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SSUUMMMMAARRYY  

Platelet activation and adhesion results in thrombus formation that is essential for normal 

hemostasis, but can also cause irreversible vessel occlusion leading to myocardial infarction 

or stroke. The C-type lectin-like receptor 2 (CLEC-2) was recently identified to be expressed 

on the platelet surface, however, a role for this receptor in hemostasis and thrombosis had 

not been demonstrated. In the current study, the involvement of CLEC-2 in platelet function 

and thrombus formation was investigated using mice as a model system.  

In the first part of the thesis, it was found that treatment of mice with a newly generated 

monoclonal antibody against murine CLEC-2 (INU1) led to the complete and highly specific 

loss of the receptor in circulating platelets (a process termed “immunodepletion”). CLEC-2-

deficient platelets were completely unresponsive to the CLEC-2-specific agonist rhodocytin, 

whereas activation induced by all other tested agonists was unaltered. This selective defect 

translated into severely decreased platelet aggregate formation under flow ex vivo; and in 

vivo thrombosis models revealed impaired stabilization of formed thrombi with enhanced 

embolization. Consequently, CLEC-2 deficiency profoundly protected mice from occlusive 

arterial thrombus formation. Furthermore, variable bleeding times in INU1-treated mice 

indicated a moderate hemostatic defect. This reveals for the first time that CLEC-2 

significantly contributes to thrombus stability in vitro and in vivo and plays a crucial role in 

hemostasis and arterial thrombosis. Thus, CLEC-2 represents a potential novel anti-

thrombotic target that can be functionally inactivated in vivo. This in vivo down-regulation of 

platelet surface receptors might be a promising approach for future anti-thrombotic therapy. 

The second part of the work investigated the effect of double-immunodepletion of the 

immunoreceptor tyrosine-based activation motif (ITAM)- and hemITAM-coupled receptors, 

platelet glycoprotein (GP) VI and CLEC-2, on hemostasis and thrombosis using a 

combination of the GPVI- and CLEC-2-specific antibodies, JAQ1 and INU1, respectively. 

Isolated targeting of either GPVI or CLEC-2 in vivo did not affect expression or function of the 

respective other receptor. However, simultaneous treatment with both antibodies resulted in 

the sustained loss of GPVI and CLEC-2 signaling in platelets, while leaving other activation 

pathways intact. In contrast to single deficiency of either receptor, GPVI/CLEC-2 double-

deficient mice displayed a dramatic hemostatic defect. Furthermore, this treatment resulted 

in profound impairment of arterial thrombus formation that far exceeded the effects seen in 

single-depleted animals. Importantly, similar results were obtained in Gp6-/- mice that were 

depleted of CLEC-2 by INU1-treatment, demonstrating that this severe bleeding phenotype 

was not caused by secondary effects of combined antibody treatment. These data suggest 

that GPVI and CLEC-2 can be independently or simultaneously down-regulated in platelets 

in vivo and reveal an unexpected functional redundancy of the two receptors in hemostasis 

and thrombosis. Since GPVI and CLEC-2 have intensively been discussed as potential anti-
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thrombotic targets, these results may have important implications for the development of 

novel, yet save anti-GPVI or anti-CLEC-2-based therapies. 
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ZZUUSSAAMMMMEENNFFAASSSSUUNNGG  

Die Thrombozytenaktivierung und –adhäsion sowie die nachfolgende Thrombusbildung ist 

ein essentieller Prozess in der primären Hämostase, der aber auch irreversible 

Gefäßverschlüsse und damit Herzinfarkt oder Schlaganfall verursachen kann. Erst kürzlich 

wurde beschrieben, dass der C-type lectin-like receptor 2 (CLEC-2) auf der 

Thrombozytenoberfläche exprimiert wird, jedoch wurde für diesen Rezeptor noch keine 

Funktion in den Prozessen der Hämostase und Thrombose gezeigt. In der vorliegenden 

Arbeit wurde die Rolle von CLEC-2 in der Thrombozytenfunktion und Thrombusbildung im 

Mausmodel untersucht.  

In dem ersten Teil dieser Arbeit konnte gezeigt werden, dass die Behandlung von Mäusen 

mit dem neu generierten monoklonalen Antikörper INU1, der gegen murines CLEC-2 

gerichtet ist, zu dem vollständigen und hochspezifischen Verlust des Rezeptors in 

zirkulierenden Thrombozyten führte, ein Prozess, der als „Immundepletion“ bezeichnet wird. 

Die CLEC-2-defizienten Thrombozyten waren nicht mehr durch den CLEC-2-spezifischen 

Agonisten Rhodozytin aktivierbar, während die Aktivierung durch alle anderen getesteten 

Agonisten nicht beeinträchtigt war. Dieser selektive Defekt führte unter Flussbedingungen ex 

vivo zu stark verminderter Aggregatbildung der Thrombozyten. Außerdem zeigten in vivo-

Thrombosestudien, dass die gebildeten Thromben instabil waren und vermehrt 

embolisierten. Infolgedessen war die CLEC-2 Defizienz mit einem deutlichen Schutz vor 

arterieller Thrombose verbunden. Außerdem ließ die in INU1-behandelten Mäusen 

beobachtete variable Verlängerung der Blutungszeit auf einen moderaten hämostatischen 

Defekt schließen. Diese Ergebnisse zeigen zum ersten Mal, dass CLEC-2 in vitro und in vivo 

signifikant zur Thrombusstabilität beiträgt und eine essentielle Rolle in der Hämostase und 

arteriellen Thrombose spielt. Daher stellt CLEC-2 eine potentiell neue antithrombotische 

Zielstruktur dar, die in vivo inaktiviert werden kann. Diese in vivo-Herabregulierung von 

Thrombozytenoberflächenrezeptoren könnte einen vielversprechenden Ansatz für zukünftige 

antithrombotische Therapien darstellen. 

Der zweite Teil dieser Arbeit behandelte den Effekt einer Doppelimmundepletion der 

immunoreceptor tyrosine-based activation motiv (ITAM)- und hemITAM-gekoppelten 

Rezeptoren Glykoprotein (GP) VI und CLEC-2 auf Hämostase und Thrombose mittels einer 

Kombination der GPVI- beziehungsweise CLEC-2-spezifischen Antikörper JAQ1 und INU1. 

Eine Einzeldepletion von GPVI oder CLEC-2 in vivo beeinträchtigte nicht die Expression und 

Funktion des jeweils anderen Rezeptors. Eine gleichzeitige Behandlung mit beiden 

Antikörpern führte jedoch zu dem nachhaltigen Verlust der GPVI- und CLEC-2-vermittelten 

Signale in Thrombozyten, während andere Signalwege nicht betroffen waren. Im Gegensatz 

zu den Einzeldefizienzen, wiesen die GPVI/CLEC-2 doppeldefizienten Mäuse einen 

schwerwiegenden Blutungsphänotyp auf. Außerdem führte die Behandlung zu einer starken 
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Beeinträchtigung der arteriellen Thrombusbildung, die die Effekte der Einzeldefizienzen weit 

übertraf. Von Bedeutung ist auch, dass gleiche Ergebnisse in Gp6-/- Mäusen gefunden 

wurden, die mittels INU1-Behandlung CLEC-2-depletiert wurden. Dies veranschaulicht, dass 

der Blutungsphänotyp nicht durch Sekundäreffekte der kombinierten Antikörperbehandlung 

hervorgerufen wurde. Diese Daten deuten darauf hin, dass GPVI und CLEC-2 sowohl 

unabhängig voneinander als auch gleichzeitig in vivo von der Thrombozytenoberfläche 

herabreguliert werden können und lassen unerwartete redundante Funktionen der beiden 

Rezeptoren in Hämostase und Thrombose erkennen. Da beide Rezeptoren, GPVI und 

CLEC-2, als neue antithrombotische Zielstrukturen diskutiert werden, könnten diese 

Ergebnisse wichtige Auswirkungen auf die Entwicklung von anti-GPVI oder anti-CLEC-2-

basierenden Antithrombotika haben.  
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11  IInnttrroodduuccttiioonn  

In the hematopoietic system, anuclear and discoid-shaped platelets represent the smallest 

cells with a size of 3-4 μm in humans and 1-2 μm in mice, respectively. Platelets are 

produced by fragmentation of their precursor cells, the megakaryocytes, in the bone marrow 

and are constantly released into the blood stream where the resulting physiological platelet 

count is very high, namely 150,000-300,000/μl in humans and approximately 1,000,000/μl in 

mice. The average life span of human platelets is restricted to ~10 days, whereas murine 

platelets circulate for approximately 5 days in the blood before they are cleared by the 

reticulo-endothelial system in spleen and liver. Platelets are a crucial component of the blood 

system as platelet aggregation after vessel wall injury is a key mechanism in normal 

hemostasis that rapidly leads to the formation of a platelet plug. This process is essential to 

seal vascular injuries and prevent posttraumatic blood loss. Under pathological conditions, 

however, e.g. at sites of atherosclerotic plaque rupture in stenosed vessels, platelet 

aggregation may also lead to uncontrolled thrombus formation causing arterial occlusion or 

embolism and thus resulting in severe diseases such as myocardial infarction or stroke. 

These pathologies are the leading causes of death in industrialized societies1. Therefore, a 

selective inhibition of platelet activation has become a major anti-thrombotic strategy to 

prevent or treat ischemic cardio- and cerebrovascular events. 

The above described central (patho)physiological role of platelet activation requires tight 

regulation to ensure efficient plug formation on the one hand and to prevent excessive 

thrombus growth and vessel occlusion on the other hand. The presence of many different 

adhesion receptors on the platelet surface in combination with the various signaling 

pathways triggered during platelet activation enable this sophisticated regulation under 

physiological as well as under pathophysiological conditions. 

 

1.1 Platelet activation and thrombus formation 

Platelet aggregate formation at sites of vascular injury is a multistep process that is initially 

triggered by exposure of the extracellular matrix (ECM) at the wound site, which contains a 

number of adhesive macromolecules, such as laminin, collagens and von Willebrand factor 

(vWF). This leads to the activation of platelet membrane receptors and the corresponding 

intracellular signaling pathways. The subsequent process of platelet aggregation and 

thrombus formation can be divided into three major steps: 

First, the initial contact of platelets to the ECM is mediated by the interaction between the 

platelet glycoprotein (GP) Ib-V-IX complex and vWF immobilized on collagen. While this 

interaction is mandatory at high shear2, such as found in arterioles or stenosed arteries, it 

may not be relevant under conditions of low shear as found in veins and large arteries. The 
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interaction of GPIb-V-IX and vWF is, however, not stable and therefore insufficient to 

mediate stable adhesion of the platelet to the injured vessel surface. Rather, it leads to a 

rapid deceleration and “rolling” of the circulating platelets on the vessel wall, a process 

termed “tethering” (see Fig 1.1).  

Following the deceleration, in the second step of thrombus formation, platelets establish 

contacts with collagen fibers of the ECM via the platelet-specific immunoglobulin superfamily 

receptor GPVI3-5. While GPVI binds to collagen with low affinity and is thus unable to mediate 

firm adhesion by itself, it triggers intracellular signals that result in integrin activation (see 

below) and the release of the “second wave” mediators adenosine diphosphate (ADP) and 

thromboxane A2 (TxA2). These agonists together with locally produced thrombin contribute to 

platelet activation by stimulating receptors that couple to heterotrimeric G proteins (Gq, 

G12/G13, Gi) to activate downstream effectors and subsequently induce full platelet 

activation1,6-7. 

 

 

Fig 1.1 Current model of platelet adhesion and aggregation on the extracellular matrix (ECM). 
Platelet tethering on the ECM is mediated by the GPIbα-vWF interaction. Subsequently, interaction of 
GPVI with collagen takes place, which triggers the shift of integrins to a high-affinity state and release 
of ADP and TxA2. In parallel, tissue factor (TF) locally triggers thrombin formation, also contributing to 
platelet activation. Taken from: Varga-Szabo D, Pleines I and Nieswandt B, Arterioscler Thromb Vasc 
Biol, 20088. 

In the third step, in response to platelet activation, firm adhesion of the cells to the ECM is 

mediated by conversion of integrins from a low-affinity to a high-affinity (active) state. This 

“inside-out”-signaling allows the interaction of the activated integrins with their ligands9-10. In 

this process, high-affinity β1 integrins bind to the following ligands: α2β1 (also termed 

GPIa/IIa) binds to collagen, α5β1 to fibronectin and α6β1 to laminin, whereas the major 

platelet integrin αIIbβ3 (GPIIb/IIIa) binds to fibrinogen and collagen-bound vWF on the ECM8. 

Finally, thrombus growth is induced by recruitment and activation of additional platelets from 

the blood stream by the released “second wave“ mediators ADP and TxA2 and subsequent 

clustering of platelets via plasma fibrinogen and vWF bound to αIIbβ3.  
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However, as the “second wave“ mediators are rather weak platelet agonists, it is speculated 

that further yet undefined receptors on the platelet surface play a role in thrombus formation 

and stabilization11. There has been ample evidence that even after platelets have aggregated 

signaling events occur in these platelets to further stabilize the growing platelet plug11. 

However, little is known about which receptors or ligands could play a role in this process. 

Interestingly, the importance of the platelet C-type lectin-like receptor (CLEC)-2 for platelet 

activation and thrombus formation during hemostasis and in the course of thrombotic events 

had not been defined at the beginning of the study presented in this thesis12. 

 

1.2 Signaling events in the process of platelet activation 

Two major classes of activatory receptors drive the process of platelet activation. First, 

soluble agonists such as ADP, TxA2, epinephrine and serotonin, as well as thrombin 

stimulate G protein coupled-receptors (GPCRs; Gq, G12/13, Gi/z) (see Fig 1.2) leading to 

activation of phospholipase Cβ (PLCβ) downstream of Gq signaling. The second pathway of 

platelet activation involves receptors such as integrins, GPVI and CLEC-2, and culminates in 

activation of PLCγ2. Signaling downstream of GPVI and CLEC-2 is similar to that used by 

immunoreceptors. It involves sequential activation of Src and Syk family tyrosine kinases that 

orchestrate a signaling cascade downstream of the receptor-associated immunoreceptor 

tyrosine-based activation motif (ITAM) of the platelet collagen receptor, GPVI5,13, or -in the 

case of CLEC-2- signaling is initiated by tyrosine phosphorylation of a single YXXL motif in 

its cytoplasmic tail termed hemITAM14. In both cases, the signaling cascade is regulated 

through the interaction of several adaptor proteins, including linker for activation of T-cells 

(LAT) and SH2-domain containing leukocyte protein of 76 kDa (SLP-76). This leads to 

activation of effector enzymes including phosphatidylinositol-3-kinases (PI-3-K) and PLCγ2. 

Subsequently, both isoforms of activated PLCs produce inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG) by cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2). IP3 in turn 

triggers Ca2+ mobilization from intracellular stores and subsequent opening of Ca2+ channels 

in the plasma membrane, leading to a process termed store operated Ca2+ entry (SOCE)8,15. 

DAG activates proteinkinase C (PKC) and probably contributes to Ca2+ entry by non-SOCE 

mechanisms16. Elevations in intracellular calcium concentration [Ca2+]i are an essential step 

in the process of platelet activation and a prerequisite for final firm adhesion, granule 

secretion and aggregation of the cells. 
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Fig 1.2 Major signaling pathways in platelets. Soluble agonists stimulate platelet receptors leading 
to intracellular signaling via the indicated proteins. Signaling via G protein-coupled receptors involves 
the corresponding G proteins. Cross-linking of the platelet activating receptors GPVI or CLEC-2 by 
ligand engagement results in activation of phospholipase (PL) Cγ2. Abbreviations: TF= tissue factor, 
TxA2= thromboxane A2, TP= TxA2 receptor, PAR= protease-activated receptor, RhoGEF= Rho-
specific guanine nucleotide exchange factor, PI3K= phosphatidylinositol 3-kinase, AC= adenylyl 
cyclase, PIP2= phosphatidylinositol-4,5-bisphosphate, PIP3= phosphatidylinositol-3,4,5-trisphosphate, 
IP3= inositol-1,4,5-trisphosphate, DAG= diacylglycerol. Taken from: Stegner D and Nieswandt B, J Mol 
Med, 201017. 

  



  Introduction 
 

  5 

1.3 The C-type lectin-like receptor 2 (CLEC-2) 

The C-type lectin-like receptor 2 (CLEC-2) is a type II transmembrane receptor that was 

originally identified in immune cells and only recently revealed to also be expressed in 

platelets18-19. CLEC-2 serves as the receptor for the snake venom toxin rhodocytin (also 

termed aggretin) a very potent platelet activating protein isolated from the Malayan pit viper 

Calloselasma rhodostoma14. Early work suggested that rhodocytin-induced platelet activation 

shares some similarities with the responses elicited by collagen, and therefore integrin α2β1 

and GPIbα were initially proposed to be the target structures of rhodocytin on platelets20-22. 

However, this was shortly later disproven by a work of Nieswandt and co-workers 

demonstrating that platelets become fully activated by rhodocytin in the absence of these 

receptors23. Finally, CLEC-2 could be identified by a mass spectrometry approach as the 

receptor for rhodocytin14. 

 

1.3.1 Chromosomal location, expression profile and protein structure of CLEC-2 

The gene encoding CLEC-2 is located within a cluster of related genes termed “dectin-1 

cluster” in the natural killer gene complex (NKC), including DECTIN-1 and LOX-1 on human 

chromosome 12 and on mouse chromosome 6, respectively18,24. Human CLEC-2 was first 

identified by Colonna et al. by reverse transcriptase (RT) PCR at the transcript level in 

peripheral blood mononuclear cells (PBMCs), bone marrow, myeloid cells (monocytes, 

dendritic cells and granulocytes), natural killer cells and liver18. Mouse CLEC-2 protein was 

identified in the same study and shown to share approximately 60% homology with its human 

homolog (Fig 1.3). CLEC-2 was later found to be also expressed in platelets, liver sinusoidal 

endothelial cells (LSECs) and megakaryocytes (MKs). Furthermore, it was demonstrated that 

CLEC-2 has the second highest level of mRNA of megakaryocyte-restricted genes encoding 

membrane proteins in a Serial Analysis of Gene Expression (SAGE) library made from 

mouse MKs, indicating that it is primarily localized to the megakaryocyte/platelet lineage, 

where it is present at high levels25. Additionally, CLEC-2 was found to be expressed at low 

level on peripheral blood neutrophils in mice26. Recently, two novel splice variants of 

mCLEC-2 were identified with different expression profiles compared to the above described 

full length transcript of the protein. However, these two new isoforms were shown to be 

subcellularly expressed and are therefore most probably not operating as receptors in vivo. 

Moreover, the physiological functions of these isoforms have not yet been determined27.  

The protein structure of CLEC-2 is defined by the characteristic assembly of a type II 

transmembrane receptor, thus the protein exhibits an extracellular carboxyl-terminal domain 

and an intracellular NH2-terminal domain. The receptor CLEC-2 belongs to the C-type lectin 

family, which is divided into two subgroups: the classical and non-classical C-type lectins. 

The classical or so-called “true” C-type lectins display a carbohydrate recognition domain 
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(CRD) necessary to bind Ca2+ and carbohydrates. In contrast, non-classical C-type lectins, 

such as CLEC-2, contain a C-type lectin-like domain (CTLD, see Fig 1.3) which is 

homologous to a CRD but lacks the sequence responsible for Ca2+- and carbohydrate-

binding28-30. Therefore, it was already early speculated that CLEC-2 may have a different 

ligand18. In general, binding of specific carbohydrate structures is a property of many C-type 

lectins and important in different processes like cell-cell adhesion or innate immune 

responses to pathogens30-31. 

Human as well as murine CLEC-2 consists of 229 amino acids (aa, Fig 1.3) with a predicted 

molecular mass of approximately 27 kDa and an apparent molecular mass of 32-33 kDa 

under reducing conditions14,18. The N-terminal cytoplasmic tail of both human and mouse 

CLEC-2 consists of 31 aa and displays an YXXL motif with a single tyrosine residue (Fig 1.3, 

depicted in yellow), forming one-half of an immunoreceptor tyrosine-based activation motif 

(ITAM)14,18. This tyrosine residue becomes phosphorylated upon receptor activation and 

transduces the signal into the cytoplasm. The transmembrane domain (TM, red) comprises 

26 aa, integrates the receptor into the phospholipid bilayer of the cell-membrane and is 

followed by the extracellular neck domain (41 aa, orange), which stabilizes the following 

C-terminal CTLD domain18,32.  

 

 

Fig 1.3 Amino acid sequences of murine and human CLEC-2. The N-terminal cytoplasmic domain 
(gray) contains the YXXL motif indicated by a yellow box. The transmembrane (TM) domain is labeled 
in red and the neck domain in orange. The C-terminal CTLD domain (dark gray) is linked by the neck 
domain to the TM domain. Potential N-glycosylation sites are marked in green. Identical amino acids 
between human (CLEC-2_hum, accession no. NM_016509) and murine CLEC-2 (CLEC-2_mus, 
accession no. BC064054) are depicted by asterisks whereas diverged amino acids are labeled with 
dots. Modified from: Colonna M et al., J Eur Immunol, 200018 see also33. 
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The aa sequences of murine and human CLEC-2 show two identical potential N-

glycosylation sites18,30 (marked in green). The predicted protein structures of human and 

mouse CLEC-2 show high identity with approximately 60-62% homologous aa (see Fig 

1.3)18. Important conserved features between human and murine CLEC-2 are six conserved 

cysteine residues in the CTLD domain, representing three putative interchain disulfide bonds, 

the YXXL motif in the cytoplasmic domain of the receptor and the lack of a Ca2+-dependent 

sugar-binding site18,24. Furthermore, recently the structure of CLEC-2 was solved by X-ray 

crystallography and it was shown that the snake venom toxin rhodocytin interacts to a 

significant extent with the extracellular hypervariable loop of the receptor (green, Fig 1.4)34-35. 

 

 

Fig 1.4 Structural features of CLEC-2. The hypervariable 
long loop region (green) contains a helical segment that has 
the potential to move upon ligand binding. Site-directed 
mutagenesis demonstrated that the residues labeled in pink 
play a role in ligand binding. Taken from: O’Callaghan CA, 
Curr Opin Pharmacol, 200912. 

 

1.3.2 CLEC-2-induced intracellular signaling 

The cytoplasmic domain of CLEC-2 bears a single YXXL motif which resembles the ITAM 

motif. However, unlike an ITAM with tandem tyrosine residues, CLEC-2 carries only a single 

tyrosine residue in its YXXL motif termed hemITAM, which becomes phosphorylated by Src 

kinases upon binding of the ligand rhodocytin to the extracellular domain of the receptor (Fig 
1.5)14,32,36. Subsequent to ligand engagement, the tyrosine kinase Syk (Spleen Tyrosine 

Kinase) binds to the phosphorylated tyrosine residue of the CLEC-2 receptor via its tandem 

Src homology 2 (SH2) domains (Fig 1.5). Several studies have shown that CLEC-2 is 

present as a dimer on resting platelets supporting a model in which Syk binds to two 

phosphorylated hemITAM motifs in two CLEC-2 receptors (see also Fig 1.8), thus inducing 

more powerful stimulation of the platelets by receptor clustering32,37-38.  

Signaling via CLEC-2 was shown to be blocked by Src kinase inhibitors or by mutation of the 

tyrosine in this motif to a phenylalanine, which cannot be phosphorylated14,32. The activation 

of Syk leads to subsequent multiple downstream signaling events including tyrosine 

phosphorylation of LAT, SLP-76, Vav3, Btk, and PLCγ214. Both SH2 domains of Syk are 
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required for the interaction with CLEC-2 and the inactivation of either domain will block 

signaling of CLEC-232. Furthermore, it was demonstrated that the adapter protein LAT is 

essential for CLEC-2-mediated signaling39. CLEC-2 can induce partial activation of PLCγ2 in 

the absence of SLP-76, whereas this adapter is essential for phospholipase activation by 

GPVI14,40. Additionally, the response to rhodocytin is diminished, but not abolished in the 

absence of the adapter protein B-cell linker protein (BLNK)32. Signaling via CLEC-2 can be 

reduced by inhibitory signaling through Platelet Endothelial Cell Adhesion Molecule 

(PECAM-1) and G6b-B, both of which have immunoreceptor tyrosine-based inhibitory motifs 

(ITIMs) in their cytoplasmic domains41-42. Interestingly, it was demonstrated that upon ligand 

engagement the receptor CLEC-2 translocates to lipid rafts and that this process is essential 

for hemITAM phosphorylation and subsequent signal transduction43. Furthermore, the same 

study could show that activation of the small GTPase Rac1 is critically involved in hemITAM 

phosphorylation. These results explain in parts the already earlier observed diminished 

responsiveness of Rac1-/- platelets towards rhodocytin in a study from our group and 

others43-44.  

 

 

Fig 1.5 Signaling by CLEC-2. A. CLEC-2 is present as a dimer in resting platelets. B. Ligand 
engagement (rhodocytin) by CLEC-2 causes phosphorylation (P) of a tyrosine residue (Y) by Src 
kinases on the cytoplasmic domain of CLEC-2. This triggers the interaction with the SH2-domains of 
Syk and leads to a downstream signaling cascade, involving the proteins indicated and finally 
culminating in platelet activation (pltl. activ.). Photo: Wikimedia Commons, copyright A. Coritz. 
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1.3.3 Extracellular ligands and physiological functions of CLEC-2 

The venom of the Malayan pit viper Calloselasma rhodostoma is known to contain a protein, 

rhodocytin, which triggers potent platelet activation and aggregation. However, the 

mechanism of this effect on platelets was longtime unclear until Suzuki-Inoue et al. 

demonstrated in a mass spectrometry approach that the platelet receptor CLEC-2 is the 

target of rhodocytin14,45. This was also the first report to indicate that CLEC-2 is expressed on 

the platelet surface as the only previous study had not included platelets in the expression 

analysis of the receptor18. Binding of rhodocytin to CLEC-2 promotes downstream signaling 

events that trigger profound platelet activation and aggregation14,32. Nevertheless, it was 

anticipated that the receptor had potentially other ligand(s)12.  

In addition to a possible role in platelet activation, several other functions for CLEC-2 have 

been postulated. For example, it was demonstrated that CLEC-2 is also expressed in murine 

peripheral blood neutrophils where it could possibly serve as an activation receptor mediating 

phagocytosis and release of pro-inflammatory cytokines, including tumor necrosis factor-

alpha (TNF-α)26. Furthermore, CLEC-2 was also identified as an attachment factor for human 

immunodeficiency virus type 1 (HIV-1) on platelets in cell-culture studies using transfected 

293T cells. The authors suggested CLEC-2 and the related receptor lectin dendritic cell-

specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) to mediate the 

capture and transfer of infectious HIV-1 by platelets in the blood stream. However, they also 

demonstrated that CLEC-2 does not bind to the HIV-1 envelope protein directly46. Later it 

was hypothesized that the receptor bound to a membrane protein derived from the HIV-

producing (renal) 293T cells utilized in the assay of the previous study and that these cells 

express an endogenous ligand for CLEC-247. Consequently, this study identified the type I 

transmembrane sialomucin-like glycoprotein podoplanin as an endogenous ligand of 

CLEC-2. The CLEC-2 ligand podoplanin (also termed aggrus) is a 38 kDa type I 

transmembrane glycoprotein consisting of 162 aa with an extracellular domain that is highly 

O-glycosylated. Podoplanin is expressed at high levels in several tissues, including type 1 

lung alveolar cells, lymphatic endothelial cells, kidney podocytes and various tumor cells, 

however, importantly, podoplanin is absent from vascular endothelial cells and 

platelets12,36,48-49. It was shown that CLEC-2 binds to podoplanin on podocytes as well as on 

293T cells and suggested that podoplanin is captured by the HI-virus during viral budding on 

the cells. Binding of podoplanin to CLEC-2 is then used by the virus to be passively 

transported via platelets in the blood stream47,50. Thus, CLEC-2 on platelets could be a 

potentially important target to inhibit HIV spread in infected humans. Moreover, an earlier 

study had already demonstrated that CLEC-2 serves as a receptor for podoplanin also 

expressed on tumor cells and that CLEC-2 is involved in podoplanin-induced platelet 

aggregation and hematogenous tumor metastasis48. This process was shown to significantly 
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promote tumor cell spreading due to the interaction of CLEC-2 on platelets with podoplanin 

on the tumor cell surface51-52. Thus, the receptor CLEC-2 also has potential as a potent target 

protein for antimetastatic drug development. 

Further insight into the physiological function of the receptor CLEC-2 was gained from 

different mutant mouse models with interesting phenotypes in the lymphatic-blood vascular 

separation that were at the time of investigation not attributed to the function of CLEC-2. 

During embryonic development, the lymphatic vascular system has to be separated from 

blood vessels but subsequently -after completion of this development in adults- the 

remaining connections with the blood vessel lumen are only unidirectional at sites where 

lymph drains into blood at the subclavian veins. However, the mechanisms behind this 

separation and the reason for the leakage of blood into lymphatic vessels in several mouse 

mutants were unexplained53-55. Recently, evidence has been provided by Uhrin et al. showing 

that during development platelets aggregate and form clots at sites where paired lymph sacs 

connect with their parental anterior cardinal veins56. These platelet aggregates enable the 

subsequent sprouting of lymphatic vessels and thereby facilitate the correct separation of 

blood and lymphatic vessels in developing embryos. This much unexpected function of 

platelets during development was uncovered using podoplanin knock-out embryos exhibiting 

the described “non-separation” phenotype of blood and lymphatic vessels54,56. The authors 

could demonstrate that platelet aggregation at sites of paired lymph sacs in embryos is 

triggered by two players, first podoplanin, which is specifically expressed in lymphatic, but 

not in blood vascular endothelial cells, and second CLEC-2 expressed in platelets. 

Furthermore, they showed that the aggregation of platelets is crucial for closure of the 

junction between the lymphatic vascular system and the cardinal veins leading to the 

separation of the two systems56. Additionally, the authors connected the earlier described 

“non-separating” phenotypes observed in knock-out mice of proteins present in CLEC-2 

signaling, namely Syk and SLP-7640,53,57, and PLCγ258 to their findings. All of these mice also 

showed failure of lymphatic-blood vascular separation. In parallel, another study by Bertozzi 

et al. also demonstrated that CLEC-2 and its downstream protein Syk in platelets are critical 

to ensure lymphatic-blood vascular separation in embryos59. Consistent with these findings, 

mice lacking the glycosyltransferase T-synthase (encoded by the C1galt1 gene, termed EHC 

T-syn-/-) in hematopoietic and endothelial cells also exhibit incomplete separation of blood 

and lymphatic vessels as levels of O-glycosylated podoplanin are reduced in these mice60. 

Interestingly, other phenotypes where blood is found inside lymphatic vessels include mice 

lacking platelets (myeloid ecotropic viral integration site (Meis) 1 gene deletion61) or platelet-

derived growth factor-B54.  
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1.3.4 The role of CLEC-2 in hemostasis and thrombosis 

Due to the impressive activatory potential of CLEC-2 in platelets, it is tempting to speculate 

that additionally to the described functions in lymphangiogenesis and tumor metastasis 

CLEC-2 could also play a role in hemostasis and thrombosis in adult organisms.  

However, the importance of CLEC-2 for platelet activation during hemostasis and in the 

course of thrombotic events had not been defined at the starting time of the present thesis 

and was eagerly awaited. Also, an endogenous ligand of CLEC-2 that directly plays a role in 

thrombosis and hemostasis has not been identified. The only known endogenous ligand of 

CLEC-2 -podoplanin- does not come into direct contact with the receptor under physiological 

conditions in blood vessels. Furthermore, no inhibitory compound or mechanism of the 

receptor has been described. 

Furthermore, during the course of this study three independent publications demonstrated 

that knock-out of the CLEC-2 protein leads to embryonic and perinatal lethality in mice59,62-63. 

Therefore, it became clear that other strategies would be needed to effectively delete the 

receptor in platelets, e.g. α-CLEC-2 antibody treatment leading to “immunodepletion” and 

resulting in a “knock-out like” phenotype. 

  



  Introduction 
 

  12 

1.4 The major collagen receptor glycoprotein (GP) VI 

The major collagen receptor glycoprotein (GP) VI belongs to the immunoglobulin (Ig) 

superfamily and is closely related to the Fcα receptor (FcαR) and the natural killer cell 

receptor64. Interestingly, the expression of GPVI is restricted to platelets and megakaryocytes 

in humans and mice65 making it a potentially valuable target for anti-thrombotic therapy66. 

 

1.4.1 Signal transduction of GPVI 

GPVI is a type I transmembrane glycoprotein of approximately 62-65 kDa that is non-

covalently associated with the intracellular Fc receptor γ-chain (FcRγ-chain) (Fig 1.6)67. The 

FcRγ-chain is the signaling subunit of the complex and is expressed as a disulphide-linked 

homodimer, each monomer containing two tyrosine residues in the ITAM motif5,9,68-69.  

 

 

Fig 1.6 Structure of the GPVI-FcRγ-chain complex. A. The extracellular part of GPVI consists of two 
Ig domains linked to a mucin-rich region and the transmembrane domain carrying an arginine residue 
(R) required for the association with the FcRγ-chain. The FcRγ-chain is present as a disulphide-linked 
homodimer and has two tyrosines (Y) in a conserved signaling sequence known as ITAM. B. Amino 
acid sequence of the cytosolic tail of GPVI. The site of interaction of GPVI with the FcRγ-chain and the 
binding site of calmodulin are indicated. The proline-rich region serves as a binding site for the SH3-
domain of Src kinases. Note: The amino acids following the proline-rich region are present in human 
but absent in murine GPVI sequence. Taken from: Nieswandt B and Watson SP, Blood, 20035. 

Upon binding to its major ligand collagen, GPVI becomes clustered followed by 

phosphorylation of the two ITAM-tyrosine residues of the FcRγ-chain69-71 via the Src kinases 

Fyn and Lyn72-73 which bind selectively with their Src homology 3 (SH3) domains to the 

proline-rich motif of the GPVI cytosolic domain5 (see also Fig 1.2 and Fig 1.8). 
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Subsequently, the phosphorylated ITAM serves as a binding site for SH2-domains of the 

tyrosine kinase Syk74-75 which is in turn activated and orchestrates a downstream tyrosine 

phosphorylation cascade including several adapter proteins, such as LAT76 and SLP-7677, 

effector enzymes, such as PI3K, PLCγ2 and small GTPases. This triggers DAG- and IP3-

production, leading to activation of PKC and finally culminating in elevation of [Ca2+]i which 

enables platelet activation and is associated with integrin activation (“outside-in” activation), 

effective platelet adhesion, degranulation, and aggregation of the cells5,36. 

 

1.4.2 Down-regulation of GPVI on the platelet surface using monoclonal antibodies 

Earlier studies from our group have demonstrated that in vivo (but not in vitro) administration 

of rat monoclonal α-GPVI antibodies (termed JAQ1, 2, 3) leads to “immunodepletion” or 

down-regulation of the GPVI receptor in circulating platelets resulting in a “knock-out like” 

phenotype in mice66,78. Therefore, the antibody JAQ1 is considered as a useful tool for the 

analysis of the biological function of GPVI applicable in murine in vitro, as well as in vivo 

studies. It was shown that JAQ1 binds to the collagen binding site of the Ig-like domain of 

GPVI, thus inhibiting platelet aggregation induced by low and intermediate concentrations of 

collagen in vitro67. Interestingly, increasing collagen concentrations could overcome this 

JAQ1-mediated inhibitory effect79. However, in the same study it was shown that platelets 

from FcRγ-chain-deficient mice, which lack the signaling subunit of the GPVI receptor (FcRγ-

chain), completely lacked a response to high concentrations of collagen67.  

In contrast to human α-GPVI auto-antibodies isolated from autoimmune patients64,80-81, JAQ1 

alone did not induce platelet aggregation in vitro. However, upon cross-linking of JAQ1 with 

polyclonal α-rat IgG antibodies, aggregation was observed67. Whereas in vitro treatment of 

platelets with JAQ1 only led to blockage of GPVI without further effects, surprisingly, a 

transient but strong thrombocytopenia was observed upon in vivo administration of the 

antibody in mice66. Interestingly, this was accompanied by a rapid and irreversible down-

regulation of the GPVI receptor from circulating platelets. However, platelet counts recovered 

back to normal within 48 h and the obtained platelets were GPVI-deficient but otherwise fully 

functional. The induced GPVI deficiency lasted for at least 14 days and was accompanied by 

a long-term protection from mortality in a model of collagen-dependent lethal pulmonary 

thromboembolism66. Furthermore, JAQ1-treated animals were long-term protected in models 

of arterial thrombosis and ischemic stroke. Remarkably, this was associated with only mildly 

prolonged tail bleeding times66,82-84. Due to these intriguing findings, GPVI has extensively 

been discussed as a potentially valuable anti-thrombotic target in several studies66,78,85-86. 

By treatment with JAQ1, Nieswandt et al. demonstrated for the first time that specific 

depletion of an activating receptor was irreversibly induced from circulating platelets66. The 

underlying mechanism of antibody-induced “immunodepletion” or down-regulation of GPVI 
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from the platelet surface is still only partially understood. However, recent studies show that 

JAQ-induced down-regulation can occur via two different mechanisms, either through 

receptor internalization66,78 or metalloproteinase-dependent ectodomain shedding87-89. 

Similarly, the antibodies JAQ2 and JAQ3 which bind to two distinct epitopes on the GPVI 

receptor different from that targeted by JAQ1 also induce down-regulation of GPVI in 

platelets in mice. Thus, the antibody-induced down-regulation of the receptor is independent 

of the exact binding of the antibody to the epitope on GPVI78. Interestingly, an elegant study 

using mice deficient in the signaling molecules downstream of GPVI, PLCγ2 and LAT, 

demonstrated that JAQ1 antibody-induced GPVI shedding was abolished in these animals, 

while the receptor was irreversibly down-regulated through internalization and intracellular 

clearing89. Importantly, the latter mechanism was not associated with the observed 

thrombocytopenia in wild-type mice. This finding revealed the possibility to uncouple GPVI 

down-regulation from undesired side effects with obvious therapeutic implications89. In 

another study, JAQ1-induced shedding of GPVI was further analyzed. Here it was 

demonstrated that incubation of mouse platelets with carbonyl cyanide m-chlorophenyl-

hydrazone (CCCP) lead to induction of mitochondrial injury and subsequently activated 

metalloproteinases, thus inducing rapid proteolytic cleavage or shedding of GPVI from the 

platelet surface87. Furthermore, it was known that calmodulin is associated to the cytoplasmic 

tail of GPVI90 (Fig 1.6) and that upon blockage of this association with the calmodulin 

inhibitor W7, metalloproteinase-mediated GPVI shedding is provoked in vitro88. It was further 

demonstrated that GPVI cleavage in vitro can occur through two different sheddases, a 

disintegrin and metalloproteinase (ADAM) 10 and ADAM17, depending on the shedding-

stimulating experimental conditions. However, recent evidence suggests that either both or a 

third not yet identified sheddase in platelets are responsible for GPVI-cleavage under in vivo 

conditions85.  

Additionally to GPVI, human platelets express a second ITAM-bearing receptor, Fc-γ 

receptor IIa (FcγRIIa), which is not present on the surface of mouse platelets91. Similar to 

GPVI, the FcγRIIa receptor contains two extracellular Ig domains and signals using an ITAM-

dependent pathway. However, unlike GPVI but rather similar to the hemITAM of CLEC-2, 

human FcγRIIa possesses an ITAM motif within its cytoplasmic tail92-93. Interestingly, 

Gardiner et al. demonstrated that individual activation of both ITAM-coupled human 

pathways, GPVI or FcγRIIa, induced proteolytic down-regulation of both receptors 

simultaneously; a process termed trans-inhibition (Fig 1.7). At present, it has not been 

studied whether a similar pathway or mechanism exists for GPVI and CLEC-2 either on 

human or mouse platelets94. For the development of potential α-GPVI or α-CLEC-2 anti-

thrombotic agents the clarification of this question would be of high interest.  
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Fig 1.7 Proteolytic pathways for irreversible inactivation of ITAM-bearing receptors in human 
platelets. Binding of ligands to the receptors FcγRIIa (antibodies 14A2 or VM58) or GPVI (collagen, 
CRP, convulxin) leads to (a) extracellular metalloproteinase-mediated ectodomain shedding of GPVI 
and (b) intracellular calpain-mediated cleavage of FcγRIIa. Both mechanisms result in deletion of the 
intracellular ITAM domain. Both pathways are also induced by the calmodulin inhibitor, W7, which 
dissociates calmodulin from the cytoplasmic domain of GPVI and FcγRIIa. Taken from: Gardiner EE et 
al., Blood, 200894.  

 

 

  



  Introduction 
 

  16 

1.5 Comparison of signal transduction pathways of GPVI and CLEC-2 

As described above, the signaling pathway of the hemITAM-bearing receptor CLEC-2 shares 

some similarities with signaling mediated by the ITAM-bearing GPVI/FcRγ-chain complex 

(Fig 1.8)36. It was demonstrated that signaling of CLEC-2 is mediated via Src and Syk 

tyrosine kinases leading to a downstream tyrosine phosphorylation cascade and recruitment 

of several adapter proteins, such as Tec family tyrosine kinases and effector proteins 

including PI 3-kinase, Vav, Rac1 and PLCγ214,32(see also Fig 1.5).  

Comparable to GPVI signaling, several of these proteins are critical for activation including 

Syk and PLCγ214, whereas the role of others can be overcome at higher agonist 

concentrations, such as LAT and Gads which play very similar roles to those of GPVI 

signaling in the regulation of PLCγ239. Furthermore, signaling by both receptors, CLEC-2 and 

GPVI, takes place in lipid rafts, with the respective receptor moving to the cholesterol-rich 

membrane domains upon activation43. The only notable difference in signaling by GPVI 

compared to CLEC-2 downstream of Syk is the absolute requirement for SLP-76 in signaling 

by GPVI, while high concentrations of rhodocytin mediate weak platelet activation by CLEC-2 

also in the absence of the adapter protein14,32. Additionally, it was shown that 

phosphorylation of CLEC-2, but not of the FcRγ-chain of GPVI, is also dependent on actin 

polymerization, release of ADP and TxA2 and the small G protein Rac, proving a critical role 

for feedback events in CLEC-2 signaling43. A study has proposed a model in which Syk 

rather than Src kinases mediates phosphorylation of the hemITAM sequence of CLEC-2, 

with Src kinases regulating activation of Syk95.  

However, a unique feature in the CLEC-2 signaling cascade is that Src kinase-dependent 

tyrosine phosphorylation of CLEC-2 on a single hemITAM appears to be sufficient to confer 

binding to Syk, thereby initiating downstream signaling events. This contrasts with the 

signaling cascade used by the GPVI/FcRγ-chain, which recruits Syk to a doubly 

phosphorylated ITAM on the FcRγ-chain. Thus, it seems that signaling through sequential 

activation of Src and Syk downstream of the hemITAM motif of CLEC-2 is a novel variation of 

the commonly known ITAM signaling pathways36,96. 
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Fig 1.8 Comparison of signaling via the ITAM-bearing GPVI-FcRγ-chain complex and the 
hemITAM-bearing receptor CLEC-2. As GPVI interacts via a salt bridge with a covalent dimer of the 
FcRγ-chain, the complex forms a higher oligomer. Each FcRγ-chain contains an ITAM motif. 
Phosphorylation (P, red) of the tyrosine residues (Y) within the ITAM motif by the Src family kinases 
Lyn and Fyn within lipid rafts leads to the recruitment and activation of Syk. CLEC-2 also forms a 
dimer and phosphorylation of the tyrosine within the hemITAM motif leads to recruitment and 
activation of Syk. In both cases the recruitment and activation of Syk leads to the activation of PLCγ2. 
Taken from: Watson SP et al., J Thromb Haemost, 201036. 

 

 

1.6 Immunodepletion of platelet surface receptors as a novel strategy for 
anti-thrombotic therapy 

Platelets are central mediators of pathological thrombus formation in ischemic diseases like 

myocardial infarction or stroke. Therefore, anti-platelet agents have evolved as the prime 

therapeutic tools in prevention and management of these diseases97. However, all available 

anti-platelet as well as anti-coagulant therapies exhibit unwanted side effects such as a high 

risk of bleeding, especially when used in combination97-98. Thus, the identification of novel 

platelet activation pathways as well as the validation of new methods of platelet inhibition is 

equally important, in order to develop novel, safe therapeutic agents. 

Currently at least 23 antibody-based therapeutics are successfully being used in the clinic for 

the treatment of a wide range of diseases, such as autoimmune disorders, malignancies and 

infections99. Consistently, the platelet integrin αIIbβ3 inhibitor abciximab (trade name 

“ReoPro”) represents a powerful tool for inhibition of unwanted platelet activation in clinical 
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settings. This chimeric (humanized) Fab-fragment binds non-specifically to the integrin and 

blocks its function, but does not lead to down-regulation of the glycoprotein on platelets97,100. 

In contrast, antibody-mediated temporary “immunodepletion” of prominent platelet surface 

receptors might represent a novel potential strategy of anti-thrombotic therapy. This 

approach has so far only been described for the platelet collagen receptor GPVI in the 

murine model66. Here, administration of the α-GPVI antibodies JAQ1, 2 and 3 leads to highly 

specific down-regulation of GPVI on the platelet surface, thereby inhibiting its signaling, while 

leaving platelets otherwise fully functional, a process that has been described in detail above 

(see chapter 1.4.2). Interestingly, while this potential strategy was elaborately analyzed in 

mice, antibody-induced loss of GPVI was also found in platelets of two patients who had 

developed anti-GPVI autoantibodies80,101 as well as in human platelets circulating in 

nonobese diabetic/ severe combined immunodeficient (NOD/SCID) mice102. Importantly, one 

of the patients developing autoantibodies against GPVI suffered from mild thrombocytopenia 

and had platelets that were unresponsive towards collagen in consequence of 

“immunodepleted” GPVI. Bleeding times, however, were found to be only very moderately 

increased. Together, these findings indicate that antibody-based α-GPVI treatment may be a 

powerful novel strategy to specifically shut off this central activation pathway in platelets not 

only in mice but also in humans.  

Importantly, the present study demonstrates that immunodepletion can also be achieved for 

another, newly identified platelet surface receptor, namely CLEC-2, and raises speculations 

whether this strategy might also be applicable for other receptors, not only in platelets, but 

also in other cell types. 

 

 

1.7 Aim of the Study 

The platelet surface receptors GPVI and CLEC-2 have been proposed as potential anti-

thrombotic targets and share similarities in their intracellular signaling pathways. Whereas 

GPVI has been extensively studied, the physiological function of CLEC-2 was largely 

unknown.  

The aim of the present study was i) to analyze the role of CLEC-2 in murine models of 

hemostasis and thrombosis and to clarify whether the receptor could indeed represent a 

potential anti-thrombotic target and ii) to investigate whether GPVI and CLEC-2 have 

redundant functions in physiological processes of hemostasis and thrombosis. For this 

purpose, an antibody-mediated “immunodepletion”-approach in mice was utilized and the 

resulting CLEC-2 single-deficient mice were analyzed. Secondly, analyses of antibody-

induced double-deficiency of GPVI and CLEC-2 in platelets and of the resulting effect on 

hemostasis and thrombosis were performed.  
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22  MMaatteerriiaallss  aanndd  mmeetthhooddss  

2.1 Materials 

2.1.1 Kits and chemicals 

Acetic acid      Roth (Karlsruhe, Germany) 

ADP        Sigma (Deisenhofen, Germany)  

Agarose      Roth (Karlsruhe, Germany) 

Agarose, low melting Euromedex (Souffelweyersheim, France) 

Alexa Fluor 488 Invitrogen (Karlsruhe, Germany) 

Ammonium peroxodisulphate (APS)   Roth (Karlsruhe, Germany) 

Apyrase (grade III)      Sigma (Deisenhofen, Germany) 

Atipamezole      Pfizer (Karlsruhe, Germany) 

ATP release kit     Roche Diagnostics (Mannheim) 

Avertin (2,2,2-tribromoethanol    

and 2-methyl-2-butanol)    Sigma (Deisenhofen, Germany) 

Beta-mercaptoethanol    Roth (Karlsruhe, Germany) 

Bovine serum albumin (BSA)    AppliChem (Darmstadt, Germany) 

Calcium chloride     Roth (Karlsruhe, Germany) 

Complete mini protease inhibitors (+EDTA) Roche Diagnostics (Mannheim, Germany) 

Convulxin      Alexis Biochemicals (San Diego, USA) 

Disodiumhydrogenphosphate   Roth (Karlsruhe, Germany)  

Dry milk, fat-free     AppliChem (Darmstadt, Germany) 

Dylight-488      Pierce (Rockford, IL, USA) 

EDTA        AppliChem (Darmstadt, Germany) 

Enhanced chemoluminiscence (ECL)-   

detection substrate     PerkinElmer LAS (Boston, USA) 

Eosin       Roth (Karlsruhe, Germany) 

Ethanol      Roth (Karlsruhe, Germany) 

Ethidium bromide     Roth (Karlsruhe, Germany) 

EZ-Link sulfo-NHS-LC-biotin    Pierce (Rockford, IL, USA) 

Fentanyl  Janssen-Cilag GmbH (Neuss, Germany) 

Fibrillar type I collagen (Horm)   Nycomed (Munich, Germany) 

Flumazenil  Delta Select GmbH (Dreieich, Germany) 

Fluorescein-isothiocyanate (FITC)    Molecular Probes (Oregon, USA) 

Freund’s Adjuvant     Sigma (Deisenhofen, Germany) 

GeneRuler 1kb DNA Ladder    Fermentas (St. Leon-Rot, Germany) 

Glucose      Roth (Karlsruhe, Germany) 
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Glutaraldehyde     Roth (Karlsruhe, Germany) 

Glycerol      Roth (Karlsruhe, Germany) 

Hematoxylin      Sigma (Deisenhofen, Germany) 

HEPES      Roth (Karlsruhe, Germany) 

High molecular weight heparin    Sigma (Deisenhofen, Germany) 

Human fibrinogen     Sigma (Deisenhofen, Germany) 

Human vWF      CSL Behring (Hattersheim, Germany) 

Igepal CA-630      Sigma (Deisenhofen, Germany) 

Indomethacin      Sigma (Deisenhofen, Germany) 

Isopropanol      Roth (Karlsruhe, Germany) 

Loading Dye Solution, 6x    Fermentas (St. Leon-Rot, Germany) 

Magnesium chloride     Roth (Karlsruhe, Germany) 

Magnesium sulfate     Roth (Karlsruhe, Germany) 

Medetomidine (Dormitor)    Pfizer (Karlsruhe, Germany)  

Midazolam (Dormicum)  Roche Pharma AG (Grenzach-Wyhlen, 

Germany) 

MOPS       AppliChem (Darmstadt, Germany) 

Naloxon      Delta Select GmbH (Dreieich, Germany) 

4-12% NuPage Bis-Tris gradient gels   Invitrogen (Karlsruhe, Germany) 

PageRuler Prestained Protein Ladder  Fermentas (St. Leon-Rot, Germany) 

Paraformaldehyde (PFA)    Roth (Karlsruhe, Germany) 

Phalloidin-rhodamine     Invitrogen (Karlsruhe, Germany) 

Phenol/chloroform/isoamylalcohol   AppliChem (Darmstadt, Germany) 

Potassium acetate     Roth (Karlsruhe, Germany) 

Potassium chloride     Roth (Karlsruhe, Germany) 

Prostacyclin       Calbiochem (Bad Soden, Germany) 

Protein G-Sepharose     GE Healthcare (Uppsala, Sweden) 

QIAquick gel extraction kit    Qiagen (Hilden, Germany) 

Rat Immunoglobulin Isotyping ELISA kit  BD Pharmingen (Heidelberg, Germany) 

RNeasy Mini Kit      Qiagen (Hilden, Germany) 

R-phycoerythrin (PE)     EUROPA (Cambridge, UK) 

Rotiphorese Gel 30 (PAA)    Roth (Karlsruhe, Germany) 

Sodium chloride     AppliChem (Darmstadt, Germany) 

Sodium cacodylate     Roth (Karlsruhe, Germany) 

Sodium citrate      AppliChem (Darmstadt, Germany) 

Sodiumdihydrogenphosphate   Roth (Karlsruhe, Germany) 

Sodium hydroxide     AppliChem (Darmstadt, Germany) 
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TEMED      Roth (Karlsruhe, Germany) 

3,3,5,5-tetramethylbenzidine (TMB)    EUROPA (Cambridge, UK) 

Thrombin       Roche Diagnostics (Mannheim, Germany) 

Titan One Tube RT-PCR-Kit    Roche (Ingelheim, Germany) 

TRIS ultra      Roth (Karlsruhe, Germany) 

Triton X-100      AppliChem (Darmstadt, Germany) 

U46619       Alexis Biochemicals (San Diego, USA) 
 

Collagen-related peptide (CRP) was kindly provided by S.P. Watson (University of 

Birmingham, UK). Rhodocytin was a generous gift from J. Eble (University Hospital Frankfurt, 

Germany). All enzymes were purchased from Fermentas (St. Leon-Rot, Germany) or 

obtained from Invitrogen (Karlsruhe, Germany). All other chemicals were obtained from 

Sigma (Deisenhofen, Germany) or Roth (Karlsruhe, Germany). 

 

2.1.2 Cell culture materials 

BSA, low endotoxin     PAA Laboratories (Cölbe, Germany) 

Cell strainer, 100 µm      BD Falcon (Bedford, USA) 

Concentrator tube, exclusion size 10 kDa  VivaScience (Hannover, Germany) 

DL-Dithiothreitol     Sigma (Deisenhofen, Germany) 

DMEM + GlutaMAX-I     Gibco (Karlsruhe, Germany) 

D-PBS       Gibco (Karlsruhe, Germany) 

Dimethyl sulfoxide (DMSO)    AppliChem (Darmstadt, Germany) 

Effectene Transfection Reagent   Invitrogen (Karlsruhe, Germany) 

Foetal Bovine Serum (FCS)    Gibco (Karlsruhe, Germany) 

Geneticin (G-418 sulphate)    Gibco (Karlsruhe, Germany) 

HAT (hypoxanthine-aminopterin-thymidine, 50x) Roche Diagnostics (Mannheim, Germany) 

Iodacetamide  Merck (Darmstadt, Germany) 

Panserin 410      PAN (Aidenbach, Germany) 

Papain, immobilized  Pierce, Thermo Fisher Scientific (Bonn, 

Germany) 

Penicillin-Streptomycin     Gibco (Karlsruhe, Germany) 

Pepsin, immobilized     Merck (Darmstadt, Germany) 

Polyethylene glycol 1500 (PEG 1500) Roche Diagnostics (Mannheim, Germany) 

Protein A-column, immobilized Bio-Rad, (Munich, Germany) 

Protein G-column, immobilized GE Healthcare (Uppsala, Sweden) 

RPMI       Gibco (Karlsruhe, Germany) 

Steritop Bottle Top Filter 0.22 µm   Millipore (Massachusetts, USA) 

http://en.wikipedia.org/wiki/Hypoxanthine�
http://en.wikipedia.org/wiki/Aminopterin�
http://en.wikipedia.org/wiki/Thymidine�
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Superdex 200 (SD) column    Amersham Biosciences (Freiburg,  

       Germany) 

Tissue culture dishes (100x20 mm)   Greiner (Frickenhausen, Germany)  

Tissue culture flasks      Greiner (Frickenhausen, Germany) 

Trypsin-EDTA      Gibco (Karlsruhe, Germany) 

Well plates (6-well, 24-well or 96-well)  Greiner (Frickenhausen, Germany) 
 

2.1.3 Antibodies 

2.1.3.1 Purchased primary and secondary antibodies 
Anti-phosphotyrosine 4G10    Upstate (CA, USA) 

Rat anti-mouse IgG-HRP    DAKO (Hamburg, Germany) 

Irrelevant anti-rat IgG-FITC    EMFRET Analytics (Eibelstadt, Germany) 

Rabbit anti-rat Ig-FITC    DAKO (Hamburg, Germany) 

Anti-human vWF Ig     DAKO (Hamburg, Germany) 

2.1.3.2 Monoclonal antibodies (mAbs) 
Monoclonal antibodies (mAbs) generated and modified in our laboratory: 

 

antibody isotype antigen described in 

DOM2 IgG1 GPV 103 

INU1 IgG1κ CLEC-2 104 

JAQ1 IgG2a GPVI 66 

JON/A IgG2b GPIIb/IIIa 105 

JON1 IgG2a GPIIb/IIIa 103 

JON6 (14A3) IgG2b GPIIb/IIIa unpublished 

MWReg 30 IgG1 α2 integrin unpublished 

p0p4 IgG2b GPIbα 103 

p0p6 IgG2b GPIX 103 

ULF1 IgG2a CD9 103 

WUG1.9 IgG1 P-selectin unpublished 

12C6 IgG2b α2 integrin unpublished 
 

2.1.4 Animals 

Specific-pathogen-free male mice (NMRI, C57Bl/6J) and rats (WISTAR) 4 to 10 weeks of 

age were obtained from Harlan Laboratories (Eystrupp, Germany) or from Janvier (Le 

Genest-Saint-Isle, France). GPVI-deficient mice were generated by Markus Bender in our 
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own laboratories as described106 and maintained on a mixed SV/129/C57Bl/6J background. 

For experiments with GPVI-deficient mice, animals of the same genetic background were 

used as controls. Animal studies were approved by the district government of Lower 

Franconia (Bezirksregierung Unterfranken).  
 

2.1.5 Cell lines 

The mouse myeloma cell line Sp2/0-Ag14 was kindly provided by D. Männel, University 

Hospital Regensburg, Germany. The Human Embryonic Kidney (HEK) 293 cell line was 

purchased at ATCC, Wesel, Germany. 
 

2.1.6 Buffers and media 

All buffers were prepared and diluted using aqua ad injectabilia Delta Select (Pfullingen, 

Germany) or double-distilled water (ddH2O). 
 

• Acid-citrate-dextrose (ACD) buffer, pH 4.5 

Trisodium citrate dehydrate  85 mM 

Citric acid anhydrous     65 mM 

Glucose anhydrous     110 mM 
 

• Biotinylation buffer  

NaHCO3       50 mM 

NaCl       0.9% 

add H2O 
 

• Blocking solution (immunoblotting) 

BSA or fat-free dry milk     5% 

in PBS or washing buffer 
 

• Blotting buffer A (immunoblotting) 

TRIS, pH 10.4      0.3 M 

Methanol      20% 
 

• Blotting buffer B (immunoblotting) 

TRIS, pH 10.4      25 mM 

Methanol       20% 
 

• Blotting buffer C (immunoblotting) 

ε-amino-n-caproic acid, pH 7.6   4 mM 
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Methanol      20% 
 

• Coating buffer (ELISA), pH 9.0 

NaHCO3      50 mM 
 

• Coomassie staining solution 

Acetic acid      10% 

Methanol       40% 

Coomassie Brilliant blue     1 g 
 

• Coomassie destaining solution 

Acetic acid      10% 

Methanol       40%  
 

• Coupling buffer 2x, pH 9.0 

NaHCO3       14 g/l 

Na2CO3       8.5 g/l 
 

• Digestion buffer, pH 7.0 

NaH2PO4 x H2O     20 mM 

NaCl      10 mM 

Cystein-HCl     20 mM 
 

• DMEM growth medium 

DMEM  

FCS       10% 

Penicillin-Streptomycin    1% 
 

• DMEM selection medium I 

DMEM  

FCS      10% 

Penicillin-Streptomycin    1% 

Geneticin (G-418)     700 µg/ml 
 

• DMEM selection medium II 

DMEM  

FCS       10% 

Penicillin-Streptomycin     1% 

Geneticin (G-418)     300-400 µg/ml 
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• Elution buffer (affinity chromatography) 

Glycine (pH 2.8)     0.1 M 

add H2O 
 

• FCS-free medium 

Panserin 401 

Penicillin-Streptomycin     1% 

Geneticin (G-418)     300-400 µg/ml 
 

• IP buffer 

TRIS HCl, pH 8.0     15 mM 

NaCl       155 mM 

EDTA       1 mM  

NaN3       0.005% 
 

• Laemmli buffer (SDS-PAGE) 

TRIS       40 mM 

Glycine      0.95 M 

SDS       0.5% 
 

• Lysis buffer (DNA isolation) 

TRIS base      100 mM 

EDTA      5 mM 

NaCl      200 mM 

SDS      0.2% 

add Proteinase K (20 mg/ml)   100 µg/ml 
 

• Lysis buffer (tyrosine phosphorylation), pH 7.5 

NaCl      300 mM 

Tris      20 mM 

EGTA      2 mM 

EDTA      2 mM 

Na3VO4      2 mM 

Igepal CA-630     2% 

add 1 tablet of complete mini protease inhibitors 
 

• Neutralization buffer (affinity chromatography) 

TRIS base (pH 9.0)    1.0 M 
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• Phosphate buffered saline (PBS), pH 7.14 

NaCl       137 mM (0.9%) 

KCl       2.7 mM  

KH2PO4       1.5 mM 

Na2HPO4      8 mM 
 

• SDS sample buffer, 2x 

β-mercaptoethanol (reduced conditions) 10% 

TRIS buffer (1.25 M), pH 6.8    10% 

Glycerin      20% 

SDS       4% 

Bromophenolblue     0.02% 
 

• Separating gel buffer 

TRIS/HCl, pH 8.8     1.5 M 
 

• Sodium citrate buffer 

Na citrate , HCl pH 4.0    0.1 mol/l 
 

• Stacking gel buffer 

TRIS/HCl, pH 6.8     0.5 M 
 

• Stripping buffer 

Tris/HCl, pH 6.8     62.5 mM 

SDS      2% 

β-mercaptoethanol    100 mM 
 

• Superdex 200 (SD) column buffer (pH 7.2) 

NaCl      0.15 M 

Na2HPO4      0.05 Ml 
 

• 50x TAE 

TRIS base      0.2 M 

Acetic acid      5.7% 

EDTA (0.5 M, pH 8)    10% 
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• TE buffer, pH 8 

TRIS base      10 mM 

EDTA      1 mM 
 

• Tris-buffered saline (TBS), pH 7.3 

NaCl       137 mM (0.9%) 

Tris/HCl       20 mM 
 

• Tyrode-HEPES buffer, pH 7.3 

NaCl      137 mM (0.9%) 

KCl      2.7 mM 

NaHCO3      12 mM 

NaH2PO4      0.43 mM 

CaCl2      1 mM 

MgCl2      1 mM 

HEPES      5 mM 

BSA      0.35% 

Glucose      0.1% 
 

• Washing buffer 

Tween 20       0.1% 

in PBS 
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2.2 Methods 

2.2.1 Human embryonic kidney (HEK) 293 cell culture 

2.2.1.1 Thawing and culture of HEK 293 cells 

Frozen non-transfected human embryonic kidney (HEK) 293 cells were shortly thawed at 

37°C and resuspended in DMEM growth medium. After centrifugation for 5 min at 900 rpm 

the cells were resuspended in fresh DMEM growth medium. Cells were grown in DMEM 

growth medium at 37°C and 5% CO2 in monolayer in a T25 flask.  

2.2.1.2 Splitting of HEK 293 cells 

When cells had grown to 80-90% confluency, they were split into three separate tissue 

culture flasks of the same or the next larger size. For this purpose, cells were washed with 

10 ml PBS. To detach the cells, 4 ml trypsin were added and incubated at 37°C for 5 min. 

After adding 5 ml DMEM growth medium the collected cells were again centrifuged, the pellet 

was resuspended in 5 ml DMEM growth medium and transferred to the tissue culture flasks. 

For further culturing of the cells, 20 ml DMEM growth medium were added and cells were 

incubated at 37°C and 5% CO2. 

2.2.1.3 Transfection of HEK 293 cells  
The transfection of HEK 293 cells was performed using Effectene Transfection Reagent 

(Invitrogen, Karlsruhe, Germany) according to the manufacturer’s protocol. This step was 

accomplished during my diploma thesis in the same laboratory33.  

For 6-well plates 0.4 µg DNA (murine CLEC-2 cDNA in Signal pIgplus-vector) per well were 

used for transfection. Transfection was performed when cells had reached confluency of 70-

80%. The DNA was diluted in TE-buffer to a concentration of 0.2 µg/µl and 2 µg DNA were 

mixed with DNA-condensation buffer EC to a total volume of 100 µl. Next, 3.2 µl Enhancer 

were added, shortly mixed and incubated at RT for 5 min. Then, 10 µl Effectene Transfection 

Reagent were applied and incubated for 5-10 min at RT. 600 µl DMEM growth medium were 

added to the transfection complex and mixed carefully. This solution was then drop-wise 

added to the HEK 293 cells. Cells were cultured at 37°C and 5% CO2 for 24-48 h. For 

positive selection, the medium was replaced by DMEM selection medium I containing 

700 µg/ml geneticin (G418). After 3-4 days medium was changed. After further 7 days, the 

geneticin concentration was decreased to 300-400 µg/ml. Stably transfected HEK 293 cells 

were obtained and split into a fresh 12-well plate, and wells were monitored for monoclonal 

cell populations. Monoclonal cells were cultured further and tested for production of fusion 

protein by western blot analysis.  
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2.2.1.4 Freezing HEK 293 cells 

CLEC-2 transfected monoclonal HEK 293 cells were grown until 85% confluency, trypsinized 

as described before, spun down and the pellet was resuspended in 5 ml ice-cold Freezing 

medium. Cell suspension aliquots of 1 ml in Cryo-tubes were immediately put on dry ice and 

stored in liquid N2. 

2.2.1.5 Purification of mCLEC-2 Fc-Fusion protein 

For large scale production of the mCLEC-2 Fc-fusion protein (see chapter 2.2.2.3 and33), 

stably transfected HEK 293 cells were cultured in FCS-free medium (Panserin 410) and 6 l of 

medium containing the mCLEC-2 Fc-fusion protein were collected. The mCLEC-2 Fc-fusion 

protein was purified from the medium via affinity chromatography using a protein G-

Sepharose column.  

 

2.2.2 Production of monoclonal antibodies 

2.2.2.1 Immunization 
For generation of anti-CLEC-2 antibodies, three female WISTAR rats, 6 weeks of age, were 

immunized with either of the following antigens: washed mouse platelets, purified mCLEC-2 

Fc-fusion protein or immuno-precipitate from wild-type platelet lysate using INU1. For this, 

0.5 x 109 washed mouse platelets (resting state, washed in sterile PBS) were used per 

animal for each immunization. Alternatively, immuno-precipitate from wild-type platelet lysate 

with INU1 was utilized (lysate from 0.5 x 109 washed mouse platelets, pull-down with 5 µg/ml 

INU1 and 25 µl protein G-Sepharose per rat). In a third attempt, purified mCLEC-2 Fc-fusion 

protein (100 µg/ rat for the initial, 50 µg/ rat for all following immunizations) was used. Each 

antigen was resolved in Freund’s adjuvant. For the initial immunization, antigens were 

solubilized in Freund’s adjuvant complete and injected subcutaneously in three bolus 

injections of 50 µl per rat. All following immunizations were performed in Freund’s adjuvant 

incomplete. Rats were repeatedly (minimum 7 times, intervals of 21 days) subcutaneously 

immunized with the immunogens. 

2.2.2.2 Generation of hybridoma cells 
The rat spleen was removed under sterile conditions and filtered through a 100 µm cell 

strainer to obtain a single cell suspension. For the fusion of mouse myeloma and rat splenic 

cells, spleen cells were washed twice in RPMI/pen-strep medium (160 x g, 5 min, RT), mixed 

with mouse myeloma cells (Ag14, 108 cells per fusion) and washed twice with RPMI/pen-

strep by centrifugation at 900 rpm for 5 min. Supernatant was removed carefully and 1 ml of 

polyethylene glycol 1500 (37°C) was drop-wise added over a time period of 2 min. This was 

followed by slow addition of 10 ml RPMI/pen-strep medium (37°C) over a time period of 

10 min. Cells were then seeded into 16 or 15 96-well plates and fed with selection medium 
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containing hypoxanthine-aminopterin-thymidine (HAT) that enabled only fused hybrid cells to 

survive until screening.  

2.2.2.3 mCLEC-2 Fc-fusion protein  

For cloning of the extracellular domain of mouse CLEC-2, RNA from mouse bone marrow 

was isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol and reverse transcription was performed (Titan One Tube RT-PCR-

Kit, Roche, Ingelheim, Germany). 100 ng RNA was used as a template and the 

oligonucleotide AA CTC GAG ACA CAG CAA AAG TAT CTA (XhoI restriction site 

underlined) and AA GGA TCC

2.2.2.4 Screening of hybridoma clones by ELISA 

 AGC AGT TTG TCC ACT CTT (BamHI restriction site 

underlined) as the forward and reverse primer, respectively. The PCR-product was purified 

using a QIAquick gel extraction kit (Qiagen, Hilden, Germany) digested with XhoI and BamHI 

enzymes, purified again and ligated to the Signal plg plus vector containing the human 

immunoglobulin Fc-domain. The ligation mixture was transformed into E. coli DH5α cells. 

The obtained construct was verified by restriction enzyme digestion and DNA-sequencing. 

This work had been performed during my diploma thesis in the same laboratory33. HEK 293 

cells were transfected with the construct as described above. 

To detect hybridoma clones producing mAbs directed against the respective antigen 

(mCLEC-2), hybridoma supernatant was tested by Enzyme-linked immunosorbent assay 

(ELISA). Therefore, ELISA plates were coated o/n at 4°C with the mCLEC-2 Fc-fusion 

protein (5 µg/ml in coating buffer). After blocking with 5% BSA in H2O for 1 h at 37°C, the 

hybridoma supernatant was added and left to incubate for 1 h at 37°C. ELISA plates were 

washed 3 times with washing buffer and left to incubate with the secondary antibody α-rat 

HRP (1:3,000) in washing buffer. After extensive washing, the ELISA was developed using 

TMB substrate. False-positive clones producing mAbs directed against the Fc-part of the 

fusion protein were detected using a second ELISA in parallel with an unspecific Fc-fusion 

protein generated in our laboratory. 

2.2.2.5 Screening of hybridoma clones by flow cytometry 
To detect hybridoma clones producing mAbs against the respective antigen (mCLEC-2) by 

flow cytometry, a 1:1 mixture of resting and thrombin-activated platelets (106) was incubated 

with 100 µl of the hybridoma supernatant for 15 min at 37°C. To prepare this mixture, 

washed platelets were divided into two parts. One part was left untreated and the other was 

activated by thrombin (0.2 U/ml; 5 min, 37°C). Samples were then washed once with 500 µl 

PBS (2,800 rpm, 10 min) and stained with FITC-conjugated rabbit α-rat Ig for 15 min at 37°C. 

Samples were finally analyzed on a FACSCalibur (Becton Dickinson, Heidelberg, Germany). 

http://en.wikipedia.org/wiki/Hypoxanthine�
http://en.wikipedia.org/wiki/Aminopterin�
http://en.wikipedia.org/wiki/Thymidine�
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Positive hybridoma clones were further cultured at 37°C and 5% CO2 and allowed to adapt to 

HAT-free RPMI/pen-strep/ medium with 10% fetal calf serum. 

2.2.2.6 Large-scale production of antibodies 

Positive hybridoma clones were subcloned twice and allowed to adapt to FCS-free medium 

(Panserin 410) in tissue culture flasks (T175). Positive hybridoma clones that stably 

expressed the antibodies were cultured at 37°C and 5% CO2 until 4 l of medium containing 

the secreted antibody were collected. The medium was sterile filtered and approximately 

20 mg antibody was purified from the medium via affinity chromatography using an 

immobilized protein G-column. Bound antibodies were eluted from the column using elution 

buffer and collected into supplied neutralization buffer to prevent precipitation of the antibody. 

Eluted antibodies were dialyzed o/n at 4°C against PBS. 

2.2.2.7 Determination of isotype subclass 

To determine the Ig isotype subclass of the purified antibodies Rat Immunoglobulin Isotyping 

ELISA kit was used according to the manufacturer’s instructions. Briefly, 96-well ELISA 

plates were coated with different isotype-specific monoclonal mouse α-rat Ig antibodies (1:50 

in coating buffer) o/n at 4°C and after 30 min blocking, antibodies to be analyzed were added 

(1 h, 37°C). Plates were washed and subsequently incubated for 1 h with AP-conjugated 

antibodies (1:100, 37°C). After several washing steps, Sigma104 substrate was added to 

each well and absorbance at 405 nm was recorded on ELISA reader (Thermo Scientific 

Multiskan Ascent). 

 

2.2.3 Modification of antibodies 

2.2.3.1 Preparation of Fab-fragments using papain 
Whole IgG (3 mg) was dialyzed o/n against digestion buffer at 4°C. The antibody was then 

concentrated using a concentrator tube (VivaSpin®, exclusion size 10 kDa) by centrifugation 

at 4,000 rpm until a volume of 0.5-1.0 ml was reached (~10 min). To generate fragment 

antigen-binding (Fab-fragments) of antibodies, dialyzed IgG was mixed with digestion buffer 

and immobilized papain (washed twice with digestion buffer) in the ratio of 1:1:1 and left to 

incubate at 37°C for 4-6 h under shaking conditions. To test the efficacy of the digestion, 

samples (20 µl) were taken at different time points (0, 1, 2, 4, and 6 h), mixed with 20 µl non-

reducing sample buffer and separated by SDS-PAGE (15%). To visualize the protein bands, 

the gel was coomassie-stained and destained. If the digestion was not complete, incubation 

was prolonged for further 2-4 h. The antibody was then dialyzed o/n against PBS at 4°C and 

the preparations were then applied to an immobilized protein A-column followed by an 

immobilized protein G-column to remove Fc-fragments and undigested IgG. Samples (20 µl) 

were taken before and after the clearing process, mixed with 20 µl non-reducing sample 
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buffer and separated by SDS-PAGE (15%). Finally, low-endotoxin BSA (0.2% f.c.) was 

added to the Fab-fragments. 

2.2.3.2 Preparation of Fab2-fragments using pepsin 
To generate Fab2-fragments, dialyzed IgG was mixed with digestion buffer and immobilized 

pepsin (washed twice with digestion buffer) in the ratio of 1:1:1 and left to incubate at 37°C 

for 48 h under shaking conditions. Samples (20 µl) were taken at 0, 6, 24, and 48 h, mixed 

with 20 µl non-reducing sample buffer and separated by SDS-PAGE (15%). Fab2-fragments 

were purified as described above using an immobilized protein A-column followed by an 

immobilized protein G-column. 

2.2.3.3 Preparation of Fab2- and Fab-fragments via size chromatography 
To generate Fab2-fragments, concentrated and dialyzed IgG (4.0 mg/ml) in 0.1 mol/l sodium 

citrate buffer was incubated with immobilized pepsin in the ratio of 5:1 and left to incubate at 

37°C for 4 h under shaking conditions. For size chromatography, samples were dialyzed 

against Superdex 200 column buffer and pH was adjusted to pH 7.2. Then, the digested 

solution was added to a Superdex 200 column with a flow rate of 2.0 ml/min (~25 cm/h). 

Fractions were collected and tested on SDS-PAGE (15%) for sufficient digestion and purity. 

The Fab2 fractions were concentrated by centrifugation using a concentrator tube (VivaSpin®, 

exclusion size 10 kDa), sterile filtrated and stored at -20°C until use or further digestion to 

Fab-fragments.  

For generation of Fab-fragments, Fab2-fragments (1 mg/ml) were dialyzed against TRIS/HCl 

(50 mmol/l, pH 8.0) o/n at 4°C. For digestion 10mmol/l DL-dithiothreitol were added and 

samples were incubated for 30 min at 37°C followed by incubation with 20 mmol/l 

iodacetamide at 37°C for 30 min. The digested Fab-fragments were added to a Superdex 

200 column with a flow rate of 2.0 ml/min (~25 cm/h) and fractions were collected and tested 

on SDS-PAGE (15%) for sufficient digestion and purity. The Fab fractions were concentrated 

by centrifugation, sterile filtrated and stored at -20°C until use. 

2.2.3.4 Alexa Fluor 488 labeling 

Affinity purified antibodies were Alexa Fluor 488-labeled to a fluorophore/protein-ratio of 

approximately 3:1. The purified antibody (4 mg) was dialyzed against coupling buffer o/n at 

4°C. Alexa Fluor 488 NHS-ester was dissolved in anhydrous DMSO to a final concentration 

of 1 mg/ml. This solution was added to the antibody and left to incubate at RT for 2 h. The 

reaction was stopped by addition of 100 µl of 1 M NH4Cl. Alexa Fluor 488-labeled antibody 

was separated from the uncoupled fluorophore by gel filtration on a PD-10 column. 
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2.2.3.5 FITC labeling 

Affinity purified antibodies were FITC-labeled to a fluorescein/protein-ratio of approximately 

3:1. The purified antibody (4 mg) was dialyzed against coupling buffer o/n at 4°C. FITC was 

dissolved in anhydrous DMSO to a final concentration of 1 mg/ml. This solution was added to 

the antibody and left to incubate at 4°C o/n. The reaction was then stopped by addition of 

100 µl of 1 M NH4Cl. FITC-labeled antibody was separated from the uncoupled FITC by gel 

filtration on a PD-10 column. 

 

2.2.4 Mouse treatment with antibodies 

To deplete mice from the CLEC-2 receptor, adult mice received 200 µg of the antibody INU1 

(~8 µg/g body weight) intravenously 5-6 days prior to experiments, if not other stated. For 

intravital microscopy of thrombus formation in FeCl3-injured mesenteric arterioles, mice 

received 100 µg of the antibody INU1 intraperitoneally 5-6 days prior to experiments. To 

deplete mice from the GPVI receptor, adult mice received 100 µg of the antibody JAQ1 

intravenously 5-6 days prior to experiments, if not other stated. For intravital microscopy of 

thrombus formation in FeCl3-injured mesenteric arterioles, mice received 75 µg of the 

antibody JAQ1 intraperitoneally 5-6 days prior to experiments. 

 

2.2.5 Mouse genotyping using flow cytometry 

Gp6-/- mice were generated by Markus Bender as described in106 and Bender M, May F et al., 

(manuscript in preparation). Genotyping of the mice was performed via flow cytometry. For 

this purpose, 50 µl of 1:20 diluted whole mouse blood were incubated with the α-GPVI 

antibody JAQ1 in saturating concentrations for 15 min at RT and analyzed on a FACSCalibur 

(Becton Dickinson, Heidelberg, Germany). 

 

2.2.6 Immunoprecipitation and immunoblotting 

2.2.6.1 Immunoprecipitation 
For precipitation of surface receptors, washed platelets (108) were prepared and surface 

proteins were labeled with EZ-Link sulfo-NHS-LC-biotin as described below. After effective 

biotinylation, platelets were solubilized in 1 ml lysis buffer. Cell debris were removed by 

centrifugation (15,000x g, 10 min). Following pre-clearing (8 h), 10 µg mAb were added to 

25 µl protein G-Sepharose and precipitation was carried out o/n at 4°C. Samples were 

separated on SDS-PAGE (12%) along with a molecular weight marker and transferred onto a 

polyvinylidene difluoride (PVDF) membrane. The membrane was incubated with streptavidin-

horseradish peroxidase (1 µg/ml) for 1 h after blocking. After extensive washing (4x 15 min), 

biotinylated proteins were visualized by ECL. 
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2.2.6.2 Immunoblotting 

For western blot analysis, prp was prepared as described and centrifuged at 1,500 rpm for 

5 min. Platelets were washed twice in PBS containing 5 mM EDTA. The platelet pellet was 

resuspended in IP buffer containing protease inhibitors to a final concentration of 500,000 

platelets/µl and Igepal was added to 1% f.c.. After incubation for 10 min at 4°C and 

centrifugation at 14,000 rpm for 5 min, the supernatant was mixed with an equal amount of 

2x SDS sample buffer and incubated at 95°C for 5 min. Samples were separated by 12 or 

15% SDS-PAGE and transferred onto a PVDF membrane. To prevent non-specific antibody 

binding, membranes were blocked in 5% fat-free milk or 5% BSA dissolved in washing buffer 

for 2 h at RT or o/n at 4°C. Membranes were incubated with the required primary antibody 

(5 μg/ml) o/n with gentle shaking at 4°C. Afterwards, membranes were washed three times 

with washing buffer for 15 min at RT. Next, membranes were incubated with appropriate 

HRP-labeled secondary antibodies for 1 h at RT. After three washing steps, proteins were 

visualized by ECL. 

2.2.6.3 Tyrosin phosphorylation assay  

For tyrosine phosphorylation studies, 0.7x106 platelets/µl were activated with 1 µg/ml 

convulxin, 0.24 µg/ml rhodocytin or 20 µg/ml INU1 antibody under constant stirring conditions 

(1,000 rpm) at 37°C. Stimulation was stopped by the addition of an equal volume ice-cold 

lysis buffer after the indicated time points. For whole-cell tyrosine-phosphorylation, 4x 

NuPage sample buffer (Invitrogen) was added. Samples were incubated at 70°C for 10 min 

and separated by SDS-PAGE on 4-12% NuPage Bis-Tris gradient gels under reducing 

conditions followed by transfer onto a PVDF membrane. Membranes were blocked for 1 h at 

RT in 5% BSA in PBS and then incubated with the primary α-phosphotyrosine antibody 4G10 

o/n at 4°C. The membranes were then washed 4x 15 min in washing buffer before incubation 

with secondary α-mouse horseradish peroxidase-conjugated antibody in washing buffer 

(1:2,000). Following extensive washing, proteins were visualized by ECL.  

 

2.2.7 In vitro analysis of platelet function 

2.2.7.1 Platelet preparation and washing 

Mice were bled under ether or isofluran anesthesia from the retroorbital plexus. 700 µl blood 

were collected in a reaction tube containing either 300 μl heparin in TBS (20 U/ml, pH 7.3) or 

300 µl acid citrate dextrose (ACD). Blood was centrifuged at 1,800 rpm for 5 min at RT. 

Supernatant and buffy coat were transferred into a new tube and centrifuged at 800 rpm for 

6 min at RT to obtain platelet rich plasma (prp). To prepare washed platelets, prp was 

centrifuged at 2,500 rpm for 5 min at RT and the pellet was resuspended in 1 ml Ca2+-free 

Tyrode’s buffer containing apyrase (0.02 U/ml) and PGI2 (0.1 μg/ml). After 10 min incubation 
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at 37°C the sample was centrifuged at 2,500 rpm for 5 min. After a second washing step, the 

platelet pellet was resuspended in the appropriate volume of Tyrode’s buffer containing 

apyrase (0.02 U/ml, 500,000 platelets/µl) and left to incubate for at least 30 min at 37°C 

before analysis. 

2.2.7.2 Platelet counting 

For determination of platelet count and size, 100 µl blood were drawn from the retroorbital 

plexus of anesthetized mice using heparinized microcapillaries and collected into a reaction 

tube containing 100 μl heparin in TBS (20 U/ml, pH 7.3). Platelet count and size were 

determined using a Sysmex KX-21N automated hematology analyzer (Sysmex Corp., Kobe, 

Japan). 

2.2.7.3 Biotinylation of platelet surface receptors 

To biotinylate platelet surface receptors, washed platelets (in PBS/EDTA, 2x109 platelets/ml) 

were incubated in PBS containing 5 mM EDTA with EZ-link sulfo-NHS-LC-biotin (f.c. 

100 µg/ml) rotating for 10 min at RT. Reaction was stopped by addition of Tris buffer (f.c. 

10 µM). The sample was centrifuged at 2,200 rpm for 5 min and the platelet pellet was 

resuspended in Tyrode’s buffer with 2 mM Ca2+ containing apyrase (0.02 U/ml) and PGI2 

(0.1 µg/ml). To test for the efficacy of the biotinylation, a platelet sample (1:20 diluted in PBS; 

50 µl) was incubated with FITC-labeled streptavidin (1.5 µg/ml; 10 min, RT). The reaction 

was stopped by the addition of 500 µl PBS and samples were analyzed immediately by flow 

cytometry. 

2.2.7.4 Aggregometry 
To determine platelet aggregation, light transmission was measured using washed platelets 

in Tyrode’s buffer without Ca2+ adjusted to a concentration of 0.3x108 platelets/ml. 

Alternatively, heparinized prp was used and diluted 1:3 in Tyrode’s buffer. For determination 

of aggregation, agonists or reagents (100-fold concentrated) were added and light 

transmission was recorded over 10 min on a Fibrintimer 4 channel aggregometer (Apact 4-

channel optical aggregation system, APACT, Hamburg, Germany). For calibration, Tyrode’s 

buffer (for washed platelets) or 1:3-diluted plasma (for prp) was set as 100% aggregation and 

washed platelet suspension or prp was set as 0% aggregation. For activation with thrombin, 

washed platelets were diluted in Tyrode’s buffer containing 2 mM Ca2+, for all other agonists 

platelets were diluted in the same buffer in presence of 70 µg/ml human fibrinogen. 

2.2.7.5 Flow cytometry 

For determination of basal glycoprotein expression levels, platelets (1x106) were stained for 

10 min at RT with saturating amounts of fluorophore-conjugated antibodies. The reaction 

was stopped by addition of 500 µl PBS, and samples were analyzed directly on a 
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FACSCalibur instrument (Becton Dickinson, Heidelberg, Germany). For activation studies, 

platelets were activated with the indicated agonists or reagents for 15 min at RT in the 

presence of saturating amounts of phycoerythrin (PE)-coupled JON/A and fluorescein 

isothiocyanate (FITC)-coupled α-P-selectin antibody. The reaction was stopped by addition 

of 500 μl PBS and samples were analyzed. For a two-color staining, the following settings 

were used: 

Detectors/Amps: 

Parameter Detector Voltage 

P1 FSC E01 

P2 SSC 380 

P3 Fl1 650 

P4 Fl2 580 

P5 Fl3 150 

 

Threshold: 

Value Parameter 

253 FSC-H 

52 SSC-H 

52 Fl1-H 

52 Fl2-H 

52 Fl3-H 

 

Compensation: 

Fl1 2.4% of Fl2 

Fl2 7.0% of Fl1 

Fl2 0% of Fl3 

Fl3 0% of Fl2 
 

2.2.7.6 Immunofluorescent microscopy of platelets 

Washed platelets were fixed in PHEM buffer containing 1% PFA for 20 min at 4°C, blocked 

with 5% BSA for 2 h at 37°C, and stained with 1:25 INU1-Alexa Fluor 488 and 1:200 

phalloidin-rhodamine for 2 h at 37°C. Samples were washed with PBS and mounted using 

ProLong Antifade reagent (Invitrogen, Karlsruhe, Germany). For permeablization the same 

procedure was followed using PHEM buffer containing 1% PFA and 1% NP40. Samples 

were visualized using a Leica SP5 confocal microscope with 100x oil objective (Leica 

Microsystems, Mannheim, Germany). 
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2.2.7.7 Measurement of ATP release 

Washed platelets were adjusted to a concentration of 0.4x106/µl in Tyrode’s buffer. For 

activation, platelets were incubated with the indicated agonists for 2 min at 37°C under 

stirring conditions (1,000 rpm). Following activation, EDTA (3 mM f.c.) and formaldehyde 

(0.1% f.c.) were added and platelets were fixed for 2 h. Platelets were then centrifuged for 

1 min at 13,000 rpm and 100 µl supernatant were added to 100 µl absolute ethanol. Samples 

were stored at -20°C until use. Levels of ATP in 12.5 µl sample were quantified using a 

bioluminescence assay kit according to the manufacturer’s instructions and a Fluostar 

Optima Luminometer (BMG Lab Technologies, Germany). 

2.2.7.8 Adhesion under flow conditions 
Rectangular coverslips (24 x 60 mm) were coated with 0.2 mg/ml fibrillar type I collagen 

(Horm, Nycomed) o/n at 37°C and blocked for 1 h with 1% BSA in H2O. Blood (700 μl) was 

collected into 300 μl heparin (20 U/ml in TBS, pH 7.3) or ACD-buffer (for studies under non-

anticoagulated conditions). Platelets were labeled with a Dylight-488 conjugated α-GPIX Ig 

derivative (0.2 μg/ml) for 5 min at 37°C. Whole blood was diluted 2:1 in Tyrode’s buffer 

containing Ca2+ and filled into a 1 ml syringe. Transparent flow chambers with a slit depth of 

50 µm, equipped with the coated coverslips, were connected to the syringe filled with diluted 

whole blood. Perfusion was performed using a pulse-free pump under high shear stress 

equivalent to a wall shear rate of 1,000 sec-1 or 1,700 sec-1 (for 4 min). Thereafter, coverslips 

were washed for 1 min by perfusion with Tyrode’s buffer at the same shear stress and 

phase-contrast and fluorescent images were recorded from at least five different microscopic 

fields (40x objective). Image analysis was performed off-line using MetaVue® software. 

Thrombus formation was expressed as the mean percentage of total area covered by 

thrombi and as the mean integrated fluorescence intensity per mm2. 

For studies determining the binding of platelets to vWF under flow conditions, flow adhesion 

was performed as described. Cover slips were coated with human α-vWF antibody at 37°C 

o/n, washed with PBS, incubated with 100 µl murine serum obtained from control mice and 

blocked for 1 h with 1% BSA in H2O. Adhesion of platelets to bound vWF was determined 

90 sec after perfusion of the slide. 

 

2.2.8 In vivo analysis of platelet function 

2.2.8.1 Tail bleeding time assay 
Mice were anesthetized by intraperitoneally injection of the substances dormitor, dormicum 

and fentanyl, and a 1 mm segment of the tail tip was ablated with a scalpel. Tail bleeding was 

monitored by gently absorbing the drop of blood with a filter paper in 20 sec intervals without 

interfering with the wound site. When no blood was observed on the paper, bleeding was 
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determined to have ceased. The experiment was manually stopped after 20 min by 

cauterization.  

Alternatively, tail bleeding times were determined in 37°C warm saline (0.9% NaCl). Upon 

amputation, the tail tip was placed in a plastic tube containing 4 ml saline, bleeding was 

observed and determined to have ceased when stopped for >1 min. Lost blood volume was 

determined via weight against a saline filled reference tube and increased weight of the tube 

was multiplied by the density of blood.  

2.2.8.2 Intravital microscopy of thrombus formation in FeCl3-injured mesenteric 
arterioles 

Mice (4-5 weeks of age, weight 15-18 g) were anesthetized with 2.5% avertin and the 

mesentery was exteriorized through a midline abdominal incision. Arterioles (35-60 µm in 

diameter) were visualized with a Zeiss Axiovert 200 inverted microscope (10x objective) 

equipped with a 100-W HBO fluorescent lamp source, and a CoolSNAP-EZ camera (Visitron, 

Munich, Germany). Digital images were recorded and analyzed off-line using MetaVue® 

software. Injury was induced by topical application of a 3 mm2 filter paper saturated with 

FeCl3 (20%). Adhesion and aggregation of fluorescently labeled platelets (Dylight-488 

conjugated α-GPIX Ig derivative) in arterioles was monitored for 40 min or until complete 

occlusion occurred (blood flow stopped for >1 min). This work was performed by Ina 

Hagedorn in the group of Prof. Bernhard Nieswandt. 

2.2.8.3 Intravital microscopy of thrombus formation in the abdominal aorta 

To open the abdominal cavity of anesthetized mice (~6 weeks of age), a longitudinal midline 

incision was performed and the abdominal aorta exposed. A Doppler ultrasonic flow probe 

(Transonic Systems, New York, USA) was placed around the aorta and thrombosis was 

induced by mechanical injury with a single firm compression (5 sec) of forceps upstream of 

the flow probe. Blood flow was monitored until complete occlusion occurred or 30 min had 

elapsed. This work was performed by Ina Hagedorn in the group of Prof. Bernhard 

Nieswandt. 

2.2.8.4 Transient middle cerebral artery occlusion model (tMCAO) 
Experiments were conducted on 6-8 weeks old male C57Bl/6J mice according to published 

recommendations for research in mechanism-driven basic stroke studies107. Transient middle 

cerebral artery occlusion (tMCAO) was induced under inhalation anesthesia using the 

intraluminal filament (6021PK10; Doccol Company) technique83. After 60 min, the filament 

was withdrawn to allow reperfusion. For measurements of ischemic brain (infarct) volume, 

animals were sacrificed 24 h after induction of tMCAO and brain sections were stained with 

2% 2,3,5-triphenyltetrazolium chloride (TTC; Sigma-Aldrich, Germany). Brain infarct volumes 

were calculated and corrected for edema as described83. Neurological function and motor 
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function were assessed by two independent and blinded investigators 24 h after tMCAO. 

This work was performed by and in collaboration with Stefan Bräuninger in the group of Prof. 

Guido Stoll, Department of Neurology, University Hospital Würzburg. 

 

2.2.9 Histology  

2.2.9.1 Preparation of paraffin sections 

Tissue from adult mice were washed in PBS and fixed o/n in PBS containing 4% PFA. 

Afterwards, organs were washed 3 times with PBS and were directly dehydrated and 

embedded in paraffin. Organs were cut using a Microm Cool Cut microtome (Thermo 

Scientific, Braunschweig, Germany) to prepare 5 µm thin sections. 

2.2.9.2 Hematoxylin/eosin staining of paraffin sections 

Sections were deparaffinated by two incubations in xylol (3 min each). Rehydration was 

carried out using decreasing ethanol concentrations (100, 96, 90, 80 and 70%) with two 

incubation steps in each solution and final 2 min incubation in deionized water. Next, 

sections were stained for 2 min with hematoxylin, followed by a 10 min washing step using 

running tab water and 2 min staining with 0.05% Eosin G. The sections were washed shortly 

and dehydration was carried out using the same ethanol concentrations and incubation times 

as described above in reversed order. Finally, sections were incubated twice in xylol for each 

3 min, dried and mounted using Eukitt mounting medium. Samples were analyzed using a 

Leica DHI 4000B inverse microscope equipped with a Leica digital camera. 

 

2.2.10 Data analysis  

The results presented in this thesis are mean ± SD from at least three independent 

experiments per group, if not other stated. Differences between the groups were statistically 

analysed using the Mann-Whitney-U-test. p-values <0.05 were considered as statistically 

significant (*), p <0.01 = ** and p <0.001 was taken as the level of highest significance (***). 
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33  RReessuullttss  

3.1 Characterization of the anti-mouse CLEC-2 antibody INU1 

3.1.1 Generation of the monoclonal anti-mouse CLEC-2 antibody, INU1 

Since at the beginning of this project no antibody directed against mouse CLEC-2 was 

commercially available, it was decided to generate such an antibody in our laboratory.  

For this purpose in a previous work performed during my diploma thesis a recombinant 

murine CLEC-2 (mCLEC-2) Fc-fusion protein composed of the extracellular domain of 

mCLEC-2 and Fc-fragment of the human IgG was generated33. Therefore, the extracellular 

domain (CTLD) of the murine CLEC-2 protein was stably expressed in HEK 293 cells using a 

recombinant mammalian expression vector system termed Signal pIgplus-vector (Fig 3.1A). 

This vector system contained a constitutively active human cytomegalovirus (CMV) 

immediate early promoter upstream of the multiple cloning site (MCS). The promoter was 

followed by a DNA sequence, encoding the signal peptide of CD33, which facilitates the 

secretion of the produced mCLEC-2 Fc-fusion protein into the cell culture medium. 

Downstream of CD33, a sequence coding for the Fc-fragment of human IgG1 was inserted, 

which allows the purification of the protein from the cell culture medium. The Fc-fragment 

was followed by a neomycin resistance gene enabling negative selection of the transfected 

HEK 293 cell clones. The DNA sequence coding for the extracellular domain of murine 

CLEC-2 was ligated into the MCS in frame with the DNA sequences encoding the CD33 

protein and the Fc-part of human IgG1 (Fig 3.1A). As CLEC-2 is expressed as a type II 

transmembrane receptor on the surface of human and mouse platelets18, the extracellular 

domain of the native protein contains the carboxyl-terminus. However, in the finally 

expressed mCLEC-2 Fc-fusion protein the carboxyl-terminus of the extracellular domain is 

fused to the Fc-fragment of human IgG1 and thus the amino-terminus of the extracellular 

domain is freely exposed. 

It was shown previously that HEK 293 cells were successfully transfected with the vector 

system encoding for the mCLEC-2 Fc-fusion protein, since bands of the expected size of the 

recombinant protein were detected by western blot analysis33. The transfected HEK 293 cell 

clone no.6 was used for large scale production in FCS-free medium and approximately 6 

liters of medium containing the secreted mCLEC-2 Fc-fusion protein were collected. The 

secreted protein was then purified from the medium by affinity chromatography via an 

immobilized protein G-column (Fig 3.1B+C). In this process the Fc-part of the human IgG 

binds to protein G-Sepharose and thus the fusion protein is extracted from the medium. From 

the collected medium approximately 13 mg of protein were purified. 

Due to the fact that the CLEC-2 protein is a type II receptor18, it was difficult, if not 

impossible, to obtain correctly folded protein by the Fc-fusion protein system (Fig 3.1A+B). 



  Results 
 

  41 

Thus, to generate specific α-murine CLEC-2 antibodies mouse washed platelets were used 

for repeated immunizations of three rats. 

Then, the antibody titer in the serum of immunized rats was tested by western blot analysis. 

For this purpose, blood was drawn from the tail vain; the serum was purified and tested on 

mouse platelet lysate. Serum from rat no. 2 produced a detectable band at the expected size 

of murine CLEC-2 (32-33 kDa) and showed the highest α-CLEC-2 antibody titer from all 

three tested rats (Fig 3.1D, middle). Therefore, the spleen of this rat was taken for the 

generation of antibody-producing hybridoma cells. 

 

 

Fig 3.1 Generation of the mCLEC-2 Fc-fusion protein and antibody titer in rats. A. The Signal 
pIGplus vector map containing the extracellular domain of mCLEC-2 is depicted. B. Scheme of the 
expressed mCLEC-2 Fc-fusion protein. Upon translation in HEK 293 cells the CD33 signaling peptide 
is cleaved off and the protein is secreted as a dimer linked by disulfide bonds. C. The purified 
mCLEC-2 Fc-fusion protein has an apparent molecular weight of approximately 120-150 kDa under 
non-reducing (n.r., upper panel) and of 55-60 kDa under reducing conditions (red., lower panel). 
D. Antibody titer was tested on mouse platelet lysate (12% SDS-PAGE, red. conditions, rat serum 
1:200 in PBS) and detected by α-rat IgG-HRP (1:300). A band of the expected molecular size of 32-
33 kDa was observed upon incubation with serum from rat no. 2 (marked with stars, middle). 

For generation of hybridoma cells producing α-CLEC-2 antibodies, the rat spleen cells were 

isolated to obtain a single cell suspension, mixed with mouse myeloma cells (Ag14) and 

fusion of the cells was induced by addition of PEG. Cells were then seeded into sixteen 96-

well plates. In almost every well hybridoma clones were observed resulting in approximately 

1,500 clones to be tested. To detect hybridoma clones producing antibodies directed against 

CLEC-2, medium of the cells was screened in an Enzyme-linked immunosorbent assay 

(ELISA) system using the generated mCLEC-2 Fc-fusion protein. By this method 

180 positive clones were registered (data not shown). To identify false-positive clones that 
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non-specifically bound to the Fc-part of the fusion protein a second ELISA was performed in 

parallel where plates were coated with a different non-specific Fc-fusion protein generated in 

our laboratory. Out of the 180 positively tested clones only six clones were found to produce 

antibodies specifically directed against the extracellular part of the mCLEC-2 Fc-fusion 

protein (data not shown). Antibodies produced by these six clones were further tested by flow 

cytometry using mouse platelets. Therefore, a mixture of resting and thrombin-activated 

platelets (106) was incubated with the hybridoma supernatant containing the produced 

antibodies and after washing stained with a secondary FITC-conjugated rabbit α-rat IgG. 

Samples were analyzed on a FACSCalibur. Antibodies from all 6 clones specifically bound to 

platelets with a relatively high mean fluorescence intensity (MFI) of approximately 300 (data 

not shown). To obtain monoclonal antibodies, the positive hybridoma clones were subcloned 

twice. During this process only one clone (clone 11E9) stably expressed the antibody, 

whereas the other 5 clones lost the expression of the antibody. For large scale production of 

the antibody the hybridoma cell clone 11E9 was cultured in FCS-free medium and the 

antibody was purified from the medium by affinity chromatography via a protein G-column. 

Thus, a new and at that time point the only known rat monoclonal antibody (mAb) against 

mouse CLEC-2 was generated and termed INU1. 

 

3.1.2 INU1 recognizes mouse CLEC-2 on platelets 

The antibody INU1 was tested by western blot analysis using mouse platelet lysate. 

Unexpectedly, INU1 did not recognize CLEC-2 under these conditions indicating that the 

antibody binds to a three-dimensional epitope on the receptor that is lost under the 

denaturing conditions during SDS-PAGE (data not shown). However, FITC-conjugated INU1 

specifically bound to mouse platelets as demonstrated in flow cytometry (Fig 3.2A). To test 

whether the antibody detected murine CLEC-2, immunoprecipitation was performed from 

surface-biotinylated mouse platelets. INU1 precipitated a protein of an apparent molecular 

weight of approximately 32-38 kDa under reducing and non-reducing conditions (Fig 3.2B), 

strongly indicating that the antibody was directed against murine CLEC-2 and demonstrating 

that the apparent molecular weight of mouse CLEC-2 is similar to its human homologue18. 

The specificity of INU1 for CLEC-2 was further confirmed by ELISA where it bound 

specifically to the extracellular domain of mCLEC-2 Fc-fusion protein, but not to a murine 

(m)GPVI-Fc fusion protein82. In contrast, in a control experiment the α-mouse GPVI antibody, 

JAQ166-67, bound to the mGPVI-Fc, but not to the mCLEC-2 Fc-fusion protein (Fig 3.2C). 

Furthermore, the subclass of the antibody INU1 was tested using Rat Immunoglobulin 

Isotyping ELISA kit and defined INU1 as a rat IgG1 of the subclass κ (data not shown).  

Upon incubation of mouse platelets with INU1-FITC, a shape change visible as a 

characteristic shift in the FFC/SSC pattern was observed by flow cytometry indicating 
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activation of platelets (data not shown). To further analyze this phenomenon, INU1-IgG was 

incubated with mouse platelets at 37°C under stirring conditions in a standard aggregometer. 

Here, INU1 induced profound aggregation of mouse platelets. This response occurred in a 

dose-dependent manner that was evident as a decrease in the delay before the onset of 

aggregation (termed lag phase) rather than an increase in the maximal aggregation response 

(Fig 3.2D). A similar effect is known to occur upon activation with the CLEC-2-specific 

agonist rhodocytin (RC) on human and mouse platelets14,45. Furthermore, these results are in 

line with previous observations made on human platelets which were activated using 

polyclonal α-human CLEC-2 antibody14. Additionally, INU1-induced activation of platelets 

was associated with changes in tyrosine phosphorylation patterns of downstream signaling 

proteins that were comparable with those induced by rhodocytin demonstrating that the 

binding of INU1 to mouse platelets elicits profound signaling of the receptor (Fig 3.2E). 

 

 

Fig 3.2 INU1 recognizes murine CLEC-2. A. Flow cytometric detection of CLEC-2. Mouse platelets 
were incubated with INU1-FITC (solid line) or an irrelevant rat IgG-FITC (shaded area). B. 
Immunoprecipitation of CLEC-2 from surface-biotinylated platelets with INU1 (10 µg/ml). Proteins were 
separated under reducing (red.) or non-reducing (n.r.) conditions and detected by streptavidin-HRP. 
C. Binding of INU1 to mCLEC-2 Fc-fusion protein was tested by ELISA. Binding of α-GPVI antibody 
JAQ1 to mGPVI-Fc fusion protein served as control. D. Washed platelets were incubated with the 
indicated concentrations of INU1 and light transmission was recorded on an aggregometer. E. 
Washed platelets (rest.= resting state) were stimulated with 0.24 µg/ml rhodocytin (RC), 20 µg/ml 
INU1 or 1 µg/ml convulxin (CVX) and lysed after 90 sec. Tyrosine phosphorylated proteins were 
visualized by probing with the phosphotyrosine-specific antibody 4G10, α-mouse-HRP and ECL. The 
results are representative of 3-4 individual experiments. (May F et al., Blood, 2009104.) 

 



  Results 
 

  44 

3.1.3 INU1-alexa488 is suitable for immuno-fluorescent stainings on platelets 

To further study the expression of CLEC-2, washed platelets were stained with INU1 coupled 

to the fluorophore Alexa Fluor 488 (INU1-Alexa Fluor 488) and analyzed by confocal 

microscopy (Leica SP5 confocal microscope, Leica Microsystems, Mannheim, Germany). As 

the platelets were not treated with detergents (non-permeabilized), CLEC-2 expression was 

observed only on the platelet membrane whereas no intracellular protein was detected (Fig 

3.3A). In contrast, no fluorescent signal was detected upon staining of washed platelets from 

CLEC-2-depleted animals with the antibody suggesting the complete depletion of the 

receptor from the plasma membrane (data not shown). Additionally, platelets from control 

and INU1-treated mice were stained with INU1-Alexa Fluor 488 under permeabilizing 

conditions thus allowing the antibody to enter the cells. In control platelets, an intracellular 

fluorescence signal was observed as a dotted structure indicating the presence of the 

CLEC-2 protein in vesicles (Fig 3.3B). Interestingly, under this condition, in platelets from 

CLEC-2-depleted mice a residual fluorescence signal was observed intracellularly that was, 

however, of lower intensity when compared to controls (data not shown). This signal could be 

derived from the internalized receptor upon down-regulation or from splice variants of 

CLEC-2 that have been described to be expressed intracellularly27.  

 

 

Fig 3.3 Confocal images of platelets stained with INU1-Alexa Fluor 488. Washed platelets of 
control mice were fixed and stained with INU1-Alexa Fluor 488 (CLEC-2, left) and phalloidin-
rhodamine (actin, middle). Merged images are given (right). A. Staining of non-permeabilized platelets. 
Note the ring-like structure of CLEC-2 expression on the platelet surface. B. Staining of permeabilized 
platelets. INU1 detected CLEC-2 protein in intracellular vesicles in platelets whereas less protein 
expression was detected on the platelet surface due to the conditions used in sample preparation.  
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3.1.4 Analysis of CLEC-2 expression on immune cells 

To test whether INU1 could detect CLEC-2 on murine immune cells, cells were isolated from 

murine spleen, lymph nodes and thymus. Furthermore, macrophages were obtained from 

peritoneal lavage. Single cell suspensions were prepared, stained with INU1-FITC or the 

corresponding isotype control and analyzed by flow cytometry. The different cell populations 

were identified by light scatter characteristics in combination with specific staining of surface 

markers. These experiments were performed together with Timo Vögtle.  

As described earlier, in our experimental settings CLEC-2 expression was detected on 

murine platelets (see also Fig 3.2A). However, INU1 did not stain both CD4+ and CD8+ cells 

as well as B cells (B220+ cells) isolated from lymph nodes and spleen. Furthermore, CLEC-2 

was not found on CD4+/CD8+ double-positive cells, the major cell population of the thymus, 

and also not on CD4-/CD8- double-negative cells, which provide a small fraction of 

thymocytes by staining with INU1. Additionally, CLEC-2 expression was also not detected on 

peritoneal macrophages that were gated using the macrophage-specific marker F4/80 (Fig 

3.4A). Interestingly, CLEC-2 has been reported to be expressed on mouse peripheral 

CD11b+/Gr1+ double-positive blood neutrophils by Kerrigan et al.26. To test whether the 

antibody INU1 could detect CLEC-2 under the same conditions on these cells, granulocytes 

were prepared from mouse blood and stained with the neutrophil-specific marker 

combination CD11b and Gr1. CD11b+/Gr1+ double-positive neutrophils represented a clearly 

defined population in the FSC/SSC dotplots, and therefore could be identified by FSC/SSC 

characteristics and CD11b expression in the following experiments (data not shown). Under 

these experimental settings, CLEC-2 expression was clearly detectable by INU1-FITC on 

neutrophils (Fig 3.4B, left) being in line with data shown by Kerrigan et al.26.  

In a next step, the CLEC-2 positive population was co-stained with the platelet-specific 

marker JON6-PE (14A3, α-integrin αIIbβ3) and very surprisingly the same population 

yielded positive MFI signals (Fig 3.4B, right) suggesting that the CLEC-2 signal was not 

derived from neutrophils but rather from platelets that were possibly captured by the immune 

cells. A compensation error was excluded since i) compensation was performed prior to each 

measurement and ii) the JON6-PE signal (14A3, FL-2) was also observed in the sample with 

the INU1-FITC (FL-1) negative isotype control. Also, the FACS dot plot data showed a direct 

correlation between the platelet-marker positive and the INU1-FITC positive cells. There 

were no platelet-marker positive but INU1-FITC negative cells observed and vice versa. In 

line with this observation, in further experiments a positive CLEC-2 signal was not 

consistently observed on neutrophils depending on the preparation of the sample but rather 

found to be decreased with reducing concentrations of platelets in the tested samples (data 

not shown). This further strengthened the hypothesis that the gated neutrophil population 

was contaminated with platelets.  
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Fig 3.4 CLEC-2 expression on murine T cells, B cells, macrophages and granulocytes. CLEC-2 
expression was qualitatively assessed by flow cytometry, using INU1-FITC (black line). FITC-labeled 
rat IgG without detectable specificity for mouse tissue served as isotype control (red line). A. INU1-
FITC specifically detected CLEC-2 on murine platelets, but not on the tested murine immune cells. 
Peritoneal macrophages were gated by the specific F4/80 marker and B cells by B220. B. In two 
samples of peripheral blood cells neutrophils were gated using the marker CD11b. Left: INU1-FITC 
(black solid line) detected CLEC-2 on CD11b+ cells. FITC-labeled rat IgG without detectable specificity 
for mouse tissue served as isotype control (red line). Right: the platelet-specific marker JON6-PE 
(black line, αIIbβ3) clearly detected platelets in the CLEC-2 positive neutrophil population. A 
compensation error was excluded as the JON6-PE signal was also observed in the sample labeled 
with the negative isotype control (dotted red line). 
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To analyze the discrepancies between results published by Kerrigan et al.26 and our findings, 

splenic CD11b+ cells that were initially CLEC-2 negative (Fig 3.4A) were co-incubated with 

increasing concentrations of isolated resting platelets, stained with the appropriate markers, 

the isotype controls and INU1-FITC and directly analyzed via flow cytometry. Under these 

conditions, expression of CLEC-2 was only detectable when platelets were present in the 

sample and the MFI signals of INU1-FITC were found to be increasing with raising 

concentrations of co-incubated platelets (Timo Vögtle, personal communication). These 

results indicate that CLEC-2 is not expressed on peripheral immune cells in mice but that 

rather the CLEC-2 signal was attributed to platelets. 

 

3.1.5 Fab-fragments of INU1 partially inhibit CLEC-2 function in vitro 

To further characterize INU1, monovalent fragment antigen-binding (Fab)-fragments of the 

antibody (INU1-Fab) were prepared by enzymatic digestion of the full IgG using papain.  

In contrast to INU1-IgG, INU1-Fab did not induce aggregation of mouse platelets at 

concentrations up to 20 µg/ml (Fig 3.5A), suggesting that dimerization or clustering of the 

CLEC-2 receptor is a critical prerequisite for INU1-IgG-mediated platelet activation. This was 

confirmed by cross-linking of the bound INU1-Fab using a secondary antibody (rabbit α-rat 

IgG) which induced robust platelet aggregation (Fig 3.5A). INU1-Fab (20 µg/ml) had no effect 

on the aggregation response to the stable TxA2 analog U46619, to the GPVI agonist 

convulxin (CVX) or to thrombin. However, ADP-induced aggregation was consistently 

increased in the presence of INU1-Fab (83.53 ± 4.57% versus 58.76 ± 5.12% in control) (Fig 

3.5B). In contrast, INU1-Fab had a significant inhibitory effect on rhodocytin-induced platelet 

aggregation at low and intermediate agonist concentrations (visible as a delay in the onset of 

aggregation) which was, however, overcome at high rhodocytin concentrations (Fig 3.5C). 

These results suggest that INU1 binds to an epitope on the CLEC-2 receptor that is at least 

partially overlapping with the rhodocytin binding site. 
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Fig 3.5 INU1-Fab partially inhibits CLEC-2 function in vitro. A. INU1-Fab (20 µg/ml) alone does not 
induce aggregation of washed control platelets, but elicits profound aggregation when cross-linked by 
addition of 20 µg/ml α-rat IgG. B+C. Washed control platelets were incubated with PBS (black line) or 
INU1-Fab (20 µg/ml, gray line) for 5 min at 37°C and then stimulated with the indicated agonists under 
stirring conditions. Light transmission was recorded on an aggregometer. The results are 
representative of 4 individual measurements. Abbreviations: RC= rhodocytin, ADP= adenosine 
diphosphate, CVX= convulxin. (May F et al., Blood, 2009104.) 

 

3.1.6 INU1-IgG induces the loss of CLEC-2 in circulating platelets in vivo 

To study the effect of INU1 on platelets in vivo, mice received 2 µg/g body weight (~50 µg/ 

mouse) of the antibody intravenously (i.v.) and circulating platelets were studied ex vivo at 

different time points after injection. Surprisingly, treatment of mice with INU1-IgG induced a 

transient thrombocytopenia in the animals with a maximal drop of platelet counts of more 

than 85% on day 1. Platelet counts returned back to normal 3-4 days (d) post injection (p.i.) 

and were observed to be slightly increased on d5 and 6 indicating an overshooting platelet 

production. Then, they remained on normal levels compared to controls for at least 6 more 

days (Fig 3.6A). Parallel analyses on an automated cell analyzer (Sysmex) yielded similar 

results (data not shown). In a preliminary set of experiments, thrombocytopenia was also 

observed upon injection of Fab-fragments of INU1 (2 µg/g body weight) (Fig 3.6A). Thus, it 
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was concluded that the observed thrombocytopenia was not Fc-dependent or caused by 

antibody-induced receptor dimerization. INU1-treated mice did not develop spontaneous 

bleeding for at least 3 weeks (data not shown).  

To further analyze the mechanism of receptor down-regulation, plasma of INU1-IgG-treated 

mice was tested for free antibody by ELISA. Here, free INU1-IgG was detectable for 

approximately 2-3 days after treatment in plasma of the animals (data not shown). To further 

investigate the consequences of INU1-treatment in vivo, platelets from treated mice were 

isolated and analyzed. On days 1 and 3 p.i. of INU1-IgG (2 µg/g body weight), platelets from 

INU1-IgG- or INU1-Fab-treated mice were refractory towards rhodocytin (1 µg/ml) as 

revealed by flow cytometry (Fig 3.6B). However, the response was partially restored on d5 in 

a subpopulation of platelets and back to normal on d7 compared to controls (data not 

shown). To test whether this inhibitory effect was due to a blockade of the CLEC-2 receptor 

by the antibody, platelets were stained with a secondary FITC-conjugated α-rat IgG antibody. 

Remarkably, the secondary antibody failed to detect INU1-IgG (or INU1-Fab) on the surface 

of the cells on d1 and 3 p.i., whereas control platelets incubated in vitro with INU1-IgG or 

INU1-Fab yielded strong MFI signals (Fig 3.6C). Additionally, INU1-FITC did not bind to 

platelets from INU1-IgG- or INU1-Fab-treated mice on d1 and 3, whereas a subpopulation of 

the cells was stained on d5 and more than 90% were stained on d6 of mice that were treated 

with lower doses of the antibody (2 µg/g body weight) (Fig 3.6D). These results indicated that 

treatment with INU1 induced the loss of CLEC-2 in circulating platelets within 24 h. 

Furthermore, it was shown that the resulting thrombocytopenia was overcome by the 

production of new platelets completely lacking the receptor thus allowing to study mice with a 

CLEC-2 “knock-out like” phenotype for a defined period of time.  

To study the functional consequences of CLEC-2 deficiency in more detail and to test 

whether a prolonged loss of the receptor could be achieved, mice received 8 µg/g body 

weight INU1-IgG i.v. (~200 µg per mouse). Interestingly, in these animals free INU1-IgG was 

detectable in plasma samples by ELISA up to 8 days after treatment (data not shown). 

Animals that had been subjected to the higher dose treatment also showed a transient 

thrombocytopenia and the kinetics of CLEC-2 loss were comparable with the effects caused 

by the lower dose treatment with 2 µg/g body weight (Fig 3.6A). However, importantly, 

CLEC-2 was not detectable on the surface of the cells for at least 6 days (Fig 3.6C-D). 
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Fig 3.6 INU1 induces the loss of CLEC-2 in circulating platelets in vivo. Mice received the 
indicated amounts of INU1-IgG or INU1-Fab i.v.. A. Platelet counts were determined by flow cytometry 
at the indicated time points. Results are expressed as the mean platelet count ± SD for groups of each 
n=4 and are representative of 3 individual experiments. B. Two color flow cytometric analysis of 
integrin αIIbβ3 activation (JON/A-PE) and P-selectin exposure (FITC) in platelets from mice on d1 or 
d3 p.i.. Diluted whole blood was stimulated with 1 µg/ml rhodocytin (RC). The results are 
representative of 8 mice per group. C. Surface-bound IgG or Fab was detected by flow cytometry 
using α-rat IgG-FITC. Maximal binding was determined by incubating platelets from untreated mice 
with INU1-IgG or INU1-Fab (10 µg/ml) in vitro following staining with α-rat IgG-FITC. D. Binding of 
INU1-FITC to platelets from the indicated mice. E. Immunoprecipitation of CLEC-2 and GPVI from 
surface-biotinylated platelets from control and INU1 (8 µg/g b.w.)-treated mice on d5 under reducing 
conditions. (May F et al., Blood, 2009104.) 
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To further investigate whether other surface receptors of platelets were affected by the 

antibody treatment, flow cytometric analysis of basal surface expression levels of 

glycoproteins (GP) was performed on day 5 p.i.. Here, expression levels of all tested proteins 

such as GPVI, GPIb-V-IX, CD9, and integrins αIIbβ3 and α2β1 were unaltered compared to 

controls (Tab 3.1). This was also demonstrated by immunoprecipitation experiments 

performed on d5 after antibody injection which confirmed complete loss of CLEC-2, whereas 

other receptors such as GPVI were not affected (Fig 3.6E). 
 

 control INU1 

HCT [%] 53.3 ± 1.76 48.7 ± 4.41 

WBC [x106] 11.1 ± 1.19 11.05 ± 1.74 

CLEC-2 119 ± 10 14 ± 1 

GPIb 398 ± 5 391 ± 19 

GPV 354± 5 364 ± 14 

GPIX 550 ± 13 563 ± 20 

CD9 1496 ± 27 1338 ± 66 

GPVI 61 ± 3 56 ± 3 

α2 76 ± 5 69 ± 1 

β1 173 ± 11 165 ± 12 

αIIβ3 888 ± 40 854 ± 51 

plt. size 403 ±14 456 ± 33 
 

Tab 3.1 Hematology and platelet 
glycoprotein expression in control and 
INU1-treated mice. Hematocrit (HCT) in per 
cent and white blood cell counts (WBC) per ml 
for control and INU1-treated mice (d5) were 
measured by an automated blood cell 
analyzer. Expression of glycoproteins on the 
platelet surface and platelet (plt.) size was 
determined by flow cytometry. Diluted whole 
blood from the indicated mice was incubated 
with FITC-labeled antibodies at saturating 
concentrations and platelets were analyzed 
directly on a FACSCalibur. Mean platelet size 
is given as mean FSC and was determined by 
FSC characteristics. Results are expressed as 
mean fluorescence intensity ± SD for n=6 mice 
per group. (May F et al., Blood 2009.104) 

 

Furthermore, the hematocrit and white blood cell counts were not significantly different 

between control and INU1-treated mice (Tab 3.1). As newly produced platelets were 

depleted of CLEC-2, it was assumed that the antibody INU1 not only targeted platelets but 

also megakaryocytes in the bone marrow. Indeed, CLEC-2 is expressed on 

megakaryocytes18-19 and INU1 detected the receptor on isolated megakaryocytes from bone 

marrow of control animals but not from INU1-treated mice 60 min after treatment (data not 

shown). 

 

3.1.7 CLEC-2-deficient platelets show an abolished response to rhodocytin but 
normal responses to classic agonists. 

To test the effect of INU1-treatment on different signaling pathways in platelets, standard 

aggregometry assays were performed with CLEC-2-depleted and control platelets. The 

analyses showed that platelets from mice on d5 after INU1-treatment (8 µg/g body weight) 

were completely resistant to activation with rhodocytin at any concentration tested (up to 
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10 µg/ml), whereas responses to classic platelet agonists such as ADP, U46619, convulxin, 

collagen and thrombin were normal (Fig 3.7).  

 

 

Fig 3.7 Activation of CLEC-2-deficient platelets in aggregometry. Mice were treated with vehicle 
(PBS) or 8 µg/g body weight INU1-IgG and platelets were analyzed on d5 p.i.. Washed platelets from 
control (black) or INU1-treated (gray) mice were stimulated with the indicated agonists and light 
transmission was recorded. The results are representative of 6 individual experiments. 
A. Representative light transmission curves. B. Bar graphs of results obtained by aggregometry. 
Agonist concentrations correspond to aggregometry curves in A. Abbreviations: RC= rhodocytin, 
ADP= adenosine diphosphate, U46= U46619, thr.= thrombin, CVX= convulxin. ***p<0.001. (May F et 
al., Blood, 2009104.) 

Furthermore, flow cytometric analyses of integrin αIIbβ3 activation and degranulation-

dependent P-selectin exposure as a measure of the activation of platelets also confirmed 

that the INU1-induced CLEC-2 deficiency had no significant effect on other activation 

pathways induced by ADP, U46619, CVX or thrombin, whereas responses to rhodocytin 

were completely blunted as expected (Fig 3.8A+B). On d10 after INU1 injection of both high 

and low dose treatment, CLEC-2 expression (Fig 3.6D) and rhodocytin-induced responses 

(data not shown) were fully restored in all tested animals.  

Together, these results demonstrate that INU1-induced CLEC-2 deficiency very specifically 

abolished one activation pathway in platelets while the other tested pathways were left intact. 

To further analyze whether INU1-treatment had an impact on dense granule release of 

platelets, thrombin- and CRP-induced ATP release from dense granules was determined. It 

was demonstrated that the ATP release was not significantly altered in platelets from INU1-

treated mice compared to controls. This further confirmed that the antibody-induced loss of 

CLEC-2 had no general effect on the degranulation machinery of platelets (Fig 3.8C). 
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Fig 3.8 Activation of CLEC-2-deficient platelets in flow cytometry and measurement of released 
ATP. Mice were treated with vehicle (PBS, black) or 8 µg/g body weight INU1-IgG (gray) and washed 
platelets were analyzed on d5 p.i.. A. Flow cytometric analyses of αIIbβ3 integrin activation (JON/A-
PE, upper panel) and B. degranulation-dependent P-selectin exposure (lower panel) in response to 
stimulation with the indicated agonists. Results are given as mean fluorescence intensities (MFI) ± SD 
of n=6 mice per group. C. Washed platelets were incubated for 2 min at 37°C with PBS (rest.), 
0.1 U/ml thrombin or 10 µg/ml CRP and fixed. ATP present in the supernatant was measured using a 
luminometric assay according to the manufacturer’s protocol. Results are given as mean ATP 
concentration (µM) ± SD (n=6 per group) and are representative of 2 individual experiments. 
Abbreviations: rest.= resting state, ATP= adenosine-5’-triphosphate, U46= U46619, CRP= collagen 
related peptide. ***p<0.001. (May F et al., Blood, 2009104.) 

 

3.1.8 CLEC-2 is required for stable thrombus formation under flow 

At sites of vascular injury, the signals generated by multiple platelet receptor-ligand 

interactions are integrated to ensure efficient platelet attachment and thrombus formation 

under flow conditions7. As a possible function of CLEC-2 in this process had not been 

assessed, we analyzed the ability of CLEC-2-deficient platelets to form thrombi under flow 

conditions. To do so, whole blood was perfused over a collagen-coated surface using a 

pulse-free pump. Under high shear conditions (1,700 sec-1), control platelets adhered to 

collagen fibers and formed aggregates within 2 min that consistently grew into large thrombi 

by the end of the perfusion period of 4 min. In INU1-treated blood, platelets adhered to 

collagen, but, in marked contrast to the control, the subsequent formation of three-

dimensional aggregates was severely impaired (Fig 3.9C). During the entire perfusion time, 
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adherent platelets recruited numerous new platelets from the blood flow, but these were 

consistently unable to firmly attach and were released after a few seconds. As a 

consequence, the surface area covered by platelets and the total thrombus volume at the 

end of the experiment were reduced by 36% and 82% in CLEC-2-deficient blood, 

respectively (Fig 3.9C).  

This phenotype was, however, not due to altered initial adhesion on collagen under flow as, 

comparable to control platelets, CLEC-2-deficient platelets exhibited unaltered adhesion to 

collagen fibers after 30 sec of perfusion (Fig 3.9A). Furthermore, formation of GPIb-V-IX 

complex seemed not to be altered as the adhesion to a vWF-coated surface under flow was 

also unaltered in CLEC-2-deficient platelets (Fig 3.9B).  

Similar results were obtained in the same model at intermediate shear rates (1,000 sec-1, Fig 

3.10A). Here, the disturbed platelet adhesion in INU1-treated blood was also visible. As 

newly recruited platelets were not able to firmly attach to the already adherent first layer of 

platelets, they were constantly released from the thrombus surface. Those already activated 

but released platelets seemed to bind a second time to free collagen fibers on the cover slip 

and therefore lead to a rather high surface coverage compared to controls. However, it was 

evident that the overall thrombus growth was markedly reduced demonstrated by the 

strongly decreased thrombus volume measured via fluorescence of the platelets (Fig 3.10A). 

Furthermore, the same phenotype of CLEC-2-deficient blood was also obtained under flow 

conditions of very high shear (3,400 sec-1, Fig 3.10B). These findings suggest that CLEC-2-

dependent processes are essential for stable aggregate formation under flow, whereas the 

receptor is not required for the adhesion process on collagen (Fig 3.10A).  
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Fig 3.9 CLEC-2-deficient platelets fail to form stable aggregates under flow. Whole blood from 
control or INU1-treated mice (8 µg/g body weight, d5) was perfused over a collagen- (A+C) or vWF-
coated surface (B) under anticoagulated conditions (whole blood in 20 U/ml heparin) at a shear rate of 
1,700 sec-1 (A+C) or 3,400 sec-1 (B). A. Initial platelet adhesion on collagen after 30 sec perfusion of 
the slide indicated as number of platelets per visual field. B. Platelet adhesion to vWF-coated surface 
after 150 sec of perfusion. C. Aggregate formation on collagen after 4 min of perfusion. Top: 
representative phase contrast images. Bar, 100 µm. Bottom: Mean surface coverage (left) and relative 
thrombus volume expressed as integrated fluorescence intensity (IFI) per mm2 (right) ± SD of 
n=6 mice per group, **p<0.01. (May F et al., Blood, 2009104.) 

To test whether the thrombus instability was based on impaired platelet activation per se, we 

performed further flow adhesion studies with whole blood in Acid Citrate Dextrose (ACD) 

buffer causing non-anticoagulated conditions. In contrast to heparinized anticoagulated 

whole-blood where thrombin formation is inhibited, under non-anticoagulated conditions 

thrombin generation is allowed. Under these conditions, both control and CLEC-2-deficient 

platelets formed large stable thrombi (Fig 3.10C), indicating that in the presence of high 

amounts of thrombin, platelet activation via CLEC-2 signaling is not essential for thrombus 

stabilization in this flow-system. Similarly, co-infusion of a mixture of ADP (10 µM) and the 

stable thromboxane analog U46619 (1 µM) into anticoagulated blood shortly before entering 

the flow chamber likewise resulted in the formation of large and stable aggregates in both 

control and CLEC-2-deficient blood (data not shown).  

Taken together, these data indicate that CLEC-2 functions as an activatory receptor in 

platelets that is required for thrombus stabilization under conditions where other agonists are 

not present in concentrations sufficient to fully activate the cells. 
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Fig 3.10 Aggregate formation of CLEC-2-deficient platelets. Whole blood from control or INU1-
treated mice (8 µg/g body weight, d5) was perfused over a collagen-coated surface (0.2 mg/ml). Left: 
representative phase contrast images. Right: Mean surface coverage and relative thrombus volume 
expressed as integrated fluorescence intensity (IFI) per mm2 ± SD. Bar, 100 µm. **p<0.01. A. 
Aggregate formation on collagen after 4 min perfusion time under anticoagulated conditions (whole 
blood in 20 U/ml heparin) at a shear rate of 1,000 sec-1. n=5 mice per group. B. Aggregate formation 
on collagen after 4 min perfusion time under anticoagulated conditions (whole blood in 20 U/ml 
heparin) at a shear rate of 3,400 sec-1. n=4 mice per group. C. Aggregate formation on collagen after 
4 min perfusion time under non-anticoagulated conditions in ACD-buffer. n=6 mice per group. (May F 
et al., Blood, 2009104.) 
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3.1.9 Increased tail bleeding times in CLEC-2-deficient mice 

To test whether the INU1-induced CLEC-2 deficiency had an impact on hemostasis, a tail 

bleeding time assay was performed. To this end, mice were anesthetized and upon a 1 mm 

dissection of the tail tip the blood was absorbed with a filter paper avoiding contact with the 

wound site. In this series of experiments it was found that whereas bleeding stopped in all 

(22/22) control mice during the 20-min observation period (mean bleeding time: 6.1 ± 

3.9 min), bleeding times were variable and overall increased in INU1-treated mice, with 8 

(33.3%) of 24 mice bleeding for more than 20 min and a mean bleeding time of 10.8 ± 6.0 

min for the other animals (p<0.05; Fig 3.11). However, even those animals that were not able 

to arrest bleeding within the observation period displayed a rather mild blood loss (data not 

shown). These results show that CLEC-2 plays a significant role in normal hemostasis under 

the conditions of this experiment. 

 

 

Fig 3.11 Tail bleeding times in control and CLEC-2-deficient mice. Mice received vehicle (PBS) 
or INU1 (8 µg/g body weight) and were analyzed on d5 p.i.. A. Each symbol represents one 
individual. Tail bleeding times were performed by amputation of a 1 mm segment of the tail tip of 
anesthetized mice and subsequent absorbance of the blood drop with a filter paper. B. Representative 
pictures of a filter paper from control (upper panel) and INU1-treated mice (lower panel). Note the size 
of the blood drop as a measure of the severity of blood loss. (May F et al., Blood, 2009104.) 

 

3.1.10 CLEC-2-deficient mice in models of arterial thrombosis and ischemic stroke 

3.1.10.1 CLEC-2-deficient mice are protected from FeCl3-induced arterial thrombus 
formation  

As platelet aggregation is a major pathomechanism in acute ischemic cardiovascular events, 

we studied the effects of CLEC-2 deficiency on pathologic occlusive thrombus formation by 

in vivo fluorescence microscopy after ferric chloride (FeCl3)-induced mesenteric arteriole 
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injury. To do so, the mesentery of the animals was exposed and injury was induced by 

topical application of a filter paper saturated with FeCl3 (20%). These experiments were 

performed in collaboration with Ina Hagedorn in our laboratories. In all control mice, the 

formation of small platelet aggregates was observed approximately 5-7 min after injury, with 

progression to complete vessel occlusion within 20 min (mean occlusion time: 16.4 ± 

2.2 min; Fig 3.12). Interestingly, initial adhesion and formation of small aggregates occurred 

with similar kinetics in CLEC-2-deficient mice (6.9 ± 1.5 min versus 6.5 ± 1.5 min in control, 

p>0.05), showing that the receptor CLEC-2 is not essential for the first step of platelet 

adhesion/activation. Remarkably, in contrast to controls, progression to stable large thrombi 

was almost completely abrogated in CLEC-2-deficient animals. This defect was to a great 

extent caused by the release of individual platelets from the thrombus surface, but also 

embolization of small thrombus fragments was observed. Consequently, the blood flow was 

maintained throughout the 40-min observation period in all CLEC-2-deficient mice and thus 

the treated animals were protected from arterial thrombosis. These results indicate that in 

this model of vessel wall injury CLEC-2 plays a crucial role in the process of occlusive 

thrombus formation. 

 

 

Fig 3.12 Defective thrombus formation in CLEC-2-deficient mice. Mice received vehicle (PBS) or 
INU1 (8 µg/g body weight) and were analyzed on d5 p.i.. (A-C) Mesenteric arterioles were injured with 
FeCl3 and adhesion and thrombus formation of fluorescently-labeled platelets were monitored in vivo 
by fluorescence microscopy. A. Time to appearance of first thrombus >10 µm, and B time to vessel 
occlusion are shown. Each symbol represents one arteriole. C. Representative images are depicted. 
Bar, 50 µm. The asterisk indicates occlusion of the vessel. Data are representative of two individual 
experiments. (May F et al., Blood, 2009104.) 
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3.1.10.2 CLEC-2 deficiency does not protect from mechanically induced occlusive 
thrombus formation in the aorta 

To further analyze the role of CLEC-2 in pathological thrombus formation, INU1-treated 

CLEC-2-deficient mice were subjected to a thrombosis model where injury is mechanically 

induced in the aorta by a single, firm compression with a forceps, and blood flow is monitored 

with an ultrasonic perivascular Doppler flow-meter (Fig 3.13). These experiments were 

performed in collaboration with Ina Hagedorn in our laboratories.  

After a transient increase directly after injury, blood flow progressively decreased for several 

minutes in all animals. In all tested control mice (7/7), this decrease resulted in complete and 

irreversible occlusion of the vessel within maximally 7 min thereafter. Surprisingly, CLEC-2 

deficiency did not protect from occlusive thrombus formation in this model (7/7), although a 

trend to a later occlusion was found in INU1-treated animals (mean occlusion time 4.6 ± 

1.2 min versus 7.1 ± 3.0 min, Fig 3.13). To analyze whether the observed effect is 

statistically significant, more mice will be subjected to this model in the near future. 

 

 

Fig 3.13 CLEC-2-deficient mice form stable thrombi in the aorta model. A. Representative graph 
of blood flow of a control (black) and INU1-treated CLEC-2-deficient mouse (gray) after mechanical 
injury of the aorta (at t=0). B. Occlusion time upon injury of the aorta. The aorta of all control and 
INU1-treated mice occluded during the 30-min observation period. Each symbol represents one 
individual, n= 7. 

 

3.1.10.3 CLEC-2 deficiency has no significant impact on the outcome in a model of 
ischemic brain infarction 

Ischemic stroke is the third leading cause of death and disability in industrialized countries108. 

Although it is well established that microvascular integrity is disturbed during cerebral 

ischemia109, the signaling cascades involved in intravascular thrombus formation in the brain 

are still poorly understood. To determine the importance of CLEC-2 deficiency in this 

process, the development of neuronal damage in CLEC-2-deficient mice following transient 

cerebral ischemia was studied in a model that depends on thrombus formation in the 
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microvasculature downstream of an induced occlusion of the middle cerebral artery 

(MCA)110. These experiments were conducted by Stephan Bräuninger and performed in 

collaboration with the Neurology Department of the University of Würzburg. To initiate 

transient cerebral ischemia, a thread was advanced through the carotid artery into the MCA 

and allowed to remain for one hour (transient MCA occlusion, tMCAO), reducing regional 

cerebral flow by >90%83. After one hour the filament was removed to allow reperfusion and 

the animals were followed for another 24 h. Then, the brains were harvested and 2,3,5-

triphenyltetrazolium chloride (TTC) staining was performed to analyze the extent of the 

infarct size of the contralateral hemisphere. In CLEC-2-deficient animals, infarct volumes 

24 h after reperfusion were not significantly reduced compared to controls. The infarct size of 

controls was calculated to 50.9 ± 16.4% versus 42.7 ± 11.5% in INU1-treated animals. 

Although the values were not significantly decreased in CLEC-2-deficient animals, a trend to 

a better outcome was observed (Fig 3.15A). In consequence, the Bederson score assessing 

the global neurological function in surviving mice 24 h post operation was also not 

significantly altered compared to controls (3.1 ± 0.4 versus 3.0 ± 0.6, values 0-5, 0= best 

value, Fig 3.14B). Furthermore, the grip test, which specifically measures motor function and 

coordination of the challenged animals, was not significantly different in CLEC-2-deficient 

mice compared to controls (2.5 ± 1.1 versus 2.7 ± 1.4, values 0-5, 5= best value, Fig 3.14C). 

However, as a trend to less neurological deficits was observed and in order to further 

analyze whether treatment with INU1 could possibly lead to a better outcome in stroke, more 

mice will be subjected to this model in the near future. 

 

 

Fig 3.14 CLEC-2-deficient mice are not protected in a model of tMCAO. A. The sizes of induced 
brain infarcts following tMCAO in control (n=8) and INU1-treated (n=6) mice in percent of contralateral 
hemisphere are not significantly reduced in INU1-treated mice although a trend is observed. B+C. 
Neurological Bederson score (middle) and grip test (right) assessed at day 1 following tMCAO of 
control (n=8) and INU1-treated (n=6) mice. 
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3.1.11 INU1-Fab-fragment-induced lethality in mice  

In the above described experiments (Fig 3.5, Fig 3.6), a single batch of INU1-Fab-fragments 

was used, previously generated by enzymatic digestion of the full IgG using papain. Here, 

similar to the full INU1-IgG, treatment with INU1-Fab led to a profound thrombocytopenia in 

mice. However, similar to treatment with the full IgG all of the INU1-Fab-treated mice 

survived the treatment (data not shown).  

To further analyze the effect of treatment with INU1-Fab, a second batch of INU1-Fab was 

generated using the same method. This batch was tested in aggregometry where it -as 

expected- failed to induce platelet aggregation. However, upon addition of α-rat IgG, full 

aggregation of platelets was observed (data not shown). Furthermore, flow cytometry studies 

confirmed that INU1-Fab-fragments (20 µg/ml) fully blocked the binding site of the antibody 

on washed mouse platelets in vitro (data not shown). Additionally, in line with previous 

results of the first batch presented before (see chapter 3.1.5) the CLEC-2-specific agonist 

rhodocytin (0.24 µg/ml f.c.) failed to induce activation of INU1-Fab-treated platelets but not of 

control platelets in aggregometry, as well as in flow cytometry (data not shown). These 

results indicated that the generated INU1-Fab-fragments were fully functional.  

However, very unexpectedly, and in sharp contrast to the described initial experiments, in 

vivo administration of the second batch of INU1-Fab resulted in immediate lethality in mice. 

Animals treated with 100 µg INU1-Fab under short-term ether anesthesia displayed muscle 

spasms, paralysis, and symptoms of suffocation leading to death of all treated animals 

(10/10, Fig 3.15A) within 30 min after i.v. injection, whereas all controls (10/10, PBS treated) 

survived this challenge. However, inner bleeding or damage of internal organs was not 

visible (data not shown). Some of the observations made, could point to an anaphylactic 

shock reaction such as peripheral cyanosis observed on the tail veins of the treated animals. 

Other observations rather suggested an acute thrombotic event such as paralysis that is 

often observed upon stroke. 

As these symptoms were totally unexpected and to exclude that contamination during 

preparation of the second batch caused this effect, a third batch of INU1-Fab was generated. 

The full IgG was enzymatically digested with papain utilizing the same method. As before, 

upon injection of 200 µg of INU1-Fab (third batch), the same symptoms were immediately 

observed (10-30 min after injection) causing mortality in the treated animal (1/1, data not 

shown). Even a lower dose of INU1-Fab (100 µg) induced lethality in a further treated mouse, 

whereas all control mice treated with PBS survived (3/3) (data not shown). 

To further analyze this phenomenon, a fourth batch of INU1-Fab-fragments was generated 

using a modified method where the full IgG was digested with pepsin to Fab2-fragments 

(10 mg were kept for further use) and subsequently to Fab-fragments with DL-dithiothreitol. 

The obtained fragments of the antibody were purified by gel filtration twice via a Superdex 
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200 column (SD) after each of the digestions, firstly with pepsin and secondly with DL-

dithiothreitol, excluding residual Fc-portions of the digested IgG in the preparation. By use of 

this method, 40 mg of INU1-Fab (termed INU1-FabSD) were generated.  

INU1-FabSD was again tested in aggregometry where it failed to induce aggregation of 

platelets in vitro but did so upon cross-linking with α-rat IgG as shown before (data not 

shown, compare Fig 3.5). Additionally, separation of the purified INU1-FabSD on SDS-PAGE 

further confirmed purity of the newly generated batch (data not shown), thereby excluding a 

possible contamination during preparation.  

In all following experiments, mice were treated with INU1-FabSD or PBS only under long-term 

deep anesthesia using the narcotics fentanyl, dormitor and dormicum. To further determine 

whether treatment with INU1-FabSD also induced lethality, deeply anesthetized mice were 

treated with 100 µg of the antibody fragment. Under these conditions, all INU1-FabSD treated 

mice died within 30 min (3/3, Fig 3.15B). This process took significantly longer when 

compared to mice treated with INU1-Fab (third batch) under short-term anesthesia, probably 

due to a lower blood pressure under these conditions. In contrast, mice treated with either 

the full IgG or Fab2-fragments of the antibody (INU1-Fab2) survived the treatment and 

showed no symptoms of circulation problems similar to controls. To detect whether the lethal 

effect of INU1-Fab was platelet-mediated, mice were depleted of platelets by treatment with 

100 µg of the α-GPIbα antibody p0p4 1 h prior to experiments103. Interestingly, all platelet-

depleted mice (3/3, Fig 3.15C) survived the following treatment with INU1-FabSD, thus 

pointing to a role of platelets in this process. Furthermore, mice depleted of CLEC-2 on d5 

after INU1-treatment also survived treatment with INU1-FabSD (3/3, Fig 3.15C). This 

indicated that the observed lethality was indeed platelet- and CLEC-2-mediated and further 

strengthens the hypothesis that lethality was not due to non-specific toxicity of the INU1-

FabSD solution itself. Interestingly, even very low doses of INU1-FabSD (5 µg/ mouse) were 

lethal within 30 min in all treated animals (3/3, Fig 3.15C).  

To further analyze the role of platelets in INU1-FabSD-mediated lethality, mice were treated 

with Fab-fragments of the antibodies p0p/B and JON/A (1 h prior to experiments) to induce 

blockage of platelet GPIbα and GPIIb/IIIa, respectively. GPIIb/IIIa (also known as integrin 

αIIbβ3) is a prominent target for anti-thrombotic therapy as blockage of the integrin 

profoundly inhibits platelet aggregation111. Therefore, it was unexpected that even under 

GPIIb/IIIa blockage 66.7% of the INU1-FabSD treated animals died (2/3, Fig 3.15D). 

Furthermore, blockage of GPIbα did not decrease mortality in INU1-FabSD treated animals as 

all INU1-FabSD treated mice died (3/3, Fig 3.15D). These results indicate that INU1-FabSD-

induced lethality in mice is platelet- and CLEC-2-dependent since platelet- as well as 

CLEC-2-depleted mice were protected from lethality. However, blockage of the platelet 

glycoproteins GPIbα as well as GPIIb/IIIa did not protect from INU1-FabSD-induced lethality. 
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Fig 3.15 INU1-Fab-induced lethality in mice. Lethality in mice upon treatment with INU1-Fab-
fragments (INU1-Fab) expressed as mortality in per cent of all treated animals. Controls were treated 
with sterile PBS. A. Treatment with INU1-Fab (100 µg) under ether anesthesia. B. Full IgG or Fab2-
fragments of INU1 (INU1-Fab2, 100 µg) are not lethal, whereas INU1-FabSD (100 µg) leads to 100% 
mortality. C. To induce depletion of platelets, mice were treated with the antibody p0p4 (100 µg) 1 h 
prior to experiments. For CLEC-2 depletion, animals were treated with INU1-IgG (200 µg, 5 days prior 
to experiments). These groups received 50 µg INU1-FabSD. Treatment with 25 µg and 5 µg of INU1-
Fab was lethal in all tested animals. These results are representative of two individual experiments. D. 
For blockage of GPIbα or GPIIb/IIIa, mice were treated with Fab-fragments of the antibodies p0p/B 
and JON/A, respectively (100 µg) 1 h prior to experiments and then treated with INU1-FabSD (50 µg).  

Upon injection of INU1-FabSD, in long-term anesthetized mice symptoms of hypoxia were 

observed (data not shown). This led to the hypothesis that upon treatment with INU1-FabSD, 

micro-thrombi of clustered platelets could possibly block small arterioles and capillaries in the 

lung leading to pulmonary embolism or might potentially also cause cerebral ischemia. To 

test this hypothesis, long-term deep anesthetized mice were treated with PBS (control) or 

INU1-FabSD (100 µg) and organs were perfusion fixated by injection of 4% paraformaldehyde 

(PFA) into the beating heart 10 min after treatment. Organs were harvested, fixed in 4% 

PFA, cut into 5 µm thin sections and stained with hematoxylin-eosin. Interestingly, no major 

differences were observed between samples of INU1-FabSD treated mice and controls (data 

not shown). However, as the perfusion fixation was performed with rather high pressure, it 

could not be excluded that micro-thrombi or emboli were flushed away. To further test this 

hypothesis, organs of mice treated under the same conditions as described above were 

harvested and fixed using liquid N2. These samples will be analyzed in the near future.  
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3.2 Generation of the second anti-murine CLEC-2 antibody INU2 

To further characterize the mechanism of INU1-mediated down-regulation of CLEC-2 in 

platelets, additional anti-CLEC-2 antibodies were required e.g. to detect possibly cleaved 

fragments of the receptor in mouse plasma by a specific ELISA- or western blot-system as 

well as for further FACS analyses. For this purpose, two additional fusions of spleen cells 

from rats immunized with washed platelets were performed. Both fusions did not result in 

generation of any specific α-CLEC-2 antibody (data not shown). Therefore, repeated 

immunizations of three rats with native CLEC-2 protein were performed, previously immuno-

precipitated from wild-type platelet lysate using INU1. However, these three fusions also 

failed and no specific α-CLEC-2 antibodies were generated (data not shown).  

As the washed platelet and native CLEC-2 approach were not successful in antibody 

generation, a third method was considered by using the previously generated mCLEC-2 

Fc-fusion protein. For this purpose, three rats were repeatedly immunized with the mCLEC-2 

Fc-fusion protein. The antibody titer in the serum of the immunized rats was tested on mouse 

platelet lysate by western blot analysis. From all tested animals, only serum from rat no. 1 

produced a detectable band at the expected size of murine CLEC-2 (32-33 kDa) and showed 

the highest antibody titer (data not shown). Therefore, the spleen from rat no. 1 was used for 

the generation of antibody-producing hybridoma cells as described above (see chapter 

3.1.1). Approximately 1,400 hybridoma populations were obtained and screened for antibody 

production in the ELISA system using the mCLEC-2 Fc-fusion protein. To identify false-

positive clones that non-specifically bound to the Fc-part of the fusion protein, a second 

ELISA was performed in parallel with the mGPVI Fc-fusion protein. By this method, 

12 polyclonal hybridoma populations were detected that produced antibodies specifically 

directed against the mCLEC-2 Fc-fusion protein (data not shown). 

These antibodies were seeded into 24-well plates and further tested by flow cytometry on 

mouse platelets. Unfortunately, none of the tested hybridoma clones produced antibodies 

that specifically bound to platelets (data not shown). However, the clones were again tested 

in the established ELISA system and one clone (clone 8C7) still yielded strong signals 

specifically directed against the mCLEC-2 Fc-fusion protein but not against the control 

mGPVI Fc-fusion protein (Fig 3.16A). Therefore, 8C7 was subcloned twice, and as it stably 

expressed the antibody, the clone was cultured in RPMI medium containing 5% FCS. 

Approximately 70 mg of the antibody were purified.  

Thereafter, the antibody 8C7 was further tested on mouse platelet lysate by western blot 

analysis. Under reducing and non-reducing conditions a specific band of the approximate 

size of CLEC-2 at ~32-35 kDa was observed in platelet lysate. Furthermore, the antibody 

also detected the mCLEC-2 Fc-fusion protein (Fig 3.16B) as well as CLEC-2 protein that was 

pulled down from platelet lysate using INU1 (Fig 3.16C).  
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The antibody 8C7 was again tested on resting or activated platelets in flow cytometry where 

it failed to detect native CLEC-2 or any other protein on the surface of platelets (data not 

shown). However, as it clearly detected mCLEC-2 Fc-fusion protein in ELISA and in western 

blot, as well as a protein of the size of CLEC-2 from platelet lysate and immunoprecipitations 

in western blot under reducing conditions, it seems likely that 8C7 binds an epitope of 

CLEC-2 that is not recognized by the antibody under native conditions on the platelet surface 

but exclusively under denaturing conditions. Thus, this second rat monoclonal antibody 

against mouse CLEC-2 was termed INU2. 

 

 

Fig 3.16 The novel antibody INU2 recognizes murine CLEC-2. A. Binding of INU2 to mCLEC-2 Fc-
fusion protein (mCLEC-2-Fc) was tested by ELISA. As control, binding of the α-GPVI antibody JAQ1 
to mGPVI Fc-fusion protein (mGPVI-Fc) was used. B. Western blots from murine platelet (pltl.) lysate 
and fusion proteins. INU2 detected a protein of ~32-35 kDa under non-reducing (n.r., left panel) and 
reducing (red.) conditions from platelet lysate and the mCLEC-2 Fc-fusion protein. C. 
Immunoprecipitation of CLEC-2 from platelet lysate using INU1. Platelets were lysed and incubated 
with 10 µg/ml INU1 followed by immunoprecipitation with protein G-Sepharose. Proteins were 
separated on a 12% SDS-PAGE under reducing or non-reducing conditions and detected by INU2 and 
α-rat HRP. Results are representative of 2-3 individual experiments. 
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3.3 Abolished arterial thrombus formation and severely defective hemostasis 
in GPVI/CLEC-2 double-deficient mice  

3.3.1 Independent antibody-mediated down-regulation of GPVI and CLEC-2 in 
platelets in vivo 

On human platelets it was demonstrated that individual activation of both ITAM-coupled 

receptors, GPVI and FcγRIIa, led to a proteolytic inactivation of both receptors 

simultaneously; a process that was termed trans-inhibition. However, the FcγRIIa receptor is 

not present on mouse platelets and it is not known whether a similar mechanism of trans-

inhibition exists for GPVI and CLEC-2 on human or mouse platelets94. To address this 

question, the basal surface expression of both GPVI and CLEC-2 following INU1- or JAQ1-

induced receptor deficiency on mouse platelets was analyzed by flow cytometry. As 

expected, JAQ1-treatment induced the complete loss of GPVI on the surface of platelets66, 

however, it had no effect on basal surface expression levels of CLEC-2. Likewise, INU1-

treatment induced the complete loss of CLEC-2 from the platelet surface but had no effect on 

GPVI expression (Fig 3.17A). Moreover, CRP-induced GPVI signaling in CLEC-2-depleted 

platelets was not affected and vice versa in GPVI-depleted platelets stimulation of CLEC-2 

signaling by rhodocytin (RC) was unaltered (Fig 3.17B). These results indicate that trans-

inhibition of (hem)ITAM-bearing receptors in murine platelets does not occur in vivo and that 

the independent down-regulation of either of the two proteins is possible without affecting 

signaling of the respective other receptor. 

 

 

Fig 3.17 Surface expression and signaling of GPVI and CLEC-2 upon INU1- and JAQ1-
treatment. Mice received 100 µg JAQ1 or 200 µg INU1 i.v. and were analyzed 5-6 days p.i.. Results 
are expressed as mean fluorescence intensity (MFI) ± SD. A. Expression levels of GPVI (upper) or 
CLEC-2 (lower panel) on the platelet surface were determined by flow cytometry. B. Representative 
dot plots of αIIbβ3 integrin activation (binding of JON/A-PE) and degranulation-dependent P-selectin 
exposure in response to the indicated agonists CRP (10 µg/ml) and rhodocytin (RC, 1 µg/ml) from 
control, JAQ1- or INU1-treated mice. (Bender M§, May F§ et al., in revision). 
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3.3.2 In vitro analysis of platelet function upon antibody-induced GPVI and CLEC-2 
double-deficiency 

It has been speculated previously14 that the (hem)ITAM receptors in platelets, GPVI and 

CLEC-2, may compensate for each other in preventing blood loss because, patients80,101,112 

as well as mice67,113-114 lacking GPVI displayed only mild bleeding tendencies. To investigate 

whether GPVI and CLEC-2 have redundant functions in hemostasis as well as in thrombosis 

animals deficient in both receptors were analyzed.  

Therefore, mice were injected i.v. with the α-GPVI antibody JAQ1 (100 µg), the α-CLEC-2 

antibody INU1 (200 µg), or both antibodies in combination (JAQ1+INU1). In all antibody 

treated animals, a rapid thrombocytopenia was induced immediately (~30 min) upon injection 

of the respective antibody (Fig 3.18). However, in line with a previous study from our group, 

the JAQ1-induced thrombocytopenia was quickly reversible and platelet counts of the treated 

animals came back to ~80% of controls one day p.i. and fully recovered on d5 p.i. (Fig 

3.18)66. In contrast, a more sustained thrombocytopenia was observed in mice treated with 

INU1 with recovery to normal platelet count levels on d4 post injection, as described earlier 

(see also Fig 3.6A). Similarly, upon combined treatment with JAQ1+INU1 platelet counts 

were found to recover fully on d5 p.i. (Fig 3.18). Remarkably, whereas in INU1- and 

JAQ1+INU1-treated mice an overshooting platelet production was observed on d5-6 p.i., this 

effect was not found in JAQ1-treated animals. As in the latter animals thrombocytopenia was 

quickly reversible this could suggest different mechanisms of receptor down-regulation and 

the subsequent thrombocytopenia upon treatment with JAQ1 or INU1. This hypothesis was 

underlined by a study from our group showing that upon JAQ1-treatment the same platelets 

were released to the blood stream after cleavage of the GPVI receptor which is assumed to 

take place in the spleen66.  

 

 

Fig 3.18 Antibody-induced thrombo-
cytopenia and recovery of platelet 
counts. Mice received 100 µg JAQ1, 
200 µg INU1 or a mixture of both 
antibodies (JAQ1 + INU1) i.v. and 
platelet counts were determined by flow 
cytometry at the indicated time points 
p.i. (0.02 days=~30 min). Results are 
expressed as the mean platelet count in 
percent of control ± SD for groups of 
each n=4 mice and are representative 
of 3 individual experiments. (Bender M§, 
May F§ et al., in revision). 
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In contrast, upon INU1- and JAQ1+INU1-treatment, CLEC-2-depleted platelets found in the 

blood stream were increased in size (Tab 3.2) compared to platelets from the same animals 

before treatment or controls and the animals showed a more profound thrombocytopenia 

until platelet counts returned back to normal, indicating that the production of new platelets 

from megakaryocytes in the bone marrow was necessary. To investigate the effect of the 

double-depletion, using JAQ1+INU1, on platelet function, basal surface expression levels of 

glycoproteins were analyzed via flow cytometry. 

It was found that platelets from JAQ1+INU1-treated mice -as expected- specifically lacked 

GPVI and CLEC-2 whereas expression of other surface proteins was largely unaltered (Tab 

3.2). Expression of the glycoprotein (GP) IX was found to be only mildly increased, whereas 

expression of the integrin α2β1 was slightly decreased. These effects were, however, 

assumed to be of minor importance to the physiological function of the cells as the changes 

in expression rate were very low. Notably, the platelet size of double-deficient animals was 

significantly increased compared to controls most probably due to the rapid and massive 

production of new platelets following the induced thrombocytopenia in the double-deficient 

animals.  
 

 
control JAQ1+INU1 

 
GPVI   53 ± 3   7 ± 1 *** 

CLEC-2   130 ± 23   6 ± 1 *** 

GPIb   388 ± 29  395 ± 23 n.s. 

GPIX   476 ± 36  524 ± 16 * 

GPV   332 ± 24  337 ± 15 n.s. 

CD9   1364 ± 116 1238 ± 40 n.s. 

αIIbβ3  679 ± 39  684 ± 35 n.s. 

α2   49 ± 2  44 ± 3 * 

β1  153 ± 9 130 ± 3 ** 

plt. size      357 ± 19.7     421 ± 40.2 *** 

Tab 3.2 Platelet size and glycoprotein 
expression in control and JAQ1+INU1-
treated mice. Expression of glycoproteins 
(GP) on the platelet surface was determined 
by flow cytometry on d5 p.i. of PBS (control) 
or JAQ1+INU1 (100 µg + 200 µg) treated 
mice. Diluted whole blood from the indicated 
mice was stained with fluorophore-labeled 
antibodies at saturating concentrations and 
platelets were analyzed on a FACSCalibur. 
Platelets were gated by FSC/SSC 
characteristics. Results are expressed as 
mean fluorescence intensity ± SD for n=6 
mice per group. Mean platelet (plt.) size is 
given as mean FSC and was determined by 
FSC characteristics. Abbreviation: n.s.= not 
significant. *p<0.05, **p<0.01, ***p<0.001. 
(Bender M§, May F§ et al., in revision). 

 

To further investigate whether the lack of both receptors had an impact on other signaling 

pathways of the platelets, flow cytometric analyses were performed after activation of the 

cells with different agonists. On d5 p.i. double-deficient platelets were refractory to the GPVI-

specific agonist convulxin and to the CLEC-2-specific agonist rhodocytin, respectively, as 

neither activated integrin αIIbβ3 (Fig 3.19A) nor degranulation-dependent P-selectin 

exposure was observed on the surface of the cells (Fig 3.19B). The same results were 

obtained on d6 p.i. (data not shown). Interestingly, no significant differences in integrin αIIbβ3 
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activation upon stimulation with the agonists ADP, U46619, combination of ADP+U46619 

and thrombin were observed compared to controls (Fig 3.19A). However, degranulation-

dependent P-selectin exposure was slightly but significantly decreased upon stimulation with 

thrombin in double-deficient animals, whereas responses to ADP and combination of 

ADP+U46619 were not significantly altered (Fig 3.19B, d5 p.i.). This observation is in line 

with a thrombin defect that has been reported in JAQ1-treated animals on d3 p.i. of the 

antibody by our group115, which is -however- described to be lost at later time points. To test 

whether in double-deficient mice the thrombin defect was also lost at later time points, the 

same activation studies in double-deficient platelets were again performed on d6 p.i. where 

the thrombin-defect was -as expected- found to be further minimized (Fig 3.19C+D).  

 

 

Fig 3.19 Flow cytometric analyses of GPVI-CLEC-2 double-deficient platelets. Integrin αIIbβ3 
activation (JON/A-PE, A+C) and degranulation-dependent P-selectin exposure (B+D) in platelets. 
Animals were tested on d5 (A+B) or d6 (C+D) post injection of PBS (control, black) or antibody mixture 
JAQ1+INU1 (100 µg and 200 µg, respectively, gray). Washed blood was incubated with the indicated 
agonists and analyzed on a FACSCalibur. Data shown are mean fluorescence intensities (MFI) ± SD 
(n=5 mice per group, representative of three individual experiments). Abbreviations: ADP= adenosine 
diphosphate; U46= U46619; RC= rhodocytin; CVX= convulxin. ***p<0.001. (Bender M§, May F§ et al., 
in revision). 
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Under conditions used in flow cytometry studies, platelets and the activating agonists are 

significantly diluted. In contrast, under conditions of standard aggregometry, platelet 

aggregation is amplified by the released “second wave” mediators ADP and TxA2. To 

analyze whether this might augment the observed thrombin defect in GPVI-CLEC-2 double-

deficient platelets, the cells’ response to different agonists was tested in aggregometry 

studies (Fig 3.20). Similar to the results obtained by FACS, no aggregation was observed in 

double-deficient platelets upon activation with the GPVI-specific agonists collagen, CRP or 

convulxin and the CLEC-2-specific agonist rhodocytin at all concentrations tested (Fig 

3.20A). The thrombin-defect that was observed in flow cytometry studies (Fig 3.19) was also 

slightly visible under conditions of aggregometry. However, only intermediate concentrations 

of 0.0075 U/ml thrombin led to a significantly reduced aggregation in GPVI/CLEC-2 double-

deficient platelets compared to controls, whereas upon all other tested concentrations of 

thrombin the platelets aggregated normally (Fig 3.20B+C). Similar to the stimulation with 

intermediate thrombin concentrations, upon activation with intermediate concentrations 

(0.1 µM) of the TxA2 analog U46619, slightly reduced aggregation was observed in double-

deficient platelets. Again, compared to controls no significant differences were observed 

using high and low concentrations of the agonist (Fig 3.20B+C). Interestingly, upon activation 

with the agonist ADP, no detectable differences were found in CLEC-2/GPVI double-deficient 

platelets. As only small differences in the aggregation response were observed in double-

deficient platelets upon activation with intermediate concentrations of the agonists thrombin 

and U46619, it was proposed that this minor defect would have probably no major impact on 

platelet activation in vivo.  

Together, these results demonstrate that ITAM and hemITAM signaling pathways in 

GPVI/CLEC-2 double-deficient platelets are completely absent. However, overall normal 

responses to G protein-coupled agonists were preserved. 
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Fig 3.20 Aggregometry studies using GPVI-CLEC-2 double-deficient platelets. Washed platelets 
from control (black) or JAQ1+INU1-treated (gray) mice were stimulated with the indicated agonists and 
experiments were performed in the presence of 70 μg/ml human fibrinogen. Thrombin stimulation was 
performed in the absence of human fibrinogen. Light transmission was recorded on an aggregometer. 
ADP measurements were performed using platelet-rich plasma. The results shown are representative 
of 6 individual experiments. A+B representative aggregation curves. Abbreviations and concentrations 
used: Coll= collagen 10 µg/ml, CRP= collagen related peptide 20 µg/ml, CVX= convulxin 0.48 µg/ml, 
RC= rhodocytin 0.24 µg/ml. C. Bar graphs of results obtained by aggregometry. Abbreviations: thr= 
thrombin, U46= U46619, ADP= adenosine diphosphate. *p<0.05, **p<0.01, ***p<0.001. (Bender M§, 
May F§ et al., in revision). 
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3.3.3 In vivo analysis of antibody-induced GPVI and CLEC-2 double-deficiency in 
mice 

To analyze whether the receptors GPVI and CLEC-2 have redundant functions in 

hemostasis, tail bleeding times were determined in double-deficient mice. It was published 

previously that JAQ1-treated mice displayed only mildly prolonged bleeding times compared 

to controls66. Furthermore, in this thesis it was demonstrated that INU1-treated mice showed 

moderately increased and generally variable tail bleeding times (see Fig 3.11). Both results 

were accomplished in our laboratories using the filter paper method where upon amputation 

of the tail tip the resulting blood drops are absorbed by a filter paper without making contact 

with the wound site.  

Utilizing the same assay, notably, the depletion of both (hem)ITAM-bearing receptors 

virtually lead to a complete loss of hemostatic function evident by infinite tail bleeding times 

(Fig 3.22A) and the lack of reduction in blood drop size on the filter paper during the entire 

observation period of 20 min (Fig 3.22B). Thus, GPVI/CLEC-2 double-deficient mice had to 

be cauterized to prevent an excessive blood loss.  

In a second model of tail bleeding time comparable results were observed. Here, bleeding 

from the tail wound into saline (0.9% NaCl, 37°C) was monitored. Whereas in most control 

mice (14/15) bleeding stopped within 5 min after injury, 12 out of 18 double-depleted mice 

showed infinite bleeding times (Fig 3.22C) and none of the residual 6 animals could stop 

bleeding in less than 6 min. Additionally, the volume of blood loss as a measure of the 

severity of bleeding was analyzed in this model (Fig 3.22D). The lost blood volume was 

constantly very low in control (30.5 ± 107.5 µl), JAQ1- (90.9 ± 128.5 µl) and INU1-treated 

animals (7.8 ± 14.9 µl), whereas double-deficient mice suffered from an enormous blood loss 

(307.5 ± 223.8 µl). These results clearly demonstrate that the receptors GPVI and CLEC-2 

have redundant functions in hemostasis.  
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Fig 3.21 Infinite tail bleeding times in control and JAQ1+INU1-treated mice. Mice received vehicle 
(PBS) JAQ1 (100 µg), INU1 (200 µg) or JAQ1+INU1 (100 µg and 200 µg) and were analyzed on d5-6 
p.i.. A+C. Each symbol represents one individual. Tail bleeding times were performed by amputation 
of a 1 mm segment of the tail tip of anesthetized mice. A. Subsequently, the blood drop was absorbed 
with a filter paper every 20 sec and bleeding was determined to have ceased when no blood was 
observed on the filter paper. B. Representative pictures of a filter paper from control (left panel) and 
double-deficient mice (JAQ1+INU1, right panel). Note the size of the blood drop as a measure of the 
severity of blood loss. C. Upon amputation of the tail tip, the tails were positioned in 37°C saline (0.9% 
NaCl). Bleeding was determined to have ceased when it stopped for >1min. D. Blood loss was 
determined by weight against a NaCl filled reference. ***p<0.001. (Bender M§, May F§ et al., in 
revision). 

Additionally, the effect of double receptor depletion on pathological thrombus formation was 

studied in the FeCl3-induced injury model in mesenteric arterioles. In control mice, small 

aggregate formation was observed at 7.8 ± 1.2 min after injury (Fig 3.22A, left) with complete 

vessel occlusion at 16.4 ± 2.2 min. Formation of small aggregates followed similar kinetics in 

GPVI and CLEC-2 single-depleted mice, whereas in most cases the vessels did not occlude 

(GPVI-depleted: 8/12; CLEC-2-depleted: 7/10). Remarkably, the onset of small aggregate 

formation was significantly delayed in GPVI/CLEC-2-depleted mice compared to controls and 

single-deficient animals (Fig 3.22A, left) and the maximal vessel stenosis reached within the 

40-min observation period was strongly decreased compared to all other groups (Fig 3.22A, 
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right). As a consequence, blood flow was maintained in all vessels (12/12) of GPVI/CLEC-2-

depleted mice. These data demonstrate that the lack of both receptors, GPVI and CLEC-2, 

results in abolished occlusive thrombus formation further suggesting redundant functions of 

the two receptors in vivo.  

 

 

Fig 3.22 Abolished thrombus formation in JAQ1+INU1-treated mice. Mice received vehicle (PBS, 
control), JAQ1 (50 µg), INU1 (100 µg) or JAQ1+INU1 (50 µg and 100 µg) and were analyzed on d5-6 
p.i.. Mesenteric arterioles were injured with FeCl3 and adhesion and thrombus formation of 
fluorescently-labeled platelets was monitored in vivo by fluorescence microscopy. A. Time to 
appearance of first thrombus >10 µm (left panel) and vessel occlusion measured as maximal vessel 
stenosis (in percent of control, right panel) are shown. B. Representative images are depicted. Bar, 
100 μm. The asterisk indicates occlusion of the vessel. n= minimum 5 mice per group. Data are 
representative of two individual experiments. **p<0.01, ***p<0.001. (Bender M§, May F§ et al., in 
revision). 
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3.3.4  Analysis of Gp6-/-/CLEC-2-deficient mice 

As it could not be excluded that the JAQ1+INU1 antibody-induced deficiency of GPVI and 

CLEC-2 had unwanted side effects, the consequences of CLEC-2 deficiency were studied in 

newly generated GPVI knock-out mice (Gp6-/-, Bender M, May F et al., manuscript in 

preparation) on d5-6 after treatment with the α-CLEC-2 antibody INU1 (Gp6-/-/INU1). The 

Gp6-/- mice were generated by Markus Bender and the experiments were performed in 

collaboration in our laboratories.  

Comparable to the results obtained in control mice that were treated with INU1, Gp6-/- mice 

displayed a profound thrombocytopenia upon treatment with 200 µg INU1 (compare Fig 

3.6A, data not shown). Similarly, on days 5 and 6 post treatment the resulting Gp6-/-/CLEC-2-

deficient (Gp6-/-/INU1) mice showed normal platelet counts. Furthermore, these platelets fully 

lacked CLEC-2 expression (Fig 3.23A). It was thus decided to perform all further experiments 

on d5-6 p.i. of 200 µg INU1. To analyze whether platelets from these mice were 

physiologically functional and/or different to those obtained from JAQ1+INU1-treated mice, 

basal surface expression levels of glycoproteins were measured by flow cytometry. It was 

found that Gp6-/-/INU1 platelets -as expected- specifically lacked GPVI and CLEC-2, whereas 

expression of other surface proteins was largely unaltered compared to controls (wildtype, 

wt; Fig 3.23A). Similar to JAQ1+INU1-treated mice, increased expression levels of GPIb 

were noted in Gp6-/-/INU1 mice compared to controls, which could possibly be explained by 

the platelet size that was slightly but not significantly increased. Notably, expression levels of 

all other glycoproteins were not significantly altered. Likewise, increased platelet counts were 

observed in Gp6-/-/INU1-treated animals that were probably due to the rapid production of 

new platelets upon thrombocytopenia that was induced by the antibody treatment. These 

results showed that treatment of Gp6-/- mice with the α-CLEC-2 antibody INU1 had no overall 

impact on the expression levels of other platelet glycoproteins.  

To test whether the downstream signaling pathways of the cells were affected, flow 

cytometric studies upon activation were performed. Here, as expected and similar to 

GPVI/CLEC-2 double-depleted mice, Gp6-/-/INU1 platelets were refractory to the GPVI-

specific agonists CRP and convulxin and to the CLEC-2-specific agonist rhodocytin, 

respectively, whereas all other tested activation pathways were unaffected (Fig 3.23B+C). 

Notably, in Gp6-/-/INU1 platelets no defect in response to thrombin was observed even at 

intermediate concentrations of the agonist (data not shown). This strengthened the 

hypothesis that the observed thrombin defect in JAQ1+INU1-treated mice was mediated by 

JAQ1-treatment (see Fig 3.19 and Fig 3.20). Furthermore, these findings indicate that the 

specific down-regulation of CLEC-2 by treatment with INU1 is not only possible in wildtype 

but also in Gp6-/- mice.  
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Fig 3.23 CLEC-2-depleted Gp6-/- platelets lack GPVI and CLEC-2 signaling but show no major 
alterations in other signaling pathways. Analyses of platelet glycoprotein expression (A), integrin 
αIIbβ3 activation (JON/A-PE, B) and degranulation-dependent P-selectin exposure (C) was 
determined by flow cytometry on d5 p.i. of PBS (wt) or INU1 (200 µg, Gp6-/-/INU1) on a FACSCalibur. 
Results are expressed as mean fluorescence intensity (MFI) ± SD for n=6 mice per group. A. Mean 
platelet (plt.) size is given as mean FSC and was determined by FSC characteristics. Mean platelet 
count was determined using Sysmex and is given in platelets /µl *10-3. B+C. Washed blood was 
incubated with the indicated agonists. Abbreviations and agonist concentrations: n.s.= not significant, 
ADP= adenosine diphosphate: 10 μM; U46(619): 3 μM; thr.= thrombin: 0.01 U/ml; RC= rhodocytin: 
1 µg/ml; CRP= collagen related peptide: 10 μg/ml; CVX= convulxin: 1 µg/ml. **p<0.01, ***p<0.001. 
(Bender M§, May F§ et al., in revision). 

To further determine whether i) the two receptors GPVI and CLEC-2 play redundant roles in 

hemostasis and thrombosis and whether ii) the effect seen in JAQ1+INU1-treated mice was 

due to an antibody-induced side effect, tail bleeding times and pathological thrombus 

formation were analyzed in Gp6-/-/INU1 mice.  

In the tail bleeding time assay performed by the filter paper method, no significant increase of 

bleeding times in Gp6-/- mice was observed compared to controls. This finding was in line 

with results from other groups, who had analyzed the constitutive knock-out of GPVI and also 

found no alteration of bleeding times113-114. Furthermore, it was previously shown by our 

group that JAQ1 treatment alone only mildly affects hemostasis66,86,115 (see also Fig 3.21). 

Similar to double-depleted mice (JAQ1+INU1, Fig 3.21), Gp6-/-/INU1 mice showed a severe 

hemostatic defect with infinite bleeding times compared to controls (11/12, Fig 3.24A+B) 

mirroring the effect observed in JAQ1/INU1 antibody-induced double-deficient mice. Again, 

animals had to be cauterized to prevent an excessive blood loss. These results further 

underline the hypothesized redundant function of the two receptors GPVI and CLEC-2 in 

hemostasis.  
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Additionally, the effect of CLEC-2 receptor depletion in Gp6-/- mice on pathological thrombus 

formation was studied in the FeCl3-injury model in mesenteric arterioles. Here, in all control 

mice formation of small platelet aggregates was observed at 6.4 ± 0.9 min after injury with 

FeCl3 (Fig 3.24C, left) leading to complete vessel occlusion at 16.2 ± 2.0 min (Fig 3.24C, 

right). Remarkably, compared to controls the onset of small aggregate formation was 

significantly delayed in Gp6-/-/INU1-treated mice (Fig 3.24C, left). Furthermore, the ratio of 

thrombi size to vessel diameter was significantly decreased (data not shown). As a 

consequence, blood flow was maintained in the majority of all vessels (8/12, Fig 3.24C, 

right). Furthermore, even in the occluded vessels of Gp6-/-/INU1-treated animals a significant 

delay (4/12, 27.5 ± 4.6 min) was observed compared to controls (p= 0.013). The phenotype 

observed in Gp6-/-/INU1-treated mice was found to mirror the effect seen in JAQ1/INU1 

antibody-induced GPVI/CLEC-2 double-deficient mice.  
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Fig 3.24 Tail bleeding times and pathological thrombus formation in control and CLEC-2-
depleted Gp6-/- mice. Mice received vehicle (PBS, wt) or INU1 and were analyzed on d5-6 p.i.. A+B. 
Tail bleeding times were performed by amputation of a 1 mm segment of the tail tip and blood was 
absorbed with a filter paper every 20 sec. Bleeding was determined to have ceased when no blood 
was observed. A. Each symbol represents one individual. B. Representative pictures of a filter paper 
from control (upper panel) and CLEC-2-depleted Gp6-/- mice (Gp6-/-/ INU1, lower panel). Note the size 
of blood drop as a measure of the severity of blood loss. C+D. Mesenteric arterioles were injured with 
FeCl3 and adhesion and thrombus formation of fluorescently-labeled platelets was monitored in vivo 
by fluorescence microscopy. Data shown are representative of two individual experiments. 
A. Appearance of first thrombus (left) and time to vessel occlusion (right) are shown. Each symbol 
represents one arteriole. B. Representative images are depicted. Bar, 100 μm. The asterisk indicates 
occlusion of the vessel. (Bender M§, May F§ et al., in revision). 
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44  DDiissccuussssiioonn  

Platelets are a crucial component of the blood system as their activation and aggregation is 

essential to prevent blood loss and to seal vascular injuries. However, under pathological 

conditions, uncontrolled platelet aggregation may also cause arterial occlusion or embolism 

resulting in severe diseases such as myocardial infarction or stroke. Unfortunately, any 

currently available anti-thrombotic therapy of these diseases comes with unwanted side 

effects such as a high risk of bleeding. Therefore, not only the discovery of novel pathways of 

platelet activation but also the identification of new methods of platelet inhibition is essential 

for the development of future save anti-thrombotic therapies in human patients.  

The C-type lectin-like receptor 2 (CLEC-2) has been proposed as such a new anti-thrombotic 

target in several studies12,14. At the beginning of the presented thesis, the role of CLEC-2 in 

hemostasis and thrombosis was not known. In addition, neither an α-murine CLEC-2 

antibody nor a CLEC-2 knock-out mouse was available to analyze the role of CLEC-2 in 

experimental models of arterial thrombosis. Therefore, in the current study, the first α-murine 

CLEC-2 antibody, termed INU1, was generated. Importantly, it could be demonstrated for the 

first time that injection of INU1 in mice leads to the specific down-regulation of CLEC-2 from 

the platelet surface in vivo. This phenomenon of a “knock-out like” phenotype allowed the 

first studies to assess the role of CLEC-2 in hemostasis and thrombosis. In addition to 

treatment of mice with the full IgG of the antibody, also administration of INU1-Fab-fragments 

(INU1-Fab) was characterized in mice. Surprisingly however, treatment with INU1-Fab 

resulted in lethality and this very unexpected effect was further analyzed. Furthermore, 

during the course of this study a second α-murine CLEC-2 antibody, termed INU2, was 

successfully generated.  

Antibody-mediated down-regulation as a novel method of anti-thrombotic therapy had 

already been presented in a former work from our group, namely the transient 

“immunodepletion” of GPVI, the major platelet collagen receptor66. To investigate a potential 

reciprocal regulation of GPVI and CLEC-2 expression and signaling94, in the second part of 

the present thesis, antibody-induced double-deficiency of GPVI and CLEC-2 in mice was 

analyzed and revealed unexpected redundant functions of the receptors in hemostasis and 

thrombosis.  

 

4.1 Challenges during the generation of anti-mouse CLEC-2 antibodies 

In the current study, the first rat anti-murine CLEC-2 antibody, termed INU1, was generated 

(Fig 3.2). In the first attempt, only one clone from more than 1,500 resulting hybridoma 

clones stably expressed an α-CLEC-2 antibody. Two other fusions of spleen cells from 

further immunized rats were performed; each yielding similarly high numbers of tested 
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hybridoma clones; however, no useful α-CLEC-2 antibody was developed (data not shown). 

Three additional attempts where rats were repeatedly immunized with native CLEC-2 protein 

immuno-precipitated from platelet lysate using INU1 also failed to produce another α-CLEC-2 

antibody (data not shown). Thus, another fusion had to be performed using rats immunized 

with the mCLEC-2 Fc-fusion protein until the second α-murine CLEC-2 antibody, termed 

INU2, was successfully generated (Fig 3.16). This delicate proportion exemplifies the 

challenges underlying the generation of monoclonal antibodies. A reason why the antibody 

generation emerged to be difficult could be that the protein structure of mouse and rat 

CLEC-2 share a high homology of 90.0% (Fig 4.1) especially in the extracellular domain of 

the protein. Thus, native CLEC-2 protein present in murine platelet lysates or 

immunoprecipitations used for immunization may not be very antigenic in the rat. 

 

 

Fig 4.1 Alignment of rat and mouse CLEC-2 protein. Rat (CLEC-2_rattus, accession no. 
GU357482) and mouse (CLEC2_mus, accession no. BC064054) CLEC-2 protein share 90.0% aa 
identity. Alignment starts with the intracellular domain and ends with the extracellular domain (from left 
to right). 

 

4.2 The platelet activating receptor CLEC-2 is essential in the process of 
thrombus formation 

4.2.1 Treatment with INU1 leads to down-regulation of CLEC-2 in vivo 

In the present thesis it was demonstrated that treatment with INU1 led to loss of CLEC-2 on 

circulating platelets in mice. Also, it was shown that murine CLEC-2 can be specifically 

targeted and functionally inactivated by the antibody INU1 in vivo. Remarkably, this in vivo 

inhibition by far exceeded the inhibitory potential of the antibody in vitro, as it is not based 

only on blockade of the receptor. Rather, INU1 induced the irreversible loss of CLEC-2 from 

circulating platelets (Fig 3.6), a process previously reported only for GPVI in mouse and 

human platelets upon treatment of mice with the specific α-GPVI antibodies JAQ1, 2 and 366. 

The complete loss of functional CLEC-2 in platelets of INU1-treated mice was confirmed by 

different approaches: Firstly, these platelets were completely refractory to activation with 

CLEC2_rattus      MQDEDGYITLNIKPRKQALSSAEPASSWWRLTALILLISTMGLVAGLVALGIMSVTQQKY 60 
CLEC2_mus         MQDEDGYITLNIKPRKQALSSAEPASSWWRVMALVLLISSMGLVVGLVALGIMSVTQQKY 60 
                  ******************************: **:****:****.*************** 
 
CLEC2_rattus      LLAEKENLSATLQQLAKKFCQELIRQSEIKTKSSFEHKCSPCATKWRYHGDSCYGFFRRN 120 
CLEC2_mus         LLAEKENLSATLQQLAKKFCQELIRQSEIKTKSTFEHKCSPCATKWRYHGDSCYGFFRRN 120 
                  *********************************:************************** 
 
CLEC2_rattus      LTWEDSKLFCSEQNATLVKTASQSTLKYITDRITSVRWIGLSRQNSKKDWMWEDSSVLHN 180 
CLEC2_mus         LTWEESKQYCTEQNATLVKTASQSTLDYIAERITSVRWIGLSRQNSKKDWMWEDSSVLRK 180 
                  ****:** :*:***************.**::***************************:: 
 
CLEC2_rattus      NSIDLSRNTEENMNCAYLHNGKIHPASCTERHYLICERNAALTRVEQLL 229 
CLEC2_mus         NGINLSGNTEENMNCAYLHNGKIHPASCKERHYLICERNAGMTRVDQLL 229 
                  *.*:** *********************.***********.:***:*** 
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rhodocytin (Fig 3.6, Fig 3.7, Fig 3.8), whereas Fab-fragments of the antibody (INU1-Fab) had 

only limited inhibitory potential in vitro (Fig 3.5). Secondly, flow cytometric analyses 

confirmed the complete loss of CLEC-2 from the surface of circulating platelets within 24 h 

after INU1 injection (Fig 3.6), and thirdly, immunoprecipitation confirmed a prolonged 

absence of the protein for at least 5 days (Fig 3.6).  

The route of CLEC-2 down-regulation has not yet been identified, but mClec-2A expressed in 

human embryonic kidney 293T cells was shown to be proteolytically cleaved to produce a 

soluble extracellular fragment27. This indicates that the loss of CLEC-2 could occur through 

ectodomain shedding, but also internalization/degradation might contribute to this process. 

Studies from our laboratory have previously demonstrated that antibody-induced down-

regulation of GPVI can occur through both of these routes, ectodomain shedding as well as 

internalization/degradation, and that these are regulated by diverging signaling pathways 

downstream of the receptor in vivo85,89. These are, however, difficult to assess as neither 

GPVI66,78,101-102
 nor CLEC-2 can be down-regulated in murine platelets by antibodies in vitro. 

This implies that additional signals or a certain environment may be required for this process 

to occur that is absent in the used in vitro assays such as possibly shear forces present in 

the blood stream. It seems likely, however, that the Fc-part of the antibody or receptor 

dimerization is not required for CLEC-2 down-regulation in vivo, as Fab-fragments of the first 

batch were equally efficient in receptor down-regulation compared with the intact IgG (see 

Fig 3.6).  

Upon INU1 injection (8 µg/g body weight), CLEC-2 was not detectable in platelets for 

minimum 7 days, although the normal life span of mouse platelets is only approximately 4-5 

days116, indicating that the antibody may also affect megakaryocytes. Indeed, neither the 

antibody INU1 nor the receptor CLEC-2 itself was detectable on megakaryocytes in bone 

marrow 60 min after antibody injection (data not shown); suggesting that down-regulation of 

the receptor occurs also in megakaryocytes. Furthermore, preliminary data suggest that a 

second injection of INU1 on day 6 has no effect on circulating (CLEC-2–deficient) platelets 

but prolongs the absence of CLEC-2 (data not shown). Similar effects can be seen in JAQ1-

treated mice where the “knock-out like” phenotype does, however, last for 2 weeks upon a 

single injection of 100 µg antibody per mouse66,78,115. This indicates that INU1 may affect only 

those megakaryocytes that produce the very next generation of platelets, but further studies 

will be required to test this hypothesis.  

On the other hand, microparticle formation was observed (70% of gated events, David 

Stegner, personal communication; data not shown) in initial flow cytometric studies of 

platelets 30 min after INU1-treatment in mice (200 µg i.v.). This finding suggests that INU1-

treatment could first induce microparticle formation in the treated animals and second elicit 
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receptor down-regulating mechanisms in megakaryocytes that produce the next generation 

of CLEC-2-deficient platelets. 

To further analyze the down-regulation of CLEC-2, platelets were treated with monovalent 

INU1-Fab-fragments (INU1-Fab) prior to activation in aggregometry studies using several 

agonists. Here, it was observed that ADP-induced aggregation was slightly but significantly 

amplified (Fig 3.5), indicating that occupancy of the INU1 binding epitope on CLEC-2 by 

INU1-Fab induces subliminal signaling independently of receptor clustering. This notion may 

also be supported by the observation that INU1-Fab of the first batch induced transient 

thrombocytopenia to the same extent as the intact IgG in the first set of initial experiments. It 

is not clear whether the transient drop in platelet counts upon treatment with INU1 is 

mechanistically linked to the loss of CLEC-2, but it is tempting to speculate that INU1-

opsonized platelets might become (partially) activated and transiently trapped in the reticulo-

endothelial system where the actual loss of CLEC-2 could occur. In the case of JAQ-induced 

GPVI down-regulation, shedding of the receptor is associated with transient thrombo-

cytopenia, whereas internalization/degradation can occur independently thereof89.  

To allow deeper analysis of the underlying mechanism of receptor down-regulation, a second 

α-CLEC-2 antibody, termed INU2, was recently generated. INU2 recognized a protein of an 

apparent molecular weight of ~35 kDa from platelet lysate, and the mCLEC-2 Fc-fusion 

protein on western blot and ELISA (Fig 3.16). However, it does not bind to native CLEC-2 

protein on platelets as no signal was detected using flow cytometry (data not shown). This 

suggests that INU2 binds to a different epitope of CLEC-2 than INU1 which is free for binding 

of the antibody only under denaturing conditions. For studies on the mechanism of INU1-

induced CLEC-2 down-regulation, INU2 will be used in experiments in the near future. 

 

4.2.2 Thrombus instability in CLEC-2-depleted mice 

Irrespective of the underlying mechanism, platelets from INU1-treated mice showed a 

specific loss of CLEC-2 activity that translated into a severe defect in thrombus growth and 

stabilization under flow conditions in vitro and in vivo (Fig 3.9, Fig 3.10 and Fig 3.12). 

Similarly, impaired aggregate stabilization can also be seen in mice lacking functional 

stromal interaction molecule 1 (STIM1), an essential regulator of Ca2+
 signaling in platelets117-

118. These platelets display a selective defect in ITAM- and hemITAM-dependent activation, 

indicating that this signaling route is of importance not only for platelet activation on the ECM 

via GPVI but also for thrombus growth where the collagen/GPVI-interaction does not play a 

role117-118. In the light of the data reported in this thesis, it is tempting to speculate that the 

thrombus instability observed in the absence of STIM1 may be caused to a great extent by 

impaired CLEC-2 signaling. Similarly, the thrombus formation defects seen in mice lacking 

critical molecules of (hem)ITAM-signaling pathways, such as LAT119
 or PLCγ2120, might also 
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be related to defective CLEC-2 signaling. This hypothesis is further strengthened by a study 

from our group demonstrating that mice carrying a hyperreactive mutant of PLCγ2 (Plcg2Ali5/+) 

showed markedly enhanced thrombus formation on collagen under flow in vitro and a 

prothrombotic phenotype in vivo121.  

Additionally, during the course of this thesis, several groups59,62-63,122 published studies on 

CLEC-2 knock-out (Clec-2-/-) mice concertedly reporting on lethality at the embryonic/ 

neonatal stages of development. To circumvent the lethality, Suzuki-Inoue et al.63 studied the 

process of thrombus stabilization using fetal liver cell-chimeric Clec-2-/- (Clec-2-/-BM) mice. 

Importantly, the authors’ findings are consistent with the here presented results. In flow 

adhesion studies at a shear rate of 2,000 sec-1 single-cell adhesion of Clec-2-/-BM platelets on 

the surface of collagen was normal compared to WT, whereas thrombus formation and 

stable aggregate formation was significantly impaired ex vivo63, thus strongly confirming our 

results. Furthermore, in a laser-induced injury model in mesenteric capillaries it was reported 

that in contrast to WT, Clec-2-/-BM platelets adhered to the vessel wall more loosely and were 

frequently washed away by the blood flow. Importantly, in Clec-2-/-BM mice the platelet 

aggregates/thrombi never occluded the capillaries63. In line with our findings, and by use of 

another in vivo thrombosis model, the authors therefore concluded that CLEC-2 is critically 

involved in the process of thrombus formation.  

In contrast to these consistent findings, another study by Hughes et al. from the group of S.P. 

Watson -also using fetal liver cell-chimeric Clec-2-/-BM mice- did not confirm a requirement of 

CLEC-2 for platelet aggregation under shear flow on collagen62. However, an explanation for 

these contradictory results, as the authors themselves admit62, is not easy to find. A low 

platelet count in the Clec-2-/-BM animals used by Suzuki-Inoue et al.63 causing decreased 

platelet aggregation, as suggested by Hughes et al.62, seems to be rather unlikely as platelet 

counts were measured by the authors and found to be unaltered. Rather, different 

experimental conditions or differences in generation of the Clec-2-/-BM mice used by Suzuki-

Inoue et al.63 and Hughes et al.62 may be reasons for the discrepant results. Also, difficulties 

in the procedure of blood-sampling under conditions used by Hughes et al. could eventually 

have led to pre-activated platelets subsequently enhancing the process of thrombus 

formation thus leading to a false positive result.  

Furthermore, Hughes et al. underlined their hypothesis that CLEC-2 signaling is not required 

for platelet aggregation under shear with the finding that tyrosine phosphorylation of CLEC-2 

was not detectable in samples of lysed platelet aggregates derived from ex vivo flow 

adhesion studies62. However, as the samples were prepared after a perfusion period of 

4 min, it is possible that CLEC-2 signaling was already switched off in the aggregated 

platelets. Thus, the tyrosine residue present in the intracellular hemITAM signaling motif of 

CLEC-2 could possibly be de-phosphorylated at this stage.  
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In summary, the findings presented in this thesis together with the study by Suzuki-Inoue et 

al. strongly point to a fundamental role of CLEC-2 in the process of thrombus formation and 

stabilization (see also Fig 4.2). 

Additionally, in the current work the role of CLEC-2 in hemostasis was analyzed in mice by 

two different methods. The filter-paper method revealed that lack of CLEC-2 was associated 

with a significant but variable increase in tail bleeding times (Fig 3.11). However, compared 

with bleeding time prolongations induced by integrin αIIbβ3- or GPIbα-inhibition83 the effect 

was moderate. Importantly, in a second model of tail bleeding time analysis, where the 

wounded tail tip is located in saline (37°C), bleeding times of CLEC-2-deficient mice were 

unaltered compared to controls (Fig 3.21). In line with the latter result, the two groups 

mentioned above also reported on unaltered bleeding times in Clec-2-/-BM mice by use of the 

saline-method62-63. The discrepancy found in our own results could be due to the different 

experimental conditions present in the two models. It can be assumed that the high variability 

in bleeding times in the filter-paper model may reflect a rather mild hemostatic defect in 

CLEC-2-deficient mice that is caused by the described thrombus instability at the site of the 

tail wound. Based on this assumption, one may speculate that the lack of CLEC-2 signaling 

is to a certain extent compensated by signaling induced by other agonists present at the 

wound site (such as ADP, TxA2, thrombin, etc.). Thus, slight differences in the injury may 

explain the variable results in experiments made with the filter-paper method. Additionally, 

these compensatory effects could have a stronger influence under the conditions of the 

saline-model, thus explaining the varying results between the two different models. In line 

with results in this study, a similar variability in tail bleeding times has previously been 

reported for other mouse lines with deficiencies in activatory platelet receptors, such as 

P2Y1123
 or the α2A adrenergic receptor124. Although bleeding times do not allow reliable 

prediction of a potential bleeding risk125 one may speculate based on these results that anti-

CLEC-2 therapy in human patients might be associated with a low risk of clinical 

hemorrhage.  

So far, CLEC-2-deficient humans have not been reported and it is not clear whether 

mutations in the CLEC-2 gene would have lethal effects on human development as it has 

been reported for mice. However, it can be anticipated that patients with an acquired CLEC-2 

deficiency exist, caused by autoantibody-induced CLEC-2 clearing in platelets as it has 

previously been reported for GPVI-deficient patients80,101. The identification of such patients 

might help to further define the role of CLEC-2 in the physiology of human platelets.  

In this study it was shown that CLEC-2 plays a fundamental role in thrombus formation in 

thrombosis and has an at least partial role in hemostasis. Despite the previously known 

activatory potential of the receptor14,23 these results were unanticipated, as the only known 

endogenous ligand of the receptor, podoplanin, is expressed mainly in epithelial and tumor 
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cells and can therefore not account for CLEC-2 activation at sites of vascular injury12,48. An 

additional ligand of CLEC-2 that could -under physiological conditions- come into contact 

with CLEC-2 expressed on platelets has not been reported to date but is, however, eagerly 

awaited. In INU1-treated animals, thrombus formation under flow conditions ex vivo and also 

in vivo was severely defective in the antibody-induced absence of CLEC-2. This strongly 

suggests that the ligand(s) of the receptor is present in plasma or may be presented on the 

surface of or released by (activated) platelets (Fig 4.2).  

 

 

Fig 4.2 Adapted model of platelet adhesion to ECM at sites of vascular injury and subsequent 
thrombus formation. The forming thrombus is stabilized by signaling via CLEC-2, whose 
ligand/counter-receptor remains to be identified, and other receptors. Taken from: Nieswandt B, 
Pleines I and Bender M, Platelet adhesion and activation mechanisms in arterial thrombosis and 
ischemic stroke, 2011, in press. 

Also it has been proposed that homophilic interactions of CLEC-2 itself could play a role in 

the process of thrombus formation63 but this hypothesis has been questioned by others62. 

Furthermore, CLEC-2 ligand(s) could also be present on the injured vessel wall, but this may 

not be crucial for attachment of the first layer of platelets as indicated by unaltered formation 

of small aggregates at sites of injury in CLEC-2-deficient mice in vivo (Fig 3.12). This notion 

is also supported by the observation that CLEC-2-deficient platelets can attach normally to 

collagen under high shear flow conditions (Fig 3.9 and Fig 3.10), a process known to be 

driven mainly by GPIb, GPVI, and the integrins α2β1 and αIIbβ37-8,126. Rather, CLEC-2-

dependent signaling appears to be required for establishing (activation-dependent) stable 

platelet-platelet contacts under flow conditions as revealed by the defective transition of 

newly recruited platelets to firm adhesion on the surface of collagen-adherent platelets ex 
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vivo. This process also appears to be crucial for stable thrombus formation in vivo as 

revealed by the constant release of individual platelets and frequent embolization of small 

aggregates from the surface of the developing thrombus in CLEC-2-deficient mice (Fig 3.12 

and Fig 4.2). Therefore, not only CLEC-212,127 but also its possible ligand(s) could represent 

an interesting novel anti-thrombotic target. However, it is important to note that CLEC-2-

deficient mice were not protected in another thrombosis model performed in our laboratory 

where injury of the aorta is mechanically induced by a single firm compression of the vessel 

(Fig 3.13), although a trend to a prolonged occlusion time was observed. This surprising 

result may be due to the lower shear rates present in a bigger vessel compared to small 

mesenteric arterioles. Here, other mechanisms could possibly compensate for the lack of 

CLEC-2 and thus mediate the process of thrombus stabilization, such as sufficient activation 

of platelets to the growing thrombus by “second wave“ mediators like ADP and TxA2 or 

locally produced thrombin. These mechanisms might be sufficient to stabilize the growing 

thrombus and the function of CLEC-2 might be circumvented under these conditions. 

Additionally, in the present thesis CLEC-2-deficient mice were subjected to the tMCAO 

model as a standard model for ischemic stroke. While occlusive thrombus formation is the 

principal pathogenic event in myocardial infarction, the situation is more complex in ischemic 

stroke where infarct development often progresses despite sustained early reperfusion of 

previously occluded major intracranial arteries, a process referred to as “reperfusion 

injury”128. Increasing experimental evidence suggest that early platelet adhesion and 

activation events orchestrate a "thrombo-inflammatory" cascade in this setting, whereas the 

later phases of platelet aggregation and thrombus formation are not necessarily required 

(Nieswandt B, Pleines I and Bender M, Platelet adhesion and activation mechanisms in 

arterial thrombosis and ischemic stroke, 2011, in press). Based on this model, it may not be 

surprising that CLEC-2-deficient mice showed no reduction in infarct size and were not 

protected from stroke in the tMCAO model (Fig 3.14) as CLEC-2 is supposed to play a role in 

thrombus growth, which may not be a central pathomechanism in infarct progression. 

Therefore, CLEC-2 would probably not be suitable as a target for the treatment of cerebral 

ischemia.  

 

4.3 CLEC-2 expression on immune cells 

In the current study, the expression of CLEC-2 on murine immune cells was analyzed by 

staining with INU1 in flow cytometry. However, INU1 did not stain both CD4+ and CD8+ cells 

as well as B cells (B220+ cells) isolated from lymph nodes and spleen. Furthermore, CLEC-2 

was neither found on thymocytes (CD4+/CD8+ and CD4-/CD8- cells) nor on peritoneal 

macrophages that were gated using the macrophage-specific marker F4/80 and stained with 

INU1 (Fig 3.4A).  
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Interestingly, CLEC-2 expression was clearly detectable by INU1-FITC on mouse peripheral 

CD11b+/Gr1+ double-positive blood neutrophils (Fig 3.4B, left) being in line with data shown 

by Kerrigan et al.26. However, the same population yielded positive MFI signals with the 

platelet-specific marker JON6-PE (α-integrin αIIbβ3) (Fig 3.4B, right), indicating that the 

CLEC-2 signal was not specifically derived from neutrophils but rather from platelets that 

were possibly captured by the immune cells. Furthermore, a compensation error was 

excluded. Also, the positive CLEC-2 signal detected on neutrophils was found to be 

decreased with reducing concentrations of platelets in the tested samples (data not shown). 

This led to the hypothesis that the gated neutrophil population was contaminated with 

platelets inducing the CLEC-2-positive signal.  

This discrepancy between our results and Kerrigan et al.26 is not easy to explain. However, it 

was further underlined by the finding that initially CLEC-2-negative splenic CD11b+ cells (Fig 

3.4A) showed an INU1-FITC-positive signal when co-incubated with platelets (Timo Vögtle, 

personal communication). An explanation for the observed differences could be that the 

polyclonal α-CLEC-2 antibody used by Kerrigan et al. bound to a different epitope from that 

targeted by INU1. Also, possibly a different isoform of the CLEC-2 protein could be 

expressed on immune cells that is not recognized by INU1. On the other hand, it could be 

hypothesized that CLEC-2 is not expressed on peripheral immune cells in mice but that the 

CLEC-2-positive signal on neutrophils observed by the authors as well as by us was derived 

from platelets. These platelets could have been either captured by immune cells in a direct 

interaction or were indirectly detected by the laser-beam of the FACS at the same time as 

neutrophils. This could also explain the finding by Kerrigan et al. that neutrophils from bone 

marrow and peritoneum showed only a very weak, if not unspecific, expression of CLEC-226 

as those cells might not have been in contact with blood platelets during preparation of the 

samples. The authors concluded that CLEC-2 expression on neutrophils is up-regulated 

upon migration from the bone marrow to the blood, but then again down-regulated upon 

emigration into the peritoneum26. However, the authors could not confirm this mechanism in 

an in vitro assay included in their study. Furthermore, the authors concluded that CLEC-2 

functions as an activatory receptor on neutrophils inducing phagocytosis using a stably 

CLEC-2-transfected NIH3T3 fibroblast cell line. Additionally it was reported that CLEC-2 

promotes production of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in 

murine primary neutrophils stimulated with rhodocytin, but not the respiratory burst26. 

Recently, in line with the latter finding, another study by Chang et al. showed that rhodocytin 

elicited the release of the pro-inflammatory cytokines TNF-α and interleukin-6 (IL-6) in mouse 

RAW 264.7 macrophages and human THP-1 monocytic cells in vitro129. The authors thus 

proposed that rhodocytin may induce inflammatory responses via interacting with CLEC-2 on 
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monocytes and macrophages. However, the physiological relevance of this mechanism has 

to be determined. 

 

4.4 INU1-Fab-fragment-induced lethality in mice 

In the present thesis, the in vivo effects of Fab-fragments of the antibody INU1 (INU1-Fab) 

were assessed. It was expected that this treatment would have a minor effect on the immune 

system of challenged mice, because INU1-Fab lacks the Fc-fragment of the full IgG that is 

required for recognition of the antibody by immune cells and the complement system. In 

initial experiments, where a single batch of generated INU1-Fab was used, results were 

achieved that confirmed this hypothesis (Fig 3.6). Here, mice survived the treatment with the 

Fab-fragment.  

Very unexpectedly, however, and in sharp contrast to these initial results, treatment with 

INU1-Fab generated in a second batch, led to 100% mortality in mice (Fig 3.15A). Also a 

third batch produced by the same method had an equivalent lethal effect in mice (data not 

shown). Therefore, another method of Fab-fragment preparation was utilized by uncoupled 

digestion using pepsin and DL-dithiothreitol and subsequent size separation after each 

digestion step via a Superdex (SD) column. Very surprisingly, such produced Fab-fragments 

(termed INU1-FabSD) were also lethal (Fig 3.15B). It seems that the lethal effect of INU1-

FabSD is platelet- and CLEC-2-specific, as neither platelet-depleted nor CLEC-2-deficient 

mice died compared to control animals upon treatment with 50 µg INU1-FabSD (Fig 3.15C). 

Furthermore, even very low doses of 5 µg INU1-FabSD per mouse had a lethal effect (Fig 

3.15C). This very surprising effect is in sharp contrast to treatment with the full IgG, which is 

very well tolerated by the animals and does not cause mortality.  

A possible reason for the lethal effect could be that INU1-Fab treatment induced rapid 

platelet activation in vivo causing thrombotic events that ultimately led to stroke or lung 

embolism. Such activation would, however, be rather difficult to explain because none of the 

produced INU1-Fab batches elicited platelet aggregation in vitro under conditions of 

aggregometry (Fig 3.5 and data not shown). However, under in vivo conditions other factors 

could come into play that are not present in the in vitro assays, such as a possible interaction 

of platelets with immune- or endothelial cells. Also, neither integrin α2β1- nor αIIbβ3-

blockage of platelets had a protective effect to treatment with INU1-FabSD (Fig 3.15D) further 

indicating that platelet aggregation did not cause the lethal effect. 

It is interesting that treatment with the full IgG is less harmful to the animals compared to 

INU1-Fab. Possibly, binding of INU1-IgG to platelets could lead to agglutination of the cells. 

The opsonized platelets could then be removed from the blood stream in the reticulo-

endothelial system of the spleen as they are easily detectable for immune cells via the Fc-

portion of the full IgG. It could also be speculated that this mechanism is missing when mice 
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are treated with INU1-Fab, due to the lack of the Fc-portion of the full IgG. On the other 

hand, animals treated with Fab2-fragments of INU1 survived this challenge (Fig 3.15B), 

arguing against this hypothesis. However, it remains difficult to explain why INU1-Fab 

treatment causes lethality. Possibly, upon binding of INU1-Fab to CLEC-2, maybe due to 

shear forces or other mechanisms minimal signaling of the platelets is induced in vivo. The 

activated INU1-Fab-bound platelets could then eventually release vasoactive substances 

causing vascular leakage and a severe anaphylactic shock reaction in the treated animals. 

Due to the very fast removal of INU1-IgG-bound platelets in the spleen, this effect does not 

occur upon treatment with INU1-IgG.  

Indeed, some of the observations made, point to an anaphylactic shock reaction such as 

peripheral cyanosis observed on the tail veins of the treated animals. This finding could lead 

to a new hypothesis: Potentially, vascular integrity could be altered via CLEC-2 signaling in 

platelets. However, at this point it is unclear why a monovalent binding partner of CLEC-2, 

namely INU1-Fab, induces a more severe toxic reaction in the animals than the full IgG.  

However, during the period of this thesis the underlying mechanism of INU1-FabSD-induced 

lethality and the reason for the discrepancy towards the initial experiments using INU1-Fab 

could not be fully solved and will have to be studied in more detail in the future. These 

findings were not only unanticipated but are also alarming taking into consideration that 

CLEC-2 has been proposed as a potential anti-thrombotic target in human patients. Although 

data obtained in mice cannot be directly extrapolated to the human system, these severe 

complications have to be considered for a potential future α-CLEC-2 treatment in patients.  

 

4.5 Potential side effects of INU1-IgG treatment 

In the present thesis, the role of CLEC-2 in hemostasis and thrombosis was analyzed by 

antibody-mediated “immunodepletion” and down-regulation of the receptor from circulating 

platelets. In general, in most studies a genetic knock-out mouse model is chosen to 

investigate the function of murine proteins in vivo. However, in contrast to a constitutive 

CLEC-2 deficiency, injection of INU1 allowed the temporally restricted depletion of the 

receptor and thus it can be assumed that compensatory mechanisms were not established in 

the treated animals. Therefore, the physiological role of CLEC-2 could be analyzed in a direct 

approach in the murine model in this study.  

To circumvent the problem of embryonic lethality in the constitutive CLEC-2 knock-out 

model59,62-63,122, the role of CLEC-2 in hemostasis and thrombosis has been analyzed in two 

different studies using fetal liver cell-chimeric Clec-2-/-BM mice wherein knock-out of the 

receptor is restricted to the hematopoietic system. Here, a possible effect of CLEC-2 

expressed in non-hematopoietic tissues could not be excluded. In contrast, the antibody 

treatment most probably also targeted other CLEC-2 expressing cells such as natural killer 
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cells. However, the “immunodepletion”-approach used in this study has been criticized62-63, 

because it is unclear at present whether this treatment could also have potential side effects 

in vivo thus questioning whether the described phenotype could be directly related to the lack 

of CLEC-2. The most prominent effect of INU1-treatment was the subsequent transient 

thrombocytopenia observed in the animals (Fig 3.6A). However, platelet counts returned 

back to normal 3-4 days p.i.. Probably, other side effects caused by the antibody treatment 

are rather minor as indicated by several observations:  

Interestingly, the phenotype of Clec-2-/-BM mice later published by Suzuki-Inoue et al.63 

impressively resembles that of INU1-treated CLEC-2-deficient mice described in the present 

thesis in terms of defective thrombus formation under flow ex vivo and in the thrombosis 

model in vivo (see also chapter 4.2.2).  

Furthermore, in collaboration with a group working on lymphangiogenesis, it was found that 

treatment of murine embryos with INU1 similarly induces the “non-separating” phenotype of 

lymph- and blood vessels as described in CLEC-2 and podoplanin knock-out mice63,130 

(Ph.D. Lijun Xia, OMRF, Oklahoma City, USA, personal communication).  

Additionally, comparison of JAQ1/INU1- and Gp6-/-/INU1-treated GPVI/CLEC-2 double-

deficient mice in this study revealed that the resulting in vivo phenotypes were mirroring each 

other (see also chapter 3.3). Thus, it was demonstrated that at least the antibody (JAQ1)-

induced GPVI deficiency is comparable to the constitutive knock-out of GPVI in the 

background of INU1-induced CLEC-2 deficiency. This observation was further strengthened 

by the recent findings of Bender and co-workers from our group who compared the 

phenotypes of GPVI deficiency upon JAQ1-treatment and constitutive Gp6-/- mice in different 

thrombosis models106. Here, it was found that JAQ1-treatment very well phenocopied the 

thrombo-protective effect of genetic GPVI deficiency as both resulting phenotypes were 

found to be similar.  

Together, these findings strongly support the hypothesis that the described phenotype of 

INU1-treated CLEC-2-deficient mice in the present thesis is specifically caused by the 

CLEC-2 deficiency itself and most probably not by an antibody-mediated side effect on the 

treated animals. However, to completely exclude any possible side effects further studies 

have to be performed. 

 

4.6 GPVI and CLEC-2 play redundant roles in hemostasis and thrombosis 

In the second part of the present thesis experiments were performed in mice to address the 

questions i) whether in vivo trans-inhibition of the (hem)ITAM-bearing receptors GPVI and 

CLEC-2 occurs upon down-regulation of the respective other receptor and ii) whether this 

would affect receptor signaling. It was demonstrated that treatment with the specific α-GPVI 

antibody JAQ1 or the specific α-CLEC-2 antibody INU1 induced independent inactivation and 
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down-regulation of the targeted receptor on platelets without affecting expression or signaling 

of the respective other receptor in vivo (Fig 3.17). These results clearly indicate that trans-

inhibition is not operating between GPVI and CLEC-2, at least in murine platelets. 

Both receptors, GPVI and CLEC-2, have been proposed as novel anti-thrombotic targets and 

share several similarities in their intracellular signaling cascade14,66 (see also chapter 1.5). 

Therefore, it was speculated that both glycoproteins could at least partially compensate for 

each other in platelet physiology14. To test whether GPVI and CLEC-2 have redundant 

functions, double-deficient mice were analyzed by combined treatment of JAQ1 and INU1. 

Here, on circulating platelets the specific loss of both receptors, GPVI and CLEC-2, was 

observed (Tab 3.2). Furthermore, it was found that signaling of both receptors was 

completely abolished whereas only moderate effects on other signaling pathways were 

detected. The described mild thrombin-defect found on d5 p.i. was observed to be further 

decreased on d6 after treatment and data obtained by aggregometry led to the assumption 

that this mild thrombin-defect has no major consequences to platelet activation in vivo (Fig 

3.19 and Fig 3.20). 

Very unexpectedly, tail bleeding time analysis of GPVI/CLEC-2 double-deficient mice 

displayed in two different models that these animals suffered from infinite bleeding times (Fig 

3.21). Furthermore, GPVI/CLEC-2 double-deficient mice showed an acutely more 

pronounced phenotype compared to single-deficient animals in a model of arterial 

thrombosis in FeCl3-injured mesenteric arterioles (Fig 3.22), clearly revealing redundant 

functions of the two receptors in hemostasis and thrombosis in vivo. Very interestingly, the 

hypothesis of a functional redundancy between GPVI and CLEC-2 was further strengthened 

by data obtained from newly generated Gp6-/- mice that were treated with INU1 to induce 

CLEC-2 deficiency (Gp6-/-/INU1). The in vivo phenotype of these mice phenocopied the 

effect of antibody-induced double-deficiency of the two receptors (Fig 3.24). As the activation 

of platelets is indispensable for thrombus formation, a functional redundancy of the two 

receptors seems plausible. In this process, the early occurring collagen/GPVI-interaction is 

known to be crucial for platelet activation5, whereas the further thrombus growth is induced 

by recruitment and activation of additional platelets from the blood stream by the released 

“second wave“ mediators ADP and TxA2 for the subsequent clustering of platelets8,17. As 

these signals might not be sufficient for firm thrombus stability, we and others have 

postulated that CLEC-2 plays an essential role during this later phase63,104. Thus, the 

hypothesized functional redundancy of the two receptors GPVI and CLEC-2 in vivo appears 

to be reasonable. 

Although it is not always possible to transfer data obtained in mice to the human system, 

these findings indicate that a future α-GPVI or α-CLEC-2 treatment of human patients might 

bear the risk of uncontrolled bleeding in those patients exhibiting defects in the respective 
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other (hem)ITAM signaling pathway. These findings may therefore have important 

implications for the development of α-GPVI or α-CLEC-2 based anti-thrombotic therapeutics 

in human patients. 

 

4.7 CLEC-2 as a novel therapeutic target 

The platelet membrane receptor CLEC-2 has intensively been discussed by us and others as 

a potential novel anti-thrombotic target12,14,104. This seems reasonable due to the relatively 

restricted expression of CLEC-263. In human patients an ideal anti-thrombotic treatment 

would protect from thrombotic disorders while at the same time not affecting hemostasis. 

Interestingly, we and others have reported on not or only mildly increased tail bleeding times 

in CLEC-2-deficient mice62-63,104 (Fig 3.11 and Fig 3.21). This was accompanied by protection 

from pathological thrombus formation in thrombosis models such as in our study the FeCl3-

induced injury of mesenteric arterioles (Fig 3.12) or in a laser-induced injury model of 

mesenteric capillaries63. In contrast, Hughes and co-workers reported that performance of 

the FeCl3-driven thrombosis model in mesenteric arterioles failed due to extensive bleeding 

in CLEC-2-deficient mice; that was probably caused by the blood- and lymphatic vessel 

misconnecting phenotype of the animals62. However, an explanation for the discrepancy 

towards the study by Suzuki-Inoue et al.63 was not given by the authors. 

Additionally to its proposed function in platelet-driven hemostasis and thrombosis, CLEC-2 

on platelets also serves as a target-structure for podoplanin expressed on several tumor cells 

including squamous cell carcinoma, mesothelioma, testicular seminoma, and brain 

tumors48,131. This podoplanin/CLEC-2 interaction has been described to be important for 

hematogenous tumor metastasis via platelets48,131 and could therefore represent an 

interesting target to inhibit tumor cell spreading in cancer patients. Indeed, an interesting 

study has shown that by blockade of the podoplanin/CLEC-2 interaction with an 

α-podoplanin antibody pulmonary metastasis in a mouse model was significantly reduced131. 

Also, tumor cell growth requires extensive formation of new vessels to supply the cells with 

nutrients. It would thus be interesting to investigate whether blockage of the 

podoplanin/CLEC-2 interaction could potentially abrogate this process. In contrast, possible 

α-CLEC-2 drugs are not expected to interfere with the existing blood- and lymph vessels in 

adult patients63.  

Furthermore, CLEC-2 was identified as an attachment factor for human immunodeficiency 

virus type 1 (HIV-1) on platelets46. Thus, targeting or blockage of the receptor could 

potentially lead to inhibition of HI-virus spread in infected patients. In consequence of these 

results, it is interesting to further investigate possibilities to target CLEC-2 in human patients. 

On the other hand, during the course of this study, it was demonstrated that CLEC-2 

deficiency does not protect from ischemic brain infarction in the murine tMCAO model (Fig 
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3.14) or from occlusive thrombus formation upon mechanically induced injury of the aorta 

(Fig 3.13). Furthermore, in this study, treatment with INU1-Fab-fragments was shown to have 

a lethal effect in mice.  

However, despite these controversial results obtained in studies from mice, human CLEC-2 

could still potentially represent an interesting therapeutic target. CLEC-2 in human platelets 

could for example be functionally inactivated in vivo by anti-human CLEC-2 antibodies or 

other inhibitory agents. Therefore, it would be of high interest to analyze the potential of 

α-CLEC-2 treatment in mice using blocking compounds or inhibitors of the receptor. Would 

such a compound also induce intra-cellular signaling and down-regulation of the receptor or 

have even such tremendous consequences as the described INU1-Fab treatment? 

 

 

 

4.8 Concluding remarks and future plans 

Taken together, the results presented in the current study demonstrated for the first time that 

CLEC-2 is an essential mediator of platelet activation in vitro and in vivo. Additionally, it was 

shown that the receptor can be targeted and functionally inactivated in vivo using the 

α-CLEC-2 antibody INU1. By the used “immunodepletion”-approach of CLEC-2 the otherwise 

lethal constitutive knock-out of the receptor could be circumvented bearing the advantage to 

analyze the role of CLEC-2 in platelet function in vivo. Furthermore, it was demonstrated that 

the platelet receptors GPVI and CLEC-2 have unexpected redundant functions in platelet 

physiology. These findings may serve as a basis for the development of a new generation of 

safe agents for prophylaxis and treatment of ischemic cardiovascular events in human 

patients. 

Further studies are planned in our laboratory to investigate the function of CLEC-2 in murine 

models of arterial thrombosis and the combined knock-out of GPVI and CLEC-2 using 

conditional CLEC-2 knock-out mice in collaboration with S.P. Watson, University of 

Birmingham, UK. Additionally, the mechanism of receptor down-regulation upon INU1 

antibody treatment will be further investigated using the newly generated antibody INU2 and 

thoroughly analysis of the surprisingly lethal effect of INU1-Fab-fragments will be performed. 

These studies will provide new insights in the role of GPVI and CLEC-2 as potential novel 

anti-thrombotic targets.  
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Abbreviations 

aa    amino acid 

ADP    adenosine diphosphate 

APS    ammonium peroxodisulphat  

ATP    adenosine trisphosphate 

BLNK    B-cell linker protein 

BSA    bovine serum albumin 

Btk    Bruton agammaglobulinemia tyrosine kinase 

°C    Degree Celsius 

CLEC-2   C-type lectin-like receptor 2 

[Ca2+]i    intracellular calcium concentration 

cm²    square centimeter 

CRD    carbohydrate recognition domain 

CRP    collagen-related peptide 

CTLD    C-type lectin-like domain 

CVX    convulxin 

DAG    diacylglycerol 

ddH2O    double-distilled water 

DIC    differential interference contrast 

DMEM    Dulbecco/Vogt Modified Eagle's Minimal Essential Medium 

E    embryonic day 

ECL    enhanced chemiluminescence 

ECM    extracellular matrix 

EDTA    ethylenediaminetetraacetic acid 

ELISA    enzyme-linked immuno absorbance assay 

et al.    et alteri 

Fab    fragment antigen-binding 

f.c.    final concentration 

Fc    fragment crystallisable 

FcR    Fc receptor 

FCS    fetal calf (bovine) serum 

Fig.    figure 

FITC    fluorescein isothiocyanate 

FSC    foreward scatter 
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g    gramme 

GP    glycoprotein 

GPCR    G protein-coupled receptor 

GTP    guanosine triphosphate 

h    hour(s) 

HAT    hypoxanthine-aminopterin-thymidine  

HCl    hydrogen chloride 

HIV-1    human immunodeficiency virus type 1 

HRP    horseradish peroxidase 

H2O    water 

IFI    integrated fluorescence intensity 

Ig    immunoglobulin 

IL-6    interleukin-6  

IP    immunoprecipitation 

IP3    inositol 1,4,5-triphosphate 

ITAM    immunoreceptor tyrosine-based activation motif 

ITIM    immunoreceptor tyrosine-based inhibitory motif 

kb    kilo base pair 

kDa    kilo Dalton 

l    liter 

LAT    linker for activation of T-cells 

M    molar 

MFI    mean fluorescence intensity 

min    minute(s) 

MK    megakaryocyte 

ml    milliliter 

mm    millimeter 

µ    micro 

NaCl    sodium chloride 

NaOH    sodium hydroxide 

OD    optical density 

o/n    overnight 

PAA    polyacrylamide 

PBS    phosphate buffered saline 

PCR    polymerase chain reaction 

PE    phycoerythrin 

PECAM-1   Platelet Endothelial Cell Adhesion Molecule 

http://en.wikipedia.org/wiki/Hypoxanthine�
http://en.wikipedia.org/wiki/Aminopterin�
http://en.wikipedia.org/wiki/Thymidine�
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PF4    platelet factor 4 

PIP2    phosphatidylinositol-4,5-bisphosphate 

PI-3-K    phosphoinositide-3-kinase 

PKC    proteinkinase C 

PL (C)    phospholipase (C) 

prp    platelet-rich plasma 

PVDF    polyvinylidene difluoride 

RC    rhodocytin 

rpm    rounds per minute 

RT    room temperature 

SD    standard deviation 

SDS    sodium dodecyl sulfate  

SDS-PAGE   sodium dodecyl sulfate polyacrylamide gel electrophoresis 

sec    second 

Seq    Sequence 

SH2    Src homology 2 domains 

SLP-76 Src-homology 2 domain-containing leukocyte-specific 

phosphoprotein of 76 kDa 

SOCE    store-operated Ca2+ entry 

SSC    sideward scatter 

TAE    TRIS acetate EDTA buffer 

TE    TRIS EDTA buffer 

TEM    transmission electron microscopy 

TF    tissue factor 

TNF-α    tumor necrosis factor-α 

TRIS    trishydroxymethylaminomethane 

TxA2    thromboxane A2 

U    units 

Vav3    Guanine nucleotide exchange factor Vav3 

vWF    von Willebrand factor 

wt    wild-type 

x g    acceleration of gravity (9.81 m/ sec²) 
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