
Ab Initio Treatment of Complex Systems

Kohn-Sham Orbitals for Multi Reference Methods

and the Base Pairing Properties of Xanthine

Dissertation zur Erlangung des

naturwissenschaftlichen Doktorgrades

der Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von

Thomas Hupp

aus Hafenlohr am Main

Würzburg 2003



Eingereicht am:

bei der Fakultät für Chemie und Pharmazie

1. Gutachter:

2. Gutachter:

der Dissertation

1. Prüfer:
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unserem Arbeitskreis zu etablieren. Zuletzt möchte ich Mario Arnone danken, der sich nie
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im AK, Milena Mladenovich und Sebastian Schlund, die durch fleißiges Korrekturlesen noch

so einige Fehler aus der Arbeit ausmerzen konnten.
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tern. Er hat es verstanden, die Arbeit zu leiten und mir gleichzeitig die Freiheit gegeben,

eigene Ideen und Interessen zu verfolgen, welches der Grundstock für ein erfolgreiches wis-

senschaftliches Arbeiten ist.

II



Contents

Preface i

1 Introduction to Part1 1

1.1 The role of orbitals in multi reference approaches . . . . . . . . . . . . . . . . 1

1.2 Orbitals in HF- and KS-approaches . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Kohn Sham Orbitals for Ab Initio Methods 23

2.1 MRCI-calculations for ethene . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Relaxation of the orbitals describing the core ion of the excited states . . . . 30

2.3 Discussion of the water molecule . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Discussion of ethene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 MRCI-computations for carbonmonoxide . . . . . . . . . . . . . . . . . . . . . 52

2.6 MRCI-computations for formaldehyde . . . . . . . . . . . . . . . . . . . . . . 57

2.7 MRCI-computations for acetone . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8 MRPT2 for the ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.9 Excitation energies of carbonmonoxide from MRPT2 . . . . . . . . . . . . . . 63

2.10 Excitation energies of formaldehyde from MRPT2 . . . . . . . . . . . . . . . 67

I



II Contents

2.11 Excitation energies of acetone from MRPT2 . . . . . . . . . . . . . . . . . . . 68

2.12 Rydberg-valence mixing of the 11B1u-state of ethene . . . . . . . . . . . . . . 69

3 Introduction to Part 2 77

4 Base Pairing of Xanthine and Xanthine Derivatives 85

4.1 The stability of alanyl PNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Regioisomerism of xanthine . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.2 Homodimers of N7-xanthine . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.3 Stacked tetramers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.4 Hydrogen bonding and stacking of other alanyl PNA systems . . . . . 95

4.1.5 Stability model for alanyl-PNA . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Base pairing of N9-xanthine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 Homodimers of N9-xanthine . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.2 Weak pairings of N9-xanthine . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.3 Base pairing of hypoxanthine . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.4 Strong hydrogen bonds . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.5 Comparison with experiment . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.6 Mutagenicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.7 Pairings of hypoxanthine to canonical pyrimidine bases . . . . . . . . 115

4.2.8 Pairings of neutral xanthine to canonical pyrimidine bases . . . . . . . 117

4.2.9 Anionic pairings of xanthine with canonical bases . . . . . . . . . . . . 121

5 Summary 127

6 Zusammenfassung 137

A Free Energies for the Deprotonation in a buffered solution 157

II



Preface

The topic of the present work is the characterization of the structure and stability of bio-

organic systems. In particular it deals with base paired systems that are governed by a

complex interplay of different weak interactions such as hydrogen bonding, base stacking

and solvent interactions. One major part of this study is the implementation of new ap-

proaches for a better overall description of the mentioned systems with a special emphasis

on the spectroscopic characterization (e.g. UV-Vis, CD, NMR) of organic and bioorganic

structures and aggregations.

The computational effort of the methods used to directly describe electronically excited

states, in particular the MRCI- and the MRPT2-method, strongly depends on the quality

of the underlying orbitals. The basic idea followed in the present work was to reduce the

computational effort of these methods by applying the Local Hartree-Fock (LHF) orbitals.

LHF-obitals are optimized at a computational cost roughly comparable to that of the HF

method, while their virtual orbitals possess the quality of natural orbitals, that normally are

obtained from highly expensive CI-methods.

After the implementation of the LHF-code into the DIESEL-MRCI program package, the

orbitals were tested for the description of excited states for a set of test molecules. These

computations showed that LHF-orbitals are an excellent starting point for the MRCI- and

the MRPT2-method. Since the MR-wavefunction exhibits a significantly faster convergence,

the LHF-orbitals lead to a strong reduction of the computational effort of both methods.

These properties in the future should allow the application of MR-methods also for bioor-

ganic systems, which, however, demands further improvements in the MRPT2-code.

However, the present program code does not allow the treatment of very large systems for

i



ii Preface

reasons like integral handling and storage of the coefficient vector. Therefore, the char-

acterization of the structure and stability of the bioorganic base paired systems has been

performed using standard theoretical methods like density functional theory, Møller-Plesset

perturbation theory, and also force field methods.

The treated systems include different types of base pairings of which all involve the non-

canonical nucleobase xanthine. One topic in this context is to find an explanation for the

unexpectedly high stability of the xanthine-alanyl-PNA double strand. Another topic deals

with the question, why xanthine, that is formed from guanine in DNA under the influence

of free radicals, e.g., from cigarette smoke, is able to form mutagenic base pairs with the

pyrimidine base thymine. The analysis of bioorganic systems also includes the assignment of

NMR spectra using theoretical methods, like for example the determination of base pairing

modes by the chemical shifts of the H-bonding protons in low temperature 1H-NMR spec-

troscopy.

Consequently, the present work consists of two apparently unrelated parts:

• In the first part, LHF Kohn-Sham orbitals are tested in multireference configuration

interaction and multireference perturbational approaches. These methods shall be used

in the future for the characterization of bioorganic systems.

• The second part analyzes the unusually high stability of DNA analogous double strands

that are built from xanthine dimers. Furthermore, the mutagenicity of xanthine nu-

cleotides that are formed in DNA under chemical stress is studied.

ii



Chapter 1

Introduction to Part1

1.1 The role of orbitals in multi reference approaches

Multi Reference (MR) approaches[1–5] are important methods for the computation of excited

states, because they are able to cover both static and dynamical correlation effects which

is important for a balanced description of the electronic excitation spectrum. One example

is the description of Rydberg and excited valence states. An incomplete inclusion of the

correlation energy leads to a redshift of the Rydberg series in the computed spectrum, since

the contribution of dynamical correlation to Rydberg states is much lower than that to va-

lence states or to electronic ground states.[6, 7] While static correlation needs to be treated

in a Configuration Interaction (CI)-procedure, dynamical correlation to a sufficient amount

can also be accounted for by perturbation theory.[2–5] The CASPT2 approach by Roos and

co-workers[8] for instance treats static correlation effects by a CASSCF (Complete Active

Space Self Consistent Field) approach while the dynamical correlation is included via second

order perturbation theory (PT2).

The computational effort of MR-approaches strongly depends on the quality of the under-

lying orbitals. Orbitals that well capture the nature of the considered electronic states lead

to compact wave functions, and make small zeroth-order wave functions possible, while ac-

curate computations with inappropriate orbitals demand very large zeroth order and as a

consequence very large total wave functions. Orbitals from a previous Hartree-Fock (HF)

1



2 Chapter 1 Introduction to Part1
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Fig. 1.1: Energetic ordering of Rydberg and valence states in CASSCF and CASPT2. In addition,

idealized contour plots of Rydberg and valence orbitals are given. For CASSCF the Rydberg series

is shifted to lower excitation energies.

calculation are an example for less suited orbitals. The unoccupied HF-orbitals are too dif-

fuse since they are optimized in the field of all N electrons of the system and not in the

physically correct field of N-1 electrons which is employed for the occupied orbitals. As a

result, they are unable to describe static correlation and also do not reflect the electronic

nature of excited states. To correct this, MR-computations based on HF-orbitals need large

reference spaces to take static and dynamical correlation into account sufficiently.

Multiconfigurational-SCF- (MCSCF) or CASSCF-orbitals[9–11] allow a much better CI-des-

cription since the orbitals within the active space are explicitly optimized to describe the

character of a given state. Orbitals outside the active space are also better suited than virtual

HF-orbitals since they “feel” a more attractive averaged potential, however, their quality is

much lower than the quality of the orbitals within the active space since the potential still is

2



1.1 The role of orbitals in multi reference approaches 3

that of an N electron instead of an N-1 electron system. MCSCF- or CASSCF-approaches

have some other disadvantages. First, they are quite expensive, especially if the size of the

molecule increases or the symmetry of the considered system decreases. The second disad-

vantage is the often poor convergence behavior of the MCSCF- or CASSCF-calculations.

To improve the quality of the one-electron basis several procedures were advised. One ex-

ample is natural orbitals (NO) which are obtained by the diagonalization of the one electron

density matrix of a previous CI-Computation. NOs obtained from a full CI represent the

best one-particle basis[12] but also NOs obtained from a small CI-expansion give a better

description of dynamical correlation than for example HF-orbitals.

Improved Virtual Orbitals (IVO) represent another possible one-particle basis. They are

obtained from a modified HF approach in which the virtual orbitals are optimized in an

assumed N-1 electron potential instead of the normal HF-potential.[13–16] Consequently, this

approach contains a certain arbitrariness and the orbital transformation has to be done at

least twice. IVOs were proposed by Potts et al.[17] for the construction of CAS-CI wave-

functions. A MRPT2-procedure based on IVO-orbitals has been implemented by Grimme

et al.[18]

One possible alternative to these orbitals are Kohn-Sham-(KS)-orbitals.[19–21] In contrast to

HF-orbitals, KS-orbitals are eigenfunctions to a Hamiltonian operator with the same local

multiplicative potential for all orbitals. In principle, both virtual and occupied KS-orbitals

are optimized in a potential of N-1 electrons. Therefore, virtual KS-orbitals have a more

compact form than HF-orbitals. Likewise, the orbital energies, which for a long time were

considered to be merely auxiliary quantities, can be seen as well defined approximations for

excitation energies.[22,23] Furthermore, KS-orbitals have been shown to be very useful in the

interpretation of electronic structures and interactions of molecules.[24]

In the last years, a large number of methods that combine density functional theory (DFT)

and CI-methods have been developed.[25–27] The majority of these approaches tries to de-

scribe dynamical correlation via a density functional, since CI methods describe dynamical

correlation in a very inefficient way. Static correlation on the other hand, which in con-

ventional DFT is only poorly described, is treated very accurately by a CI-procedure. The

main problem, these combination methods have to cope with, is the double counting of the

correlation energy.

3



4 Chapter 1 Introduction to Part1

Other approaches only try to take advantage of the orbital shape, but not of energy eigenval-

ues or other approximated energy expressions. However, the use of conventional KS-orbitals

in ab initio CI-Methods to compute electronically excited states does not seem to offer large

advantages in comparison to HF-orbitals.[28,29]

Perturbational approaches based on the KS-determinant like the Görling-Levy-perturbation

theory[30,31] may suffer from a divergent perturbation series,[29,32] which is shown in fig.

1.2 which gives the total energies of Raghleigh-Schrödinger perturbation series using a KS

single particle operator and compares this to energies from Møller-Plesset and full-CI. Fig.

1.2 shows that the convergence problem seems to be more severe in approaches based on

KS-orbitals than in Møller-Plesset perturbation theory, because the energy differences that

enter the denominators of the perturbational energy corrections are smaller. This difficulty

should be much less severe in multireference perturbation theory, since excited configurations

that contribute most, and which in single reference perturbation theory would lead to an

overestimation of the energy correction, belong to the CI-part of the calculation. Hirao and

coworkers[33] for example used GGA-orbitals in a CAS-CI-MRPT2-approach. Depending on

the chosen CAS-space, this approach leads to very accurate results, which, however, do not

seem to depend very much on the type of orbitals chosen as one-electron basis. In conven-

tional density functional methods like the local density approximation (LDA) or generalized

gradient approximations (GGA),[21] the use of approximate exchange functionals prevents

the cancellation of erroneous Coulomb self-interactions. These self-interactions lead to a

wrong asymptotic decay of the KS potential. As a consequence, the energy of the Highest

Occupied Molecular Orbital (HOMO)[34] is shifted upwards, and is only a very poor ap-

proximation of the ionization potential. In anions, the HOMO often is not bound at all. [35]

Furthermore, due to the wrong asymptotic behavior, Rydberg states are also not bound in

conventional DFT.

A fundamental solution to this problem is to employ the exact local multiplicative KS ex-

change potential which is determined by an integral equation, the EXX equation. [36–38]

A numerical grid method to solve this equation is known for quite some time[36] but re-

stricted to spherical systems, i.e., atoms. Therefore recently basis set methods to solve

the EXX equation were proposed[37] and first implemented for solids[39] and later also for

molecules.[40–43] While EXX implementations for solids are numerically stable, problems

4
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Fig. 1.2: Results of Rayleigh-Schrödinger perturbation series for LiH based on HF and BLYP zeroth

order Hamiltonians compared with Full CI results. Data from Warken.[29]

occur for molecules.[43,44] To solve this problem very recently an effective EXX approach,

the localized Hartree-Fock (LHF) method, was introduced[44] (compare also[45]). The LHF

method yields numerically stable exchange potentials and orbital spectra.

Because the KS exchange potential is a local multiplicative potential it acts in the same

way on all orbitals, occupied as well as unoccupied ones. Moreover, it exactly cancels the

self-interacting terms of the Coulomb potential. Thus neither occupied nor unoccupied

LHF-orbitals suffer from Coulomb self-interactions. As a result physically correct orbital

and eigenvalue spectra including Rydberg series are obtained and the orbitals are well char-

acterized in chemical terms as, e.g., bonding, anti-bonding and so on. Veseth [42,46] used

EXX-Orbitals expanded into Slater functions in a CI of about 30-40 hand selected config-

urations to describe excitation energies of diatomic molecules. The results obtained this

way are in general very promising, however, in some cases the computed excitation energies

severely deviate from the experimental values.

This work tests whether Kohn-Sham orbitals and in particular LHF-orbitals represent useful

one electron basis sets for multireference methods such as MRCI (sections 2.1 to 2.7) and

5



6 Chapter 1 Introduction to Part1

MRPT2 (sections 2.8 to 2.11). In section 2.1, LHF-orbitals are compared with HF-, BLYP-

and partly CASSCF-orbitals with respect to their ability to serve as a single electron basis

for the calculation of excited states of ethene within a subsequent MRSD-CI calculation. As

a criterion to test the quality of an orbital set, the number of reference configurations that

is needed to push the error in the MRSD-CI+Q calculation below 0.1 eV is used. Taking

the water and the again the ethene molecules, the role of orbital relaxation in the occupied

valence orbitals is extensively studied in the sections 2.2 and 2.4. In the calculation of excited

states orbital relaxation effects can lead to problems, since the KS and HF-orbitals tested

represent ground state orbitals.

In the the sections 2.5 to 2.7, it is tested how well LHF-orbitals describe the excited states

of carbonmonoxide, formaldehyde and acetone in MRCI-calculations. Carbonmonoxide and

acetone seem to represent quite difficult test cases for EXX-orbitals. For carbonmonoxide,

for example, Veseth[42] found difficulties in the CI description of Rydberg states if he em-

ployed EXX-orbitals. It is investigated, to what extend these difficulties are related to the

quality of the EXX-Rydberg orbitals and how this behavior is influenced by orbital relaxation

effects. Formaldehyde and acetone are chosen, because even though both are electronically

very similar molecules, the ability of EXX-orbitals to describe their excited states seems

to be quite different for both molecules. Additionally, all three represent a series in which

the molecular size is systematically increased. The LHF-orbitals are compared with HF-,

BLYP- and B3LYP-Orbitals. B3LYP-orbitals were included, because time-dependend DFT

hybrid functionals give more accurate excitation energies than pure GGA functionals for

carbonmonoxide[69] and formaldehyde.[48,69] Even though this might mainly be due to error

compensation, it could be taken as a hint that the underlying orbitals might be a better

starting point to describe the corresponding excited states.

In the following sections, is is tested whether LHF-orbitals are also suited for an MRPT2

approach. In this part, it is first (section 2.8) studied to what extend the overestimation

of the second order corrections in single state perturbation theory can be eliminated in an

MR approach. In the next step (sections 2.11 to 2.9), excited states are computed with an

MRPT2 approach based on LHF-orbitals.

Major parts of chapter 2 are published in refs. 49-51.

Before the results of the analysis are presented in chapter 2, in the next section gives a more

6



1.2 Orbitals in HF- and KS-approaches 7

detailed description of the differences between the HF method and Kohn-Sham approaches.

1.2 Orbitals in HF- and KS-approaches

The simplest description of a many particle system that obeys the Pauli principle is the

Slater determinant of the single particle wavefunctions. Both the HF- and the KS-approach

try to describe a given many particle system by a single Slater determinant. The principal

difference between both approaches is that KS-orbitals in contrast to HF-orbitals are min-

imized under the additional condition that the orbitals come from a local potential. The

KS-counterpart to the HF method is the exact exchange-only (EXX) KS-method, because

both the EXX- and the HF-methods are based on the same total energy functional. In con-

trast to EXX-methods, the starting point for virtually all common density functionals is the

description of exchange and correlation by the local density approximation. The different

treatment of the orbitals by the three approaches is described in the following sections. The

introductory descriptions given in for the HF and KS ansatz roughly follows the description

of of standard textbooks of theoretical chemistry and density functional theory. [12,19,21,38]

The HF method

The systems that are treated in this work are many electron systems described by the

Hamiltonian operator

Ĥ = T̂ + Ŵ + V̂ (1.1)

with the kinetic-energy operator

T̂ ≡
∑

i

t̂i = −
1

2

∑

i

∆̂i, (1.2)

the Coulomb interaction of the electrons

Ŵ ≡
∑

j

∑

i>j

1

rij
(1.3)

that move in an external potential

V̂ ≡
∑

i

v̂ext(ri) (1.4)

7



8 Chapter 1 Introduction to Part1

that is typically determined by the Coulomb potential of the nuclei. In eqs. 1.2 to 1.4

uppercase symbols always denote total energy operators, while lowercase symbols always

stand for the one or two electron operators. The goal is now to find a good approximation

to the many electron wavefunction Ψ that solves the Schrödinger equation

ĤΨ = EΨ. (1.5)

The simplest physically sound approximation to the exact N-electron wavefunction Ψ is the

antisymmetrized product of N single electron wavefunctions χ(x), the Slater determinant: [12]

Ψ = Ψ̃(x1,x2, ...,xN ) = (N !)−1/2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

χi(x1) χj(x1) ... χN (x1)

χi(x2) χj(x2) ... χN (x2)

... ... ... ...

χi(xN ) χj(xN ) ... χN (xN )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= |χi(x1)χj(x2)...χN (xN ) > (1.6)

In equation 1.6 (N !)−1/2 is the normalization factor, which by definition in contained in the

short-hand notation that is given in the bottom line. The spin orbitals χ(x) are the product

of spatial orbital and spin function ϕj(r) ∗ α(s).

The total energy of the Slater determinant is

Etot = < Ψ|Ĥ|Ψ > =

N∑

i=1

∫

d3rχ∗
i (x)[t̂ + v̂ext]χi(x) +

1

2

N∑

i=1

N∑

j=1

(

∫ ∫

dxdx́
χi(x)χi(x)χj(x́)χj(x́)

|x− x́|
−

∫ ∫

dxdx́
χi(x)χj(x)χj(x́)χi(x́)

|x − x́|
). (1.7)

In equation 1.7 the total energy is described as the sum over kinetic and external potential

energy, the classical coulomb interaction of the spin orbitals and the exchange interaction

which is the result of the electron correlation induced by the Pauli principle. [12] For systems

having an even number of electrons, eqn. 1.7 can be reduced to a functional depending only

on the spatial orbitals ϕj(r):

Etot = 2 ∗

N/2
∑

i=1

∫

d3rϕ∗
i (r)[t̂ + v̂ext]ϕi(r) +

8



1.2 Orbitals in HF- and KS-approaches 9

N/2
∑

i,j=1

(2 ∗

∫ ∫

drdŕ
ϕi(r)ϕi(r)ϕj(ŕ)ϕj(ŕ)

|r− ŕ|
−

∫ ∫

drdŕ
ϕi(r)ϕj(r)ϕj(ŕ)ϕi(ŕ)

|r − ŕ|
). (1.8)

In chemist’s notation, 1.7 is abbreviated as

Etot = 2

N/2
∑

i=1

(i|ĥ|i) +

N/2
∑

i,j=1

[2(ii|jj) − (ij|ji)]. (1.9)

with the one electron operator ĥ = t̂ + v̂ext According to the variational principle, the best

description of a system is the one that minimizes the total energy functional. Consequently,

in the HF scheme, the total energy functional is minimized with respect to the orbitals:

δ

δϕi(r)
(Etot − ε(

∑

j

< ϕj |ϕj > −N)) = 0. (1.10)

In 1.10 the Lagrangian multiplicator ε ensures a constant electron number. The minimization

leads to the HF equations:

h(1)ϕi(1) +

N∑

j=1

[∫

dŕ|ϕj(ŕ)|
2r−1

12

]

ϕi(r) −

N∑

j=1

[∫

dŕϕj(ŕ)ϕi(ŕ)r
−1
12

]

ϕj(r)

= εiϕi(r), (1.11)

which are often written as effective one electron equations:

F̂ϕi(r) = εiϕi(r) (1.12)

with the Fock-operator

F̂ = ĥi + ûi + v̂NL
x,i (1.13)

that is composed of the one electron part ĥ, the Coulomb potential ûi

ûi =

N∑

j=1

[∫

dŕ|ϕj(ŕ)|
2r−1

12

]

(1.14)

and the nonlocal exchange potential v̂NL
x . Non-locality means that the HF exchange potential

is not one single potential that is the same for all orbitals, but it can only be defined for

each orbital individually, since the orbital itself enters the expression for v̂NL:[38]

v̂NL
xi Fϕi(r) = −

N∑

j=1

[∫

dŕϕj(ŕ)ϕi(ŕ)r
−1
12

]
ϕj(r)

ϕi(r)
. (1.15)

9



10 Chapter 1 Introduction to Part1

Density functional theory in the Kohn-Sham formalism

The basis of modern DFT is the theorem of Hohenberg and Kohn,[52] that states that the

ground state wavefunction Ψ as well as the external potential ρ is uniquely determined by

the ground state density:

Ψ ↔ ρ(r) ↔ v(r), (1.16)

and as a consequence all observables, i.e., the expectation values of hermitian operators of a

static many particle system are also functionals of its ground state density ρ. In particular,

the total energy can be written as a functional of the density:

E[ρ(r)] = 〈Ψn[ρ(r)]|Ĥ |Ψn[ρ(r)]〉 = 〈Ψn[ρ(r)]|T̂ + Ŵ + V̂ |Ψn[ρ(r)]〉 (1.17)

= T [ρ(r)] + W [ρ(r)] +

∫

ρ(r)vdr. (1.18)

If ρ(r) is the exact ground state density, then E[ρ(r)] equals the exact ground state energy.

For any other density ρ(r) 6= ρ(r)0, the Hohenberg-Kohn variation principle

E[ρ(r)0] > E[ρ(r)] (1.19)

holds. To obtain the best possible ground state density and the best possible total energy

one has to minimize the energy with the side condition of a constant of electrons, which

leads to the Euler-Lagrange equation:[38]

δE[ρ̃(r)]

δρ(r)
− µ = 0. (1.20)

In equation 1.19 the kinetic energy and Coulomb interaction do not depend on the external

potential v0 of the particular system, it can be seen to be universal. Kinetic energy and

Coulomb interaction will be abbreviated as

F [ρ(r)] ≡ 〈Ψn[ρ(r)]|T̂ + Ŵ |Ψn[ρ(r)]〉 = T [ρ(r)] + W [ρ(r)]. (1.21)

The functional F [ρ(r)] is independent of the external potential v0, i.e., it has the same

functional form for all systems with a fixed particle-particle interaction.

10



1.2 Orbitals in HF- and KS-approaches 11

Nearly all applications of DFT in quantum chemistry use the Kohn-Sham formulation of

DFT.[53] The Kohn-Sham formalism introduces a system of N noninteracting electrons that

move in an external local potential vs which has the property to yield exactly the same

density as the potential v of the interacting system. Since the Hohenberg-Kohn theorem

does not depend on the particular form of the electron-electron interaction, it is also valid if

W = 0. As a consequence, vs must be unique:

v(r) ↔ ρ(r) ↔ vs(r). (1.22)

The many particle Hamiltonian operator (1.1) can now be written as the sum over single

electron Hamiltonians (1.23):

Ĥ =

N∑

i=1

ĥs(i) =

N∑

i=1

(

−
1

2
∆̂i + vs(~ri)

)

(1.23)

The single electron wavefunctions for the noninteracting system can be written as

(

−
1

2
∆i + vs(ri)

)

φi(i) = εiφi(i). (1.24)

The corresponding density is

ρ(r) =

N∑

i=1

|φi(r)|
2. (1.25)

The KS-wavefunction, that is the Slaterdeterminant of the KS-orbitals, cannot be considered

to be an approximation to the exact wavefunction, but it is a property precisely defined by

the exact density of the system.[54] The total energy of this noninteracting system is given

by:

Es[ρ(r)] = Ts[ρ(r)] +

∫

d3r[ρ(r)]Vs(r). (1.26)

Since approaches that evaluate all energy terms by explicit density functionals like the

Thomas Fermi model do not allow an acceptable accuracy for kinetic energy, Kohn and

Sham introduced the exact orbital dependend expression for the kinetic energy functional

Ts[ρ(r)].

Ts[ρ(r)] =

N∑

i=1

∫

d3rφ∗
i [ρ](r)[−

∇2

2
]φi[ρ](r). (1.27)

11



12 Chapter 1 Introduction to Part1

Like in the Thomas-Fermi model, Kohn and Sham used the classical Coulomb interaction

for the potential energy, while the exchange and Coulomb correlation is summed up in the

exchange-correlation term Exc[ρ(r)]. This leads to the following expression for F [ρ(r)]:

F [ρ(r)] = T [ρ(r)] + W [ρ(r)] = Ts[ρ(r)] +

Coulombinteraction
︷ ︸︸ ︷

1

2

∫ ∫

drdŕ
ρ(r)ρ(ŕ)

|r− ŕ|
+Exc[ρ(r)] (1.28)

The definition of exchange correlation energy is obtained, if F [ρ(r)] of the noninteracting

system is compared to F [ρ(r)] of the interacting system in equation 1.21:

Exc[ρ(r)] = T [ρ(r)] − Ts[ρ(r)] + W [ρ(r)] −
1

2

∫ ∫

drdŕ
ρ(r)ρ(ŕ)

|r − ŕ|
(1.29)

Adding the interaction with the external potential to equation 1.29, the total energy func-

tional can now be expressed as:

E[ρ(r)] =

∫

drρ(r)v + Ts[ρ(r)] +
1

2

∫ ∫

drdŕ
ρ(r)ρ(ŕ)

|r − ŕ|
+ Exc[ρ(r)] (1.30)

Exchange and correlation in KS-theory

So far, the exchange-correlation energy has simply been defined as the difference between

the exact expression for F [ρ(r)] and the approximations made in equation 1.28. Exc can be

further partitioned into exchange Ex and correlation energy Ec:

Exc = Ex + Ec (1.31)

Since the ground state wavefunction for in the KS formalism is given the a Slater determinant

of the KS-orbitals, the exact exchange energy in the KS formalism has the same expression

as in HF-theory

EKS
x =

1

2

occ∑

i,j

∫ ∫

drdŕ
φ∗

i (r)φ
∗
j (ŕ)φi(ŕ)φj(r)

|r − ŕ|
. (1.32)

In equation 1.32 the exchange energy, like the kinetic energy before, is an explicit functional

of the orbitals. Why can it be called an implicit functional of the density? In KS theory

12



1.2 Orbitals in HF- and KS-approaches 13

the energy in minimized under the subsidiary condition that the orbitals come from a local

potential. If the local exchange potential vx = δEx

δ(ρ) is known, the exchange energy can be

expressed as an explicit functional of the density:

Exρ(r) =

∫

drvx(r)ρ(r) (1.33)

As a consequence, as long as the restriction that the orbitals that enter an orbital dependent

functional come from a local potential is fulfilled, the explicitly orbital dependent functional

can be considered to be an implicit density functional.

Before KS approaches that use the exact exchange functional are described, common DFT

methods that approximate the exchange (and correlation) by an explicit density functional

are described. The basic model of merely all these approximations is the uniform electron

gas, which represents a system in which the electrons move in a structureless (uniform)

positive potential. The expression for the exchange potential of such a system was already

formulated by Bloch and Dirac in the late 1920’s:

vx = − 3
√

3ρ(r)π (1.34)

In 1988, Becke introduced the gradient correction ∆EB88
x [ρ(r)] to the LDA expression of the

exchange energy:[55]

EB88
x [ρ(r)] = ELDA

x [ρ(r)] + ∆EB88
x [ρ(r)] (1.35)

with

∆EB88
x [ρ(r)] = βρ(r)1/3 x2

1 + 6βxsinh−1x
(1.36)

and

x =
|∇̂ρ(r)|

ρ3/4
. (1.37)

The correction term ∆EB88
x [ρ(r)] contains the free parameter β, by which EB88

x [ρ(r)] was

fitted to the exchange energy of noble gas atoms from helium to radon.

The correlation energy for the uniform electron gas is more difficult to evaluate. In 1980

Vosko, Wilk und Nusair derived an analytical expression for the correlation energy, which is

commonly known as the VWN functional. A gradient corrected functional for the correlation

energy has been proposed by Lee, Yang and Parr (LYP).[56] In this work, it is used in

combination with the B88-exchange (BLYP) as the standard example for a common GGA-

functional. Since the explicit form of the LYP-functional is rather lengthy, it is not given here,

13



14 Chapter 1 Introduction to Part1

but it can be taken from standard textbooks on quantum chemistry and density functional

theory.[21,78]

The energy functional can be further improved, if the exchange energy is partly described by

the HF-exchange. One of these so called hybrid functionals is the Becke-3-parameter (B3)

functional:[57]

EB3LY P
xc = aELDA

x + (1 − a)EKS
x + b∆EB88

x + cELY P
c + (1 − c)EV WN

c (1.38)

The three parameters used in EB3LY P
xc were determined as a = 0.80, b = 0.72 and c = 0.81

by fitting to experimental atomization energies and ionization potentials.

The LHF-method

If explicitly orbital-dependend functionals like the exact exchange, but also orbital dependent

correlation functionals are used, the evaluation of δExc/δρ leads to the Optimized Potential

Method.[38] The exact exchange (EXX) potential of a closed-shell system obeys the integral

equation[36,37,58]

∫

dr′Xs(r, r
′)vx(r′)

= 4

occ.∑

a

unocc.∑

s

φa(r)φs(r)
〈φs|v̂

NL
x |φa〉

εa − εs
. (1.39)

In equation (1.39) Xs(r, r
′) stands for the KS response function, vx(r′) for the KS exchange

potential, φa and φs denote real valued occupied and unoccupied spatial KS-orbitals with

the eigenvalues εa and εs, while v̂NL
x designates a nonlocal exchange operator which has

the form of the HF exchange operator. In the EXX method, this integral equation has

to be solved in each iteration of the SCF process to construct the exchange potential. A

numerical grid-procedure for the solution of the EXX-equation has been known for quite some

time,[36] but it is limited to spherical systems. In the last years, basis set methods employing

auxiliary basis sets were proposed to solve equation (1.39).[37,59] These methods were first

implemented for solids,[39,59,60] later for molecules.[40–43,61] While the implementations for

solids were numerically stable, for molecules problems occurred.[43,44,61] An alternative EXX-

approach is the local HF by Della Sala and Görling[44] (LHF). The LHF approach is derived

14



1.2 Orbitals in HF- and KS-approaches 15

in ref.[44] by comparing the HF to the exact exchange-only KS formalism. As explained in

section the HF determinant is defined as the single Slater determinant that minimizes the

total energy. The exchange-only KS determinant is the Slater determinant that minimizes

the total energy under the additional condition that its orbitals are eigenstates of an one-

particle Hamiltonian operator with a local multiplicative potential. Due to this additional

condition the two determinants are different and the exchange-only KS determinant always

yields a slightly higher total energy.

EHF ≤ EEXX (1.40)

The LHF method is derived by making the assumption that the two determinants are iden-

tical. This is an approximation, however, a very good one and the resulting LHF method

yields de facto identical results as a full EXX method and therefore can be considered to be

an effective exact exchange method. Note that even if the two determinants were identical

this would not mean that the corresponding canonical orbitals and their eigenvalues had

to be identical. It only means that the occupied orbitals are related by a unitary transfor-

mation but the individual orbital and their eigenvalues could be completely different. In

practice, it turns out that the difference between exchange-only KS and HF determinants

(however, not the differences between their orbitals and eigenvalues) is negligible. [36,44] For

small and medium sized molecules and for a given atomic basis set the overlap of the HF and

the exchange-only KS determinants deviate from one (identity of the determinants) by only

10−5 − 10−6 a.u., while total energies differ by 0.01% or less. If the HF and exchange-only

KS determinant were identical then one Slater determinant would be an eigenstate of both

the many-particle HF and the many-particle exchange-only KS equation:

[T̂ + V̂ext + Û + V̂ NL
x ]Φ = EHF

s Φ (1.41)

[T̂ + V̂ext + Û + V̂x]Φ = EEXX
s Φ (1.42)

The operators T̂ , V̂ext, Û , V̂ NL
x and V̂x in Eqs. 1.41 and 1.42 are the many-electron operators

corresponding to the kinetic energy, the external potential, the Coulomb potential, the non-

local HF operator and the local KS exchange potential. EHF
s and ELHF

s are the sums over

the corresponding HF/EXX orbital energies. From manipulating the latter two equations

15



16 Chapter 1 Introduction to Part1

the expression

vLHF
x (r) = vS

x (r) +
2

ρ(r)

occ.∑

(a,b)6=(N,N)

φa(r)φb(r)
[
〈φb|v̂

LHF
x |φa〉 − 〈φb|v̂

NL
x |φa〉

]
, (1.43)

with the Slater potential[62]

vS
x (r) = −

2

ρ(r)

occ.∑

a b

φa(r)φb(r)

∫

dr′
φb(r

′)φa(r
′)

|r − r′|
, (1.44)

can be derived[44] for the LHF exchange potential of a closed shell system. In eqs. 1.43

and 1.44, φa and φb are occupied orbitals, ρ(r) denotes the electron density, N is the label

of the highest occupied molecular orbital, and v̂NL
x is a nonlocal exchange operator of the

form of the HF exchange operator but constructed from KS-orbitals. In the sum on the

right-hand side of equation 1.43, the term which φa = φb = φN has been excluded (see

ref.[44]). Eq. (1.43), in constrast to the expression yielding the exchange potential in a full

EXX treatment, contains only occupied orbitals. It can be solved iteratively along with

the usual self-consistency process in an efficient and numerically stable manner, see Della

Sala and Görling.[44,63] Constructing the exchange potential according to eq. (1.43) can be

considered as a localization of a nonlocal exchange operator v̂NL
x of the HF type. Therefore

the approach has the name localized HF method. The LHF method has been implemented

in the TURBOMOLE program package.[44,63,64] Recently also a restricted open shell LHF

approach has been implemented.[65]

HF-orbitals

Since the present work is mainly interested in the properties of the orbitals, it is worth

taking closer look at the different treatment of the orbitals in HF- and KS-theory. In the

HF equations, occupied and unoccupied virtual orbitals are treated in a completely different

way. The orbital energy for an occupied orbital is

εa =< φa|ĥ|φa > +

N∑

x=1

(< φa(r1)φx(r2)|φa(r1)φx(r2) > −

< φa(r1)φx(r2)|φx(r1)φa(r2) >) (1.45)

16



1.2 Orbitals in HF- and KS-approaches 17

For the occupied orbitals the terms in which φx = φa, the self-interacting terms, are canceled:

< φa(r1)φa(r2)|φa(r1)φa(r2) > − < φa(r1)φa(r2)|φa(r1)φa(r2) >= 0 (1.46)

Because of the cancellation of the self-interaction, an occupied HF-orbital of an N-electron

system only interacts with N-1 other electrons.

An important physical meaning is of the energies for the occupied orbitals obtained, if the

ionization potential is computed as the energy difference between the ground state Slater

determinant and the Slater determinant of a system from which an electron has been re-

moved from spin orbital ϕc, while the other orbitals are left unchanged (“frozen orbital”

approximation):

IP = N−1E − NE0 = −(c|h|c) −
∑

a

((aa|cc) − (ac|ca)) = εc. (1.47)

The ionization potential equals the negative of the orbital energy. The approximation of the

ionization potentials by the orbital energies is known as Koopmans’ theorem. It is based on

the approximation that the correlation energy that is not treated in Hartree-Fock theory is

compensated by the neglect of orbital relaxation in the “frozen orbital” approximation.

For an unoccupied orbital no terms in equation

εi =< φi|ĥ|φi > +

N∑

x=1

(< φi(r1)φx(r2)|φi(r1)φx(r2) > −

< φi(r1)φx(r2)|φx(r1)φi(r2) >) (1.48)

are canceled. This means, that an unoccupied HF-orbital of an N-electron system interacts

with all N electrons of the system. This means that an unoccupied orbital of a neutral system

“feels” a neutral potential. It is as if an electron had been added to the system to produce

an N+1 electron state, and εi represented the energy of the extra electron. Correspondingly,

the electron affinities EA can be approximated by the energies of virtual HF-orbitals.

EA = NE0 −
N+1Ei = −(i|h|i) −

∑

a

((aa|ii) − (ai|ia)) = εi. (1.49)

In contrast to the Koopmans’ theorem for ionization energies, for electron affinities, the ne-

glect of correlation and orbital relaxation have the same sign and do not cancel each other

but they are summed up. As a consequence, Koopmans’ electron affinities are usually very

17



18 Chapter 1 Introduction to Part1

poor.

This work mainly uses virtual orbitals to describe either ground state correlation or excited

states. For both purposes HF-orbitals should not be very useful: In order to efficiently

describe statical correlation, the virtual orbitals need to have a rather compact shape. How-

ever, since HF-orbitals usually describe unbound states, they are highly diffuse. Furthermore,

HF-orbitals also do not describe excited states, because they do not describe a particle con-

serving system, but a system with one additional electron. The anions described by the

virtual orbitals are more diffuse than most of the excited states (except for some highly

diffuse Rydberg states). Due to their diffuseness, especially the description of valence states

is very difficult, while they are somewhat more useful for the description of Rydberg states,

which are much more diffuse than valence states.

In this work, HF virtual orbitals of cationic systems (N-1 electrons) are sometimes used to

describe the Rydberg states of a neutral molecule. In this case a Rydberg state is not seen

as an excited state of a neutral ground state, but as a cation (in the core of a Rydberg state)

to which a weakly bound electron is added. For the Rydberg states, orbital relaxation and

correlation only play minor roles because the interaction of the Rydberg electron with the

cationic core is only weak. Also virtual orbital energy

εi = (i|ĥ|i) +

N−1∑

x=1

((ii|xx) − (ix|xi)) (1.50)

(1.51)

in this case is a very good approximation to the negative of the energy neccessary to remove

the Rydberg electron from the molecule.

KS orbitals

In KS-theory, the nonlocal exchange potential is replaced by the local exchange potential.

εa = (a|ĥ|a) +

N∑

x=1

(aa|xx) − (a|vx|a)) (1.52)

This means that all KS-orbitals are eigenfunctions to the same single particle Hamiltonian.

In the exact KS potential, both occupied and virtual orbitals are optimized in a field of

18



1.2 Orbitals in HF- and KS-approaches 19

N-1 electrons. As a consequence, KS virtual orbital energies are not approximation for the

electron affinity, but the difference between the energies of occupied and unoccupied orbitals

can be seen as a well defined approximation of excitation energies.[22,23] This is in good

agreement with common chemical intuition, that understands virtual orbitals in a particle

conserving way. Virtual orbitals are usually described as entities into which electrons can be

excited rather than spaces to absorb additional electrons. While this is not realized in the HF

model, the KS model represent represents such a particle conserving system. For example

how KS-orbitals are used to describe chemical interactions see Bickelhaupt and Baerends. [24]

Besides the properties of the virtual orbitals, KS-orbitals in principle offer another advantage

over orbitals obtained from other ab initio methods. The KS theory is an exact MO theory,

since the occupied MOs yield the exact ground state density. Occupied MOs of exact KS the-

ory take into account all interactions including electron correlation. However, this argument

certainly does not hold for LHF-orbitals, which do not include correlation and only partly

for the common LDA- and GGA-orbitals. Even though LDA- and GGA-orbitals include a

large fraction of the correlation energy, they often suffer from erroneous self interactions.

This is because if exchange is treated approximately, the Coulomb self interaction does not

necessarily cancel the self-exchange:

(aa|aa) 6= (a|vx|a). (1.53)

LDA and GGA orbitals

For methods based on the local density approximation are applied to the hydrogen atom,

the self interaction error is in the order of 10−3 of the total energy. The self interaction

error is found in all systems and becomes severe in systems in which no error cancellation is

found such as the description of bond dissociations and biradical reactions. [21] Relevant for

the present work is that the self-interaction error affects the asymptotic behavior of the KS

potential. For a point far away from the molecule, the nuclear potential equals the coulomb

potential of the orbitals. As a consequence, the fall-off is only determined by the decay of the
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20 Chapter 1 Introduction to Part1

exchange potential, which for LDA is ρ1/3. Since ρ decays exponentially1, also the exchange,

and thus the total potential decays exponentially instead of -1/r. The wrong asymptotic

decay of the KS-potential affects both the spatial form of the orbitals and their energies.

Since the spatial form of KS-orbitals will be discussed in great detail later in this work,

here only the orbital energies are discussed, which are important, since they serve as input

entities or “first order approximation” in TDDFT.[48,66] The wrong exponential decay shifts

all occupied orbitals to higher energies[34] as it is shown in fig. 1.3. The negative of the

HOMO energy for GGA- and LDA-orbitals is often strongly underestimates the ionization

potential. In anions, the HOMO often is not bound at all.[35] Also the virtual orbitals are

also shifted to higher energies. In many cases only very few states of the Rydberg series

are bound. However, since the HOMO is also shifted to higher energies while the HOMO-

LUMO gap is often correct, especially the excitation energies for Rydberg state are often

under rather than overestimated by the orbital energy difference and the TDDFT approach.

Asymptotic behavior of the LHF potential

The asymptotic behavior of the KS-potentials vs can be improved by using asymptotic

corrections,[67–69] however, this does not fundamentally solve the problem of erroneous self-

interactions. The fundamental solution of this problem is to employ the exact local mul-

tiplicative KS exchange potential in the KS self-consistent field (SCF) process, as it has

been described for the EXX-approaches like the LHF. In EXX-approaches, Coulomb self-

interactions are exactly canceled. This means, that each orbital is optimized in the field of

N-1 occupied orbitals, which in contrast to the HF-method is valid for all orbitals including

1For the exact KS potential it can be easily shown that the density decay exponentially for r → ∞:

For a point far away from the system, an electron should only feel the potential -1/r, since the interaction of

the nuclei and the other N-1 electrons cancel. The KS equation then can be reduced to

(−
1

2r

d2

dr2
r −

1

r
)φi(r) = εi(r)φi(r), (1.54)

which is identical to the hydrogen system with the corresponding solutions. The asymptotic form of εi(r) is

φi(r) ∼ e
−
√

−2εi . (1.55)
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HF LHF BLYP B3LYP
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LUMO
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0

ε

Fig. 1.3: Schematic HF-, exact exchange KS-, and GGA-eigenvalue spectrum

the unoccupied ones. It can be easily shown that the LHF-potential falls off like -1/r for

r → ∞:

It has already been said that for a point far away from the system, nuclear and Coulomb

potential cancel each other and the asymptotic behavior is mainly determined by the ex-

change potential. The LHF exchange potential in equation 1.43 can be written as a sum of

the Slater potential and a correction term:

vx(r) = vS
x (r) + vcorr

x (r). (1.56)

For r → ∞ the correction term

vcorr
x (r) =

2

ρ(r)

occ.∑

(a,b)6=(N,N)

φa(r)φb(r)
[
〈φb|v̂

LHF
x |φa〉 − 〈φb|v̂

NL
x |φa〉

]
(1.57)

vanishes exponentially. This is because the factors φKS
a φKS

b /ρ that enter the correction

term vanish if not both φKS
a and φKS

b equal the HOMO, because the electron density in the

asymptotic region decays as the square of the HOMO and the ratios φKS
a /φKS

N asymptotically
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vanish exponentially for a 6= N due to the asymptotic behavior of the KS-orbitals. The

term in which φa = φb = φN had been eliminated from 1.57. The fall-off behavior of the

potential in the asymptotic region is therefore only determined by the Slater potential

vS
x (r) = −

2

ρ(r)

occ.∑

a b

φa(r)φb(r)

∫

dr′
φb(r

′)φa(r
′)

|r− r′|

= −
2φN (r)φN (r)

ρ(r)

∫

dr′
φb(r

′)φa(r
′)

|r− r′|

= −
1

r

∫

dr′ φb(r
′)φa(r

′) = −
1

r
, (1.58)

By the same argument as given for the correction term, the terms φKS
a φKS

b /ρ vanish and

only the term with φKS
a = φKS

b = φKS
N is left of the sum. 2φ2

N in the asymptotic region is

equal to the density and can be canceled. In the next step |r − r′| is set equal to r since r

is large compared to r’, so that the integration can be reduced to the norm of the HOMO,

which is one, and the total potential decays as -1/r. Due to its correct asymptotic behavior,

the LHF-potential yields a physically correct eigenvalue spectrum as it is shown in fig. 1.3.

The eigenvalue spectrum contains the antibonding orbitals and the complete Rydberg series.

The effects off the correct -1/r asymptotic decay on the structure of the virtual orbitals will

be discussed in great detail in the next chapter.
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Chapter 2

Kohn Sham Orbitals as One

Electron Basis Set for Ab Initio

Methods

To test the quality of a given set of orbitals in a CI-method, two principal approaches are

possible: One is to compute the desired states with the same computational effort and to

compare the accuracy that is reached (for example in the computed excitation energies).

The other possibility is to compute all states in the same accuracy and to compare the

computational effort that is needed to reach this accuracy. In this work, the second approach

is chosen. The main reason to choose the second approach this is that the main property

that determines whether a one electron basis set is useful for a CI-method or not is the

convergence of the CI method. Therefore, it is straightforward to chose the convergence

itself as a quality criterion.
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2.1 MRCI-calculations for ethene

The first example of this analysis are the excited states of ethene that are computed with

the MRCI-approach. Table 1 gives the computed excitation energies2. As the quality crite-

rion it also contains the number of the reference configurations which have to be taken into

account to push the error of the computation to 0.1 eV or less. More information about the

composition of the reference spaces of a few selected states can be taken from Table 2 which

contains the weights of the reference configurations in the MR-CI wave function. Differences

between the structure of orbitals obtained from various ansätze can be taken from Figure 1.

Exemplary it gives the contour plots of the π∗-orbital (b2g symmetry) and of the four lowest

2Computational details for section 2.1:

To obtain a better comparability with the literature, the geometry employed by Serrano-Andrés et al.
[70]

with RCC = 1.339 Å, RCC = 1.086 Å and ∠HCC = 117.6◦ was used to calculate the vertical excitation

energies of ethene. The ethene molecule lies in the yz plane with the z-axis going through the carbon atoms.

A (12s7p3d) basis set[71] contracted to [8s7p3d] was employed for carbon and a 6s3p1d un-contracted basis

set for hydrogen. Primitive gaussian functions with the exponents 0.012138 (s-type), 0.0042482 (s-type),

0.0080150 (p-type), 0.0028052 (p-type), 0.028512 (d-type) were added on the carbon atoms.

The CASSCF-orbitals were optimized for each given state employing a (2,11)CASSCF-space. For the 13Ag-

state a (2,12)CASSCF-calculation was performed. For all CASSCF-calculations the MOLCAS program pack-

age[72] was used.

In the LHF calculations, the Slater potential was constructed exclusively with the algorithm described in eq.

(25), (26) and (27) of Della Sala and Görling.[63] In the asymptotic region far from the molecule the LHF

exchange potential was constructed using asymptotic continuations of the KS-orbitals with the parameter Mt

determining the asymptotic region set to 10.

The reference spaces for the MRCI-computations (multireference singles-doubles-CI) were constructed by the

following selection procedure: If n states are to be computed, a selective MRCI with a reference wavefunction

of the n+3 configuration state functions lowest in energy is performed. The selection is done by Epstein Nes-

beth perturbation theory with a selection threshold of 0.1 mH. Configurations of the resulting wavefunction

contributing more than a given c2-value are again selected as the new reference wavefunction for another

selective MRCI which is repeated until a constant reference space is reached. A more detailed description

of this selection procedure is given in section 2.9. To reach an accuracy of 0.1 eV and less, selection thresh-

olds between c2 > 0.008 - 0.005 had to be chosen. The influence of higher excitations is estimated by the

normalized form of the Davidson correction.[73] The complete valence shell is correlated. All MRSD-CI and

MRPT2[4, 5] calculations were performed with the DIESEL-MR-CI program package[74] in combination with

the MOLCAS program package.[72]
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2.1 MRCI-calculations for ethene 25

lying orbitals of b3u symmetry (π-symmetry).

Except for HF-orbitals the reference space of the X 1Ag ground state is composed of two con-

figurations. Besides the groundstate configuration Ψ0 = |1a2
g1b

2
1u 2a2

g2b
2
1u1b2

2u3a2
g1b

2
3g1b

2
3u〉

also the configuration obtained from the π2 → π∗2 double excitation is found to possess a

weight larger than 0.02 (Table 2). The actual numbers vary to some extent (LHF: 0.023;

CAS: 0.026; BLYP: 0.022) but the overall picture is similar for these single-electron bases.

Despite this similarity the shapes of the π∗-orbitals differ (Figure 1). Both the LHF and

the BLYP π∗-orbital have the form of the intuitive π∗-orbital. The π∗-orbital obtained from

a groundstate (2,11) CASSCF-computation,[70] however, does not have this intuitive shape

but possesses an additional nodal plane which results since the orbital is optimized for an ef-

ficient description of correlation effects. The energetically lowest HF-orbital of π∗-symmetry

(b2g) is very diffuse and cannot be identified as the intuitive anti-bonding π∗-orbital. Instead

the character of the intuitive π∗-orbital is dissolved in various higher lying orbitals. As a

consequence the corresponding reference space consists of three configurations instead two.

This interpretation is clearly confirmed by the results for the lowest lying triplet state, 1

3B1u, where 6 reference configurations are needed for an accurate calculation if HF-orbitals

are employed. Employing LHF- or BLYP-orbitals only one reference configuration possess-

ing a weight of more than 0.9 is needed for an accurate computation showing that both

approaches provide very appropriate orbitals to describe this excited state. On the other

hand employing the orbitals of a (2,11) CASSCF computation for the 1 3B1u state state

one additional configuration is found which has to be included in the description of this

lowest lying excited triplet state. It is worth to note that the orbitals obtained from a (2,11)

CASSCF computation for the X 1Ag ground state are not suitable for a description of the

1 3B1u state. This underlines the above interpretation that the CASSCF-orbitals are opti-

mized to describe correlation effects but do not reflect the intuitive orbitals describing the

excited states of the molecule.

As shown in previous works, the computational determination of the 1 1B1u state is very

complicated. The maximum of the absorption band is found at 7.66 eV, but for the vertical

excitation Serrano-Andres et al. suppose a value of 8.0 while the value of 7.66 eV is at-

tributed to a somewhat twisted geometry.[70] Recently, based on new computations, Lischka

and coworkers located the vertical transition around 7.7 eV.[75]
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26 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

Tab. 2.1: Computed excitation energies and number of reference configurations being necessary to

obtain an accuracy of about 0.1 eV. The number contains those reference configurations contributing

with a value of c2 higher than 0.004 to the MR-CI wave function. The reference space contains

additional configurations which had to be included, if several electronic states were computed at the

same time. The total number of configurations is given in parenthesis.

HF LHF BLYP CAS

state class. nRef ∆ E nRef ∆ E nRef ∆ E nRef ∆ E exp.[a]

X 1A1g Ψ 3 - 2 - 2 - 2 - -

1 1B1u π → π∗ 3 7.96 3 7.94 3 7.95 1 8.17 7.66[b]

1 1B3u π → 3s 9 7.17 1 7.22 1 7.24 1 7.26 7.11

1 1B1g π → 3pσ 4 7.86 1 7.88 3 7.82 - - 7.80

1 1B2g π → 3pσ 7 7.96 1 8.00 3 7.96 - - 7.90

2 1Ag π → 3pπ 4 (7) 8.28 1 (2) 8.28 2 (4) 8.31 - - 8.28

2 1B3u π → 3dσ 10 (10) 8.61 2 (4) 8.63 5 (5) 8.66 - - 8.62

2 1B1u π → 3dπ - - 4 (4) 9.21 3 (3) 9.19 - - 9.33

1 1B2u π → 3dδ - - 1 9.12 1 9.13 - - 9.05

1 3B1u π → π∗ 6 4.45 1 4.48 1 4.49 2 4.43 4.36

1 3B3u π → 3s 9 7.06 1 7.10 1 7.14 - - 6.98

1 3B1g π → 3pσ 5 7.79 1 7.83 2 7.87 - - 7.79

1 3B2g π → 3pσ 7 7.91 1 7.97 2 8.00 - - -

1 3Ag π → 3pπ 4 8.13 1 8.13 3 8.11 1 8.09 8.15

2 3B3u π → 3dδ - - 2 (3) 8.57 6 (6) 8.55 - - 8.56

[a]Experimental data are taken from Serrano et al.[70]

[b]The value of the vertical excitation energy of the 11B3u-state is widely discussed in the literature.

Serrano et al. give 8.0 eV, while the 7.66 eV is attributed to a somewhat twisted geometry.[70]

Recent computations by Lischka and coworkers predict a vertical excitation energy around 7.7 eV.[75]

For this case, the error may exceed 0.1 eV. The number of reference configurations, in particular in

the case of CAS, therefore does not reflect the quality of the orbitals (details see text).
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2.1 MRCI-calculations for ethene 27

Fig. 2.1: Spatial structure of the π∗-orbital and of the four lowest lying orbitals of b3u-symmetry.

The frame length for the π∗ and the π-orbitals is 10 a.u. and a contour spacing of 0.025 a.u. is used.

The frames of the other b3u-orbitals have a length of 50 a.u.. The contour spacing is 0.0025 a.u..��� ����� ���	��
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a obtained from (2,11) CASSCF for the ground state,the 3b3u and 4b3u are not included the CAS-

space.

b obtained from (2,12) CASSCF for the 13Ag state, the 4b3u is not included the CAS-space.
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28 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

Tab. 2.2: Composition of the reference spaces of selected electronic states.

Zust class. HF LHF BLYP CAS

X 1Ag Ψ0 0.8892 0.8828 0.8814 0.8824

π2 → 1b2
2g - 0.0230 0.02677 0.0222

π2 → 5b2
2g 0.0067 - - -

π2 → 5b1
2g6b1

2g 0.0061 - - -

1 1B1u π → 1b2g 0.0905 0.7210 0.7691 0.8983

π → 2b2g 0.4590 0.1308 0.0481 -

π → 3b2g 0.3339 0.0312 0.0613 -

2 1Ag π → 2b3u 0.1078 0.8799 0.4868 -

π → 3b3u 0.5749 - 0.3967 -

π → 4b3u 0.1233 - - -

π → 5b3u 0.0795 - - -

Ψ0 0.0002a 0.0001 0.0001 -

π2 → 1b2
2g - 0.0026 0.0008 -

π2 → 5b2
2g 0.0005 - - -

π2 → 5b1
2g6b1

2g 0.0011 - - -

1 3Ag π → 2b3u 0.0795 0.8928 0.3484 0.9123

π → 3b3u 0.5208 - 0.4151 -

π → 4b3u 0.1704 - 0.1277 -

π → 5b3u 0.1190 - - -

2 3B3u π → 4ag - 0.0017 0.0250 -

π → 5ag - 0.7488 0.0625 -

π → 6ag - 0.1399 0.0679 -

π → 7ag - - 0.2023 -

π → 8ag - - 0.4906 -

π → 9ag - - 0.0392 -

While LHF- and BLYP-orbitals need only 1 reference configuration to characterize the 1 3B1u

state they need 3 reference configurations to compute the corresponding singlet state 1 1B1u

(Table 1). The reference space consists of the main configuration describing the single exci-

tation π → 1b2g(π
∗) from Ψ0 which possesses a weight of 0.7210 (LHF) and 0.7691 (BLYP).

For both types of orbitals the single excitations π → 2b2g and π → 3b2g represent two addi-
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2.1 MRCI-calculations for ethene 29

tional reference configurations. Both excitations are the dominant reference configurations

for the next state of this symmetry ( 2 1B1u from π → dπ Rydberg excitation), showing

the interaction between the two states which was already discussed in the literature. [70,76,77]

Although the weights of this additional reference configurations differ to some extent going

from LHF- to BLYP-orbitals the overall picture is very similar.

For a good representation of the 1 1B1u state HF also needs only 3 reference configurations.

However, as can be seen from Table 2 the emerging picture is completely different. Employ-

ing HF-orbitals the two single excitations π → 2b2g and π → 3b2g represent the dominant

contributions to this state. This shows again, that the intuitive character of the π∗-orbital

is dissolved in various higher lying orbitals. Employing CASSCF-orbitals optimized for the

given state, only one reference configuration is found, however, the computed excitation

energy is about 0.2 eV higher than those obtained with HF-, LHF-, or BLYP-orbitals. As

already pointed out by Serrano et al. CASSCF-orbitals seem to be less efficient in the de-

scription of such mixing.[70] This can also be seen from the work of Lischka and coworkers

who needed very large reference spaces to push the excitation energy below 7.8 eV. [75]

For the electronic Rydberg states arising due to the π → 3s Rydberg transitions, namely the

11B3u and the 1 3B3u state both LHF- and BLYP-orbitals already provide a good represen-

tation if only one reference configuration is involved. The electronic state arising due to the

π → 3pσ transitions seems to be more complicated, however. While LHF-orbitals seem to

be still perfect, three reference configurations are needed if BLYP-orbitals are employed as

single-electron basis. The additional reference configurations possess weights of about 0.11

and 0.06. An enlargement of the reference space used for the LHF ansatz changes the exci-

tation energies by less than 0.05 eV. HF-orbitals again do not provide the intuitive orbitals

reflecting the excited states.

A similar situation is found for the 2 1Ag and the 1 3Ag states which represent the π → 3pπ-

Rydberg transitions. Again only LHF provides orbitals reflecting the intuitive character of

these Rydberg orbitals while for BLYP-orbitals the character is dissolved into various or-

bitals. This can be seen in the shape of the b3u orbitals which represent the Rydberg npπ

sketched in Figure 1. The LHF-orbitals nicely reflect the npπ Rydberg series in the intuitive

ordering starting with the least diffuse one. The BLYP npπ Rydberg series starts with the

very diffuse 2b3u and 3b3u orbitals. The inner region of the 3b3u BLYP-orbital resembles
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30 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

the 2b3u LHF-orbital. As a result employing the BLYP-orbitals the reference spaces for the

2 1Ag and the 2 3Ag states are dominated by configurations arising from both the π → 2b3u

and the π → 3b3u excitation while the configuration arising due to the π → 4b3u excitation

possesses a much smaller weight.

The electronic states arising due to π → 3d-Rydberg excitations seem to be even more com-

plicated. Also for LHF-orbitals a correct description of the 2 1B3u and the 2 1B1u needs

more than one reference configuration. In this case the analysis of the wave function points

more to a real interaction between two states than to problems in the orbital representation.

Summarizing, the first example shows that LHF-orbitals should be well suited as single

electron basis for MR-CI computations. This underlines that they reflect intuitive chemical

concepts and can be identified as, e.g., anti-bonding or Rydberg orbitals. Also BLYP-orbitals

are usable for the description of some states but are less suitable for the description of higher

lying states. As expected HF-orbitals represent the worst set of orbitals. As known before,

CAS orbitals are well suited for MR-CI computations.

2.2 Relaxation of the orbitals describing the core ion of the

excited states

When an electron is excited from an occupied into a previously unoccupied orbital, the

orbitals of the cationic core contract. Furthermore, density sometimes is redistributed along

molecular axes, i.e., the polarization of bonds can change. Since this work uses ground state

orbitals, it needs to be understood how the orbital relaxation is described in the MRCI-

computations and whether this might lead to errors in the computation of the excited states.

In this section, a number of energy variables is introduced that will be used in the following

discussion of orbital relaxation.

For a precise calculation of electronically excited states, orbital relaxation effects, static, and

dynamical correlation have to be considered. All of these effects are taken into account in

the complete MRSD-CI+Q energy (EMRCI+Q). On the other hand, none of these effects are

included in the energy expectation value (Edet) of the configuration state functions, which in
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2.2 Relaxation of the orbitals describing the core ion of the excited states 31

sections ?? and 2.4 are called determinants3 which in a simple one-particle picture represent

the excited states and which are built from HF or KS orbitals optimized for the groundstate

by carrying out excitations in the corresponding HF or KS determinant. Static correlation

energy is normally defined as the energy lowering with respect to the restricted (open) shell

Hartree-Fock (R(O)HF) energy introduced by adding enough flexibility in the wave function

to be able to qualitatively describe the system.[78] In this study, as static correlation is defined

by the difference between the simple determinantal energy (Edet) and the energy obtained

for Eref if the state is treated by a small CI expansion within the space consisting only of

the reference configurations. This definition is slightly different to the general one since the

reference space was chosen in a way that the deviations of excitation energies obtained from

the MRSD-CI+Q calculations from experimental values are lower than 0.1 eV. However,

both are close enough to justify this definition. Finally the energy difference between Eref

and EMRCI+Q gives the sum of the remaining effects namely the orbital relaxation and

dynamical correlation. Within the text this sum will be abbreviated as Erel,dyn
corr . In the case

of Rydberg states which represent systems with a weakly interacting electron cycling around

a positively charged core, orbital relaxation effects of the core orbitals can be estimated by

computing the corresponding cationic system employing an ROHF ansatz. The occupied

orbitals from this ROHF computation include orbital relaxation effects although probably

to a slightly larger extend than actually found for Rydberg states of the neutral molecule.

Furthermore, the virtual orbitals for the cations should reflect the correct shapes of Rydberg

orbitals since within the ROHF computation they “feel” the potential of a singly charged

core which is the correct potential for Rydberg electrons. Orbital relaxation effects (Erel)

arising due to the loss of the electron can be estimated from the energy difference between

Edet for the cation computed with ground state orbitals and the ROHF energy for the cation.

Finally, substracting Erel from Erel,dyn
corr which includes both dynamical correlation and orbital

relaxation gives information on the magnitude of dynamical correlation. Within the tables,

3All excited states considered here possess two singly occupied orbitals. For triplet states the situation is

simple since if both orbitals are occupied with α spin electrons. This leads to one determinant which already

possesses the correct S2 and Ms quantum number. For the singlet states two determinants arise. Only proper

linear combinations of both are eigenfunctions to the S2 operator. These linear combinations are called

configuration state functions (CSF). However, to avoid confusion within the text the term “determinant” is

used for both triplet and singlet states and Edet for the corresponding energies.
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excitation energies obtained on the various levels are given. Excitation energies estimated

with orbital energy differences ∆Eorb are also given in the tables.

2.3 Discussion of the water molecule

Table 2.3 gives computed excitation energies4 for the water molecule that are obtained if

LHF-orbitals are used as one electron basis. Besides the excitation energies also the three

energetically lowest ionization energies are included. Except for the 1 1A1 state all reference

spaces are built up from only two configurations, e.g., the configurations 1b1 → 3px and

1b1 → 3dxz in the calculation of the excited states 1 1A2 and 2 1A2. This represents the

smallest possible reference space, because always two states, i.e. two roots, are computed at

the same time. As seen from table 1 ∆EMRCI+Q values obtained on the basis of LHF-orbitals

are in excellent agreement with their experimental counterparts. Computations with larger

reference spaces change ∆EMRCI+Q by less than 0.05 eV. Both findings show that the mini-

mal reference spaces (two configurations for two states) are already sufficient for an accurate

description if LHF-orbitals are employed. Additionally, the small differences between ∆Edet

and ∆Eref underline that the two states computed together do not mix, i.e., the nature of a

given electronically excited state is dominated by only one determinant (configuration state

function) characterized by the one-particle excitation given in the second column of table 1.

This behavior is excellent for the assignment of electronically excited states. It would be very

advantageous if the properties of the LHF-orbitals described above lead to the possibility

to accurately estimate the electronic spectrum without or partly without the consideration

of the remaining effects namely dynamical correlation and electron relaxation. However, as

shown in table 2.3, this is impossible. A computation employing the orbital energies of the

4Computational details for section 2.3:

All calculations were performed at the experimental geometry being ROH = 0.975 Å, and ∠HOH = 116.5◦.[79]

The water molecule is chosen to lie in the yz plane with the z-axis being collinear to the C2-rotation axis.

(12s7p3d) basis sets[71] contracted to [8s7p3d] were employed for oxygen and a 6s3p1d un-contracted basis

set for hydrogen. Primitive gaussian diffuse functions with the exponents 0.0320 (s-type), 0.0100 (s-type),

0.0066 (s-type), 0.0030 (s-type), 0.0280 (p-type), 0.0100, (p-type) 0.0540 (p-type), 0.0150 (d-type), 0.0090

(d-type), 0.0032 (d-type) were added on the oxygen atom.
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2.3 Discussion of the water molecule 33

Tab. 2.3: Computed excitation energies of the Rydberg states of water employing LHF-ground state

orbitals. Only minimal reference spaces were used. For more information and an explanation of the

various quantities see text. For the groundstate: Edet = Eref = ELHF = -76.06045 a.u.; EMRCI+Q =

-76.32745 a.u.. All energies in eV.

state assignment ∆Eorb ∆Edet ∆Eref ∆EMRCI+Q ∆E
[a]
exp Erel,dyn

corr

X 1A1 Ψ0 - - - - 0.00 -7.26

2 1A1 3a1 → 3s/1b1 → 3py 10.18[b] 11.41 10.95 9.66 9.7 -8.55

1 1A2 1b1 → 3px 10.08 10.31 10.32 9.15 9.1 -8.41

2 1A2 1b1 → 3dxz 11.85 12.05 12.05 10.65 -8.67

1 1B2 1b1 → 3dxy 12.21 12.32 12.31 10.83 -8.74

2 1B2 1b1 → 4dxy 12.92 12.95 12.97 11.49 11.40 -8.74

1 1B1 1b1 → 3s 8.13 8.66 8.66 7.39 ∼7.5 -8.53

2 1B1 1b1 → 3pz 10.99 11.09 11.09 9.77 ∼10.0 -8.59

1 3A1 3a1 → 3s 10.18 10.44 10.43 9.34 9.30 -8.41

2 3A1 1b1 → 3py 11.00 10.77 10.79 9.57 -8.48

1 3A2 1b1 → 3px 10.08 10.06 10.05 9.00 ∼9.0 -8.32

2 3A2 1b1 → 3dxz 11.85 11.98 11.98 10.82 -8.67

1 3B2 1b1 → 3dxy 12.21 12.27 12.29 10.82 -8.74

2 3B2 3a1 → 3px 12.92 12.24 12.23 11.24 -8.61

1 3B1 1b1 → 3s 8.13 8.09 8.09 7.07 ∼7.1 -8.26

2 3B1 1b1 → 3pz 10.99 10.99 10.99 9.76 -8.70

2B1 1b1 → ∞ 13.79 13.77 12.34 12.62 -8.59

2A1 3a1 → ∞ 15.83 15.94 14.60 14.74 -8.31

2B2 1b2 → ∞ 19.62 19.56 18.86 18.51 -7.97

[a]Experimental excitation energies from Cai et al.,[80] ionization potentials from Brundle.[81]

[b]Computed for 3a1 → 3s.
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LHF-orbitals predicts excitation energies which are about 1 - 2 eV too high. Also the ioniza-

tion energies are overestimated by the same number. Moreover, multiplet splittings, e.g., the

difference between the 1 1A2 and the 1 3A2 excitation energies, are principally inaccessible

by orbital energy differences. The differences between ∆Eorb and ∆Edet are smaller than 1

eV but for singlet states the agreement between theory and experiment becomes even worse

if ∆Edet instead of ∆Eorb is used, even though in ∆Edet multiplet splitting shows up. As

expected, for triplet states only small differences between ∆Eorb and ∆Edet are found. As

already discussed above the situation does not change if the interaction between the refer-

ence configurations is taken into account (∆Eref) showing that static correlation effects are

of minor importance if the MRSD-CI+Q calculation is based on LHF-orbitals. The situation

is only improved if the remaining effects dynamical correlation and orbital relaxation, are

also included in the calculation. The fact that computed excitation energies are then shifted

by about 1 eV or more to lower values shows that these effects (Erel,dyn
corr ) are more important

for the excited than for the ground state. Indeed, Table 1 shows that Erel,dyn
corr is somewhat

more than 1 eV more negative for excited states than for the ground state.

Table 2.3 shows that an accurate description of the 1 1A1 state needs three instead of two

reference configurations. However, this does not result from shortcomings of the employed

LHF-orbitals but results from an avoided crossing between two states of a1 symmetry taking

place at a bond angle of about 1000. This avoided crossing was discussed to explain the

vapor-phase dissociation of H2O induced by photons or electrons having an energy of 10 eV

or more.[82,83]

Summarizing, LHF-orbitals seem to be well suited as one electron basis for subsequent

MRSD-CI computations of the excited states, since only a minimal number of reference

configurations is needed. As a consequence an assignment of the excited states to a single

excitation (e.g., 1b1 → 3px for the 1 1A2 state) is straightforward in most cases. Deviations

from this behavior point to real interaction between two electronically excited states. This is

supported by the shape of the LHF-orbitals of a1 symmetry depicted in figure 2.2. However,

the strong influence of the effects summarized in Erel,dyn
corr is quite intriguing and might in

some cases limit the usefulness of LHF-orbitals for the description of excited states.

The results obtained with HF ground state orbitals are summarized in table 2.4. In difference

to LHF-orbitals the sizes of reference spaces necessary to obtain an accuracy of about 0.1 to
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0.2 eV for the vertical excitation energies range from 6 to 9. Only for states of b2 symmetry

already 3 reference configurations are sufficient. The importance of large reference spaces

is also reflected in the differences between ∆Edet and ∆Eref . If the whole reference space is

taken into account the error in most cases is reduced by more than one 1 eV showing that

static correlation effects are very large if HF-orbitals are used. ∆Eref still possesses errors

of 1 - 2 eV underlining that also dynamical correlation and orbital relaxation effects cannot

be neglected. The size of these effects in the total energies, summarized in Erel,dyn
corr , ranges

around 8.8 - 9.0 eV, i.e., it possesses the same magnitude as for LHF-orbitals. This indicates

that the larger reference spaces are necessary for the description of the electronic characters

of the excited states. Their characters can only be accessed by an overlay of several con-

figurations, since the shapes of the HF-orbitals do not mirror the form of Rydberg orbitals.

This can be seen from the shape of the HF-orbitals of a1 symmetry depicted in figure 2.2.

In comparison to LHF-orbitals the virtual HF-orbitals are not only too diffuse, they do not

even reflect the general shape. This behavior is expected since virtual HF-orbitals “feel” the

potential of the neutral system instead of the potential of a positively charged core. However,

once the character of an excited state is correctly described by a linear combination of sev-

eral configurations, the remaining effects, e.g., dynamical correlation and orbital relaxation,

possess the same magnitude as those found for the LHF-orbitals. The discussion shows that

for HF-orbitals a clear assignment of the excited states is problematic. Consequently, an

assignment and the corresponding orbital energies are omitted in table 2.4. The physical

interpretation can be taken from table 2.3.

The results obtained when BLYP-orbitals are employed for the MRSD-CI-computation of

the excited states of the water molecule are summarized in tables 2.5 and 2.6. While ta-

ble 2.5 gives the excitation energies computed with minimal reference spaces (2 reference

configurations for 2 states), table 2.6 summarizes the values obtained for extended reference

spaces. A comparison between table 2.3 (LHF results) and table 2.5 (BLYP results) shows

small but remarkable differences between both sets of orbitals.
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Tab. 2.4: Computed excitation energies of the Rydberg states of water using HF-orbitals. Energies

are given in eV. nref gives the number of reference configurations with c2 ≥ 0.1. If the actual number

of reference configurations used in the calculation differs from the number being important for the

description of the state, the total number is given in brackets. For the groundstate: Edet = Eref =

EHF = -76.06398 a.u.; EMRCI+Q = -76.32886 a.u. All energies in eV.

state nref ∆Edet ∆Eref ∆EMRCI+Q ∆Eexp Erel,dyn
corr

X 1A1 1 - - - - -7.21

2 1A1 6 (7) 12.59 11.55 9.82 9.7 -8.93

1 1A2 3 (9) 12.51 10.77 9.07 9.1 -8.92

2 1A2 4 (9) 12.73 12.21 10.61 -8.81

1 1B2 3 12.94 12.44 10.83 -8.81

2 1B2 3 12.98 13.07 11.49 11.40 -8.78

1 1B1 3 (7) 12.20 9.50 7.28 ∼7.5 -9.42

2 1B1 3 (7) 12.67 11.86 10.01 ∼10.0 -9.06

1 3A1 9 (15) 14.65 10.86 9.27 9.30 -8.80

2 3A1 6 (15) 12.51 11.14 9.54 -8.80

1 3A2 2 (6) 12.90 11.07 9.06 ∼9.0 -9.21

2 3A2 4 (6) 12.73 12.54 10.91 -8.83

1 3B2 3 12.94 12.43 10.83 -9.21

2 3B2 3 12.99 13.06 11.49 -8.83

1 3B1 3 (7) 12.60 9.24 6.85 ∼7.1 -9.59

2 3B1 4 (7) 12.60 11.82 9.96 -9.07

2B1 1 13.87 12.33 12.62 -8.74

2A1 1 15.92 14.61 14.74 -8.51

2B2 1 19.54 18.87 18.51 -7.87
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Fig. 2.2: Shapes of the three lowest lying orbitals of a1-symmetry of the water molecule. Box sizes and the spacing of the contour lines are
given in the plot. For HF- and BLYP-orbitals two columns with different contour spacing are given because the structures of the highly diffuse
orbitals are not visible in the picture obtained with the higher contour spacing.
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38 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

The influence of differences in orbital structure from of both sets on the excitation energies

are best reflected in ∆Edet. On this level, the computations employing either LHF- or BLYP-

orbitals strongly overestimate the excitation energies. LHF-orbitals are somewhat superior

since they predict lower excitation energies. For states describing excitations into the 3d and

the 3p Rydberg orbitals the deviations between both sets of orbitals vary from 0.8 to 1.5

eV, if the 3s or the 4d orbitals are involved smaller deviations of about 0.3 eV and 0.1 eV,

respectively, are found. For the triplet states the deviations are even larger (0.5 - 1.8 eV).

The differences between both sets of orbitals are also reflected within the singlet triplet gaps

(∆EST) which on this computational level is equal to the difference in the exchange integral

of both singly occupied orbitals. In general the ∆EST values of the computations employing

LHF-orbitals are slightly larger (0 - 0.3 eV) which is the reason that LHF and BLYP results

for triplet states differ more than the data for singlet states.

Since the ionization energies only depend on the shapes of the occupied orbitals, the ioniza-

tion energies obtained on the determinantal level employing either LHF- or BLYP-orbitals

differ less (0.2 - 0.3 eV) than the excitation energies. This is in line with the general finding

that the occupied orbitals are more similar than the virtual orbitals.

The large differences found between the ∆Eorb and ∆Edet values obtained with BLYP- and

LHF-orbitals, respectively, arise since in contrast to Edet the orbital energies are determined

by the shapes of the respective orbitals and the functional form of the corresponding exchange

potentials. Comparing LHF- and BLYP-orbitals both types of quantities are different. Gen-

erally, the large difference between ∆Eorb and ∆Edet in the LHF as well as the BLYP case

shows that if DFT-orbitals are used for subsequent CI calculations, it is problematic to use

the DFT orbital energies for the computation of diagonal elements of the CI matrix employ-

ing simply exchange integrals of DFT-orbitals for the correction. In this case diagonal and

off-diagonal matrix elements are computed on a different footing.

Employing BLYP-orbitals in combination with minimal reference spaces leads to ∆EMRCI+Q

values which agree quite nicely with the experimental excitation energies. The errors are

lower than 0.2 eV in most cases showing an only slightly worse agreement with the exper-

imental values than the predictions obtained with LHF-orbitals. With a difference of 0.55

eV to the LHF result the 2 1A2 state is an exception, but no experimental results exist for

this state.
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2.3 Discussion of the water molecule 39

Tab. 2.5: Computed excitation energies of the Rydberg states of water using BLYP-orbitals. For more

information see text or tables 1 and 2. For the groundstate: EBLYP = -76.45412 a.u., Edet = Eref =

-76.04977 a.u., EMRCI+Q = -76.32529 a.u.. All energies in eV.

state assignment nref ∆Eorb ∆Edet ∆Eref ∆EMRCI+Q ∆Eexp Erel,dyn
corr

X 1A1 Ψ0 1 - - - - -7.50

2 1A1 3a1 → 3s 1 (2) 8.20 11.62 11.63 9.59 9.7 -9.54

1 1A2 1b1 → 3px 1 (2) 7.27 11.82 11.80 9.31 9.1 -9.99

2 1A2 1b1 → 3dxz 1 (2) 7.42 13.15 13.16 11.20 -9.46

1 1B2 1b1 → 3dxy 2 (2) 7.43 13.14 12.79 10.81 -9.48

2 1B2 1b1 → 4dxy 2 (2) 8.01 13.04 13.40 11.50 11.40 -9.44

1 1B1 1b1 → 3s(4a1) 1 (2) 6.13 9.04 9.04 7.25 ∼7.5 -9.27

2 1B1 1b1 → 3pz(6a1) 1 (2) 7.36 12.50 12.59 10.21 ∼10.0 -9.79

1b1 → 5s(5a1) 1 (2) 7.26 12.75 12.78 10.69 -9.58

1 3A1 3a1 → 3s 1 (2) 8.20 10.93 10.93 9.20 9.30 -9.23

2 3A1 1b1 → 3py 1 (2) 7.36 12.37 12.46 9.97 -9.89

1 3A2 1b1 → 3px 1 (2) 7.27 11.78 11.77 9.18 ∼9.0 -10.08

2 3A2 1b1 → 3dxz 1 (2) 7.42 13.15 13.16 11.20 -9.46

1 3B2 1b1 → 3dxy 2 (2) 7.43 13.14 12.79 10.80 -9.48

2 3B2 3a1 → 2px 2 (2) 9.35 13.04 13.40 11.50 -9.44

1 3B1 1b1 → 3s 1 (2) 6.13 8.66 8.64 6.89 ∼7.1 -9.25

2 3B1 1b1 → 3pz 1 (2) 7.36 12.74 12.77 10.66 -9.60

2B1 1b1 → ∞ 1 7.205 14.06 12.16 12.62 -9.39

2A1 3a1 → ∞ 1 9.278 16.19 14.44 14.74 -9.25

2B2 1b2 → ∞ 1 13.156 19.80 18.71 18.51 -8.58
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40 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

Tab. 2.6: Computed excitation energies of the Rydberg states of water using BLYP-orbitals and

enlarged reference spaces. For more information see text or tables 1 and 2. For the groundstate:

EBLYP = -76.45412 a.u., Edet = Eref = -76.04977 a.u., EMRCI+Q = -76.32529 a.u.. All energies in eV.

state nref ∆Eref ∆EMRCI+Q ∆Eexp Erel,dyn
corr

2 1A1 1 (3) 11.60 9.58 9.7 -9.52

1 1A2 2 (4) 11.05 9.05 9.1 -9.52

2 1A2 2 (4) 12.81 10.79 -9.52

1 1B2 3 (3) 12.58 10.66 9.42

2 1B2 2 (3) 13.23 11.31 11.40 -9.41

1 1B1 1 (4) 8.99 7.24 ∼7.5 -9.25

2 1B1 1 (4) 11.77 9.67 ∼10.0 -9.59

1 3A1 1 (5) 10.92 9.18 9.30 -9.24

2 3A1 3 (5) 11.19 9.42 -9.27

1 3A2 3 (6) 10.44 8.83 ∼9.0 -9.11

2 3A2 4 (6) 12.32 10.46 -9.35

1 3B2 3 (3) 12.57 10.65 -9.41

2 3B2 2 (3) 13.22 11.31 -9.40

1 3B1 1 (4) 8.59 6.88 ∼7.1 -9.25

2 3B1 3 (4) 11.74 9.64 -9.60

However, while the extension of the reference spaces does not change the energies based on

LHF-orbitals the computed ∆EMRCI+Q values based on BLYP-orbitals values change con-

siderably if the reference spaces are enlarged (table 2.6). A description of the composition

of the extended reference spaces for the 1A2 and 1B2 states can be taken from figs. 2.3 and

2.4.

The minimal reference space for the computation of the 1A2 states contains the configura-

tions |1a2
12a

2
11b

2
23a

2
11b

1
12b

1
2〉 and |1a2

12a
2
11b

2
23a

2
11b

1
13b

1
2〉 which are obtained from the ground

state configuration by single excitations out of the 1b1 into the 2b2 and the 3b2 orbitals,

respectively. In the extended reference space the configurations arising due to the single

excitations out of the 1b1 into the 4b2 and the 5b2 orbitals, respectively, are added. Going

from 2 to 4 reference configurations the excitation energies of the 1A2 states are shifted from

9.31 eV (1 1A2) to 9.05 eV and from 11.2 eV to 10.79 eV (2 1A2) bringing both into better
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2.3 Discussion of the water molecule 41

Fig. 2.3: Shapes of virtual BLYP-orbitals of b2 symmetry of the water molecule. The box size is 60

a.u., the contour spacing is 0.001 a.u.. In addition, orbital energy differences (εHOMO − εorb) and the

expectation values for the 1 and 2 1A2 states using a single determinant are given. The c2-values

refer to the contribution to the 1 and 2 1A2 states. Energies are given in eV.����� ������� 	
��� 	
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agreement with the LHF results (9.15 eV, 10.65 eV). Going from the smaller to the extended

reference space also the characters of the states change. From figure 2.3 it is seen that for

the 1 1A2 state the configuration |1a2
12a

2
13a

2
11b

2
21b

1
14b

1
2〉 possesses a weight of 0.3578 within

the CI expansion. For the extended reference space, the weight of the |1a2
12a

2
13a

2
11b

2
21b

1
14b

1
2〉

configuration is only 0.5132, while its weight in the description with the minimal reference

space was 0.8518. The admixture of the higher configurations arises since the 2b2 orbital

which has a 3p nodal structure (the additional node cannot be seen in the figure) is so diffuse

that contributions from the higher lying configuration are needed to correct the density in

the vicinity of the molecule. The 4b2 orbital which is singly occupied in the second important

configuration represents the 4p on the basis of its nodal structure but at the same time is

more compact within the vicinity of the molecule than the 3p orbital. A similar pattern is

seen for the 2 1A2 state, however, this time the character of the state changes completely if

the extended reference space is used since the 3b2 representing the 3d due to its nodal struc-

ture is far too diffuse. This explains the large error found for the minimal reference space.

It is interesting to note that for the BLYP approach orbital and determinantal energies give

different sequences of the states. While the series given by the orbital energies follows the

nodal structure the sequence given by Edet is more influenced by the compactness of the

orbitals.
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42 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

Fig. 2.4: Shapes of virtual BLYP-orbitals of a2 symmetry of the water molecule. The box size is 60

a.u., the contour spacing 0.001 a.u.. In addition, orbital energy differences (εHOMO − εorb) and the

expectation values for the 1B2 states using a single determinant are given. The c2-values refer to the

contribution to the 1 and 2 1B2 states. Energies are given in eV.������� �����	� ���
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Both triplet states of a2 symmetry are also shifted (9.18 eV to 8.83 eV for the 1 3A2 and

11.20 eV to 10.46 eV for 2 3A2, respectively) upon using an extended reference space. How-

ever, while for the singlet states the agreement to LHF or experimental results improves for

the triplet states the results with the larger reference spaces are considerable lower than the

LHF (9.0 eV and 10.82 eV) or experimental values (9.0 eV for the 1 3A2). A similar behavior

is found for all other states. This underestimation is in line with the computed ionization

thresholds which, employing BLYP-orbitals, are underestimated by about 0.5 eV. The rea-

sons for the underestimation will become clearer after the discussion of the computations

involving orbitals optimized for the cation.

As already mentioned, this study shows that the differences between LHF- and BLYP-

orbitals are not too pronounced at least for the energetically lowest ones. Nevertheless, an

assignment of the states is already more complicated since more reference configurations

are needed if BLYP-orbitals are employed. Another difference is found for the 2 1A1 state

which employing LHF-orbitals possesses contributions from the |1a2
12a

2
11b

2
23a

1
11b

2
14a

1
1〉 and

the |1a2
12a

2
11b

2
23a

2
11b

1
12b

1
1〉 configuration while for BLYP-orbitals the |1a2

12a
2
11b

2
23a

1
11b

2
14a

1
1〉

configuration is sufficient as can be seen from the differences between tables 1 and 2.5, 2.6.

At a first glance this seems to show the superiority of BLYP-orbitals but actually proves

the opposite. First of all as discussed above, the LHF-orbitals correctly reflect an avoided
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crossing between the 2 1A1 and the 3 1A1 states (named B̃ 2A1 and D̃ 2A1 states in the

discussion of Theodorakopoulos et al.[82,83]). Additionally from table 2.3 it is obvious that

the excitation energies of the corresponding triplet states 1 3A1 and 2 3A1 computed with

LHF-orbitals already agree quite nicely with the experimental results if only two reference

configurations are involved. Employing BLYP-orbitals in combination with a minimal ref-

erence space (table 2.5) the energy gap between both states is predicted too large. Only if

a larger reference space is used the spacing is predicted correctly whereby the 2 3A1 state

is shifted to a lower energy and the 1 3A1 state nearly remains unchanged. This behavior

results, because as seen from figure 2.2 BLYP gives a 3s orbital which is very similar to the

corresponding LHF or cationic orbital while its 3py orbital is too diffuse. As a consequence

the 1 3A1 (generated from the ground state by a 3a1 → 3s excitation) is already well de-

scribed with the minimal reference space while the 2 3A1 (generated from the ground state

by a 3a1 → 3p excitation) demands a larger space (table 2.5 and 2.6). The unbalanced

description of both orbitals is also the key to the missing configuration mixing of the 2 1A1

which for BLYP-orbitals is suppressed since states involving the 3py orbitals are too high in

energy relative to those involving the 3s orbital.

The reasons for the underestimation of excitation energies found for MRSD-CI+Q-calcula-

tions employing BLYP-orbitals are connected with the ability of BLYP-orbitals to describe

the cation. This is indicated by the computations of the cation employing the different sets

of orbitals which are summarized in table 2.7. Employing HF- or LHF-orbitals optimized for

the ground state of the neutral water molecule (X 1A1) for the description of three cationic

states (2B1,
2A1 and 2B2) the reference configurations corresponding to the three states

possess weights of about 0.91 within the complete CI wavefunctions while the reference con-

figuration possesses a weight of 0.94 if the orbitals are employed for the computation of the

X 1A1 state itself. A similar weight (0.94) is found if BLYP-orbitals are used to describe

the X 1A1 state, but if they are used to compute the cation the weights are only around

0.89, i.e., considerably smaller than the weights obtained with HF- or LHF-orbitals. This

shows that BLYP-orbitals optimized for the neutral system are considerably less suited for

the description of the cation than the corresponding HF- or LHF-orbitals. The reason for

this finding may lie in the well known wrong asymptotic behavior of the GGA potentials

which possess an exponential instead of a -1/r asymptotic decay.[34] As a consequence beside
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44 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

Tab. 2.7: c2-values of the corresponding reference configuration for the ground and the 2B1,
2A1 and

2B2 ionic states of water, using orbitals from a LHF, HF and BLYP ground state calculations. The

ROHF-orbitals were obtained from the calculation of the 2B1 state. For more information see text.

state LHF HF BLYP ROHF/2 B1

X 1A1 0.94398 0.94370 0.94354 0.87984

2B1 0.91111 0.91029 0.89565 0.95457

2A1 0.91293 0.91262 0.89754

2B2 0.92188 0.92229 0.90719

the virtual also the occupied BLYP-orbitals are slightly too diffuse. While this does not

seem to hamper the description of the neutral system problems arise if the same orbitals are

used for the description of the cation which possesses a more compact electronic structure.

As expected, since Rydberg states represent systems composed of a weakly interacting

electron circling around a cationic core, similar small weights for the reference spaces are

found for the excited states. Within the excited states the weights of the reference spaces

are larger than 0.91 for the LHF-orbitals but only around 0.89 if BLYP-orbitals are involved.

As seen from table 2.7 for the neutral groundstate both sets of orbitals lead to weights larger

than 0.94. As a consequence of the strong difference in the weights found for the BLYP

computations the Davidson correction overestimates the correction due to higher excitations

and predicts energy values which are too low in comparison to the ground state. This also

explains the nice agreement found if minimal reference spaces are used in BLYP computa-

tions. The overestimation of the influence of higher excitations by the Davidson correction

compensates the errors arising due to an incomplete reference space. Due to the higher

weights found for LHF-orbitals the Davidson correction works much better.

Differences between LHF- and BLYP-orbitals can also be seen from the values of Erel,dyn
corr ,

which for BLYP-orbitals are about an 1 eV larger than for the LHF-orbitals. It is interesting

to remember that the computations using HF-orbitals and those obtained with LHF-orbitals

possess very similar Erel,dyn
corr values, although much larger reference spaces are needed. How-

ever, it could be that some effects which for the BLYP-orbitals are summarized in Erel,dyn
corr

are already included in the static correlation of the HF-orbitals. The larger negative val-
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Tab. 2.8: Computed excitation energies of the Rydberg states of water in eV. For the desciption of the

excited states orbitals from a ROHF-calculation of the 2B1 cationic state were used. Only minimal

reference spaces were used. For more information see text or tables 1 and 2. For the groundstate:

Edet = EMin = EHF = -76.06398 a.u.; EMRCI+Q = -76.32886 a.u.. All energies in eV.

state assignment ∆Edet ∆Eref ∆EMRCI+Q ∆Eexp Erel,dyn
corr

2 1A1 1a1 → 3s/b1 → 3py (8.69) 8.76 9.78 9.7 -6.19

1 1A2 1b1 → 3px 8.10 8.11 9.26 9.1 -6.06

2 1A2 1b1 → 3dxz 9.52 9.52 10.79 -5.93

1 1B2 1b1 → 3dxy 9.60 9.64 11.01 -5.84

2 1B2 1b1 → 4dxy 10.29 10.28 11.66 11.4 -5.83

1 1B1 1b1 → 3s 6.55 6.55 7.48 ∼7.5 -6.27

2 1B1 1b1 → 3pz 8.61 8.61 9.91 ∼10.0 -5.91

1 3A1 3a1 → 3s 8.88 8.88 9.42 9.3 -6.66

2 3A1 1b1 → 3py 8.43 8.42 9.67 -5.95

1 3A2 1b1 → 3px 8.00 8.00 9.10 ∼9.0 -6.10

2 3A2 1b1 → 3dxz 9.49 9.49 10.77 -5.92

1 3B2 1b1 → 3dxy 9.63 9.63 11.00 -5.84

2 3B2 3a1 → 3px 10.28 10.28 11.66 -5.83

1 3B1 1b1 → 3s 6.20 6.19 7.12 ∼7.1 -6.29

2 3B1 1b1 → 3pz 8.57 8.58 9.86 -5.93

2B1 1b1 → ∞ 11.12 12.51 12.62 -5.81

ues of Erel,dyn
corr for BLYP-orbitals could also result from the incorrect behavior found for the

Davidson correction.

The quality of the three sets of orbitals is is also nicely reflected in the shape of the virtual or-

bitals depicted in figure 2.2. While HF-orbitals are more or less structureless BLYP-orbitals

at least mirror the shape of the Rydberg orbitals, but are too diffuse. Additionally the 4s

orbital possesses a lower orbital energy than the 3pz orbital, i.e., the sequence of the Rydberg

orbitals is not correctly described. As an exception the description of the 3s orbital, as al-

ready seen in the excitation energies, is much better. One reason could be its higher valence

character. Our discussion underlined that LHF-orbitals are well suited for the description of

the excited states but also showed that dynamical correlation and orbital relaxation effects

(Erel,dyn
corr around -8.6 eV) are larger for the excited states than for the ground state (Erel,dyn

corr
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≈ -7.3 eV). The excited states possess two unpaired electrons,i.e.their dynamical correlation

should be smaller than the dynamical correlation found for the ground state which possesses

only doubly occupied orbitals. Consequently orbital relaxation effects are expected to be the

reason for the larger Erel,dyn
corr values of the excited states.

As already discussed ROHF computations of the cation offer a way to estimate the orbital

relaxation effects arising due to electronic excitations into Rydberg states, since the occupied

orbitals already include the relaxation due to the positively charged core, and the virtual

orbitals are optimized within an N-1 electron potential and thus do not “see” an electron

too much as in an HF calculation of the neutral molecule. The ROHF calculations were

performed for the cation obtained by taking one electron out of the 1b1 orbital (2B1). The

shapes of the lowest lying virtual orbitals of a1-symmetry can be taken from figure 2.2. The

orbitals are nearly identical to the LHF-orbitals, but they seem to be slightly more diffuse.

The computations performed with the cationic orbitals are summarized in table 2.8. The

excitation energies are computed with respect to a ground state energy obtained from a SD-

CI computation employing ground state HF-orbitals of the neutral molecule. This reference

is used since as expected from the small weights discussed in combination with the data of

table 5 the orbitals obtained for the cation are not suited to describe the ground state of

the neutral molecule. Furthermore, a minimal (two configurations for two roots) reference

space gives a sufficient description for all states, except the 2 1A1 state. Strong differences

between table 2.3 and table 2.8 are found in all energy quantities except ∆EMRCI+Q. The

assumption that the orbital relaxation effects are already accounted for if cationic orbitals

are employed is supported by the much smaller Erel,dyn
corr values given in table 2.8. The consid-

eration that the remaining dynamical correlation for the excited states is smaller than in the

ground state is also supported since the Erel,dyn
corr values given in table 2.8 are smaller than the

Erel,dyn
corr value obtained for the ground state which is around 7.2 eV if LHF- or HF-orbitals are

employed. As already discussed, the energy difference between Edet for the cation computed

with ground state orbitals and the ROHF energy for the cation gives the size of the orbital

relaxation effects (Erel
corr) arising due to the missing electron. For the 2B1 state a value of

-2.75 eV is computed. Subtracting this value from Erel,dyn
corr of the 2B1 state given in table

2.4 gives an estimate of the size of the dynamical correlation (Edyn
corr = -5.99 eV). The small
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difference between this value and Erel,dyn
corr given in table 6 (-5.81 eV)5 is expected since both

sets of orbitals are slightly different in the description of correlation. The comparison of

Erel
corr and Edyn

corr shows that for the water cation orbital relaxation effects are about half as

large as the effects arising due to dynamical correlation.

To compute the relaxation effects for the LHF- or BLYP-orbitals the corresponding restricted

open shell computations had to be performed, which is not possible at the moment. For LHF,

however, it can be exploited that the occupied LHF- and HF-orbitals are very similar. [44]

From Edet of the 2B1 cationic state computed with LHF-orbitals ( -75.55411 a.u.) and the

ROHF energy ( -75.65510 a.u.) an estimate of -2.75 eV for the relaxation energy for LHF-

orbitals is obtained. The value is identical to the one obtained for HF-orbitals, which is

in line with the above mentioned assumption. Subtracting the expectation values of the

excited determinants constructed with ROHF- and LHF-orbitals, respectively, gives a rough

estimate of the orbital relaxation effects for the Rydberg states. The computed values vary

between -1.8 and -2.8 eV. The values follow the expected trend: The lower lying states pos-

sess smaller values while the higher lying states converge towards the value of -2.75 eV found

for the ionized 2B1 state. For BLYP-orbitals a similar estimation of the orbital relaxation

effects is troublesome since the occupied BLYP- and HF-orbitals are different.

Especially the strong influence of the dynamical correlation explains why the studies per-

formed by Veseth[42] or Bour̆[28] found good agreement in some cases but bad one in others.

The differences did not arise due to the description of the Rydberg orbitals but due to errors

arising from the truncation of the CI expansion employed in both studies. Both approaches

could not include dynamical correlation and orbital relaxation in a reliable manner. The

deviations found for the carbonmonoxide molecule by Veseth[42] are explained in more detail

in section 2.5.

The question remains whether the various effects depend more on the nature of the orbital

from which the excitation takes place or whether it more correlates with the character of

the orbital into which the electron is excited. The study on the water molecule mainly gives

information about the influence of the orbital into which the excitation takes place since

mainly excitations out of the 1b1 orbital are computed. For the excitations out of the 1b1

5This value only gives the dynamical correlation since the orbitals were optimized for the cation, i.e.,

orbital relaxation is already accounted for.
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orbital table 2.3 shows that Erel,dyn
corr differ by about 0.4 eV depending on the character of

Rydberg orbital. Table 2.3 also shows that Erel,dyn
corr values depends stronger on the nature of

the orbital than on the question whether the singlet or the triplet state is computed. The

influence of the orbital from which the excitation takes place (1b1 and 3a1) seems to be less

important as can be seen from table 2.3 but the nature of both orbitals (the 1b1 orbital

represents a non-bonding orbital but also the 3a1 orbital possess some lone pair character)

seems to be too similar for a definite answer. This is shown from the Erel,dyn
corr values com-

puted for both ionization limits. They differ by only 0.28 eV if the 2B1 and the 2A1 states

are compared. Stronger differences could be expected from excitations out of the 1b2 orbital

but these excitations are too high in energy.

2.4 Discussion of ethene

To study the influence of the orbital out of which the excitation takes place the excitation

energies for some selected triplet states of ethene6 have been computed which arise from ex-

citations out of the π orbital and the highest lying σ orbital, respectively, of the previous test

case, the ethene molecule. These results are summarized in table 2.9. This section will only

focus on Erel,dyn
corr since the usefulness of the various sets of orbitals for the description of the

Rydberg series of the ethene molecule was already discussed in section 2.1. The energetical

data besides Erel,dyn
corr are only given for completeness. In table 2.9 the differences (≈ 1 eV)

between Erel,dyn
corr computed for excitations out of the π or σ orbital, respectively, are obvious.

With respect to the orbitals into which the excitation takes place a difference (≈ 0.5 eV)

between excitations into the π∗ (valence-valence excitations) and into the Rydberg orbitals

6Computational details for sections 2.4 and 2.12:

The computations for ethene in section 2.4 were performed at the experimental geometry by Serrano-Andrés

et al. described above. We employed a (12s7p3d) basis set[71] contracted to [8s7p3d] for carbon and a 6s3p1d

un-contracted basis set for hydrogen. In section 2.1, diffuse gaussian functions were added to each carbon

atom. However, for diffuse gaussian functions it is not neccessary to add gaussian functions of the same

exponent on each atom. Therefore, in this computation primitive gaussian functions were only added on

the symmetry center of the molecule. The corresponding exponents are: 0.0192746 (s-type), 0.00770987 (s-

type), 0.00308395 (s-type), 0.00123358 (s-type), 0.0342015 (p-type), 0.013680 (p-type), 0.00547224 (p-type),

0.218889 (p-type), 0.041354 (d-type), 0.016541 (d-type), 0.00661671 (d-type).
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Tab. 2.9: Computed vertical excitation energies of selected triplet states of ethene using LHF ground

state orbitals. States representing excitations from the HOMO (π) and the HOMO-1 (σ) into the

same virtual orbital are compared. For the groundstate: Edet = -78.05440 a.u., Eref = -78.07390517

a.u., EMRCI+Q = -78.42283 a.u. All energies in eV.

state assignment ∆Eorb ∆Edet ∆E
[a]
ref ∆EMRCI+Q ∆Eexp. Erel,dyn

corr

1 3B1u π → π∗ 5.94 3.78 4.29 4.48 4.36[b] -9.30

2 3B1g σ → π∗ 7.97 8.87 9.40 8.48 -10.42

1 3B3u π → 3s 7.30 6.88 7.41 7.09 6.98[c] -9.82

1 3B3g σ → 3s 9.33 10.70 11.18 9.79 -10.88

2 3B3u π → dσ 8.59 8.39 8.92 8.61 8.57[c] -9.81

2 3B3g σ → dσ 10.62 12.11 12.69 11.41 -10.78

2B3u π → ∞ 10.18 10.18 10.71 10.46 10.51[d] -9.76

2B3g σ → ∞ 12.20 13.91 14.44 13.31 12.79[e] -10.62

[a] The difference of ∆Eref to ∆Edet is mainly due to the π2 → π∗2 contribution to the ground

state which leads to an energy lowering of 0.53 eV, [b] van Veen,[85] [c] Wilden and Corner,[86] [d]

Lide[79] and [e] Bieri and Asbrink.[87]

is found, while the difference of Erel,dyn
corr for excitations into different Rydberg orbitals is very

small. The Erel,dyn
corr values obtained for the Rydberg states approach the values obtained for

the corresponding ionization limits, while Erel,dyn
corr computed for the valence states are abso-

lutely larger. A strong difference between the computed and the measured 2B3g ionization

limit is found, but a CCSD(T) computation employing a TZ2P basis set predicts the same

theoretical result.[84] Therefore it has to be expected that the difference between experiment

and theory results since the 2B3g state possess a different geometrical structure than the

ground state of the neutral molecule. Taking this into account shifts the computed ioniza-

tion limit to 12.8 eV. However, since always vertical excitations are discussed, the vertical

ionization limit will be used for the remaining discussions. To estimate the orbital relax-

ation effects the calculation has been repeated employing orbitals obtained from an ROHF

calculation of the corresponding ionized states 2B3u and 2B3g, respectively. These results

are summarized in table 2.10. While orbitals from a ROHF calculation of the 2B3u state

are taken for excitations out of the π orbitals, orbitals from a ROHF calculation of the 2B3g

state are taken for the σ excitations. Table 2.11 lists the computations of the neutral ground
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Tab. 2.10: Computed vertical excitation energies of selected triplet states of ethene using ROHF-

orbitals. For states involving excitations out of the π orbital, orbitals optimized for the cationic 2B3u

state have been employed, while orbitals optimized for the cationic 2B3g state were used for states

arising due to excitations out of the σ orbital. HF-orbitals were used to calculate the groundstate.

For the groundstate: Edet = Eref = EHF = -78.06206317 a.u., EMRCI+Q = -78.42207 a.u.. All energies

in eV.

state assignment ∆Edet ∆Eref ∆EMRCI+Q ∆Eexp. Erel,dyn
corr

1 3B1u π → π∗ 4.52 4.49 4.43 4.36 -9.86

2 3B1g σ → π∗ 9.66 9.55 8.43 -10.82

1 3B3u π → 3s 5.88 5.87 7.06 6.98 -8.60

1 3B3g σ → 3s 10.21 10.21 9.77 -10.23

2 3B3u π → dσ 7.24 7.24 8.57 8.56 -8.47

2 3B3g σ → dσ 11.54 11.54 11.30 -10.04

2B3u π → ∞ 8.94 10.47 10.51 -8.26

2B3g σ → ∞ 13.33 13.31 12.79 -9.81

state and of the two ionization limits employing various sets of orbitals. HF labels the results

obtained with HF-orbitals optimized for the ground state of the neutral system while ROHF

gives the results obtained with 2B3u or 2B3g ROHF-orbitals, respectively. The columns enti-

tled LHF and BLYP summarize the values obtained with LHF- or BLYP-orbitals optimized

for the neutral ground state while the rows entitled with c2 give the weights of the most

dominant configuration of the CI wavefunctions. ∆Eion gives the computed ionization limits

(MRSD-CI+Q). The results are obtained from SD-CI computations. Only for the ground

state of the neutral system computations involving LHF- or BLYP-orbitals also MRSD-CI

computations have been performed. Their reference spaces include the ground state config-

uration and the π2 → π∗2 double excitation. The results are given in two additional rows for

the groundstate. The Erel,dyn
corr values in parenthesis also include the static correlation of this

computation which is normally not contained in Erel,dyn
corr . The picture painted by table 2.11 is

very similar to that found for the water molecule (table 2.7). On the basis of the weights of

the most dominant configuration the quality of HF-, LHF- and BLYP-orbitals is very similar

for the description of the groundstate of ethene but differences appear if these orbitals are

used for the description of the 2B3u state. As already found for the water molecule BLYP-
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Tab. 2.11: Comparison of c2-values, correlation energies and the first and second ionization potential

of ethene using groundstate LHF-, HF- and BLYP-orbitals. In the last column results obtained with

ROHF-orbitals optimized for the two ionic states are listed individually. The ground state data in

this column were calculated using the orbitals of the 2B3u state. For more information see text. All

energies in eV.

state LHF HF BLYP ROHF

X 1A1 c2 0.89908 0.89888 0.89837 0.87776

Erel,dyn
corr -9.94 -9.80 -10.28 -11.31

c2 0.905741 0.90458[a]

Erel,dyn
corr -9.49 (-10.03[b]) -9.81 (-10.382)

2B3u c2 0.89146 0.89139 0.88897 0.91669

Erel,dyn
corr -9.74 -9.60 -9.95 -8.27

Eion 10.46 10.40 10.44 10.47

2B3g c2 0.87622 0.87347 0.87624 0.89082

Erel,dyn
corr -10.63 -10.62 -10.80 -9.81

Eion 13.31 13.21 13.39 13.31

[a] The reference space of the ground state also includes the π2 → π∗2-doubly excited reference

configuration (see text).

[b] Total electron correlation contribution, including dynamical and static correlation. For more

information see text.

orbitals seem to be less appropriate although the differences are smaller for ethene than for

water. Employing ground state orbitals of the neutral system for the description of the ionic

2B3g state the weights of the leading configuration generally decrease further but this time

BLYP-orbitals possess the same weight as LHF-orbitals. The orbital relaxation effect for the

2B3u state is only about -1.3 eV while an even smaller value of -0.7 eV is estimated for the

2B3u state being both considerably smaller than the orbital relaxation effects estimated for

the water molecule which were around -3 eV. Subtracting the orbital relaxation effect from

Erel,dyn
corr estimates for the dynamical corrrelation contribution can be obtained. For excita-

tions out of the π orbital values of about 8.5 eV for the Rydberg states are obtained, while

a value of about 10 eV is found for excitations out of the σ orbital. This shows that the

composition of Erel,dyn
corr for water and ethene is quite different since orbital relaxation effects

are smaller and dynamical correlation is larger. While for water orbital relaxation effects
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give a third of the Erel,dyn
corr they contribute only about a tenth for ethene. Finally, table 7

supports that deficiencies in the description of orbital relaxation and electron correlation

are the underlying reasons for the findings of Veseth and Bour̆, who found that that Kohn

Sham orbitals as a basis of subsequent CI calculations sometimes give good but sometimes

also bad agreement with experimental results. For states arising due to excitations out of

the π orbitals (1 3B1u, 2 3B3u and 2 3B3u) already ∆Edet or ∆Eref give good approximations

for the excitation energies with deviations from experiment of only about 0.2 - 0.4 eV. This

behaviour results since for the excited states orbital relaxation effects are nearly canceled by

the decrease of the dynamical correlation effects with the consequence that the Erel,dyn
corr values

of ground and excited states differ by only 0.4 eV. However this only holds for these states.

For the remaining states arising due to excitations from the σ orbitals the error cancellation

breaks down leading to stronger errors in ∆Edet and ∆Eref .

2.5 MRCI-computations for carbonmonoxide

In section 2.3, the computed excitation energies of the water molecule that were obtained

using BLYP-obitals did not converge towards the experimentally determined values when

the reference space were extended, but to lower values. This poses a severe problem for the

usage of the computational effort that is needed to reach a certain accuracy as a quality

criterion, because this case shows that in some cases due to error cancellation a smaller com-

putational effort leads to a more accurate excitation energy. As a consequence, the quality

criterion needs to be replaced by a criterion that is less susceptible to error cancellation. In

this section, the number of reference configurations that is needed to reach convergence in

the excitation energies from MRCI+Q computations is used a a quality criterion.

The results are summarized in table 2.57, which gives the excitation energies for the lowest

7Computational details for section 2.5, 2.8 and 2.9:

The calculations for carbonmonoxide were performed at the experimental geometry with RCO = 1.1283 Å.

The molecule is chosen with the z-axis being collinear to the CO-bond. Carbonmonoxide was calculated in

the C2v point group. A (12s7p3d) basis set[71] contracted to [8s7p3d] for oxygen and carbon was employed.

Primitive diffuse Gaussian functions with the exponents 0.039421656 (s-type), 0.0121380 (s-type), 0.0075 (s-

type), 0.0042482 (s-type), 0.035011523 (p-type), 0.008015, (p-type) 0.0028052 (p-type), 0.0285120 (d-type),
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two 1Π-states of carbonmonoxide as a function of the number of reference configurations.

The reference spaces for the excited states are constructed from single excitations out of the

HOMO- into virtual π-orbitals. The configurations are successively added to the reference

space according to their contribution (c2-value) to a Singles-CI wavefunction. For all orbital

types, the reference space of the ground state consists of the HF or KS determinant Ψ and

the π2
x → π∗2

x , π2
y → π∗2

y , π2
x → π∗2

y and the π2
y → π∗2

x doubly excited configurations (see

section 2.8).

When the A 1Π-state is computed with HF-orbitals, a computation using only one reference

Tab. 2.12: Vertical excitation energies from MRCI+Q-computations for the A 1Π- and the E 1Π-state

of carbonmonoxide using HF-, LHF-, BLYP- and B3LYP-orbitals and increasing numbers (nRefconf )

of reference configurations. In addition, the weight (c2) of the reference configurations in the MRCI-

wavefunction with nRefconf = 8 is given. Ground state energies: HF: -113.13789 H; LHF -113.13767

H; BLYP: 113.13428 H; B3LYP: -113.13534 H; Eexp:
[102] A 1Π: 8.51 eV; E 1Π: 11.53 eV. Excitation

energies in eV.

nRefconf

1 2 3 4 5 6 7 8 c2 for n = 8

HF A 1Π 8.71 8.43 8.43 8.41 8.41 8.40 8.39 8.39 0.876

E 1Π 11.38 11.32 11.18 11.14 11.14 11.14 11.14 0.865

LHF A 1Π 8.55 8.52 8.52 8.51 8.50 8.51 8.50 8.50 0.881

E 1Π 11.26 11.29 11.26 11.26 11.26 11.26 11.26 0.871

BLYP A 1Π 8.64 8.63 8.63 8.61 8.60 8.60 8.60 8.59 0.890

E 1Π 11.70 11.52 11.42 11.41 11.40 11.39 11.36 0.880

B3LYP A 1Π 8.61 8.60 8.58 8.58 8.58 8.58 8.58 8.58 0.880

E 1Π 11.79 11.65 11.57 11.35 11.35 11.35 11.35 0.879

configuration for the excited state gives an energy of 8.61 eV. When two reference configu-

rations are used, this value is significantly lowered to 8.43 eV. Both values are quite close to

the experimental value of 8.51 eV. A further increase of the reference space does not lead to

a significant change in the computed excitation energies, e.g. a computation involving eight

reference configurations leads to an energy of 8.39 eV. For the E 1Π-state convergence to

a value of 11.14 eV is reached after 5 configurations (one of these configurations is used to

0.0042 (d-type), 0.002 (d-type) were added on the carbon atom.
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describe the A 1Π-state which represents the first root in the CI-computation). The experi-

mental value for the E 1Π-state is 11.53 eV.

LHF-orbitals lead to a much faster convergence in the computed excitation energies. For

the A 1Π-state a computation with only one reference configuration predicts an excitation

energy of 8.55 eV, while a computation with eight reference configurations gives 8.50 eV. For

the computation of the E 1Π-state two configurations lead to an excitation energy of 11.26

eV. A further enlargement of the reference space does not change this value.

Using BLYP-orbitals, the excitation energies computed for the A 1Π-state is lowered very

little when the reference space is increased. The excitation energy for the E 1Π state re-

quired 4 configurations to converge around an excitation energy of 11.4 eV. B3LYP-, like

BLYP-orbitals, allow a very fast convergence for the A 1Π-state, but the convergence for the

E 1Π-state is very slow, the converged excitation energy of 11.35 eV is only reached with

more than 6 configurations.

LHF-, BLYP- and B3LYP-orbitals give a very compact description of the A 1Π-state, also

the description based on HF-orbitals only required two configurations. For the E 1Π-state,

only LHF-orbitals allow a very compact description, for all other obitals tested more than 4

configurations are needed to reach constant energies. However, the converged energies for the

E 1Π-state are not always in good agreement with the experimentally determined excitation

energy 11.53 eV. The energies computed for the E 1Π-state with LHF-orbitals are 0.3 eV

below the experimentally determined value. For HF-orbitals the converged energy underes-

timates the experimental value even by 0.4 eV, the results obtained with BLYP- (11.39 eV)

and B3LYP-orbitals (11.35 eV) are in a somewhat better agreement with the experimental

data.

In the case of HF-orbitals the underestimation is partly due to the poor description of static

correlation, even though configurations representing π2 → π∗2 excitations were included in

the reference wavefunction. However, the diffuseness of HF-orbitals does not allow a good

description of static correlation effects. The major part of the error, however, is due to a

poor description of the cationic core of the excited states by ground state orbitals obtained

from uncorrelated methods like HF and LHF. This is proven by the weights of the reference

wavefunction (c2-values) for the computations with nref=8 (table 1). The error in the corre-

sponding excitation energies directly correlates with the smaller c2-values. In addition to the
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c2-values in table 2.12, table 2 gives the weights for the ground state of CO (c2(Ψ)), and the

2Σ+ state c2(2Σ+) and the 2Π state of CO+. The c2-values obtained for the E 1Π-states in

table 2.12 are identical to the c2-values that are obtained if the ground state orbitals are em-

ployed for the computation of the 2Σ+ ground state state of CO+ in table 2. This correlation

shows that the low c2-values obtained for the 2 1Π-state result from the description of the

cationic core and are completely independent of the quality of the Rydberg orbitals. Since

the Davidson procedure only gives a correct estimate of the influence of higher excitations,

when c2-values of ground and excited states do not differ too much, the small c2-values for

the excited as well as for the ionized state lead to a breakdown of the Davidson correction

and subsequently to an underestimation of the corresponding excitation energies. A similar

finding was observed in the computation of the excited states of water using BLYP-orbitals

in section 2.3.

Table 2 also contains the c2-values for the 2Π cationic state of carbonmonoxide and for the

ground and ionized states of formaldehyde and acetone. For HF- and LHF-orbitals the dif-

ferences between the c2-values of ground and first ionized states in these cases are always

smaller than those found in the case of the ground and the 2Σ+-state of carbonmonox-

ide. Consequently, since no overestimation problems in the Davidson correction occur for

these cases, the computed excitation energies always converge towards the experimentally

determined values. Furthermore, for the 2Π-state of carbonmonoxide and the 2B2-states of

formaldehyde and acetone, HF- and LHF-orbitals tend to give better c2-values than for ex-

ample BLYP-orbitals, like it was described in section 2.3. This behavior should be due to the

Tab. 2.13: Weights (c2) of the reference configurations in the MRCI-wavefunction of ground (c2(Ψ))

and monocationic states of carbonmonoxide (c2(2Σ+), c2(2Π)), formaldehyde and acetone (c2(2B2)).

The orbitals used were obtained from HF- or Kohn-Sham ground state computations.

CO CH2O C(CH3)2O

c2(Ψ) c2(2Σ+) c2(2Π) c2(Ψ) c2(2B2) c2(Ψ) c2(2B2)

HF 0.915 0.865 0.887 0.908 0.878 0.862 0.840

LHF 0.923 0.871 0.885 0.914 0.883 0.863 0.841

BLYP 0.922 0.879 0.877 0.914 0.873 0.862 0.833

B3LYP 0.922 0.879 0.881 0.915 0.877 0.864 0.838
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well known wrong asymptotic behavior of GGA potentials that fall off exponentially instead

of -1/r.[34] As expected, the c2-values for B3LYP-orbitals are always located in between the

values obtained with HF- and BLYP-orbitals. The full vertical excitation spectrum of car-

Tab. 2.14: Excitation energies of carbonmonoxide and sizes of reference spaces (in brackets) in the

corresponding MRCI calculation. The number of states determined in one calculation is denoted as

nstates. Ground state energies: see table 2.12.

state class. nstates HF LHF BLYP B3LYP exp.[a]

A 1Π n → π∗ 1 8.43 (2) 8.55 (1) 8.64 (1) 8.61 (1) 8.51

I 1Σ− π → π∗ 1 9.85 (6) 10.00 (2) 9.89 (2) 10.00 (2) 9.88

D 1∆− π → π∗ 2 9.93 (7) 10.08 (3) 9.93 (3) 9.97 (3) 10.23

2 10.16 (5) 10.15 (5) 10.12 (5)

B 1Σ+ n → 3s 3 10.46 (5) 10.57 (3) 10.67 (5) 10.59 (6) 10.78

C 1Σ+ n → 3pz 3 10.97 (11) 11.11 (3) 11.25 (6) 11.21 (7) 11.4

E 1Π n → 3p 2 11.14 (5) 11.26 (2) 11.42 (4) 11.36 (5) 11.53

2Σ+ n → ∞ 1 13.54 (1) 13.67 (1) 13.80 (1) 13.80 (1) 14.01[b]

2Π π → ∞ 1 16.77 (1) 16.81 (1) 16.64 (1) 16.76 (1) 16.91[c]

[a] All excitation energies from Nielsen et al.,[88] [b] Lide[79] and [c] Chong et al.[89]

bonmonoxide is shown in table 2.14. Like in the case of the E 1Π-state, a large number of up

to 7 reference configurations is needed to compute each state when the MRCI-calculations

are based on HF-orbitals. All excitation energies are found 0 to 0.5 eV below the experi-

mentally determined values. Also the first and second ionization potentials are given. The

first ionization potential computed to 13.54 eV with HF-orbitals is strongly underestimated

by 0.47 eV, while for the second ionization potential a value of 16.77 eV is found which is in

a somewhat better agreement with the experimental value of 16.91 eV.

Like for the 1Π-states discussed above, LHF-orbitals give a very compact description of all

excited states of carbonmonoxide. For the A 1Π-, B 1Σ+- and the C 1Σ+-state, only one

or two reference configurations per root are needed to obtain converged energies. Compared

to the experimental values of 10.78 and 11.4 eV, the computed excitation energies of 10.57

and 11.11 eV for the B 1Σ+- and C 1Σ+-states are shifted to lower energies, like it was

already explained for the E 1Π-state. The I 1Σ−- and the D 1∆−-states represent linear

combinations of π → π∗-excited configurations. For the I 1Σ−-state an energy of 10.00 eV
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was computed with two reference configurations, for the D 1∆−-state and energy of 10.08

eV is computed using 3 reference configurations. This value is brought closer to the exper-

imental value of 10.23 eV if the π2
x → π∗2

x and π2
y → π∗2

y doubly excited configurations are

also considered.

For valence states, the CI-description using BLYP- or B3LYP-orbitals is of a comparably

good quality as for LHF-orbitals. For Rydberg states, the description based on BLYP- or

B3LYP-orbitals requires many more reference configurations. As it was shown for the E

1Π-state, Rydberg states need to be constructed from 4-6 reference configurations in the

case of BLYP-orbitals, and 6-7 reference configurations when B3LYP-orbitals are used while

for LHF-orbitals 2-3 reference configurations suffice.

2.6 MRCI-computations for formaldehyde

Table 2.158 shows that as in the case of carbonmonoxide, a very large number of reference

configurations is needed to describe the excited states of formaldehyde when HF-orbitals are

used. 4-8 reference configurations are needed to describe each excited state.

LHF-orbitals allow a distinctly better description of the excited states of formaldehyde than

HF-orbitals. The number of reference configurations in table 2.15 is always identical to the

number of states determined in a computation.

BLYP-orbitals give a very good description of the valence (1 1A2) and the 3s Rydberg (1

1B2) states. For the 3p-Rydberg states, the description is poorer. In this case 3-4 reference

configurations are needed to describe each state. If the states are computed with the minimal

8Computational details for sections 2.15, 2.8 and 2.10:

The calculations for formaldehyde were performed at the experimental geometry with RCO = 1.1283 Å ,

RCH = 1.1283 Å and ∠OCH = 116.5◦.[79] The molecule is chosen to lie in the yz plane with the z-axis being

collinear to the CO-bond.

(12s7p3d) basis sets[71] contracted to [8s7p3d] for oxygen and carbon and a 6s3p1d un-contracted basis

set for hydrogen was used for formaldehyde. On the carbon atom, diffuse Gaussian functions with the expo-

nents 0.039421656 (s-type),0.01213800 (s-type), 0.0075000 (s-type), 0.004248200 (s-type), 0.0342015 (p-type),

0.008015000 (p-type), 0.002805200 (p-type), 0.028512 (d-type), 0.0042 (d-type), 0.002 (d-type) were added.

The reference space was selected as described for carbonmonoxide using for excited states only single excita-

tions out of the HOMO into the virtual orbitals.
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set of reference configurations (1 configuration per CI root), the computed excitation ener-

gies show large deviations from experiment of about 0.6 eV for the 3p Rydberg-states. The

ionization potentials computed with BLYP-orbitals (10.63 eV) is lower than that computed

with LHF-orbitals (10.73 eV; exp. 10.88 eV). This corresponds to the smaller c2-values found

in the computation of the cationic states given in table 2.13 and demonstrates the lower abil-

ity of BLYP-orbitals to describe the cationic core of the Rydberg states of formaldehyde.

The tendencies found for BLYP-orbitals are even worse for B3LYP-orbitals. While the

valence 1 1A2-state is very well described, especially the 3p-Rydberg states are very prob-

lematic. An excitation energy of 9.30 eV compared to an experimental value of 7.97 eV is

obtained for the 2 1B2-state if only the two most contributing main configurations are used

as reference space. Only if the number of reference configurations is increased to 7, an energy

of 7.91 eV is obtained. The ionization potential is computed as 10.67 eV.

Tab. 2.15: Excitation energies of formaldehyde from MRCI+Q-computations. Groundstate energies:

HF: -114.31411 H; LHF: 114.31309 H; BLYP: -114.30941 H; B3LYP: -114.31092 H. For details see

table 2.14.

state class HF LHF BLYP BLYP B3LYP B3LYP exp.[1]

1 1A2 n → π∗ 3.80 (4) 3.91 (1) 3.82 (1) 3.82 (1) 3.86 (1) 3.86 (1) 3.94

1 1B2 n → 3s 7.14 (6) 7.15 (1) 7.05 (1) 7.05 (1) 7.22 (1) 7.18 (4) 7.09

2 1B2 n → 3pz 7.94 (8) 8.03 (2) 8.61 (2) 8.02 (4) 9.30 (2) 7.91 (7) 7.97

2 1A1 n → 3py 8.06 (6) 8.10 (2) 8.63 (2) 8.09 (3) 9.00 (2) 8.19 (5) 8.12

2 1A2 n → 3px 8.24 (6) 8.30 (2) 9.03 (2) 8.39 (3) 9.34 (2) 8.28 (6) 8.38

2B2 n → ∞ 10.66 (1) 10.73 (1) 10.63 (1) 10.67 (1) 10.88[2]

[a] All data from Allen and Tozer,[90] for more recent experimental data see also Liu et al.[91] [b]

Lide.[79]

2.7 MRCI-computations for acetone

In all cases studied so far, LHF potential yielded better virtual orbitals than the BYLP

method. For the acetone molecule, this is different. Table 2.169 shows that the only state

9Computational details for sections 2.7 and 2.11:

The geometry for acetone was optimized with the B-P86 functional in the TZVP basis set using analytical
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2.7 MRCI-computations for acetone 59

that is well described by LHF-orbitals is the 1 1A2-valence state. For all Rydberg states, the

excitation energies are overestimated by about 0.2 eV when limited reference spaces were

used. In addition, the energies converge rather slowly towards the experimental values when

the reference spaces are enlarged. This leads to quite large reference spaces with up to 8

reference configuration for the 1B2-states.

HF-orbitals again require even larger reference spaces, but astonishingly, BLYP-orbitals

Tab. 2.16: Excitation energies of acetone from MRCI+Q-computations. Ground state energies: HF

-192.69670 H; LHF: -192.69545 H; BLYP: -192.41356 H; B3LYP: -192.69338 H. For details see table

2.14.

state class. HF LHF LHF BLYP BLYP B3LYP B3LYP exp.[a]

1 1A2 ny → π∗ 4.39 (8) 4.45 (1) 4.45 (1) 4.40 (1) 4.27 (4) 4.49 (1) 4.30 (5) 4.38

1 1B2 ny → 3s 6.56 (7) 6.64 (1) 6.55 (4) 6.49 (1) 6.47 (3) 6.60 (1) 6.51 (5) 6.35

2 1A2 ny → 3px 7.29 (8) 7.56 (2) 7.36 (4) 7.48 (2) 7.31 (4) 7.70 (2) 7.26 (5) 7.36

2 1A1 ny → 3py 7.57 (4) 7.68 (2) 7.53 (3) 7.44 (2) 7.44 (2) 7.60 (2) 7.45 (4) 7.41

2 1B2 ny → 3pz 7.51 (7) 7.76 (2) 7.41 (8) 7.75 (2) 7.39 (5) 7.84 (2) 7.48 (5) 7.45

2B2 ny → ∞ 9.57 (1) 9.59 (1) 9.53 (1) 9.58 (1) 9.8[b]

[a] All data from ter Steege et al.[93] and Merchan et al.;[94] and [b] Chong.[23]

give an acceptable description off all computed states except the 2 1B2-state. For the other

states, an accurate excitation energy is already obtained with the limited reference space.

The error for the 2 1B2-state at this level is about 0.3 eV when the size of the reference wave-

function is limited to only two reference configurations. The Rydberg series of acetone begins

at a lower energy than the Rydberg series of formaldehyde, and the lower BLYP-Rydberg-

orbitals of acetone do not seem to be too much affected by the wrong fall off behavior of the

Kohn-Sham potential. As is was described above, B3LYP-orbitals are of lower quality than

BLYP-orbitals, which can be seen from the excitation energies determined with the restricted

reference spaces in row 9 of table 2.16 that deviate by 0.1 to 0.4 eV from experiment and the

gradients as implemented in the TURBOMOLE program package.[64] The molecule is chosen to have the

carbon and oxygen atoms in the yz plane with the z-axis being collinear to the CO-bond. For acetone, the

TZVP basis set[92] was used. It represents an (11s6p1d) basis set contracted to [5s3p1d]. The TZVP basis set

was extended by 0.019274694 (s-type), 0.0121380 (s-type), 0.00770987770 (s-type), 0.00308395111 (s-type),

0.035011523 (p-type), 0.01368060 (p-type), 0.00547224 (p-type), 0.028512 (d-type), 0.04135446090 (d-type),

0.04135446090 (d-type) primitive Gaussian functions which were placed on the carbonylic carbon atom.
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60 Chapter 2 Kohn Sham Orbitals for Ab Initio Methods

larger reference spaces of 4-5 configurations that are needed to reach converged excitation

energies.

For the ionization potentials, all types of orbitals leads to very similar values between 9.59

eV (LHF) to 9.53 eV (BLYP). The experimental ionization potential is 9.8 eV. For the lower

HF LHF BLYP B3LYP ROHF
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Fig. 2.5: The lowest virtual orbital of b2 symmetry (3px). Frame length: 40 a.u., contour spacing:

0.03 a.u.

Rydberg states of the acetone molecule, LHF-orbitals give a rather poor description, while

BLYP-orbitals tend to describe at least the energetically lowest Rydberg states much better.

This result can be better understood from the spatial structure of the orbitals involved. In

figure 2.5, the 3px orbitals of carbonmonoxide, formaldehyde and acetone are compared.

The 3px orbitals from an ROHF calculation of the corresponding 2B2-cation shall serve as

reference since MRCI computations show that they provide a very good description of the

Rydberg 2 1A1 state. As reference also orbitals explicitly optimized for the 2 1A1, e.g. from

a CASSCF calculation could have been taken. However, the ROHF obitals have been pre-
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2.8 MRPT2 for the ground state 61

ferred since they are optimized on a similar level of sophistication as HF- or LHF-orbitals.

For carbonmonoxide and acetone, the HF-orbitals shown are highly diffuse and lack any

structure while the LHF-orbitals closely resemble the orbitals of the 2B2 cation. The only

difference is that they appear to be slightly more compact than the latter. This corresponds

to the results from the MRCI calculation of the corresponding states, which both are well

described by LHF-orbitals. The 3px BLYP orbital is very diffuse for carbonmonoxide, and

somewhat less diffuse in the case of formaldehyde. B3LYP-orbitals represent a mixture of

BLYP- and HF-orbitals, which makes them even more diffuse than BLYP-orbitals. As a con-

sequence, a very large number of reference configurations was needed in the MRCI calculation

to construct the corresponding 2 1A1 state. Going from carbonmonoxide to formaldehyde

to acetone, the lowest virtual orbital of b2 symmetry from the ROHF computation becomes

somewhat more diffuse. In contrast, the corresponding HF- and all KS-orbitals studied

tend to be more compact for acetone than for carbonmonoxide or formaldehyde. While the

HF-orbital still is far too diffuse to give an accurate description of the 2 1A1 state, the LHF-

orbital in this case is too compact, while the BLYP-orbitals in the case of acetone give an

acceptable description of the corresponding Rydberg state.

2.8 MRPT2 for the ground state

While KS-orbitals seem to be well suited for MRCI computations, their usage in perturbation

theories based on only one reference configuration usually leads to very large 2nd order

corrections and even to a divergence in the perturbational series.[?, 29,32] To what extent this

overestimation can be reduced in a multireference approach is tested in table 2.1710 which

summarizes the results for the ground state of carbonmonoxide. It gives reference energies

(Eref ) and the correlation contribution resulting from an enlargement of the reference space

(Ecorr/ref ) and the CI (Ecorr(SDCI)) or the PT2 (Ecorr(PT2)) treatment on top of the

reference spaces. Ecorr/ref is obtained by subtracting Eref of the multi- from Eref of the

single reference case. The total correlation energies of the treatment can be obtained by

adding Ecorr/ref to Ecorr(SDCI) or to Ecorr(PT2), respectively.

10For computational details see section 2.5.
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Tab. 2.17: Comparison of reference energies (Eref ), static (Ecorr/ref ) and dynamical (Ecorr) corre-

lation from single and multi reference SDCI and PT2 for carbonmonoxide. Ecorr/ref is obtained by

subtracting Eref for the single reference case (nref = 1) from the Eref for the multi reference case

(nref = 3 or 5). Energies in H.

Orbitals n
[a]
ref Eref Ecorr/ref Ecorr (SDCI) Ecorr (PT2)

HF 1 -112.78342 - -0.31945 -0.35420

LHF 1 -112.77465 - -0.32522 -0.37067

BLYP 1 -112.75820[b] - -0.33588 -0.39917

B3LYP 1 -112.76753[b] - -0.32950 -0.38627

HF 3 -112.79001 -0.00659 -0.31688 -0.33228

LHF 3 -112.80175 -0.02710 -0.30768 -0.32176

BLYP 3 -112.78796 -0.02976 -0.31712 -0.34138

B3LYP 3 -112.79179 -0.02426 -0.31459 -0.33766

HF 5 -112.79341 -0.00999 -0.31511[c] -0.330894

LHF 5 -112.81085 -0.03620 -0.30169[c] -0.31609

BLYP 5 -112.79594 -0.03774 -0.31207[c] -0.33687

B3LYP 5 -112.79934 -0.03181 -0.30993[c] -0.33350

[a] Reference configurations: 1: Ψ; 3: Ψ, π2
x → π∗2

x , π2
y → π∗2

y ; 5: Ψ, π2
x → π∗2

x , π2
y → π∗2

y , π2
x →

π∗2
y , π2

y → π∗2
x .

[b] EBLY P = -113.35096 H; EB3LY P = -113.31089 H.

[c] For the Davidson corrected total energies (MRCI+Q) see table 2.12.

We first concentrate on the CI approach since it is strictly variational. While the HF ap-

proach gives the lowest energy for a single determinant wavefunction, KS-orbitals in all cases

lead to higher correlation energies within the SDCI (Ecorr(SDCI)). Nevertheless, their total

energies within the SDCI treatment are still higher than the corresponding HF value (HF:

-113.10287 H, LHF: -113.09987 H, BLYP: -113.09408 H, B3LYP: -113.09703 H). Also the

correlation contributions arising from the enlargement of the reference space are distinctly

larger (factor 3-4) if KS-orbitals instead of HF-orbitals are employed. However, the corre-

lation effects arising from the additional SDCI excitations on top of the reference spaces

consisting of 5 reference configurations are larger if HF-orbitals are used, while the LHF-
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2.9 Excitation energies of carbonmonoxide from MRPT2 63

orbitals give the lowest contribution. Summing up all effects for the computation with 5

reference configurations (Ψ, π2
x → π∗2

x , π2
y → π∗2

y , π2
x → π∗2

y and π2
y → π∗2

x ) the LHF-orbitals

give the lowest energy (Etot (MRCI) = -113.11254 H) being only about 0.004 H lower than

the energies obtained with the other orbitals.

Employing the PT2 approach11 all orbitals give higher correlation contributions than found

in the corresponding CI calculations, but going from 1 over 3 to 5 reference configurations

Ecorr (PT2) absolutely decreases much faster than Ecorr (SDCI). As a consequence the total

energies of the PT2 approach increase if one goes from 1 reference configuration to 3 refer-

ence configurations, e.g. for LHF-orbitals the total energy descreases from -113.14532 H to

-113.12351 H. The total energy again increases slightly if 5 instead of 3 reference configu-

rations are used (LHF = -113.12694 H). A similar behaviour is found for all other orbitals.

Obviously, this shows, that all orbitals lead to an overestimation of correlation effects if only

1 reference configuration is employed. Furthermore, this effect is considerably larger for

KS-orbitals than for HF-orbitals. In the MRPT2 approach, however, this deficiency of KS-

orbitals seems to be remedied. Please note that the correlation contribution arising from the

PT2 treatment on top of the reference space of 3 configurations is 0.32176 H if LHF-orbitals

are used, while for HF-orbitals 0.33228 H are obtained. For 1 reference configuration these

values are 0.37067 H and 0.35420 H, respectively. The values obtained with BLYP-orbitals

are somewhat larger, however.

The same trends is obtained for the formaldehyde molecule in table 2.1812 and acetone (not

given). This indicates that LHF-orbitals are well suited for an MRPT2 treatment.

2.9 Excitation energies of carbonmonoxide from MRPT2

In the next step, it is tested how well HF-, LHF-, BLYP- and B3LYP-orbitals describe ex-

cited states in an MRPT2 approach. To minimize the arbitrariness that is always involved

in the construction of the reference wavefunction and to have a meaningful comparison of

the orbital properties, all reference wavefunctions were determined by the same selection

11For all PT2 calculations the approach of Pulay et al.
[2] was used. In this approach no orbital energies,

but the real energy expectation values for the given configurations are employed.
12For computational details see section 2.15.
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Tab. 2.18: Comparison of reference energies (Eref ), static (Ecorr/ref ) and dynamical (Ecorr) corre-

lation from single and multi reference SDCI and PT2 for formaldehyde. Ecorr/ref is obtained by

subtracting Eref for the single reference case (nref = 1) from the Eref for the multi reference case

(nref = 2). Energies in H.

Orbitals n
[a]
ref Eref Ecorr/ref Ecorr (SDCI) Ecorr (PT2)

HF 1 -113.91483 - -0.26050 -0.39631

LHF 1 -113.90445 - -0.36734 -0.41490

BLYP 1 -113.88557[b] - -0.38035 -0.44582

B3LYP 1 -113.89662[b] - -0.37267 -0.43089

HF 2 -113.91867 -0.00384 -0.35905[c] -0.37808

LHF 2 -113.92769 -0.02324 -0.35228[c] -0.37389

BLYP 2 -113.91235 -0.02678 -0.36286[c] -0.39601

B3LYP 2 -113.91936 -0.02274 -0.35810[c] -0.38802

[a] Reference configurations: 1: Ψ; 2: Ψ, π2 → π∗2.

[b] EBLY P = -114.56161 H; EB3LY P = -114.49704 H.

[c] For the Davidson corrected total energies (MRCI+Q) see table 2.15.

procedure described in the following.

Out of an orbital space consisting of the orbitals of the ground state configuration plus four

virtual orbitals of each irreducible representation, the n + 3 configuration state functions

having lowest energy are searched (n is the number of states computed in each irreducible

representation). These configurations constitute the reference wavefunction of a selective

MRCI. The selection in this MRCI is done by Epstein Nesbeth perturbation theory using

a selection threshold of 0.1 mH Configurations of the resulting wavefunction contributing

more than a given c2-value are again selected as the new reference wavefunction for another

selective MRCI. This procedure is repeated as described until the reference wavefunction

remains unchanged, which is reached after 2-5 cycles. In table 2.1913 excitation energies for

carbonmonoxide are displayed that were computed using LHF-orbitals and different selec-

tion thresholds for the c2-values which determine the size of the reference space. For valence

states, already the reference space obtained with the largest selection threshold (c2 > 0.002)

gives quite reliable excitation energies, that are within a range of 0.2 eV of the experimen-

13For more computational details see section 2.5
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Tab. 2.19: MRPT2 excitation energies in eV of carbonmonoxide as a function of the size of the refer-

ence space. The size is indicated by the selection threshold used for the weights of the configurations

which were included in the reference space. The actual size of the reference spaces can be taken from

table 2.20. For more details see text.

c2 >

state class. 0.002 0.0015 0.001 0.0007 0.0005 exp.

A 1Π n → π∗ 8.32 8.35 8.35 8.34 8.40 8.51

I 1Σ− π → π∗ 9.94 9.96 9.96 9.98 9.99 9.88

D 1∆− π → π∗ 10.05 10.05 10.06 10.06 10.07 10.23

B 1Σ+ n → 3s 9.45 10.28 10.62 10.62 10.50 10.78

C 1Σ+ n → 3pz 11.00 10.97 11.20 11.20 11.12 11.4

E 1Π n → 3p 11.09 11.30 11.30 11.30 11.31 11.53

tally determined values. For the computed Rydberg states this reference space gives larger

errors of up to 1.3. If the selection threshold is decreased, the computed energies become

more reliable with an accuracy better than 0.3 eV for all states, however, selection thresh-

olds smaller than c2 > 0.001 do not lead to a higher precision in the computed excitation

energies. For decreasing selection thresholds, the computed excitation energies converge to-

ward the values computed by the MRCI+Q approach in table 2.14. The number of reference

Tab. 2.20: Number of reference configurations selected for carbonmonoxide in each irreducible rep-

resentation (of C2v) for different selection thresholds (c2 >). nstates denotes the number of states

computed in each irreducible representation. For the corresponding excitation energies see table 2.19.

c2 >

C∞v C2v nstates 0.002 0.0015 0.001 0.0007 0.0005

Ψ, D 1∆−, B 1Σ+, C 1Σ+ A1 4 26 31 41 49 60

I 1Σ− A2 1 9 10 10 13 13

A 1Π, E 1Π B1 2 19 24 29 39 46

configurations selected for a given c2-value is given in table 2.20. For the 4 states computed

in A1-symmetry 26 reference configurations were selected if a c2-value of 0.002 was used,

while for the A2-state 9 and for the two 1Π states that were computed in B1-symmetry,

19 reference configurations were selected. Decreasing the threshold to 0.001, 41, 10 and 29
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reference configurations were selected, respectively.

Since the selection threshold c2 > 0.001 seems to offer the best balance between accuracy

and computational effort, it will be used to compare the different sets of orbitals (table 2.21).

The reference spaces computed with a threshold of c2 > 0.001 for all molecules contain about

10 reference configurations per state computed with LHF-, BLYP- and B3LYP-orbitals, i.e.

the number of reference configurations selected is very similar for the different types of

KS-orbitals. When HF-orbitals were used, about 20 reference configurations per state are

selected.

Employing this set of reference configurations, for carbonmonoxide, excitation energies com-

puted with the MRPT2 approach using HF-orbitals give very strong deviations from exper-

iment. In the computation shown in table 2.21 the I 1Σ−- and D 1∆ valence states cannot

be located at all. If a larger number of states is computed, valence states can be found, how-

ever, the computed excitation energies still show very strong deviations from experiment.

Rydberg states are better described than valence states. For Rydberg states the computed

excitation energies show deviations from experiment up to 0.65 eV.

The energies computed using LHF-orbitals tend to underestimate the experimentally de-

Tab. 2.21: Excitation energies in eV of carbonmonoxide computed by MRPT2 using a selection

threshhold of c2 > 0.001 for the reference wavefunction. Ground state energies: HF -113.12343 H;

LHF: -113.12723 H; BLYP: -113.13122 H; B3LYP: -113.13074 H.

state class. HF LHF BLYP B3LYP exp.a

A 1Π n → π∗ 8.07 8.35 8.32 8.29 8.51

I 1Σ− π → π∗ 12.33 9.96 9.98 10.23 9.88

D 1∆ π → π∗ - 10.06 9.97 10.05 10.23

B 1Σ+ n → 3s 10.83 10.62 10.64 10.73 10.78

C 1Σ+ n → 3pz 12.15 11.20 11.76 12.19 11.4

E 1Π n → 3p 11.19 11.31 11.55 11.86 11.53

2Σ+ n → ∞ 14.20 14.24 14.23 14.32 14.01

2Π π → ∞ 17.82 17.46 17.53 17.66 16.91

[a] see table 2.14

termined values by 0.2 eV. An exception is the I 1Σ− state which is computed to be 9.96

eV compared to the experimental value of 9.88 eV. In accordance with the results from the
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MRCI computations one might expect that the systematic underestimation of the exper-

imental excitation energies might be due to a somewhat deficient description of the 2Σ+

cation which represents the core of the computed Rydberg states. However, the ionization

potential which is predicted to be at 14.24 eV overestimates the experimental by 0.2 eV.

Very similar values for the ionization potential are obtained with HF- (14.20 eV) and BLYP-

orbitals (14.23 eV), while the ionization potential computed using B3LYP-orbitals of 14.32

eV is somewhat higher.

The excitation energies computed with BLYP-orbitals have a comparable accuracy as the

data obtained using LHF-orbitals. While most of the computed energies deviate no more

than 0.2 eV from the the experimental values, the computed excitation energy for the C 1Σ+

state of 11.76 eV lies 0.36 eV above the experimental value.

B3LYP-orbitals lead to less accurate excitation energies than BLYP-orbitals. While the ex-

citation energies for the A 1Π-, the D 1∆ and the B 1Σ+ state are comparable to those

computed with LHF- or BLYP-orbitals, the excitation energies for the I 1Σ+-, the C1Σ+-

and the E1Π state are predicted to lie 0.35, 0.46 and 0.66 eV above the experimental values.

2.10 Excitation energies of formaldehyde from MRPT2

Employing the same MRPT2 approach as described for carbonmonoxide, the energies com-

puted for formaldehyde14 using HF-orbitals also tend to show large deviations from experi-

ment. The vertical excitation energy of 3.63 eV for the 1 1A2-valence state is about 0.3 eV

below the experimental value, while the 2 1B2 with 9.02 eV is predicted by about 1 eV too

high in energy. The 1 1B2, 1 1A1 and 2 1A2 having values of 7.09, 8.51 and 8.50 eV are

predicted somewhat more precisely.

LHF-orbitals allow a very reliable prediction of all computed vertical excitation energies.

For the computed Rydberg states, the deviation from the experimentally determined values

is less than 0.1 eV. BLYP-orbitals give a good description of the n → π∗-valence- and the 3s

Rydberg state, but the computed energies for the 3p Rydberg states deviate by 0.2 - 0.5 eV

from experiment. Energies computed with B3LYP-orbitals have an error of 1 - 2 eV for all

14For computational details see section 2.15.
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excited states computed for formaldehyde.

Tab. 2.22: Excitation energies in eV of formaldehyde computed by MRPT2 using a selection thresh-

hold of c2 > 0.001 for the reference wavefunction. Ground state energies HF: -114.29663 H; LHF:

-114.3081 H; BLYP: -114.30755 H; B3LYP: -114.30561 H

state class HF LHF BLYP B3LYP exp.a

1 1A2 n → π∗ 3.63 3.76 3.81 3.75 3.94

1 1B2 n → 3s 7.09 7.13 7.08 7.21 7.09

2 1B2 n → 3pz 9.02 7.92 8.46 8.13 7.97

1 1A1 n → 3py 8.51 8.08 8.39 8.35 8.12

2 1A2 n → 3px 8.50 8.28 8.59 8.57 8.38

2B2 n → ∞ 11.28 11.13 11.38 11.35 10.88

[a] see table 2.15

2.11 Excitation energies of acetone from MRPT2

While for carbonmonoxide and formaldehyde a poor performance in the MRCI computations

roughly correlates to larger energy deviations in the excitation energies computed with the

MRPT2 approach, for acetone, HF-orbitals perform much better in the MRPT2- than in

the MRCI computations (Tab. 2.2315). Apart from the 1 1A2 valence state for which an

excitation energy of 3.90 eV compared to an experimental value of 4.38 eV is computed,

HF-orbitals allow a precise computation of the exited states of acetone with an error of less

than 0.1 eV in comparison to experimental data.

The excitation energies computed using LHF-orbitals show deviations from the experiment

of 0.2 eV for the 1 1A2 valence state and 0.3 to 0.4 eV for the Rydberg states. Like it was

already seen in the MRCI computations, the description of the Rydberg states of acetone

based on LHF-orbitals seems to be problematic.

In contrast, for acetone excitation energies computed with BLYP- and B3LYP-orbitals seem

to be far more reliable than those computed with LHF-orbitals. Excitation energies for the

3s- and the 3p Rydberg states never deviate more than 0.2 eV from experiment. The error

15For Computational details see section 2.7
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that is found seems to be a systematic red shift for BLYP-orbitals. Energies computed using

B3LYP-orbitals agree even better with experimental data than the energies obtained with

BLYP-orbitals.

Tab. 2.23: Excitation energies in eV of acetone computed by MRPT2 using a selection threshhold of

c2 > 0.001 for the reference wavefunction. Ground state energies: HF: -192.66650 H; LHF: -192.67543

H; BLYP: -192.68902 H; B3LYP: -102.68712 H.

state class. HF LHF BLYP B3LYP exp.a

1 1A2 ny → π∗ 3.90 4.17 4.13 4.14 4.38

1 1B2 ny → 3s 6.29 6.02 6.25 6.53 6.35

2 1A2 ny → 3px 7.31 6.94 7.28 7.36 7.36

2 1A1 ny → 3py 7.48 7.00 7.24 7.32 7.41

2 1B2 ny → 3pz 7.40 7.19 7.43 7.47 7.45

2B2 ny → ∞ 9.36 9.50 9.49 9.47 9.8

[a] see table 2.16

2.12 Rydberg-valence mixing of the 11B1u-state of ethene

The very first example of this work was the electronic computation of the excitation spec-

trum of ethene. The excited states of ethene here are computed again, this time using the

MRPT2 approach described in section 2.9. The singlet excitation energies obtained with

HF-, LHF- and BLYP-orbitals are given in table 2.2416. These values are compared to exci-

tation energies obtained from MRPT2 computations using ROHF-orbitals optimized for the

2B3u cation and CASPT2 results from Serrano-Andres et al.[70]

Computations using HF-orbitals give an excitation spectrum which is blue shifted by about

2 eV. LHF-orbitals lead to a better agreement with experiment, the average error is 1 eV.

The energies computed using BLYP-orbitals tend to overestimate the experimental values

somewhat more than the spectrum computed with HF-orbitals. Especially the 1 1B2u- and

2 1B3u states are overestimated by 0.44 and 0.35 eV, respectively. These results roughly

correspond to those obtained in section 2.1 for the MRCI ansatz. However, for the MRPT2

16For computational details see section 2.4
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Tab. 2.24: Excitation energies in eV of ethene computed by MRPT2 using a selection threshhold of

c2 > 0.001 for the reference wavefunction. Ground state energies HF: H; LHF: H; BLYP: H; B3LYP:

H.

state class. HF LHF BLYP ROHF CASPT2[a] exp.[a]

1 1B3u π → 3s 7.31 7.24 7.35 7.17 7.17 7.11

1 1B1u π → π∗ 7.85 7.70 7.75 8.34 8.40 7.66

1 1B1g π → 3pσ 7.99 7.95 8.03 7.84 7.85 7.80

1 1B2g π → 3pσ 8.17 8.08 8.18 7.95 7.95 7.90

2 1Ag π → 3pπ 8.42 8.30 8.45 8.24 8.40 8.28

2 1B3u π → 3dσ 8.79 8.75 9.04 8.49 8.66 8.62

1 1B2u π → 3dδ 9.11 9.08 9.16 8.9 9.18 9.05

2 1B1u π → 4dπ 9.21 9.23 9.40 9.25 9.31 9.33

1 3B1u π → π∗ 4.37 4.39 4.42 4.45 4.39 4.36

[a]: CASPT2 excitation energies are taken from Serrano-Andrés et al.[70]

approach, HF-orbitals seem to be slightly better suited than BLYP-orbitals.

The ROHF-orbitals from the computation of the 2B3u-cation give a very good description

for all Rydberg states. The error is usually below 0.1 eV, which is about the same accu-

racy as that found in the CASPT2 computations by Serrano-Andres et al.. This shows that

for the computation of excited states, an ROHF calculation of the core ion often leads to

orbitals that have a quality comparable to the more expensive CASSCF-approach. The 1

3B1u-state (T-state) is correctly predicted to be around 4 eV. However, even though the

Rydberg- and the T-states are computed in a very high accuracy, both approaches lead to

a very large error of about 0.7 eV for the singlet antibonding valence (V) state of ethene.

The erroneous prediction of the 1 1B1u-state is quite problematic since the transition into

the V-state dominates the excitation spectrum of ethene, because the oscillator strengths of

valence states are much larger than those of Rydberg states. Furthermore, in liquid phase or

solvent, Rydberg states are quenched by the solvent cavity, so that the excitation spectrum

is completely dominated by transitions into the valence states.

The basic problem which leads to the large deviation in the excitation energies computed

by the latter two MRPT2-approaches is that the reference-CI- or the CASSCF-level only

includes a very small fraction of the total correlation energy, while most of the dynamical
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Fig. 2.6: Excitation energies of ethene computed from the sum of virtual orbital energies of virtual

orbitals and the ionization potential (∆Eorb = IP +εvirt; IP = 10.51 eV[79]), from the energies of the

configuration state functions (∆Ecsf ), the reference CI (∆ERef ) and the full MRCI+Q-computation

(∆EMRCI+Q). The orbitals for these computations were generated from an ROHF-computation of

the 2B3u−cation. Ground state energies: ELHF = 78.05440 a.u., ERef = -78.07391 a.u., EMRCI+Q =

-78.42283 a.u. LHF-orbitals were used to compute the ground state.

correlation energy is neglected. Since Rydberg and valence states have different contribu-

tions of dynamical correlation, valence and Rydberg states on the reference-CI level may

get close to each other, which leads to an erratic Rydberg-valence mixing. However, in

single-state MRPT2, the reference wavefunction is “frozen” at the reference level, and in

the cases in which such mixing takes place, represents a very poor approximation to the

fully correlated system. To remove this deficiency, Finley et al.[95] developed the multi

state-CASPT2-approach, which was applied to the ethene molecule.For the 1 1B1u-state it

predicts an excitation energy of 8.0 eV.

However, when HF-, LHF- and BLYP-orbitals are used, already a single state MRPT2 is

able to give a correct excitation energy for the 1 1B1u-state of ethene. To analyze why HF-

or KS-orbitals give a correct prediction of the excitation energy, this section compares how

the excitation energies and the corresponding wavefunctions change if increasing fractions of
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the correlation energy are included in the computation.

Fig. 2.6 gives excitation energies obtained with ROHF-orbitals optimized for the 2B3u cation.

Since HF virtual orbital energies represent electron affinities, the virtual orbital energies were

added to the ionization potential to obtain ∆Eorb. ∆Eorb is 7.22 eV for the 1 1B1u, 9.22

for the 2 1B1u- and 9.99 eV for the 1 1B1u state 17. This simple calculation already allows

a good prediction of the experimental energies of 7.66 and 9.33 eV for the 1 and 2 1B1u

state. Fig. 2.7 also depicts the spatial form of the three energetically lowest orbitals of b2g

symmetry. It shows a very compact antibonding orbital and the two 3d and 4d Rydberg

orbitals. It is interesting to note that the orbital following the π∗-orbital in the literature is

often characterized as a 3dxz Rydberg orbital.[77] However, since the π∗ and the first (3dxz)

Rydberg orbital have the same angular nodal structures, orthogonality must be ensured by

the radial part of the Rydberg orbital. Since the lowest dxz Rydberg orbital then has one

additional radial node, following Wiberg et al.,[96] it here is characterized as a 4dxz orbital.

The energies of the single configuration state functions (CSF) ∆Ecsf have a different order

than those obtained from the orbital energies. The lowest CSF with 7.65 eV is the one that

describes the excitation into the 4dxz, followed by 8.46 eV for π → 5dxz-excitation while the

π → π∗-excitated state is located at 8.85 eV. This ordering is found, because the ROHF

procedure explicitly optimized the core-orbitals of the Rydberg state. Furthermore, due to

the low interaction of the Rydberg orbital with the core, Rydberg states are generally down-

shifted if correlation energy is neglected or only partially taken into account.

In the next step, a small CI is performed which consists of the configurations π → 1b2g to

π → 4b2g. Since this CI represents the reference-CI for the following MRCI-computation,

the corresponding excitation energy is called ∆ERef . In this case, the 4d and the 5d Ryd-

berg states are located at 7.66 and 8.41 eV, the next state which also has mainly Rydberg

character is found at 9.49 eV. However, in the reference CI no valence state can be assigned.

Instead, all states of 1B1u symmetry exhibit a very strong valence contribution, which is

17In the following MRCI-computations 4 reference configurations were included. However, since the basis

set does not contain gaussian function that are diffuse enough to describe a 6dxz-orbital, the the 4b2g-orbital

has a positive orbital energy. The corresponding configuration is only included to increase the flexibility of

the CI to describe the other states, however, in the figures 2.6 and 2.7 energies corresponding to the 6 d

Rydberg state that are above the ionization potential are not given.
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Tab. 2.25: Structure of the wavefunction for the lowest state of figure 2.6

assignment Ψ(CSF ) Ψ(RefCI) Ψ(MRCI)

π → 1b2g(Π
∗) 0.0000 0.3397 0.7601

π → 2b2g(4dxz) 1.0000 0.5927 0.0927

π → 3b2g(5dxz) 0.0000 0.0531 0.0295

π → 4b2g(6dxz) 0.0000 0.0144 0.0138

shown in table 2.25 for the lowest state of figure 2.6. The character of the state is only

weakly (c2 = 0.5927) dominated by the π → 4dxz excitation, while there is a very strong

valence contribution of c2
π→π∗ =0.3397.

The lowest state of 1B1u symmetry has an excitation energy of 8.08 eV at the MRCI+Q

level. The full MRCI wavefunction of the 1 1B1u-state has a completely different structure

than the first root of the reference CI. The π → π∗ excitation dominates the wavefunction

with c2 =0.7601, while there is some Rydberg contribution of c2 = 0.0927 ( π → 4dxz). The

inclusion of dynamical correlation energy at the MRCI+Q-level leads to a stabilization of the

ground state. As a consequence, the complete spectrum is shifted to shorter wavelengths.

Only at the MRCI level the lowest state becomes a clear valence state, while the second state

of 1B1u symmetry in this case is the 4d Rydberg state with some valence contribution. The

character of the computed states is completely reversed if an increasing fraction of correla-

tion energy is included in the computations.

Figure 2.7 gives excitation energies computed with LHF-orbitals on different levels of sophis-

tication. ∆Eorb gives the excitation energy computed from the orbital energy difference. For

the V state, this value is 5.92 eV, which, as expected, is exactly in between the experimental

singlet excitation energy of 7.66 eV and the triplet excitation energy of 4.36 eV. The excita-

tion energy for the 2B1u state of 9.21 eV is already very close to the experimental value of

9.33 eV. The virtual LHF-orbitals have nearly the same spatial form as the ROHF-orbitals

of the 2B3u cation.

If the excitation energy is computed from the energy difference of the single configuration

state functions, the valence state is shifted upwards to 8.31 eV, while the energy of the Ry-

dberg state is lowered to 7.75 eV. Even though both states are placed inverse, they are still
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Fig. 2.7: Excitation energies of ethene computed with LHF-orbitals from the orbital energy difference

(∆Eorb), from the energies of the configuration state functions (∆Ecsf ), the reference CI (∆ERef ) and

the full MRCI+Q-computation (∆MRCI+Q). εHOMO = 10.179 eV. Ground state energies: ELHF =

78.05440 a.u., ERef = -78.07391 a.u., EMRCI+Q = -78.42283 a.u.
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Tab. 2.26: Structure of the wavefunction (c2-values) of the lowest state of figure 2.7

assignment Ψ(CSF ) Ψ(RefCI) Ψ(MRCI)

π → 1 b2g(Π
∗) 0.0000 0.5213 0.7357

π → 2 b2g(4dxz) 1.0000 0.3341 0.0771

π → 3 b2g(5dxz) 0.0000 0.1180 0.0507

π → 4 b2g(6dxz) 0.0000 0.0264 0.0207

rather close in energy, and in contrast to the computation based on the ROHF-orbitals of

the 2B3u-cation, the 5d-Rydberg configuration having a relative energy of 9.73 eV remains

above the valence configuration. When LHF-orbitals are used, the CSFs of Rydberg states

keep their correct energetic position. This behavior is due to error cancellation since both

orbital relaxation and correlation are neglected as it has been explained in section 2.4.

The reference CI predicts an excitation energy of 8.28 eV for the lower state of 1 1B1u-

symmetry. Table 2.26 shows that the 1 1B1u state can be characterized by an excitation into

the antibonding orbital (c2 = 0.5213), with a strong contribution of c2 = 0.3341 of the con-

figuration that represents the excitation into the 4d-Rydberg-orbital. However, in contrast to

the computations shown before, the lowest root of the reference-CI in this case is the valence

state. For the 2 1B1u Rydberg state, an excitation energy of 9.30 eV is predicted, which is

very close to the experimental value of 9.33 eV. The state can correctly be characterized as

a 4d Rydberg state. The error cancellation from the neglection of both orbital relaxation

and correlation allows a correct relative ordering of valence and Rydberg states. The high

accuracy of the computation of the Rydberg state is due to the error compensation of the

neglect of orbital relaxation and correlation at the level of a small CI as it was explained in

section 2.4.

The full MRCI+Q computation predicts energies of 7.92 eV for the V-state and 9.22 eV

for the 2 1B1u-state. The c2-values in table 2.26 for the full MRCI computation show a less

mixed character with c2 = 0.7357 for the configuration π → π∗ and only 0.0927 for π → 4dxy.

In contrast to ROHF-orbitals, the error cancellation for LHF-orbitals allows a correct order-

ing of the states already at the reference-CI level. A correct relative ordering is an important
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Tab. 2.27: Structure of the reference wavefunction (c2-values) of the 1 1B1u-state selected with a

selection threshold c2 > 0.001.

1 1B1u 1 3B1u

assignment Ψ (ROHF) Ψ (LHF) Ψ (ROHF) Ψ (LHF)

π → 1b2g(Π
∗) 0.4496 0.7392 0.9698 0.9827

π → 2b2g(4dxz) 0.4616 0.1457 0.0096 0.0025

π → 3b2g(5dxz) 0.0620 0.0486 0.0069 0.0036

π → 4b2g(6dxz) 0.0188 0.0205 0.0064 0.0046
∑

(others) 0.0079 0.0458 0.0076 0.0066

precondition for a good construction of the reference wavefunction for single state MRPT2,

because the reference wavefunction cannot readapt in single state MRPT2 due to effects of

static correlation. The reference wavefunction for the MRCI computations described here

was chosen somewhat smaller than the reference wavefunction for the MRPT2-computations.

The latter, that are given in table 2.27, consist of 11 CSFs for LHF- and 9 CSFs for the

ROHF-orbitals. The larger reference space allows a somewhat better description of the cor-

responding states than the 4 CSFs that were used in the MRCI-computation. Table 2.27

shows that for ROHF-orbitals, the reference wavefunction represents an equal mixture of the

π → π∗-valence and the π → 4dxz-Rydberg state, while the reference wavefunction based

on LHF-orbitals already reflects the MRCI-wavefunction of table 2.26 with the dominant

configuration π → π∗ (c2 = 0.7392) and some Rydberg contribution (c2
π→π∗ = 0.1457). For

comparison, table 2.27 also gives the reference wavefunction for the 1 3B1u-state. Since the

1 3B1u-state is much lower in energy, it shows no Rydberg-valence mixing. The reference

wavefunction for both sets of orbitals is strongly dominated by the excitation into the an-

tibonding orbital, and all orbital sets lead to correct excitation energies. This last example

shows that the better positioning of Rydberg relative to valence states may offer large ad-

vantages for MRPT2 approaches. However, since it is only analyzed here for an individual

test case, a generalization of this finding requires further studies.

The summary for this part is given in chapter 5, while next chapter turns to the base paired

and base stacked systems of xanthine.
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Chapter 3

Introduction to Part 2

Base pairing in DNA and PNA

An unequivocal base pair recognition is the precondition for the successful replication and

transcription of Ribo Nucleic Acid (RNA) and Desoxyribo Nucleic Acid (DNA).[97] The

correct recognition of the complementary base is mainly determined by two factors: The

restrictions due to the double helix topology, which limits the available space and geometry

of each base pair, and the H-bond donor-acceptor pattern of the nucleobases.

The restrictions of the double helix topology result from the constraints imposed by the

helical sugar-phosphate backbone in combination with the geometry of the other base pairs,

and their effect is enhanced by the tightness of the binding pocket of DNA-polymerase. [98,99]

Consequently, all base pairs must have the same size, which means that a purine base can

only form a pair with a pyrimidine base and vice versa.[101] This excludes for instance purine-
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Fig. 3.1: Non-canonical base pairs of adenine and thymine
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Fig. 3.2: Canonical Watson-Crick pairings of guanine, cytosine, adenine and thymine

purine pairs. Additionally, the helix topology limits the orientation of the nucleobases to

the Watson-Crick pairing mode, while other combinations like the reverse Watson-Crick,

Hoogsteen and reverse Hoogsteen pairing modes, illustrated in figure 3.1, cannot be realized

within a DNA double strand. While the geometrical restrictions limit the possible pairings

to purine-pyrimidine combinations in the Watson-Crick pairing mode, the hydrogen bond

donor acceptor pattern of nucleobases determines that adenine only pairs to thymine and

guanine to cytosine like it is shown in fig. 3.2.

However, next to the hydrogen bonding pattern and the steric restrictions induced by double

helix topology and DNA polymerase, also base stacking interactions, and H-bonding of the

nucleobases to DNA-polymerase strongly contribute to the unambiguity of the template base

recognition.[100] The stability of DNA double strands results from the H-bond strength (not

to be set equal to the hydrogen bonding pattern, which denotes the hydrogen bonding geom-

etry), stacking and solvent interactions. Only this complex interplay of various interactions

makes it possible that the base pair recognition is at the same time not only highly selective,

but also reversible, so that next to an unequivocal base pair recognition also the separation

of the double strand into single strands is possible.

To better understand the complex interplay between the different interactions, model sys-

tems are needed, in which the strong limitations induced by the backbone are lifted, so

that a wider spectrum of possible pairings can be studied. One such model system is Pep-

tide Nucleic Acid (PNA), in which the ribosyl phosphodiester backbone is replaced by a

peptide chain as it is shown in fig. 3.3. PNA received considerable interest in 1991 when

Nielsen et al.[102] proposed aminoethylglycin-PNA as an antisense agent. The basis of the

pharmaceutical activity of aminoethylglycin-PNA is the formation of double strands with

messenger-RNA that inhibits the expression of the corresponding proteins. Another PNA

system, which, however, does not bind to DNA or RNA, is PNA with a regular alanyl back-
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bone[103] (alanyl-PNA). Even though at the present time alanyl-PNA has no prospects of

serving as a pharmaceutical agent, it presents an even better model system to study base

pairing processes. This is because of the particular structural properties of alanyl-PNA:

In alanyl-PNA, the distance of each xanthine unit in the backbone is about 3.6 Å, which is

close to the ideal stacking distance of 3.4 Å.[104] If the nucleoamino acids in the backbone

of alanyl-PNA have alternating configurations, alanyl-PNA forms linear instead of helical

double strands. The backbone is then forced into a half β-sheet conformation.

The linear backbone topology allows a wide variety of different pairing modes. Examples are

given in table 3.1 for the canonical nucleobases.[105] Next to pyrimidine-purine pairings, the

possible combinations also include purine-purine base pairs, which are of considerable inter-

est, since they are often observed in RNA chemistry, while pyrimidine-pyrimidine pairings

have not been found to form stable double strands in alanyl-PNA.

Tab. 3.1: UV-melting temperatures (Tm) of alanyl-PNA hexamers of the sequence XXYXYY or

XXXXXX (6 µ M, 0.1 M NaCL, 0.01 M Na2HPO4/H3PO4, WC = Watson-Crick, rev WC= reverse

Watson-Crick, rev H = reverse Hoogsteen)[105]

adenine thymine guanine cytosine

adenine pairing mode rev WC / rev H rev H rev H rev WC

Tm 21 ◦C 25 ◦C 32 ◦C 20◦ C

guanine pairing mode WC rev WC / rev H WC

Tm 28◦ C 41◦ C 58◦ C
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One major analytic tool for analyzing base paired systems is temperature dependend UV-vis

spectroscopy. In this method the melting temperature Tm is determined, at which 50% of

double strands are dissociated. The Tm-values of several alanyl-PNA hexamers of the canon-

ical bases[105] are given in table 3.1. The melting temperatures of hexameric PNA double

strands based on two-dentate pairings are located between 20 and 32 ◦C, while those that are

able to form a third H-bond have melting temperatures between 41 and 58 ◦C. Also the Tm

value of the non-canonical xanthine-2,6-diaminopurine alanyl-PNA hexamers (XXDXDD)

of 54 ◦C is well within the range of those for double strands built up from basepairs with

three H-bonds. An exceptionally stable double strand is the self-paired hexameric xanthine-

alanyl-PNA, which has a melting temperature of 48 ◦C. This melting temperature is in the

range of the Tm-values hexameric alanyl-PNA double strands that involve three hydrogen

bonds, even though in the xanthine self pairing only two hydrogen bonds can be formed. [106]

Xanthine and xanthine derivatives

Well known examples of xanthine compounds are the pharmacologically active methylated

derivatives caffeine, theophylline, or theobromine (fig. 3.5), which act as stimulants and

diuretics. They are found for instance in Coffea arabica, Camellia sinensis and Theobroma

cacao which are consumed in the form of coffee, tea and chocolate.[107] As a consequence,

purine bases of the xanthine type have always been of great interest especially for theoretical
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Fig. 3.5: Xanthine and methylated xanthine derivatives caffeine, theobromine and theophylline
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chemists. Furthermore, xanthine is an intermediate on the pathway of purine degradation

and both xanthine and its desoxy derivative hypoxanthine are converted to uric acid by the

action of xanthine oxidase[108] (fig. 3.6). An inhibition of this oxidation reaction by xanthine

derivatives is of considerable pharmaceutical interest, because high plasma levels of uric acid

(hyperuricaemia) are linked to the development of gout.

In the context of base pairing properties it is even more important that N9-xanthine and

hypoxanthine are major purine deamination products derived from adenine and guanine, re-

spectively, and that both are known to be highly mutagenic lesions.[109,110] In physiological

medium, the deamination reaction can either occur spontaneously by hydrolysis, or due to

reactions with free radicals like OH and NO,[111,112] or nitrous acid[113,114] (fig. 3.6). Xan-

thine and hypoxanthine are for example found to be the major lesions in epidermal skin or

calf thymus after exposure to cigarette smoke.[115] It is obvious, that the transformation of

N

NN

N
R

N

H

H

H
O

A

D

D

N

N
N

N O

O

H

HR

A

D

A

guanine xanthine

N

N
N

N
R

N
H H D

A

N

N
N

N

O
H

R

A
D

adenine hypoxanthine

--

OH

NO

HNO2

.

.

OH

NO

HNO2

.

.

-

Fig. 3.6: Deamination of guanine and adenine due to the reaction with nitric acid or free radicals. D

denotes an H-bond donating group, while A stands for an H-bond accepting functionality.

adenine to hypoxanthine simply reverses the H-bond donor acceptor pattern of the purine

base(fig. 3.7), so that, in difference to adenine which pairs to thymine, hypoxanthine pref-

erentially forms base pairs to cytosine. Since this base pairing leads to the substitution of

thymine with cytosine in the complementary strand, which represents a point mutation, it

is called mutagenic.

Fig. 3.8 compares the donor-acceptor pattern of guanine and xanthine. Like for guanine, also
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going from hypoxanthine to thymine. D denotes an H-bond donating group, while A stands for an

H-bond accepting functionality.

for xanthine a Watson-Crick pairing with cytosine should be possible, even though the two

hydrogen bonds of the base pair need to compensate the repulsive electrostatic interaction

of the carbonylic oxygen atoms. Since this base pairing does not change the base sequence

of the complementary strand, it is called non-mutagenic. A mutagenic Watson-Crick pairing

with thymine (which changes the base sequence of the complementary strand since cytosine

is replaced by thymine) does not seem to be feasible, since it only involves repulsive inter-

actions. This, however, is in contrast to the experimental finding that xanthine-thymine

base pairs are inserted into DNA at a rate comparable to that of the xanthine-cytosine base

pairing.[116] To date no structures of DNA duplexes containing xanthine have been deter-

mined by X-ray crystallography or NMR. As a consequence the pairing modes of xanthine

to canonical bases and the stabilizing interactions are not known. The identification of the

possible pairing modes is the second major topic of the next chapter.
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Fig. 3.8: Change in the donor acceptor pattern going from guanine to xanthine, and Watson-Crick

pairings of xanthine to cytosine and thymine. D denotes an H-bond donating group, while A stands

for an H-bond accepting functionality.
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Summarizing, the second part of this work has two fundamental motivations:

• One is to explain the unusual stability of selfpairing xanthine-alanyl PNA double

strands. To explain the stability of the xanthine-xanthine pairing, a model based

on tautomeric forms of xanthine has already been proposed earlier.[106,118] However,

in refs. 106 and 118, the xanthinyl nucleo amino acids and the respective oligomers

have been erroneously described as N9 regioisomers18. A reliable determination of the

correct regioisomer of xanthine by theoretical means is shown in section 4.1.1. In the

sections following, all possible pairing modes of the N7-regioisomer of xanthine and

those of other alanyl PNA pairings are compared with respect to hydrogen bonding

and stacking. Section 4.1.5 finally sets up a model that explains the high stability of

the xanthine-alanyl PNA double strand based on hydrogen bonding and the stacking

interaction only.

• The basic question of section 4.2 is how xanthine is able to form base pairs with thymine

that can be incorporated into DNA at a rate comparable to that of the xanthine-

cytosine base paring. Section 4.2 first studies the general base pairing properties of

N9-xanthine. In this context, symmetric dimers of xanthine are studied and compared

to other hydrogen bonded systems, among these the dimer of hypoxanthine. The pre-

dictions made are tested by comparison with experimental data. The reason to study

symmetric homodimers is that the interaction energies in hydrogen bonded systems are

small compared to the accuracy of the methods. In symmetric pairings, the number

of possible interactions is decreased, while their size is doubled, which makes an eval-

uation of the different effects more reliable. In the next step, the Watson-Crick base

pairs of neutral and deprotonated xanthine and for comparison also of hypoxanthine

with canonical pyrimidine bases are computed to identify the possible canonical/non-

canonical base pairing modes and to understand the mutagenicity of xanthine formed

in DNA.

18Numbering of atoms in xanthine:

N

N

O

O
H

H

N

N

H

1

2
3

49

8
7 5 6
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Chapter 4

Base Pairing of Xanthine and

Xanthine Derivatives

4.1 The stability of alanyl PNA

Before the factors responsible for the stability of the xanthine alanyl PNA double strand was

examined, the regioisomer of xanthinyl nucleic acid that builds up the hexamer needed to be

identified. The alanyl backbone was attached to xanthine 1 by a nucleophilic ring opening

of Boc-serinelactone 2 which is shown in fig. 4.1.[106] The main products of this reaction are

the Boc protected N7- and N9-xanthinyl nucleo amino acids 3 and 4. The reaction products

were characterized by 1H-NMR and 13C-NMR spectroscopy, however, both NMR-methods

by themselves do not allow to distinguish the regioisomers 3 and 4, since no difference in the

1H-NMR coupling pattern can be seen in the 1H-NMR spectrum for the 3 and 4. A correct

assignment was possible by an evaluation of the experimental spectrum using a theoretical

approach.
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Fig. 4.1: Alternative reaction pathways during the ring opening of Boc-serinelactone to form Boc-

protected xanthinyl nucleo amino acids

4.1.1 Regioisomerism of xanthine

Since 1H-NMR-spectra are strongly influenced by the solvent environment and usually only

show a poor agreement with NMR-spectra measured at room temperature, here only the

evaluation based on the 13C-NMR spectrum is given. The experimental 13C-NMR spectrum

of the Boc-protected xanthinyl nucleo amino acid and the computed 13C-NMR spectra of

N7- and N9-xanthine 5 and 6 (fig. 4.2) are given in table 4.119.

19Computational details for section 4.1.1:

The geometries of the two tautomers of xanthine were optimized using the BLYP[55, 56] functional in combi-

nation with the TZVP basis set,[92] which represents an (11s6p1d) AO basis in a [5s3p1d] contraction. For

the calculation of three and four center integrals, the Resolution of Identity (RI)[119, 120] approximation was

used. Minima were checked by frequency calculations from which also zero point vibrational energies, thermal

corrections and entropies neccessary for the computation of ∆G were taken (BLYP/TZVPP). NMR-spectra

were computed using the HF and the MP2 approach in combination with the TZVP basis set. The energies

of the two regioisomers of xanthine were characterized by the MP2 ansatz[78] in combination with a TZVPP

basis set[92] using the RI approximation and the B3LYP-[57] and PBE0-[121, 122] functionals also in combina-

tion with the TZVPP basis set. The TZVPP basis set[92] represents an (11s6p2d1f) AO basis in a [5s3p2d1f]

contraction. Solvent effects were estimated using the COnductor like Screening MOdel (COSMO)[123] with

a dielectric constant of 46.7 to simulate the DMSO solvent. Natural atomic orbital population analyses were

performed using the B3LYP functional in combination with the 6-31G(d) basis set[124] using the Gaussian98
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Fig. 4.2: Regioisomers of xanthine

First, the accuracy of the computational methods needs to be tested without knowing the

regioisomer described by the experimental spectrum. Of the five carbon atoms of xanthine,

C4, C5 and C8 belong to the pyrimidine ring and consequently should be influenced by the

substitution pattern, while the chemical shifts of the C2 and C6 carbon atoms should be

very similar for both regioisomers, so that the evaluation of the computational method is

done by a comparison of the computed and experimental chemical shifts for C2 and C6. For

C2, the HF approach predicts a chemical shift of 165.4 ppm (5) or 164.8 (6) ppm, while

the MP2 chemical shifts are 153 ppm and 152.6 ppm, respectively, which both are much

closer to the experimental value of 151.6 ppm. Also the HF chemical shifts for C6, that are

around 171 ppm, strongly deviate from the experimental chemical shift of 156.0 ppm, again,

this value is in very good agreement with the chemical shifts of 157.7 and 157.8 ppm that

were obtained by the MP2-approach. The comparison shows, that the MP2 approach allows

a very precise prediction of the 13C-chemical shifts, which is accurate enough to allow an

unambiguous determination of the regioisomer, while the chemical shifts cannot be predicted

precisely enough if correlation is not taken into account like it is the case in the HF-method.

Tab. 4.1: Computed and experimental C13-NMR chemical shifts of N7- and N9-xanthine.

C2 C6 C4 C5 C8

5 N7-H-xanthine HF/TZVP 165.4 170.8 165.1 110.7 159.0

5 N7-H-xanthine MP2/TZVP 153.0 157.8 150.6 115.3 134.2

6 N9-H-xanthine HF/TZVP 164.8 170.6 154.1 122.1 143.9

6 N9-H-xanthine MP2/TZVP 152.6 157.7 140.1 123.4 130.0

exp. 151.6 156.0 149.9 106.8 144.0

program package.[125] All other computations were performed using the TURBOMOLE program package.[64]
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88 Chapter 4 Base Pairing of Xanthine and Xanthine Derivatives

After this assessment of the accuracy for the HF- and MP2-method in the computation of

13C chemical shifts of xanthine, theoretically and experimentally determined NMR shifts for

the carbon atoms C4, C5 and C8 are compared to determine the regioisomer. For C4, the

shift determined by the MP2 approach for the N7 regioisomer 5 of 150.6 ppm is in a very

good agreement with the experimental value of 149.9 ppm, while for the N9 regioisomer 6 a

value of 140.1 ppm is predicted.

For the carbon atoms C5 and C8 the agreement of the values computed for 5 (deviations of

8 and 10 ppm) is not as good as for the other carbon atoms, however, the difference to the

experimentally determined chemical shifts is still much smaller for 5 than for 6, for which

deviations of 14 and 17 ppm are found. Summarizing the computations, the comparison of

experimental and computed 1H-NMR-spectra shows that the Boc protected xanthinyl nucleo

amino acid can be identified to be the N7 regioisomer of xanthine.
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Fig. 4.3: Xanthine derivatives methylated at N7 (7) and N9 (9)

For C5 and C8 the deviation from the experimental value of about 10 ppm is larger than

for all other atoms, where the agreement with experiment is within 2 ppm. Since C5 and

C8 are the carbon atoms neighboring the substituted N9-atom, it might be suspected, that

the deviation stems from a too reduced model system since the alkyl rest is replaced by a

hydrogen atom.

Tab. 4.2: Computed and experimental 13C-NMR chemical shifts of N-7-CH3- and N-9-CH3-xanthine.

CH3 c-2 c-6 c-4 c-5 c-8

7 N-7-CH3-xanthine MP2/TZVP 38.7 153.0 159.1 152.1 116.9 137.9

8 N-9-CH3-xanthine MP2/TZVP 33.9 152.8 157.9 141.7 124.8 134.5

exp. (47.7) 151.6 156.0 149.9 106.8 144.0

To test the model system, the hydrogen atoms in 5 and 6 were replaced by methyl groups

to give 7 and 8 (fig. 4.3), however, no further improvement in the computed chemical shifts

can be seen for the values given in table 4.2. However, also these computations show that the
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4.1 The stability of alanyl PNA 89

main product of the alkylation reaction shown in figure 4.1 is the N7-substituted regioisomer.

The formation of N7-xanthinyl nucleo acid is in good agreement with the thermodynamic

stability of both isomers. Table 4.3 gives the energy difference between N7-H-xanthine 5

and N9-H-xanthine 6 both in gas phase and a dielectric solvent with ε = 46.7 (DMSO).

The computed energies given in table 4.3 show a preference of about 9 kcal/mol of the N7-

regioisomer. This difference is slightly decreased for ∆G.

Tab. 4.3: Energies in kcal needed to tautomerize N7-H xanthine to N9-H-xanthine.

∆E ∆G ∆E

ε = 1 ε = 1 ε = 46.7

MP2/TZVPP 8.9 6.2 3.2

B3LYP/TZVPP 9.2 6.4 3.2

PBE0/TZVPP 9.4 6.6 3.8

The energy difference of the two regioisomers can easily be explained if electrostatic interac-

tions are taken into account. Fig. 4.4 shows that for 5 the distance between the negatively

charged N9 atom and the N3-hydrogen atom is only 2.74 Å, while the distance between

N7-hydrogen atom and the oxygen atom of the C6=O group is 3.09 Å. In contrast to that,

the two positively charged hydrogen atoms and the negatively charged N9 and (C8-) oxygen-

atoms repel each other for N9-xanthine 6 (distances of 2.84 and 3.12 Å, respectively). The
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Fig. 4.4: Atomic charges of 5 and 6

fact, that the energetic difference of the two regioisomers is mainly caused by electrostatic

interactions is in line with the decrease of the tautomerization energy in dipolar solvent, since

solvent effects decrease electrostatic attractions and repulsions. Furthermore, no significant

difference is found between the energies obtained using the MP2 approach and the B3LYP

or PBE functionals. Since the energy difference between the two regioisomers is mainly de-

termined by electrostatic interactions also the HF-method or the MP2 method with smaller

89
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basis sets lead to very similar results (Compare Ha et al.[141]).

4.1.2 Homodimers of N7-xanthine

Section 4.1.1 has shown that the xanthine-alanyl PNA described in ref. 106 is built from N7-

xanthinyl nucleo amino acids. For N7-xanthine, the large number of ten possible hydrogen

bonded bidentate base pairs can be formed, because 3 H-bond acceptor and 2 H-bond donor

functionalities alternate. Fig. 4.5 shows the six dimers that are bound only via the Watson-

Crick site of the xanthine, and fig. 4.6 gives the four additional dimers that involve the

Hoogsteen site of xanthine.
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Table 4.420 gives dimerization energies computed for the xanthine base pairs 9 to 18. The

dimerization energies computed with the MP2-method range from -10.9 kcal/mol for pairing

11 to -14.1 kcal/mol for the symmetric pairing 1021. The most stable pase pair is the

reverse Hoogsteen pair 15, which is expected, because a pyrimidine nitrogen atom is a

better H-bond acceptor than a carbonylic oxygen atom. Other pairings involving only one

Hoogsteen site are slightly weaker, the MP2-method predicts dimerization energies of -13.9

20Computational details for section 4.1.2:

The dimerization energies were computed using geometries that were optimized with the BLYP[55, 56] func-

tional in the TZVP[92] basis set. The RI[119, 120] approximation was used for the calculation of the three

and four center integrals. Minima were checked by frequency calculations. The dimerization energies were

computed with the BLYP- and MP2-approach[78] in combination with the TZVPP[92] basis set and using the

RI approximation. The basis set superposition error (BSSE) was corrected according to the Boys-Bernardi

counterpoise procedure.[126] All computations were performed using the TURBOMOLE program package.[64]

21Thermodynamic data:

For all computations of dimerization energies, only the differences on the absolute energies are given. Since the

dimerization changes the structure and force constants of the monomers only little, ∆H for the dimerization

differs from Edim by only +1 to +2 kcal/mol, proportional to the size of Edim. Furthermore, the computed

entropy contribution at room temperature disfavors the dimerization by more than 20 kcal/mol, but does not

differ significantly for the individual pairings. However, the computed dimers only represent a fragment of

the complete system, so that the relative contribution of the entropy is much smaller. Furthermore, in the

real system, the dimer formation liberates solvent molecules, which leads to an increase of entropy for the

dimer.
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Tab. 4.4: Dimerization energies of the ten possible pairing modes of N7-H-Xanthine. All energies in

kcal/mol.

Edim

dimer MP2/TZVPP BLYP/TZVP MP2/TZVPP BLYP/TZVP

ε = 1 ε = 1 ε = 78 ε = 78

9 -11.6 -8.6 -5.4 -2.6

10 -14.1 -11.8 -7.3 -3.8

11 -10.9 -9.2 -5.0 -2.7

12 -11.3 -9.0 -5.2 -2.6

13 -12.8 -10.3 -6.1 -3.2

14 -11.5 -10.2 -5.3 -3.2

15 -14.8 -12.0 -6.6 -4.4

16 -13.9 -10.9 -6.7 -3.6

17 -13.1 -10.1 -6.1 -3.7

18 -13.0 -10.1 -6.1 -3.6

kcal/mol for pairing mode 16 and around -13 kcal/mol for the pairings 17 and 18. The

dimerization energies computed with the BLYP-functional are about 2 kcal/mol smaller

than the MP2-values. Since the stability measurements were performed in aqueous solution,

the dimerization energies were also computed with ε = 78 using the conductor like screening

model. For the polar environment, the MP2 energies are reduced by a factor of two, while

the BLYP energies are reduced by a factor of 3. While the MP2-values are more reliable for

the gas phase,[127] the values for polar environment are overestimated, because the solvent

effect is only considered in the HF part, while the perturbational treatment considers the

solvent effect only indirectly via the modification of the orbitals, so that the dimerization

energies of around -3 to -4 kcal/mol determined by the BLYP approach can be considered

to be more reliable. The hydrogen bond strengths found here are in line with values found

for other two-dentate systems like the adenine-thymine bases pair or the thymine-thymine

pairing,[127] which all have dimerization energies around -10 kcal/mol. Hydrogen bonding

by itself therefore is not the factor that leads to the unusually high stability of the xanthine

alanyl-PNA double strand.
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4.1 The stability of alanyl PNA 93

4.1.3 Stacked tetramers

In contrast to hydrogen bonded base pairs, the geometry of stacked base pairs is mainly

determined by the constraints of the backbone, i.e. the topology of alanyl-PNA. A free

optimization of stacked dimers or tetramers would lead to rather artificial structures, and

it needs to be considered whether a pairing mode can be realized at all within a given

backbone geometry. To take into account the restrictions imposed by the backbone, the

full hexamers were optimized using the MMFF94 force field. Out of these structures, the

xanthine-xanthine tetramers were cut out and the remaining dangling bonds at the N7

positions were substituted by methyl groups, so that a structure like it is shown in fig. 4.7

results. The interaction energies obtained for the stacked xanthine dimers are shown in table

4.522.

'
&

$
%

- 6? 6? 6
?

Fig. 4.7: Generation of stacked tetrameric structures

The computed stacking energies show a strong variation for the different pairing modes and

22Computational details for section 4.1.3:

To compute stacking energies, the full alanyl-PNA hexamers, for which only he terminal groups were replaced

by hydrogen atoms, were optimized using the MMFF94 force field[128] as implemented in the SYBYL pro-

gram package.[129] The alanyl backbone was deleted and the resulting methylene group at the N7-atom was

saturated by a hydrogen atom. For further details see text. The stacking interaction was then computed for

two central xanthine pairs using the MP2 approach. These MP2 calculations were performed in the TZVP[92]

basis set and the RI approximation.[119, 120] To exclude the BSSE error, ghost orbitals where used for the

monomers. Solvent effects were estimated using the COSMO[123] with a dielectric constant of 78 to simulate

the aqueous environment, geometries were alway taken from gas-phase computations.The MP2-computations

were performed using the TURBOMOLE program package.[64]
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vary from -8.8 kcal/mol for pairing 17 to -18.4 kcal/mol for pairing 13. The pairings 11, 12,

14 and 15 that are not listed in table 4.5 do not lead to stable hexameric double strands.

The stacking energies obtained here are considerably lower than the the interaction energies

obtained in the literature for stacked dimers of -9 to -10 kcal/mol,[127] however, since these

values refers to freely optimized stacked pairs, their stacking geometry usually cannot be

realized within any stacked structure involving a backbone.

The strong variation found in the gas phase disappears if solvent effect are included via the

conductor like screening model. This behaviour is expected, because the extreme values for

Estack are due to very unfavorable or due to very favorable electrostatic interactions, which

both are decreased in polar environment. Since most of the charge concentrations are located

on the heteroatoms at the outside of the tetramer, the computations for solvent environment

correctly reflect the physical system. In polar solvent, the tetramers can be grouped into

pairings 9, 10 and 13 that pair via the Watson-Crick site with a stacking energy around

-14 kcal/mol, and pairings 16, 17 and 18 that pair via the Hoogsteen side with about -

11 kcal/mol. Since virtually all literature data is computed for freely stacked dimers, an

evaluation of the stacking interaction and its correlation to the melting temperatures is not

possible whithin the xanthine-alanyl PNA system only. However, an evaluation is possible

by comparison to the corresponding values of other alanyl PNA systems, which will be done

in the next section.

Tab. 4.5: Stacking energies Estack of the pairing modes 9, 10, 13, 16, 17 and 18 of N7-H-Xanthine.

All energies in kcal/mol.

Estack

teramer MP2/TZVPP, ε = 1 MP2/TZVP , ε = 78

9 -12.1 -13.9

10 -13.5 -14.2

13 -18.4 -13.9

16 -9.2 -10.8

17 -8.8 -11.4

18 -14.1 -11.0
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4.1 The stability of alanyl PNA 95

4.1.4 Hydrogen bonding and stacking of other alanyl PNA systems

In the previous two sections, the size of hydrogen bonding and stacking has been determined

for dimers of N7-xanthine. However, it is not clear how these values correlate with the sta-

bility of a hexameric double strand of PNA, which is determined by the melting temperature

Tm. This section compares hydrogen bonding and stacking for different alanyl PNA systems,
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Fig. 4.8: Pairing of guanine and cytosine (canonical Watson-Crick) of adenine-thymine (Hoogsteen)

for which the pairing mode is either known or consists only of a small number of possible

combinations. The systems chosen are the guanine-cytosine alanyl-PNA, which forms pair-

ings in the Watson-Crick mode 19 and the adenine-thymine pairing, which is realized in the

Hoogsteen pairing mode 20,[105] since the Hoogsteen pairing mode is slightly more stable

than the regular Watson-Crick pairing mode.[127] Both pairings are shown in fig. 4.8. The

third example is the 2,6-diaminopurine-xanthine pairing, for which a melting temperature

of 54 ◦C has been determined.[106] For this pairing, the tridentate modes 21 - 24 illustrated

in fig. 4.9 are possible.

Table 4.623 gives dimerization energies for the base pairs 19 to 24. For the guanine-cytosine

base pair 19, the MP2-method predicts a dimerization energy of -25.7 kcal/mol, the BLYP

value of -23.4 kcal/mol is somewhat smaller. For adenine-thymine (20), -14.4 kcal/mol and

-11.7 kcal/mol are computed, respectively. The MP2-values are about 2 kcal/mol larger than

the corresponding energies from the literature.[127] The larger values for H-bonded dimers

are obtained, because the very flexible TZVPP basis set allows a better description of the

hydrogen bonds, while computations described Sponer et al.[127] in all cases used less flexible

23For computational details see sections 4.1.2 (computation of H-bonded dimers) and 4.7 (computation of

stacked tetramers).

95



96 Chapter 4 Base Pairing of Xanthine and Xanthine Derivatives

N

N

N
N

O O

H

N

N

N
N

N N
H H

HH

H

HH
N

N

N
N

O O
H

N

N

N

NN
HH

H H

H H

H

N

N

N
N

N O

O

N

N

N
N

NN
HH

H

H H

H
H

H

N

N
N

N O

O
H

N

N

N
N

N N
H H

H

H H

H

H

21 22 23 24

Watson-Crick reverse Watson-Crick Hoogsteen reverse Hoogsteen

Fig. 4.9: Possible hydrogen bonded pairs of N7-xanthine with diaminopurine

basis sets.

Tab. 4.6: Dimerization energies Edim of the pairings guanine-cytosine, adenine-thymine and xanthine-

2,6-diaminopurine (XD). All energies in kcal/mol.

Edim

MP2/TZVPP BLYP/TZVP MP2/TZVPP BLYP/TZVP

ε = 1 ε = 1 ε = 78 ε = 78

19 guanine-cytosine -25.7 -23.4 -14.1 -7.8

20 adenine-thymine -14.4 -11.7 -6.4 -3.2

21 XD Watson-Crick -15.7 -13.2 -6.8 -4.0

22 XD reverse Watson-Crick -15.7 -13.1 -7.0 -4.0

23 XD Hoogsteen -16.3 -13.7 -7.1 -4.1

24 XD reverse Hoogsteen -16.5 -13.8 -7.4 -4.3

The 2,6-diaminopurine-xanthine base pairs have total binding energies of about -15.7 kcal/mol

for dimers bound via the Watson-Crick site (21 - 22) and -16.3 kcal/mol and -16.5 kcal/mol

for the Hoogsteen (23) and reverse Hoogsteen (24) basepairs. The corresponding BLYP-

values computed in the TZVP basis set again are about 2 kcal/mol lower than the MP2-

energies. Compared to the binding energy of the guanine-cytosine base pair 19, the H-bonds

for the 2,6-diaminopurine-xanthine pairings are rather weak and close to those of the two-

dentate adenine-thymine pairing or the dimerization energies computed for the different self

pairings of N7-xanthine. The weakness of the hydrogen bonds is due to repulsive secondary
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4.1 The stability of alanyl PNA 97

interactions between (a) the protons, and (b) the nitrogen and oxygen atoms in the hydrogen

bonding region. The explanation is similar to that found for the 2,6-diaminopurine-uracil

pairing.[130] In aqueous environment, all H-bonds are significantly weakened. Similar to the

results obtained for N7-xanthine pairings, the MP2-method predicts a decrease of Edim by

a factor of 2 and BLYP a factor of 3.

Like the H-bonds, also the stacking interaction in table 4.7 for the guanine-cytosine tetramer

of -12.1 kcal/mol pairing is higher than the stacking interaction for the adenine-thymine

pairing of -10.2 kcal/mol. The 2,6-diaminopurine-xanthine pairing has the strongest stack-

ing interaction with values of up to -15.9 kcal/mol. A dipolar environment leads to a

strengthening of the 2,6-diaminopurine-xanthine stacking interaction of about 1 kcal/mol,

the guanine-cytosine stacking interaction is insignificantly strengthened by 0.6 kcal/mol,

while the adenine-thymine pairing remains unaffected.

Tab. 4.7: Stacking energies obtained from MP2/TZVP-computations. All energies in kcal/mol.

MP2/TZVP MP2/TZVP

ε = 1 ε = 78

19 guanine-cytosine -12.1 -12.7

20 adenine-thymine -10.2 -10.2

21 xanthine-2,6-diaminopurine -16.5 -14.3

22 xanthine-2,6-diaminopurine -14.7 -15.9

23 xanthine-2,6-diaminopurine -10.0 -10.5

4.1.5 Stability model for alanyl-PNA

To explain and predict the stabilities of alanyl PNA double strands, a model is set up,

which might appear to be rather crude, however, it will be seen that it is able to predict the

melting temperatures Tm of the alanyl PNA double strands quite accurately. It is assumed,

that the total stabilization of the hexameric double strand is only composed of the energy

contributions from hydrogen bonding Edim and stacking Estack. The sum of the latter gives
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98 Chapter 4 Base Pairing of Xanthine and Xanthine Derivatives

EH−b./stack.

EH−b./stack = 6 ∗ Edim + 5 ∗ Estack (4.1)

The factors 5 and 6 simply count the number of the respective interactions (5 stacking inter-

actions between 6 H-bonded dimers). The assumption that the double strand stabilization

energy can be computed as the sum of hydrogen bonding and stacking only deliberately

neglects, e.g. a major part of the backbone strain and the molecular effect of the aqueous

environment. In the next step EH−b./stack is set equal to the ∆H of the dimer formation,

and it is also assumed that the entropy change upon dimer formation is very similar for the

different hexameric alanyl PNA compounds. This could be the case because of the similarity

of the systems compared. The melting temperature is reached when

∆G = ∆H − Tm ∆S = 0. (4.2)

If the assumptions made here are correct, the melting temperature correlates linearly with

EH−b./stack.

First the energy contributions from H-bonding and stacking are analyzed separately.
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Fig. 4.10: Correlation of the H-bonds strengths (Edim ∗ 6 with the UV-vis melting temperature Tm

of hexameric of alanyl-PNA of the sequence XXYXYY or XXXXXX. AT denotes adenine-thymine,

XX xanthine-xanthine, XD xanthine-diaminopurine and GC guanine-cytosine.)
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Fig. 4.11: Correlation of stacking energies with the melting temperature Tm of hexameric alanyl-PNA.

For more information see figure 4.10

Fig. 4.10 correlates the dimerization energies of H-bonded dimers of the four kalanyl-PNA

systems studied so far with the melting temperatures of the respective hexameric alanyl PNA

duplexes. For fig. 4.10, the energies computed with the BLYP functional in combination with

the COSMO to mimic solvent effects were chosen. The reason to prefer BLYP over MP2 is

that MP2, which is more reliable in the gas phase, in combination with the COSMO severely

seems to overestimate the H-bond strengths. Experimentally determined H-bond strengths

for nucleobases are usually between -5 and -7 kcal/mol[131] for the gas phase, which is in

good agreement with all computed values, while the contribution in aqueous environment is

-0.5 to -2 kcal/mol.[132–134] These values are in good agreement with the values computed

by the BLYP method.

For the xanthine-xanthine (XX) and 2,6-diaminopurine-xanthine (DX) base pairs simply the

pairing mode with the highest value for Edim that can be realized within a hexameric double

strand was chosen, i.e. the pairings 10 (XX) and 22 (DX). From the comparison of the

sum over all hydrogen bonds with the melting temperatures of the adenine-thymine and

the guanine-cytosine pairs in fig. 4.10, melting temperatures of around 30 ◦C for xanthine-

xanthine and 35 ◦C for the 2,6-diaminopurine-xanthine pairs are predicted. This shows that
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100 Chapter 4 Base Pairing of Xanthine and Xanthine Derivatives

no good correlation based on hydrogen bonding only is possible for these pairings. If the

stability of the alanyl PNA double strands were determined by hydrogen bonding only, the

stability of both double strands would be much lower than found experimentally, which shows

that this reduced form of the proposed model is too simplified to explain the Tm-values.

Correlating only the stacking energies (fig. 4.11), the melting temperature of the xanthine-

xanthine alanyl-PNA would be around 70 ◦C and for the xanthine-2,6-diaminopurine pairing

even higher. Also the stacking taken by itself is insufficient. However, if the sum over both

H-bonding and stacking (EDim/H−bonds ∗ 6 + Estack ∗ 5, the factors 5 and 6 count the num-

bers of interactions) is correlated with the Tm-values, a linear correlation is found (fig. 4.12).

The correlation still needs to be tested for further systems, however, already at this point,

it is quite surprising to find a linear correlation without using a single fitting parameter,

because this means that effects of the entropy and the molecular water environment either

cancel or are similar for all systems compared.

In this model, the stacking energies dominates by a factor of about 1 to 4 over the sta-

bilization from H-bonding. This result is similar to what is assumed for DNA, where the

stacking interaction is supposed to play a more important role in the stabilization than H-

bonding.[135,136]

This simple model shows that the high stability of the xanthine alanyl-PNA double strand,

but also that of the tri-dentate xanthine-2,6-diaminopurine pairing is due to an increased

stacking interaction that compensates the weakness of the hydrogen bonds. However, it also

shows that the hydrogen bonding and base stacking interactions can can indeed be called

the determining factor for the stability of xanthine-Alanyl PNA24.

24Further computations:

Starting from the computations presented here, the studies concerning the alanyl PNA systems have been

continued by B. Dietrich in the scope of his diploma thesis,[137] and at the present time are part of the

doctoral project of C. Sturm. Within these two projects, the full alanyl-PNA hexamers are described by

force field methods, and the minima are determined by Monte Carlo and molecular dynamics approaches.

Solvent effects are considered by explicit water molecules within a box of periodic boundary conditions. So

far, these computations show that the stability of xanthine alanyl PNA might either be due to an increased

stacking contribution of the hexamer built up from pairing mode 10 as it is described here, or because of the

very efficient solvation of a hexamer that realizes Hoogsteen pairing mode 24. Since this effect is due to the

molecular water environment, it is not considered in the data presented here.
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EH−b./stack = 6 ∗ Edim + 5 ∗ Estack
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Fig. 4.12: Correlation of the stabilization energy EH−b./stack resulting from the sum over all H-bond

and stacking interactions with the experimental melting temperatures (Tm) of hexameric xanthine

alanyl PNA duplexes
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4.2 Base pairing of N9-xanthine

The thermodynamically disfavored N9-regioisomer of xanthine plays a very important (un-

wanted) role in nature, since N9-xanthine is formed in DNA from guanine due to nitrogen

loss and subsequent “mismatched” pairings of xanthine with canonical bases are one of the

major causes of point mutations. The following sections study the base pairing properties of

N9-xanthine.

4.2.1 Homodimers of N9-xanthine
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In contrast to its N7-regioisomer, N9-xanthine can only form two-dentate base pairs via the

Watson Crick site of the xanthine molecule. Scheme 4.13 shows the six possible two-dentate

dimerization modes of diketo xanthine. The respective dimerization energies given in table

4.826 show remarkable differences regarding the strength of the individual hydrogen bonds.

Next to the MP2 values, table 4.8 gives dimerization energies obtained with the B3LYP

functional. Here, the B3LYP functional is used instead of the BLYP functional since the

energies obtained with the B3LYP functional in the gas phase agree somewhat better with

the MP2-values than energies obtained with the BLYP functional. While the dimerization

energies computed by the MP2-approach for the reverse Watson-Crick pairs 25 and 27 and

Watson-Crick pair 28 (Edim = -10.6, -10.9 and -10.4 kcal/mol, respectively) lie in the lower

range of the stabilization energies known for two-dentate base pairs, the dimerization energy

of the strongest bonded base pair N3-H/O2 - N3-H/O2 (26) is twice as large (Edim = -

22.0 kcal/mol). Also given are the dimerization energies for polar environment with ε = 40

and ε = 78, computed with the B3LYP functional and the conductor like screening model.

In polar solvent, the dimer formation is weakened by a factor of 3 to 4, but the relative

order roughly remains the same. In section 4.2.5, the dimerization energies for the dielectric

constant of ε = 40 will be compared to experimental data.

Why does the hydrogen bond strength of the different pairings show this wide variation?

26Computational details for sections 4.2 to 4.2.8:

The dimerization energies of N9-xanthine were computed using geometries that were optimized with the

B3LYP functional in the 6-31++G(d,p) basis set.[124] Minima were checked by frequency computations.

The geometry optimization were performed with the Gaussian98 program package.[125] Since bond lengths

differed by less than 0.01 Åfor regular and 0.03 Åfor hydrogen bonds, the geometries for hypoxanthine

and 4,5-dihydroxanthine where optimized with the BLYP functional in the TZVP[92] basis set using the

RI[119] approximation which allows a much more efficient optimization. The dimerization energies were

determined using the MP2 approach in the RI-approximation, and the B3LYP-functional[57] in combination

with the TZVPP basis set.[92] The basis set superposition error (BSSE) was corrected according to the Boys-

Bernardi counterpoise procedure.[126] Solvent effects were estimated using the COSMO[123] with a dielectric

constant of ε = 40 to simulate the freon solvent and ε = 78 for aqueous environment. 1H-NMR-spectra were

computed using the HF and the MP2 approach in combination with the TZVP basis set. Natural bond orbital

population analyses were performed using the B3LYP functional in combination with the 6-31G(d) basis set

using the Gaussian98 program package.[125] All computations except those for which it is stated otherwise

were performed using the TURBOMOLE program package.[64]
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104 Chapter 4 Base Pairing of Xanthine and Xanthine Derivatives

Tab. 4.8: Dimerization energies of xanthine pairs 1-6

pair MP2/TZVPP B3LYP/TZVPP B3LYP/TZVPP B3LYP/TZVPP

ε = 1 ε = 1 ε = 40 ε = 78

25 -10.6 -8.8 -3.1 -2.8

26 -22.0 -20.5 -5.1 -4.5

27 -10.9 -9.6 -3.7 -3.3

28 -10.4 -8.8 -3.3 -2.9

29 -14.1 -13.0 -3.7 -3.5

30 -17.5 -15.7 -4.4 -4.3

The strength of the individual H-bonds seems to be connected with the hydrogen bond donor

unit (N1-H or N3-H) involved, while both hydrogen bond accepting carbonyl groups seem

to lead to similar bond strengths when they form a hydrogen bond with the same hydrogen

donor unit. Dimers in which both hydrogen bonds involve the the N3-H donor unit (mode

26) have the highest dimerization energy of -22.0 kcal/mol, followed 29 and 30 that involve

one N3-H functionality (14.1 and 17.5 kcal/mol, repectively), while pairings that only involve

the N1-H functionality as hydrogen bond donor contain hydrogen bonds that have a strength

of -5 to -6 kcal/mol (Edim = -10.4 to -10.9 kcal/mol), which is the standard H-bond strength

of nucleobases in the gas phase.[127]

Summarizing the computed results, the xanthine dimers are bound by two types of H-bonds

with quite different bond strengths of around -5 and -10 kcal/mol, respectively (gas pase

values). This means that in order to explain the variations in the dimerization energies of

xanthine, it is sufficient to study only two representative examples in which only one of the

two H-bond types is realized. Consequently, in the following discussion, only the pairing

modes 25 and 26 will be discussed as representative examples.

4.2.2 Weak pairings of N9-xanthine

To understand the differing H-bond strengths of the xanthine dimers, simplified model sys-

tems were computed which allow a definite characterization of the relevant interactions.

Table 4.9 gives dimerization energies for the amides 31-33 illustrated in fig. 4.14. The sim-
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4.2 Base pairing of N9-xanthine 105

ple acetamide 31 has a dimerization energy of -14.4 kcal/mol, which is at the upper limit

of the values of -5 to -7 kcal/mol normally found for hydrogen bonds in the gas phase. [127]

The bond strength correlates with the increased acidity of N-H bonds formed by sp2-nitrogen

atoms since the higher s character allows a better stabilization of negative charges. [138] Com-

pared to the dimerization energy of the amide 31, the dimerization energy of the dixanthine

25 is about 3.6 kcal/mol smaller, while that of 26 are increased by 7.6 kcal/mol.
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Fig. 4.14: Hydrogen bonded dimers of N-methylacetamide 31, cis N-formylacetamide 32 and trans

N-formylacetamide 32

Here, it is discussed why the hydrogen bonds of 25 are weakened compared to 31. The

discussion for the high strength of the H-bonds in 26 is given in section 4.2.4. In 32 and 33,

the N-methyl group is replaced by a formyl group which either has s-cis or s-trans orientation

relative to the N-H group. When the carbonyl group has s-cis-orientation (32), the dimer-

ization energy is decreased by about 5 kcal/mol compared to that of 31. The weakening of

the hydrogen bonds is the result of secondary electrostatic repulsions between the H-bonded

and the not H-bonded carbonyl-group, which is illustrated in fig. 4.15, where it can be seen

that the H-bond angle deviates from the ideal value of 180◦ by about 8◦ and the distance

of the H-bonded and the other oxygen atom is 3.95 Å. In addition to the s-cis stereoisomer,

also the s-trans stereoisomer has been computed to separate the electronic effect due to the

conjugation of the carbonyl group from the electrostatic effects. The s-trans conjugation in

33 leads to a slight decrease of Edim of about 1 kcal/mol which is small compared to the

decrease of Edim caused by s-cis oriented formyl group in 32.

For pairing mode 25 of xanthine, the repulsive secondary electrostatic effects are similar

to those found in 32 since both compounds have similar local geometries. In line with the

findings for 32, also for the xanthine dimer 25 the NH-O-angle deviates by about 9◦ from

the idealized H-bond angle of 180◦ which is shown in fig. 4.15. The H-bond lengths and the
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Tab. 4.9: Dimerization energies the amides dimers 31-33

MP2/TZVPP B3LYP/TZVPP B3LYP/TZVPP

pair ε = 1 ε = 1 ε = 78

31 -14.4 -13.1 -3.6

32 -9.2 -7.9 -1.9

33 -13.1 -12.2 -2.9

distances of the H-bond participating and the non-participating oxygen atom agree within

0.1 Å to those of diamide 32.

a
b 32

a = 3.95 Å

b = 1.94 Å

∠ NH–O = 171.72◦

a

b

25

a = 3.85 Å

b = 1.85 Å

∠ NH–O = 170.89◦

Fig. 4.15: Hydrogen bond lengths, -angles and the distances of the carbonyl groups of 32 and 25

Summarizing, the lower hydrogen bond strength of dimers involving the N1 hydrogen atom is

mainly due to unfavorable secondary electrostatic repulsions of the carbonyl groups. Similar

electrostatic effects have been described for tri- and four-dentate base pairs and hydrogen

bonded macromolecular systems.[130,154]

4.2.3 Base pairing of hypoxanthine

In line with the arguments given in the last section, a replacement of the C2=O carbonyl

group of xanthine by a functionality that only involves C-X bonds of little polarity, the

dimerization energy of the base pair derived from 25 should be increased to values around

-14 or -15 kcal/mol. One example is the non-canonical nucleobase hypoxanthine 34 (fig.

4.16), which has a C-H group next to the N1-H functionality. The only possible two-dentate

dimerization mode 36 of hypoxanthine is shown in fig. 4.17. Table 4.10 gives the dimeriza-
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Fig. 4.16: N9-xanthine 6, hypoxanthine 34 and 4,5-dihydrohypoxanthine 35

tion energies of dimer 36. The dimer, having a dimerization energy of -18.6 kcal/mol (MP2),

is about 8 kcal/mol more stable than the the corresponding base pair 25 of xanthine. The

dimerization energy of 36 is much higher than the -14 to -15 kcal/mol that were expected

from the comparison with N-methyl acetamide 31.
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Fig. 4.17: Dimer of hypoxanthine and dihydrohypoxanthine

The energy computed using the B3LYP approach shows the same decrease. One possible

explanation for the high strength of the hydrogen bond of hypoxanthine is that the dimer

formation leads to a better aromatic stabilization of the pyrimidine ring (see resonance

structures 34b and 34c of fig. 4.18). The size of the aromatic contribution to the hydrogen

Tab. 4.10: Dimerization energies for hypo- and 4,5-dihydrohypoxanthine

MP2/TZVPP B3LYP/TZVPP B3LYP/TZVPP B3LYP/TZVPP

pair ε = 1 ε = 1 ε = 40 ε = 78

36 hypoxanthine -18.6 -17.2 -5.0 -4.7

37 dihydrohypoxanthine -15.8 -14.0 -3.9 -3.9

bonding can easily be determined:

If the central C4=C5-double bond of hypoxanthine is hydrated, the H-bonding functionalities

(C6=O and N1-H) should not be distorted too much, but the aromatic resonance structures
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34b and 34c in fig. 4.18 are no longer possible, hence the aromaticity of the pyrimidine ring

is lifted.
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Fig. 4.18: Resonance structures of hypoxanthine

The dimerization energy for 4,5-dihydroxanthine 37 is -15.8 kcal/mol, which is comparable

to that of N-methyl acetamide 31. Subtracting Edim of 37 from Edim of 36 gives the aro-

matic stabilization of the dimerization formation that is -2.8 or -3.2 kcal/mol computed by

the MP2- or B3LYP-method, respectively. In polar environment, the aromatic stabilization

is still about -1 kcal/mol.

A short note:

The high dimerization energy of the H-bonded guanine-cytosine base pair, which leads to

the high stability of the DNA double strand parts predominantly built from these base pairs,

is usually explained by very favorable secondary electrostatic interactions. [130]
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Fig. 4.19: Canonical guanine-cytosine, and 4,5-dihydroguanine-cytosine base pairs

However, next to the favorable secondary electrostatic interactions also in the case of the

guanine-cytosine base pair, the H-bonds are strengthened due to an increased aromaticity

for guanine. Table 4.11 that gives the dimerization energies for the guanine-cytosine and the

non-aromatic 4,5-dihydroguanine-cytosine basepairs from fig. 4.19. For guanine-cytosine,
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4.2 Base pairing of N9-xanthine 109

the aromatic stabilization is little more than -2 kcal/mol in the gas phase, and -1.2 kcal/mol

in aqueous environment.

Tab. 4.11: Dimerization energies for the guanine-cytosine and 4,5-dihydroguanine-cytosine base pairs

MP2/TZVPP B3LYP/TZVPP B3LYP/TZVPP

pair ε = 1 ε = 1 ε = 78

19 guanine-cytosine -25.7 -24.4 -8.7

38 4,5-dihydroguanine-cytosine -23.6 -21.9 -7.5

4.2.4 Strong hydrogen bonds

To understand which factors lead to the unusually high stability of pairing mode 26, the

base pair is compared to the corresponding dimer of uracil 39 and to the base pair 10 of

the regioisomer N9-xanthine (see fig. 4.20). Table 4.12 compares the dimerization energy

of diuracil 39 to that of pair 26 of N9-xanthine, and also to the dimerization energy of the

corresponding base pair 10 of N7-xanthine. The dimerization energy for 39 of -17.2 kcal/mol

is about 3 kcal/mol higher than that of the diamide 31. The higher stability of diuracil 39
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Fig. 4.20: Dimers of N9-xanthine 26, uracil 39 and N7-xanthine 10, that only hydrogen bonds with

the N3-H donor functionality.

has already been studied in the literature, where similar dimerization energies have been

obtained,[139] 39 has been recomputed here to have an identical computational level for the

comparison with the xanthine pairings.

Interestingly, depending on how the histidine ring is annelated, the N3H-O hydrogen bond

is either reinforced or weakened. In line with the arguments given in section 4.2.2, the
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Tab. 4.12: Comparison of dimerization energies of dixanthine 26 with diuracil 39 and of dixanthine

39, the N7-regioisomer of 26.

MP2/TZVPP B3LYP/TZVPP B3LYP/TZVPP

pair ε = 1 ε = 1 ε = 78

26 N9-xanthine -22.0 -20.5 -4.5

39 uracil -17.2 -15.9 -4.3

10 N7-xanthine -14.1 -12.2 -3.7

annelation of the histidine ring either places a positively charged hydrogen atom next to the

N3-H group, which stabilizes the the hydrogen bond since the positive partial charge attracts

the oxygen atom, or it places the negative partial charge of the nitrogen lone pair next to

the N3-H group which repels the carbonylic oxygen atom of the complementary base.

a b

26

a = 3.51 Å

b = 1.71 Å

∠ NH-O = 179.49◦

b

39

b = 1.82 Å

∠ NH-O = 175.85◦

a
b

10

a = 4.15 Å

b = 1.83 Å

∠ NH-O = 169.91◦

Fig. 4.21: Hydrogen bond lengths, -angles and the distances of the carbonyl groups of 26, 39 and 10

This again is confirmed by the geometric characteristics of the H-bonds. The H-bond angle

N3H-O is 169.91◦ for the N7-regioisomer (pairing 10). In the case of pairing 26 of the N9-

regioisomer, the angle is 179.49◦, while for the uracil pairing a value of 175.85◦ has been

computed. For 39, the deviation of the N3H-O-angle from the idealized value of 180◦ cannot

be explained based on the computations given here.

Since the stabilization of the H-bonds of 26 and the destabilization of those of 10 is mainly

due to secondary electrostatic interactions, the difference in the dimerization energies is

strongly decreased in aqueous environment. The B3LYP computation using the COSMO

predicts that for ε = 78 the dimerization energies differ by only 0.8 kcal/mol, compared
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to about 8 kcal/mol in the gas phase. In contrast, the stabilization from the increase of

aromaticity for hypoxanthine is decreased by only a factor of 3.5 from -2.8 kcal/mol to -

0.8 kcal/mol. The comparison shows that electronic effects are less affected by the solvent

environment that electrostatic effects and for systems in very polar solvents like water always

need to be taken into consideration.

This analysis shows that the stability of the xanthine-dimer 26 is mainly due to favorable

secondary electrostatic interactions in addition to the electronic effect of the C4=C5 double

bond. In contrast, the H-bonds of pairing 25 are weakened due to repulsive secondary

electrostatic interactions. For the pairings 27 and 28 that were not explicitly analyzed here,

the explanation for the weakness of the hydrogen bonds is in line with that of 25, for the

pairings 29 and 30, stabilizing and destabilizing effects for the individual hydrogen bonds

have to be summed up.

4.2.5 Comparison with experiment

Xanthine

An evaluation of the predictions was possible by analyzing the dimer xanthosine, which is

the ribosyl derivative of xanthine, and inosine, the ribosyl derivative of hypoxanthine, using

low temperature 1H-NMR-techniques. The experimental work was performed by Weitz and

Basilio.[140] The advantage of low temperature NMR over room temperature NMR is that

the isolated base pairs can be identified, because no fluctuation over several structures takes

place. To have a better correspondence with the experimental conditions, the dimerization

energies have also been computed for solvent environment using the B3LYP functional in

combination with the conductor like solvation model using ε = 40. The results have already

been given in table 4.8 for xanthine and in table 4.10 for hypoxanthine. In polar solvent all

hydrogen bonds are weakened by a factor of 3 to 4. Pairing mode 25 remains most stable

with a dimerization energy of -5.1 kcal/mol, mode 30 has an energy of -4.4 kcal/mol, and the

dimerization energies of the pairings 25, 27, 28 and 29 are between -3.1 and -3.7 kcal/mol.

This comparison shows that the pairing modes 26 and 30 remain unusually strong also in

polar environment. For hypoxanthine, a high stabilization energy of -5.0 kcal/mol is com-
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112 Chapter 4 Base Pairing of Xanthine and Xanthine Derivatives

puted also for the solvent environment.

The experimental 1H-NMR spectrum measured at -126◦C in freon solution27 shows a very

good agreement with the 1H-NMR spectrum that was computed with the HF-approach in a

TZVP basis set28 for pairing mode 28. The chemical shifts for the two N1-hydrogen atoms

of the computed 1H-NMR-spectrum and those for the C8-hydrogen atom differ no more than

0.16 ppm from the experimental values. One exception is the N3-hydrogen atoms for which

chemical shifts of 6.69 and 6.59 ppm are computed. These values strongly deviate from the

measured chemical shift of 10.69 ppm for the two hydrogen atoms. The explanation for

this deviation is the formation of an internal hydrogen bond within the xanthosine molecule

as it is illustrated in the fig. 4.22 between C6-oxygen atom of the ribosyl sugar and the

N3-hydrogen atom. The computed chemical shift for the N3-hydrogen atom of inosine 40 of

10.30 ppm29 is in much better agreement with the experimental value of 10.69 ppm.

27Measured 1H-NMR spectrum (freon):

N1H 11.88 ppm (1 H); N1H 11.68 ppm (1 H); N3H 10.69 ppm (2 H); C8H 7.47 ppm (2 H), H1’ (5,67 ppm),

H4’/H2’/H3’ (4,21 ppm, 4,17 ppm, 4,05 ppm).

28Computed 1H-NMR spectrum (HF/TZVPP):

25 N1H 11.51 ppm (2 H); (N9H 7.76 ppm (2 H);) C8H 7.48 ppm (2 H); N3H 6.74 ppm (2 H).

26 N3H 13.38 ppm (2 H); (N9H 8.25 ppm (2 H);) C8H 7.59 ppm (2 H); N1H 7.39 ppm (2 H).

27 N1H 12.41 ppm (2 H); (N9H 7.83 ppm (2 H);) C8H 7.42 ppm (2 H); N3H 6.69 ppm (2 H).

28 N1H 11.86 ppm (1 H); N1H 11.84 ppm (1 H); (N9H 7.74 ppm (1 H); N9H 7.71 ppm (1 H);) C8H 7.50

ppm (1 H); C8H 7.48 ppm (1 H); N3H 6.69 ppm (1 H); N3H 6.59 ppm (1 H).

29 N1H 12.16 ppm (1 H); N3H 12.12 ppm (1 H); (N9H 8.02 ppm (1 H); N9H 7.80 ppm (1 H);) C8H 7.52

ppm (1 H); C8H 7.47 ppm (1 H); N1H 7.35 ppm (1 H); N3H 6.63 ppm (1 H).

30 N3H 13.27 ppm (1 H); N1H 12.46 ppm (1 H); (N9H 8.27 ppm (1 H); N9H 7.80 ppm (1 H);) C8H 7.53

ppm (1 H); C8H 7.52 ppm (1 H); N1H 7.40 ppm (1 H); N3H 6.73 ppm (1 H).

29Computed 1H-NMR spectrum (HF/TZVP):

40 N3H 10.30 ppm (1 H); N1H 7.31 ppm (1 H); C8H 7.59 ppm (1 H); 7.40 ppm (1 H); N3H 6.73 ppm (1 H);

H1’ 5,27 ppm (1 H), H2’ 4.25 ppm (1 H), H3’ 4.15 ppm (1 H), H4’ 4.08 ppm (1 H), H5’a 4.04 ppm (1 H),

H5’b 3.69 ppm (1 H).
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Fig. 4.22: Internal hydrogen bond of xanthosine

Hypoxanthine

As expected, a rather high association constant of 200 M−1 has been experimentally found

for hypoxanthine.[140] For the dimer of hypoxanthine, the computation predicts a chemical

shift of 14.6130 ppm that is even stronger than the chemical shift predicted for pairing mode

26 of xanthine, even though in the computations the hydrogen bonds of 26 were even slightly

stronger. In this case, the measured value for the N3-Hydrogen bond is somewhat lower than

the computed chemical shift (13.87 ppm).

4.2.6 Mutagenicity

It has been explained in chapter 3 that N9-xanthine and hypoxanthine are formed in DNA

due to nitrogen loss from guanine and adenine. This process can for example be induced

by the reaction of the canonical nucleobases with nitric acid or free radicals such as OH or

NO. Both lesions are considered to be highly mutagenic.[109] Point mutations are found if

xanthine forms base pairs with thymine, and hypoxanthine with cytosine (mut). Pairings of

xanthine to cytosine also take place, but they are not mutagenic (non-mut). How stable are

such pairings?

In principle, a very large number of base paired combinations of xanthine and hypoxanthine

with canonical bases is thinkable, however, already the DNA-topology limits the choice of

possible base pair combinations to the Watson-Crick pairing mode of purine with pyrimi-

30Computed 1H-NMR spectrum (HF/TZVP):

40 N1-H 14.61 ppm (2H), (N9-H 8.80 ppm (2H),) C2-H 8.65 ppm (2H), C8-H 7.67 ppm (2H)
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Fig. 4.23: Canonical base pairs guanine-cytosine (19) and adenine-thymine (41)

dine bases. Furthermore, the tight binding pocket of DNA-polymerase enforces a very strict

geometric selection of the substrate base pair,[98–100] so that the base pairs to a large ex-

tend need to resemble the canonical guanine-cytosine (19) and adenine-thymine (41) base

pairs illustrated in fig. 4.23. Starting from this information, in the following sections only

Watson-Crick base pairs of xanthine and hypoxanthine with pyrimidine bases are taken into

consideration. The pairings are classified into those that have the exact backbone geometry

of a canonical Watson-Crick base pair, which will be named Watson-Crick basepairs and

those, for which only a distorted Watson-Crick pairing mode is possible, are denoted dis-

torted Watson-Crick. For these pairings, it is assumed that, as long as the deviation from

the Watson-Crick geometry is small, the incorporation of the base pair into DNA is still

possible, even though the rate is significantly lowered, which also means that the incorpora-

tion can be enhanced by very favorable interactions such as strong hydrogen bonding. This

assumption is in good agreement with the finding that the incorporation efficiency of the

guanine-thymine mismatch base pair is significantly lower than that of the canonical base

pairs, but still much higher than that of all other mismatched pairs of canonical bases. [100]

The classification is illustrated in fig. 4.24 for pairings of hypoxanthine. The pairing of
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Fig. 4.24: Mutagenic base pair of hypoxanthine and cytosine (42), the non-mutagenic base pair of

hypoxanthine and thymine (43), and a hypoxanthine-thymine base pair involving a tautomeric form

of hypoxanthine (44)

114



4.2 Base pairing of N9-xanthine 115

hypoxanthine and cytosine 42 represents a Watson-Crick base pair, because both the purine

and the pyrimidine base of 42 can exactly be superimposed to the purine and pyrimidine

bases of 19 or 41 given in fig. 4.23, respectively. The hypoxanthine-thymine pairing 43 rep-

resents a distorted Watson-Crick pairing mode, since the thymine ring is shifted compared to

that of the canonical adenine-thymine base pair 41 (red), as it can be seen from figure 4.25.

The pairing 44 that involves the enol tautomer of hypoxanthine again has Watson-Crick

pairing mode.
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Fig. 4.25: Overlay of the non-mutagenic base pair of hypoxanthine and thymine (43) (black) and the

canonical base pair 41 of adenine and thymine (red) to illustrate the geometric deviation of pairing

43 from the exact Watson-Crick geometry

4.2.7 Pairings of hypoxanthine to canonical pyrimidine bases

Table 4.13 gives the dimerization energies for the pairings 42 to 44. Base pair 42 corre-

sponds to an adenine-cytosine mismatch, and is therefore mutagenic. It has a very large

dimerization energy of -20.2 kcal/mol computed by the MP2 approach. The B3LYP value is

-18.1 kcal/mol, which is reduced to -5.0 kcal/mol if the aqueous environment is taken into

account. Next to this relatively high stability, pairing 42 also perfectly mimics a canonical

Watson-Crick base pair since its major groove31 is identical to that of the guanine-cytosine

31Major and minor groove:
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Watson-Crick pairing, while its minor groove imitates an adenine-thymine pairing, which

leads to a kinetically favored template effect.[142] The high stability of base pair 42 is (a)

Tab. 4.13: Binding energies for the canonical base pairs and for the pairing of hypoxanthine to

canonical pyrimidine bases in kcal/mol. For pairings that involve tautomeric forms of xanthine, the

dimerization energies refer to the formation starting from keto-hypoxanthine. WC denotes that the

pairing has the exact geometry of a canonical Watson-Crick base pair, dist refers to a distorted

Watson-Crick pairing mode. In column mut (mutagenicity), non-mut denotes a pairing that does not

lead to a point mutation in the complementary strand, while a pairing labeled mut leads to a point

mutation.

MP2/TZVPP B3LYP/TZVPP B3LYP/TZVPP

pair mode mut ε = 1 ε = 1 ε = 78

19 guanine-cytosine non-mut WC -25.7 -24.9 -8.7

41 adenine-thymine non-mut WC -13.8 -11.5 -3.6

42 hypoxanthine-cytosine mut WC -20.2 -18.2 -5.0

43 hypoxanthine-thymine non-mut dist -13.5 -11.9 -3.7

44 hypoxanthine-thymine non-mut WC -12.3 -9.0 +2.9

due to favorable secondary electrostatic interactions between the N3-hydrogen atom and the

carbonyl group, and (b) due to the aromatic stabilization of the bonding for hypoxanthine

(see fig. 4.18). Both effects have been intensively discussed in the previous sections. These

results, showing a very high stability of the hypoxanthine-cytosine pairing, are in good agree-

ment of the experimental data concerning the inosine-cytosine base pair.[143–145]

The non-mutagenic pairing of hypoxanthine with thymine 43, which corresponds to the

canonical adenine-thymine pairing is only possible either in a distorted Watson-Crick ge-

ometry (43) or in a pairing involving tautomeric forms (44). The dimerization energies in

table 4.13 show that 43, having a dimerization energy of -13.5 or -11.9 kcal/mol in the gas

phase (MP2 and B3LYP, respectively) and -3.7 kcal/mol in solvent environment, represents

a stable pairing, even though it is weaker than the hypoxanthine-cytosine pairing. In DNA,

43 is disfavored by its distorted Watson-Crick geometry.

If the geometric restrictions of DNA are lifted, like it is the case for tRNA, the uracil analogue

of pairing 43 is indeed formed. Since the lifting (“wobbling”) of the topological restrictions

of DNA is the precondition for the formation of this base pair, the corresponding theory
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has been named the “wobble theory”.[146] The pairing 44 which would possess the right

Watson-Crick geometry, but involves a tautomeric form of hypoxanthine, is disfavored in

polar environment.

4.2.8 Pairings of neutral xanthine to canonical pyrimidine bases

The diketo form of xanthine can only realize one single Watson-Crick base pairing mode with

cytosine, which is depicted if fig. 4.26, because the alternative distorted Watson-Crick base

pair 46 involving the N3-hydrogen atom of xanthine can be excluded because of the steric

hindrance shown in fig. 4.26 and since its geometry deviates too strongly from the exact

Watson-Crick geometry.
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Fig. 4.26: Pairings of xanthine and cytosine

Since the two carbonyl groups repel each other in 45, xanthine is rather weakly bound to

cytosine. MP2 predicts a binding energy of -12.3 kcal/mol for 45, B3LYP -10.3 kcal/mol for

the gas phase and -2.3 kcal/mol for aqueous environment.

Furthermore, it needs to be considered, that 45 is twisted by 30◦, which is shown in fig. 4.27.

45 45

C1 Cs

Fig. 4.27: Twisted (C1) and planar (Cs) structure of xanthine-cytosine pairing 45. The twist-angel

of the molecular planes in the C1-structure is 30.01◦
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The planarization, which allows a better stacking interaction, costs about 0.5 kcal/mol. The

xanthine-cytosine base pair 45 has no H-bond accepting functionality in N3-position. It

is known that H-bond donor groups in the active site of xanthine polymerase bind to the

N3-acceptor site of purine (or the C2=O carbonyl group of pyrimidine bases) in the minor

groove of the newly formed base pair,[147–150] however, it could be, that the neighboring

C2=O carbonyl functionality instead of the N3 atom serves as acceptor site for DNA poly-

merase.

N
N

N

N
H

O

N

O

NH

N
H

H

H

O H

47

Watson-Crick

Fig. 4.28: Watson-Crick pairing of tautomeric xanthine to cytosine

Another stable Watson-Crick base pair of xanthine and cytosine is obtained if xanthine is

replaced by its enol 1-H-2-enol-6-keto-xanthine (see table 4.14). Even though the taumer-

ization energy for the rotamer 48b of 10.5 kcal/mol (∆G = 11.6 kcal/mol) is rather high,

the base pair has a very high dimerization energy (with respect to the formation out of

diketo-xanthine) in the gas phase of -22.8 kcal/mol (MP2). 47 profits from very favorable

secondary interactions between the N1-hydrogen atom and the cytosine carbonyl group, and

from an aromaticity contribution like it has been discussed for the hypoxanthine dimer in

section 4.2.3.

Tab. 4.14: Energies in kcal needed to tautomerize N7-H xanthine to 1-H-2-enol-6-keto-xanthine.

N

N
N

N O

O
H

H H 48a
N

N
N

N O

O
H

H

H

48b

∆E ∆G ∆E ∆E ∆G ∆E

ε = 1 ε = 1 ε = 78 ε = 1 ε = 1 ε = 78

MP2/TZVPP 1.9 0.8 - 8.4 9.5 -

B3LYP/TZVPP 3.7 2.6 11.1 10.5 11.6 14.3
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The B3LYP value of -18.5 kcal/mol underestimates the dimerization energy by 4.3 kcal/mol,

which is mainly due to the overestimation of tautomerization energy by the B3LYP func-

tional by about 2 kcal/mol. In polar solvent, the tautomerization is strongly disfavored, so

that 47 is predicted to be only slightly more stable than 45.

Tab. 4.15: Binding energies for xanthine to canonical bases in kcal/mol. For pairings that involve

tautomeric forms of xanthine, the dimerization energies refer to the formation out of diketo-xanthine.

The columns mode and mut are defined as described in table 4.13. For nonplanar base pairs (C1)

also the energies of the planar structures (Cs) are given.

MP2/TZVPP B3LYP/TZVPP B3LYP/TZVPP

pair mut mode sym ε = 1 ε = 1 ε = 78

45 xanthine-cytosine non-mut WC C1 -12.3 -10.3 -2.3

Cs -11.5 -9.9 -1.8

47 xanthine-cytosine non-mut WC Cs -22.8 -18.5 -2.5

50 xanthine-thymine mut dist Cs -11.0 -9.2 -3.7

51 xanthine-thymine mut dist Cs -10.9 -9.4 -3.7

52 xanthine-thymine mut WC Cs -13.5 -8.5 +6.4

53 xanthine-thymine mut WC C1 +3.8 +7.5 +11.4

Cs +4.1 +7.7 +11.4

54 xanthine-thymine mut WC C1 -1.3 +0.5 +7.5

Cs -1.2 +0.6 +7.6

So far, it has not been considered that xanthine has a pKa-value of 5.7[153] and is deproto-

nated at physiological pH (fig. 4.29, for computed pKa-values see also Rogstad et al.[117]).

Having a pKa-value of 5.7, the deprotonation at physiological pH of 7.4[146] is exothermic

with ∆G = -2.3 kcal/mol32. This value needs to be subtracted from the dimerization en-

ergies in table 4.15 since the involved deprotonated species are higher in energy than the

32The free energy for the deprotonation:

HA −−−−−− > A
− + H

+ (4.3)

is computed as:

∆G = 2.303RT (pKs − pH). (4.4)

For the derivation of eqn. 4.4 see appendix A.
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deprotonated global minimum. As a consequence, 45 and 47 are only weakly or not bound

at all, and should e.g. not be stable as free base pairs in aqueous solution, if also the entropy

is considered, that is negative for the dimer formation33. The low affinity of xanthine to

cytosine should decrease, but not inhibit the incorporation into DNA, since the the pairing

is still favored geometrically, which is the main precondition for an incorporation. [99]
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Fig. 4.29: Deprotonation of xanthine

To cause a point mutation, xanthine has to pair with thymine. Such pairings are possible in

the distorted Watson-Crick geometries 50 and 51 (Fig. 4.30). Both seem to represent stable

pairings in gas phase and in aqueous environment even if the -2.3 kcal/mol are subtracted

to take into account the acidity of N9-xanthine (table 4.15). However, this stability is only

about 1 kcal/mol higher than that of 50 and 51, which should be too small to compensate

the geometrical deviation of 50 and 51 from the exact Watson-Crick pairing geometry.
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Fig. 4.30: Pairings of xanthine and thymine

Within an “exact” Watson-Crick geometry only pairings 52, 53 and 54 involving tautomers

of 49 can be realized for the xanthine-thymine combination. However, such pairings are

unstable either already in the gas phase (53) or clearly unstable in aqueous environment (52

33As explained in footnote 21, in the computations shown here the entropy is not given, because a correct

computation of the entropy requires the consideration of explicit water molecules which is not possible in the

scope of the ab initio computations.
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and 54).
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Fig. 4.31: Pairings of xanthine and thymine involving tautomeric forms of xanthine

Summarizing, neutral N9-xanthine is able to form stable Watson-Crick pairs with cyto-

sine, but not with thymine. Stable xanthine-thymine pairings are only possible in distorted

Watson-Crick geometries, however, these pairing do not have an H-bond accepting function-

ality in N3-position. As a consequence, neutral xanthine cannot lead to the incorporation of

mutagenic xanthine-thymine base pairs into the DNA double strand.

4.2.9 Anionic pairings of xanthine with canonical bases

In the next step, also the anionic base pairings of xanthine are taken into consideration.

Since anion properties are largely determined by solvent stabilization, only computations34

considering a polar environment are discussed here, while gas phase data for anions can

hardly be compared to properties of anions in polar solvent. Figure 4.34 summarizes the

computed dimerization energies. The pairing of deprotonated xanthine to cytosine 55 (fig.

4.32) has a dimerization energy of around zero. The energy stabilization from the H-bonds

34Computational details for section 4.2.9:

GGA-functionals have difficulties in the description of anions due to the self-interaction error.[35] This draw-

back is partially remedied in the B3LYP functional due to the admixture of Hartree-Fock exchange. Con-

sequently, for the optimization of anionic dimers, the B3LYP-functional was used in combination with the

TZVP basis set[92] that was extended by diffuse primitive gaussian functions with the exponents 0.040 (s-

and p-type) for carbon, 0.053 (s- and p-type) for nitrogen and 0.068 (s- and p-type) for oxygen,[151] the basis

set will be abbreviated as TZVP(+). Dimerization energies were computed using the B3LYP functional in

combination with the TZVPP basis set[92] extended by the diffuse primitive gaussian functions given above

(denoted as TZVPP(+)). For all computations the solvent effect was taken into account by the Conductor

like solvation model.[123] All computations were performed using the TURBOMOLE program package.[64]
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Fig. 4.32: Pairings of the xanthine anion and cytosine

almost equals the repulsion of the carbonylic oxygen atoms. Like for the neutral xanthine,

the xanthinolate anion 49 can only form distorted Watson-Crick base pairs 56 and 57 with

thymine (fig. 4.33). However, fig. 4.34 shows that the distorted Watson-Crick mode 56 rep-

resents a stable base pair, since the charge of the xanthine anion 49 is mainly concentrated

on the C2-oxygen atom. In this pairing mode, the negative charge is stabilized due to the

formation of a hydrogen bond from N1-hydrogen atom of thymine. It has been discussed

in section 4.2.2 that the sp2 hybridized nitrogen atoms can stabilize a negative charge very

well and consequently is able to form stronger hydrogen bonds than N-H groups of regular

amines.
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Fig. 4.33: Deprotonated base pairs of xanthine and thymine

In contrast, base pair 57, having a positive formation energy of +0.5 kcal/mol, is destabi-

lized since the negative charge suffers from electrostatic repulsions from C2-carbonyl group

of thymine.
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Fig. 4.34: Dimerization energies of the anionic Watson-Crick pairs of xanthine and cytosine or thymine

(B3LYP/TZVPP(+); ε = 78). The blue lines represent the dimerization energies of the nonplanar

structures of 54, 58, 59 and 60. Energies in kcal/mol.
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Fig. 4.35: Pairings of xanthine and thymine involving anionic tautomeric forms

The pairings 58, 59 and 60 (fig. 4.35) involving tautomeric forms of the N3C2-O enolate

of xanthine 49 have not been found to represent stable formations. Since pairing 60 has

no second H-bond that fixes the dimer in a planarized geometry, its minimum structure is

twisted so that the carbonyl groups have a maximum distance as it is shown in fig. 4.36.

58 58

C1 Cs

Fig. 4.36: Twisted (C1) and planar (Cs) structure of anionic pairing of xanthine to thymine 58. The

twist angel of the molecular planes in the C1-structure is 88.59◦

For the mutagenic potential of xanthosine, the calculations lead to the following picture:

• Pairings that realize the exact Watson Crick geometry are only possible for the pairing

of xanthine to cytosine, however, the base pairs are only weakly bound. The dimeriza-

tion energies of both the neutral, for which a pairing involving a tautomer of xanthine

seems to be slightly favored, and the anionic pairing is around 0 kcal/mol, so that the

incorporation of the xanthine-cytosine base pair into DNA is solely possible,because

the base pair fulfills the geometric demands of DNA polymerase, but it is not enhanced

by the H-bond interactions. The finding that in the Watson-Crick pairing mode xan-

thine has almost no affinity to cytosine is in good agreement with the experimental

124



4.2 Base pairing of N9-xanthine 125

result that the cytosine-xanthine base pair is incorporated into DNA at a much lower

rate than the cytosine-guanine base pair, which has a very strong hydrogen bonding

(EDim = -8.7 kcal/mol).

• To explain why the xanthine-thymine base pair can be incorporated into DNA, the

anionic pairings of xanthine to thymine have to be considered. In its deprotonated form,

xanthine has much a higher affinity to thymine than to cytosine, which is due to the

distorted Watson-Crick pairing 55 in which the negative charge of the xanthine anion

located at the C2-oxygen atom can be stabilized by an H-bond formed by the sp2 N1-

hydrogen atom. However, the geometry of pairing 55 deviates from the exact geometry

of the canonical Watson-Crick base pairs, so that the fit into the binding pocket of DNA

polymerase is worsened. Even though the turn over rate for the distorted pairings is

significantly lower, the decrease should be compensated by the higher stability of the

base pair, so that the turnover rate is comparable to that of xanthine-guanine.
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Chapter 5

Summary

The present work consists of two parts. The first one deals with theoretical questions and

tests the performance of orbitals obtained from a self-interaction free KS method, the LHF-

approach, in multireference ab initio methods. The purpose of this part is to enable a more

efficient computation of excitation energies, which is important for the spectroscopic char-

acterization of many organic and bioorganic molecules.

The second part focuses on bioorganic questions and studies the base pairing properties of

the purine base xanthine in order to explain, e.g., the unusually high stability of selfpairing

xanthine alanyl-PNA double strands and the mutagenicity of xanthine formed in DNA.

LHF-orbitals in MR ab initio methods

In contrast to HF- and standard DFT-methods, the LHF-approach leads to a fully bound

virtual orbital spectrum, because Coulomb self interactions are exactly canceled in the LHF-

ansatz. Furthermore, the energies of the occupied orbitals are not upshifted, like it is the

case for standard DFT-methods, so that Koopmans’ theorem remains valid. In line with this,

also the occupied LHF-orbitals are somewhat more compact than standard DFT-orbitals.

The present work shows that both properties are of great benefit for MR methods. The

virtual LHF-orbitals are well optimized and allow an efficient description of excited states

and static correlation in both MRCI- and MRPT2-approaches. Furthermore, the higher
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compactness of the occupied LHF- compared to standard DFT-orbitals leads to a better

description of the center ion of Rydberg states.

However, for each of the two advantages mentioned at least one example molecule has been

found, for which LHF-orbitals actually perform worse than HF- and/or standard DFT-

orbitals. This shows, that even though LHF virtual orbitals allow an excellent MRCI- and

MRPT2-description for the electronically excited states of a large number of molecules, this

cannot be generalized and their performance needs to be tested for each individual case.

MRCI

In detail, the excited states of the test molecules ethene, water, carbonmonoxide, formalde-

hyde and acetone were computed using the MRCI-approach. For the first two test molecules

water and ethene, the quality of the orbitals was determined by the number of reference

configurations that is needed to reach a given accuracy in the MRCI+Q-computation. LHF-

orbitals were compared to HF-, BLYP- and, for ethene, also to CASSCF-orbitals.

For both molecules, the number of configurations in the reference space needed to obtain

the required accuracy usually equals the number of states computed when LHF-orbitals are

used, which means that the MRCI-wavefunctions are dominated by one configuration only.

The corresponding virtual LHF-orbitals can be easily classified into antibonding or the 3s-,

3p- etc. orbitals of the Rydberg series. The only exception is the 1B1u-valence state of

ethene, that shows Rydberg-valence mixing. In this case, the Rydberg-valence mixing found

is physical and not an artefact produced by the underlying LHF-orbitals.

In contrast to the compact CI-description based on LHF-orbitals, the use of HF-orbitals

requires very large reference spaces of up to ten configurations per state to obtain the de-

manded accuracy, since virtual HF-orbitals are very diffuse and the CI needs to reconstruct

the density of the Rydberg state from a large number of configurations. The performance

of BLYP-orbitals is strongly determined by the erroneous exponential decay of the BLYP-

potential. BLYP-orbitals become increasingly diffuse with increasing energy, while the inner

part of the BLYP Rydberg orbitals remains relatively dense. The lower excited states are

well described in the MRCI-computations by BLYP-orbitals, but for Rydberg states with

higher quantum numbers up to 6 reference configurations are needed to describe a given
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state. CASSCF-orbitals, like LHF-orbitals, allow a very good description of the excited

states of ethene. However, this is only the case if the CASSCF-orbitals are explicitly op-

timized for the given states, while ground state CASSCF-orbitals sometimes show a wrong

nodal structure.

In the next step, the role of relaxation of the orbitals describing the core ion of the excited

states was studied. For the water molecule, both LHF- and HF-orbitals lead to similar

excitation energies in the MRCI+Q computation. However, when BLYP-orbitals are used

the MRCI+Q energies do not converge towards the values determined experimentally with

increasing reference spaces, but tend to underestimate the experimental data. The reason

for the underestimation of the excitation energies is that the wrong asymptotic behavior of

the BLYP potential leads to a too slow decay of the density. This erroneous decay does not

lead to difficulties in the description of the ground state. However, if the same orbitals are

used to describe the more contracted core density of an excited state, the same error leads

to smaller c2-values. The core density of an excited state is more contracted because when

an electron is excited from an occupied into a previously unoccupied orbital, the remaining

occupied orbitals, which for an excited state describe the core ion, contract. As a conse-

quence of the smaller c2-values, the Davidson correction overestimates the full-CI energy for

the respective states. For other cases like the ethene molecule, the orbital relaxation only

plays a minor role in the computation of the excitation energies, since an error cancellation

as assumed in Koopmans’ theorem takes place and the decrease of correlation energy about

equals the energy contribution of the orbital relaxation.

Since the MRCI+Q energies not in all cases converge towards the experimentally determined

excitation energies, the first quality criterion had to be redefined and was replaced by the

number of singly excited configurations in the reference space, that is needed to reach con-

vergence in the MRCI computation. Since the single excitations take place out of one defined

orbital, the refined quality criterion tests the properties of the virtual obitals only, while the

deviation of the computed excitation energy from the experimental values tests the ability

of the occupied orbitals to describe the core orbitals of the excited states.

Using the refined quality criterion, the three test molecules carbonmonoxide, formaldehyde

and acetone were computed. Even though carbonmonoxide, formaldehyde and acetone are

electronically rather similar molecules, the performance of LHF-orbitals in the description of
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their excited states with MRCI methods differs considerably. LHF-orbitals excellently cap-

ture the electronic character of the excited states of formaldehyde, but for carbonmonoxide

and acetone, problems of completely different nature occur. For carbonmonoxide, the core

orbitals of the excited states seem to be imperfectly described. For acetone, the difficulties

are related to the spatial form of the virtual LHF-orbitals, which seem to be somewhat too

compact to give a good description of the corresponding states.

For BLYP-orbitals, the properties of the virtual orbitals are again strongly related with the

erroneous asymptotic decay of the KS-potential. As a result, BLYP-orbitals seem to be a

good choice to describe excited states up to a certain energy level, but above this threshold,

the virtual orbitals become highly diffuse and no longer allow a good description of the corre-

sponding excited states. Fortuitously, BLYP-orbitals well describe the situation for acetone,

which is due to the larger size of acetone compared to formaldehyde or carbonmonoxide,

so that also the space that is not affected by the wrong decay of the BLYP-potential is

larger. For carbonmonoxide, formaldehyde and acetone also B3LYP-orbitals were tested. As

expected the results obtained with B3LYP-orbitals simply represent an averaging of those

obtained using HF- and BLYP-orbitals.

MRPT2

It was shown by computations for the ground states of carbonmonoxide and formaldehyde,

that the overestimation of the 2nd order correction in the single reference case is eliminated

if configurations representing double excitations into antibonding orbitals are included in the

reference spaces. This inclusion also allows a more efficient description of static correlation

effects.

The MRPT2-computations for excited states were performed for carbonmonoxide, formalde-

hyde, acetone and ethene. Since MRPT2-methods demand larger reference spaces than the

MRCI-method, an automatic selection procedure was used to determine the reference con-

figurations. LHF-orbitals give a good description for the excited states of formaldehyde,

ethene, and with some limitations also for those of carbonmonoxide. Difficulties of the

MRCI computation to describe the core orbitals of carbonmonoxide with LHF-orbitals do

not seem to play a major role in the considered MRPT2-approach. For the excitation energies
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of formaldehyde, the MRPT2 method possesses the same precision as the MRCI-method.

However, the excitation energies of acetone computed on the basis of LHF-orbitals show a

systematic underestimation of the experimental excitation energies especially for Rydberg

states. Despite these problems, LHF-orbitals seem to give a better positioning of Rydberg

relative to valence states which allows a better description of Rydberg-valence mixings. This

was shown for the Rydberg-valence mixing of the 1B1u-states of ethene, which represents

a difficult case for the CASPT2- or for MRPT2-methods using orbitals optimized for the

center ion of the Rydberg states.

In comparison to LHF-orbitals, HF-orbitals in several cases lead to large deviations of the

computed energies from experimental values. An exception is the Rydberg states of ace-

tone that can be predicted very precisely with the MRPT2-approach based on HF-orbitals.

Like for the MRCI-method also for the MRPT2-approach BLYP-orbitals only give a good

description of valence and lower lying Rydberg states, while the description of higher lying

Rydberg states is difficult. Except for the carbonmonoxide molecule, where B3LYP-orbitals

lead to somewhat less accurate excitation energies, BLYP- and B3LYP-orbitals perform very

similar in the MRPT2-computations.

131



132 Chapter 5 Summary

Base pairing of xanthine

In the second part of the present work, the base pairing properties of xanthine and xan-

thine derivatives were studied. The purpose of this part was to find an explanation for the

unexpectedly high stability of the xanthine alanyl PNA double strand. Furthermore, it was

analyzed, why xanthine, that is formed from guanine in DNA under chemical stress, is able

to form mismatched base pairs with the pyrimidine base thymine.

Stability of xanthine alanyl PNA

In the first step, the regioisomer present in the considered alanyl PNA was identified to

be the N7-regioisomer of xanthine by a theoretical analysis of the 13C-NMR spectrum. To

analyze the stability of the xanthine self-pairing, a simplified model was set up, in which the

stability of the PNA double strand was explained solely by the energy contributions from

H-bonding and base stacking.

EH−b./stack = 6 ∗ Edim + 5 ∗ Estack
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Fig. 5.1: Correlation of the stabilization energy EH−b./stack resulting from the sum over all H-bond

and stacking interactions with the melting temperature (Tm) of hexameric xanthine alanyl PNA. The

factors 6 and 5 simply sum up the number of interactions as it is shown by the blue and red arrows

in the illustration.
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For that purpose, the dimerization and stacking energies for the xanthine-xanthine, guanine-

cytosine, adenine-thymine and xanthine-2,6-diaminopurine base pairs were computed using

DFT and MP2 methods. Solvent effects were taken into account by the conductor like screen-

ing model. The influence of the peptide backbone on the stacking geometry was considered

by force field optimizations.

While the individual contributions from hydrogen bonding and stacking do not correlate with

the melting temperature Tm, the sum of both correlates linearly with Tm (fig 5.1). This

correlation is somewhat surprising, because this means that the effects of the entropy and

the molecular water environment either cancel or are similar for all systems compared. In

this model, the stability of the xanthine selfpairing mainly stems from an enlarged stacking

interaction, while the H-bonds give only minor contributions to the stability of the xanthine

selfpaired double strand of alanyl-PNA.

Base pairing properties of N9-Xanthine

The computation of the base pairing properties of N9-xanthine revealed a strong varia-

tion in the individual H-bond strengths for the selfpairing of xanthine, that range from -4

to -11 kcal/mol in the gas phase and -2.5 to -5 kcal/mol in polar solvent. By comparison

with model systems it was shown that the strong variance of the H-bond strength is mainly

due to attractive or repulsive secondary electrostatic interactions. For the homodimer of hy-

poxanthine it was shown that the increase of aromaticity in the pyrimidine ring upon dimer

formation leads to a strengthening of the hydrogen bonds. Electronic effects are important,

because they are less affected by solvent interaction than purely electrostatic interactions.
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Fig. 5.2: Stabilization of the dimer of hypoxanthine due to an increase of aromaticity
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The predictions made have been tested experimentally by the characterization of xanthosine-

(the ribosyl derivative of xanthine) and inosine (the ribosyl derivative of hypoxanthine)

dimers using low temperature 1H-NMR spectroscopy. The assignment of the spectra was

performed by a comparison with computed spectra. In the experimental study xanthosine

did not form one of the predicted unusually stable dimers, but prefered a rather weak pair-

ing mode, since the steric of the ribosyl group inhibits the formation of energetically more

favorable pairings. Instead, the N3-H functionality that would lead to the unusually stable

pairing modes is stabilized by an internal hydrogen bond to an oxygen atom of the ribosyl

sugar. For inosine, the predicted strong association has indeed been found.

Mutagenicity of hypoxanthine and xanthine

Several neutral and anionic Watson-Crick base pairs of xanthine were computed with MP2-

and DFT-methods in order to explain the mutagenicity of hypoxanthine and xanthine. Also

basepairs involving tautomeric forms of xanthine and hypoxanthine were considered. To

evaluate the dimerization energies found, the dimers were classified into pairings that have

the exact geometry of the canonical base pairs and those that realize a distorted Watson-

Crick pairing mode.
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Fig. 5.3: Watson-Crick pairings of anionic and tautomeric xanthine with cytosine

The computations show that a stable pairing which realizes the exact geometry of a canon-

ical Watson Crick base pairing is only possible for the pairing of xanthine to cytosine (fig.

5.3), however, the base pairs are only weakly bound. The dimerization energies of both the

neutral and the anionic pairing is around 0 kcal/mol, so that the xanthine-cytosine base

pairs are incorporated into DNA solely because the base pairs fulfill the geometric demands

of DNA polymerase, but it does not profit from any additional stabilization due to hydrogen
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bonding. The finding that in the Watson-Crick pairing mode xanthine has almost no affin-

ity to cytosine is in correspondence with the experimental result that the cytosine-xanthine

base pair is incorporated into DNA at a much lower rate than the cytosine-guanine base

pair, which has a very strong hydrogen bonding.

While the affinity of xanthine to cytosine is very low, the computations predict that xanthine

is able to form a stable Watson-Crick pairing with thymine (fig. 5.4). However, the pairing

has a somewhat distorted Watson-Crick geometry, so that its high stability is outbalanced by

the worsened fit to the binding pocket of DNA-polymerase. As a consequence, the xanthine-

thymine pairing is incorporated into DNA not at a faster, but only at a rate comparable to

that of the xanthine-cytosine pairing
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Chapter 6

Zusammenfassung

Die vorliegende Arbeit besteht aus zwei Teilen. Der erste untersucht die Eignung von LHF-

Orbitalen für Multireferenzverfahren. Das Ziel dieses Teils ist eine effizientere Berechnung

angeregter Zustände, was zur spektroskopischen Charakterisierung vieler organischer und

bioorganischer Moleküle wichtig ist.

Der zweite Teil befasst sich mit bioorganischen Fragestellungen und untersucht die Paarungs-

eigenschaften der Purinbase Xanthin. Es wird unter anderem die unerwartet hohe Stabilität

der Xanthin Selbstpaarung in Alanyl-PNA erklärt und es wird untersucht, auf welche Weise

Xanthin in der DNA mutagene Fehlpaarungen mit Thymin eingehen kann.

LHF-Orbitale als Einteilchenbasis für MR ab initio Methoden

Im Unterschied zu HF- und Standard-DFT-Methoden führt der LHF-Ansatz zu einem voll-

ständig gebundenen Orbitalspektrum, da Coulomb-Selbstwechselwirkungen im LHF-Ansatz

exakt korrigiert werden. Durch die Korrektur der Coulomb-Selbstwechselwirkungen sind im

LHF-Ansatz auch die Energien der besetzten Orbitale nicht wie in Standard-DFT-Methoden

zu höheren Werten verschoben, so dass das Koopmans’ Theorem gültig bleibt und die be-

setzten LHF-Orbitale etwas kompakter als Standard-DFT-Orbitale sind.

Die vorliegende Arbeit zeigt, dass beide Eigenschaften deutliche Vorteile für MR-Verfahren

darstellen. Die virtuellen LHF-Orbitale sind gut optimiert und erlauben eine effiziente

137



138 Chapter 6 Zusammenfassung

Beschreibung sowohl angeregter Zustände als auch statischer Korrelationseffekte in MRCI-

und MRPT2-Ansätzen. Weiterhin führt die kompaktere Struktur der besetzten LHF-Orbitale

zu einer besseren Beschreibung des kationischen Rumpfes von Rydbergzuständen.

Andererseits wurden zu beiden genannten Vorteilen auch jeweils ein Beispielmolekül gefun-

den, in dem die Vorteile nicht zum Tragen kommen, und zu deren Beschreibung Orbitale aus

HF- oder Standard-DFT-Methoden besser geeignet sind. Diese Beispiele zeigen, dass jeder

Einzelfall für sich getestet werden muss, auch wenn die angeregten Zustände der meisten

Moleküle sehr gut mit LHF-Orbitalen beschrieben werden können.

MRCI

Im Einzelnen wurden die angeregten Zustände der Testmoleküle Ethen, Wasser, Kohlen-

monoxid, Formaldehyd und Aceton mit dem MRCI-Ansatz berechnet. Die Qualität der

Orbitale wurde zunächst über die Anzahl der Referenzkonfigurationen bestimmt, die er-

forderlich ist, um eine festgelegte Mindestgenauigkeit in der MRCI-Rechnung zu erreichen.

Dieser Ansatz wurde zur Berechnung des Ethen- und des Wassermoleküls verwendet. Die

LHF-Orbitale wurden mit HF-, BLYP- und für Ethen auch mit CASSCF-Orbitalen ver-

glichen.

In beiden Fällen kann unter Verwendung von LHF-Orbitalen die geforderte Genauigkeit

bereits erreicht werden, wenn jeder Zustand nur über eine einzige Referenzkonfiguration

beschrieben wird, womit auch die MRCI-Wellenfunktion von nur einer einzigen Konfiguration

dominiert ist. Die in den Referenzkonfigurationen einfach besetzten virtuellen LHF-Orbitale

können im Unterschied zu HF- oder BLYP-Orbitalen eindeutig als antibindende oder 3s-,

3p- usw. Orbitale der Rydberg-Serie klassifiziert werden. Eine Ausnahme stellt der 1B1u-

Zustand von Ethen dar, in dem es zu einer starken Rydberg-Valenzmischung kommt. Im

Falle des 1B1u-Zustands von Ethen ist die Rydberg-Valenzmischung allerdings physikalisch

und kein Artefakt, das durch die Verwendung von LHF-Orbitalen erzeugt wird.

In Unterschied zur effizienten CI-Beschreibung mit LHF-Orbitalen erfordert die Verwen-

dung von HF-Orbitalen sehr große Referenzräume aus bis zu 10 Konfigurationen pro Zu-

stand, um die geforderte Genauigkeit zu erreichen. Virtuelle HF-Orbitale sind sehr dif-

fus, weshalb im CI viele Konfigurationen benötigt werden um die Dichteverteilung eines
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Rydbergzustands zu rekonstruieren. Die Eignung von BLYP-Orbitalen ist vom fehlerhaften

asymptotischen Verhalten des BLYP-Potentials bestimmt: Mit zunehmender Orbitalenergie

werden BLYP-Orbitale mehr und mehr diffus, gleichzeitig besitzen die jeweiligen Orbitale

im Inneren (d.h. im molekülnahen Bereich) oft eine sehr kompakte Struktur. Dadurch er-

lauben BLYP-Orbitale eine gute Beschreibung energetisch tief liegender angeregter Zustände,

während zur Beschreibung energetisch höher liegender Rydbergzustände bis zu 6 Referenz-

konfigurationen benötigt werden, um die elektronische Struktur eines einzelnen Zustands zu

erfassen. CASSCF-Orbitale erlauben eine sehr gute Beschreibung der angeregten Zustände

von Ethen, allerdings müssen sie für jeden einzelnen Zustand optimiert werden.

Im nächsten Schritt wurde die Relaxation der Orbitale untersucht, die das Zentralion der

Rydbergzustände beschreiben. Für das Wassermolekül wurden mit HF- und LHF-Orbitalen

bei unterschiedlichem Aufwand ähnlich genaue Anregungsenergien erhalten. Werden je-

doch BLYP-Orbitale verwendet, so konvergieren die berechneten Anregungsenergien bei

Vergrößerung des Referenzraumes nicht gegen die experimentell ermittelten Werte, sondern

neigen dazu diese zu unterschätzen. Die Ursache dafür ist der Selbstwechselwirkungfehler,

welcher im BLYP-Verfahren zu einem zu langsamen Abfall der Dichte führt. Im Grundzu-

stand wirkt sich dieser Fehler nur wenig aus. Werden jedoch die gleichen Orbitale verwendet

um einen angeregten Zustand zu beschreiben, so führt der zu flache Abfall der Kernionen-

dichte zu kleineren c2-Werten. In diesem Fall sind die besetzten BLYP-Orbitale zu diffus um

den kationischen Kern des angeregten Zustandes korrekt zu beschreiben. Wenn ein Elektron

von einem besetzten in ein unbesetztes Orbital angeregt wird, vermindert sich nämlich für

die anderen besetzten Orbitale die Kernabschirmung, woduch es zu einer Orbitalkontraktion

kommt. Die zu kleinen c2-Werte wiederum führen zu einem Versagen der Full-CI Korrektur.

In anderen Fällen wie den angeregten Zuständen des Ethenmoleküls spielt die Orbitalrelax-

ation nur eine untergeordnete Rolle, da es zu einer Fehlerkompensation von Orbitalrelaxation

und Korrelation kommt, wie sie auch in Koopmans’ Theorem gefordert wird.

Da die MRCI+Q-Energien nicht in jedem Fall auf die experimentellen Anregungsenergien

hin konvergieren, musste das Qualitätskriterium neu formuliert werden. Es wurde durch

die Anzahl der Referenzkonfigurationen ersetzt, die notwendig ist, um Konvergenz in den

berechneten MRCI+Q Energien zu erreichen. Da die Einfachanregungen aus festgelegten

Orbitalen erfolgen, bewertet das verbesserte Qualitätskriterium nur die Eigenschaften der
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virtuellen Orbitale, während die Eignung der besetzten Orbitale über die Abweichung der

berechneten Anregungsenergien von den experimentellen Werten, bzw. über die c2-Werte

der MRCI-Wellenfunktion beurteilt wird.

Mit Hilfe des neu formulierten Qualitätskriteriums wurden die drei Testmoleküle Kohlen-

monoxid, Formaldehyd und Aceton berechnet. Obwohl alle drei Moleküle elektronisch sehr

ähnlich zu sein scheinen, beschreiben LHF Orbitale ihre angeregten Zustände auf sehr unter-

schiedlich Weise. Während sie den elektronischen Charakter der angeregten Zustände von

Formaldehyd ausgezeichnet erfassen, treten für Kohlenmonoxid und Aceton Schwierigkeiten

unterschiedlicher Natur auf. Im Falle von Kohlenmonoxid scheinen die Orbitale zur Beschrei-

bung des Kernions schlecht geeignet zu sein. Für das Aceton wiederum resultieren die

Schwierigkeiten aus der räumlichen Struktur der virtuellen LHF-Orbitale, die zu kompakt

sind, um den elektronischen Charakter der dazugehörigen angeregten Zustände angemessen

zu erfassen.

Die Ergebnisse, die für die drei Testmoleküle Kohlenmonoxid, Formaldehyd und Aceton mit

HF- und BLYP-Orbitalen erhalten wurden, zeigen ähnliche Trends wie sie bereits für das

Ethenmolekül erhalten wurden. Interessanterweise führen BLYP-Orbitale zu einer relativ

guten Beschreibung des Acetonmoleküls. Für Kohlenmonoxid, Formaldehyd und Aceton

wurden auch B3LYP-Orbitale getestet. Wie zu erwarten liegen die erhaltenen Anregungsen-

ergien stets zwischen denen von HF- und BLYP-Orbitalen.

MRPT2

Zur Verwendung von KS-Orbitalen in MRPT2-Ansätzen wurde zunächst gezeigt, dass die

häufig auftretende Überschätzung der Korrelationsenergie in der zweiten Ordnung der Stör-

ungstheorie in einem Multireferenz-Ansatz verschwindet, wenn die aus Doppelanregungun-

gen in die π∗-Orbitale resultierenden Konfigurationen in den Referenzräumen berücksichtigt

werden. Zusätzlich ermöglicht die Berücksichtigung dieser Konfigurationen auch eine ef-

fizientere Beschreibung der statischen Korrelation.

Im nächsten Schritt wurden die angeregten Zustände von Kohlenmonoxid, Formaldehyd,

Aceton und Ethen berechnet. Da für das MRPT2-Verfahren generell größere Referenzräume

als für das MRCI-Verfahren benötigt werden, wurden die Referenzräume über ein automa-
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tisches Selektionsverfahren bestimmt und die Genauigkeit der berechneten Anregungsen-

ergien verglichen. In dem gewählten MRPT2-Ansatz erlauben LHF-Orbitale eine gute

Beschreibung der angeregten Zustände von Kohlenmonoxid, Formaldehyd und Ethen. Die

Schwierigkeiten im MRCI, die mit der Beschreibung der Orbitale des Kernions der angeregten

Zustände von Kohlenmonoxid verbunden waren, scheinen im MRPT2-Ansatz keine größere

Rolle zu spielen. Wie bereits in den MRCI-Rechnungen gezeigt wurde, beschreiben die LHF-

Orbitale die Rydbergzustände von Aceton fehlerhaft, was im MRPT2 zu einer systematischen

Unterschätzung der Anregungsenergien führt.

Anhand des 1B1u-Zustandes von Ethen, der einen schwierigen Fall für die CASPT2-Methode

darstellt, wurde zusätzlich gezeigt, dass LHF-Orbitale zu einer günstigeren relativen Lage

von Valenz und Rydbergzuständen im Referenz-CI führen, wodurch eine korrektere Beschrei-

bung der Rydberg-Valenzmischung möglich ist. Im Vergleich zu LHF-Orbitalen führen

HF-Orbitale im MRPT2-Ansatz in vielen Fällen zu deutlichen Abweichungen der berech-

neten Anregungsenergien von den experimentell bestimmten Werten. Eine Ausnahme sind

die Rydbergzustände von Aceton, die ausgehend von HF-Orbitalen sehr genau mit dem

MRPT2-Ansatz berechnet werden können. Wie bereits für den MRCI-Ansatz beschrieben,

ergeben BLYP-Orbitale eine sehr genaue Berechnung der Valenzzustände und der ener-

getisch tief liegenden Rydbergzustände, während mit zunehmender Anregungsenergie die

Rydbergzustände schlechter erfasst werden. Mit Ausnahme des Kohlenmonoxids, für das

B3LYP-Orbitale etwas schlechter als BLYP-Orbitale geeignet sind, zeigten sich in den MRPT2-

Rechnungen keine größeren Unterschiede zwischen BLYP- und B3LYP-Orbitalen.
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Basenpaarung von Xanthin

Im zweiten Teil der vorliegenden Arbeit wurden die Paarungseigenschaften von Xanthin und

Xanthinderivaten untersucht. Ziel dieses Teils war es, eine Erklärung für die unerwartet hohe

Stabilität des Xanthin Alanyl-PNA Selbstpaarung zu finden. Weiterhin wurde untersucht,

weshalb Xanthin, das in der DNA u.a. unter chemischem Stress gebildet wird, mutagene

Fehlpaarungen mit der Pyrimidinbase Thymin eingehen kann.

Stabilität der Xanthin Alanyl PNA

Zunächst wurde durch den Vergleich experimenteller und berechneter 13C-NMR-Spektra

das Regiosomer von Xanthin bestimmt, welches zu der ungewöhnlich hohen Stabilität der

Xanthin-Xanthin-Selbstpaarung in Alanyl-PNA verantwortlich ist. Zur Untersuchung der

Stabilität der Xanthin-Selbstpaarung wurde ein stark vereinfachendes Modell aufgestellt,

EH−b./Stap = 6 ∗ EDim + 5 ∗ EStap
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Abb. 6.1: Korrelation der Gesamtstabilisierungsenergie EH−b./Stap, die sich aus der Summe aller

H-Brücken und Stapelungswechselwirkungen ergibt, mit den experimentell ermittelten Schmelztem-

peraturen hexamerer Alanyl-PNA. Die Faktoren 5 und 6 ergeben sich aus der Anzahl der im Hexamer

auftretenden Wechselwirkungen.
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in dem die Stabilität der PNA-Duplexe nur über die Energiebeiträge aus den Wasser-

stoffbrücken (EDim) und der Basenstapelung (EStap) bestimmt wird. Die Dimerisierungs-

und Stapelungsenergien unterschiedlicher Paarungen wurden mit DFT- und MP2-Methoden

bestimmt. Solvenseffekte wurden über ein Kontinuummodell erfasst und der Einfluß des

peptidischen Rückgrats auf die Stapelungsgeometrie wurde durch Kraftfeldmethoden berück-

sichtigt.

Während die einzelnen Energiekomponenten aus den H-Brücken und der Basenstapelung

keinen eindeutigen Zusammenhang zu den Schmelztemperaturen erkennen lassen, korreliert

die Summe aus beiden linear mit den experimentell ermittelten Tm-Werten (Abb. 6.1). Dies

bedeutet, dass die Beiträge aus der Entropie, der molekularen Wasserumgebung und der

Rückgratspannung sich entweder aufheben oder für alle behandelten Systeme sehr ähnlich

sind. Die Stabilität der Xanthin-Xanthin- und die der 2,6-Diaminopurin-Xanthin-Paarung,

ergibt sich durch einen erhöhten Stapelungsbeitrag der Purinpaarungen, während die Wasser-

stoffbrücken der Xanthin Selbstpaarung nur wenig zur Stabilisierung des Xanthin-Xanthin-

und des Xanthin-Diaminopurin-Alanyl-PNA-Doppelstrangs beitragen.

Paarungseigenschaften von N9-Xanthin

Zur Untersuchung der Paarungseigenschaften von N9-Xanthin wurden zunächst H-verbrückte

Homodimere von Xanthin untersucht. Hierbei wurden extreme Variationen in den Bindungs-

stärken der einzelnen H-Brücken gefunden, die sich zwischen -4 bis -11 kcal/mol in der Gas-

phase und -2.5 bis -5 kcal/mol im Solvens betragen. Durch Vergleich mit Modellsystemen

konnte die starke Varianz der H-Brückenstärke auf anziehende bzw. abstoßende sekundäre

elektrostatische Wechselwirkungen zurückgeführt werden. Weiterhin wurde das Homodimer

von Hypoxanthin untersucht, bei dem die H-Brücken durch eine Erhöhung der Aromatizität

im Pyrimidinring zusätzlich verstärkt werden, was zu einer deutlichen Stabilisierung des

Dimers führt (Abb. 6.2). Elektronische Effekte müssen vor allem deshalb berücksichtigt

werden, da sie im Unterschied zu rein elektrostatischen Effekten deutlich weniger von der

Solvensumgebung beeinflusst werden.

Die Vorhersagen zu den Xanthin- und Hypoxanthin-Homodimeren wurden experimentell

mittels Tieftemperatur 1H-NMR-Untersuchungen der Dimere von Xanthosin (dem Ribo-
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Abb. 6.2: Stabilisierung des Inosindimers über die Erhöhung der Aromatizität

sylderivat von Xanthin) und Inosin (das Ribosylderivat von Hypoxanthin) in Freonlösung

überprüft. Die Auswertung der Spektren erfolgte wiederum mit Hilfe berechneter Spektren.

Es zeigte sich, dass Xanthosin aufgrund der sterischen Abstoßung des Ribosylrestes nicht in

einer der zu erwartenden sehr stabilen Modi paart, sondern einen eher schwach gebundenen

Modus vorzieht. Für Inosin konnte auch experimentell eine sehr hohe Assoziationskonstante

bestimmt werden.

Mutagenität von Hypoxanthin und Xanthin

Zur Erklärung der Mutagenität von Hypoxanthin und Xanthin wurden verschiedene neutrale

und anionische Watson-Crick Basenpaarungen von Hypoxanthin und Xanthin mit Pyrimidin-

basen berechnet. Hierbei wurden u. a. auch tautomere und anionische Formen von Xanthin

berücksichtigt. Zur Bewertung der erhaltenen Dimerisierungsenergien wurden die Paarungen

danach klassifiziert, ob ihre Geometrien mit denen der kanonischen Basenpaarungen deck-

ungsgleich sind, oder ob sie in einer verzerrten Watson-Crick Geometrie vorliegen, was die

Einbaurate in die DNA aufgrund des räumlichen Anspruchs der DNA-Polymerase vermin-
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Abb. 6.3: Watson-Crick Paarungen von anionischem und tautomerem Xanthin mit Cytosin
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dert.

Die Rechnungen zeigen, dass Xanthin nur mit Cytosin Watson-Crick-Paarungen eingehen

kann (Abb. 6.3), welche jedoch nur sehr schwach gebunden sind. In der neutralen Form

scheint eine dreizähnige Basenpaarung unter Beteiligung einer tautomeren Form des Xan-

thins etwas stabiler zu sein als die zweizähnige Paarung von Diketoxanthin mit Cytosin. Da

die Dimerisierungsenergie sowohl der neutralen als auch der anionischen Basenpaarung nur

wenig unter 0 kcal/mol liegt, ist der Einbau der Xanthin-Cytosin-Paarung in die DNA zwar

aufgrund der günstigen Geometrie möglich, wird aber nicht durch einen Energiebeitrag aus

den H-Brücken verstärkt. Die im Vergleich zur Guanin-Cytosin Paarung deutlich geringere

Affinität von Xanthin zu Cytosin ist im Einklang mit dem experimentellen Befund, dass die

Cytosin-Xanthin Paarung deulich langsamer als die Guanin-Cytosin Paarungen in die DNA

eingebaut werden.

Während die Rechnungen nur eine geringe Affinität von Xanthin zu Cytosin vorhersagen,

scheint das Anion von Xanthin in der Lage zu sein, eine sehr stabile Basenpaarung mit

Thymin einzugehen (Abb. 6.4). Allerdings muss die Dimerisierungsenergie die schlechtere

Anpassung in die Bindungstasche der DNA-Polymerase ausgleichen, da die Paarung in einer

etwas verzerrten Watson-Crick Geometrie vorliegt. Insgesamt wird die Paarung daher nicht

schneller in die DNA eingebaut, wie erwartet aufgrund der H-Brückenstärken, stattdessen

besitzt sie eine ähnliche Einbaurate wie die geometrisch günstigere aber weniger stabile

Xanthin-Cytosin Paarung.
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Appendix A

Free Energies for the

Deprotonation in a buffered

solution

The free energy for the deprotonation[a]:

HA −−−−−− > A− + H+ (A.1)

is defined as

∆G = ∆G0 + 2.303RT ∗ log
[A−][H+]

[HA]
. (A.2)

For equilibrium (∆G = 0) A.2 leads to

∆G0 = 2.303RTpKs. (A.3)

A.3 and the definition of the pH-value are now substituted into A.2 to give

∆G = 2.303RT (pKs + log
[A−]

[HA]
− pH). (A.4)

For standard concentrations [HA] = [A−] = 1 the second term of A.4 can be set to zero,

because

log
[A−]

[HA]
= 0, (A.5)
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158 Appendix A Free Energies for the Deprotonation in a buffered solution

so that the standard free energy for the deprotonation at a given pH-value can be computed

as:

∆G = 2.303RT (pKs − pH). (A.6)

[a] C. E. Mortimer and U. Müller, Chemie, 8. Auflage, (Thieme-Verlag, Stuttgart, 2003).
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