the spin-triplet
Cooper pair simply because we remain in the spin-rotational symmetric
state throughout the entire flow. The experimental evidence of the f -wave
phase are nevertheless a nodal gap which could be confirmed by transport
measurements and an invariant Knight-shift due to spin-triplet pairing. For
fillings smaller than van-Hove level, the Fermi surface becomes disconnected,
and it may happen that the nodes of the fB2 gap do not coincide with the
Fermi surfaces. In this case, the f -wave pairing phase could also appear
nodeless.
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Figure 5.6: Real-space pairing structure, form factor, and gap profile for the f -wave
phases. We depicted the results for the representative filling of x = 0.64 which is larger
than van-Hove filling and chose U0 = 10eV , U2 = 6eV for (a) and U0 = 10eV , U1 = 6eV ,
U2 = 2eV for (b). The gap profiles reveal nodes with positions shifting from (a) to (b).

5.3.3 Spin-Density Wave Phase

Although the (d+ id)-pairing was the dominant instability at van-Hove fill-
ing, a slight variation in the band structure parameters can bias the system
towards spin-density wave (SDW) order. Therefore, we also want to study
the nature and experimental signatures of the SDW ordered phase during
the following section. However, as the Fermi-surface of graphene near van-
Hove filling supports three inequivalent nesting vectors Q1, Q2, Q3, there is a
variety of possible SDW states. For example, the condensation could occur
at one single nesting vector Qk, i.e. 〈~Si〉 = ~MeiQk·ri with ~M indicating the
direction of magnetization, or at all three nesting vectors Qk

〈~Si〉 = ~M1e
iQ1·ri + ~M2e

iQ2·ri + ~M3e
iQ3·ri . (5.5)

Here, the mutual orientation of ~M1,2,3 gives rise to further possible SDW
phases. From the current functional RG implementation, we cannot specify
which of these possibilities is favored as this would require higher-order ver-
tex functions. Alternatively, one can consider the mean-field approximated
theory and optimize its free energy with respect to different SDW order
parameters. This type of analysis was for example elaborated by Li [171]
who found a chiral SDW state (see Fig. 5.7a) similar to the one proposed
for the 3/4-filled triangular lattice [189]. Here, the four neighboring spins
form a tetrahedron as shown in Fig. 5.7a, which corresponds to an SDW
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(a) (b)

Figure 5.7: (a) Chiral SDW order as proposed in [171,190] with four neighboring spins
forming a tetrahedral ordering pattern (see inset). The spins on positions 1 to 4 are
determined by ~M1 + ~M2 + ~M3, − ~M1 − ~M2 + ~M3, ~M1 − ~M2 − ~M3, − ~M1 + ~M2 − ~M3 with
three mutually orthogonal vectors ~M1, ~M2, ~M3. (b) Uniaxial SDW order as suggested
in [191]. The shaded area in both subfigures indicates the respective magnetic unit cell.

order described by (5.5) with three mutually orthogonal vectors ~M1,2,3. The
resulting state is fully gapped and breaks time-reversal symmetry as well as
parity due to the nonzero spin chirality, i.e. 〈~Si · (~Sj × ~Sk)〉 6= 0 for neigh-
boring sites i, j, k. As a consequence of this nonzero chirality, the moving
electrons feel an effective internal magnetic field and feature a spontaneous
Hall effect [192] with σxy = e2/h [171,189]. The insulating state is therefore
a Chern-insulator in the sense of a nonzero quantized Hall conductance, i.e.
σxy = ne2/h with n 6= 0. Li argued that this is essentially the same state as
proposed for the 3/4-filled triangular lattice.

Recently, Nandkishore et al. [191] suggested another SDW state for graphene
doped to van-Hove filling. Here, the spins are all aligned along the same axes
(uniaxial) as shown in Fig. 5.7b, and the system remains metallic with gap-
less states having equal spin projection. As all other states with reversed spin
projection are gapped out, this uniaxial SDW phase could be quite useful for
spin-filtering applications. Further studies beyond mean-field level will have
to clarify which of these two exotic SDW orders is energetically favored, and
whether the same phase also occurs in the 3/4-filled triangular lattice.

5.4 Summary and Outlook

In summary, we have provided a detailed analysis of the competing many-
body phases of graphene at and around van-Hove filling. Using realistic
band structure parameters and interactions, we find the chiral (d + id) su-
perconducting phase to be preferred over an extended phase space regime
around van-Hove filling. Besides this (d+ id)-phase, we also find a sublead-
ing spin-triplet pairing phase as well as an exotic spin-density wave state.
Both of these subleading phases can in turn be realized if the kinetic and
interaction parameters are slightly changed, for example through different
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substrate materials. We therefore conclude that doped graphene, which
has recently become accessible in experiments, shows a variety of interest-
ing many-body phases at relatively high transition temperatures. We think
that the realization of only one of these phases would be of great benefit to
fundamental science and future applications.





Chapter 6

Superconductivity in
Strontium Ruthenate
(Sr2RuO4)

6.1 Introduction

Soon after Bednorz and Mueller discovered the first cuprate superconductor
with a transition temperature (Tc) of 38K [1], Meano and coworkers also
started the search for high-Tc superconductivity in other transition metal ox-
ides with a similar perovskite structure. In 1994, nearly one decade after the
discovery of the cuprates, they found the first non-cooper based perovskite
superconductor Sr2RuO4 [193] with a transition temperature of only 1.5K.

Although the crystal structure of Sr2RuO4 (SRO) was equivalent to the
one of La2CuO4, it soon turned out that SRO is quite different from the
cuprates. On the one hand, SRO shows no long-range magnetic order and,
on the other hand, its superconductivity develops out of a well-formed Fermi-
liquid without any doping. In particular, also the superconducting proper-
ties of SRO differ in many respects from the one in cuprates. Whereas the
pairing state in the cuprates shows spin-singlet pairing with d-wave sym-
metry, the pairing in SRO is most likely of spin-triplet type and reveals
evidence for broken time-reversal symmetry. These latter two properties
then strongly point to a (p + ip)-wave pairing state and aroused great in-
terest as a natural realization of topological superconductivity. In addition,
the multi-component order parameter of this so-called chiral pairing state
allows for a rich defect structure including half-quantum vortices with non-
Abelian exchange statistics. This is of course fascinating by itself, but also
constitutes an essential ingredient for the realization of quantum computing.

However, a growing number of experiments seem to contradict a simple
explanation in terms of a (p+ ip)-wave pairing in SRO. For example, the ex-
pected nodeless gap was not confirmed in experiments, and also the assumed
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Figure 6.1: Crystal structure of Sr2RuO4 and crystal field splitting of the Ru 4d states in
an octahedral environment of neighboring oxygen ions. The Ru ion is in a 4d4 configuration
with four electrons distributed nearly equally among the t2g-orbitals dxz, dyz, dxy.

ferromagnetic-based pairing mechanism was challenged by the existence of
pronounced antiferromagnetic fluctuations. Therefore, the correct structure
of the superconducting gap as well as the pairing mechanism are still under
debate, and we think that an unbiased functional RG analysis could provide
valuable insights into these issues.

In the following section, we will review the most relevant properties of
the normal and superconducting state of SRO. After that, we will present
our functional RG results and discuss how these findings relate to current
experimental results. Further informations on the experimental findings can
be found in a number of excellent articles [194–196].

6.2 Structural and Electronic Properties

The crystal structure of SRO resembles the one of La2CuO4 and consists
of RuO2 layers separated by strontium and oxygen ions. Here, each Ru ion
is surrounded by an octahedron of oxygen ions depicted in Fig. 6.1a, and
the unit cell is body-centered tetragonal without any structural transition
between room temperature and 0.1K. An important peculiarity of SRO is
the availability of high-quality crystals which enabled a direct Fermi-surface
mapping by means of quantum oscillation measurements. The correspond-
ing measurements of Bergemann et al. [197] then revealed two electron-
like Fermi surfaces around the Γ-point and one hole-like at the M -point of
the Brillouin zone as illustrated in Fig. 6.2c. Although the first ARPES
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measurements suggested a different picture [198, 199], later experiments of
Damascelli et al. [200] agreed very well with the above quantum oscillation
measurements. In addition, band structure calculations such as LDA con-
firmed this measured Fermi-surface as well [201, 202] but also found clear
deviations in the band structure away from the Fermi level. This in turn
was suggested to result from correlations effects, which are not as drastic
as in the isostructural cuprates, but still show a sizeable effect [203, 204].
One reason for the moderate correlation effects in SRO is the larger ex-
tend of the relevant 4d-shell of ruthenium in comparison to the 3d-shell of
copper. The normal state of SRO then shows a Fermi-liquid like behavior
for T < 50K as, for example, apparent from the T 2-like behavior of the
electrical resistivity [194].

In order to describe the electronic properties of SRO, we first note that
the ruthenium ion Ru4+ is left in a 4d4 electronic configuration. Due to the
crystal field of the surrounding oxygen ions, the degeneracy of the Ru-4d
orbitals is lifted as indicated in Fig. 6.1, and the four remaining electrons
sit in the lower-lying t2g-orbitals dxz, dyz, dxy. The same t2g-states then
also determine the low-energy electronic band structure as confirmed by
LDA calculations [201, 202], and the four electrons of Ru4+ are distributed
nearly equally among the three t2g-orbitals. An appropriate tight-binding
description for the t2g states is then given by

H0 =
∑
k,σ

(
c†k,xz,s c†k,yz,s c†k,xy,s

)ξxz,xz(k) ξxz,yz(k) 0
ξyz,xz(k) ξyz,yz(k) 0

0 0 ξxy,xy(k)


ck,xz,sck,yz,s
ck,xy,s

 ,

(6.1)

where c†k,o,s, ck,o,s denote the creation and annihilation operator of an elec-
tron with momentum k, spin s and orbital character o. Here, we also used
the notations of

ξxz,xz(k) = −2t cos(kx)− 2t2 cos(ky)

ξyz,yz(k) = −2t cos(ky)− 2t2 cos(kx)

ξxy,xy(k) = −2t3(cos(kx) + cos(ky))− 4t′3 cos(kx) cos(ky) + ξ3

ξxz,yz(k) = ξyz,xz(k) = −4t′ sin(kx) sin(ky)

with parameter values t = 0.2eV , t2 = 0.1t, t3 = 0.8t, t′3 = 0.35t and
ξ3 = −0.25t. The corresponding band structure and Fermi surface are
shown in Fig. 6.2 and agree very well with those from LDA calculations.
Due to the large separation of RuO2 layers, the hybridization between dif-
ferent layers is very small, and we therefore neglect all out-of-plane hopping
elements. In addition, as the orbitals dxz,yz and dxy have different parity un-
der z → −z reflection, a hybridization within the same plane is not allowed,
and one of the three bands is hence of pure dxy-orbital weight. The other
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(a) (b) (c)

Figure 6.2: Band structure, density of states (DOS) and Fermi surface of H0 in (6.1) with
t = 0.2eV . The filling of all three orbitals equals 4/3 as suggested from band-structure
calculations. (a) Band structure with (red) and without (black) spin-orbit coupling de-
termined by HLS = λ

∑
iLi · Si and λ = 0.45t. (b) Total density of states (black curve)

and orbital resolved density of states (colored curves). (c) Fermi-surface and (4π/3, 4π/3)
nesting vector. Note that the depicted nesting vector is equivalent to q = (2π/3, 2π/3)
modulo reciprocal lattice vectors.

two bands reveal quasi-one dimensional behavior as the nearest-neighbor
hybridization between the dxz- and dyz-orbitals vanishes also by symme-
try, and both orbitals only couple via second-nearest neighbors. The band
structure therefore shows two quasi-one dimensional dxz,yz-bands and one
two-dimensional dxy-band whose Fermi-surface is close to the saddle points
at (0,±π) and (±π, 0) with a diverging density of states. From Fig. 6.2b, it
is further apparent that this two-dimensional dxy-band features the largest
density of states near the Fermi-level and hence supports ferromagnetic-like
fluctuations with ordering momentum q ≈ (0, 0). In addition, the Fermi-
surface shown in Fig. 6.2c also promotes antiferromagnetic fluctuations of
ordering momentum q ≈ (±2π/3,±2π/3), which result from the nested
dxz,yz-bands [205]. However, whereas the antiferromagnetic fluctuations are
well established in neutron scattering experiments [206], the same measure-
ments found no sizeable ferromagnetic peak in SRO. On the other hand, nu-
clear magnetic resonance (NMR) experiments [207] which, as a local probe
only permit momentum integrated insights, revealed a significantly larger
susceptibility of the dxy-electrons. Together with the ferromagnetism in the
related compounds SrRuO3 [208] and Sr4Ru3O10 [209], this suggests that
ferromagnetic fluctuations might also be of relevance in SRO and that the
role of spin fluctuations is probably much more involved.

In the following, we will now discuss the influence of spin-orbit coupling
determined by HLS = λ

∑
iLi · Si. For this purpose, we rewrite HLS as

HLS = i
λ

2

∑
n,oo′

εoo′n
∑
k,s,s′

c†k,o,sck,o′,s′σ
n
ss′ , (6.2)

where o, o′ belong to the ordered set of t2g-orbitals {dyz, dxz, dxy}, σn denotes
the n-th Pauli-matrix and εoo′n is the totally antisymmetric tensor. The red
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curve in Fig. 6.2a then indicates the band structure of Htot = H0 +HLS with
a realistic value of λ = 90meV [210]. Here, it turns out that the effect of
spin-orbit coupling is quite small for the states near the Fermi-level but can
become crucial at certain k-regions of high-symmetry. In addition, it is also
apparent that all three bands show a two-fold degeneracy due to the still
present time- and space-inversion symmetry. However, as spin-rotational
symmetry is broken by HLS , the single-particle states of Htot cannot be
eigenstates of the spin-operator. It is nevertheless possible to construct so-
called pseudospin states |k, α〉, |k, β〉 such that α→ ↑ and β → ↓ holds for
vanishing spin-orbit coupling and such that all transformation properties
remain the same up to the linking of spatial- and pseudospin-rotation. The
advantage of this pseudospin-basis lies in its transparent transformation be-
havior, which enables a simple classification of superconducting order as de-
scribed in Sec. 3.4. For example, the superconductivity can still be classified
in terms of pseudospin singlet- or triplet-pairing and all derived transforma-
tion properties of the superconducting gap function remain unchanged up
to the linking of spatial- and pseudospin-rotation. Unless stated otherwise,
the term spin will therefore refer to the above pseudospin label throughout
the following sections.

6.3 Spin-Triplet Pairing and the Effect of Spin-
Orbit Coupling

Although the detailed pairing state in SRO is still under debate, its spin-
triplet character has been confirmed with reasonable certainty. Using Knight-
shift [211] measurements and neutron scattering [212], the local spin suscep-
tibility has been shown to remain unchanged below Tc. This in turn rules
out singlet pairing as the corresponding spin-zero pairs could not respond
to a magnetic field and the local spin susceptibility would vanish exponen-
tially for T < Tc. The unchanged local spin susceptibility below Tc therefore
presents a convincing evidence for spin-triplet pairing in SRO. According to
Sec. 3.4, the gap function ∆̂k in a triplet superconductor is conveniently
written as

∆̂k = i(d(k) · σ)σy

with a three-component vector d(k) being odd in k and pointing perpen-
dicular to the total spin of (k,−k)-paired electrons. The advantage of this
d-vector notation lies in its transparent transformation behavior under spin
rotation. As discussed in Sec. 3.4, the d-vector transforms as a classical spin
under the rotation in spin-space and, if spin-rotational symmetry is unbro-
ken, all pairing states with a globally rotated d-vector must have the same Tc
by symmetry. On the other hand, if spin-rotational symmetry is broken due
to the spin-orbit coupling in (6.2), any rotation in k- and (pseudo)spin-space
must be linked in order to describe a symmetry of the underlying theory. As
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a consequence, the spin-orbit coupling lifts the six-dimensional degeneracy of
spin-triplet pairing states to four one-dimensional and one two-dimensional
representations as shown in Tab. 6.1 below. Here, it is important to note

no spin-orbit coupling with spin-orbit coupling

dA1(p) = x̂px + ŷpy
d1(p) = x̂px,d2(p) = x̂py dA2(p) = x̂py − ŷpx
d3(p) = ŷpx,d4(p) = ŷpy dB1(p) = x̂px − ŷpy
d5(p) = ẑpx,d6(p) = ẑpy dB2(p) = x̂py + ŷpx

dE1
1 (p) = ẑpx,d

E1
2 (p) = ẑpy

Table 6.1: The different p-wave gap symmetries on the square lattice with and without
spin-orbit coupling. The direction of the d-vector is characterized by the three unit-vectors
x̂, ŷ, ẑ.

that we used the rotational invariant basis functions px, py instead of the
correct lattice harmonics like sin(px), sin(py) for the nearest-neighbor case.
We will keep this widely adopted notation and replace it if necessary.

6.4 Chiral (p+ ip)-Pairing State

Among the five possible pairing symmetries presented in Tab. 6.1, only the
two-dimensional representation E1 admits a spontaneous breaking of time-
reversal symmetry. The associated order parameter is then characterized
by

d(k) = ẑ(px ± ipy) (6.3)

and represents a chiral pairing state as both time-reversal symmetry and
the reflection symmetry of one spatial coordinate (parity) are broken. Sim-
ilar to the (d+ id)-pairing in the previous chapter, this chirality then leads

to topological superconductivity with full bulk gap |∆̂k| =
√
p2
x + p2

y and

topologically protected chiral modes at the sample edges. The topological
structure of such chiral superconductors in two dimensions is conveniently
described by the Chern number N as defined in Eq. (5.4), and for (6.3) N
is either +1 or −1 depending on which of the two orders ẑ(px + ipy) or
ẑ(px− ipy) is realized. Without closing the bulk gap or breaking additional
symmetries, the Chern number N remains invariant and gives rise to gapless
modes at all interfaces between states of different topology (N1 6= N2) [176].
It can be further shown that the topological invariant N is directly related to
the internal angular momentum of the Cooper-pairs [213] which is 〈Lz〉 = ±1
in the chiral pairing state (6.3). Of course, the angular momentum is only
conserved in the rotational symmetric case and one should instead replace
the gap functions px, py in (6.3) by appropriate lattice harmonics like sin(px)
and sin(py). However, the rotational symmetric notation is still a reasonable
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Figure 6.3: Spin S and angular momentum L of a single Cooper pair in the chiral
state (6.3). The angular momentum L is depicted by the thick black arrow pointing in
z-direction, The spin configuration in (6.3) consists of superpositions of equal in-plane
spins (equal colored arrows) such that 〈S〉 = 0.

approximation and has been widely adopted in the literature. The magnetic
moment associated with the finite angular momentum of the Cooper pairs
is usually compensated in the bulk due to Meissner screening but may be-
come visible near defects or sample boundaries with imperfect screening.
Although the spontaneous onset of internal magnetic fields near defects oc-
curs also in non-chiral pairing states such as the (s+ id)-pairing phase with
〈L〉 = 0, it is an unambiguous indication of broken time-reversal symme-
try. Therefore, the first experimental evidence for time-reversal symmetry
broken pairing in SRO came from muon relaxation rate measurements of
Luke et al. [214], who reported the onset of a broad distribution of internal
magnetic fields near Tc. Further indications of broken time-reversal sym-
metry were also found in later magneto-optic experiments [215], Josephson
measurements [216] and in the magnetic-field distribution of the vortex lat-
tice [217, 218]. Moreover, the spin configuration of the chiral pairing state
(6.3) can also be deduced from the uniform d-vector direction along the
z-axis. According to Sec. 3.1, this implies that the Cooper-pairs of total
spin S = 1 consist of equal in-plane spins with 〈S〉 = 0 as illustrated in
Fig. 6.3. The non-vanishing Knight-shift for an applied in-plane magnetic
field is therefore fully consistent with the spin structure of (6.3) as the in-
plane spins of the Cooper pairs are still polarizable. In contrast to that, the
Knight-shift for an applied out-of-plane magnetic field is supposed to vanish
in a similar way as in singlet superconductors.

From the symmetry considerations of the previous section, it could by
inferred that SRO exhibits five possible triplet pairing symmetries of which
only the chiral one in (6.3) breaks time-reversal symmetry. Hence, the non-
vanishing Knight shift and the evidence for time-reversal symmetry break-
ing would be sufficient to uniquely determine the pairing symmetry in SRO.
However, the measured power laws in the electronic specific-heat [219], nu-
clear spin-relaxation [220] and thermal conductivity [221] suggest that SRO
cannot have the full bulk gap expected from (6.3) as this would imply an
exponential behavior in all these quantities. This of course does not rule out
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the chiral pairing symmetry (6.3) but most likely points to multi-orbital ef-
fects which are known to cause pronounced gap anisotropies. Another issue
of the chiral pairing state (6.3) is the experimental verification of edge cur-
rents. Although recent tunneling experiments [222] reported a broad hump
of subgap states at the in-plane edges, scanning SQUID measurements [223]
found no indications of current induced magnetic fields. As multi-orbital
effects are also relevant for explaining this inconsistent behavior [224, 225],
a functional RG investigation of the multi-orbital superconductivity in SRO
would be quite helpful to understand these issues. In the following section,
we will therefore study the pairing mechanism, the detailed structure of
the superconducting gap as well as the influence of spin-orbit coupling in a
microscopic model description of SRO.

6.5 Implementation and Results

The numerical implementation of the functional RG follows the description
of Sec. 4.2.3. Starting point is again the exact hierarchy of flow equations
in Eq. (2.24) and, by restricting to the 4-point function V Λ, we obtain the
familiar flow equation depicted in Fig. 6.4a. At this, we further applied the
widely used approximation of discarding the 6-point function as well as the
self-energy feedback to V Λ. Both types of approximation can be justified
for sufficiently small bare interactions as discussed in Sec. 2.5. Usually, the
full 4-point function depends on four band indices mi as well as on three
momenta and frequencies with the respective fourth one determined by con-
servation laws. However, as we are mainly interested in the most diverging
parts of the 4-point function, we compute V Λ only at zero frequency and at
a discrete set of Fermi-surface points {ksF }. For this reason, we divide the
Brillouin zone for each band into patches shown in Fig. 6.4(b1-b3), and, as
we still need the full momentum dependence of V Λ to determine its value at
the Fermi-surface points {ksF }, we project each k-point in a certain momen-
tum space patch onto its Fermi-surface point ksF at the patch center. This
then amounts to the following approximation

V Λ(k1m1,k2m2,k3m3,k4m4) ≈
V Λ(πF (k1)m1, πF (k2)m2, πF (k3)m3, πF (k4)m4),

with πF (ki) denoting the projection of ki onto the Fermi-surface point ksF
of band mi. For np patches and nb bands we then end up with a closed
system of n3

pnb coupled first-order differential equation for V Λ.
After this short recap on the numerical implementation, we now start

applying the functional RG to the three orbital model (6.1) of SRO. Similar
to the other multi-orbital models discussed in this thesis, the interaction part
Hint includes intra- and inter-orbital contributions U1 and U2, the Hund’s
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(a)

(b1) (b2) (b3)

= - 2+ + +

Figure 6.4: (a) Flow equation of the 4-point function (dashed line) according to
Eq. (2.63). The full inner lines denote free propagators, slashed inner lines indicate the
single-scale propagator as defined in (2.28) for the temperature-flow scheme. (b1-b3)
Patching scheme depicted by the black partitioning of the Brillouin zone for the three
bands of (6.1). The colors again denote the leading orbital weights with red, green and
yellow labeling the dxz-, dyz- and dxy-orbital.

rule coupling JH as well as a pair-hopping term Jpair:

Hint =
∑
i

U1

∑
o

ni,o,↑ni,o,↓ + U2

∑
o<o′,s,s′

ni,o,sni,o′,s′

+JH
∑
o<o′

∑
s,s′

c†i,o,sc
†
i,o′,s′ci,o′,s′ci,o,s + Jpair

∑
o<o′

(
c†i,o,↑c

†
i,o,↓ci,o′,↓ci,o′,↑ + h.c.

)]
.

The operators c†i,o,s, ci,o,s represent the creation and annihilation operators
of an electron with spin s, in orbital o and at site i. The respective electron-
density operator is further given by ni,o,s. For an efficient computation of
the diagrams in Fig. 6.4a, it is also useful to choose an appropriate one-
particle basis in which the quadratic term of H0 becomes diagonal. In case
of a multi-orbital model as in (6.1) for SRO, this band basis consists of a
superposition of orbital states

|k,m, s〉 = um,xz(k)|k, xz, s〉+ um,yz(k)|k, yz, s〉+ um,xy(k)|k, xy, s〉, (6.4)

whose matrix elements um,o(k) determine the contribution or weight of or-

bital o in band m. The corresponding operators γ†kms, γkms in band basis

are then determined by |k,m, s〉 = γ†kms|0〉, and the Hamiltonian in this
representation reads as

Htotal =
∑
k,s

3∑
m=1

γ†kmsEm(k)γkms (6.5)
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+
∑

k1,...k4
s,s′

∑
m1,...,m4

V0(k1m1,k2m2,k3m3,k4m4)γ†k1m1s
γ†k2m2s′

γk3m3s
γk4m4s′

.

Unless stated otherwise, we first neglect the spin-orbit coupling term (6.2)
as this would otherwise also mix-up different spin states in an eigenbasis
similar to (6.4). The energy bands Em(k) of (6.5) then correspond to the
black lines of Fig. 6.2 and the associated Fermi-surface at an electron filling
of nxz = nyz = nxy = 4/3 is depicted in Fig. 6.4 and Fig. 6.2c. Starting
from the bare interaction V0 of (6.5), which equals the 4-point function V Λ

at high energy scales Λ ≈W

V Λ≈W (k1, k2, k3, k4) = V0(k1, k2, k3, k4), (6.6)

we can now easily solve the initial-value problem posed by the flow equation
of Fig. 6.4a. Note that in (6.6), we used the condensed notation of ki =
(ki,mi) since the above patching scheme assigns each ki-point to a fixed
band index mi. In Figure 6.5a, we then illustrate the initial 4-point function
in dependence of the two incoming momenta k1, k2 with k3 fixed to position
59 and k4 determined by momentum conservation. At this, we assumed
a representative set of interaction parameters given by U1 = 3t, U2 = 2t,
JH = Jpair = 0.7t, and we will later also summarize our results for a broader
range of interaction parameters.

6.5.1 Pairing Mechanism and Flow to Strong Coupling

If we now track the flow of the 4-point function down to low energy scales, it
is clearly apparent from Fig. 6.5b that the dominant scattering amplitudes
are located within the dxy-pocket (40-80). The reason for that is, on the one
hand, the nearby van-Hove singularity in the associated dxy-band and, on
the other, the dominant intra-orbital repulsion U1 which acts most effectively
on the pocket of pure dxy-orbital weight. Note that the other two pockets
are of mixed dxz,yz-orbital weight and do not hybridize with the dxy-orbital
due to its different reflection properties under z → −z. The broad vertical
feature showing up in Fig. 6.5b then indicates ferromagnetic-like fluctuations
according to the discussion in Sec. 4.2.4. Although these ferromagnetic
fluctuations appear with moderate strength and in a broad momentum-
space region near Q = (0, 0), these fluctuations are still sufficient to drive
spin-triplet pairing as signaled by the relative sign-change of the diagonals
in Fig. 6.5b. The antiferromagnetic fluctuations, on the other hand, are also
seen when we fix the k3 momentum away from the dxy-pocket in Fig. 6.5b,
but are not sufficiently robust to promote pairing.

6.5.2 Gap Structure of the (p+ ip)-Pairing State

In order to gain a more quantitative insight, we further decompose the full
4-point function into the most relevant channels and expand each channel



6.5 Implementation and Results 127

(a) (b)

Figure 6.5: V Λ(k1, k2, k3, k4) for initial (a) and final (b) energy scales Λ depicted as a
function of k1, k2 with k3 fixed to point 59 and k4 determined by momentum conservation.
The numbering 1 − 120 corresponds to the Fermi-surface points in Fig. 6.4. As k3 was
fixed to point 59, the broad vertical feature at k2 ≈ 59 (see enlarged section) corresponds
to ferromagnetic like fluctuations promoting spin-triplet pairing as indicated by the two
diagonals with opposite signs.

coupling in terms of eigenmodes. The same channel analysis was, by the
way, also performed in the previous chapters and a detailed discussion can
be found in Sec. 4.2.4. Applying this decomposition, we then obtain a flow
of the leading eigenvalues as well as the associated form factors plotted in
Fig. 6.6 along the different Fermi-pockets. At this, it is clearly seen that both
ferromagnetic (fm) and antiferromagnetic (afm) fluctuations are sizeable at
the beginning, but are overtaken by the p-wave pairing channel at low en-
ergy scales. Our results therefore support a ferromagnetically driven p-wave
pairing instability with a subleading d-wave tendency induced by antiferro-
magnetic fluctuations. As the leading p-wave instability mainly originates
from the ferromagnetic tendencies at the nearby van-Hove singularity of the
dxy-band, the resulting energy gap on the dxy-pocket is one order of mag-
nitude larger than on the other two dxz,yz-pockets (see Fig. 6.6(a3)). The
dxz,yz-electrons, on the other hand, only become superconducting through
the Jpair-induced proximity effect and therefore reveal a considerably smaller
gap. In addition, Fig. 6.6(a3) reveals a fourfold gap oscillation on the dxy-
pocket with minima located at the (kx, 0) and (0, ky) axes consistent with
a (px + ipy)-wave pairing symmetry. This fourfold oscillation as well as the
position of the gap minima is in perfect agreement with specific heat mea-
surements in rotating magnetic fields [226]. Moreover, the very large gap
differences between the dxy-pocket and the remaining dxz,yz-pockets can also
be ascribed to an observed plateau in the magnetic field dependence of the
specific heat [226]. Last but not least, the existence of near gap nodes or low-
energy excitations was also very well established by numerous experiments
like thermal conductivity [221], specific heat [219] as well as spin-relaxation
measurements [220], and was one of the first caveats to the expected fully
gapped (px+ ipy)-pairing state in SRO. It is further interesting to note that
the gap oscillations on the other two dxz,yz-pockets rather follow a dx2−y2-
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(a1) (a2) (a3)

(b) (c) (d)

Figure 6.6: (a1,a2) Form factors for the leading p-wave pairing channel (black) as well
as the sin(kx) and sin(ky) harmonics evaluated at the Fermi-surface points ki (gray). (a3)
Superconducting energy gap (∝

√
p2
x + p2

y) determined by the form factors of (a1,a2).
Subleading s±-wave (b) and dx2−y2 -wave (c) pairing form factors. (d) Channel flow of
the leading eigenvalues with (afm) denoting the antiferromagnetic fluctuations of ordering
momentum Q = (2π/3, 2π/3), and (fm) labeling the ferromagnetic fluctuations. The
spin-singlet pairing channels are indicated d-sc, s±-sc.

wave instead of a (px + ipy)-wave symmetry. This behavior most likely
reflects the antiferromagnetic fluctuations which actually favor a d-wave or
s±-wave pairing state with form factors depicted in Fig. 6.6(b,c). Based on
the discussion in Sec. 4.2.5, this can be easily understood since both sym-
metries lead to a sign-change in the superconducting gap between Q-shifted
Fermi-surface portions shown in Fig. 6.7a.

6.5.3 Phase Diagram away from Stoichiometric Filling

If we also study the phases away from the electron filling of n = 4 in SRO,
we obtain the phase diagram depicted in Fig. 6.7b as a function of the
chemical potential and the interaction parameters JH = Jpair. The remain-
ing parameters were chosen as U1 = 3t, U2 = 2t and do not change the
qualitative picture as long as both are in reasonable range with U1 > U2.
From an experimental point of view, the modified filling can be realized
by replacing Sr with La, which then causes a rigid band shift in the band
structure of (6.1) as was proven by ARPES and quantum-oscillation mea-
surements [227,228]. The calculated phase diagram of Fig. 6.7 then reveals
a ferromagnetic phase in the direct vicinity of van-Hove filling at µvH . Here,
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Figure 6.7: (a) Fermi-surface and nesting vector Q ≈ (2π/3, 2π/3) of SRO together
with the main orbital weights whose color coding is the same as in Fig. 6.4. (b) Schematic
phase diagram of the Hamiltonian in (6.1) as a function of the chemical potential and the
interaction parameter JH in units of U2. The remaining parameter values were chosen as
U1 = 3t, U2 = 2t and JH = Jpair.

the density of states in the dxy-band diverges and induces a ferromagnetic
ordering of the dxy-electrons which is then also mediated to the other or-
bitals by means of JH . This effect can be easily understood as the Hund’s
rule coupling JH prefers parallel spins in different orbitals of the same site,
and the ferromagnetic phase therefore extends to a broader filling range if
we increase JH . Close to the ferromagnetic instability we then find the p-
wave superconducting phase which includes the pairing state of SRO at µ∗.
At this, the role of the interaction parameter Jpair is mainly to induce a
finite pairing amplitude on the dxz,yz-pockets via proximity effects. Further
away from van-Hove filling, the competing antiferromagnetic fluctuations of
ordering momentum Q ≈ (2π/3, 2π/3) become more dominant and promote
the spin-singlet pairing phases of s±-wave and d-wave symmetry shown in
Fig. 6.7b. Depending on the chosen values of interaction parameters, either
the d-wave or s±-wave pairing state is preferred since the nesting vector
Q connects Fermi-surface portions of similar and reversed orbital weight as
apparent from Fig. 6.7a, and a pronounced intra-orbital scattering then, for
example, favors the s±-wave instead of a d-wave pairing state.

In summary, the effect of the Hund’s rule coupling JH is mainly to ex-
tend ferromagnetic fluctuations further away from van Hove filling, whereas
the pair-hopping interaction parameter transfers a finite pairing-amplitude
either from the dxy-pocket to the dxz,yz-pockets or vice versa. On the other
hand, the inter-orbital coupling U2 acts contrary to JH and weakens the fer-
romagnetic tendency, while supporting the antiferromagnetic channel. The
parameter study presented here is of course far from complete, but provides
a first insight into the role of the microscopic interaction parameters.



130 Superconductivity in Strontium Ruthenate (Sr2RuO4)

6.5.4 Including Spin-Orbit Coupling

The p-wave pairing state found in the preceding calculations still reveals
a six-fold degeneracy in the sense that every linear combination of px and
py in each of the three spin-triplet states has the same Tc by symmetry.
According to the discussion in Sec. 6.3, this degeneracy results from the ro-
tational symmetry in spin- and spatial-coordinates of the underlying model
(6.1). However, if we include the spin-orbit coupling HLS of (6.2), these in-
dividual rotation symmetries are broken, and the former sixfold degeneracy
breaks up into four one-dimensional and one two-dimensional representation
summarized in Tab. 6.1. It is also interesting to note here that all these five
pairing symmetries lead to the same excitation gap of |∆̂|2 = d·d∗ = p2

x+p2
y.

Now, in order to figure out which of these five pairing states is realized
in the presence of spin-orbit coupling, we first derive an effective low-energy
model and then include the spin-orbit coupling term HLS of (6.2). The free
part is thus given by

H0 =
∑
k,ss′

∑
oo′

[
ξo,o′δss′ + i

λ

2

∑
n

εoo′nσ
n
ss′

]
c†k,o,sck,o′,s′ ,

where o, o′ belong to an ordered set of t2g-orbitals {dyz, dxz, dxy}, σn denotes
the n-th Pauli-matrix and εoo′n is the totally antisymmetric tensor. Extract-
ing the pairing interaction V pair

o1,...,o4 at low energy scales from the RG flow,
the interaction part reads as

Hint =
∑
k,q,ss′

∑
o1,...,o4

V pair
o1,...,o4

(k, q)c†k,o1,s
c†−k,o2,s′

c†−q,o3,s′
cq,o4,s,

where we used V pair
o1,...,o4 in orbital representation, similar as in Sec. 4.2.8. In

the next step, we diagonalize H0 and obtain new quasi-particle states labeled
by band m and pseudospin indices s. The new quasi-particles then comprise
all different orbital characters and, as spin-rotational symmetry is broken
by HLS , also mix-up different spin states. In case of the two-dimensional
dxy-band, the corresponding states therefore obtain additional contributions
from the dxz- and dyz-orbitals with reversed spin

|k,m, s〉 = um,xz(k)|k, xz,−s〉+ um,yz(k)|k, yz,−s〉+ um,xy(k)|k, xy, s〉

such that both um,xz and um,yz go to zero with vanishing spin-orbit coupling
λ, and the original states of (6.4) are recovered. Note that we used the same
label s to denote pseudospin on the left- and physical spin on the right-
hand side in order to simplify notation. The respective states for the other
two dxz,yz-bands then also contain an additional contribution from the dxy-
orbital with reversed spin which vanishes for λ → 0. If we now represent
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Figure 6.8: Leading eigenvalues w of the pairing channel Ṽ pair in dependence of spin-
orbit coupling λ. Here, the values on the vertical axes correspond to the normalized values
of w with respect to the most leading one wmin. The calculated spin-orbit coupling in
SRO amounts to λ = 0.45t.

the above Hamiltonian H0 +Hint in this new quasi-particle basis, we obtain

Htotal =
∑
k,s

3∑
m=1

γ†kmsEm(k)γkms (6.7)

+
∑
k,q
m,m′

∑
s1,...,s4

Ṽ pair
s1,...,s4(km,−km,−qm′, qm′)γ†kms1γ

†
−kms2γ−qm′s3γqm′s4 ,

where γ†, γ denote the creation and annihilation operators with respect to
the basis states |k,m, s〉. A subsequent eigenmode expansion of Ṽ pair as
a function of spin-orbit coupling then reveals the leading eigenvalues and
associated gap symmetries of Fig. 6.8. At this, we find the leading six
eigenvalues or transition temperatures to be degenerate for vanishing spin-
orbit coupling λ in accordance with our above symmetry consideration. For
finite λ, this degeneracy splits and the chiral pairing state d(k) = ẑ(px±ipy)
turns out to be favored due to its lowest eigenvalue or, respectively, its
highest transition temperature. This is, by the way, also confirmed by a
study of Ng et al. [229] who found that the chiral pairing state is stable if the
dominant pairing occurs in the dxy-band as it is the case in our calculation.
From our functional RG perspective, the chiral p-wave symmetry therefore
describes the most preferred pairing state of SRO.

6.6 Summary and Outlook

Although a large number of experiments suggest that superconductivity in
SRO is of spin-triplet type and most likely breaks time-reversal symmetry,
the microscopic pairing mechanism as well as the detailed gap symmetry
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still remain unclear. In order to resolve this issue, we applied the functional
RG method which, on the one hand, allows an unbiased analysis and, on
the other, also enables the consideration of all relevant material details.

Starting with a three orbital description of SRO, we then find that ferro-
magnetic fluctuations are still sufficient to drive p-wave superconductivity,
whereas the antiferromagnetic ones mainly mediate singlet-pairing of both
d-wave and s±-wave symmetry. As a consequence, the p-wave pairing state is
fully gapped on the dxy-pocket and shows a much smaller gap with near-zero
minima on the remaining two pockets. The detailed gap behavior observed
in our calculation is fully consistent with the majority of experimental data.

Using an effective pairing vertex derived from functional RG, we also
included spin-orbit coupling and confirmed that this clearly promotes the
chiral pairing state described by d(k) = ẑ(px±ipy) with broken time-reversal
symmetry and in-plane oriented spin pairs. In an upcoming work, we will
then consider the spin-orbit coupling right from the beginning of the flow.
This is of course more complex due to the broken spin-rotational symmetry,
but was already tested successfully in simplified models.

The results presented here in this chapter are of course far from complete
and do not yet provide a comprehensive understanding of the pairing state
in SRO. However, we think that our work already enables valuable insights
into the superconductivity of SRO and also present a promising starting
point for future investigations.



Chapter 7

Conclusion

The superconductivity in complex material systems like the recently discov-
ered iron-pnictides or strontium ruthenate often involves multiple orbitals.
In order to explore the superconducting properties and the underlying pair-
ing mechanisms in those systems, we developed a multi-orbital extension of
the functional RG and studied different characteristic material compounds.

After two introductory chapters on the technical implementation and on
unconventional superconductivity in general, we analyzed the pairing mech-
anism of various material representatives of the iron-pnictide class. Here,
we found that superconductivity in all investigated compounds is driven
by spin-fluctuations. However, as the multi-orbital nature of these materi-
als and the resulting multi-pocket Fermi-surface promote several competing
spin-fluctuation channels, the pairing state may vary from s±-wave with
and without nodes to even d-wave symmetry. In addition to the material
dependence, we also studied the influence of doping and pnictogen-height
on the pairing state and further predicted the existence of a time-reversal
symmetry broken (s+ id)-pairing near the transition from nodal s±-wave to
d-wave superconductivity.

In Chapter 5, we then discussed the electronic instabilities of another
fascinating material system – doped graphene. Using chemical dopants or
electrolytic gating, doped graphene has recently become accessible in exper-
iments with nearly no disorder in the underlying lattice structure. Although
graphene can be described by one half-filled pz-orbital per lattice site, there
are two non-equivalent sites per unit-cell which can effectively be consid-
ered as two distinct orbitals. Near van-Hove filling, we then found a chiral
pairing phase with (d + id)-symmetry in a wide doping range as well as
a subleading triplet pairing channel and an exotic spin-density wave. Both
subleading channels can be realized by varying the longer-range hopping and
interaction parameters, for example, by using different substrate materials.

Finally, in Chapter 6, we considered the superconductivity of strontium
ruthenate, a material that is isostructural to certain high-Tc cuprates and
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possibly realizes the chiral pairing state determined by d̂ = ẑ(px ± ipy).
Applying the functional RG to a three orbital description for the relevant t2g-
states of ruthenium, we confirmed the occurence of this chiral pairing phase.
In particular, we found that ferromagnetic fluctuations mediate the pairing
instead of similarly strong antiferromagnetic fluctuations. The resulting
superconducting gap then reveals large anisotropies on the γ-pocket and
appears one order of magnitude larger than on the other two α- and β-
pockets. The overall gap profile is in very good agreement to recent specific-
heat measurements in rotating magnetic fields.

In conclusion, we think that multi-orbital physics plays an essential part
in a large number of superconducting materials. A detailed understanding of
these multi-orbital effects could therefore open new possibilities to engineer
superconducting properties and to fabricate improved material compounds.
The ideas and methodical progress developed in this thesis provided first
insights into this fascinating field and will hopefully motivate future research.
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K. Schönhammer, Functional renormalization group for Luttinger liq-
uids with impurities, Phys. Rev. B 70, 075102 (2004).

[13] C. Honerkamp, M. Salmhofer, N. Furukawa and T. M. Rice, Break-
down of the Landau-Fermi liquid in two dimensions due to umklapp
scattering, Phys. Rev. B 63, 035109 (2001).

[14] M. Salmhofer, C. Honerkamp, W. Metzner and Oliver, Renormal-
ization group flows into phases with broken symmetry, Prog. Theor.
Phys. 112, 943 (2004).

[15] J. Reuther, Frustrated Quantum Heisengerg Antiferromagnets: Func-
tional Renormalization-Group Approach in Auxiliary-Fermion Repre-
sentation, PhD thesis, Universität Karlsruhe, (2011).

[16] M. Salmhofer and C. Honerkamp, Fermionic Renormalization Group
Flows —Technique and Theory—, Prog. Theor. Phys. 105, 1 (2001).

[17] J. Reiss, D. Rohe and W. Metzner, Renormalized mean-field anal-
ysis of antiferromagnetism and d-wave superconductivity in the two-
dimensional Hubbard model, Phys. Rev. B 75, 075110 (2007).

[18] B. Mühlschlegel, Asymptotic Expansion of the Bardeen-Cooper-
Schrieffer Partition Function by Means of the Functional Method, J.
Math. Phys. 3, 522 (1962).

[19] M. Sigrist and K. Ueda, Phenomenological theory of unconventional
superconductivity, Rev. Mod. Phys. 63, 239 (1991).

[20] V. P. Mineev and K. V. Samokhin, Introduction to unconventional
superconductivity, Gordon and Breach Science Publishers, (1999).

[21] R. Haag, The mathematical structure of the Bardeen-Cooper-Schrieffer
model, Nuovo Cimento 25, 287 (1962).
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75As NMR Studies of Superconducting LaFeAsO0.9F0.1, Phys. Rev.
Lett. 101, 047003 (2008).

[99] K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao and G. Zheng,
Spin-singlet superconductivity with multiple gaps in PrFeAsO0.89F0.11,
Eur. Phys. Lett. 83, 57001 (2008).

[100] Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang
and M. Z. Hasan, Fermi Surface Topology and Low-Lying Quasiparti-
cle Dynamics of Parent Fe1+xTe/Se Superconductor, Phys. Rev. Lett.
103, 037002 (2009).

[101] T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E. Tillman,
E. D. Mun, J. Schmalian, S. L. Bud’Ko, M. A. Tanatar, P. C. Can-
field and A. Kaminski, Momentum Dependence of the Superconducting
Gap in NdFeAsO0.9F0.1 Single Crystals Measured by Angle Resolved
Photoemission Spectroscopy, Phys. Rev. Lett. 101, 147003 (2008).

[102] A. F. Kemper, T. A. Maier, S. Graser, H.-P. Cheng, P. J. Hirschfeld
and D. J. Scalapino, Sensitivity of the superconducting state and mag-
netic susceptibility to key aspects of electronic structure in ferropnic-
tides, New J. Phys. 12, 073030 (2010).

[103] S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino and S.-C. Zhang, Min-
imal two-band model of the superconducting iron oxypnictides, Phys.
Rev. B 77, 220503 (2008).

[104] S. Graser, T. A. Maier, P. J. Hirschfeld and D. J. Scalapino, Near-
degeneracy of several pairing channels in multiorbital models for the
Fe-pnictides, New J. Phys. 11, 025016 (2009).

[105] C. Castellani, C. R. Natoli and J. Ranninger, Magnetic structure of
V2O3 in the insulating phase, Phys. Rev. B 18, 4945 (1978).

[106] R. Shankar, Renormalization-group approach to interacting fermions,
Rev. Mod. Phys. 66, 129 (1994).



144 Bibliography

[107] D. Zanchi and H. J. Schulz, Weakly correlated electrons on a square
lattice: Renormalization-group theory, Phys. Rev. B 61, 13609 (2000).

[108] A. V. Chubukov, D. V. Efremov and I. Eremin, Magnetism, supercon-
ductivity, and pairing symmetry in iron-based superconductors, Phys.
Rev. B 78, 134512 (2008).

[109] L. Wray, D. Qian, D. Hsieh, Y. Xia, L. Li, J. G. Checkelsky, A. Pasupa-
thy, K. K. Gomes, C. V. Parker, A. V. Fedorov, G. F. Chen, J. L. Luo,
A. Yazdani, N. P. Ong, N. L. Wang and M. Z. Hasan, Momentum de-
pendence of superconducting gap, strong-coupling dispersion kink, and
tightly bound Cooper pairs in the high Tc (Sr, Ba)1−x(K, Na)xFe2As2

superconductors, Phys. Rev. B 78, 184508 (2008).

[110] K. Hashimoto, T. Shibauchi, S. Kasahara, K. Ikada, S. Tonegawa,
T. Kato, R. Okazaki, C. J. van der Beek, M. Konczykowski, H. Takeya,
K. Hirata, T. Terashima and Y. Matsuda, Microwave Surface-
Impedance Measurements of the Magnetic Penetration Depth in Single
Crystal Ba1−xKxFe2As2 Superconductors: Evidence for a Disorder-
Dependent Superfluid Density, Phys. Rev. Lett. 102, 207001 (2009).

[111] M. M. Parish, J. Hu and B. A. Bernevig, Experimental Consequences
of the s-wave cos(kx) · cos(ky) Superconductivity in the Iron-Pnictides,
Phys. Rev. B 78, 144514 (2008).

[112] M. A. Tanatar, J.-P. Reid, H. Shakeripour, X. G. Luo, N. Doiron-
Leyraud, N. Ni, S. L. Bud’Ko, P. C. Canfield, R. Prozorov and
L. Taillefer, Doping Dependence of Heat Transport in the Iron-
Arsenide Superconductor Ba(Fe1−xCox)2As2: From Isotropic to a
Strongly k-Dependent Gap Structure, Phys. Rev. Lett. 104, 067002
(2010).

[113] J. G. Checkelsky, Lu Li, G. F. Chen, J. L. Luo, N. L. Wang and N. P.
Ong, Large quasiparticle thermal Hall conductivity in the supercon-
ductor Ba1−xKxFe2As2, arXiv:0811.4668 (2011).

[114] M. Yamashita, N. Nakata, Y. Senshu, S. Tonegawa, K. Ikada,
K. Hashimoto, H. Sugawara, T. Shibauchi and Y. Matsuda, Ther-
mal conductivity measurements of the energy-gap anisotropy of super-
conducting LaFePO at low temperatures, Phys. Rev. B 80, 220509
(2009).

[115] C. W. Hicks, T. M. Lippman, M. E. Huber, J. G. Analytis, J.-H. Chu,
A. S. Erickson, I. R. Fisher and K. A. Moler, Evidence for a Nodal En-
ergy Gap in the Iron-Pnictide Superconductor LaFePO from Penetra-
tion Depth Measurements by Scanning SQUID Susceptometry, Phys.
Rev. Lett. 103, 127003 (2009).



Bibliography 145

[116] D. H. Lu, M. Yi, S.-K. Mo, J. G. Analytis, J.-H. Chu, A. S. Erickson,
D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher and Z.-X. Shen,
ARPES studies of the electronic structure of LaOFe(P,As), Physica
C 469, 452 (2009).

[117] K. Kuroki, H. Usui, S. Onari, R. Arita and H. Aoki, Pnictogen height
as a possible switch between high-Tc nodeless and low-Tc nodal pairings
in the iron-based superconductors, Phys. Rev. B 79, 224511 (2009).

[118] F. Wang, H. Zhai, Y. Ran, A. Vishwanath and D.-H. Lee, Func-
tional Renormalization-Group Study of the Pairing Symmetry and
Pairing Mechanism of the FeAs-Based High-Temperature Supercon-
ductor, Phys. Rev. Lett. 102, 1047005 (2009).

[119] P. W. Anderson, Is there glue in cuprate superconductors?, Science
316, 1705 (2007).

[120] W. Hanke, C. Platt and R. Thomale, Order-parameter anisotropies in
the pnictides: An optimization principle for multi-band superconduc-
tivity, Ann. Phys. (Berlin) 523, 638 (2011).

[121] J. K. Dong, S. Y. Zhou, T. Y. Guan, H. Zhang, Y. F. Dai, X. Qiu,
X. F. Wang, Y. He, X. H. Chen and S. Y. Li, Quantum Criticality and
Nodal Superconductivity in the FeAs-Based Superconductor KFe2As2,
Phys. Rev. Lett. 104, 087005 (2010).

[122] T. Terashima, M. Kimata, N. Kurita, H. Satsukawa, A. Harada,
K. Hazama, M. Imai, A. Sato, K. Kihou, C.-H. Lee, H. Kito, H. Eisaki,
A. Iyo, T. Saito, H. Fukazawa, Y. Kohori, H. Harima and S. Uji,
Comment on “Quantum Criticality and Nodal Superconductivity in the
FeAs-Based Superconductor KFe2As2”, Phys. Rev. Lett. 104, 259701
(2010).

[123] K. Hashimoto, A. Serafin, S. Tonegawa, R. Katsumata, R. Okazaki,
T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo,
H. Eisaki, H. Ikeda, Y. Matsuda, A. Carrington and T. Shibauchi, Evi-
dence for superconducting gap nodes in the zone-centered hole bands of
KFe2As2 from magnetic penetration-depth measurements, Phys. Rev.
B 82, 014526 (2010).

[124] H. Fukazawa, Y. Yamada, K. Kondo, T. Saito, Y. Kohori, K. Kuga,
Y. Matsumoto, S. Nakatsuji, H. Kito, P. M. Shirage, K. Kihou,
N. Takeshita, C.-H. Lee, A. Iyo and H. Eisaki, Possible Multiple Gap
Superconductivity with Line Nodes in Heavily Hole-Doped Supercon-
ductor KFe2As2 Studied by 75As Nuclear Quadrupole Resonance and
Specific Heat, J. Phys. Soc. Jpn. 78, 083712 (2009).



146 Bibliography

[125] S. W. Zhang, L. Ma, Y. D. Hou, J. Zhang, T. L. Xia, G. F. Chen,
J. P. Hu, G. M. Luke and W. Yu, 75As NMR study of single crystals
of the heavily overdoped pnictide superconductors Ba1−xKxFe2As2 (
x = 0.7 and 1), Phys. Rev. B 81, 012503 (2010).

[126] T. Sato, K. Nakayama, Y. Sekiba, P. Richard, Y.-M. Xu, S. Souma,
T. Takahashi, G. F. Chen, J. L. Luo, N. L. Wang and H. Ding, Band
Structure and Fermi Surface of an Extremely Overdoped Iron-Based
Superconductor KFe2As2, Phys. Rev. Lett. 103, 047002 (2009).

[127] M. Rotter, M. Tegel and D. Johrendt, Superconductivity at 38 K in
the Iron Arsenide (Ba1−xKx)Fe2As2, Phys. Rev. Lett. 101, 107006
(2008).

[128] C. Martin, R. T. Gordon, M. A. Tanatar, H. Kim, N. Ni, S. L. Bud’ko,
P. C. Canfield, H. Luo, H. H. Wen, Z. Wang, A. B. Vorontsov, V. G.
Kogan and R. Prozorov, Nonexponential london penetration depth
of external magnetic fields in superconducting ba1−xkxfe2as2 single
crystals, Phys. Rev. B 80, 020501 (2009).

[129] X. G. Luo, M. A. Tanatar, J.-Ph. Reid, H. Shakeripour, N. Doiron-
Leyraud, N. Ni, S. L. Bud’ko, P. C. Canfield, Huiqian Luo, Zhaosheng
Wang, Hai-Hu Wen, R. Prozorov and Louis Taillefer, Quasiparticle
heat transport in single-crystalline Ba1−xKxFe2As2: Evidence for a
k-dependent superconducting gap without nodes, Phys. Rev. B 80,
140503 (2009).

[130] Y. Zhang, L. X. Yang, F. Chen, B. Zhou, X. F. Wang, X. H. Chen,
M. Arita, K. Shimada, H. Namatame, M. Taniguchi, J. P. Hu, B. P. Xie
and D. L. Feng, Out-of-Plane Momentum and Symmetry-Dependent
Energy Gap of the Pnictide Ba0.6K0.4Fe2As2 Superconductor Revealed
by Angle-Resolved Photoemission Spectroscopy, Phys. Rev. Lett. 105,
117003 (2010).

[131] S. Graser, A. F. Kemper, T. A. Maier, H.-P. Cheng, P. J. Hirschfeld
and D. J. Scalapino, Spin fluctuations and superconductivity in a
three-dimensional tight-binding model for BaFe2As2, Phys. Rev. B
81, 214503 (2010).

[132] T. Miyake, K. Nakamura, R. Arita and M. Imada, Dynamic conduc-
tance and the scattering matrix of small conductors, J. Phys. Soc. Jpn.
79, 044705 (2010).

[133] R. Thomale, C. Platt, J. Hu, C. Honerkamp and B. A. Bernevig,
Functional renormalization-group study of the doping dependence of
pairing symmetry in the iron pnictide superconductors, Phys. Rev. B
80, 180505 (2009).



Bibliography 147

[134] R. Thomale, C. Platt, W. Hanke and B. A. Bernevig, Mechanism for
Explaining Differences in the Order Parameters of FeAs-Based and
FeP-Based Pnictide Superconductors, Phys. Rev. Lett. 106, 187003
(2011).

[135] C. Platt, C. Honerkamp and W. Hanke, Pairing in the iron arsenides:
a functional RG treatment, New J. Phys. 11, 055058 (2009).

[136] C. H. Lee, K. Kihou, H. Kawano-Furukawa, T. Saito, A. Iyo, H. Eisaki,
H. Fukazawa, Y. Kohori, K. Suzuki, H. Usui, K. Kuroki and K. Ya-
mada, Incommensurate Spin Fluctuations in Hole-Overdoped Super-
conductor KFe2As2, Phys. Rev. Lett. 106, 067003 (2011).

[137] H. Kawano-Furukawa, C. J. Bowell, J. S. White, R. W. Heslop, A. S.
Cameron, E. M. Forgan, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki,
T. Saito, H. Fukazawa, Y. Kohori, R. Cubitt, C. D. Dewhurst, J. L.
Gavilano and M. Zolliker, Gap in KFe2As2 studied by small-angle
neutron scattering observations of the magnetic vortex lattice, Phys.
Rev. B 84, 024507 (2011).

[138] W.-C. Lee, S.-C. Zhang and C. Wu, Pairing State with a Time-
Reversal Symmetry Breaking in FeAs-Based Superconductors, Phys.
Rev. Lett. 102, 217002 (2009).

[139] T. A. Maier, S. Graser, P. J. Hirschfeld and D. J. Scalapino, d-
wave pairing from spin fluctuations in the KxFe2−ySe2 superconduc-
tors, Phys. Rev. B 83, 100515 (2011).

[140] F. Wang, F. Yang, M. Gao, Z.-Y. Lu, T. Xiang and D.-H. Lee, The
electron pairing of KxFe2−ySe2, Europhys. Lett. 93, 57003 (2011).

[141] C. Fang, Y.-L. Wu, R. Thomale, B. A. Bernevig and J. Hu, Robustness
of s-Wave Pairing in Electron-Overdoped A1−yFe2−xSe2 (A=K,Cs),
Phys. Rev. X 1, 011009 (2011).

[142] J. Zhang, R. Sknepnek, R. M. Fernandes and J. Schmalian, Orbital
coupling and superconductivity in the iron pnictides, Phys. Rev. B 79,
220502 (2009).

[143] K Haule and G Kotliar, Coherence-incoherence crossover in the nor-
mal state of iron oxypnictides and importance of Hund’s rule coupling,
New J. Phys. 11, 025021 (2009).

[144] J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu and
A. M. Guloy, LiFeAs: An intrinsic FeAs-based superconductor with
Tc=18K, Phys. Rev. B 78, 060505 (2008).



148 Bibliography

[145] S.-H. Baek, H.-J. Grafe, F. Hammerath, M. Fuchs, C. Rudisch, L. Har-
nagea, S. Aswartham, S. Wurmehl, J. van den Brink and B. Büchner,
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J. González and E. Rotenberg, Extended van Hove Singularity and
Superconducting Instability in Doped Graphene, Phys. Rev. Lett. 104,
136803 (2010).

[168] D. K. Efetov and P. Kim, Controlling Electron-Phonon Interactions
in Graphene at Ultrahigh Carrier Densities, Phys. Rev. Lett. 105,
256805 (2010).
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Katsnelson and S. Blügel, Strength of Effective Coulomb Interactions
in Graphene and Graphite, Phys. Rev. Lett. 106, 236805 (2011).

[175] M. Cheng, K. Sun, V. Galitski and S. Das Sarma, Stable topologi-
cal superconductivity in a family of two-dimensional fermion models,
Phys. Rev. B 81, 024504 (2010).

[176] G. E. Volovik, On edge states in superconductors with time inversion
symmetry breaking, J. Exp. Theor. Phys. Lett. 66, 522 (1997).

[177] X.-L. Qi, T. L. Hughes and S.-C. Zhang, Chiral topological supercon-
ductor from the quantum Hall state, Phys. Rev. B 82, 184516 (2010).

[178] G. E. Volovik, Fermion zero modes on vortices in chiral superconduc-
tors, J. Exp. Theor. Phys. Lett. 70, 609 (1999).



Bibliography 151

[179] N. Read and D. Green, Paired states of fermions in two dimensions
with breaking of parity and time-reversal symmetries and the fractional
quantum Hall effect, Phys. Rev. B 61, 10267 (2000).

[180] R. Roy, Topological Majorana and Dirac Zero Modes in Superconduct-
ing Vortex Cores, Phys. Rev. Lett. 105, 186401 (2010).

[181] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma,
Non-abelian anyons and topological quantum computation, Rev. Mod.
Phys. 80, 1083 (2008).

[182] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices in
p-Wave Superconductors, Phys. Rev. Lett. 86, 268 (2001).

[183] J. Alicea, New directions in the pursuit of Majorana fermions in solid
state systems, Rep. Prog. Phys. 75, 076501 (2012).

[184] T. Senthil, J. B. Marston and M. P. A. Fisher, Spin quantum Hall effect
in unconventional superconductors, Phys. Rev. B 60, 4245 (1999).

[185] B. Horovitz and A. Golub, Superconductors with broken time-reversal
symmetry: Spontaneous magnetization and quantum Hall effects,
Phys. Rev. B 68, 214503 (2003).

[186] M. Sato, Y. Takahashi and S. Fujimoto, Non-Abelian topological orders
and Majorana fermions in spin-singlet superconductors, Phys. Rev. B
82, 134521 (2010).

[187] S. Florens and M. Vojta, Impact of disorder on unconventional su-
perconductors with competing ground states, Phys. Rev. B 71, 094516
(2005).

[188] S. Raghu, S. A. Kivelson and D. J. Scalapino, Superconductivity in
the repulsive hubbard model: An asymptotically exact weak-coupling
solution, Phys. Rev. B 81, 224505 (2010).

[189] I. Martin and C. D. Batista, Itinerant Electron-Driven Chiral Magnetic
Ordering and Spontaneous Quantum Hall Effect in Triangular Lattice
Models, Phys. Rev. Lett. 101, 156402 (2008).

[190] W.-S. Wang, Y.-Y. Xiang, Q.-H. Wang, F. Wang, F. Yang and D.-H.
Lee, Functional renormalization group and variational Monte Carlo
studies of the electronic instabilities in graphene near 1/4 doping,
Phys. Rev. B 85, 035414 (2012).

[191] R. Nandkishore, G.-W. Chern and A. V. Chubukov, Itinerant Half-
Metal Spin-Density-Wave State on the Hexagonal Lattice, Phys. Rev.
Lett. 108, 227204 (2012).



152 Bibliography

[192] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa and Y. Tokura, Spin
Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated
Ferromagnet, Science 291, 2573 (2001).

[193] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G.
Bednorz and F. Lichtenberg, Superconductivity in a layered perovskite
without copper, Nature 372, 532 (1994).

[194] A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and
the physics of spin-triplet pairing, Rev. Mod. Phys. 75, 657 (2003).

[195] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa and K. Ishida, Eval-
uation of Spin-Triplet Superconductivity in Sr2RuO4, J. Phys. Soc.
Jpn. 81, 011009 (2012).

[196] Yoshiteru M., T. M. Rice and M. Sigrist, The Intriguing Supercon-
ductivity of Strontium Ruthenate, Phys. Today 54, 42 (2001).

[197] C. Bergemann, S. R. Julian, A. P. Mackenzie, S. NishiZaki and
Y. Maeno, Detailed Topography of the Fermi Surface of Sr2RuO4,
Phys. Rev. Lett. 84, 2662 (2000).

[198] D. H. Lu, M. Schmidt, T. R. Cummins, S. Schuppler, F. Lichtenberg
and J. G. Bednorz, Fermi Surface and Extended van Hove Singularity
in the Noncuprate Superconductor Sr2RuO4, Phys. Rev. Lett. 76, 4845
(1996).

[199] T. Yokoya, A. Chainani, T. Takahashi, H. Ding, J. C. Campuzano,
H. Katayama-Yoshida, M. Kasai and Y. Tokura, Angle-resolved pho-
toemission study of Sr2RuO4, Phys. Rev. B 54, 13311 (1996).

[200] A. Damascelli, D. H. Lu, K. M. Shen, N. P. Armitage, F. Ronning,
D. L. Feng, C. Kim, Z.-X. Shen, T. Kimura, Y. Tokura, Z. Q. Mao and
Y. Maeno, Fermi Surface, Surface States, and Surface Reconstruction
in Sr2RuO4, Phys. Rev. Lett. 85, 5194 (2000).

[201] David J. Singh, Relationship of Sr2RuO4 to the superconducting lay-
ered cuprates, Phys. Rev. B 52, 1358 (1995).

[202] T. Oguchi, Electronic band structure of the superconductor Sr2RuO4,
Phys. Rev. B 51, 1385 (1995).

[203] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar and
A. Georges, Coherence-Incoherence Crossover and the Mass-
Renormalization Puzzles in Sr2RuO4, Phys. Rev. Lett. 106, 096401
(2011).



Bibliography 153

[204] Z. V. Pchelkina, I. A. Nekrasov, Th. Pruschke, A. Sekiyama, S. Suga,
V. I. Anisimov and D. Vollhardt, Evidence for strong electronic cor-
relations in the spectra of Sr2RuO4, Phys. Rev. B 75, 035122 (2007).

[205] I. I. Mazin and D. J. Singh, Competitions in Layered Ruthenates:
Ferromagnetism versus Antiferromagnetism and Triplet versus Singlet
Pairing, Phys. Rev. Lett. 82, 4324 (1999).

[206] Y. Sidis, M. Braden, P. Bourges, B. Hennion, S. NishiZaki, Y. Maeno
and Y. Mori, Evidence for Incommensurate Spin Fluctuations in
Sr2RuO4, Phys. Rev. Lett. 83, 3320 (1999).

[207] T. Imai, A. W. Hunt, K. R. Thurber and F. C. Chou, 17O NMR Evi-
dence for Orbital Dependent Ferromagnetic Correlations in Sr2RuO4,
Phys. Rev. Lett. 81, 3006 (1998).

[208] S. G. Ovchinnikov, Exotic superconductivity and magnetism in ruthen-
ates, Phys.-Usp. 46, 21 (2003).

[209] G. Cao, S. K. McCall, J. E. Crow and R. P. Guertin, Ferromagnetism
in Sr4Ru3O10: Relationship to other layered metallic oxides, Phys.
Rev. B 56, R5740 (1997).

[210] M. W. Haverkort, I. S. Elfimov, L. H. Tjeng, G. A. Sawatzky and
A. Damascelli, Strong Spin-Orbit Coupling Effects on the Fermi Sur-
face of Sr2RuO4 and Sr2RhO4, Phys. Rev. Lett. 101, 026406 (2008).

[211] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori
and Y. Maeno, Spin-triplet superconductivity in Sr2RuO4 identified by
17O Knight shift, Nature 396, 658 (1998).

[212] J. A. Duffy, S. M. Hayden, Y. Maeno, Z. Mao, J. Kulda and G. J.
McIntyre, Polarized-Neutron Scattering Study of the Cooper-Pair Mo-
ment in Sr2RuO4, Phys. Rev. Lett. 85, 5412 (2000).

[213] M. Sigrist, Superconductivity with broken time-reversal symmetry,
Physica B 280, 154 (2000).

[214] G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin,
B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Naka-
mura and M. Sigrist, Time-reversal symmetry-breaking superconduc-
tivity in Sr2RuO4, Nature 394, 558 (1998).

[215] J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer and A. Kapitul-
nik, High Resolution Polar Kerr Effect Measurements of Sr2RuO4:
Evidence for Broken Time-Reversal Symmetry in the Superconducting
State, Phys. Rev. Lett. 97, 167002 (2006).



154 Bibliography

[216] F. Kidwingira, J. D. Strand, D. J. Van Harlingen and Y. Maeno,
Dynamical Superconducting Order Parameter Domains in Sr2RuO4,
Science 314, 1267 (2006).

[217] T. M. Riseman, P. G. Kealey, E. M. Forgan, A. P. MacKenzie,
L. M. Galvin, A. W. Tyler, S. L. Lee, C. Ager, D. M. Paul,
C. M. Aegerter, R. Cubitt, Z. Q. Mao, T. Akima and Y. Maeno,
Observation of a square flux-line lattice in the unconventional super-
conductor Sr2RuO4, Nature 396, 242 (1998).

[218] P. G. Kealey, T. M. Riseman, E. M. Forgan, L. M. Galvin,
A. P. Mackenzie, S. L. Lee, D. McK. Paul, R. Cubitt, D. F. Agterberg,
R. Heeb, Z. Q. Mao and Y. Maeno, Reconstruction from Small-Angle
Neutron Scattering Measurements of the Real Space Magnetic Field
Distribution in the Mixed State of Sr2RuO4, Phys. Rev. Lett. 84,
6094 (2000).

[219] S. NishiZaki, Y. Maeno and Z. Mao, Changes in the Superconducting
State of Sr2RuO4 under Magnetic Fields Probed by Specific Heat, J.
Phys. Soc. Jpn. 69, 572 (2000).

[220] K. Ishida, H. Mukuda, Y. Kitaoka, Z. Q. Mao, Y. Mori and Y. Maeno,
Anisotropic Superconducting Gap in the Spin-Triplet Superconductor
Sr2RuO4: Evidence from a Ru-NQR Study, Phys. Rev. Lett. 84, 5387
(2000).

[221] K. Izawa, H. Takahashi, H. Yamaguchi, Yuji Matsuda, M. Suzuki,
T. Sasaki, T. Fukase, Y. Yoshida, R. Settai and Y. Onuki, Supercon-
ducting Gap Structure of Spin-Triplet Superconductor Sr2RuO4 Stud-
ied by Thermal Conductivity, Phys. Rev. Lett. 86, 2653 (2001).

[222] S. Kashiwaya, H. Kashiwaya, H. Kambara, T. Furuta, H. Yaguchi,
Y. Tanaka and Y. Maeno, Edge States of Sr2RuO4 Detected by In-
Plane Tunneling Spectroscopy, Phys. Rev. Lett. 107, 077003 (2011).

[223] J. R. Kirtley, C. Kallin, C. W. Hicks, E.-A. Kim, Y. Liu, K. A. Moler,
Y. Maeno and K. D. Nelson, Upper limit on spontaneous supercurrents
in Sr2RuO4, Phys. Rev. B 76, 014526 (2007).

[224] S. Raghu, A. Kapitulnik and S. A. Kivelson, Hidden Quasi-One-
Dimensional Superconductivity in Sr2RuO4, Phys. Rev. Lett. 105,
136401 (2010).

[225] Y. Imai, K. Wakabayashi and M. Sigrist, Properties of edge states in a
spin-triplet two-band superconductor, Phys. Rev. B 85, 174532 (2012).



Bibliography 155

[226] K. Deguchi, Z. Q. Mao, H. Yaguchi and Y. Maeno, Gap Structure of
the Spin-Triplet Superconductor Sr2RuO4 Determined from the Field-
Orientation Dependence of the Specific Heat, Phys. Rev. Lett. 92,
047002 (2004).

[227] K. M. Shen, N. Kikugawa, C. Bergemann, L. Balicas, F. Baumberger,
W. Meevasana, N. J. C. Ingle, Y. Maeno, Z.-X. Shen and A. P. Macken-
zie, Evolution of the Fermi Surface and Quasiparticle Renormalization
through a van Hove Singularity in Sr2−yLayRuO4, Phys. Rev. Lett.
99, 187001 (2007).

[228] N. Kikugawa, A. P. Mackenzie, C. Bergemann, R. A. Borzi, S. A.
Grigera and Y. Maeno, Rigid-band shift of the Fermi level in the
strongly correlated metal: Sr2−yLayRuO4, Phys. Rev. B 70, 060508
(2004).

[229] K.-K. Ng and M. Sigrist, The role of spin-orbit coupling for the su-
perconductivity in Sr2RuO4, Phys. B Cond. Mat. 281, 969 (2000).





List of Publications

[1] M. Kiesel, C. Platt, and R. Thomale, Unconventional Fermi surface
instabilities in the Kagome Hubbard Model, arXiv:1209.3398 (2012).

[2] L. A. Wray, R. Thomale, C. Platt, D. Hsieh, D. Qian, G. F. Chen,
J. L. Luo, N. L. Wang, M. Z. Hasan, Deviating band symmetries and
many-body interactions in a model hole doped iron pnictide supercon-
ductor Authors, Phys. Rev. B 86, 144515 (2012).

[3] M. Kiesel, C. Platt, W. Hanke, D. Abanin, and R. Thomale Compet-
ing many-body instabilities and unconventional superconductivity in
graphene, Phys. Rev. B 86, 020507(R) (2012).

[4] C. Platt, R. Thomale, C. Honerkamp, S. C. Zhang, and W. Hanke,
Mechanism for a pairing state with time-reversal symmetry breaking
in iron-based superconductors, Phys. Rev. B 85, 180502(R) (2012).

[5] C. Platt, R. Thomale, and W. Hanke, From density functional theory
to the functional renormalization group: superconductivity in the iron
pnictide LiFeAs, Phys. Rev. B 84, 235121 (2011).

[6] W. Hanke, C. Platt, and R. Thomale, Order-Parameter Anisotropies
in the Pnictides - An Optimization Principle for Multi-Band Super-
conductivity, Ann. Phys. (Berlin) 523, 638 (2011).

[7] R. Thomale, C. Platt, W. Hanke, J. Hu, B. A. Bernevig, Exotic d-wave
superconductivity in strongly hole doped KxBa1−xFe2As2, Phys. Rev.
Lett. 107, 117001 (2011).

[8] R. Thomale, C. Platt, W. Hanke, J. Hu, B. A. Bernevig, Mechanism
for Explaining Differences in the Order Parameters of FeAs-Based and
FeP-Based Pnictide Superconductors, Phys. Rev. Lett. 106, 187003
(2011).

[9] R. Thomale, C. Platt, J. Hu, C. Honerkamp, and B. A. Bernevig
Functional renormalization-group study of the doping dependence of
pairing symmetry in the iron pnictide superconductors, Phys. Rev. B
80, 180505(R) (2009).

http://arxiv.org/abs/1209.3398
http://prb.aps.org/abstract/PRB/v86/i14/e144515
http://prb.aps.org/abstract/PRB/v86/i2/e020507
http://prb.aps.org/abstract/PRB/v85/i18/e180502
http://prb.aps.org/abstract/PRB/v84/i23/e235121
ttp://onlinelibrary.wiley.com/doi/10.1002/andp.201100035/abstract
http://prl.aps.org/abstract/PRL/v107/i11/e117001
http://prl.aps.org/abstract/PRL/v107/i11/e117001
http://prl.aps.org/abstract/PRL/v106/i18/e187003
http://prb.aps.org/abstract/PRB/v80/i18/e180505
http://prb.aps.org/abstract/PRB/v80/i18/e180505


List of Publications

[10] C. Platt, C. Honerkamp, and W. Hanke, Pairing in the iron arsenides:
a functional RG treatment, New J. Phys. 11, 055058 (2009).

http://iopscience.iop.org/1367-2630/11/5/055058


Curriculum Vitae

Christian Platt
born in Wetzlar, October 1st 1982

Education:

June 2002 Abitur
Goetheschule Wetzlar, Germany

2003-2009 Studies of Physics and Mathematics
Universität Würzburg, Germany

March 2008 Diploma in Physics
Is the pairing in high-Tc superconductors
driven by the kinetic energy ?
Advisor: Prof. Werner Hanke

October 2009 Diploma in Mathematics
A new NCP-function applied to nonlinear
and second-order cone complementarity problems.
Advisor: Prof. Christian Kanzow

since May 2008 Ph.D. Studies
Universität Würzburg, Germany
Advisor: Prof. Werner Hanke

Ort, Datum Christian Platt





Danksagung
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Mein größter Dank gilt allerdings meinen Eltern, Großeltern, meiner
Familie und Dominika für die liebevolle Unterstützung, das Vertrauen und
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