NUCLEOSIDES & NUCLEOTIDES, 10(5), 1241-1243 (1991)

CHARACTERIZATION AND PHOTOAFFINITY LABELING OF  $A_1$  - ADENOSINE RECEPTORS IN COATED VESICLES FROM BOVINE BRAIN.

Gonzalez-Calero, G., Cubero, A. and Klotz, K.N. (1). Departamento de Quimica, Facultad de Ciencias Quimicas. Universidad de Castilla La Mancha. 13071 Ciudad-Real, Spain. (1) Pharmakologisches Institut der Universitat Heidelberg, Im Neuenheimer Feld 366, D- 6900 Heidelberg, FRG.

ABSTRACT. The antagonist ( $^{3}\mathrm{II}$ ) DPCPX exhibited a Kd of 0.4 nM at coated vesicles from bovine brain. Agonist competition for ( $^{3}\mathrm{II}$ ) DPCPX binding revealed two affinity states for agonists. The photoaffinity probe  $^{125}$  I-AHPIA specifically labelled a band with a molecular weight of 35 Kd.

Coated vesicles (CV) are involved in receptor mediated endocytosis of different receptors along with their ligands (1). Recently, it has been shown that a adenylate -cyclase coupled  $\Lambda_1$  adenosine receptor exists in CV from bovine brain (2). We now present evidence that the  $\Lambda_1$  receptors in CV are identical to those from brain membranes.

 $\Lambda_1$  receptors in CV have been characterized by radioligand binding with  $({}^{3}\text{H})\text{DPCPX}$ , an  $\Lambda_1$  selective antagonist. A Kd of 0.4 nM was estimated, compared to 0.2 nM in bovine brain membranes. The Bmax was 59 fmol/mg protein. Competition of agonists for  $({}^{3}\text{H})\text{DPCPX}$  binding resulted in biphasic curves indicating the presence of two affinity states (Fig.1).

The biphasic competition curve of CCPA for  $({}^{3}\text{H})$  DPCPX was shifted to the right by addition of 0.1 mM GTP. The curve was monophasic in the presence of GTP with a Kd value close to the low affinity Kd in the absence of GTP. This shows that  $A_{1}$  receptors in CV are coupled to a G protein.

Copyright © 1991 by Marcel Dekker, Inc.

<sup>(1)</sup> Present address: Department of Chemistry, Montana State University, 32 Gaines Hall, Bozeman, MT 59717, USA.







FIGURE 2. Photoaffinity labelling of A1 adenosine receptors in bovine brain CV (BCV). Labelling of the band with 35 KD was inhibited in the presence of 1mM theophylline (THEO), indicating specific labelling. The same band was labelled in rat brain membranes (RBM).

Agonist radioligand binding further confirmed that  $A_1$  receptors in CV are coupled to a G protein. The  $A_1$  selective agonist (<sup>3</sup>H) CCPA (3), showed high affinity binding with a Kd value of 2 nM and a Bmax value of 36 fmol/mg protein. The agonist photoaffinity label  $^{125}$ I-AHPIA (4) was specifically incorporated in a band with a molecular weight of 35 KD (Fig 2). High affinity agonist binding confirmed that G protein-coupled  $\Lambda_1^{-}$ -adenosine receptors exist in CV from bovine brain. <sup>125</sup>I-AHPIA was photoincorporated in a band of similar molecular weight as in brain membranes from different species. Thus,  $\Lambda_1^{-}$  receptors in CV have similar characteristics compared to receptors in brain membranes.

## REFERENCES

- Goldstein, J.L., Brown, M.S., Anderson R.G.W., Russell, D.W., & Schneider, W.J. (1985) Ann. Rev. Cell. Biol. 1, 1-39
- 2. Gonzalez-Calero, G., Martin M., Cubero, A., & Andres A. (1990) J. Neurochem **55**, (in press)
- Klotz, K.N., Lohse M.J., Schwabe U., Cristalli G., Vittori S. & Grifantini M. (1989) Naunyn-Schmiedeberg's Arch. Pharmacol. 340, 679-683.
- Klotz, K.N., Cristalli G., Grifantini M., Vittori S. & Lohse M.J. (1985) J. Biol. Chem. 260, 14659-14664.